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Kurzfassung

Resource Bound Analysis ist ein Bereich der Programmanalyse, der sich mit der Be-
stimmung von Bounds (Grenzen) für die Menge an bestimmten Ressourcen, die beim
Durchlauf eines Programms verbraucht werden, beschäftigt. Bounds sind Ausdrücke
über die Eingabeparameter eines Programms, die für beliebige Kombinationen von Pa-
rametern korrekt sein sollten, was durch einfaches Testen nicht erreichbar ist. Die Ana-
lysetypen, die hier behandelt werden, sind statisch (d.h. es ist nicht notwendig, das
Programm auszuführen, um einen Bound zu bestimmen) und vollständig automatisiert.
Bounds für viele verschiedene Arten von Ressourcen sind von Interesse, darunter Lauf-
zeit, Stack und Heap-Ausnutzung oder wie oft eine bestimmte Funktion aufgerufen
wird. Resource Bound Analysis hat zahlreiche Anwendungsmöglichkeiten in der Ent-
wicklung von Embedded- und Echtzeitsystemen, Komplexitätsanalyse von Algorithmus-
Implementierungen, Security und weiteren, die wir detaillierter beschreiben.

Viele neuere Ansätze und Implementierungen zielen auf imperative Programme ab. Im
Gegensatz dazu konzentriert sich diese Arbeit auf funktionale Programme, wo Wiederho-
lung (der wichtigste Aspekt in der Resource Bound Analysis) als rekursive Funktionsauf-
rufe statt als Schleifen implementiert ist. Da Ressourcenanalyse ein umfangreiches und
komplexes Thema ist, beschränken wir unsere Analyse auf die Berechnung von Bounds
für die Anzahl an Funktionsaufrufen und damit, wie oft jeder Teil des Programms aus-
geführt wird. Wir legen allerdings dar, dass damit das Kernproblem gelöst ist und eine
Erweiterung auf andere Ressourcentypen auf dieser Grundlage relativ einfach wäre.

Wir präsentieren eine Boundanalyse für eine seiteneffektfreie Untermenge von Common
Lisp mit Funktionen erster Ordnung. Die Analyse baut auf CoFloCo auf, einem existie-
renden Boundanalysesystem, das Bounds aus einem System von Cost Relations berech-
net. Wir beschreiben eine Übersetzung von Lisp in Cost Relations, die die Berechnung
korrekter Bounds für Lisp-Programme mit polynomieller Komplexität ermöglicht.

Wir berichten über Experimente, die mit einem umfangreichen Benchmark durchgeführt
wurden, das aus zusammen mit dem Theorembeweiser ACL2 verteilten Lisp-Programmen
besteht. Insgesamt analysierten wir 19,491 Funktionen in 1,934 Dateien. Das Benchmark
enthält Code für Modelle, die für Theorembeweise in industriellen Anwendungen wie et-
wa Hardware- und Mikrocodeverifikation verwendet wurden. Dasselbe Benchmark wurde
außerdem bereits für die Evaluation des Terminationsbeweisers CCG verwendet, der in
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ACL2 enthalten ist. Wir untersuchen die erhaltenen Bounds und asymptotischen Kom-
plexitätsergebnisse sowie die Laufzeit der Analyse als wichtigen Aspekt für praktische
Anwendungen von Programmanalyse, um die Eignung unseres Ansatzes zu beurteilen
und verbleibende (technische wie fundamentale) Probleme zu identifizieren.

Zuletzt leiten wir aus diesen Experimenten sowie aus Beobachtungen während der Im-
plementierung aussichtsreiche Ansätze für weitere Untersuchungen ab.



Abstract

Resource bound analysis is a kind of program analysis concerned with determining
bounds on the amount of a certain resource consumed when running a program. Bounds
are expressions over the input arguments of a program, and should be sound for any com-
bination of parameters, which cannot be achieved through simple testing. The kinds of
analyses considered here are static (meaning that it is not necessary to run the program
in order to determine a bound) and fully automated. Bounds for many different types
of resources are of interest, such as running time, stack and heap usage of the program,
or the number of times a specific function is called. Resource bound analysis has numer-
ous applications in embedded and real-time systems development, complexity analysis
of algorithm implementations, security etc., which we will describe in more detail.

Many recent approaches and implementations are aimed at imperative programs. In
contrast, this work focuses on functional programs, where repetition (the most critical
aspect for resource bound analysis) is implemented as recursive function calls rather
than as loops.

Since sound resource analysis is generally a wide and challenging topic, the scope of
this work was limited to computing bounds on the number of function applications only,
i.e., how often any given part of the program is executed. However, we posit that this
solves the core problem, and that other measures could be based on this foundation with
relative ease.

We present a bound analysis for a first-order side-effect-free subset of Common Lisp.
The analysis is built on CoFloCo, an existing bound analysis system with support for
recursive programs, which derives bounds from a system of cost relations. We describe a
translation from Lisp to cost relations, which enables calculating sound bounds for Lisp
programs with polynomial complexity.

We report on experiments performed on a large benchmark consisting of the Lisp pro-
grams provided together with the ACL2 theorem prover. Overall, we analyzed 19,491
functions in 1,934 files. The benchmark includes code for models which have been
used for theorem proving in industrial applications such as hardware and microcode
verification. The same benchmark has also previously been used to evaluate the CCG
termination prover built into ACL2. We investigate the reported bounds and asymptotic
complexity results, as well as the running time of the analysis, as an important aspect
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of practical program analysis, in order to assess the suitability of our approach, and to
discover remaining (technical or fundamental) issues.

Finally, promising avenues for further investigation are derived from these experiments
and from observations made during the implementation work.
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CHAPTER 1
Introduction

Automatic resource (or cost) analysis is a type of automated (mechanical) program
analysis which determines the amount of a certain resource consumed when running a
program (referred to as the cost). The cost is defined in terms of a metric, such as the
number of execution steps required to evaluate the function, or the consumption of some
resource during execution (memory, stack space, etc.). The cost of specific operations
within the program, such as function calls, is described by a cost model. For example, the
cost model used in this work assigns cost 1 to function calls and conditional branches.

The analysis presented in this work, as well as the related works which are discussed, all
work statically, meaning that it is not necessary to actually execute the program in order
to obtain the desired results. This means that the result will be valid for any concrete
function invocation with any combination of argument values, i.e., not dependent on a
(necessarily limited) selection of test parameters. It is therefore possible to assert that
a result will be correct in all cases, which is not possible with testing alone.

The resource consumption of a program is often hard for programmers to understand in-
tuitively, especially for long sections of code with complex interactions. Manual analysis
quickly becomes highly laborious, and errors which might significantly affect the result
are likely to occur. Therefore, a completely automated and provably correct resource
analysis is highly desirable.

Resource analysis has various applications in embedded and real-time systems (where
provably sufficient resources and time limits are critical for safety), scheduling [SC95],
complexity analysis of algorithm implementations, optimization, static analysis of energy
consumption [Gre+15], more generally in proving safety- and security-related properties
of programs [HDW17], and many others.

To demonstrate what our analysis is aiming at, consider a concrete example as shown in
Listing 1. In this case, it is quite easy to see that one recursive call to listlen will be
made for each element of the list – that is, the number of recursive calls, and therefore

1



1. Introduction

the complexity, is linear in terms of the length of the list. However, it is easy to imagine
a scenario where this would not be so simple. For example, the length of x may depend
on the result of some other, much more complex calculation.

1 (defun listlen (x)
2 (if (consp x)
3 (+ 1 (listlen (cdr x)))
4 0))

Listing 1: A function which determines the length of the list x by recursively calling
itself once for each list element.

A resource or cost bound is an expression over the (input) arguments of a function, con-
taining only basic arithmetic operations (most importantly not containing the functions
being analyzed), and evaluating to a (usually non-negative) value which is an upper
bound on the cost of the function. In the example, a valid upper bound for the execu-
tion step metric would be the length of the argument x times the cost of each recursive
call (which can be easily determined as the sum of the costs for a constant set of function
calls), plus constant costs for the initial call and the end of the list.

In addition to such upper bounds, it may also be desirable to determine lower bounds,
which are relevant for different applications. However, this work focuses on upper
bounds.

Obtaining upper bounds on the consumption of resources such as execution time is an
undecidable problem [Weg75; MML97]: when attempting to calculate a bound, it must
implicitly be decided whether the program terminates (i.e., whether a bound actually
exists). However, this is impossible in the general case, as the halting problem [Tur36]
proves. Consequently, any sound bound analysis is necessarily incomplete. In our work,
we aim at a sound but incomplete analysis, meaning that there may be functions for
which the analysis fails to obtain a bound. However, it turns out that many programs
are reasonably simple, and it is indeed possible to calculate bounds for them, as evidenced
by the experimental results presented in Section 5.2.

The degree of accuracy of a bound, i.e., how small the difference between the bound and
the actual cost is, is referred to as precision. Bounds need not necessarily be precise.
While high precision is of course desirable, there is often a trade-off between precision
and running time of the analysis. Also, achieving maximum precision in corner cases may
require a disproportionate amount of complexity in the analysis. Furthermore, depending
on its intended use, a bound expression which is shorter and easier to understand might
actually be preferable to a more precise, but much more complicated one.

It is also important to note that in our analysis, the bound is calculated for an idealized
model of execution corresponding directly to the source code being executed on an
abstract machine, and does not factor in the underlying machine model. The exact cost
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1.1. Motivation

in terms of running time, memory etc. depends on a variety of factors, which would be
complicated to analyze and cannot always be determined from the source code alone.
For example, a compiler may or may not make specific optimizations, which might
significantly change the cost (and even the asymptotic complexity) of a function, or
cause it to depend on unpredictable outside factors.

1.1 Motivation

Originally, the field of automated resource analysis began with analyzing functional
programs (see, e.g., [Weg75]). On the other hand, recent work has mainly been focused
on imperative programs (see Chapter 6 for a discussion of some recent approaches), and
much progress has been made in that area. Imperative programming is currently more
widespread in real-world applications, especially safety-critical ones such as real-time
systems.

However, imperative languages such as C have many properties and constructs which
make resource analysis particularly challenging – for one, side effects are a core operating
principle and may occur anywhere in the program. Reference constructs such as pointers
introduce complications which usually necessitate making certain “sanity assumptions”.
For example, a “reasonable” composition and use of the functions being analyzed is
assumed, e.g., no writes outside array bounds, pointer arguments to functions being
distinct, etc. (see, e.g., Sinn et al. [SZV14; SZV15]). These sanity assumptions further
complicate the comparison between analysis implementations. Since different systems
make different assumptions, the results are not directly comparable.

For programmers, functional programming has various advantages compared to imper-
ative methods. Most importantly, the elimination of side effects has the potential of
reducing security and concurrency issues, while also greatly simplifying static program
analysis. Many functional languages also have features such as strong static typing with
automatic type inference (which is used as a basis for many approaches to resource analy-
sis), and higher-order functions, which aid modularization [Hug89]. Functional program-
ming paradigms are also gaining relevance as traditionally imperative languages, such
as Java [UFM14], are adding features which enable functional-style programming. As a
consequence, functional languages are also an interesting target for resource analysis.

1.1.1 Advantages of Lisp for resource analysis

In this work we therefore analyze functional programs, but use an approach and imple-
mentation which was previously used for analyzing imperative programs, such as Java
and C. This enables us to leverage recent achievements in the imperative domain for
analyzing functional programs. Our analysis processes a simplified first-order subset of
Lisp [McC65], a dynamically typed functional programming language, one of the first
of its kind and still in use today. Lisp has a variety of properties which make it an
interesting and particularly suitable target for resource analysis. Most importantly, re-
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1. Introduction

source analysis is much simpler than for imperative programs, as the issues described
above (side effects, pointers etc.) are largely avoided. In the targeted Lisp subset, as
in functional programming in general, repetition (the most critical aspect for resource
analysis) is implemented through recursive function calls rather than loops, leading to a
more regular program structure. Side effects occur only optionally rather than as a core
operation, or not at all (in the subset of Lisp we analyze), and there are no pointers.
Therefore, no sanity assumptions are required, meaning that an analysis can be sound
without having to handle unexpected interactions within the program. Due to this sim-
plicity, it is much easier to develop a completely sound resource analysis, which in turn
will be comparable to other implementations on an equal basis.

Lisp also has advantages over more advanced functional languages, where program anal-
ysis is concerned. Unlike in Haskell, for example, function arguments are not lazily
evaluated – with the exception of conditional branches, all program code is executed ea-
gerly. This evaluation strategy is much easier to analyze, as it can be assumed that any
code not explicitly marked as depending on a decision (i.e., contained in a conditional
branch) will be executed in full (see also Section 6.5). Furthermore, Lisp code is very
easy to parse, since it consists only of function definitions, function applications, and
constant literals as basic elements.

An alternative approach to focusing on the high-level language is to analyze the underly-
ing model of execution, which is still an imperative one in the vast majority of cases (in
the form of machine code being executed on a general-purpose processor, or bytecode on
virtual machines). Indeed, this approach has been followed in COSTA (bytecode analysis
[Alb+07]), Loopus (analysis on LLVM intermediate code [SZV15]), and other systems.
However, since this machine code is itself an imperative program with few restrictions,
it is subject to the same issues described above – the advantages of the functional source
program, such as its regular structure and exclusion of side effects, are lost. In contrast,
our approach uses a clean, declarative abstraction which largely preserves the properties
of the original program.

Furthermore, like many other, more recent languages such as Python and JavaScript,
Lisp is not statically typed. While this is a disadvantage in some respects, as static
type information is helpful for certain types of analyses, the corresponding advantage
is that our analysis would be readily adaptable to other dynamic languages. While not
dependent on types, the analysis could optionally make use of explicit type information
in order to analyze languages where such information is available more effectively. In
fact, our analysis implicitly uses type information for analyzing Lisp. Semantic type
checks such as integerp constrain the range of possible values of a variable (in this case,
enforcing that it is an integer and not, e.g., a list), and this information is used by our
analysis in the same way as any other constraint.

Finally, an important goal for this work was to identify challenges and obstacles in
implementing such an analysis, and to propose opportunities for future work.

4



1.2. Challenges

1.2 Challenges
From the description above, as well as from analysis of related work, two main challenges
can be identified, which we deal with in this work:

• Performing sound resource bound analysis of programs written in Lisp, a dynami-
cally typed and relatively unstructured language, where deterministic inference of
a single type for each expression is not possible.

• Evaluating a bound analysis system on a large, realistic benchmark (as opposed
to individual academic examples, or small sets of test code written solely for eval-
uating resource analysis). There is a distinctive lack of such evaluations in the
literature.

1.3 Overview
By analyzing a limited subset of Lisp, we focus on a language which is relatively simple,
free from complications such as side effects, and admits sound resource bound analysis
without requiring unsound assumptions.

We base our analysis an existing approach and corresponding tool (CoFloCo [FH14;
Flo16], described in detail in Chapter 4). CoFloCo has previously been used for analyzing
imperative programs with good results, whereas we now apply it to programs written
in a functional language (Lisp). CoFloCo calculates bounds for so-called cost relations,
which are a declarative abstraction of programs. Furthermore, CoFloCo can directly
analyze recursive programs, and performs amortized analysis (see Section 4.5).

In order to analyze Lisp programs, we develop a translation of Lisp code to abstract cost
relations, for which CoFloCo then calculates bounds. This involves the abstraction of
important properties of structural values to integers, using so-called measures.

We then perform a large-scale evaluation of a bound analysis system for a functional
language. There is a distinctive lack of such evaluations, even though they are needed
as a basis for comparisons between approaches. The evaluation uses a large set of
Lisp programs distributed with the ACL2 automatic proving system [KM97; KMM00;
KM16]. The benchmark consists of a diverse suite of purely functional and, most crit-
ically given the limitations of our approach, side-effect-free and first-order code. The
latter is especially important, as our approach cannot handle higher-order functions,
but they are normally quite prevalent in regular Lisp application code, or indeed any
other functional language. Overall, this benchmark consists of 5,615 Lisp files containing
2,146,352 SLOC1. Most importantly, this code does not consist of artificially constructed
or academic examples: the benchmark includes code for models which have been used
for theorem proving in industrial applications such as hardware [Hun+10] and microcode
[Rus+05] verification.

1determined using David A. Wheeler’s ‘SLOCCount’
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1. Introduction

In conclusion, Lisp is a good demonstrator platform for the purposes of program analysis,
despite its lack of presence in modern software engineering, which is still dominated by
imperative languages.

1.4 Contributions

The contributions made in this work fall into the following main categories:

• A large-scale evaluation of a bound analysis system for a first-order subset of
the functional language Lisp. The benchmark code on which the evaluation is
performed was written for unrelated purposes, giving more weight to the results.

• An application of an existing approach for bound analysis, implemented in the
tool CoFloCo [FH14; Flo16], to dynamically typed functional programs. Based on
test results, we also identify issues and opportunities for improvements in CoFloCo
itself.

• An resource bound analysis which, due to the simplicity of the target language
(such as freedom from side effects), is sound (with a single well-defined exception,
which could be easily remedied using a method we propose separately). This, in
conjunction with the large-scale evaluation described above, could form a basis for
comparisons, since other bound analysis systems for functional languages could be
adapted to Lisp without requiring them to agree on a specific set of (unsound)
assumptions.

• An investigation of cases where our approach is sufficient, and proposals for ex-
tensions which would result in bounds for more functions and/or higher-precision
bounds.

1.5 Approach & Methodology

PreprocessingLisp code Translation
to CRs CoFloCo Bounds

Figure 1.1: The high-level structure of the analysis process. The translation to cost
relations (CRs) constitutes the main part of this work.

In this work, we analyze Lisp programs in order to determine upper bounds on the total
number of execution steps performed. We implement and describe a Lisp frontend for Co-
FloCo [Flo16], an existing resource analysis system with support for recursive programs,
which has so far mostly been used for resource analysis of imperative programs.
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1.6. Structure of this work

Figure 1.1 shows the three main steps of the analysis. First, a preprocessing step simpli-
fies and normalizes the original Lisp code. A Lisp-specific frontend then translates the
result to so-called cost relations, abstract definitions describing program behavior and
cost semantics.

Generating cost relations which accurately represent the real program behavior, which is
necessary for obtaining precise bounds, is an almost arbitrarily complex task. Therefore,
any such translation constitutes a compromise between precision and complexity.

The fundamental implementation of a translation of the Lisp program structure was
developed in collaboration with Antonio Flores Montoya. The author then extended
the translation with measures, in order to make it suitable for non-integer programs.
Furthermore, the author developed an extension to generate constraints for multiply
recursive functions, according to automatically verified properties. The author also
developed a formalization of the translation together with proofs for its correctness, as
shown in Section 2.5.

From the cost relations, the bound analysis tool CoFloCo determines the upper bounds
on the total number of execution steps. CoFloCo supports recursive function calls di-
rectly, which is a considerable advantage for analyzing functional languages. Our anal-
ysis is capable of analyzing a subset of Lisp which is largely identical to that processed
by ACL2 – most importantly, both our theory and implementation support only side
effect-free first order functions.

We then applied this analysis to the large-scale benchmark suite from the ACL2 distribu-
tion. The author performed evaluations and analyzed the results. Running tests allowed
us to iteratively improve the translation to cost relations, as well as the analysis itself.
Due to its size, the benchmark exhibits a far-ranging coverage of corner cases, which were
identified and resolved incrementally. Based on the results and on lessons learned dur-
ing the implementation, the author then drew conclusions concerning the performance
and limitations of the analysis. As the results show, our implementation performs well,
despite following a relatively simple approach. Finally, the author identified possible
directions for further work, which are described in Chapter 7.

1.6 Structure of this work
The remainder of this work is structured as follows: Chapter 2 gives a specification of
Lisp and cost relations, describes how the former is translated to the latter, and pro-
vides a correctness proof for this translation. Specific aspects of the implementation
are described in Chapter 3. An overview of CoFloCo is given in Chapter 4. Chapter 5
describes the experiments which were performed, and presents results along with conclu-
sions which can be drawn from them. Chapter 6 discusses related work in more detail,
and describes specific commonalities and differences. In Chapter 7, remaining issues and
opportunities for future work are discussed. Finally, Chapter 8 sums up the results of
this work with a brief conclusion.
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CHAPTER 2
From Lisp to cost relations

As explained in Section 1.5, Lisp programs must be translated to cost relations for
analysis. In order to obtain meaningful results, this step should retain the resource
properties of the original program – specifically, the resulting bounds should be sound
with respect to the original program’s cost, and as precise as possible.

