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Kurzfassung

Induktives Beweisen ist der Teilgebiet der automatischen Deduktion, das sich mit der
Automatisierung des Beweisens mathematischer Aussagen mittels mathematischer In-
duktion befasst. Da Induktionsinvarianten im Allgemeinen nicht-analytisch sind, ist es
schwierig effiziente Methoden zu entwickeln, die in der Lage sind Aussagen iiber einer
gegebenen Theorie zu beweisen. Das Hauptproblem besteht darin Induktionsinvarianten
zu berechnen, die ausreichen um eine gegeben Aussage zu beweisen.

Es wurden einige Ansétze fiir die Losung dieses Problems vorgeschlagen. Unter an-
derem gibt es Ansétze die auf zyklischen Beweisen [KP13, [BGP12], Baumgrammatiken
[EHT5], und Rippling basieren [BSVH™93|. Der von Kersani und Peltier in [KP13] vorge-
schlagene Ansatz besteht darin einen Superpositionskalkiil um eine Zyklenerkennung zu
erweitern. Die Zyklen in den Deduktionen des Superpositionskalkiils stellen Argumen-
tationen durch unendlichen Abstieg dar. Dieser Kalkiil wird n-Klausel Kalkiil genannt.
Der n-Klausel Kalkiil wurde nicht dafiir entworfen um eine a priori bestimmte Art von
Induktion zu erfassen. Daher ist bis heute nicht geklért, welche Sétze durch diesen Kal-
kiil bewiesen werden kénnen. Allerdings wird vermutet, dass der n-Klausel Kalkiil nur
eine “schwache” Form der Induktion erfasst.

Das Ziel dieser Diplomarbeit ist es die Menge der im n-Klausel Kalkiil beweisbaren
Sétze zu untersuchen. Insbesondere sollen die im n-Klausel Kalkiil beweisbaren Sétze
durch die Quantorenkomplexitét der in den induktiven Zyklen enthaltenen Induktions-
invarianten beschrieben werden. Moégliche Induktionsinvarianten werden anhand einer
Zwei-Schritt Ubersetzung ausfindig gemacht. Im ersten Schritt werden induktive Zyklen
des n-Klausel Kalkiils in den von Brotherston und Simpson in [BS10] vorgeschlagenen
zyklischen Sequentialkalkiill CLKID® iibersetzt. Im zweiten Schritt werden die vorher
gewonnenen Beweise des zyklischen Sequentialkalkiils in Beweise des Sequentialkalkiils
mit Induktionsregel umgewandelt, wodurch die Induktionsinvarianten offengelegt wer-
den. Die Induktionsinvarianten, die durch dieses Verfahren erhalten werden, sind immer
Y1-Formeln. Daher stellt diese Diplomarbeit die obere Schranke der X;-Induktion fir
die durch den n-Klausel Kalkiil erfassten induktiven Argumente her.

Diese Diplomarbeit schlieft mit einigen Intuitionen beziiglich der Optimalitit die-
ser oberen Schranke, und der vollstandigkeit des n-Klausel Kalkiils hinsichtlich der 3;-
Induktion ab.
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Abstract

Inductive theorem proving is the branch of automated deduction that studies the au-
tomation of proving mathematical statements by means of mathematical induction. Be-
cause induction invariants are in general non-analytic it is difficult to devise efficient
procedures which are able to prove statements over a given theory. The main issue is
the computation of induction invariants which are sufficient to prove a statement at
hand.

Several approaches have been proposed to deal with this problem. Among others
there are approaches based on cyclic proofs [KP13, BGP12|, tree-grammars [EH15|, and
rippling [BSVHT93]. The approach proposed by Kersani and Peltier in [KP13] consists
in enhancing a superposition calculus by a cycle detection rule. These cycles in super-
position deductions represent arguments by infinite descent. This cyclic superposition
calculus is called the n-clause calculus. The n-clause calculus was not designed to cap-
ture some a priori known type of induction. Therefore, it is until now unknown which
sentences are provable in this calculus. Nevertheless it is suspected that the n-clause
calculus captures only a “weak” notion of induction.

This thesis aims at investigating the set of sentences that are provable by the n-clause
calculus. In particular, the sentences provable in n-clause calculus will described with
with respect to the quantifier complexity of the induction invariants contained in the
inductive cycles. Possible induction invariants are discovered by a two step translation.
In a first step, inductive cycles of the n-clause calculus are translated to the cyclic sequent
calculus CLKID® introduced by Brotherston and Simpson in [BS10]. In a second step, the
proofs of the cyclic sequent calculus obtained in the first step, are translated to proofs
of the sequent calculus with induction rules, thereby, revealing the induction invariants.
The induction invariants discovered in this way are always Xi-formulas. Hence, this
thesis establishes an upper bound of ¥;-induction for the inductive arguments captured
by the n-clause calculus.

The thesis concludes by giving some intuitions as to whether the obtained induction
invariants are optimal with respect to their quantifier complexity, and whether the n-
clause calculus is complete with respect to ¥i-induction.
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CHAPTER

Introduction

In Section |1.1] we shall shortly introduce the principle of induction on the metalevel
and the related principle of infinite descent. In Section [1.2| we will have a very brief
introduction to inductive theorem proving. We will discuss the motivation for inductive
theorem proving and why it is so difficult, moreover we shall discuss some of the most
relevant applications of inductive theorem proving. Finally in Section [1.3| we will present
the background and a more detailed outline of the problem addressed in this thesis.

1.1 Induction and Infinite Descent

In a set-theoretic context the principle of induction uses a well-ordering of a set to
infer that a certain property that inherits from the smaller elements to larger elements
eventually holds for all elements of that set. The principle of induction is based on the
following observation.

Theorem 1.1. Let A be a set, < a well-ordering over A, and P a proposition about
elements of A. If for all x € A, we have P(y) for all y € A with y < x, then we have
P(a) for all a € A.

Proof. We proceed by contradiction and assume that there exists an element a € A
such that P(a) does not hold. Let A" = {a € A | P(a) does not hold} and let ¢ be the
minimal element of A’ with respect to <. Since ¢ is minimal in A’, every element b in A
with b < a must satisfy P(b). But this contradicts the assumptions. O

The induction principle that explicitly uses a well-order < is called the principle of
order induction. We can state this principle as follows:

VreA: Vye A:y<ax— P(y)) = P(x)) = (Vx € A: P(x)).

Depending on how the set is constructed we may define variants the principle of induction
which implicitly use the well-ordering induced by the construction of the set under

1
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consideration. We then speak of structural induction. For example the natural numbers
can be defined as the least set containing the number 0 and being closed under the
operation £ — x + 1. Hence, we can also carry out induction as follows. Let P be a
property over the natural numbers. If P(0) holds and, for every number z € N, P(z)
implies P(z + 1), then we conclude that P(x) holds for every number z € N. We can
state this principle more concisely as follows:

PO)A(Vz eN: P(x) = P(x+1)) » (Vz € N: P(x)).

This principle is also sometimes referred to as the principle of weak induction. Note that
this principle can be defined without having “access” to the natural well-ordering < of
the natural numbers.

Besides strong induction and weak induction other induction schemes such as j-step
induction, j-induction, (7, j)-induction, and polynomial induction can be formulated
for the natural numbers [WHI17]. We will consider the principle of polynomial induction
later in Chapter 7/ when discussing some completeness properties of the n-clause calculus.
Depending on the formal system, these principles may have different strength [BT17al,
WHI17].

A related notion is that of infinite descent. Indeed, this is just another way of
expressing the notion of order-induction. The principle of infinite descent relies on the
fact that well-orderings do not contain infinite descending chains to infer that a certain
property does not hold for any element of a given set. The principle works as follows.
Suppose we can show for every element x of the set A, if P(x) holds, then there exists
an element y € A with y < z such that P(y) holds. Now assume that there exists an
element a such that P(a) holds. Then we obtain an infinite descending chain of elements
of A starting at a and satisfying the property P. But such an infinite descending chain
does not exist. Hence, we conclude that no element of A satisfies P. We can express
this principle as follows:

(Ve A:P(z) > (Fye A:y<axAPy))) = (Vr € A: =P(x)).

Depending on the formal system, the principle of infinite descent and the principle of
induction may not be equivalent.

1.2 Inductive Theorem Proving

Inductive theorem proving is a branch of automated theorem proving which aims at
automating the process of finding proofs for mathematical statements over some well-
ordered structure such as for instance the natural numbers or any other inductively
defined set. It is of particular interest to devise procedures which prove arithmetically
true sentences. Because of Godel’s famous incompleteness theorems this problem is
not only undecidable but it is not even recursively enumerable — that is, there is no
sound procedure which effectively enumerates the arithmetically true sentences. Since
it is impossible to prove exactly the arithmetically true sentences, it is necessary to
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concentrate on less complex theories of arithmetic such as for instance Peano arithmetic
and fragments thereof.

From a proof theoretical perspective the difficulty of inductive theorem proving man-
ifests itself as the non-analyticity of induction invariants — that is, induction invariants
are not always subformulas of the formula to be proved. Even though first-order logic
is undecidable, effective proof search is possible because of the possibility to eliminate
cuts. Informally, eliminating cuts means inlining the proofs of lemmas. A cut-free proof,
that is to say a proof without explicit use of lemmas, is analytic in the sense that it only
consists of subformulas of the formula to be proved. This restriction on the shape of
the proofs makes it possible to search effectively for proofs. Since induction invariants
are in general not analytic, inductive proofs do not satisfy the cut-elimination theorem.
The cuts thus represent infinite branching points in the search space. Therefore effective
proof search in this naive way is not feasible.

1.2.1 Approaches

The main problem of inductive theorem proving is thus to compute induction invariants
which are sufficient to prove a given formula. A naive way to handle this problem is
to prove formulas with respect to an a priori fixed set of induction axioms. But this
is not a very flexible approach as it provides only a finite set of possible induction
invariants. More sophisticated approaches try to discover induction invariants via cyclic
proofs [BGP12, [KP13|, tree-grammars [EHI5|, rippling [BSVHT93|, etc. Sometimes
these approaches were designed with respect to some precise notion of induction and
sometimes they were not. In the latter case the set of sentences provable by the formalism
at hand is not always apparent and needs further investigations.

1.2.2 Applications

The most notable application of inductive theorem proving is formal verification of soft-
ware. Any reasonably complicated software involves loops or recursion or both. Cor-
rectness proofs need to be carried out in critical software for obvious reasons, but formal
correctness proofs are also carried out to improve the overall quality of software. Proving
correctness for programs involving non-trivial loops and/or recursion requires the use of
inductive reasoning over inductive data types such as natural numbers, lists, trees, etc.
Carrying out these correctness proofs manually is tedious, time-consuming and error-
prone, hence automation is required. Another area of application of inductive theorem
proving, and automated deduction in general, is mathematics itself. Automated theorem
provers can assist mathematicians in formalizing proofs [BKPUL6] and may even find
proofs that are difficult for humans to find [McC97].

1.3 Problem Statement

We will now shortly discuss the problem that is approached in this thesis and how it
will be approached.
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1.3.1 The n-Clause Calculus

The n-clause calculus — a superposition calculus enhanced by a cycle detection mech-
anism originally introduced by Kersani and Peltier in [KP13] — is a formalism which
was not designed to capture some a priori known type of induction. Until now it is not
known how powerful the notion of cycles in this calculus actually is, but it is conjectured
that it captures only a “weak” form of induction. Since this calculus reasons on natural
numbers it seems reasonable to start the analysis of the provable sentences by describing
them with respect to analogues of theories of arithmetic. This thesis aims at realizing
the first step towards a better understanding of the n-clause calculus. More precisely,
the aim of this thesis is the description of the sentences provable by the n-clause calculus
with respect to the quantifier complexity of their induction invariants.

1.3.2 Approach

The problem of giving an upper bound on the quantifier complexity of the induction
captured by the n-clause calculus will be approached by a two-step translation from the
n-clause calculus to the calculus LKID using as intermediary representation the cyclic
sequent calculus CLKID*.

The first step of the translation consists in translating the inductive cycles of the
n-clause calculus to the cyclic sequent calculus CLKID® introduced by Brotherston and
Simpson in [BS10]. This step of the translation mainly consists in providing a suitable
representation for clause sets in terms of sequents. The inductive cycles will be converted
into cycles of the calculus CLKIDY. In this way we obtain an arguably more natural
representation of the argument by infinite descent represented by inductive cycles. Since
the notion of cycles of the calculus CLKID® is stronger than the notion of structural
induction (see Section 4.4), this formalism seems to be a good starting point as a target
formalism for the translation of inductive cycles whose strength is yet unknown.

The second step of the translation consists in translating a special type of cyclic
proofs into inductive proofs. This step is somewhat critical since it has recently been
shown that the notion of cycles is stronger than the notion of induction (see Section
4.4). Hence it is possible that the inductive cycles of the n-clause calculus cannot be
simulated by structural induction LKID and thus that this step of the translation is not
always possible. However it turned out that this is not the case, indeed the cyclic proofs
obtained from the inductive cycles are simple enough that the translation to LKID is
always possible.

1.4 Structure of the Thesis

This thesis is organized in several chapters. In Chapter 2| we introduce definitions and
notations that we will need throughout this thesis. Chapter 3| introduces the n-clause
calculus as well as its underlying logic — the n-clause logic. In Chapter |4 we present
the first-order logic with inductive definitions as well as the calculi LK, LKID, LKID®,
and CLKIDY that serve as the target for the translation from the n-clause calculus.
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Chapter |5 defines a translation from n-clause logic to first-order logic with inductive
definitions and proves that this translation has some desirable properties. In Chapter 6
we will translate n-clause refutations to cyclic proofs. Moreover, we translate a specific
type of cyclic proofs to inductive proofs, thereby obtaining the main theorem of this
thesis stating that the n-clause calculus captures at most Xi-induction. In Chapter
7| we will discuss two natural questions that require further investigations. First we
will discuss whether the derived induction invariants are optimal in the sense that the
n-clause calculus indeed proves a sentence, which cannot be proven using only quantifier-
free induction. Secondly, we will discuss the completeness of the n-clause calculus with
respect to Xi-induction.






CHAPTER
Preliminary Definitions

This chapter introduces some notions related to terms that we will use throughout this
thesis.

2.1 Term Languages

In the following we will define the notions of unsorted term languages and many-sorted
term languages. Even though, unsorted term languages are in fact just a special case
of many-sorted term languages, we define this notion separately in order to clearly
distinguish between these two cases. This will be of particular relevance during the
semantic analysis of the translation of clauses of the n-clause calculus to formulas of
first-order logic with inductive definitions.

2.1.1 Unsorted Term Languages
Definition 2.1 (Variable Set). An untyped variable set X is a countable set of symbols.

Definition 2.2 (Term Signature). A term signature 3 is a finite set of pairs of the form
f/n, where f is called a function symbol and n € N is the arity of f.

Definition 2.3. An untyped term language is a pair (X, X), where ¥ is a term signature,
and X is a variable set such that {f : f/n e ¥} NX = 2.

Definition 2.4 (Untyped terms). Let (3, X) be an untyped term language. Then the
set of untyped terms 7}? is defined inductively as follows

o X QT/\;,
e if f/neX and ty,... t, E’T)?, then f(t1,...,tn) E'T;?.

By Gnd(T3) we denote the set of untyped ground terms.
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2.1.2 Many-Sorted Term Languages

Definition 2.5 (Sort). A set of sorts is a finite set S. The elements of S are called
sorts.

Definition 2.6 (Type). Let S be a set of sorts. A type T is an expression of the form
S§1 —> -+ —> Sy such that s1,...,s, € S. We call the sort s, the range of type T.

A type of the form s; — -+ — s, — s represents a function with domain (s1x- - -xs,)
and co-domain s.

Definition 2.7 (Many-Sorted Variable Set). Let S = {s1,...,s,} be a set of sorts. A
many-sorted variable set X over the sorts S assigns to each sort s € S a variable set X
such that Xs, N Xs, = @ for all s1,52 € S with s1 # sa.

We write x : s € X with to indicate that that z € X;. Whenever we expect an
untyped set of variables, then we may also use a many-sorted set of variables. Since the
variable symbols are disjoint we interpret the many-sorted variable set X = (&7,...,X,)
as the untyped variable set (J,cg Xs-

Definition 2.8 (Many-Sorted Term Signature). Let S be set of sorts. A many-sorted
term signature X is a finite set of pairs of the form f : 7, where T is a type over S.
Moreover each function symbol f occurs at most once in X. Let f : 7 be an element of
>, then f is called a function symbol of type T and the range of f is the range of T.

Definition 2.9 (Many-sorted Term Language). A many-sorted term language is a triple
(8,52, X) where S is a set of sorts, ¥ is a many-sorted term signature over S and X is
a many-sorted variable set over S such that Xs N {f | f: 7€ X} =@ forallse€ S

Definition 2.10 (Many-Sorted Terms). Let (S,%,X) be a many-sorted term language.
Then for each s € S the set TE(S) of terms of sort s is defined inductively as follows

o {z|x:5€ X} CT%(s),

e if f s = - = 8, > s €Y andt; € Ty(s;) for all i € {1,...,n}, then
ft1, ... tn) € TX(s).
By Gnd(T%(s)) we denote the set of ground s-terms.

Since we can reconstruct the respective arities of many-sorted function symbols, we
will sometimes use many-sorted term languages at places where an untyped (i.e. one-
sorted) term language is expected. For example the symbol 0 : w can be seen as a 0-ary
function symbol i.e. as a constant symbol, and the symbol s : w — w can be seen as a
unary function symbol.

Example 1. Consider the following function symbols 0 : w,s : w — w,t:¢vand p: ¢ —
w — ¢ over the sorts w and ¢. The terms s(s(0)), and p(p(t,0),s(0)) are well-typed, but
the terms s(t) and p(0,0) are not. The term s(t) is not well typed because t has type
¢ but s expected an w-term as argument. The term p(0,0) is not well-typed since it
expects a (-term as its first-argument but the w-term 0 is given instead.
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Definition 2.11. Let (S§,%,X) be a many-sorted term language. A substitution over
this language is a function o assigning to every variable x : s € X a term o(z) € T (s)
such that {x € X | o(x) # x} is finite. The domain dom(c) is given by dom(¥) = {x €
X | o(x) # s}.

Consider a term language containing a sort w and function symbols 0 : w and s : w —
w, then for every n € N we denote by 7 the term

n times

We call this term the n-th numeral.

Definition 2.12. Let (S,%, X) a be many-sorted term language. A congruence relation
= is a function that assigns to each sort s € S an equivalence relation =sC Gnd(T%(s))?
such that

ifti =5, 11, tn =5, Tn then f(t1, ... tn) =5 f(r1,...,70),
for all t;,r; € Gnd(T%(s;)), withi € {1,...,n} and all f : 51 — ..., = s € X.

Definition 2.13. Let A be an arbitrary set, = be an equivalence relation over A and let
a € A. Then we denote by [a]= = {b € A: a = b} the equivalence class represented by
element a.
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Kersani and Peltier’s calculus

In this section we will present the n-clause calculus. The n-clause calculus — originally
introduced by Kersani and Pelter in [KP13] — is a superposition calculus enhanced with
a cycle detection mechanism realizing a form of reasoning by infinite descent.

The superposition calculus is a refutational calculus. More precisely it is a refinement
of the resolution calculus for equational logics, that is, logics whose formulas consist of
equations only. Since clauses of such logics only consist of equations the resolution rule
and the paramodulation rule can be combined into a single “superposition” rule.

In the context of the n-clause calculus the superposition calculus serves as the infer-
ence engine which means that it responsible for the generation of new clauses. The cycle
detection mechanism will then try to detect an inductive dependency between subsets of
clauses derived by the superposition calculus. Once such a cycle is detected the inductive
information provided by this cycle allows the calculus to establish the unsatisfiability of
the clause set at hand and therefore to terminate the refutation process.

3.1 The n-Clause Logic

The underlying logic of the n-clause calculus is the n-clause logic. This logic is a two-
sorted!| clausal, equational logic. One of its sorts represents natural numbers and the
other sort represents some other data type for which arbitrary function symbols can be
provided. In the following we will define the syntax and the semantics of the n-clause
logic.

1We restrict ourselves to the case of a two-sorted logic because the article [KP13] restricts the logic
to two sorts. There is however no apparent reason that this logic and the n-clause calculus cannot work
in a many-sorted setting. Moreover the results described in Chapters |5 and 6] straightforwardly extend
to the many-sorted case. Hence this restriction is more to be seen as a simplification.

11
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3.1.1 Syntax

We start by defining the notion of signature of n-clause languages. As for first-order
logic a signature is just a set of non-logical constants. In the case of n-clause logic a
signature is actually just a set of function symbols. The n-clause logic provides the
symbols 0, s, and 7. The symbols 0 and s are function symbols of types w and w — w,
respectively. The symbol 7 represents a fixed natural number. It can be seen as a Skolem
constant obtained during the clausification phase by the Skolemization of an existential
quantifier which does not occur in the scope of a universal quantifier. We assume that
these symbols do not occur in n-clause signatures. We denote by ¥ the term signature
{0:w,s:w— w}.

