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Abstract

The long-range magnetic �eld is the most time-consuming part of micromagnetic

simulations. Computational improvements can relieve problems related to this

bottleneck. This work presents an e�cient implementation of the Fast Multipole

Method [FMM] for the magnetic scalar potential and stray �eld as used in micro-

magnetics. The novelty lies in extending FMM to linearly magnetized tetrahedral

sources making it interesting also for other areas of computational physics. The

near �eld is calculated directly, and the far �eld is approximated numerically us-

ing multipole expansion. This approach tackles important issues like the vectorial

and continuous nature of the magnetic �eld. By using FMM the calculations scale

linearly in time and memory and are distributed among many processors.
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Kurzfassung

Das langreichweitige Streufeld ist der zeitaufwändigste Teil mikromagnetischer

Simulationen. Durch die Verwendung des vorgestellten Algorithmus können da-

mit verbundene Herausforderungen, wie Parallelisierung und asymptotische Zeit-

komplexität, gelöst werden. Diese Arbeit stellt eine e�ziente Umsetzung der Fast

Multipole Method [FMM] für das magnetische Skalarpotential und Streufeld im

Rahmen des Mikromagnetismus dar. Die Neuheit besteht darin, einen der vielver-

sprechendsten Algorithmen unserer Zeit, nämlich FMM, auf linear magnetisierte

tetraedrische Quellen auszudehnen und damit für mikromagnetische Probleme und

potentiell auch für andere Bereiche der computergestützten Physik interessant zu

machen. Die hier vorgestellte Implementierung berechnet das Nahfeld exakt. Das

Fernfeld wird hingegen mittels numerischer Integration auf Basis der Multipol-

entwicklung approximiert. Diese Arbeit löst grundlegende Problemen der Imple-

mentierung, wie die Abbildung der vektoriellen und kontinuierlichen Natur des

Magnetfeldes auf die ursprünglich nicht kontinuierliche FMM. Es wird gezeigt,

dass die Berechnungen linear in Zeit und Speicher über viele Rechenkerne hinweg

skalieren und dabei eine für mikromagnetische Standardprobleme ausreichende

Genauigkeit erreichen.
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1. Introduction

Magnetism plays a vital role in everyday life. Not only in the form of the geo-

magnetic �eld protecting us from solar winds and charged particles, but also in

many technological applications like motors, hard disk drives, MRAM, sensors,

and spintronics. For the improvement and development of new magnetic applica-

tions, a thorough theoretical understanding of magnetism is required. For many

larger applications ab initio calculations are not feasible, and thus micromagnetic

theory and simulations come into use.

Micromagnetism is a branch of magnetism operating in the micron region. It

has been successfully used to model and develop hard drives by improving write

heads and storage material [1, 2, 3]. Other applications include the development

of magnetic random access memory [MRAM] [4, 5] and recent developments like

racetrack memory [6]. Another use of micromagnetism is the investigation of hard

magnetic materials [7].

The long-range magnetic stray �eld is a bottleneck for large micromagnetic sim-

ulations. This thesis presents a method for improving the scaling of simulations

in time, memory and the parallelization to distributed systems by using the Fast

Multipole Method and extending it to continuous sources.

This thesis comprises seven sections starting with this introduction. Chapter 2

explains the basic tenants of magnetism and introduces and describes relevant

variables. The magnetic concepts are re�ned in chapter 3 explaining applicability

and basic concepts of micromagnetism. Chapter 4 is the theoretical centerpiece

of the thesis describing the Fast Multipole Method and its adaption for the con-

tinuous micromagnetic demagnetizing �eld. Chapter 5 provides an excerpt of the
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1. Introduction

documentation generated from the implementation. The simulation results are

presented and discussed in chapter 6. Chapter 7 is the last section; it addresses

shortcomings of the method and potential improvements.
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2. Magnetism

2.1. Overview of Magnetic Theories

To describe and calculate the whole size spectrum of magnetic materials magnetic

models can be divided into �ve overlapping models (see table 2.1).

Table 2.1.: This table gives a hierarchy of common magnetic theories their domains
of application, a short explanation, and approximate dimensional ap-
plicability.

Name Description Order of magnitude
Atomistic theory QM ab initio less than 1 nm
Micromagnetic theory Domain wall structure 1 nm to 1000 nm
Domain theory Microstructure of domains 1 µm to 1000µm
Maxwell solvers Macroscopic description more than 0.01 mm
Phase theory Ensemble description more than 0.1 mm
Magnetic Hysteresis Always applicable

The most fundamental ab initio theories are using charges and spins in a quantum

mechanical model to describe the magnetic properties of magnetic materials. Only

the most basic systems can be calculated without severe approximations [8]. On

top of that ab initio based theories scale poorly to larger systems (O(exp(N))).

The micromagnetic theory is a continuous semiclassical theory describing magnetic

materials from a few nanometers to the order of microns which are much larger

than ab initio calculations would allow. It can explain many magnetic e�ects like

the formation of domain walls and their pinning in bulk material and thin �lms.

It can be used to describe ferromagnetic materials such as nanocrystalline and

19



2. Magnetism

Figure 2.1.: Domain wall structure of a single grain outlined in black with an arrow
pointing in the direction of the magnetization. This image was created
by Chris Vardon Zureks and is licensed under the Creative Commons
Attribution-Share Alike 3.0 Unported license.

amorphous alloys as well as intermetallic compounds [9]. In contrast to domain

theory, it allows the resolution of domain wall structures.

Domain walls (see �gure 2.1) are uniformly magnetized regions in otherwise het-

erogeneous magnetic structures [10]. They can be observed via magneto-optical

methods. According to Becker and Döring [11] domain wall theory can accurately

describe crystal anisotropy, displacement of domain walls, and the rotation of mag-

netization vectors inside the domains. Exchange interaction can be expressed by a

term using the exchange constant in a similar way as in micromagnetism. Domain

wall theory is a simpler, more macroscopic model than micromagnetism which can

be used more e�ciently on larger structures. On the other hand, it cannot describe

the magnetic behavior of small particles without a regular domain structure, the

domain wall structure itself, rapid dynamic magnetization reactions, and stability

limits.

Macroscopic Maxwell Solvers [12] use the macroscopic Maxwell equations to de-

scribe averaged magnetic regions. In practice, this means that the magnitude of the

magnetization is not constant and the material properties get more complicated

(i.e., non-linear). The time-saving factor of this method is that the discretiza-

tion regions can be much larger compared to micromagnetic simulations. This

method has successfully been coupled to the micromagnetic model by [13], e�-

20



2.2. Important Magnetic Concepts and Variables

ciently combining the applicability of both models for problems where the domain

wall structure is only relevant in some parts of the geometry.

In phase theory only the phase volumes of domains with parallel magnetization

are essential. The arrangement of the domains is irrelevant, which is true for, e.g.,

small high-anisotropy particles and large soft-magnetic structures. It provides a

mostly shape-independent vectorial magnetization curve for large samples which

should agree with the measured anhysteretic magnetization curve. It does not

accurately describe interfacial e�ects.

The hysteresis is a description of the magnetization depending on the external

�eld and its history. It usually plots the magnetization against the magnetic �eld.

After applying a �eld, the magnetization remains magnetized with remanence

magnetization and needs a so-called coercive �eld to become demagnetized. Var-

ious mathematical descriptions of the underlying phenomena can be found in the

literature [14, 15, 16, 17, 18].

2.2. Important Magnetic Concepts and Variables

The sources of permanent magnetic moments in solids are unpaired electron spins

obeying Hund's rules in the atomic shells [19]. The moments of the nuclei are

orders of magnitude smaller, and their contribution is negligible compared to the

atomic moment. The atomic moments are coupled via exchange interaction which

can give rise to magnetic order below Curie temperature. The resulting magneti-

zation creates a magnetic �eld. Both the magnetization and its magnetic �eld are

dependent on an external �eld in a nonlinear and irreversible manner.

2.2.1. Magnetization

Magnets are physically described by their dipole moment µ. In 1820 Oersted [19]

discovered that electric currents produce an equivalent �eld to magnets and de�ned

21



2. Magnetism

the magnetic moment in terms of a current loop with area A and current I to be

µ = IA. (2.1)

The dipole moment µ of a magnet is the sum of its atomic dipole moments µi and

the magnetization M is the moment per unit volume. Two sources of magnetic

moments were found in nature, the aforementioned current loops and the so-called

spin which is a trait of elementary particles.

2.2.2. Magnetic Field

The magnetic �eld H is a vector �eld created by a magnet or a current. It has

the same unit as the magnetization, namely A m−1. The magnetic �eld drives the

magnetization inside of magnetic solids. The relationship between the magnetiza-

tion M and the magnetic �eld H is nonlinear, multivariate, and depending on the

current magnetization, the dimensions, and the shape of the magnetic solid. The

curve characterizing the magnetization as a function of the magnetic �eld M(H)

is called the hysteresis.

It should be noted that the �eld H inside a magnet consists of an external �eld

Hext, which exists in the absence of the magnet and an internal demagnetizing �eld

Hd caused by the magnet.

H = Hext + Hd (2.2)

The demagnetizing �eld is called stray �eld when it works outside the magnet.

It is a long-ranged �eld and the primary focus of this thesis. In a continuous

approximation, it can be calculated from the magnetization as

Hd(r) = − 1

4π

∫
Ω

M(rt) · ∇t
1

|r− rt|
d3rt. (2.3)

More detail about the stray �eld is given in section 3.1.2.
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2.2. Important Magnetic Concepts and Variables

MS

MR

HC

0

0

H
A m−1

M(H)

A m−1

Figure 2.2.: Irreversible hysteresis loop with characteristic variables remanence
magnetization MR, saturation magnetization MS, and coercive �eld
HC .