2.1 Brief overview of Lisp
Lisp is a functional programming language developed from 1958 on by McCarthy et al.
[McC79; McC65]. Lisp code is composed of S-expressions, i.e., nested expressions en-
closed in brackets, which can be interpreted as either lists or function applications
consisting of a function name as the first element and zero or more arguments. For
example, (foo 1 2) applies the function foo to the arguments 1 and 2. Conditional
expressions follow the same format, e.g., (if (> x 0) x (- 0 x)) (which returns the
absolute value of x), as do function definitions:

(defun foo (a b) (* (+ a b) 5))

This function sums the two arguments a and b and multiplies the result by 5. Note that
no explicit return statement is necessary, as the body of the function is an expression
which evaluates to an integer value. It is important to note that all expressions are
functions, including arithmetic operators such as + and *. Declarations of recursive
functions do not require any special constructs:

(defun foo (x) (if (> x 0) (+ x (foo (- x 1))) 0))

Classically, the only element for building data structures is a pair of values a and b,
usually written as a . b and created by the function cons (the tuple is often called a
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2. From Lisp to cost relations

cons pair). Its elements are accessed using the functions car (first element) and cdr
(second element). Lists are the most important (and defining) data type in Lisp. They
are constructed as a sequence of cons pairs, where the first element of the pair contains
the list element, and the second contains either a reference to the next cons pair or nil
(the empty element), e.g., 1 . (2 . (3 . nil)). Likewise, binary trees are built from cons
pairs as nodes containing references to the child elements, and n-ary trees can be built
by treating each tree node as a list.

Any value which is not a cons pair is an atom. This includes symbols, which are
essentially names which can be treated as unique values, but have no further inherent
meaning. By convention, the symbol t stands for true and nil for false as well as “no
value” and “empty list”. It is important to note that checks (such as if) consider any
value other than nil to be true, not only t. Literals such as integers, rational numbers
and characters are also atoms.

A preceding single quote (') indicates that the following code should be taken as a
literal S-expression (i.e., “data”) rather than being evaluated as a function. This is
used for symbols (marking them as uninterpreted values, such as 'foo, rather than
attempting to look up a variable named foo), and for building constant lists/structures,
as in '(1 (2 3) 4) (equivalent to building structures dynamically using cons).

let expressions define new variables which are visible within the given body, as in

(defun foo (x)
(let ((y (bar x)) (z (baz x 10)))

(qux y (* y 2) z (+ z 5))))

(qux is some other function). Not only does this result in more compact code, it also
means that bar and baz are evaluated only once each, even though their results are used
twice later.

Function arguments are generally evaluated eagerly (i.e., without respect to whether
they will actually be required for further calculations). The one important exception is
if, where the true and false branches will only be evaluated if the condition is true or
false respectively.

Lisp is not statically typed, nor does it support explicit type annotations. However, val-
ues are typed, allowing types to be checked at runtime using functions such as integerp
and consp, and thus enable type-dependent behavior.

2.1.1 Limited subset of Lisp

The ACL2 input language is a limited subset of Common Lisp [Ste90], a popular di-
alect and extension of Lisp. The semantics underlying the language and its predefined
functions are largely the same, but higher-order functions, as well as advanced features

10



2.1. Brief overview of Lisp

program := fndef ∗ (2.1)
fndef := (defun sym (sym ∗) sexpr) (2.2)
sexpr := (sym sexpr ∗) (2.3)

(if sexpr sexpr sexpr) (2.4)
(let ((sym sexpr) ∗) sexpr) (2.5)
sym (2.6)
literal (2.7)

literal := integer literal (2.8)
' lit-sexpr (2.9)

lit-sexpr := integer literal (2.10)
sym (2.11)
(lit-sexpr ∗) (2.12)

Figure 2.1: Grammar of the simplified input language which is generated by a prepro-
cessing step and processed by our tool.

specific to Common Lisp (such as structures implemented as special constructs not based
on cons), are not supported by ACL2.

In the interest of simplicity, we base our input on the simplified Lisp syntax used inter-
nally by ACL2 and define some additional restrictions. Most notably, we exclude other
value types, such as strings and rational numbers. Fig. 2.1 shows the definition of the
language which is processed by our tool. fn stands for the name of the function, such
as foo, which is applied to the arguments. A constant may be either an atom (integer
literal or quoted symbol), or a list literal (which is equivalent to a series of nested cons
pairs). Additional constructs, such as let and cond (a conditional form which checks
multiple cases sequentially, essentially a nested if . . . else if . . . else if . . . ), are converted
to this form automatically and can therefore be processed correctly, but do not need to
be considered specifically for further analysis.

2.1.2 Syntax

Eq. (2.2) a function definition, consisting of a function name, a list of argument names,
and a body.

Eq. (2.3) an application of a function (identified by a symbol) to a list of argument
values.

Eq. (2.4) a conditional expression, consisting of an expression representing the condi-
tion, and two branches. The expression evaluates the second branch if the value
of the condition is nil, and to the first branch otherwise.

11



2. From Lisp to cost relations

Eq. (2.5) evaluates an s-expression under the given list of new assignments of values
to symbols (variable names).

Eq. (2.6) a symbol name which evaluates to the value assigned to the corresponding
variable.

Eq. (2.7) a literal.

Eq. (2.8), Eq. (2.10) a literal integer value.

Eq. (2.9) an uninterpreted expression, which is treated as a data value rather than
being evaluated.

Eq. (2.11) an uninterpreted symbol.

Eq. (2.12) a literal s-expression, which is a list (equivalent to the result of nested cons
applications). The value of an empty list is the symbol nil.

2.1.3 Values

val := integer (2.13)
sym (2.14)
val . val (2.15)

Eq. (2.13) a signed integer of arbitrary size.

Eq. (2.14) a symbol.

Eq. (2.15) a cons pair. A proper list is a nested tree of pairs where the rightmost
element is the symbol value nil (therefore, nil is an empty list).

2.1.4 Semantics

Function application

BF is the set of basic functions. Any function not in this set is a normal function which,
if called, must be defined in the program P . It has a list of argument names a⃗n and a
body. For a function application, each argument expression argsi is evaluated to a value
avi, and these values are assigned to the argument names in a new variable assignment
α′, under which the body is evaluated, yielding the final result r. The total cost is the
sum of the cost of a function application itself (capp), the evaluation of the body and of
each argument.

L-app

P [fn] = (defun fn a⃗n body) n = |a⃗n| argsi ⇓α
ci

avi ∀i ∈ 1..n

α′ = [ani 7→ avi | i ∈ 1..n] body ⇓α′
c r fn /∈ BF

(fn ⃗args) ⇓α
capp+c+c1+···+cn

r
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2.1. Brief overview of Lisp

Basic functions such as + and car are defined directly and do not have a (Lisp) body,
i.e., do not depend on any other code. Otherwise, an application of a basic function is
similar to a normal function:

L-app-bf

argsi ⇓α
ci

avi ∀i ∈ 1..n
α′ = [ani 7→ avi | i ∈ 1..n] BF [fn] = ⟨n, f, c⟩

(fn ⃗args) ⇓α
c+c1+···+cn

f(av1, . . . , avn)

The set of basic functions BF is described as a mapping of function names to triples
⟨n, f, c⟩ of a (mathematical) function f with n arguments (which are Lisp values), which
describes the behavior of the basic function and returns another Lisp value, and a cost
c assigned to the basic function:

BF =



+ 7→ ⟨2, f(x1, x2) = x1 + c2, c+⟩
- 7→ ⟨2, f(x1, x2) = x1 − c2, c-⟩

car 7→ ⟨1, f(x1) =
{

a if x1 = a . b

nil if x = nil
, ccar⟩

cdr 7→ ⟨1, f(x1) =
{

b if x1 = a . b

nil if x = nil
, ccdr⟩

cons 7→ ⟨2, f(x1, x2) = x1 . x2, ccons⟩

Only a few basic functions are listed here, the rest are defined analogously. Note that
undefined behavior (e.g., applying car to an integer) is not permitted.

if

In an if expression, either branch a or b is evaluated, depending on the value of the
condition x:

L-if
x ⇓α

cx
vx

L-if-true
vx ̸= nil a ⇓α

ca
va

(if x a b) ⇓α
cif+cx+ca

va
L-if-false

vx = nil b ⇓α
cb

vb

(if x a b) ⇓α
cif+cx+cb

vb

let

A let expression is very similar to a function application, except that the variable
assignment α′ passed to the body is an extension rather than a complete replacement of
the initial assignment α, and the body is defined within the expression itself rather than
as a separate function.
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2. From Lisp to cost relations

L-let

n = | ⃗defs| (defsi = (dni dei) ∧ dei ⇓α
ci

dvi) ∀i ∈ 1..n

α′ = α← [dni 7→ dvi | i ∈ 1..n] body ⇓α′
c r

(let ⃗defs body) ⇓α
clet+c+c1+···+cn

r

α1 ← α2 denotes the combination of variable assignments α1 and α2, where names which
exist in both assignments are reassigned to the values in α2.

Variable reference

Referencing a variable simply retrieves the value v of variable x from the variable assign-
ment α. Note that we admit only valid programs, so references to undefined variables
cannot occur.

L-var
v = α[x]
x ⇓α

cvar v

Literal values

Literals are even simpler, merely returning the literal value v:

L-lit
v ⇓α

clit v

2.2 Cost relations
The programs processed by our analysis are expressed in the simplified Lisp subset
described above. However, CoFloCo (the bound analysis tool which we build on) expects
its input to be represented as systems of so-called cost relations, based on which it then
calculates resource bounds (see Chapter 4).

A cost relation is an abstraction of a function which represents the function’s cost and
behavioral semantics. The details of expressing Lisp programs through cost relations are
described in Section 2.5.

A cost relation consists of one or more cost equations, which are 4-tuples of the form

eq(fn(⃗a), c, ⃗calls(⃗a ∪ v⃗), ⃗constrs(⃗a ∪ v⃗))

a⃗ is a list of integer variables representing the arguments of the function predicate (such
that ai is the i-th argument), and v⃗ is a set of new variables which are internal to the
cost equation.

• fn(⃗a) is a term describing the function’s signature (i.e., its name fn and list of
parameters a⃗). Note that these signatures take the form of logical predicates –
thus, there is no special return value.
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2.2. Cost relations

• c is the (constant) cost associated with the function itself (specifically, not including
the cost of any other function calls).

• ⃗calls(⃗a∪ v⃗) is a (possibly empty) set of function calls made by the function fn. The
parameters of the calls are in a⃗ ∪ v⃗, i.e., each call has the structure fn′(p⃗) where
fn′ is the function being called with a list of parameters p⃗ ⊆ a⃗ ∪ v⃗. The total cost
C(ce) for a cost equation cr = eq(..., c, ⃗calls, ...) is then defined as

c +
∑

γ∈ ⃗calls

C(γ)

with C(γ) being the cost calculated for each call γ.

• ⃗constrs(⃗a ∪ v⃗) is a (possibly empty) set of linear constraints over a⃗ ∪ v⃗. The
constraints limit the combinations of argument values to which the cost equation
is applicable.

While in cost relations, function signatures are specified as predicates, the analysis
described here processes code written in Lisp, a language based on functions rather
than predicates. For the sake of clarity, representations of cost relations shown in this
work therefore split the input and output parameters of the function signatures, as in
fn(i⃗n → o⃗ut), where i⃗n are the (input) arguments and o⃗ut are return values. However,
this difference affects only the representation, and is equivalent to the definition given
above with a⃗ = i⃗n ∪ o⃗ut.

A cost relation is a set of one or more cost equations for the same function, i.e., where
the function signature (meaning the function name and the number of parameters) is
the same.

In brief, constraints and function calls together define the semantics of the function in
relation to the arguments, while the combination of the cost of the function itself and
that of its function calls define the function’s cost semantics.

As a simple example, consider a cost equation for a function which increments its integer
argument by 1:

(defun incr (x) (+ x 1))

The cost relation for this function is

eq(incr(a→ r), 1, [+(a, 1→ r)], [ ])

Note that the addition is a function call. The cost has been defined as 1 here, as a
function application counts as one execution step. However, the cost of course depends
on the cost metric. With the function application metric, the cost cannot be negative,
but in general, cost relations can also specify a negative cost.
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2. From Lisp to cost relations

Further note that the direct inclusion of the constant argument 1 in the call +(a, 1→ r) is
a shorthand for +(a, x→ r) with the constraint x = 1, with the equivalent cost equation

eq(incr(a→ r), 1, [+(a, x→ r)], [x = 1])

Alternative behaviors of a function can be modeled by specifying a cost relation consisting
of more than one cost equation for the same function, but with different constraints, as
in:

eq(abs(x→ x), 1, [ ], [x ≥ 0])
eq(abs(x→ r), 1, [-(x→ r)], [x < 0])

In this example, the constraints restrict the applicability of the cost equations to argu-
ments with positive and negative value respectively. In the second cost equation, the
unary negation is also a function call.

If the cost equations of a cost relation are not fully mutually exclusive, this is treated as
nondeterminism, and the option which maximizes the (upper) bound will be selected by
the analysis. This is used for specifying behavior which cannot be fully defined in cost
relations, such as equality checking of lists.

As described above, calls to other functions are declared in a list within the cost equa-
tion(s). Nested function calls (where a function is called with an argument which is the
result of another function call) are contained in the same list, and new variables are
introduced for the return values. For example, a function which calls another function
on the result of the function incr (defined as in the previous example), such as

(defun incr-double (x) (* (incr x) 2)

has the cost relation

eq(incr-double(a→ r), 1, [incr(a→ x), *(x, 2→ r)], [ ])

x is a new variable which represents the return value of the call to incr, which is then
multiplied by 2. For recursive functions, the recursive call is represented in the same
way as any other function call.

+ and * are defined as basic functions. A basic function is one which does not call
other functions or itself recursively (it is “atomic”), and whose cost therefore does not
depend on that of any other function. Instead, the cost is defined explicitly as part of
the desired cost model. For the Lisp frontend, basic functions are typically Common
Lisp and ACL2 built-ins such as car, >= and eq. In the examples above, abs, incr
and incr-double are non-basic functions, as they call other functions. All non-basic
functions are compositional and built from basic ones, meaning that their cost can be
analyzed given that of the basic functions. Therefore, the cost values assigned to the
basic functions, together with the specified cost behavior of language elements such as
conditions and function calls, define the cost model of the analysis.
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2.2. Cost relations

2.2.1 Semantics of cost relations

CR-eval

eq(fn(⃗a), c, ⃗calls, ⃗constrs) n = | ⃗calls|
a⃗ = [a1, . . . , am] α = [ai 7→ xi | i ∈ 1..|⃗a|]

b⃗i = [bi,j | j ∈ 1..|b⃗i|] v⃗ =
∪n

i=1 b⃗i \ a⃗ β = [vi 7→ χi | i ∈ 1..|v⃗|]
y⃗i =

[
(α ∪ β) [bi,j ] | j ∈ 1..|b⃗i|

]
∀i ∈ 1..n

fni(y⃗i) ↓ ci where callsi = fni(b⃗i) and eq(fni(d⃗i), . . . ) ∀i ∈ 1..n

α ∪ β |= φ ∀φ ∈ ⃗constrs
fn(x1, . . . , xm) ↓ c + c1 + · · ·+ cn

The operation fn(x1, . . . , xn) ↓ c evaluates a cost relation call for a function fn with
argument values x1, . . . , xn to a cost c. Note that the evaluation (and thus the cost c) is
nondeterministic, since more than one cost equation might be applicable for some cost
relation in the evaluation. The cost of an infeasible call (i.e., with a combination of
argument values such that none of the cost equations of some subsequently called cost
relation are applicable) is undefined.

Note again that the (i⃗n → o⃗ut) syntax for function arguments is merely a syntactic
convention intended to clarify the meaning of the arguments in the context of Lisp.
The list a⃗ of predicate arguments is equivalent to the concatenation of the two, i.e.,
a⃗ = i⃗n || o⃗ut, where || is the concatenation of lists. This notation does not affect the
semantics of the cost relations, and is omitted here for simplicity.

The set of internal variables v⃗ consists of additional (new) variables other than the
arguments a⃗. β is an assignment of these variables to some integer values χi such that,
together with α, all constraints are fulfilled, and all calls have valid evaluations.

Note that the names of the argument variables of the callee cost relations for fni are not
relevant, since arguments are matched by position, not name (hence the names in d⃗i are
not necessarily equal to b⃗i).

Constraints

Cost relations may contain only linear constraints, that is, linear relations (equality, less-
or-equal and greater-or-equal) between linear expressions. Constraints φ hold under a
variable assignment α, that is, α |= φ:

CO-eq
x1 =α v1 x2 =α v2 v1 = v2

α |= x1 = x2

CO-leq
x1 =α v1 x2 =α v2 v1 ≤ v2

α |= x1 ≤ x2
CO-geq

x1 =α v1 x2 =α v2 v1 ≥ v2
α |= x1 ≥ x2

The available linear expressions are addition, subtraction, negation, multiplication by a
constant, accessing a variable of the cost equation, and a constant integer value. A linear
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expression is equal to an integer value under a variable assignment α (here written =α):

CX-add
x1 =α v1 x2 =α v2 y =α v1 + v2

x1 + x2 =α y

CX-sub
x1 =α v1 x2 =α v2 y =α v1 − v2

x1 − x2 =α y

CX-neg
x1 =α v1 y =α −v1

−x1 =α y
CX-mul

x1 =α v1 y =α c ∗ v1
c ∗ x1 =α y

CX-var
α[x] = v

x =α v
CX-const

c =α c

2.3 Measures

So far, only pure integer programs have been considered, for which a direct representation
in equivalent cost relations was described. However, this is clearly not sufficient for a
language such as Lisp, where programs make heavy use of data structures (in the case
of Lisp, cons pairs). Consider the function listlen in Listing 2, for example: clearly,
its cost is proportional to the length of its list argument.

1 (defun listlen (x)
2 (if (consp x)
3 (+ 1 (listlen (cdr x)))
4 0))

Listing 2: A function which determines only the length of a list, without regard to the
individual elements.

However, the analysis performed by CoFloCo handles only integer variables and cannot
directly deal with functions such as listlen, whose cost depends on properties of struc-
tures. Therefore, structures must be mapped to integers, which can then be represented
in cost relations and thus enables analysis of non-integer programs. This is done using
measures (also called norms) – functions which describe important characteristics of
structural values by mapping them into integers. These measures are then used within
cost relations as regular integer variables, meaning that CoFloCo does not require any
specific support for structural values. Each Lisp variable is then represented by several
measure variables in the cost relations.

For this work, we use a fixed set of three measures:

• integer

• list length (the number of cons pairs when following only the cdr)
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int(x) =



x if x is an integer
0 if x = nil
1 if x = t
sym_id(x) if x is a symbol
⊥ otherwise

length(x) =
{

1 + length(b) if x = a . b

0 otherwise

size(x) =
{

1 + size(a) + size(b) if x = a . b

0 otherwise

Figure 2.2: The formal definitions of the measures.

• structure size (i.e., the number of cons pairs within the entire structure, also called
term-size [AGG13])

The formal definitions of the measures are given in Fig. 2.2.

It is important to note that these are indeed (signed) integers, and not limited to natural
numbers, which is necessary for analyzing programs whose bound depends on signed
integers. However, the size and length measures are of course restricted to positive
values, which is explicitly enforced through constraints added to the cost relations which
describe the basic functions.

From the definitions, it immediately follows that the length is always less than or equal
to the size, since the former counts only a subset of cons pairs. nil, which is always
the second element of the last cons pair in a well-formed list, has a length and size of 0
according to the definitions, which leads to the equivalence with the usual and intuitive
understanding of list length. It is also important to note that the integer measure is
undefined for lists.

Symbols, including the booleans values t and nil, are mapped to integers by the injective
function sym_id. t and nil are always assigned the integer values 1 and 0 respectively,
while all other symbols are uniquely assigned successive natural numbers ≥ 2 by sym_id,
in the order in which they are encountered within the program (the actual value is not
relevant, as long as exactly one unique integer value is assigned to each symbol).

In this document, we use the convention of identifying the measures of a variable x by
subscripts xint, xlen and xsize for integer value, list length and size respectively. The
symbol ⊥ stands for undefined values, such as the integer value of a list.

In the following, a few examples of the representation of Lisp values by measures are
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shown (note that literal lists '(...) are equivalent to nested cons pairs):

42→ xint = 42, xlen = xsize = 0
’(5 6 7)→ xint = ⊥, xlen = xsize = 3

’(2 (3 (4 5)) 6)→ xint = ⊥, xlen = 3, xsize = 7
t→ xint = 1, xlen = xsize = 0

Some types of values, such as rational and floating-point numbers, are not supported in
CoFloCo and therefore cannot be handled. Strings are also not supported, but adding
a measure for them (such as string length) should not be an issue – strings could be
treated in a very similar way to lists, or even considered a special case of lists.

As an example, the following cost relations describe the function listlen (Listing 2)
with measures:

eq(if1(xlen → rint), 1, [consp(xlen → cint), cdr(xlen → ylen), listlen(ylen → rsint),
+(1, rsint → rint)], [cint = 1])

eq(if1(xlen → 0), 1, [consp(xlen → cint)], [cint = 0])
eq(listlen(xlen → rint), 1, [if1(xell→ rint)], [ ])

Note that this representation omits variables for irrelevant measures in order to simplify
the cost relations (Section 3.2.1 describes how a very similar step is performed as part
of the actual analysis).