Definition 3.1 (Signature). An n-clause signature ¥ is a two-sorted term signature
over the sorts w and v such that X C X, no function symbol in X2 has range w, and the
symbol 1 does not occur in X.

Definition 3.2 (Language). An n-clause language L = (X,X) is a two-sorted term
language over sorts v and w, where ¥ is an n-clause signature and n ¢ X.

As the name of the logic suggests the main syntactic construct of the n-clause logic
are so-called m-clauses — sometimes also called constraint clauses. An n-clause is very
similar to a usual clause but it also contains constraint atoms of the form n ~ ¢, where
t is an w-term. An n-clause is to be interpreted as an implication where the constraint
atoms are in the antecedent and the other literals are in the succedent.

Definition 3.3 (Literals, Clauses, n-Clauses). Let L = (X, %) be an n-clause language,
then we define the mnotions of literals, clauses, constraint clauses and clause sets as
follows:

o Ifty,ta € T3(1) and € {~, %}, then t1 <ty is a literal
o A clause is a finite set of literals,

e IfC is a clause and ty,. .., t, € T} (w), then [C | n~t1,...,n = t,] is a constraint
clause.

o A clause set is a finite set of constraint clauses.

For a constraint clause C = [C | n ~t1,...,n >~ t,] we define ctr(C) = {n ~t1,...,n~
tn} and cls(C) = C.

We denote by [ an empty clause part and ¢ denotes an empty constraint. Whenever
a concrete constraint clause has an empty constraint part, then we omit the ¢ and the
brackets, that is we write this constraint clause as a usual clause. Since the clause part
is interpreted disjunctively, we will sometimes use the symbol V to indicate set-theoretic
union on clause parts. Similarly, we use the symbol A for the union of constraint parts.



3.1. The n-Clause Logic

Example 2. We consider a language containing the symbols t: ¢, g: ¢t —ctand p:w —
t — ¢. The following are constraint clauses.

p(0,t) ~t (E1)
p(x,y) £tV p(sz,gy) ~t (E2)
p(z,y) £ t|n~a] (E3)

Intuitively, the constant symbol t represents the truth value true, p represents a pred-
icate, and g represents some function. Therefore, clause (E1) indicates that p(0,t) is
true, clause (E2) indicates that p(z,y) implies p(sz, gy), and clause (E3) is intended to
express that for every x equal to n the formula p(z,y) is not true for any y.

3.1.2 Semantics

The syntax being defined we will now define the semantics of the n-clause logic. Since
the n-clause logic is an equational logic, its semantics are most naturally defined in terms
of congruence relations over the ground terms. Variables will be interpreted as ranging
over the set of ground terms of their respective types.

Definition 3.4 (Interpretation). Let L = (X,X) be an n-clause language. An L-
interpretation is a pair T = (nI,EI) where n* € N and =% is a congruence relation

over L and =% is the syntactic equality. We define n* = nt.

The notion of truth under an interpretation for ground clauses is straightforward.
Non-ground clauses are considered as universally quantified. Constraint clauses behave
as implications whose antecedent is formed by the conjunction of the atoms 7 ~ ¢ of the
constraint part.

Definition 3.5. Let L = (X,X) be an n-clause language and T an L-interpretation.
The notion of truth is defined as follows:

o Let t) ~ to be a ground literal. We define T |= t1 ~ to if t1 =T ty;
o Let ty % to be a ground literal. We define T |=t1 % to if T [~ t1 ~ to;

e Let C be a ground clause. We define I |= C' if there exists a literal | € C such that

T

o Let C = [C | n~ty,....,n = t,] be a constraint clause. We define T = C if
every ground substitution o with dom(c) = var(C) and nt =t; for alli=1,...,n
satisfies T = Co.

e Let S be a clause set, then T | =S if T |=C for every C € S.

Let S be a clause set and I an interpretation. We say that Z is a model of S — or,
S is true under T —if Z = S. The notions of satisfiability, validity and entailment are
defined in analogy to first-order logic.

13
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Definition 3.6. Let L be an n-clause language and S an L-clause set, then S is called
satisfiable if there exists an interpretation T such that T = S. We call S wvalid if S is
true under every interpretation Z. Let S1,S2 be L-clause sets, then we define Sy |= S
to be true if every model of S1 is a model of Ss.

Consider again the clauses (E1), (E2) and (E3) of Example 2. These constraint
clauses are unsatisfiable with respect to the semantics defined above. Let Z = (m, =)
be an arbitrary model of the these three clauses. We claim that Z = p(7,g"(t)) ~ t for
all n € N. For the base case observe that Z = p(0,t) ~ t by the assumption that 7 is
a model of the clause (E1). For the induction step we suppose that n > 0. Since Z is a
model of the clause (E2) we have by the definition of the semantics Z = p(n — 1, ¢" 't) ¢
tVp(m, g"t) ~ t. By the induction hypothesis we moreover have T = p(n — 1,¢" 't) ~ t.
Hence again by the semantics of the logic it must be the case that Z = p(m, g"t) ~ t.
Now consider the ground substitution

o={z—my— gt}

and observe that zo = m = 5 but Z p~ p(m,g™t) % t which means that Z is not a
model of clause (E3). Contradiction! Observe that we have shown unsatisfiability of
this clause set via a quantifier-free weak induction. This was possible because we are
able to express the iteration of the function g. As we shall later see in Section [7.1, it
is questionable whether this clause set is refutable by a quantifier-free induction in a
formal system with a restricted language.

Constraint clauses can be normalized in the sense that every constraint clause having
a non-empty constraint part is logically equivalent to a constraint clause having exactly
one atom in its constraint part.

Definition 3.7. A constraint clause C is normal if it is either of the form C = [C' | n ~ ],
or of the form C = [C | 0].

Proposition 3.1. Let C = [C' | n ~ t1,...,n >~ t,] be a constraint clause. If t1,...,ty
are unifiable with m.g.u. o, then C is logically equivalent to the clause constraint clause
[Co | n ~ tio]. Otherwise, C is valid i.e. C is logically equivalent to the clause [y ~ y |
n ~0].

Proof. Let us start by assuming that the terms ¢1,...,t, are not unifiable. Let Z be any
interpretation and o be a ground substitution with dom(o) = var(C). Since t1, ..., t, are
not unifiable, o is not a unifier. Thus, there exist ¢, j € {1,...,n} such that t;0 # t;o.
Hence, we either have nZ # t; or % # tj. Therefore Z = C.

Let us now assume that ¢y, ..., %, are unifiable. We need to show that Z = C if and
only if Z = [Co | n ~ t10]. Let Z be any interpretation. For the “only if” direction
we proceed indirectly and assume that Z |= C, but Z = [Co | n ~ t10]. Then there
exists a ground substitution ¢’ with domain var([Co | n ~ t10]) such that nZ = t,o0’
and Z (£ Coo’. Since o is the m.g.u. of the terms t1,...,t,, the substitution oo’ is also
a unifier of these terms. Moreover, oo’ clearly is a ground substitution with domain
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var(C). Hence we have nT = t;o0’ for all i € {1,...,n}, but we also have Z ¥~ Coo’.
Hence 7 [~ C. Contradiction!

For the “if” direction let us assume that Z = [Co | n ~ ti0] and Z [~ C. From
this it follows that there exists a ground substitution ¢’ such that nZ = t;o’, for all
i €{1,...,n}. In other words ¢’ is a unifier of the terms t1,...,t,. Since ¢ is an m.g.u.
for these terms, there exists a substitution 6 such that ¢’ = of6. Hence ti00 = ti0’
and moreover Cofl = Co’. Therefore, Z (£~ [Co | n ~ t10]. This contradicts the
assumptions. O

Definition 3.8. Let C = [C' | X] be a constraint clause. Then the function ||-|| is defined
by

C ifl1XI<1
|IC|| =< [Co|n=~to] if|X|>2,teX, and X is unifiable with m.g.u. o
[y~y|n=~0] otherwise.

3.2 The n-Clause Calculus

The n-clause calculus is a refutational calculus for n-clause sets, that is it shows the
unsatisfiability of clause sets. It consists of a superposition calculus which plays to role
of inference engine and a mechanism for the detection of inductive dependencies between
derived n-clauses. We will first present the superposition calculus as described in [KP13]
and its related notions. Secondly we shall see the semantic notion of inductive loops and
finally a syntactic variant called inductive cycles.

3.2.1 The Superposition Calculus

The first-order inference rules of this superposition calculus are the rules of superposition,
reflection and factorization. Before we introduce these inference rules we will have to
introduce the notions of reduction orderings and selection functions, which guide the
derivation of new clauses. For the sake of simplicity we define these concepts on untyped
term languages, however, these concepts naturally generalize to the case of typed term
languages.

The position relation defined below allows us to designate a subterm occurrence in
a given term. Subterm positions are expressed as paths in the tree representation of
terms. The position of a subterm is a list of integers that represent the path from the
root node to the head symbol of the subterm. The integers in this list specify the branch
to be taken at each step. This is required to specify the term replacement carried out by
the superposition rule. We represent the empty sequence by € and concatenation by -.

Definition 3.9 (Subterm positions). Let (X, X) be a term language. The set of positions
Pos(t) of a term t € T3 is defined inductively by

o Ift € X, then Pos(t) = {c},

15
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o [ft is of the form f(t1,...,tn), then

Pos(t) = {e} U O{z -p:p € Pos(t;)}.

The term positions can then be used to indicate subterm occurrences in the way
described above and it can be used to specify term replacements — that is a subterm
occurrence at a given position is to be replaced by another term.

Definition 3.10 (Term index). Let (X, X) be a term language. For a term t € T3 we
define

te =t.
For a term t € T3 of the form f(t1,...,tn) and a position i-p € Pos(t) with 1 <i <n
we define

tlip = tilp-

Definition 3.11 (Term replacement). Let (X, X) be a term language. For terms s,t €
T+ we define
s[t]e = t.

For s € Ty of the form f(u1,...,up), t € To andi-p € Pos(s) with 1 < i < n we define
s[tlip = fur, ..o, w1, wi[p], wit1, - -, un).

We will now define the notion of reduction ordering and selection function. These
two notions are used by the superposition calculus to select clause and literals for the
application of inference rules.

Definition 3.12. Let (X,X) be a term language. We say that a binary relation > on
TXE is compatible with X-operations if

ti = t/z Zmplzes f(tl)' . 'ati—lutivti-i-l) s 7tn) - f(t17 s )ti—latgvti-i-l? s 7tn)
forall f/n €%, allty,... ,ty,t: € T, and alli € {1,...,n}.

Definition 3.13. Let (X, X) be a term language. A binary relation = over T3 is called
stable under substitutions, if s = s implies so = s'c for all s,s' € TXE and substitutions
o.

Definition 3.14. Let (X, X) be a term language. A binary relation = is called a rewrite
relation, if it is compatible with Y-operations and stable under substitutions. A strict
partial ordering over 7}? that is a rewrite relation is called rewrite ordering.

Definition 3.15 (Reduction Ordering). A well-founded rewrite ordering is called reduc-
tion ordering.
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Definition 3.16 (Selection Function). Let > be a reduction ordering, then a function
sely is called a selection function if for a given clause C it holds sel.. (C) C C and either
sel, (C) contains a negative literal or sel, (C) contains the mazimal literals of C' with
respect to >.

Definition 3.17. A superposition system is a pair & = (-, sely.) where > is a reduction
ordering and sel. is a selection function.

The superposition rule resembles the resolution rule in the way it combines two
clauses, it is also similar to the paramodulation inference since it also realizes a term
replacement at an arbitrary depth. Note that the inference rules described below use
normal clauses as premises. This is according to the calculus defined in the article
[KP13]. According to Kersani and Peltier, normalization in this superposition calculus
is applied in a systematic way to every generated n-clause. This is perhaps not the best
way to describe normalization. From a theoretical perspective, a more natural way to
handle normalization, would be to introduce separate inference rules. In addition this
would be more convenient when dealing with normal forms of derivations.

Definition 3.18 (Superposition). Let L be an n-clause language and & = (>, sel.) a
superposition system. Furthermore let C = [C Vit s | X] and D =[DVu~wv|Y]
be normal L-clauses such e {~,%#}, 0 = mgu(u,t|,),vo ¥ uo,so ¥ to,t|, is not a
variable and (t <1 s)o € sel ((C'Vt 1< 8)o), (u ~ v)o € sel-((DV u =~ v)o). Then we
define

supte;&um(c,l)) =[CVDVtp],>xs|XAY]o.

The reflection inference rule eliminates a negative literal that becomes redundant
under a suitable substitution.

Definition 3.19. Let L be an n-clause language and & = (>, sel.) a superposition
system. Let C = [CVt # s | X] be a normal L-clause such that o = mgu(t,s),
(t £ s)o € sel ((CVt#s)o), then we define

reﬂ%s(C) = [C' | X]o.

Factorization is used to reformulate two redundant positive literals as a negative
literal and a positive literal.

Definition 3.20. Let L be an n-clause language and & = (>=,sel.) a superposition
system. Let C =[CVt~sVu~uv|X]| beanormal L clause with o = mgu(t,u), so %
to,vo  uo, (t >~ s)o € sel ((CVt~sVux~v)o), then we define

factg&um(C) =[CVs#toVvt~s|X|o

Whenever the superposition system and/or the literals that are being used for an
inference are irrelevant, then we will drop the superscript and the subscript. New clause
sets can be derived by repeated application of the three inference rules presented above.

17
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We will represent deductions in linear form but it is clearly also possible to represent
these deductions as trees. The tree representation needs nodes to be duplicated in each
level and is thus in general exponential in the size of the linear representation.

Observe that the superposition inference (Definition 3.18) increases in general the
size of the constraint part of the resulting clause. In order to obtain useful clauses for
the detection of inductive cycles, we shall assume — as in [KP13] — that clauses are
normalized in a systematic way.

Definition 3.21. Let L be an n-clause language, & a superposition system, and S an
L-clause set. A &-superposition deduction from S is a sequence of L-clauses Cy,...,Cp
such that for every 1 < i <n one of the following holds.

1. C; €S,

2. there exist j, k < i, such that C; = squ(Cgv,C,fc), where C}, Cy. are variable-disjoint
copies of Cj and Cy,, respectively,

3. there exists j < i such that C; = refl®(Cy),
4. there exists j < i such that C; = fact® (C),
5. there exists j <i such that C; = ||Cj]|.

A superposition deduction Cy,...,C, with C, = [O | Q] is called a superposition refuta-
tion.

We write S F C to indicate that there exists a superposition deduction of the clause C
from the clause set S. Similarly, we write S; F So to indicate that S; F C for all C € Ss.
We write 7 : 51 F S9 to denote that 7 is a superposition deduction of Sy from Sj.

For an n € N we denote by 1 % n, the clause [0 | n ~ 7n]. Let us again consider the
clauses (E1), (E2) and (E3) of Example 2 and observe which clauses are derivable from
these clauses. Using the superposition calculus we can generate all clauses of the form
n % n with n € N. We start by deriving the clause p(T,g't) ~ t as follows:

p(0,t) ¥t  p(z,y)
p(1,g't)

#tVop(sr,gy) ~t
~ t.

sup

We can now superpose (E2) and p(T,g't) ~ t to obtain the clause p(2,g?t) ~ t. By
iterating this procedure we derive all clauses of the form p(7,g"t) ~ t with n € N. By
superposing each of these clause with clause (E3) we finally obtain the clauses n % n
for all n € N. But we are apparently not able to derive a contradiction and thus are
unable to obtain a refutation. In order to refute clause sets such as the one in Example
2, we need to enhance the superposition calculus by some mechanism that captures some
adequate inductive information.
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3.2.2 Cycle Detection

We will now introduce inductive cycles and its related notions. Inductive cycles are
the core of the inductive reasoning captured by the n-clause calculus. Informally, an
inductive cycle is a clause set S(n) that behaves as an inductive formula but instead of
inheriting truth towards larger numbers it propagates truth towards smaller numbers,
thereby realizing a form of argumentation by infinite descent. In other words S(7n)
implies S(n— j) for some natural number j > 0, and S(0),...,S(j —1) are unsatisfiable.

In order to realize such arguments by infinite descent on 7, we need a way to express
subtraction of j from 7. Since there is no predecessor in the n-clause logic, we need to
encode subtraction in a different way.

For simplicity let us first consider the clause C(n) = [C(x) | n ~ z]. We want to
express the subtraction of one from 7. The parameter 7 is represented in C(z) by the
variable x. Therefore, instead of decreasing n by one we can as well decrease the value
of x by one. We can accomplish this by setting C(n — 1) = [C(x) | n ~ sz]. For a given
interpretation Z the variable z will always be interpreted as nf — 1. In a general setting
the subtraction is realized by the operation | defined below.

Definition 3.22. Let L be an n-clause language, C = [C | n ~ t1,...,n =~ t,] an
L-constraint clause and j € N. Then the L-constraint clause C; is given by:

[C|p~sity,...,n~ st
For a L-clause set S we define S|;={Cl;| C € S}.

Note that clauses with an empty constraint are clearly not affected by this operation.
Informally, the following proposition states that the operation | captures subtraction by

72

Proposition 3.2. Let L be an n-clause language, S an L-clause set, i,j € N, and T an
interpretation with n”* =i+ j. If T = Sl;, then J =T U {n — i} satisfies J = S.

Proof. See proof of Proposition 3 in [KP13]. O

Inductive Loops Let us first define the concept of inductive loop. The concept of
inductive loop is a semantic notion of inductivity for clause sets. But it is not of practical
value since the entailment between clause sets is undecidable. However, inductive loops
will serve us to understand on the metalevel the notion of induction captured by the
syntactic inductive cycles.

Definition 3.23. Let L be an n-clause language and let S be an L-clause set. Then a
triple (i,7,S") with j > 0 and S’ C S is an inductive loop for S if ' =n s i+ k for all
0<k<jand S E=5"|;.

In order to clarify the notion of inductive loops let us look at an example.

19
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Ezample 3. Consider again the clauses (E1), (E2) and (E3) of Example 2. We have
earlier shown that clauses (E1) and (E3) derive the clause n % 0 via a single superposition
inference. Moreover, we can derive the clause [p(z,y) # t | n ~ sz] from (E2) and (E3)
as follows:

p(z,y) £tVp(sr,gy) ~t  [p(u,v) 2£t|n =
[p(w,y) ZtVitEt|n~sz]
[p(z,y) £ t|n==sz].

SUPp (s, gy)~t,p(u,0) 7t

I‘eﬂt?gt

In other words clauses (E2) and (E3) entail (E3)|;. Since clauses (E1) and (E2) have an
empty constraint they are invariable with respect to the operation |. Hence the triple
(0,1, {(E1), (E2), (E3)}) is an inductive loop.

We will now describe the properties of inductive loops. This will help us understand
what kind of information we can obtain from the existence of an inductive loop.

Proposition 3.3. Let L be an n-clause language, S an L-clause set and (i,7,S") an
inductive loop for S. Then we have S |=n % n for all n > i.

Proof. Let S’ C S such that S’ = [0 |7 ~s*0] foralli <k <i+jand S’ | S"];. We
proceed by induction on the natural number n.

For the base cases let ¢ < n < ¢+ j and consider an arbitrary interpretation Z such
that I = S. Since S’ C S and 8’ |= [0 | n ~ s*0] for all i < k < i + j we have in
particular I |= [O | n ~ s"0].

For the induction step suppose that S |= [ | n ~ s™0] and suppose that S £ [ | n ~
s"*J0]. Then there exists an interpretation Z such that Z = S but n* = n+j. Then since
S" C S we also have 7 |= S |; and by Proposition 3.2 we obtain that J = Z U {n — n}
satisfies 7 = S |= [0 | n ~ s"]. But n7 = "0 and J & O; hence J £ [0 | n ~ s"0].
This contradicts the assumptions. We conclude that S |= [0 | n ~s"0] for all n >i. O

The following theorem justifies the correctness of the inductive cycles that are going
to be defined. Informally, the clause [0 | n ~ s‘z] with i € N expresses that 7 is
strictly less than ¢. Therefore we will abbreviate this clause by n < ¢. Remember that
we abbreviate [0 | n ~ k] by n # k. These abbreviations will allow use to state the
following definitions and results in a much more comprehensible way.

Theorem 3.4. Let L be an n-clause language and S an L-clause set such that S admits
an inductive loop (i,7,5"), then S |=n < i.

Proof. We proceed indirectly and assume that there exists an interpretation Z such that
Z = Sand I [~ [0 n o~ s'a] ie. there exists a typed ground substitution o such that
nt = s'(zo). Since xo is ground there exists k& € N such that n© = i+ k. This is
impossible because of Proposition 3.3l O
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Inductive Cycles We are now going to introduce the notion of inductive cycle. In-
ductive loops are by their semantic nature not suitable for formal reasoning, hence we
need to restrict this notion in order to obtain a practically useful calculus. Inductive
cycles are obtained by restricting the semantic entailment to the derivability with re-
spect to the underlying superposition calculus, but inductive cycles include some further
restrictions. We will discuss this in the following.

