
Datenzitierbarkeit bei
Schemaevolution in relationalen

Datenbanken

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

BSc. Patrick Säuerl
Matrikelnummer 1125492

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber, Univ. Doz.

Wien, 25. Februar 2018
Patrick Säuerl Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Data Citation under Schema
Evolution in RDBMS

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

BSc. Patrick Säuerl
Registration Number 1125492

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber, Univ. Doz.

Vienna, 25th February, 2018
Patrick Säuerl Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

BSc. Patrick Säuerl
Address

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 25. Februar 2018
Patrick Säuerl

v

Danksagung

Ich möchte mich bei meiner Mutter, meinem Vater, meiner Oma und meiner Großtante
für ihre Unterstützung bedanken. Jeder von euch half mir auf die für ihn bestmöglichste
Art und Weise, Danke!

Besonderer Dank geht auch an meine Freundin Angie. Die vielen hin und hers im Master-
studium sowie bei dieser Arbeit waren nicht leicht, danke für deine Hilfe, Unterstützung
und vorallem Verständnis.

Ebenfalls danke an meine “Uni-Gruppe”, bestehend aus Thomas, Lisa, Markus und
Manuel. Ohne euch hätte das ganze wohl länger gedauert.

Auch ein großes Danke an Manfred, mit dem ich seit der 1. HTL immer über Programmie-
ren reden und Musik machen konnte. Danke fürs Dasein und, dass du meinen Blödsinn
aushaltest. Du bekommst dein Nutella bald zurück!

Ebenfalls ein Danke an Werner und Andreas, die Aufgabenstellungen sowie Entwicklungs-
möglichkeiten von euch, vorallem am Anfang des Studiums, haben mir sehr geholfen.

Zu guter letzt noch ein Danke an Prof. Rauber für das spannende Thema, die gute
Betreuung und die bohrenden Fragen, wodurch ich meine Lösungsansäetze verbessern
musste.

vii

Acknowledgements

I want to thank my mother, my father, my grandmother and my great-grandaunt for
their support. Everyone helped me in their best possible ways.

Also, i want to especially thank my girlfriend Angie. The many ups and downs during
the master’s program, and during this thesis, have not been easy. Thank you for your
help, your support and your understanding.

Next in my list is my “Uni-Gruppe”, consisting of Thomas, Lisa, Markus and Manuel.
Everything would probably have taken longer without you, thank you all.

A big thanks also goes to Manfred, with whom i have been talking about programming
and making music since the 1st grade of HTL, just for being there and enduring my
shenanigans. You’ll get your Nutella back soon.

I also want to thank Werner and Andreas for the tasks and opportunities to grow they
provided, especially in the beginning of my studies.

Last but not least, i want to thank Prof. Rauber for the very interesting diploma thesis
topic, the very good supervision and the challenging questions which made me improve
my approaches.

ix

Kurzfassung

Viele Bereiche in der Forschung und Wirtschaft benötigen Daten als Grundlage für
Experimente und Analysen. Die Reproduzierbarkeit dieser Experimente ist ein wichtiger
Teil in der Wissenschaft und kann auch in der Wirtschaft eine große Rolle spielen aufgrund
rechtlicher Natur oder Rechenschaftspflicht bei Entscheidungen. Generell muss man davon
ausgehen, dass die zugrunde liegenden Daten für diese Experimente, ebenfalls auch das
den Daten zugrunde liegende Schema, Änderungen unterliegen. Dies macht die korrekte
Reproduktion von Daten eine nicht triviale Aufgabe.

Wege, Daten die bereits abgefragt wurden korrekt zu reproduzieren, sind bereits entwickelt
wurden und sind bekannt als Datenzitierbarkeit. Der Prozess der Schema Änderung und
das Migrieren der Abfragen zwischen verschiedenen Schema Versionen ist bekannt als
Schema Evolution.

Systeme für diese beiden Bereiche wurden bereits entwickelt, jedoch kein System, welches
beides unterstützt. Diese Diplomarbeit kombiniert Systeme aus den beiden Bereichen
und beantwortet, welche Design-Entscheidungen man bei der Kombination treffen muss
und wie diese die Abfragezeit und Speicherplatzanforderungen beeinflussen. Zusätzlich
werden noch unterschiedliche Ansätze für die Daten Historisierung implementiert, welche
hinsichtlich ihrer Speicherplatzanforderungen sowie der Zeit für Abfragen evaluiert werden.
Darauf aufbauend erstellen wir Richtlinien, welche Ansätze in welchen Situationen
verwendet werden sollen und beschreiben verschiedene Bereiche für Optimierungen.

Die wichtigsten Beiträge dieser Diplomarbeit sind die entwickelten Locking Strategien,
die sich aus der Kombination den Anforderungen für Datenzitierungssystemen und
Schema Evolution ergeben, sowie das Umschreiben von Abfragen für die implementierten
Datenhistorisiserungsansätze, ein skizziertes System für Datenbanken mit Millionen von
Einträgen, und Verwendungsrichtlinien für diese Systeme.

xi

Abstract

Many areas in science and businesses rely heavily on data for their experiments and
analyses. Reproducibility of those experiments is an important part of science and can
be important in businesses too, due to legal or accountability issues. In general, the
underlying data for those experiments and the schema it is stored in, are subject to
change, making correct dataset reproduction a non trivial task.

Ways to correctly reproduce a once created set of data have been developed and those
ways are generally known as making data citeable. The process of changing the schema
and migrating queries between different schemata versions is known as schema evolution.

Systems that solve data citation, as well as schema evolvable systems for relational
database management systems (RDBMS), have been designed, but none for both. This
thesis is going to answer how those systems can be combined, which design decisions
have to be taken when combining those systems and how they impact query performance
and storage size.

To provide these answers, we first take a look at systems that solve data citation and
systems that solve schema evolution in RBDMS. We design and implement a system based
on existing solutions with different data historization approaches. Afterwards, we evaluate
those approaches with respect to their storage requirements and query performance.
Based on our evaluation, we conclude usage guidelines for different scenarios and discuss
potential optimizations.

The main contributions of this thesis are the developed locking mechanisms that result
from combining requirements of schema evolvable systems with those of data citeable
systems, as well as the query rewriting techniques for the different implemented data
historization approaches, an outlined additional outlined system for databases with
millions of rows, and the usage guidelines inferred from our evaluation results.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Related Work 5
2.1 Data Citation . 5
2.2 Schema Evolution . 8
2.3 Related Systems . 9
2.4 Summary . 11

3 System Design 13
3.1 System Overview . 13
3.2 Attribute vs. Tuple Based Timestamping 20
3.3 Integrated vs. Separated vs. Hybrid historization approaches 22
3.4 Schema Evolution and Schema Management 27
3.5 Query Store and Query Rewriting . 30
3.6 Locking Mechanisms . 36
3.7 Optimizations and Extensions . 39
3.8 Big Database Considerations . 41
3.9 Code Metrics . 55
3.10 Summary . 55

4 Evaluation 57
4.1 Environment . 57
4.2 Measuering Methods . 58
4.3 Insert Performance . 60
4.4 Update Performance . 61
4.5 Delete Performance . 69
4.6 Select Performance . 72
4.7 Evaluation Summary . 79

xv

4.8 Guidelines for Real World Applications 81
4.9 Summary . 81

5 Conclusions and Future Work 83

List of Figures 85

List of Tables 87

List of Algorithms 89

Bibliography 91

Appendix A - Code Examples 93

CHAPTER 1
Introduction

Data driven experiments and analyses build the foundation for many areas in science
and businesses. At one point, an experiment, may it be some statistics that are created
or maybe some AI that is trained, are done for the first time. The results of those
experiment are published, and someone wants to redo this experiment to verify the
correctness of the results. This person now needs access to the original data used for the
experiment. The same scenario could happen in the business world. One member of the
business intelligence department creates a statistic, upon which business decisions are
taken. Assume those decisions go wrong and the company wants to know why. Has the
person making the decisions of the statistic made a mistake, or was the statistic flawed?
To answer this, the original data used for the statistic needs to be reproduced. However,
the nature of data is, that it changes over time. Old data may be deleted or updated
and new data is inserted. To make things worse, not only may the data be dynamic,
the schema in which it is stored in may change too. In the case of relational database
management systems (RBDMS), tables and columns may be added, dropped or renamed
and tables may also be split or merged. The dynamic nature of the data, combined with
a dynamic schema, makes the process of reconstructing a once retrieved dataset a non
trivial task.

A current solution done by many is to use a static dataset that is not subject to any data
change. This avoids many problems but it is not suitable for many situations. Usually,
researchers are interested in state of the art methods and processes, and having up to
date data is crucial for the importance of their work. Also, in the realm of business,
most decisions depend on up to date data. Therefore, having the possibility to correctly
retrieve and recreate current data is crucial for them.

Providers of data now face the issue, that they have to provide an interface for their data
that retrieves data and can also reconstruct already retrieved data. A naive approach is,
to store all retrieved datasubsets in a separate database. The size of this database would
grow incredibly fast and is therefore not a viable approach. Another approach is to store

1

1. Introduction

the issued query and designing the data storage system in a way, that it enables the
re-execution of already issued queries. The Working Group on Data Citation (WGDC)1

created recommendations for such query-based system that enable correct and verified
data subset reconstruction, effectively making data citeable The recommendations consist
of 14 requirements a system has to fulfill to support data citation and implementation
approaches are described in: Data Citation of Evolving Data[RAvUP15]. The core of
those recommendations is, that the systems needs to version data via timestamping,
ensure that queries uses a stable sorting, that the result set can be verified and that data
is not altered during the query execution process. They, on a high level, also touch the
aspect of technology migration, which happens when the database is migrated to a new
database systems or the underlying data schema is changed. If such a change occurs,
they recommend to rewrite the queries to target the new schema and they need to be
verified to still work correctly.

The act of technology migration by changing the underlying schema may sound like a very
rare occurring event at the first look. However, scientific databases like the CERN-DQ2
had 51 different versions in 1.3 years and business oriented applications like the CRM
system DekiWiki had 16 schema versions in 4.2 years[CMDZ13]. Based on this data, we
can safely conclude, that technology migration is a regularly occurring task and is an
important factor for relevance of the database.

Current solutions for data citation assume, that the schema is rather static and schema
evolution is a special process that usually requires a lot of manual work with migrating
queries. Solutions that solve schema migration usually support query migration and data
timestamping, but they are not designed with the recommendations of data citation in
mind. They usually lack the core recommendations on queries we identified and can
therefore not guarantee correct query result reconstruction.

It is now open to answer, how to build a system that enables data citation and enables
schema evolution in a way, that it can be seen as a regular task. The recommendations
give us a good overview and guideline one the properties a system needs to have to support
data citation, and therefore build the foundation on how to reconstruct already extracted
data. However, it is left open on how those recommendations can be implemented. What
approaches does one have on how to historize data? Should data be split up by attributes
or should complete tuples be historized, and where should the historized data be stored?
What is the influence of those decisions on the query execution time and storage size of
the database? For schema evolution, we are interested in how the data schema can evolve
and how the schema evolution impacts the database. Is it required to take down the
database during the schema evolution process to guarantee that no queries are issued that
cannot be reconstructed? How is historized data handled during the schema evolution
and how to migrate historic queries between different schemata?

To answer these questions, we explore the design decisions we have to take when designing
an data citeable, schema evolvable system for RDBMS. The design decisions are based

1https://www.rd-alliance.org/groups/data-citation-wg.html

2

https://www.rd-alliance.org/groups/data-citation-wg.html

on the recommendations for Data Citation[RAvUP15], different approaches for data
historization[PR13] and schema modification operators[CMDZ13]. After having identified
those options, we choose certain designs, and based of them, we infer strategies to rewrite
queries that target different schemata. Mechanisms that ensure the data integrity are
designed as well. Based on the decisions and defined strategies, we implement a working
solution that allows us to choose different data historization approaches. The implemented
system is then evaluated for the impact on storage size and query performance. We also
discuss a separate system design that is more suited for big databases and focuses on
reduced storage requirements.

This work is structured as follows. In Chapter 2, we cover related work in the fields of
Data Citation and Schema Evolution to get an understanding of the problems we have to
solve. Existing systems for those areas are also discussed and based on our understanding
for the problem we need to solve, we describe our system design in Chapter 3. All design
decisions that have been taken are discussed there, as well as implementation details. We
follow with our evaluation in Chapter 4 and end with our conclusions in Chapter 5.

3

CHAPTER 2
Related Work

In the following sections we cover the related work in the two subjects that build the
foundation for our system design.

2.1 Data Citation
Many areas in science and businesses rely heavily on data for their experiments and
analysis, especially areas that make use of statistics and AI, as frequently encountered
in Business Intelligence tasks. The underlying data for those experiments is subject to
change, new data is added, old one is deleted or current one is updated. Due to this
dynamic nature of data, it is not possible in general to retrieve identical data again at a
later point in time, unless special measures are taken. Without the ability to retrieve the
same data again, it is not possible to redo the experiments and analyses on them, thus
making the results not reproducible. Apart from being a major problem in science, this
also constitutes a significant legal/accountability challenge in business settings, and also
limits traceability of erroneous decisions.

To correctly use data in those experiments, the data used has to be precisely identified
and re-created. Therefore the retrieved data set needs an identification by which it can
be reconstructed again from the source system. This is part of a concept named Data
Citation.

A naive solution for data citation is storing once retrieved data again and then just
retrieving this stored data. The drawback is the big amount of storage required for this,
making it infeasible for many applications, as well as the associated complexity in data
management. Therefore, we have to find a solution which can reconstruct the data only
based on the query and auxiliary information.

The Working Group on Data Citation (WGDC)1, put out 14 recommendations that, when
1https://www.rd-alliance.org/groups/data-citation-wg.html

5

https://www.rd-alliance.org/groups/data-citation-wg.html

2. Related Work

implemented, allow a system to reconstruct already extracted data based on the issued
query. Those recommendations have been thoroughly discussed in: Identification of Re-
producible Subsets for Data Citation, Sharing and Re-Use[RAvP16] and implemented in:
Scalable data citation in dynamic, large databases: Model and reference implementation
[PR13]. We will now take a look at the recommended steps and afterwards we discuss
the reference implementation.

The WGDC[RAvP16] recommends to implement the following steps to make data citeable:

• Preparing the Data and the Query Store

– R1 - Data Versioning
– R2 - Timestamping
– R3 - Query Store Facilities

• Persistently Identifying Specific Data Sets

– R4 - Query Uniqueness
– R5 - Stable Sorting
– R6 - Result Set Verification
– R7 - Query Timestamping
– R8 - Query PID
– R9 - Store the Query
– R10 - Automated Citation Texts

• Resolving PIDs and Retrieving the Data

– R11 - Landing Page
– R12 - Machine Actionability

• Upon modifications to the Data Infrastructure

– R13 - Technology Migration
– R14 - Migration Verification

Recommendation R1 specifies, that all accessed data needs to be stored in versions, in a
way, that enables easy access to previous versions. Change logs or rollbacks are basically
a versioning but they are not flexible enough to support retrieving states of data at a
given time. In the realm of databases, approaches to support versioning include history
tables, direct integration of historization in the live database tables, or hybrid solutions.

Recommendation R2 specifies, that operations on data (create, update, delete) have to
be timestamped. In the realm of databases, this means that all INSERT, DELETE,
UPDATE statements assigned a timestamp to the tuples/columns they effect.

6

2.1. Data Citation

Recommendation R3 specifies, that a facility need to be set up that handles the storage
of executed queries and the metadata for them. The metadata that needs to be stored
emerges from the recommendations R4-R10. This metadata includes the original issued
query, a potentially re-written query by the system, hash of the query, hash of the result
set, the execution timestamp, a persistent identifier of the data store as well as the query,
and other metadata required by the landing page (R11).

Recommendation R4 specifies, that queries have to be re-written to a normalized form to
detect identical queries via comparing the checksum of the normalized forms. This enables
that sementically identical subsets can be identified by the same persistent identifier
(PID).

Recommendation R5 specifies, that the sorting of the returned records is unambiguous and
reproducible, as the ordering of records can influence experiment outcomes. Databases
may return data in arbitrary order if no sorting criteria is specified. Therefore, in
the realm of databases, an ORDER BY clause needs to be added that ensures the
unambiguous and reproducible sorting.

Recommendation R6 specifies, that checksum of the query result needs to be calculated
in order to verify the correctness of the result upon re-execution.

Recommendation R7 specifies, that all queries need a timestamp assigned based on
the last update of the database or the subset they are targeting. The current active
timestamp could also be used but this may lead to privacy issues as it reveals the moment
a query has been issued by the user.

Recommendation R8 specifies, that a query is assigned a new PID if either the query is
new, or if the result set returned from an earlier identical query produced not the same
hash. This allows to detect, that the same query issued at different times resulted in the
same data and therefore they refer to the same data-subset. If they refer to the same
data-subset, they should have the same PID, otherwise their PID should differ.

Recommendation R9 specifies, that the query and all the metadata for it, is stored in
the query store. It is also required, that a transaction concept needs to be in place that
ensures that: the underlying data is not changed during query execution and storage,
ensuring isolation; the process of executing the query and storing it is handled at once,
ensuring atomicity.

Recommendation R10 specifies, that an automatic citation text needs to be generated
that contains the PID identifying the retrieved subset, allowing the users to easily cite
and share the data.

Recommendation R11 specifies, that the PIDs should resolve to a human readable landing
page that provides the data and metadata.

Recommendation R12 specifies, that an API should exist to access the metadata and
data via query re-execution.

7

2. Related Work

Recommendation R13 specifies, that the queries need to be rewritten and the fixity
information recalculated, when the data is migrated. Data migration occurs when the
used database management system is changed, the schema is changed or a completely
different technology used in the system changes. The queries that worked in the old
system have to be migrated to work in the system to ensure that the data can be
reconstructed. However, if the new system cannot reproduce the exact hashes, new fixity
information has to be calculated and the landing page needs to redirect accordingly.

Recommendation R14 specifies, that after data and query migrations, the queries have
to be verified in order to ensure that they can be re-executed correctly.

Based on a closer look on the recommendations, we see, that a system that implements
them is suitable to reconstruct already extracted data, thus allowing the data to be
citeable.

Reference Implementation The reference implementation [PR13] is a data citeable
system for RDBMS. Timestamping is applied there on tuple level, meaning every row
in the database has a starttimestamp and an endtimestamp. They described that they
could use three different historization models for tuples: integrated, separated and a
hybrid model; and went with the separated model. There, each table has a table that
has the same schema as the original table, but contains the starttimestamp and the
endtimestamp. The original table only contains current active rows. They stated, that
the evolution of the database schema is an open question that needs to be tackled. The
different historization approaches have been described on a high level, but they have not
been evaluated against each other. The questions raised by this reference implementation
are the main areas tackled in this diploma thesis.

2.2 Schema Evolution
Schema Evolution is the process of changing the schema inside a database, in our case,
a RDBMS. This usually consists of two steps. First, the underlying schema needs to
be changed, usually through DDL (data definition language) statements. Afterwards,
queries that were working against the old schema need to be migrated to work against
the new schema.

This long standing challenge has been elegantly solved by the system described in:
Automating the database schema evolution process [CMDZ13]. They base the schema
evolution on a schema evolution language consisting of schema modification operators
(SMOs), covering the modifications of tables and their columns, and integrity constraint
modification operators (ICMOs), covering the modifications of primary key, foreign
key and value constraints. These operators have been designed after analyzing the
schema changes that occurred in systems like MediaWiki, the software behind Wikipedia,
and Joomla, a content management system, among others. By expressing the schema
evolution with those operators, they are able to map queries issued against one schema
into equivalent queries in another schema. This systems is, to the best of our knowledge,

8

2.3. Related Systems

the most advanced and complete solution to schema evolution. This system was described
here was not intended for data historization, as the authors see the main research goal in
database archival and historical queries solved in their previous work [MCD+08], which
will be discussed in the next Section 2.3.

We base the schema evolution steps in our system on those SMOs, which are defined as:

An SMO is defined as a function that receives as input a relational schema and the
underlying database and produces as out-put a (modified) version of the input schema
and a migrated version of the database.[CMDZ13]

The SMOs used in the described system, as well as ours, are:

• CREATE TABLE R(a,b,c)

• DROP TABLE R

• RENAME TABLE R into T

• MERGE TABLE R, S into T

• PARTITION TABLE R into S with cond, T

• DECOMPOSE TABLE R into S(a,b), T(a,c)

• JOIN TABLE R,S INTO T WHERE cond

• ADD COLUMN d [AS const | func(a,b,c)] INTO R

• DROP COLUMN c from R

• RENAME COLUMN b IN R TO d

The main idea of most SMOs should be clear from their definition , so we focus on a few
more subtle behaviors. All table level SMOs consume their input tables. For example,
the resulting schema of a MERGE TABLE SMO contains the table T, but not R and
S, as they are consumed. PARTITION TABLE horizontally partitions the table into S
and T, where the tuples moving to S fulfill the given condition. The other tuples are
migrated to T. The remaining SMOs will be explained in Section 3.4.

In the system we develop, we ensure that data is preserved during SMO execution in a
way that we can easily rewrite our historic queries to reproduce the same result.

2.3 Related Systems

We take a look on other state of the art systems that could be used to solve data citation
but have certain shortcomings.

9

2. Related Work

In Managing and Querying Transaction-time Databases under Schema Evolution [MCD+08],
a system called PRIMA, is designed that could be well extended to support data citation.
The history of the database is represented in an XML, which contains a unified view of
how the schema of the database evolved, as well as the data in it. The schema of the
database can evolve via 10 different schema modification operators (SMOs). Updates
to the current relational database via create, update and delete statements, as well as
SMOs, are propagated to the XML database. A version at a given time of the database is
represented in the XML database as the following node hierarchy: database/table/row/-
columns. All elements there have a start and endtimestamp. If the value of a columns is
updated, only the node containing the current value needs its endtimestamp set and a
new node containing the new value can be inserted. SMOs introduce a new database
version in the XML database and current values are only migrated to the new schema if
necessary. SQL queries can be issued against any schema version and are migrated to the
current version, and afterwards they are migrated to an equivalent XQuery that operates
on the historic data. On average, rewritten queries run 4.5 times slower. They saw the
performance limited by the XQuery engine and proposed to use a RDBMS-backed storage
for query execution. The system they designed here could probably be extended to
support data citation, although the transaction mechanism required by recommendation
R9 could be hard to implement as the XML database needs to be locked in order with
the actual RDBMS.

A quite interesting system is AIMS (Archival Information Management System)[MCZ10].
It is the successor of the previous described system and they tackled the following points:
(i) the complexity of rewriting temporal XQuery statements and (ii) the lack of reliable
techniques for optimizing these queries. Their system aims to achieve perfect archival
quality. Therefore, they have to support a wider range of queries, like "Find employees
who worked as an assistant staff for one year or more". Data citeable systems do not
have to support those queries, they only need to reproduce queries executed in the past.
Their system stores data historized on attribute level and supports schema evolution
via schema modification operators. Their systems is implemented as an extension of
the MySQL master/slave replication technology. They enabled one slave to work as the
history-enabled slave that observes the MySQL binary log, which leads to low overhead
on the actual database. The system could be extended by a querystore and be used
as the backbone for a data-citeable system. However, it would be required to check
how the atomicity required by R9 can be implemented. As this system is basically
a distributed system with a master-slave topology, introducing a distributed atomic
operation is usually a non trivial task that impacts the whole systems performance. Sadly,
the project seems to be dead as no follow up papers have been presented since 2010, the
code for the system is not available and the wiki page for the system was last updated on
December 6th 20102. Nevertheless, the system we see here is the blueprint for efficient
attribute-level-timestamped data historizaiton in RDBMS.