2.4 Bounds
A (sound) upper resource bound for a Lisp expression e is a closed-form expression
b([aiint, ailen, aisize | i ∈ 1..n]) over the measures for the variables Θ = {a1, . . . , an} which
are visible within e, such that, for any variable assignment

α = [ai 7→ vi | i ∈ 1..n]

which is valid for e, if the Lisp evaluation of e has cost c (i.e., e ⇓α
c . . . ), then the bound

expression b evaluates to a cost value cb given the corresponding values for the measures:

cb = b([int(vi), length(vi), size(vi) | i ∈ 1..n])

such that cb ≥ c.

We assume that the calculation of bound expressions b from cost relation systems,
which is performed by CoFloCo, is correct (proofs are provided by Flores-Montoya and
Hähnle [FH14]). That is, if e ⇝Θ eq(f(. . . ), . . . ) (i.e., the expression e is translated to
a cost equation for a function f corresponding to e), then for all possible executions
f(v1int, v1len, v1size, . . . , rint, rlen, rsize) ↓ ccr of the cost relation, it holds that cb ≥ ccr.
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Thus (given the correctness of the translation steps, which is proved in Section 2.5), the
expression b calculated for the generated cost relation for f is sound, meaning that the
cost cb it evaluates to is an overapproximation of the cost c of the original Lisp code:

cb ≥ c

2.5 Translating Lisp to cost relations
In order to calculate bounds using CoFloCo, the Lisp code must be translated to cost
relations.

The translation from a Lisp expression e to a cost relation (one or more cost equations)
cr is written as e⇝Θ cr, where Θ is the set of Lisp variables which are visible within e.
In the interest of simplicity, we add cost relation variables for the entire set Θ, rather
than determining which variables are actually required (as explained in Section 3.2.1,
superfluous variables can be removed later).

mn(Θ) generates names for measure variables, i.e., cost relation variables corresponding
to the measures of the set Θ of Lisp variables: mn(Θ) = [xint, xlen, xsize | x ∈ Θ].

Correctness invariant

Of course, the behavior and cost of the original code should be soundly represented in
the result of the translation. This is formally expressed by the following invariant, which
must be shown to hold for each generated cost relation (i.e., in each translation step):

For any valid Lisp expression e, if it evaluates to a value v under cost c: e ⇓α
c v, and a

translation e⇝Θ ce where ce = eq(f(. . . ), . . . , . . . , . . . ) with Θ = names(α) exists, then
there is at least one execution of the generated cost equation ce whose cost ccr is at least
as high as the cost c of the Lisp evaluation:

f(m⃗v → r⃗v) ↓ ccr such that ccr ≥ c

with input values m⃗v (the measures of the Lisp value assignments in α) and output
values r⃗v (the measures of the return value v):

m⃗v = [int(α[x]), length(α[x]), size(α[x]) | x ∈ Θ]
r⃗v = [int(v), length(v), size(v)]

Since the cost specified by the bound expression is at least as high as the maximum
of the cost ccr of any possible execution (see Section 2.4), including the (at least) one
execution with ccr ≥ c, it follows that if this invariant holds for all steps in a translation,
the bound will also be at least as high as the cost c of the Lisp evaluation. Thus, as
stated in Section 2.4, proving the correctness of the translation also ensures that any
bound which is sound for the translated cost relations is also sound for the original Lisp
expression.
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It is important to note that in the rest of this work, some degree of simplification of
the generated cost relations (“inlining” of calls, see Section 2.6) is implicitly assumed.
Separate cost relations are generally retained only for the called bodies in function
applications, and for the branches in if statements.

2.5.1 Function application

T-app

n = | ⃗args| P [fn] = (defun fn Θ′ body) m⃗ = mn(Θ) m⃗′ = mn(Θ′)
argsi ⇝Θ eq(fi(m⃗→ s⃗i), ci, . . . , . . . ) ∀i ∈ 1..n

r⃗i = [riint, rilen, risize] ∀i ∈ 1..n r⃗ = [rint, rlen, rsize]
body⇝Θ′ eq(fn(m⃗′ → s⃗), cb, . . . , . . . )

(fn ⃗args)⇝Θ eq(app#(m⃗→ r⃗), capp, [fn(||ni=1 r⃗i → r⃗) ∪
∪n

i=1 fi(m⃗→ r⃗i)], [ ])

where ||ni is the ordered concatenation of lists, app# is a new name, and the measure
variables in r⃗ and the r⃗i are new variables. The list m⃗′ contains the cost relation variables
corresponding to the measures for each argument in the callee’s argument list Θ′.

Of course, the variables in the caller and callee cost relations need not have the same
names, hence the outputs s⃗ of fn need not be equal to the outputs r⃗ of app#.

Correctness proof

(fn ⃗args)⇝Θ eq(app#(m⃗→ r⃗), capp, [fn(
n

||
i=1

r⃗i → r⃗) ∪
n∪

i=1
fi(m⃗→ r⃗i)], [ ])

For any valid assignment α of values to argument names, and the corresponding list of
measure values

m⃗v = [int(α[x]), length(α[x]), size(α[x]) | x ∈ names(α)]

according to L-app,
(fn ⃗args) ⇓α

capp+cl+cl1+···+cln v

with body ⇓α′
cl v, there must be an evaluation of the generated cost relation function app#

with input values m⃗v, such that the cost ct of the CR evaluation is at least as high as
the cost capp + cl + cl1 + · · ·+ cln of the actual Lisp execution:

app#(m⃗v → r⃗v) ↓ ct with ct ≥ capp + cl + cl1 + · · ·+ cln

and whose output values r⃗v are equal to the measures of the Lisp return value v:

r⃗v = [int(v), length(v), size(v)]

By the correctness invariant under the assignment α, it follows from T-app that there
exist executions with correct costs for each argument:

argsi ⇓α
cli avi implies fi(m⃗v → r⃗vi) ↓ cci with cci ≥ cli ∀i ∈ 1..n
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2.5. Translating Lisp to cost relations

where r⃗vi contains the correct measures for avi for each i ∈ 1..n:

r⃗vi = [int(avi), length(avi), size(avi)] ∀i ∈ 1..n

According to CR-eval and T-app, the total cost ct of evaluating the generated cost
relation for app# is capp +cc+cc1 + · · ·+ccn (capp is the cost parameter of the generated
cost equation, cc is the cost of evaluating the cost relation of the body, and cci the cost
for argument i). Since capp is the same in Lisp and the cost equation, and the cost
correctness of the arguments (cci ≥ cli ∀i ∈ 1..n) was shown above, it only remains to
be shown that cc ≥ cl.

According to the correctness invariant, it holds that (with m⃗v′ = ||ni r⃗vi):

fn(m⃗v′ → r⃗v) ↓ cc such that cc ≥ cl

since body ⇓α′
cl v according to L-app and body ⇝Θ′ eq(fn(m⃗′ → s⃗), cb, . . . , . . . ) according

to T-app – note that names(α′) = a⃗n = Θ′ and α′ = [ani 7→ avi | i ∈ 1..n] according to
L-app.

2.5.2 Basic function application

The translation of basic function applications is again very similar to that of normal
functions, except that, rather than translating the callee’s body, a predefined cost rela-
tion for the basic function fn being called is used. These cost relations are defined in
the Section 2.5.3. Note that the application step itself has cost 0, as the cost is defined
by the basic function’s cost relation.

T-app-bf

m⃗ = mn(Θ)
argsi ⇝Θ eq(fi(m⃗→ s⃗i), ci, . . . , . . . ) ∀i ∈ 1..n

r⃗i = [riint, rilen, risize] ∀i ∈ 1..n r⃗ = [rint, rlen, rsize]
BF [fn] = ⟨n, fl, cl⟩ eq(fn(m⃗′ → s⃗), cb, . . . , . . . )

(fn ⃗args)⇝Θ eq(app#(m⃗→ r⃗), 0, [fn(||ni=1 r⃗i → r⃗) ∪
∪n

i=1 fi(m⃗→ r⃗i)], [ ])

Correctness proof With correctness of the cost relations for the basic functions being
established (see Section 2.5.3), the correctness of T-app-bf can be shown.

For a basic function fn so that BF [fn] = ⟨n, fl, clb⟩ and for any valid assignment α of
values to argument names, and the corresponding list of measure values

m⃗v = [int(α[x]), length(α[x]), size(α[x]) | x ∈ names(α)]

according to L-app-bf,

(fn ⃗args) ⇓α
clb+cl1+···+cln v where v = fl(vl1, . . . , vln)
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2. From Lisp to cost relations

there must be an evaluation of the generated cost relation function app# with input
values m⃗v, such that the cost ct of the CR evaluation is at least as high as the cost
clb + cl1 + · · ·+ cln of the actual Lisp execution:

app#(m⃗v → r⃗v) ↓ ct with ct ≥ clb + cl1 + · · ·+ cln

and whose output values r⃗v are equal to the measures of the Lisp return value v:

r⃗v = [int(v), length(v), size(v)]

According to CR-eval and T-app-bf, the total cost ct of evaluating the generated cost
relation for app# is ct = ccb + cc1 + · · ·+ ccn. The proof for the correctness of the costs
cc1, . . . , ccn of executing the argument cost relations (cci ≥ cli) is identical to that for
T-app. As shown in the proof for the basic functions (Section 2.5.3), ccb = clb, therefore
the cost is correct.

For the output values, it can be proved analogously to the case of T-app that r⃗v1, . . . ,
⃗rvn are correct. Furthermore, the correctness of the cost relations for the basic functions

is proved in Section 2.5.3, so it directly follows that there is an execution of the basic
function fn such that (with m⃗v′ = ||ni r⃗vi) fn(m⃗v′ → r⃗v), establishing the correctness of
the output values.

2.5.3 Basic function definitions

A fixed set of cost relations consisting of cost equations describing the behavior of the
basic function is added for each translation. Again, cost relations are provided here only
for a selection of basic functions, with the rest being defined similarly (in the interest of
brevity, only the relevant measures are shown):

eq(+(xint, yint → zint), c+, [ ], [zint = xint + yint])
eq(-(xint, yint → zint), c-, [ ], [zint = xint − yint])
eq(car(xsize → ysize), ccar, [ ], [xsize > 0, ysize ≤ xsize − 1])
eq(car(xsize → ysize), ccar, [ ], [xsize = 0, ysize = 0])
eq(cdr(xlen, xsize → ylen, ysize), ccar, [ ], [xsize > 0, ylen = xlen − 1, ysize ≤ xsize − 1])
eq(cdr(xsize → ysize), ccdr, [ ], [xsize = 0, ysize = 0])
eq(cons(xlen, xsize, ylen, ysize → zlen, zsize), ccons, [ ],

[zlen = ylen + 1, zsize = xsize + ysize + 1])

Correctness proof The correctness of the cost relations for the basic functions with
respect to their Lisp definitions shown in Section 2.1.4 must be verified.

For each fn so that BF [fn] = ⟨n, fl, clb⟩ and any combination vl1, . . . , vln of Lisp values
for which fl(vl1, . . . , vln) = v, there must be an execution fn(m⃗v → r⃗v) ↓ ccb of the cost
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2.5. Translating Lisp to cost relations

relation for fn (where m⃗v = [int(vli), length(vli), size(vli) | i ∈ 1..n]) such that ccb ≥ clb
and r⃗v = [int(v), length(v), size(v)].

The cost is correct in all cases, since each cost equation has the same cost as the definition
in BF and (being a basic function) calls no other functions, thus ccb = clb.

To prove that the output values are correct, it must be shown that there exists an
execution in which they are equal to the measures of the actual return value.

For + and -, this is trivial, since all relevant values are integers.

For functions acting on lists, measures must be taken into account. If x = a . b, then
according to the definitions of the measures in Section 2.3, length(x) > 0, size(x) > 0,
length(x) = length(b)+1 and size(x) = size(a)+ size(b)+1. If x = nil, then length(x) =
size(x) = 0.

The correctness of the output values for car, cdr and cons can now be easily shown.
Take car as an example, with Lisp value function

f(x1) =
{

a if x1 = a . b

nil if x = nil

(meaning that the Lisp evaluation has v = a if vl1 = a . b, and v = nil if vl1 is an
empty list), and cost relation

eq(car(xsize → ysize), ccar, [ ], [xsize > 0, ysize ≤ xsize − 1])
eq(car(xsize → ysize), ccar, [ ], [xsize = 0, ysize = 0])

It must be shown that there is an execution

car(m⃗v → r⃗v) with m⃗v = [int(vl1), length(vl1), size(vl1)]

such that r⃗v = [rvint, rvlen, rvsize] is [int(v), length(v), size(v)].

This follows from the behavior of the measures described above:

• If vl1 = a . b, then size(vl1) > 0 and the first cost equation can be applied, where
xsize > 0 and ysize ≤ xsize−1, thus in the output values, rvsize ≤ size(vl1), meaning
that there is a possible execution where rvsize = size(vl1).

• If vl1 = nil, then size(vl1) = 0 and the second cost equation can be applied,
where xsize = 0 and ysize = 0, corresponding to rvsize = 0 = size(nil) in the output
values.

The proofs for the other basic functions are analogous.
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2.5.4 if expression

if expressions are translated to a cost relation consisting of two separate cost equations,
one each for the true and false branch.

T-if

m⃗ = mn(Θ) r⃗ = [rint, rlen, rsize] r⃗x = [rxint, rxlen, rxsize]
x⇝Θ eq(fx(m⃗→ s⃗x), cx, ⃗callsx, ⃗constrsx)
a⇝Θ eq(fa(m⃗→ s⃗a), ca, ⃗callsa, ⃗constrsa)
b⇝Θ eq(fb(m⃗→ s⃗b), cb, ⃗callsb, ⃗constrsb)

(if x a b)⇝Θ eq(if#(m⃗→ r⃗), cif , [fx(m⃗→ r⃗x), fa(m⃗→ r⃗)], [rxint ̸= 0])
eq(if#(m⃗→ r⃗), cif , [fx(m⃗→ r⃗x), fb(m⃗→ r⃗)], [rxint = 0])

where if# is a new name, and the measure variables in r⃗ and r⃗x are new variables. Here
as well, the variable names in different cost relations may differ, hence the r⃗ and s⃗ are
not necessarily equal.

Correctness proof For any valid assignment α of values to argument names, and the
corresponding list of measure values

m⃗v = [int(α[x]), length(α[x]), size(α[x]) | x ∈ names(α)]

according to L-if, where x ⇓α
clx vx, either (if x a b) ⇓α

cif+clx+clb vb if vx = nil, or
(if x a b) ⇓α

cif+clx+cla va otherwise,

there must be an evaluation of the generated cost relation function if# with input values
m⃗v, such that the cost ct of the CR evaluation is at least as high as the cost cif +clx +cla
resp. cif + clx + clb of the actual Lisp execution:

if#(m⃗v → r⃗v) ↓ ct with ct ≥ cif + clx +
{

clb if vx = nil
cla otherwise

and whose output values r⃗v are equal to the measures of the Lisp return value va resp.
vb:

r⃗v = [int(v), length(v), size(v)] where v =
{

vb if vx = nil
va otherwise

By the correctness invariant under the assignment α, it follows from T-if that there exist
executions with correct costs for x and a resp. b:

x ⇓α
clx vx implies fx(m⃗v → ⃗rvx) ↓ ccx with ccx ≥ clx

y ⇓α
cly vy implies fy(m⃗v → ⃗rvy) ↓ ccy with ccy ≥ cly where y =

{
b if vx = nil
a otherwise
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where the output values contain the correct measures:

⃗rvx = [int(vx), length(vx), size(vx)]

⃗rvy = [int(vy), length(vy), size(vy)] where y =
{

b if vx = nil
a otherwise

According to CR-eval and T-if, the total cost ct of evaluating the generated cost relation
for if# is

ct = cif + ccx +
{

cca if δ |= rxint ̸= 0
ccb if δ |= rxint = 0

where δ = {rxint 7→ rvxint, . . . }

δ is the assignment of values m⃗v||r⃗v to variables m⃗||r⃗. cif is the cost parameter of the
generated cost equation, ccx is the cost of evaluating the cost relation for the condition,
and cca and ccb the cost for the true and false branch respectively. cif is the same in
Lisp and the cost equation, and the cost correctness of the branches was shown above.

Therefore, it only remains to be shown that the correct cost equation for if# is guar-
anteed to be evaluated, so that ccy ≥ cly and the output values are correct, i.e.,
⃗rvy = [int(v), length(v), size(v)] (which is equivalent to r⃗v = ⃗rvy) for y = a resp. y = b.

To do so, it must be shown that the cost equation for the false branch is guaranteed to
be evaluated if vx = nil, and the one for the true branch otherwise:

• If vx = nil, then according to the correctness invariant, rvxint = 0 in some execu-
tion, therefore δ |= rxint = 0 according to CO-eq, CX-var and CX-const, and thus
ccb ≥ clb and r⃗v = r⃗vb according to CR-eval.

• Otherwise, however, the one unsoundness in this translation is encountered: δ |=
rxint ̸= 0 may not be fulfilled for assignments α under which vx = 0 (i.e., the
condition x evaluates to the integer value 0), since in this case, the correctness
invariant only guarantees that there is an execution of fx such that rvxint = 0
(which, in turn, follows from the definition of measure int in Section 2.3, specifically
that both int(0) = 0 and int(nil) = 0). As a result, only the wrong cost equation
(the one for the false branch, with cost ccb and output values r⃗vb) will provably be
evaluated when executing the generated cost relations. This can possibly result in
an incorrect cost result if the cost equation for the true branch is not evaluated,
such as when clb < cla.

However, as we argue in Section 3.3 (where this problem is explained further), it
is unlikely to occur in usual Lisp code. Furthermore, in Section 7.1.4, we propose
a way of avoiding this issue and ensuring complete soundness of the analysis.
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2.5.5 let expression

T-let

n = | ⃗defs| Θ′ = Θ ∪|| [dni | (dni dei) ∈ ⃗defs] m⃗ = mn(Θ) m⃗′ = mn(Θ′)
dei ⇝Θ eq(fi(m⃗→ s⃗i), ci, . . . , . . . ) where defsi = (dni dei) ∀i ∈ 1..n

r⃗i = [riint, rilen, risize] ∀i ∈ 1..n r⃗ = [rint, rlen, rsize]
body⇝Θ′ eq(fn(m⃗′ → s⃗), cb, . . . , . . . )

(let ⃗defs body)⇝Θ

eq(let#(m⃗→ r⃗), clet, [fn(m⃗ ||
n

||
i=1

r⃗i → r⃗) ∪
n∪

i=1
fi(m⃗→ r⃗i)], [ ])

Correctness proof Analogous to T-app, with a minor difference being that the list
Θ′ of new names is appended to Θ rather than completely replacing it.

2.5.6 Variable reference

T-var x ∈ Θ
x⇝Θ eq(var#(mn(Θ)→ xint, xlen, xsize), cvar, [ ], [ ])

where var# is a new name, and xint, xlen and xsize are among the measure variables
mn(Θ).

Correctness proof Cost correctness is trivially fulfilled, as both the Lisp rule L-var
and the cost equation generated in T-var have constant cost cvar, and the cost equation
has no calls.

The correctness of the output values also arises directly from the definitions: for any α
where x ⇓α

cvar v with v = α[x] according to L-var, and a cost relation call var#(m⃗v → r⃗v)
where

m⃗v = [int(α[x]), length(α[x]), size(α[x]) | x ∈ names(α)]

x ∈ Θ = names(α) and thus xint, xlen, xsize ∈ mn(Θ). r⃗v = [int(v), length(v), size(v)]
where v = α[x] then follows immediately.

2.5.7 Literal

T-lit
m⃗ = mn(Θ) r⃗ = [rint, rlen, rsize]

x⇝Θ eq(lit#(m⃗→ r⃗), clit, [ ], [rint = int(x), rlen = length(x), rsize = size(x)])

where lit# is a new name, and int, length and size are the measures defined in Section 2.3,
each of which returns an integer value. The measure variables rint, rlen and rsize are new
variables.
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Correctness proof The cost is again trivially correct, as both the Lisp rule L-var and
the cost equation generated in T-var have constant cost clit, and the cost equation has
no calls.

For the Lisp evaluation v ⇓α
clit v, there must be a corresponding cost relation call

lit#(m⃗v → r⃗v) such that r⃗v = [int(v), length(v), size(v)]. Note that no variables are
accessed, so the values in α and m⃗v are irrelevant.

From the constraints rint = int(x), rlen = length(x), rsize = size(x) in the cost equation
for lit# (generated in T-lit), rules CO-eq, CX-var and CX-const in conjunction with
CR-eval, it follows that r⃗v = [int(x), length(x), size(x)], and since x = v, the condition
is fulfilled.