Definition 3.24. Let L be an n-clause language, S a set of L-clauses and & a super-
position system. Then an inference relation § for S is a partial function 6 : S — P(S)
such that for every C € S whenever §(C) is defined, then one of the following holds:

e there exists D1, Dy € §(C) such that sup®(Dy,Dy) = C.
e there exists D € §(C) such that refl® (D) = C.
e there exists D € 6(C) such that fact® (D) = C.

In other words an inference relation § is just a restriction of the inference relation
induced by the superposition calculus.

Definition 3.25. Let L be an n-clause language, S a set of L-clauses, & a superposition
system and § an inference relation for S. Then the relation -5 C P(S)? is the smallest
relation such that for all S1,S9 C S we have S1 g So if for every Co € So one of the
following holds:

e Cy €5,

e §(Cq) is defined and Sy F5 §(Ca),

e ctr(Cy) = 0.

For a given set of clauses S we will denote by S[T]| the set {C € S | ctr(C) = O}.

Lemma 3.5. Let L be an n-clause language, S an L-clause set and & an inference
relation for S. Then for every S1,S2 C S, if S1 Fs Sa, then S US[T] | S2 U S[T].

Proof. The article [KP13|] does not mention a proof. We obtain a proof via Propositions
5.11and [6.13. This proof gives a more restricted view of the semantic entailment. [

Definition 3.26. Let L be an n-clause language. An immediate entailment relation is
a decidable relation 3 between L-clauses such that C 3 D implies C = D. The relation
J is extended to L-clause sets as follows: Let S1,S9 L-clause sets, then S1 3 S if and
only if for every Co € Sy there exists a Cy € S1 such that C; 3 Cs.

Note that the above notion of immediate entailment relation slightly differs from the
immediate entailment relations in [KP13]. Instead of using the semantic implication as
in [KP13] we now use the provability relation with respect to the superposition calculus
defined earlier. This stronger notion of immediate entailment relation was chosen in
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order to assert the existence of a loop-free proof of the FOLp sequent corresponding to
the entailment?”

Definition 3.27. Let C = [C | n ~ s'z] be an n-clause and let s™x, ..., s™x be all
the mazimum w-terms (with respect to the tree-ordering) in C containing the variable x.
Then the rank of the C is given by rank(C) =i — max{ry,...,r}.

For a natural number i and a clause set S we denote by S[i] the set {C € S |
rank(C) = i}.

Definition 3.28. Let L be an n-clause language, S be an L-clause set, 5 an inference
relation for S, and 3 an immediate entailment relation. An inductive cycle with respect
to 6 and 3 is a 4-tuple (i, j, Sinit, Sloop) where 1,5 are natural numbers with j > 0,
Sinit € S[i], Sieop C S[i + j| such that all of the conditions below are satisfied:

® Siitbsn#Ek forallk withi <k <i+j;
o Sinit Fs Sloop;
[ ] S|oop g Slnlt\l/]

We call the first component of a cycle, the cycle’s offset. Let k5 be the unrestricted in-
ference relation and let J be the equality relation on clauses. Let S = {(E1), (E2), (E3)}
where (E1), (E2) and (E3) are the clauses of Example 2/ and set Sipie = {(E3)} and
Sioop = {(E3)1}. Then (0,1, Sinit, Sioop) clearly is an inductive cycle for S with respect
to 6 and .

Theorem 3.6. Cycles are inductive loops.
Proof. See proof of Theorem 2 in [KP13]. O

Definition 3.29 (Cyclic superposition refutation). Let S be an L-clause set, J an
immediate entailment relation and § an inference relation. A superposition deduction m
from S is a cyclic superposition refutation w.r.t. § and 2 if w: Sksn0,...,m:85F;s
n#&i—1 and S admits an inductive cycle (i, j, Sinit, Sioop) W-T-t. 6 and 2.

The refutational correctness of the n-clause calculus relies on the fact that for any
i € N, the clause set {n % 0,...,n % i — 1,7 < i} is unsatisfiable. Intuitively, this is
equivalent to the statement that for every natural number n we have either n = 0, or
n=1,or...,orn =i—1orn > i Tocomplete our running example we now have refuted
the clause set {(E1), (E2), (E3)} in the n-clause calculus, since (0,1, {(E3)},{(E3)}]1)
is an inductive cycle for this set.

2The restriction on the immediate entailment relation chosen here is probably too strong. In [KP13]
clause subsumption is an immediate entailment relation, but it is not an immediate entailment relation in
the sense of Definition |3.26. It would suffice to require that the entailment between suitable translations
of the clauses are C and D is provable in LK.



CHAPTER

First-Order Logic with Inductive
Definitions

In this section we present the logic FOLp that extends the usual first-order logic by
inductively defined predicates. This logic, together with the semantics and the calculi
presented in this section, was introduced by Brotherston and Simpson in [BSI0]. The
logic FOL1p serves as the target formalism for the translation from the n-clause logic. In
Section 4.1|we first introduce in detail the syntax of this logic. In Section 4.2|will see three
increasingly strong notions of semantics of FOLp. Section 4.3| presents several calculi for
this logic and discusses some of their properties and their relation to the different kinds
of semantics. Finally in Section 4.4 we shall shortly discuss the discrepancy between
the calculi LKID and CLKID* and why it is of importance for our translation of n-clause
refutations to inductive proofs.

4.1 Syntax

Let us again start by defining the signature of a FOLp language. As for the n-clause logic
a signature is a structure which contains all of the non-logical symbols used by a logic. In
the case of first-order logic with inductive definitions we will need to distinguish between
the term-forming symbols (i.e. variables and function constants), predicate symbols and
the so-called inductively defined predicate symbols.

Definition 4.1 (Signature). A signature is a triple ¥ = (Zfunc, Zords Zind ), where Sgyunc
is a countable set of function symbols with their respective arities, Yoq 1S a countable
set of predicate symbols with their respective arities and g is a finite set of predicate
symbols with their respective arities such that Yorq N Xind = 9.

The predicate symbols in Yog and Xi.q are called ordinary predicate symbols and
inductive predicate symbols, respectively. Inductive predicates will be treated specially
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by the semantics of the logic. The semantics of inductive predicate symbols will be driven
by a syntactic structure that besides the signature is part of a every FOLp language —
the productions. Roughly speaking productions are rules that define operators that will
be used to describe the closure of the corresponding inductive predicates.

Definition 4.2 (Inductive Definition Set). An inductive definition set ® for a signature
Y = (Zfunc, Zords Zind) @S a finite set of productions, where a production is a pair

({Qi(u1), ..., @n(un), Py, (t1), -, P, (tm)}, Fi(t))

with Q1,...,Qn € Xoq and Py, ..., P;

Jm>

sequences of terms of appropriate length.

P, € ¥inq and ul,...,up,tq,...,tm,t are

For the sake of readability we will usually represent productions as rules of the form

Ql(ul), ey Qh(uh), le (tl), e ,ij(tm)
Pi(t).

The atomic formulas Q;(u;) and Pj, (tyx) with { = 1,...,h and k = 1,...,m are usu-
ally referred to as the premises of the production and the formula P;(t) is called the
production’s conclusion.

FEzample 4. The natural numbers, even numbers, and odd numbers can be represented
by inductive predicates N/1, E/1 and O/1 respectively, with the mutually recursive

productions below
Nz Ox Ex

NO Nsr EO Esz Osz
As we will see when defining the semantics of inductive definitions, the rules above do
not define structures that are isomorphic to the natural numbers, even numbers, and
odd numbers respectively, instead they just define the inductive closure with respect to
the given productions. In order to obtain structures that are isomorphic to the natural
numbers etc. we need to add axioms that ensure the injectivity of the interpretation of s.

Definition 4.3 (Language). A FOLp language L is a triple L = (X, %, ®), where ¥ is
a FOLp signature, X is a variable set that forms with 3fnc o term language, and @ is
an inductive definition set for X.

For the remainder of this introduction to first-order logic with inductive definitions
we shall fix a FOLjp language £ = (X, 3, ®) with inductive predicates Py /k1, ..., Py/kp.

Definition 4.4 (Syntax). The set Form(L) of L-formulas is defined inductively as fol-
lows:

o if P/n € Yoq UXing and t1,...,t, € T;?f““, then P(t1,...,t,) € Form(L).
o ifty,ty € T/Ef“"c, then t; =ty € Form(L).

o if F € Form(L), then ~F € Form(L),
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o if F1,Fy € Form(L) and x € {V,\,—, <>}, then F| x F5 € Form(L),
o ifr e X and F € Form(L), then VxF,3xF € Form(L).

Note that the FOLp languages defined above do not include truth constants T and
1. Later it will be convenient to have these constants at our disposal. Fortunately, the
logic FOLp has the built-in predicate constant = /2 which we can use to define these
constants and their corresponding axioms. We define the truth constants T and L as
follows

T=Vez==x
1 =-T.

Definition 4.5. Let L be a FOLp language and let F' be an L-formula in prenex form.
Then by F we denote the matriz of F.

4.2 Semantics

We will now present three possible semantics for the logic FOLp. First of all we present
the usual first-order semantics which is used to define the more powerful notions of
Henkin semantics and standard semantics.

4.2.1 First-order semantics

The first-order semantics of FOL1p are the usual semantics of first-order logic. That is we
interpret functions over first-order structures which consist of a non-empty domain and
an interpretation function which assigns actual functions or predicates to the non-logical
constant symbols.

Definition 4.6 (Structures and valuations). An L-structure M is a pair M = (D, I),
where D is a non-empty set and I is a function which interprets the symbols in ¥ as
follows:

o f1: D" — D, for all f/n € Stunc,
e PL.C D", for all P/n € Yorqg U Sing.
A function p: X — D is called an M-valuation.

For convenience we will sometimes denote the interpretation of a symbol ¢ by ¢M
instead of ¢!. If M is clear from the context we speak of a valuation instead of an
M-valuation. For a valuation p we denote by p[z — m| with m € D the valuation that
differs from p only for x and assigns x to m.

Definition 4.7 (Term evaluation). Let M = (D,I) an L-structure and p an M-
valuation. The term evaluating function [H]f)\" : TXE“‘”C — D is defined as follows:
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o ﬂx]];,\’l = p(z), forallz € X,

. [[f(tl,...,tn)]];,v‘ = fl([[tl]]évl,...,[[tn]]g\/t), for all f/n € Yfyne, and t1,...,t, €
TXEfunc‘

We extend the term evaluation to sequences of terms by applying the evaluation
function pointwise. For a sequence of terms t = (¢1,...,t,) we define

[t1," = ([t - TtaD )

Definition 4.8 (First-order semantics). Let M = (D,I) be an L-structure and p an
M-valuation. The satisfaction relation |= is defined as follows

o M=, P(t) if [t])" € P,
o M, t1=ta if [t1])" = [ta] )"

M =, =Fy if M £, P,

M ):pFl\/FQ lf./\/l ):pFl or M ):ng,

M ):p FiNFy if M ):p Fi and M ):p Fy,

M ):pFl — Fy ZfM b’épFl or M l:ng,

M, VaF if M =ppa F, for every d € D,

M =, 3zF if M =pjpsq F, for some d € D.

It is easy to see that our definitions of the truth constants T and L are adequate
with respect to the first-order semantics, that is, T is valid and L is unsatisfiable.

Under standard semantics inductive predicates behave just as ordinary predicates.
In the following we will consider two notions of semantics which specialize the first-order
semantics by restricting the structures to those under which the inductive predicates do
behave “more” like actual inductively defined predicates.

4.2.2 Standard semantics

The standard semantics of an inductive predicate is the least fixed point of the produc-
tions that define the predicate. These semantics are obtained from first-order semantics
by restricting the structures to those that interpret the inductively defined predicates
accordingly.

Usually inductive sets are defined by giving a base set and iterating a monotone
operator until a fixed point is reached (possibly after w steps). Since the productions
of the inductive predicates may be mutually recursive we need to define an operator
which operates on each predicate simultaneously. At each stage the operator closes the
approximated sets under the productions.
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Definition 4.9 (Definition set operator). Let M = (D, I) be an L-structure. We define
the partition ®1,..., P, of ® by

O, = {¢p € | P, is the inductive predicate in the conclusion of ¢}.

Let each set of productions ®; be indexed by r with 1 < r < |®;| and for each production
®; . of the form

b, — Ql(u1)7 .. -th(uh)apjl(tl)a s 7ij(tm)
i = P

we define the function @;, : P(DF) x --- x P(DF) — P(DFi) by

i (X1, Xn) = {1t | [waly" € @17 [un])' € @17,
[[tlﬂﬁ/l € Xj,.., [[tm]];,w € Xj,.,p is a valuation}.

Then we define the function p; : P(D*1) x --- x P(Dkr) — P(D*) by

|
ei( X1, Xn) = | @ir(X1,.... X0).
r=1
Finally, the definition set operator pg : P(D*) x - x P(DFn) — P(D*) x - .. x P(D*n)
is given by

(,Oq,(Xl, N ,Xn) = ((pl(Xl, . ,Xn), ey (-Pn(Xla e ,Xn))
We denote by 7' the i-th projection function for n-tuples.

Definition 4.10 (Approximants). Let M = (D, I) be an L-structure. Define the indexed

set (pg C P(DF) x - x P(Dk"))ogagw by vg = Up<a cpcp(gog). The set m{(p§) with
(a,M)
P

3 .

0 < a < w is called the a-th M-approzimant of P; and we will denote this set by

Definition 4.11 (Standard Structure). An L-structure M is said to be standard if
PM = Upcacy P foralli e {1,...,n}.

The standard semantics of FOLp formulas are then the usual semantics but re-
stricted to the case of standard structures.

Ezample 5. Consider a FOLp language consisting of constants 0/0, s/1 the inductive
predicate symbol N/1 and the productions /NO and Nz /Nsz. Then the structure M
with domain {0,1} and 0™ = 0, s™(0) = 0, s™(1) = 0 is a standard structure and
NM = {0}. In order to obtain that N is bijective to N it suffices to consider structures
that satisfy the formulas Vz0 # sz and VaVy(sz = sy — = = y).

Brotherston and Simpson showed in [BS10] that it is possible to embed true arith-
metic in FOLjp with respect to standard semantics (see Lemma 3.11 in [BS10]). There-
fore the set of sentences valid under standard semantics is not recursively enumerable.
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4.2.3 Henkin Semantics

In the following we will define the notion of Henkin semantics. These semantics are not
directly used in this thesis but they turn out to give a concrete semantic characterization
of the formulas that are provable in the proof system LKID for structural induction.
Henkin semantics of FOLp are inspired by Henkin’s approach to obtain completeness
for higher-order calculi by relaxing the semantics. Here we will interpret inductively
defined predicates with respect to Henkin classes. Roughly speaking Henkin semantics
drop the condition “the smallest set such that ...” that usually is the first part of an
inductive definition.

Definition 4.12 (Henkin Class). Let M be a structure with domain D. A Henkin
class for M is a sequence of sets H = (Hy)r>0 such that for each k € N the following
conditions are satisfied

{(d,d) | d e D} € Hy

if Q/k is a predicate symbol, then QM e H,

if R € Hiy1, and d € D, then {(dy,...,dg) | (di,...,dn,d)} € Hg

if R€ Hi and t1(x1,...,Zm), ..., tk(x1,...,Tmy) are terms, then
[y dm) | ([ [T 0)} € Han

if R € Hy, then D*\ R € H,

if R1, Ro € Hy, then Ry N Ry € Hy,

if R € Hiyq, then {(dy,...,dy) | 3d s.t. (dq,...,dx,d) € R} € Hy.

Definition 4.13. Let M be a structure and let H = (Hy)k>0 be a Henkin class. A tuple
(X1,...,X,) € P(D¥) x ... P(DFr) is an H-point if X; € Hy, for alli € {1,...,n}.

A fixed H-point is an H-point that is this a fixed point of the definition set operator
Po-

Definition 4.14. A Henkin structure is a pair (M, H) where M is a structure and H
is a Henkin class for M such that there exists a list fired H-point py - pa of v, and
PM = n(uy - pa) for eachi € {1,... ,n}.

It is not hard to see that see that every standard structure M with domain D
together with H = (P(D¥));>0 is a Henkin structure. The following lemma will help us
to understand how Henkin semantics relate to the induction rules.

Lemma 4.1. Let H = (Hy)k>0 for a structure M, p be a valuation, and F a formula
and x1, ...,z pairwise distinct variables. Then we have

{(dlv s ’dk) | M ):p[ledl,...,zkHdk] F} € Hy.

Proof. See proof of Lemma 2.7 in [BS10]. O
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The following example is intended to give the reader an impression about the relation
between Henkin semantics and structural induction. We anticipate here the notion of
induction axioms; for a more general definition of these axioms see Definition [4.21. By
a structural induction axiom over our usual natural number predicate N we understand
a formula of the form

F(0) AVz(F(z) — F(sx)) = Yx(Nz — F(z)),

where F' is any formula. For a given formula F'(z) we denote the corresponding induction
axiom by I, F.

Ezxample 6. For simplicity let us consider a language consisting only of the usual natural
number predicate N/1 with its function symbols and productions. Let F(z) be a for-
mula, (M, #H) a Henkin structure with domain D, and let p be any valuation. Assume
(M, H) |, F(0) and (M, H) =, Yo(F(z) — F(sz)). We define [F])* = {d € D |
M Eypsa) F'}. Tt is then not hard to see that the set [[F]];}” is a fixed point of ¢y,
where ¢y is the definition set operator for the predicate symbol N. By Lemma 4.1 we
moreover have [F ]]é\/‘ € H;. In other words the set [F ]];,V‘ € H, is a fixed H-point. Since
NM is the least fixed H-point and H; is closed under intersection it is the case that
[F]} 2 NM. But this means that (M, H) = pjsq N — F for all d € D. Therefore
(M, H) = L F ie. the structural induction axioms are valid with respect to Henkin
semantics.

4.3 Sequent Calculi for FOLp

In the following we will describe the calculi LK, LKID, LKID* and CLKID* for FOLp as
introduced in [BS10]. We start with LK which is a basic calculus for first-order logic
with equality. Secondly we will describe the calculus LKID which is a calculus for the
formalization of arguments by structural induction. Finally we will introduce the systems
LKID® and CLKID® — the former being an infinitary proof system and the latter being a
restriction thereof. Both calculi formalize arguments by infinite descent.

4.3.1 LK

The proof system LK is very close to the usual Gentzen style sequent calculus for classical
first-order logic, except that our version of LK includes equality. It serves as the base
system from which the stronger systems LKID, LKID¥, and CLKID* are developed. Note
also that our sequents are pairs of sets of formulas, instead of pairs of sequences of
formulas. Hence there is no need for exchange rules and contraction rules and some
inferences may be expressed in a slightly different way.

Definition 4.15. A sequent is a pair of the form I' = A where I and A are finite sets.

[

In the context of sequents juxtaposition of sets of formulas by “,” indicates union of
sets.
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Definition 4.16. The calculus LK consists of the following inference rules.

Structural rules and axioms:

Toa T XD

1. I'= A (AxL)

I = A / 1
_T = C C
~— A [ CDACA (Wk)

Logical rules:
I'=FA
Y _‘L
I'—F = A ( )

IF=A 1I,G=A VL)
[ILFVG = A, A

INEG= A
ILEFAG= A

(AL)

I'=FA I,G= A
NILE —G=AA (
I, Flx/t] = A
I''\VaF = A

—L)

(VL)
EF=A
I'daF = A

Ulz/u,y/t] = Alz/u,y/t]
Dlz/t,y/ul,t =u= Alz/t,y/u]

I'= VaF, A

z ¢ FV(TUA) (L)

(=L)

I'=FA ILF=A
III= A A

r=A
m (Subst)

(Cut)

F=A

= -FA (°R)

I'=FGA
'=FVG A

(VR)

I'=FA II=G,A
II=FAG,AA

(AR)

INF=GA (
I'=sF—GA
I'=FA

—R)

z ¢ FV(I UA) (VR)

I'= Flz/t],A
I'= daF, A

(3R)

I=t=tA (=R)

A derivation of LK is a rooted tree whose nodes are annotated by sequents such
that every inner node v satisfies the following: The sequent associated with v is the
conclusion of a rule instance whose premise(s) is (are) the sequent(s) associated to v’s
child (children). A proof of LK is a derivation of LK all of whose nodes are the conclusion

of an inference rule of LK.

The substitution rule is usually not part of the calculus LK. This rule does not
add any power to the calculus as it can be simulated by the other rules, but it turns
out to be a useful abbreviation when dealing with cyclic proofs. The axioms for the
truth constants T and L are also not part of the systems defined in [BS10] but by the
definitions of these constants it is easy to see that these rules are redundant and can be

eliminated.

The calculus LK is sound and complete with respect to first-order semantics.
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4.3.2 LKID

The calculus LKID is a calculus for the formalization of arguments by structural in-
duction. It extends the inference rules of LK by right-introduction rules for inductive
predicates and left-introduction rules for inductive predicates. The left-introduction
rules represent the actual induction rules.