Another rather old system is designed in: A Model for Schema Versioning in Temporal
2http://yellowstone.cs.ucla.edu/schema-evolution/index.php/AIMS

10

http://yellowstone.cs.ucla.edu/schema-evolution/index.php/AIMS

2.4. Summary

Database Systems[Rod95], nevertheless it can be seen as the basis for the systems we
have seen so far and which we will implement. Note, that his system has only be designed
but, to the best of our knowledge, never implemented. The system designed here versions
data via tuple-level timestamping with a start and an endtimestamp. It can evolve
through various schema modifications, that basically achieve the same as the SMOs we
have introduced. Retrieving different versions of the data is based on the concept of a
non-temporal completed relation scheme C. This scheme C contains the minimal union
of all explicit attributes that have been defined during the relation and all attributes are
considered to be able to hold every data of every domain (effectively ignoring column
datatypes). A view function V is defined that maps C to the subset of columns defined
at a given time. Another function W is defined that maps columns of a given column of
a given schema version back to C. The whole system designed there can be seen as a
blueprint for a schema evolvable, data historization system using the so called integrated
historization approach, which we will see later. However, it was never implemented and
does not consider column types (which is important in real-life applications). Also, the
system was not designed with the atomicity and isolation criteria in mind that are needed
for a data citeable system.

2.4 Summary
We have learned about the related work in the fields of Data Citation and Schema
Evolution. The recommendations for implementing a data citeable system have been
studied, as well as related systems that solve data citation and the reasons why they are
not useable for our scenario. Schema Evolution in RDBMS, based on Schema Evolution
Operators (SMOs) has been found suitable as basis for our implementation. We can now
start to design our system based on the data citation recommendations and SMOs.

11

CHAPTER 3
System Design

We describe our system design from a top-down perspective, starting with a system
overview, which gives us a thorough understanding of our components and how they
behave. Afterwards, we diver deeper and discuss specific design decisions and how some
problems of our system have been solved. General optimization ideas are discussed as
well as strategies for special scenarios, like petabyte databases. We end with a short look
on code metrics from our implemented system and the summary.

3.1 System Overview
The aim of this section is to give an overview on the architecture and the behaviour of
the developed API that serves as the basis for our evaluation. Many design decisions
need a more in depth explanation, which are covered in the following subsections.

Our API is designed as a middleware that handles the execution of CRUD (Create, Read,
Update, Delete) statements on data, SMOs, and acts as an interface for the querystore
functionality, which is the execution of queries that are stored for re-execution, and the
re-execution of them in the future. The API is implemented in C#, targeting the .Net
Framwork V4.6 and uses MySQL as the RBDMS. It is implemented to be easily portable
to the .Net Core Framework and to target other RBDMS.

We explore our system through an example which touches every aspect we need to cover
to get an understanding on how the API works. First, we start from an empty database
and choose which historization approach we want to use, for the example we go with
the so-called "separated approach". In the separated approach, we have a history table
for every actual table, storing the rows of the original table augmented by a starting
timestamp and ending timestamp. This allows us to query the original table in a way
that only rows are returned that were active at a given time and is named Tuple Based
Timestamping.

13

3. System Design

3.1.1 Setup and Initialization

Our system initializes itself, creating a table to hold schema information, called schemat-
able and one that holds information about queries stored for re-execution, called querystore.
The schematable consists of the following columns:

• ID

• Schema - a serialization of the schema we store

• SMO - storing which SMO leads to this schema

• Timestamp - documents when this schema was created

The schema we store is an object structure from our C# API serialized as a JSON
string. It consists of a list of tables. Each table consists of its name and schema, the
definition of the columns in the table and a GUID which unambiguously defines the
table. Additionally, we store the name and schema of the table that will be used to store
the historized rows of the table and the name of the supporting table which stores: a
timstamping that represents the last update that occured to the table; a boolean flag
which marks that the table is currently used in an ongoing SMO and can therefore not
be queried.

The querystore table consists of the following columns:

• ID - an auto-incrementing integer acting as the primary key

• Query - the original query that was issued

• ReWrittenQuery -the query as it was rewritten for execution

• Timestamp - the timestamp when the query was issued

• Hash - the fixity information needed to check re-execution

• GUID - a GUID assigned to identify this query uniquely

• AdditionalInformation - here we store the GUIDs of the tables that were used
during execution

The data stored in additional information could be omitted as the GUIDs could be
recalculated by extracting the schema at querytime and looking up there. We decided to
leave them in there to ease the implementation of our rewriting algorithms. The other
columns correspond directly to the metadata fields listed by the RDA recomme dations
on dynamic data citation.

14

3.1. System Overview

3.1.2 SMO execution and supporting tables

We create a table employees by issuing a Create Table SMO. Besides the actual table that
we create, we also create a history table employees_hist that stores timestamped versions
of the rows of the original table. In our implementation, the suffix _hist is replaced by
the schema version this table was introduced. The history table has the same schema as
the original table, augmented by two columns starttimestamp and endtimestamp. This
approach of timestamping is called Tuple Based Timestamping and explained in more
detail in Section 3.2.

A second auxiliary table called employee_metadata is created which holds two values:
lastupdatetime, holding the last update that occurred to the table or its rows, and can-
bequeried, a boolean flag that indicates if the table is allowed to be queried by CRUD
statements. This flag is needed as MySQL permits DDL statements on locked tables and
we need to ensure that no CRUD statements, especially data citation statements, are
executed on tables that are concurrently targeted by SMos. The algorithm on how SMOs
are processed is described as pseudocode in Algorithm 1.

Algorithm 3.1: SMO Execution

Data: SMO

Result: Updated Database Schema

1 Aquire lock: SMO;

2 Set current update time ;

3 Get current schema;

4 Update current schema by SMO;

5 Aquire write lock on metatables of tables used by the SMO;

6 Set can be queried flag of metatables to false;

7 Release write lock on metatables;

8 Historize data from tables consumed by the SMO ;

9 Do SMO transformation ;

10 Store new Schema;

11 Set can be queried flag of metatables to true;

12 Set last update time of metatable to update time;

13 Unlock lock: SMO;

15

3. System Design

3.1.3 CRUD - Handling

We created the table employees, the supporting table for historization, as well as the
auxiliary metatable for it. Now, we attempt to insert data into the employees table by
issuing an INSERT statement. The statement handling has to consider the following
requirements to guarantee a consistent view and reproducible queries on the system:

• No re-executable SELECT statement may be issued against the table while the
table data is altered

• No SMO may be in progress currently on the table

• The historization table has to be updated accordingly

• The last update time has to be set accordingly

The INSERT statement is handled as described in the pseudocode in Algorithm 2, which
takes care of the requirements above. We refer to Section 3.6 for a more in depth ex-
planation on the locking mechanisms that are used to guarantee the first two requirements.

Algorithm 3.2: INSERT statement handling

Data: INSERT Statement on employee table

Result: Inserted data in table

1 Acquire write lock for: employee table, employee history table, employee metatable;

2 if metatable.canbequeried == false then
3 Abort insert as table is currently used by SMO;

4 Unlock tables ;

5 end

6 Set insert time;

7 Insert into employee;

8 Insert into history table with startts = insert time, endts = null;

9 Set metatable.lastupdate = insert time;

10 Unlock tables ;

UPDATE statements are handled in a similar way. Rows that will get updated have
their end timestamp set in the history table. The rows in the actual table are updated
and their result is added to the history table with the start timestamp being set to the
update time. The locking mechanism is the same as for INSERT statements.

16

3.1. System Overview

DELETE statements set the end timestamp in the history table and delete the rows on
the actual table. The locking mechanism is the same as for INSERT statements.

A more in depth description of the handling of UPDATE, DELETE and INSERT
statements can be found in Section 3.3.

SELECT statements that need not to be re-executed at a later point in time can be
issued as they are.

As the INSERT, DELETE and UPDATE statements are handled in a way, that guarantees
a defined state of the database at each time, we can execute queries that can be reproduced
in a later point of time. How those queries are executed and re-executed is described in
the next section.

3.1.4 Query Store Capabilities

The way SMOs and CRUD statements are handled leaves us with a system with the
following properties: the schema is defined at each time; data can be queried with a
specific point in time; the changes occur in a consistent and well behaved manner. Those
properties allow us to implement a Query Store that can store queries and re-execute
them at a later time producing the same result.

When we execute a re-executable SELECT statement, we consider the following recom-
mendations to achieve a reproducibility at a later point in time:

• R5 - Stable Sorting

• R6 - Result Set Verification

• R7 - Query Timestamping

• R8 - Query PID

• R9 - Store the Query

R5 - Stable Sorting is needed as the order of the returned rows may have an impact on
the experiments done with the data[RAvP16]. The stable sorting is achieved by adding
an ORDER BY clause where all selected columns are added and sorted in ascending
order.

R6 - Result Set Verification recommends to calculate a fixity information about the
returned data which is later on used to verify the correctness of the result upon re-
execution[RAvP16]. Our fixity information is calculated by generating a hash of the
result set in the following way: We concatenate every column in a row, separated by
#, resulting in a single string per row. Those strings are then again concatenated by a
separating #, resulting in one string for the whole data set. Then we take the MD5 hash
of this value which acts as our checksum for the result set. All this is done in a single

17

3. System Design

statement inside the database to avoid data alterations introduced by drivers. More
information about why we have chosen this approach and about the sorting can be found
in the paragraph Fixity Calculation in Subsection 3.5.4.

R7 - Query Timestamping is achieved by using the current time after all locks have been
acquired. We could have used the maximum of all metatable.lastupdate values of the
meta tables of the tables involved in the SELECT statement instead, but this could
result in an old schema being returned.

R8 - Query PID is achieved by storing a GUID with the query.

R9 - Store the Query is achieved by storing the following information inside the querystore
table: ID, Query, T imestamp, Hash, GUID, AdditionalInformation. Those columns
have been described in the Paragraph Setup and Initilazation of this Section.

The complete algorithm in pseudocode is described in Algorithm 3. It is based on
the algorithm to avoid data updates during the query execution in Identification of
Reproducible Subsets for Data Citation, Sharing and Re-Use[RAvP16]. We modified it
by taking into account currently running SMOs (canbequereid flag of metatables) and
by calculating the hash on the database (reproducability considerations).

We want to specially mention on how we obtain the hash of the result set. To calculate
the hash, we modify the query to only return a single value acting as the hash of the
returned dataset. We achieve this by replacing all columns by their hashed values, then
calculating the hash of the concatenated column hashes. This results in a single hash per
row, we again concatenate this and calculate the resulting hash. This modified query
is executed at: ExecuteQueryforhashcalculation. More details on this approach are
described in the Paragraph Fixity Calculation in Subsection 3.5.1.

Our algorithm may fail if we acquire the READ LOCKs on the tables but not all
canbequeried flags are true. In this case, our algorithm aborts. Currently, we have not
implemented any retry algorithm, however the API can be easily extended with such a
retry algorithm, for example Fibonacci Retry 1.

1https://github.com/ballance/Fibonacci-Retry

18

 https://github.com/ballance/Fibonacci-Retry

3.1. System Overview

Algorithm 3.3: Execute citeable query

Data: SELECT statement

Result: Citeable executed Statement and PID

1 Rewrite Query to ensure stable sorting;

2 Lock all tables and their auxiliary tables used in the SELECT statement;

3 if any metatable.canbequeried == false then
4 Abort execution as not all tables can be queried;

5 Unlock all tables;

6 end

7 Set UpdateTime to current time;

8 Execute Query for hash calculation;

9 Execute Query for actual dataset;

10 Store Query, Hash, Timestamp in querystore;

11 Unlock all tables;

12 Return actual dataset and PID;

To re-execute a query, we select the information from the querystore via the PID. This
results in the original query, the time of execution and which tables have been selected
(stored in AdditionalInformation). We then rewrite the query to target the historized
tables instead of the actual tables (rewriting depends on the used historization approach
which are described in Section 3.5). A clause that filters the rows according to the
timestamp is added to the WHERE part. Now, we have a query query_hist that targets
historized tables and only returns rows active at the execution time of the original
query. To obtain the hash for the result of this query, we use the same rewriting used to
obtain the hash of the original query resulting in query_hist_hash. We then execute
query_hist_hash to obtain the hash for the result set which we check against the stored
hash. After we verified that we can produce the correct hash, we know that the dataset
created by query_hist will be the same as the original extracted one. Now, we execute
query_hist and obtain the reproduced correct dataset. This process is described as
pseudocode in Algorithm 4.

One might ask why there are no locking mechanisms added to the re-execution. SMOs
and INSERT/CREATE/DELETE operations could alter the data in the used history
table while a re-execution is in progress. A SMO could only set the endtimestamp of the
data in a history table of a consumed table. As the timestamp we use for re-execution,

19

3. System Design

called originalquerytimestamp, is strictly less than endtimestamp, and the WHERE
clause we use checks for:

originalquerytimestamp <= endtimestamp ORriginalquerytimestamp == null

we can conclude that SMOs have no impact on the returned results. INSERT/CRE-
ATE/DELETE operations, issued with updatetimestamp alter the data in the his-
tory table in the following way: on existing tuples they may set the endtimestamp to
updatetimestamp, new inserted tuples have their starttimestamp set to updatetimestamp.
As originalquerytimestamp is strictly less than updatetimestamp, we can conlcude that
those operations do not change the returned tuples. As both cases, by design, do not
alter the returned tuples, we have no need to isolate our re-execution from them.

Algorithm 3.4: Re-execute query from querystore via PID

Data: PID for Querystore

Result: Reconstruced original Dataset

1 Extract query information from querystore via PID;

2 Rewrite query to use historized tables;

3 Add starttimestamp <= executiontimestamp && (executiontimestamp <=
endtimestamp || endtimestamp == null) clause to WHERE clause;

4 Execute query for hash;

5 if hash != stored hash then
6 Abort execution as we could not create the same result;

7 end

8 Execute query for actual dataset;

9 Return actual dataset;

We have seen how our system handles the use cases for: SMOs, CRUDs and citeable
query execution and re-execution from a very high level, giving us a good understanding
of the overall system. In the following sections, we explain some design decision for our
system and deep dive into the algorithms we used.

3.2 Attribute vs. Tuple Based Timestamping

In order to implement the re-execution of queries at a later time, we have to know which
data was active at the time of the original execution. The period for which data is active
is usually described as the valid time [SA86]. Based on the work in Temporal Data

20

3.2. Attribute vs. Tuple Based Timestamping

Management [JS99], we explore two techniques that enables us to tell the valid time for
the data stored in our history tables. After describing both techniques, we explain why
we recommend to choose one over the other.

3.2.1 Tuple Based Timestamping

In Tuple Based Timestamping, we choose a single datarow as the unit of data for which we
want to store the valid time. We extend the tuple by two attributes: starttimestamp and
endtimestamp, both holding a timestamp. When a tuple is created, the starttimestamp is
set to the current timestamp and endtimestamp is set to null, indicating that the tuple is
currently valid. As soon as any attribute of the tuple is changed, the endtimestamp is set
to the current timestamp and a new tuple with the changed attributes is added. When
a SELECT statement is issued against a table, we can add the following clause to the
WHERE clause:

starttimestamp <= currenttimestamp &&
(endtimestamp <= currenttimestamp || endtimestamp == null)

and we will only get the rows returned that are active at currenttimestamp. This allows
us to extract which tuples were active at a given time. One drawback of this approach is,
that if only one attribute is changed, the whole tuple needs to be recreated which may
lead to significant storage overhead.

3.2.2 Attribute Based Timestamping

The level of granularity in Attribute Based Timestamping is a single attribute of a tuple
instead of the whole tuple. In this approach we split the tuple into separate attributes,
each with its own starttimestamp and endtimestamp. In addition, we have to add a
unique identifier in order to being able to reconstruct the whole tuple. Assume a table
consisting of the following three columns: ID, Name, Job. We have to create three
tables, one for each attribute, to store this tuple historized. Reconstructing a tuple active
at currenttimestamp requires the following SQL statement:

SELECT id.ID, name.Name, job.Job
FROM idtable id
INNER JOIN nametable name on id.id = name.id
INNER JOIN jobtable job on id.id = job.id
WHERE
(id.starttimestamp <= currenttimetsamp &&

(id.executiontimestamp <= currenttimestamp ||
id.endtimestamp == null)

) &&
(job.starttimestamp <= currenttimetsamp &&

(job.executiontimestamp <= currenttimestamp ||

21

3. System Design

job.endtimestamp == null)
) &&
(name.starttimestamp <= currenttimetsamp &&

(name.executiontimestamp <= currenttimestamp ||
name.endtimestamp == null)

)

Consider a very wide table with a lot of attributes where a lot of updates occur that
change only one attribute. In this case Attribute Based Timestamping saves some storage
space, but comes with the cost of drastically more complex, and significantly longer
running, SQL statements.

3.2.3 Design Decision

We have chosen to use Tuple Based Timestamping as our way to store historized data.
Attribute based timestamping would require more complicated CRUD statements and a
more complicated query rewriting in turn to save some storage space, in some scenarios.
We have no data on the query time of both approaches, but we suspect that attribute
based timestamping will be slightly slower due to the more complex tuple retrieval in
cases where the complete tuple is needed. Retrieving single attributes should be quicker
in attribute based timestamping, but, as we stated, we have no relying data here and can
only speculate. In general, we see no big advantage of using the attribute based approach
except in settings where extremely wide tables (i.e. tables with a massive number of
attributes per tuple) see repeated changes to individual attributes only. Such settings
may be encountered in domains where high-dimensional data is being analyzed (e.g. text
mining, signal processing), but are less frequent in business settings. We thus opted for
the tuple based timestamping approach.

SQL:2011 The upcoming standard SQL:2011 introduced some temporal features that
could be used to solve the problem of getting data valid at a certain point in time [KM12].
Some major vendors, Microsoft, Oracle, DB2 and Postgres support some of those features.
As MySQL, being ranked as the second most popular RDBMS in DB-Ranking2, does not
support these enhanced concepts, and we have chosen not to use those features. Our
target was to design a system that is based on the current SQL Standard that can be
implemented in every RDBMS supporting basic locking mechanisms.

3.3 Integrated vs. Separated vs. Hybrid historization
approaches

We now have decided to use tuples as the level of granularity for historization of our data.
It is now open how and where store those historized tuples. In Scalable data citation in

2https://db-engines.com/de/ranking

22

 https://db-engines.com/de/ranking

3.3. Integrated vs. Separated vs. Hybrid historization approaches

dynamic, large databases: Model and reference implementation[PR13], three models have
been described: Integrated, Separated and the Hybrid approach; for storing historized
tuples. For evaluation purposes we implemented all three and we now explore them in
more detail on how they handle CRUD statements on a single table employess with
the following columns: ID, Name, Job. All INSERT/DELETE/UPDATE statements
in every approach also update the update the last update value in the metatable of the
tables they alter and act according to the locking mechanism described in Section 3.6.

3.3.1 Separated Approach

In the separated approach, a second table employeehist is created that holds the same
data as the original table, augmented by the starttimestamp and endtimestamp. This
allows users of the database to query the original table as it is and no queries need
to be changed. INSERT statements on the original table are also inserted to the the
history table, with the starttimestamp being set to the query execution time. Issuing the
following statements:

INSERT INTO employees (1,'John', 'Developer');
INSERT INTO employees (2,'Marie', 'CTO');
INSERT INTO employees (3,'Jane', 'QA');

will result in tables holding the data as described in Table 3.1.Note that starttimestamp
is abbreviated with sts and endtimestamp with ets due to formating reasons. We achieve
this by rewriting the insert statement into one that also inserts data into the history
table. The INSERT statement is rewritten to a the script in Listing 5.

Table 3.1: Separated Tables after Inserts

Employee Employeehist
ID Name Job ID Name Job sts ets
1 John Developer 1 John Developer T1 null
2 Marie CTO 2 Marie CTO T2 null
3 Jane QA 3 Jane QA T3 null

UPDATE statements set the endtimestamp of every row that will be updated to the
execution time. Then, the updated rows are added with the starttimestamp set to the
execution time. The rows in the original table are updated normally. Issuing the following
statement:

UPDATE employees SET Name = 'McJohn' employees.ID = 1;

will result in tables holding the data as described in Table 3.2. Note, that the endtimestamp
of the old row in the history table equals the starttimestamp of the added updated row.
The code that is issued can be seen in Listing 3.

23

3. System Design

Table 3.2: Separated Tables after Update

Employee Employeehist
ID Name Job ID Name Job sts ets
1 McJohn Developer 1 John Developer T1 T4
2 Marie CTO 2 Marie CTO T2 null
3 Jane QA 3 Jane QA T3 null

1 McJohn Developer T4 null

DELETE statements set endtimestamp of every row in the history table that will be
deleted in the actual table. Issuing the following statement:

DELETE FROM employees WHERE employees.ID = 2;

will result in tables holding the data as described in Table 3.3.

Table 3.3: Separated Tables after Delete

Employee Employeehist
ID Name Job ID Name Job sts ets
1 McJohn Developer 1 John Developer T1 T4
3 Jane QA 2 Marie CTO T2 T5

3 Jane QA T3 null
1 McJohn Developer T4 null

Normal SELECT statements that target this approach do not result in any changes.

As described by Pröll and Rauber[PR13], this approach has high storage demand as all
data is copied. On the other hand, it enables to easily write queries and the historization
does not influence query performance of the actual table. We talk about when this
approach is useful in our evaluation in Section 4.

3.3.2 Integrated Approach

The integrated approach is like the separated approach, except that the historization
information is stored in the actual table and no extra historization table is added. As
the approaches are so similar, we omit the ongoing example.

Storing the timestamps for historization in the actual tables requires normal SELECT
statements, that are interested in the current active data, to include the following WHERE
clause:

endtimestamp == null

24

3.3. Integrated vs. Separated vs. Hybrid historization approaches

You can find how INSERT statements are handled in Listing 5, UPDATES in Listing 6
and DELETES in Listing 7. This approach is quite useful in approaches where updates
and deletes hardly occur like in sensor data that produce time series. Normal queries,
interested in the current active data, suffer a performance hit due to the tables increased
depth caused by UPDATE and DELETE statements.

We have got to note here, that we still create a history table at the creation of employee,
but it will stay empty. It is only filled when the actual table is consumed by a SMO.

3.3.3 Hybrid Approach

The Hybrid Approach is similar to the Integrated approach and tackles the issue that
queries interested in the current active data suffer a performance hit and need to be
rewritten. We achieve this by storing the current data in the actual employees table
together with the timestamp when it was added. The data is only moved to the
historization table when it is updated or deleted.

Issuing the following statements:

INSERT INTO employees (1,'John', 'Developer');
INSERT INTO employees (2,'Marie', 'CTO');
INSERT INTO employees (3,'Jane', 'QA');

will result in tables holding the data as described in Table 3.4. The way the INSERT
statements are handled is described in the code in Listing 8

Table 3.4: Hybrid Tables after Inserts

Employee Employeehist
ID Name Job sts ID Name Job sts ets
1 John Developer T1
2 Marie CTO T2
3 Jane QA T3

UPDATE statements move the rows that will be updated to the history table and set the
endtimestamp. The rows in employees will be updated according to the update statement
and their starttimestamp will also be set. Issuing the following statement:

UPDATE employees SET Name = 'McJohn' employees.ID = 1;

will result in tables holding the data as described in Table 3.5. Note how the starttimes-
tamp in the employee table is the same as the endtimestamp in the history table. The
way the UPDATE statements are handled is described in the code in Listing 9.