2.6 Simplification
Cost equations can be simplified by “inlining” calls, that is, removing a call from a
cost equation, placing the callee’s calls and constraints directly within the caller cost
equation, and renaming the variables:

S-call

fn′(x1, . . . , xn) = callsm eq(fn′(x′
1, . . . , x′

n), c′, ⃗calls
′
, ⃗constrs′)

callss = [calls1, . . . , callsm−1, callsm+1, . . . , callsn] ∪ ⃗calls
′
[x′/x]

⃗constrss = ⃗constrs ∪ ⃗constrs′[x′/x]
eq(fn(A), c, ⃗calls, ⃗constrs) 99K eq(fn(A), c + c′, ⃗callss, ⃗constrss)

where [x′/x] renames variables in x′ to the corresponding ones in x.

Note that the simplification may result in multiple simplified cost equations being gen-
erated, if there are multiple cost equations in the callee’s cost relation (as is the case
for if, which is always translated to a cost relation with two cost equations as shown in
Section 2.5.4).

The simplification step 99K does not affect the cost or output values, and its correctness
follows directly from the semantics of cost relations (see CR-eval in Section 2.2.1).

According to CR-eval, evaluating a callee fi(Bi) implies (through the argument variables
Yi) equality of the callee’s argument variables Di and the caller’s variables Bi which fi

is called on. Since [x′/x] in the simplification renames the variables in Dm = [x′
1, . . . , x′

n]
to Bm = [x1, . . . , xn], this equality is preserved.

For the cost, it therefore holds that

c + c1 + · · ·+ cn = (c + c′) + (c ⃗calls′ + c1 + · · ·+ cm−1 + cm+1 + · · ·+ cn)

where cm = (c′ + c ⃗calls′), and c ⃗calls′ is the sum of the costs of evaluating the calls in ⃗calls
′
.

The argument values of the call are correct as well, since (as demonstrated above) the
variables are correctly renamed and thus the values are preserved.
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2.7 Type-dependent bounds
Lisp is not statically typed, and as a consequence, arguments passed to functions may
generally be of any type. Function behavior may be type-dependent, or certain ar-
gument types may simply trigger an error resulting in the evaluation being aborted.
Our approach can obtain correct results for functions with type-dependent behavior
(where the type is not known) by calculating the bound as the maximum of the op-
tions, and using different measures to express the respective cost. As an example, see
type-dependent in Listing 3, which calculates a factorial if the argument is an integer,
and the list length otherwise. Thus, the cost depends on the integer value of x (if it is
an integer) or its list length (if it is a list). The bound calculated for type-dependent
is max([5 ∗ xlen, 1, nat(xint) ∗ 6 + 1]) + 6.

1 (defun factorial (n)
2 (if (> n 0)
3 (* n (factorial (- n 1)))
4 1))
5

6 (defun type-dependent (x)
7 (if (integerp x)
8 (factorial x)
9 (listlen x)))

Listing 3: The cost of type-dependent depends on the type of x, i.e., whether it is an
integer or a list. The definition of listlen is given in Listing 2.

2.8 Cost models
The previous sections, such as the translation specification in Section 2.5, were kept very
general, with cost parameters such as capp for the cost of a function application, or ccar
for the basic function car.

However, as explained previously (see Chapter 1), the cost metric used in this work
counts only the number of evaluation steps (function calls and if decisions). Despite its
simplicity, this metric is sufficient for describing how often any given part of the program
is executed: since conditional branches are translated as separate cost relations, each
cost equation corresponds to an execution of all calls it contains.

Thus, the core problem of counting the number of recursive calls of functions in a func-
tional program has been solved. Based on this foundation, the analysis could be ex-
tended to other kinds of resource metrics (such as peak memory consumption, number
of memory accesses, number of times a specific function is called, etc.) with relative ease.
The only necessary modification would be to specify the costs for basic functions and
syntactic constructs (if et al.).
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CHAPTER 3
Implementation

The previous chapter described the basics of cost relations, and how they are generated
from Lisp programs. In the following, implementation details of the analysis, including
specific issues and solutions, will be discussed.

3.1 Preprocessing

The preprocessing step uses existing ACL2 code (specifically a component of the CCG
termination analyzer) to preprocess Lisp input into the simplified (or normalized) form
described in Section 2.1.1. This step removes comments and whitespace, expands macros,
and converts cond blocks to nested if statements. The resulting code is easier to parse
and process, as it is no longer necessary to handle various different control structures,
let forms etc. ACL2 also checks for certain kinds of errors, such as use of undefined
variables and functions. Given that the code performing this preprocessing step is an
integral part of ACL2, a mature and well-tested application, we assume that it correctly
preserves the semantics of the program (and thus its cost).

ACL2 input is structured into “books” (essentially Lisp files), which contain functions,
proof obligations etc.. Books include both extensive libraries and several collections of
actual programs and models. The books included with ACL2 have previously been used
as a benchmark for the CCG termination analysis, which is integrated in ACL2.

After the preprocessing step, the generated simplified Lisp code is converted to cost
relations for CoFloCo, as described in Section 2.5.

3.1.1 Locally defined functions

Books often include other books, which causes function definitions from the included
books to appear in the preprocessed output. If those same functions were counted
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eq(equal(aint, 0, 0, bint, 0, 0→ 1, 0, 0), 1, [ ], [aint = bint])).
eq(equal(aint, 0, 0, bint, 0, 0→ 0, 0, 0), 1, [ ], [aint + 1 ≤ bint])
eq(equal(aint, 0, 0, bint, 0, 0→ 0, 0, 0), 1, [ ], [aint ≥ bint + 1])
eq(equal(aint, alen, asize, bint, blen, bsize → rint, 0, 0), 1, [ ], [0 ≤ rint, rint ≤ 1])

Figure 3.1: Cost relation for Lisp’s built-in equal function. The first three cost equations
are applicable if both arguments are integers. The input arguments a and b of the last
cost equation are unconstrained, meaning that it applies in all other cases. In this
equation, the result rint is not specified precisely (it is either 0 or 1), corresponding to
the unknown result of the comparison.

separately for each file they are included in, they would be counted multiple times. Since
our experiments are intended to determine for which percentage of functions within the
benchmark our analysis can calculate bounds, this would distort the results. In order to
avoid such repetitions, only those functions which are defined “locally” (i.e., directly in
the file being analyzed) should be counted.

In the preprocessing step, annotations are added for those functions, and the translation
adds entry point declarations for the corresponding cost relations. CoFloCo then treats
only cost relations with such declarations as entry points for its analysis, meaning that
bounds are reported only for those cost relations.

3.2 Issues and solutions

3.2.1 Program complexity

A general problem is that transformed programs can get very complex. Typically, this
is due to a combinatorial explosion of possible execution paths, especially if there is a
large number of conditional branches, or many cost equations for a cost relation.

An example of a complex cost relation is equal, which performs a deep equality compar-
ison on two values of arbitrary type. This means that, within our analysis, it is possible
to reliably determine equality only if the integer values are the same (since the measures
cannot express the contents of a structure). Non-equality is guaranteed if either the
integer values or the length/size measures are different. Hence, there are four different
cases (i.e., cost equations), as shown in Fig. 3.1.

Therefore slicing (see Section 3.2.1) – and more generally simplification – is important
for reducing the computational complexity of the analysis. Some simplifications are
already performed as part of the translation to cost relations. However, simplification
is also performed directly in CoFloCo, which prunes paths which are made infeasible
by earlier constraints. Generally, while improvements to CoFloCo have resolved many
problematic cases, the complexity is often inherent and not easily (or at all) reduced.
Such input cases can result in the creation of large numbers of cost equations (thousands)
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and intermediate variables (tens of thousands), which severely impact the running time
of the analysis (see Chapter 4 for details on the analysis process).

Functions containing nested conditional blocks with type checks are a frequently occur-
ring example of high path complexity. The large number of branches is due to the lack
of strong typing in Lisp: for functions where behavior depends on the type of the argu-
ment(s), such as equal, types must be checked explicitly. In fact, in the context of the
analysis, it is only known whether length/size is 0 or greater than 0, i.e., whether the
argument is an atom or a list.

A significant contributor to complexity is the inclusion of unneeded measure variables
in cost equations. The approach used for our analysis depends on “guessing” one or
more measures (here, just a constant set) and adding corresponding variables to cost
equations, which are then passed to CoFloCo for analysis. Generally speaking, the more
variables need to be processed, the higher the complexity of the analysis task, as the size
of the constraint system increases accordingly. Slicing can remedy this effect to some
degree, as described in Section 3.2.1. Another technique, based on the dynamic addition
of required measures according to inferred type information, is proposed in Section 7.1.1.

Slicing

As described in the previous section, the effort required for calculating bounds increases
with the number of variables, many of which may not actually be helpful for calculating
a bound. In order to reduce the impact of this issue, simple slicing (variable elimination)
is performed during the translation. Unused and undefined variables are eliminated by
propagating information on “important” variables (i.e., those which are actually used in
the cost relation) and then removing all others. This method is very simple and does not
add significant computational effort. Furthermore, slicing does not affect the soundness
or precision of the final cost results (bounds), as it only removes variables which are
unused/undefined, and thus reduces the size of the problem CoFloCo has to handle.
More advanced constant propagation might further add to the advantages gained by
slicing, but this has not been investigated yet.

3.2.2 Complexity of bounds

In practical usage, issues remain even where bounds are successfully calculated. The
bound expressions calculated by CoFloCo are sometimes very complicated, especially
for functions with many indirect function calls. Such expressions are far too large to be
easily comprehended, while the degree of precision they represent is also unlikely to be
meaningful for use cases where a human needs to interpret the bound. On the other
hand however, while the asymptotic complexity is reported separately (and is inherently
very simple), it might be insufficiently precise for making useful comparisons. While
CoFloCo does perform some arithmetic simplifications on the bounds, this would have
to be extended to produce truly human-readable bounds (see Section 7.2 for additional
discussion).
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3.2.3 Distinction between input and output variables

As mentioned in the definition of resource bounds in Chapter 1, bounds should be ex-
pressed over the arguments of a function only – a bound expression which is dependent on
the function’s return value would not be useful, as this value cannot be easily determined
in general.

However, the strict distinction between arguments and return values which exists in
most programming languages (including Lisp) is not inherent to cost relations, in which
functions are represented as predicates (the notation used in this work, where inputs and
outputs are separated by an arrow, is merely a visual representation intended to assist the
reader). It is therefore necessary to explicitly declare which variables in a cost equation
are inputs and outputs respectively, using a separate declaration (input_output_vars).
For Lisp, this is straightforward, since functions have only one output value (the return
value) with its three corresponding measure variables. In the presence of such a declara-
tion, CoFloCo will report infinity if it cannot determine a bound which does not include
the output arguments.

3.2.4 Explicit determinism

Since side effects are not possible in the simplified input language, all functions are de-
terministic. However, as CoFloCo is not limited to side-effect-free languages, it cannot
assume determinism. This is problematic for cost relations which are not fully determin-
istic, i.e., whose cost equations are not mutually exclusive (see Section 2.2). In this case,
CoFloCo does not conclude that two calls to the same function with the same arguments
will return the same result.

Consider a trivial example such as (if (integerp x) (integerp x) 5). Since the
cost relation for integerp is nondeterministic, the call (integerp x) in the condition
could return t, so that the true branch will be evaluated, but then the second call to
integerp might return nil, which is clearly impossible according to the Lisp semantics.

This issue can be remedied to some degree by explicitly enforcing identical behavior of
identical calls within cost relations. To do so, the output measures of all calls to the
same function and with identical input arguments within one cost equation are unified
by adding an explicit equality constraint to the cost equation. However, this does not
cover all such cases, as it does not span across different cost relations. This is acceptable
however, since this issue does not cause bounds to be unsound, although it may prevent
them from being found.

3.2.5 Relations between function calls

A general problem of cost relations is that they cannot directly represent semantic rela-
tions between different cost relations. For example, the sum of the size measures for the
results of two calls (car a) and (cdr a) never exceeds that of the common input argu-
ment a. This fact follows from the behavior of those functions as defined in Lisp/ACL2
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in conjunction with the definition of the size measure as given in Fig. 2.2. However, the
cost relations contain only the information that the size decreases (rsize < xsize), but the
relationship between the two cost relations is not represented:

eq(car(x→ r), 1, [ ], [xlen ≥ 1, rsize < xsize])
eq(cdr(x→ r), 1, [ ], [xlen ≥ 1, rlen = xlen − 1, rsize < xsize])

CoFloCo is not able to automatically identify this relationship either. Therefore, this
information must be supplied externally, in the form of constraints added to the cost
relations which contain the function calls.

In order to resolve this common and straightforward instance of the more general is-
sue, a very simple heuristic is applied. It searches for cost relations which contain, for
some input argument x, one call to (car x) and another to (cdr x). In the bench-
mark, this is a frequently occurring pattern among functions with multiple recursion
(see Section 3.2.6), in the form of what is essentially tree iteration, where the termi-
nation condition is (endp x). A (synthetic) example of such a function is shown in
Listing 4.

Where such a case is found, we add the constraint ysize + zsize + 1 = xsize (where y is
the car and z the cdr of x), which corresponds precisely to the definition of the size
measure given in Section 2.3. The corresponding cost measure is

eq(f(xsize, . . . ), c, [car(xsize → ysize), cdr(xsize → zsize), f(ysize, . . . ), f(zsize, . . . )], [ ])

to which the constraint ysize+zsize+1 = xsize is added (for the sake of simplicity, variables
for the other measures are omitted here).

However, this detection is purely syntactic and thus fails to detect all cases of this car-
cdr relationship, as well as more complex relations such as in the evens-odds merge sort
implementation shown in Listing 7.

3.2.6 Multiple recursion

Such inter-function relations are particularly important for multiple recursion, since in
this context, the dependencies between the arguments passed to the recursive functions
determine the asymptotic complexity.

Multiple recursion means that more than one recursive call may be made within one
invocation of a function. An example of such a function is shown in Listing 4. We define
recursion of degree n (or n-ary recursion) as follows: for all possible execution paths
within a single invocation of a function f , that same function f is called at most n times
in any path. A formal definition of the recursion degree is given in Fig. 3.2.

Following this definition, a multiply recursive function has a degree n > 1. This is an
important difference to single recursion (n = 1), and the reason why extensions to the
usual methods are required: it is no longer possible to simply define the bound as the
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1 (defun treesum (tr)
2 (cond
3 ((consp tr)
4 (+ (treesum (car tr)) (treesum (cdr tr))))
5 ((endp tr) 0)
6 (t tr)))

Listing 4: A binary recursive algorithm which recurses through the given tree and sums
up the (integer) leafs. For each call to treesum, two recursive calls are made, where one
call receives the left branch (i.e., the car), and the other the right one (i.e., the cdr).

rd(f, var) = 0
rd(f, literal) = 0

rd(f, (fn ⃗args)) =
{

1 if fn = f

0 otherwise
+

∑
a∈ ⃗args

rd(f, a)

rd(f, (if c a b)) = rd(f, c) + max(rd(f, a), rd(f, b))

rd(f, (let ⃗defs body)) = rd(f, body) +
∑

(dn de)∈ ⃗defs

rd(f, de)

Figure 3.2: Algorithm for determining the recursion degree rd(f, b) of a given body b of
(simplified) Lisp code with respect to a function f .

number of times a measure can decrease/increase along a single sequential control flow,
as is done in difference constraint-based systems such as Loopus [SZV15]. Instead, it is
necessary to consider that a call may subsequently branch into multiple recursive calls.

In order to calculate bounds for multiply recursive functions, it is necessary to analyze
the relations between the arguments of the recursive functions. The detection of car
and cdr relationship can enable this in some cases. For example, it enables analysis of
quicksort with a single partition function (Listing 5), although the result is a bound over
the size, not the length1.

If information on the relations between function calls is explicitly stated in the cost
relations, CoFloCo can use this information for calculating the bound. If the arguments
which control the recursion depth are non-overlapping – more specifically, if the sum
of their lengths/sizes is at most that of the corresponding argument passed into the
caller – the complexity is polynomial, assuming that each recursive call has itself only
polynomial cost. This follows directly from the master theorem (see, e.g., [Cor+01]). In
Listing 4, treesum fulfills this property: the car and cdr do not overlap (the results
are separate parts of the input structure), and a bound which is linear in terms of the

1While the two are equal for lists of integers (which is perhaps the most frequent use of sorting
functions), this is not true in the general case, meaning that the bound may be imprecise.
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1 (defun int-partition (p x)
2 (if (endp x)
3 nil
4 (let ((parts (int-partition p (cdr x))))
5 (if (>= (car x) p)
6 (cons (car parts) (cons (car x) (cdr parts)))
7 (cons (cons (car x) (car parts)) (cdr parts))))))
8

9 (defun int-qsort-partition (x)
10 (cond ((endp x)
11 nil)
12 ((endp (cdr x))
13 (list (car x)))
14 (t (let ((parts (int-partition (car x) (cdr x))))
15 (append (int-qsort-partition (car parts))
16 (cons (car x)
17 (int-qsort-partition (cdr parts))))))))

Listing 5: A quicksort implementation using a single call to a partition function which
splits the input list into values less than respectively greater or equal than the pivot
element. With added constraints connecting the results of car and cdr, as described
in Section 3.2.5, a bound over the size of the input x (i.e., xsize) can be determined for
int-qsort-partition.

size of the tree can be obtained. This information is stated explicitly as a constraint, as
described in Section 3.2.5 above.

1 (defun treesum (tr)
2 (cond
3 ((consp tr)
4 (+ (treesum (cdr tr)) (treesum (cdr tr))))
5 ((endp tr) 0)
6 (t tr)))

Listing 6: A definition which is almost identical to the one in Listing 4, but where both
recursive calls receive the cdr of the input as the argument.

Listing 6 shows an example where this is not the case: compared to treesum in Listing 4,
the minor change of passing (cdr x) to both recursive calls completely changes the
asymptotic cost of the function. Clearly, the sum of the arguments of the recursive calls
is potentially greater than the input argument – indeed, in the worst case, the sum may
almost double in each recursive call. This is easy to see when considering a list input, i.e.,
a degenerate tree having only right branches: for each element of the list, two recursive
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function calls occur, each of which receives the rest of the list as an argument. Rather
than being linear in terms of the size, the cost is exponential.

Proving non-increasing sum of arguments

However, as mentioned in Section 3.2.5, CoFloCo cannot always determine such relations
between multiple calls. While the simple car/cdr heuristic is enough for many multiply
recursive functions, there are many other cases where it is not sufficient (although it
may still be required). Divide-and-conquer algorithms where the division step is more
involved (such as merge sort) are one instance of this issue. Listing 7 shows a specific
example of an integer-only adaptation of a merge sort function2 contained in the bench-
mark suite. In such cases, the hardest task is not necessarily to analyze the behavior
of the divide step (i.e., the recursive calls) but rather the conquer (here “merge”) step,
whose cost depends on the recursive calls’ return values. Nonetheless, explicit relations
between the recursive arguments can also aid CoFloCo in analyzing the return values.

1 (defun int-merge2 (x y)
2 (if (endp x)
3 y
4 (if (endp y)
5 x
6 (if (< (car x) (car y))
7 (cons (car x)
8 (int-merge2 (cdr x) y))
9 (cons (car y)

10 (int-merge2 x (cdr y)))))))
11

12 (defun int-msort (x)
13 (if (endp x)
14 nil
15 (if (endp (cdr x))
16 (list (car x))
17 (int-merge2 (int-msort (evens x))
18 (int-msort (odds x))))))

Listing 7: Modified integer-only merge sort function. int-merge2, which merges two
sorted lists such that the result is sorted, has linear cost in terms of the lengths of the
two input lists. The bound calculated for int-msort is quadratic in terms of the list
length xlen (note that bounds such as xlen log xlen cannot be calculated).

For such multiple recursion patterns, we use a different and more methodical approach.
Here, we attempt to prove that the sum of the measures for the arguments passed to

2msort in sorting/msort.lisp
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eq(if2(xlen → rlen), 1,

[cdr(xlen → xslen), endp(xslen → cint),
evens(xlen → evlen), int-msort(evlen → evslen),
odds(xlen → odlen), int-msort(odlen → odslen),
int-merge2(evslen, odslen → rlen)],
[xlen ≥ 0, rlen ≥ 0, ceint = 0, cint = 0])

eq(if1(xlen → rlen), 1, [endp(xlen → cint), if2(xlen → rlen)], [cint = 0])
eq(int-msort(xlen → rlen), 1, [if1(xlen → rlen)], [ ])

Figure 3.3: Simplified cost relation for the path of int-msort in which the two recursive
calls occur. Irrelevant variables, as well as the non-recursive cost equations, have been
omitted.

the recursive calls is less than or equal to the corresponding input measure. If this is the
case, a constraint stating this fact is added to the cost equation containing the recursive
calls. With the aid of this constraint, it becomes possible for CoFloCo to derive a bound
without having to prove this property during the bound analysis (assuming, of course,
that such a bound exists and that its calculation succeeds). This proof step must be
performed for each argument (which is matched by position) and for each measure. Note
that this approach works even if the arguments of the recursive calls are derived from
the input arguments in a complex semantic rather than purely structural way, as long
as the condition is met. Of course, this method is also not limited to binary recursion,
and can in principle handle any degree of recursion without modifications.

