
Institute of Telecommunications
TU Wien

Master Thesis

Sparse Superposition Codes for the Gaussian
Channel

Author:

William Holt
0926965

Supervisors:

Univ.Prof. Dipl.-Ing. Dr.-Ing. Norbert Görtz
Univ.Ass. M.Sc. Osman Musa

May 2018

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

iii

Declaration of Authorship
Hiermit erkläre ich, William Holt

0926965, dass die vorliegende Arbeit gemäß dem Code of Conduct – Regeln zur Sicherung
guter wissenschaftlicher Praxis (in der aktuellen Fassung des jeweiligen Mitteilungsblattes
der TU Wien), insbesondere ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als
der angegebenen Hilfsmittel, angefertigt wurde. Die aus anderen Quellen direkt oder indi-
rekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet. Die
Arbeit wurde bisher weder im In– noch im Ausland in gleicher oder in ähnlicher Form in
anderen Prüfungsverfahren vorgelegt.

Unterschrift:

Datum:

v

TU Wien

Abstract
Institute of Telecommunications

Sparse Superposition Codes for the Gaussian Channel

by William Holt
0926965

Recently sparse regression codes / sparse superposition codes have been proposed and it
has been shown that those codes asymptotically (that is for large block size) achieve the
performance limits of information theory.

The codes are formed from Gaussian random sequences that are arranged in the columns
of a large matrix, and groups of data bits are used to identify which column-vectors are cho-
sen for superimposed transmission over a Gaussian channel. Hence the coding process can
be written as a matrix-vector multiplication, with the matrix containing the Gaussian code-
sequences and the data vector containing only few non-zero components (that are determined
by the data bits) that identify which of the code-column vectors are used to form a codeword.
Since the vector is sparse, the decoding can be understood as a sparse recovery problem that
has been recently and intensively studied in the field of compressed sensing. Some of the
best sparse recovery algorithms are based on approximate message passing (AMP) which is
also a good candidate decoder for sparse regression codes (SPARCs).

A particularity of the SPARCs is that for good decoding by AMP not only values of
constant amplitude are used to identify which of the column vectors are chosen but rather
a sophisticated power allocation scheme that determines the scaling factors is required, and
only then theoretical limits can be achieved.

The first goal of the thesis is to understand the construction, encoding, power allocation,
and decoding of SPARCs for the unconstrained Gaussian channel from the recent literature.
In a second step, the codes shall be implemented (mostly in Matlab) and simulations shall be
conducted to verify performance known from the literature.

In terms of novelty, several interesting topics occur: one is to investigate SPARCs for
various block sizes to understand how those codes would work in practical applications with
strong delay constraints, that naturally limit the block size. Another interesting question is
if it makes sense to concatenate sparse regression codes with classical binary channel codes
and, if possible, to apply iterative decoding between the component codes.

vii

Contents

Declaration of Authorship iii

Abstract v

1 Introduction and setting 1
1.1 Introduction . 1

1.1.1 Notation . 3
1.2 Setting . 3

1.2.1 Shaping Gain . 6
1.3 Related Literature . 7

2 Communicating over an AWGN channel 9
2.1 Introduction . 9

2.1.1 Notation . 9
2.2 Transmission setting and decoding in general 9

2.2.1 Channel description . 10
2.2.2 General decoding . 10
2.2.3 Relation to compressed sensing . 11

2.3 Approximate message passing decoder . 11
2.3.1 Test statistics . 12
2.3.2 State evolution . 15

2.4 Power Allocation . 17
2.4.1 Constant power allocation . 18
2.4.2 Exponentially decaying power allocation 18
2.4.3 Algorithmic power allocation . 19
2.4.4 Choice of the power allocation rate RPA 23

2.5 Complexity . 26
2.5.1 Online state evolution estimation . 26
2.5.2 Hadamard coding matrix . 28

2.6 Estimating error rates . 29

3 Numerical evaluation 31
3.1 Introduction . 31

3.1.1 The bit error probability and Eb/No 31
3.2 Number of AMP iterations . 33
3.3 Error exponent . 35

viii

3.4 Choosing L and B . 37
3.5 Dependency of code parameters on the optimal RPA 40
3.6 Bit error rate over SNR . 41
3.7 Conclusion . 43

Bibliography 45

1

Chapter 1

Introduction and setting

1.1 Introduction

——————————————————-
Since Shannon’s ground breaking work on communication and information theory in [1], the
quest to efficiently encode and decode data over linear Gaussian channels has occupied the
attention of the researchers in the past. One major result of Shannon’s work was the analytic
description of the capacity of the additive white Gaussian noise channel. Given the transmit
bandwidth B, the mean maximum signal power P and assuming the noise power spectral
density to be equal toN0/2, the signal-to-noise ratio (SNR) is defined as SNR = P/(BN0).
The channel capacity C (here in bits per seconds), is given by:

C[b/s] = B log2(1 + SNR) . (1.1)

This result gives an upper bound on the achievable communication rate, for which a van-
ishing error probability is possible. In other words, it is possible with proper encoding, to
make the error probability arbitrarily small, as long as the information is sent at a rate below
the capacity threshold. On the other hand exceeding the rate over the capacity limit makes
reliable communication impossible. Note that C is an upper bound on the communication
rate in relation to B and the SNR, while it does not restrict the error probability. Further
C provides an attainable goal but does not deliver a solution of how to achieve such perfor-
mance with a specific scheme or, equally important, in an efficient manner. Therefore C can
be used as a benchmark for a given coding and transmission scheme. In [1] it was shown
that a set of ∝ 2MC randomly generated and independent Gaussian codewords can reach
the capacity limit with vanishing error probability, when the block length M → ∞. These
codewords are randomly generated and known to the receiver. With such an approach the
computational complexity as well as the storage complexity grow exponentially with block
length M . Since such a coding scheme would not be feasible to implement, the challenge
of how to reach this limit efficiently is still an open question. The aspiration is to find a low
complexity coding scheme that introduces small delay and enables reliable transmission of
information close to the Shannon capacity (see (1.1)). One state-of-the-art coding approach
for the linear Gaussian channel is so-called coded modulation, where coding of the binary
data and modulating on a specific constellation are logically separate tasks. Figure 1.1 shows
a block diagram of the coded modulation scheme. This approach preforms well in practical

2 Chapter 1. Introduction and setting

settings and is established in many technical standards. However with a fixed constellation
scheme it is not possible to reach the capacity limit over a broad SNR regime.

x ∈ {0, 1}N
ModulatorEncoder

c ∈ RM

Channel

y ∈ RM

s ∈ RM

Demodulator
q ∈ RM

Decoder
x̂ ∈ {0, 1}N

FIGURE 1.1: Illustrates the logical separation of coding and modulation in the coded modulation
approach. The binary code could be for example a LDPC or Turbo code and the modulation format 4

or 16 QAM.

Figure 1.2 shows the maximal achievable rates under which reliable communication is
still possible for different modulation schemes. It is apparent, that by using a fixed modu-
lation format, for example 16 QAM, it is possible to reach the Shannon capacity only in a
limited SNR region. The graphs of the modulation schemes with m possible points in the
constellation diagram converge towards log2(m) [bits/channel use], since, as a maximum
number, log2(m) number of information bits are mapped to one modulation symbol. To cir-
cumvent this restriction, modern technical standards use pairs of different channel code rates
and constellation sizes, which together are called modes. For example a rate 8/9 code and
64 ASK modulation, the modes are chosen according to the underlying SNR. The goal is to
choose a mode, with which reliable communication close to C is possible. From Figure 1.2
we can see that the 64 QAM mode covers the region of possible information rate of all lower
modes. This does not mean that lower modes are unnecessary, which is explained by the
following example. Assume we want to transmit information with a rate of 0.5. By applying
a BPSK modulation scheme we can use a code rate of 1/2 to get the desired communication
rate. By using a 16 QAM modulation format the code rate has to be 1/8 to reach the same
communication rate. With the higher modulation format more code bits are added for the
same number of information bits. Sending more code bits equals an increase in block length
and therefore an increase in delay and necessary computations.

1.2. Setting 3

−5 0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

10

SNR as Es/N0 [dB]

In
fo

rm
at

io
n

ra
te
[b

its
/c

ha
nn

el
us

e]

2D - Shannon capacity
64 QAM
32 QAM
16 QAM
4 QAM
BPSK

Uncoded at Ps ≈ 10−5

FIGURE 1.2: Capacity bounds over the SNR of different modulation formats. It is assumed that the
input symbols are uniformly distributed and sent over an AWGN channel. The dashed line represents
the two-dimensional unconstrained Shannon capacity, C = log2(1 + SNR). The capacity curves for
the different modulation schemes are calculated with the Coded Modulation Library (CML), available

at http://www.iterativesolutions.com/Matlab.htm.

In this thesis we take a detailed look at a code that takes a different route than coded
modulation. Sparse superposition codes or sparse regression codes (SPARCs) make use of
a continuous modulation alphabet and resemble Shannon’s idea of a Gaussian codebook, but
with reasonable complexity demands.

• In Section 1.2 the encoding procedure for SPARCs is explained and after presenting
the basic principles, insight into the so-called shaping gain is given.

• Related literature and their core achievements are mentioned in Section 1.3.

1.1.1 Notation

Capital and bold letters X denote matrices, bold symbols x vectors and letters x scalars.
E is the expectation, the Gaussian distribution with mean µ and variance σ2 is denoted by
N (µ, σ2). The l2 norm of a vector is written as ‖x‖. The transpose of matrix X is denoted
by Xᵀ. Further for describing the ith column of a matrix X a Matlab style notation is used
X :,i. A specific element of a vector is denoted as [x]i. Additional notation is explained in
text and at the beginning of the following chapters.

1.2 Setting

——————————————————-
For the code construction assume an input message vector x of lengthN , which is partitioned

http://www.iterativesolutions.com/Matlab.htm

4 Chapter 1. Introduction and setting

into L sections. With a slight abuse of notation we will denote the lth section xl = {xi ∈
l}, where i ∈ sec(l) denotes the indices included in the lth section. Therefore the input
message vector can be written as x = [x1,x2, . . . ,xL]ᵀ with each section having B number
of elements. The length of the input vector x is N = BL. Each of the sections xl, l ∈
{1 . . . L} fulfills the constraint of having exactly one non-zero element. An example of a
possible input sequence for L = 3 and B = 3 could be x = [(001), (100), (010)]ᵀ. The
sections can be seen as input symbols and the position of the non-zero element defines the
symbol to transmit. Therefore the section size B is equal to the cardinality of the alphabet.
One can also think of one-hot-encoding each section. The non-zero values of the input vector
are positive and are related to the input power to the channel. The non-zero values for each
section can be chosen differently, which will be explained in more detail later on. Next
assume a so-called coding matrix A ∈ RM×N , then the codeword c ∈ RM is generated by
matrix multiplication Ax. At first we assume that the entries of A are i.i.d ∼ N (0, σ2A).
In general the encoding relation Ax corresponds to a superposition of the columns A:,i.
In this specific setting only the columns A:,i are weighted and added up that line-up with
the non-zero elements of x. The encoding procedure is shown in Figure 1.3. One point
worth mentioning is that although the transformationAx is linear, the code itself is not. The
codewords are not closed under linear combination, since adding two codewords will not
necessarily result in another codeword. Therefore SPARCs are non-linear codes.

A :

x : xi1 xi2 xiL

x1 x2 xL

B B B

N = L B

M

ᵀ

FIGURE 1.3: Illustrates the encoding procedure of SPARCs. The non-zero elements of each section
are denoted by xij for j ∈ {1, . . . , L} and ij ∈ {1, . . . , LB}. Which columns of the code matrix A
are added up, is determined by the position of the non-zero coefficients in each section of x. Only
a single column of each section of the coding matrix A is part of the summation, that results in the

codeword c = Ax.