25

3. System Design

Table 3.5: Hybrid Tables after Update

Employee Employeehist
ID Name Job sts ID Name Job sts ets
1 McJohn Developer T4 1 John Developer T1 T4
2 Marie CTO T2
3 Jane QA T3

DELETE statements move the rows they delete into the historization table with their
endtimestamp being set. The rows in the actual table are deleted. endtimestamp of every
row in the history Issuing the following statement:

DELETE FROM employees WHERE employees.ID = 2;

will result in tables holding the data as described in Table 3.6. The way the UPDATE
statements are handled is described in the code in Listing 10.

Table 3.6: Hybrid Tables after Delete

Employee Employeehist
ID Name Job sts ID Name Job sts ets
1 McJohn Developer T4 1 John Developer T1 T4
3 Jane Qa T3 2 Marie CTO T2 T5

The big advantage of this approach is, that it combines the reduced storage requirements
of the Integrated Approach while keeping the useability of the Separated Approach. The
drawback, however, is that queries that ask for a the tuples valid at a certain time have
to be rewritten to take the actual table into account. A query asking for the tuples active
at T3 needs to be formulated (or any other equivalent to it) to:

SELECT `employees_ref`.`id`,
`employees_ref`.`name`,
`employees_ref`.`job`

FROM (SELECT `id`,
`name`,
`job`,
`startts`,
NULL AS `endts`

FROM `employees`
UNION
SELECT `id`,

`name`,

26

3.4. Schema Evolution and Schema Management

`job`,
`startts`,
`endts`

FROM `employees_1`) AS `employees_ref`
WHERE (`employees_ref`.`startts` <= t3) AND

((t3 < `employees_ref`.`endts`) OR
(`employees_ref`.`endts` IS NULL)
)

It is clear to see, that the queries that are issued to retrieve tuples active at a certain
time require more rewriting than with the other approaches and will result in longer
execution time.

3.4 Schema Evolution and Schema Management
As the underlying schema evolves over time, and we have to reproduce data as it was
queried at a certain point in the past, we need to know the schema at a given point
in the past. Therefore, we log the schema-information we need every time the schema
is changed by an SMO into the database table qubadcsmotable. The name stands for
Query-Based-Data-Citation Schema Modification Table. We will now take a look at how
the table is structured, what schema information we need to track and how SMOs behave
on our tables.

SMO-Table The table is created during system initialization and consists of the
following columns:

• Id - an auto-incrementing integer acting as the primary key

• Schema - a field holding a C# Object serialized as JSON that describes our schema

• SMO - a field holding a C# Object serialized as JSON that describes the SMO
that lead to this schema

• Timestamp - timestamp when this schema became active

Every time a SMO is issued against our system, a new row is created containing the
resulting schema.

Schema-Information We consider a schema to be the aggregation of tables that exist
in the system. A table in our case exists of the following fields:

• Name - the table name

• Schema - database schema in which the table is stored

27

3. System Design

• ColumnDefitions - an array containing how columns are defined, see below

• GUID - a GUID uniquely identifying the table across multiple schemas

• HistTableName - name of the history table for this table

• Histtableschema - schema of the history table for this table

• MetaTableName - name of the metatable for this table

• MetaTableSchema - schema of the metatable for this table

The GUID is needed as name and schema are not strong enough to identify a table across
multiple schema-versions. Consider creating a table A, dropping it, and then creating
again a table A. The GUID helps us to distinguish those two which in term makes the
rewriting process easier.

A ColumnDefintion consists of the following fields:

• ColumnName - name of the column

• DataType - the datatype of the column

• Nullable - boolean that indiciates if the column is nullable

• AdditionalInformation - string field that can cointain additional information that
is renderd at create table statements

Those columns allow us to render it in create table and add column SQL statements.
In Listing 17, a sample schema has been serialized in JSON. Note, the additional array
histtables in it. This could be omitted and derived from the information available in
tables, it is only there to ease some coding in C#.

Schema Modification Operators We have now defined which elements a schema
consists of in our environment. This schema can evolve through the use of SMOs (schema
modification operators) that have been introduced in Section 2.2. When we evolve our
schema through a SMO, we have to take care that no data is lost and that it is correctly
historized. Therefore we have to take the following requierements into account:

• No citeable query is executed on the tables targeted by the SMO

• No INSERT/UPDATE/DELETE statement is executed on the Tables targeted by
the SMO

• Only one SMO may be executed at any given time

• The schema stored in qubdadcsmotable needs to be updated accordingly

28

3.4. Schema Evolution and Schema Management

• If tables are consumed, the containing data needs ot be historized

The first two points are handled via setting the canbequeried flag of the metatables of the
tables used by the SMO to false. As our citeable queries and INSERT/UPDATE/DELETE
statements check that this flag is true, we know that they won’t be executed and therefor
those points are covered. A more detailed explanation is given in Section 3.6.

The third point, that only one SMO may be executed at a given time, is handeld first
acquiring a lock in MySQL via:

SELECT GET_LOCK('SMO UPDATES',10);"

This line acquires a lock in MySQL or times out after 10 seconds. As all SMOs need this
lock, we have ensured that only one will be active at any given time.

To cover the fourth point, storing the new schema, we take a look on the resulting schema
produced by a SMO. For this, consider Table 3.7, which is also described as Table 2 in
Graceful Database Schema Evolution: the PRISM Workbench[CMHZ09]. We use the
following notation: R(A, B, C) denotes a table R that consist of a set of columns A, as
well as columns B and C. R2(...) is considered a different table to R(...) although they
have the same name (i.e. their GUID is different in our system). The column Input
Schema describes the schema before the operation (tables not targeted by the SMO are
omitted), the column Output Schema describes the schema after the SMO (again, not
targeted tables are omitted). The last column historized tables, shows which tables are
consumed and therefore their data is moved to their historization tables.

Table 3.7: SMOs and their behaviour on schematas

SMO Input
Schema

Output
Schema

Historized
Tables

CREATE TABLE R(A) - R(A) -
DROP TABLE R R(A) - R
RENAME TABLE R INTO T R(A) T (A) -
COPY TABLE R INTO T R(A) R(A), T (A) -
MERGE TABLE R, S INTO T R(A), S(A) T (A) R,S
PARTITION TABLE R INTO
S WITH { cond}, T R(A) S(A), T (A) R

DECOMPOSE TABLE R INTO
S(A, B), T (A, C) R(A, B, C) S(A, B),T (A, C) R

JOIN TABLE R,S
INTO T WHERE cond R(A, B), S(A, C) T (A, B, C) R,S

ADD COLUMN
C [AS { const} | { func(A)} INTO R R(A) R2(A, C) R

DROP COLUMN C FROM R R(A, C) R2(A) R
RENAME COLUMN B IN R TO C R(A, B) R2(A, C) R

29

3. System Design

The question may arise, why renaming a table does not consume the input table, but
renaming a column does. As noted above, we assign a GUID to every table when it is
created, but not to its columns This GUID allows us to identify the table uniquely in
every schema. This approach could be extended to columns, which would allow a better
rewriting algorithm that allows the RENAME COLUMN SMO to not consume it’s input
table.

Last but not least, we have to handle the historization which depends on the historization
approach. All tuples moved into the new created tables are handled as if they were issued
by INSERT statements. The tuples of the tables that are consumed are handled as if a
DELETE statement was issued, expect for setting the endtimestamp to indicate that
they have not been deleted.

Listings 12 shows how a CREATE TABLE SMO is handled in the hybrid approach, Listing
14 shows how MERGE TABLE is handled and Listing 14 shows an ADD COLUMN
SMO. The other SMOs are part of the delivered code package but have been left out
here due to their length.

3.5 Query Store and Query Rewriting
When talking about the Query Store, we refer to the part of our API that handles the
following two use cases: preparing and executing queries in a way that allows them to
be re-executed, and re-executing already executed queries. At first, we will cover how
queries are handled and stored, afterwards we will cover their re-execution.

3.5.1 Executing a Query

The basic algorithm has been described in Algorithm 1. It can be summarized as: rewrite
query to ensure sorting, acquire read locks on tables, check can be queried, set updatetime,
execute statement for fixity calculation, execute statement for real data, store information
in table querystore. The information is stored in the table querystore which is defined as
described in the Initialization part at Section 3.

Before we cover how we rewrite the query, we take a look on what queries are allowed in
our system, as not all will be reproducible.

3.5.2 Query Restrictions

Consider the following select statements:

SELECT RAND();
SELECT NOW(3);
SELECT SQRT(PI());

It is obvious, that we would have to take special measures to rewrite the first two queries
in a way, that we can re-execute them at a later point in time producing the same

30

3.5. Query Store and Query Rewriting

result. The third query, however, should be reproducible but it is based on floating-point
arithmetic, and there are many pitfalls in floating point arithmetic. The actual calculation
does not solely depend on the source code, it also depends on the used architecture,
the compilation of the code, and many other factors. Consider executing the query on
Version X.Y on Server Z running Windows. The database is now migrated to a new
Server A running Linux and updated to Version B.C. It is highly unlikely that every
floating point operation of the first setup will produce the same result in the second one.
For more details on this topic, we refer to What Every Computer Scientist Should Know
About Floating-Point Arithmetic[Gol91], and The pitfalls of verifying floating-point
computations[Mon08].

Based on the observations above, to ensure that the queries issued by our system will be
reproducible, we restrict them in the following way:

• No arithmetic calculations are allowed

• No function calls are allowed

Considering the restrictions above, our statements only allow references on columns,
literals, and boolean comparisons of them in the WHERE and JOIN clauses. There
is still one case to consider: float equality should be done via checking if the absolute
difference of two values is below a certain threshold. In MySQL this check looks like:

ABS(a - b) <= 0.0001

Our prototype currently does not support this scenario nor does it throw any exception
if float comparison is made, nevertheless, it could be easily extended to cover this case.
We have to note that we encourage, from a reproducability point of view, to not use this
comparison.

3.5.3 Ensure Stable Sorting

As described in R5 - Stable Sorting [RAvP16], many experiments done on data, especially
ones in machine learning, are sensitive on the order of the data. Besides those experiments,
we also need to have a fixed sorting for our fixity calculation. As data is moved between
the actual tables holding the currently active data and the historization tables, we have
to take special measures to ensure our data is sorted.

One way, as it is was used by Pröll and Rauber[PR13], is to sort by the primary keys
of the tables involved. As our developed API does not track which columns of a table
are marked as the primary key (as this would extend our schema evolution approach to
contain integrity constraint evolution by ICMOs[CMDZ13]), we cannot use this approach.
We therefore resort to extending the user defined sorting by sorting all remaining queried
columns in ascending order.

To illustrated this, assume the following query is issued:

31

3. System Design

SELECT `employees_ref`.`id`,
`employees_ref`.`name`,
`employees_ref`.`job`

FROM `employees` AS `employees_ref`
ORDER BY `employees_ref`.`name` DESC

The query will be rewritten to:

SELECT `employees_ref`.`id`,
`employees_ref`.`name`,
`employees_ref`.`job`

FROM `employees` AS `employees_ref`
ORDER BY `employees_ref`.`name` DESC,

`employees_ref`.`id` ASC,
`employees_ref`.`job` ASC

We are aware that sorting is no cost free operation. Therefore, we suggest extending our
implemented API to track information about the primary keys of tables and use this
information to implement more efficient sorting.

3.5.4 Fixity Calculation

Fixity calculation is the process of calculating a single value that can be used to verify
that the re-executed result is the same as the original one. Pröll and Rauber mention
two methods they used: either computing a hash over the complete result set or, if
possible, over the unique identifiers represented in the query result set[PR13]. They did
not mention if they calculate the hash inside the database or on any other layer of their
architecture, which can influence the computed fixity.

Suppose, in our architecture, we issue the following two select statements:

SELECT TIMESTAMP('2014-09-08 17:51:04.777')
SELECT TIMESTAMP('2014-09-08 17:51:04.7779')

MySQLs native C# database driver returns the same datetime value for both statements
as the .Net datetime datatype only supports three significant digits for milliseconds.
Other database drivers handle similar scenarios without truncation, for example Oracles
ODBC driver returns the values of columns defined with the datatype NUMBER as
strings. The lesson to learn here is, that drivers and their settings/configuration, may
alter data, and thus may produce different results on the same query against the same
database. Therefore, we conclude that we have to calculate the fixity information inside
the database, as this information allows us to detect if the actual query we issue produces
different results or not.

32

3.5. Query Store and Query Rewriting

As we do not track primary key informations, we fall back to the option of calculating a
hash over the resulting dataset. We do this by modifying the SQL statement. In the
modified version, all columns are hashed, then concatenated by #, producing one string
per row. Those rows are again concatenated, separated again by a # and hashed again.

To illustrate our hashing, consider the following query:

SELECT `employees_ref`.`id`,
`employees_ref`.`NAME`,
`employees_ref`.`job`

FROM `employees` AS `employees_ref`
ORDER BY `employees_ref`.`id` ASC,

`employees_ref`.`NAME` ASC,
`employees_ref`.`job` ASC

The query above is rewritten to:

SELECT md5(
group_concat(

Concat_ws('#'
,Md5(`employees_ref`.`id`),
Md5(`employees_ref`.`NAME`),
Md5(`employees_ref`.`job`)

)
separator '#'

)
)

FROM `employees` AS `employees_ref`
ORDER BY `employees_ref`.`id` ASC,

`employees_ref`.`NAME` ASC,
`employees_ref`.`job` ASC

This way of fixity calculation puts a lot of computational load on the database but allows
us to detect if the actual query on the data produced the same result. Suppose someone
installed our middleware API on a different server and uses a different MySQL driver.
We can still detect that the core of our system, the database, executes the query correctly,
even if migration mistakes were introduced on the driver level. Still, the result we extract
could be altered by the driver or changed behavior in our middleware (using different .Net
Framework or migrating to .Net Core). To counter this scenario, we suggest extending
our prototype to include a fixity information of the resulting data exchange format that
is returned by the C# API, as a fixity on this level acts as a check of our whole API.

33

3. System Design

3.5.5 Additional Rewriting

For the integrated approach, we also extend the where clause to only include currently
active rows. For the hybrid approach, we extend the where clause to contain a check that
the starttimestamp is lower than the execution timestamp, although it could be omitted
as we acquired READ LOCKs on the table and therefor no INSERT statements can take
place. For the separated approach, we rewrite the queries to target the history tables
(they could also target the actual tables).

3.5.6 Locking

As usual, we acquire read locks on the tables we want to query to prevent the data in
it from being changed while we execute our query. We also check that the schema we
are executing against has not changed since the query was issued to our middleware to
ensure that our rewrites are correct. The usual check for the canbequeried flag on all
tables that are queried is also included.

3.5.7 Query Execution

We have now all bits together on how to execute a query that returns the current active
data with ensured sorting and fixity calculation on correctly locked tables. The resulting
fixity information, timestamp etc. is stored in the querystore table. An example on the
SQL statements issued for a query of the data in employees, using the hybrid approach,
can be found in Listing 18.

3.5.8 Re-executing a Query

The whole re-execution process is described in Algorithm 4 and can be summarized
as: extract query store information via PID, rewrite query, execute query for fixity
information, execute query to retrieve the actual dataset.

At the rewriting step, we have to consider that the underlying data, as well as the
schema, might have changed. Our historization approaches cover, that the underlying
data is changed in a way that allows us to still identify the tuples active at the original
execution time. We cover the impact of a changed schema in the next subsections for
each historization approach. Taking into account the changed data and schema into our
rewriting, we can get back the same tuples at re-execution, and therefore producing the
same result, as when we originally executed the query.

Note, that we have not applied any read locks on the tables here as the data may only
exist either in the table holding the current data or the historized table. As we query
both tables (except for the separated approach) for the data active at the original query
execution time, we can be sure that we get all the data that existed at the query execution
time (the tuples can either be in the actual table or the historization table). If, however,
any SMO is currently running and alters the original table, we may not be able to

34

3.5. Query Store and Query Rewriting

reproduce the result, but eventually, after the SMO is finished, the data will be in the
historized table and we will be able to re-execute the query and get the correct result.

We considered using locks to ensure that the second case may not occur. A correct
locking for this approach would be again to lock the tables with read locks and to check
the canbequeried flag. However, as SMOs hardly occur, and we eventually will be able
to reproduce the query, we concluded no need to implement the locking to guarantee a
correct working system.

3.5.9 Rewriting - Integrated Approach

We recall from the integrated approach described in Section 2.2, that the current data is
stored in the actual table and that the historization table only contains data after the
actual table is consumed via a SMO. Therefore, our rewriting distinguishes, for every
table in the query, the two following cases:

• the actual table was not consumed by a SMO and therefore still exists

• the actual table has been consumed by a SMO and therefore the data has been
moved to the historized table

In the first case, we can query the actual table in the same way as it was issued in the
original query (note, that the filtering for the current active rows had been applied in
the original query, compare this with the paragraph Additional Rewriting in the last
section). In the second case, we replace the references to the consumed table with the
history table (as this is where the data now resides).

Detecting if a table has been consumed by a SMO is achieved by looking up if the table
is still contained in the current active schema. To check this, we compare the GUID
stored in the additionalinformation in the querystore table with the GUIDs of the tables
of the current active schema. If we do not find a table with the matching GUID in the
current schema, we look up the schema active at the query execution time and extract
from there the table information, containing the schema and name of the history table.

3.5.10 Rewriting - Hybrid Approach

We recall from the hybrid approach described in Section 2.2, that the current data is
stored in the actual table and all historized data (data having a set endtimestamp) is
moved to the historization table. We again, distinguish if the actual table has been
consumed by an SMO or not. In the case, it has been consumed, we only have to look
for the data in the historized table (using the same way to find out which one this is as
in the Integrated Approach). In the case the actual table still exists, we have to query
the data from both tables using a subselect that creates the union of both tables. An
example for this rewrite has been provided in the paragraph Hybrid Approach in Section
3.3.

35

3. System Design

3.5.11 Rewriting - Separated Approach

As we know that all data active at any given time can be retrieved from the history
tables, we rewrite all queries to only target history tables.

3.6 Locking Mechanisms
In order to produce a reproducible query result, we have to ensure that the underlying
data is not changed during the process of executing the query and storing the result in the
querystore table. Also, we got to ensure that INSERT/UPDATE/DELETE statements
are run in isolation, as well as SMOs. Therefor, our design goal is: given a set of tables,
only one of the following operations is run at any given time:

• Citeable Query

• INSERT/UPDATE/DELETE statement

• SMO

A simple solution is, that each of those statements acquires a LOCK (READ in the case
of citeable query, otherwise WRITE) on all tables affected. Unfortunately, MySQL does
not allow us to alter tables via DDL statements when a WRITE LOCK is acquired for
them. We therefor came up with the following solution: Each table t is associated with
a metatable t_metatable consisting of only one row, storing the following two values:
last_update and canbequeried. When a statement needs to acquire a lock on table t, the
same lock needs to be acquired on t_metatable. After a SMO aquired the locks for all
tables, the flag canbequried will be set to true on all metatables. Aftewards, the SMO
releases the locks and continues to do the actual schema modification. When the SMO is
finished, canbequeried will be set again to false on the metatables. Citeable queries and
INSERT/UPDATE/DELETE statements acquire READ LOCKS on the metatable and
afterwards check that canbequeried is true on all of them. If any canbequeried of the
required tables is false, the operation will be aborted. To get a better understanding, we
look at the issued SQL code of those three statement types targeting the employees table
and discuss again why our locking mechanism works.

3.6.1 Citeable Query

A citeable query will be issued inside the following locking code which is part of Listing 18
(the code in the exmaples are exports from our test-suite which use a different dynamic
schema each time, therefor may contain schematas in the form of: hybrid_ < guid >):

SET autocommit=0;
SET sql_safe_updates=0;
LOCK tables

36

3.6. Locking Mechanisms

`hybrid_1965bfa0ed4a4d519a49338e1d9d956e`.`employees`
AS employees_ref READ,
`hybrid_1965bfa0ed4a4d519a49338e1d9d956e`.`employees_metadata`
READ,
`hybrid_1965bfa0ed4a4d519a49338e1d9d956e`.`qubadcsmotable`
READ;

SELECT canbequeried
FROM
`hybrid_1965bfa0ed4a4d519a49338e1d9d956e`.`employees_metadata`
-- C# Code checking canBeQueried
--throwing exception if one is false

--Code for actual selecting goes here

UNLOCK TABLES;

--INSERT into querystore
COMMIT;

By acquiring a read lock on the tables, we ensure that no INSERT/UPDATE/DELETE
is in process and block SMOs from getting to set the canbequeried flag to true. If a SMO
had been able to acquire the WRITE LOCK for one of the tables, the canbequried flag
would have been set to true, indicating an ongoing SMO. In that case, our C# framework
throws an exception and aborts the query. MySQL does not support any raise exception
statement in normal scripts, otherwise we would have moved this check into the SQL
code (note however, this handling could be simulated via the use of stored procedures).

3.6.2 INSERT/UPDATE/DELETE Statements

Those statements will be issued inside the following locking code which is part of Listing
9:

SET autocommit=0;
SET SQL_SAFE_UPDATES=0;
LOCK TABLES

`hybrid`.employees WRITE,
`hybrid`.`employees_metadata` WRITE
`hybrid`.`employees_1` WRITE,
`hybrid`.`QubaDCSMOTable` READ;

-- C# ensuring hist table has not changed
-- since statement was rewritten

37

3. System Design

SELECT canBeQueried
FROM `hybrid`.`employees_metadata`

-- C# Code checking canBeQueried,
-- throwing exception if it cannot be queried
-- C# Code ensuring that:
-- the schema has not been changed and that
-- employees_1 is still the history table
-- for employees

-- Actual INSERT/UPDATE/DLETE Handling

COMMIT;
UNLOCK TABLES;

By acquiring WRITE LOCKs on the employees table as well as the corresponding meta
and history table, we ensure that no citeable query can be run in parallel. If a SMO
had been able to aquire the WRITE LOCK for one of the tables, the canbequried flag
would have been set to true, indicating an ongoing SMO. In that case, our C# framework
throws an exception and aborts the query. We also acquire a READ lock on the table
QubaDCSMOTable which contains our schemainformation. We make this to ensure to
make sure that we have aquired the WRITE LOCK for the correct history table. Note,
that we need a WRITE LOCK on the metatable as we update the lastupdate value.

3.6.3 SMO

All SMOs will be issued inside the following locking code which is part of Listing 14:

SET autocommit=0;
SELECT GET_LOCK('SMO UPDATES',10);
LOCK TABLES

`hybrid`.`employees_metadata` WRITE;

UPDATE `hybrid`.`employees_metadata`
SET canBeQueried = false;

COMMIT;
UNLOCK TABLES;

-- Actual SMO Handling

UPDATE `hybrid`.`employees_metadata`

38

3.7. Optimizations and Extensions

SET canBeQueried = true;

COMMIT;
SELECT RELEASE_LOCK('SMO UPDATES');

At first, we require that only one SMO can be run at any given time, allowing us
to have discrete schema evolution steps. This is ensured by acquiring the global lock
′SMOUPDATES′. Afterwards, the SMO aquires a write lock on the metatables of
all tables involved. This can only be acquired when no INSERT/UPDATE/DELETE
statement or citeable query is currently holding a lock on those tables. Afterwards the
canbequeried flag is set to false, so all upcoming INSERT/UPDATE/DELETE statements
and citeable queries will fail by design. When the SMO is finished, canbequeried is set
to true again, allowing other statements to be executed. The last part is releasing the
SMO lock.

3.6.4 Implementation notes

The implementation we have chosen was mainly driven by the capabilities of MySQL.
We are unaware if other RBDMS provide locking features that make the use of the
canbequeried flag obsolete. Implementing the locking inside our C# framework was
considered, but we stayed away from it as MySQL provided everything we needed and it
allows us to have our middleware stateless.