Continuing with the example, the cost relation for the most interesting part of the
int-msort function – the branch where the two recursive calls occur – is given in Fig. 3.3.
In order to produce a bound depending only on the length of x, it is necessary to
show that the combined length of the recursive call arguments (i.e., the number of
even and odd elements) is not greater than the input argument. This is expressed by
the constraint evlen + odlen ≤ xlen, the validity of which must be proved in order to
ensure that the resulting bound will still be sound. Conditions which must be met in
order to reach the recursive call sites are added as preconditions to the proof. This is
important because such conditions carry important information on the context in which
the recursive functions are called, and may be necessary for the proof to succeed.

For proving that the sum of the measures in the branches in non-increasing, we use
the ACL2 theorem prover. Since ACL2 is intended for (semi-)automatically proving
properties of Lisp programs, it is equipped with mechanisms to perform complex proofs
involving induction [KM97] and can apply various proof heuristics without user inter-
action. ACL2 is started once for each input file, and the definitions of all functions
in that file are added (with termination proofs disabled, as they are not needed here).
Failures, e.g., due to function redefinitions, are silently ignored. Where multiply recur-

39



3. Implementation

sive functions are encountered during the translation to cost relations, proof obligations
are constructed and submitted to the prover, which returns whether or not the proof
succeeded.

One drawback of this method is that due to relying on ACL2, it is limited to one
specific input language (Lisp). If the proofs were instead attempted directly on already
generated cost relations, this limitation would be removed, and the method would be
compatible with CoFloCo frontends for any language, without further modifications.
Since the cost relations are self-contained logical specifications, the proof obligations
could in principle be verified using general-purpose automated theorem provers. However,
this would require support for recursive definitions and automatic inductive reasoning, for
which the current state of the art is not yet sufficient. Furthermore, the cost relations do
not specify the complete semantics of Lisp (see, e.g., explicit determinism in Section 3.2.4
and the relation between car and cdr in Section 3.2.5). While the abstraction is sound,
it may not be precise enough in many instances.

For int-msort (Listing 7), the following Lisp code is generated as a proof obligation
for ACL2 (note that the conditions are inverted, as the recursive calls are located in the
false branches of the two if blocks):

(implies (and (not (endp x))
(not (endp (cdr x))))

(<= (+ (len (evens x)) (len (odds x)))
(len x)))

If the proof succeeds, the constraint evlen + odlen ≤ xlen is added to the cost equation,
thus explicitly stating the property which was just proven. Otherwise, no modification
is made, and the translation proceeds as normal. An important point for this heuristic
is that both positive and negative results should be obtained very quickly – as part of
the translation to cost relations, it is intended as an optimistic and speculative attempt,
but not a critical part of the analysis. Therefore, failure to prove a constraint, as well
as any kind of error, is again simply ignored.

With the added constraints, CoFloCo can calculate a bound for the int-msort example.
The bound has quadratic complexity in terms of xlen, which is of course not very precise
– the actual complexity of merge sort being O(n log n) – but the best result which can be
obtained within the context of our analysis, which does not support logarithmic bounds.
Another important point for accuracy is that the bound does not depend on any other
measure, specifically not on xsize.

It is important to note that this analysis currently does not work across different cost
relations, e.g., where one recursive call is located within an if branch and another outside
of it. However, this is merely for technical reasons and should not pose any conceptual
difficulties.
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As currently implemented, this method also cannot handle cases where the bound or
termination for such a multiply recursive function depends on more than one argument
(e.g., on the difference between two arguments), as proofs are generated only for single
arguments. However, this is a decision intended to reduce the number of proofs rather
than a conceptual limitation, and it is doubtful that such cases occur in significant
numbers within the benchmark.

3.3 Remaining discrepancies and inaccuracies

Certain issues arise due to the way ACL2 implements specific functions and macros.
Since ACL2 is a theorem prover, its goal is to prove or disprove logic statements ex-
pressed in Lisp code, whereas the cost of executing this code is generally irrelevant.
Therefore, it might be advantageous to generate more or different code than a real Lisp
implementation would have to run, in order to simplify proofs. On the other hand, our
tool is quite the opposite, and as a result, the calculated asymptotic cost might be dif-
ferent from the asymptotic execution cost in a typical list environment. To work around
these discrepancies, we generally retained the definitions from ACL2, but used modified
definitions/semantics where the difference was too large.

or The or macro3 is a notable example: or is short-circuiting in Common Lisp, re-
turning the first argument which is different from nil, and preventing execution of any
further ones. ACL2 expands (or x y) to (if x x y), such that x is executed twice if
its result is true. This leads to issues especially if x is a recursive function call, mean-
ing that the two calls will cause the function to be multiply recursive. However, this
conforms neither to the intent of the programmer, nor to how a usual Common Lisp
environment would execute this code, and therefore results in a (possibly asymptotic)
overestimation of the actual cost.

We initially attempted to modify ACL2’s implementation of the or macro, but this
proved technically problematic, so instead we modified the translation routine: where
an if branch contains a call to the same function and with the same arguments as the
condition, the code is only counted once, and the result is reused.

A somewhat similar problem occurs with return-last4, which returns the value of its
last argument. The other argument may have side effects (such as timing an evaluation or
printing output) or contain faster code for execution rather than theorem proving. For
example, consider the following call, where fast-union uses an asymptotically faster
algorithm than union (the flag 'mbe1 indicates that the second argument should be
executed, the last one used for proving):

3http://www.cs.utexas.edu/users/moore/acl2/v7-0/manual/index.html?topic=COMMON-LISP_
___OR

4http://www.cs.utexas.edu/users/moore/acl2/v7-0/manual/index.html?topic=ACL2___
_RETURN-LAST
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(return-last 'mbe1 (fast-union x y) (union x y))

We chose to modify uses of return-last, such that only the last argument is considered
for the analysis. Given that our cost model and analysis do not permit side effects, and
that we generally focus on the (easier to analyze) logic mode, this is advantageous. On
the other hand, counting the cost of both arguments of return-last would distort the
result, such as by introducing unintended multiple recursion in some instances.

Basic functions

Basic functions are fundamental for describing the semantics of Lisp functions, and their
specification has a significant impact on the performance and even correctness of the
bound calculation. For our analysis, we assigned a constant cost of 1 execution step to
all basic functions. However, it is important to note that the actual cost may depend
on the implementation – for at least some of these functions, an execution in a real
Lisp environment may not actually take a constant number of steps. As an example,
the length function is defined as a basic function with cost 1 in our definitions, but
according to ACL2’s definition of length5,6, the cost is linear in terms of the length of
the argument.

It is also important to note that the definition of the “execution step” metric is not neces-
sarily proportional to execution time. For example, arithmetic operations are considered
to have constant cost, even though ACL2 supports arbitrary-length integers, meaning
that these operations take non-constant time. While it would be possible to represent
this as well (e.g., for an addition (+ a b), the cost could be max(log2 a, log2 b)), our im-
plementation cannot handle logarithms directly, and the resulting bounds would be hard
to understand. In the interest of simplicity and clarity, we therefore chose the execution
step metric, which defines the basic arithmetic operations as taking only a single step.

Further issues arise due to functions which cannot be properly modeled outside of a Lisp
environment (e.g., internals like gc$, which invokes the garbage collector). We leave the
behavior of such functions undefined and assume that they do not occur in the input.

Error states

Error states (both from explicitly triggered errors such as calls to the (pseudo-) function
hard-error7, and function calls with invalid arguments, such as calling cdr on an in-
teger) are ignored. It is assumed that they do not occur in a well-defined function call
(in ACL2, any such errors cause the execution to abort immediately). Basic function

5http://www.cs.utexas.edu/users/moore/acl2/v7-0/manual/index.html?topic=COMMON-LISP_
___LENGTH

6The issue here is that the ACL2 length function performs an additional check for strings, which
cannot be correctly modeled by our analysis.

7http://www.cs.utexas.edu/users/moore/acl2/v7-0/manual/index.html?topic=ACL2___
_HARD-ERROR
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constraints are defined such that they are undefined for invalid inputs, which means that
those inputs are not possible within the constraint system.

Assuming that an error does not occur should result in an overestimate of the resource
cost, and therefore in a sound bound. Since execution aborts when an error occurs, less
code is executed than otherwise, meaning that the cost according to the execution step
metric is lower.

On the other hand, determining the precise cost of a program run which aborts with
an error would be quite complex. While such a program has clearly consumed a certain
amount of resources until that point, there are difficulties in determining the total cost.
For one, possible cleanup costs would have to be considered (although these costs could
also be considered internal to the runtime environment, and not part of the code being
analyzed). More importantly however, the exit-on-error behavior is different from the
usual side-effect-free eager execution (since it skips part of the program), and would
therefore require special handling. Therefore, we do not attempt to calculate this cost
either.

Interpretation of boolean values

As mentioned previously in Section 2.1, for the purpose of boolean checks (such as in
if conditions and the not function), Lisp considers any value other than nil to be true
[McC65]. However, expressing this in cost relations is problematic due to the involvement
of types. Since we use the same measure for integers and symbols and do not have any
way of indicating the type of a function argument, we cannot distinguish between them.
Specifically, it is not possible to definitively exclude the possibility of a variable being
an integer. This can be done for the length and size measures (they are 0 if the value
is not a list), but there is no such special value for integers, since the valid range of the
integer measure extends over the entire range of the integer used to represent it. Thus,
bounds are potentially unsound if the distinction between the integer value of 0 and the
symbol nil is critical for determining a bound (see Section 2.5.4).

Listing 8 shows a synthetic example of such a function: if the argument x is an integer,
it counts down to −10. However, CoFloCo will assume that the loop already terminates
when x reaches 0, since this is indistinguishable from nil according the cost relation for
not:

eq(not(aint → rint), 1, [ ], [aint = 0, rint = 1])
eq(not(aint → rint), 1, [ ], [aint = 1, rint = 0])

Therefore, the recursion as modeled by the cost relation stops earlier than in the actual
program, resulting in an unsound upper bound.

We consider such a case to be unlikely, as there are few reasonable situations where a
value which could be either a number of nil is used in this way to control a recursive
function. The above example was artificially constructed, and we did not find any similar
cases in the benchmarks through cursory inspection. Furthermore, a solution for this
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1 (defun int-bool-loop (x)
2 (+ 1 (cond ((not x) 0)
3 ((> x -10) (int-bool-loop (- x 1)))
4 (t 0))))

Listing 8: A synthetic example where deriving a sound bound would require being able
to distinguish between an integer with value zero (which is considered as true in the
context of a condition) and nil (which is false). As a result, the bound generated by
our analysis reflects a maximum of only x recursive calls, whereas in reality, up to x + 9
recursive calls may be made.

problem (based on adding the type of each value as an additional measure) is proposed
in Section 7.1.4 (Page 79).
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CHAPTER 4
CoFloCo

CoFloCo is a bound analysis system due to Flores-Montoya and Hähnle [FH14; Flo16].
It is originally based on COSTA [Alb+07]. CoFloCo solves a set of cost relations (which
encode a program) in order to obtain cost bounds.

4.1 Algorithm

This section provides a very brief overview of the process by which CoFloCo calculates
bounds from cost relations. For a more in-depth description, see Flores [Flo16], which
this description is based on.

1 (defun listlen (x)
2 (if (consp x)
3 (+ 1 (listlen (cdr x)))
4 0))

eq(if1(xlen → rint), 1, [consp(xlen → cint),
cdr(xlen → ylen), listlen(ylen → rsint),
+(1, rsint → rint)], [cint = 1])

eq(if1(xlen → 0), 1, [consp(xlen → cint)], [cint = 0])
eq(listlen(xlen → rint), 1, [if1(xell → rint)], [ ])

Listing 9: The listlen function which was previously discussed as an example in Chap-
ter 3, together with its cost relations.

The algorithm starts with a set of cost relations, shown here for the example function
listlen (Listing 9). First, the cost relations are preprocessed, such that the cost relation
for if1 is merged into that for listlen, resulting in the two cost equations ln1 and ln2,
corresponding to the two branches (in the following, listlen is abbreviated as ln):

ln1 : eq(ln(xlen → rint), 2, [consp(xlen → cint), cdr(xlen → ylen), ln(ylen → rsint),
+(1, rsint → rint)], [cint = 1])

ln2 : eq(ln(xlen → rint), 2, [consp(xlen → cint)], [cint = 0])
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4. CoFloCo

Next, a refinement step is performed, which orders cost equations into so-called chains. A
chain consists of a sequence of phases representing a possible execution of a cost relation.
A phase, in turn, consists of either “one or more recursive [cost equations] executed a
positive number of times” ((ce1 ∨ . . . ∨ cen)+ for a sequence of cost equations cei), or “a
single (non-recursive) CE executed once” [Flo16] (ce). For example, [ln+

1 ln2] is the chain
corresponding to an invocation of listlen with a non-empty list, where the recursive
branch is executed at least once (represented by the phase ln+

1 ), and the non-recursive
branch is executed once (phase ln2) at the end.

During the refinement, infeasible chains (such as non-terminating chains which are known
to be impossible) are removed. For example, the chain [ln+

1 ] is pruned, since starting
with ln+

1 provably results in the terminating chain [ln+
1 ln2].

The remaining chains for listlen are thus:

• [ln+
1 ln2]: One or more iterations of ln1, followed by a final execution of ln2. This

corresponds to a call to listlen with a non-empty list.

• [ln2]: A single execution of ln2, corresponding to applying listlen to an empty
list.

The fact that no non-terminating chains remain also proves that listlen terminates for
any input.

In the next step, cost structures are generated from the cost equations, chains and phases.
A cost structure is a triple ⟨E, IC, FC(x⃗)⟩ consisting of three parts:

• A linear expression E over intermediate variables, describing the cost of the cost
structure.

• A set of non-final constraints IC over the intermediate variables.

• A set of final constraints FC(x⃗) which link the intermediate variables to the vari-
ables x⃗ = a⃗ ∪ v⃗ of the cost equation(s) (see Section 2.2).

The final constraints FC(x⃗) are linear, whereas the non-final ones in IC may involve the
multiplication of two intermediate variables. Through combinations of cost structures,
“we can express complex polynomial expressions” [Flo16]. Cost structures are determined
incrementally and compositionally from cost equations, then phases and finally chains.

The cost structure for chain [ln+
1 ln2] of listlen is constructed in the following steps:

• cost equation ln2: ⟨2 + 1, {iv1 = 0}, {iv1 = xlen}⟩ – note that the constraint from
consp was included. The phase ln2 is identical.

• cost equation ln1: ⟨2 + 3, {iv1 > 0}, {iv1 = xlen}⟩
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• phase ln+
1 : ⟨(2 + 3) ∗ iv2, ∅, {iv2 = |xlen|}⟩ – the number of iterations iv2 = |xlen| is

inferred from the constraints iv1 > 0 and iv1 = xlen for ln1.

• chain [ln+
1 ln2]: ⟨(2 + 3) ∗ iv2 + (2 + 1), ∅, {iv2 = |xlen|}⟩

In the interest of simplicity, the cost of calling the basic functions (such as consp) has
been included directly in the cost expressions E, as in 2 + 3 for ln1, where 2 is the cost
of the cost equation itself and 3 the cost of the calls to consp, cdr and +.

The core idea behind the approach is to represent the bound analysis as an optimization
problem over the cost structures. The upper and lower bounds can then be calculated as
closed-form symbolic expressions by maximizing respectively minimizing the cost expres-
sion, such that the constraints are fulfilled. “This is done by incrementally substituting
intermediate variables in E for their upper/lower bounds defined in the constraints until
E does not contain any intermediate variable.” [Flo16] For listlen, the bound 5∗xlen+3
can thus be calculated.

The derivation of cost structures from cost equations, phases and chains includes a
transformation of the constraints to linear form. This step requires the addition of new
intermediate variables and constraints, and the application of various strategies such as
inductive sum, basic product and min-max. By solving only linear problems, CoFloCo
can thus calculate non-linear polynomial bound expressions.

4.2 Bound expressions
The bounds produced by CoFloCo are linear combinations of polynomials. Additionally,
they may include certain functions, which provide only basic arithmetic and are not
recursive. Currently, only two such functions are used:

max returns the maximum integer value among a list of values – in the context of
bounds, this is the maximum cost among a set of possibilities.

nat is the coercion to N, i.e., nat(x), equivalent to max(x, 0).

The definition of bound correctness is provided in Section 2.4.

In the following, a few examples of bounds are listed:

• 1 : the constant cost of a basic function, such as car.

• 5 ∗ xlen + 3 : a linear bound for the listlen function in Listing 2. As expected,
it is linear in terms of the length of the list length. Note that nat is not needed,
since additional constraints enforce that the length is ≥ 0.

• max([5 ∗ xlen, 1, nat(xint) ∗ 6 + 1]) + 6 : type-dependent in Listing 3, where the
maximum expression represents the fact that the type of x is not known.
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• max([9, nat(xlen − 1) ∗ 9 + nat(xlen − 1) ∗ nat(xlen − 1) ∗ 5 + 9]) + 3 : a quadratic
bound for deg2-length(x) according to Listing 14.

4.3 Limitations

Although the analysis performed by CoFloCo is quite powerful, there are also certain
limitations.

Multiplication CoFloCo can obtain only polynomial bounds, meaning that logarith-
mic or exponential bounds cannot be calculated, at least not directly (Section 7.1.2
proposes a partial solution). Constraints in cost equations must be linear, i.e., of the
generalized form c1x + c2 ≤ 0 (where c1, c2 are constants and x is a variable). Linear
combinations of multiple variables are also permitted, as in x1 + c2 ∗ x2− x3 ≤ 0. Multi-
plication of two variables and division of the form variable/variable or constant/variable,
however, are not supported. It is not possible to calculate a bound (or even prove ter-
mination) for functions where such an operation modifies a measure which is relevant
for termination. Listing 10 shows a simple function for which our approach cannot
prove the otherwise trivially observable termination, since it depends on the result of
the multiplication of two variables (or in this case, the multiplication of a variable with
itself).

1 (defun mult-test (x)
2 (if (and (> x 1) (< x 100))
3 (mult-test (* x x))
4 x))

Listing 10: A function where termination depends on the result of a multiplication of
two variables.

Multiplication of a variable by a constant, however, is fully supported, even where the
bound value depends on the multiplication’s result. For an example of such a function,
see Listing 11. However, there is a minor complication due to the fact that multiplication
is represented as a call to the basic function *. The cost relation of this function is defined
as

eq(*(aint, bint, cint), 1, [ ], [cint = aint ∗ bint])

It contains the constraint specifying the actual arithmetic multiplication (cint = aint∗bint),
meaning that in a call *(xint, 2, yint), the integer measure of the constant 2 would still be
represented by a variable in the cost equation for *. Such cases are detected during the
translation to cost equations, and in addition to the call to the multiplication function,
the corresponding multiplication is added directly to the caller’s cost equation as a
constraint yint = xint ∗ 2. Since this multiplication now involves only one variable,
CoFloCo can determine a bound for the function.
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4.4. Mutual recursion

It would also be sufficient, and in fact more versatile, to perform a complete constraint
propagation on the cost equations. However, this would add additional complexity (since
cost equations would have to be duplicated to include the propagated constants), and
was therefore postponed for possible later work.

1 (defun exp2-limit (x)
2 (if (and (> x 0) (< x 500))
3 (+ 1 (exp2-limit (* x 2)))
4 1))

Listing 11: Termination depends on the result of a multiplication of a variable and
a constant. The bound max([1, nat(−xint + 500) ∗ 7 + 1]) + 4 is successfully calculated.
However, this bound is asymptotically imprecise. The actual cost is logarithmic in terms
of xint, but logarithmic bounds cannot be calculated by CoFloCo.

While it is possible to calculate bounds for certain functions involving multiplication,
these bounds are always polynomial. Whereas the precise bound for a recursion depend-
ing on linear multiplication (i.e., multiplication of a constant and a variable) should be
logarithmic, CoFloCo will calculate a linear bound, if any. For example, the calculated
bound for exp2-limit in Listing 11 is linear in terms of xint, whereas the actual cost is
logarithmic.

Certain other functions, such as the modulus (remainder) also cannot be precisely defined
due to the lack of support for non-constant multiplication, division etc. in cost equations.
More complex operations such as bit-shift are also unsupported.

It is worth noting that integers in Lisp, cost relations and CoFloCo are all mathematical
integers, meaning that they are not limited in range. Therefore, integer overflows are
not a concern.

Precision-performance trade-off In general, resource analysis involves a tradeoff
between performance/running time on one side and high precision/completeness on the
other. Both aspects are important – not only do long computation times reduce the
feasibility of an analysis, especially for interactive use, but they also imply that fewer
bounds can be calculated within a given time span. CoFloCo aims for high precision,
accepting slower calculating speeds and potential non-termination as tradeoffs.