2.2.3. Hysteresis

The hysteresis loop is the central datum of permanent magnetism; physicists

want to understand it, material scientists want to improve it and engineers

want to exploit it in useful applications.

R. Skomski

The hysteresis loop usually plots the magnetization M against H as seen in �g-

ure 2.2. It shows how the magnetization responds to an external H �eld. Imagine

a magnet in a large �eld. In �gure 2.2, this is shown on the far right where the

magnetization has reached its maximum, the so-called saturation magnetization

MS. By slowly reversing the �eld the magnetization changes along the upper curve.

When the external �eld reaches zero, the remaining magnetization is called rema-

nence magnetization MR. Further reducing the �eld to the coercive �eld HC , the

magnetization reaches zero (i.e., the magnet displays no remanent magnetization).

After reducing the �eld more, the magnetization reaches negative saturation on

the far left. When the �eld is increased again, the magnetization behaves similarly

as before, moving along the right curve in �gure 2.2.

23



2. Magnetism

2.2.4. Magnetic Flux Density

The magnetic �ux density B is closely related to the �eld H. In a vacuum, they

are the same except for a constant B = µ0H. The constant µ0 = 4π × 10−7Hm−1

is called vacuum permeability. In a magnet the �ux density is given by

B = µ0(M + H), (2.4)

which means that magnetic �eld and �ux density need not be parallel inside mag-

nets. The magnetic �ux density is solenoidal, i.e., its divergence is zero

divB = 0, (2.5)

whereas the magnetic �eld is conservative, i.e., curl-free:

rotH = 0 (2.6)

Conservative �elds have the properties that line integrals are path-independent,

that line integrals over closed loops are zero, and that the �eld H can be written

as the gradient of a potential u:

H = −∇u (2.7)

The unit of the �ux density is Tesla [B] = T = [µ0]A m−1, and some exemplary

values are given in table 2.2. The magnetic �ux density is one of two electromag-

Table 2.2.: Technical B values of various objects.
Object Flux density B
Brain 1 nT
Earth magnetic �eld 50 mT
Pure iron 2.15 T
Super conducting magnets 15 T
Current pulse inside coil 100 T

netic variables exerting force on an electric charge. In 1865 James Clerk Maxwell

24



2.2. Important Magnetic Concepts and Variables

[20] already used the magnetic �ux for describing the force F on an electric charge

q as

F = q(E + vB), (2.8)

where E is the electric �eld.

2.2.5. Susceptibility

Above the Curie temperature TC , the initial response of the magnetization m to

an external �eld H is usually linear with the proportionality factor χ.

M = χH (2.9)

The proportionality factor χ is called susceptibility. In many cases χ is a scalar,

but it can be generalized to simple crystals by using χ as a matrix. For spin-

paramagnetism, the temperature dependence of χ follows the Curie Law

χ =
C

T
, (2.10)

where C is a material dependent Curie constant.

For ferromagnets above the Curie temperature, the Curie-Weiss law has to be used

instead:

χ =
C

T − TC
(2.11)

The Curie-Weiss law predicts a singularity of χ at Curie temperature TC below

which the material is ferromagnetic.

For a ferromagnet, the susceptibility is usually generalized to

χ =
∂M

∂H
. (2.12)
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2. Magnetism

2.2.6. Magnetic Anisotropy

Magnetic anisotropy describes the directional preference of magnetization relative

to the crystal axes of the material in magnets. In contrast, isotropy describes di-

rectionally independent magnets where the energy of the system is independent of

the crystal structure. In practice, ferromagnets are only isotropic in bulk materials

where the microstructure features various directional components with a random

distribution.

In the simplest case, the magnetization favors magnetization along a single axis,

the easy axis. The source of the anisotropy is the crystal �eld. Uniaxial magnetic

anisotropy is usually described using the anisotropy constant K1 which expresses

the anisotropy in terms of its energy contribution Ea:

Ea = −
∫
K1 cos2(θ) d3r = −

∫
K1(M · ee)2 d3r, (2.13)

where θ is the angle between magnetization and easy axis ee. Typical anisotropy

values are between K1 = 0.03 MJ m−3 for hematite and K1 = 17.2 MJ m−3 for

SmCo5.

For ellipsoidal shapes, the demagnetizing �eld can formally be treated as a so-called

shape anisotropy of the ferromagnet (see section 3.1.2).

2.2.7. Magnetic Domain

A magnetic domain is a region with uniform magnetization in a ferromagnet

[21]. Its parallelism arises from the exchange interaction, whereas the forma-

tion of domains stems from other interactions like the demagnetization �eld (see

section 3.1.2) and grains with non-aligned anisotropies. Narrow domain walls sep-

arate the magnetic domains. The magnetization inside the domain walls can vary

either in the plane of the domain wall (Bloch Wall) or perpendicular to the domain

wall plane (Neél Wall).
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3. Micromagnetism

The theory of magnetism is based on the work of Weiss, Landau and Lifshitz

[22, 23] and was uni�ed by Brown Jr [24] as the theory of micromagnetism.

Micromagnetism is a continuous description of ferromagnets with spontaneous

magnetization below the Curie temperature TC . Electrons with overlapping spin

wave functions favor parallel alignment of elementary moments µi at positions ri:

µi ≈ µj for |ri − rj| < λ, (3.1)

which can be described by the exchange interaction (see section 3.1.1). λ is called

the exchange length and is a measure of the range of the exchange interaction.

With that the magnetic moments µi inside a region Ω larger than λ3 can be

approximated by a continuous magnetization M(r):

∑
i

µi ≈
∫

Ω

M(r) d3r, (3.2)

making the exchange length λ an important variable for the applicability of the

micromagnetic theory.

For a uniform magnetization density Mi, the magnitude of the magnetization

|M(r)| can be assumed to be constant at the saturation magnetization MS and

the reduced magnetization m:

M(r) = MSm(r) with |m(r)| = 1 (3.3)
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3. Micromagnetism

The continuous magnetization is already used in classical electromagnetism, but

for micromagnetism, additional non-classical e�ects like exchange interaction must

be taken into account. These terms and their relevance for calculating the magneti-

zation are explained in the next sections. The time evolution of the magnetization

can be described by the Landau-Lifshitz-Gilbert equation which is described in

section 3.2.

3.1. Energy Contributions in Micromagnetism

The local magnetization M(r) of a stable magnetization con�guration and its

dynamic behavior can be obtained by energy minimization of the total energy

functional Etot. The energy functional consists of many physical terms of classical

and quantum mechanical origin

Etot = Eex + Ea + Ed + Eext + . . . , (3.4)

containing exchange energy Eex, anisotropy energy Ea, and demagnetizing energy

Ed described in the following sections as well as the Zeeman Eext energy from the

external �eld:

Eext = −
∫

Ω

µ0M(r) ·HV d3r (3.5)

These competing energy terms, which are dependent on various external condi-

tions, are responsible for the complex behavior of magnets.

3.1.1. Exchange Energy

Classical electrodynamics cannot explain magnetic order. According to classical

electrodynamics, an ensemble of dipoles should have an anti-parallel order in its

ground state [25]. Other magnetic materials like paramagnetic materials and dia-

magnetic materials avoid macroscopically parallel alignment as well.

An e�ect that aligns the magnetization in magnets is necessary for macroscopic

magnetization to exist. This e�ect is called exchange interaction, and the related
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3.1. Energy Contributions in Micromagnetism

energy is called exchange energy. Exchange interaction is a quantum mechani-

cal e�ect with two contributions: a symmetric contribution postulated by Werner

Heisenberg in 1926 [26, 27] and an antisymmetric Dzyaloshinskii-Moriya [28] term.

The symmetric Hamiltonian H for the simplest case of two fermions with overlap-

ping wave functions and spins Si,Sj without external �eld is

H = −J
∑
l,δ

SlSl+δ, (3.6)

with the exchange integral J , describing the strength of the interaction and δ

usually indicating next neighbors.

In classical terms, the Heisenberg operator becomes the energy and with the mag-

nitude of the spins S = |S| and the unit vectors ni = Si/S the energy for two

spins reads:

Eij = −JijS2ni · nj (3.7)

= −JijS2

(
1− 1

2
(ni − nj)

2

)
(3.8)

The energy for the whole volume is the sum over all spins

E =
∑
i,j

−JijS2

(
1− 1

2
(ni − nj)

2

)
, (3.9)

with the exchange integral Jij describing the interaction between spins Si and Sj.

Usually Jij 6= 0 only for neighboring spins.

In the continuum, ni · nj becomes

m(r) ·m(r + ∆r) ≈ 1− 1

2
(m(r)−m(r + ∆r))2, (3.10)

with the lattice vector ∆r. Expansion around ∆r gives

m(r) ·m(r + ∆r) ≈ 1− 1

2

∑
i

(∆r ·mi)
2, (3.11)
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3. Micromagnetism

with the three reduced magnetization components mi. The energy for a general

(i.e., not isotropic or cubic) material is

E = M2
S

∫
Ω

∑
i,j,k

Aij
∂mi

∂xj

∂mi

∂xk
d3x (3.12)

which in the isotropic case simpli�es to [21]

E = M2
S

∫
Ω

A(∇m)2 d3r =

∫
Ω

A(∇mx)
2 + (∇my)

2 + (∇mz)
2 d3r. (3.13)

Equation (3.13) can be interpreted as an energy that is zero when the magnetiza-

tion is aligned uniformly and grows when the angle between nearby magnetization

values change. The antisymmetric Dzyaloshinskii-Moriya interaction [DMI] is not

treated in this thesis. A proper description can be found in [28, 29, 21].