Definition 4.17 (Right-introduction rules for inductive predicates). For each production
¢ € @ of the form

Q1(ul), ey Qh(uh), Pj (tl), e ,ij(tm)

¢= Pi(t)

the right-introduction rule P;R is of the form

I'= Qlul(u), A... = Qhuh(u),A o= letl(u), A...T= ijtm(u), A
(PR)
I'= Pit(u), A,
where for every r € {uy,...,un,t1,...,tm,u} the expression r(u) represents r[x/ul

with x being the vector of variables explicitly identified as occurring in the production p.

Before we will begin with the definition of the left-introduction rules let us look at the
shape of the induction schemes in order to get an intuition about the more complicated
mutually recursive predicates. For the usual definition of the natural numbers this is
straightforward: there will be a base case and a step case as described in Section [1.1.
The induction scheme thus looks as follows.

Fe(0) ple) F(sa)
F Vzo(x)

The situation is a little bit more complicated in the presence of mutual dependencies
between predicates. Consider again the definition of the even numbers and odd numbers
given in Example 4. In order to prove that a property (g holds for all even numbers we
start as usual with the number 0, but the induction step is more involved since we have
to “jump over” the odd numbers. The idea is to introduce a suitable property ¢ for
the odd numbers such that we can show that if g holds for an even number = then g
holds for the next odd number, and vice-versa. Then it remains to show the base case,
that is, ¢ holds for 0. We thus have an induction scheme that looks as follows

F g0 pea F posa poa F pesa
= Verpe(x)

We thus need additional induction hypotheses for each mutually dependent inductive
predicate. In the following definition we formalize this notion of predicates being mutu-
ally dependent.
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Definition 4.18 (Mutual dependency). Define the relation Prem to be the least rela-
tion over the inductive predicate symbols such that Prem(P;, P;) holds if and only if P;
occurs in the conclusion of a production in ® and P; occurs among the premises of the
production. Define Prem™ to be the reflexive and transitive closure of Prem. Then we
say that two predicate symbols P; and P; are mutually dependent if both Prem™(P;, Pj)
and Prem*(Pj, P;) are true.

Definition 4.19 (Induction rules). Let P; be an inductive predicate. We associate with
every inductive predicate P; of arity k; a k;-tuple z; of pairwise distinct variables; we
will refer to these variables as induction variables. Furthermore we associate with each
inductive predicate P; an arbitrary formula F;, possibly containing variables of z; which
we will call the induction hypothesis. For every i € {1,...,n} define the formula G; by

a {Fl if P; and Pj are mutually dependent
i =

Pi(z;) otherwise.

An instance of the left introduction rule for the inductive predicate P; follows the schema
below:

minor premises L', Fju = A
' Pju= A

(IndP;)

The sequent I', F;u = A is called the major premise. For each production of ® containing
in its conclusion a predicate P; that is mutually dependent with Pj, say:

Qiuy(x),...,Qpun(x), Pjt1(x),..., P}, tm(x)
Pit(x)

there is a corresponding minor premise

Fu Qlul(Y)’ ceey Qhuh(y)7 Gjltl(y)7 ceey G]mtm(y) = Flt(Y)

The vector'y is a vector of distinct variables of the length of x such that y ¢ FV(I'UAU
{Pju}) for ally € y. In other words y is a vector of eigenvariables.

Taking again the rules introduced in Example 4, and let Fy(x) be an arbitrary
formula, then the induction rule for natural numbers looks as follows:

F:>FNO,A F,FNI/:>FNSI/,A F,FNt:>A
I',Nt = A.

(IndN)

For the even numbers the induction rule looks as shown below:

[ = Fg0,A  TI,Fev = Fosv,A  T,Fov = Fgsv, A T, Fet= A
I Et = A,

(IndE)
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where Fg(z), Fo(x) are arbitrary formulas. The induction rules of LKID are slightly un-
usual in the sense that they include a major premise. The major premise has two roles:
first of all it relates the induction hypothesis to the domain represented by the induc-
tive predicate, this shall become clearer when we consider the corresponding induction
axioms; and secondly the major premise also plays the role of non-free cut (see [Bus98])
that introduces a possibly non-analytic induction hypothesis. Therefore the formulation
of induction rules with major premises also leads to a more elegant formulation of the
free-cut elimination theorem (see [Bus9§|), which for this reason is simply called the
cut-elimination theorem for LKID.

For languages containing a predicate that is similar to the predicate N in the sense
that there are only the two productions /NO and Nz /Nsx for that predicate, we assume
that there are induction rules that allow for a larger induction step. In other words we
assume that for every j > 0 there are rules of the form

I'= FN0),A ... T=Fy-1),A F,FN$:>FNS]'$,A I Int= A
I''Nt = A

(Ind’N)

It is not hard to see that adding these rules to LKID does not increase the system’s
strength. Indeed we can replace an (Ind’N) inference by an (IndN) inference that uses
the induction hypothesis /\g;é EFns'z. Let Fgase’ o Wf);si, Tistep and 7yt be the proofs of
the minor and major premises of the (Ind’N) inference. Then we prove the base case as
follows:

. -1
:ﬂ-gase ‘Wéase
N0 = A Enj—1= A
N ‘717 NJ (AR*)
I'= /\g:[) Eni, A
The step case is proved as shown below:
57Tstep
FN51$:>FN51.QC FstflxéFst’lx F,FNxéFNSj.T,A

: , . : (AR¥)
r, /\i;& Fys'e = /\g;é Fys™tla, A

Finally the major premise can be proved as follows:
E7"'<:ut
I, Fnt = A
T, N2y Frs't = A

(AL*, Wk)

We will now introduce the induction axioms corresponding to the induction rules
that we formulated above. These induction axioms will later serve us to represent the
inductive information that is required to prove a sequent in a canonical way. We can
then much easier express the provability of a sequent with respect to some inductive
theory.
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Definition 4.20. We denote by LKID-I, the proof system obtained from LKID by remov-
ing the induction rules. We denote by LKID(X1), the proof system obtained from LKID
by restricting the induction rules to X1-induction invariants.

Definition 4.21 (Induction Axioms). Let P; be an inductive predicate, P, ..., P, be
the predicates that are mutually dependent with P; and let Fy,, ..., F;, be their respective
induction hypotheses. Let furthermore ¢1,..., ¢, be the productions containing in their
conclusion a predicate symbol that is mutually dependent with P;. We use the same
notations as in Definition 4.19. Let k € {1,...,r}, then the production ¢y, is of the form

Qrui(x),...,Qpun(x), Pjt1(x),..., P, tm(x)
Pzt(X)

The formula 1Casey is given by

h m
Vx </\ Qiui(x) A /\ Gjiti(x) — Et(X))

i=1 =1

The induction axiom IZj(ﬂl, ..., Fy,) is given by

r
/\ ICaser — VZj (Pij — F}Zj).
=1

Ezample 7. Let Fy(z) be an arbitrary formula, then the induction axiom I Fy is given
by
FNO AVa(Fye — Fysz) — Ve(Nax — Fyz).

Note that the major premise of the induction rules manifests itself in the induction
axioms as the relativization of the quantifier to the domain N.

We will denote by Indy the set of induction axioms for the predicate N. In the
following we will sketch a proof showing that the theory Indy is “correct” with respect
to the induction rule for the predicate N. This means we will show that every formula in
Indy is provable in LKID using only induction rules for the predicate N, and furthermore
we will show that the formulas in Ind simulate the induction rules for the predicate N.
In a general setting the correctness of the axioms as formulated above can be shown in
an analogous way.

Let INFy be any induction axiom in Indy, then we can prove it in LKID as follows.

Fnz = Fyz Fnsz = Fnsz
(—L)
Fnz — Fnsz, Fnz = Fysz (VL)
FnO = FNO Vx(FN$—>FNSJJ),FNZ:>FNSZ
ENO, Vo (Enye — Eysz), Nz = Fyx
FNO,Va(EFye — Fysz) = Nz — Fyzx
FNO, Vo (Ene — Ensz) = Vo (Nz — Fyz)
= FNO AV (Fye — Fysz) — Va(Nz — Fyz).

Fne = Fnzx

(IndN)

(—R)
(VR)
(=R, AL)
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Now it remains to show that every instance of an induction rule for the predicate N in
an arbitrary proof 7 can be simulated by an induction axiom. We proceed by induction
on the number of induction inferences in the proof . The base case is trivial. Consider
now an uppermost induction inference I. The inference I must necessarily be of the
form:

Sﬂ'base 37Tstep E7rcut
P I'= FO0,A I'Fx = Fsx, A I Ft= A (IndN)
TNt = A. .

By the induction hypothesis we obtain proofs mj .., T, and ¢, of the sequents Ay, T' =

FO,A; Ao, T, Foze = Fsx, A and A3, I, F't = A, respectively, where A1, As, and Ag are
finite subsets of Indy. We can simulate the induction inference I by using the induction
axiom INF as shown below

37T;tep
T se Ao, T, Fz = Fsx, A Tl
Al,F,=>FO,A AQ,P,:>VI'(F[IJ—>FS$),A A3,F,Ft2>A
Ay, Ao, T, = FOAVz(Fzr — Fsz), A A3, T,V F = A
AL do Mg, LET = A (=1L)

In the article [BS10] Brotherston and Simpson prove several properties of the calculus
LKID. In particular the calculus LKID is shown to be sound and complete with respect
to Henkin semantics and moreover it is shown that LKID admits cut-elimination.

4.3.3 LKID*

In this section we will present the infinitary proof system LKID* — a calculus for reasoning
by infinite descent in FOL[p — as originally introduced by Brotherston and Simpson in
[BS10]. Even though we are not using this very calculus in the analysis of Peltier’s cyclic
superposition calculus, introducing the calculus LKID* is required for the later definition
of CLKIDY.

The rules of the proof system LKID“ are the rules of LKID with the exception that
the left introduction rules IndP;, where P; is an inductive predicate, are replaced by the
case-split rule. The case-split rules represent simple case distinctions according to the
productions of an inductive predicate.

Definition 4.22 (Case-split rules). Let P; be an inductive predicate, then the corre-
sponding case-split rule CaseP; is of the form:

case distinctions
CaseP;
T Pt(u) = A (20
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where for every production ¢ € ® having P; in its conclusion, say:

Q1u17 ceey Qhuha Pj1t17 cee 7ijtm
Pt

there is a corresponding case distinction

Fa u= t(y)7 Qlul(y)7 ey Qhuh(y),letl(y), .. 7P]mtm<y) = A

where y is a vector of eigenvariables i.e. the variables in y are pairwise distinct and
y ¢ FVUAU{Pt(u)}) forally €y.

For the even numbers and the odd numbers with the usual productions of Example
4] the corresponding case split rules are as follows:

It=sz,Ex = A
rot= A

(CaseO)

rt=0=A I't=sx,0x= A

T,Et = A (CaseE)

The proof system LKID® is based on infinite derivation trees. Derivations in the proof
system LKID® correspond to the infinite trees described by the inferences rules. In such
an infinite derivation tree we distinguish between leaf-nodes and bud-nodes — a leaf is
the conclusion of an inference rule which has no premises; a bud is any non-leaf node
which is not a conclusion of an inference rule. We can now introduce the notion of LKID*
pre-proofs.

Definition 4.23 (Pre-Proof). An LKID® pre-proof of a sequent I' = A is a possibly
infinite derivation tree m formed according to the inference rules of LKID® such that the
root of m is I' = A, and m does not contain buds.

It is not hard to see that LKID, pre-proofs are not sound. This is because infinite
paths are intended to represent arguments by infinite descent, though we have not in-
troduced any notion that ensures the progression of the arguments. Hence some infinite
branches represent arguments which do not progress i.e. the measure associated to this
argument does not strictly decrease. In order to constrain the set of pre-proofs to the set
of sound pre-proofs we need to introduce the concepts of traces and progression points.

Given an LKID® pre-proof m we define a path to be a finite or infinite sequence of
sequents (5;)o<g<a Where o € NU {w} such that S;;q is a child of S; in 7 for all ¢ with
1+ 1< a.

Definition 4.24 (Trace). Let m be an LKIDY pre-proof and let (I'; = A;)i>o be a path
in 7. A trace following (I'; = A;)i>0 is a sequence of formulas (7;)i>0 such that, for all
i, the following hold:

o T, = Pjiti’ where .71 S {1; e ,TL};
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o if I'; = A; is the conclusion of a Subst rule then 7; = 7;41[0], where 6 is the
substitution associated with the rule instance;

o ifI'; = A; is the conclusion of a =L rule with principal formula t = u, then there
is a formula F' and variables x,y such that 7, = Flz/t,y/u] and 1,41 = Flx/u,y/t];

o if I'; = A; is the conclusion of a case-split rule then either 7,41 = 7; or T;y1 is the
principal formula of the rule instance and T;41 is a case-descendant of 7;. In the
latter case, i is said to be a progress point of the trace;

o ifI'; = A; is the conclusion of any other rule, then T;+1 = ;.
An infinitely progressing trace is a trace having infinitely many progress points.

We will always underline the traced formulas so that the a proof is more easily seen
to satisfy the trace condition.

Definition 4.25. An LKIDY pre-proof m is an LKIDY proof if it satisfies the global
trace condition — that is, every infinite path (I'y = A;)i>0 in m admits an infinitely
progressing trace following the path (I'; = A;);> for some k > 0.

Brotherston and Simpson have shown in [BS10] that the calculus LKID* is sound
and cut-free complete with respect to standard semantics. This calculus is thus very
powerful but it is not useful for formal proofs because its proof objects are in general
infinite.

4.3.4 CLKID"

In this section we will introduce another proof system, namely CLKID®, as originally
presented by Brotherston and Simpson [BS10]. The proof system CLKID® is a subsystem
of LKID¥ which arises by restricting the proofs of LKID“ to those having a regular tree
shape. Proofs of CLKID“ can be represented as finite graphs and more precisely as
sequent calculus derivation whose buds are connected to inner sequents — the so-called
companions. Intuitively, a cyclic proof represents the LKID“ proof obtained by constantly
unfolding the buds by the proof rooted in their companions.

Definition 4.26 (Companion). Let B be a bud in an LKID® derivation tree m. An
internal node C' of w is a companion of B if B and C are labelled with the same sequent.

Definition 4.27 (CLKID® pre-proof). A CLKID* pre-proof @ of a sequent T' = A is a
pair (7, R) where v is a finite LKID® derivation tree whose root is I' = A, and R is a
function assigning to each bud node of v a companion in .

The graph of m, denoted G, is obtained by identifying each bud B in ~ with its
companion node R(B).

Definition 4.28 (CLKID“ proof). A CLKID proof is a CLKID® pre-proof whose graph
satisfies the global trace condition.
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Ezample 8. Consider a language consisting of function symbols 0/0, s/1, inductive pred-
icate symbols N/1,E/1, O/1, and the productions given in Example 4. The derivation
below is a CLKID® proof of the sequent EzVV Oz = Nz. The symbols (O;) with i € {1,2}
connect buds with their companion.

Q2= No (O1) gty — EZZNT(O0) gy
Oy = Ny NR Ey = Ny NR
(NR) Oy = Nsy (NR;) Ey = Nsy (NR;)
= NO ~J =
—ao N 5D — (=L) — (=L)
x=0= Nz x =sy,0y = Nz x =sy,Ey = Nz
— (CaseE) — (CaseO)
Ex = Nz (O2) Oz = Nz (0O1) (VL)
Ex VvV Ox = Nz

Brotherston and Simpson have shown in [BS10] that the system CLKID® is complete
with respect to Henkin semantics. The question whether CLKID¥ is also sound with
respect to Henkin semantics was left open until Berardi and Tatsuta provided a negative
result in [BT17a]. We will see more about this in Section [4.4.

4.4 The Brotherston-Simpson Conjecture

It is a natural question to ask how the provability in LKID relates to that of the system
CLKID®. Brotherston and Simpson showed that every sequent provable in LKID is also
provable in CLKID“ by representing induction inferences by cycles.

Theorem 4.2. If a sequent S is provable in LKID, then S is provable in CLKID®.
Proof. See proof of Theorem 7.6 in [BS10)]. O

Furthermore, Brotherston and Simpson conjectured that the reverse is also true. We
refer to this conjecture as the Brotherston-Simpson conjecture. Since the calculus LKID
is sound and complete with respect to Henkin semantics this conjecture is equivalent to
the conjecture that the proof system CLKID® is sound with respect to Henkin semantics.
In 2017 Berardi and Tatsuta proved that this is indeed not the case by providing a Henkin
countermodel to a sequent that is provable in CLKID® [BT17al. The soundness of the
system LKID with respect to Henkin semantics implies the unprovability of the sequent.
Berardi and Tatsuta showed that a variant of the Hydra statement is not provable in
LKID.

The Hydra statement was introduced by Kirby and Paris in [KP82]. This formal
statement about the termination of a particular reduction system is inspired by the
mythological creature of the same name that grows two new heads for each of its heads
that is chopped off. Formally, a hydra is a tree whose leaves represent the hydra’s heads.
Whenever a leaf is removed from the hydra, then the remaining subtree rooted in the
leaf’s parent is replicated n times at the next lower level where n is the number of cut off
heads. The Hydra-statement then asserts that every possible strategy to cut off heads
will eventually terminate, i.e. eventually only the root node remains.
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The 2-Hydra statement considered by Berardi and Tatsuta in [BT17a] restricts the
hydra statement to the existence of terminating reduction strategy for 2-hydras, i.e.
hydras having always exactly two heads. The underlying reduction system can then be
expressed by the length of the path to the heads as follows:

if n > 1 and m > 2 then (n,m) — (n —1,m — 2)
if n > 2 then (n,0) — (n—1,n—2)
if m > 2 then (0,m) — (m —1,m — 2).
The hydra is considered dead if no more transformations are applicable, that is, if the
hydra is of one of the forms: (0,0), (1, 0), or (n, 1) with n > 1.
The 2-Hydra statement can be formalized in first-order logic with inductive defi-
nitions using a language consisting of function symbols 0/0, s/1; an ordinary predi-

cate symbol p/2 and an inductive predicate symbol N/1 with the productions /NO and
Nz /Nsz. Let the formulas H,, Hy, H., Hy be given by

Ha = Vi’(Naj‘ — p(oa 0) A p(Ta 0) A p(:E’T))a
Hy = VaVy(Naz A Ny — (p(z,y) — p(sz,ssy))),
He =Vy(Ny — (p(sy,y) — p(0,ssy))),
Hj =Vz(Nz — (p(sz,z) — p(ssz,0))).
The formal 2-Hydra statement H is the sequent given by
H = H,, Hy,H., Hy = VzVy(Nz A Ny — p(z,y)).

As already mentioned above, Berardi and Tatsuta showed that the sequent H is
provable in CLKID* ant that it is not provable in LKID because there exists a Henkin
countermodel. Interestingly, the sequent H becomes provable in system LKID with
respect to the axiom Vz(Nz — 0 # sz) if the language is enhanced by an additional
inductive predicate symbol < with the following productions

<y

and .
x<x z < sy

This means the proof system LKID is not conservative with respect to the addition
of inductive predicate symbols. This observation is important for us since we will later
translate languages of the n-clause logic to languages of FOLip that extend the language
by inductive predicate symbols. Moreover we try to relate the refutability in the n-clause
calculus to the provability in LKID. Thus, it is interesting to observe that the choice of
the inductive predicates may possibly affect this relation. Indeed we shall later consider
in Section [7.2.2| an n-clause set whose translation apparently exhibits similar properties
to the sequent H given above.

It was recently shown by Simpson in [Sim17] that cyclic arithmetic is equivalent to
Peano arithmetic. This result was then generalized by Berardi and Tatsuta who showed
in [BT17b| that the discrepancy between the proof systems LKID and CLKID* breaks
down, if a suitable fragment of arithmetic is added to the systems.
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CHAPTER

Translation of n-Clause Logic to
FOLp

This section describes the translation of the n-clause logic to first-order logic with in-
ductive definitions. In Section 5.1 we will describe the target FOLip language that is
chosen to carry out the translation from the n-clause logic. Section 5.2 describes the
translation of n-clauses to FOLip formulas. Finally in Section 5.3 we will show that the
translation satisfies several desirable semantic properties.

5.1 The Language

The choice of the target FOLp language is mainly motivated by the characteristics of
the n-clause logic as well as its semantics described in Section [3.1.2L Since the n-clause
logic is two-sorted we need two predicates to differentiate between the domains of these
two sorts. Moreover the sort w ranges over the natural numbers so the corresponding
predicate needs to be inductively defined. Since the sort ¢ ranges over the set of ¢-
terms, the predicate representing this sort is inductively defined as well. These inductive
predicates are driven by the productions induced by the term constructors and their
respective types.

Definition 5.1. Let L = (X, X) be an n-clause language. We define the FOLip language
Ly as L1, = (Xz,,2c,,P), where Xp, = X U{n}, and ¥z, = (£,2,{T,/1,T,/1}) and
the set of productions ® is given by:

o - Tz ... Ts,2n
T5n+1f(x17 cee 7$n)

fi(S1yenySn, Snt1) 62}.