4.4 Mutual recursion

Mutual recursion is recursion involving multiple recursive functions. Rather than only
a single function calling itself recursively, the recursion proceeds through a cycle of at
least two mutually recursive functions, where each calls the other. A (somewhat artificial)
example of mutual recursion involving two functions even and odd is shown in Listing 12.
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1 (defun even (x)
2 (if (= x 0)
3 t
4 (odd (- x 1))))

1 (defun odd (x)
2 (if (= x 0)
3 nil
4 (even (- x 1))))

Listing 12: Two mutually recursive functions which determine whether a natural number
is even or odd respectively by successively calling each other until zero is reached. This
is intended merely as an illustrative example – clearly, there are much better ways of
implementing this functionality in practice.

In this case, both of the functions are possible entry points into the mutual recursion
cycle.

In CoFloCo, mutual recursion is analyzed as proposed by Albert et al. [Alb+11]. For each
of the functions involved in a mutual recursion, the other function calls for one cycle are
embedded or inlined into it by means of partial evaluation. Thus, the mutual recursion is
converted to several simple recursive functions, each of which again represents an entry
point. The result is equivalent to the original mutual recursion both functionally and
with respect to cost. The sole limitation of this technique is that the combination of
mutual and multiple recursion (i.e., several mutually recursive calls within one function)
cannot be processed.

4.5 Amortized analysis
In many cases, there is a relation between different loops in the program (or recursive
functions when analyzing functional programs), such that the cost of an inner recursion
is amortized (averaged or distributed) over the iterations of the outer recursion. As a
result, the combined maximum cost is far lower than the product of the individual cost
maxima. An example of such a function is given in Listing 13, adapted from a very
similar example by Tarjan [Tar85] In amt, depending on the values in the list m, either
a new value is pushed to the stack st, or all values are removed. When called from
amortized, such that st is initially empty, the total number of iterations in all calls to
popall is at most equal to the length of m.

In such a case, merely multiplying the worst-case costs or iteration counts of the recursive
functions would lead to a sound but (possibly asymptotically) inaccurate bound. A sound
upper bound for amortized in the example would be the multiplication of the maximum
cost of popall (which is proportional to the length of st) by the number of times amt is
called. However, this would clearly be highly inaccurate. In the example, the asymptotic
cost of amortized would be O(mlen

2) when calculated using simple multiplication of the
maximum costs, whereas in reality, it is only O(2 ∗mlen).

Amortized analysis methods, as described by Tarjan [Tar85], handle such cases more
precisely, since they respect the aforementioned relations. CoFloCo performs amortized
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1 (defun popall (x)
2 (if (endp x)
3 nil
4 (popall (cdr x))))
5

6 (defun amt (m st)
7 (cond
8 ((endp m) st)
9 ((car m) (amt (cdr m) (popall st)))

10 (t (amt (cdr m) (cons 42 st)))))
11

12 (defun amortized (m)
13 (amt m nil))

Listing 13: A function with amortized complexity (example adapted from Tarjan
[Tar85]).

bound analysis, and obtains a bound for amortized which is linear in terms of the
length of m. It is important to note that amortized analysis is distinct from average-
case analysis – in the former, the amortized bound is still a valid upper bound for any
combination of inputs. The only disadvantage of amortized analysis is that it is more
complex than non-amortized analysis, which merely requires obtaining the maximum
cost of each loop/recursion individually.
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CHAPTER 5
Experiments

We performed several experiments in order to evaluate both the approach and the im-
plementation of our analysis. Notably, there are two interesting and relevant properties:
the quality of results (how many bounds can be obtained and how precise they are)
and the time which is spent on calculating them. Furthermore, the experiments were
intended to reveal interesting cases which our analysis cannot solve yet, and to help in
identifying patterns in programs which cause such failures.

5.1 Experiment setup

The experiments were run on a machine with an Intel Pentium E6700 (2 cores with one
thread each, 3.2 GHz) and 14 GiB of RAM, running Debian 7.11. The CoFloCo version
used was commit f74635c, running on SWI-Prolog 6.6.6 with PPL 1.2. ACL2 version
7.1 running on CCL 1.11 was used as an external theorem prover.

For the main analysis, a time limit of 300 seconds1 and memory limit of 4 GiB2,3 per
input file were used (note that one file may include multiple entry points, which are
all processed in the same invocation of CoFloCo). If either value exceeds the respective
limit, the process is terminated immediately. However, results which have been obtained
before the time or memory limit was reached are counted as successful results.

1Cumulative running time (utime) of the process and all its subprocesses. This excludes external
factors such as file access delays, which are not relevant for the analysis.

2Measured as the sum of the resident set sizes (RSS) reported for the child processes.
3Both limits were checked 10 times per second. The time consumed by the checks is not included in

the time limit or the statistics.
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Lisp Preprocessing Translation
to CRs

ACL2
Prover

Slicing CoFloCo Bounds

Figure 5.1: The structure of the analysis workflow, starting with the Lisp input and
ultimately generating bounds.

Figure 5.1 shows a high-level overview of the process flow of the analysis. Starting with
the original Lisp code, a preprocessing step (described in Section 3.1) transforms it to
the simplified input language. Next, cost relations are generated (see Chapter 2 and 3),
optionally with added constraints for multiply recursive functions, whose applicability
is determined using the ACL2 prover. Next, the generated cost relations are simplified
by slicing. Finally, CoFloCo calculates bounds from the cost relations.

We analyzed all “books” (Lisp files, see Section 3.1) in ACL2 version 7.1, in total 5,615
files. Of these, 5,147 files containing 20,431 local function definitions were successfully
preprocessed. There was no time or memory limit on the preprocessing step, which takes
considerable time since, for technical reasons, the CCG termination prover must be run
as well (the result is not used). Some parts of the benchmark (468 out of the 5,615
Lisp files) are excluded from the analysis, as they either require special setups to process
in ACL2, or take extremely long. Since these exclusions are purely technical and not
caused by or otherwise directly related to our work, they are not included in any of the
following statistics.

Generating cost relations from the simplified Lisp input took 86 minutes4. Thus, the
translation step is not a bottleneck, though it takes longer if more elaborate processing,
such as proving assumptions (see Section 5.3 for details and results), is performed. Of the
successfully preprocessed functions, the translation succeeded for 5,111 files. Notably,
only 1,934, or 38% of these files actually contain any entry points (corresponding to
function definitions in the original Lisp books, excluding definitions which are included
from other books). In total, the translation produced 19,491 unique entry points (i.e.,
functions for which bounds should be generated). The remainder of this chapter refers
only to those files which contain at least one entry point.

We then ran CoFloCo on the resulting cost relations, with debugging output (-debug)
and statistics (-stats) enabled. While this adds some additional computational and
I/O load (and thus slightly increases the running time), it provides more detailed in-
formation on the solving process. Furthermore, we used the incremental output mode

4This value appears to be quite variable, presumably due to the large proportion of time spent on
reading Lisp files from and writing cost relations to disk.
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Figure 5.2: Histogram of running times of bound calculations (per file containing at least
one entry point), excluding those for which no results could be calculated due to running
out of memory (oom) or general errors and incompleteness issues (err). The rightmost
bar (> 300 s) represents timeouts (but note that results may still have been obtained
before the timeout).

(-incremental), which causes CoFloCo to print each bound as soon as it is calculated.
This reduces the distortion of results caused by all functions within a file being analyzed
in one step (see Section 5.4 for details). The exact invocation of CoFloCo was

cofloco -i $ces_file -v 3 -assume_sequential -compress_chains 2 \
-compute_lbs no -stats -debug -incremental

The informational and error outputs of CoFloCo are written to files, from which results
(including the bounds) are then extracted.

5.2 Results

const n n2 n3 n4 ∑
ok inf timeout oom err

∑
fail total

# 5096 4081 1074 112 9 10372 2285 5466 771 597 9119 19491
% 26.1 20.9 5.5 0.6 0 53.2 11.7 28 4 3.1 46.8 100

Table 5.1: Number of functions (entry points) per result/complexity group and percent-
age of total, with sub-totals for succeeded and failed bound computations.
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Primarily, the experiment was a success in the sense that an analysis of such a large
benchmark was actually performed. Our system successfully calculated bounds for over
10,000 functions from code which was written for real-world use, rather than synthetic
examples.

Table 5.1 shows the number of functions for each complexity degree, as well as failures.
The first row lists absolute numbers, the second the percentages relative to the total sum.
Subtotals for successful bound calculations (i.e., those where a bound was determined)
and failed ones are also provided. inf counts cases where calculation finished, but no
bound could be determined. timeout and oom denote functions for which the calculation
timed out and ran out of RAM, respectively, as defined by the limits given in Section 5.1.
err denotes certain types of failures related to incompleteness of the cost relation spec-
ification (also meaning that no bound can be derived), as well as any failures which do
not fall into any of the previous category, such as instances for which CoFloCo returned
only an error message. Note again that timeout, oom and err are counted per function
– if computation on a file stops or fails at some point, all bounds calculated so far are
counted as successful results.

Concerning the running time, the positive aspect is that calculation finished very quickly
for a large number of files, as seen in Fig. 5.2. It is important to note that these times
are per file – individual functions can often be analyzed in fractions of a second, fast
enough to make the analysis suitable for interactive use in principle.

The results also demonstrate the advantages of building on top of an existing bound
analysis system (CoFloCo). With a relatively simple frontend for a language which
CoFloCo itself was not explicitly built for, it is possible to achieve reasonably good
results. Furthermore, it can be concluded that the very simple approach of using three
fixed measures is sufficient for analyzing a large number of functions, though it might
affect the precision of the bounds.

The results clearly show that among the bounds which our tool can calculate, the major-
ity is either constant or has a very low degree, whereas the number of bounds decreases
sharply for cubic and further complexities. It is not clear whether this is due to the
complexity of such examples causing the analysis to fail, or due to their rarity in the
benchmark. However, based on cursory observations of the benchmark functions, the
latter seems likely.

There is no fundamental limit to the degree of bounds our analysis can calculate, and
the bound degree by itself does not appear to have any significant effect on the running
time of the analysis. We performed an experiment with arbitrarily nested functions as
shown in Listing 14. Functions nested 10 levels deep (with a resulting bound of degree
10) do not appear to take significantly longer to analyze than deg1-length alone.

Analyzing individual results

A selection of infinite results were manually analyzed. This is the most interesting
category of results, where calculation terminated within the time limit, but no bound
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(defun deg1-length (x)
(if (endp x)

0
(+ 1 (deg1-length (cdr x)))))

(defun degi-length (x)
(if (endp x)

0
(+ (degi-1-length (cdr x)) (degi-length (cdr x)))))

Listing 14: Functions with a given fixed degree of complexity. For each list element, the
function with the next-lower degree iterates over the rest of the list, resulting in a cost
of degree n for degn-length(x).

undefined function 2
non-representable basic function 7
underconstrained basic function 6

insufficient measure expressiveness 5
(unclear) 2

Table 5.2: Likely causes of non-completeness of the analysis (result inf, i.e., analysis
finished correctly, but without a bound being found) among 20 randomly selected results.
There may be more than one cause per sample.

could be found. As opposed to the other failures, this possibly indicates an incomplete
aspect of the analysis rather than merely a performance issue. Certain patterns can
be discovered, but in many cases, it is still hard to determine the exact cause of the
problem.

A set of 20 samples was randomly drawn from the set of functions with infinite result
and inspected. The samples were grouped by (suspected) cause of the non-completeness
into the categories shown in Table 5.2 (note that there may be more than one cause per
sample).

As these results clearly show, there is a no single cause for incompleteness. The issue of
non-representable basic functions would be hard to address, since these include actions
such as (simulated) I/O access, which cannot be usefully represented outside of an ac-
tual Lisp environment. “Underconstrained” basic functions are cases where the analysis
cannot guarantee that a basic function will return the value which it returns in Lisp,
and therefore cannot guarantee termination. This is often related to types, for which a
solution is proposed in Section 7.1.4. Another frequent issue is the limited expressiveness
of the measures, mainly the inability to describe the (integer) values within a list. This
issue together with a possible solution is described in detail in Section 7.1.1.
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Unfortunately, this analysis is time-consuming to perform manually, and essentially im-
possible to automate – we considered automated matching for specific patterns, but this
would likely not have been helpful, since the most interesting functions tend to not follow
common patterns.

An example of such an interesting function is msort5, which implements a merge sort
function which acts on a list of values of arbitrary type, and for which no bound can be
calculated due to (among other issues) the fact that the analysis cannot determine the
size of the merge step’s result (this is addressed in Section 5.3).

Nonetheless, manual investigation is still the most effective way to identify interesting
functions. In order to discover the causes of performance issues, functions which caused
the analysis to time out would also have to be manually analyzed. As mentioned above,
it is also not clear whether functions which would have bounds of a high degree simply
do not occur, or whether our implementation fails to calculate them due to exhausting
the time or memory limit. Thus, it would be interesting to run the benchmark again,
with much more generous time and memory limits, in order to see which new bounds can
be discovered. Unfortunately, a full run already takes a very long time (over 42 hours of
pure analysis time, excluding overhead), and faster hardware was not available for this
work.

5.3 Proofs for multiple recursion relations
In an additional experiment, proof obligations were generated as described in Section 3.2.6
and submitted to an ACL2 prover process running in parallel to the translation step. A
time limit of 10 seconds was set for each individual proof. In total, 145,623 proof obli-
gations were submitted to ACL2, of which 23,328 were successfully verified. The proof
attempts took approximately 179 minutes in total, with a mean time of 0.121 seconds
but a median of only 0.01 seconds. Files for which at least one proof succeeded (meaning
that constraints were added to cost equations) were then re-analyzed using CoFloCo.

const n n2 n3 n4 ∑
ok inf timeout oom err

∑
fail

# 30 190 110 14 1 345 469 736 98 344 1647
% 1.5 9.5 5.5 0.7 0.1 17.3 23.5 36.9 4.9 17.3 82.7
# 56 210 99 13 1 379 470 764 98 281 1613
% 2.8 10.5 5 0.7 0.1 19 23.6 38.4 4.9 14.1 81

Table 5.3: Comparison of results for functions which involve at least one multiply recur-
sive function. Results for an analysis without (top) and with (bottom) multiple recursion
proofs are shown.

Table 5.3 shows the results with these constraints, compared to the previous run without
them, for all functions whose call tree involves at least one multiply recursive function.

5contained in sorting/msort.lisp
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As this comparison shows, the improvements gained by adding constraints to multiply
recursive function calls are only marginal. This is likely in part due to the relative
rareness of multiply recursive functions which are at the same time simple enough for the
ACL2 proofs to succeed, yet were not already covered by the car/cdr solution described
in Section 3.2.5. In addition, CoFloCo can already handle multiple recursion on its own
in many cases. This is evidenced by the fact that even without the additional constraints,
bounds can be found for 223 multiply recursive functions (and for 345 functions involving
at least one multiply recursive call).

Furthermore, the improvement is in err rather than inf results, as might be expected.
The reason for this is that, as described above, certain sorts of incomplete specification
cause the CoFloCo analysis to fail outright. It is therefore hard to tell how many of these
results are triggering this issue (and directly benefit from multiple recursion proofs),
compared to how many are unrelated cases which are simply located in the same file.

The increase in the number of timeout results is also notable. Whereas inf and err
(in this case) denote a failure of the analysis due to incompleteness of the cost relation
abstraction, timeout results could possibly be solved if more time was available.

However, multiple recursion is often not the only problem, and solving it reveals other
limitations of the analysis. For example, it is still not possible to obtain a bound for
the msort function discussed in Section 5.2. Here, the proof succeeds, establishing that
the sum of the lengths of the divided lists is not greater than the length of the input
argument. However, in conjunction with the type-dependent merge function, the bound
analysis fails (whereas it succeeds for the modified integer-only version of msort shown
in Listing 7 in Section 3.2.6).

5.4 Limitations
Although the results are quite promising, the evaluation also revealed certain limitations.
While several issues were addressed by the author of CoFloCo based on continuous
iterations of these evaluations and successive improvements, some of the limitations
remain.

Running time The most noticeable problem is that, despite performance improve-
ments to CoFloCo which achieved considerable improvements in results, the analysis
still exceeds the time limit for a large percentage of functions (see column timeout in Ta-
ble 5.1). As Fig. 5.2 clearly shows, there is a pronounced division between files which can
be analyzed very quickly (< 20 s), and another large number which time out, with few
in between. This result is simultaneously encouraging and dissatisfying: on one hand,
it means that many results can be obtained within near-interactive time, which would
be advantageous if the analysis was integrated into an IDE, for example. On the other
hand, the large number of calculations which did not finish even within 6 minutes (which
would likely be too long for repeated use while programming anyway) is a significant
issue.
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In part, this large number of timeouts is a misrepresentation: since all functions in a
file are analyzed at once, a single function which takes very long and thus exceeds the
time limit causes all following functions within the same file to be counted as timed
out as well. Given that timeouts are often caused by just a single particularly complex
functions among many others in the same file, a certain distortion of the results is to be
expected. Furthermore, since the maximum time per file is always the same, the time
available per function decreases as the number of entry points increases. Simply scaling
the timeout by the number of entry points contained in the file is possible, but does not
resolve the issue of the analysis taking a long time on specific functions.

A separate time budget and corresponding time limit for each function would therefore
have been desirable, but this would be very difficult or impossible to implement in the
context of CoFloCo’s current architecture. On the other hand, while simply running
a separate analysis for each entry function would be easy, this would not be a reason-
able representation of the overall cost of the analysis: since functions usually call other
functions within the same file, these would be repeatedly analyzed.

The sharp division between files which are analyzed very quickly and those for which
analysis times out, as observed in Fig. 5.2, is also interesting. The obvious question
concerning the computations which timed out is whether a result could eventually be
obtained for them, given sufficient time (meaning that there are a large number of cases
which take a very long time to analyze), or whether the bound computation is truly
stuck. Since the bound calculations in CoFloCo are potentially non-terminating, it is
not possible to answer this question in all cases.

Memory usage Besides time, another issue was the analysis running out of RAM on
certain instances (see the oom column in Table 5.1) despite the generous memory limit.
The distribution of the peak memory consumptions (per file) is shown in Fig. 5.3.

However, it is not yet clear for all such cases why the excessive memory consumption
occurs. In some cases, very high memory usage might simply be a result of high function
complexity, which means that CoFloCo has to analyze a large number of chains (see
Section 4.1). Even this, however, is not a satisfactory explanation for the memory
consumption behavior observed for certain inputs, where the memory usage simply rises
at a very fast and linear rate until the limit is reached. Additional investigation is
certainly required here – in fact, it is likely that this behavior is due to a bug in the
implementation rather than a more fundamental issue of the analysis. In addition, the
above point on timeouts causing all remaining functions to fail applies here as well,
meaning that again the actual problematic functions are likely far fewer than those
counted in the oom column in Table 5.1.

Correctness & precision Notably, the correctness of the results was not verified
manually (except for a few functions). Doing so for the entire benchmark would be
extremely tedious and effectively impossible.
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Figure 5.3: Histogram of memory watermarks (i.e., peak memory consumption) per file
containing at least one entry point, excluding those where an error occurred (err). The
rightmost bar (> 4096 MiB) represents out-of-memory cases.

We also did not attempt to determine the precision of the bounds, beyond manually
checking whether the choice between length and size was correct for a small selection
of bounds. Even asymptotic correctness is impossible to determine automatically, since
doing so would essentially amount to solving the resource analysis problem again. An-
other option would be testing, that is, actually running the code while measuring the
number of execution steps. The functions could be executed with sample inputs, with
accuracy then being determined by inserting the input values into the bound expres-
sion, calculating the resulting numeric value and comparing it to the measured result.
Such tests might be useful for measuring the distribution of precision, that is, whether
a bound is inaccurate for only a few cases, or more generally. However, this method,
like any test-based one, is necessarily incomplete, meaning that corner cases might not
be detected. Generating test inputs which cover those corner cases as far as possible,
as well as give a good general representation of the bound’s precision, would likely be
difficult.

Representativity of calculated bounds The distribution of the results appears to
be somewhat skewed towards “trivial” bounds (such as constant-cost functions, or ones
which consist only of a simple list iteration). However, this is not surprising: for one, the
functions themselves are distributed in this way, meaning that highly complex functions
are relatively rare. Furthermore, there appears to be a quite sharp distinction between
“easy” functions on one hand, and very hard ones (involving complex control flows,
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associative arrays, etc.) on the other. The latter can often not be analyzed successfully,
meaning that bounds for them (which would presumably also be complex) also appear
less frequently in the results.

5.4.1 Comparability of results

Making useful comparisons between different bound analysis tools is problematic, as their
accepted input formats and supported concepts differ widely (the same has been observed
for termination analysis as well [Vro07]). They are either only designed to work on a very
limited custom language or on pure integer programs, or specific existing programming
languages (e.g., OCaml for RAML). Frequently, only subsets of the respective language
are supported, meaning that it may not be possible to analyze “real-world” programs
(as is the case with RAML [HDW17], for example).