When considering a coding scheme for transmission of information over a communica-
tion channel, two of the relevant parameters are the communication rate R, which defines
the information sent per channel use, and the aforementioned block length M , that describes
the number of channel uses. For the rate following holds: Since each section corresponds
to log2(B) bits and the input vector x consists of L sections, the number of input bits is

1.2. Setting 5

K = L log2(B). Rewriting the rate R = K/M as:

R =
L log2(B)

M
or M =

L log2(B)

R
. (1.2)

According to (1.2) the code is specified by (R,B,M). First we will investigate how these
quantities R,B,M are related, in an asymptotic limit.
There are different possibilities to choose L,B and still satisfy both (1.2) and produce an
integer M . One extreme case is setting L = 1 and therefor B = 2RM , which recovers the
Shannon-style random codebook [1]. This lets the coding matrixA grow exponentially with
the block length M making such choice impractical. Another option is to define B = La

with some constant a. This has the advantage that the number of elements in the coding
matrix A grow polynomial with the block length M . This can be explained in the following
fashion.

M = L log2(B)/R = aL log2(L)/R . (1.3)

L grows asymptotically with M according to M/ log2(M). This can be shown by dividing
L by M/ log2(M) and taking the limes L → ∞. First we divide L and reformulate the
fraction.

L

M/ log2(M)
=
L log2(M)

M
.

Inserting (1.3)

L log2(aL log2(L)/R)

aL log2(L)/R
=
R

a

log2[aL log2(L)]− log2(R)

log2(L)
=

R

a

{ log2(a)

log2(L)
+ 1 +

log2[log2(L)]

log2(L)
− log2(R)

log2(L)

}
.

Now taking the limes L→∞

lim
L→∞

R

a

{ log2(a)

log2(L)
+ 1 +

log2[log2(L)]

log2(L)
− log2(R)

log2(L)

}
=
R

a
.

Since the result, of the division and letting L go to infinity, is a constant (converges), L
grows asymptotically according to M/ log2(M). As a further consequence the number
of elements of the coding matrix A, which are MN , grow polynomial in M . Due to
MN = MLB = MLa+1 and therefore A grows with Ma+2/ log2(M)a+1. Relating the
section size B with L has the advantage of keeping the dictionary size compact and man-
ageable, which is crucial to achieve computationally efficient coding and decoding schemes.
As a counter example assume that the number of sections L is fixed, the length of the input
sequence N would increase exponentially with the block length, because N = LB and re-
formulating (1.2) B = 2MR/L results in N ∝ 2M .

Another important parameter for SPARCs is the power allocation (PA), which defines the
values of the power coefficients Pl with l ∈ {1, . . . , L}. The power coefficients are related to
the value of the non-zero coefficient of the lth section xl according to xil =

√
MPl, with il

denoting the index of the non-zero coefficient. The overall power P of the codeword c, that

6 Chapter 1. Introduction and setting

is transmitted over the channel, fulfills the constraint P =
∑L

l=1 Pl on average. First we will
assume that each entry of the coding matrix aij is an i.i.d zero-mean normal distributed with
variance σ2A. The value of σ2A is set to 1/M so that the mean codeword power E

[
‖Ax‖2/M

]

is P , when averaged over all 2K possible codewords.
The value for σ2A is derived as followed. Since each codeword element [Ax]i is the superpo-
sition of certain matrix elements aij the elements of the codeword vector

[Ax]k =
∑LB

j=1
[x]jakj =

∑L

l=1

√
MPlakil , k ∈ {1 . . .M} ,

are random variables ∼ N (0, σ2A
∑L

l=1

√
MPl).

Therefore the signal energy ‖Ax‖2 =
∑M

i=1[Ax]2i is a chi-squared distributed random vari-
able with mean M2Pσ2A. By setting σ2A = 1/M the mean power E{‖Ax‖2/M} = P . This
results in the signal to noise ratio SNR = P/σ2W where σ2W is the variance of the Gaus-
sian noise. Both the set of power allocation coefficients {Pl} and the coding matrix A are
known to the receiver before the communication starts. Two examples for PA schemes are,
1) a flat power allocation with Pl = P/L so every section has the same value assigned, 2) an
exponentially decaying scheme. For the exponential scheme assume a fixed constant κ > 0

and the values for the power coefficients are calculated according to Pl ∝ 2−κl/L, each for
l ∈ {1, . . . , L}. The choice of the power allocation plays a crucial role for theoretical lim-
its as well as for simulated error rates. To decrease computational complexity and memory
demands, the Gaussian coding matrixA can be replaced with a Hadamard matrix, as will be
discussed in later chapters.

1.2.1 Shaping Gain

To explain and illustrate an interesting phenomenon, we take a more detailed look at a capac-
ity curve of 64 QAM in comparison to the Shannon capacity limit over the AWGN channel.
Taking a look at the linear region of the modulation capacity plot in Figure 1.4, where the
two plots are nearly parallel, one can see a constant offset between the curves. This offset
is called shaping gain and it is defined as the difference in SNR to reach the same mutual
information. The reason for the loss is the usage of equiprobable modulation signals, in other
words using an uniform distribution over the signal set.

1.3. Related Literature 7

−10 −5 0 5 10 15 20 25 30

2

4

6

8

10

SNR [dB]

C
ap

ac
ity

[b
it
s/
d
im

]

2D - Shannon capacity
64 QAM

14 15 16
4

4.5

5

5.5

6

Shaping gain

FIGURE 1.4: Illustrates the logical separation of coding and modulation in the coded modulation
approach. The binary code could be for example an LDPC or Turbo code and the modulation format

4 or 16 QAM.

To overcome this loss, so called constellation shaping techniques are required. These
shaping techniques assure a Gaussian similar distribution over the set of possible modulation
signals. Several of these techniques are briefly explained in [2]. As one can imagine SPARCs
do not encounter this problem, since the value of each codeword coefficient [Ax]i will be
Gaussian distributed, due to the construction scheme itself. So to say, shaping is already built
into the design of SPARCs.

1.3 Related Literature

——————————————————-
Barron and Joseph in [3] introduce sparse superposition codes for the additive white Gaus-
sian noise channel and the authors show that these codes can come near the Shannon capacity
with an iterative decoding scheme and proper scaling of the input coefficients, with an error
probability decreasing exponentially with the length of the input sequence. Further in [4]
they propose a scheme to combine an outer Reed-Solomon (RS) Code with an inner SPARC
and provided an analytical description of the error exponent of the block error probabil-
ity. According to [4] a composite code of RS and SPARC using a Least Squares Decoder
achieves a block error probability that decreases exponentially with an exponent that is pro-
portional to M/ log(M)2 at a rate gap from capacity, that decreases with 1/ log(M). In a
companion paper Barron and Joseph present a computational feasible decoder [5], unlike the
before mentioned optimal least squares decoder. It is named adaptive successive decoder.
Although the theoretical results are promising, the error rates in practical simulations are
not. Further empirical improvement could be achieved by Barron and Cho in [6] with the
iterative soft-decision decoder. The decoding scheme, that is a center piece of this thesis is
named approximate message passing (AMP) algorithm. Generally AMP are a class of itera-
tive algorithms that are based on an approximation of the so called loopy belief propagation

8 Chapter 1. Introduction and setting

algorithm [7], which are used in the field of compressed sensing for example. The authors of
[8] derive an AMP algorithm adapted to the setting of SPARCs, which outperforms the before
mentioned decoding algorithms, in the sense of error rates at reasonable block lengths, while
keeping the computational complexity at a polynomial order. In the same paper the authors
prove that the AMP decoding scheme is asymptotically capacity-achieving for the AWGN
channel. In a follow up paper [9] they derive a bound for the error exponent for the AMP
decoder, given an exponential decaying power allocation and Gaussian coding matrix. They
show that the mean section error rate Esec = 1/L

∑L
i=1 I{xi 6= x̂i} decays exponentially in

M/[log2(M)]2T . With T the number of iterations that are required for successful decoding.
For which they also find a proportionality of T ∝ log2(C/R), given large block lengths.
Condo and Gross in [10] concern themselves with complexity estimation and variable quan-
tization for a possible hardware implementation of the AMP decoder for SPARCs. They
propose a partially parallel hardware decoder, since coding and decoding in SPARCs mainly
involve matrix and vector multiplications. A fully parallel hardware architecture would not
be feasible at present state of art. In [11] the same authors present a VHDL implementation
for an encoder and decoder architecture. The survey paper [12] provides a broad view over
the topic of superposition codes. It mentions the different decoding schemes and provides
empirical simulation results. Further the authors elaborate on the possibility to use SPARCs
for lossy compression coding.

9

Chapter 2

Communicating over an AWGN
channel

2.1 Introduction

——————————————————-
After establishing the process of encoding SPARCs, we will define the channel and investi-
gate the decoder under test in a detailed manner.

• In Section 2.2 the AWGN channel is introduced, as well as the theoretical optimal
decoder for this setting. Moreover a relation to the compressed sensing regime and our
decoding problem is highlighted.

• In Section 2.3 we take a detailed look at the approximate message passing (AMP)
decoder and visualize different aspects of the algorithm.

• Section 2.4 is dedicated to different methods of scaling the non-zero coefficients of the
input vector, which can have a significant influence on the decoders performance.

• Further there exist different methods to reduce the complexity of the AMP decoder,
which will be the topic of Section 2.5. Exchanging the Gaussian coding matrix with
an Hadamard matrix can reduce the necessary computational calculations and save
memory. Also an adaptation of the AMP decoder algorithm is presented that does not
require to pre-calculate certain quantities.

• Finally in Section 2.6 we will inspect two different methods for estimating error rates,
when applying the AMP decoder on the AWGN channel.

2.1.1 Notation

b·c denotes the rounding to the next smaller integer. 0 is a vector containing all zeros.

2.2 Transmission setting and decoding in general

——————————————————-

10 Chapter 2. Communicating over an AWGN channel

2.2.1 Channel description

x ∈ RN Encoder

c = Ax

c ∈ RM

w ∈ RM ∼ N (0, σ2
W)

y ∈ RM
Decoder

x̂|A, σ2
W

x̂ ∈ RN

FIGURE 2.1: The input vector x, fulfilling the constraint of having only one non-zero component per
section, is fed into the encoder, where it is multiplied with the coding matrix. The codeword is then
sent over an AWGN channel. The components of the noise vector w are i.i.d zero mean Gaussian
random variables, with variance σ2

W . The Decoder receives the codeword corrupted by noise and
produces an estimate x̂ of the input vector, knowing the coding matrix and the noise variance.

One way of taking the physical realm between the transmitter and the receiver into account,
is to apply a mathematical channel model, that is supposed to mimic the real world channel
conditions. In this thesis the channel under consideration is assumed to be an ideal additive
white Gaussian noise channel, which produces the output y ∈ RM according to

y = Ax+w . (2.1)

The noise vector is denoted as w ∈ RM with coefficients that are i.i.d according to [w]i ∼
N (0, σ2W). Additionally, the vector w is statistically independent of the transmitted code-
word c = Ax. When considering the additive channel in (2.1), it is assumed that i) the
attenuation between transmitter and receiver is known and accounted for ii) the input code-
word c is neither filtered nor distorted by the channel and iii) delay and phase shifts are
known and removed. The time domain is discrete and the ideal AWGN channel is memory-
less.
The quality of the communication channel is characterized by the value of the SNR. As
already mentioned in the previous Section 1.2, the mean input power of the codewords is
constrained to P and the signal-to-noise ratio is therefore denoted as SNR = P/σ2W .
The infamous Shannon capacity [1] for the continuous valued, time discrete AWGN channel
reads:

C =
1

2
log2(1 + SNR) [bits/channel use] , (2.2)

and it provides an upper bound for the communication rate R, under which reliable commu-
nication is still possible. To summarize the importance of the capacity C:
For R < C codes exist, such that the error probability can be made arbitrarily small with
sufficiently large block lengths M , while for R > C this is impossible.