3.7 Optimizations and Extensions

We talk about some points were we thinkg our prototype could be optimized or extended.

3.7.1 SMO Batch Processing

Usually, more than one SMO is issued when the database schema evolves. We consider
here an example provided for the PRISM Workbench[CMZ08] in Figure 3.1. The examples
shows the starting schema S41 and the SMO evolution steps that lead to the schema
version 42. In our system, each SMO would lead to a new schema version and to new
history tables, although we can conclude from the figure that the actual resulting schema
only contains the tables: page, revision and test. All in all we would only have to
historize: cur and old from S41 and the three resulting tables in schema S42, and nothing
in between.

39

3. System Design

Figure 3.1: Schema Evolution from S41 to S42 in Wikipedia

Table SMOs Consider the evolution of a table through ADD COLUMN, RENAME
COLUMN and DROP COLUMN statements. Currently each statement produces it’s
own historization table. RENAME COLUMNs statement actually do not need to create
a separate new historization table. Extending our rewriting to cover renamed columns
would solve this and save some storage.

Consider a table with the following schema: R1(A, B, C). When DROP COLUMN C
OF R is issued, all rows of R1 are moved into R1Hist, and we create a new historization
schema for R2(A, B), named R2Hist. As R1 is consumed by the DROP COLUMN SMO,
the containing data is moved into R1Hist. As R2Hist schema is a subset of R1Hist,
we could extract the current active rows from R1Hist, instead of having to duplicate
them to R2Hist. This would allow us to save space by extending the query rewriting to
consider R1.

The same idea could be applied to ADD COLUMN statements, by using a view over the
rows in the old historization table.

The drawback of the DROP COLUMN and ADD COLUMN approach is, that update
and delete handling will get more complicated.

3.7.2 Uniqueness Tracking

Knowing any form of uniqueness for a tuple would allow us to use more efficient sorting
strategies and more efficient fixity calculations, as described in the next paragraphs. We
could achieve this by tracking information about the Primary Key for a given table. Our
prototype could be extended to track the primary key with the stored schema information
and require that every create table defines a primary key. SMOs like JOIN TABLE, that
consumes two tables and results in a joined table based on the join condition, need to be
updated as well for primary key support. DROP Column statements would also need
special treatment, as well as how the primary key is handled in the integrated approach
(starttimestamp and endtimetsamp columns are added, so the starttimestamp should
be part of the primary key).

Another, easier to implement approach is adding a column to each table containing a
GUID.

40

3.8. Big Database Considerations

Sorting Strategies As mentioned earlier in Section 3.5, knowing a primary key, or any
other uniqueness characteristic for tuples, would allow us to sort only on those columns
and not on all columns. This should usually result in faster sorting.

Fixity Calculation As described earlier in Section 3.5, the fixity information could
be calculated by only considering the unique values (primary key, or GUID as mentioned
above) of the tuples returned. This should bring a performance boost.

Integrity Constraint Modification Operators Our system could be extended by
the Integrity Constraint Modification operators introduced in: Automating the database
schema evolution process[CMDZ13]. They contain primary keys, which would fit nicely
with our other optimization and extensions points and seems like the logical next step
for our API.

Using MySQL Binary Log In Scalable Architecture and Query Optimization for
Transaction-time DBs with Evolving Schemas[MCZ10], a system has been described that
fulfills similar requirements as ours. It is an Information Archival System built in MySQL
and they made the following remark about their implementation:

Finally, to enable the usage of our system in practice we implemented it as an extension
of the MySQL master/slave replication technology—a history-enabled slave. This provides
us with the capabilities of storing the history of the DB content, simply observing the
MySQL binary log—leading to minimal performance overhead in the production database.

Basing our historization on the Binary Log could potentially increase the performance.
It is left to check if it would fulfill our locking requirements

3.8 Big Database Considerations
Currently our implementation completely historizes a table as soon as an SMO is issued
against it, effectivly introducing additional storage requirements of the resulting table
of the SMO. This can be a problem for huge datatables consisting of millions of rows.
Assume we are using the separated historization approach and issue an ADD COLUMN
SMO, adding a column that is nullable to our big table. Our current implementation adds
the column to the current active table and creates a new historization table, containing
all tuples from the current active table. We observe here, that the old historization table
basically contains the same data as the new historization table, expect for the null value
of the newly added column.

Due to this behaviour, our currently proposed solution is not suitable for databases with
huge tables containing millions of rows, as SMOs introduce too much storage overhead.
We want to discuss a solution for the separated historization approach that does not need
to duplicate historized tuples and tries to minimize the additional storage requirements
by SMOs. Solutions for the integrated and the hybrid approach can be built upon the
proposed solution.

41

3. System Design

3.8.1 Desired SMO Behaviour

SMOs issued in our described behaviour should have the following properties:

• Column Modification Operators (CMOs) do not create a new historization table,
they modify existing ones or possibly migrate tuples

• Table Modification Operators (TMOs) do not create new tuples, they only migrate
tuples between historization tables

ColumnModification Operators As CMOs (ADD COLUMN, RENAME COLUMN,
DROP COLUMN), we have to solve the following situation: column C, with datatype
integer, is added, afterwards it is dropped, and then a new column C, with datatype
varchar, is added. The problem we face is, that the historization table would now contain
the column C twice. To solve this, we could use one of the following solutions:

• Each columnname is represented by a GUID in the history table

• Each columnname is suffixed with the version it is introduced

• Each columnname is suffixed with the timestamp it was created

We suggest solving it with the timestamp suffix. This allows us, that we can conclude
the schema of a table at a given time simply by looking at the timestamps of the column
names. If two columns have the same name, we know from the suffix which is the currently
active one. If a column in the historization table has the highest timestamp suffix of
all columns with the same name, and is not present in the current active table, we can
conclude that this column was dropped. If we apply the same pattern to tablenames,
as they suffer from the same name uniqueness problem, and never delete historization
tables, we get the whole schema information encoded in the names and do not need a
separate version tracking system. Encoding the schema information this way requires
every issued query to be rewritten at the time it is being issued to the currently valid
table and column names.

Table Modification Operators The desired behaviour for TMOs is, that they do
not introduce any new tuples, instead they only migrate tuples between history tables.

Assume we have a table R and issue the following SMO: DECOMPOSE TABLE R into
S(a,b), T(a,c). Where should the tuples of R_HIST be, after the SMO? We could
move them into S_HIST and T_HIST and rewrite all queries targeting R_HIST
that they have to target S_HIST and T_HIST now. By migrating all tuples to the
new historization tables, tuples with a set endtimpstamp are also migrated to the new
historization tables, although any new queries would never retrieve those. Additionally,
they also impact the insert/update/delete performance on table R as they contribute to a

42

3.8. Big Database Considerations

longer historization table. Therefore, we conclude that tuples with a set endtimpestamp
stay in R_HIST .

We now have to decide, where do we store tuples of R_HIST with no endtimpestamp
now? They could reside in R_HIST , but this would force insert/update/delete state-
ments on tables S and T to check for tuples in R_HIST . Considering following up
SMOs on S and T , we will quickly get into complicated insert/update/delete handling
logic that will impact the operational databases performance. Therefor, we decide that
historized tuples with no set endtimestamp will be migrated to new historization tables.

As we migrate tuples between historization tables, historic queries targeting R_HIST
have to be migrated to take S_HIST and T_HIST into account. They need to union
the query result of querying R_HIST , S_HIST and T_HIST . Queries on S that have
impact on S_HIST can be performed as described by our system as all tuples currently
active in S are also represented in S_HIST . The same applies to T and T_HIST . This
leaves us open with how historic queries have to be migrated, which will be covered in
the next section.

3.8.2 SMO Handling and Historic Query Migration

Based on the desired behaviour, our new SMO handling is now done as described in the
pseudocode in Algorithm 5. We will now take a look on how each of those steps looks
for each SMO assuming we use the separated historization approach. Additionally, we
assume that each table has a primary key and, without loss of generality, it is a column
named ID. The discuss SMOs in the following order: first we have CREATE TABLE
and DROP TABLE as they are the simplest, followed by CMOs and the other TMOs. If
nothing is mentioned for the step "Save tuple reconstruction information", no information
needs to be saved. Examples for the schemata will be given and follow this convention:

<Table>(<Columns>*)
The first column is always the primary key.

Example:
Employee(id,name)

Comments on the content of the table will be written
directly beneath it, starting with --.
STS is an abbreviation for starttimestamp.
ETS is an abbreviation for endtimestamp.

43

3. System Design

Algorithm 3.5: SMO handling

Data: SMO to apply, historic queries

Result: Tables altered by SMO, historic queries migrated

1 Modify actual tables according to SMO;

2 Create historization tables for new tables;

3 Save tuple reconstruction information;

4 Migrate tuples in historization tables;

5 Rewrite historic queries;

Save tuple reconstruction information We want to discuss this step of our algo-
rithmn first, as it is part of all SMOs and depends on previously executed MERGE
TABLE and DROP COLUMN SMOs as after those SMOs, the historization table may
contain columns, that do not reflect any columns of the current active table.

A MERGE TABLE SMO may introduce a column that describes from which table the
tuple originated, called merge_origin. When the resulting table of MERGE TABLE is
consumed again, by a PARTITION TABLE R into S(a,b), T(a,b) for example, it is open
what to do with the introduced column merge_origin Should it be migrated to S or to
T ? As the column does not bear any information of tuples in S or T we suggest creating
an auxiliary table that stores this merge_origin column with the primary key columns
of the historization table it was used. This saves all information needed to reconstruct
the tuples of the historization table that was introduced by the MERGE TABLE SMO.
The SMO MERGE TABLE, as we will see, can be implemented to not need this column
and introduce the auxiliary table when the SMO is applied.

A similar scenario can happen with the DROP COLUMN SMO. If a column is dropped,
one can choose to create a new historization table that also has the column dropped, or
use the existing historization table and use null values for the dropped column. When a
table is consumed, that has dropped columns in the historization table, we suggest not
migrating the dropped column to new tables and instead, create an auxiliary table that
contains the keys of the tuples and the values for the dropped columns. This scenario is
discussed in more detail in the paragraph for the DROP COLUMN SMO.

CREATE TABLE R(a,b,c) Handling this SMO in our system is actually pretty
simple as we create the actual table and the historization table with a suffix containing the
timestamp. No tuples need to be migrated and no historic queries need to be rewritten.
INSERT/UPDATE/DELETE statements that target R need to rewrite the column names
when they target the historization table of R.

To illustrate this, consider the following example:

44

3.8. Big Database Considerations

Starting schema:
/

Schema after CREATE Table R(a,b,c) at T0:
R(a, b, c)
R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)

DROP TABLE T Dropping a table is also relatively simple. The actual table is
dropped no historized tuples have to be migrated and no queries have to be rewritten.
The endtimestamp of tuples in the historized table has to be set to indicate when the
active table T was deleted, and therefore the tuples of T too.

To illustrate this, consider the following example:

Starting schema:
R(a, b, c)
R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)

Schema after DELETE R at T1:
R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)
-- Rows before the DELETE with ets !== null have ets of T1 now

ADD COLUMN d [AS const | func(a,b,c)] INTO R First, we modify the actual
table according to the SMO. Then, we modify the historization table by adding the
column, with the timestamp suffix of the timestamp of the SMO execution added to the
column name, and applying the values for the column in the following way:

Tuples with a set endtimestamp get the value null set for the column. If the default value
for the new column is null, all tuples with null as endtimestamp also get the value null
for the new column. However, if the SMO supplies an actual value for the column, may
it be a constant or via func(a, b, c), we treat these like we would treat a regular update
to a tuple, i.e. we mark the existing active tuples (with no endtimestamp set) as deleted
by adding the current timestamp as endtimestamp and re-insert the tuples including the
new value for the added column with the current timestamp as starttimestamp.

We advice this way to enhance the archival quality of the historization table, as we
consider adding a column without a null value to be tuple modifiying, thus new tuples
should be created in the history table (one can think of ADD COLUMN with a default
value different from null as the same ADD COLUMN with a null value and then updating
all columns). However, depending on the real world situation, this tuple recreation may be
skipped, as we know from the starttimestamp of the tuple compared to the columnname’s
creation timestamp suffix, that this column was added to the tuple later on, which allows
to have no storage overhead introduced (which is the goal of this system).

No historic queries need to be rewritten.

45

3. System Design

To illustrate this, consider the following example:

Starting schema:
R(a, b, c)
R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)

Schema after ADD COLUMN d as null into R at T1:
R(a, b, c, d)
R_HIST_T0(a_T0, b_T0, c_T0, sts, ets, d_T1)
-- as null was used as the default value, no tuples are modified

DROP COLUMN d We modify the actual table by dropping the column. No new
historization tables need to be introduced, as well as no tuples need to be introduced.

The historization table we have needs from now on the have null as the default value for
this column.

Historic queries do not need to be rewritten as they still operate on the old schema with
unchanged column names, wheres new queries from the live system will not include this
column anyway.

If this table is later targeted by a PARTITION TABLE SMO, this column will not be
moved to the new historized tables (the plural is intentional as a DECOMPOSE TABLE
SMO introduced two follow up historization tables). However, we might have the case
that some tuples have no set endtimestamp, but values inside a dropped column. We
have two ways to solve this.

We could treat dropping column as "tuple modifying" and introduce new tuples when
issued, the same way we handled the ADD COLUMN SMO. This way introduces
a storage overhead and is not desired. The other way is, as described above, we
keep the tuples unmodified, but we have to take care to keep this column information
when the table is consumed by TMOs. When the table is consumed by a TMOs (like
PARTITION TABLE), we create a new table < Table > _DROPPED_COLUMNS
that stores the primarykey, the starttimestamp and the dropped column. This allows
us, to reconstruct the original tuple by joining the tuples we migrated to the new
history table introduced by PARTITION TABLES with the information we migrated
to < Table > _DROPPED_COLUMNS. This also implies, that the historic query
rewriting step in the TMO that consumes this table (PARTITION TABLE in our
example) has to take this into account when rewriting historic queries in the "Save tuple
reconstruction information".

The question may arise, why to not migrate the column to the new table, as it will
mostly contain null values, which usually take only one bit to represent. Depending on
the implementation of the RDBMS, null values may take space, for example MySQLs
MyISAM storage engine only stores a flag that indicates that a column value is null,

46

3.8. Big Database Considerations

nevertheless the space for the complete column is allocated3. However, migrating all
dropped columns, although they will never contain values anymore, puts additional work
on the database. Column and table statistics need to be updated and they decrease the
maintainability of the overall system. In worst-case scenarios, the amount of columns in
a table could lead to some system maximum limits being exceed (e.g. number of columns
in a table, SQL statement length, number of columns in a single query, etc...). Therefore,
we recommend not migrating dropped columns, although they usually only consume one
bit storage per row.

To illustrate the influence of a DOP COLUMN SMO, consider the following example:

Starting schema:
R(a, b, c)
R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)

Schema after DROP COLUMN c at T1:
R(a, b)
R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)
-- sts > T1 implies c_T0 is null
-- Future SMOS that migrate tuples away from R_HIST_T0
-- have to create a dropped columns table for c_T0

RENAME TABLE R into T The actual table R is renamed to T , as well as
R_HIST_ < TIMESTAMP > is renamed to T_HIST_ < TIMESTAMP >.
Historic queries targeting R_HIST have to be rewritten to target T_HIST . Note,
that we do not suggest changing the timestamp of the table. If this is desired (to have
better archival quality) we suggest storing this renaming information in a separate table.
An alternative solution is not renaming R_HIST_ < TIMESTAMP >, instead we
create a new table T_HIST_ < NEWTIMESTAMP > and migrate all tuples with
no set endtimestamp to from R_HIST to the new created T_HIST . Historic queries
targeting R_HIST now have to target T_HIST too and take the union of both results.
In the process of migrating tuples, already dropped columns could be removed.

To illustrate this, consider the following example that also removes dropped columns: To
illustrate the influence of a DOP COLUMN SMO, consider the following example:

Starting schema (c was deleted at T1):
R(a, b)
R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)
--Note that R_HIST_T0 does not contain c_T0
--Therefore, c_T0 is dropped and needs to be removed

3https://dev.mysql.com/doc/internals/en/myisam-introduction.html

47

https://dev.mysql.com/doc/internals/en/myisam-introduction.html

3. System Design

Schema after RENAME TABLE R into Tat T2,
with new history table and tuple migration:
T(a, b)
R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)
-- contains all tuples with set ets of R_HIST_T0 before rename

R_HIST_T0_DROPPED_COLUMNS(a_T0,c_T0, sts, ets)
-- contains the values for c_T0 of tuples migrated to T_HIST_T1

T_HIST_T1(a_T2, b_T2, sts, ets)
-- contains all tuples with no set ets of R_HIST_T0 before rename

RENAME COLUMN b IN R TO d The actual table R is modified accordingly
to this SMO.

The column b in R_HIST has to be renamed to d with the current timestamp of the
SMO and historic queries need to be rewritten to query d instead of b. By this, we do
not need to migrate any tuples and preserve the column name information in d. We only
loose information on when the column d was originally added (which could be stored in
a separate table).

Another way would be to create a new historization table with the column d instead of b
with the correct timestamp in the tablename and in the columnname. Historic queries
would now need to union the query results of both tables. Already dropped columns in
R could be omitted in the new table.

Which strategy to apply, has to be decided on a case by case basis. Basically, we
recommend creating a new historization table with the column d instead of b, as this
preserves all schema information we need in the table and column names and also removes
dropped columns. However, if for some reason, the process of migrating tuples is too
expensive in terms of time, the first strategy could be employed. This could be a case
if an API accessing the database has changed to access column d, but the database
migration did not migrate b to d. Creating a hot-fix for this, without migrating tuples,
to ensure the database and the APIs accessing it are online, could be a reason to employ
this strategy.

To illustrated a RENAME, consider the following example that creates a new historization
table:

Starting schema:
R(a, b, c)
R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)

Schema after RENAME COLUMN c to D at T1:
R(a, b, d)

48

3.8. Big Database Considerations

R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)
-- contains all tuples with set ets of R_HIST_T0 before rename

R_HIST_T1(a_T0, b_T0, d_T1, sts, ets)
-- contains all tuples with no set ets of R_HIST_T0 before rename

MERGE TABLE R,S into T We modify the actual tables according to the SMO.
A new historization table is created for the table T , containing an additional column
merge_origin. We take all tuples from R_HIST that have no endtimestamp and save
all tuple reconstruction information we need for them (depending on dropped columns
and other merge_origin columns). Then, those tuples are migrated to T_HIST , with
merge_origin being set to R. All historic queries, targeting R_HIST have now to
union the query results from querying T_HIST with an additional WHERE clause that
filters that the merge_origin column has to have the value R. The table S_HIST is
handled accordingly.

Alternatively to using the column merge_origin in T_HIST , we could create a table
R_HIST_TUPLES_IN_T , containing the primary key in T_HIST of tuples mi-
grated from R to T . The same would apply to the tuples of S_HIST . This would not
require keeping track of the merge_origin column.

If a table containing a merge_origin column is consumed, this information needs to be
persisted in an additional table containing the id, starttimestamp and the merge_origin
column, during the "Save tuple reconstruction informations" phase.

To illustrated a MERGE of R and S into T, consider the following example:

Starting schema:
R(a, b, c)
R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)
S(a, b, c)
S_HIST_T1(a_T1, b_T1, c_T1, sts, ets)

Schema after MERGE R,S into T at T2, using a separate table
to store the tuple origin:
T(a, b, c)
T_HIST_T2(a_T2, b_T2, c_T2, sts, ets)
-- contains all tuples of: R_HIST_T0 and S_HIST_T1
-- that had no ets set

T_HIST_T2_ORIGIN(a_T2,origin,sts)
-- if a tuple in T_HIST_T2 came from S_HIST_T1, origin is
-- set to S, otherwise it is set to R

R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)

49

3. System Design

-- contains all tuples with set ets of R_HIST_T0 before merge

S_HIST_T1(a_T1, b_T1, c_T1, sts, ets)
-- contains all tuples with set ets of S_HIST_T1 before merge

PARTITION TABLE R into S with cond, T We modify the actual tables according
to the SMO. Two new historization tables are created, S_HIST and T_HIST .

The tuples from R_HIST with no set endtimestamp, satisfying cond are migrated to
S_HIST and those not satisfying cond are migrated to T_HIST .

Historic queries targeting R_HIST have now to union the results of the query on
S_HIST , T_HIST and RHIST .

Starting schema:
R(a, b, c)
R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)

Schema after PARTITION TABLE R into S with true, T, at T1:
S(a, b, c)
S_HIST_T1(a_T1, b_T1, c_T1, sts, ets)
-- containing all rows of R_HIST_T0 that had no set ets
-- and satisfy the condition true

T(a, b, c)
T_HIST_T1(a_T1, b_T1, c_T1, sts, ets)
-- containing all rows of R_HIST that had no set ets
-- and do not satisfy the condition true

R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)
-- containing all rows that had set ets before PARTITION TABLE

DECOMPOSE TABLE R into S(a,b) T(a,c) For this decompose table operation,
we assume that the columns a contain the keys, otherwise they cannot be reconstructed.
If the key for those tuples is not desired in the resulting tables, we have to migrate it
nonetheless, but name the column containing the primar key decompose_key. Subsequent
consumptions on the table have to store this key during "Save tuple reconstruction
information;".

We modify the actual tables according to the SMO. Two new historization tables are
created, S_HIST and T_HIST .

The tuples from R_HIST with no endtimestamp, are split according to the SMO and
are migrated to S_HIST and T_HIST . Historic queries targeting R_HIST , now have

50

3.8. Big Database Considerations

to union the query result on R_HIST with the query result on the reconstructed tuples
from S_HIST and T_HIST .

To illustrate a DECOMPOSE consider the following example:

Starting schema:
R(a, b, c)
R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)

Schema after DECOMPOSE R into S(a,b) T(a,c), at T1:
S(a, b)
S_HIST_T1(a_T1, b_T1, sts, ets)
-- containing all rows of R_HIST_T0 that had no set ets
-- only column values that got migrated to S are represented

T(a, c)
T_HIST_T2(a_T1, c_T1, sts, ets)
-- containing all rows of R_HIST_T0 that had no set ets
-- only column values that got migrated to T are represented

R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)
-- containing all rows that had set ets before PARTITION TABLE

JOIN TABLE R,S INTO T WHERE cond This SMO is quite tricky, depending
on the join condition and what is the resulting primary key in T .

First, we modify the actual tables according to the SMO. Afterwards, the historization
table T_HIST is created. All tuples of R that found a tuple in S such that they satisfy
cond will exist in T one or more times. As we desire that T_HIST looks exactly like T
after the SMO, we have to store some tuple reconstruction information. In a separate
table called R_HIST_T_HIST_Key_Mapping, we store the keys of all tuples of
R_HIST (i.e. id and starttimestamp) and the key of one tuple of T_HIST that they
are part of. All tuples with a key in this table are deleted from R_HIST . This allows
us to reconstruct all tuples that have been in R_HIST . The same has to be done for
S_HIST . Historic queries need to be rewritten for this query reconstruction.