3.1.2. Stray-Field Energy and Potential

The stray-�eld energy ED is also known as magnetostatic or dipolar energy. It

is called demagnetizing �eld, because it points opposite the magnetization inside

the magnet, e�ectively reducing the �eld inside the magnet. It is similar to the

external Zeeman energy, but caused by the magnet's own demagnetizing �eld HD

instead of the external �eld:

ED = −µ0

2

∫
M ·HD d3r (3.14)

The demagnetization energy can be derived from Maxwell's equations and the

conservation of energy [30], the factor of 1
2
arises from the fact that the self-

interaction should not be counted twice (once for M(r) and once for M(r′)) when

integrating over it. The electrostatic equations without currents

divB = 0 (3.15)

rotHD = 0 (3.16)
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3.1. Energy Contributions in Micromagnetism

allow the �eld HD to be written as the gradient of the magnetic scalar potential u

HD = −∇u (3.17)

and with equation (3.15)

∆u = divM = −divHD. (3.18)

The potential u(r) has gauge invariance under transformations u(r) → u(r) + C

and can be arbitrarily �xed asymptotically to

u(r) = O
(

1

r

)
for |r| → ∞, (3.19)

usually referred to as open boundary condition. With the Greens function 1
|r−r′|

of the Poisson function (3.18), the potential can be computed [25] as

u(r) = − 1

4π

∫
Ω

M(rs) · ∇s
1

|r− rs|
d3rs, (3.20)

when the magnetization M(rs) is restricted to a source region rs ∈ Ω.

The conjunct integral formulation (3.20) involves only one triple integral. By con-

trast, the disjunct formulation (3.21) uses a separate volume and surface integral:

u(r) =
1

4π

[∫
Ω

∇s ·M(rs)

|r− rs|
d3rs −

∫
∂Ω

M(rs) · n(rs)

|r− rs|
d2rs

]
, (3.21)

where n is the outward-pointing unit normal vector. The �eld H(rt) at the target

point rt can be easily computed by inserting equation (3.21) into equation (3.17):

HD(rt) = − 1

4π

[ ∫
Ω

∇s ·M(rs)∇t
1

|rt − rs|
d3rs

−
∫
∂Ω

M(rs) · n(rs)∇t
1

|rt − rs|
d2rs

]
(3.22)

This thesis uses tetrahedral meshes and thus calculates the shape anisotropy di-

rectly by integrating equations (3.21) and (3.22), but for constantly-magnetized
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3. Micromagnetism

ellipsoidal geometries equation (3.22) simpli�es to

HD = −λM, (3.23)

where λ is formally equal to an anisotropy and hence called shape anisotropy. Some

λ for various geometries are given in table 3.1.

Table 3.1.: λ parameters for various ellipsoidal geometries
Geometry λ
Sphere 1/3
Needle along its symmetry axis 0
Thin plate along its symmetry axis 1

3.1.3. E�ective Field

The e�ective �eld

He� = Hex + Ha + Hd + Hext + . . . (3.24)

is the �eld corresponding to the local contribution etot(r) of the total energy [31]

Etot =

∫
etot(r) d3r. (3.25)

Some components like the external Zeeman �eld (equation (3.5)) or the demagneti-

zation �eld can be measured directly. The Zeeman �eld is usually given or created,

and the demagnetization �eld can be calculated by equation (3.22). Other contri-

butions need to be calculated by the functional derivation of the respective energy

contributions:

He�(r) = − 1

µ0MS

δEtot

δm
(3.26)

For the exchange energy (equation (3.13)) the �eld computes to

Hex(r) = − A

µ0MS

δ

δm
(∇m)2 (3.27)

=
2A

µ0MS

∆m (3.28)
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He�
m

He�
m

He�
m

Figure 3.1.: Sketch of the LLG equation operating on a magnetic moment m via
the e�ective �eld Heff . The left sphere shows the precessional term,
the sphere in the center the damping term, and the �gure on the right
shows the superposition of both terms.

and for a uniaxial anisotropy from equation (2.13):

δEa
δm

= − 2K1

µ0MS

ee(ee ·m) (3.29)

3.2. LLG Equation

The Landau-Lifshitz-Gilbert [LLG] equation describes the time-dependent magne-

tization dynamics in micromagnetism. An earlier version was proposed by Landau

and Lifshitz [23] in 1935. This chapter is based on the excellent description in [32].

The LLG equation

∂tm = −γ(m×He�)︸ ︷︷ ︸
precession

+α(m× ∂tm)︸ ︷︷ ︸
damping

(3.30)

consists of a precessional term stemming from spin dynamics and a phenomeno-

logical damping term (see �gure 3.1). The damping term was historically seen as

a relativistic e�ect, but a more contemporary interpretation deems it a dissipative

e�ect similar to friction. The damping term was improved 1955 by Gilbert [33, 34]

using a Lagrangian approach (see section 3.2.1). In the following sections two

methods for deriving the LLG equation are presented, namely a Lagrangian and

a quantum mechanical approach. The LLG equation contains a time derivative;

thus an initial value m(r, t = 0) has to be �xed to calculate the time evolution.
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eN , θ̇
ex

ey

ez, φ̇

φ

θ

e(1)

e(2)

e(3), ψ̇

ψ

Figure 3.2.: Euler angles φ, θ, and ψ describe the tranformation from one coor-
dinate system ex, ey, ez to a rotated coordinate system e(1), e(2), e(3).
The three vectors φ̇, θ̇, and ψ̇ describe the constituents of the angular
velocity around their respective axes.

3.2.1. Lagrangian Approach

To deduce the Lagrangian equation of motion, the reduced magnetic moment m(r)

is described by Euler angles θ(r), φ(r), and ψ(r) (see �gure 3.2). For readability

the local dependence of r is omitted in the following section.

The node vector eN and anti-node vector eA are used to describe the tilted rotation

axis of m:

eN = ex sin θ sinφ− ey sin θ cosφ+ ez cos θ (3.31)

eA = −ex cos θ sinφ+ ey cos θ cosφ+ ez sin θ (3.32)

The tilted basis vectors can be written as

e(1) = cosψeN + sinψeA, (3.33)

e(2) = − sinψeN + cosψeA, (3.34)

and

e(3) = sin θ cosφex − sin θ cosφey + cos θez, (3.35)
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3.2. LLG Equation

using the three constituents of angular velocity φ̇, θ̇, and ψ̇, where ẋ indicates the

time derivative ẋ = ∂x
∂t

of x. The angular velocity Ω can be written as

Ω = θ̇eN + φ̇ez + ψ̇e(3), (3.36)

where eN points along the line of nodes, which is the intersection of the x-y-plane

and the (1)(2)−plane
eN = e(1) cosψ − e(2) sinψ. (3.37)

In the internal frame the rotation can be described with

Ω =

φ̇ sin(θ) sin(ψ) + θ̇ cos(ψ)

φ̇ sin(θ) cos(ψ) + θ̇ sin(ψ)

φ̇ cos(θ) + ψ̇

 . (3.38)

W.l.o.g. the local z-axis can be chosen to be aligned with the magnetization for

every moment so that m =
(

0 0 1
)T

. With ψ representing a rotation around

the rotationally symmetric part of the magnetization, it can be set to a �xed angle

ψ = 0 giving a rotational velocity vector of

Ω =

 θ̇

Φ̇ sin θ

Φ̇ cos θ + Ψ̇

 . (3.39)

To calculate the equations of motion, the Lagrange equation

L = T (q, q̇)− V (q) (3.40)

with generalized coordinates q and q̇ kinetic energy T (q, q̇) and potential energy

V (q) = Etot can be used.

The potential energy contributions are laid out in section 3.1. The kinetic energy

contribution cannot be explained classically since the magnetic moment is not

connected to a tensor of inertia. However, following semi-classical kinetic energy
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3. Micromagnetism

was chosen in [34]:

T (θ, φ, φ̇) =

∫
Ω

MS

γ
φ̇ cos θ d3r, (3.41)

which is equivalent to a classical rigid body rotation energy around the local

magnetic axis e(3) with I1 = I2 = 0, I3 = I, and the saturation magnetization

MS = γeL3 = γ3I3Ω3:

T (θ, φ, φ̇) =

∫
Ω

1

2
I(φ̇ cos θ + ψ̇)2 d3r (3.42)

=

∫
Ω

1

2
IΩ2

3 d3r (3.43)

For a more rigorous explanation see [3].

With the functional derivative δ
δg

and an added dissipative Rayleigh term δD
δq̇
,

accounting for energy transfer and the generalized coordinates q = (φ, θ), the

Lagrangian equation of motion reads as follows:

d

dt

δL

δq̇
− δL

δq
+
δD

δq̇
= 0 (3.44)

Inserting Gilbert's Lagrangian equation (3.44) into the Lagrangian equation of

motion (3.40) with the kinetic term (3.41) gives

− φ̇ sin(θ) =
γ

MS

(
δV (q)

δθ
+
δD

δθ̇

)
(3.45)

by variation of θ, and

− θ̇ sin(θ) =
γ

MS

(
δV (q)

δφ
+
δD

δφ̇

)
(3.46)

by variation of φ. To convert the equations of motion from Euler angles to Carte-

sian coordinates consider the time derivation of the magnetization

∂tm = Ω×m =

φ̇ sin(θ)

−θ̇
0

 . (3.47)
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3.2. LLG Equation

If the normalized magnetization |m| = 1 is considered it can be varied with respect

to the Euler angles φ and θ as

δm1 = sin(θ)δφ (3.48)

and

δm2 = δθ. (3.49)

Inserting equations (3.45) and (3.46) into equation (3.47) and replacing the func-

tional derivatives gives

∂tm1 = − γ

MS

(
δV

δm2

+
δD

δṁ2

)
(3.50)

and

∂tm2 =
γ

MS

(
δV

δm1

+
δD

δṁ1

)
(3.51)

and combines to

∂tm =
γ

MS

m×
(
δV

δm
+
δD

δṁ

)
. (3.52)

The Landau-Lifshitz-Gilbert [LLG] equation

∂tm = γ(m×He�) + α(m× ∂tm) (3.53)

is obtained by choosing a dissipative function D proportional to the squared rate

of change of the magnetization

D =
MS

2γe
α(∂tm)2, (3.54)

with the dimensionless damping factor α ≥ 0 and the e�ective �eld He� =

− 1
µ0MS

δV
δm

.