2.2.2 General decoding

We denote the set of possible input codewords as X . When considering a Bayesian setting
the mapping of the input sequence to the received senseword x→ y can be described by the
transition pdf fy|x(y|x). The objective of the ideal decoder is to minimize the probability of a

2.3. Approximate message passing decoder 11

block error P{E} = P{x 6= x̂}. This objective results in the so called maximum a posteriori
(MAP) sequence decoder:

x̂ = arg max
x∈X

fx|y(x|y) . (2.3)

For a uniform distribution of the possible input vectors x ∈ X the MAP decoder is equal to
the maximum likelihood decoder, which in the case of the memoryless AWGN channel re-
duces to finding the minimum distance between the received senseword y and all the possible
codewordsAx, i.e.,

x̂ = arg min
x∈X

‖y −Ax‖2 . (2.4)

Since this requires an exhaustive search over all x ∈ X it is computationally infeasible and
one has to resort to other faster algorithms, which still provide a reasonable error probability.

2.2.3 Relation to compressed sensing

Given the sparsity constraint of the input sequences x and the dimensions of the coding
matrix A there is an obvious relation to compressed sensing (CS). One CS problem is to
recover a sparse vector x ∈ RN from the measurement y = Ax+w. With dim(A) = n×N
and n < N of the measurement matrix andxwith a known prior distribution. w is an additive
noise vector. An often used algorithm to solve such a problem is the least absolute shrinkage

and selection operator commonly known as LASSO, which objective is

x̂ = arg min
x∈RN

‖y −Ax‖2 subject to ‖x‖1 < τ , (2.5)

for some parameter τ ≥ 0. The goal is to minimize the distance between y and Ax̂ under
the constraint of recovering a sparse vector x̂. An efficient class of algorithms to solve the
LASSO are the approximate message passing (AMP) algorithms, which are approximations
of the loopy belief algorithm also known as sum-product or min-sum algorithm. Detailed
insight on AMP can be found in [13], which is out of the scope of this thesis.

2.3 Approximate message passing decoder

——————————————————-
The AMP for the general LASSO case should not be used in our setting, since the prior
information on the structure of the input vectors x (one non-zero element per section) is not
considered. A derivation for an AMP algorithm in the context of SPARCs can be found in
[8]. The algorithm is iterative and generates successive estimates of the input vector xt ∈ RN

for t = {0, . . . , tmax − 1}. The index t denotes the iteration and xt can be interpreted as
an estimate of the vector x at the iteration t. The decoder can be split into two parts: online
and offline. The offline part has to be computed before running the AMP decoder. The
quantities that are calculated beforehand do not change for fixed values of B,L,M . The
offline computations are

τ20 = σ2W + P, τ2t+1 = σ2W + P (1− βt+1), t ≥ 0 , (2.6)

12 Chapter 2. Communicating over an AWGN channel

with i.i.d random variables Ulj ∼ N (0, 1) for j ∈ {1, . . . , B}, l ∈ {1, . . . , L} and

βt+1 =
∑L

l=1

Pl
P
E

[
exp(

√
MPl
τt

(Ul1 +
√
MPl
τt

))

exp(
√
MPl
τt

(Ul1 +
√
MPl
τt

)) +
∑B

j=2 exp(
√
MPl
τt

Ulj)

]
. (2.7)

The online part consists of the following computation, for t = {0, . . . , tmax − 1} and the
initial conditions x0 = 0, z−1 = 0, τ−1 = 0 calculate:

zt = y −Axt +
zt−1

τ2t−1

(
P − ‖x

t‖2
M

)
, (2.8)

xt+1
i = ηti(x

t +Aᵀzt), i = {1, . . . , N} , (2.9)

with the component wise tresholding function:

ηti(s) =
√
MPl

exp(si
√
MPl

τ2t
)

∑
j∈sl exp(sj

√
MPl

τ2t
))
. (2.10)

As mentioned in Section 1.2, sl denotes the B-dimensional section vector of s. Therefore
j ∈ sl in (2.10) denotes the indices of the lth B-dimensional section vector. Note that ηti(s)
only depends on the indices of the section containing the index i. The final estimate of the
input vector x̂ results from setting the maximum entry of each section to

√
MPl and all other

entries to zero. Have in mind, that the values of the non-zero entries
√
MPl are determined

in advance (see Section 1.2).

2.3.1 Test statistics

First we will take a more detailed look at (2.9). The argument of the update equation (2.9)
will further be denoted as test statistics st = xt + Aᵀzt. A remarkable property of the
test statistic st is the following: with increasing block length M → ∞, the test statistic is
asymptotically distributed as st ∼ x + τ̄tv. The effective noise variance τ̄t is the limit of τt
as M →∞ and v is a i.i.d random vector with elements ∼ N (0, 1), which is independent of
the input sequence x. In simple words, one of the main objectives of the AMP algorithm is
to force the test statistic to be distributed close to x + τ̄tv. Under the objective to minimize
the MSE:

arg min
xt+1∈RN

‖x− xt+1‖2 given : st = x+ τtv , (2.11)

the resulting minimum mean square error (MMSE) estimator equals the posterior expectation
of x:

xt+1 = E[x|st] . (2.12)

Under the assumption that st = x + τtv we can derive the MMSE estimator in (2.12).
Following the steps in [8], we will come to the conclusion that the thresholding function
ηti(s) (2.10) corresponds to the MMSE estimator in (2.12):

2.3. Approximate message passing decoder 13

We introduce the notation i ∈ sec(l) where i is an index of the lth section and therefore
i ∈ {(l−1)B+1, . . . , lB}. For each element of each section, i ∈ sec(l) and l ∈ {1, . . . , L},
we calculate the posterior expectation of the ith element given the observation st. For ease
of notation we will set st = s, while keeping in mind that the test statistics vector s changes
over iterations t.

xt+1
i (s) = E[xi|x+ τtv = s]

(a)
= E[xi|{xj + τtvj = sj}j∈sec(l)] = E[xi|sl]
(b)
=
√
MPl P (xi =

√
MPl|sl) .

(2.13)

Consider that (2.13) (a) follows from the fact that for the ith element only other elements of
the same section l are statistically dependent. This holds under the assumption that the AMP
decoder indeed achieves the required decoupling of different sections. Further (2.13) (b) is
the result of the expectation, since only one element is non-zero in each section. Denoting
the joint pdf of a section as fsec() and applying Bayes’ theorem, (2.13) can be written as:

√
MPl P (xi =

√
MPl|sl)

=
√
MPl

fsec|xi(sl|
√
MPl)P (xi =

√
MPl)∑

k∈sec(l) fsec|xk(sl|
√
MPl)P (xk =

√
MPl)

.
(2.14)

Since x and v are statistically independent and v has i.i.d N (0, 1) entries, the joint pdf of sl
conditioned on xk, k ∈ sec(l) being the non-zero component is formulated as:

fsec|xk(sl|
√
MPl)

=

(
1

2πτ2t

)B
exp

(−(sk −
√
MPl)

2

2τ2t

) ∏

j∈sec(l),j 6=k
exp

(
−s2j
2τ2t

)

=

(
1

2πτ2t

)B
exp

(
sk
√
MPl
τ2t

)
exp

(
MPl
2τ2t

) ∏

j∈sec(l)
exp

(
−s2j
2τ2t

)
.

(2.15)

The position of the non-zero element in one section is uniformly distributed over the whole
section, therefor inserting P (xk =

√
MPl) = 1/B, k ∈ sec(l) and (2.15) in (2.14) results

in the equation (2.10) for the thresholding function ηti(s). To summarize

xt+1
i = E[xi|st] = ηti(s) . (2.16)

Figure 2.2 shows an example of the distribution of the test statistics vector st by calculating
the histogram over 1000 runs. The histograms of two coefficients of st are displayed, where
the first one is at the position of the non-zero coefficient in the first section of the input
sequence x. The second one is at the position of the non-zero coefficient in the last section.
The non-zero coefficient of a section l is denoted as il with l ∈ {1, . . . , L}. In the Subfigure
2.2a we can see that the test statistic coefficient in the first section [st]i1 for t = 6 iterations is
already closely distributed according to st ∼ x + τ̄tv. Some further improvement is shown

14 Chapter 2. Communicating over an AWGN channel

in Subfigure 2.2b, where for t = 11 the mean value is near the actual value of the input
coefficient [x]i1 and the variance of the fitted normal distribution is close to τ211. In case of
the last section at iteration t = 6 the histogram does not resemble a normal distribution and
it takes more steps t until the wanted distribution is reached, as can be seen in the Subfigure
2.2c and 2.2d.

13 14 15 16 17 18 19 20

0.1

0.2

0.3

0.4

0.5

Value of test statstic coefficient:si1

E
st

im
at

ed
pd

f

st for t = 6
Normal distribution fit
[x]i1

(A) At iteration t = 6, the test statistic coef-
ficient at the first non-zero coefficient index.
The variance of the fitted normal distribution

is σ2 = 1.43

14 15 16 17 18 19 20

0.1

0.2

0.3

0.4

0.5

Value of test statstic coefficient:si1
E

st
im

at
ed

pd
f

st for t = 11
Normal distribution fit
[x]i1

(B) At iteration t = 11, the test statistic co-
efficient at the first non-zero coefficient index.
The variance of the fitted normal distribution is

σ2 = 1.05

1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

Value of test statstic coefficient:siL

E
st

im
at

ed
pd

f

st for t = 6
Normal distribution fit
[x]iL

(C) At iteration t = 6, the test statistic co-
efficient at the last non-zero coefficient index.

σ2 = 3.91

0 1 2 3 4 5 6 7

0.1

0.2

0.3

0.4

0.5

Value of test statstic coefficient:siL

E
st

im
at

ed
pd

f

st for t = 11
Normal distribution fit
[x]iL

(D) At iteration t = 11, the test statistic co-
efficient at the last non-zero coefficient index.

σ2 = 1.05

FIGURE 2.2: Simulation results evaluating the distribution of two different coefficients of the test
statistic vector st at different iterations for 1000 runs with block length M = 3413, section length
B = 256, number of sections L = 512, rateR = 1.2, SNR = 15 and σ2

W = 1. The histograms of the
1000 runs, are fitted with a normal distribution. At this specific example the value of the corresponding

input coefficient of the first section is [x]i1 = 17.173 and of the last section [x]iL = 4.3049.

Figure 2.2 indicates, that later sections, which are allocated less power than the first sec-
tions, need more iterations until the test statistic elements are actually distributed according
st ∼ x + τ̄tv and the expectation operator outputs a reliable result. To further illustrate the
decoding procedure, Figure 2.3 shows a different viewpoint of the AMP decoding scheme.
Especially the fact, that later sections, with less power allocated, need more iterations to be
decoded correctly.

2.3. Approximate message passing decoder 15

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Iteration t

Se
ct

io
ns

de
co

de
d

co
rr

ec
tly

re
la

tiv
e

to
L
/8

1st 1/8 sections
4th 1/8 sections
6th 1/8 sections
Last 1/8 sections

FIGURE 2.3: The simulation run is conducted with number of sections L = 256, section length
B = 512, rate R = 0.6C, SNR = 15, σ2

W = 1 and exponential PA. The sections are grouped
into 8 parts, beginning at the first sections. So the first 256/8 sections are part of the first group.
At each iteration it is evaluated, how many sections of each group could be decoded correctly, if the
algorithm would be stopped. In the Figure the time evolution of the correctly decoded sections relative
to the total sections of each group is displayed. In this simulation run, not all sections are decoded
correctly. As can be seen, the errors occur at the last section group, where the least power is allocated
to. Unfortunately at iteration t = 9 a section is wrongly decoded, that would have been correctly

decoded at t = 8.

