
Sichere mobile Apps mit
plattformübergreifenden
Frameworks entwickeln

Herausforderungen und Lösungsansätze für
EntwicklerInnen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Lisa Maria Leonhartsberger, BSc.
Matrikelnummer 01125289

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl
Mitwirkung: Univ.Lektorin Dr.techn. Katharina Krombholz-Reindl

Wien, 25. Jänner 2018
Lisa Maria Leonhartsberger Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Secure Mobile Apps based on
Cross-Platform Frameworks

Challenges and Approaches for Developers

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Software Engineering and Internet Computing

by

Lisa Maria Leonhartsberger, BSc.
Registration Number 01125289

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Edgar Weippl
Assistance: Univ.Lektorin Dr.techn. Katharina Krombholz-Reindl

Vienna, 25th January, 2018
Lisa Maria Leonhartsberger Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Lisa Maria Leonhartsberger, BSc.
Ahornweg 16, 3683 Yspertal

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 25. Jänner 2018
Lisa Maria Leonhartsberger

v

Acknowledgements

First of all I’d like to thank my advisors Edgar Weippl and Katharina Krombholz-Reindl
for their help. They aided me with their constructive feedback and valuable suggestions
all the time.

I would also like to thank SBA Research and my colleagues for the great time in the
six-months internship. It allowed me to obtain insights and experiences in IT security
research, which I wouldn’t have made otherwise.

Moreover, I thank my husband, Reinhard Leonhartsberger for his love and moral support
through all the years of my bachelor and master studies. I also like to extend my gratitude
to my parents, Franz and Brigitte Fichtinger who always enhanced my skills and enabled
me a great course of education.

Last but not least, I’m very grateful for all the friends I made on university. We had a
lot of useful learning sessions, discussions, interesting projects and fun together.

vii

Kurzfassung

Mobile Endgeräte, wie Smartphones oder Tablets sind heute wesentliche Bestandteile
unseres privaten und beruflichen Lebens und werden für verschiedenste Tätigkeiten
verwendet. Die verschiedenen Geräteplattformen und Systeme sind eine große Heraus-
forderung für mobile EntwicklerInnen heute. Plattformübergreifende Frameworks mit
dem ideologischen Ansatz “Write Once, Run Anywhere” wurden entwickelt, um diese
Herausforderungen zu überwinden. Beispiele solcher Frameworks sind Apache Cordova
von Apache Software Foundation, Xamarin von Xamarin Inc. einer Tochtergesellschaft
von Microsoft und React Native von Facebook Inc.

Die Verwendung digitaler Technologien erzeugt eine enorme Menge an Daten mit sensiblen
Informationen über die eigene Persönlichkeit, Vorlieben und Verhalten. Der Schutz dieser
Daten vor unerlaubtem Zugriff ist notwendig um die Privatsphäre jedes Einzelnen zu
gewährleisten und zu respektieren. SoftwareentwicklerInnen, die diese Technologien und
Anwendungen entwickeln, spielen dabei eine wichtige Rolle.

Deshalb untersuchen wir die Probleme und Herausforderungen der EntwicklerInnen
um sichere mobile Apps mit plattformübergreifenden Frameworks zu entwickeln. Wir
evaluieren offizielle Dokumentationen der Frameworks und sammeln und analysieren
Stack Overflow Beiträge, da diese wichtige Informationsquellen für EntwicklerInnen sind.
Dabei hat sich herausgestellt, dass in allen drei Frameworks OAuth 2.0 Autorisierung für
viele EntwicklerInnen sehr herausfordernd ist. Trotz der vorhandenen Spezifikation ist
die Implementierung in der Realität komplex. Deshalb untersuchen wir die verschiedenen
Ansätze zur Umsetzung in den Frameworks, welche je nach OAuth Provider unterschiedlich
sein können und diskutieren die zugrundeliegenden Sicherheitsaspekte.

ix

Abstract

Mobile devices such as smartphones or tablets are an essential part in our daily lives. To
date multiple platforms pose a major challenge for mobile developers. Cross-platform
frameworks, based on the so-called “Write Once, Run Anywhere” approach were estab-
lished to overcome these issues. Some of these frameworks are Apache Cordova from the
Apache Software Foundation, Xamarin from Xamarin Inc. a subsidiary company from
Microsoft and React Native from Facebook Inc.

Our daily use of digital technologies produces an enormous amount of data including
sensitive information about their users’ personality, preferences or behaviors. Protecting
these data to avoid unauthorized access is required to ensure and respect everyone’s
privacy. Software developers that are implementing and establishing these technologies
and applications thereby play an important role.

Thus, we investigate challenges for secure mobile app development from the developers’
perspective built with cross-platform frameworks. We evaluate the frameworks’ official
documentations and collect and analyze posts from Stack Overflow as they are major
information sources. We found that authorization with the OAuth 2.0 protocol is a big
challenge for developers with respect to all three frameworks. Despite of a specification,
the implementation in reality is complex. Thus, we investigate different implementation
approaches across the cross-platform frameworks, which may be different depending on
the OAuth provider and furthermore discuss their impact on app security.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Aim of this Work . 2
1.4 Methodology . 2
1.5 Structure . 3

2 Related Work 5

3 Fundamentals 11
3.1 Mobile Development Approaches . 11
3.2 Cross-Platform Frameworks . 11

4 Methodology 19
4.1 Security Handling . 19
4.2 Developers’ Challenges . 20
4.3 User Study . 29

5 Results 33
5.1 Security Handling . 33
5.2 Meta Topics . 43
5.3 Posts about Authentication & Authorization 46
5.4 Online Survey . 63

6 Discussion 73
6.1 Security Handling . 73
6.2 Developers’ Challenges . 74
6.3 Authentication and Authorization . 74

xiii

7 Conclusion 79

A Online Survey 81

List of Figures 101

List of Tables 103

Bibliography 105

CHAPTER 1
Introduction

1.1 Motivation

The first smartphone as we know it today was an iPhone released only 10 years ago.
Since then a lot of innovations and developments have been happened, which changed our
daily lives enormously. Today, we use the mobile phones for multiple purposes and not
only for calling and texting. Smartphones and tablets replace digital cameras, recorders,
navigation systems or remote controls of TVs. Browsing, shopping, gaming, streaming
music or videos, reading newspapers, books or social media posts are some more activities
we use our mobile devices for. So to say, we are producing a mass of data with all these
activities that are processed, recorded, stored or even analyzed by mobile applications on
the device or by remote servers the apps are communicating with.

1.2 Problem Statement

The large number of daily activities with mobile devices involved yields to new challenges
in the development of applications for these devices. Multiple platforms and operating
systems are available which is a major challenge for mobile software developers to date [32].
Many applications should target users of different platforms. However programming
languages, APIs or tools vary between platforms, such as Android, iOS, Windows or
Blackberry. But how can software developers meet this requirement? Implementing
an application for each platform in its native language needs much time and effort and
requires knowledge in several languages and platforms. Moreover, maintenance and
support of multiple implementations in parallel is very expensive.

“Write Once, Run Anywhere” seems to be a very good approach to overcome these
issues. Several cross-platform frameworks like Apache Cordova from the Apache Software
Foundation, Xamarin from Xamarin Inc. a subsidiary company from Microsoft and

1

1. Introduction

React-Native from Facebook Inc. have been developed. They are based on different
concepts, but their goal is to write common code that can be compiled or packed to run
on multiple platforms.

As mobile devices are used for various personal and professional activities, it is obvious
that a lot of sensitive data are created. Probably, many of them should not become public
like messages and communications, family photos or videos, watchlists on streaming
services or the credit balance. Data leaks and unauthorized access of such resources can
cause big harm for individuals, enterprises or organizations. Thus, software developers
and enterprises are responsible for the protection of their user’s data by providing and
implementing respective security functions in their applications. As the world is not only
black or white, it’s wrong to just say the developers are solely responsible for the security
of apps and data, but as major stakeholders in the software development process they
play an important role.

1.3 Aim of this Work

The security and privacy of mobile apps built with cross-platform frameworks is influenced
by many factors, such as the end user or the platform and operating system of the device.
But also software developers and their decisions about the software architecture, design
patterns, frameworks, libraries and developing tools they use and include, contribute
much to a secure application. Thus, our aim is to investigate the security in cross-
platform mobile apps from the developers’ perspectives to get a deeper understanding
about the issues and problems they are faced during development and which impact the
cross-platform frameworks have. This leads to several questions. For instance, do the
frameworks provide sufficient information for developers and features to protect user
data. Moreover, which resources are available and on which do developers rely on? Are
developers aware of their responsibilities towards their users and is this reflected in their
actions?

1.4 Methodology

Our methodology to investigate security in cross-platform mobile apps from the developers’
perspectives contains the following three major steps.

• At first, we evaluate how the three cross-platform frameworks Apache Cordova,
Xamarin and React Native deal with security and privacy and how they communicate
security best-practices to app developers. We examine their official documentations
and websites to analyze which information they provide and which topics they leave
out.

• In a second step we investigate challenges from the developer’s perspective by
collecting and analyzing posts on Stack Overflow. The tools we implemented in

2

1.5. Structure

the course of these analysis are publicly available on https://github.com/
lislehabe/stack-analysis-tools.

• Based on the results of step two, we finally conduct an online survey to gain insights
into the developers’ experiences, knowledge and implementations of OAuth and
OpenID Connect in mobile development.

1.5 Structure
The remainder of this thesis is structured as follows. State of the art research in context
of this work is described in Section 2. Fundamentals about the cross-platform frameworks
Cordova, Xamarin and React Native are provided in Section 3. Section 4 describes the
three steps of our methodology to evaluate the frameworks’ and developers’ perspectives
on security and privacy in mobile apps. The results of analyses and evaluations are
described in Section 5 and in Section 6 the results and findings are discussed. Finally,
Section 7 concludes the thesis.

3

https://github.com/lislehabe/stack-analysis-tools
https://github.com/lislehabe/stack-analysis-tools

CHAPTER 2
Related Work

In this chapter we discuss existing publications in the research fields of this thesis. Chal-
lenges of mobile app development, Stack Overflow posts and cross-platform frameworks
have been studied several times from different aspects. Moreover, various attacks on
mobile platforms have been detected and published. OAuth protocol and OpenID Con-
nect specification have mainly be studied for Web platforms, but there are also some
publications based on the mobile platform.

Mobile App Development. Main challenges of mobile app development were studied
by Joorabchi et al. [32] 2013. They conducted a qualitative study interviewing 12 senior
mobile developers and an online survey with 188 participants. Their results showed
that the biggest challenge for developers was dealing with multiple platforms because
of fragmentation across and within platforms. It means, that mobile platforms tend
to differ regarding user interface, user experience, programming languages, Application
Programming Interfaces (APIs), Software Development Kits (SDKs) and supported tools.
Moreover, various devices or operating system levels also differ within one platform.
Testing and monitoring apps across multiple platforms is also more complicated and
challenging as useful tools are currently missing.

In 2017 Francese et al. [24] also conducted a qualitative study to identify main aspects of
mobile app development interviewing software managers and executing a survey with
software professionals. They found that mobile apps were mostly developed by junior
developers and although, there is no cross-platform framework that is considered as the
best, they are widely adopted. Fragmentation and less support for testing are still big
challenges, as already investigated in [32].

Ali et al. [3] conducted a different approach to study developer challenges of cross-platform
apps and analyzed apps from the Google Play and Apple store, to detect commonalities
and differences across platforms. They compared store attributes, such as versions,

5

2. Related Work

stars and prices and analyzed the content of textual user reviews to find the major user
concerns or complaints.

Stack Overflow Data Analysis. Various works [34, 5, 92, 57, 91, 44, 9] analyzed
textual contents of Stack Overflow posts by the use of natural language processing. They
aimed to get an overview about discussed topics and insights into developers’ concerns
and therefore used topic modeling with latent Dirichlet allocation (LDA).

Yang et al. [91] focused their large scale study on security questions in general and
concluded the top five security categories discussed on Stack Overflow were web security,
mobile security, cryptography, software security and system security.

Rosen and Shihab [44] also conducted a large scale study on Stack Overflow posts using
topic model LDA, but focused on mobile developer questions. They investigated issues
and topics in context of the mobile platforms Android, iOS and Windows Phone Mobile
as well as mobile development in a whole. App distribution was identified as the most
popular topic across all platforms, while popularity was measured using view counts of
questions. Questions related to APIs were identified as the most difficult ones, which
means the median time between creating a question and getting an accepted answer is
higher than in other topics. Moreover, Rosen and Shihab labelled a random sample set
of questions by their types into how, why and what classes to investigate its distribution.
Most of the questions were how questions, followed by why and what. They also argued
that mobile developers primary looks for working examples.

Some research about the impact of Stack Overflow on software development, software
quality and security exist.

Acar et al. [1] conducted a lab study to investigate differences on the security level
of code depending on the used resources to look up. Therefore, participants had to
implement Android issues in limited time using only Stack Overflow, official Android
documentation or books and one group could choose the resource themselves. As a result,
the code of developers using only Stack Overflow was significantly less secure than the
code of developers using official Android documentation or books. On the other hand,
participants that only looked up at the official Android documentation implemented less
functional code than those using Stack Overflow.

Fischer et al. [23] designed, implemented and evaluated a fully automated large-scale
processing pipeline to detect and measure code snippets published on an platform being
copied and pasted into real-world apps available on a software repository. In detail,
they found security-related Android code snippets from Stack Overflow in 15.4 % of
1.3 million Android apps from Google Play store, while 97.9 % of them contained at least
one insecure code snippet.

An et al. [4] studied reused code snippets from Stack Overflow in real-world Android apps
focused on correct licensing as all posts on Stack Overflow are published under Creative
Commons Attribute-ShareAlike 3.0 Unported license. They aimed to raise awareness and

6

argued developers should pay more attention on right licensing when copying & pasting
code, as they detected more than 1200 potential license violations.

Cross-Platform Frameworks. Many surveys and evaluations [11, 30, 89, 47, 2, 61, 13]
about cross-platform development approaches and frameworks have been published in
the last years. To the best of our knowledge, no such security evaluation as we conducted
has been published before.

Xanthopoulos and Xinogalos [89] presented the results from a survey and analysis of
cross-platform approaches in 2013. They highlighted advantages and disadvantages of
each approach.

A comprehensive survey and introduction about cross-platform approaches is provided by
El-Kassas et al. [13]. They described each approach in detail with its pros and cons and
categorized them. Moreover existing frameworks and tools based on these approaches
are listed, described and compared.

Heitkoetter et al. [30] evaluated apps implemented with Web technologies, PhoneGap,
Titanium, Android and iOS on infrastructure and development criteria, such as license,
supported platforms, look and feel, GUI design, ease, speed and cost of development,
maintainability and scalability and resulted PhoneGap has to be preferred.

Ahti et al. [2] provide an evaluation framework of cross-platform development tools, that
use qualitative measures (i.e. app starting time, RAM memory usage, app size) and
quantitative measures (i.e. user experience, appearance, ease of development) to analyze
it against native development. Moreover, they validated the framework with a case study
using PhoneGap.

Another comparison of PhoneGap and Titanium is provided in Solanky et al. [47].

Dalmasso et al. [11] classified so-called Write Once Run Anywhere (WORA) tools and
provided a survey of some cross-platform frameworks, such as PhoneGap, Titanium and
Sencha Touch. They built Android test apps with PhoneGap and Titanium to evaluate
the frameworks in terms of CPU performance, memory usage and power consumption.
Based on their results they argued that PhoneGap uses minimum memory, CPU and
power, but provides only a very simple user experience.

Willocx et al. [61] performed an in-depth performance analysis of multiple cross-platform
apps in comparison to native apps. They implemented one testing app in native Android,
iOS and Windows Phone as well as with 10 cross-platform frameworks, two of them were
Apache Cordova and Xamarin.

Martinez and Lecomte [37] introduced their future work as they want to implement an
automated bug repair tool for mobile apps implemented with cross-platform framework
like Xamarin or React Native.

Mobile Security. A survey about Android security is presented in [22]. Faruki et al.
[22] depicts security issues and existing security enforcement mechanisms. They also

7

2. Related Work

discuss penetration and stealth techniques of existing Android malware applications. An
overview about analysis and detection approaches as well as state of the art tools are
provided.

Buhov et al. [8, 7] wrote about network security challenges in Android applications.
They took a focus on wrong SSL implementations in Android applications, which is still
an existing problem. Developers often fail to implement a proper certificate validation
and thus the whole network communication of the app gets insecure. Buhov et al. [7]
provide a device-based solution that affects the user and not the developer. They combine
certificate pinning with dynamic instrumentation techniques to automatically correct
developer’s mistakes and re-establish a secure network communication.

Mobile apps implemented with cross-platform technologies, such as HTML5 originate
new or modified security issues. For example Jin et al. [31] found a new form of code
injection attack. It has the same fundamental cause as Cross-Site Scripting, but uses
more channels to inject code, e.g. SMS, barcodes, RFID tags, metadata fields in media
files such as JPEG or MP3 and so on [31]. When a mobile app gets data from outside by
one of these channels and displays them inside the HTML5 page, unvalidated code can
be executed with the permissions of the app. In worst case, this means injected code can
be executed with access to local resources.

One problem in hybrid apps is the mixture of access control policies as indicated in [25].
Web code is governed by the same origin policy, while local code is governed by the
access-control policy of the operating system. When a framework bridge is not properly
protected by the same origin policy, a “fracking” attack is possible. This means foreign-
origin web content is included into the hybrid app, drills through the layers and has
directly access to the device resources. Georgiev et al. [25] studied fracking vulnerabilities
in free Android apps based on PhoneGap and presented an platform-independent defense
method that is compatible with any framework and embedded browser.

In [40] mobile web app vulnerabilities were studied. Mutchler et al. [40] analyzed the
real occurrences of untrusted web content loads, stateful web navigation to untrusted
apps and URL load leaks to untrusted apps. They found out that 28% of the studied
apps have at least one vulnerability and finally, they offered changes to the Android APIs
to mitigate them.

Habchi et al. [28] studied code smells in iOS apps and compared them against Android
apps. They find that apps on iOS have less code smells than on Android due to the
platform and not the programming language.

OAuth and OpenID Connect in the Mobile Environment. The OAuth protocol
as well as its challenges and pitfalls have been studied by many others. Most of them
investigated only the Web platform, while a few investigated OAuth in mobile applications
[10, 59, 58, 90].

Chen et al. [10] studied three OAuth protocol flows (OAuth 1.0, OAuth 2.0 implicit
grant, OAuth 2.0 authorization code grant) and their usage in mobile applications, since

8

there are many differences to the web. They detected common misunderstandings about
the flows among real-world developers, such as storing access tokens locally on devices,
distinguishing authentication and authorization or redirecting secret token. 59.7 % of 149
mobile apps contained faulty and vulnerable implementations.

Wang et al. [59] introduced a framework called AuthDroid to detect vulnerable OAuth
implementations in Android applications using static analysis and dynamic network
traffic analysis. They investigated 15 OAuth service providers and more than 4000 mobile
apps from the Chinese market and detected that 86.2 % of the apps employing OAuth
services were vulnerable.

Wang et al. [58] investigated OAuth-based authentication techniques, such as Single-Sign-
On (SSO) on the Web and mobile platforms, as OAuth was initially not intended for
it. They analyzed real-world SSO mechanisms by considering identity providers and
relying parties as black boxes and detected their used authenticators and discussed several
vulnerabilities.

9

CHAPTER 3
Fundamentals

In this chapter we provide some essential fundamentals in context of this thesis. We
describe several approaches to build cross-platform mobile apps and give an introduction
about the architectures of Apache Cordova, Xamarin and React Native.

3.1 Mobile Development Approaches
A mobile app can be implemented in various ways based on different approaches. Each
approach has its individual advantages and disadvantages as discussed in [11, 89, 47].

Native applications are developed specifically for one operating system. Each platform
has its major programming language, as it is Java for Android, Objective-C or Swift for
iOS and C# for Windows [11]. A web app built with web technologies, such as JavaScript
(JS), Hyper Text Markup Language (HTML) and Cascading Style Sheets (CSS) is running
within a browser on desktop computers or on mobile devices. In case of a mobile device it
is also called mobile web app. A combination of native and web apps is established with
so called hybrid apps. It is actually a web app running within a native container, such as
the UIWebView in iOS or WebView in Android, which enables hardware and data access
of the device. In interpreted apps the user interface consists of platform-specific native
components, but the application logic is written in a cross-platform language like Java,
Ruby or XML [89].

3.2 Cross-Platform Frameworks
Based on the different approaches in Section 3.1, there are various developing tools for
mobile apps. In this thesis, we focus on the following three frameworks. Apache Cordova
and Xamarin belong to the most popular installed mobile SDKs of 2016 [48] and React
Native of Facebook is a rather new framework, but gets more and more popular. In the
following we describe their basics and principles.

11

3. Fundamentals

3.2.1 Cordova

Apache Cordova, called Cordova in the remaining thesis, is an open-source mobile
development framework, that allows using standard web technologies, such as HTML,
CSS and JS to write hybrid apps.

The project is supported by the Apache Software Foundation and the source code is
available at github.com1. Cordova was first released in November 2012. All our research
and description is based at least on release number 6.4.0. Cordova supports several
mobile platforms, such as Android, iOS, Windows Phone 8, Windows 8.1, Universal
Windows Platform (UWP), Blackberry 10, Ubuntu and OS X.

Figure 3.1: Architecture of a Cordova Application (cf. [50])

A Cordova application consists of three main components, the Web App, an HTML
Rendering Engine and Plugins. Figure 3.1 shows this architecture and how Cordova
interacts with the mobile operating system.

1https://github.com/apache?q=cordova

12

3.2. Cross-Platform Frameworks

Web App. The web app contains the application code. Basically, the app is a web
page that references CSS and JS or any other resources, e.g. images, media files and so
on. Additionally, a configuration file to define general app information and certain app
behavior is included [50].

HTML Rendering Engine. An embedded browser that renders web pages and
interprets JS is the second component of a Cordova app.

The Cordova WebView depends on the WebView of the underlying operating system.
This means, that supported functionalities, behavior and performance vary from device
to device. Therefore, providing same user experience and correctness of an app on each
device is a great challenge for developers.

The Crosswalk Project2 provides a WebView based on Google Chromium that is deployed
together with an app. This enables developers focus on only one web runtime, which
behaves the same way on every device regardless of manufacturer and operating system.
Crosswalk is compatible with Cordova apps, but also with native apps for Android, iOS
or Windows.