3.2.2. Properties of the LLG Equation
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Preservation of magnitude The LLG equation preserves the magnitude of the

magnetization m. This can be seen if the LLG equation (equation (3.53)) is

inserted into the time dependence of the squared magnetization:

∂t|m|2 = ∂t(m ·m) = 2(∂m) ·m (3.55)

1

2
∂t|m|2 = −γ(m×He�) ·m + α(m× ∂tm) ·m = 0 (3.56)

Lyapunov Structure For a stationary energy functional (i.e., time-independent

�eld) the temporal dependence of the energy density U can be written as

∂tU =
δU

δm
· ∂tm = −µ0MSHe� · ∂tm. (3.57)

Inserting the LLG equation gives

∂tU =− µ0MSHe� · (−γ′(m×He�)− α′m× (m×He�)) (3.58)

=µ0MSHe� · (α′m× (m×He�)) (3.59)

=µ0MSα
′He� ·

(
(m ·He�)m−He�|m|2)

)
(3.60)

=µ0MSα
′ (|(m ·He�)|2 − |He�|2|m|2)

)
≤ 0, (3.61)

a non-increasing time dependence of the energy functional over time (i.e., Lya-

punov Structure [35, 36]).

Hamiltonian Structure For a vanishing damping term in the LLG equation (i.e.,

α′ = 0), the time dependence of the energy functional

∂tU = 0 (3.62)

vanishes in equation (3.61). In other words, the energy is conserved, and the LLG

equation has Hamiltonian structure.

38



3.2. LLG Equation

3.2.3. Applicability and Improvements of the Micromagnetic

Model

The micromagnetic model is a well-tested tool for the study of magnetism. Still,

it is a simpli�ed model and not a panacea for every problem domain. This section

discusses some caveats of and extensions to the micromagnetic model for deep-

ening the understanding of its applicability and validity without any claims to

completeness.

Bloch Points [37] showed that in ferromagnetic materials singularities with a sig-

ni�cant change in the direction of m between neighboring moments exist. These

singularities are called Bloch points. An example of a Bloch point is the center

of a sphere with a hedgehog-like magnetization where no direction for the magne-

tization exists. This means that the underlying micromagnetic assumption that

a continuous function m(r) with constant saturation magnetization MS cannot

describe the magnetization.

Nonetheless, [38, 39] show that the Bloch points can be described in the frame-

work of micromagnetic simulations in agreement with experimental results, albeit

underestimating the energy density near the Bloch points.

Thermal Fluctuations Thermal �uctuations again violate the continuity of the

magnetization m(r) by perturbing it locally. Several approaches to solving this

problem exist. A mean-�eld approximation reduces the saturation magnetization

MS(T ) as a function of temperature, posing only a minor modi�cation to the

framework of micromagnetic theory (see [40]).

The introduction of a randomly �uctuating �eld as an additional term in the

e�ective �eld He� turns the LLG equation into a stochastic di�erential equation

(see [41]).
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Spin-Polarized Currents Spin-polarized currents give rise to a branch of mag-

netism called spintronics. In spintronics, currents can be manipulated by spin and

charge instead of only by charge [42]. This e�ect results from the band structure

of ferromagnetic solids like Fe, Co, Ni and their alloys. The band structure causes

the population of one spin direction to be larger than the other. In contrast, most

materials have an equal population of spin-up and spin-down electrons. To pic-

ture a spin-polarized current one can start by imagining a current �owing through

a magnetic solid, the resistance for electrons would then be dependent on their

polarization, and thus a di�erence in resistance between spin-up and spin-down

electrons would occur. This spin asymmetry creates various spin-related transport

phenomena. Since the discovery of the GMR e�ect [43] many technological and

scienti�c applications have taken advantage of spin-polarized currents. A model

for describing spin-polarized currents in a micromagnetic context is given in [44].

Interfacial E�ects The micromagnetic model assumes a homogeneous solid, but

many magnetic e�ects happen at the interfaces between di�erent materials. These

e�ects often have a quantum mechanical origin like the Ruderman-Kittel-Kasuya-

Yosida [RKKY] interaction [45] and the Dzyaloshinskii-Moriya interaction [DMI]

[46]. A commonly used simpli�cation is the use of experimentally measured e�ec-

tive material constants. Another way is to integrate the physicals directly in the

model as is done in [47, 48, 49].
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The Fast Multipole Method [FMM] was �rst presented by [50] and later chosen as

one of the top algorithms of the 20th century by [51]. The original implementation

used point-like sources, whereas the presented implementation works on linearly

varying continuous sources (see section 4.2). The FMM uses direct evaluation of

the �eld or potential, making it part of the same category of algorithms as Fast

Fourier Transform [FFT] [52], non-uniform FFT [NUFFT] [53] and tensor grid

methods [54]. Compared to the FFT, the FMM is an approximate algorithm and

does not require a regular grid. This means, it has less precision and the possibility

to be used in conjunction with the �nite element method. On top of that FMM

scales better to larger systems than FFT (O(N) compared to O(N logN)).

A naive implementation of the discretized (see section 4.2) stray �eld needs to

compute the interaction between each source and target point NE · N ∝ N2.

Some prerequisite knowledge is necessary to understand the FMM algorithm. The

next sections explain the expansions (section 4.4.1, section 4.4.2) for approximating

sources, targets (section 4.4.3), and how to convert and reuse these (section 4.4.4).

First, a simpler N log(N) algorithm spanning one dimension, requiring only source

expansions and exhibiting a simpler tree structure, is presented in section 4.5.

The simpli�ed algorithm is then re�ned into the full three-dimensional continuous

linearly scaling (N) algorithm in section 4.6.
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4.1. De�nitions

The de�nition of barycentric coordinates and polynomial spaces are needed for the

following sections.

A tetrahedron T ⊂ R3 is the convex hull of four points xi ∈ R3 that form the

vertices of T .

Barycentric coordinates λ of x ∈ T are a parametrization of T using a convex

combination of the vertices xi:

T =

{
x ∈ R3 : x =

4∑
i=1

λix
i, 0 ≤ λi ≤ 1,

4∑
i=1

λi = 1

}
(4.1)

The barycentric coordinates of the vertex xi are λi = 1 and λj = 0, ∀j 6= i. The

barycentric coordinate λi can be identi�ed by the linear function that is 1 at the

vertex xi and vanishes at all other vertices xj 6= xi.

The transformation of barycentric to Cartesian coordinates can be done with the

components of xi = (xi, yi, zi)

x = λ1x1 + λ2x2 + λ3x3 + λ4x4, (4.2)

y = λ1y1 + λ2y2 + λ3y3 + λ4y4, (4.3)

z = λ1z1 + λ2z2 + λ3z3 + λ4z4, (4.4)

where λ4 = 1− λ1 − λ2 − λ3. The inverse transformation can be done by solving

the system of equations (4.2) to (4.4) for λ1, λ2, and λ3.

For the de�nition of the polynomial space Pk consider the following. Let r ∈ R3,

and α ∈ N+, then the polynomial space Pk is given as:

Pk = span

{
3∏
i=1

rαii for i = 1, 2, 3,
3∑
i=1

αi ≤ k

}
(4.5)
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4.2. Discretization

For the application of the FMM, it is necessary to use a discrete function space on

the problem domain Ω. A choice for using �nite element function spaces is made

to be compatible with existing �nite element software based on [55]. The source

space V = {M ∈ H1(Ω)} restricts sources M to a discrete space VH ⊂ V with

discrete sources Mi ∈ VH .

uH(rt) = − 1

4π

∫
Ω

Mi(rs) · ∇s
1

|rt − rs|
d3rs, (4.6)

where rt are the target points and rs are the source points.

A tetrahedral mesh can be created by partitioning the domain Ω into a �nite set

of tetrahedra Th = {T} with disjoint interiors such that ∪T∈ThT = Ω.

4.2.1. Finite Element De�nition

The �nite element de�nition was �rst brought forward by [56]. To create a �nite

element a local function space V is de�ned on each partitioned cell T . The function

space VH is populated by patching together (linear) functions. To create a �nite

element a combination of a cell T plus a local function space V and the rules for

describing functions in the function space V is needed. A more formal de�nition

by [55] is reprinted below:

The �nite element is a triple (T,V ,L) where

� the domain T is a bounded, closed subset of Rd (for d = 1, 2, 3, . . . ) with

nonempty interior and piecewise smooth boundary;

� the space V = V(T ) is a �nite-dimensional function space on T of dimension

n;

� the set of degrees of freedom (node values) L = {`1, `2, . . . , `n} is a basis for

the dual space V ′; that is, the space of bounded linear functionals on V .
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As an example consider the Lagrangian �nite element on the triangle. The cell T

is given by the triangle and the space V is given by the �rst-degree polynomials

P1 on T . For the dual basis point-wise evaluation can be used:

li : V → R (4.7)

li(ν) = ν(xi) (4.8)

for i ∈ {1, 2, 3, 4}, where xi is the coordinate of the ith vertex and ν a function in

V .