The last additive term on the RHS of (2.8) is called the Onsager term :

zt−1

τ2t−1

(
P − ‖x

t‖2
M

)
. (2.17)

and plays a crucial role in enforcing the test statistic to be distributed in the large system
limit according to st ∼ x + τ̄tv. Eliminating the Onsager term results in the basis for the
iterative soft-thresholding (IST) algorithm, which is introduced for compressed sensing in
[14]. A more detailed comparison of IST and AMP is given in [7], which can be used to
gather intuition about the Onsager term. Further examples of the role of the Onsager term
can be found in [13].

2.3.2 State evolution

Equations (2.6) and (2.7) are commonly know as state evolution (SE) in the CS regime.
For large dimensions N,M → ∞ the SE predicts several statistical properties of the AMP
algorithm over the number of iterations t, as shown in [7]. To gather insight into the AMP
algorithm and parameters of SE, we will take a look at a proposition stated in [8].

16 Chapter 2. Communicating over an AWGN channel

Proposition (1) Under the assumption that st = x + τtv, where v is i.i.d. ∼ N (0, 1)

and independent of x, the quantity βt+1 defined in (2.7)

βt =
1

MP
E[xᵀxt], 1− βt =

1

MP
E[‖x− xt‖2] . (2.18)

and consequently τ2t+1 = σ2W + 1/M E[‖x− xt‖2].

Therefore the iteration variable βt can be interpreted as the expected power-weighted
fraction of correctly decoded sections at the iteration t. To put this in other words, βt can be
seen as the fraction of power that is correctly decoded at a given iteration t (in the large system
limit). For illustrative purposes we can assign each input coefficient the same value, which
means that the power over all sections is equally distributed. Applying the constant PA, we
can use βt to track the actual fraction of correctly decoded symbols at each iteration (instead
of the power-weighted fraction). Because for a constant PA the fraction of the correctly
decoded power, then resembles the fraction of correct sections, which can be seen in Figure
2.4.

1 2 3 4 5 6 7 8 910−5

10−4

10−3

10−2

10−1

100

Iteration t

Esec: at SNR = 3.2
1− βt: at SNR = 3.2
Esec: at SNR = 2
1− βt: at SNR = 2

FIGURE 2.4: The simulation for L = 256 B = 512 and rate R = 0.5 at two different SNR values
over 1000 runs. The encoder uses flat PA. Note that the number of necessary iterations decreases with

the SNR.

The SE can also be used to predict the power weighted MSE of the AMP. For the large
system limit the relations in (2.18) are exact, but not for finite sized codewords. Nevertheless
simulation results show that the SE of 1 − βt matches the empirical found weighted MSE
1

MP E[‖x−xt‖2] for reasonable block lengths. Also the SE can be a useful estimation for the
expected power weighted fraction of correctly decoded sections at a given iteration t. This is
shown in Figure 2.5.

2.4. Power Allocation 17

0 1 2 3 4 5 6 7 8 9 10 11 12 13

10−2

10−1

100

State evolution: 1− βt
Empirical mean: 1− 1

MPx
ᵀxt

Empirical mean: 1
MP ‖x− xt‖2

Iteration t
0 1 2 3 4 5 6 7 8 9 10 11 12 13

10−2

10−1

100

FIGURE 2.5: Simulation results compared to the analytical state evolution for two cases: 1) left Figure
with block length M = 1000, section length B = 256 rate R = 0.7C and 2) right figure with block
length M = 6582, section length B = 512, number of sections L = 1024, rate R = 0.7C. Both at

SNR = 15. The empirical mean is evaluated for 200 runs.

In Figure 2.5 it can be seen that the state evolution can be used to track the MSE, but only
for increasing block lengths the state evolution gets indistinguishable from the empirical
MSE. Since we assume that st = x+ τtv, the empirical variance of the test statistics vector
var(st − x) can be compared to the pre-calculated τ2t . To gather further intuition about the
SE parameters this comparison is depicted in Figure 2.6.

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5
6
7
8

Iteration t

Empirical variance:
[
st − xt

]
i

τ2t

FIGURE 2.6: The empirical variance for 100 different coefficients of the vector st − xt, where the
choice of coefficients i is equally spread over the B · L possible coefficients. One can see that the
variances of [st−xt]i track τ2t very closely. For this exampleL = 256,B = 512,R = 1 SNR = 6.3.

200 simulation runs are conducted over which the empirical variance is calculated.

2.4 Power Allocation

——————————————————-
In this Section we will take a look at some different possibilities to scale the non-zero coef-
ficients of the input vector x. As already indicated in Section 1.2, the allocation of power to
each section of the input word x plays an important factor in the performance of SPARCs for
finite block lengths.

18 Chapter 2. Communicating over an AWGN channel

2.4.1 Constant power allocation

The most simple scaling is the constant power allocation, where each non-zero coefficient
has the same value assigned.

Pl = P
1

L
, l ∈ {1, . . . , L} . (2.19)

In later Sections we will conduct empirical simulations to compare the error performances of
different PA schemes. For most of the simulated scenarios, the SNR is set such that R/C >
0.5. Therefore the upcoming remarks are valid for a SNR region close to the Shannon Limit.
The simulations show that the AMP decoder with a constant value across each section results
in a good error performance at ratesR < 1. At higher rates error performance of the constant
PA decreases drastically. It seems that at approximately R > 1 more power is needed at the
initial sections to kick start the AMP algorithm, by decreasing the effective AMP noise τt for
the decoding of later sections. Among others this constant power allocation is researched in
[4], with an adapative successive decoding scheme.

2.4.2 Exponentially decaying power allocation

Next we consider an exponentially decaying power allocation for which the section power
Pl ∝ 2−κl/L. For evaluating the performance of the AMP decoder we will choose the fol-
lowing PA in specific:

Pl = P
22C/L − 1

1− 2−2C
2−2Cl/L, l ∈ {1, . . . , L} , (2.20)

where κ = 2C with the Shannon capacity according to (2.2) and a normalization factor, such
that P =

∑L
l=1 Pl. In [8] it is shown, that with this PA and AMP decoding, the SPARCs

asymptotically reach the AWGN capacity with growing block length M . Figure 2.7 shows
that for the exponentially decaying PA section errors occur most likely at sections that are
allocated the least power to. At this depicted setting, no decoding errors happen at lower
sections, indicating that more power than necessary could be allocated to the first coefficients
of x.

2.4. Power Allocation 19

0 512 1,024
0

0.2

0.4

0.6

0.8

1

Section

R
el

at
iv

e
po

w
er

al
lo

ca
te

d
to

ea
ch

se
ct

io
n Errors per section

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
nu

m
be

ro
fs

ec
tio

n
er

ro
rs

Errors per section
Power allocation scheme

FIGURE 2.7: The number of incorrect decodings with the power allocated to each section. The values
associated with both axis are relative to the maximum of the found data. The numerical evaluation
is conducted for 1000 runs, with the number of sections L = 1024, section size B = 512, at rate

R = 1.5 and SNR = 15.

Although the theoretical findings are promising, at practical block lengths the exponential
PA is outperformed by other PA schemes.

2.4.3 Algorithmic power allocation

Next we will introduce another PA scheme, which is based on a Lemma derived in [8], with
lim denoting the large system limit N,M,L→∞:

Lemma 1. For any power allocation {Pl}, l ∈ {1, . . . , L} that is non-increasing with l, we

have

β̄(τ) := lim β(τ) = lim
∑bη∗(τ)Lc

l=1

Pl
P
, (2.21)

where η∗(τ) is the supremum of all η ∈ (0, 1] that satisfy

lim LPbηLc > 2ln(2)Rτ2 . (2.22)

If lim LPbηLc < 2ln(2)Rτ2 for all η > 0, then β̄(τ) = 0.

As already stated βt+1 represents the expected power-weighted fraction of correctly de-
coded sections at the iteration t + 1. Therefore, Lemma 1 states that in the large system
limit sections l up to bη∗(τ̄t)Lc can be decoded correctly at a given iteration t+ 1 and AMP
noise τ̄t. All sections that do not satisfy the condition 2.22, meaning l > bη∗(τ̄t)Lc are
not correctly decoded at step t + 1. We can use Lemma 1 to derive a PA scheme, which
was first introduced in [15] and denoted as algorithmic power allocation. First we fix the
number of maximal AMP iterations to T ∗ and we plan to decode L/T ∗ sections at each it-
eration. So for the first fraction of sections we determine asymptotically the value of {Pl}
for l ∈ {1, . . . , L/T ∗} that is necessary to be able to decode the L/T ∗ fractions and itera-
tively continue to the next part of the sections {Pl} for l ∈ {L/T ∗ + 1, . . . , 2 L/T ∗}. This
procedure can be described as follows, t = {0, . . . , T ∗− 1}, tolerance value δ > 0 and with:

τ20 = σ2W + P, β0 = 0, L̃t =
L

T ∗
t+ 1 . (2.23)

20 Chapter 2. Communicating over an AWGN channel

At each step t calculate:

Pth =
2ln(2)Rτ2t

L
+ δ , (2.24)

Prem =
P −∑L̃t

l=1 Pl

L− L̃t
, (2.25)

Pl = max(Pth, Prem), for L̃t < l ≤ L̃t+1 , (2.26)

βt+1 =
∑L̃t+1

l=1

Pl
P
, τ2t+1 = σ2W + P (1− βt+1) . (2.27)

Especially at the later sections/iterations the value of Pth (2.24) can be lower than if the re-
maining power would be distributed equally over the remaining sections in (2.25). Therefore
at each iteration the value of Pth is compared to Prem. The greater quantity is chosen as
power value for the sections L̃t < l ≤ L̃t+1 at iteration t, in (2.26). The tolerance value
δ in (2.24) guarantees that the inequality (2.22) in Lemma 1 is fulfilled. Figure 2.8 gives a
graphical explanation of the algorithmic PA.

2.4. Power Allocation 21

10 20 30 40 50 60 70 80 90 100

t = 5
= T ∗

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

t = 4

t = 3

0

0.05

0.1

0.15

0.2

0.25

t = 2

t = 1

0

0.05

0.1

0.15

0.2

0.25

0.3

Allocated power:
Pl = max(Pth, Prem)
Threshold value:
Pth = 2ln(2)Rτ 2t /L+ δ
Remaining power equally distributed:
Prem = (P −∑L̃t

l=1 Pl)/(L− L̃t)

L/T ∗

Number of sections

Po
w

er
of

ea
ch

se
ct

io
n

FIGURE 2.8: An example of the algorithmic PA, for the number of sections L = 100, T ∗ = 5, P =
15, σ2

W = 1. Note that at iteration t = 3 the green horizontal line Prem is greater than the red
threshold value Pth and therefore the sections under consideration get appointed the value of Pl =
Prem, for L̃3 < l ≤ L̃4. Once Pth < Prem the remaining sections can be set to Prem since Pth is

monotonically decreasing with t.

Figure 2.8 is an explanatory example, where as Figure 2.9 compares the two beforehand
mentioned PA schemes under a more practical setting.

22 Chapter 2. Communicating over an AWGN channel

0 50 100 150 200 250 300 350 400 450 500 550
0

2

4

6

8

·10−2

Theoretical power limit: Pth

Exponential power allocation: Pl ∝ 2−κl/L

Algorithmic power allocation

Section l

Po
w

er
of

ea
ch

se
ct

io
n
P
l

FIGURE 2.9: Comparison between the exponential PA Pl ∝ 2−κl/L and the iterative algorithmic PA
with the number of sections L = 512, rate R = 1.4, SNR = 15 and number of steps T ∗ = 16. The

dashed line shows the threshold value Pth calculated as in (2.24).