In fact, we considered automatically converting benchmarks either from Lisp to OCaml
or in the other direction, but the paradigms (most notably the type system) are too
different to do this effectively, which would have made it an extensive project of its own.
Converting from Lisp to OCaml is especially problematic because RAML fundamentally
depends on type structure. The other direction is also not straightforward, because
static typing does not exist in Lisp, which would not only require a complex conversion
of type-based matching, but also put our implementation at a disadvantage, as it cannot
rely on strict type rules.

Comparing the accuracy of generated bounds is a further issue. Usually, comparisons
focus only on asymptotic cost, which is of course the most important characteristic.
However, it would also be interesting to compare the actual bounds produced by different
tools, in order to judge the precision of bounds with the same asymptotic cost. Since
bounds differ both in format and structure, this is not as straightforward as comparing
the asymptotic cost. Also, it would be necessary to compare functions and decide, given
arbitrary inputs, which one is more precise. A relevant proposal was made by Albert
et al. [Alb+15], which takes advantage of the specific properties of cost bounds.
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CHAPTER 6
Discussion of related work

In the following, some closely related systems are discussed in more detail, and compared
to our approach in specific aspects. Furthermore, specific tasks (average-cost analysis in
Section 6.4, and analyzing other programming paradigms in Section 6.5) which can be
analyzed by certain other systems, but not by our current analysis, are highlighted.

The basic concept of this work as well as related ones is to transform a potentially
complex program into an abstract structure which is more amenable to analysis. Recur-
rence relations are one such abstraction, which is used for expressing recursion. Based
on recurrence relations, the master theorem (see, e.g., [Cor+01]) provides a method for
calculating the (asymptotic) number of times a function is called recursively, expressed
in terms of the initial argument. However, this simple method is not sufficient in many
cases. Most importantly, multivariate analysis is not possible, meaning that analysis is
limited to functions with a single argument. Furthermore, in real-world programs, the
hardest problem often lies in identifying such relations in the first place, that is, reduc-
ing a complex function, which might itself call other functions, to a suitable recurrence
relation. As a result, more sophisticated analysis approaches had to be developed.

6.1 Metric

Wegbreit’s Metric [Weg75], a system for resource analysis of simple Lisp programs, was
introduced as early as 1975. It uses difference equations to express recursion, solved
via “one or more of [...] direct summation, pattern matching, elimination of variables,
best-case/worst-case analysis, and differentiation of generating functions” [Weg75]. In
order to find the difference equations, recursive functions are executed symbolically,
while excluding irrelevant arguments. In fact, this approach in Metric quite similar to
that used for COSTA, a much more recent system [Mon+11], which is the predecessor
of CoFloCo. Notably, the approach used for Metric also includes probabilistic analysis,
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where probabilities can be supplied for non-deterministic conditions. These probabilities
will be considered in the analysis.

It appears that Wegbreit encountered the same issue in finding suitable abstractions for
analyzing programs as we did: “What is not well understood is how to synthesize an
abstraction from the program when the correct one is not already known by the system”
[Weg75]. This issue is still quite relevant, see also Section 7.1.

While Metric was certainly a pioneering approach, it does not appear to have been com-
pared to other approaches, certainly also owing to its very early appearance, when little
other work was available for comparison. Wegbreit [Weg75] hints towards an imple-
mentation, but does not give any measurements or an indication that any larger-scale
methodical testing was performed.

6.2 RAML

RAML [HS15; HDW17; Hof16] is a resource analysis system for a functional input
language also called RAML (“a resource-aware version of the functional programming
language OCaml.” [HDW17]). The system reuses the parser and type inference engine of
the existing Inria OCaml compiler. RAML’s analysis is based on the structure of types
(specifically recursive types), and thus closely dependent on the OCaml type system.
In other words, the analysis depends entirely on syntactic properties of the program.
Therefore, “RAML fails if the resource usage can only be bounded by a measure that
depends on a semantic property of the program or a measure that depends on the
difference of the sizes of two data structures” [HDW17].

The key concept of the analysis is the assignment of a potential to each data structure
by a potential function. The potential must be sufficient to account (or “pay”) for the
resources consumed by subsequent operations on this data structure [HS15], such that
the total potential is never less than zero. This system also supports amortized analysis,
since the potential which is consumed directly represents the cost. The system generates
a system of potential requirements (i.e., potential required for operations), specifically
a linear constraint system. This constraint system can be efficiently solved using linear
programming: the initial potential, i.e., the potential which is required at the entry point
of the program, is minimized while fulfilling all constraints. “It then follows that the
initial potential function describes an upper bound on the resource consumption of the
program.” [HS15] The analysis can handle general recursive types, and therefore works
for both standard types (such as lists) and arbitrary user-defined ones.

As opposed to previous potential-based approaches, RAML can also calculate non-linear
(polynomial) bounds, using only a linear constraint system [HAH11]. The potential func-
tions are polynomial functions, referred to as resource polynomials, from which bounds
are derived by solving a linear constraint system over the coefficients. A maximum de-
gree for the resource polynomials must be provided, thus also limiting the maximum
degree of bounds which can be determined. If a function has a bound polynomial of
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higher degree than this limit, RAML will not find a bound. This restriction is necessary
because the number of base polynomials within a resource polynomial must be finite:
“However, we currently allow the user only to select a maximal degree of the bounds and
then track all indices that correspond to polynomials of the same or a smaller degree.”
[HDW17]. The approach used in CoFloCo, on the other hand, does not require a maxi-
mum degree to be specified, since polynomial bounds are assembled “on the fly” based
on linear constraints (see Chapter 4).

RAML supports multiple resource metrics: currently evaluation steps (which are quite
similar to the metric used in this work), heap space usage and “ticks” (which count how
often a counting annotation is reached) can be calculated. RAML can calculate both
upper and lower bounds for these metrics.

Furthermore, RAML includes limited support for higher-order functions: “the higher-
order case is reduced to the first-order case if the higher-order arguments are available”
[HDW17]. On the other hand, unknown higher-order arguments are considered to have
no cost [HDW17]. In the latter case, the bound will of course not be sound, but will still
reflect the termination behavior and resource consumption of the higher-order function
itself. However, due to this lack of complete support for higher-order functions, as well
as integers and other constructs such as if-conditions, RAML is not yet suitable for
analyzing real-world OCaml programs.

Unlike CoFloCo, RAML currently cannot calculate bounds over integers. Instead, it de-
pends on special data structures representing natural numbers [HS15]). This is problem-
atic for analyzing realistic programs, which often combine basic types (such as integers)
and complex ones, rather than just artificial examples.

In Section 3.2.5, we described how we generate required assertions for determining
whether a multiply recursive function has polynomial complexity. This is done by estab-
lishing whether the combined size of the arguments to the recursive calls is within the size
of the input. In comparison, RAML avoids this issue entirely by detecting type-based
“syntactic” branching in match expressions. These expressions perform pattern matching
(recognizing specific structural type instances), extract their members and conditionally
execute code for the matching entry. Examples of patterns are x::xs (the head and tail
of a list) or Tree (a,b) (an internal node of a binary tree). The code which is executed
when a pattern matches then has access to the members of the structure, e.g., x and
xs respectively a and b. In fact, RAML uses match blocks to detect structural program
properties in general, including termination conditions, which means it does not have to
analyze semantic properties. Since the decomposition implies that the members of the
structure are non-overlapping, this method is quite powerful and in fact able to deter-
mine bounds for certain multiple recursive functions. Unfortunately, no equivalent to
match exists in Lisp, therefore data structure accesses and type-dependent behavior at
the semantic level, which can be far more complex.

As explained in Section 2.7, our analysis uses maximum expressions to express bounds
for functions whose behavior (and thus cost) depends on the type of its argument (which
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cannot be statically determined). While this specific scenario can of course not occur in
programming languages with a strong static type system, such as RAML/OCaml, it is
quite similar to the different options of a match expression. RAML handles this situation
by multiplying the appropriate parts of the bound by a variable which is defined as 1
if the argument matches the respective match branch, and 0 otherwise. This approach
is actually superior than using a maximum expression, as it is immediately clear how
the bound is calculated, rather than merely selecting the larger value. However, such
a method is again not suitable for Lisp, as instead of match, type-checking conditions
consist of regular program code. Unlike the clean structure of match conditions, these se-
mantic conditions are more complex to analyze, and cannot be directly used for measures
or bounds.

6.3 CCG

The same benchmark used for our experiments has also previously been used to eval-
uate the implementation of CCG (Calling Context Graph)-based termination analysis
(Manolios & Vroon [MV06; Vro07]) which is integrated in ACL2. Termination analysis
attempts to prove termination, i.e., determine whether or not a given program halts
for all input parameters. Of course, there may again be “unknown” results due to the
undecidability of the halting problem. Nonetheless, CCG can prove termination for over
98% of functions in the evaluation presented by Vroon [Vro07]. However, considering
that bound analysis is a much harder problem than termination analysis, such success
rates cannot be realistically expected for our work. Nonetheless, the CCG approach to
termination analysis provides inspiration for resource analysis as well.

6.3.1 Measures

In comparison to this approach of using several measures for one value, CCG termina-
tion analysis uses only a single measure, acl2-count1, based on the concept of ordinal
numbers [Vro07]. It is applied to integers and cons structures as well as rational and
complex numbers and strings. For cons pairs, this measure is equal to our size measure.
When proving termination, this is not a disadvantage, since the only relevant property
is whether this measure increases or decreases until eventual termination – precision is
therefore not a concern. For bound analysis, however, such a measure would be insuf-
ficiently precise, as it is necessary to determine how often such a decrease or increase
happens, and how large it is. A simple function such as listlen in Listing 2 demon-
strates this. Clearly, only the length of the list is relevant for the bound of listlen.
However, with a single measure such as acl2-count, the bound would be over the num-
ber of cons pairs in all of x (i.e., identical to our size measure). Furthermore, it would
not be possible to symbolically express that the bound is the maximum among differ-
ent choices – whereas acl2-count implicitly determines the maximum, our analysis can

1http://www.cs.utexas.edu/users/moore/acl2/v7-0/manual/index.html?topic=ACL2___
_ACL2-COUNT
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produce bounds containing explicit maximum expressions over different measures, such
as max(xint, xlen, 0).

6.4 Average-cost analysis
Currently, our analysis returns only the worst-case upper bound (based on the same
cost relations, CoFloCo could also perform lower bound analysis, but we did not explore
this in detail). While the worst case is important for many applications, such as for
determining the maximum stack usage of a program, or deadlines in real-time systems,
it is less useful when comparing different algorithms or implementations. Here, the
average (or mean/expected) cost is often more meaningful, as the worst case might be
unlikely to occur and is not critical, whereas the average case determines important
results such as the total running time of a program. A well-known example is quicksort
compared to merge sort – the former has quadratic worst-case complexity, whereas the
latter has an asymptotically much lower worst-case complexity of n log n. However, the
average complexity of quicksort is also n log n. In practice, the choice between quicksort
and merge sort depends on other factors, such as the speed of data access.

The average cost depends on the probability of conditions, which control what parts of
the program are executed, being met. Listing 15 shows a function which is much simpler
than quicksort, but whose cost also depends on the probability of a condition, namely
whether list elements are equal to a given input value x. Clearly, the probability of this
property being fulfilled affects the cost of search-val, as the recursion stops as soon as
the check succeeds. This probability in turn depends on the input data.

1 (defun search-val (x lst)
2 (cond ((endp lst) nil)
3 ((= (car lst) x) lst)
4 (t (search-val x (cdr lst)))))

Listing 15: A function which searches for the first occurrence of a given element x
in a list lst and, if found, returns the remainder of the list (including x). The cost
of this function (more specifically, the number of recursive calls) depends on whether
the equality check succeeds or not, which is specific to the argument x and cannot be
determined if x is unknown.

To see how the average-case cost could be derived, consider the example in Listing 15
again. Here, the probability of the test succeeding (i.e., a list element being equal to x)
could be expressed as, e.g., P (car(lst) = x). For the sake of simplicity, we assume for
now that this probability is the same for all list elements. Consequently, the average
cost is proportional to

∑xlen
n=1(1−P (car(lst) = x))n, since the recursion stops as soon as

the test succeeds. P (car(lst) = x) is thus both a parameter of the cost expression and a
measure of the argument (i.e., it expresses a specific property of the argument, namely
the probability of a list element being equal to x), same as the list length xlen, and must
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be determined in order to calculate the actual cost. Considering the cost expression, it
becomes clear why average-cost analysis can be important – even for low probabilities
P (car(lst) = x), the result is considerably less than xlen (which corresponds to the worst
case where P (car(lst) = x) = 0).

In general, statistical analysis is a topic which does not appear to be frequently consid-
ered in more recent literature. RAML can generate bounds which include parameters
such as the fraction of a specific member of a union type within a list. This method
permits a sort of average-case analysis on structural properties of the input, but cannot
be directly extended to semantic ones, and cannot calculate bounds which are asymp-
totically lower than the worst case. A more extensive approach for average-case analysis
was proposed by Wegbreit as part of Metric [Weg75], where the “probabilities of unana-
lyzable tests appear as parameters”. It combines multiple properties of a cost measure,
specifically its minimum, maximum (i.e., upper bound), mean and variance. Schellekens
[Sch10] presents an interesting approach which employs compositional average-case anal-
ysis, applied to a custom language. It is based on the concept of random bags, “which
are used to represent data distribution” [Sch10]. Schellekens’ work also includes an ap-
plication of the method to quicksort, for which an average-case cost of 2(n + 1) ln(n) is
obtained.

Fundamentally, producing both concise and precise average-cost bounds for more com-
plex programs is challenging. In the examples presented by Wegbreit [Weg75], even
very simple functions result in complex expressions for the mean and especially for the
variance. Again, accepting a certain loss of precision might be unavoidable. Given the
running time issues (frequent timeouts) even in our current model (which calculates only
upper bounds), the computational effort could be prohibitive. Furthermore, obtaining
truly relevant information might actually require more advanced statistical information
depending on complex properties of the input, which might not be feasible to deter-
mine automatically. Statistical dependences between the conditions would also have to
be analyzed [Weg75]. In any case, sufficient statistical information might simply not
be available or not meaningful – for the aforementioned quicksort example, detailed in-
formation on the ordering of input values would be necessary. Even the very simple
search-val function requires detailed knowledge on which data is passed to it – while
this is trivial in cases where the function is called with a constant input, obtaining such
information in the context of a complex program is much harder.

6.5 Other programming paradigms

Beyond Lisp, there are a wide variety of functional programming languages with different
paradigms or additional features. In related work, systems are described which are
capable of analyzing some of those languages. Our current analysis could be extended
in various ways in order to cover some of these areas as well.
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6.5.1 Higher-order functions

Higher-order functions accept one or more arguments which are themselves functions,
here referred to as “function-arguments” for clarity. Support for higher-order functions
would be very important for analyzing application programs in most functional languages,
beyond ACL2 models. In that context, higher-order functions are typically considered a
core feature, improving modularity and structure [Hug89], and are therefore frequently
used.

As an example, in a functional programming language, functions such as list-factorials
in Listing 18 (Section 7.1) would normally be implemented using a higher-order map func-
tion, thus replacing specialized iterating functions with one generalized higher-order one.
Currently, this is not possible in our limited subset of Lisp, which does not allow for
higher-order functions.

1 (defun higher-order (f x)
2 (funcall f (* x 2)))

Listing 16: A very simple higher-order function which applies the function-argument
f to another argument x multiplied by 2. Whereas the cost of higher-order itself is
constant and can be easily determined, the total cost of a call to higher-order depends
on the cost of f, which is not known.

For determining the cost of specific calls to higher-order functions, a relatively simple ap-
proach is sufficient. Here, the cost of known function-arguments (in the context of a spe-
cific call with a known argument) is factored directly into the bound. Take, for example,
the higher-order function defined in Listing 16. The cost of a call to higher-order with a
concrete function-argument could be directly determined, as in (higher-order #'g 5))
given (defun g (x) (* x x)). This call returns (2 ∗ 5)2, where #’g is the function g
as a value. A sound cost bound for this function call could be easily determined, as the
function-argument #’g passed to higher-order is known, and therefore its cost can be
calculated. Conceptually, such a call is equivalent to inserting the code of the function-
argument for each use of f in higher-order, and then calculating a cost bound for the
resulting first-order function using the regular method described in this work. While
this method is not currently supported in our analysis, it could be added directly to the
frontend, without even requiring any modifications to CoFloCo.

The cost of the higher-order function itself (rather than of a specific call), however,
cannot be determined using this method, nor could it be directly represented within the
current bound format. Here, the cost of unknown function-arguments could simply be
ignored, as is done in the current implementation of RAML [HDW17]. For higher-order
(Listing 16) itself, only the cost of the multiplication operation performed by the function
would be considered. While this approach simplifies the analysis, the resulting bounds
are of course no longer sound with respect to the total cost.
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Another, more powerful and most importantly sound approach would be to parameterize
the cost bound of the function-argument as a symbolic expression of its inputs, rather
than ignoring it. Of course, in restricted cases as described above, where the function-
argument is known, the cost could still be directly determined. Ideally, such a solution
should be implemented directly in CoFloCo rather than in the Lisp-specific frontend,
such that higher-order functions in arbitrary input languages (given suitable frontends)
could be analyzed. For the example in Listing 16, the bound would contain an expression
similar to

boundOf(f, (xint, xlen, xsize))

such that the final bound for a call with a specific f could then be obtained by inserting
the bound calculated for f in terms of the input measures xint, xlen, xsize. For a call
such as (higher-order #'factorial n) (where n is a list of integers, and factorial
is defined as in Listing 3), the bound nat(nint) ∗ 5 + 5 would be obtained. Another
advantage of such an approach would be that it could tolerate undefined functions in
general, by parametrizing their costs as well.

However, such a compositional approach would make amortized analysis impossible,
as only the maximum cost for each invocation of the function-argument f would be
considered. While we have not investigated this topic in depth yet, it is not immediately
clear how, if at all, a bound could concisely express the cost of a higher-order function
including an accurate representation of automatically determined amortization effects.

6.5.2 Lazy evaluation

Lisp is generally evaluated eagerly, except for the branches of if blocks. However, other
functional languages have different evaluation strategies: Haskell, for example, uses lazy
evaluation (specifically call-by-need argument passing). Thus, the cost of a function
depends on whether each function application actually needs to be evaluated. It also
becomes possible to write terminating functions which take streams (i.e., infinite lists)
as input, as long as only a finite number of list elements are actually evaluated. In
comparison, such a program would never terminate in an eagerly evaluated functional
language, as it would attempt to generate the entire (infinite) list before calling the
function.

Lazily evaluated programs are generally much harder to reason about from a resource
analysis perspective, since the simple static evaluation order of eagerly evaluated pro-
grams is replaced with a dynamic, “demand-driven” one [Sim+12]. It is especially diffi-
cult to analyze space (heap or stack) usage, due to the non-strict evaluation order and
data sharing among others [GS99].

There appear to be relatively few approaches in this area so far. Simões et al. [Sim+12]
present an approach for amortized resource analysis of lazy higher-order functional lan-
guages, with an application to heap usage. The implementation processes a Haskell-like
input language, using type inference to “[capture] the costs of unevaluated expressions
in type annotations and by amortizing the payment of these costs” [Sim+12]. However,
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it is limited to programs with linear cost, and a large-scale evaluation was not performed.
Vasconcelos et al. [Vas+15] expand on this work in order to analyze co-recursion on infi-
nite streams. The effect of deallocation (e.g., through garbage collection) is not modeled,
meaning that only cumulative allocations (rather than resident size) are analyzed. The
system also has similar limitations as the previous one by Simões et al., being able to
derive only linear bounds.

6.5.3 Parallel programming

Due to the absence of side effects, functional programs are generally easier to parallelize
than imperative programs – even automatic parallelization is possible to some degree
(see, e.g., Hogen et al. [HKL92]). Imperative parallel programs can have complex inter-
action patterns between threads due to shared variables and memory, as well as explicit
synchronization, which can be highly challenging to analyze. For purely functional pro-
grams, on the other hand, no such sharing is possible, making them much easier to
reason about [Roe91].

The impact which the parallelization of (parts of) a program has on its cost depends
on the cost model underlying the analysis, and more broadly on which of the program’s
properties are being investigated. For example, if resource analysis is being performed
in order to determine actual (“wall clock”) running time in the context of a real-time
system, the correct analysis of concurrent execution is important for obtaining a precise
bound. This is even more critical for resource metrics which actually increase due to
parallel execution, such as the total stack size.

ACL2 has experimental support for parallel execution2, for which certain primitives
(such as parallel let and function calls with parallel evaluation of the arguments) are
provided. Although this does not appear to be frequently used in the benchmarks, it
could nonetheless form a basis for expanding the existing analysis to parallel program-
ming.

2http://www.cs.utexas.edu/users/moore/acl2/v7-0/manual/index.html?topic=ACL2___
_PARALLEL-PROGRAMMING
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CHAPTER 7
Possible directions for future work

As the results of the evaluation (see Section 5.2) show, the analysis yields good results,
but there is still room for improvements. On this basis, we discuss a number of possible
improvements, which would address issues encountered in the course of this work.