Plugins. Interfaces to the operating system provide access to hardware components
and device capabilities, such as camera, fingerprint sensor, speakers, file system, battery,
camera, contacts and many others. Cordova plugins are interfaces that invoke native
code from JavaScript.

A collection of basic plugins, such as camera, file, media, contacts, battery status and
many more are maintained by the project. They are bundled as so-called “Core Plugins”
and are available for Android, iOS and Windows 10.

If the existing plugins are insufficient, developers can implement their own plugins. Many
of such third-party plugins are published at the package manager npm. A plugin search
is also available at Cordova’s website.

At the beginning of a Cordova project, there is no plugin included, not even the core
plugins. All required plugins must be added manually to a project [50].

3.2.2 Xamarin

The basic idea of Xamarin is writing native apps for Android, iOS and Windows in
C# language. Xamarin is developed by Xamarin Inc., a company with more than 350
employees [62]. In February 2016 Xamarin Inc. was acquired by Microsoft [27].

Figure 3.2 describes Xamarin’s principle of code sharing for cross-platform development.
Xamarin apps are so-called generated apps that include additional SDKs, e.g. Xam-
arin.Android or Xamarin.iOS to make them running on the native platform. Code for
application logic and user interface is written in C#, while common code parts can be
shared across the different platform projects by shared projects or portable class libraries.

2https://crosswalk-project.org/

13

3. Fundamentals

Figure 3.2: Xamarin - Shared Code (cf. [67])

Shared Asset Projects. Each platform requires its own application project and
common code is organized within a Shared Project. Moreover, compiler directives allow
different and platform-specific code paths as well [67].

Portable Class Libraries. A portable class library is a .dll compiled for various
platforms on which the library should run. A “Profile” identifier describes the supported
platforms [65].

Xamarin.Forms. Xamarin.Forms is a cross-platform User Interface (UI) toolkit that
enables developers writing UIs with XAML and C#. Xamarin.Forms components, such
as pages, layouts, views and cells are mapped to the native equivalent at runtime. This
means that the native control is actually rendered while one common source code is
written by the developer [63].

Xamarin.Mobile. Xamarin.Mobile offers cross-platform APIs for common device
functionalities across Android, iOS and Windows. Actions, such as taking a photo or
reading contacts can be implemented at once for all three platforms [70].

Mono. Xamarin.applications are built and executed with Mono. Mono is an open
source version of the .NET Framework based on ECMA standards for C#. It supports
multiple platforms, e.g. Linux, Microsoft Windows, Mac OS X, BSD, Nintendo Wii, Sony
PlayStation 3, Apple iPhone, Android and more.

14

3.2. Cross-Platform Frameworks

Two important components of Mono are the C# Compiler and Mono Runtime. The
compiler compiles C# code into Microsoft Intermediate Language (MSIL) and the runtime
implements the Common Language Infrastructure (CLI), provides a Just in Time (JIT)
compiler, an Ahead of Time (AOT) compiler, a library loader, the garbage collector, a
threading system and interoperability functionality [39].

For Xamarin.Android applications, the runtime compiles the MSIL to native code with
the JIT compiler. For Xamarin.iOS applications however, the AOT compiler is used
to produce a native iOS binary, because Apple disallows the execution of dynamically
generated code on a device [66].

Xamarin.Android. Basically, a Xamarin.Android application package looks like a
normal Android application package. It is a ZIP container with the .apk file extension,
that additionally includes assemblies and native libraries for Mono environment [69].

As depicted in Figure 3.3 Mono runs side-by-side with the Android Runtime (ART).
Managed Callable Wrappers (MCWs) and Android Callable Wrappers (ACWs) act as
Java Native Interface (JNI) bridge between native and managed code, e.g. all Android.*
namespaces are MCWs. They handle the conversion from managed to Java types and
invoke corresponding Android methods via JNI [69].

Figure 3.3: Architecture of Xamarin.Android (cf. [69])

Xamarin.iOS. Figure 3.4 shows that Mono runtime and Objective-C runtime work
side-by-side and bindings allow the interaction between these two environments. Selectors
are used to expose Objective-C to C# and registrars are used for the other direction,
which means they expose managed code to Objective-C [66].

Figure 3.4: Architecture of Xamarin.iOS (cf. [66])

15

3. Fundamentals

3.2.3 React Native

React Native3 is an open-source framework to implement native apps with JavaScript and
React4, which is a JavaScript library to build user interfaces. Both frameworks, React
and React Native are maintained by Facebook. As React Native follows the principle of
“Learn once, write anywhere” it supports multiple mobile platforms such as Android, iOS
and UWP.

The basic concepts of React Native are the same as of React as we describe in the
following. Although the UI components are developed in JavaScript, they are running as
native components in the application and not as web components.

Basics. A component is anything that can be seen on the screen. The JavaScript
object requires a render() function that returns some JSX to render [16]. React Native
provides predefined components, such as a button, text or view component, that are
rendered into native components. JSX is a special templating language that enables
writing markup language inside code [16, 20]. Attributes and parameters that are used to
customize components are called props. They can be accessed via this.props.xxx in
the JSX templates [14]. Data that change during a component’s lifetime are handled via
states. A state should be initialized in the constructor of the component while changes
should only be propagated by calling the setState() function. States can be accessed
in templates with this.state.xxx [15].

Figure 3.5: Architecture of React Native (cf. [33])

Architecture. Figure 3.5 shows the architecture of React Native. The gap between
JavaScript and native environment is closed with a React Native bridge developed in

3http://facebook.github.io/react-native/
4https://facebook.github.io/react/

16

3.2. Cross-Platform Frameworks

C++ for iOS, Java for Android and C# for Windows. This means, the bridge handles
communication and data exchanges across these two worlds. The React Native app is not
running in a WebView, but it is running in a virtual machine and controls native UI [33].

Two important components belonging to the bridge are modules and view managers.
Modules provide states and methods that can be called from the JavaScript side, while the
mapping from JavaScript views to native views is defined in a view manager. Moreover,
app developers can extend the bridge with their own modules and view managers [33].

17

CHAPTER 4
Methodology

Our methodology to investigate and evaluate security in mobile apps built with cross-
platform frameworks consists of three major stages.

In a first stage we evaluate how the three cross-platform frameworks (CPFs) Apache
Cordova, Xamarin and React Native deal with security and privacy and how they
communicate it to the app developers. Therefore we examine their official documentations
and websites to analyze which information they provide and which topics they leave out.

In a second stage we investigate developers’ challenges and questions related to the CPFs.
Stack Overflow (SO) is one of the most used online discussion forums for developers to
date. That’s why we collect and analyze posts about the frameworks from SO to detect
developers’ usual issues.

Based on analysis results of second stage, we conduct an online survey to gain insights into
developers’ experiences, knowledge and implementation of OAuth and OpenID Connect
in mobile development.

4.1 Security Handling
To a certain degree, a developer depends on the tools she is using concerning functionality
and also security and privacy it offers. But also its documentation is of high priority.
On the one hand it is required to describe the tools’ features and on the other hand it
can create awareness for non-functional requirements, such as tips for maintainability,
availability, performance improvements, privacy or security. So to say the documentation
may give insights into the frameworks’ relation and open-mindedness to these topics.

Therefore we investigate official documentation and websites of Cordova, Xamarin and
React Native to discover and compare which security and privacy topics are covered and
which are missing.

19

4. Methodology

4.2 Developers’ Challenges
As a first step we investigated the documentation of the three CPFs while in this phase
we focus on the active developing process using these frameworks. We explore errors,
problems, challenges and issues developers are faced with during coding and what they
need help for from the community.

Stack Overflow (SO) is the most frequently used online discussion forum for developers
[23] to date. It is free in use and each registered user can ask questions or provide
answers to an existing question. Even unregistered and anonymous users can search
posts to find solutions for their own issues. Due to its popularity we choose it as primary
source to collect and analyze posts and code snippets to gain deeper insight in developers’
challenges in cross-platform mobile development with Cordova, Xamarin or React Native.

4.2.1 Data Crawling

We conducted the data crawling process in two stages. Due to Stack Overflow’s tagging
mechanism, the first step was to collect all tags related to the three CPFs and then to
fetch all questions per relevant tag. To automate these steps, we implemented a tool
called Stack Crawler, which is a Node.js application that executes HTTP requests against
Stack Exchange API v2.2 and inserts the collected data into a PostgreSQL 9.6 database.
The tool uses PostgreSQL client node-postgres1 and native Node.js modules2 http,
request and zlib. Source code of this and the following described tools are publicly
available on Github3.

Stack Crawler provides a function getTags(keyword) to fetch all tags from Stack
Overflow that include a certain keyword in their names and stores them in database table
tags. A tag includes information, such as its name, synonyms, number of posts that are
tagged with it and a timestamp when tag was fetched from SO and the keyword it was
found for.

For the second stage of data crawling, Stack Crawler has a function getPosts(keyword)
that fetches all SO posts for all stored tags based on the keyword. Therefore the crawler
sends a request for each saved tag to an API endpoint /question to receive all questions
being tagged with it. A self-created filter is included in the requests to ensure that all
answers and comments of a question, all comments of an answer, the body, number of up
and down votes and many more fields of a question are returned by the API. Question
data from the API are stored as JSON document in the json_questions table in the
same way as they are received. Additionally, each table row also includes a timestamp of
the request and the original tag the question was searched for.

Stack Exchange API supports paging and to decrease the runtime of crawling, page size
is set to maximum, such that 100 questions are returned at once. An access token for

1https://www.npmjs.com/package/pg
2https://nodejs.org/dist/latest-v4.x/docs/api/
3https://github.com/lislehabe/stack-analysis-tools

20

https://www.npmjs.com/package/pg
https://nodejs.org/dist/latest-v4.x/docs/api/
https://github.com/lislehabe/stack-analysis-tools

4.2. Developers’ Challenges

the API is also included to the requests to increase the daily rate limit of the API from
300 to 10,000 requests per day.

4.2.2 Dataset Description

We crawled a dataset of Stack Overflow posts about the three CPFs Apache Cordova,
Xamarin and React Native on June 13th, 2017 using Stack Crawler of Section 4.2.1.

First we fetched tags for each framework and removed irrelevant tags manually from the
database, such as “reactive-programming” or “reactive-cocoa”. Table 4.1 shows the number
of received tags and after cleaning. There are 27 tags for keyword “cordova”, such as
apache-cordova, cordova, cordova-plugins, ngcordova, cordova-x.x.x while x.x.x stands for
a version number of Cordova and many others. Some of the 28 tags for keyword “xamarin”
are xamarin, xamarin.android, xamarin.ios, xamarin.forms, xamarin-studio. The 20
tags for keyword “react” include tags such as react-native, react-native-android, react-
native-ios, react-native-listview, but also tags such as reactjs, react-router, react-redux,
react-jsx.

Tags
Keyword fetched cleaned

cordova 27 27
xamarin 28 28
react 30 20

Table 4.1: Number of SO Tags

In the second step we fetched all posts of each of the 85 framework tags, which took
about 55 minutes and 34 seconds. Table 4.2 shows that there are 748,131 posts in total.
Stack Overflow posts can be categorized in four different types. About 20 % of it are
questions, while 23 % are answers. Comments of questions and answers are each about
29 %.

Frequency
Post Type absolute relative

questions 147,528 19.7 %
answers 168,582 22.5 %
question comments 213,764 28.6 %
answer comments 218,257 29.2 %

Σ Posts 748,131 100.0 %

Table 4.2: Post Type Frequency

21

4. Methodology

Distribution across framework tags. Table 4.3 shows the number of posts per type
of each framework in our dataset. There are 275,414 posts about Cordova, 176,832 about
Xamarin and 66,405 about React Native. Most of them are only about one framework.
However, there are a few posts dealing with two frameworks, such as Cordova and
Xamarin or Cordova and React Native. Less posts are about React Native and Xamarin,
but there are no posts about all three frameworks.

Concerning React Native posts, we refer to posts whose tags include *react-native*. As
the scope of our study is about frameworks for mobile app development, we do not
further consider posts with *react* tags. Therefore most of the posts are about Cordova,
followed by Xamarin and React Native last. However, if considering ReactJS and React
Native posts together, they would be the most ones.

Tags Q
ue

st
io
ns

Q
ue

st
io
n

C
om

m
en
ts

A
ns
w
er
s

A
ns
w
er

C
om

m
en
ts

Σ
P
os
ts

cordova 54,301 79,654 62,515 78,547
cordova, react-native 28 24 32 37
cordova, xamarin 40 56 69 111
cordova, xamarin, react-native 0 0 0 0

Σ Cordova 54,369 79,734 62,616 78,695 275,414

xamarin 34,892 51,151 39,377 51,116
xamarin, cordova 40 56 69 111
xamarin, react-native 6 1 5 8
xamarin, cordova, react-native 0 0 0 0

Σ Xamarin 34,938 51,208 39,451 51,235 176,832

react-native 15,151 16,746 15,792 18,575
react-native, cordova 28 24 32 37
react-native, xamarin 6 1 5 8
react-native, cordova, xamarin 0 0 0 0

Σ React-Native 15,185 16,771 15,829 18,620 66,405

Table 4.3: Posts across Framework Tags

Distribution of answered questions. A question can have several answers and if
one of them is marked as the accepted answer or the score of any answer is greater than
zero, then the property is_answered is true. Table 4.4 shows that for each framework
more than half of the questions are answered. The answering rate of Xamarin questions

22

4.2. Developers’ Challenges

is the highest with 60 %, while Cordova with 52.4 % and React Native with 51 % are
close to each other.

It is interesting that four questions are marked as answered, although no answer post is
available for these questions. A closer look shows that they are duplicated questions of
another ones. Since the original question is marked as answered, the same is true for the
duplicate.

14/15 % of the answered questions do not have a certain answer selected as the correct
one. This means, they are marked as answered due to scoring feature of Stack Overflow.

Cordova Xamarin React-Native

an
sw

er
s

av
ai
la
bl
e

is
an

-
sw

er
ed

m
ar
ke
d

an
sw

er

absolute relative absolute relative absolute relative

7 7 7 12,996 23.9 % 7456 21.3 % 4236 27.9 %
3 7 7 12,867 23.7 % 6516 18.7 % 3200 21.1 %

Σ Unanswered 25,863 47.6 % 13,972 40.0 % 7436 49 %

7 3 7 3 0.0 % 0 0.0 % 1 0.0 %
3 3 7 8384 15.4 % 4867 13.9 % 2172 14.3 %
3 3 3 20,119 37.0 % 16,099 46.1 % 5576 36.7 %

Σ Answered 28,506 52.4 % 20,966 60.0 % 7749 51.0 %

Table 4.4: Rate of (Un-)Answered Questions across Tags

4.2.3 Data Analysis

We used several tools to analyze the data of SO. For simple querying and database
management of PostgreSQL database we used pgAdmin4. Query scripts for quantitative
analysis, such as described in Section 4.2.2 were executed with the console tool psql.

The analysis of post contents was conducted in two phases. In phase one we categorized
the posts to get a thematic overview about the posts for each framework. Therefore we
used topic modeling with LDA and manually filtered and grouped 200 fine-grained topics
into meta-topics. In second phase we focused on one meta-topic and investigated for each
framework 100 posts of this meta-topic. The manual content analysis was conducted
with a self-implemented web tool called Stack Web Viewer.

Topic Modeling

In order to investigate issues, challenges and problems developers are talking about on
Stack Overflow, we used natural language processing. Topic modeling based on latent
Dirichlet allocation (LDA), introduced by Blei et al. [6], is a popular technique to find

23

4. Methodology

discussion topics in natural text documents, as discussed in various publications described
in Section 2.

LDA is a statistical modeling technique that infers latent topics to describe content of text
documents [44]. The idea beyond topic models is that documents contain a mixture of
topics, while each topic is a probability distribution over words [49]. LDA is an extended
topic model with prior parameters called hyperparameters. First parameter α describes
topic distribution among documents. A high value leads to a smooth distribution while
α < 1 enables that a document gets assigned less topics, but more specific ones. Second
hyperparameter β describes the word distribution among topics. With an high β value
each topic may contain most of the words and with a low β value a topic may contain
just a few of the words [6].

We used MALLET version 2.0.8 [38] to apply LDA with Gibbs sampling algorithm on our
SO posts. Therefore we implemented a simple Java tool that loads data from PostgreSQL
database, performs modeling and sampling using MALLET and exports results into *.txt
files. We used all posts about Cordova, Xamarin and React Native as input. Security
questions are only rarely declared as such and therefore limiting the posts by criteria,
such as tags or a keyword list would falsely remove posts too early. Moreover considering
relations of topics on the whole set instead of a subset is more meaningful.

One model instance is composed of a question body and the bodies of its comments,
answers and answer comments. As the bodies may contain HTML code, such as tags,
which are irrelevant in content and only required for presentation in the browser, tags
are removed and only inner text of the tags are included in a model instance. Further
conversions, such as transforming data strings of model instances into lowercase, tokenizing
them into sequences, removing stopwords and transforming them into feature sequences
are executed through MALLET’s pipeline.

MALLET requires several parameters that impact modeling results. Based on our
experiments and the official tool documentation, we set the number of topics to K =
200. This produces a fine-grained topic result. The number of sampling iterations was
set to 2000. Hyperparameters α and β were set based on default heuristic α = 50/K and
β = 0.01 [49]. Optimization of them was performed after all 10 iterations. Random-seed
was not explicitly configured and thus its default value, the timestamp was used. Thus,
our topic model estimation is not reproducible.

Meta Topics. As a result of topic modeling we got a list of 200 topics with its 10
top words for each framework. Since it resulted in fine-grained topics, we investigated
them manually and labeled them into 12 categories, so-called meta topics. A detailed
description about the meta topics is provided in Section 5.2.

Stack Web Viewer

Searching, filtering, reading and reviewing the textual contents of the posts is an important
step in our analysis. The data from Stack Exchange API include HTML tags and are

24

4.2. Developers’ Challenges

designed for presentation on the web. Therefore we implemented a web tool called Stack
Web Viewer to facilitate manual analysis.

The backend service of Stack Web Viewer is a Node.js application. It uses PostgreSQL
Client node-postgres as well as express and bodyparser for a webservice. The
Web UI of the viewer uses handlebars as template engine, bootstrap and jquery.

Figure 4.1: Stack Web Viewer UI - Search Input Screen

As shown in Figure 4.1 Stack Web Viewer provides three different ways to display posts.
The first one provides full text search with optional definition of tags that must be
included or excluded in the results. In the second case questions can be searched by id(s)
with a comma separated id list. Moreover phrases can be entered that must be included
or excluded in the results. Ordering of search results can also be changed. Available
options are view-desc, which means the number of views of the question, score-desc sorts
by the question’s score, create-desc, create-asc means the creation date of the question
or activity-desc which sorts by the date of the last activity. Default order is descending
per question id. The third way to display posts is by topic number of Cordova topics,
Xamarin topics or React Native topics based on the results of topic modeling. Display
order can be changed in the same way as in case of search by question id.

25

4. Methodology

After clicking on the search button the UI sends an HTTP request to the webservice to
get all questions with their comments, answers and answer comments that satisfy search
input. Figure 4.2 shows the result section of our Stack Web Viewer. A summary about
the number of found questions, the number of questions with answers available as well as
how many questions are unanswered or answered with or without a selected answer is
displayed. Each found question block consists of meta data, such as the question id, tags,
creation date, last activity date, score, views, owner, answered and link to the original
post on Stack Overflow. The question itself with title, body, comments, answers and
answer comments is included in a bootstrap panel such that details can be opened or
closed. Moreover paging is implemented to increase performance of data requests and
rendering. Default page size includes 10 question blocks at once.

Figure 4.2: Stack Web Viewer UI - Result Screen

The webservice is an Express 4.x application that provides HTTP GET methods
/posts and /posts:ids that can include several query parameters based on the above
described search features, e.g. keys for full text search, includedtags or excludedtags to
define tags of the searched questions and so on. Full text search is enabled by the built-in

26

4.2. Developers’ Challenges

mechanisms for text search of PostgreSQL4. Therefore the searchable original document
must be reduced to the data type tsvector. A tsvector value is a sorted list of
distinct and normalized words to meet different variants of the same word. Sorting and
eliminating duplicates is done automatically during input. Normalization is only executed
within functions as to_tsvector [56]. Various configuration options for normalization
are available. Defining stop words, that are not included in the tsvector value, e.g. “a”,
“and”, “the”, ignoring space symbols, removing plural forms, e.g. parse “hats” to “hat”
and so on. Search terms are formatted as tsquery value, which consists of lexemes to
search for, that can also be combined with Boolean operators, e.g. & (AND), | (OR) and
! (NOT) and the phrase search operator, e.g. < − > (FOLLOWED BY). The function
to_tsquery converts normal strings into tsquery format and does normalization [56].
As search is performed on the same table fields each time, tsvector values are created
in advance and stored in own columns of the json_questions table. Moreover, we
indexed the vector columns to speed up search.

Manual Content Analysis

The meta topic Auth consists of several keywords about authentication and authorization
listed in Table 4.5. The id for each topic in the table is composed of the first letter of the
framework and a consecutive number. C1, X1, R1 and R3 has more general words about
authentication, such as “user”, “login”, “username”, “password”. More specific keywords
are “oauth”, “token”, “code”.

ID Keywords (Top 5)
C1 user, login, token, password, authentication
C2 facebook, login, app, plugin, sdk
C3 oauth, token, url, code, google

X1 user, password, login, username, email
X2 facebook, token, login, oauth, user

R1 user, login, profile, home, screen
R2 token, user, auth, app, parse
R3 password, login, username, email, this.state.password
R4 facebook, error, login, react-native-fbsdk, const

Table 4.5: Authentication Topics

Authorization. Access control is required to prevent unauthorized use of a resource
and to prevent use of a resource in an unauthorized manner [60]. If access is approved or
disapproved is verified based on access control policies.

4https://www.postgresql.org/docs/9.6/static/textsearch-intro.html

27

https://www.postgresql.org/docs/9.6/static/textsearch-intro.html

4. Methodology

Authentication. The process to verify the identity of a person or process to be valid
means authentication. It prevents impersonation for example and ensures authenticity.
A user can authenticate herself in the following ways. A knowledge factor for example is
something a user knows, such as a password, a PIN or a an answer to a certain question.
Something the user has is an ownership factor, such as an ID card, cellphone, hardware
token, etc. The third way is called inherence factor and means something the user is or
does, such as his fingerprint, voice, face or another biometric identifiers [60].