Lemma 1 is stated for the large system limitM,L,B →∞ but can be used as a guideline
for finite block lengths. To be able to modify the set of PA values Pl, we set δ = 0 and
introduce an additional parameter RPA ≥ 0. The parameter RPA is used to compute a
PA rate R′, which is only used for calculating the PA values and deviates from the actual
communication rate. This is done in the following fashion: i) select some RPA, for example
1.1, and multiply it with the rate R to calculate R′ = RPA ·R. ii) compute the section power
Pl, l ∈ {1, . . . , L} according to (2.24) - (2.27), while exchanging R with the modified rate
R′.
Note that the actual communication is carried on at rate R. Figure 2.10 illustrates the effect
of choosing a different rate for the power allocation R′ 6= R. As one can see, choosing
RPA > 1 results in an increase of power at the initial sections and a reduction of power at
the later sections, in comparison to R = R′. For RPA < 1 the power at the lower sections is
decreased and the values at the higher sections are increased.

2.4. Power Allocation 23

0 50 100 150 200 250 300 350 400 450 500 550
0

1

2

3

4

5

6

7

8
·10−2

Theoretical power limit: Pth

Algorithmic power allocation: RPA = 1.1

Algorithmic power allocation: RPA = 0.9

Section l

Po
w

er
of

ea
ch

se
ct

io
n
P
l

FIGURE 2.10: Different PA at RPA = 1.1 and RPA = 0.9 and the theoretical power threshold Pth
for parameters: number of sections L = 512, rateR = 1.4, SNR = 15 and number of steps T ∗ = 16.
For RPA = 1.1 more power is allocated to the initial sections at the cost of having less power for the

later sections and especially the flat sections at the end. For RPA = 0.9 the reverse effect occurs.

An additional benefit of the algorithmic PA is, that the βt and τt computed as in (2.27) can
be used in the AMP algorithm in (2.8) and (2.9), without the Monte-Carlo pre-computations
in (2.6) and (2.7).
The number of iterations T ∗ for the PA, on the one hand defines the granularity of how many
sections get assigned the same value of power and on the other hand, it sets how often the
"online" part of the AMP ((2.8) and (2.9)) iterates. Ideally one wants to choose the number
of steps in the PA equal to the number of sections T ∗ = L, which would cause the AMP run
time to prolong. To overcome this, [16] introduced an estimation of the "offline" AMP values,
that can be computed during run-time of the "online" decoding. This has the advantage that
one can choose T ∗ of the PA independently of the actual AMP iterations.

2.4.4 Choice of the power allocation rate RPA

A theoretical analysis of the optimal RPA for finite length codes and minimal error perfor-
mance has not been undertaken at this point. The value of RPA has a drastic influence on
the section error rate for a given code setting, which can be seen in Figure (2.11), where the
simulated mean section error rate varies up to a decade with different values for RPA.

24 Chapter 2. Communicating over an AWGN channel

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
10−4

10−3

10−2

10−1

100

Algorithmic PA rate RPA

M
ea

n
se

ct
io

n
er

ro
rr

at
e
E s

ec

SNR = 10
SNR = 15

FIGURE 2.11: Two examples for the dependence of the section error rate on the value of RPA. The
number of sections L is equal to the section length B, i.e. B = L = 256. The communication rate is

is fixed to R = 1.5.

To find a rough optimum for RPA and a specific setting {B,L,R, SNR}, we apply a so
called bisection algorithm [17] to the region of the possible optimumRPA. In Figure 2.11 we
see, that the section error rate has a steep descent when approaching the region of the minimal
RPA value. When increasing RPA further past the minimum value, the mean section error
rate shows a positive gradient. This can be explained by observing the distribution of the
number of section errors. As an illustrative example we take a look at three distributions at
different RPA values.

2.4. Power Allocation 25

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1
·104

RPA = 1

200 400
0

2

4

6

(A)

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1
·104

RPA = 1.08

N
u
m
b
er

of
ru
n
s

200 400
0

2

4

6

(B)

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1
·104

RPA = 1.16

Number of section errors per run

200 400
0

2

4

6

(C)

FIGURE 2.12: Histogram for the number of section errors with L,B = 512, SNR = 15, R =
1.5 = 0.7C and 104 simulation runs. The histogram is split into two regions, one with the number of
runs that resulted in a low number of section errors (≤ 10) (left) and the second one with more than
ten section errors (right). For the lowest RPA value of the three scenarios, see Figure 2.12a, the error

distribution is very different to the distributions of the higher RPA values.

First we compare RPA = 1, in Figure 2.12a, with the scenario of an higher RPA = 1.08

value, which found to show the lowest section error rate (Figure 2.12b). In Figure 2.12a it
is more likely for a simulation run to have an high error event. In this setting an high error
event is denoted as a simulation run with more than 10 section errors. It is noteworthy that
the section error rate for RPA = 1 is the highest of the three compared scenarios, but the
codeword error rate is the lowest, since it shows the greatest number of error-free trials. In
general RPA > 1 allocates more power to the initial sections compared to the theoretical
optimal value and decreases the power at later sections. Increasing RPA has the following
effect on the distribution of the number of section errors over simulation runs: The number

26 Chapter 2. Communicating over an AWGN channel

of runs with a low section error count increases, while the number of runs with an high count
of section errors decreases (see Figure 2.12b). At the RPA value with the lowest observed
section error rate, we see a very low chance of an high error event. By further increasingRPA
the number of high error events hardly change, but since a lower amount of power is allocated
to the last sections, the low error count increases (see Figure 2.12c). This explains the pos-
itive gradient of the mean section error rate after passing the region of the optimalRPA value.

2.5 Complexity

——————————————————-

2.5.1 Online state evolution estimation

The so-called state evolution parameters τt and βt, which are described in the Sections 2.3
and 2.3.2, are part of the AMP decoding scheme and can be used to estimate the (power-
weighted) MSE of the decoding process. For a short review we take a look at the first men-
tioned approach, which computes the SE parameters according to (2.6) and (2.7). This calcu-
lation has to be performed before the communication starts and requires lengthy Monte-Carlo
simulation, or other methods, to numerically evaluate the expectation. This can be avoided,
when the algorithmic PA scheme is used and τt, βt are calculated as in (2.27). Another possi-
bility, that was introduced in [16], is to estimate the SE parameters while running the online
part of the AMP decoder. At each iteration of the AMP compute the following equation, with
zt as in (2.8).

τ̂t
2 =
‖zt‖2
M

. (2.28)

This estimation is based on a part of Lemma 5(e) in [8], which concludes that (2.28) holds
true with high probability under the large system limit. Including (2.28) in the online com-
putation only adds low computational complexity of orderO(M) but has several advantages.
When using the algorithmic PA the number of steps T ∗ is independent of the online AMP
iterations and can therefore be chosen to be equal to the number of sections L. The change
of the estimates τ̂t2 can be used as a stopping criterion. If the difference of τ̂t2 between
iterations is smaller than a certain threshold ε, |τ̂t2 − τ̂2t−1| < ε, the AMP decoder can be
stopped. The simulated section error rates using the estimated τ̂t2 according to (2.28) are
close and even lower at specific rates R than when using the SE parameters calculated by
other methods. This can be seen in Figure 2.13, which shows the mean section error rate
over the rate R, a plot reproduced from literature [16], but it includes additional information
of the PA parameters, RPA, that are used.

2.5. Complexity 27

1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

RPA = 1

RPA = 1.01

RPA = 1.04

RPA = 1.05

RPA = 1.06

Rate

M
ea

n
se

ct
io

n
er

ro
rr

at
e

Algebraic power allocation
Algebraic power allocation online

Exponential power allocation
Exponential power allocation online

FIGURE 2.13: Mean section error rate plotted against the rate R, for L = 1024, B = 512 at SNR =
15 averaged over 1000 runs. The block length decreases linearly with the rate 1/R and is in between
[6582, 5120]. In the above Figure two power schemes are compared, the exponentially decaying and
the algorithmic PA. As one can see, the algorithmic PA scheme outperforms the former. At each

simulated point the rate for the algorithmic PA RPA is given, see Section 2.4.3.

Further we can compare the estimated SE parameter τ̂2t with the pre-calculated values of
τ2t according to (2.6) and see in Figure 2.14, that τ̂2t is close to τ2t .

1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

Iteration t

Online: τ̂ 2
Online: Mean of τ̂ 2
Offline: τ 2

FIGURE 2.14: 100 runs for τ̂2t = ‖zt‖2/M plotted against the iterations. Further displayed are the
mean of τ̂2t for 100 runs and the pre-calculated τ2t . For this plot the number of sections L = 256, the

section length B = 512, rate R = 0.5, SNR = 1.77 and algorithmic PA.

28 Chapter 2. Communicating over an AWGN channel

As described in Section 2.3.2 the SE parameters can be used to track the progress of
the AMP decoding algorithm. In specific we can track the (power-weighted) MSE of the
estimated xt compared to the actual input sequence x, as well as the (power-weighted) frac-
tion of sections that are decoded correctly at a given iteration t. In Figure 2.15 the before
mentioned quantities for the AMP algorithm, implemented with online SE estimation, are
plotted. At the initial iterations, we can see that the MSE and the fraction of correctly de-
coded symbols differ from the corresponding SE parameters, while at later steps the different
plots converge.

1 2 3 4 5 6 7 8 9 1010−2

10−1

100

Iteration steps t

Online:Mean of 1− β̂t
Online:(1/MP)E[xᵀxt]
Online:(1/MP) E[‖x− xt‖2]
Offline:1− βt

FIGURE 2.15: The mean values are evaluated over 200 runs. The simulation parameters are set to
L = 256, B = 512, R = 0.5 SNR = 1.77.

2.5.2 Hadamard coding matrix

One of the main disadvantages of using a Gaussian random coding matrix A is the need
to store each of the MN elements. This causes a bottleneck in memory, when one wants
to use larger block lengths with limited memory resources. As an intuitive example, given
the section length B = 512, number of sections L = 1024 and rate R = 1.2 results in a
block length ofM = 7680 (see (1.2)). At these medium size block lengths one needs to store
MN ≈ 4·109 elements. Further, the decoder’s computational complexity is dominated by the
matrix-vector multiplications Axt, Aᵀzt in (2.9) and (2.8). In general, these matrix-vector
multiplications are of complexity O(MN), the running time of the remaining operations
is O(N). To speed up the decoding process and relax the memory requirements, we will
consider structured random matrices, which are also common in compressed sensing. These
structured matrices are generated by a random choice of a number of parameters, which
are much smaller than all the MN elements of a Gaussian random matrix. In specific we
will consider Hadamard matrices, which can be constructed recursively, with dim(Hm) =

2m × 2m and H0 = 1, as:

Hm =

[
Hm−1 Hm−1
Hm−1 −Hm−1

]
. (2.29)

2.6. Estimating error rates 29

The coding matrix then would be constructed by 1) Setting m = log2(N) resulting in an
N ×N matrixHm. 2) Randomly choose M rows ofHm, except the first row which consist
of all ones, and stack them to a coding matrixA. Each row has equal probability to be chosen
as a candidate forA 3) Normalize each column vector to norm 1 by multiplying each element
with 1/

√
M . The codeword then would be obtained by a matrix-vector multiplication c =

Ax. This alone will not reduce the computational complexity, but the use of the Walsh-

Hadamard Transform (WHT) will, for which there is a "fast" algorithm similar to the Cooley-
Tukey algorithm used for the Fast Fourier Transform (FFT). Instead of saving the whole
coding matrixA, the M indices of the randomly chosen rows are kept and further denoted as
the set SM . So instead of calculating the matrix-vector product Ax, one would compute the
length-N WHT of x and only consider the indices given by SM . For calculating Aᵀzt with
the WHT the vector zt ∈ RM has to be extended to z̃t ∈ RN , where the M coefficients of
[z̃t]i, i ∈ SM are set to the coefficients of zt and the remaining elements to zero. Since the
Hadamard matrix is symmetric:

WHT (z̃t) = Hmz̃
t = Hᵀ

mz̃
t =

∑
i∈SM

[Hm]i:z̃
t
i =

∑M

i=1
[A]i:z

t
i = Aᵀzt . (2.30)

For the AMP decoder it is only necessary to store the indices SM making the memory re-
quirements O(M). The WHT reduces the complexity of the matrix-vector multiplication to
O(Nlog2N) (see [18]).