To illustrate a JOIN TABLE consider the following example:

Starting schema:
R(a, b, c)
R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)
S(x, y, z)
S_HIST_T1(x_T1, y_T1, z_T1, sts, ets)
--Note that a is the key of R and x is the key of S

51

3. System Design

Schema after JOIN TABLE R,S into T WHERE R.a == S.x at T2:
T(a, b, c, y, z)
-- Primary Key of T is now a

T_HIST_T2(a_T2, b_T2, c_T2, y_T2, z_T2, sts, ets)
-- This one contains all tuples that found join partners

R_HIST_T0_T_HIST_T2_Key_Mapping(a_T2, sts)
-- This contains a distinct list of keys of tuples that
-- existed in R_HIST_T0 that got migrated to T_HIST_T2.
-- Tuples with no set ets that found a join partner
-- were migrated to T_HIST_T2.

R_HIST_T0(a_T0, b_T0, c_T0, sts, ets)
-- Contains all tuples that had a set ets, as well as
-- all that had no set ets that found no join partner

S_HIST_T1_T_HIST_T2_Key_Mapping(a_T2, sts)
-- same like R_HIST_T0_T_HIST_T2_Key_Mapping, but for S_HIST_T1

S_HIST_T1(a_T1, b_T1, sts, ets)
-- Contains all tuples that had a set ets, as well as
-- all that had no set ets that found no join partner

3.8.3 Implementation Notes and System Properties

We want to discuss a few things considering on how to implement this designed system
and some properties of the designed system.

Tuple Reconstruction Information If DROP COLUMN is implemented by creating
a new historization table without the dropped column (and all column values for the
dropped column for tuples with no set endtimestamp is stored), and MERGE TABLES
is implemented by storing the merge_column information in a separated table, the step:
"Save tuple reconstruction information" can be omitted.

Relationship between Active Table and Historization Table In our designed
system, the columns of the active table are all part of the historization table. Every tuple
in the active table is represented in the currently active historization table, and not in
any previous historization table. This simplifies the handling of insert/update/delete
statements on the current active table and ensures that their performance is independent
on previous performed SMOs.

52

3.8. Big Database Considerations

Inferring Schema The current schema can be inferred from the active tables. This
allows us to detect in the historized tables, if a table has been dropped.

If RENAME COLUMN, DROP COLUMN and RENAME TABLE produce a new
historization table, and they both migrate tuples and handle historic query rewriting,
we can have complete information about how a schema looked like at any given time
considering the table and column suffixes.

Historic Query Rewriting We want to give an example on how we would implement
rewriting queries using common table expressions. They are supported by every major
SQL vendor and can lead to easier historic queries in our case.

We start our example with a table R and we query the columns ID,A,B. Querying R at
a time T1 would result in the following query:

-- Assume Table R was created at T0

-- Original Query on R

SELECT ID,A,B
FROM R

-- Query on History table with CTE
WITH R (ID, A, B)
AS
(

SELECT ID_T0, A_T0, B_T0
FROM R_HIST_T0
WHERE

R_HIST_T0.STARTTIMESTMAP <= T1 AND
(T1 < R_HIST.ENDTIMESTAMP ||
R_HIST_T0.ENDTIMESTAMP == NULL)
)
SELECT ID,A,B
FROM R

Assume now, a MERGE TABLE R,S into T was issued at time T2, with moving the
merge information into R_HIST_T_HIST_MERGEINFO. Rewriting our query
would result in:

WITH R_HIST (ID, A, B) AS (
SELECT ID_T0, A_T0, B_T0
FROM R_HIST_T0

53

3. System Design

WHERE
R_HIST_T0.STARTTIMESTMAP <= T1 AND

(T1 < R_HIST.ENDTIMESTAMP ||
R_HIST_T0.ENDTIMESTAMP == NULL)
)
WITH R_TUPLES_IN_T (ID,A,B) AS (
SELECT ID_T0, A_T0, B_T0
FROM R_HIST_T_HIST_MERGEINFO_T2 r1
inner join
T_HIST_T2 t1 on
r1.id = t1.id AND
r1.starttimestamp = t1.starttimestamp

WHERE
t1.STARTTIMESTMAP <= T1 AND
(t1.ENDTIMESTAMP == NULL ||
T1 < t1.ENDTIMESTAMP)
)
WITH R (ID, A, B) AS (

Select ID,A,B
FROM R_HIST
UNION
SELECT ID,A,B
FROM R_TUPLES_IN_T

)

SELECT ID,A,B FROM R

This way of migration historic queries with CTEs reflects the SMOs that changed the
historization tables. It also reflects the tree representing where tuples of R_HIST have
been migrated too and it is still quite readable.

Performance Considerations The problem of this historic query migration rewriting
algorithmn is the fact, that it very much relies on UNIONs, resulting in bad historic query
execution performance. We will see the impact of UNIONs on queries in our evaluation
in Section 4.6.2.

Primary Key Tracking The system designed here relies on information about the
primary key of each table. SMOs that create new tables need to know what the resulting
primary keys of the created tables are. Special cases, like dropping the primary key or
decomposing a table in a way that one table that does not contain the original primary
key column have to be considered. We suggest to consider the addition of integrity
constraint modification operators (ICMOs) when implementing this system. ICMOs have
been described int Automating the database schema evolution process [CMDZ13].

54

3.9. Code Metrics

3.8.4 Final Notes

The system we designed here is an alternative version that is built around minimizing tuple
recreation when issuing SMOs. The result is a trade-off for historic query performance.
We did not implement this system, but are looking forward seeing it implemented and
compared to our current system.

3.9 Code Metrics

At last, we want to talk about some code-metrics of our API. Our developed API
has been tested with 73 automatized integration tests implemented via .Net xUnit
tests. They cover the following areas: globalupdatetimestamp is correctly set after IN-
SERT/UPDATE/DELETE and SMOs, querystore re-execution works after INSERT/UP-
DATE/DELETE statemetns, querystore re-execution works after SMOs (including com-
bined scenarios of SMOs for renaming) and some tests for the used schemamanger, SQL
renderer and some internally used classes. The tests have proven useful as we needed to
ensure that the different historization approaches behave the same, and also to ensure
that refactorings were done correctly.

Figure 3.8 shows the Code Metrics calculated for our C# solution by Visual Studio 2017.
The maintainability index calculated by Visual Studio has three ranges: Red, from 0-9,
Yellow from 10-19, and Green from 20-100. We therefor can consider our API with a
value of 79 quite maintainable.

Table 3.8: Code Metrics of Visual Studio 2017

C# Project QubaDC QubaDC.Evaluation QubaDC.Tests
Maintainability Index 79 74 80
Cyclomatic Complexity 2031 468 255
Depth of Inheritance 3 2 2
Clas Coupling 341 155 117
Lines of Code 5401 156 985

3.10 Summary

We started with an overview of our system and how the use-cases for it are handled.
Afterwards, we examined how we handle tuple based timestamping in the three histor-
ization approaches we implemented. We described how schema evolution is managed
and how this affects query rewriting in our historization approaches. The last part
of our system we examined are the implemented locking mechanisms that guarantee
reproducible queries. At last, we discussed our implementation with respect to databases
containing a huge amount of rows and proposed a different way to implement SMOs and
historic query rewriting, resulting in a system that needs less storage space for history

55

3. System Design

tables but has worse historic query execution time. At last, we took a look at Code
Metrics of our system implementation.

As we now have now implemented the system, we can start evaluating our three different
historization approaches and see the impact they have on query time and storage size.

56

CHAPTER 4
Evaluation

In this chapter, we present an experimental evaluation of the implemented prototype. Our
evaluation targets to answer the following two questions for each historization strategy
we have:

• How long does it take our system take to execute certain operations (CRUD,
querystore operations)?

• How is the storage size of our database effected by those operations?

As a baseline, we use a simple implementation of our API which basically executes the
given operation without historization or locking. This allows us to estimate the additional
cost introduced by our historization approaches. After examining how our system behaves,
we end with a discussion of the strengths and weaknesses of our approaches and finish
with guidelines on when to use which approach.

We have chosen to not evaluate the performance of SMO statements as they rarely occur
in the real world and we advice executing them in a maintenance mode where no other
operations are allowed on the database.

4.1 Environment

We use the experiment environment summarized in Table 4.1.

57

4. Evaluation

Table 4.1: Setup Environment

Envrionment Description
CPU Intel(R) Core(TM) i7-6700 CPU, 3.4Ghz, 4 Cores
RAM 16 GB, DDR3
Hard Disk 250 GB, SSD
OS Windows 10, x64 (Version 10.0.15063)
.Net .Net Framework 4.5.2
MySQL MySQL 5.7.20

All our tests are run against the table datatable with the following columns:

• Phasenumber - integer set to identify in which iteration the tuple was added

• ID - unique integer

• Section - A column holding random generated values in a given range. Used to
make statements that target a certain percentage of the rows.

• ValueToUpdate - a value we use for updates

• CLOBPayLoad - a MEDIUMTEXT field we fill with random strings of length
10000

For index, we use a primary key (which implies a clustered index) for the column ID. In
the integrated approach, the column starttimestamp is added to the primary key. No
other index are used, if not mentioned otherwise. The table is created with InnoDB as
the storage engine.

4.2 Measuering Methods

We got two different parameters to measure: the time it takes our API takes to execute
a given operation, and the database size.

To measure how long it takes our API to execute a given operation, we make use of
the class StopWatch provided by the .Net Framework. An example call taken from our
evaluation library to measure how long a CRUD operation takes, can be seen in Listing
1.

58

4.2. Measuering Methods

List<long> insertValues = new List<long>();
QubaDC.CRUD.InsertOperation[] inserts =

InsertGenerator.GenerateFor(1, Inserts, dbname);↪→

Stopwatch sw = new Stopwatch();

int cnt = 0;
foreach (var insert in inserts)
{

sw.Start();
quba.CRUDHandler.HandleInsert(insert);
sw.Stop();
insertValues.Add(sw.ElapsedMilliseconds);
sw.Reset();
cnt++;
if (cnt % 1000 == 0)

Console.WriteLine("Inserted " + cnt);
}
long sum = insertValues.Sum();

Listing 1: Example Insert operation measuring in .Net

To measure the size of the tables in a database, we have to choose between the
two following methods: Selecting the data from the command SHOW TABLE STATUS
(equivalent to information_schema.tables), or selecting the data from the table
information_schema.INNODB_SYS_TABLESPACES.

We extract the actual used data from the SHOW TABLE STATUS command via the
following formula: DATA_LENGTH + INDEX_LENGTH − DATA_FREE. How-
ever, the SHOW TABLE STATUS approach suffers from the disadvantages described in a
blog post1. They can be summarized as the following: the data is not updated in real
time, and it is not accurate. We can counter those by ensuring the following:

• innodb_stats_persistent is turned off

• innodb_stats_on_metadata is turned on

• ensure tables are flushed via FLUSH TABLES statement 2

• ensure tables are analyzed
1https://www.percona.com/blog/2016/01/26/finding_mysql_table_size_on_disk/
2https://stackoverflow.com/questions/3169525/mysql-trouble-with-information-schema-tables

59

https://www.percona.com/blog/2016/01/26/finding_mysql_table_size_on_disk/
https://stackoverflow.com/questions/3169525/mysql-trouble-with-information-schema-tables

4. Evaluation

Our evaluation scripts ensure that those four requirements are fulfilled. Still, we experi-
enced evaluation problems due to not accurate values. For example, we inserted 100.000
rows in the datatable of our three historization approaches. The SHOW TABLE STATUS
command showed more space consumption for the table datatable in the separated ap-
proach compared to the integrated approach, although the latter one stores an additional
timestamp per row.

We tried getting better results via information_schema.INNODB_SYS_TABLESPACES,
and we ran into other anomalies. For 100.000 inserted rows, the hybrid table used the
same space as the separated table, although the datatable stored in the hybrid mode
used an additional timestamp per row.

As both approaches are not reliable, we have chosen to go with the SHOW TABLE STATUS
approach as it returned more fine grained data, showing the actual DATA_LENGTH,
the INDEX_LENGTH and DATA_FREE, compared to FILE_SIZE of the
information_schema.INNODB_SYS_TABLESPACES table. As SHOW TABLE STATUS
also returns the estimated rows, we considered correcting the data by using the following
formula:

DATA_LENGTH + INDEX_LENGTH − DATA_FREE

TABLE_ROWS
∗ ActualRows (4.1)

Using this formula did not improve the data and we decided to not introduce this formula.

4.3 Insert Performance
Setup To measure the insert performance, we inserted 100.000 rows into our datatable.

Storage We expect our measures of the sum of the actual and the table sizes to fulfill
the following formula:

• Size(Separated) > 2 ∗ Size(Simple) > Size(Integrated) = Size(Hybrid) >
Size(Simple)

As we remember, the separated historization approach stores the tuples in the actual
table and in the historized table. Therefore, each tuple is stored twice and we store
an additional starttimestamp in the historization table, which should result in a size
bigger than twice of the simple approach. We expect the integrated approach to consume
the same amount of space as the hybrid approach, as the endtimestamp is stored as
null and null values do not consume space in InnoDB3. The simple approach stores no
historization information and should consume the least amount of space. The results of
our evaluation can be seen in Table 4.2, note that we use Mebibytes instead of Megabytes.

3https://dev.mysql.com/doc/internals/en/innodb-field-contents.html

60

https://dev.mysql.com/doc/internals/en/innodb-field-contents.html

4.4. Update Performance

Table 4.2: Table Space consumption after 100.000 Row inserts - Values in MiB

Measured Value Simple Separated Hybrid Integrated
DataTable size 1565.52 1565.52 1567.52 1564.52
DataTable_Hist size 0.00 1566.52 0.02 0.02
Sum 1565.52 3132.04 1567.54 1564.54
Percentage of Simple 100% ∼ 200,1% ∼100,1% ∼100,0%

Our results mostly conform with our prediction - we consider the deviations are due to
inaccurate results from the SHOW STATUS TABLES command.

Run-Time We expect our measured values to fulfill the following formula:

• time(Separated) > time(Integrated) ~time(Hybrid) > time(Simple)

As separated inserts two rows instead of one, it should take slightly longer than inserting
data into the integrated approach. Integrated and hybrid should be roughly equal, and
simple should be the fastest as no locks need to be acquired.

The results of our evaluation can be seen in Table 4.3.

Table 4.3: Insert Time consumption for 100.000 Rows

Measured Values Simple Separated Hybrid Integrated
Avg Time 39.0 ms 97.2 ms 81.6 ms 80.0 ms
Min Time 31.0 ms 71.0 ms 64.0 ms 64.0 ms
Max Time 2256.0 ms 2997.0 ms 348.0 ms 2189.0 ms
Complete Time 65.0 min 162.2 min 136.1 min 133.5 min

We see that the average time for a insert statement reflects our expectations. The difference
between the average time and the minimum time of separated and hybrid/integrated are
big enough for us to conclude: separated is the slowest approach on insert time. The
maximum time needed for an operation was only measured to see how much influence the
running system can have. We can only conclude that the hybrid system was lucky in its
execution and got no high max time, although it was slightly slower than the integrated
approach. The difference between hybrid and integrated approach can not be considered
significant. It can also be concluded, that no matter which system we use, insert time
will at least double.

4.4 Update Performance

We measure the update performance in the following four different ways:

61

4. Evaluation

• Updating every row by ID of a table once

• Updating 1/10th of the rows by CLOBPayLoad of a table once

• Updating 1/3 of the rows by Section of a table multiple times

• Updating the whole table 20 times

4.4.1 Update Every Row By Id

Setup To measure the update performance of a single row with an index on the column
in the WHERE clause, we update the column V alueToUpdate by increasing it by one,
for every row filtered by the column ID. Our tests are run against a table with 1000
rows. Indexes are still only applied to the actual tables.

Storage Size We expect to achieve the following measures (note that we distinguish
between the history and the actual tables here):

• size(Separated) + size(Separated_hist) will increase by 50%

• size(Integrated) + size(Integrated_hist) will double

• size(Hybrid) + size(Hybrid_hist) will double

• size(Simple) will stay the same

• Size(Separated) = Size(Simple)

• Size(Separated_Hist) = 2 ∗ Size(Separated)

• Size(Integrated) = 2 ∗ Size(Simple)

• Size(Integrated_Hist) = 0

• Size(Hybrid) = Size(Simple)

• Size(Hybrid_Hist) = Size(Simple)

The results of our evaluation can be seen in Table 4.4, note that we use Kibibytes. The
values in the table roughly match up with the expected values, except for the size of the
integrated table.

62

4.4. Update Performance

Table 4.4: Update size after updating each row once - Values in MiB

Measured
Value Simple Separated Hybrid Integrated

Stage Init Result Initial Result Initial Result Initial Result
DT size 13.52 13.52 13.52 13.52 15.52 15.52 15.52 32.52
DT_Hist size 0.00 0.00 13.52 28.52 0.02 14.52 0.02 0.02
Sum 13.52 13.52 27.04 42.04 15.54 30.04 15.54 32.54
% of Simple 100% 100% 200.0% 310.8% 114.8% 222.2% 114.8% 240.7%
% of Growth / 0% / 155.4% / 193.3% / 209.4%

Run-Time We expect to achieve the following measures:

• time(Simple) > time(Hybrid) ~time(Integrated) > time(Separated)

Updates on simple should be the fastest, as only one update needs to occur. Separated
should be the slowest, as two updates (actual table and setting the endtimestamp in
the history table) and one insert (inserting the new tuple in the history table) need to
occur. Hybrid needs to insert the value into the history table and update the actual
table. Integrated needs to update the endtimestamp in the actual table and insert the
tuple again into the actual table. We suspect that they both will roughly need the same
time, although hybrid could be faster.

The results of our evaluation can be seen in Table 4.5. The most important result is,
that separated is extremely slow. All systems managed to compute in under 3 minutes
while it took our separated approach around 38 minutes. The main problem we found
was that no index had been specified for the history table. We added a index on the
hist table columns of the separated and the hybrid approach for the columns ID and
starttimestamp. The results of a second run can be seen in Table 4.6. We see, that after
adding an index on the history table, that the separated approach can handle updates as
fast as our other approaches. The required storage for the history tables did not increase
as the primary key is stored with the actual data4,5.

Table 4.5: Update time after updating each row once - without indexes

Measured Values Simple Separated Hybrid Integrated
Avg Time 51.1 ms 2290.6 ms 103.9 ms 112.1 ms
Min Time 43.0 ms 1198.0 ms 91.0 ms 94.0 ms
Max Time 78.0 ms 7167.0 ms 218.0 ms 2460.0 ms
Complete Time 51.2 s 38.2 min 103.9 s 112.1 s

4https://dba.stackexchange.com/questions/44520/does%2Dthe%2Dsize%2Dof%
2Dthe%2Dprimary%2Dkey%2Dcontribute%2Dto%2Dtable%2Dsize

5https://dev.mysql.com/doc/refman/5.5/en/innodb-index-types.html

63

https://dba.stackexchange.com/questions/44520/does%2Dthe%2Dsize%2Dof%2Dthe%2Dprimary%2Dkey%2Dcontribute%2Dto%2Dtable%2Dsize
https://dba.stackexchange.com/questions/44520/does%2Dthe%2Dsize%2Dof%2Dthe%2Dprimary%2Dkey%2Dcontribute%2Dto%2Dtable%2Dsize
https://dev.mysql.com/doc/refman/5.5/en/innodb-index-types.html

4. Evaluation

Table 4.6: Update time after updating each row once - with index on hist table

Measured Values Simple Separated Hybrid Integrated
Avg Time 51.6 ms 114.6 ms 103.9 ms 114.3 ms
Min Time 46.0 ms 101.0 ms 91.0 ms 102.0 ms
Max Time 93.0 ms 406.0 ms 218.0 ms 373.0 ms
Complete Time 51.6 s 114.6 s 103.9 s 114.3 s

4.4.2 Update 1/10th of Rows By CLOBPayload

Setup To measure the update performance of a single row with no index on the columns
used in the WHERE clause, we update the column V alueToUpdate by increasing it
by one, for 100 random selected rows filtered by the column CLOBPayload of a table
containing 1000 rows. A primary key (i.e. clustered index) is applied to ID and
starttimestamp in the actual tables and history tables.

Storage Size The results of our evaluation can be seen in Table 4.7. The values for
simple, hybrid and integrated line up with what we would expect. For separated tough,
we see that the result values are pretty inaccurate. We observed that the values for the
history table increased as follows:

• ROWS changed from 1000 to 1100

• Data_Lenght changed from 17317888 to 20447232

• Data_Free changed from 1048576 to 4194304

We conclude from this observation that: a.) our data was stored correctly as the row
count is correct (verified with a SELECT COUNT(*) statement) b.) some reorganization
happened as Data_Length increased c.) the storage was probably overestimated and
now underestimated.

Table 4.7: Update size after updating 1/10 of the rows once - Values in MiB

Measured
Value Simple Separated Hybrid Integrated

Stage Init Result Initial Result Initial Result Initial Result
DT size 13.52 13.52 13.52 13.52 15.52 15.52 15.52 16.52
DT_Hist size 0 .00 0.00 15.51 15.5 0.02 2.52 0.02 0.02
Sum 13.52 13.52 29.03 29.02 15.54 18.04 15.54 16.52
% of Simple 100% 100% 214.7% 214.6% 114.8% 133.4% 114.8% 122.2%
% of Growth / 0% / -0% / 116% / 106.3%

64

4.4. Update Performance

Run-Time The results of our evaluation can be seen in Table 4.8. We can clearly
see in the complete time of our results, that the separated approach is most sensible to
existing indexes, followed by integrated approach, because they both have to touch the
tables they are updating more often.

Table 4.8: Update time after updating1/10 of the rows once

Measured Values Simple Separated Hybrid Integrated
Avg Time 737.9 ms 2059.3 ms 1384.3 ms 1661.8 ms
Min Time 543.0 ms 1576.0 ms 1141.0 ms 1310.0 ms
Max Time 4500.0 ms 4257.0 ms 3693.0 ms 3979.0 ms
Complete Time 73.8 s 3.4 min 2.3 min 2.7 min

4.4.3 Updating 1/3rd of the rows by Section of a table 20 times

Setup To measure the update performance of multiple row update with no index on
the columns in the WHERE clause, we update the column V alueToUpdate by increasing
it by one, for every row in a given section. The column section holds one of the following
values: 0, 1, 2 and UPDATEs targets all rows of one of those sections. We started our
test from a table with 1000 rows, primary indexes were added on the history tables and
we issued the update statement 20 times.

Storage Size The results of our evaluation can be seen in Table 4.9. We only want to
point out, that the result in the separated approach is slightly bigger than for hybrid
and integrated. This may be due to MySQL internals. The actual row lengths have been
checked and are equal.

Table 4.9: Update size after updating all rows of a given section 20 times - values in MiB

Measured
Value Simple Separated Hybrid Integrated

Stage Init Result Initial Result Initial Result Initial Result
DT size 13.52 13.52 13.52 13.52 15.52 15.52 15.52 119.52
DT_Hist size 0.00 0.00 15.52 121.52 0.02 103.52 0.02 0.02
Sum 13.52 13.52 29.04 135.04 15.54 119.04 15.54 119.54

Run-Time The results of our evaluation can be seen in Table 4.10. We observe that
the performance of the separated and the integrated approach are terrible compared to
the hybrid and the simple approach, and that it also decreased over time. We suspect a
missing index on the endtimestamp column to be the reason. This will be investigated
in the next Section.

65

4. Evaluation

Table 4.10: Update time of running 20 updates on all rows of a given section

Measured Values Simple Separated Hybrid Integrated
Avg Time 699.6 ms 6.9 s 1558.5 ms 6.0 s
Min Time 608.0 ms 2553.0 ms 1348.0 ms 2098.0 ms
Max Time 757.0 ms 11218.0 ms 2044.0 ms 11436.0 ms
Complete Time 13.9 s 2.3 min 31.2 s 2.0 min

4.4.4 Update 1/10th of Rows By CLOBPayload with Indexes on
endtimestamp

Setup To measure the update performance of a single row with no index the columns
used in the WHERE clause, we update the column V alueToUpdate by increasing it by
one, for 100 random selected rows filtered by the column CLOBPayload of a containing
1000 rows. A primary key (i.e. clustered index) is applied to ID and starttimestamp in
the actual tables and history tables. An index was added on the column endtimstamp
on the history tables of the separated and the hybrid approach, as well as on the actual
table of the integrated approach.