From now on we consider that the languages L and L, are fixed. Since we are mainly
interested in carrying out inductions on the natural numbers, it is arguable whether it
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is necessary to introduce productions for the ¢ terms. It may be sufficient to introduce
closure axioms for the predicate T, with respect to the t-term constructors. However
using these productions for t-terms mimics the semantics of the n-clause logic quite
closely; this eases the later semantic analysis of the translation.

Let us consider the language of the clauses of Example 2. The language contains the
symbols p:w — ¢ — 1,8 : ¢t — t,t: 1. Hence the corresponding first-order language will
contain the function symbols 0/0,s/1,p/2,g/1,t/1 and the following productions:

Tz TezTy Tz
T.,0 Tusz Tp(z,y) Tgr Tt

The constants 0 : w and s : w — w are the only constants of range w in the n-clause
language L. Thus the set of productions ® contains only the two productions /T,0 and
T,x/T,sz having the predicate symbol T, in their conclusion. Hence the predicate T,
behaves analogously to the predicate N defined in Section |4. We need two axioms to
ensure that the predicate T,, with the functions 0 and s and its productions actually
defines a structure similar to the natural numbers.

Definition 5.2. The set of formulas T™ is given by

inj® =V s(z) #0,
inj* = VaVy(s(z) = s(y) = = = y),
T = {in}®, inj® }.

5.2 Constraint Clauses

The translation of n-clauses is inspired by the implicative semantics defined in Section
3.1.2L We represent n-clauses as implications whose antecedent consists of the conjunc-
tion of the atoms in the clause’s constraint and whose succedent is the disjunction of
the literals in the clause part. Moreover we will need to relativize the variables to their
respective domains. Finally, we close the formula universally.

Definition 5.3. Let C = [C' | X] be an L-constraint clause. Then we define the following
L1 formulas:

[Cltype = /\ Tz,

z:s€var(C)
[C—| constraint = /\ N ~t,
n~teX
[C—|c|ause: \/ t1=to,
1%t

’—C~| = vxEUar(C) (’—C-ltype A [C—‘ constraint —7 [C—‘ clause)



5.3. Semantic Analysis

We will sometimes implicitly use an equivalent formulation of the translation defined
above which replaces implications by negation and disjunction. It is easy to see that
this translation preserves logical equivalence with respect to first-order semantics. The
translation defined above naturally extends to sets of n-clauses by taking the conjunction
of the translated clauses. The translations of the clauses (E1), (E2) and (E3) of Example
2| are respectively given by

T — p(0,t) =t,
VaVy (T A Ty — px,y) # tVp(sz,gy) =t),
VeVy(Tox ATy An =z — p(x,y) #t).

5.3 Semantic Analysis

Our objective is to translate n-clause refutations into proofs of CLKID“ and LKID. For
prospective applications we might be interested in translating proofs of LKID with a
certain type of induction invariants back to n-clause refutations. Therefore we need to
make sure that the translation above is adequate with respect to these goals. That is,
we need the translation to be satisfiability equivalent and moreover we would like the
translation to preserve validity.

5.3.1 Satisfiability Equivalence

In the following we will show that a clause set and its translation are indeed satisfia-
bility equivalent. We prove the satisfiability equivalence by showing that models of one
formalism translate into models of the other. For one direction we show that for a given
n-clause interpretation we obtain a structure for the corresponding FOLp language
by trivially extending the congruence relation to non-well typed terms. The factors of
this extended congruence relation then induce a standard L structure. For the other
direction we observe that equality induces an equivalence relation on ground terms.

Definition 5.4. Let T be an L-interpretation. Then the relation = is given by:
= = =T U {(t,t):te Gnd(TH)}.
Furthermore we define the Ly -structure MT = (D, IT) by:
DY = Gnd(T%)/=,
TM = Gnd(T3(0)/=, TM = Gnd(T% (w))/=, and
Mt lnl2) = [t
for all [t1]=, ..., [tn)= € DT and every f/n € X.

In order to satisfy our needs the structures defined above must satisfy two properties.
First of all they need to be standard structures and secondly they need to preserve
satisfiability.
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Lemma 5.1. Let 7 be an L-interpretation, then MZ is a well-defined standard L -
structure.

Proof. First of all for the well-definedness of M observe that = is a congruence relation
on Gnd(T3). Hence the factor set D* is well-defined. Moreover we have

_ I
‘(Gnd(nrg(b))ucnd(ﬂg(w)))z - =

[1I<

which implies that the factor sets Tf\’lz and TWMI are also well-defined. Since = is a
congruence relation the interpretation of the function symbols are well-defined. M7 is
thus clearly an £, structure. It remains to show that M7 is a standard structure i.e.
we have to show that the following equations hold.

TAE | TEME), THE () Tl
a>0 a>0

We will show these two equations simultaneously. For the C direction we need to show
that an arbitrary [t]= € TM" with t € Gnd(T%(s)) satisfies [t]= € Uyso Tga’MI). We
proceed by induction on the structure of the ground term ¢. For the base case assume
that ¢t = ¢ where ¢ : s € . By definition of the language L, there exists a production of
the form / Tsc € ®. Hence already the approximant Tgl’MI) contains [c]= and therefore
[t]= € Uaxo Tga’MI). For the induction step suppose that ¢ is of the form f(uq,...,uy,)
with u; € Gnd(T%(s;)) and f: (s1,...,8n,8) € 2. By the induction hypothesis we have
[ui]= € Ua>o Tg?’MI) ie. [ui]z € Tg?“MI) for some «; for all i = 1,...,n. Moreover by
the definition of £, there exists in ® a production of the form:

Tex1 ... Tg,2p
Tsn+1 f(xla s ,ZEn)

Consider the a-th approximant with o = max;—1,  ,a; +1 and the valuation p =

z
{z; = [ui]l= : ¢ = 1,...,n}. It is then immediate that [t]= € Tgi‘fft ). For the D
direction we proceed by induction on the ordinal «. For the base case suppose that

T
a = 0, then TgO’M ) = & ie. the claim trivially holds. Now suppose that the claim
holds for all ordinals less than or equal to «, and suppose furthermore that there exists

de TS"“’MI) \Tga’MI). Thus there exists a production of the form:

Tgx1 -.. Ts,2n
T5n+1f($1, e axn)’

with f : (s1,...,8n,8) € X, and a valuation p such that [[f(xl,...,xn)]]ﬁ/lz = d and
p(x;) € Tg?’MI) for all i = 1,...,n. By the induction hypothesis we have p(z;) €
Gnd(T%(s;))/= for all i = 1,...,n. Hence there exist terms t; € Gnd(T%(s;)) such that
[ti]= = p(x;) for alli € {1,...,n}. Then by definition of M? we have d = [f(t1,...,tn)]=
and d € TM" since f(t1,...,tn) € Gnd(T%(s)). O
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It remains to show that the structures M preserve satisfiability.

Lemma 5.2. Let S be an L-clause set, and L a model of S, then ML with any valuation
pn such that py(n) = {n*} is a model of T™ A Ty (n) A [S].

Proof. Proceed indirectly and suppose that MZ [= T A T, (n) A [S]. Then there are
three different cases:

1. Suppose that MZ [£, T, (n) ie. py(n) = (T} ¢ TMMI. This is impossible since
0t € Gnd(T (w)) and [nf]= = {n*}.

2. Suppose that MT £ T, Then there are two cases which need to be considered.

a) Assume that there exists a term ¢ € Gnd(T7) such that for p = py[x — [t]=]
such that MT £, s(z) # 0 ie. [[s(x)}]ﬁ/lz = {s(t)} = {0} = OM". This is
impossible since s(t) # 0.

b) Suppose that there exists t1,t2 € Gnd(T7) such that MZ £, s(x) # s(y)Va =
y, where p = p,[z > [t1]=,y > [to]=]. This implies that s(t;)M" = s(t2)M"
and t{\/‘I # té”z. Hence we have t; # t2 and therefore s(t1) # s(t2). Suppose
without loss of generality that ¢; is not an w-term. Then s(¢1) is not well-
typed and hence s(tl)MI = {s(t1)} which implies that s(t3) ¢ s(tl)MI ie.
s(t1)M # s(to)™. Contradiction! Suppose now that both ¢; and t; are w-
terms, then since = is the equality relation on w-terms we have that s(tl)MI =

{s(t1)} # {s(t2)} = s(t2)M".

3. Suppose that M% }£, [S]. Then by construction of [S] there exists a constraint
clause C € S and a valuation p with p(n) = p,(n) such that the corresponding
conjunct [C] in [S] is not satisfied by MZ and p. In this case we have in particular

M, =Ty(z), ie p(z) € Tg‘ﬂ for all x5 € var(C).

By definition of MZ there exists for every x5 € var(C) a term t* € Gnd(T%(s))
such that p(z) = [t*]=.

Let 0 = {x — t* : x € var(C)} and observe that o is a well-typed ground substitu-
tion with dom(o) = var(C). Consider now any three literals n ~ ¢t € ctr(C), u; =~
u € cls(C), and vy % v € cls(C). By the assumption that MZ [£, [C] we obtain
in particular that

ME W, 0 # 6, ME e, un = ug, and MT [, v1 # v
This implies that the following holds:

p(n) = py(n) = {07} = [,
[ ]2 # [ua] M, and [or M7 = [wa] 20
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By Lemma 5.4 we obtain that

(1} = [tV = to™ e o = to,

T T T T
u oM % uae™ and v16™M = vy

Then by the definition of M? we have

_7

UL ;éz uso, and vio V90,

which means that Z £~ ujo ~ ugo and Z [~ vio % veo. Hence Z [~ Co but this
contradicts the assumption that Z is a model of S.

O]

Now it remains to show the other direction. That is if T,n A T A [S] is satisfiable,
then S is satisfiable.

Proposition 5.3. Let S be an clause set. If the formula Tn A TN A [S] is satisfiable
with respect to standard structures, then S is also satisfiable.

We prove the above proposition by showing that the L-interpretation induced by the
terms that evaluate to the same element is a satisfying interpretation of the clause set
if the original £, structure is a standard model. In order to prove this proposition we
first need to show several properties of terms with respect to standard Ly -structures.

Lemma 5.4. Let M be an Ly, structure, t € 7}?. Then for every ground substitution
o with var(t) C dom(o) and every valuation p with plgom(s) = ()Mo o we have toM =

M
[,
Proof. The proof proceeds by induction on the structure of the term t. The base cases

correspond to the cases where t is a variable or a constant. Suppose thus that ¢ = ¢
where ¢/0 € X. Then for all ground substitutions o and every valuation p we have

coM =M= [[c]]ﬁ/l.

Suppose now that ¢ = z where z € X’ and let o be a ground substitution with = € dom(o)
and let p be any valuation with p(x) = zo™. Then we clearly have:

2oM = p(z) = [2]M.

For the induction step suppose that ¢ is of the form ¢t = f(¢1,...,t,) and let o be
any ground substitution. Moreover let p be any valuation with p(z) = zo™ for all
x € dom(o). Then we have var(t;) C dom(c) and hence by the induction hypothesis we
have t;oM = ﬂti]]ﬁ/‘ for all i = 1,...,n. Hence the following equations holds:

ft1, ... tp)o™ = f(tio, ... tho)™ = M (oM, .. two™)
= fM([[tl]];/;\/tv SO [[tn]]i)\/l) = [[f(tla s atn)]];/)vl'
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Lemma 5.5. Let M be a standard Ly, structure. Then for all s € {t,w} and t €
Gnd(T%(s)) we have tM € TM.

Proof. The proof proceeds by induction on the structure of the term ¢. For the base case
suppose that ¢ = ¢ where ¢: s € ¥. Since M is a standard L, structure we have:

™= TlM),
a>0

Moreover by definition of L}, there is a production of the form:

€ o.

Tsc

Hence by definition of the sets T% we have ¢c™ ¢ T8 and therefore M € TM. For
the induction step suppose that ¢ is of the form f(¢,...,t,) where f : 57 — -+ —
s — 8 € X and t; € Gnd(T%(s;)) for all i = 1,...,n. By the induction hypothesis

we have t; € TM, and hence there exists an ordinal «; such that tZM € Tga"’M), for all

s

1=1,...,n. Moreover by the definition of L}, there exists a production of the form:
Texy...Ts, xn co
Tsf(z1,...,20)

Let p be any valuation such that p(z;) = t. Now by definition of the sets T§""M) we

obtain that:

Lf (@1, ma)]M = (1), plwn)) = FAEN N
= f(ty,...,tn)M e T (imaxi_ {ash, M)

O]

Lemma 5.6. Let M be a standard Ly, structure. Then for every s € {t,w} and for all
d € TM, there exists a term t € Gnd(T%(s)) such that tM = d.

Proof. By the argument given in [BS10] the following holds:

Mo =T,
a>0

for all s € {1,w}. Hence we can show the lemma by proceeding by induction on the
ordinal o up to w. For the base case @ = 0 we have TgO’M) = . The claim holds
trivially in this case. For the induction step suppose that the claim holds up to « and
consider the case for av + 1. Observe that it suffices to consider only the elements in
TEJ"“’M) \Tga’M) since TgaH’M) C Tga’M). Let d be any element in TS"“’M) \TS’"M),
then by the definition of the sets T§°"M) and the definition of the language L there
exists in @ a production of the form:

Tex1...Ts,Tn
Tsf(xlv' . 'axn)’
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and a valuation p such that [f(z1, ..., xn)]];,\” =dand p(x;) € Tg foralli=1,...,n. By

the induction hypothesis there exists for every i = 1,...,n a term t; € Gnd(T%(s;)) such
that tM = p(x;). But since f(t1,...,tn)M = MM, M) = fM(p(21), ..., p(zn)) =
If(x,..., xn)]]g\’t holds, the desired term is f(t1,...,t,) € Gnd(T%(s)). O

Lemma 5.7. Let M be an L1, model of T, then for every two terms t1,t2 € Gnd(T% (w))
if ty # ta, then 1 # t1.

Proof. We proceed by induction on the structure of the term ¢;. For the base case
let t; = 0. Since t; # t2 there exists a term t, € Gnd(T%(w)) such that to = s(t}).
Suppose that ¢ = #)!. Then let p be any valuation with p(z) = t5" and observe that
M £, 0 # s(z), and hence M = T, This is a contradiction. For the step case suppose
that ¢; is of the form s(#}) for some term ) € Gnd(T%(w)) and assume that ¢ = 1.
We must distinguish between two cases:

1. If t, = 0, then we let again p be any valuation such that p(z) = t{™. Then we
have M [~ 0 # s(x) and M [~ T, This contradicts the assumptions!

2. Iftg # 0, then there exists a term ¢, € Gnd(T% (w)) such that to = s(t}) and t} # t}.
Since M = T™ we have for any valuation p that M =, s(z) # s(y) V2 = y and
hence ™ = t4™. But by the induction hypothesis we obtain that t{™ # t4™.
Contradiction!

O

Proof of Proposition|5.3. Let (M, p,) be any model of T, () A T A [S]. Then define
the L interpretation Z by Z = (n, =) where n € N such that @™ = p, () and the relation
= is given by:

t1 = t9 if and only if tM = 2 for all t1,ty € Gnd(T7).

We will first show that Z is a well-defined L interpretation. Since M k=, Tu(n), we
have p,(n) € T2, Hence by Lemma 5.6 there exists a term ¢ € Gnd(T% (w)) such that
tM = p,(n). Therefore there exists a number n € N such that 7 = t i.e. ”M = p,(n).
Hence n is defined. Furthermore by Lemma |5.7| the number n is uniquely determined.
Consider now the relation =, by its definition it is clear that this relation is well-defined.
We now have to show that = is a congruence relation on (-terms and w-terms, afterwards
we will show that = is the syntactic equality on w-terms. To this end suppose that = is
not a congruence relation. Then there exists an s € {¢,w} for which one of the properties
of congruence relations is violated:

e Suppose there is a term ¢t € Gnd(T%(s)) such that ¢ # ¢, which implies that
tM £ tM_ This is impossible.

e Suppose that there exist terms tq,to € Gnd(TE(s)) such that ;7 = t9 but to # ts.
This implies that ¢! = t3* but t3* # +{!. This contradicts the symmetry of the
equality relation.
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e Suppose that there exist terms t1,to,t3 € Gnd(']I‘/‘E,((s)) such that t; =ty and t9 = t3
but t; # t3. It follows that ¢t = t3* = ¢3! but t} # t3!. Contradiction!

e Suppose that there exists a function symbol f : (s1,...,8,,8) € ¥ and terms
ti,u; € Gnd(']l‘%(si)) for : = 1,...,n such that t; = w; for all « = 1,...,n but
ft1, ... tn) # f(ui, ..., uy). From this it follows that tM = uM foralli =1,...,n
but fMEM, .. M) £ MM, ... uM). This contradicts the assumption that
fM is a function.

Hence it is the case that = is a congruence relation for (-terms and w-terms. By Lemma
5.7/ it is immediate that = is the syntactic equality on w-terms. It remains to show that
the interpretation Z is a model of the clause set S. We proceed indirectly and assume
that Z is not a model of S. Then there exists a constraint clause C € S and a ground
substitution o with dom (o) = var(C) such that:

nt =7 =to for all n ~ t € ctr(C),
uro # ugo for all uy ~ uy € cls(C),

v10 = vo for all v; % ve € cls(C).

Consider the valuation p = py[z +— z0™ : x € var(C)] and observe that by Lemma [5.5
we have zo™ € TM for all z; € var(C). Hence we have M £, =T,z for all x5 € var(C).
Consider now arbitrary literals n >~ ¢ € ctr(C), u; >~ uz € ¢ls(C) and v; % vy € cls(C).
Then from 7 = to and by Lemma 5.4/ it follows that 7™ = p, () = p(n) = [[t]]{,‘/‘ and
therefore M £, n # t. Moreover ujo # ugo and vio = voo implies that uyoM #* ugoM
and v1o™M = vy0M. By Lemma 5.4/ we obtain that [ul]]ﬁ’l # [uQ]];,\’l and [[1)1]]1/0\/1 = [[vg]]ﬁ/‘.
Hence M -, uq = uz and M =, v1 # va. This means that every literal of the conjunct
[C] of the formula [S] is not satisfied by the structure M under the valuation p. But
this means that M is not a model of [S]. Contradiction! O

Theorem 5.8. Let S be an L-clause set. The clause set S is satisfiable if and only if
the formula Ton A TN A [S] ds satisfiable with respect to standard interpretations.

Proof. The proof follows immediately from Propositions 5.4 and 5.3l 0

5.3.2 Truth Preservation
Lemma 5.9. Let T be an L-interpretation. We have t"* = [t~ for all t € Gnd(T3).

Proof. We proceed by induction on the structure of the term ¢. For the base case suppose
that ¢ = ¢ for some ¢/0 € $. Then by definition of M! we have t"* = ¢M" = [c]=. For
the step case let ¢ be of the form ¢t = f(t1,...,t,) for some f/n € 3. By the induction
hypothesis we have tZMI = [ti]= for all i = 1,...,n. By the definition of M? we then
obtain the following:

T s s z s
M = fty, . )M = MMM

= ([t [t)e) = [F(t ooyt

~—
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Lemma 5.10. Let S be an L-clause set and let T be a L-interpretation. If T = S, then
My 91

Proof. Assume Z [~ S. Then there exists a constraint clause C € S and a typed ground
substitution o such that for every n ~ t € ctr(C) we have nZ =% to and T } cls(C)o.

We need to show that there exists a valuation such that every literal of [ ST is falsified.
To this end we define p = {zoM” : z € dom(c)} U {n — {75} }.

Let z, € var(C), then by Lemma 5.4 we have zoM" € TM”
obtain [[:UM/‘I = 20" and therefore M7~ e, Ts.

Let now n ~ t be any constraint literal of C. By the assumptions we have 7]7 =L to
and by the definition of the relation = we have nZ=to i.e. [n%]= = [to]=. By Lemma 5.9
we have [[t]];)\/lz = [to]= and thus we obtain MZ (£, n # t.

Let u; ~ ug be any positive literal in ¢ls(C). Then we have by the assumptions
U0 ;f_I ugo and thus ula%ma. By Lemmata 5.9/ and 5.4 we obtain

. By Lemma 5.9 we

[ ]M = [uro)= and [u]2* = [uz0]-=.

Therefore we have M7 ¥, ui = uz. Analogously we obtain MT £ vy # vy for every
negative literal v1 % ve € cls(C).

Finally, by the definition of the formula [C] we have M &, [C| and therefore
ME B TS]. O

Proposition 5.11. Let Sy, S2 be L-clause sets. If [S1] = [S2], then we have S7 | So.

Proof. We proceed indirectly by assuming [S1] | [S2] but S7 & So. Then there exists
an L-interpretation Z such that Z = 51 and Z & S2. By Lemmas 5.1/ and 5.10 we have
ME ):{77'—>{177}} [S1] and MZ l#{nﬁ{n?}} [S2]. Contradiction! O

Conjecture 1. Let Si, Sy be L-clause sets. If S1 = Sz, then T, Tn, [S1] = [S2].