The choice used in this thesis for sources mi is the linear Lagrange �nite element

on the tetrahedron. The cell T is given by the tetrahedron and V := P 3
k is the

3d-space of �rst-degree polynomials P 3
k with ν ∈ V on T . The dual basis is the

magnetization Mi. For the dual space V ′ point evaluation at the four tetrahedral

vertices is used:

Mi : V ′ → R3, (4.9)

Mi = M(xi) (4.10)

for i ∈ {1, 2, 3, 4}, where xi is the coordinate of the ith vertex.

4.2.2. Discretized Function Spaces

The FMM function space discretizes the target space u as a discrete space uH(x) ∈
VH with discretization points xi such that

uH(xi) = u(xi)∀xi. (4.11)

The cell T is a tetrahedron and the space VH = P1 is the �rst degree polynomial

space on T (see �gures 4.1 and 4.2).

To simplify the basis functions a nodal basis can be used for the local basis function

space VH . The nodal basis {φi}ni=1 for VH satis�es
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x1 x2

x3

x4

Figure 4.1.: The linear Lagrange tetrahedron has four degrees of freedom corre-
sponding to its four vertices xi.

M1 M2 M3 M4 u1 u2 u3H1 H2

x

φ2(r)

x

u2(r)
H2(r)

Figure 4.2.: A one-dimensional sketch of the discretization of magnetization M,
potential u, and �eld H as linear or constant Lagrange intervals.

li(φj) = δij, i, j = 1, 2, . . . , n (4.12)

so that any function ν ∈ VH can be written as

ν =
n∑
i=1

li(ν)φi. (4.13)

In the case of the tetrahedral Lagrange element the nodal basis is given as

φi(x) = λi, (4.14)

using barycentric coordinates (see section 4.1).
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In summary, this means the magnetization DOFs Mi, ui ∈ VH ⊂ H1(Ω) are de-

�ned node-wise as piecewise a�ne globally continuous functions. Whereas the

�eld values Hi are de�ned cell-wise as piecewise constant globally discontinuous

functions with evaluation points at cell centers as seen in �gure 4.2.

4.3. Direct Integration

The Fast Multipole Method uses the singular volume integral for the potential (see

equation (3.20)) and the �eld (see equation (3.22)). A straightforward solution uses

the conjunct integral form u(rt) = 1
4π

∫
Ω

M(rs) · ∇t
1

|rt−rs| d
3rs by transforming the

tetrahedron into a prism and lifting the geometric singularity at rs = rt similar

to [57] which is in turn based on [58]. The resulting surface integrals can then be

integrated analytically or numerically depending on the speed of execution. The

details for this solution are given in section 3.1.2.

The implementation in chapter 6 uses the disjunct equations (3.21) and (3.22).

The reasoning for using the disjunct form goes as follows: Two neighboring dis-

cretization tetrahedra Ti and Tj share a surface triangle ∆il = −∆jk with opposite

normal vector ni = −nj, and thus the contributions cancel for all cell surfaces ex-

cept geometric boundaries. Canceling terms can cause numerical problems�if the

surface terms are dominant compared to the volume terms�in two ways. First,

when using FMM the error is proportional to the expanded integral, making its

absolute value larger for large canceling surface contributions. Second, because of

subtraction in the near �eld. Subtracting two identical but large numbers leads

to a loss of precision (i.e., an increase of error). For completeness, the integrals

solving the conjunct integral are given in section 4.3.2.

4.3.1. Triangle Integrals

The solution of the tetrahedral singular integrals in the next sections lead to trian-

gular single-layer potentials Ejk and double-layer potentials Djk with polynomial
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4.3. Direct Integration

support xjyk.

Ejk =
1

4π

∫
∆

xjyk√
x2 + y2 + z2

t

dx dy (4.15)

Djk =
zt
4π

∫
∆

xjyk

(x2 + y2 + z2
t )

3
2

dx dy, (4.16)

where zt is the normal distance of the evaluation point rt, and the evaluation point

is assumed to be on the z-axis (xt = yt = 0). This section shows the necessary

formulas and an overview of the derivation for an analytic solution described in

[59] to integrate these.

With the divergence theorem, the vector �eld G = 1/r(x, y)T ⇒ divG = 1/r +

z2
t /r

3, and r = (x2 + y2 + z2
t ) a reduction of Ejk and Djk to D00 and line integrals

E
(γ)
jk along the edges γ of the triangle ∆ is possible (see equation (4.42)).

E
(γ)
jk =

1

4π

∫
γ

xjyk√
x2 + y2 + z2

t

dγ (4.17)

Both D00 and E
(γ)
jk are analytically solvable.

Double-Layer Potential with Constant Carrier Starting with the double-layer

potential D00(rt, T ) over the triangle T with a constant carrier and an evaluation

point rt = (0, 0, zt)
T , the double-layer potential is given as

D00(rt, T )

zt
=

1

4π

∫
T

∇t
1

‖rs − rt‖3
d3rs =

1

4π

∫
T

n̂ · (rs − rt)

‖rs − rt‖3
d2rt. (4.18)

The double-layer potential can be identi�ed with the area of the spherical triangle

created by projection of T on the unit sphere S1(rt) [60, 61, 59]:

∆K = {x ∈ S1(rt) : ∃r ∈ T, so that x ∈ rtr} (4.19)

D00(rt, T ) =
|zt|
4π
|∆K | (4.20)
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γ

x−γ

x+
γ

y

x0

aγ

d+
γ

d−γ

σ(γ)ν(γ)

Figure 4.3.: Sketch of an arbitrarily chosen side γ ∈ {1, 2, 3} of the rotated triangle
∆. The �gure shows the frame (ν, σ) of γ, its integration boundaries
x±γ , and other variables used for the integration of the solid angle |∆K |.

For the lengthy solution of the solid angle ∆K w.l.o.g. the singular integral region

has been rotated into the x-y-plane with the normal vector n = (0, 0, 1) evaluating

the dot product n · (rs − rt) = zt as the z-component of the evaluation point rt.

The line integrals Cγ can be calculated using the following geometric variables: the

edge γ denoting any one edge of the triangle ∆, the reference frame for integration

along γ, where ν(γ) is the normal vector, and σ(γ) the tangential vector to γ,

and the integration endpoints x+
γ following after x−γ by orienting γ with σ(γ) (see

�gure 4.3). With

aγ := r · ν(γ), r ∈ γ, (4.21)

d±γ := x±γ · σ(γ), (4.22)

eγ :=
√
zt + a2

γ, (4.23)

s±γ :=
√
e2
γ + d±2

γ , (4.24)
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4.3. Direct Integration

and the de�nition of Cγ [62]

c±γ := e2
γ + |zt|s±γ (4.25)

Aγ := c+
γ c
−
γ + a2

γd
+
γ d
−
γ (4.26)

Bγ := aγ(d
+
γ c
−
γ − d−γ c+

γ ) (4.27)

Cγ := atan2(Bγ, Aγ) (4.28)

the solid angle |∆K | is given by

|∆K | =


∑

γ Cγ for x 6= 0

0 otherwise
. (4.29)

Single-Layer and Double-Layer Potential Higher order polynomial carriers can

be recursively calculated using the double-layer potential with a constant carrier

D00.

Ejk =
1

4π

∫
∆

xjyk√
x2 + y2 + z2

t

dx dy (4.30)

Djk =
zt
4π

∫
∆

xjyk

(x2 + y2 + z2
t )

3
2

dx dy (4.31)

The triangular integrals are reduced to line integrals E(γ)
jk using the divergence

theorem.

E
(γ)
jk :=

1

4π

∫
γ

xjyk√
x2 + y2 + z2

t

dγ (4.32)

The line integrals E(γ)
jk can be calculated analytically (proof see [59]):

E
(γ)
00 =


1

4π
log
(

(s−γ −d−γ )s+γ +d+γ
e2γ

)
for eγ 6= 0

1
4π

log
(

max(|d+γ |,|d−γ |)
min(|d+γ |,|d−γ |)

)
for eγ = 0

(4.33)
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For |ν(γ)
1 | ≥ |ν

(γ)
2 |, where ν

(γ)
1 and ν(γ)

2 are the x and y-components of ν(γ)

E
(γ)
0k =

1

k

(
(2k − 1)aγν

(γ)
2 E

(γ)
0,k−1 − (k − 1)(a2

γ + (ztν
(γ)
1 )2)E

(γ)
0,k−2 (4.34)

+ ν
(γ)
1 G

(γ)
0,k−1

)
for k ≥ 1 (4.35)

E
(γ)
jk =

(
aγE

(γ)
j−1,k − ν

(γ)
2 E

(γ)
j−1,k+1

)
/ν

(γ)
1 for j ≥ 1 (4.36)

and for |ν(γ)
1 | < |ν

(γ)
2 |

E
(γ)
j0 =

1

j

(
(2j − 1)aγν

(γ)
1 E

(γ)
j−1,0 (4.37)

− (j − 1)
(
a2
γ + (ztν

(γ)
2 ))2

)
E

(γ)
j−2,0 (4.38)

− ν(γ)
2 G

(γ)
j−1,0

)
for j ≥ 1 (4.39)

E
(γ)
jk =

(
aγE

(γ)
j,k−1 − ν

(γ)
1 E

(γ)
j+1,k−1

)
/ν

(γ)
2 for k ≥ 1 (4.40)

with

G
(γ)
jk =

1

4π

(
(x+

γ )j(y+
γ )ks+

γ − (x−γ )j(y−γ )ks−γ
)
. (4.41)
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4.3. Direct Integration

And �nally, the triangle potentials for rt ∈ R3 \ T with E0,−1 := 0.