Storage Size The results of our evaluation can be seen in Table 4.11. Besides the
usual inaccuracies of the SHOW TABLE STATUS approach, we found nothing special to
note.

Table 4.11: Update size after updating all rows of a given section 20 time - widh
endtimestamp index, values in MiB if not otherwise stated

Measured
Value Simple Separated Hybrid Integrated

Stage Init Result Initial Result Initial Result Initial Result
DT size 13.52 13.52 13.52 13.52 15.52 15.52 13.56 119.52
DT_Hist size 0.00 0.00 14.56 121.71 0.02 103.52 0.02 0.02
Endts. Index
Size in KiB 0.00 0.00 48 208 0.00 192 48 208

Rows for
Endts Table 0 0 1000 7706 0 6706 1000 7706

Sum 13.52 13.52 28.08 135.04 15.54 119.04 13.58 119.54

Run-Time The results of our evaluation can be seen in Table 4.12. Having an index
on the endtimestamp column improved the performance of the separated and integrated
approach dramatically, compared to the measures we observed in 4.10.

66

4.4. Update Performance

Table 4.12: Update time of running 20 updates on all rows of a given section - with
endtimestamp index

Measured Values Simple Separated Hybrid Integrated
Avg Time 702.9 ms 2749.6 ms 1733.9 ms 2105.1 s
Min Time 599.0 ms 2476.0 ms 1459.0 ms 1915.0 ms
Max Time 792.0 ms 2999.0 ms 4033.0 ms 2314.0 ms
Complete Time 14.1 s 55.0 s 34.6 s 42.1 s

4.4.5 Updating the whole table 20 times - with index on endtimestamp

Setup To measure the update performance of the whole table, we update the column
V alueToUpdate by increasing it by one, twenty times for a table containing 1000 rows.
A primary key (i.e. clustered index) is applied to ID and starttimestamp in the actual
tables and history tables. An index was added on the column endtimstamp on the
history tables of the separated and the hybrid approach, as well as on the actual table of
the integrated approach.

Storage Size The results of our evaluation can be seen in Table 4.12. We have added the
number of rows of the table that contains the index on the endtimestamp column as well
as the size of the index (the column INDEX_LENGTH of the SHOW TABLE STATUS
command was used). Note that the sizes stayed the same, expect for the initial setup at
the separated approach, which unexplainably dropped.

Table 4.13: Update size of updating 1000 rows 20 times - with endtimestamp index, all
values in MiB

Measured
Value Simple Separated Hybrid Integrated

Stage Init Result Initial Result Initial Result Initial Result
DT size 13.52 13.52 13.52 13.52 15.52 15.52 13.56 326.98
DT_Hist size 0.00 0.00 14.52 326.97 0.02 315.02 0.02 0.02
Sum 13.52 13.52 28.03 340.49 15.54 330.04 13.56 327.00

Run-Time The results of our evaluation can be seen in Table 4.14. The update times
show similar behavior to the other results we got (hybrid being the fastes, followed by
integrated then by separated).

67

4. Evaluation

Table 4.14: Update size of updating 1000 rows 20 times - with endtimestamp index

Measured Values Simple Separated Hybrid Integrated
Avg Time 625.0 ms 4214.7 ms 2048.0 ms 3820.0 ms
Min Time 584.0 ms 3740.0 ms 1513.0 ms 3429.0 ms
Max Time 682.0 ms 4798.0 ms 3996.0 ms 5159.0 ms
Complete Time 12.5 s 84.3 s 40.1 s 76.4 s

4.4.6 Update Performance - Discussion

We want to sum up the most interesting points found in our evaluation of update
performance.

Indexes We have found that the following indexes should be applied to our systems:

• Primary Key - each table, actual and historized, should have a primary key. If the
column starttimestamp is part of the table, it needs to be added to the primary
key.

• Index on the column endtimestamp - each table that has the column endtimestamp
should index it.

Without those indexes, the separated and the integrated approach suffer significant
performance hits.

Hybrid Updates are the fastest This can be seen especially in our last test run
where we updated the whole table consisting of 1000 rows. Update times in the hybrid
approach took around 3x the time of simple, integrated took around 6x the time of simple
and separated around 6.7x the time of simple.

The reason for this is, that the update mechanic in the hybrid approach has a much
simpler implementation than in the two other approaches. It can be summed up as:

• Insert tuples that satisfy the WHERE condition of the update into the history
table with endtimestamp set

• Update the actual tuples and set their starttimestamp

In contrast, we had to use the following implementation in the integrated approach (the
separated approach is similar):

• Create temporary table

• Set endtimestamp in the actual table

68

4.5. Delete Performance

• Update temporary table with actual update and set starttimestamp in it

• Insert temporary table into actual table

We have chosen this implementation, as other approaches (setting the endtimestamp
inside the table and inserting new updated rows) failed due to restrictions imposed by
locking tables and transactions. We suggest reviewing this implementation if a more
performant implementation can be found.

4.5 Delete Performance

We measure the update performance in the following four different ways:

• Delete every row by ID

• Delete every row by Section

• Delete all rows at once

4.5.1 Delete every row by ID

Setup To measure the delete performance of deleting a single row with an index on the
column in the WHERE clause, we delete all rows by their ID. Our tests are run against
a table with 1000 rows. Indexes have been applied as described in Subsection 4.4.6.

Storage Size We expect to achieve the following measures (note that we distinguish
between the history and the actual tables here):

• size(Separated) = 0

• size(Separated_Hist)unchanged

• size(Integrated)unchanged

• size(Hybrid) = 0

• size(Hybrid_Hist) = size(Separated_Hist)

• size(Simple) = 0

The results of our evaluation can be seen in Table 4.15. They conform, taking into
account the inaccuracies of the used measuring method, to our expectations.

69

4. Evaluation

Table 4.15: Delete Size after deleting every row by id - sizes in MiB

Measured
Value Simple Separated Hybrid Integrated

Stage Init Result Initial Result Initial Result Initial Result
DT size 13.52 0.02 13.52 0.02 15.52 0.02 13.56 14.56
DT_Hist size 0.00 0.00 14.57 14.56 0.03 13.58 0.02 0.02
Sum 13.52 0.04 28.09 14.56 15.55 13.58 13.58 14.58

Run-Time The results of our evaluation can be seen in Table 4.16. All in all, our
approaches showed the same performance and each one took about double the time of
the simple approach.

Table 4.16: Delete time of deleting every row by id

Measured Values Simple Separated Hybrid Integrated
Avg Time 50.3 ms 104.7 ms 104.3 ms 102.6 ms
Min Time 44.0 ms 94.0 ms 92.0 ms 90.0 ms
Max Time 76.0 ms 252.0 ms 228.0 ms 183.0 ms
Complete Time 50.3 s 104.6 s 102.6 s 102.6 s

4.5.2 Delete every row by Section

Setup To measure the delete performance of deleting 10% of the rows at a given time,
we delete rows of a given Section. Our tests are run against a table with 2000 rows,
where the column section takes a value between 0 and 9. The whole evaluation was run
five times. Indexes have been applied as described in Subsection 4.4.6.

Storage Size The evaluation for the storage size was omitted as it showed the same
result as in Table 4.15.

Run-Time As our test setup contained 10 DELETE statements and was run five times,
we have chosen to present the averages of every delete statement in Table 4.17.

There are a few interesting points to note:

• Hybrid and Separated take around double the time of simple, except for deleting
everything (last row of the table)

• Integrated is on par with the simple approach, although this approach contains a
overhead from the issued locking statements.. This may be due to the following
reasons: only endtimestamp needs to be set to a value instead of actually deleting
a row, the index on endtimestamp could have been utilized.

70

4.5. Delete Performance

Table 4.17: Delete time of deleting every row by section - averages of deleting one section
of a table 5 times

Measured Values Simple Separated Hybrid Integrated
1st Delete Avg 1300.4 ms 2708.2 ms 2782.0 ms 1293.8 ms
2nd Delete Avg 1208.2 ms 2554.6 ms 2666.6 ms 1363.6 ms
3rd Delete Avg 1097.8 ms 2275.6 ms 2268 ms 1213.4 ms
4th Delete Avg 984.2 ms 1933.4 ms 1925.6 ms 1073.0 ms
5th Delete Avg 801.2 ms 1695.6 ms 1700.6 ms 904.0 ms
6th Delete Avg 683.4 ms 1483.8 ms 1514.2 ms 810.8 ms
7th Delete Avg 593.4 ms 1250.2 ms 1258.8 ms 663.8 ms
8th Delete Avg 419.2 ms 894.8 ms 947.2 ms 500.6 ms
9th Delete Avg 337.4 ms 695.6 ms 736.0 ms 355.2 ms
10th Delete Avg 113.0 ms 443.0 ms 416.8 ms 110.0 ms

4.5.3 Delete every row

Setup To measure the delete performance of deleting all rows of a table, we delete all
rows of a table with 2000 rows, 5 times and look at the average it takes to complete.
Indexes have been applied as described in Subsection 4.4.6.

Storage Size The evaluation for the storage size was omitted as it showed the same
result as in Table 4.15.

Run-Time We examined the same behavior as in our last evaluation, as integrated
is nearly as fast as simple approach and that hybrid and integrated take around 4x the
time of simple. Compare those results here with the last row of Table 4.18.

Table 4.18: Delete time of deleting all rows of a table with 2000 rows 5 times

Measured Values Simple Separated Hybrid Integrated
Avg Time 1290.2 ms 3955.2 ms 3625.2 ms 1462.6 ms
Min Time 1258.0 ms 3798.0 ms 4296.0 ms 1339.0 ms
Max Time 1331.0 ms 4166.0 ms 3211.0 ms 1606.0 ms

4.5.4 Delete Performance - Discussion

We sum up here the results of our delete performance evaluation.

Deleting a single row We consider this to be the most important test as deleting
a single row by key will probably be mainly used in real world applications. Here, we
examined that all approaches took around double the time of the simple approach.

71

4. Evaluation

Deleting multiple rows Here, hybrid and separated took around double the time of
simple, while integrated showed the same performance as simple. This is because the
simple approach only needs to set a value for the column endtimestamp in one table.

Deleting all rows Here, hybrid and separated took around 4x the time of simple while
integrated showed the same performance as simple. This is because the simple approach
only needs to set a value for the column endtimestamp in one table.

4.6 Select Performance
For evaluating the performance of SELECT statements, we distinguish the following
cases:

• SELECTs that need not be reproduced (i.e. return current data)

• SELECTs that need to be re-executed and their re-execution (querystore operations)

For the first case, executing a SELECT statement for the current data, we observe that
the query only targets the actual table. As the actual table in the simple approach equals
the actual table of the separated approach, which equals the hybrid actual table (except
for the column starttimestamp) we can conclude that those three tables will show the
same behavior. The only actual table that is different is the integrated table as it contains
the endtimestamp column, which we should be indexed as we have shown in the update
performance section, as well as it contains all the historized tuples. Therefore, we are
interested in evaluating the following question: how much does storing the historized
tuples in the integrated approach impact the query time of queries interested in the
current active data?

For the second case, we are interested in how long does the initial query take (returning
one row by ID or multiple via Section), compared to the simple approach and how much
space is needed in our querystore table. For re-execution of queries, we are interested
in the execution time of the following scenarios: re-execution without any changes to
the data, re-execution after historized tuples have been created (inserted or updated),
re-execution after all rows have been deleted.

4.6.1 Select performance to retrieve current active data

Setup To measure the SELECT performance of retrieving current active data, we
selected 50 random rows identified by ID from the actual table which consisted of 100.000
rows. Afterwards, the not retrieved rows have been updated and the rows have been
retrieved again. The aim of this evaluation is to show that the query time of actual data
is the same for the simple, hybrid and separated approach. We expect the integrated
approach to have the same query time in the first run. It is open how the integrated
approach behaves after the table length nearly doubled. All SELECT statements were

72

4.6. Select Performance

issued with the SQL_NO_CACHE modifier. Indexes have been applied as described
in Subsection 4.4.6.

Storage Size Storage size is omitted as we got nothing new to measure here.

Run Time The results of our evaluation can be seen in Table 4.17. We want to
especially mention the following points:

• The max value, was always the first value we retrieved

• All subsequent values retrieved later had been faster

• Removing the SQL_NO_CACHE made this small queries actually a little bit
slower (around 10%).

• The high max value for the separated approach could not be reproduced in other
runs, there, the separated max value was in accordance to the other retrieved values

We suspect that the first run of those queries was slower, as the used indexes were
not loaded yet and that SSD caching was used in subsequent query calls. From this
evaluation, we draw the following conclusion: Well tuned queries (using indexes)
for the current active rows, get no performance hit by using historization
approaches.

Table 4.19: Selecting 50 rows of 100.000 five times - Initially and after Updating all other
rows - all values in ms

Measured
Values Simple Separated Hybrid Integrated

Stage Init a.U. Init a.U. Init a.U. Init a.U.
Avg Time 54.5 53.3 52.8 49.3 51.5 46.7 50.8 54.7
Min Time 48.0 47.0 45.0 44.0 42.0 43.0 47.0 47.0
Max Time 80.0 83.0 152.0 95.0 89.0 75.0 71.0 91.0

4.6.2 Querystore operations filtering on ID - without data changes

Setup To measure the querystore operation performance of executing a SELECT
statement that retrieves one row and re-executing it, we select 10 random rows rows by
ID from a table with 2000 rows. Indexes have been applied as described in Subsection
4.4.6. Note that this setup eliminates the overhead introduced by sorting.

73

4. Evaluation

Storage Size We are mainly interested in how much space is consumed in the table
querystore. As we issue 10 SELECT statements that we want to re-execute later, 10
rows are added to the table querystore. The resulting sizes can be seen in Table 4.20.
All systems needed the same space, which is about 27 kb per query. We want to put the
27 kb per query into context. For example, we could store about 38.836 queries in 1 GB
of tablespace. It would take a year with around 106 queries daily to reach this size.

We want to note here that no optimizations were employed to reduce this space consump-
tion. Some suggestions to reduce this storage space:

• All columns except: OriginalQuery, ID, HASH, QueryExecutionT ime could be
omitted, this would reduce the required storage at least of a factor 3.

• The original query is stored as a JSON string. The string could be stored com-
pressed.

• A more storage efficient serialization like Protocol Buffers could be employed.

• Queries that have already been issued (having the same normal form and all tables
have the same last update value) need not to be stored again.

Table 4.20: Size of the table querystore after storing 10 queries - values in KiB

Measured
Value Separated Hybrid Integrated

Stage Initial Result Initial Result Initial Result
QueryStore 16.0 272.0 16.0 272.0 16.0 272.0

Run Time The results of our evaluation can be seen in table 4.21. Observing the
results yield some interesting question we are going to cover.

Table 4.21: Querystore select run time of extracting 10 random rows by id and re-execution
- all values in ms

Measured
Values Simple Separated Hybrid Integrated

Stage Exec. Reexec Exec Reexec Exec Reexec Exec Reexec
Avg Time 69.2 / 130.0 107.0 74.5 8331.4 79.6 216.1
Min Time 55.0 / 113.0 104.0 63.0 7585.0 64.0 212.0
Max Time 85.0 / 151.0 111.0 90.0 10932.0 96.0 227.0

Our first question is: Why is re-execution of the hybrid approach so extremely slow? For
the re-execution, the hybrid approach has to consider the actual table and the historized
table, as a tuple that was active at query execution time could be in either one of those

74

4.6. Select Performance

tables. We rewrite our query, by replacing the tables in the FROM part, with the union
of two select statements (one for the actual table and one for historized table). The query
that was issued for re-execution is shown below.

SELECT `t1`.`phasenumber`,
`t1`.`id`,
`t1`.`section`,
`t1`.`valuetoupdate`,
`t1`.`clobpayloade`

FROM (
SELECT `phasenumber`,

`id`,
`section`,
`valuetoupdate`,
`clobpayloade`,
`startts`,
NULL AS `endts`

FROM `qs_hybrid_093e580530ed4da09e199a720d61ba6e`.`datatable`
UNION
SELECT `phasenumber`,

`id`,
`section`,
`valuetoupdate`,
`clobpayloade`,
`startts`,
`endts`

FROM `qs_hybrid_093e580530ed4da09e199a720d61ba6e`.`datatable_1`)
AS `t1`

WHERE (((`t1`.`startts` <= timestamp '2017-11-02 15:36:50.434')
AND ((timestamp '2017-11-02 15:36:50.434' < `t1`.`endts`)

OR (t1`.`endts` IS NULL)))
AND (((id) = 1))
)

ORDER BY `t1`.`phasenumber` ASC,
`t1`.`id` ASC,
`t1`.`section` ASC,
`t1`.`valuetoupdate` ASC,
`t1`.`clobpayloade` ASC

The main problems of this query is the subselect in the FROM part containing the union.
We thought about how this issue could be overcome:

• If no data is in the historized table, it could be omitted

75

4. Evaluation

• If the minimum starttimetamp in the actual table is bigger than the query time,
the actual table could be omitted

• Using Common Table Expressions (CTEs, or WITH Queries) 6

• Querying both separately and UNION the results in .Net

• Using Views (normal or materialized)

• Pushing the WHERE clauses into the subselects.

The first two optimization approaches cover corner cases. They therefore do not improve
the performance in general. CTEs are, with the execption of recursive ones, syntactic
sugar. They can not generate any performance gains. Creating the union of both queries
in our code is feasible, if only one table is queried. However if multiple tables are queried,
it will get messy with resolving the joins. One argument against this "optimization" is:
RDMBS are optimized for retrieving and joining data; attempts to resolve the joins in our
own framework will probably be significantly slower. Views do not improve performance
and therefore fall into the same category as CTEs. If materialized views would be used,
the materialized view would be the same as the history table of the separated approach,
therefore the seperated approach should be used. Pushing the WHERE clauses into
the subselects showed great performance improvements, nevertheless, as soon as JOINs
come into play again, the HYBRID approach falls behind again significantly. This has
been tested with the query above, by pushing the WHERE clause into the subselect
statemetns, duplicating the table t1 again as t2 and joining both via t1.id = t2.id. This
SELECT statement was issued in MySQLWorkbench and took around 1.5 seconds to
complete. The same modified query could be answered by the separated approach in
0.000 seconds by MySQL Workbench. Changing the WHERE clause to retrieve values
of a given SECTION , this modified query ran in around 3.5 seconds in the hybrid
approach and 1.2 in the separated approach.

We conclude, that the Hybrid Historization Approach has inherent design
problems, which result in infeasible completion time of the re-execution of
stored queries.

Why is re-execution at separated faster than execution? As the result is only a few
milliseconds difference, we suspect that no unknown caches are in place. As no rewriting
needs to be done, and the rewritten query can be reused as it is (as it targeted the
history table), some time is saved. Also, no locks etc. need to be acquired. Those few
bits could add up for the few milliseconds that this approach is faster at re-execution.
A detailed examination of all parts would be needed to answer this question with certainty.

6https://www.mysql.com/why-mysql/presentations/mysql%2D80%2Dcommon%
2Dtable%2Dexpressions/

76

https://www.mysql.com/why-mysql/presentations/mysql%2D80%2Dcommon%2Dtable%2Dexpressions/
https://www.mysql.com/why-mysql/presentations/mysql%2D80%2Dcommon%2Dtable%2Dexpressions/

4.6. Select Performance

Why is the re-execution of integrated slower than the execution? When we re-execute a
statement for the integrated approach, we have to check if the actual table still exists in
the current schema. If it does not, the query needs to be rewritten to target the history
table. This check is not needed for the separated approach (there, the rewriting is already
done at the initial execution time, thus the initial execution time is higher than the time
of the integrated approaches).

The last question that arises from the values in Table 4.21 is: Why is the separated
execution time slower than it is for integrated or hybrid? The separated approach rewrites
the query to target the history table. Therefore, before execution, a query for the actual
schema needs to be done (it is later ensured, after locks have been acquired, that the
schema has not changed). The rewriting for the integrated or hybrid approach does
not need this rewriting, therefore the call is omitted which is reflected in the increased
performance. Note, however, that the separated rewriting could be changed to target
the actual table for the execution, thus reducing the call and getting it on par with the
other two approaches. We want to note here, that we would not advice to optimize this
in practice as the time for this call (around 50ms) should not be significant compared to
the sorting needed on the resulting dataset, as we will see in the next evaluation.

4.6.3 Querystore operations filtering on Section - without data
changes

Setup To measure the querystore operation performance of executing a select statement
that returns multiple rows and re-executing it, we select all rows of a given Section from
a table with 2000 rows, where the value for Section is between 0 and 9. We issue 10
statements, one for each section, and then we re-execute each statement. Indexes have
been applied as described in Subsection 4.4.6. This evaluation shows, compared to the
first evaluation, the impact of the applied sorting.

Storage Size We omitted the storage size as it showed the same result as our last
query.

Run Time The results of our evaluation can be seen in Table 4.22. The observed
execution times show the impact of the added ORDERBY clause. When one row was
returned in our last evaluation, the overhead of our execution was about 50-60ms, now it
nearly doubled. The overhead of the sorting is also seen at the hybrid approach which
takes an additional second to complete. As we have mentioned in Section 3.7, we suggest
tracking primary key integrity constraints and sorting by them instead of all columns.
This should lower the overhead here.

We observed some system hickups in the separated and integrated runs, resulting in a
high max value. Subsequent runs of our setup showed that those occurred randomly and
are not associated with any section.

77

4. Evaluation

Table 4.22: Querystore select run time of extracting all rows of a section and re-execution
- all values in ms

Measured
Values Simple Separated Hybrid Integrated

Stage Exec. Reexec Exec Reexec Exec Reexec Exec Reexec
Avg Time 1237.2 / 2622.6 3458.7 2832.8 9138.9 2986.0 3013.0
Min Time 1174.0 / 2571.0 2600.0 2516.0 8696.0 2325.0 2853.0
Max Time 1316.0 / 2707.0 6893.0 4971.0 9652.0 6735.0 3236.0

4.6.4 Querystore operations filtering on Section - all rows deleted
before re-execution

Setup To measure the impact of delete operations on querystore re-execution per-
formance, we issue a select statement that returns multiple rows, delete all rows and
afterwards re-executing it. We select all rows of a given Section from a table with 2000
rows, where the value for Section is between 0 and 9. We issue 10 statements, one for
each section, then delete all rows, and afterwards we re-execute each select statement.
Indexes have been applied as described in Subsection 4.4.6.

Storage Size We omitted the storage size as it showed the same result as our last
query.

Run Time The results of our evaluation can be seen in Table 4.23. They basically line
up with the results in Table 4.22. Deleting rows sets the endtimestamp in the integrated
and separated approaches. Deleting rows in the hybrid approach moves them from the
actual table to the history table. This did not influence the extraction time.