2.6 Estimating error rates

——————————————————-
In this Section we will take a look at different possibilities to estimate the section error
rate Esec for a certain choice of code and channel parameters, without conducting empirical
simulations. The authors of [8] suggest that the expectation of the correctly decoded sections
after the iteration t+ 1 can be calculated as

vt+1 :=
∑L

l=1

1

L
E

[
exp(

√
MPl
τt

(Ul1 +
√
MPl
τt

))

exp(
√
MPl
τt

(Ul1 +
√
MPl
τt

)) +
∑B

j=2 exp(
√
MPl
τt

Ulj)

]
, (2.31)

with i.i.d random variables Ulj ∼ N (0, 1) for j ∈ {1, . . . , B}, l ∈ {1, . . . , L}. The derivation
is similar to the one of the state evolution parameter βt, but in contrast to βt (see Subsection
2.3.2), which estimates the expectation of the power weighted correctly decoded section after
t+ 1, vt can be used to predict the expected section error rate at a certain iteration. With the
number of iterations T ∗, the expected section error rate at the end of the AMP decoding is
then vT ∗ .

Esec = vT ∗ . (2.32)

Another method to predict the section error rate and the codeword error rate is proposed in
[16].

30 Chapter 2. Communicating over an AWGN channel

Proposition 1([16]). Let the power allocation {Pl} be such that the state evolution iter-

ation using the asymptotic approximation converges to τ2T = σ2N . Under the assumption that

xT +A ∗ zT = x+ τTZ (where Z is a standard normal random vector independent of β),

the finite length section error rate and codeword error rate are given by

Ēsec = 1− 1

L

∑L

l=1
E

[
Φ(

√
MPl
σ

+ U)

]B−1
, (2.33)

Ēcw = 1− 1

L

∏L

l=1
E

[
Φ(

√
MPl
σ

+ U)

]B−1
. (2.34)

In both expressions above, U is a standard normal random variable, and Φ(.) is the standard

normal cumulative distribution function.

In Figure 2.16 numerical results for practical block lengths are compared with the be-
fore mentioned estimating methods. The predicted section error rates are very close to the
empirical results. Both variants ((2.31) and (2.33)) provide similar error rate predictions.
Complexity wise the prediction according to (2.33) is less demanding, since only one ran-
dom variable is in use.

1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9
10−6

10−5

10−4

10−3

10−2

10−1

Rate

M
ea

n
se

ct
io

n
er

ro
rr

at
e

Exponential power allocation
Algebraic power allocation

estimated Esec: vT ∗

estimated Esec: Ēsec

FIGURE 2.16: A Comparison of the error section prediction methods to empirical results. The mean
section error rate is plotted against the rate R, for L = 1024, B = 512 at SNR = 15 averaged over
1000 runs. The block length is proportional to 1/R and is in between [6582, 5120]. In the above
Figure two power schemes are compared, the exponential decaying PA and the algorithmic. The
expectation operator of (2.31) and (2.33) is numerically evaluated via Monte-Carlo method for 1000

runs.

31

Chapter 3

Numerical evaluation

3.1 Introduction

——————————————————-
Now that we have established the necessary building blocks of our AMP decoding scheme,
we will numerically evaluate the reliability and further aspects like the number of iterations
and the decay of the error rate with increasing block lengths.

• In Section 3.2 the number of necessary iterations for the AMP algorithm under a given
setting is investigated. We introduce a theoretical limit for the necessary iterations
of the AMP algorithm from recent literature and compare it with empirically found
values.

• In Section 3.3 we will look into the decay of the error rate when increasing the block
length M . Again theoretical and simulated results are compared.

• Since M is defined by L, B and the rate R, the question of how to choose L and B at
a fixed rate R, arises. In Section 3.4 the error performance for different L/B ratios is
evaluated and an heuristic guideline is provided.

• In Section 3.5 numerous simulations are compactly presented to provide a deeper un-
derstanding of the influence of the PA’s parameters on the (section) error rate.

• Next we compare the bit error rate of SPARCs with different parameters to the perfor-
mance of state of the art coded modulation schemes.

For the numerical evaluation we use Hadamard coding matrices with the algorithmic PA and
online SE estimation.

3.1.1 The bit error probability and Eb/No

When wanting to compare our SPARCs encoding and decoding scheme for different code
parameters, we have to define a measure which describes how good an algorithm is, and later
evaluate them for that measure. One intuitive performance measure, is the section error rate:

Esec = 1/L
∑L

i=1
I{xi 6= x̂i} . (3.1)

32 Chapter 3. Numerical evaluation

Although the Esec comes in handy, we want to put SPARCs in context with more conventional
coding approaches. The bit error rate Eb is often used in coding related literature and scientific
work to measure the reliability of a coding scheme. Eb is the ratio of incorrectly decoded
information bits over the number of total information bits sent. Another common measure is
the block error probability Eblock = E{x 6= x̂}. For SPARCs, Monte Carlo simulations show
the relation between the bit error rate and the section error rate:

Eb ≈
1

2
Esec . (3.2)

The reason for this dependence is the following: For simplicity we will consider one specific
section i of the input vectorx. The non-zero coefficient of the ith section can be atB different
locations. We fix the sent index to m ∈ {1, . . . , B}. We assume that if a section error occurs
at section i, any other section index m̂ 6= m can be the outcome of our decoder with equal
probability. An example of this circumstance is shown in Figure 3.1.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

50

100

150

200

250

300

350

400

450

500 Index of transmitted section m = 1

Index of decoded section m̂

N
um

be
ro

fr
un

s

FIGURE 3.1: The distribution of decoded section indices given that a section error occurred. The sent
index is fixed to m = 1. The code parameters are L = 64, B = 16 and R = 1. The dashed blue line

indicates the total number of errors divided by B − 1.

For ease of notation we denote the total number of bits per section as l = log2(B). We
denote the number of incorrect bits given that a section error occurred as N ∈ {1, . . . , l}. In
general there are

(
l
n

)
possible combinations of how n bits of total l bits can be in error. Each

of these combinations correspond to a wrongly decoded section index m̂ 6= m, which are all
equally probable with probability 1/(B − 1). The expectation of N is

E[N] = µN =
1

B − 1

∑l

n=1

(
l

n

)
n . (3.3)

3.2. Number of AMP iterations 33

Rewriting the sum in (3.3) and applying the binomial theorem

∑l

n=1

(
l

n

)
n =

∑l

n=1

l!

n!(l − n)!
n =

∑l

n=1

l!

(n− 1)!(l − n)!

= l
∑l

n=1

(l − 1)!

(n− 1)!(l − n)!
= l
∑l−1

k=0

(l − 1)!

(k)![(l − 1)− k]!

= l
∑l−1

k=0

(
l − 1

k

)
1(l−1)−k1k = l(1 + 1)l−1 = l2l−1 = l

B

2
.

Therefore the expected number of erroneous bits given that a section error occurred is

µN =
l

2

B

B − 1
. (3.4)

The bit error probability Eb is the expected number of total erroneous bits Esec ·L ·µN divided
by the number of total transmitted bits L · l, i.e.,

Eb =
µN
l
Esec =

1

2

B

B − 1
Esec . (3.5)

For large values of B the bit error rate Eb can be approximated in terms of the section error
rate Esec as in (3.2). So when trying to minimize the section error rate also the bit error rate
is minimized. In general this is not the case for the block error probability Eblock.
A common method for comparing the performance of different digital modulation and cod-
ing schemes, is established by calculating and visualizing the dependence of the bit error
probability Eb on the transmit energy per bit to noise power ratio Eb/No. Previously we de-
fined the signal-to-noise ratio as SNR = P/σ2W . Now we want to reformulate the SNR in
terms of the ratio Eb/No. For SPARCs the average power of a codeword is constrained to P .
Therefore the average energy of a codeword equals P M . Since we transmit L log2(B) bits,
the energy per bit equals Eb = P M/(L log2(B)) = P/R. With the power spectral density
of the noise No/2 = σ2W (we previously denoted our noise vector as w) the ratio Eb/No

reads as
Eb
No

=
P

σ2W 2R
=
SNR

2R
. (3.6)

3.2 Number of AMP iterations

——————————————————-
For the AMP with an exponentially decaying PA the authors of [9] derive an upper bound
for the number of AMP iterations T . The upper bound defines the number of iterations that
are necessary to confine the variance τ2T of the AMP noise at step T in a close interval near
the variance of the channel noise σ2W . At this point the algorithm can be stopped. We will
first review the findings of [9] and then proceed to take empirical measures to determine the
number of AMP iterations under different settings for the algorithmic power allocation and
"online" SE estimation (see Subsection 2.5.1). With a fixed constant c ∈ (0, 1/2) let

f(B) = 2 exp

(
−1

2
[ln(B)]1−2c

)
, δB = 3[ln(B)]−c , (3.7)

34 Chapter 3. Numerical evaluation

and

κ =
(1 + SNR)L+1/L

C ln 2
, (3.8)

then with

d∆−1ξ e ≤ d
(

1

2C log2

(C
R(1 + δB/2)

)
− 1

L
− κf(B)

)−1
e

(a)
≈ 2C

[
log2

(C
R(1 + δB/2)

)]−1
,

(3.9)

run the AMP decoder for T iterations, where T := 1 + d∆−1ξ e.
This guarantees that the variance τ2T of the test statistic at iteration T is in the interval
[σ2W , σ

2
W + τ20 f(B)]. This is derived for the exponentially decaying PA and under the con-

dition that the gap to the capacity is C − R ≥ δB . Note that the approximation (a) of (3.9)
gains accuracy as B and L grow larger. For the complete derivation see [9].
To gain insight into the number of necessary AMP iterations and the dependence of T on the
values of C and R/C empirical simulations are visualized in Figure 3.2. These simulations
are conducted for the algorithmic PA with "online" SE estimation. We can see that, as for
the exponentially decaying PA, the number of iterations T shows an approximately linear
increase with C, when keeping the ratioR/C constant. Keeping the SNR and therefore the C
constant and increasing R towards the capacity C, the number of iterations T is proportional
to (log2(C/R))−1.

0.8 0.83 0.85 0.88 0.9
10

20

30

40

50

60

70

80

R/C

N
um

be
ro

fi
te

ra
tio

ns
T

Empirical mean
2C (log2(C/(R + δ)))−1

(A) The empirical mean of the necessary AMP
iterations for fixed SNR compared to the theo-

retical approximation.

1.5 2 2.5 3

30

35

40

45

Shannon Capacity C

N
um

be
ro

fi
te

ra
tio

ns
T

Empirical mean

(B) The empirical mean of the necessary AMP
iterations for a constant ratio of R/C and in-
creasing SNR. One can observe a linear in-

crease in AMP iterations.

FIGURE 3.2: The AMP iteration’s dependence on parameters C and R, where the mean is calculated
over 200 runs and is in accordance with theoretical findings. For these simulations the "online" AMP

algorithm is used, with the stopping criterion as |τ̂2T − τ̂2T−1| < (PL · 10−3)

To put all this into perspective and deliver an intuition about the range of the iterations
needed, we further display the mean number of steps resulting from empirical simulations
for different rates and SNR values.