CHAPTER

Translation of the n-Clause
Calculus to LKID

This chapter describes the derivation of induction invariants that summarize the induc-
tive arguments captured by the n-clause calculus. We proceed in five major steps. In
Section 6.1 we show that clause normalization can be simulated in the induction-free
system LKID-I. Section 6.2 shows that superposition deductions translate to induction-
free proofs, i.e. proofs in the subsystem LKID-I. In Section [6.3| we will show that the
inductive cycles of the n-clause calculus can be formulated in the cyclic proof system
CLKID%. Section 6.4 shows the translation of a simple type of cyclic proof to a corre-
sponding type of inductive proof. And finally, in Section 6.5/ we put the obtained results
together to obtain an LKID representation of n-clause refutations.

In the following we will often have to deal with the type assertions introduced by the
translation described in Definition 5.3 The two lemmas below will help us to deal with
these type assertions. Informally, Lemma |6.1] states that the type assertion for a term ¢
of sort s can be derived in LKID-I if every free variable of ¢ has a suitable type assertion.

Lemma 6.1. Let x1 : $1,...,Zn : Sp be L-variables and t € T{Eml mmn}(s). Then the
sequent

D, Tsz1,..., T, xn = Tst, A

is provable in LKID-I.

Proof. We proceed by induction on the structure of the term ¢. If ¢ = y where y is a
variable, then y : s € {1 : s1,..., 2, : s} and therefore Tst € {Ts,21,..., T, zn}. Hence

the sequent is a logical axiom. For the induction step suppose that ¢t = f(t1,...,tm),
where f:s) — ...s), > s€Xand t; € T{Exlw"xn}(sé) for 1 < i < m. Then by the

induction hypothesis there exists an LKID-I proof 7; of the sequent I', Tg, 21,..., Ts, xn =
Tut; for i =1,...,m. Therefore the following is an LKID-I proof of the original sequent.
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T 7Tm
F,Tslxl,...,Tsn:En:>T8/1t1,A Tz, T, = Ty t, A
F,Tslltl, - ,Tsn.iljn = Tsf(tl, . ,tm),A

(TsR)
O

Lemma 6.2. Let C,D be L-constraint clauses and 6 a well-typed substitution. If for all
x s € var(C) we have var(z0) C var(D), then the sequent

[Dltype = [Cliype?
is provable in LKID-I.

Proof. Let x : s € var(C), then var(x0) = {y1 : s1,...,yn : s} C var(D) and by

definition the formula [D]¢pe contains conjuncts Tg y1,..., Ts,yn. By Lemma 6.1 the
sequent [D]iype = Ts,26 is provable in LKID-I. Since [C10 = A,.scpar(c) Ts20 the sequent
[D]type = [Cliypel is provable in LKID-I. O

6.1 Clause Normalization

We have seen in Chapter [3| that constraint clauses are normalizable in the sense that
every n-clause with a non-empty constraint part is logically equivalent to some constraint
clause having exactly one atom in its constraint part. Moreover, this normalization is
crucial for the detection of some cycles. Thus, we need to simulate clause normalization
on the translation of constraint clauses.

Lemma 6.3. The sequent inj*,s"a =55 = o = (3 is provable in LKID-I for allm € N
with m > 0.

Proof. The proof is by weak induction on the number m. If m = 1, then then we obtain
the desired proof by simple applications of VR and —L. For the induction step, suppose
that there exists a proof m,, of the sequent

inj*, s"a=s"B = a=4.

Then the following is the desired LKID-I proof

o e (AX)
sl = smtlg = gmtlg = gm Tl inj*,s"a = "B = a =3

injs,ssma = ss™B — s"a =s"F, " la ="M B = a=p
inj®, smtla = s"lg = a = 8.

(—=1)

(VL)
O

Lemma 6.4. Let C = [C | n ~ t1,...,mn =~ t,] be an n-clause. If t1,...,t, are not
unifiable, then the sequent T™ = [C] is provable in LKID-I.
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Proof. If the terms t1,...,t, are not unifiable, there exist 7,j € {1,...,n} with i # j
such that ¢; and ¢; are not unifiable. Without loss of generality we have ¢; = s"t with
or t € {z,0}, and t; = m with n > m i.e. n = m + k for some k£ > 0. By Lemma 6.3,
there exists an LKID-I proof 7 of the sequent T, s"s¥¢t = s™0 = s*t = 0. Therefore, we
prove the sequent as follows.

sft=0=s"t=0
sht 40,5t =0 =
inj cky
T _ ™V "t =0= (Cut
TN, smskt = s™m0 =
Tinj n=s"tn=m= (:L)
’T'j ’7 (=R, Wk)
n :>
T =1C gy
T = [C]

(Ax)
(=L)

>
=

VL)

~—

O

Lemma 6.5. Let C = [C | n ~ t1,...,m =~ t,] be a constraint clause. If the terms
t1,...,ty are unifiable with m.g.u. o, the sequent T [C] = [C'] is provable in LKID-I,
where C' = [Co | n ~ ty0].

Proof. We decompose the sequent T, [C] = [C'] as follows.

[Cl—|type = (C—|type0' (C/—|constraint = [C—|constraint0' [C—|clause0' = [C,—lclause

- onstre (—»R,—L)

T, [Clo = [C']

T, [C] = [C']
For the sequent [C']type = [Cltypec we obtain an LKID-I proof by Lemma 6.2. Observe
that the sequent [C']constraint = [C]constrainto is of the form

(VR, VL)

n:tlain:tlo'/\...,n:tn(f.

Since t10 = tooc = --- = t,o, this sequent is proved by straightforward AR inferences.
For the sequent [Clclaused = [C']clause Observe that [Cleaused = [C']clause- Hence, this
sequent is an axiom. O

Lemma 6.6. Let {t1,...,t,} be a unifiable set of w-terms with m.g.u. o. Then there
exists t € {t1,...,tn} such that to =t.

Proof. If there are ground terms among {t1,...,t,}, then any maximum ground term
satisfies the desired properties. Otherwise, there exists in {t1,...,¢,} a maximum term
sy with zo = . O

Lemma 6.7. Let C = [C | n ~ t1,...,n ~ t,] be a constraint clause. If the terms
t1,...,tn are unifiable with m.g.u. o, then the sequent T, [C'] = [C], with C' = [Co |
n ~ t10] is provable in LKID-I.
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Proof. By a sequence of straightforward first-order inferences, we decompose the sequent
TN [C'] = [C] into the sequents below:

[C—| type = [C,‘ltypey
[C—| constraint = [C,-l constraint,
TV p=t1,....,n =ty [Co] = [C].

Since o is an m.g.u. of t1,...,t,, we have varC 2 wvar(C'). Therefore, the sequent
[Cltype = [C']type can be proved by a sequence of AR and AL inferences.
Observe that the sequent [Cleonstraint = [C'|constraint is of the form

n=tiAN---An=t,=n="1to.

By Lemma 6.6, we have t,,0 = t,,, = t;0 for some m € {1,...,n}. Hence, the sequent
[Clconstraint = [C'|constraint is clearly provable in LKID-I.

Now consider the sequent T, 7 = t1,...,1m = tn, [C'|cause = [Clclause- Let again
tm be the term with t,,0 = t,, obtained by Lemma 6.6. Then by applying several =L
inferences we obtain the sequent

Tinj,tm = tl, .o 7tm == t’m I’CO-—‘ = ’VC—‘.

For i = 1,...,n, the term ¢; is of the form s*¢; with ¢; € {0, z;}, where z; is a variable.
Moreover, since ti,...,t, are unifiable, we have k,, > k;, for all : € {1,...,n}. Hence
each atom t,, = t; is of the form sFis™ic,, = sFi¢;, with m; = ky, — k;. Therefore, by

repeated applications of Cut and Lemma, 6.3| we obtain the sequent

T s™e, = cp,...,8™" ¢y = cn, [Co] = [C].
Since t1,...,t, is unifiable, each atom s"* = ¢; is either of the form 0 = 0 or s™*x,, = ;.
Hence, these equational atoms describe the unifier 0. Thus, we finish the proof by using
a sequence of suitable =L inferences. ]

Proposition 6.8. Let C = [C' | n ~ t1,...,n >~ t,] be a constraint clause. If t1,..., 1ty
are unifiable, then the sequent TN = [C] <+ [C"], with C' = [Co | n ~ t10], is provable
in LKID-1. Otherwise, the sequent T = [C] is provable in LKID-I.

Proof. An immediate consequence of Lemmas 6.4, 6.5, and 6.7. O

6.2 Superposition Deductions

In the following we will translate superposition deductions to proofs in the system LKID-I.
This is possible because the superposition deductions of the n-clause calculus capture
first-order information only. The inference rules used by the superposition calculus can
be simulated by LKID-I. The following Proposition is the main result of this section.



6.2. Superposition Deductions

Proposition 6.9. Let S be an L-clause set and let C be an L-constraint clause. If there
exists a superposition deduction of C from S, then the sequent T [S] = [C] is provable
in LKID-I.

We prove the above proposition by induction on the length of the superposition
deduction and by case distinction on the last inference rule. We shall first show how
each type of inference is translated before we proceed to the proof of Proposition 6.9.

6.2.1 Inferences Rules

The three lemmas below are proved in a similar way: the end-sequent is decomposed and
the quantifiers are instantiated according to the m.g.u. that is used by the rule instance;
a number of more or less trivial cases needs to be considered and finally one branch of
the proof justifies the actual inference. There is one detail that needs to be kept in mind.
Sometimes the conclusion of the inference contains more variables than the substitution
instances of the premises. This is relevant for us since the translation relativizes variables
to the domain of their sort. But in this case, by the way we substitute, there are terms
that contain variables without type assertions. To avoid such a situation, we apply an
arbitrary ground substitution so that there are no such variables.

Lemma 6.10. Let C; = [C1 Vi s | Xq] and C2 = [CoVu ~ v | Xo] be variable-disjoint

L-constraint clauses with <€ {~, %}, p a position such that u and t|, are unifiable with
m.g.u. 0. Then the sequent

[Clv CQ—‘ = [Suptlxls,u:v,p(clv 62)~| )
is provable in LKID-I.

Proof. We start by letting

D= Suptlxls,u:v,p(cla 62)7
Y =wvar{zo : x € var{C1,C2}} \ var(D).

Now observe that none of the variables in ) occurs in Cio and Cyo outside of t|,o and
uo. Since the signature of the language contains at least one individual constant for
each sort there exists a ground substitution u for variables ). Then we have

Ciop =[Cio Vtou< so | Xi0] and Coop = [Coo V uop ~ vo | Xoo],
where top = to[t|,ou],. Therefore we also have

var{Ciop,Caop} = var(D).

We decompose the sequent [C;], [C2] = [D] as follows:
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S1 Sa S3 Sy S

(=L, AR)
(—R,AL)

FD—l type FD] constraint (Cl—|0'/$7 [CQ] o = FD-l clause
[Cilop, [Colop = [D]
[C1], [C2] = [D]

where the sequents Si, ..., S5 are given by

(VR, VL)

S1 = [Dlype = [C1]typecit,
Sy = [Dliype = [Coltypeoit,
S3 = [D]constraint = [C1]constraintT L,
Sy = [D]constraint = [C2]constraintT L,
S5 = [C1]dauseatts [C2]clauseT it = [D]clause-

In order to obtain an LKID-I proof of the sequent [C1], [C2a] = D we need to show that
each of the sequents S7,...,S5 admits an LKID-I proof.

By Lemma 6.2 the sequents S7 and S5 are provable in LKID-I. Consider now the
sequent S3 and observe that the definition of [-] implies [C1]constraintoit = [CO L] constraint-
Therefore every conjunct of [Ci|constraintott is also a conjunct of [D]constraint- Hence the
sequent S5 is clearly provable in LKID-I. Proceed similarly for the sequent Sj.

Consider now the sequent S5. Without loss of generality this sequent is of the form

(tas)ou VI V- Vi, (u=v)op Vg1 V- Vip =1L V- Vi, Vi vo], > so.

Hence we can prove the sequent S5 as follows.

to[volp 1 so = to[volp 1 so

(Ax)
tolt|poul, > so, uop = vo = tolvol, X so

S5

(=L)

O]

Lemma 6.11. Let C = [C'Vt % s | X] be an L-constraint clause such that t and s are
unifiable with m.g.u. o. Then the sequent

[C] = [refliz(C)],
is provable in LKID-I.

Proof. We have to consider the case that var(Co) D var(refl;xs(C)). Let Y = var(Co) \
var(refl;xs(C)) and observe that no variable in ) occurs in Co outside of the literal
(t # s)o. Let p be any well-typed ground substitution with dom(u) = Y. Then we
have Cop = [Co V top # sou | Xo| and top = sop since to = so. Moreover we have
var(Cop) = var(refl;s(C)). We start by decomposing the sequent [C| = [D] as follows:

(VL, VR, Wk)
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S 527 S3 (=L, AR)
[D}type, [D] constraint [CE = [Dlctause (=R, AL)
[Clop = [D]
(VR, VL)
[C| = [D]

where the sequents 57,52 and Ss are given by

S = [Dwtype = [C—|typeU,UJa
So = [D]constraint = [CconstraintT 1t
S3 = [C-| clauseT 1t = Delause-
It remains to show that the sequents S, S5 and Ss are provable in LKID-I. By Lemma
6.2 sequent S7 is provable in LKID-I. Now consider the sequent S5 and observe that
[Clconstraintot = [Colt]constraint and ctr(D) = ctr(Cop). By the construction of [-] the

sequent Sy is clearly provable in LKID-I. Since [C]cjausecit = [Copt]clause and top = sop
the sequent S3 is without loss of generality of the form

top #topN V-V, =L V- Vi,

Therefore we can prove it as follows

= top =tou (Ax)
e 7o M i Zions U
= (VL, VR, Wk)
3

O

Lemma 6.12. LetC = [CVt~sVu~v | X]| be an L-constraint clause such that t and
u are unifiable with m.g.u. o. Then the sequent

[C] = [facti~su~o(C))],
is provable in LKID-I.

Proof. We start by letting D = facti~s y~o (C). Observe that var(Co)\ var(D) = @. Now
we decompose the sequent [C| = [D] as follows:

S1 5 __ S3 (=L, AR)
(DWtyp& [D-‘ cistrainty @— = ’VD-ldause (—>R, /\L)
[Clo = D] (VR, VL)
[C] = [D] ’

where the sequents Sp,.S2 and S3 are given by

51 = [Dliype = [Cliypeo,
52 = FDW constraint = [Cw constraintJ,
S3 = {C—I clause0 = ’—D~| clause-
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It remains to show that the sequents Si, Sy and S3 are provable in LKID-I. By Lemma
6.2 the sequent S; is provable in LKID-I. Consider the sequent So and observe that
every conjunct of [C]constraintd occurs as a conjunct of [D]constraint- Hence sequent S is
provable in LKID-I. Finally consider sequent S3 and observe that it is of the form

LV VipVit=s)oV(u=v)o=>1V---VI,V(t=38)oV(s=uv)o.

Hence the following is a proof of sequent Ss.

= to = uo (=R)
- ——(=L)
lh=10h (Ax) l, =1 (Ax) to :tZU_uig;::)j;_sZU: Vo =L)
S i - (VL, VR, Wk)
S3
This completes the proof of Lemma 6.12 O

6.2.2 Deductions

Having shown that the induction free system LKID-I simulates the three inference rules of
the superposition calculus, we are now able to show that LKID-I simulates superposition
deductions by applying Lemmas 6.10} [6.11, and |6.12| inductively.

Proof of Proposition 6.9. We proceed by order induction on the size of the of the su-
perposition deduction of C from S and by case distinction on the last inference of the
deduction.

If C is an initial clause, that is, C € S, then the formula [C] is a conjunct of [S].
Hence the sequent [S| = [C] is clearly provable in LKID-I.

If C is obtained via a superposition inference then there exist 7,7 < n such that
C = sup(C;jar,Cjor) where « is a variable renaming such that C;a and Cja are variable
disjoint. By the induction hypothesis the sequents T [S] = [C;] and T, [S] =
[C;] are provable in LKID-l. Thus the sequent T™, [S] = [C;,C;] is also provable
in LKID-I. Since « is a variable renaming and by the construction of [-] the sequent
T, [C;,C;] = [Cicr, Cjr] is easily seen to be provable in LKID-I. By Lemma 6.10 the
sequent [C;ar, Cjal = [Cy] is provable in LKID-I. Hence we obtain an LKID-I proof of
Tini [S] = C as follows.

T [5] = [C,C;] [Ci,C;] = [Cior, Cja]
T, [S] = [Cia, Cja]

(Cut) [Cia, cjo:J = [C]

— (Cut)

T, [ST = [C]

If C is obtained via a factorization inference then there exists ¢ < n such that C =

fact(C;). By the induction hypothesis the sequent T [S] = [C;] is provable in LKID-I.

By Lemma 6.12 the sequent [C;] = [C] is also provable in LKID-l. We thus obtain a

proof of the sequent T™, [S] = [C] by applying a cut-inference to the two previous
proofs.
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If C is obtained via a reflection inference, then there exists ¢ < n such that C = refl(C;).
By the induction hypothesis the sequent T, [S] = [C;] is provable in LKID-I and by
Lemma 6.11 the sequent [C;| = C is also provable in LKID-l. So by applying a cut-
inference to these two proofs we immediately obtain a proof of T, [S] = [C].

If C is obtained by normalization, then we apply Proposition [6.8/and we are done. [

The above Proposition can be formulated for the case where we consider an inference
relation ¢ in the sense of Definition 13.24.

Proposition 6.13. Let S be an L-clause set, § an inference relation for S and Sy, Se C
S. If Sy b5 So, then the sequent T [S[T]],[S1] = [S2] 4s LKID-l-provable.

Proof Sketch. Proceed by induction on the structure of the set {C € S | S1 ks C}.
There are two base cases. If S; ks C because C € 51, then by the definition of the
translation [-] there is a conjunct [C] in the conjunction [S;]. Hence [S1] = [C] is
obviously provable in LKID-I. For the second base case suppose that S; F5 C because
C € S[T]. The conjunction [S[T]] clearly contains a conjunct of the form [C]|. Hence
[S[T]] = [C] is clearly provable in LKID-I. For the induction case suppose that S - C
because 0(C) is defined and S; + 6(C). By the induction hypothesis we obtain LKID-I
proofs of the sequents T [S[T]],[S1] = [C'] for all C" € §(C). Hence the sequent
T [S[T]],[S1] = [6(C)] is also provable in LKID-I. Since the inference relation &
describes derivation in exactly one step we proceed by case distinction on the inference
which derives C from clauses §(C). By Lemmas|6.10,(6.11 and 6.12 we obtain in each case
an LKID-I proof of the sequent [6(C)] = [C]. Hence the sequent T™ [S[T]],[S] = [C]
is also provable in LKID-I. ]

6.3 Inductive Cycles

In this section we will translate the inductive cycles of the n-clause calculus to proofs of
the cyclic system CLKID“. We will start by discussing how an inductive cycle should be
expressed on the sequent level and how it should be expressed in terms of cycles in the
sequent calculus CLKIDY. Having fixed these representations we carry out the actual
translation.

6.3.1 Sequent Representation

As we have already mentioned in Section [3.2.2| the notion of inductive cycle of the n-
clause calculus does not behave as an ordinary inference rule. It is better to view the
detection of inductive cycles as a side condition for the termination of the refutation
process. Thus we do not have an immediately obvious representation of inductive cycles
in terms of sequents as we had for the inference rules of the superposition calculus.
Nevertheless we can find a sequent representation for the information derived from the
presence of inductive cycles. Remember that for a given clause set S the existence of
an inductive cycle (4, j, Sinit, Sloop) implies S |= n < i. Moreover it is this information
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that is used to prove the “correctness” of the n-clause refutations. We thus only need to
represent the information 7 < ¢ obtained from inductive cycles by sequents of the form

Tun, [ST= [n <.

6.3.2 Cyclic Proof Representation

Having decided which information is to be encoded in the sequents associated to induc-
tive cycles, we need to decide how we would expect a proof of the correctness of inductive
cycles to look like. That is, we need to decide which fragment of CLKID“ we need to
simulate inductive cycles. In Section [3.2.2| we have shown the correctness of inductive
loops on the meta-level by a straightforward proof by infinite descent having an offset ¢
and a constant descent step j. We have considered the j different cases; The cases 0 to
j — 1 are basically base cases that are proven without further descent and the j-th case
was proven by constructing a smaller model. This proof pattern can be formalized as
follows.

Definition 6.1. A simple cyclic proof of a sequent IT = A is a CLKID¥ proof w of the

form:
O) I, Tezg = A
©) : (Subst)
F(:L'j),Tw:L‘j = A(l‘J)
57Tgase Eﬂg;s,tla . E’]TSteP A
C=20) (T=A)j—1) —L) I(s2;), Twzj = A(s')) =1)
[zg=0=A (_)--- Top=j—1=>A  T,ag=sz;,Toz; = A = ‘
(caseT,,)?