Table 4.23: Querystore select run time of extracting all rows of a section and re-execution
after all rows were deleted - all values in ms

Measured
Values Simple Separated Hybrid Integrated

Stage Exec. Reexec Exec Reexec Exec Reexec Exec Reexec
Avg Time 1269.4 / 2950.6 3090.0 2578.5 9418.5 2440.1 2850.6
Min Time 1175.0 / 2621.0 2684.0 2394.0 8877.0 2268.0 2714.0
Max Time 1401.0 / 5002.0 4526.0 2746.0 10592.0 2578.0 3083.0

4.6.5 Querystore operations filtering on Section - some sections
updated multiple times before re-execution

To measure the impact of update operations on querystore re-execution performance,
we issue a select statement that returns multiple rows, update 5 sections 5 times and

78

4.7. Evaluation Summary

afterwards re-execute the select statements. We select all rows of a given Section from
a table with 2000 rows, where the value for Section is between 0 and 9. We issue 10
statements, one for each section, then update 5 different sections 5 times, and afterwards
we re-execute the select statements. Indexes have been applied as described in Subsection
4.4.6. This evaluation shows, compared to the last one, the impact of a bigger history
table on the re-execution time.

Storage Size We omitted the storage size as it showed the same result as our last
query.

Run Time The results of our evaluation can be seen in Table 4.24. The history table
of separated now contains 10090 rows and the actual table contains 2000 rows. The
values for history and integrated can be inferred from that. We see again, why the hybrid
approach should not be used for re-execution as the operations took around 1 minute
compared to the 3.5 seconds of the other approaches. It is quite interesting comparing
the values of the last evaluation in Table 4.23 with our current ones. Although 10090
rows have been added, which is around 5 times of the original size, the query time only
increased by 1/6th for separated and integrated.

Table 4.24: Querystore select run time of extracting all rows of a section and re-execution
after 5 sections have been updated 5 times - all values in ms

Measured
Values Simple Separated Hybrid Integrated

Stage Exec. Reexec Exec Reexec Exec Reexec Exec Reexec
Avg Time 1154.1 / 2480.5 3443.2 2319.5 59007.1 2914.7 3340.3
Min Time 1048.0 / 2176.0 2802.0 2235.0 51603.0 2529.0 3059.0
Max Time 1247.0 / 2642.0 5744.0 2385.0 65217.0 4677.0 3789.0

4.7 Evaluation Summary

We summarize the most important results of our evaluation. The guidelines for choosing
which historization approach to use in which scenario are based on this summaries.

Hybrid querystore re-execution time is unsustainable for a real world sce-
nario As we have seen in the results in Table 4.24 and Table 4.21, hybrid performs
terribly at re-execution. This is an inherent problem of the approach and we therefor do
not advice to use this approach in practice. Therefore, for the rest of this summary, we
do not consider the hybrid approach.

Insert performance Separated can perform inserts at about 2.5 times the speed of a
system without historization and integrated needs around double the time.

79

4. Evaluation

Update performance Single row updates can be performed nearly at the same speed
for integrated and separated. Those updates take around double the time of the simple
approach. The more rows are updated, the slower it can be performed by separated and
integrated. For example, updating 1000 rows 20 times could be done by integrated in 76.4
seconds, by separated in 84.3 seconds and by simple in 12.5 seconds (cf. 4.14).

Delete performance As the integrated approach only needs to set the value for the
column endtimestamp, it is as fast as the simple approach. The separated approach
needs around double the time of the simple approach for single row deletes. The more
rows are deleted, the worse does separated perform. For example, deleting 2000 rows (the
whole table) takes around 4 seconds compared to 1.3 for the simple approach.

Indexes and Primary Keys We suggest extending our system to at least track
primary keys and to always add an index on the column endtimestamp. Tables that
contain a starttimestamp column need to include this in their primary key. Without
those indexes, our approaches become nearly unusable. Tracking this information also
allows to implement more efficient sorting (compared to sorting by all columns).

Querystore Performance Currently, the integrated approach and the separated ap-
proach perform identical as they target a historized table. However, our separated
approach could be changed to target the actual table in the initial select execution. As
this table does not grow by updates, it should perform better than the historized table
giving the separated approach an advantage. The initial queries take around double the
time of queries issued by simple. This performance could be improved by employing
better sorting strategies, exploiting primary key constraints.

Querystore Size Currently, we use around 27 KiB per query. This can be improved
dramatically as described in the paragraph Storage Size in Subsection 4.6.2.

Database Size We can sum up the database size by employing the historization
approaches as follows:

• DB size of separated approach is: 2 ∗ DBSize(Simple) + HistorizedTuples

• DB size of integrated approachn is: DBSize(Simple) + HistorizedTuples

Suggested improvements of our prototype

We advice the following improvements based on our evaluation to our prototype before
using it in production:

• Implement Primary Key Tracking

• Implement automatically generating an index on endtimestamp columns

80

4.8. Guidelines for Real World Applications

• Improve sorting by using primary keys

• Reduce querystore row size

4.8 Guidelines for Real World Applications
We want to point out a few guidelines that help to decide when to use which approach.

Hybrid We do not suggest to use the hybrid approach as the re-execution time of
queries of the querystore is unacceptable.

Integrated The integrated approach performs nearly as good as the separated approach.
The big advantage of it is, that it uses less space. Therefore, if space consumption is an
issue, for example at mobile phones or applications running on Raspberry PIs, we suggest
using this approach. If performance issues occur with SELECT statements interested in
the current data, a materialized view could be employed with more indexes to serve the
current active data faster.

Separated The big advantage of the separated approach is, that the actual data
is separated from the historized data. Therefore, different indexing strategies can be
employed on the table holding the actual data and the one holding the historized data.
Consider the following scenario: the inserted data is updated very often. This results
in a very long historized table compared to the actual table. Therefore, the indexes on
the historized table will be bigger than the one on the actual table. At some point they
might get too big and become slow. The ones at the actual table are still small and fast,
and potentially more indexes could be added. This is the big advantage we see for the
separated approach.

4.9 Summary
In this chapter, we evaluated the different historization approaches with respect to the
additional storage size and query time they need, compared to a simple approach without
data historization or query storage. The key findings were performance issues in the
hybrid approaches query reexecution and the need for primary key tracking to provide
good indexes to enable improved sorting and fixity calculation.

We ended with the usage guidelines for our historization approaches that can be summa-
rized as: do not use the hybrid approach; use the integrated approach on systems that
are sensitive to storage space such as mobile applications or embedded systems; use the
separated approach for everything else.

We continue with our conclusions about the designed system and what future work we
propose to address.

81

CHAPTER 5
Conclusions and Future Work

We have implemented a working solution for a data citeable, schema evolvable system
for RDBMS that supports three different historization approaches.

The supported historization approaches using tuple-based-timestamping are: separated
(storing all tuples in a historization table), hybrid (storing only already deleted data in
historization table) and integrated (using one table with all tuples historized). Those
models guarantee, that we know for each tuple when it was generated and deleted,
allowing us to reconstruct the result of queries issued in the past. Schema evolution is
supported by ten different schema modification operators that either modify columns,
by either adding, dropping or renaming them, and table modification operators that
handle creating, dropping and renaming a table, as well as vertical/horizontal merging
or partitioning. By employing different locking mechanisms, we can guarantee that all
issued queries can be reproduced at a later time.

The designed systems historization approaches have been evaluated on their query
performance and storage size, compared to a system without historization, for the
following use cases: selecting the current active data, reconstructing a historic query,
INSERT/UPDATE/DELETE statement performance.

The key lessons we learned from our implementation and evaluation can be summarized
as follows: Implementing the correct locking mechanisms to ensure that queries can
be correctly reproduced depends on the SQL capabilities of the database. A mix of
global locks, read/write locks on tables and optimistic locks were required in MySQL.
Knowledge about the primary key for a data citeable system is critical to use as an index
on the historized table, as well as using an index on the endtimestamp column. Having
the information on which columns form the primary key, allows the query rewriting to
use more efficient stable sorting as well as more efficient fixity calculation. The hybrid
approach needs to UNION the tuples of the current active table and the historized table

83

5. Conclusions and Future Work

to reproduce the result of historic queries. Having to rely on UNION introduces a big
performance hit on historic query re-execution.

Based on our evaluation, we developed usage guidelines on when to use which historization
approach. The hybrid approach should not be used as historic query execution time
is significantly slower than those of the integrated and the separated approach. The
integrated approach should be used in scenarios where storage size is important, for
example, applications that run on mobile phones or Raspberry PIs. The separated
approach should be used in all other scenarios. In simple terms, if there are no good
reasons to use the hybrid or integrated approach, one should default to the separated
approach.

The implemented system differs from the reference implementation for data citation[PR13]
by the support of different historization approaches (integrated, separated and hybrid)
and by the native support of schema evolution through SMOs. The main questions
that were raised by the reference implementation, schema evolvability and when to
use which historization approach, have been answered by our system and evaluation.
The big difference of our implemented systems to the data historization approaches
PRIMA[MCD+08] and AIMS[MCZ10] is the added query store facility and the required
locking mechanisms that ensures isolation and atomicity of query execution and storage.
The design of those systems would not allow them to be easily extended with such a
locking mechanism. Due to those differentiations, we see that the developed system and
the proposed one for big database as an advancement of the current state of the art of
data citeable and schema evolvable systems.

We would love to see our system improved by tracking primary keys and having the
sorting and fixity calculations improved. Also, our system is probably not suitable for
databases with tables that contain million of rows due to the added historization storage
size of SMOs. A solution has been proposed in Section 3.8, that is based on historic
tuple migration between historized tables as well as the query migrations that need to
be employed to guarantee reproducability. The problem with the outlined system is,
that historic query rewriting is mainly based on UNIONs, which have a considerable
performance loss as seen in our evaluation. We are looking forward to see the outlined
system thoroughly designed, implemented and evaluated against our current solution.
Based on this, the usage guidelines can be improved to help database owners decide
which historization approach (hybrid/separated/integrated) combined with which tuple
historization approach (duplicating, as we have implemented it vs. tuple migration as
outlined) they should use.

84

List of Figures

3.1 Schema Evolution from S41 to S42 in Wikipedia 40

85

List of Tables

3.1 Separated Tables after Inserts . 23
3.2 Separated Tables after Update . 24
3.3 Separated Tables after Delete . 24
3.4 Hybrid Tables after Inserts . 25
3.5 Hybrid Tables after Update . 26
3.6 Hybrid Tables after Delete . 26
3.7 SMOs and their behaviour on schematas 29
3.8 Code Metrics of Visual Studio 2017 . 55

4.1 Setup Environment . 58
4.2 Table Space consumption after 100.000 Row inserts - Values in MiB 61
4.3 Insert Time consumption for 100.000 Rows 61
4.4 Update size after updating each row once - Values in MiB 63
4.5 Update time after updating each row once - without indexes 63
4.6 Update time after updating each row once - with index on hist table . . . 64
4.7 Update size after updating 1/10 of the rows once - Values in MiB 64
4.8 Update time after updating1/10 of the rows once 65
4.9 Update size after updating all rows of a given section 20 times - values in

MiB . 65
4.10 Update time of running 20 updates on all rows of a given section 66
4.11 Update size after updating all rows of a given section 20 time - widh

endtimestamp index, values in MiB if not otherwise stated 66
4.12 Update time of running 20 updates on all rows of a given section - with

endtimestamp index . 67
4.13 Update size of updating 1000 rows 20 times - with endtimestamp index, all

values in MiB . 67
4.14 Update size of updating 1000 rows 20 times - with endtimestamp index . 68
4.15 Delete Size after deleting every row by id - sizes in MiB 70
4.16 Delete time of deleting every row by id . 70
4.17 Delete time of deleting every row by section - averages of deleting one section

of a table 5 times . 71
4.18 Delete time of deleting all rows of a table with 2000 rows 5 times 71

87

4.19 Selecting 50 rows of 100.000 five times - Initially and after Updating all other
rows - all values in ms . 73

4.20 Size of the table querystore after storing 10 queries - values in KiB 74
4.21 Querystore select run time of extracting 10 random rows by id and re-execution

- all values in ms . 74
4.22 Querystore select run time of extracting all rows of a section and re-execution

- all values in ms . 78
4.23 Querystore select run time of extracting all rows of a section and re-execution

after all rows were deleted - all values in ms 78
4.24 Querystore select run time of extracting all rows of a section and re-execution

after 5 sections have been updated 5 times - all values in ms 79

88

List of Algorithms

3.1 SMO Execution . 15

3.2 INSERT statement handling . 16

3.3 Execute citeable query . 19

3.4 Re-execute query from querystore via PID 20

3.5 SMO handling . 44

89

Bibliography

[CMDZ13] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. Automating
the database schema evolution process. Very Large Databases Journal,
22(1):73–98, 2013.

[CMHZ09] Carlo Curino, Hyun Jin Moon, MyungWon Ham, and Carlo Zaniolo. The
PRISM workwench: Database schema evolution without tears. In Proceedings
of the 25th International Conference on Data Engineering, ICDE 2009, March
29 2009 - April 2 2009, Shanghai, China, pages 1523–1526, 2009.

[CMZ08] Carlo Curino, Hyun Jin Moon, and Carlo Zaniolo. Graceful database schema
evolution: the PRISM workbench. Proceedings of the VLDB Endowment,
1(1):761–772, 2008.

[Gol91] David Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Computing Surveys, 23(1):5–48, March 1991.

[JS99] Christian S. Jensen and Richard T. Snodgrass. Temporal data management.
IEEE Trans. Knowl. Data Eng., 11(1):36–44, 1999.

[KM12] Krishna G. Kulkarni and Jan-Eike Michels. Temporal features in SQL: 2011.
SIGMOD Record, 41(3):34–43, 2012.

[MCD+08] Hyun Jin Moon, Carlo Curino, Alin Deutsch, Chien-Yi Hou, and Carlo
Zaniolo. Managing and querying transaction-time databases under schema
evolution. Proceedings of the VLDB Endowment, 1(1):882–895, 2008.

[MCZ10] Hyun Jin Moon, Carlo Curino, and Carlo Zaniolo. Scalable architecture
and query optimization fortransaction-time dbs with evolving schemas. In
Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages
207–218, 2010.

[Mon08] David Monniaux. The pitfalls of verifying floating-point computations. ACM
Trans. Program. Lang. Syst., 30(3):12:1–12:41, May 2008.

91

[PR13] Stefan Pröll and Andreas Rauber. Scalable data citation in dynamic, large
databases: Model and reference implementation. In Proceedings of the 2013
IEEE International Conference on Big Data, 6-9 October 2013, Santa Clara,
CA, USA, pages 307–312, 2013.

[RAvP16] Andreas Rauber, Ari Asmi, Dieter van Uytvanck, and Stefan Proell. Identifi-
cation of reproducible subsets for data citation, sharing and re-use. Bulletin
of IEEE Technical Committee on Digital Libraries (TCDL), 12, 5 2016.

[RAvUP15] Andreas Rauber, Ari Asmi, Dieter van Uytvanck, and Stefan Pröll. Data ci-
tation of evolving data recommendations of the working group on data
citation (wgdc). https://www.rd-alliance.org/system/files/
documents/RDA-DC-Recommendations_151020.pdf, 2015.

[Rod95] John F. Roddick. A survey of schema versioning issues for database systems.
Information & Software Technology, 37(7):383–393, 1995.

[SA86] Richard T. Snodgrass and Ilsoo Ahn. Temporal databases. IEEE Computer,
19(9):35–42, 1986.

92

https://www.rd-alliance.org/system/files/documents/RDA-DC-Recommendations_151020.pdf
https://www.rd-alliance.org/system/files/documents/RDA-DC-Recommendations_151020.pdf

Appendix A - Code Examples

The following code samples have been extracted from the automated tests of our imple-
mentation. The schemata used in them alter between the examples as each test uses an
automatically generated unique schema.

SET autocommit=0;
SET SQL_SAFE_UPDATES=0;
LOCK TABLES Separated4355776dda15402aa23054f430f9e197.employees

WRITE,`separated4355776dda15402aa23054f430f9e197`.`employees_metadata`
WRITE,`separated4355776dda15402aa23054f430f9e197`.`employees_1`
WRITE,`Separated4355776dda15402aa23054f430f9e197`.`QubaDCSMOTable`
READ;

↪→

↪→

↪→

↪→

-- C# ensuring hist table has not changed since statement was
rewritten↪→

SELECT canBeQueried FROM
`Separated4355776dda15402aa23054f430f9e197`.`employees_metadata`↪→

-- C# Code checking canBeQueried, throwing exception if it cannot be
queried↪→

SET @insertTime = NOW(3)
INSERT INTO `separated4355776dda15402aa23054f430f9e197`.`employees` (
`id`,
`name`,
`job`) VALUES (
1,
'John',
'Developer')
INSERT INTO `separated4355776dda15402aa23054f430f9e197`.`employees_1`

(↪→

`id`,
`name`,
`job`,
`startts`,
`endts`) VALUES (
1,
'John',
'Developer',
@insertTime,
null)

93

UPDATE
`Separated4355776dda15402aa23054f430f9e197`.`employees_metadata`
SET lastUpdate = @insertTime;

↪→

↪→

COMMIT;
UNLOCK TABLES;

Listing 2: Separated Approach - Insert Handling

SET autocommit=0;
SET SQL_SAFE_UPDATES=0;
LOCK TABLES Separated2e1075aa55e04641b26efa06b96c3062.employees

WRITE,`separated2e1075aa55e04641b26efa06b96c3062`.`employees_metadata`
WRITE,`separated2e1075aa55e04641b26efa06b96c3062`.`employees_1`
WRITE,`separated2e1075aa55e04641b26efa06b96c3062`.`employees_1`
AS `updtTable`
WRITE,`Separated2e1075aa55e04641b26efa06b96c3062`.`QubaDCSMOTable`
READ;

↪→

↪→

↪→

↪→

↪→

↪→

-- C# ensuring hist table has not changed since statement was
rewritten↪→

SELECT canBeQueried FROM
`Separated2e1075aa55e04641b26efa06b96c3062`.`employees_metadata`↪→

-- C# Code checking canBeQueried, throwing exception if it cannot be
queried↪→

SET @updateTime = NOW(3)

CREATE TEMPORARY TABLE IF NOT EXISTS
`separated2e1075aa55e04641b26efa06b96c3062`.`tmptable` AS (SELECT↪→

`updtTable`.`*`
FROM `Separated2e1075aa55e04641b26efa06b96c3062`.`employees_1` AS

`updtTable`↪→

WHERE ((`updtTable`.`endts` IS NULL) AND ((`updtTable`.`ID` = 1)))
);

UPDATE `separated2e1075aa55e04641b26efa06b96c3062`.`employees_1` SET
`endts` = @updateTime WHERE ((`employees_1`.`endts` IS NULL) AND
((`employees_1`.`ID` = 1)));

↪→

↪→

UPDATE `separated2e1075aa55e04641b26efa06b96c3062`.`tmptable` SET
`Name` = 'McJohn',↪→

`startts` = @updateTime ;
INSERT INTO `separated2e1075aa55e04641b26efa06b96c3062`.`employees_1`

SELECT↪→

`tmp`.`*`
FROM `Separated2e1075aa55e04641b26efa06b96c3062`.`tmpTable` AS `tmp`

DROP TEMPORARY TABLE
`separated2e1075aa55e04641b26efa06b96c3062`.`tmptable`;↪→

94

UPDATE `separated2e1075aa55e04641b26efa06b96c3062`.`employees` SET
`Name` = 'McJohn' WHERE ((`employees`.`ID` = 1))↪→

UPDATE
`Separated2e1075aa55e04641b26efa06b96c3062`.`employees_metadata`
SET lastUpdate = @updateTime;

↪→

↪→

COMMIT;
UNLOCK TABLES;

Listing 3: Separated Approach - Update Handling

SET autocommit=0;
SET SQL_SAFE_UPDATES=0;
LOCK TABLES Separated74d431c4997d4e14afb22f2c726560bf.employees

WRITE,`separated74d431c4997d4e14afb22f2c726560bf`.`employees_metadata`
WRITE,`separated74d431c4997d4e14afb22f2c726560bf`.`employees_1`
WRITE,`Separated74d431c4997d4e14afb22f2c726560bf`.`QubaDCSMOTable`
READ;

↪→

↪→

↪→

↪→

-- C# ensuring hist table has not changed since statement was
rewritten↪→

SELECT canBeQueried FROM
`Separated74d431c4997d4e14afb22f2c726560bf`.`employees_metadata`↪→

-- C# Code checking canBeQueried, throwing exception if it cannot be
queried↪→

SET @deleteTime = NOW(3)
DELETE FROM `separated74d431c4997d4e14afb22f2c726560bf`.`employees`

WHERE ((`employees`.`ID` = 1) AND (`employees`.`Name` = 'John'))↪→

UPDATE `separated74d431c4997d4e14afb22f2c726560bf`.`employees_1` SET
`endts` = @deleteTime WHERE ((`employees_1`.`endts` IS NULL) AND
((`employees_1`.`ID` = 1) AND (`employees_1`.`Name` = 'John')))

↪→

↪→

UPDATE
`Separated74d431c4997d4e14afb22f2c726560bf`.`employees_metadata`
SET lastUpdate = @deleteTime;

↪→

↪→

COMMIT;
UNLOCK TABLES;

Listing 4: Separated Approach - Delete Handling

SET autocommit=0;
SET SQL_SAFE_UPDATES=0;
LOCK TABLES Integrated571d327f028b4dc6b254866d6132a435.employees

WRITE,`integrated571d327f028b4dc6b254866d6132a435`.`employees_metadata`
WRITE,`integrated571d327f028b4dc6b254866d6132a435`.`employees_1`
WRITE,`Integrated571d327f028b4dc6b254866d6132a435`.`QubaDCSMOTable`
READ;

↪→

↪→

↪→

↪→

-- C# ensuring hist table has not changed since statement was
rewritten↪→

SELECT canBeQueried FROM
`Integrated571d327f028b4dc6b254866d6132a435`.`employees_metadata`↪→

95

-- C# Code checking canBeQueried, throwing exception if it cannot be
queried↪→

SET @insertTime = NOW(3)
INSERT INTO `integrated571d327f028b4dc6b254866d6132a435`.`employees`

(↪→

`id`,
`name`,
`job`,
`startts`,
`endts`) VALUES (
1,
'John',
'Developer',
@insertTime,
null)
UPDATE

`Integrated571d327f028b4dc6b254866d6132a435`.`employees_metadata`
SET lastUpdate = @insertTime;

↪→

↪→

COMMIT;

Listing 5: Integrated Approach - Insert Handling

SET autocommit=0;
SET SQL_SAFE_UPDATES=0;

LOCK TABLES Integratedce63e84e332546f096ad3ef1a4dc7b90.employees
WRITE,`integratedce63e84e332546f096ad3ef1a4dc7b90`.`employees_metadata`
WRITE,`integratedce63e84e332546f096ad3ef1a4dc7b90`.`employees_1`
WRITE,`Integratedce63e84e332546f096ad3ef1a4dc7b90`.`QubaDCSMOTable`
READ;

↪→

↪→

↪→

↪→

-- C# ensuring hist table has not changed since statement was
rewritten↪→

SELECT canBeQueried FROM
`Integratedce63e84e332546f096ad3ef1a4dc7b90`.`employees_metadata`↪→

-- C# Code checking canBeQueried, throwing exception if it cannot be
queried↪→

SET @updateTime = NOW(3)

CREATE TEMPORARY TABLE IF NOT EXISTS
`integratedce63e84e332546f096ad3ef1a4dc7b90`.`tmptable` AS
(SELECT

↪→

↪→

`employees`.`*`
FROM `Integratedce63e84e332546f096ad3ef1a4dc7b90`.`employees` AS

`employees`↪→

WHERE ((`employees`.`startts` < @updateTime) AND (`employees`.`endts`
IS NULL) AND ((`employees`.`ID` = 1)))↪→

96

);

UPDATE `integratedce63e84e332546f096ad3ef1a4dc7b90`.`employees` SET
`endts` = @updateTime WHERE ((`employees`.`startts` <
@updateTime) AND (`employees`.`endts` IS NULL) AND
((`employees`.`ID` = 1)));