E00 =− ztD00 +
∑
γ

aγE
(γ)
00 (4.42)

E0k =
1

k + 1

{
z2
t (1− k)E0,k−2 +

∑
γ

(
ztν

(γ)
2 E

(γ)
0,k−1 + aγE

(γ)
0k

)}
, k ≥ 1 (4.43)

Ejk =
1

j + k + 1

(
− z2

t (j − 1)Ej−2,k

+
∑
γ

(z2
t ν

(γ)
1 E

(γ)
j−1,k + aγE

(γ)
jk )
)
, k ≥ 0, j ≥ 1 (4.44)

D0k =− zt

{
(1− k)E0,k−2 +

∑
γ

ν
(γ)
2 E

(γ)
0,k−1

}
, k ≥ 1 (4.45)

D1k =− zt
∑
γ

ν
(γ)
1 E

(γ)
0k , k ≥ 0 (4.46)

Djk =−Dj−2,k+2 − z2
tDj−2,k + ztEj−2,k, j ≥ 2, k ≥ 0 (4.47)

4.3.2. Direct Conjunct Integral

This section explains the integration of the conjunct (i.e., not surface plus volume

term) integral form for the potential over tetrahedron T :

u(rt) =
1

4π

∫
T

M(rs) · ∇t
1

|rt − rs|
d3rs (4.48)

As mentioned before, this solution is based on [57] which is in turn based on

[63, 58]. In the �rst step, the tetrahedron is split into four tetrahedra. Each vertex

of the original tetrahedron is successively replaced with the target, resulting in four

tetrahedral integration regions with one vertex xi = rt (see �gure 4.4): W.l.o.g.

the frame of reference can be chosen such that rt lies on the z-axis and the other

three vertices on the x-y-plane (see �gure 4.5).
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x1 x2

x3

x4

rt

Split integral region using rt

x2

x3

x4

rtx1

x3

x4

rtx1 x2

x4

rtx1 x2

x3

rt

Figure 4.4.: A tetrahedron is split into four tetrahedra so that the new integration
regions all have the evaluation point rt coinciding with an integration
vertex.

x1 x2

rt

x4x

z

y

Figure 4.5.: The tetrahedron is transformed so that the x- and y-components of
rtx = rty = 0 are zero and the z-component of the remaining vertices
viz = 0 are zero.
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4.3. Direct Integration

The magnetization M(r) =
∑

i MiΦi inside the tetrahedron T can be written as

an a�ne function using an augmented (i.e., 3x4) matrix Ajk (see [64])

Mj(r) =
∑
k

AjkIk(r), (4.49)

where Mj(r) are the x-, y-, and z-components of M(r), ri are the components of

r, and Ik(r) =


1

rx

ry

rz

. Ajk can be solved with the linear set of equations using

the magnetization Mj at the four vertices xi of T , giving four equations for each

component of M:

Mj(x
i) = AjkIk(x

i) (4.50)

The resulting integrations use the components rtj of the target point rt and rsj of

the source point rs:

u(rt) =
1

4π

∑
j,k

Ajk

∫
T

Ik(rs)
rtj − rsj
|rt − rs|3

d3rs (4.51)

All integrals have a singularity at the evaluation corner rt = rs which can be

resolved by following non-linear Du�y transformation [58, 63, 57]

rsx = xs → x′s(1− λ) rsy = ys → y′s(1− λ)
rsz
rtz

=
zs
zt
→ λ (4.52)

with Jacobian

J = zt(1− λ)2. (4.53)

The transformation gives a new integration region, namely the prism
∫
T
→
∫

∆

∫ zt
0

over the base triangle ∆ of the tetrahedron T with its height zt = rtz. With rt

being at height zt, the distance

|rt − rs| =
√
x2
s + y2

s + (zt − zs)2 (4.54)
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4. FMM

becomes

|rt − rs| →
√
x′2(1− λ)2 + y′2(1− λ)2 + z2

t (1− λ)2 = (1− λ)
√
x′2 + y′2 + z2

t .

(4.55)

and with d =
√
x2
t + y2

t + z2
t and the basis vectors x̂, ŷ, and ẑ the Coulomb kernel

transforms as

∇ 1

|rt − rs|
=

rt − rs
‖rt − rs‖3

→ 1− λ
(1− λ)3

xsx̂+ ysŷ + ẑ

d3
(4.56)

and �nally gives the potential

u(rt) =− zt
4π
Ajk

∫
∆

∫ 1

0

xsδx̂j + ysδŷj + ztδẑj
d3

Ik dzs d2rs

=− zt
4π
Ajk

∫
∆

xsδx̂j + ysδŷj + ztδẑj
(x2

t + y2
t + z2

t )
3/2

I ′k d2rs,

(4.57)

using δx̂k for indicating one component of k and

I ′k =


1

xs

ys

1

 . (4.58)

The remaining triangle integrals with a polynomial carrier are solved in sec-

tion 4.3.1.

4.3.3. Disjunct Potential Integral

The conjunct potential integral for a tetrahedron can be disjoined into a volume∫
T
and surface contribution

∫
∂T
:

u(rt) =
1

4π

∫
T

∇s ·M(rs)

|rt − rs|
d3rs︸ ︷︷ ︸

uT

− 1

4π

∫
∂T

M(rs) · n(rs)

|rt − rs|
d2rs︸ ︷︷ ︸

u∂T

(4.59)
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4.3. Direct Integration

Volume Term To integrate the volume term uT the transformations from the

previous section are used to arrive at four triangle integrals. The linear magne-

tization M leads to a constant divergence D̂ = ∇s ·M(rs) which can be moved

outside the integral and transformed via Du�y transformation (see section 4.3.2):

uT (rt) =
D̂

4π

∫
T

1

|rt − rs|
d3rs

=
D̂

4π

zt
2

∫
∂T

(
x2
s + y2

s + z2
t

)− 1
2 dxs dys

(4.60)

The integral over the surface triangles ∂T can be identi�ed with the single-layer

potential from section 4.3.1

Ejk =
1

4π

∫
∆

xjyk√
x2 + y2 + z2

t

dx dy (4.61)

uT (rt) = −D̂E00(∂T ), (4.62)

where E00(∂T ) =
∑

j E00(∆i) is the sum over all four surface triangles ∆i of T .

Surface Term For the surface integral u∂T of the tetrahedron T w.l.o.g. vertex

positions x1 = (0, 0, 0)T , x2 = (v2x, 0, 0), and x3 = (v3x, v3y, 0) can be assumed for

each surface triangle ∆i, simplifying the calculation of the function M(rs) ·n(rs) =

mxxs +myys +mc, which is linear on each surface triangle ∆i:

u∂T (rt) = − 1

4π

∑
i

∫
∆i

mxxs +myys +mc

|rt − rs|
d2rs (4.63)

W.l.o.g the normal magnetization M(xi) ·n = δ1i can be set to zero at all vertices

but x1, giving:

mc =M(x1) · n (4.64)

mx =− mc

v2x

(4.65)

my =− mxv3x −mc

v3y

= mc
v3x − v2x

v2xv3y

(4.66)
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To get rid of rt in 1
|rt−rs| the following substitution is made:

xs → xs + xt, and ys → ys + yt (4.67)

Giving the surface term in a form that can easily be calculated with the single-layer

potential from section 4.3.1:

u∂T (rt) = − 1

4π

∑
i

∫
∆i

mx(xt + xs) +my(yt + ys) +mc√
x2
s + y2

s + z2
t

d2rs (4.68)

= −
∑
∆i

(mx(E00xt + E10) +my(E00yt + E01) +mncE00)) , (4.69)

where
∑

∆i
indicates which triangle is used for the single-layer potential Ejk =

Ejk(∆i).

4.3.4. Disjunct Field Integral

Similar to the previous section, the �eld is disjoined into a surface and a volume

contribution. The divergence of the magnetization ∇s ·M(rs) = D̂ is piecewise

constant for linear piecewise a�ne M(rt).

H(rt) = −∇tu(rt) = − 1

4π
∇t

∫
T

(
M(rs) · ∇s

1

|rs − rt|

)
d3rs (4.70)

Applying the divergence theorem on
∫
T

(
M(rs) · ∇s

1
|rs−rt|

)
d3rs gives:

H(rt) = − 1

4π

[
∇t

∫
T

D̂
1

|rs − rt|
d3rs −∇t

∫
∂T

(M(rs) · n)
1

|rs − rt|
d2rs

]
(4.71)

And with ∇t
1

|rs−rt| = −∇s
1

|rs−rt| :

H(rt) =
1

4π
D̂

∫
T

∇s
1

|rs − rt|
d3rs︸ ︷︷ ︸

HT (rt)

+
1

4π

∫
∂T

(M(rs) · n)∇t
1

|rs − rt|
d2rs︸ ︷︷ ︸

H∂T (rt)

(4.72)
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4.3. Direct Integration

The volume contribution can be easily calculated (see section 4.3.3) using the

surface triangles
∑

i ∆i = ∂T :

HT (rt) =

∫
T

∇s
1

|rs − rt|
d3rs =

4∑
j=1

∫
∆j

1

|rs − rt|
d2rs = −

4∑
j=1

4πnjE00(∆j, rs)

(4.73)

For the surface contribution M(r1) · n from the previous section is used and the

surface triangles ∆i:

H∂T (rt) =

∫
∂T

(M(rs) · n)∇t
1

|rs − rt|
d2rs (4.74)

=

∫
∂T

(M(rs) · n)
rs − rt
|rs − rt|3

d2rs (4.75)

=

∫
∂T

xs − xtys − yt
−zt

 mxxs +myys +mc

|rs − rt|3
d3rs (4.76)

To get rid of rt in 1
|rt−rs| the following substitution is made:

xs → xs + xt, and ys → ys + yt, (4.77)

which gives:

H∂T (rt) =

∫
∂T

 xs

ys

−zt

 mx(xs + xt) +my(ys + yt) +mc√
x2
s + y2

s + z2
t

d3rs (4.78)

=
∑
∆i

4π

zt

 mx(xtD10 +D20) +my(ytD10 +D11) +mcD10

mx(xtD01 +D11) +my(ytD01 +D02) +mcD01

−ztmx(xD00 −D10)− ztmy(yD00 −D01)− ztmcD00


(4.79)
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4.4. Multipole Expansion

This section describes the three-dimensional Taylor expansion that lies at the heart

of the multipole and local expansions explained in section 4.4.2 and section 4.4.3.