OAuth 2.0. OAuth 2.0 is an authorization framework that defines access control for a
third-party application to an HTTP service [29].

Figure 4.3 shows the principles of OAuth 2.0 in mobile apps. The mobile application is
the client that wants to access a resource from the resource server. Therefore the app
requires an access token from the authorization server. Depending on service architecture,
authorization and resource server may be one or separated endpoints.

Before receiving an access token, the app has to be authorized by the resource owner,
e.g. the user. Therefore the app initiates authorization by a request to the authorization
server including its client ID and redirection URI via a so-called user-agent on the mobile
device. Then the user authenticates himself against the authorization server with his
credentials via the agent and grants permissions to the app. At the end, the server
redirects the user-agent to the redirection URI including the server response [see step (1)
in Figure 4.3].

Based on the used grant flow, the server response at the end of authorization differs. In
case of an implicit grant, the server immediately returns an access token and step (2)
in Figure 4.3 is omitted as the app can continue with step (3). In case of authorization
code grant, the authorization server returns a code that has to be used in an additional
request to the authorization server to obtain an access token [see step (2) in Figure 4.3].

In the last step, the app requests a resource from the resource server including the access
token. Based on the token’s validity, resource server returns the resource or denies access
[see step (3) in Figure 4.3].

OpenID Connect 1.0. OpenID Connect 1.0 is a simple identity layer on top of the
OAuth 2.0 protocol. It allowes apps to verify the identity of the End-User as well as to
obtain basic profile information [46].

Martin et al. [36] and OWASP [41] indicate that secure authentication and authorization
to protect app and user data are two important security requirements that should be
prioritized in each data processing application. Official documentations of the frame-
works don’t provide much information about these important security topics. Thus, we
investigated the usage of OAuth 2.0 for API authorization and authentication more in
detail. Therefore we selected the topics C3, X2 and R2 and analyzed content of the top
100 question blocks of each topic using Stack Web Viewer. One question block means a

28

4.3. User Study

Figure 4.3: OAuth 2.0 Protocol in Mobile Apps (cf. [29])

question and all its comments, answers and answer comments. Results of the content
analysis are presented in Section 5.3.

4.3 User Study

Our analysis of Stack Overflow posts allow various conclusions, such as the most popular
tools, implementation trends and obvious problems as they are posted to ask for help.
However it also reaches its limits as the development process itself can not be investigated
and reasons for the developers’ decisions remain unexplored. A user study could counteract
these limitations.

Our first approach was to conduct a lab study with mobile developers close to a scenario
as realistic as possible. One possible scenario would be the participant should imagine he
is working in a software developing enterprise that provides web and mobile developing
services and his team is developing a meta social media app that publishes one post
automatically on multiple social media platforms at once. Therefore an API integration
with the Facebook API, the Twitter API, the Google+ API etc. has to be implemented.

In preparation to this study we implemented a Cordova app for Android with Facebook
and Google login ourselves using the providers’ SDKs. Apart from the steps and time
it took to setup the developing environment such as installing Android SDK and all
its dependencies and getting a sample app running, implementing the login with the
provider SDKs is quite straight forward to get it working. Providers indicate in their
documentation using the SDKs is a secure way for authentication. However it is hard for
a developer to verify this statement as detailed information is missing and therefore the

29

4. Methodology

provider has to be trusted.

The test implementation showed that for a lab study we would need participants with
CPF experience, but not only in coding, but also knowing how to compile, debug or run
an app on an emulator or a device with the framework. There are many side tasks in real
developing, which requires much many effort and knowledge from the participants, but
brings no added value for the study results itself. As the main part to be examined is how
and why developers’ make certain decisions during implementation. Thus, we arrived
at the conclusion that an online survey with questions about developers’ experience of
OAuth or OpenID Connect implementations would lead to nearly the same results.

4.3.1 Online Survey

Based on our findings, we conducted an online survey in the third step to get per-
sonal experience and judgment of developers about secure implementation of OAuth
and OpenID Connect. Thus, we composed a questionnaire using the online tool
www.soscisurvey.de, which is popular and free for academia.

Target Groups. Mobile developers with experience in Cordova, Xamarin or React
Native that have already implemented OAuth or OpenID integration in their cross-
platform app are our main target group. These are quite a lot of specific factors which
would be hard to meet for a wide crowd. Thus, we also put the implementation questions
to developers with OAuth experience in other applications. On the other side we are also
interested in first feelings and opinions of developers that are not familiar with OAuth
and therefore the survey also includes questions of type “what would you do”.

Composition. The questionnaire includes several pages as can be seen in Appendix A.
First question ensures that only software engineers are asked about the subsequent
developing questions. Then software developer should rate their skills in some selected
engineering fields, such as mobile or web development, IT security, the three frameworks
and so on. Moreover they were asked if they know OAuth and OpenID Connect and
if they have ever developed a mobile app with one of the three frameworks. In a next
stage, basics about OAuth and OpenID Connect as well as their differences are explained
to bring the interviewees on the same level of knowledge at least about the basics.
Additionally the participants are asked if they have ever developed an app with OAuth
or OpenID Connect integration. Based on their developing experience, the following
questions are about their implementations or in case of no previous experience they are
asked so called “what would you do” questions.

In case of experience with OAuth or OpenID Connect we ask some implementation details,
such as which providers they included. Based on the entered providers we ask about the
concept and tools they used, which grant flow they implemented, which user-agent or
redirect-uri they used and if they implemented Proof Key for Code Exchange (PKCE).
Additionally for each of these questions we asked why they did it in this or another way.

30

www.soscisurvey.de

4.3. User Study

Concerning possible answers we always provide evasive options such as “I don’t know,
the tool did that for me.” or “I can’t remember”.

The “what would you do” questions cover a ranking of preferred information resources,
which concept, user-agent and redirect-uri they would use. As not experienced developers
may not know these topic specific terms they are shortly explained.

At least demographics such as gender, age and country of the interviewee are asked.

Execution. The survey was open for 22 days from November 21st, 2017 to Decem-
ber 13th, 2017 and was advertised and shared via Twitter, Facebook, LinkedIn, email,
chat rooms of computer science groups of university and within developer groups on
Facebook.

31

CHAPTER 5
Results

In this section we present our results on cross-platform mobile apps from the developer’s
perspective.

First, we analyze the official documentations and resources provided by the framework
developers, which discloses similarities and differences how the frameworks handle security
and privacy.

Then, we describe the major topics of developer’s challenges based on the analyzed Stack
Overflow posts in Section 5.2. Furthermore, we present results of our extensive manual
analysis on authentication posts in concern of OAuth and OpenID Connect.

Last but not least, we evaluate our small user study about implementation experiences
on OAuth and OpenID Connect across cross-platform developers in Section 5.4.

5.1 Security Handling

In this chapter we evaluate how the three frameworks manage security. The websites and
official documentations of the frameworks are our primary source to analyze how openly
they address security. Additionally, we consider third-party extensions and plugins to
improve security.

5.1.1 Cordova

The offical documentation of Cordova1 provides several sections on security and privacy
issues.

1https://cordova.apache.org/docs

33

5. Results

Communication

Concerning secure the network communication, certificate pinning and self-signed cer-
tificates are discussed in official documentation. Android does not provide a native
API to intercept SSL connections, which is required for certificate validation. Basically,
certificate pinning in Android is possible with Java and JSSE, but in Cordova server
connections are handled by the WebView, which is written in C++. Thus, Cordova
cannot provide certificate pinning for Android. As no support implies no consistent
support across multiple platforms, Cordova doesn’t include certificate pinning in Cordova
at all [54].

An alternative verification method is to check the public key of the server, which is called
fingerprint. However, such a check must be executed manually, while true certificate
pinning automatically verifies the expected values on each connection to the server.
Third-party plugins for fingerprint checking are available. Furthermore other plugins
execute true certificate pinning for some platforms. However, they assume that all network
requests are done by the plugin instead of traditional XHR or AJAX requests [53].

Self-signed certificates without certificate pinning are vulnerable to man-in-the-middle
attacks. Therefore, self-signed certificates are not recommended in the official documen-
tation. However SSL errors due to certificate chain validation errors can be permitted
by certain configurations, which is recommended only for testing purposes and dur-
ing development. The documentation discourages turning validation off in production
mode [53].

Data Storage

Cordova’s documentation has a dedicated part about storage. It provides links to a more
detailed explanation about Web Storage APIs and a short overview about the following
APIs directly in the documentation [54].

LocalStorage is a synchronous key/value storage of strings with a simple API. WebSQL
stores data in a structured database, that can be queried with standard Structured
Query Language (SQL) syntax. IndexedDB combines the strengths of LocalStorage and
WebSQL that enables to store JavaScript objects indexed with a key. The SQLite plugin
is almost equal to WebSQL, but overcomes the storage amount limitations and provides
support for Android, iOS and Windows. The File Plugin of Cordova enables storing data
on the local file system for each available Cordova platform.

Table 5.1 shows a summary of these storage APIs. LocalStorage, WebSQL and IndexedDB
limit the amount of storage to approximately 5 Megabyte (MB), while the plugin based
solutions does not have such a limitation. Search performance of LocalStorage is worse
than the performance of WebSQL and IndexedDB because of missing search indices. On
the other hand LocalStorage provides support for all Cordova platforms, while WebSQL
only supports Android and iOS and IndexedDB only supports Android and Windows,
but with limitations.

34

5.1. Security Handling

LocalStorage WebSQL IndexedDB SQLite
Plugin File Plugin

Storage Limit approx.
5MB

approx.
5MB

approx.
5MB none none

Performance bad good good —
Android 3 3 3 3 3

iOS 3 3 7 3 3

Windows 3 7 3(limit.) 3 3

All Cordova
Platforms 3 7 7 7 3

Table 5.1: Cordova - Storage APIs

Details on data and database encryption are not provided at Cordova’s website. However,
there are some plugins available at the package manager npm that implement encryption.
The SQLite plugin can be extended with encryption by the plugin cordova-sqlcipher-
adapter2 that provides a native interface to SQLCipher. It supports Android, iOS
and Windows apps. The cordova-plugin-secure-storage3 provides an encrypted
storage for key/value pairs and is also available for Android, iOS and Windows. Another
encryption plugin uses the Keychain in iOS or the Keystore in Android to store encrypted
local data. However, it is only available for Android and iOS4. An alternative to store
encrypted data or files is to encrypt them directly before putting them into the storage.
JavaScript provides cryptographic libraries for that.

Privacy

Best practices on how to treat user privacy are explained in a dedicated privacy guide at
Cordova’s website. Each app should provide a privacy policy that describes what kind of
information is stored, how those data are used and with whom they are shared and how
users can make privacy-related choices. Users should actively be asked for permission
before an app collects sensitive data, e.g. by just-in-time dialog boxes. If data are shared
with third parties, such as social networks or advertising companies, users should be
informed and provided an option to opt-out [52]. Further information and best practices
for developers are provided by external links at the privacy guide.

HTML5 Security

A link to the HTML5 Security Cheat Sheet5 of OWASP is provided under recommended
articles at Cordova’s security guide. Web Security is an important part for Cordova’s

2https://github.com/litehelpers/Cordova-sqlcipher-adapter
3https://github.com/Crypho/cordova-plugin-secure-storage
4https://www.npmjs.com/package/nl-afas-cordova-plugin-securelocalstorage
5https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet

35

https://github.com/litehelpers/Cordova-sqlcipher-adapter
https://github.com/Crypho/cordova-plugin-secure-storage
https://www.npmjs.com/package/nl-afas-cordova-plugin-securelocalstorage
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet

5. Results

security, because native and web techniques are combined.

WebViews

As described in Section 3.2.1 WebViews are a basic component of Cordova apps. However,
using WebViews can be risky concerning the security of the underlying app. Cordova’s
security guide provides a link to a paper about attacks on Android’s WebView from 2011.

Figure 5.1: Threat Models of WebViews (cf. [35])

Luo et al. [35] define two different groups of threats as shown in Figure 5.1. In one group
the app used by a victim is basically benign. However, the attacker tricks the victim to
load malicious pages via the WebView into the app, e.g. by email, social networks or
advertisement. Then, the loaded pages launch attacks on the victims device.

Sandbox Holes. One reason for such attacks are holes in the browser’s sandbox. On
Android’s WebView for example, the API addJavascriptInterface enables JS code
to invoke native code. Native interfaces, e.g. that access system resources such as camera,
files or databases can be registered to the WebView and become global to the application.
Therefore, each web page - no matter from which origin - can access them and defeats
the browser’s Same-Origin Policy (SOP).

Frame Confusion. Asynchronous function calls can also cause those attacks. When
JS code, for example calls an asynchronous function of the native code through the
interface, it does not wait for the results. Rather, native code invokes a JS function
passing the results. Mainly, these callbacks are nothing unusual, however if a web page
has iframes, the frame making the invocation may not be the same that receives the
callback. Such attacks can happen from child frames, but also on main frames.

In the second group of threats the attacker owns a malicious app and wants the victims
to use the app directly. The malicious app A can be a third-party app that provides
special features, which extend functionality of another application B. The attacker can,
for instance use Javascript Injection or Event Sniffing and Hijacking in app A to get data
from app B.

Javascript Injection. Native applications can inject arbitrary JS code into web pages,
that are loaded by the WebView, via the WebView API loadURL. It executes each string

36

5.1. Security Handling

that starts with “javascript:” within the context of the current page, provided the
WebView’s option javscriptenable is set to true, which can be done by the app
easily. Thus, manipulating the DOM tree, loading malicious scripts or stealing sensitive
information, such as cookies is possible.

Event Sniffing and Hijacking. Another exploitation approach are hooks, that can
intercept events by registering event handlers using a customized WebViewClient in-
stance. OnLoadResource, doUpdateVisitedHistory or onFormResubmission
are examples for those events, but also keystrokes, touches and clicks can be observed.
Moreover, actions and content of event handlers can be modified. For example the event
shouldOverrideUrlLoading can be misused to malicious URL redirections [35].

Whitelists

If an app needs access to external domains, they should be whitelisted to only allow
access to these specific domains and subdomains. By default, access to any domain
is granted, which poses risks. Inexperienced developers will not change some of those
default settings, due to lack of knowledge or time. Hence, this security concept can be
considered as vulnerable by default.

Cordova provides different whitelist types. One whitelist holds all URLs to which a
WebView can navigate to. By default only URLs navigating to file:// are allowed, but
with the tag <allow-navigation> further URLs can be defined in the config.xml
file. A whitelist for intents controls the URLs for which the app can ask the system
to open, while externals URLS are not allowed by default. The third whitelist type
for network requests was replaced by the Content Security Policy (CSP), which can be
defined within a HTML tag <meta> on all pages [51].

Since Cordova-Android version 4.0, a separate plugin, the so-called cordova-plugin-
whitelist is required to configure whitelists. Cordova-iOS version 4.0 and greater and
Windows Phone 8 don’t require the plugin, but configuration details are the same. They
are stated with the <access> tags in the config.xml according to the W3C Widget
Access specification6.

Moreover, it is indicated that in iOS 9 a new feature acting as a whitelist, called App
Transport Security (ATS) was established. The already known tags <access> and
<allow-navigation> are converted to the ATS directives. A link to Apple’s website
for further details about ATS is provided at the whitelist guide of Cordova [55].

Iframes

An iframe has full access to the native Cordova bridge. As a result, content and
especially malicious content within an iframe from a whitelisted domain, e.g. a third-
party advertising network can break out of the iframe and perform malicious actions.

6https://www.w3.org/TR/widgets-access/

37

5. Results

Therefore, iframes should not be used within the app unless the server, that hosts the
content, is under the developers’ control [53].

Coding Tips

The security guide provides tips for developers to create apps with high code quality. For
example, it is very important to validate all user input to detect manipulated HTML and
JS assets on client and server side. Websites from outside should only be opened with the
InAppBrowser, because it uses native security features of browsers and does not provide
access to the whole Cordova environment. Sensitive data, such as usernames, passwords
or geolocations should not be cached to avoid unauthorized access. Furthermore the
JavaScript function eval() should be avoided, because it can become a vulnerability for
injection attacks when used incorrectly. Last but not least, developers must not assume
that their source code is secure, because it can be reverse engineered [53].

5.1.2 Xamarin

The official documentation of Xamarin is very detailed. It includes guides, workbooks,
recipes, samples and the complete Xamarin API reference7. Although there are no
dedicated sections on “security” or similar and searching for “security” doesn’t lead to
many results, the documentation contains much information about it.

Platform Features

Information about new platform features, changes and enhancements is given for different
Android and iOS versions in the corresponding sections [81, 82].

Communication

Detailed information about web services is given in the developer’s guide. Different
web service technologies, such as REST services, ASP.NET web services (ASMX) and
Windows Communication Foundation (WCF) services are discussed [77].

The importance to use the latest version of Transport Layer Security (TLS) to secure
network communications between devices is explicitly stated in documentation. Since
February 2017, TLS 1.2 is used by default in Xamarin apps. Requirements as well as a
step by step instructions to update to the latest version manually are described in detail.
The HTTPClient implementation can use two different options for communication.
There are a Mono based networking stack or an API stack provided by the underlying
native platform, while only the second one provides TLS 1.2 [88].

ATS. In iOS 9 (and OS X 10.11) a new security feature, called App Transport Se-
curity (ATS) was introduced. ATS enforces all connections between resources, such

7https://developer.xamarin.com/guides/

38

5.1. Security Handling

as app and backend server to be secure. Therefore any connection established with
NSUrlConnection, CFUrl or NSUrlSession uses ATS by default. Apps that use
HttpWebRequest or WebServices are not affected.

This means each connection must fulfill the following requirements, otherwise it fails with
an exception:

• Connection ciphers: must use forward secrecy

• Cryptographic protocol: TLS 1.2 or greater

• Certificates: at least a SHA256 fingerprint with a 2048 bit (or greater) RSA key
or a 256 bit (or greater) Elliptic-Curve key

Sometimes HTTPS and secure communication is not possible at all and in such a case
the above described requirements can be disabled in the file Info.plist, which is the
app’s configuration file. However, the Xamarin documentation emphasizes, that Apple
highly recommends using ATS by default [72].

The ATS requirements meet state-of-the-art best practices for secure online communi-
cation as described in [43]. Thus, forcing the settings for each communication already
on platform-level is a good approach to increase security and establish them as default
practices in mobile apps.

Authentication

The developers guide of Xamarin.Forms describes authentication mechanisms against
web services to ensure that users only have access to their own data [74].

General descriptions about methods to implement Basic Authentication in Xamarin as
well as security instructions are given. Basic Authentication should only be used over
HTTPS connections and credentials should not be stored in an insecure format at service
side. Xamarin.Auth provides features to store them securely. The default approach for
logging a user out is to end the session [73].

Xamarin.Auth is a component available for Android and iOS that provides OAuth
authentication for Google, Microsoft, Facebook and Twitter. Furthermore it includes an
account store to store account information securely with Keychain Services in iOS
and Keystore class in Android [75].

Authentication techniques for other web services, such as Azure Active Directory, Amazon
Web Services etc. are also described.

Data Storage

The guides treat very detailed how to access data in Xamarin apps. The information for
Android and iOS is quite the same at [79, 86], which means both platforms support the
same storage technologies.

39

5. Results

Moreover, the following types of storage systems on devices are explained shortly in the
documentation [71, 80]:

• Key-Value Pairs: Android and iOS provide a built-in mechanism to store simple
key-value pairs, e.g. user settings or personalized data.

• Text Files can be stored directly on the file-system. This can be used for example
to store user input or caching downloaded content.

• Serialized Data Files: Objects can be saved as XML or JSON on the file-system.
Serialization and de-serialization is directly supported by .NET libraries.

• Database: Android, iOS and Windows have SQLite database built-in, which can
be used to store structured data that should be able to be queried or sorted.

• Image Files: Binary data are recommended to be stored directly on the file-system
and not in the database. For large images, a caching strategy should also be planned
to delete files from time to time to free user’s storage space.

If data should be stored in a database, the cross-platform database system SQLite is
recommended by Xamarin. Moreover, frameworks and libraries to access the database
are described.

Loading and saving files on devices locally are also described in Xamarin’s official
documentation. Each platform has it’s own native file system, that needs to be addressed.
Both, Xamarin.Android and Xamarin.iOS support the System.IO classes from .NET
Base Class Library (BCL). Therefore common code can be used for them. Windows,
however only supports IsolatedStorage and Windows.Storage APIs. As a result
it requires platform-specific implementation [68].

Tips or warnings that sensitive data should be encrypted or similar information is not
given in the documentation. Instructions, how to encrypt and decrypt data or files is not
provided either, with the exception of some entries in API references.

Privacy

General information about privacy and how developers should deal with user data is
not provided at Xamarin’s websites. However, Apple made some security and privacy
enhancements in iOS 10 and Xamarin explains how to deal with them for Xamarin.iOS
apps. It requires to define so called privacy Keys in the file Info.plist file to get
access to certain features or user data. A privacy key should explain the user why the
app wants or needs this access [85].

40

5.1. Security Handling

WebViews

In Xamarin apps WebViews can be used in the same way as other UI elements. The
developer guides only contain how to use WebViews, but their is no reference to security
vulnerabilities about them. Xamarin.Android apps use the Android WebView and its
documentation is based on Android’s tutorials [64]. As Apple provides three different
WebViews, their similarities and differences are explained in Xamarin’s documentation
and a short reference to ATS is provided too [78].

Code Obfuscation

The documentation of Xamarin.Android covers techniques to protect application code.
First of all, debugging mode should be disabled in release versions. Moreover, danger of
reverse engineering or code tampering is shown [84].

Dotfuscator is mentioned as a possible solution against these problems. It provides
code obfuscation and injects runtime security state detection code at build time. The
community edition can be used with Visual Studio, but it does not support Xamarin
Studio [84].

Another tool is ProGuard, which is a Java class file shrinker, optimizer, obfuscator and
pre-verifier. However, in Xamarin.Android ProGuard does not obfuscate the APK, it
only performs the shrinking and optimization steps. Moreover, only a selection of the
ProGuard options can be configured [83].