↪→

↪→

↪→

INSERT INTO `integratedce63e84e332546f096ad3ef1a4dc7b90`.`employees`
SELECT↪→

`tmp`.`*`
FROM `Integratedce63e84e332546f096ad3ef1a4dc7b90`.`tmpTable` AS `tmp`

UPDATE `integratedce63e84e332546f096ad3ef1a4dc7b90`.`employees` SET
`Name` = 'McJohn',↪→

`startts` = @updateTime WHERE ((`employees`.`startts` < @updateTime)
AND (`employees`.`endts` IS NULL) AND ((`employees`.`ID` = 1)));↪→

DROP TEMPORARY TABLE
`integratedce63e84e332546f096ad3ef1a4dc7b90`.`tmptable`;↪→

UPDATE
`Integratedce63e84e332546f096ad3ef1a4dc7b90`.`employees_metadata`
SET lastUpdate = @updateTime;

↪→

↪→

COMMIT;
UNLOCK TABLES;

Listing 6: Integrated Approach - Update Handling

SET autocommit=0;
SET SQL_SAFE_UPDATES=0;
LOCK TABLES Integratedce324cfdad544ab5aed71e7d6d5d7e44.employees

WRITE,`integratedce324cfdad544ab5aed71e7d6d5d7e44`.`employees_metadata`
WRITE,`integratedce324cfdad544ab5aed71e7d6d5d7e44`.`employees_1`
WRITE,`Integratedce324cfdad544ab5aed71e7d6d5d7e44`.`QubaDCSMOTable`
READ;

↪→

↪→

↪→

↪→

-- C# ensuring hist table has not changed since statement was
rewritten↪→

SELECT canBeQueried FROM
`Integratedce324cfdad544ab5aed71e7d6d5d7e44`.`employees_metadata`↪→

-- C# Code checking canBeQueried, throwing exception if it cannot be
queried↪→

SET @deleteTime = NOW(3)
UPDATE `integratedce324cfdad544ab5aed71e7d6d5d7e44`.`employees` SET

`endts` = @deleteTime WHERE ((`employees`.`ID` = 1) AND
(`employees`.`Name` = 'John'))

↪→

↪→

97

UPDATE
`Integratedce324cfdad544ab5aed71e7d6d5d7e44`.`employees_metadata`
SET lastUpdate = @deleteTime;

↪→

↪→

COMMIT;
UNLOCK TABLES;

Listing 7: Integrated Approach - Delete Handling

SET autocommit=0;
SET SQL_SAFE_UPDATES=0;
LOCK TABLES Hybrid_3f7432ee280f45db98efd75e635a0123.employees

WRITE,`hybrid_3f7432ee280f45db98efd75e635a0123`.`employees_metadata`
WRITE,`Hybrid_3f7432ee280f45db98efd75e635a0123`.`QubaDCSMOTable`
READ;

↪→

↪→

↪→

-- C# ensuring hist table has not changed since statement was
rewritten↪→

SELECT canBeQueried FROM
`Hybrid_3f7432ee280f45db98efd75e635a0123`.`employees_metadata`↪→

-- C# Code checking canBeQueried, throwing exception if it cannot be
queried↪→

SET @insertTime = NOW(3)
INSERT INTO `hybrid_3f7432ee280f45db98efd75e635a0123`.`employees` (
`id`,
`name`,
`job`,
`startts`) VALUES (
1,
'asdf',
null,
@insertTime)
UPDATE `Hybrid_3f7432ee280f45db98efd75e635a0123`.`employees_metadata`

SET lastUpdate = @insertTime;↪→

COMMIT;
UNLOCK TABLES;

Listing 8: Hybrid Approach - Insert Handling

SET autocommit=0;
SET SQL_SAFE_UPDATES=0;
LOCK TABLES Hybrid_45895aee57ff48ef97552279ee130f99.employees

WRITE,`hybrid_45895aee57ff48ef97552279ee130f99`.`employees_metadata`↪→

WRITE,`hybrid_45895aee57ff48ef97552279ee130f99`.`employees_1`
WRITE,`Hybrid_45895aee57ff48ef97552279ee130f99`.`QubaDCSMOTable`

READ;↪→

-- C# ensuring hist table has not changed since statement was
rewritten↪→

98

SELECT canBeQueried FROM
`Hybrid_45895aee57ff48ef97552279ee130f99`.`employees_metadata`↪→

-- C# Code checking canBeQueried, throwing exception if it cannot be
queried↪→

SET @updateTime = NOW(3)
INSERT INTO `hybrid_45895aee57ff48ef97552279ee130f99`.`employees_1`

SELECT↪→

`employees`.`*`, @updateTime AS `ut`
FROM `Hybrid_45895aee57ff48ef97552279ee130f99`.`employees` AS

`employees`↪→

WHERE ((`employees`.`startts` < @updateTime) AND ((`employees`.`ID` =
1)))↪→

UPDATE `hybrid_45895aee57ff48ef97552279ee130f99`.`employees` SET
`Name` = 'asdfxyz',↪→

`startts` = @updateTime WHERE ((`employees`.`startts` < @updateTime)
AND ((`employees`.`ID` = 1)));↪→

UPDATE `Hybrid_45895aee57ff48ef97552279ee130f99`.`employees_metadata`
SET lastUpdate = @updateTime;↪→

COMMIT;
UNLOCK TABLES;

Listing 9: Hybrid Approach - Update Handling

SET autocommit=0;
SET SQL_SAFE_UPDATES=0;
LOCK TABLES Hybrid_fbeab32e76be4f389a16e6949736b820.employees

WRITE,`hybrid_fbeab32e76be4f389a16e6949736b820`.`employees_metadata`
WRITE,`hybrid_fbeab32e76be4f389a16e6949736b820`.`employees_1`
WRITE,`Hybrid_fbeab32e76be4f389a16e6949736b820`.`QubaDCSMOTable`
READ;

↪→

↪→

↪→

↪→

-- C# ensuring hist table has not changed since statement was
rewritten↪→

SELECT canBeQueried FROM
`Hybrid_fbeab32e76be4f389a16e6949736b820`.`employees_metadata`↪→

-- C# Code checking canBeQueried, throwing exception if it cannot be
queried↪→

SET @updateTime = NOW(3)
INSERT INTO `hybrid_fbeab32e76be4f389a16e6949736b820`.`employees_1`

SELECT↪→

`employees`.`*`, @updateTime AS `ut`
FROM `Hybrid_fbeab32e76be4f389a16e6949736b820`.`employees` AS

`employees`↪→

WHERE ((`employees`.`startts` < @updateTime) AND ((`employees`.`ID` =
1) AND (`employees`.`Name` = 'asdf')))↪→

99

DELETE FROM `hybrid_fbeab32e76be4f389a16e6949736b820`.`employees`
WHERE ((`employees`.`startts` < @updateTime) AND
((`employees`.`ID` = 1) AND (`employees`.`Name` = 'asdf')))

↪→

↪→

UPDATE `Hybrid_fbeab32e76be4f389a16e6949736b820`.`employees_metadata`
SET lastUpdate = @updateTime;↪→

COMMIT;
UNLOCK TABLES;

Listing 10: Hybrid Approach - Delete Handling

--Input: Create Table Statement
{

"TableName":"employees",
"Schema":"HybridTests_bea80e0a53a14bc091b28b343886d859",
"Columns":[

{
"ColumName":"ID",
"DataType":" INT",
"Nullable":false,
"AdditionalInformation":null

},
{

"ColumName":"Name",
"DataType":" MediumText",
"Nullable":false,
"AdditionalInformation":null

},
{

"ColumName":"Job",
"DataType":" MediumText",
"Nullable":true,
"AdditionalInformation":null

}
],
"PrimaryKey":[

]
}

Listing 11: Hybrid Approach - Create Table SMO as JSON

Input JSON from Listing 11, used as serialized SMO.

SET autocommit=0;
SELECT GET_LOCK('SMO UPDATES',10);
SET @updateTime = NOW(3);
CREATE TABLE

`HybridTests_bea80e0a53a14bc091b28b343886d859`.`employees` (↪→

100

`ID` INT NOT NULL ,
`Name` MediumText NOT NULL ,
`Job` MediumText NULL ,
`startts` DATETIME(3) NOT NULL

);

CREATE TABLE
`HybridTests_bea80e0a53a14bc091b28b343886d859`.`employees_1` (↪→

`ID` INT NOT NULL ,
`Name` MediumText NOT NULL ,
`Job` MediumText NULL ,
`startts` DATETIME(3) NOT NULL ,
`endts` DATETIME(3) NULL

);

CREATE TABLE
`HybridTests_bea80e0a53a14bc091b28b343886d859`.`employees_metadata`
(

↪→

↪→

`lastUpdate` datetime(3) NOT NULL,
`canBeQueried` BOOL NOT NULL

);
INSERT INTO

`HybridTests_bea80e0a53a14bc091b28b343886d859`.`employees_metadata`↪→

(`lastUpdate`,
`canBeQueried`)
VALUES
(@updateTime,
true);
INSERT INTO

`HybridTests_bea80e0a53a14bc091b28b343886d859`.`qubadcsmotable`↪→

(`Schema`,
`SMO`,
`Timestamp`)
VALUES(
'serialzed JSON Schema - ommited as too long',
'serialized SMO'
@updateTime
);
COMMIT;
SELECT RELEASE_LOCK('SMO UPDATES');

Listing 12: Hybrid Approach - Create Table SMO Execution Script

{
"TableName":"employees",
"Schema":"Hybrid_b1df1726cb3240ab9b05a630c981b5df",

101

"Column":{
"ColumName":"NewSchema",
"DataType":" MediumText",
"Nullable":false,
"AdditionalInformation":null

},
"InitalValue":"CONCAT('new',`Name`)"

}

Listing 13: Hybrid Approach - Add Column SMO as JSON

Input JSON from Listing 13, used as serialized SMO.

SET autocommit=0;
SELECT GET_LOCK('SMO UPDATES',10);
LOCK TABLES

`hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees_metadata`
WRITE;

↪→

↪→

UPDATE `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees_metadata`
SET canBeQueried = false;↪→

COMMIT;
UNLOCK TABLES;
SET @updateTime = NOW(3);
RENAME TABLE `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees` TO

`Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees_old`↪→

CREATE TABLE `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees` AS
SELECT↪→

`t1`.`ID`, `t1`.`Name`, `t1`.`Job`
FROM `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees_old` AS

`t1`↪→

WHERE (1 = 2)
;
INSERT INTO `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees_1`

(`ID`, `Name`, `Job`, `startts`, `endts`) SELECT↪→

`t1`.`*`, @updateTime AS `ut`
FROM `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees_old` AS

`t1`↪→

;
ALTER TABLE `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees` ADD

`NewSchema` MediumText NOT NULL↪→

ALTER TABLE `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees` ADD
`startts` DATETIME(3) NOT NULL↪→

INSERT INTO `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees`
(`ID`, `Name`, `Job`, `NewSchema`, `startts`) SELECT↪→

`t1`.`ID`, `t1`.`Name`, `t1`.`Job`, CONCAT('new',`Name`) AS
`NewSchema`, @updateTime AS `ut`↪→

102

FROM `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees_old` AS
`t1`↪→

;
CREATE TABLE `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees_2`

AS SELECT↪→

`t1`.`ID`, `t1`.`Name`, `t1`.`Job`
FROM `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees` AS `t1`

WHERE (1 = 2)
;
ALTER TABLE `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees_2`

ADD `NewSchema` MediumText NOT NULL↪→

ALTER TABLE `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees_2`
ADD `startts` DATETIME(3) NOT NULL↪→

ALTER TABLE `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees_2`
ADD `endts` DATETIME(3) NULL↪→

DROP TABLE `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees_old`
UPDATE `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees_metadata`

SET lastUpdate = @updateTime;↪→

INSERT INTO
`Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`qubadcsmotable`↪→

(`Schema`,
`SMO`,
`Timestamp`)
VALUES(
'serialzed JSON Schema - ommited as too long',
'serialized SMO',
@updateTime
);
UPDATE `Hybrid_b1df1726cb3240ab9b05a630c981b5df`.`employees_metadata`

SET canBeQueried = true;↪→

COMMIT;
SELECT RELEASE_LOCK('SMO UPDATES');

Listing 14: Hybrid Approach - Add Column Table SMO Execution Script

{
"ResultTableName":"mergedtable",
"ResultSchema":"Hybrid_ff014d9c06254471985ccca6d5ee4617",
"FirstTableName":"employees",
"FirstSchema":"Hybrid_ff014d9c06254471985ccca6d5ee4617",
"SecondTableName":"basictable2",
"SecondSchema":"Hybrid_ff014d9c06254471985ccca6d5ee4617"

}

Listing 15: Hybrid Approach - Merge Table SMO as JSON

103

Input: JSON from Listing 15, used as serialized SMO.

SET autocommit=0;
SELECT GET_LOCK('SMO UPDATES',10);
LOCK TABLES

`hybrid_ff014d9c06254471985ccca6d5ee4617`.`employees_metadata`
WRITE,`hybrid_ff014d9c06254471985ccca6d5ee4617`.`basictable2_metadata`
WRITE;

↪→

↪→

↪→

UPDATE `Hybrid_ff014d9c06254471985ccca6d5ee4617`.`employees_metadata`
SET canBeQueried = false;↪→

UPDATE
`Hybrid_ff014d9c06254471985ccca6d5ee4617`.`basictable2_metadata`
SET canBeQueried = false;

↪→

↪→

COMMIT;
UNLOCK TABLES;
SET @updateTime = NOW(3);
CREATE TABLE `Hybrid_ff014d9c06254471985ccca6d5ee4617`.`mergedtable`

LIKE `Hybrid_ff014d9c06254471985ccca6d5ee4617`.`employees`;↪→

CREATE TABLE
`Hybrid_ff014d9c06254471985ccca6d5ee4617`.`mergedtable_3` LIKE
`Hybrid_ff014d9c06254471985ccca6d5ee4617`.`employees_1`;

↪→

↪→

CREATE TABLE
`Hybrid_ff014d9c06254471985ccca6d5ee4617`.`mergedtable_metadata`
(

↪→

↪→

`lastUpdate` datetime(3) NOT NULL,
`canBeQueried` BOOL NOT NULL

);
INSERT `Hybrid_ff014d9c06254471985ccca6d5ee4617`.`mergedtable`

SELECT `ID`, `Name`, `Job`, @updateTime FROM
`Hybrid_ff014d9c06254471985ccca6d5ee4617`.`employees` ;

↪→

↪→

INSERT `Hybrid_ff014d9c06254471985ccca6d5ee4617`.`mergedtable`
SELECT `ID`, `Name`, `Job`, @updateTime FROM
`Hybrid_ff014d9c06254471985ccca6d5ee4617`.`basictable2` ;

↪→

↪→

INSERT INTO `hybrid_ff014d9c06254471985ccca6d5ee4617`.`employees_1`
SELECT↪→

`t1`.`*`, @updateTime AS `ut`
FROM `Hybrid_ff014d9c06254471985ccca6d5ee4617`.`employees` AS `t1`

INSERT INTO `hybrid_ff014d9c06254471985ccca6d5ee4617`.`basictable2_2`
SELECT↪→

`t1`.`*`, @updateTime AS `ut`
FROM `Hybrid_ff014d9c06254471985ccca6d5ee4617`.`basictable2` AS `t1`

DROP TABLE `Hybrid_ff014d9c06254471985ccca6d5ee4617`.`employees`
DROP TABLE `Hybrid_ff014d9c06254471985ccca6d5ee4617`.`basictable2`

104

DROP TABLE
`Hybrid_ff014d9c06254471985ccca6d5ee4617`.`employees_metadata`↪→

DROP TABLE
`Hybrid_ff014d9c06254471985ccca6d5ee4617`.`basictable2_metadata`↪→

INSERT INTO
`Hybrid_ff014d9c06254471985ccca6d5ee4617`.`mergedtable_metadata`↪→

(`lastUpdate`,
`canBeQueried`)
VALUES
(@updateTime,
true);
INSERT INTO

`Hybrid_ff014d9c06254471985ccca6d5ee4617`.`qubadcsmotable`↪→

(`Schema`,
`SMO`,
`Timestamp`)
VALUES(
'serialzed JSON Schema - ommited as too long',
'serialized SMO',
@updateTime
);
COMMIT;
SELECT RELEASE_LOCK('SMO UPDATES');

Listing 16: Hybrid Approach - Add Column Table SMO Execution Script

{
"Tables":[
{
"Table":{
"Name":"employees",
"Schema":"HybridTests_9cd3ca6515f14b7dafc62f59a1161632",
"Columns":[
"ID",
"Name",
"Job"

],
"ColumnDefinitions":[
{
"ColumName":"ID",
"DataType":" INT",
"Nullable":false,
"AdditionalInformation":null
},
{
"ColumName":"Name",
"DataType":" MediumText",
"Nullable":false,

105

"AdditionalInformation":null
},
{
"ColumName":"Job",
"DataType":" MediumText",
"Nullable":true,
"AdditionalInformation":null
}

],
"AddTimeSetGuid":"0fb19c71-73e8-4d74-8adb-3924058d4dd7"
},
"HistTableName":"employees_1",
"HistTableSchema":"HybridTests_9cd3ca6515f14b7dafc62f59a1161632",
"MetaTableName":"employees_metadata",
"MetaTableSchema":"HybridTests_9cd3ca6515f14b7dafc62f59a1161632"
}

],
"HistTables":[
{
"Name":"employees_1",
"Schema":"HybridTests_9cd3ca6515f14b7dafc62f59a1161632",
"Columns":[
"ID",
"Name",
"Job",
"startts",
"endts"

],
"ColumnDefinitions":[
{
"ColumName":"ID",
"DataType":" INT",
"Nullable":false,
"AdditionalInformation":null
},
{
"ColumName":"Name",
"DataType":" MediumText",
"Nullable":false,
"AdditionalInformation":null
},
{
"ColumName":"Job",
"DataType":" MediumText",
"Nullable":true,
"AdditionalInformation":null
},
{

106

"ColumName":"startts",
"DataType":"DATETIME(3)",
"Nullable":false,
"AdditionalInformation":null
},
{
"ColumName":"endts",
"DataType":"DATETIME(3)",
"Nullable":true,
"AdditionalInformation":null
}

],
"AddTimeSetGuid":null
}

]
}

Listing 17: Example Schema serialized as JSON

SET autocommit=0;
SET sql_safe_updates=0;
LOCK tables
`hybrid_1965bfa0ed4a4d519a49338e1d9d956e`.`employees` AS

employees_ref READ,↪→

`hybrid_1965bfa0ed4a4d519a49338e1d9d956e`.`employees_metadata` READ,
`hybrid_1965bfa0ed4a4d519a49338e1d9d956e`.`qubadcsmotable` READ;

SELECT canbequeried
FROM `hybrid_1965bfa0ed4a4d519a49338e1d9d956e`.`employees_metadata`
-- C# Code checking canBeQueried, throwing exception if one is false
SET @updateTime = Now(3);
SELECT @updateTime
-- C# Selecting Updatetime as it will be renderd into the select

statements↪→

SELECT `id` ,
`SCHEMA` ,
`smo` ,
`timestamp`

FROM `hybrid_1965bfa0ed4a4d519a49338e1d9d956e`.qubadcsmotable
ORDER BY id DESC limit 0,

1
-- C# ensuring that the schema has not changed since generating this

script↪→

SELECT md5(
group_concat(
Concat_ws(

107

'#',Md5(`employees_ref`.`id`),
Md5(`employees_ref`.`NAME`),
Md5(`employees_ref`.`job`)

↪→

↪→

) separator '#'
)
)

FROM `hybrid_1965bfa0ed4a4d519a49338e1d9d956e`.`employees` AS
`employees_ref`↪→

WHERE ((`employees_ref`.`startts` <= timestamp '2017-10-18
00:18:01.074'))↪→

ORDER BY `employees_ref`.`id` ASC,
`employees_ref`.`NAME` ASC,
`employees_ref`.`job` ASC

SELECT `employees_ref`.`id`,
`employees_ref`.`NAME`,
`employees_ref`.`job`

FROM `hybrid_1965bfa0ed4a4d519a49338e1d9d956e`.`employees` AS
`employees_ref`↪→

WHERE ((
`employees_ref`.`startts` <= timestamp '2017-10-18

00:18:01.074'))↪→

ORDER BY `employees_ref`.`id` ASC,
`employees_ref`.`NAME` ASC,
`employees_ref`.`job` ASC

unlock tables;

INSERT INTO `hybrid_1965bfa0ed4a4d519a49338e1d9d956e`.`querystore`
(
`query`,
`queryserialized`,
`rewrittenquery`,
`rewrittenqueryserialized`,
`timestamp`,
`hash`,
`hashselect`,
`hashselectserialized`,
`guid`,
`additionalinformation`
)
VALUES
(

'SELECT `employees_ref`.`ID`, `employees_ref`.`Name`,
`employees_ref`.`Job`↪→

FROM `Hybrid_1965bfa0ed4a4d519a49338e1d9d956e`.`employees` AS
`employees_ref`↪→

ORDER BY `employees_ref`.`ID` ASC, `employees_ref`.`Name` ASC,
`employees_ref`.`Job` ASC' ,↪→

108

'JSON serialized version of the select statement' ,
'SELECT `employees_ref`.`ID`, `employees_ref`.`Name`,

`employees_ref`.`Job`↪→

FROM `Hybrid_1965bfa0ed4a4d519a49338e1d9d956e`.`employees` AS
`employees_ref`↪→

WHERE ((`employees_ref`.`startts` <= TIMESTAMP \'2017-10-18

00:18:01.074\'))↪→

ORDER BY `employees_ref`.`ID` ASC, `employees_ref`.`Name` ASC,
`employees_ref`.`Job` ASC' ,↪→

'JSON serialized version of the rewrittenquery`' ,
timestamp '2017-10-18 00:17:47.000' ,
'98dec3754faa19997a14b0b27308bb63' ,
'SELECT MD5(GROUP_CONCAT(CONCAT_WS(\'#\',MD5(`employees_ref`.`ID`),

↪→

MD5(`employees_ref`.`Name`), MD5(`employees_ref`.`Job`)) SEPARATOR

\'#\'))↪→

FROM `Hybrid_1965bfa0ed4a4d519a49338e1d9d956e`.`employees` AS
`employees_ref`↪→

WHERE ((`employees_ref`.`startts` <= TIMESTAMP \'2017-10-18

00:18:01.074\'))↪→

ORDER BY `employees_ref`.`ID` ASC, `employees_ref`.`Name` ASC,
`employees_ref`.`Job` ASC' ,↪→

'JSON serialized version of rewritten hashquery' ,
'b67e2545-7d23-4c93-a0e4-c4ea07c76f05' ,
'JSON serialized Dictionary of GUIDs of queried tables '

);
COMMIT;

Listing 18: Example Query Store handling of a query on employees

109

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Data Citation
	Schema Evolution
	Related Systems
	Summary

	System Design
	System Overview
	Attribute vs. Tuple Based Timestamping
	Integrated vs. Separated vs. Hybrid historization approaches
	Schema Evolution and Schema Management
	Query Store and Query Rewriting
	Locking Mechanisms
	Optimizations and Extensions
	Big Database Considerations
	Code Metrics
	Summary

	Evaluation
	Environment
	Measuering Methods
	Insert Performance
	Update Performance
	Delete Performance
	Select Performance
	Evaluation Summary
	Guidelines for Real World Applications
	Summary

	Conclusions and Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Appendix A - Code Examples