(O) F, Twl‘o = A
Tlend
= A

where the sequent I', T,xg = A contains only the free variable xq; w’gase with 0 < k < j
are LKID-I proofs; Tstep, and meng are LKID-I derivations. We say that II = A admits a
simple cyclic proof with loop sequent I', T ,xqg = A.

Lemma 6.14. Let S an L-clause set, § an inference relation, J an immediate entailment
relation and (%, j, Sinit, Sioop) an inductive cycle for S with respect to § and 3. Then there
is a simple cyclic proof of the sequent T, [S] = [n < 1].

In order to prove this lemma we need to prove the following two lemmas about the
J operation.

Lemma 6.15. Let D be an L-constraint clause, 7 > 0. The sequent

[D11(s"n) = [D]
is provable in LKID-I.
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Proof. First of all note that the operation |; as well as the substitution of the variable
n for s’n affect only the constraints atoms and do not modify variables, clause literals,
or type literals. Therefore we have

FD~|cIause = (,D\l/j—lclause(sjn)y and [,D—|sorts = [D\Lj—|sorts(5j77)'

Moreover since n-clauses are normalizable we may assume that D is of the form [C' | n ~
t]. Hence we can prove the sequent [D];](s’n) = [D] as follows:

(=R)

= sin==9in
(Ax) (Ax) . — (=L)
Cl=|[C Dlivpe = [Dltvoe =t=n=95%
[T €] [ ty)p ]( e D L S A (=L, —R,AR,AL)
=
RO
[D1;1(s’n) = [D]
O
Lemma 6.16. Let S be an L-clause set, j > 0. The sequent
[S151(7n) = [S]
is provable in LKID-I.
Proof. By repeated application of Lemma |6.15| 0

We can now prove Lemma 6.14 as follows: Take the superposition deductions of the
base cases and the step case of the cycle; obtain the respective translations; decompose
the sequent [S] = [n < i] and perform a j-fold case distinction; finally assemble all the
proofs to obtain a simple cyclic proof.

Proof of Lemma |6.14. Since (i, j, Sinit, Sioop) 18 an inductive cycle for S w.r.t. to ¢ and
1 we have:

Sinit Fs & k, for all k with ¢ <k <1i+ 7,
Sinit l_é S|00p7
Sloop H Siniti/j .

By Lemmas 6.9 and 6.13|there exist LKID-I proofs 7, . .. ,wé;rg;l, Wgtep, wsltep such that:

Thase - T, [S[T]N, [Sinit] = [0 # k], for all k with i <k < i+ j,
71'Step : Tinjv [STI1, [Sinit] = [Sioop 5
71'sltep : Tinjv [ Sioop| = [Sinit 451
By Lemma 6.16| there exists an LKID-I proof « of the sequent
[SITI. [Sinie 451" w5) = [S[TIT, [Sinit] (s'v)-
Define the CLKID® derivation 7 recursively. The initial piece of the derivation 7 is as

follows:
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: ®0
== ER) T [S[T]], [Sie] (i), Twtlo, vo = vo =
(Q) | T, [S[TI1, [ Sinit] (SiVO)aM = (=L)
T ISTL [Sinie], Tabo, 1 =S10 = (op g o1 Wi
T, [S] = [5 < i].

(Cut)

The LKID-I proofs ¢ with 0 < k < j represent the base cases of the cyclic proof .
These proofs are as shown below.

ﬂ]gase
inj - k —ro7 N
T[S [Smel =02k gy =k=k ()
T, [S[T], [Sinie] (k) = & # & PEREZ (Cut)

T, [S[T]1, [Sinie ] (B) =

The derivations ¢ with 0 < k < j represent the successive case distinctions of our
argument by infinite descent. For brevity we set I' = {T'"W} U [S[T]] U [Sinit]. These
proofs are as follows:

DY '
r'k) = Pkl
SRIL LS - o
F7]/0 =k = (—L (S V0)7 wVk+1,V0 = S VE+1 = (—L)
I'(s'vg),vp = 0,19 = sk, = T(svg), Tolkit, Uk = SVp41, Vo = sk, =

- CaseT
L(s'vy), Tovg, vo = sk, = ( )

The derivation ¢; of the descent step makes use of the proofs e and €3 given below,
respeptively. The proofs 1 and e introduce the formulas [Sieop|(s'™7v;) and [Sinit 45
1(s"*7v;), respectively. The latter formula is then used to reach the loop sequent.

e

step
~ T, [S[T]], '(Sinit—| = [Sioop | _ (Subst)
T, [S[TIT. [Sinie] (5917) = [Staop] (s7H91)
17.[.1
N +istep
T, [Sioop] = [Sinit ] (Subst)

T, [Sioop | (s v5) = [Sinit 451(s" )

The derivation ¢; is then formed as follows:
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() T, [S[TI]. [ Sinie] (S0), Tty =
T, [S[TT. [ Siie] (57): Tty =

(Subst)

by

g2 T IS[TIL, [Sinieds 157 wy), Twrj =
€1 Tinj’ [S[TH, (Sloop-| (Si+jyj)7Tij =
T, [S[TT], [Sinie | (s v5), Twrj =

Tinj, fS[Tﬂ, (Sinit~| (SiV0>, Tij, vy = Sjl/j =

(Cut)
(Cut)

(=L)

It remains to show that the derivation 7 is a simple cyclic proof of the sequent T, [S] =
[n < i]. The derivation 7 clearly is a CLKID® pre-proof. Moreover 7 contains exactly
one infinite path and this path clearly has infinitely many progress points. Thus, 7
satisfies the trace condition and therefore it is a CLKID® proof. By its construction the
proof 7 is easily seen to be a simple cyclic proof. O

6.4 Simple Cyclic Proofs

In this section we will show that the notion of simple cyclic proof is simulated by the
related notion of simple induction proof. Indeed both notions are equivalent but showing
simulation in the one direction is sufficient for our purposes. Simple induction proofs
are induction proofs that contain only a single induction inference. Instead of showing
only the particular case that the cyclic proof representation of an inductive cycle is
provable in LKID-I we will show slightly a more general case in the hope that this more
general result might come in handy when we want to consider a different cyclic proof
representation of inductive cycles.

Definition 6.2. Let j € N with j > 0. A j-step simple induction proof of a sequent
IT = A is an LKID proof 7 of the form:

) C g1 : .
:ﬂ—(b)ase :Wf) se “Tstep ‘Teut
I= HO),A ... T=HG=1),A T,H()= H(v),A T,Hw) = A
(IndT,,)
I Texo = A
37Tend
II=A

where the sequent I', Tyxg = A has only the free variable xq; Wﬁase with 0 < k < j—1,
Tstep and Teye are LKID-I proofs; meng is an LKID-I derivation.

We are interested in translating simple cyclic proofs to simple induction proofs as
defined above. The major part of this task is the invention of a suitable induction
hypothesis, that allows us to prove the base cases, step case, and the major premise. Let
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us start by discussing informally what the induction hypothesis will look like. If we look
at the shape of a simple cyclic proof we can see that it is already syntactically very close
to a simple induction proof. The proofs ﬂ’gase with k =1,...,7 — 1 and their respective
end-sequents

(I'= A)(k)

remind of induction base cases and their respective proofs. Moreover the derivation
[(xzj), Turj = A(z))

57Tstep
D(s25), Tw(zj) = A(szy)

reminds of the proof of an induction step. The idea is thus to use the formula corre-
sponding to the loop sequent as the induction hypothesis for the simple cyclic proof.
However, there is one detail that we need to take care of. The explicit occurrence of the
formula T,z; in the end-sequent of the derivation 75**P does not fit into this scheme. If
we would take the formula representation of the loop sequent as the induction hypoth-
esis, then the variable z; would have to appear in the context of a term s/ x;. However
we can observe that the formula occurrence T,,z; occupies a special place in the simple
cyclic proof — it is the traced formula. Its purpose is thus to keep track of the types
and the progress points, besides this it may of course also occur in other parts of the
derivation.

The arguments by infinite descent represented by cycles in CLKID* are thus always
accompanied by type information for the traced variable. This is in contrast to the
induction rules which do not dispose of this type information. This seems a little bit
curious at first, but it is not hard to see that we can obtain this type information
in inductive proofs by carrying out a second induction, that runs in parallel to the
main induction, and whose purpose is to inherit type information. Such a “parallel”
induction is obtained by adding the conjunct T,zg to the induction hypothesis of the
main induction.

Definition 6.3. Let m be a simple cyclic proof with loop sequent I, T,xg = A. The
formula Hy(xq) is given by

HW(CIZ()) =Tyxo A (/\ | (N \/A/),

where II" and A" are all the formulas of IT and A respectively, containing a free occurrence
of the variable xg.

Lemma 6.17. Let I' = A be a sequent. If S admits a j-step simple cyclic proof, then
S admits a j-step simple induction proof with induction invariant Hy(xo).

We delay the proof of Lemma 6.17 until we have shown that we can obtain all of the
required components for the desired simple induction proof.
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Lemma 6.18. Let 7 be a j-step simple cyclic proof with loop sequent I1(x¢), T,zo =

A(xo) and let k € {0,...,5 — 1}. Then the sequent Il = H(k), A is provable in LKID-I.

Proof. By Definition 6.3 the formula H(x) is necessarily of the form:

TME/\ (/\H2 — \/Ag),

where Ily and As are all the formulas of II and A respectively that contain a free oc-
currence of the variable xg. \lVe set II; = IT \ Il and analogously we define A;. By
Lemma 6.1 the sequent = T,k is provable in LKID-I. Hence the following is a proof of

the sequent II = H.(k), A.

37Tbase
I, (k) = A1, Aa(k) (=R, AL, VR)
; I = Alla(k) =V As(k), Ay (W)
= T,k H:>/\H2(E) —>\/A2(E),A (AR)
I = Tok A ATz (k) — V Ag(k)), A

O

Lemma 6.19. Let 7 be a j-step simple cyclic proof with loop sequent I1(xg), T,z =
A(zo). Then the sequent 11, Hy(xo) = A is provable in LKID-I.

Proof. We define the sets of formulas IIy,IIs, A1, and As as in the proof of Lemma 6.4l
Then the following is a proof of the sequent II, H;(z¢) = A.

M= ATl VAy= A
LA — \/A2 = A (_Ei)L Wk)
H,TWSUQ/\(/\HQ—)\/AQ):>A ’

O

Finally, we need to show that the induction step is provable for the induction invari-
ant Hy(xo).

Lemma 6.20. Let 7 be a j-step simple cyclic proof with loop sequent I1(xg), T,z =
A(xg). Then the sequent 1, Hy(v) = H(s’v), A is provable in LKID-I.

We prove this lemma by constructing a suitable proof from the derivation mstep. The
idea is to pass the induction hypothesis in the contexts up to the bud and to use it to
“close” the bud. Care must be taken that adding the formula to the contexts of the
sequents on the path from the to the bud does not conflict with any strong quantifier
inferences.
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Proof of Lemma|6.20. Define 111,IIs, A;, and As as in the proof of Lemma 6.4. By
Lemma 6.19 there exists an LKID-I proof ¢t of the sequent II, H;(xg) = A. By lemma
6.1 the sequent T, = T,s/v is provable in LKID-I.

Consider the derivation mly, obtained by adding the formula Hr(z;) to the an-
tecedent of the sequents in 7step that belong to the path to the bud. We need to show
that 7g., is indeed a derivation of LKID-I. It suffices to show that this operation does
not interfere with strong quantifier inferences. By its construction, the formula H(z;)
has only the free variable x;. Observe that the explicit occurrence of the formula Tx;
in the end-sequent of 7step is the traced formula. Since the proof 7 is a CLKID® proof,
it satisfies the trace condition. Hence every sequent on the path to the bud of e
contains an ancestor of the formula occurrence of Tx;. Therefore the variable x; occurs
freely in all the sequents on this path. Hence there can be no strong quantifier inferences

on this path. Thus the derivation 7§, is an LKID derivation of the form

Hr(zj), (), Twzj = Az;))

Hy(z),H(s7z;), Tox; = A(s'z;).
We can then prove the sequent II, H,(v) = H.(s’v), A as follows
Er)/cut

Hy (), 1(25) = A(z))
Hﬂ-($]’),Twl‘j,H($j) = A(.I])

(Subst)
371'étep
Hy(z4), Toxj, () = A(s'x;)
: H(v), Ty, I(s'v) = A(s'v)
Tov = Tl I, Tov, He(v) = AN1a(s/v) — \ Aa(s/v), A
I, T,v A (All2(v) = V Aa(v)) = Tos/v A (Aa(s7v) — V Aa(sv)), A

(Subst)
(=R, AL, VR)
(AL, AR, WK)

O]

Proof of Lemma |6.17. Let w be a j-step simple cyclic proof of the sequent I' = A with
loop sequent II, T,zo = A. By Lemma 6.4 there exists an LKID-I proof vffase with end-
sequent IT = H,(k),A for k =0,...,j — 1. By Lemma 6.19 there exists an LKID-I proof
Yeut With end-sequent II, Hy(x9) = A and by Lemma 6.20 there exists an LKID-I proof
Ystep Of the sequent II, H(v) = Hr(s’v),A. Hence the following is a simple induction

proof of the sequent I' = A.
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‘Al ~k : .

“Vbase “Tbase Vstep Yeut

= H,(T),A ... TI=H(k),AN I H,(v)= H:(v),A TI, Hy(x) = A
(IndT,,)
H, wag = A
E7Tend
r=A

]

It might be interesting to observe that there is some form of redundancy in the simple
cyclic proof constructed above. Indeed the proof of the major-premise also occurs as a
subproof in the proof of the step case.

6.5 Refutations of the n-Clause Calculus

Previously, we have shown that every simple cyclic proof corresponds to a simple in-
duction proof. Moreover, we have already shown that inductive cycles of the n-clause
calculus can be represented as simple cyclic proofs. We can thus obtain a simple in-
duction proof representing an inductive cycle. We will show that we can improve the
induction hypothesis a bit. Finally we will put the previously obtained simple inductive
proofs to use, in order to obtain inductive proofs that simulate n-clause refutations.

Corollary 6.21. Let S be an L-clause set, 6 an inference relation for S and J an
immediate entailment relation for S. If S admits an inductive cycle (i, j, Sinit; Sioop), then
the sequent T [S] = [n < i] admits a j-step simple induction proof with induction
hypothesis Tun A =[Sinit] (sn).

Proof. By Lemma 6.14 the sequent T, [S] = [n < i] admits a j-step simple cyclic
proof with loop sequent T™, [S[T]], [Sinit](s'v0), Twro =. Hence by Lemma 6.17 the
sequent T [S] = [n < 4] admits a j-step simple induction proof with induction
hypothesis T,n A = [Sinit] (s'n). O

We have observed that the type atom T,,7 is required in order to provide the induction
with the type information that is used by the cyclic proof. However the cyclic proof
constructed in the proof of Lemma 6.14 does not use this type information. It should
thus be possible to eliminate this conjunct from the induction invariant.

Corollary 6.22. Let S be as in Corollary 6.21. If S admits an inductive cycle ( i, j,
Sinits Sloop), then the sequent T, [S] = [n < 4] admits a simple induction proof with
induction invariant —[Sini](s'n).

Proof. Denote by 7 the simple cyclic proof constructed by the proof of Lemma [6.14 and
denote by v the simple induction proof obtained by applying the construction of the
proof of Lemma 6.17 to w. We will define a global transformation on « that yields the
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desired proof. Consider any proof "y]b“ase with 0 < k < j. The proof fy{;’ase is without loss
of generality of the form

Lk
Tstep

= T;m T, [S[T]][Sinie] (2 + k) =
T TS[T]] = Twi+ kA =[Sinie] (2 + k).

(AR, —R, Wk)

Hence there is an LKID-1 proof of the sequent T, [S[T]] = —[Sinit] (i + k).

Next let us consider the proof 7. By its construction the formula T,zg only
appears in the contexts of the inferences. Hence there is an LKID-I proof 7/, of the
sequent T, [S[T]], =[Sinit] (s'w0) =

Now consider the proof msep. By the construction this proof is of the form:

S’Ycut
T, T[T, oo, Tumo Al Sl (5'20). [Sime] ('20) = g1 o
T, [S[TT], T Tor A =[Sl (60), [Simi] (s') =
: 7/
Tuﬂ/ = TwSiU Tinja [S[TH ) Twl/a TwV A _'|VSinit_| (siy)7 [Sinit—| (S'H_jlj) ~
Tinj7 ’VS[TH ) TwV A ’VSinit—‘ <siV) = Twsjl/ A= (Sin“;l (si‘f’jy)

(AR, R, Wk)

By the same arguments as in the proof of Lemma 6.1] it is possible to replace the formula
occurrences of T,v A =[Sinit](sv) by =[Sinit | (s'v) in the derivation 4" on the path to the
bud. We denote the resulting derivation by ~”. Furthermore by the construction of the
proof msep the ancestors of the explicit formula occurrence T,v in the end-sequent of
Tstep do only occur in contexts of ~". Hence we can remove these formula occurrences
from 4" to in order to obtain a derivation v"”. We can then prove the step sequent as

follows:
- eun |
T, [S[T], = [ Sinie] (s"20), [ Sinie] (s'z0) = (Subst)
T, [S[T]], =[Sinit | (s'v), [ Sinit | (s'v) =
N " Ny
T, [S[T]], =[S 6'0), [Sm] (590) =

T, [S[T]], =[Sinie] (s'v) = =[Sinit 1 (s*/v)
O

Our aim is the representation of inductive cycles with respect to derivability in LKID-I

under a set of axioms.
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Corollary 6.23. Let S be an L-clause set, 6 an inference relation for S and 3 an
immediate entailment relation for S. If S admits an inductive cycle (i, j, Sinit, Sioop)
then the sequent T) =[Sinit] (s'n), T, [S] = [n < 4] is provable in LKID-I.

Proof. Immediate. O

As stated in Definition [3.29] a set of n-clauses is considered as refuted if it contains a
cycle with offset i (i.e. S entails < i) and the clauses n % 0,...,7 % i — 1 are derivable
from S. We will thus show that the formula [S] is unsatisfiable by showing that the
sequent [n % 0],...,[n#%i—1],[n < i] = is provable. To prove this sequent we need
the information that every element of T,, is either of the form 0, or I, or ..., or 7 — 1 or
the i-th successor of some other element.

Definition 6.4. Let i € N with i > 0, then the formulas cd;(x), case;(x), and Case; are
given by

i—1
cdi(z) = \/ z=jV (TyyAs'y=z),
§=0

case; () = Fy(T,z — (cdi(x))),
Case;(x) = Vx case;(x).

Lemma 6.24. The formula T,z Acase;(z) is provable in LKID with induction invariant
Tox A caseq(z).

Proof. The base case is proved as follows

(TwR1) (=R)

=T,0 =0=0
= T,0A(T,0— Jy(0=0V (Tuy Asy=0)).

The induction step can be proved as follows

(AR, —R, 3R, VR)

€
Tox = Tysz Ty, case (z) = case;(sx)

(AR, AL, Wk)
Tz A casey(z) = T,sz A caseq (sz).

where the proof € and its subproofs £; and €9 are given below, respectively.

€1 €2

(Ax) (3L, VL, Wk)
Tox = Tux Tz, Jy(z =0V (Tuy Asy = x)) = case; (sz) L)
_>
Tz, Te — Jy(xr =0V (Tuy Asy = z)) = case;(sz)
— o =R)
0=s0
(TR1) == (<L)
= T,0 r=0=s0=sx (AR)

r=0=T,0As0=sx

x =0 = case;(sx)

(—»R, 3R, VR, Wk)
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(Ax)
(TR2)

(Ax)

(=L)

(AR, AL)
(-R, 3R, VR, Wk)

T,8=T,p = ssff = ssf8
To8 = Tusp sB=x=ssf =sx
ToBAsS=x= T,sBAssp = sx
TuB Asp =z = case;(sz)

O

Lemma 6.25. Let ¢ be a natural number with ¢ > 1. The sequent Case; = Case; is
provable in LKID-I.

Proof. We proceed by weak induction on i. The case where ¢ = 1 is trivial. If ¢ > 1
then by the induction hypothesis there is a proof 7 of the sequent Case; = Case;—1. We
denote by v the proof below and €, €1, €9 its respective subproofs.