Moreover, Xamarin Enterprise license provides the possibility to bundle assemblies into a
native binary, which keeps code safe [84].

5.1.3 React Native

React Native’s official documentation8 is clearly arranged into basic knowledge, guides
and API documentation. Thus, a beginner gets first introductions quickly, but also
advanced topics and issues are described in detail. However, the descriptions and topics
more focus on the framework’s features to build a user interface, platform issues for
Android and iOS or general development tasks like debugging, testing or releasing while
sections about security or privacy are hardly found.

Communication

Different approaches how to load resources from remote URLs are described in an own
networking section. React Native supports networking libraries such as Fetch API,
XMLHttpRequest API or WebSockets. In context of XMLHttpRequest it’s indicated
that the security model is different in React Native than on web, because the concept of
Cross-Origin Resource Sharing (CORS) is not available in native apps [21]. More detailed
information is unfortunately not described at this point. Like the other frameworks

8http://facebook.github.io/react-native/docs/getting-started.html

41

http://facebook.github.io/react-native/docs/getting-started.html

5. Results

Cordova and Xamarin, also React Native provides a short description about ATS in it’s
docs and provides a link to Apple’s documentation. Moreover in context of network
images it is recommended to use https to satisfy ATS [19].

WebViews

In React Native WebViews can be used like an UI element to load external web content,
but also for communication between the native UI components and React Native. A
tutorial how to integrate and combine these two worlds is given with a comprehensive
example. However, concerns or a discussion about possible vulnerabilities like in Cordova’s
documentation about WebViews is not provided.

Platform Specific

Various platform specific issues are described in the documentation. There are even
two sections Guides (iOS) and Guides (Android) which for example describe how to
implement custom native modules to access the platform API. Moreover, React Native
also provides a lot of cross-platform API modules, which in some cases require platform
specific configuration like Android permissions in the file AndroidManifest.xml and iOS
properties in file Info.plist.

Data Storage

In React Native a simple, unencrypted, asynchronoous, persistent key-value storage
system called AsyncStorage is available. According to documentation it should be used
instead of LocalStorage. On iOS data are stored in a serialized dictionary, while on
Android RocksDB or SQLite is used [17]. Further database systems or data encryption
are not covered in documentation.

Development Process

Developing issues such as debugging, running the app in a simulator or how to release
and sign the app are handled in documentation. The tool ProGuard is described to
reduce the size of the Android Package Kit (APK). In context of APK signing a note is
given not to store credentials in cleartext and that a certain Keychain Access app can be
used on OSX [18].

Privacy

Although privacy is not discussed on its own in React Native’s documentation, it can be
discovered on some sites. For example a privacy key concerning photo libraries in iOS is
described in context of React Native’s camera module.

42

5.2. Meta Topics

5.1.4 Comparison

Each framework provides a large documentation with guides, tutorials and specifications
of APIs and plugins or modules.. We categorized the content of the official sources into
security relevant topics to compare them to each other. Table 5.2 shows for each of the
seven categories if they were covered in the frameworks’ documentation or not.

Security Topic Cordova Xamarin React Native

Platform Usage 3 3 3

Data Storage 3 3 3

Communication 3 3 3

Code Protection 3 3 3

Privacy 3 3 3

Authentication 7 3 7

Authorization 7 7 7

Table 5.2: Security Topics in Official Documentations

All three framework documentations handle topics such as platform specific issues,
data storage, communication, code protection and privacy, but they very differ in its
comprehensiveness.

In the documentation of Cordova and Xamarin the available storage systems are de-
scribed in much more detail than in React Native’s one. However, no one provides
information about data encryption. In context of secure network communication, Cor-
dova’s documentation is focused on SSL certificate validation with certificate pinning and
self-signed certificates. As Xamarin provides TLS 1.2. since February 2017, they describe
in detail how to integrate it in Xamarin apps. A more general description about different
networking technologies and their usage in React Native is given in their documentation.
One common denominator regarding secure communication is a description of the ATS
approach in iOS. Cordova’s official website an own guide describing best practices how
to treat users’ privacy is available. Although there isn’t such a guide on Xamarin’s or
React Native’s website, similar information can be found combined with explanations
about device permissions.

On the other hand authentication mechanisms are only described in Xamarin’s documen-
tation, while the terms “authentication” and “authorization” are mixed up. Authorization
is not explicitly covered by all three documentations.

5.2 Meta Topics

As described in Section 4.2 we investigated challenges and issues of developers from
about 520,000 Stack Overflow posts about Cordova, Xamarin and React Native. In a
first step we conducted topic modeling on the posts to categorize them into 200 topics

43

5. Results

per framework. Each topic is described by 10 keywords which are characteristic for it.
We manually labeled the fine-grained topics for each framework and grouped them into
12 cross-platform meta topics. In Table 5.3 the meta topics are listed with their keywords
and Table 5.4 shows for each framework how many topics its meta topic consists of.

Meta Topic Keywords
Auth account, auth, login, oauth, session, token
Browser browser, webview, childbrowser, iframe, inappbrowser, uiwebview
Build, Release version, update, platform, apk, sign, gradle, bundle, compile
Communication ajax, cors, fetch, http, network, request, response, service
Device bluetooth, camera, nfc, barcode
Development studio, editor, tools, plugin, package, install, npm, nuget, git
File, Media image, audio, video, canvas, pdf, file, load, download, upload
Messaging email, contacts, notification, sms, message
Platform android, ios, windows, permission, intent, fragment, key, info.plist
Storage database, storage, localstorage, asyncstorage, sql, sqlite
User Interface css, style, layout, view, item, list, tab, menu, touch, orientation
Others i’am, i’ve, it’s, can’t, don’t, app, problem, solution, issue, found,

work, error, code, failed, public, void, override, class

Table 5.3: Meta Topics

Meta Topic Cordova Xamarin React Native
Auth 3 2 4
Browser 5 2 2
Build, Release 12 12 9
Communication 12 4 8
Device 4 3 2
Development 10 13 9
File, Media 8 7 5
Messaging 4 3 4
Platform 6 10 4
Storage 2 2 2
User Interface 30 40 37
Others 104 102 114

Table 5.4: Number of Topics across Frameworks

In most of the topics the top 10 words are very meaningful and allow several conclusions.
In the following we describe subjects of the meta topics and describe our findings about
content similarities and differences across the frameworks.

44

5.2. Meta Topics

Auth. Major keywords across all three frameworks are user, facebook and login in
meta topic Auth. So to say, it is primarily about authentication. Moreover, Cordova
and Xamarin topics also include oauth and token. Thus, it is also about authorization.
Results of our detailed content analysis of this meta topic is described in Section 5.3.

Browser. Browser topics are quite similar in all three frameworks. Their keywords are
about webviews, urls, links, HTML and JS. However, Cordova topics also include more
specific words, such as inappbrowser and childbrowser, which mean Cordova plugins for
in-app browsers and posts how to open links and URLs with the plugins.

Communication. Network communication topics are different across the frameworks.
We identified 12 communication topics for Cordova, 8 for React Native and only 4 for
Xamarin. Cordova’s topics are about AJAX and XMLHttpRequest as well as whitelists
and CORS while React Native posts are about fetch API, OkHttp client and self-
signed SSL certificates. Both frameworks have topics about WebSockets and WebRTC.
Xamarin’s topics include more general keywords such as web, server, connection, but also
Azure services and WCF.

Storage. The topics on storage represent different storage systems across the frame-
works. While window.localstorage is dominant in Cordova posts, SQLite is discussed in
Xamarin posts and AsyncStorage in React Native.

Device, File, Media, Messaging. Hardware devices and features such as camera,
Bluetooth and NFC are own topics in all three frameworks. Interestingly, scanning
barcodes with camera is discussed across the frameworks too. Also issues about files (e.g.
images, PDFs), such as loading, down- or uploading them, playing videos or sounds or
sending messages such as emails or sms are cross-platform topics.

Platform. Android and iOS are the most dominant mobile platforms across the frame-
works according to platform specific topics. Intents and permissions are top keywords
belonging to Android applications. Keys and plist, which stands for property list files
are own topics about iOS. Topics with keywords about Windows and UWP are also
identified in Cordova and Xamarin posts, but not in React Native. They have supported
building apps for UWP only since April 2016. Maybe there are too few posts to influence
the topic models because the dataset includes only posts until June 2017.

User Interface. Some examples of layout and style keywords are width, height, size,
orientation, portrait, landscape. Typical HTML tags such as div, class, img are found
in Cordova posts. CSS keywords exist in Cordova and React Native posts. Moreover
React Native UI components such as ScrollView, ListView, Slider, Toolbar have own
topics. Also topics about Xamarin specific UI components and widgets such as ListView,
Spinner, Picker, Calendar or EditText exist.

45

5. Results

Development. Trends about development tools can be detected from this meta topic.
Based on the programming languages of the frameworks, Cordova and React Native
use the JavaScript package manager npm while Xamarin uses the package manager of
Microsoft development platform NuGet. For debugging it seems that using Chrome as
emulator is popular in Cordova and React Native. In contrast, Xamarin developers use
emulators of the IDEs Xcode or Xamarin Studio. Moreover debugging GTK is also on an
own topic in Xamarin. Also different testing tools are discussed across the frameworks.
In Cordova posts the automated testing tool Appium occurs, while in React Native posts
Facebook’s testing tool Jest and Mocha are discussed. In Xamarin the .NET unit test
tool NUnit is popular.

Build, Release. In each framework between 9 and 12 topics deal with compiling, build
and release issues. Signing Android APKs with the Android KeyStore is included in
each framework. Moreover, framework typical build tools can be detected from the topic
keywords such as Gradle in Cordova, AOT and JIT compiler in Xamarin and Babel in
React Native.

Others. Topics with general words such as it’s, don’t, work, problem, errors, question,
answer are not meaningful enough and therefore put into a generic meta topic called
Others. It also includes topics that are not comparable across the frameworks.

5.3 Posts about Authentication & Authorization

In the second phase of challenge analysis we focused on meta topic Auth and analyzed
100 question blocks per framework as described in Section 4.2.3. Therefore, we selected
the Cordova topic C3 including the keywords oauth, token, url, code, google, Xamarin
topic X2 described by facebook, token, login, oauth, user and React Native topic R2
dealing about token, user, auth, app, parse.

A question block consists of a question with all its comments, answers and answer com-
ments. Major subjects of the selected topics are about authentication and authorization
issues, API access with OAuth 2.0 and login or session management using OpenID
Connect or other authentication libraries. Various aspects, such as trends concerning
tools, libraries and plugins used for OAuth 2.0 and OpenID Connect as well as main
problem areas can be identified from recurrent questions and error messages that are
posted. Basics about OAuth 2.0 and OpenID Connect are provided in Table 4.2.3.

5.3.1 Statistics

A first overview about the 100 question blocks of each framework topic is provided by
the following statistical observations.

The distribution of framework question blocks between January 2012 and June 2017 is
shown in Figure 5.2. The number of Cordova questions is equally distributed with about

46

5.3. Posts about Authentication & Authorization

20 questions in 2013, 2014 and 2016. Most of the questions are from 2015. Xamarin
questions have increased continuously from 2013 to 2016, while questions about React
Native have increased four times from 2015 to 2016. The numbers from 2017 cannot
be compared to the previous years, because they include only questions for the first
6 months. However, it can be assumed, that the number of questions about Cordova
decreases this year, while questions about React Native and Xamarin seem to get more.
The novelty of React Native could be one reason for that. It was first released at the
beginning of 2015, while Cordova has existed since 2012. The chart shows first releases,
since first authentication questions appeared nearly at the same time. This fact applies
to all three frameworks.

Figure 5.2: Number of Auth-Questions per Year and Framework

At first glance it seems obvious that popularity of a question block can be defined by
the number of its views. However, this hides a pitfall as the following example shows.
Our dataset has more questions with high view counts about Cordova than about React
Native. Thus, we conclude that Cordova questions are more popular than React Native
questions. However, we did not regard the factor of lifetime. Therefore questions for
a problem in React Native may have to be created first with zero view counts, while
similar questions about Cordova may exist and users can search and view the existing
ones, which increases their view counter. Therefore we additionally have to consider the
creation date of a question when talking about its popularity.

Figure 5.3 shows the distribution of view counts across creation date of question blocks
for each framework topic. Four question blocks in C3 and R2 and 3 question blocks in
X2 have more than 5000 views, but all of them have been created before March 2016.
In each topic, the most often viewed block represents an outlier with more than 20,000
views created between 2014 and 2015. Each question block has been viewed more than
100 times. Two-thirds of React Native’s topic, half of Xamarin’s topic and only 37 % of

47

5. Results

Cordova’s topic have been viewed less or equal than 400 times. Hence, we argue that the
number of views correlates with the creation date.

5.3.2 Post Types

Several reasons may impact wether a developers posts a question. Rosen and Shihab [44]
categorized questions on Stack Overflow into what, how and why, which is quite similar
to our categories, but in comparison, we consider question blocks containing questions,
answers and comments instead of single questions.

Best Practices. Developers ask for approaches, concepts, tools, technologies to use
for a certain issue. They may not know the available possibilities and therefore they ask
the community about their experiences which concepts are the best. Sometimes these
questions cause discussions about pros and cons of approaches and tools among more
experienced developers. Often such question block results in a collection of different
approaches and suggestions the developer can use or try for his implementation. Rosen
and Shihab [44] call them what questions, which are more abstract and conceptual and
to ask for help in making a decision.

How To. Another major type are how to question blocks. In principal they are more
specific to a certain issue about a tool, framework, library or technology in contrast
to best practice questions, which are more conceptual. But also best practices about
the tools can be asked here. Rosen and Shihab [44] describe how questions are used
to ask for instructions. Many questioner in topics C3, R2 and X2 mentioned being
a newbie in the subject and requiring help from more advanced developers. Answers
and comments of these questions sometimes extend official documentation as required
information is missing there. In other cases official documentation gets replaced by the
posts as questioners do not read documentation before, they ask the community first.

What is Wrong - How to Solve. In contrast to the above types, in this category
developers have coded something and got errors where they need help to solve. In some
cases they don’t know what the problems are and so they post error messages, stack
traces and screenshots. Rosen and Shihab [44] call them why questions as developers ask
for possible reasons of their errors. We also identified question blocks where developers
know why the error occurs, but they have no idea how to solve it. So they ask the crowd
for their experience.

Self-Answered. Several questions in topics C3, R2, X2 are self-answered by the
questioners. Nobody else suggested a possible or usable answer and in the meantime they
found a solution by themselves. The questioners posted their solution to share gained
knowledge with the community, such that others can profit.

48

5.3. Posts about Authentication & Authorization

Figure 5.3: Auth-Question View Counts by Creation Date

49

5. Results

Unsustainable. In contrast to self-answering questions, we also identified question
blocks that are marked as answered, but it is unclear which solution really worked. So to
say, such a question block is useless for other developers as they can’t retrace the working
solution. At first it is nice to see somewhere else had same problems and solved it, but it
is frustrating not to find out how.

Security Relevant. There are rather few questions where developers directly ask
if this approach or solution is secure. For example some questions are about storing
credentials and tokens securely, which result in long discussions. Other security relevant
posts are comments or answers where writers warn about security issues and try to create
awareness. For example they warn that secret data in binaries of a mobile app is insecure
as they can be extracted easily.

5.3.3 Libraries, Plugins, Services and APIs

Various libraries, plugins or services to implement authentication and authorization exist
for each framework and the most common ones from our datasets are described in this
section.

Cordova (C3)

Many provided code snippets, custom implementations and suggested plugins in the
C3 question blocks require Cordova’s plugin Childbrowser or it’s successor plugin
InAppBrowser. The basic approach of the snippets is quite the same, as they open the
consent page of the identity provider in a new embedded browser tab alias web view and
retrieve the access token from the redirect URI in the loadstart event of the embedded
browser. This means OAuth flow is directly executed from client application. Therefore
data such as client_id and client_secret has to be put into the client application, which
can be easily extracted and misused by attackers. As a result, web view approach is
insecure by design as stated in [10].

The plugin ng-cordova-oauth is an AngularJS Apache Cordova OAuth library. It
requires the Cordova InAppBrowser and Cordova Whitelist plugin, because it
implements the above described web view approach. We found 16 question blocks where
developers either were faced with some errors based on the plugin or other developers
recommended the plugin on best practice questions. The plugin supports a huge number
of different identity providers, however it does not support Google anymore, because
Google has been blocking authentication requests from web views since October 2016.

The plugin cordova-plugin-googleplus handles OAuth2.0 authentication against
Google provider by using Google Sign-In API9 instead of an embedded browser, as the
other described plugins do. Since Google no longer allows OAuth requests from embedded
browser, this plugin is recommended for Google authentication in newer comments and
answers.

9https://developers.google.com/identity/

50

https://developers.google.com/identity/

5.3. Posts about Authentication & Authorization

Xamarin (X2)

In Xamarin’s official documentation libraries such as Xamarin.Auth, Xamarin.Social, Ac-
tive Directory Authentication Library (ADAL), Microsoft Authentication Library (MSAL)
and Azure Mobile Client SDK are described and recommended. As a result, we frequently
identified these libraries in topic X2 posts too.

Xamarin.Auth is an official component of Xamarin for Android and iOS that handles
authentication, as already mentioned in Section 5.1.2. 50 % of X2 question blocks
deal with it. In 78 % of these question blocks users had a specific question about
the component, were faced with an implementation problem and/or needed technical
explanations additionally to the documentation. The other 22 % question blocks are best
practice questions of beginners where other developers recommended to use Xamarin.Auth
or developers described how they used Xamarin.Auth for a similar problem.

11 % of X2 question blocks deal with authentication and authorization against identity
provider Azure AD using Active Directory Authentication Library (ADAL).
Questions about ADAL are quite new, as they are from 2015 till 2017. Moreover, they
are viewed only 286 times in average, excluding one outlier with 870 views.

Microsoft Authentication Library (MSAL) is a new authentication library of
Microsoft for Azure AD. There are 3 question blocks using MSAL in topic X2. According
to the official github repository10, it is a preview version currently, but can be used in
production.

Another described approach for authentication of Xamarin is using Azure Mobile Apps
as backend services, that authenticate against third party identity providers, such as
Google, Facebook, Twitter or Azure AD [76]. The Azure Mobile Client SDK is a
library to access the registered Azure Mobile App instance and execute its provided
authentication methods. In topic X2 we found 6 question blocks that had problems with
their custom implementation or configuration on Azure portal.

Moreover, two others concepts are discussed in topic X2 commonly. One way is to use
a backend as a service provider, such as Auth0 or Okta that acts as client and handles
OAuth requests. Another way is to use official mobile SDKs from OAuth providers, such
as Facebook SDK or OneDrive SDK.

React Native (R2)

Numerous authentication plugins and libraries are referenced in posts of topic R2 only
once. In contrast to this, there are services such as Firebase Authentication and Auth0
that occur in multiple posts. Some questions are based on platform Parse. As this
platform was shut-down in January 2017, we don’t consider it further.

10https://github.com/AzureAD/microsoft-authentication-library-for-dotnet

51

https://github.com/AzureAD/microsoft-authentication-library-for-dotnet

5. Results

Firebase11 is a platform backed by Google that provides backend APIs and services for
mobile apps. Firebase Authentication is one of these services to easy implement
secure authentication systems according to its official website. As we found 28 question
blocks in topic R2 dealing with Firebase, it can be assumed that the platform is commonly
integrated in React Native apps. 82 % of 28 question blocks are tagged with “firebase”
and/or has it in the question title. Moreover, we found two answers where Firebase was
recommended to use for authentication.

Auth012 is a third-party service that provides APIs for developers to easier implement
and integrate authentication and identity management in their own applications. Various
authentication protocols, such as OAuth 2.0, OpenID Connect, SAML, WS-Federation
and LDAP are supported by Auth0. In our analysis we found four questions where
developers claim using Auth0 and getting some errors or developers have a how-to question
about Auth0. Two other times Auth0 was recommended in best practice questions.

We identified many custom implementations in topic R2 sending requests with Fetch
API. In 21 question blocks Fetch API is mentioned, explained or used in code snip-
pets. Fetch API is a Web API to fetch resources across the network, similar to
XMLHttpRequest API, while Fetch API is newer and uses promises instead of callbacks.

5.3.4 OAuth Providers and Protocols

An OAuth provider offers endpoints for requesting access to certain resources on the
provider’s site. According to our dataset, mostly the same providers are integrated across
all three frameworks. We identified Facebook, Google, Twitter, LinkedIn as the most
common ones. Other providers such as Instagram, Azure AD or Spotify are used too.

Many question blocks in topics C3, X2 and R2 include code snippets due to several
reasons. Developers that need help to find mistakes in their implementation add code
to questions, such that more advanced developers can take a closer look to it. On the
other hand, users that provide answers add code snippets to their explanations to better
describe their solution.

As described Xamarin.Auth is a very popular plugin for authentication in Xamarin
apps and in 90 % of Xamarin.Auth question blocks code snippets are included. The
distribution of OAuth protocols in these snippets is given in Figure 5.4. The snippets
are considered per post type, while in one group all snippets of questions are aggregated
and the other group contains snippets in answers and comments. Generally, there are
more code snippets in questions than in answers and comments. More than half of the
snippets include protocol OAuth 2.0. There are five question snippets with OAuth 1.0,
but only one snippet in an answer or comment. Snippets with implementations for both
protocols are rare. Only one snippet is in a question and two in an answer or comment.
In the 10 posts of group Others, users talked about Xamarin.Auth but provided solutions

11https://firebase.google.com/
12https://auth0.com/

52

https://firebase.google.com/
https://auth0.com/

5.3. Posts about Authentication & Authorization

with different approaches, as for example self-implementations using httpClient() or
extending Xamarin.Auth authenticator class OAuthXAuthenticator.

Figure 5.4: Distribution of OAuth Protocols in Xamarin.Auth Code Snippets

In addition, the OAuth protocol indicates the underlying OAuth provider in some cases.
OAuth 1.0 posts mostly deal with Twitter API, while major providers in OAuth 2.0 posts
are Facebook and Google.

5.3.5 Popular Question Blocks

In each of the selected framework topics popular question blocks with several thousand
views exist. Considering their post types the following best practice and how to questions
are heading the list.