Section 4.4.4 discusses how multipole moments can be reused by shifting expansion

centers. The formulas derived in the next sections are collected for reference in

section 4.4.5.

4.4.1. Taylor Expansion

This section discusses the notation and use of the Taylor expansion. The standard

three-dimensional Taylor expansion of f(x) at a ∈ R3 with the triple index n =

(n1, n2, n3) in multi-index notation with maximum multipole order P is used:

f(x) ≈
∑
|n|≤P

(x− a)n

n!
(∂nf) (a) (4.80)

Expanding rs in 1
|rt−rs| around a = rM gives:

1

|rt − rs|
=
∑
|n|≤P

(rs − rM)n

n!

(
∂ns

1

|rt − rs|

) ∣∣∣∣
rs=rM

+O( |rs−rM |
P+1

|rt−rs|P+2 ) (4.81)

=
∑
|n|≤P

(rs − rM)n

n!
∂nM

1

|rt − rM |
+O( |rs−rM |

P+1

|rt−rs|P+2 ) (4.82)

=
∑
|n|≤P

(rs − rM)n

n!
DM

n (rt − rM) +O( |rs−rM |
P+1

|rt−rs|P+2 ) (4.83)

≈
∑
|n|≤P

1

n!
(rs − rM)nDM

n (rt − rM), (4.84)

with n! = nx!ny!nz!, |n| = nx + ny + nz and rnt = x′nxy′nyz′nz , the truncation error

O( |rs−rM |
P+1

|rt−rs|P+2 ), caused by the truncation order P , and the di�erential function

DM
n (r− rM) = ∂nM

1

|r− rM |
, (4.85)
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Q̃(rM)

RM

SM

S2M

HD(rt)M2T

target point rt (T)
multipole expansion point rM (M)
source volume rS (S)

Figure 4.6.: A sketch of the source expansion showing the combination of sources

into a multipole moment Q̃(rM) and the evaluation of the multipole
moment at the target rt outside of SM .

where the M in DM
n indicates the derivative with respect to rM .

Setting rM = 0 gives:
1

|rt − rs|
≈ 1

n!
rnsD

t
n(−rt) (4.86)

Note that:

Dn(−r) = (−1)nDn(r) (4.87)

4.4.2. Source Expansion

The multipole expansion is an approximation of �eld and potential done by expand-

ing the kernel 1
|rt−rs| as a Taylor series (see 4.4.1) in the far �eld. The source expan-

sion approximates the magnetization using multipole moments Q̃n(rM). Consider

a magnetized region Ω with magnetization M(rs) inside a sphere SM with radius

RM (see �gure 4.6). Expansion of �eld HD(rt) 3.22 and potential u(rt) 3.21 around
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rM give the following results valid outside of SM :

HD(rt) =− 1

4π
∇t

(∫
Ω

M(rs) · ∇s

( 1

|rt − rs|

)
drs

)
(4.88)

=− 1

4π

∑
|n|≤p

∇t

∫
Ω

M(rs) · ∇sr
n
sMD

M
n (rt − rM)

1

n!
drs (4.89)

=− 1

4π

∑
|n|≤p

∇tD
M
n (rt − rM)

1

n!

∫
Ω

M(rs) · ∇sr
n
sM drs (4.90)

=− 1

4π

∑
|n|≤p

∇tD
M
n (rt − rM)Q̃n(rM) (4.91)

u(rt) =
1

4π

∑
|n|≤p

DM
n (rt − rM)Q̃n(rM), (4.92)

with rsM = rs − rM ,

∇Dn(r) = sign(r)

Dn+x̂(r)

Dn+ŷ(r)

Dn+ẑ(r)

 , (4.93)

where

n + x̂ =

nx + 1

ny

nz

 , n + ŷ =

 nx

ny + 1

nz

 , n + ẑ =

 nx

ny

nz + 1

 , (4.94)

and the expansion coe�cients (S2M) Q̃n, which can be calculated exactly for

linearly magnetized tetrahedra using Gaussian quadrature (see 4.4.4), are de�ned

by

Q̃n(rM) =
1

n!

∫
Ω

M(rs) · ∇sr
n
sM drs. (4.95)

4.4.3. Local Expansion

Another approximation necessary for the FMM is the local expansion. It approx-

imates the �eld in a target region by introducing a local moment Lk(rL) near

evaluation points rt. Consider a source expansion Q valid outside the sphere SM
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Q(rM)

RM

SM

HD(rt)

Lk(rL)M2L

L2T

target point rt (T)
multipole expansion point rM (M)
local expansion point rL (L)

RL

SL

Figure 4.7.: A sketch of the local expansion. It shows the transformation of multi-
pole momentQ to local moment Lk and the evaluation of local moment
Lk(rL) at target point rt.

with radius RM centered at rM ∈ R3. For a local expansion point rL ∈ R3 outside

of SM , the kernel 1
|rt−rs| can be written as

1

|rt − rs|
=

1

|(rt − rL) + (rL − rM) + (rM − rs)|
(4.96)

=
1

|(rtL) + (rLM) + (rMs)|
(4.97)

≈
∑
|n|≤p

(rts − rLM)n

n!

(
∂nts

1

|rts|

) ∣∣∣∣
rts=rLM

(4.98)

≈
∑
|n|≤p

(rtL + rMs)
n

n!

(
∂n

1

|r|

) ∣∣∣∣
r=rLM

(4.99)

≈
∑
|n|≤p

(rtL + rMs)
n

n!
DLM

n (rLM). (4.100)
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Using the binomial theorem for

(rtL + rMs)
n =

∑
k≤n

n!

(n− k)!k!
rktLrn−kMs (4.101)

∑
|n|≤p

(rtL + rMs)
n

n!
DLM

n (rLM) = (4.102)

∑
|n|≤p

∑
k≤n

1

(n− k)!k!
rktLrn−kMs D

LM
n (rLM) (4.103)

and some index rearrangement [65] give:

1

|rt − rs|
≈
∑
|k|≤p

rktL
k!

∑
|n|≤p−|k|

rnMs

n!
DLM

n+k(rLM) (4.104)

Similar to section 4.4.2 the expanded kernel is used for the potential and �eld

equations:

HD(rt) =∇t

(∫
Ω

M(rs) · ∇s

( 1

|rt − rs|

)
drs

)
(4.105)

=∇t

∑
|k|≤p

rktL
k!

∑
|n|≤p−|k|

DLM
n+k(rLM)

1

n!

∫
Ω

M(rs) · ∇sr
n
Msdrs

 (4.106)

=∇t

∑
|k|≤p

rktL
k!

∑
|n|≤p−|k|

DLM
n+k(rLM)Qn(rM)

 (4.107)

u(r) =
∑
|k|≤p

rktL
k!

∑
|n|≤p−|k|

DLM
n+k(rLM)Qn(rM) (4.108)

with

Qn(rM) = (−1)|n|Q̃n(rM) =
1

n!

∫
Ω

M(rs) · ∇sr
n
Msdrs (4.109)

Lk(rL) =
∑

|n|≤p−|k|

DLM
n+k(rLM)Qn(rM) (4.110)
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4.4. Multipole Expansion

HD(rt) =
∑
|k|≤p

∇tr
k
tL

k!
Lk(rL). (4.111)

4.4.4. Translation of Expansion Centers

The FMM relies on distribution and combination of expansion coe�cients at vari-

ous levels. Expansion coe�cients can only be trivially added at a common expan-

sion center. The translation of expansion centers allows just that. Decomposition

of rtL and rMs gives an additional level in the FMM tree:

rMs = rMm + rms (4.112)

rtL = rtl + rlL, (4.113)

where rL and rM are intermediate points.

Using the binomial theorem for the multipole moments allows multipole translation

from rm to rM .

Qn(rM) =
1

n!

∫
Ω

M(rs) · ∇sr
n
Msdrs (4.114)

Qn(rM) =
1

n!

∫
Ω

M(rs) · ∇s (rMm + rms)
n drs (4.115)

Qn(rM) =
1

n!

∫
Ω

M(rs) · ∇s

(∑
k≤n

n!

(n− k)!k!
rkMmrn−kms

)
drs (4.116)

Qn(rM) =
1

n!

∑
k≤n

n!

(n− k)!k!
rkMm

∫
Ω

M(rs) · ∇sr
n−k
ms drs (4.117)

Qn(rM) =
∑
k≤n

1

k!
rkMm

1

(n− k)!