3.3. Error exponent 35

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

20

40

60

80

100

120

Distance to shannon capacity in [dB]

M
ea

n
nu

m
be

ro
fi

te
ra

tio
ns

T

R = 1.5
R = 1
R = 0.5

FIGURE 3.3: Mean number of iterations for 1000 runs evaluated for L = 256, B = 512 and over
increasing SNR values. Here the SNR is given as the gap to capacity in dB. As stated by theory, the

number of iterations depend strongly on C and in turn on the SNR.

As can be seen in Figure 3.3 the AMP iterations for our simulation settings are in the
region of 101 to 102. As the gap to capacity increases, the plots for the different rate settings
converge to a value in the range of 10. In the next section a large deviation bound is pre-
sented, for which the influence of R and C is represented only by the number of iterations T .
Therefore a deepened understanding of T for the AMP configuration under test, can help to
explain different error distributions at different SNR and R values.

3.3 Error exponent

——————————————————-
In this Section we will look at how fast the decay of the section error rate takes place, when
increasing the block length M , while keeping the SNR and the rate R constant. At first
some theoretical findings and probability bounds from [9] are given and then a numerical
evaluation is presented. The authors of [9] derived a large deviations bound for the section
error rate of the AMP decoder given an exponentially decaying PA. The theorem gives an
upper bound for the probability of deviation of the section error rate Esec from an arbitrary
value ε. With a fixed constant c ∈ (0, 1/2) let

Theorem 1. ([9]) Fix any rate R < C. Consider a rate R SPARC SM with block length M ,

design matrix parameters L,B determined according to (1.2) and an exponentially decaying

power allocation given by (2.20). Let ε > 4(1+SNR)
ln(1+SNR)f(B), where f(B) is defined as (3.7).

Then the section error rate of the AMP decoder satisfies:

P (Esec(SM) > ε) ≤ KT exp

{
−kTL

(logB)2T−1

(
εσ2 ln(1 + SNR)

4
− τ20 f(B)

)2
}
, (3.10)

where T as defined in Section 3.2. (The constant c required to define T and f(B) can be

arbitrarily chosen in the interval (0, 1/2), but must be the same for both quantities.)

36 Chapter 3. Numerical evaluation

T is the number of iterations, that are necessary for the AMP algorithm to reach its
convergence in the sense, that the AMP noise τ2T is close to the channel noise σ2w. For the
exponentially decaying PA T ∝ log(CR)−1. Therefore T increases as R increases towards C.
κT and KT are constants that solely depend on T , but are not explicitly specified. Theorem
1 can be used to state a bound for the decay of the section error rate with increasing block
length M . We set ε and the rate R < C constant and let L,B and M grow large. The value
of f(B) (3.7) goes to zero as B increases, and the term εσ2 ln(1 + SNR) stays constant.
Therefore the bound in (3.10) decays with growing L, B if kTL > (logB)2T−1. As stated
in Section 3.2, for large L and B the number of necessary AMP iterations T only depends
on the ratio C/R (3.9). Hence T can be treated as a constant in the scenario of evaluating
the error exponent for large B, L and M . By choosing B = La both L and B grow with
M/ log(M) and as a consequence an upper bound for the section error rate decay is an
exponential function in M

log(M)2T
. This can be used to describe the further asymptotic results

for SPARCs with AMP decoding. For this we will revise the Borel-Cantelli Lemma, which
states:

Lemma 2. (Borel-Cantelli Lemma) Suppose that {Am : m ≥ 1} is a sequence of events in

a probability space. If: ∑∞
m=1

P (Am) ≤ ∞ , (3.11)

then limm→∞ P (Am) = 0

To apply the Borel-Cantelli Lemma to SPARCs, we set Am equal to SM , with block
length M , under the conditions stated above. From Theorem 1 and the considerations con-
cerning the decay of the error exponent, it is clear that

∑∞
M=1 P (Esec(SM) > ε) ≤ ∞. By

using the Borel-Cantelli Lemma, therefore

lim
M→∞

P (Esec(SM) ≥ ε) = 0 . (3.12)

For any ε > 0, R < C and L = Ba as before. This states that SPARCs for the given setting
are actually capacity achieving in the large system limit. An equivalent formulation can be
found in [8]. Now that we have revised promising theoretical results from literature, we
conduct empirical simulations over increasing block lengths.

3.4. Choosing L and B 37

1000 5000 10000
·104

10−5

10−4

10−3

10−2

10−1

Blocklength M

Se
ct

io
n

er
ro

rr
at

e
E s

ec R = 0.5
R = 0.75
R = 1
R = 1.5

FIGURE 3.4: The mean section error rate of 1000 runs is plotted against the block length M for sets
of B = 2L and L ∈ {25, . . . , 28}. For all four plots the SNR is set such that R/C = 0.75. Note that
the block length M depends on the rate by ∝ 1/R. This is the reason for the longer block lengths at

lower rates.

Figure 3.4 displays a dependence of the reliability of SPARCs with AMP decoding on
the chosen rate R. We can see for our lower rate settings R = 0.5 and R = 0.75, the
error decays only slightly with increasing M . We can conclude that lower rate settings, e.g.
R = 0.5, need a lower R/C ratio than higher rate settings, e.g. R = 1, to exhibit a steep
error rate decay. In Figure 3.9 and Figure 3.10 we can observe that the decay of error rate
with increasing parameters L,B,M and fixed R is dependent on the underlying SNR and
therefore dependent on the R/C ratio.

3.4 Choosing L and B

——————————————————-
In practical case scenarios the maximum block length applicable is limited due to delay
constraints. In this Section we will investigate the dependence of the section error rate on
the choice of code parameters B and L under fixed SNR and rate R. As a reminder the
length of the codeword depends on L,B and R in the following manner M = L log2(B)/R.
Therefore certain values for M can be achieved by different settings of L,B and R, for
example both codes (1) : S512 = {L = 128, B = 16, R = 1} and (2) : S512 = {L =

64, B = 256, R = 1} result in the same block length M . Now the question arises of how
to choose between different possibilities. The most intuitive would be to decide for a code
setting, that experiences the lowest experimental Esec. In Figure 3.5 we can observe, that
for a fixed number of sections L and varying section length B the section error rate Esec
significantly decreases up to a point where B = L and then approximately stays the same.
Therefore the block length increases with log2(B) and the complexity with O(B), but the
section error rate Esec hardly decreases.

38 Chapter 3. Numerical evaluation

26 27 28 29 210 211 212 213
0

1

2

3

4

5

6

7
·10−3

Section length B

M
ea

n
se

ct
io

n
er

ro
rr

at
e
E s

ec

Empirical Esec
Ēsec
ESEsec

FIGURE 3.5: The number of sections L = 1024 is fixed and the section length B is increased to
evaluate the effect on the section error rate Esec. For the point B = 213, 1000 runs are conducted. For
all other B values more runs are simulated, such that the same amount of bits are transmitted for any
choice of parameters. The dashed plots represent the estimated error rates, see Section 2.6. The block
length M ranges [4096, 8875]. The algorithmic PA is applied and RPA is [1.01, 1.06] monotonically

increasing with B. At SNR = 11.146

Note that Figure 3.5 is for one fixed SNR value and the threshold, at which the section
error rate Esec does not decrease with a further increase in section length B, depends on the
SNR. This can be seen in Figure 3.10, where at lower SNR values the plots for different
L/B ratios converge. With increasing SNR, code settings with a greater B value decay
faster. As a guideline for empirical block lengths, it is advisable to choose B in an interval of
[L, 4L]. By fixing L,R, SNR and RPA and increasing the section length B one can observe
a change in the section error distribution. This is visualized in Figure 3.6. The greater the
section length B gets, the more the distribution changes and the number of section errors per
run is less concentrated about the mean value of Esec.

3.4. Choosing L and B 39

0 5 10 15 20
0

200

400

600

N
u
m
b
er

o
f
ru
n
s

L = 1024 B = 64
L = 1024 B = 2048

Number of section errors per run

300 400 500 600
0

1

2

3

4

FIGURE 3.6: The error distribution of two different code settings, but SNR = 11.14, R = 1.5 and
RPA = 1.01 are the same for both scenarios, over 103 runs. The histogram is divided into a low and
a high section error count region. The x-axis is truncated, where outside of the region no error count

event occurred.

We see that higher section errors get more likely, when increasing the section length B.
This can be explained with the large deviation bound of (3.10), where the exponent of the
bound is ∝ 1/ log(B)2T−1 and therefore a growing B increases the probability of an error
event, that deviates from ε. Note that the number of error free trials increases for greater B
values but so do the high error events. The simulation in Figure 3.6 is done for the same
RPA value for both settings. The effect of the increased number of high error events (with
greater values for B) can be counteracted by an increase of the RPA value. This can be
explained by assuming that the high number error events are caused by section errors at
the initial sections, which then in turn propagate the error through AMP iterations to the
following sections. Therefore with a greater value of RPA and more power allocated to the
initial sections, the overall error performance does not degrade, as we see in Figure 3.5.
By fixing the section length B as well as L,R, SNR,RPA and increasing the number of
sections L, we see that the error distribution is more concentrated around the empirical mean
and high number error events get less likely. This is visualized in Figure 3.7. This discovery
is in accordance with the deviation bound of (3.10), where the negative exponent is ∝ L.

40 Chapter 3. Numerical evaluation

0 10 20 30
0

200

400

600

N
u
m
b
er

o
f
ru
n
s

L = 64 B = 1024
L = 2048 B = 1024

Number of section errors per run

40 60 80 100 120
0

1

2

3

4

FIGURE 3.7: The error distribution of two different code settings, with SNR = 11.14, R = 1.5 and
RPA = 1.14 are the same for both scenarios, over 1000 runs. The histogram is divided into a low and
a high section error count region. The x-axis is truncated, where outside of the region no error count

event occurred.

Note that the simulations depicted in Figures 3.6 and 3.7 are conducted for the rate R =

1.5 and for lower rates, e.g. R = 0.5, these before mentioned phenomenons of changing error
distributions do not occur. So when fixing the rate to R = 0.5 and the number of sections L,
an increase in the section length B does not decrease the error concentration of trials around
the mean number of section errors. The optimal L/B ratio not only depends on the SNR but
also on the rate R. This circumstance is made clear when comparing Figure 3.9 with Figure
3.10. For the rate R = 1.5 SPARCs with the parameters L = 512 and B = 1024 exhibit a
lower Eb over different SNRs than the setting with L = 256 and B = 2048. For the rate
R = 0.5 the opposite is true, see Figure 3.10.

3.5 Dependency of code parameters on the optimal RPA

——————————————————-
In Section 2.4 different PA schemes are introduced including the algorithmic PA. The ques-
tion of how to choose the parameter of the algorithmic PA is still unanswered. To gather
intuition about the influence of different code parameters on the optimal RPA, simulations
are conducted with the approach of linearly sweeping the possible values of RPA with a con-
stant step width of 0.05 for different code settings. The results of this evaluation are depicted
in Figure 3.8. Note that RPA = 0 is equal to the constant power allocation. We can see that
the optimal value for RPA is strongly dependent on the communication rate R. For lower
rates, in our case R = 0.5 and R = 1, the algorithmic PA does not deliver any improvement
over choosing a constant PA scheme. While at higher rates, e.g. R = 1.5, the Eb to RPA plot
resembles a convex function with a minimum close to RPA = 1.1.