Cordova (C3)

The most popular question block of topic C3 with more than 24,800 views is a general
question how to implement Google API login with PhoneGap created in May 2014. One
answer provides a code snippet based on the web view approach with authorization code
grant flow described in Section 5.3.3. This answer has a score of 28 and we found the
same snippet in answers of other questions too. As [23] showed there is a correlation
between view counts and scoring of posts to the actual copy and paste rate, we assume
the snippet is included in many released Cordova apps.

One commenter of the answer indicates that he researched a lot for the topic and rates
this solution as simple and the best. However, some comments earlier another user warns
about putting the secret in the app. Moreover, we detected a comment in another how
to question block, that the web view approach is the best. Therefore we can follow the

53

5. Results

observations of [1, 23], that developers prefer functional solutions over secure ones and
often ignore existing security warnings in comments.

Although the question block was created in May 2014, it was regularly commented and
updated. As one comment from 2017 describes that the web view approach does no longer
work for Google API, because Google completely blocks OAuth requests from embedded
browsers from April 2017 on. Therefore using plugin cordova-plugin-googleplus
in this case is recommended, as described in Section 5.3.3.

Another popular question block with about 5700 times is also a how to question about
Google OAuth 2.0, but in combination with AngularJS. Since nobody provided an answer
to the question, the asking developer published his custom solution as help for others.

Xamarin (X2)

The most often viewed X2 question block is a best practice question how to login to
Facebook with Xamarin.Forms. Some of the answers advise to use Xamarin.Auth as in
many other posts of topic X2 too. A detailed description of Xamarin.Auth with extra
code samples that are also available on Github is provided. Another provided solution
that was posted is also available on Github but uses Facebook SDK instead of the web
view approach. However, it seems that this solution is outdated for Android since April
2017, because Facebook changed its Android SDK.

The issue that Google does not allow web view implementations anymore also occurs in
Xamarin posts. A developer asks how to implement Google OAuth with Azure Mobile
App backend. There are several answers providing valuable information such as Azure
Mobile Apps use Xamarin.Auth beyond and therefore they will support Google OAuth
as soon as Xamarin.Auth supports it. Additionally a workaround is described in the
same answer from April 2017 to use native provider SDK to get a token, send it to the
mobile backend and swap it into a ZUMO token. For further information a link13 to a
self-written book about Xamarin and Microsoft Azure Apps is given. We found links to
this book in other posts too.

In another answer from May 2017 a user corrects that Xamarin.Auth supports native UI,
such as Android CustomTabs and iOS SafariViewController since version 1.4, but not
Xamarin.Forms which is wanted by some users, but version 1.5 will support it. Release
of Xamarin.Auth 1.5 was in June 2017 and it really added support for Xamarin.Forms.
So to say, Stack Overflow is used to disclose insider knowledge and inform users about
new features in advance of the release.

React Native (R2)

In the most popular question block with more than 33,000 views a developer had a
problem using Fetch API. However he found the answer on its own and posted the
solution, that he used the method fetch() incorrectly.

13http://aka.ms/zumobook

54

http://aka.ms/zumobook

5.3. Posts about Authentication & Authorization

In a very popular question block with about 8300 views a developer asks about the best
approach to implement basic authentication for a React Native app. Various answers and
approaches as for example JSON Web Token (JWT), links to tutorials using Auth0 and
Firebase are provided. Moreover the importance of storing tokens securely is mentioned,
for example by using Keychain on Android and KeyStore on iOS. The selected answer
provides a custom implementation of HTTP Basic Authentication, hashing the token and
getting access and refresh token. Requests in this approach are sent over the Fetch API.

The fourth most often viewed question block is about authenticating against a Ruby
On Rails backend application. Different approaches are described, such as using au-
thentication based on tokens or cookies with web view. Links to tutorials are also
provided.

Another developer asked for the best approach to implement a login for Facebook,
Google and Twitter accounts with a Node.js application in the backend. One responder
provides a link to a tutorial that uses web view, node modules express, passport.js
and react-native-cookies library and another answer includes a comprehensive
description about OAuth 2.0, tokens and explains implementing implicit grant flow and
resource owner password grant flow.

In another question block a developer converts her Cordova app into a React Native app,
she gets confused that there are no cookies used in react-native-google-signin
plugin as in her Cordova app. A user explains the difference that Cordova is like a web
app using web view and therefore cookies are available while a React Native app is more
like a native app and therefore a token based authentication is a better choice.

5.3.6 OAuth 2.0 Grant Flows

Four different types of authorization grant are defined in OAuth 2.0 specification. These
are the implicit grant, the authorization code grant, the resource owner password creden-
tials grant and the client credentials grant, while the last two are rarely used.

In the authorization code flow the client, e.g. the mobile app is authenticated against the
authorization server using the public identifier called client_id and the secret parameter
like a password called client_secret. If the resource owner, e.g. the user permits access
to the resource, the authorization server returns an authorization code to the client. In
a second step the client requests an access token from the authorization server using
the above received authorization code. In contrast to this flow, the authorization server
immediately returns an access token to the client after the first request including only
client_id in the implicit grant flow [29].

According to the OAuth 2.0 specification there are two different types of clients. A
confidential client is on a server where access to client credentials can be restricted
and controlled while a public client is incapable of ensuring the confidentiality of the
credentials. This means a mobile application that executes the grant flow from client
side is a public client [29].

55

5. Results

Cordova (C3)

The most often implemented or discussed grant flow in Cordova’s topic C3 is authorization
code grant followed by the implicit grant. We investigated code snippets and questions
by the parameters response_type of the authorization request and grant_type of
the token request to detect the flow types as listed in Figure 5.5.

Figure 5.5: Number of OAuth Grant Types in C3

As authorization code grant requires to include the client secret in requests, we detected
only 4 posts about concerns including the secret in app binaries and that it might be a
security risk. One user asked if including the secret in source code of client application is
a problem. A commentator only indicates that code parts using client secret should be
executed on server side. In fact, it is true, but not quite helpful without more explanation.

In the most popular question block a user wrote a comment, that the secret should not
be put inside the app. This has resulted in a discussion about workarounds, e.g. adding
a config file or creating a system variable. However, this does not solve the issue that it
can be accessed on the client side, as another user warned correctly.

The third concern we found was only a side note in an answer, that it is insecure,
but without providing another solution. Paradoxically, the writer provides a custom
implementation that also requires the secret in the client app.

In the fourth question block a user asked why he doesn’t get a refresh token with
ng-cordova-oauth plugin. Therefore one responder described the implicit grant and
authorization code grant and mentioned that client secret should not be exposed in the
end user code.

On the other hand there are also some posts where using implicit flow is recommended
in Cordova, because it doesn’t require a client secret.

Investigating the code snippets of topic C3 more in detail, we were astonished how often
developers published code snippets on SO with real credentials such as client_id or
client_secret as they were not replaced by placeholders. In fact, we found 12 of such

56

5.3. Posts about Authentication & Authorization

posts. As it is possible, that some of them are only development or testing credentials,
the risk of high damage is lower. However, we assume that some of the published secrets
are also used in production, which can cause big harm.

Xamarin (X2)

Like in Cordova, also a few Xamarin developers concerned about putting the client secret
into the mobile app.

One developer posted his idea to use a nodeJS server as a proxy for sending OAuth
requests to the endpoints, but he was not sure how to put the token back from the proxy
to the app. A comprehensive discussion arose, where some users wanted to play down the
security risks, while others persisted in theirs viewpoint that “OAuth sucks for mobile
clients”.

In another case, a developer was not sure if Xamarin.Auth can be used securely with
Facebook OAuth, because Facebook’s documentation stated that app secret and access
token should never be included in client side code, such as HTML or JS, or native
apps that can be decompiled. As a result, other developers explained the difference of
implicit and authorization code flow. Implicit flow is designed to be used for mobile
apps as they can not hold a secret. A secret must only be stored at a location where it
is unreachable for third parties, such as a server. Authorization code flow uses a client
secret as additional protection to identify a specific party. If a developer configures his
app as a native/desktop app in Facebook Developer Console, Facebook ignores a client
secret in the OAuth flow requests, because it’s confidentiality can’t be ensured. So it is
described that a developer can either configure the app in the console as another kind
than a native app or she can use the implicit flow. Using implicit flow in Xamarin.Auth
was recommended from multiple developers and marked as the accepted answer.

React Native (R2)

In topic R2 the OAuth flow itself is not discussed so often than in topics C3 and X2.
However, in R2 it is talked about all four flow types at least once.

In one case a developer first tried to use the implicit flow to implement an own OAuth
server and asks if it is the right way. In the answers a difference between implicit and
resource owner password grant type is explained, such that if it is a third-party service
the implicit grant and in case of an own service the password grant can be used.

In a question block how to implement OAuth for Instagram, one user recommended using
Auth0 and authorization code grant with PKCE and to define the redirection per custom
URI scheme or a local web server, which corresponds to a security best practice example
for OAuth in native apps.

Topic R2 posts also include concerns about putting client secrets in the mobile app.
Ideas to solve the problem are similar to those posted in the other topics. A server-
side component that holds the secrets and actually performs authorization requests

57

5. Results

are suggested. In other ways, it requires an proxy server in the middle of client and
authorization server, that can be secured to hold the secrets.

Security Discussion

As described a mobile app executing OAuth on client side is a public client, that can’t
ensure confidentiality of a secret. Authorization code grant flow requires an client_id
and client_secret as credentials to authenticate the client, while implicit grant flow only
requires an client_id. That’s why implicit grant flow was the recommended flow for
public clients in OAuth 2.0 specification. The same and similar description was posted
in grant flow discussions in Cordova and Xamarin.

However, this flow has many drawbacks like no refresh token support, no client authentica-
tion and therefore it is vulnerable to client impersonation and other attacks as described
in [10, 90].

According to the current best practices about OAuth 2.0 for native apps, which was finally
released in October 2017, the recommended OAuth flow in native apps is authorization
code grant flow with PKCE [12].

The concept of Proof Key for Code Exchange (PKCE) is to add an additional parameter
holding a secret to authorization and access token request that is required to obtain
an access token. In detail the client creates a code_verifier and transforms it into the
so-called code_challenge. The code challenge and method of transformation t_m are sent
along in authorization request, which are recorded by the authorization server. When the
client requests an access token it sends authorization code and code verifier. Then the
server transforms the verifier with the previous obtained method and compares the own
generated value with the stored code challenge. Only if the two values match, an access
token is returned. As a result, an attacker who intercepts the authorization code on the
client’s device can’t get an access token, because he doesn’t know the code verifier [45].

In investigated SO posts PKCE was not discussed at all, except in one or two React
Native posts. On the other hand, third party providers like Auth0, Firebase or Okta
describe in their documentation to support it.

5.3.7 User-Agent and Redirection

At the end of OAuth 2.0 authorization flow the authorization server redirects the user-
agent of the resource owner (e.g. a browser, embedded browser, system browser) back to
the client (e.g. a mobile app). As our analysis shows, defining, using and configuring
this redirect endpoint correctly is a common challenge across all three frameworks. We
found plenty of questions in the selected topics with error messages about redirect
URI mismatches or invalid redirect URIs from authorization providers, such as Google,
Facebook, LinkedIn, Twitter, Dropbox, Azure AD, Wordpress, Instagram, Spotify and so
on.

58

5.3. Posts about Authentication & Authorization

Cordova (C3)

18 % of questions in Cordova’s topic C3 deal with the redirect URI. Commonly the
mobile application has to be registered at the provider in advance to get a client_id
and client_secret and to define URIs that are valid to redirect the user-agent back with
authorization code or access token. Many problems concerning the redirect URI are
caused by misconfiguration on the providers’ console or using not registered URIs. Error
messages such as “redirect URI did not match a registered URI”, “client application
failed validation: not a valid URL format” from various OAuth providers such as Google,
Facebook, Twitter, LinkedIn are posted.

Another reoccurring issue was to configure the right application type in Google’s developer
console, such that it works. Some had to change their configuration from web application
to installed application and others had to change it the other way round.

In some cases developers didn’t understand the differences between the URI variants and
needed additional explanation from more advanced users. Sometimes helpful descriptions
are provided in answers and comments, but sometimes only parts of official documentation
are copied into answer posts.

In concern of using Google as OAuth provider many developers posted that their
default redirect URIs according to Google console settings are http://localhost and
urn:ietf:wg:oauth:2.0:oob. Many of these posts are from 2014 or 2015. Current doc-
umentation about Google OAuth in mobile and desktop apps describes four possible
variants. For Android, iOS and UWP apps using a custom URI scheme for redirection is
recommended. Loopback IP address such as http://127.0.0.1 or http://localhost should
be used if the platform can listen to a local web server, because the authorization server
then returns authorization code within a query parameter to this address. In the last
two variants authorization code is included in the title bar of a HTML page to which
the user-agent is redirected. In case of urn:ietf:wg:oauth:2.0:oob as redirect URI the user
has to copy and paste the code from HTML page into application manually, while with
URI urn:ietf:wg:oauth:2.0:oob:auto the application itself has to read the title from HTML
page and user may has to close it. According to official documentation this method was
designed for embedded browsers like web views, but as it is less secure than the first two
types, it is deprecated now [26].

Xamarin (X2)

Various question blocks facing issues with redirect URI parameter can also be found in
Xamarin’s topic X2.

One developer used http://www.facebook.com/connect/login_success.html as redirect
URI to authenticate against Facebook using Xamarin.Auth and got the error message:
“One or more of the given URLs is not allowed by the App’s settings. It must match
the Website URL or Canvas URL, or the domain must be a subdomain of one of the
App’s domains.” In official documentation of Xamarin.Auth and Facebook the URI is

59

5. Results

described to use, but according to the error message the developer didn’t configure it
correctly on the provider’s side. Another developer with the same problem asked why the
URI is actually needed, because in Xamarin native examples it isn’t required. One user
explained that Xamarin.Auth uses a web view and the access token is included in the
redirect URI as query parameter. Moreover, he described the required configuration on
the provider’s side as extra security layer, as the provider can thereby restrict redirection
to only registered URIs. This question block was viewed more than 5200 times and we
identified further posts where the redirect URI of Facebook was used, but not registered.

In other cases developers were not sure which is the correct redirect URI for Google or
Twitter integration. A developer uses https://www.googleapis.com/plus/v1/
people/me as redirect URL in June 2016, as it was suggested anywhere. According to
the described error message the redirect URL does not match any URL registered in
Google’s developer console. Another user suggested http://localhost:8000 and
this answer was marked as accepted. In OAuth 1.0 the equivalent to redirect URI is
called Callback URI. In June 2015 a developer tried http://twitter.com as callback
URI in Xamarin.Auth, but the Completed event never fired. The developer found
http://mobile.twitter.com as working solution himself and shared it with the
community. Comments from other developers confirm that they benefit from the self-
answered question. In June 2016 another user wrote a comment, that the callback URI
has changed to http://mobile.twitter.com/home. The question block has more
than 1100 views.

The issue to configure the application as web app instead of installed app in Google’s
developer console occurred in X2 posts several times, as in the Cordova posts.

React Native (R2)

In React Native’s topic R2 discussions and questions about the correct redirect URI are
more included in general questions and explanations how to implement OAuth and which
OAuth grant flow or tools to use. In some of these question blocks developers purposed
to authorize or authenticate against Wordpress, Instagram or Spotify. In comparison to
the other topics, there are less error messages about URI mismatches in topic R2.

Security Discussion

By definition of OAuth protocol, redirect URIs have to be registered at the identity
provider’s side and the providers have to ensure that tokens are only sent to registered
domains. Client applications, such as mobile apps do not have an own domain, no web
service that can be used for redirect uri, so often localhost or oob are recommended
and used. Attached listeners on localhost redirects or even on custom schemes in iOS is
not only pretended to the original app. As a result, the token can get intercepted by
malicious third party [10].

According to best practices [12] some URL schemes are recommended and some should
be avoid. One recommendation regarding the custom URI scheme is to use a unique

60

https://www.googleapis.com/plus/v1/people/me
https://www.googleapis.com/plus/v1/people/me
http://localhost:8000
http://twitter.com
http://mobile.twitter.com
http://mobile.twitter.com/home

5.3. Posts about Authentication & Authorization

scheme like a reverse domain name (e.g. “com.example.app:/”), while simple schemes
like “myapp:/” aren’t unique enough. Another technique are app-claimed HTTPS URLS,
which must be supported by the native platform. This means that when the browser get
a claimed URL, it doesn’t load the page in the browser, but launches the native app and
delivers the URL as input. Android and iOS currently support the app-claimed HTTP
URLs. Since Android M so-called Android App Links exist and in iOS they are called
Universal Links, which are available since iOS 9.

The user-agent handles redirection and also requires some security considerations. An
embedded browser as user-agent like the Android WebView or iOS UIView is insecure
because of various reasons. For example the principle of least privilege is violated as the
mobile app has full access to the browser and can intercept user credentials. Thus, the
embedded browser should be avoid as user-agent and in-app browser tabs should be used
instead [12]. Examples of such in-app browser tabs are Chrome CustomTabs in Android
and SafariViewController in iOS.

We found posts in all three topics C3, X2 and R2 where in-app browser tabs are
recommended to be used, partly because Google doesn’t allow embedded browser requests
anymore as already described.

5.3.8 Refresh Token

A refresh token is used by the client to get a new access token from authorization server
without user interaction when the current access token expires or gets invalid. The
authorization server issues such a refresh token to the client together with the access
token for later use [29]. Similar questions and misunderstandings about the principles
and usage of refresh tokens were found in all three frameworks.

Cordova (C3)

Cordova developers who use ng-cordova-oauth plugin asked how to get a refresh token.
In one question block a user explained that the plugin implements the implicit grant flow
and thus refresh tokens can’t be obtained. Another user posted a code snippet that uses
authorization code grant flow, but the asking user concerned about the client secret in
the app. Another solution using a proxy server that rewrites the URL and attaches the
secret is given. In a second question block with the same problem the questioner herself
answered that with the plugin only an access token can be obtained and for refreshing an
authentication code is required. Therefore she posted a code snippet to get the code that
has to be sent to the resource server. This means a solution is provided, but a deeper
explanation of reasons is missing.

Xamarin (X2)

In Xamarin’s topic X2 developers were challenged to get and use a refresh token in com-
bination with Xamarin.Auth plugin. Based on the SO posts, it seems that Xamarin.Auth

61

5. Results

doesn’t support token refresh by itself. Thus, developers implemented their own solutions,
but as they got stuck on some point they asked for help. For example one developer
looked for examples, tried requests with parameters like grant_type=offline and
approval_prompt=force as they were found somewhere, but nothing really worked.
Other developers provided links to tutorials or similar posts. The question block is
marked as answered, but it is unclear which post really helped. In another question block
a link to a Xamarin.Auth extension that should provide token refresh is provided. The
link refers to the Github repository of Xamarin.Auth where discussions about refresh
tokens can also be found in open issues.

In other question blocks developers needed additional information about refresh token in
Auth0 or how to get access token and refresh token from Imgur API.

React Native (R2)

In React Native posts about refresh token or how to handle token expiration are different
based on the libraries and custom flow implementations. One question block deals with a
custom solution using JWT tokens and storing them in AsyncStorage. Another one is a
general best practice question how to handle refresh of OAuth 2.0 tokens. More specific
token refresh questions with less useful answers or help concerning Firebase or Auth0
integration were also identified.

Security Discussion

According to OAuth 2.0 specification refresh tokens must be kept confidential in transit
and storage [29]. Therefore they should be shared and transmitted only over TLS between
authorization server and client. The binding between client and token has to be verified
which is only possible with client authentication. As the client is not authenticated in the
implicit code grant flow, a refresh token must not be issued in this case. Some challenges
and questions regarding refresh tokens posted on SO are caused by this issue, which
many developers didn’t know, even though it is described in OAuth 2.0 specification.

5.3.9 Token Storage

In many implementations access or refresh tokens, user data etc. has to be stored for
later reuse. In some solutions the libraries or provider SDKs handle token storage, while
in other cases such as custom flow solutions developers have to store these data manually.

Cordova (C3)

In Cordova tokens and user data are mostly stored in HTML5 local storage according to
plenty of code snippets and posts in Cordova’s topic C3. Concerns and questions if it is
secure for tokens and user data was not found in the topic. But actually local storage is
vulnerable to cross-site scripting and therefore it is not recommended to store sensitive
data in it [42].

62

5.4. Online Survey

Xamarin (X2)

Xamarin.Auth plugin supports secure data storage with an account store that is backed
by Keychain services in iOS and KeyStore class in Android [87]. In various code snippets
and posts of Xamarin topic X2 the account store is used or described. Moreover, we
identified one question block where a developer asked how to store credentials securely
on a device for offline usage and Xamarin.Auth was recommended, but with a warning
that secure saving is not possible on rooted or jailbroken devices.

React Native (R2)

Discussions and questions how to store tokens securely in the app are more often in
React Native topic R2 than in the other two topics. On one hand Keychain in iOS
and SharedPreferences or Keystore in Android are recommended for secure storage. On
the other hand React Native’s storage system AsyncStorage is also mentioned in this
context. However, in some posts it is warned and described that data in AsyncStorage
are not encrypted, but based on the sandbox approach and private file system space of
the operating system and runtime environment it can be considered as secure assuming
the devices are not rooted or jailbroken.

5.4 Online Survey

To complement the evaluations of security and privacy challenges from the developers’
perspective in cross-platform mobile app development, we conducted an online survey
to gain deeper insights into developers’ experiences and implementations of OAuth and
OpenID Connect. The small data set in our survey is not suitable for quantitative
analysis. However, the results presented in this section are reliable to show tendencies
among developer’s behavior and understandings.

5.4.1 Demographics

27 people participated in the online survey. We removed 7 participants from our data set
as they were not software engineers. Table 5.5 shows demographic characteristics of the
20 participants we used for our analysis.

More than half were between 25 and 29 years old. Three participants were in their early
20s and another three in the early 30s. Only one person was younger than 20 or older
than 35. One did not provide an answer. 16 participants were male and only one was
female. Three did not indicate their gender. The country distribution shows that three
quarters were from Austria, one participant from Denmark and another one from the
United States. Again, three participants did not declare their country.