A
a:O:a:O(A)((z/R) azi—l:a:i—l((\jl)%)
(Ax) a=0= Cdi+1(04,,8/) o a=1—1= Cdi+1(a, B/) € (\/L)
Twa = Twa Twﬁ — Cd0(575/)a Cdi(aa 5) = Cdi+1(a75/) (—)L —)R)

TLUB — Cdo(ﬁvﬁl)v TWO( — Cdi(Oé, ﬁ) = TwOé — Cdi+1(0&,5/) (\V/L) ’

TUJ/S _> CdO(ﬁ? ﬁ,)7 Twa _> Cdi(a7 6) :> Casei‘f‘l (a) (HL VL)

Casey, case; (o) = case;+1(a) (VR.VL) ’
Caseg, Case; = Case;y1 ’
‘ — (Ax)
a=:s'0=a=5s"0 (:L)
B=0,a=sp=a=s0 €9 (VR)
cdo(B,8),a=58=a=s0T,0 Aa=sTs
—— (Ax) ; . p (=R, VR)
Twﬁ = Twﬁ Cdo(ﬂa /B )7 o = SZ/B = Cdi-i-l (O[, /B ) (/\L —>L)
TuB — cdo(B. 8), TuB A = 518 = cdir (v, ) ’
a=sT13 = a=stp5 (Ax)
— (A . : =L
Tw/BI:>Tw5/ ( X) 6:Sﬂl,a252,3:>a231+16, E/\R;
T ANB=sfa=sF=T,08 Na=sTg
We prove the sequent caseg = case; as follows.
o by
casep = case;_—1 casep, case;—1 = Ccase;
casey, = case; (Cut)
O

Lemma 6.26. Let i € N, then the sequent T,n, [n #0],...,[n%i—1],[n <i] = is
provable in LKID with induction invariant T,z A casei(x).
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Proof. First we prove the sequent

Casei(n))Twnu [77 A'?é 0~|7‘-'7 [77 A’?"‘All— 1~‘7 (77 3{“ ﬂ =
in LKID-I as follows:

— A
n=0=n=0 (AX)... n—i—lén—i—l(x)s(vR)

cdi(n,a),=n=0,....n=i—1,ToaAn=sa

— (Ax) ~ 5 -R)

Ton = Tuy cdi(n,a),(ToaAnp=s'a)=n=0,...,n=i—1 (SR)

Twn%Cdl(naa)aTwn7_‘(Twa/\n:Sia):>n:0a"-a77:i_1 (VR)

Ton —cdi(n,a), Tyn, [n<i]=n=0,...,n=i—1 (“R)
Twn — Cd1(777a)7Tw777 (77 #j O—‘w'-a [77 #Z_ 1~|7 (77 = Z~I =. (ER)

casey(n), Tum, [n #0],..., [n#i—1],[n <i] =
The proof ¢ is given by

(Ax)

= (Ax) -
Toa= Tya ssfa=n=s'a=n L, AL

TBASB=n=TupAn=5p
By Lemmas 6.24, [6.25| the sequent T,n, [n % 0],...,[n % ¢ —1],[n < i| = is provable
in LKID with induction hypothesis T,z A case!(z) O

We can now assemble the previous result in order to obtain the main theorem of this
thesis.

Theorem 6.27. Let S be an L-clause set, § an inference relation for S and J an
immediate entailment relation. If S admits a cyclic superposition refutation w.r.t. § and
-, involving the cycle (i, j, Sinit, Sioop), then the sequent

L, Sinit ] (sin), I (Twz A caser (), T, Ton, [S] =
is provable in LKID-I.
Proof. By the definition of a cyclic superposition refutations, we have
Stsnk, foral ke {0,...,i—1}.
Hence by Lemma 6.13 there exist LKID-I proofs ¢4, ...,¢;_1 of sequents
TN, [S] = [n# k], with k € {0,...,i —1}.
Furthermore, by Lemma 6.14 there is an LKID-I proof « of the sequent
TN, [S] = [ < i].

Moreover, the proof v only uses the induction invariant =[Siyit](s'n). By Lemma 6.26
there exists an LKID-I proof 7 of sequent

Ton, [n#0],...,[n%i-1],[n=<i] =.

The proof 7 only uses the induction invariant T,z A casej(x). Therefore the following
proof only uses the induction invariants —[Sinit|(s'n) and T,x A case;(x).
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EEO 71'
T [S1=n#0 Twm 0] n#i—1L <=
T, Ton, [n# 10, In#i—1],[n < i][5] =
T T [ i= 1) <L [S] >
- _ T, T,n, [n <], [S] = (Cut)
™, Tun, [S] =
O

Corollary 6.28. Let S be a clause set, § an inference relation, and J an immediate
entailment relation. If S admits a cyclic superposition refutation with respect to 6 and
3, then the sequent T'™  Tn, [S| = is provable in LKID(X,).

Proof. Let (i, 7, Sinit, Sloop) be the inductive cycle involved in the refutation. For any
clause C € Sinit, the formula [C] clearly is a IT;-formula. Hence, there exists a II;-formula
F, such that F <> [Sinit| is provable in LKID-I. Therefore, there also exists a ¥;-formula
F’ such that F' < —[Sini](s'n) is provable in LKID-l. The formula T,z A case ()
clearly is equivalent in LKID-I to a »i-formula G. Hence by Theorem |6.27 the sequent
Tin T, [S] = is provable with the ¥j-induction invariants F’ and G. O

This theorem allows us to confirm the informal conjecture that the n-clause calculus
captures only a “weak” notion of induction. Although, it may be surprising that the
n-clause calculus perhaps captures more than quantifier-free induction.

Moreover, Theorem [6.27| tells us that the cyclic superposition refutations of the n-
clause calculus do only contain arguments by structural induction and not a stronger
notion of induction, as is the case for the arguments encoded by the cyclic sequent
calculus. In other words, we obtain a somewhat more fine-grained soundness for the
n-clause calculus.

Corollary 6.29. Let S be a clause set, § an inference relation, and J an immediate
entailment relation. If S admits a cyclic superposition refutation with respect to 6 and
3, then TN Ty, [S] = is Henkin-valid.

Proof. This corollary is an immediate consequence of Theorem |6.27, and the Henkin-
soundness of the proof system LKID. O

There are two natural questions arising from Theorem 6.27. First of all it seems
natural to ask whether our upper bound is optimal, that is, to ask whether the n-clause
calculus actually proves a sentence which cannot be proved with quantifier-free induction
in the system LKID. Furthermore it seems natural to ask whether the n-clause calculus
is complete with respect to this notion of ¥j-induction. In Chapter 7| we will give a little
bit more detailed discussion of these new questions.



CHAPTER

Open Questions

In the previous sections we have shown that a refutation of a clause set .S in the n-clause
calculus can be simulated by LKID(X1). From this observation two natural questions
arise. First of all we might ask whether the induction invariants obtained by the transla-
tion outlined in Chapter 5 and Chapter 6 produces induction invariants that are optimal
in their quantifier complexity. In other words, are there any clause sets whose translation
cannot be proved unsatisfiable with quantifier-free induction? Secondly, we might also
ask whether the n-clause calculus is complete with respect to Xi-induction. In Section
7.1 we will briefly discuss the optimiality of the obtained induction invariants. Section
7.2 gives some intuitions about the (in)completeness of the n-clause calculus with respect
to X1-induction.

7.1 Optimality of the Induction Invariants

The translation of the n-clause calculus to the to the calculus LKID via the calculus
CLKIDY was designed in such a way that it does not deviate to much from the underlying
intuition of the n-clause calculus. It is apparently not the case that any unnecessary
quantifiers are introduced. Indeed the only quantifiers that appear in the translation of
clause sets are the quantifiers which are implied by the semantics of the n-clause logic.
Hence, it would be surprising if it were the case that every refutable clause set could be
refuted with a quantifier-free induction. Therefore it seems reasonable to start with the
conjecture that there are indeed clause sets refutable by the n-clause calculus, which are
not refuatble with quantifier-free induction.

In order to understand when and why a quantifier may be unnecessary, we start with
an example where the translation yields an overly complicated induction hypothesis.
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Consider the following clauses over the signature {t:¢,q:w — ¢}

q(0) ~ t, (E4)
q(x) 2tVq(szr) ~t, (E5)
[a(z) #t|n=a] (E6)

It is easily seen that the clause (0,1,{(E6)},{(E6) |1}) is an inductive cycle for this
clause set. By Theorem [6.27 we obtain the induction invariant

Va(Tox An=x— q(z) #t).

In presence of the axiom T,n the induction invariant is equivalent to the quantifier-
free formula q(n) = t. Similarly, it is possible to eliminate one universal quantifier
whenever the cycle’s offset is 0. This quantifier was introduced because the inductive
cycle represents an argument by infinite descent that starts with an assumption and
descends along the chain of natural numbers, thus creating smaller counterexamples.
Since the n-clause logic does not dispose of a symbol for the predecessor function, we
need to use quantifiers.

In this example it turns out that the argumentation represented by the inductive
cycle is not a very natural way to refute this clause set. A more natural way to prove
refute this clause set is as follows. Observe that the clauses (E4) and (E5) are the actual
inductive clause set. That is, (E4) and (E5) imply the clause q(z) ~ t. The constraint
clause (E6) provides some information contradicting the clause q(z) ~ t. Hence, the
clause set is unsatisfiable.

Let us now have a look at a similar clause set. This time, however, it is not so easy
to obtain a quantifier-free induction invariant. Consider again the clauses (E1), (E2),
and (E3) of Example 2.

p(0,t) ~ t, (E1)
p(z,y) £tV p(sz,gy) ~t, (E2)
[p(z,y) £ t|n =] (E3)

On the metalevel we have shown that this clause set is unsatisfiable by using a quantifier-
free induction. But remember that this was only possible because our metalanguage
allows us to explicitly express the n-fold iteration of a unary function symbol. Further-
more we have shown that (0,1, {(E3)},{(E3)} {1) is an inductive cycle. By Theorem
6.27| we obtain the formal induction invariant

VaVy(Tox AToy An=x — p(z,y) #t).

The quantifier binding the variable x is clearly superfluous and we have the equivalent
induction hypothesis

Iy(Tuoy Ap(n,y) =t).

The existential quantifier serves to handle the absence of a construct allowing us to
express explicitly the actual witness which is given by iterating the function g on t
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depending on the value 7. Therefore, it seems improbable that there exists a quantifier-
free induction invariant which allows us to refute this clause set. Of course there is the
possibility that there is a an inductive cycle involving only one variable. However, by
looking at the clauses, and their deductive hull, it seems apparent that there is no such
inductive cycle.

7.2 Incompleteness with respect to > -induction

If the n-clause calculus captures Yi-induction, it is natural to ask whether it is complete
for this kind of induction. In the following we will consider two points, which may be a
sources of incompleteness of the n-clause calculus with respect to ¥1-induction.

7.2.1 Forward-Incompleteness of Superposition

A possible way to obtain a completeness result of the n-clause calculus with respect
to Y1-induction would be to define the inverse translation to the translation defined in
Chapters 5| and 6. That is, we need to convert Yi-induction invariants into clause sets
that represent inductive cycles. There are several points to consider in doing so. First
of all we need to translate the induction invariants to adequate clause sets. Secondly,
and this is the more significant problem, we need to infer the existence of derivations
satisfying the conditions for inductive cycles. This is more difficult to realize in so far,
as the superposition calculus (as well as the resolution calculus) is subject to forward-
incompleteness in the following sense.

Lemma 7.1. There exists L-clauses C1 and Co such that C; |= Co but Cy t/ Ca.
Proof. We shall see that there are multiple sources of forward-incompleteness.

e Clauses are not weakened:
{t1 = to}  {t1 ~t2 V I}.
e The language of a clause is not unnecessarily extended:
{t1 = ta} i/ {f(t1) = f(t2)}.
e Instances are not generated without unification:
{f(x) ~t1} ¥/ {f(t2) ~ t1}.

O

Forward-incompletness in the above sense is not a weakness of the superposition
calculus, but quite the contrary. The superposition calculus, as well as the resolution
calculus, are meant to derive a contradiction (i.e. the empty clause) from unsatisfiable
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clause sets. The superposition calculus is refutationally complete. This means that if
a clause set is unsatisfiable, then a refutation of this clause set exists. Theoretically,
there is simply no need to be able to derive some redundant clauses. Theorem provers
based on the superposition calculus are usually implemented as saturation procedures.
These provers try exhaustively to derive new clauses until the empty clause is eventually
found. During this process a very large number of clauses may be generated. In order to
keep this search effective and efficient it is thus necessary to avoid to generate too much
redundant clauses.

This is in contrast with calculi such as LK that focus on proving the valid entaile-
ments. It is thus questionable whether the choice of using a superposition calculus as the
underlying deductive system for the discovery of inductive cycles is an adequate choice.

The above observation shows that it may be the case that the reverse translation
from FOLip to the n-clause calculus is not in general possible because of the forward-
incompleteness property of the superposition calculus. However finding an example
where the forward-incompletness disables the discovery of an induction invariant is
harder than one may expect. This is partially due to the numerous restrictions on
the syntax of constraint clauses.

7.2.2 Different Forms of Induction

Another place to look for an example of incompleteness of the n-clause calculus are the
different approaches to induction. We have seen in Section [1.1, that besides structural
induction, there are various other possibilities to express induction on the natural num-
bers. It might thus be interesting to see how the n-clause calculus deals with clause
sets that are natural for a specific type of induction. This idea is motivated by the
fact that inductive cycles do not have the same properties as inductive formulas. For
natural numbers it is possible to normalize j-step induction and even (i, j)-induction to
the usual weak-induction. With inductive cycles this is not the case.

Lemma 7.2. There exits an n-clause language L, an L-clause set S, an immediate
entailment relation J and an inference relation § such that S admits an inductive cycle
(1,1, Sinit; Sloop) but S does not admit an induction loop (0,1, S, Sjoep) -

init»

Proof. Let L = {t : ¢,p : w — ¢}, J the equality relation, § the unrestricted inference
relation, and let S be the clause set containg exactly the following clauses.

[p(s0) ~t | O], (1)
[p(z) %tV p(sz) ~t ], (2)
[p(z) £t |n==al] (3)

By straightforward applications of superposition and reflection to the clauses above we
obtain:

(O | n =~ s0], (4)
[p(z) # t|n =~ sz]. ()
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Hence (1,1,{(3)},{(3)}{1) is an induction loop for S. It remains to show that S does not
admit any loop with offset 0 and step 1. To this end we will show that S = [0 | n = 0]
by providing a suitable interpretation.

We define the relations =, and =,, as follows.

== ({t} U{p(@) : n € N,n > 0})> U{(p(0),p(0))},
=,={(m,n):n e N}

We set ===, U =,,. It is easily seen that the relation = is a congruence relation. Hence
Z = (0,=) is an L-interpretation. It remains to show that Z =S and Z = [0 | n ~ 0].
By definition of = we have p(I) € [t]= and hence Z = [p(I) ~ T | {]. Let o be any
well-typed ground subsitution with dom(c) = {x}. There are two possible cases either
xo = 0or xo = si for somen € N. If zo = 0, then we have Z = [p(x) # tVp(sz) ~ t | O]o
since p(0) ¢ [t]=. If xzo = si, then we have Z |= [p(z) %tV p(sz) ~ t | O]o since p(sn) €
[t}=. Hence Z is a model of clause (2). Furthermore we have Z |= [p(z) ~ t | n ~ z]
since p(0) ¢ [t]=. Therefore Z = S. Since Z = 0 and n? = 0 we have Z [~ [0 | n ~ 0].
Thus S £ [0 | n ~ 0] and hence there does not exist S’ C S such that S’ =[O | n ~ 0].
Therefore the clause set S does not admit a loop with offset 0 and step 1. O

Polynomial Induction

This principle is interesting in the context of the n-clause calculus since it turns out to
be much easier to formalize in this calculus than other types of induction. Because of the
syntactical restrictions on n-clause signatures (cf. Definition [3.1)), it is difficult or even
impossible to express even simple concepts such as the commutativity of the addition.
Moreover, it is not possible to express the natural well-ordering of the natural numbers
since it is not possible to introduce Skolem symbols for quantifiers ranging over natural
numbers. The principle of polynomial induction can be formulated as follows.

©(0) AVz(p(z) = p(22) A (22 + 1)) — Vrp(z).

Let us discuss how one would show the correctness of this induction principle having
access to the natural well-ordering <. It seems intuitive to proceed by induction on the
usual well-ordering <. We start by assuming that ¢(0) holds and that for all m € N if
¢(m) holds, then we also have ¢(2m) and ¢(2m+1). Let now n be any natural number.
There are two cases to consider. If n = 0 we are done. If n > 0, then there exists a
number m < n such that either n = 2m or n = 2m + 1. By the induction hypothesis we
have ¢(m). Thus, we obtain ¢(2m) and ¢(2m + 1), and hence ¢(n) holds in both cases.
Therefore, ¢(n) is true for all n € N.

In the following we will formulate a clause set which follows the pattern of polynomial
induction. Because the n-clause logic does not allow other function symbols than 0 and
s with range w it is necessary to represent the function x +— 2 - x by its graph. Let the
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clause set ST consist of the clauses given below.

Ci = d(0,0) ~ t
Co =d(x,y) 2tVd(sz,ssy) ~t
C3 = p(O) ~t

Cy=p(z) ZtVd(r,y) £tVply) ~t
Cs =p(z) AtVd(z,y) £tVp(sy) >t
Co = [p(z) £t |n=~ux

Let us now argue that this clause set is indeed unsatisfiable. First of all we need to show
that our axiomatization of the predicate d captures indeed the graph of the function
=2

Lemma 7.3. Let T be a model of S¥, then T |= d(7,2n) ~t for alln € N.

Proof. We proceed by simple induction on n. The case where n = 0 is trivial. If
n = m + 1, then by the induction hypothesis we have Z = d(m,2m) ~ t. Since Z = C,
we have Z |=d(m + 1,2m + 2). O

Lemma 7.4. Let T be a model of S¥, then T |= p(7) ~t for all n € N.

Proof. We proceed by polynomial induction on the number n. The case where n = 0
is trivial. If n > 0, then there exists a number m < n such that either n = 2m or
n = 2m + 1. By the induction hypothesis we obtain Z = p(m) and by Lemma 7.3 we
obtain Z = p(m, 2m). Since Z = C4 and Z |= C5 we obtain in both cases Z = p(n). O

The unsatifiability is now easily shown.
Lemma 7.5. The clause set S¥ is unsatisfiable.

Proof. We proceed by contradiction and assume that there exists a model Z = (n, =) of
SP. The in particular we have Z |= Cg and thus Z |= p(n) % t. But by Lemma 7.4 we
also have Z = p(m) ~ t. Contradiction! O

The are two observations that we can make here. First of we all have used two distinct
inductions to establish the unsatisfiability of this clause set: One structural induction
to prove the encoding of the function z +— 2 - x, and a polynomial induction to obtain
the actual contradiction. Thus it might be interesting to investigate how the n-clause
calculus deals with clause sets that are naturally proved by such “nested” inductions.
Secondly, it seems likely that the deductive hull of SP does not contain an inductive
cycle which can be used in a cyclic refutation. This is because it seems necessary to
have an invariant that expresses that for a certain element x, p(y) is true for all y that
precede z. However, this cannot be expressed in this language.

Nevertheless, there is one problem with the example. It is not clear whether the
translation of the clause set SP is refutable in LKID. Again this problem is related to
the language. We need the usual well-ordering on the natural numbers in order to derive
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the principle of polynomial induction but the language does not provide us with such a
symbol. The situation is somewhat similar to that of the 2-Hydra statement presented
in Section |4.4. That said, the clause set ST, even though it might possibly be unprovable
in the n-clause calculus, may not a very useful example for the incompleteness of the
n-clause calculus with respect to ¥i-induction, since it is likely that SP is unprovable in
LKID as well.
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CHAPTER

Conclusion

The goal of this thesis was to give an upper bound on the quantifier complexity of the
induction invariants required to simulate the refutations of the n-clause calculus in LK.

In Chapter |5/ we have introduced a translation from n-clause logic to first-order logic
with inductive definitions. Moreover we have proved that this translation exhibits desir-
able properties such as the equivalence with respect to satisfiability and the preservation
of validity in one direction. Furthermore we have conjectured that validity is indeed
preserved in both directions.

In Chapter |6 we outline two translations. The first translation takes a inductive
cycles of the n-clause calculus and translates these cycles into cyclic proofs. We have
seen that the cyclic sequent calculus is a suitable calculus for the representation of
inductive cycles in the sense that these cycles appear to be a natural concept. In the
second step, we have translated a restricted type of cyclic proofs, namely simple cyclic
proofs, into inductive proofs. We have seen that this is possible because the loop sequent
behaves somewhat similarly to an induction invariant. Moreover, we have seen that the
resulting induction hypothesis is always equivalent to a ¥;-formula. Finally, we have
shown that it is possible to simulate n-clause refutations by adding a case distinction
axiom which allows to establish the contradiction. The overall result is that an n-clause
refutation uses only »i-induction. More formally we have shown the following theorem,
which is the central result of this thesis.

Theorem. Let S be a clause set. If S is refutable in the m-clause calculus, then the
sequent T T,n, [S] = is provable in LKID(X;).

Finally, in Chapter 7| we have discussed two questions that arise from this result. We
have argued that the induction invariants are in general likely to be optimal with respect
the the quantifier complexity Y1 because there is some clause set, that is refutable by
the n-clause calculus and that is apparently not refutable with quantifier-free induction
in the system LKID. Furthermore we have discussed whether the n-clause calculus might
be complete with respect to Xi-induction. We have seen that there is some reason to
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belive that it is not complete with respect to this type of induction. The intuition being
three possible sources of incompleteness: the forward incompleteness of the superposition
calculus, nested inductions, and complicated induction principles.
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