3.6. Bit error rate over SNR 41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.510−5

10−4

10−3

10−2

10−1

100

Rate for the algebraic PA RPA

B
it

er
ro

rr
at

e
E b

L=128 B=256 R=0.5 Eb/N0=3
L=128 B=256 R=0.5 Eb/N0=4.5
L=128 B=256 R=1 Eb/N0=3.5
L=128 B=256 R=1 Eb/N0=5
L=128 B=256 R=1.5 Eb/N0=5.5
L=128 B=256 R=1.5 Eb/N0=7

FIGURE 3.8: Bit error rate plotted over the PA-parameter RPA for different code settings.

Therefore one has to be cautious when employing the algorithmic PA scheme, since a
wrongly chosen RPA value has a drastic influence on the error performance of SPARCs.

3.6 Bit error rate over SNR

——————————————————-
Finally we want to compare the performance of SPARCs, decoded with the AMP algorithm,
to conventional coded modulation schemes. First of we choose a communication setting
at R = 1.5 and compare the performance to LDPC codes of the WiMax standard IEEE
802.16e. For the LDPC codes we have one plot for QAM modulation with the number of
symbols Ma = 16 and coding rate Rc = 0.75, which equals to a communication rate of
log 2(Ma) · Rc/2 per dimension and per channel use. The second setting for LDPC codes
is Ma = 64 and Rc = 0.5, which results in the same communication rate. The results are
shown in Figure 3.9.

42 Chapter 3. Numerical evaluation

3.5 4 4.5 5 5.5 6 6.5 7 7.5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No [dB]

B
it

er
ro

rr
at

e
E b

SPARC: L = 256, B = 512, M = 1536, R = 1.5
SPARC: L = 256, B = 2048, M = 3072, R = 1.5
SPARC: L = 512, B = 512, M = 3072, R = 1.5
SPARC: L = 512, B = 1024, M = 3413, R = 1.5
SPARC: L = 512, B = 2048, M = 3755, R = 1.5
LPDC: L = 1536, Rc = 0.75, 16 QAM
LDPC: L = 1536, Rc = 0.5, 64 QAM
Shannon Limit

FIGURE 3.9: Bit error rate evaluated over the ratio Eb/No for the fixed rate R = 1.5, varying block
lengths M over 1000 runs and algorithmic PA. Using SPARCs results in a lower Eb than the 64 QAM
modulated LDPC code at SNR values close to the Shannon Limit. The 16 QAM modulated LDPC

code outperforms SPARCs for R = 1.5.

Another state-of-the-art coded modulation scheme are so called turbo codes, which op-
erate at empirical codeword lengths close to the Shannon capacity. For the rate R = 0.5, we
compare the turbo code implementation recommended by the CCSDS (Consultative Com-
mittee for Space Data Systems) [19] to AMP decoded SPARCs of different block lengths.
Note that the coding rate for the Turbo codes is Rc = 0.5 and K is the number of informa-
tion bits. The simulation of the coded modulation schemes are conducted with the use of the
coded modulation library found at http://www.iterativesolutions.com/Matlab.htm.

http://www.iterativesolutions.com/Matlab.htm

3.7. Conclusion 43

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No [dB]

B
it

er
ro

rr
at

e
E b

SPARC: L = 128, B = 4096, M = 3072, R = 0.5
SPARC: L = 256, B = 128, M = 3584, R = 0.5
SPARC: L = 256, B = 2048, M = 5632, R = 0.5
SPARC: L = 512, B = 256, M = 8192, R = 0.5
SPARC: L = 512, B = 512, M = 9216, R = 0.5
SPARC: L = 512, B = 1024, M = 10240, R = 0.5

CCSDS Turbo Code: Rc = 1/2, K = 1784, BPSK

CCSDS Turbo Code: Rc = 1/2, K = 3568, BPSK
Shannon Limit

FIGURE 3.10: Bit error rate evaluated over the ratio Eb/No for the fixed rate R = 0.5, varying block
lengths M over 1000 runs and algorithmic PA. For R = 0.5 Turbo Codes result in an overall lower Eb

and exhibit a steeper descent in Eb with increasing SNR than SPARCs.

Note that in Figure 3.10 SPARCs with L = 128 andB = 4092 actually outperform other
settings with a larger block length. This highlights the dependence of the optimal L/B ratio
on the rate R. Therefore one has to be cautious of the different dependencies, e.g. L/B on
R, L/B on SNR and the PA on R, when applying SPARCs.

3.7 Conclusion

——————————————————-
In general SPARCs offer flexibility to dynamically adjust the communication rate R, which
well established coding methods lack. The encoding procedure of SPARCs resembles Shan-
non’s ideal of a Gaussian-distributed codebook. With an AMP decoder, specialized to the
structure of SPARCs, a numerically feasible approach of estimating the sent information is
given. By exchanging the Gaussian with a Hadamard coding matrix the complexity is sig-
nificantly reduced. Further estimating the state evolution parameters in an on-line manner,
diminishes the need of pre-calculation. We observe the SNR dependence of the number of

44 Chapter 3. Numerical evaluation

AMP iterations and can conclude that the number of iterations stay in a manageable region.
We provide a heuristic approach of choosing a "section length to number of sections" ratio
in a SNR region not too far from the channel capacity. Numerical simulation show that the
SPARCs performance with AMP decoding depends strongly on the chosen communication
rate. Further, the need of scaling the coefficients of the input vector x arises, when the com-
munication rate is increased. In comparison to more well-known coded modulation schemes,
SPARCs are competitive at higher rates, here R = 1.5 and at SNR values close to the Shan-
non Limit. At increased SNR values the bit error rate does not decrease as quickly as for
LDPC codes. For lower communication rates classic approaches, e.g. Turbo codes, are at
a great advantage. Overall the need of the power allocation and the worse performance at
low communication rates are disadvantages of SPARCs with AMP decoding. SPARCs show
promising results at higher rates and offer the possibility to easily adjust the rate R.

45

Bibliography

[1] C. E. Shannon, “A mathematical theory of communication”, The Bell System Technical

Journal, vol. 27, 379–423, 623–656, Jul. 1948.

[2] G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-
density parity-check coded modulation”, IEEE Transactions on Communications, vol. 63,
no. 12, pp. 4651 –4665, Jul. 2015. [Online]. Available: https://arxiv.org/
abs/1502.02733.

[3] A. R. Barron and A. Joseph, “Toward fast reliable communication at rates near ca-
pacity with gaussian noise”, IEEE International Symposium on Information Theory,
pp. 315–319, Jun. 2010. [Online]. Available: https://arxiv.org/abs/1006.
3870.

[4] A. R. Barron and A. Joseph, “Least squares superposition codes of moderate dictionary
size are reliable at rates up to capacity”, IEEE Transactions on Information Theory,
pp. 2541 –2557, May 2012. [Online]. Available: https://arxiv.org/abs/
1006.3780.

[5] A. R. Barron and A. Joseph, “Sparse superposition codes are fast and reliable at rates
approaching capacity with gaussian noise”, 2011. [Online]. Available: https://
arxiv.org/pdf/1006.3780.

[6] A. R. Barron and S. Cho, “High-rate sparse superposition codes with iteratively op-
timal estimates”, IEEE International Symposium on Information Theory Proceedings

(ISIT), 2012.

[7] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for com-
pressed sensing”, Proceedings of the National Academy of Sciences, vol. 106, no. 45,
pp. 18 914–18 919, Sep. 2009. [Online]. Available: http://www.pnas.org/
content/106/45/18914.full.

[8] C. Rush, A. Greig, and R. Venkataramanan, “Capacity-achieving sparse superposition
codes via approximate message passing decoding”, IEEE Transactions on Information

Theory, vol. 63, no. 3, pp. 1476–1500, Mar. 2017. [Online]. Available: https://
arxiv.org/abs/1501.05892.

[9] C. Rush and R. Venkataramanan, “The error exponent of sparse regression codes with
amp decoding”, IEEE International Symposium on Information Theory Proceedings

(ISIT), Feb. 2017.

[10] C. Condo and W. J. Gross, “Sparse superposition codes: A practical approach”, IEEE

Workshop on Signal Processing Systems (SiPS), Oct. 2015.

https://arxiv.org/abs/1502.02733
https://arxiv.org/abs/1502.02733
https://arxiv.org/abs/1006.3870
https://arxiv.org/abs/1006.3870
https://arxiv.org/abs/1006.3780
https://arxiv.org/abs/1006.3780
https://arxiv.org/pdf/1006.3780
https://arxiv.org/pdf/1006.3780
http://www.pnas.org/content/106/45/18914.full
http://www.pnas.org/content/106/45/18914.full
https://arxiv.org/abs/1501.05892
https://arxiv.org/abs/1501.05892

46 BIBLIOGRAPHY

[11] C. Condo and W. J. Gross, “Implementation of sparse superposition codes”, IEEE

Transactions on Signal Processing, vol. 65, no. 9, pp. 2421 –2427, May 2017.

[12] R. Venkataramanan, S. Tatikonda, and A. Barron, “Sparse regression codes”, IEEE

Information Theory Society Newsletter, Dec. 2016.

[13] M. Bayati and A. Montanari, “The dynamics of message passing on dense graphs,
with applications to compressed sensing”, IEEE Transactions on Information Theory,
vol. 57, no. 2, pp. 764–785, Jan. 2011. [Online]. Available: https://arxiv.org/
abs/1001.3448v4.

[14] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint”, Communications on Pure and

Applied Mathematics, vol. 57, no. 11, pp. 1413–1457, 2004, ISSN: 1097-0312. DOI:
10.1002/cpa.20042. [Online]. Available: https://arxiv.org/abs/
math/0307152.

[15] R. Venkataramanan and A. Barron, “Isit 2016 tutorial: Sparse regression codes”, Inter-

national Symposium on Information Theory, Jul. 2016. [Online]. Available: https:
//goo.gl/8H8wrk.

[16] A. Greig and R. Venkataramanan, “Techniques for improving the finite length per-
formance of sparse superposition codes”, May 2017. [Online]. Available: https:
//arxiv.org/abs/1705.02091.

[17] W. H. Press, B. P. Flanner, S. A. Teukolsky, and W. T. Vetterling, “Numerical recipes:
The art of scientific computing (3rd ed.)”, in. Cambridge University Press, 2007,
ch. 10.2 Golden Section Search in One Dimension, pp. 492–496.

[18] J. Shanks, “Computation of the fast walsh-fourier transform”, IEEE Transactions on

Computers, vol. C-18, no. 5, pp. 457 –459, May 1969.

[19] “Tm synchronization and channel coding”, Recommendation for Space Data System

Standards, CCSDS 131.0-B-2. Blue Book, vol. 1, Aug. 2011.

https://arxiv.org/abs/1001.3448v4
https://arxiv.org/abs/1001.3448v4
http://dx.doi.org/10.1002/cpa.20042
https://arxiv.org/abs/math/0307152
https://arxiv.org/abs/math/0307152
https://goo.gl/8H8wrk
https://goo.gl/8H8wrk
https://arxiv.org/abs/1705.02091
https://arxiv.org/abs/1705.02091

	Declaration of Authorship
	Abstract
	Introduction and setting
	Introduction
	Notation

	Setting
	Shaping Gain

	Related Literature

	Communicating over an AWGN channel
	Introduction
	Notation

	Transmission setting and decoding in general
	Channel description
	General decoding
	Relation to compressed sensing

	Approximate message passing decoder
	Test statistics
	State evolution

	Power Allocation
	Constant power allocation
	Exponentially decaying power allocation
	Algorithmic power allocation
	Choice of the power allocation rate RPA

	Complexity
	Online state evolution estimation
	Hadamard coding matrix

	Estimating error rates

	Numerical evaluation
	Introduction
	The bit error probability and Eb/No

	Number of AMP iterations
	Error exponent
	Choosing L and B
	Dependency of code parameters on the optimal RPA
	Bit error rate over SNR
	Conclusion

	Bibliography