63

5. Results

Demographic Number Percent

Gender
Male 16 80%
Female 1 5%
Decline to answer 3 15%

Age
15 - 19 years 1 5%
20 - 24 years 3 15%
25 - 29 years 11 55%
30 - 34 years 3 15%
35 - 39 years 1 5%
Decline to answer 1 5%

Country
Austria 15 75%
Denmark 1 5%
USA 1 5%
Decline to answer 3 15%

Table 5.5: Participant Characteristics from the Online Survey

5.4.2 Prior Knowledge and Experience

Nearly all participants (19/20) reported to know the OAuth protocol, but only 13
reported to know OpenID Connect. In the course of these questions, we provided a
short explanation on OAuth and explained that it is used for authorization to access
third-party APIs. We furthermore explained that OpenID Connect is an identity layer
on top of the OAuth 2.0 protocol for Single-Sign On. After this description, we asked
the participants if they have already known these differences. 12 participants said yes,
but 8 reported to not have known about this before.

We have been careful to ensure that participants do not get influenced by short descriptions
we provide before or within the questions. But nevertheless, each kind of explanation
introduces bias. The described differences between OAuth and OpenID Connect are
only based on the protocol definitions. We required our participants to consider their
experiences with OAuth and OpenID Connect separately. Thus, we had to ensure to bring
all participants on the same level of knowledge. Therefore, we provided the described
explanations, which introduced an intended bias.

The software engineers reported if and in which applications they have already imple-
mented OAuth or OpenID Connect, as shown in Figure 5.6. Most participants had no
experience with OAuth (11/20) or OpenID Connect (7/20). On the other hand, most of
the developing experiences are based on web and mobile native apps. Seven participants
have already implemented OAuth in web apps and five in mobile native apps. OpenID

64

5.4. Online Survey

Figure 5.6: Developing Experience of OAuth/OpenID Connect

Connect has also been implemented by five participants in web apps, but only by one
participant in mobile native apps. Three participants each reported having experience
with OAuth in Cordova or React Native apps. Only one had experience with OpenID
Connect in Cordova and no one in React Native. Moreover, none of the participants was
experienced with OAuth or OpenID Connect in Xamarin.

5.4.3 User Groups

Based on their experiences, the participants were automatically assigned to one of the
user groups Cordova, React Native, Native and Inexperienced. The groups were used to
determine the respective set of questions the participants were asked in the remainder of
the survey.

Three developers that have implemented OAuth in a Cordova app belong to the group
Cordova. All of them also have experience with OAuth in web and mobile native apps.
Only one of the Cordova developers has implemented OpenID Connect in a Cordova app,
who is also experienced with it in web apps. One Cordova developer also has experience
with OpenID Connect in a web app, but not in a Cordova app. The third Cordova
developer has never implemented OpenID Connect.

The group React Native also contains three participants that have implemented OAuth
in React Native apps. Two React Native developers also have experience with OAuth
in web apps and one of them additionally in mobile native apps. Concerning OpenID
Connect, one of the three React Native developers has implemented it in a web app

65

5. Results

and another one in a desktop app. In contrast, no participant has implemented OpenID
Connect in a React Native app.

We did not consider a dedicated group of Xamarin, because there was no participant
with experience in OAuth or OpenID Connect and Xamarin.

Group Native consists of one participant who reported experience with OAuth and
OpenID Connect only in mobile native apps.

The biggest group with 13 participants is referred to as Inexperienced. 11 of the 13
participants in this group have never implemented OAuth or OpenID Connect in a
mobile app, but two of them have experience with OAuth and OpenID Connect in web
or desktop development. Considering experience on cross-platform frameworks of the 13
participants shows that two developers are experienced with Cordova, one with Xamarin
and another one with Cordova and React-Native. The remaining nine developers do not
have cross-platform development experience. Hence, this group combines cross-platform
mobile developers and other developers without OAuth or OpenID Connect experience
as well as other developers with OAuth or OpenID Connect experience.

We argue that including this group of inexperienced developers in the survey is essential,
because each developer regardless of previous knowledge can get into a situation where
she has to implement OAuth or OpenID Connect in an application. Thus, we also
evaluate first understandings of inexperienced developers based on short explanations on
the basics before the questions.

5.4.4 User Group Questions

The major questions of the survey were based on the respective user group a participant
was assigned to. Participants of the group Inexperienced were asked several what would
you do questions about integrating OAuth in a mobile app. Short explanations about the
concepts and parameters were given before each question. Developers of the other three
groups Cordova, React Native and Native were asked the same questions about their
OAuth implementations. Professional developers might have already developed multiple
apps. To provide unified conditions and facilitate responses, we asked these developers
to think on only one of their implemented apps when answering the questions.

Platforms. The native platforms for which the developers implemented apps were
equally distributed across the groups Cordova and React Native. This means all three
participants per group implemented their apps for Android and iOS. The one native
developer reported to have implemented an iOS app. Other native platforms, such as
Windows or Blackberry were not indicated in any group.

Providers. Regarding the OAuth/OpenID Connect providers, the experienced par-
ticipants were asked to name up to 4 providers they integrated in their app. Cordova
developers named the providers Facebook (3x), Google (2x), Twitter (1x) and Github
(1x). Google, Salesforce.com and Atlassian were selected once by React Native developers

66

5.4. Online Survey

and Facebook was named by the native developer. All in all, the most frequently used
provider in our sample was Facebook, followed by Google.

On the other hand, we asked the inexperienced developers to choose up to 6 providers
they would probably include in a mobile app. Interestingly, the most frequently named
providers were the same as the integrated ones named by the experienced groups. Google,
Facebook, Github and Twitter were the top selected providers. Figure 5.7 shows these
results in detail.

(a) Providers, that have been integrated in the
past

(b) Providers that users consider to integrate in
the future

Figure 5.7: OAuth/OpenID Connect Providers

Concepts and Tools. Interesting observations between the concepts chosen by the
experienced developers and the concepts the inexperienced developers would choose are
shown in Figure 5.8.

Most inexperienced developers (46 %) said they would implement the requests directly
between the mobile app and OAuth provider API and only 8 % would use a Backend as
a Service (BaaS) provider like Firebase Auth or Auth0. The experienced participants
answered it the other way round. Most of them (44 %) have used a BaaS provider and
only 22 % implemented it directly between mobile app and OAuth provider API. Two
developers reported to have used Firebase as BaaS provider.

The reasons for which the experienced developers chose the respective tools were different.
Cordova and native developers mostly found them through search engines. Other Cordova
developers read it on Stack Overflow or knew it from school. React Native developers
also reported to know it, used Stack Overflow or got a recommendation from a friend.

67

5. Results

Figure 5.8: Concepts

Grant Flow. Developers across all three user groups of experienced developers did
not know which grant flow was executed in their implementations. For more than half
of the implementations (6/11) developers were not sure which flow was used, because
the tools did it for them. In two implementations developers could not remember and
in another two cases they reported that the hybrid flow was used. One React Native
developer stated he had used the resource owner password flow.

Only three times developers were asked why they implemented the corresponding grant
flow, because the question was omitted for previous answers like “..the tool did that for
me” or “I can’t remember”. The developers reported that the flow was tried first (2x),
the tools used it (2x) or it is the best flow (1x).

All in all, the decision about the grant flow was left to the tools and therefore remained
largely unknown to the developers.

User-Agent. The decision about the user-agent was very different across experienced
and inexperienced developers as described in Figure 5.9.

46 % of inexperienced participants argued they would use in-app browser tabs like Chrome
CustomTabs in Android or SafariViewController in iOS and 31 % would use the insecure
approach of embedded browsers like the WebView.

In case of the real world implementations it looks quite different. Developers reported

68

5.4. Online Survey

for all, but one Cordova implementations that they have used the WebView. For only
one implementation a Cordova developer reported not to remember the user-agent.
Also in nearly all React Native implementations the WebView was used. Only in one
implementation an in-app browser tab was used. The native developer reported not to
know the user-agent because the tools did the task for them.

A major reason for the selected user-agent was that the tools use it (Cordova 6/11, React
Native 2/3). Moreover in three Cordova implementations the respective user-agent was
tried first. In another two Cordova and one React Native implementation the developers
used it because it was embedded in the mobile app.

Figure 5.9: User-Agent

We furthermore asked the inexperienced developers how they would define a secure
user-agent. We asked if it should be embedded in the mobile app or if it should run in a
sandbox. The intention of this question was to verify the previous answer. Indeed, four
answers did not fit to the previous ones. In three of these four answers the WebView
was selected together with a sandbox environment, which indicates that the developers
either thought a WebView would run within a sandbox or they did not mind on a secure
approach when they decided about the user-agent. In another case a developer combined
to use in-app browser tabs and a secure-agent should be embedded in the mobile app. We
assume the developer relied on the words “in-app” and “embedded” to belong together,
which is not the case. Moreover, three developers reported not to know what a secure
user-agent should be.

Redirect URL. Figure 5.10 shows the answers about the used or probably used redirect
URL, which were quite different between Cordova and React Native. In four of seven

69

5. Results

Cordova implementations the https app-URI scheme was used, which is most recommended
in OAuth best practices [12]. React Native developers reported they had used the loopback
interface with IP address and port in two of three implementations. Moreover, the custom
URI scheme was used in two Cordova and one native implementation.

One third of inexperienced developers selected a https app-URI scheme and another third
did not know which scheme to choose. Nearly a fourth would use the custom URI scheme
and only one developer would use the insecure loopback interface with localhost instead
of the IP address.

Cordova, React Native and native developers decided for the respective URL because
the tools described the pattern. Moreover, some Cordova developers tried this pattern
first and one React Native developer read it on Stack Overflow.

Figure 5.10: Redirect URL

PKCE. We asked the experienced developers if they had used PKCE in their imple-
mentations. Only one React Native developer wasn’t sure, because maybe the tool did it
and one Cordova developer indicated not to know PKCE. All others reported that they
did not use PKCE.

Resources. All participants were asked to rank different resources by their frequency
of use. Rank 1 means the most frequently used resource and rank 9 a hardly or never

70

5.4. Online Survey

used resource. Figure 5.11 shows the summed, relative weighted ranks per resource. This
means, at first we generally weighted rank 1 with weight 9, rank 2 with weight 8, rank 7
with weight 3 and so on. Then we multiplied for each user group the amount of ranks
per resource with its respective weight and summed it up. As a result we got an absolute
weighted rank per resource for each user group. In the last step we calculated the relative
weighted ranks per resource and user group, which are displayed in a stacked bar chart.
It shows that the top four resources are search engines, Stack Overflow, provider and
tool documentations.

Figure 5.11: Resources Ranking

71

CHAPTER 6
Discussion

In this chapter we discuss the results of comprehensive analyses based on the official
documentation, Stack Overflow posts and survey to investigate security in cross-platform
mobile apps.

6.1 Security Handling
Based on the official documentations, we have shown that the frameworks generally
provide security-related information to their users, but not at the same level of detail. We
found that Cordova and Xamarin generally published more security-relevant information
than on React-Native.

Many parts of their documentations describe platform-specific issues and how they have
to be handled and implemented within the frameworks. For example the configuration
of Android permissions or property files in iOS are described for all three frameworks.
Moreover, security-related information in context of the platform-driven issues are
provided. This means security features of the platforms, such as ATS in iOS are described
and even linked to the original resource on Apple’s website across all three frameworks.
But general information about secure communication like TLS is covered more by Xamarin
and Cordova than by React-Native.

Each framework is built on various technologies, which are partly described in the respec-
tive documentations. Security-relevant aspects of the used technologies like JavaScript in
Cordova and React-Native are only described in Cordova. They warn about using the
JavaScript function eval() or about vulnerabilities of the WebView or HTML5 security.
In React-Native’s or Xamarin’s documentations the technologies beyond are described
only on a technical and functional level.

Most of the security warnings are stated as side notes within the pages of the respective
topic. Thus, developers encounter security-relevant aspects at looking for and reading

73

6. Discussion

general feature description. We found less questions about security on Stack Overflow,
which indicates that only few developers actively search for security-related information.
Thus, it is good practice to include it within the general information.

On the other hand, a more detailed discussion about security and privacy itself would be
desirable to rise more awareness. Only Cordova provides an own section about privacy
best practices. Although, the tips seem to be obvious on reading it, but they are still
required to keep them in the developer’s mind.

6.2 Developers’ Challenges

Questions, problems and errors posted on Stack Overflow can be considered as challenges,
where developers want to get further opinions or advice from more experienced developers.
Our analysis of 520,000 Stack Overflow posts resulted in 200 fine-grained topics per
framework, which we grouped into 12 meta topics.

Many meta topics consist of special keywords, such that the framework beyond can be
detected. These framework-specific topics are also covered in the corresponding official
documentation, such as storage or communication technologies like AJAX in Cordova,
fetch API in React Native or XMLHttpRequest in Xamarin. Further popular topics we
detected in posts across all three frameworks are about hardware devices like camera or
bluetooth, files, media, messaging and authentication. One rather unexpected common
topic is barcode scanning with a camera.

As the topics widely intersect with official documentation, we argue that Stack Overflow
is widely used to get extended information which is missing or not understood in official
documentation. Moreover, in the course of a manual analysis we found several questions
with documentation snippets where developers asked the community for more details.
Thus, there are many cases where the frameworks are insufficiently documented.

On the other hand, we also found questions were developers did not read documentation
in advance and immediately asked in the forum for information that actually could have
been found on the frameworks’ websites. In these cases links to the official documentation
were often sufficient to answer the Stack Overflow questions.

6.3 Authentication and Authorization

The meta topic about authentication consists of keywords about login, user, account and
OAuth. These topics were not discussed in the frameworks’ documentation with the
exception of Xamarin’s one. In the manual analysis of 100 posts per framework and the
online survey about developers’ experiences and opinions, we found major challenges and
problems. We furthermore identified differences and similarities among the frameworks,
but also among various groups of developers.

74

6.3. Authentication and Authorization

Facebook and Google, for example are the two major OAuth providers discussed and
used in the cross-platform mobile apps. Chen et al. [10] also named them as popular
providers.

Most-often-viewed Stack Overflow posts among all three frameworks are best practice
questions and how to implement OAuth from beginners.

We also found similar major challenges or misunderstandings in the authentication posts
across the frameworks. For example errors, because redirect URIs were not registered
on the providers’ side or using invalid ones were discussed regularly in Cordova and
Xamarin posts, but only in a few React Native posts. Provider’s like Facebook and
Google actually describe in their documentation how to register an app in developer
console, but developers still have difficulties with it. Thus, we argue that either developers
don’t find the correct documentation pages or they don’t read it carefully. Nevertheless,
relying on Stack Overflow is their way to make it work.

In one case Xamarin’s documentation about Xamarin.Auth confused several developers.
One example in the documentation shows the implementation with Facebook and includes
a redirect URI. Many developers directly copied this code sample, but did not register
their app on Facebook’s developer console. Thus, the developers received redirect URI
mismatch errors and did not understand why. This example shows the need for a full
documentation that ensures an executable implementation.

We furthermore found misunderstandings about refresh tokens. In the official OAuth 2.0
specification it is described, that refresh tokens are not available in the implicit grant flow
because client authentication is missed. However, developers across all three frameworks
did not notice and asked on Stack Overflow about it. This indicates that developers
mainly do not rely on original specifications, but rather on summarized and edited
explanations, that are easier to work through.

We detected multiple discussions about the right grant flow across all three frameworks.
Cordova and Xamarin posts mainly cover the implicit grant and authorization code grant,
but React Native posts cover all four types. In the context of authorization grant, the
risk of putting the client secret in the mobile app is often discussed. Many developers
were not familiar with the associated risks. Some tried to play them down, but others
described more or less secure alternatives. For example, separate config files for the
secrets would not increase security, but an own proxy server that holds the secret and
executes requests against the provider would work.

In the course of our survey, we asked about the used grant flow, but in most cases the
developers could not answer, because they relied on the used tools. This means the tools
implemented and executed the grant flow, such that developer themselves did not have to
bother about it. Obviously abstraction and reuse of functionality are main ideas of third
party libraries, frameworks or plugins. But on the other hand we claim that developers
are trained to integrate tools without knowing what they are actually doing. They accept
tools that only provide prose texts in their initial descriptions such that “it is a secure
library...” and details are not questioned, which might cause severe vulnerabilities in

75

6. Discussion

mobile apps. Other decisions about the user-agent or redirect-URL were also relied on
the tools or based on their documentation.

The answers of experienced and inexperienced developers concerning OAuth/OpenID
Connect implementations disclose differences between reality and theory. The small data
set in our survey limits quantitative analysis, but nevertheless it is reliable to show at
least some tendencies. For example we showed that most of the inexperienced developers
would use the secure in-app browser tab as user-agent, but in reality only one of our
experienced developers have really used it. More than 70 % used the insecure WebView
instead. The WebView is vulnerable to intercept access tokens [10]. Moreover, the mobile
apps can intercept keystrokes and cookie storage of the WebView, which violates the
principle of least privilege. Thus, using an embedded browser as user-agent is risky and
other types such as in-app browser tabs should be used [12].

In another example more than 40 % of our inexperienced developers would implement
direct communication between mobile app and OAuth provider and less than 10 % would
use a third party provider. In reality, the opposite was the case as more than 40 % used
a third party provider and about 20 % the direct communication.

On the other hand, we also showed similarities among the user groups of the survey,
at least in their resource preferences. They all reported to use mainly search engines,
Stack Overflow and documentation of providers and tools to get information. We argue
that using all these resources together is indeed the best way to get a comprehensive
knowledge to establish a secure working solution.

Finally, we discuss what can be done to increase security in OAuth implementations.
One the one hand the OAuth provider plays an important role. We detected incomplete
or confusing documentations and therefore, we argue that OAuth providers should check
and complete them accordingly.

From a cross-platform developer’s point of view, we found that it is often difficult to
find the right parts of a documentation about the provider tools. For example, some
OAuth providers offer different SDKs and descriptions for native apps and web apps
implemented with JavaScript, but do not specify which description is appropriate for a
cross-platform framework. To minimize confusions, we recommend that OAuth providers
should improve their documentation and add separate sections about the corresponding
cross-platform frameworks. The documentation of provider platform Auth0 is a good
example how multiple frameworks on client side can be described.

On the other hand, we argue that also the documentations of Cordova and React Native
have to be improved, as they do not provide any information about authentication or
authorization. Only Xamarin currently covers the topic in its documentation. Thus, we
suggest to provide general discussions about OAuth pitfalls as well as links to the OAuth
best practices in the cross-platform frameworks’ documentations.

Future work should also focus on the improvements of the tools such as plugins, libraries
on both the provider’s and client’s side. They should prevent insecure implementations

76

6.3. Authentication and Authorization

from the ground. In the meanwhile Google refused OAuth requests from WebViews for
security reasons. Also other OAuth providers should evaluate their implementations and
adapt them to the current best practices.

77

CHAPTER 7
Conclusion

The daily use of mobile devices in private and professional life results in new challenges,
such as to satisfy various platforms and their fragmentation with appropriate applications
or to protect the mass of sensitive data that are produced. Thus, we investigated
challenges for secure mobile apps from the developers’ perspectives with cross-platform
frameworks.

We evaluated the official documentations of Apache Cordova, Xamarin and React Native
and showed that all of these cross-platform frameworks include security topics, but in
different levels of detail. Moreover, we analyzed the subjects of 520,000 Stack Overflow
posts about all three frameworks with topic modeling, a natural language processing
technique, which resulted in 200 fine-grained topics per framework. Based on the 10
keywords per topic, we labeled 600 topics and grouped them into 12 so-called meta
topics representing common challenges in cross-platform mobile app development. We
manually analyzed Stack Overflow posts about authentication. We discovered various
challenges and misunderstandings, good and bad explanations as well as secure and
insecure descriptions in context of authentication and authorization based on OAuth 2.0
protocol. Finally, we conducted a small online survey about developers’ experiences and
opinions. Based on the user groups with and without OAuth experience in mobile app
development, we showed that the reality and theory concerning secure implementation
often contradicts. In theory, the developers claim to use best practices, but in reality the
less secure approaches are applied.

79

APPENDIX A
Online Survey

This chapter shows the questions of our online survey described in Section 4.3 and
Section 5.4. The first few questions are the same for all user groups. Figures starting
at Figure A.5 shows a sample survey for users that had already implemented a Cordova
app and integrated Google OAuth. Questions for participants with no OAuth experience
in mobile app development start at Figure A.10.

Dear Developer,

your contribution is very valuable to more privacy and security in mobile apps. It helps to
improve current understandings of development processes in mobile apps integrating third-
party APIs using OAuth 2.0 and OpenID Connect.

This survey is conducted in the course of a master thesis at TU Vienna, Austria about usable
security in mobile app development with cross-platform frameworks, such as Apache Cordova,
Xamarin or React-Native.

In the following 10 minutes we will ask you about your experiences and opinions as software
engineer in mobile or cross-platform app development.

Your data will of course be processed anonymously and treated confidentially.

Please click "next" to start with the survey.

Next

Lisa Leonhartsberger, BSc, TU Vienna – 2017

Figure A.1: Intro Text

81

A. Online Survey

1. Are you a software engineer?

Yes

No

Next

Lisa Leonhartsberger, BSc, TU Vienna – 2017

Figure A.2: First question

82

Mobile Cross-Platform Frameworks

Cross-platform frameworks in mobile app development follow the principle of "Write Once, Run
Anywhere".

This means, you write your source code or parts of it once (e.g. with JavaScript, HTML5 and
CSS) and due to the framework you can compile apps for multiple platforms, such as Android,
iOS and Windows.

Moreover, the framework provides access to platform specific features and hardware, such as
camera, filesystem, calendar, contacts,...

Some popular frameworks are Apache Cordova, Xamarin and React-Native.

2. Your skills in some software engineering fields

Please rate your skills of the following fields.

Not applicable: You have never had anything to do with that.

Fundamentals: You have some basic knowledge, but no experience.

Novice: You have already made your first experiences with it (e.g. < 1 year).

Advanced: You have advanced knowledge and experience (e.g. > 1 year, < 5 years).

Expert: You have a deep knowledge and long-time experience (e.g. > 5 years). Others ask for
your advice.

Not
Applicable Fundamentals Novice Advanced Expert No answer

Mobile Development
(Frontend)

Mobile Development
(Backend)

Web Development
(Frontend)

Web Development
(Backend)

IT Security

Apache Cordova

React-Native

Xamarin

JavaScript

C#

Swift

Java

Figure A.3: Skills and Experiences (Part 1)

83

A. Online Survey

3. Have you ever developed a mobile app with a cross-platform framework?

If yes, which framework did you use?

Multiple selection is possible. Please enter framework names if text input field is available.