7.1 Extended measures

The current fixed set of measures implies certain limitations of the power and accuracy
of the analysis. We propose several approaches for adding specific new measures which
help to avoid some of these limitations, most notably the dynamic addition of likely
relevant measures, based on type inference.

7.1.1 Dynamic measures using type inference

Limitations of fixed measures

Generally, the precision of the analysis depends on the choice of measures [AGG13].
The main disadvantage of using only a limited set of predefined measures is the inability
to calculate precise costs for more complex patterns, such as iteration over the lists
contained in a list. Here, the length measure is no longer sufficient (as it does not
describe nested lists), whereas the size is potentially imprecise (as we argue next). An
example of a function with such a pattern is shown in Listing 17.

Such problems occur most frequently where a bound depends on the value of the head
(car) of a list, as in the example in Listing 17. If the cost depends only on the length
or size of the list element, we obtain a sound bound proportional to the size measure of
the list. Considering the function list-lengths again, the size is indeed an accurate
representation of the true cost, assuming that x is a list of lists of atoms (e.g., integers),
such as '((1 2) (3 4 5) (6)). However, this becomes inaccurate if x is a more deeply
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1 (defun list-lengths (x)
2 (if (consp x)
3 (cons (listlen (car x)) (list-lengths (cdr x)))
4 nil))

Listing 17: Nested iteration over a list of lists: the function determines the length of
each sublist and returns the resulting list of lengths. Our analysis derives the bound
4 ∗ xlen + 5 ∗ xsize + 3, i.e., the bound references not only the length, but also the size of
x. However, a more precise bound would be the sum of the lengths of the sublists plus
the cost of the top-level iteration. listlen is defined in Listing 2 on Page 18.

nested structure (a list of lists of lists etc.), for example '((1 2) (3 (4 5 (6 7) 8))
(9)). In such cases, a bound proportional to the size is a significant overapproximation,
as in reality, the cost depends only on the first two nesting levels. In the example, the
size of the sub-sublist '(4 5 (6 7) 8) counts towards the total size of the argument,
even though it is irrelevant for the cost of the iteration in list-lengths.

For lists of integers on the other hand, where the complexity of a function which is
called on each element of the list depends on the integer value of that element, the
current approach fails entirely. An example is shown in Listing 18, where a correct
bound would depend on the value of integers contained within a list. As only the three
predefined measures defined in Section 2.3 are available, it is not possible to express this
cost as a combination of the measures for the argument x. Consequently, no bound can
be calculated for list-factorials.

1 (defun list-factorials (x)
2 (if (consp x)
3 (cons (factorial (car x)) (list-factorials (cdr x)))
4 nil))

Listing 18: A function which calculates the factorial for each value in the input list.
factorial is defined in Listing 3. The cost of this function depends on both the length
of the list and the values of its element, specifically the sum of the cost of factorial
for each element, plus the cost of the iteration.

Determining measures suitable for calculating precise bounds becomes even harder with
“semantic” patterns which include multiple recursive calls, such as alternately traversing
the left and right branch in a tree. However, such functions are presumably very rare.

For the examples shown here, it is possible to add measures for the corresponding itera-
tion patterns (such as iteration over each sublist of a list) directly to the set of predefined
measures, under the assumption that these patterns occur somewhat frequently. How-
ever, this clearly works only for a limited number of such patterns, whereas iterations
could in principle be nested to an arbitrary depth. For example, Listing 19 shows a
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function which calls the list-lengths function defined above (Listing 17) on each list
element. In other words, it extends the iteration by an additional level.

1 (defun nested-list-lengths (x)
2 (if (consp x)
3 (cons (list-lengths (car x)) (nested-list-lengths (cdr x)))
4 nil))

Listing 19: Doubly nested iteration which determines the lengths of the sublists of lists
contained within a list. list-lengths is defined in Listing 17.

In fact, similar deep nesting occurs in many real-world programs utilizing complex data
structures. Typically, “higher-level” functions call other functions acting on succes-
sively smaller nested parts of the initial argument(s). Furthermore, as explained in
Section 3.2.1, the computational effort required to analyze a program rises quickly with
the number of measures involved. Therefore, the large number of measures added by
such an approach might improve precision, but cause scalability issues, and the high
proportion of “useless” ones needlessly slows down the analysis.

Solution

In order to avoid these limitations, measures which might be relevant or helpful for the
analysis should be identified and added dynamically, rather than relying on a constant
set of predefined measures. Measures could be constructed based on the structure and
type information of the program, as in Albert et al. [AGG13]. The core concept here
is type inference, i.e., automatically determining possible types for function arguments
and variables in an a-priori untyped program. The approach presented by Albert et al.
is focused on recursive types, which are quite similar to lists in Lisp (which consist of
nested cons pairs). Given a dynamically typed Lisp program, such an approach may
result in multiple candidate measures, which however does not pose any difficulties for
CoFloCo. In this case, scalability is still improved, as only relevant measures are added.

Consider the example list-factorials in Listing 18 again, which iterates over the
elements of a list, where each element has a processing cost depending on its integer
value. Since factorial requires its input to be an integer (which follows from its use of
the integer operations > and *, c.f. the definition in Listing 3 on Page 30), it can also be
inferred that list-factorials requires a list of integers. This leads to the assumption
that the maximum of the integer values in the list might be a suitable measure.

Using this newly generated measure, which maps a list to the maximum integer value
among its elements, the behavior of the function could be correctly specified by cost
relations. This measure is used in the same way as the usual list measures, such as
length. In cost relations, the integer measure of each element in the list can then be
constrained to at most the maximum value among all list elements. This results in a
sound overapproximation of the total cost, as each element is assumed to be maximal.
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The cost equation for car, originally

eq(car(xsize → ysize), 1, [ ], [ysize ≤ xsize − 1])

is modified by adding a measure listmaxint(x) for the maximum integer value in the list
x, as well as the corresponding constraint yint ≤ listmaxint(x):

eq(car(xsize, listmaxint(x)→ yint, ysize), 1, [ ], [yint ≤ listmaxint(x), ysize ≤ xsize − 1])

CoFloCo could then calculate the final bound as proportional to xlen ∗ listmaxint(x), i.e.,
the product of the list length and the maximum value. This bound can also be obtained
by RAML.

Likewise, for the nested list iteration in list-lengths (Listing 17), type inference can
determine that the argument must be a list of lists of some element type. From the fact
that no type constraints can be inferred for this type, it follows that the corresponding
elements of the sublists are not used in list-lengths and therefore do not affect the
function’s cost. Consequently, these elements are irrelevant for calculating the bound,
and no measures need to be generated for them. As a result, the analysis would generate
the measures xlen (the length of the argument x) and listmaxlen(x) (the maximum sublist
length), with the cost being proportional to their product. An analogous measure for
the sub-sublists in nested-list-lengths (Listing 19) could be listlistmaxlen(x), and so
on for any other finite nesting depth.

An even better (more precise) measure would be an expression such as “sum of the
integer values of the list elements”, written, e.g., listsumint(x). list-factorials would
then have the following cost relations:

eq(ifn(xlen, listsumint(x)→ . . . ), 1,

[factorial(yint → rint), list-factorial(zlen, listsumint(z)→ wint), . . . ],
[xlen > 0, listsumint(x) = yint + listsumint(z)])

eq(ifn(xlen, listsumint(x)→ . . . ), 1, [ ], [xlen = 0])
eq(list-factorials(xlen, listsumint(x)→ . . . ), 1, [ifn(xlen, listsumint(x)→ . . . ], [ ])

As the precise bound for factorial is nat(nint) ∗ 5 + 3 and the iteration itself has some
cost citer, the bound citer + listsumint(x) ∗ 5 + xlen ∗ 3 for list-factorials could be
calculated based on these cost relations.

Of course, the same would also be possible for the elements of a tree, as well as any
other kind of structure, e.g., lists of lists. However, this approach is only suitable if the
cost of the called function is linear in terms of each list element.

Nonetheless, even more complex (and more precise) measures are possible, following
a similar structure. This approach is not limited to integer list elements and could
represent arbitrary expressions for the elements, resulting in a sum expression such as
listsum-fnsint(x, f(y)) where x is the list being iterated over, f(y) is a function over each

76



7.1. Extended measures

integer element y of the list, and the value of the measure is the sum of f(y) applied to
each element. The cost of the iteration itself must again be added separately.

Such complex measures would however only be feasible if they were generated/selected
by another sophisticated analysis pass. Generally, as the complexity of the functions
being analyzed increases, it becomes harder to determine which measures are suitable
(or most useful) for representing the function’s cost. Furthermore, a higher number of
measures would adversely affect scalability again. In any case, the usefulness of a bound
containing such a sum expression depends on the use case.

7.1.2 Logarithmic bounds

In addition to polynomial bounds, the analysis could be extended to also support log-
arithmic bounds in certain cases. This would be possible within the existing linear
constraint-based system by treating the logarithm as a regular measure which changes
linearly between recursive calls. For example, a function which divides its argument x by
2 in each recursive call could have an additional measure log2 xint (i.e., the base-2 loga-
rithm of the integer measure xint), which decreases by 1 with each call. Listing 20 shows
an example of such a function together with the corresponding cost relations, including
a logarithmic measure.

1 (defun lg2 (x)
2 (if (> x 1)
3 (+ 1 (lg2 (/ x 2)))
4 0))

eq(/(log2 xint, yint → log2 rint), 1, [ ],
[yint = 2, log2 rint = log2 xint − 1])

eq(lg2(log2 xint → rint), 2,

[>(log2 xint, 0, cint), /(log2 xint, 2, log2 zint),
lg2(log2 zint, rnint), +(rnint, 1, rint)], [cint = 1])

eq(lg2(log2 xint → 0), 2, [>(log2 xint, 0, cint)], [cint = 0])

Listing 20: A function which calculates the base-2 logarithm of an integer (rounded up)
by successively dividing the argument by 2. It is immediately obvious that the number of
recursive calls is likewise defined by the base-2 logarithm of the argument x, i.e., log2 x.
Thus, by adding a measure log2 xint for the logarithm of the integer measure of x (as
seen in the cost relation to the right), a bound could be formulated as a linear expression
proportional to log2 xint. The first cost equation shows the modified form of the division
function, specialized to the case where the divisor is 2: division by 2 decrements the
base-2 logarithm by 1.

An important restriction for this approach is that the sole change to the argument must
be a linear increase or decrease of its logarithm. This means that programs containing
recursive calls such as f(x/2 + 1) could not be successfully analyzed using this method.
Listing 21 shows a function lg2-plus1 where this is the case, although it is otherwise
identical to lg2.
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1 (defun lg2-plus1 (x)
2 (if (> x 2)
3 (+ 1 (lg2-plus1 (+ (/ x 2) 1)))
4 0))

Listing 21: Compared to lg2 in Listing 20, the minor modification of adding 1 to the
argument of the recursive call in lg2-plus1 means that this logarithmic measure is no
longer applicable, because the logarithm of x, i.e., the measure log2 xint, is not simply
decremented or incremented by a constant between calls.

A logarithmic measure could also be useful for analyzing divide-and-conquer based algo-
rithms such as merge sort (see Listing 7 in Section 3.2.6, Page 38). This function has a
worst-case complexity of O(n log n), whereas our current approach derives a bound with
complexity O(n2). The partition step (splitting into elements with even respectively odd
position in the list) poses a complication, as it may result in one branch being called
with an argument which is slightly longer than half the input: for an input list of odd
length xlen, one call will receive a list of length ⌈xlen/2⌉. Nonetheless, the total cost is
still as expected.

1 (defun bin-tree-search (tr x)
2 (cond ((null tr) nil)
3 ((< x (first tr)) (bin-tree-search (second tr) x))
4 ((> x (first tr)) (bin-tree-search (third tr) x))
5 (t x))) ; element found

Listing 22: Search function for a binary search tree containing integers. It is assumed that
the tree is well-formed, with each node consisting of a three-element list (e, left, right).
Therefore, the bound should be proportional to the maximum number of steps which
need to be taken in order to find the item (or determine that it does not exist), which
in turn is equal to the depth of the tree.

Additionally, it would be possible to add measures which are inherently logarithmic in
some sense. Consider, for example, the time it takes to find an element in a binary
search tree, using a simple search function as shown in Listing 22. For this function, an
interesting candidate measure is tree depth (also called “height” [HDW17], and presented
by Campbell [Cam09] with an application to memory analysis). An identical addition,
as a consequence of encountering similar problems with specific predefined measures,
was proposed by Wegbreit: “car-length [and] max-length (maximum path along any
combination of car or cdr options in cons pairs)” [Weg75]. This depth measure would
in fact be the logarithm of our current size measure, assuming a fully populated binary
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tree, and would be defined as follows:

depth(x) =
{

1 + max(depth(a), depth(b)) if x = a . b

0 otherwise

Such a measure would be helpful for certain other analysis tasks as well, such as deter-
mining the maximum stack size for depth-first search of a tree.

7.1.3 Manual annotations

For some functions, automatically identifying the measures and properties necessary for
cost analysis is not possible or feasible, or at least very hard. Handling such complex cases
automatically might still be possible in some circumstances, but would require a large
number of heuristics and/or spending significant computational effort on attempting to
analyze them.

Instead, it would likely be more useful to allow the user to add manual annotations
which specify an expression to use as a measure. For example, unless CCG is enabled,
ACL2 depends on such annotations, which specify hints used for proving termination.

Specifying implicit or external knowledge would also be important in some cases, such as
for graph algorithms where termination depends on the graph being acyclic. This could
also be done through manual annotations – in fact, ACL2 already provides extensive
annotation mechanisms, e.g., in the form of guard annotations1, which could be used
for resource analysis as well. In a similar way, arbitrary user-specified lemmas could be
taken into account to support various analysis tasks, such as proofs for multiple recursion
(see Section 3.2.6).

7.1.4 Encoding type information

While Lisp is not statically typed, types often determine the behavior of functions. An
inability to distinguish between types may lead to unsound results in certain rare cases,
such as the confusion of integer and symbol values (see Section 3.3). The example of
int-bool-loop in Listing 23 shows an instance of this problem (however, note that this
is a synthetic example, which is not likely to occur in reality). The underlying cause
of the error is that type information is lost during the conversion to cost relations, and
consequently, it is no longer possible to distinguish between the integer value 0 and the
symbol nil. Although not should return t only if the argument is nil, according to the
semantics described in the cost relation for not, it would erroneously also return t for
0, and thus abort the loop early:

eq(not(aint → rint), 1, [ ], [aint = 0, rint = 1])
eq(not(aint → rint), 1, [ ], [aint ̸= 0, rint = 0])

1http://www.cs.utexas.edu/users/moore/acl2/v7-0/manual/index.html?topic=ACL2____GUARD
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Note that in this case, not (similar to if) is correctly defined only for symbol arguments
t and nil (unlike in Common Lisp, where applying not to any value other than nil
returns nil).

1 (defun int-bool-loop (x)
2 (+ 1 (cond ((not x) 0)
3 ((> x -10) (int-bool-loop (- x 1)))
4 (t 0))))

Listing 23: A synthetic example where deriving a sound bound depends on the ability
to distinguish between an integer with value zero (which is considered as true in the
context of a condition) and nil (which is false). As a result, the bound generated by
our analysis reflects a maximum of only x recursive calls, whereas in reality, up to x + 9
recursive calls may be made. In the cond block, the final condition t is the default or
“otherwise” option. This example is repeated from Listing 8.

One way of resolving the issue would be to add a separate measure which explicitly
encodes the type of the value. Specific integer values would correspond to specific types
(such as integer, symbol and cons pair, and possibly other types which are currently not
supported, but could then be added more easily). In this way, the type information is
preserved and expressed as part of the cost relations. The analysis can then determine
a choice of possible integer values corresponding to possible types – for example, the
input of length must be either a non-empty list or nil, and the output is an integer.
Thus, it becomes possible to distinguish between different types of values of a function
argument, which cannot be reliably distinguished based solely on the existing integer
and size/length measures.

The definition of the basic function not could be modified to specify that the result is
false (i.e., nil, with the corresponding integer value 0) only if the value is of type symbol.
Simplified cost relations are given below, where the first cost equation concerns the case
where the argument is nil, the second where it is a symbol other than nil, and the third
where it is a value of any other type. xtype is the type-indicating measure, and tsymbol
is an integer constant which specifies that the value described by the type measure is a
symbol:

eq(not(xint, xtype → 1, tsymbol), 1, [ ], [xtype = tsymbol, xint = 0])
eq(not(xint, xtype → 0, tsymbol), 1, [ ], [xtype = tsymbol, xint > 0])
eq(not(xint, xtype → 0, tsymbol), 1, [ ], [xtype ̸= tsymbol])

The first cost equation handles the case where x is the symbol nil (which has the integer
value 0 by convention), meaning that the result is t (with integer value 1). The second
cost equation applies for symbols other than nil (note that the integer values assigned
to symbols are always positive, hence the condition > 0), where the result is nil. The
final cost equation handles all cases where x is not a symbol. The behavior of this revised
cost relation corresponds precisely to that of not in Common Lisp and ACL2.
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For int-bool-loop in Listing 23, the analysis would now determine that x might be
either an integer or nil, with the important difference being that the definition of not
now reliably distinguishes between the two cases. Since the analysis has to assume the
worst case (in this case, that the condition which would cause an early exit from the
recursion is not met), the resulting bound would be sound.

Type information encoded in the cost relations, such as possible types of arguments
and type-specific behavior, could be used for other analysis steps as well. For example,
type-inference based techniques like the one described in Section 7.1.1 could rely on such
specifications and would thus be able to analyze any program expressed as cost relations,
rather than being specific to the Lisp frontend.

7.2 Bound simplification
As explained in Section 3.2.2, many bound expressions are too complicated to be in-
tuitively understood, and the corresponding degree of precision might not actually be
required, depending on the use case. Currently, only basic arithmetic simplifications
(such as grouping of constant additions), which do not affect the result, are applied
to bounds. While this could still be extended to some degree, it cannot reduce in-
herent complexity. Some loss of precision stemming from simplifications of the bound
expression (such as removal of constant terms or grouping of all multiplications with the
asymptotically most significant term) might therefore need to be accepted.

Similarly, the simplistic approach to supporting higher-order functions described in Sec-
tion 6.5.1, where the (unknown) function argument is simply ignored, might in fact be
desirable for certain applications. It is often more interesting to determine how often
the function argument of a higher-order function is executed, whereas the detailed cost
is not important.

7.3 Comparisons with other systems
As described in Section 5.4.1, experimental comparisons of our implementation to other
resource analysis systems would be interesting. However, as previously explained in
Section 5.4.1, such comparisons involve various challenges, as the equivalence of the se-
mantics and cost models must be ensured in order to obtain comparable bounds. As
discussed in previous sections, the space of functional programming is highly diverse,
with quite different paradigms (e.g., statically vs. dynamically typed, eager vs. lazy exe-
cution). A meaningful experimental comparison would necessitate either the design and
implementation of either appropriate frontends or conversion methods, or implementing
various existing approaches for a single target language. For example, the implementa-
tion of a frontend for OCaml, but using the same or similar approaches as described in
this work, would be interesting for comparing our analysis to RAML. Since our analysis
does not require types, but can optionally use type information, such an extension would
be relatively simple in principle. However, OCaml is considerably more complicated than
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Lisp, which is one of the reasons why we chose to focus on the latter at first (the fact
that no “simplified” benchmarks similar to the ACL2 models are available for OCaml is
another).
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CHAPTER 8
Conclusion

We adapted CoFloCo, an existing resource analysis system, in order to process Lisp
input, and applied it to process a large benchmark suite containing over 19491 functions.
The analysis is completely automatic, does not require manual annotations or other
user interaction, is typically fast where it can obtain a result, and can calculate bounds
for a considerable fraction of the input. The results are promising, with bounds being
obtained for more than 53% of the functions in the benchmark. However, these results
also clearly show that additional work is still required, especially concerning performance
(running time).

Judging from both these results and comparisons to related work, it appears that resource
analysis in general has advanced quite far. The challenges generally lie in identifying
useful abstractions, and their quality appears to be the most important factor – according
to the literature, this is common among related approaches as well. The most significant
challenges likely lie in applying this work to real-world use cases involving very large
and complex programs. There are also some remaining points, such as comprehensive
analysis of generalized higher-order functions, which are yet to be completely solved.

A notable consideration which has been paid little attention so far is the intended ap-
plication or use of the obtained bounds, which influences the desired characteristics of
the analysis. Merely producing (precise) bounds is not sufficient for all applications – if
information should be provided to the user, the utility of complex bound expressions is
doubtful, as they are hard to understand intuitively. Therefore, it might be necessary to
simplify these bounds, or to analyze only higher-level parts of the program while ignoring
irrelevant details. In order to make resource analysis directly useful for programmers, in-
tegration into existing toolchains (such as integrated development environments) would
also be desirable.
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