No, I have never developed a mobile cross-platform app.

Yes, I used Apache Cordova

Yes, I used a framework based on Apache Cordova (e.g. PhoneGap, Ionic,...)

Yes, I used Xamarin

Yes, I used React-Native

Yes, I used another framework:

I can’t remember.

I don’t know.

4. Do you know the OAuth protocol?

Have you ever heard or read about it or do you have experience with it?

Yes

No

5. Do you know OpenID Connect?
Have you ever heard or read about it or do you have experience with it?

Yes

No

Next

Lisa Leonhartsberger, BSc, TU Vienna – 2017

Figure A.3: Skills and Experiences (Part 2)

84

OAuth (for App Authorization)

OAuth is an open protocol to allow secure authorization in a simple and standard method from
web, mobile and desktop applications.[1]

This means, if you want to access and use third-party APIs (e.g. Google API, Facebook API,
Twitter API,...) in your application, you might get in touch with OAuth protocol.

6. Have you ever developed apps that used APIs that were protected by OAuth?

If yes, in which apps did you integrate the APIs?

No, I have never integrated such APIs

in web apps

in desktop apps

in mobile native apps (e.g. Android, iOS,
Windows,...)

others:

in Apache Cordova apps

in apps based on Apache Cordova

in React-Native apps

in Xamarin apps

in other mobile cross-platform apps –
which framework(s)?

I can’t remember. I don’t know, if they were protected with
OAuth protocol.

OpenID Connect (for End-User Authentication)

OpenID Connect 1.0 is a simple identity layer on top of the OAuth 2.0 protocol. It allows apps to
verify the identity of the End-User as well as to obtain basic profile information. [2]

This means, if you want integrate Single Sign-On with a third-party provider (e.g. Google,
Facebook, Twitter,...) in your application, you might get in touch with OpenID Connect 1.0.

7. Have you ever developed apps with Single Sign-On to identity provider’s based on
OpenID Connect?

If yes, in which apps did you implement it?

No, I have never implemented SSO with
OpenID Connect

in web apps

in desktop apps

in mobile native apps (e.g. Android, iOS,
Windows,...)

others:

in Apache Cordova apps

in apps based on Apache Cordova

in React-Native apps

in Xamarin apps

in other mobile cross-platform apps –
which framework(s)?

I can’t remember. I don’t know, if it was OpenID Connect.

Figure A.4: Experiences OAuth/OpenID Connect (Part 1)

85

A. Online Survey

8. Did you know the difference between OAuth and OpenID Connect before this
survey?

Yes

No

Next

Lisa Leonhartsberger, BSc, TU Vienna – 2017

Figure A.4: Experiences OAuth/OpenID Connect (Part 2)

86

Cordova App

In the following we will ask you some questions about your Cordova app you have implemented
once.

In case of multiple Cordova apps, please focus your answer's of all questions on the same app.

9. For which platforms is your Cordova app available?

Multiple selection is possible

Android

iOS

Windows

Blackberry

Other:

10. Which providers did you include in your Cordova app?

Please name up to 4 providers.

OAuth/OpenID Connect Provider

1.

Next

Lisa Leonhartsberger, BSc, TU Vienna – 2017

Figure A.5: Example Cordova/Google (Part 1)

87

A. Online Survey

Cordova App

In the following we will ask you some questions about your Cordova app you have implemented
once.

In case of multiple Cordova apps, please focus your answer's of all questions on the same app.

Google

The following questions are about your OAuth implementation with Google in your Cordova App.

11. Which concept did you choose to implement OAuth/OpenID Connect in your
Cordova app?

Between which components did you implement the authorization requests. It also means
which components handled authorization codes and tokens?

Requests were exchanged between...

... Cordova app and Google API directly (without any backend service)

... self-implemented backend service and Google API

... BaaS provider (e.g. Auth0, Firebase Auth) and Google API

... others:

I can’t remember.

I don’t know.

12. Which tools did you use to implement OAuth/OpenID Connect for Google?

Multiple selection is possible. Please add the name(s) of the used tools.

Cordova plugins:

client-side self-implementation

official native SDK of Google

server-side self-implementation

BaaS provider (e.g. Firebase Auth, Auth0,...):

others:

I can’t remember.

Figure A.6: Example Cordova/Google (Part 2)

88

13. Why did you choose the tools?
Multiple selection is possible. Please add the name(s) of the used resources.

I knew the tools from:

I found them via a search engine (e.g. Google):

I found them on Stack Overflow

I found them on another online forum:

Other reasons:

I can’t remember.

14. Which grant flow did you use for Google?

Implicit Flow

Authorization Code Flow

Provider Authentication Flow

Resource Owner Password Flow

Client Credentials Flow

Hybrid Flow

I can’t remember.

I’m not sure, because the tool(s) did that for me.

I don’t know what a grant flow is.

15. Which user-agent did you use?

The end-user has to authenticate himself with his user credentials and grant your Cordova app
access to the Google API. This interaction between end-user and provider is executed via the
user-agent.

Please select one answer.

Webview

In-App browser tabs (e.g. Chrome CustomTabs, SafariViewController)

System Browser

Others:

I can’t remember.

I’m not sure, because the tool(s) did that for me.

I don’t know.

Figure A.6: Example Cordova/Google (Part 3)

89

A. Online Survey

16. How did you construct the redirect-URI?
The redirect-URI is used to direct the user-agent back to the app after interaction between
end-user and provider is finished. Moreover, the URI contains sensitive data such as
authorization codes, access and id tokens.

Please select one answer.

Attention: You are not asked to enter your real redirect-URI, only the pattern you used.

loopback interface – http://localhost/xxx

loopback interface – http://ipaddress:port/xxx

custom URI scheme – myapp://xxx

https app-URI scheme – https://com.example.myapp/xxx

Others:

I can’t remember.

I’m not sure, because the tool(s) did that for me.

I don’t know.

17. Did you use PKCE (Proof Key for Code Exchange) in your implementation?

Please select one answer.

Yes

No

I can’t remember.

I’m not sure, because the tool(s) may have done that for me.

I don’t know what PKCE is.

Next

Lisa Leonhartsberger, BSc, TU Vienna – 2017

Figure A.6: Example Cordova/Google (Part 4)

90

Cordova App

In the following we will ask you some questions about your Cordova app you have implemented
once.

In case of multiple Cordova apps, please focus your answer's of all questions on the same app.

18. Why did you implement the selected grant flow?

Multiple selection is possible.

I used Authorization Code Flow, because

the tool(s) use this flow.

I know, it is the best flow for mobile apps.

I tried to implement this flow at first and it worked.

I read in a documentation it should be used. Which one?

I read on Stack Overflow it should be used.

I read in/on , it should be used.

of another reasons:

I can’t remember.

I don’t know.

19. Why did you use the selected redirect-uri?

Multiple selection is possible. Please describe which documentation you used.

I used "https app-URI scheme – https://com.example.myapp/xxx" as redirect-uri,
because

the tool(s) described this pattern to use.

I tried this pattern at first and it worked.

I read in a documentation it should be used. Which one?

I read on Stack Overflow it should be used.

I read in/on , it should be used.

of another reasons:

I can’t remember.

I don’t know.

20. Why did you choose the selected user-agent?
Figure A.7: Example Cordova/Google (Part 5)

91

A. Online Survey

Cordova App

In the following we will ask you some questions about your Cordova app you have implemented
once.

In case of multiple Cordova apps, please focus your answer's of all questions on the same app.

18. Why did you implement the selected grant flow?

Multiple selection is possible.

I used Authorization Code Flow, because

the tool(s) use this flow.

I know, it is the best flow for mobile apps.

I tried to implement this flow at first and it worked.

I read in a documentation it should be used. Which one?

I read on Stack Overflow it should be used.

I read in/on , it should be used.

of another reasons:

I can’t remember.

I don’t know.

19. Why did you use the selected redirect-uri?

Multiple selection is possible. Please describe which documentation you used.

I used "https app-URI scheme – https://com.example.myapp/xxx" as redirect-uri,
because

the tool(s) described this pattern to use.

I tried this pattern at first and it worked.

I read in a documentation it should be used. Which one?

I read on Stack Overflow it should be used.

I read in/on , it should be used.

of another reasons:

I can’t remember.

I don’t know.

20. Why did you choose the selected user-agent?
Multiple selection is possible. Please describe which documentation you used.

I used In-App browser tabs (e.g. Chrome CustomTabs, SafariViewController) as
user-agent, because

the tool(s) use it.

I tried it at first and it worked.

it is embedded in my mobile app.

it runs in a sandbox environment, separated from my mobile app.

I read in a documentation it should be used. Which one?

I read on Stack Overflow it should be used.

I read in/on , it should be used.

of another reasons:

I can’t remember.

I don’t know.

21. Which information resources did you use most frequently?

Please rank the options by importance, which means by frequency of use. (At least 2 ranks)

1 – most used

9 – hardly/never used

1

2

3

4

5

6

7

8

9

Search Engines Stack Overflow

Tool Docs Google Docs

Other Online Forum Colleagues

Books Others

No Info Required

Next

Lisa Leonhartsberger, BSc, TU Vienna – 2017

Figure A.7: Example Cordova/Google (Part 6)

92

22. Do you want to tell us anything else about your experiences with OAuth/OpenID
Connect?

e.g. problems, issues you were faced with; what was disturbing, what did you like?

Next

Lisa Leonhartsberger, BSc, TU Vienna – 2017

Figure A.8: Example Cordova/Google (Part 7)

93

A. Online Survey

23. Finally, we’d like to ask you for some details about yourself.

Gender:

female male

I prefer not to say.

Age:

< 15 years

15 – 19 years

20 – 24 years

25 – 29 years

30 – 34 years

35 – 39 years

40 – 44 years

45 – 49 years

50 – 54 years

55 – 59 years

> 60 years

I prefer not to say.

Country No answer

Next

Lisa Leonhartsberger, BSc, TU Vienna – 2017

Figure A.9: Example Cordova/Google - Demographics

94

Scenario

Please imagine, you develop a new mobile app with lots of fancy features for your end-users.
Most of your users already have user accounts on the platforms of big and well-known
providers. Therefore you want to provide your users the ability to login in your mobile app with
their existing credentials from other services.

In the following, we will ask you about your ideas and methods to implement such a third-party
login based on OAuth/OpenID Connect in a mobile app.

9. Which information resources would you use to get to know about OAuth/OpenID
Connect and how to implement it in your app?

Please rank the options by importance, which means by frequency of use. (At least 2 ranks)

1 – most used

9 – hardly/never used

10. Which providers would you probably include in your app?

You can name up to 6 providers.

OAuth/OpenID Connect Provider

1.

1

2

3

4

5

6

7

8

9

Search Engines Stack Overflow

Tool Docs Provider Docs

Other Online Forum Colleagues

Books Others

No Info Required

Figure A.10: No Experience (Part 1)

95

A. Online Survey

11. Which concept would you choose to integrate OAuth/Open ID Connect in a
mobile app?

Between which components would you implement the authorization requests. It also means
which components would handle authorization codes, tokens and session data?

(OAuth provider might be Google, Facebook, Twitter,...)

Authorization requests should be exchanged between...

... mobile app and OAuth provider API (with native SDK of the provider)

... self-implemented backend service and OAuth provider API

... BaaS provider (e.g. Auth0, Firebase Auth) and OAuth provider API

... other:

I don’t know.

12. Which user-agent would you use?

The end-user has to authenticate himself with his user credentials and grant the mobile app
access to the provider API. This interaction between end-user and provider is executed via the
user-agent.

Please select one answer.

Webview

In-App browser tabs (e.g. Chrome CustomTabs, SafariViewController)

System Browser

Others:

I don’t know.

13. Which statement about user-agent do you agree with?

The end-user has to authenticate himself with his user credentials and grant your mobile app
access to the provider API. This interaction between end-user and provider is executed via the
user-agent.

A secure user-agent should...

be embedded in my mobile app.

run in a sandbox environment, separated from my mobile app.

I don’t know.

14. How would you construct the redirect-URI?

The redirect-URI is used to direct the user-agent back to the app after interaction between

Figure A.10: No Experience (Part 2)

96

11. Which concept would you choose to integrate OAuth/Open ID Connect in a
mobile app?

Between which components would you implement the authorization requests. It also means
which components would handle authorization codes, tokens and session data?

(OAuth provider might be Google, Facebook, Twitter,...)

Authorization requests should be exchanged between...

... mobile app and OAuth provider API (with native SDK of the provider)

... self-implemented backend service and OAuth provider API

... BaaS provider (e.g. Auth0, Firebase Auth) and OAuth provider API

... other:

I don’t know.

12. Which user-agent would you use?

The end-user has to authenticate himself with his user credentials and grant the mobile app
access to the provider API. This interaction between end-user and provider is executed via the
user-agent.

Please select one answer.

Webview

In-App browser tabs (e.g. Chrome CustomTabs, SafariViewController)

System Browser

Others:

I don’t know.

13. Which statement about user-agent do you agree with?

The end-user has to authenticate himself with his user credentials and grant your mobile app
access to the provider API. This interaction between end-user and provider is executed via the
user-agent.

A secure user-agent should...

be embedded in my mobile app.

run in a sandbox environment, separated from my mobile app.

I don’t know.

14. How would you construct the redirect-URI?

The redirect-URI is used to direct the user-agent back to the app after interaction between

end-user and provider is finished. Moreover, the URI contains sensitive data such as
authorization codes, access and id tokens.

Please select one answer.

Attention: You are not asked to enter a real redirect-URI, only a pattern you would use.

loopback interface – http://localhost/xxx

loopback interface – http://ipaddress:port/xxx

custom URI scheme – myapp://xxx

https app-URI scheme – https://com.example.myapp/xxx

Others:

I don’t know.

Next

Lisa Leonhartsberger, BSc, TU Vienna – 2017

Figure A.10: No Experience (Part 3)

97

A. Online Survey

15. Finally, we’d like to ask you for some details about yourself.

Gender:

female male

I prefer not to say.

Age:

< 15 years

15 – 19 years

20 – 24 years

25 – 29 years

30 – 34 years

35 – 39 years

40 – 44 years

45 – 49 years

50 – 54 years

55 – 59 years

> 60 years

I prefer not to say.

Country No answer

Next

Lisa Leonhartsberger, BSc, TU Vienna – 2017

Figure A.11: No Experience - Demographics

98

Thank you for completing our survey!

We would like to thank you very much for helping us.

Your answers were transmitted, you may close the browser window or tab now.

Lisa Leonhartsberger, BSc, TU Vienna – 2017

Figure A.12: Finished

99

List of Figures

3.1 Architecture of a Cordova Application (cf. [50]) 12
3.2 Xamarin - Shared Code (cf. [67]) . 14
3.3 Architecture of Xamarin.Android (cf. [69]) 15
3.4 Architecture of Xamarin.iOS (cf. [66]) . 15
3.5 Architecture of React Native (cf. [33]) . 16

4.1 Stack Web Viewer UI - Search Input Screen 25
4.2 Stack Web Viewer UI - Result Screen . 26
4.3 OAuth 2.0 Protocol in Mobile Apps (cf. [29]) 29

5.1 Threat Models of WebViews (cf. [35]) . 36
5.2 Number of Auth-Questions per Year and Framework 47
5.3 Auth-Question View Counts by Creation Date 49
5.4 Distribution of OAuth Protocols in Xamarin.Auth Code Snippets 53
5.5 Number of OAuth Grant Types in C3 . 56
5.6 Developing Experience of OAuth/OpenID Connect 65
5.7 OAuth/OpenID Connect Providers . 67
5.8 Concepts . 68
5.9 User-Agent . 69
5.10 Redirect URL . 70
5.11 Resources Ranking . 71

A.1 Intro Text . 81
A.2 First question . 82
A.3 Skills and Experiences (Part 1) . 83
A.3 Skills and Experiences (Part 2) . 84
A.4 Experiences OAuth/OpenID Connect (Part 1) 85
A.4 Experiences OAuth/OpenID Connect (Part 2) 86
A.5 Example Cordova/Google (Part 1) . 87
A.6 Example Cordova/Google (Part 2) . 88
A.6 Example Cordova/Google (Part 3) . 89
A.6 Example Cordova/Google (Part 4) . 90
A.7 Example Cordova/Google (Part 5) . 91
A.7 Example Cordova/Google (Part 6) . 92

101

A.8 Example Cordova/Google (Part 7) . 93
A.9 Example Cordova/Google - Demographics 94
A.10 No Experience (Part 1) . 95
A.10 No Experience (Part 2) . 96
A.10 No Experience (Part 3) . 97
A.11 No Experience - Demographics . 98
A.12 Finished . 99

102

List of Tables

4.1 Number of SO Tags . 21
4.2 Post Type Frequency . 21
4.3 Posts across Framework Tags . 22
4.4 Rate of (Un-)Answered Questions across Tags 23
4.5 Authentication Topics . 27

5.1 Cordova - Storage APIs . 35
5.2 Security Topics in Official Documentations 43
5.3 Meta Topics . 44
5.4 Number of Topics across Frameworks . 44
5.5 Participant Characteristics from the Online Survey 64

103

Bibliography

[1] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky. You Get
Where You’re Looking for: The Impact of Information Sources on Code Security. In
2016 IEEE Symposium on Security and Privacy (SP), pages 289–305, May 2016.

[2] V. Ahti, S. Hyrynsalmi, and O. Nevalainen. An Evaluation Framework for Cross-
Platform Mobile App Development Tools: A Case Analysis of Adobe PhoneGap
Framework. In Proceedings of the 17th International Conference on Computer
Systems and Technologies 2016, CompSysTech ’16, pages 41–48, New York, NY,
USA, 2016. ACM.

[3] M. Ali, M. E. Joorabchi, and A. Mesbah. Same App, Different App Stores: A
Comparative Study. In Proceedings of the 4th International Conference on Mobile
Software Engineering and Systems, MOBILESoft ’17, pages 79–90, Piscataway, NJ,
USA, 2017. IEEE Press.

[4] L. An, O. Mlouki, F. Khomh, and G. Antoniol. Stack Overflow: A Code laundering
platform? In Software Analysis, Evolution and Reengineering (SANER), 2017 IEEE
24th International Conference on, pages 283–293. IEEE, 2017.

[5] A. Barua, S. W. Thomas, and A. E. Hassan. What are developers talking about?
An analysis of topics and trends in Stack Overflow. Empirical Software Engineering,
19(3):619–654, 2014.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. Journal of
machine Learning research, 3(Jan):993–1022, 2003.

[7] D. Buhov, M. Huber, G. Merzdovnik, and E. Weippl. Pin It! Improving Android
Network Security At Runtime. In IFIP Networking 2016, May 2016.

[8] D. Buhov, M. Huber, G. Merzdovnik, E. Weippl, and V. Dimitrova. Network Security
Challenges in Android Applications. In 10th International Conference on Availability,
Reliability and Security (ARES 2015), Aug. 2015.

[9] P. Chatterjee, M. A. Nishi, K. Damevski, V. Augustine, L. Pollock, and N. A. Kraft.
What information about code snippets is available in different software-related
documents? An exploratory study. In 2017 IEEE 24th International Conference

105

on Software Analysis, Evolution and Reengineering (SANER), pages 382–386, Feb.
2017.

[10] E. Y. Chen, Y. Pei, S. Chen, Y. Tian, R. Kotcher, and P. Tague. OAuth Demystified
for Mobile Application Developers. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’14, pages 892–903,
New York, NY, USA, 2014. ACM.

[11] I. Dalmasso, S. K. Datta, C. Bonnet, and N. Nikaein. Survey, Comparison and
Evaluation of Cross Platform Mobile Application Development Tools. In 2013
9th International Wireless Communications and Mobile Computing Conference
(IWCMC), pages 323–328, July 2013.

[12] W. Denniss and J. Bradley. OAuth 2.0 for Native Apps. BCP 212, RFC Editor, Oct.
2017.

[13] W. S. El-Kassas, B. A. Abdullah, A. H. Yousef, and A. M. Wahba. Taxonomy of Cross-
Platform Mobile Applications Development Approaches. Ain Shams Engineering
Journal, 8(2):163–190, 2017.

[14] Facebook Inc. Props. http://facebook.github.io/react-native/docs/
props.html, July 2016. Accessed: 2017-01-22.

[15] Facebook Inc. State. http://facebook.github.io/react-native/docs/
state.html, July 2016. Accessed: 2017-01-22.

[16] Facebook Inc. Tutorial. http://facebook.github.io/react-native/
docs/tutorial.html, July 2016. Accessed: 2017-01-22.

[17] Facebook Inc. AsyncStorage. https://facebook.github.io/react-
native/docs/asyncstorage.html, Dec. 2017. Accessed: 2018-01-10.

[18] Facebook Inc. Generating Signing APK. https://facebook.github.io/
react-native/docs/signed-apk-android.html, Dec. 2017. Accessed:
2018-01-10.

[19] Facebook Inc. Images. https://facebook.github.io/react-native/
docs/images.html, Dec. 2017. Accessed: 2018-01-10.

[20] Facebook Inc. Introducing JSX. https://facebook.github.io/react/
docs/introducing-jsx.html, Jan. 2017. Accessed: 2017-01-22.

[21] Facebook Inc. Networking. https://facebook.github.io/react-native/
docs/network.html, Dec. 2017. Accessed: 2018-01-10.

[22] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and M. Ra-
jarajan. Android Security: A Survey of Issues, Malware Penetration, and Defenses.
IEEE Communications Surveys Tutorials, 17(2):998–1022, Secondquarter 2015.

106

http://facebook.github.io/react-native/docs/props.html
http://facebook.github.io/react-native/docs/props.html
http://facebook.github.io/react-native/docs/state.html
http://facebook.github.io/react-native/docs/state.html
http://facebook.github.io/react-native/docs/tutorial.html
http://facebook.github.io/react-native/docs/tutorial.html
https://facebook.github.io/react-native/docs/asyncstorage.html
https://facebook.github.io/react-native/docs/asyncstorage.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/images.html
https://facebook.github.io/react-native/docs/images.html
https://facebook.github.io/react/docs/introducing-jsx.html
https://facebook.github.io/react/docs/introducing-jsx.html
https://facebook.github.io/react-native/docs/network.html
https://facebook.github.io/react-native/docs/network.html

[23] F. Fischer, K. Böttinger, H. Xiao, C. Stranksy, Y. Acar, M. Backes, and S. Fahl. Stack
Overflow Considered Harmful? The Impact of Copy&Paste on Android Application
Security. In IEEE Symposium on Security and Privacy, 2017.

[24] R. Francese, C. Gravino, M. Risi, G. Scanniello, and G. Tortora. Mobile App Devel-
opment and Management: Results from a Qualitative Investigation. In Proceedings
of the 4th International Conference on Mobile Software Engineering and Systems,
MOBILESoft ’17, pages 133–143, Piscataway, NJ, USA, 2017. IEEE Press.

[25] M. Georgiev, S. Jana, and V. Shmatikov. Breaking and Fixing Origin-Based Access
Control in Hybrid Web/Mobile Application Frameworks. In NDSS Symposium,
volume 2014, page 1. NIH Public Access, 2014.

[26] Google Developers. OAuth 2.0 for Mobile & Desktop Apps. https://developers.
google.com/identity/protocols/OAuth2InstalledApp, Sept. 2017. Ac-
cessed: 2018-01-03.

[27] S. Guthrie. Microsoft to acquire Xamarin and empower more developers to build
apps on any device. https://blogs.microsoft.com/blog/2016/02/24/
microsoft-to-acquire-xamarin-and-empower-more-developers-to-
build-apps-on-any-device, Feb. 2016. Accessed: 2016-12-21.

[28] S. Habchi, G. Hecht, R. Rouvoy, and N. Moha. Code Smells in iOS Apps: How
Do They Compare to Android? In Proceedings of the 4th International Conference
on Mobile Software Engineering and Systems, MOBILESoft ’17, pages 110–121,
Piscataway, NJ, USA, 2017. IEEE Press.

[29] D. Hardt. The OAuth 2.0 Authorization Framework. Technical Report 6749, RFC
Editor, Oct. 2012.

[30] H. Heitkötter, S. Hanschke, and T. A. Majchrzak. Evaluating Cross-Platform
Development Approaches for Mobile Applications, pages 120–138. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

[31] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri. Code Injection Attacks
on HTML5-based Mobile Apps: Characterization, Detection and Mitigation. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, pages 66–77, New York, NY, USA, 2014. ACM.

[32] M. E. Joorabchi, A. Mesbah, and P. Kruchten. Real Challenges in Mobile App
Development. In 2013 ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement, pages 15–24, Oct. 2013.

[33] M. Konicek. Under the Hood of React Native. http://www.reactnative.com/
under-the-hood-of-react-native/, Nov. 2015. Last Accessed: 2018-01-22.

107

https://developers.google.com/identity/protocols/OAuth2InstalledApp
https://developers.google.com/identity/protocols/OAuth2InstalledApp
https://blogs.microsoft.com/blog/2016/02/24/microsoft-to-acquire-xamarin-and-empower-more-developers-to-build-apps-on-any-device
https://blogs.microsoft.com/blog/2016/02/24/microsoft-to-acquire-xamarin-and-empower-more-developers-to-build-apps-on-any-device
https://blogs.microsoft.com/blog/2016/02/24/microsoft-to-acquire-xamarin-and-empower-more-developers-to-build-apps-on-any-device
http://www.reactnative.com/under-the-hood-of-react-native/
http://www.reactnative.com/under-the-hood-of-react-native/

[34] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk. An exploratory analysis of mobile
development issues using stack overflow. In 2013 10th Working Conference on Mining
Software Repositories (MSR), pages 93–96, May 2013.

[35] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin. Attacks on WebView in the
Android System. In Proceedings of the 27th Annual Computer Security Applications
Conference, pages 343–352. ACM, 2011.

[36] B. Martin, M. Brown, A. Paller, D. Kirby, and S. Christey. 2011 CWE/SANS top
25 most dangerous software errors. Common Weakness Enumeration, 7515, 2011.

[37] M. Martinez and S. Lecomte. Towards the Quality Improvement of Cross-Platform
Mobile Applications. In 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft), pages 184–188, May 2017.

[38] A. K. McCallum. Mallet: A machine learning for language toolkit. 2002.

[39] Mono Project. About Mono. http://www.mono-project.com/docs/about-
mono/, Oct. 2016. Accessed: 2016-12-28.

[40] P. Mutchler, A. Doupé, J. Mitchell, C. Kruegel, and G. Vigna. A Large-Scale Study
of Mobile Web App Security. In Proceedings of the Mobile Security Technologies
Workshop (MoST), 2015.

[41] OWASP. Mobile Top 10 2016-Top 10. https://www.owasp.org/index.php/
Mobile_Top_10_2016-Top_10, Mar. 2016. Accessed: 2016-12-05.

[42] OWASP. HTML5 Security Cheat Sheet. https://www.owasp.org/index.
php/HTML5_Security_Cheat_Sheet, Nov. 2017. Accessed: 2018-01-09.

[43] I. Ristić. SSL and TLS Deployment Best Practices. https://github.com/
ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices,
May 2017. Accessed: 2018-01-24.

[44] C. Rosen and E. Shihab. What are mobile developers asking about? A large scale
study using stack overflow. Empirical Software Engineering, 21(3):1192–1223, June
2016.

[45] N. Sakimura, J. Bradley, and N. Agarwal. Proof Key for Code Exchange by OAuth
Public Clients. RFC 7636, RFC Editor, Sept. 2015.

[46] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore. OpenID
Connect Core 1.0 incorporating errata set 1. The OpenID Foundation, specification,
2014.

[47] J. Solanky, K. Patil, and G. Patel. Resemblance of PhoneGap and Titanium for
Mobile Application Development. International Journal of Computer Applications,
144(10), 2016.

108

http://www.mono-project.com/docs/about-mono/
http://www.mono-project.com/docs/about-mono/
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet
https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices
https://github.com/ssllabs/research/wiki/SSL-and-TLS-Deployment-Best-Practices

[48] Statista. Leading mobile app development SDKs worldwide 2016.
https://www.statista.com/statistics/742418/leading-mobile-
app-development-sdks/, Dec. 2016. Accessed: 2017-11-23.

[49] M. Steyvers and T. Griffiths. Probabilistic topic models. Latent Semantic Analysis:
A Road to Meaning. T. Landauer, D McNamara, S. Dennis, and W.Kintsch, eds.
Laurence Erlbaum, 427(7):424–440, 2006.

[50] The Apache Software Foundation. Cordova Architecture. https:
//cordova.apache.org/docs/en/6.x/guide/overview/index.html#
architecture, Apr. 2016. Accessed: 2016-12-15.

[51] The Apache Software Foundation. Cordova Plugin Whitelist. https:
//cordova.apache.org/docs/en/6.x/reference/cordova-plugin-
whitelist/index.html, Aug. 2016. Accessed: 2016-12-12.

[52] The Apache Software Foundation. Privacy Guide. https://cordova.apache.
org/docs/en/6.x/guide/appdev/privacy/index.html, Apr. 2016. Ac-
cessed: 2016-12-09.

[53] The Apache Software Foundation. Security Guide. https://cordova.apache.
org/docs/en/6.x/guide/appdev/security/, Apr. 2016. Accessed: 2016-12-
09.

[54] The Apache Software Foundation. Storage. https://cordova.apache.org/
docs/en/6.x/cordova/storage/storage.html, May 2016. Accessed: 2016-
12-09.

[55] The Apache Software Foundation. Whitelist Guide. https://cordova.apache.
org/docs/en/latest/guide/appdev/whitelist/index.html, Oct. 2016.
Accessed: 2017-01-19.

[56] The PostgreSQL Global Development Group. PostgreSQL 9.6.3 Documentation
- 8.11 Text Search Types. techreport. Available: https://www.postgresql.
org/docs/9.6/static/datatype-textsearch.html Accessed: 2017-06-09.

[57] P. K. Venkatesh, S. Wang, F. Zhang, Y. Zou, and A. E. Hassan. What Do Client
Developers Concern When Using Web APIs? An Empirical Study on Developer
Forums and Stack Overflow. In 2016 IEEE International Conference on Web Services
(ICWS), pages 131–138, June 2016.

[58] H. Wang, Y. Zhang, J. Li, and D. Gu. The Achilles Heel of OAuth: A Multi-
platform Study of OAuth-based Authentication. In Proceedings of the 32Nd Annual
Conference on Computer Security Applications, ACSAC ’16, pages 167–176, New
York, NY, USA, 2016. ACM.

109

https://www.statista.com/statistics/742418/leading-mobile-app-development-sdks/
https://www.statista.com/statistics/742418/leading-mobile-app-development-sdks/
https://cordova.apache.org/docs/en/6.x/guide/overview/index.html#architecture
https://cordova.apache.org/docs/en/6.x/guide/overview/index.html#architecture
https://cordova.apache.org/docs/en/6.x/guide/overview/index.html#architecture
https://cordova.apache.org/docs/en/6.x/reference/cordova-plugin-whitelist/index.html
https://cordova.apache.org/docs/en/6.x/reference/cordova-plugin-whitelist/index.html
https://cordova.apache.org/docs/en/6.x/reference/cordova-plugin-whitelist/index.html
https://cordova.apache.org/docs/en/6.x/guide/appdev/privacy/index.html
https://cordova.apache.org/docs/en/6.x/guide/appdev/privacy/index.html
https://cordova.apache.org/docs/en/6.x/guide/appdev/security/
https://cordova.apache.org/docs/en/6.x/guide/appdev/security/
https://cordova.apache.org/docs/en/6.x/cordova/storage/storage.html
https://cordova.apache.org/docs/en/6.x/cordova/storage/storage.html
https://cordova.apache.org/docs/en/latest/guide/appdev/whitelist/index.html
https://cordova.apache.org/docs/en/latest/guide/appdev/whitelist/index.html
https://www.postgresql.org/docs/9.6/static/datatype-textsearch.html
https://www.postgresql.org/docs/9.6/static/datatype-textsearch.html

[59] H. Wang, Y. Zhang, J. Li, H. Liu, W. Yang, B. Li, and D. Gu. Vulnerability
Assessment of OAuth Implementations in Android Applications. In Proceedings of
the 31st Annual Computer Security Applications Conference, ACSAC 2015, pages
61–70, New York, NY, USA, 2015. ACM.

[60] S. William and B. Lawrence. Computer Security: Principles And Practice. Prentice
Hall, 2nd edition, Jan. 2012.

[61] M. Willocx, J. Vossaert, and V. Naessens. Comparing Performance Parameters of
Mobile App Development Strategies. In Proceedings of the International Conference
on Mobile Software Engineering and Systems, MOBILESoft ’16, pages 38–47, New
York, NY, USA, 2016. ACM.

[62] Xamarin Inc. About. https://www.xamarin.com/about. Accessed: 2016-12-
21.

[63] Xamarin Inc. An Introduction to Xamarin.Forms. https://
developer.xamarin.com/guides/xamarin-forms/getting-started/
introduction-to-xamarin-forms/. Accessed: 2016-12-23.

[64] Xamarin Inc. Android - WebView. https://developer.xamarin.com/
guides/android/user_interface/web_view/. Accessed: 2017-01-12.

[65] Xamarin Inc. Introduction to Portable Class Libraries. https:
//developer.xamarin.com/guides/cross-platform/application_
fundamentals/pcl/introduction_to_portable_class_libraries/.
Accessed: 2016-12-23.

[66] Xamarin Inc. iOS Architecture. https://developer.xamarin.com/guides/
ios/under_the_hood/architecture/. Accessed: 2016-12-22.

[67] Xamarin Inc. Sharing Code Options. https://developer.xamarin.com/
guides/cross-platform/application_fundamentals/building_
cross_platform_applications/sharing_code_options/. Accessed:
2016-12-21.

[68] Xamarin Inc. Working with Files. https://developer.xamarin.com/
guides/xamarin-forms/working-with/files/. Accessed: 2017-01-12.

[69] Xamarin Inc. Xamarin.Android - Architecture. https://developer.xamarin.
com/guides/android/under_the_hood/architecture/. Accessed: 2016-
12-22.

[70] Xamarin Inc. Xarmarin.Mobile. https://components.xamarin.com/view/
xamarin.mobile, Oct. 2015. Accessed: 2016-12-28.

110

https://www.xamarin.com/about
https://developer.xamarin.com/guides/xamarin-forms/getting-started/introduction-to-xamarin-forms/
https://developer.xamarin.com/guides/xamarin-forms/getting-started/introduction-to-xamarin-forms/
https://developer.xamarin.com/guides/xamarin-forms/getting-started/introduction-to-xamarin-forms/
https://developer.xamarin.com/guides/android/user_interface/web_view/
https://developer.xamarin.com/guides/android/user_interface/web_view/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/pcl/introduction_to_portable_class_libraries/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/pcl/introduction_to_portable_class_libraries/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/pcl/introduction_to_portable_class_libraries/
https://developer.xamarin.com/guides/ios/under_the_hood/architecture/
https://developer.xamarin.com/guides/ios/under_the_hood/architecture/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/sharing_code_options/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/sharing_code_options/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/sharing_code_options/
https://developer.xamarin.com/guides/xamarin-forms/working-with/files/
https://developer.xamarin.com/guides/xamarin-forms/working-with/files/
https://developer.xamarin.com/guides/android/under_the_hood/architecture/
https://developer.xamarin.com/guides/android/under_the_hood/architecture/
https://components.xamarin.com/view/xamarin.mobile
https://components.xamarin.com/view/xamarin.mobile

[71] Xamarin Inc. Android Data Access - Introduction. https://developer.
xamarin.com/guides/android/application_fundamentals/data/
part_1_introduction/, Sept. 2016. Accessed: 2016-12-30.

[72] Xamarin Inc. App Transport Security. https://developer.xamarin.com/
guides/ios/platform_features/introduction_to_ios9/ats/, Sept.
2016. Accessed: 2016-12-28.

[73] Xamarin Inc. Authenticating a RESTful Web Service. https:
//developer.xamarin.com/guides/xamarin-forms/web-services/
authentication/rest/, Sept. 2016. Accessed: 2017-01-12.

[74] Xamarin Inc. Authenticating Acces to Web Services. https://
developer.xamarin.com/guides/xamarin-forms/web-services/
authentication/, Sept. 2016. Accessed: 2017-01-12.

[75] Xamarin Inc. Authenticating Users with an Identity Provider. https:
//developer.xamarin.com/guides/xamarin-forms/web-services/
authentication/oauth/, Sept. 2016. Accessed: 2017-01-12.

[76] Xamarin Inc. Authenticating Users with Azure Mobile Apps. https:
//developer.xamarin.com/guides/xamarin-forms/cloud-services/
authentication/azure/, June 2016. Accessed: 2017-08-28.

[77] Xamarin Inc. Introduction to Web Services. https://developer.xamarin.
com/guides/cross-platform/application_fundamentals/web_
services/, May 2016. Accessed: 2016-12-28.

[78] Xamarin Inc. iOS - WebViews. https://developer.xamarin.com/guides/
ios/user_interface/uiwebview/, 2016. Accessed: 2017-01-12.

[79] Xamarin Inc. iOS Data Access. https://developer.xamarin.com/guides/
ios/application_fundamentals/data/, Sept. 2016. Accessed: 2016-12-30.

[80] Xamarin Inc. iOS Data Access - Introduction. https://developer.
xamarin.com/guides/ios/application_fundamentals/data/part_1_
introduction/, Sept. 2016. Accessed: 2016-12-30.

[81] Xamarin Inc. Platform Features of Android. https://developer.xamarin.
com/guides/android/platform_features/, Aug. 2016. Accessed: 2016-12-
28.

[82] Xamarin Inc. Platform Features of iOS. https://developer.xamarin.com/
guides/ios/platform_features/, Sept. 2016. Accessed: 2016-12-28.

[83] Xamarin Inc. ProGuard. https://developer.xamarin.com/guides/
android/deployment,_testing,_and_metrics/proguard/, Dec. 2016.
Accessed: 2017-01-12.

111

https://developer.xamarin.com/guides/android/application_fundamentals/data/part_1_introduction/
https://developer.xamarin.com/guides/android/application_fundamentals/data/part_1_introduction/
https://developer.xamarin.com/guides/android/application_fundamentals/data/part_1_introduction/
https://developer.xamarin.com/guides/ios/platform_features/introduction_to_ios9/ats/
https://developer.xamarin.com/guides/ios/platform_features/introduction_to_ios9/ats/
https://developer.xamarin.com/guides/xamarin-forms/web-services/authentication/rest/
https://developer.xamarin.com/guides/xamarin-forms/web-services/authentication/rest/
https://developer.xamarin.com/guides/xamarin-forms/web-services/authentication/rest/
https://developer.xamarin.com/guides/xamarin-forms/web-services/authentication/
https://developer.xamarin.com/guides/xamarin-forms/web-services/authentication/
https://developer.xamarin.com/guides/xamarin-forms/web-services/authentication/
https://developer.xamarin.com/guides/xamarin-forms/web-services/authentication/oauth/
https://developer.xamarin.com/guides/xamarin-forms/web-services/authentication/oauth/
https://developer.xamarin.com/guides/xamarin-forms/web-services/authentication/oauth/
https://developer.xamarin.com/guides/xamarin-forms/cloud-services/authentication/azure/
https://developer.xamarin.com/guides/xamarin-forms/cloud-services/authentication/azure/
https://developer.xamarin.com/guides/xamarin-forms/cloud-services/authentication/azure/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/web_services/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/web_services/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/web_services/
https://developer.xamarin.com/guides/ios/user_interface/uiwebview/
https://developer.xamarin.com/guides/ios/user_interface/uiwebview/
https://developer.xamarin.com/guides/ios/application_fundamentals/data/
https://developer.xamarin.com/guides/ios/application_fundamentals/data/
https://developer.xamarin.com/guides/ios/application_fundamentals/data/part_1_introduction/
https://developer.xamarin.com/guides/ios/application_fundamentals/data/part_1_introduction/
https://developer.xamarin.com/guides/ios/application_fundamentals/data/part_1_introduction/
https://developer.xamarin.com/guides/android/platform_features/
https://developer.xamarin.com/guides/android/platform_features/
https://developer.xamarin.com/guides/ios/platform_features/
https://developer.xamarin.com/guides/ios/platform_features/
https://developer.xamarin.com/guides/android/deployment,_testing,_and_metrics/proguard/
https://developer.xamarin.com/guides/android/deployment,_testing,_and_metrics/proguard/

[84] Xamarin Inc. Protect the Application. https://developer.xamarin.com/
guides/android/deployment,_testing,_and_metrics/publishing_
an_application/part_1_-_preparing_an_application_for_
release/#protect_app, Dec. 2016. Accessed: 2017-01-12.

[85] Xamarin Inc. Security and Privacy Enhancements. https://developer.
xamarin.com/guides/ios/platform_features/introduction-to-
ios10/security-privacy-enhancements/, Sept. 2016. Accessed: 2017-01-
12.

[86] Xamarin Inc. Xamarin.Android Data Access. https://developer.xamarin.
com/guides/android/application_fundamentals/data/, Sept. 2016. Ac-
cessed: 2016-12-30.

[87] Xamarin Inc. Securely Store Credentials. https://developer.xamarin.
com/recipes/cross-platform/xamarin-forms/general/store-
credentials/, Aug. 2017. Accessed: 2018-01-09.

[88] Xamarin Inc. Transport Layer Security (TLS). https://developer.xamarin.
com/guides/cross-platform/transport-layer-security/, Oct. 2017.
Accessed: 2018-01-10.

[89] S. Xanthopoulos and S. Xinogalos. A Comparative Analysis of Cross-platform
Development Approaches for Mobile Applications. In Proceedings of the 6th Balkan
Conference in Informatics, BCI ’13, pages 213–220, New York, NY, USA, 2013.
ACM.

[90] R. Yang, W. C. Lau, and S. Shi. Breaking and Fixing Mobile App Authentication
with OAuth2.0-based Protocols, pages 313–335. Springer International Publishing,
Cham, 2017.

[91] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun. What Security Questions Do
Developers Ask? A Large-Scale Study of Stack Overflow Posts. Journal of Computer
Science and Technology, 31(5):910–924, Sept. 2016.

[92] J. Zou, L. Xu, W. Guo, M. Yan, D. Yang, and X. Zhang. An Empirical Study on
Stack Overflow Using Topic Analysis. In Proceedings of the 12th Working Conference
on Mining Software Repositories, MSR ’15, pages 446–449, Piscataway, NJ, USA,
2015. IEEE Press.

112

https://developer.xamarin.com/guides/android/deployment,_testing,_and_metrics/publishing_an_application/part_1_-_preparing_an_application_for_release/#protect_app
https://developer.xamarin.com/guides/android/deployment,_testing,_and_metrics/publishing_an_application/part_1_-_preparing_an_application_for_release/#protect_app
https://developer.xamarin.com/guides/android/deployment,_testing,_and_metrics/publishing_an_application/part_1_-_preparing_an_application_for_release/#protect_app
https://developer.xamarin.com/guides/android/deployment,_testing,_and_metrics/publishing_an_application/part_1_-_preparing_an_application_for_release/#protect_app
https://developer.xamarin.com/guides/ios/platform_features/introduction-to-ios10/security-privacy-enhancements/
https://developer.xamarin.com/guides/ios/platform_features/introduction-to-ios10/security-privacy-enhancements/
https://developer.xamarin.com/guides/ios/platform_features/introduction-to-ios10/security-privacy-enhancements/
https://developer.xamarin.com/guides/android/application_fundamentals/data/
https://developer.xamarin.com/guides/android/application_fundamentals/data/
https://developer.xamarin.com/recipes/cross-platform/xamarin-forms/general/store-credentials/
https://developer.xamarin.com/recipes/cross-platform/xamarin-forms/general/store-credentials/
https://developer.xamarin.com/recipes/cross-platform/xamarin-forms/general/store-credentials/
https://developer.xamarin.com/guides/cross-platform/transport-layer-security/
https://developer.xamarin.com/guides/cross-platform/transport-layer-security/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of this Work
	Methodology
	Structure

	Related Work
	Fundamentals
	Mobile Development Approaches
	Cross-Platform Frameworks

	Methodology
	Security Handling
	Developers' Challenges
	User Study

	Results
	Security Handling
	Meta Topics
	Posts about Authentication & Authorization
	Online Survey

	Discussion
	Security Handling
	Developers' Challenges
	Authentication and Authorization

	Conclusion
	Online Survey
	List of Figures
	List of Tables
	Bibliography