∫
Ω

M(rs) · ∇sr
n−k
ms drs (4.118)

Qn(rM) =
∑
k≤n

rkMm

k!
Qn−k(rm) (4.119)
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A similar derivation for the local moments gives:

HD(rt) =
∑
|k|≤p

∇tr
k
tL

k!
Lk(rL) (4.120)

HD(rt) =
∑
|k|≤p

∇t (rtl + rlL)k

k!
Lk(rL) (4.121)

HD(rt) =
∑
|k|≤p

1

k!
∇t

(∑
l≤k

k!

(k− l)!l!
rltlr

k−l
lL

)
Lk(rL) (4.122)

HD(rt) =
∑
|k|≤p

∑
|l|≤p

δl≤k
(k− l)!l!

∇tr
l
tlr

k−l
lL Lk(rL) (4.123)

HD(rt) =
∑
|l|≤p

|k|≤p∑
k=l

1

(k− l)!l!
∇tr

l
tlr

k−l
lL Lk(rL) (4.124)

Rede�ning k→ k + l

HD(rt) =
∑
|l|≤p

∑
|k|≤p−|l|

1

k!l!
∇tr

l
tlr

k
lLLk(rL) (4.125)

HD(rt) =
∑
|l|≤p

∇tr
l
tl

l!

∑
|k|≤p−|l|

rklL
k!
Lk(rL) (4.126)

gives the new local moment

HD(rt) =
∑
|l|≤p

∇tr
l
tl

l!
Ll(rl) (4.127)

Ll(rl) =
∑

|k|≤p−|l|

rklL
k!
Lk+l(rL), (4.128)

allowing the �eld HD(rt) to be written as

HD(rt) =

L1,0,0(rt)

L0,1,0(rt)

L0,0,1(rt)

 (4.129)
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4.4. Multipole Expansion

and the potential u(r) as

u(rt) = L0,0,0(rt), (4.130)

where Ln = Lnx,ny ,nz .

Expansion Coe�cents This section explains how to solve the integration for

the multipole moments. The expansion coe�cients can be calculated exactly for

linearly magnetized tetrahedra T using a quadrature rule of order M = |n| + 1

because of the polynomial nature of the integrand (see appendix A):

∫
T

f(r) d3r = |T |
M∑
i=1

f(λλλi)wi, (4.131)

using the volume of the tetrahedron |T | and the quadrature points λλλi, which are

given in barycentric coordinates, with associated weights wi from [66].

M(λi) can be easily calculated from the magnetization at the vertices (see ap-

pendix A):

M(λi) =
4∑

k=1

Mkλik, (4.132)

where the index k indicates the vertices of T , Mk indicates the magnetization at

the kth vertex, and λik indicates the kth component of the ith quadrature point λλλi.

The source expansion can be calculated with the following equation:

Qn(rM) =
1

n!

∫
T

M(rs) · ∇sr
n
Msdrs (4.133)

Qn(rM) =
1

n!
|Ω|

M∑
i=1

4∑
k=1

λikwiMk · ∇sr
n
Ms (4.134)

with

∇Msr
n
Ms =

nxx
nx−1
Ms y

ny
Msz

nz
Ms

nyx
nx
Msy

ny−1
Ms znzMs

nzx
nx
Msy

ny
Msz

nz−1
Ms

 . (4.135)
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4.4.5. Summary

The collected formulas from this section are given here for reference. Source ex-

pansion (a.k.a. Source to Multipole: S2M):

Qn(rM) =
1

n!

∫
Ω

M(rs) · ∇sr
n
Msdrs (4.136)

Translation of source expansion center (a.k.a. Multipole to Multipole: M2M):

Qn(rM) =
∑
k≤n

rkMm

k!
Qn−k(rm), (4.137)

Calculation of local expansion from source expansion (a.k.a. Multipole to Local:

M2L):

Lk(rL) =
∑

|n|≤p−|k|

DLM
n+k(rLM)Qn(rM) (4.138)

Translation of local expansion center (a.k.a. Local to Local: L2L):

Lk(rL) =
∑

|n|≤p−|k|

DLM
n+k(rLM)Qn(rM) (4.139)

Calculation of �eld or potential from local expansion (a.k.a. Local to Target:

L2T):

HD(rt) =

L1,0,0(rt)

L0,1,0(rt)

L0,0,1(rt)

 (4.140)

u(rt) = L0,0,0(rt) (4.141)

Calculation of �eld or potential from multipole expansion (a.k.a. Multipole To

Target: M2T):

HD(rt) = − 1

4π

∑
|n|≤p

∇tD
M
n (rt − rM)Q̃n(rM) (4.142)
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root box
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Figure 4.8.: An example of a binary tree spanning a one-dimensional array of point
dipole sources Mi with its tree nodes.

u(rt) =
1

4π

∑
|n|≤p

DM
n (rt − rM)Q̃n(rM), (4.143)

with

Q̃n(rM) = (−1)|n|Qn(rM). (4.144)

4.5. One Dimensional N log(N) Algorithm

This section discusses a simpli�ed version of the FMM to reduce the complexity

of the explanation. To avoid confusion, note the di�erence between discretization

cells and octree nodes (i.e., boxes). Discretization cells describe the discretization

of space in terms of the �nite element method, octree nodes divide the space for

applying the FMM algorithm.

Imagine a string consisting of point-like dipoles Mi with a constant distance be-

tween each other (see �gure 4.8). First, a root box spanning the whole problem

domain is constructed. The root box is then successively split in half until each

box contains exactly one source.

Two boxes on the same level can either be neighbors or well-separated. Two boxes

are called neighbors if they share a common edge (see �gure 4.9 and �gure 4.10).

The box itself is also considered its own neighbor. To save computation time higher

box levels (i.e., larger geometric regions) for computing the interaction are used at

larger distances.
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root:
level 0

#0

neighbor
#00

#000

M1

#001

M2

target
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M3
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#1
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#100

M5

#101

M6

well separated
#11

#110

M7

#111
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Figure 4.9.: Interaction of the simpli�ed algorithm at level 2. Box 01 uses the
multipole moments of well-separated box 11. Interactions for boxes
00 and 10 are continued at a �ner tree level (see �gure 4.10).

The tree traversal for the simpli�ed algorithm starts at the root. It uses multipole

expansion (see section 4.4.2) to calculate the interaction between well-separated

boxes. Neighboring boxes are handled di�erently. The algorithm moves down the

tree in a recursive manner using multipole expansion for the well-separated child

boxes at a �ner level until the algorithm arrives at the leaf (�nest) level where the

interaction is calculated directly between the leaves' sources.

As an example, consider you want to calculate the interaction list for M4 in �g-

ures 4.8 to 4.10. As mentioned before there are no well-separated boxes at level

1. Thus we start with box 01 at level 2 as depicted in �gure 4.9. For the well-

separated box 11 the source expansion is used to compute its contribution to the

children of the target cell 01. All other boxes are subdivided for further processing.

In the next step, we arrive at the 3rd level. The well-separated cells are again com-

puted using their source expansion. Lastly, the remaining neighbors' contributions

are calculated directly since they have no children left for applying the recursive

algorithm.

The scaling properties are split up as follows:

� The work required at every level is 3Np when using P as multipole truncation

order and p = P (P − 1)(P − 2)/6.

� Every particle has maximally three next neighbors including itself.

� The neighboring cells lead to 3 · 2 = 6 child cells.

� Subtracting three next neighbor cells because they will be accounted for

in the next step gives the computed 6− 3 = 3 cells per level.
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root node

#0
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Figure 4.10.: Interaction of the simpli�ed algorithm at level 3. Box 011 uses the
multipole moments of well-separated boxes 000, 001 and 101. Inter-
action with boxes 100 and 010 can only be calculated directly via
integration.

� A binary tree has log(N) levels for the well-balanced case.

� At the leaf level 3 operations including the self-interaction have to be done.

Adding the contributions gives a total of 3NP log(N)+3N = O(N log(N)) opera-

tions. The corresponding number for the two-dimensional case is 28NP 2 log(N) +

9N and for the three-dimensional case 189NP 3 log(N) + 27N .

For an inhomogeneous source distribution the number of levels cannot be guar-

anteed. Assuming empty nodes are deleted for practical purposes it remains

O(log(N)), leaving the scaling properties unchanged.

4.6. FMM

This section builds upon the knowledge of the previous section, it describes the

changes necessary to reach the promised linearO(N) scaling and continuous source

distribution, namely

� local expansion (=M2L, see section 4.4.3) for approximating the solution in

a region near the target,

� translation of expansion centers (=M2M and L2L, see section 4.4.4)

� for combining source expansions from child boxes

� and distributing local expansions to child boxes,

� and the discretization of the continuous problem (see section 4.2).
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4.6.1. Overview

The algorithm goes through the following steps which are explained in detail in

the following sections. An overview is shown in �gure 4.11:

Tree Creation The process of dissecting the problem into geometrical cubes in

a hierarchical structure.

Upward Pass Creation of multipole moments from sources (Source to Multipole:

S2M) and joining of multipole moments into larger geometric regions (Multipole

to Multipole: M2M).

Dual-Tree Traversal The dual-tree traversal decides which regions use multipole

to local conversion (M2L), and which regions use direct near-�eld (P2P) interaction

on every tree level.

Downward Pass Distribution of local expansions (L2L) and evaluation of local

expansions at target points (L2P).

Near-Field Calculation Direct evaluation (P2P) of the source magnetization at

the evaluation points.

4.6.2. Tree Creation

Assuming a three-dimensional problem instead of a binary tree, the problem space

is recursively divided into smaller cubes. The resulting tree is called an octree

(see �gure 4.12). Two trees are created, one containing all the sources and one

containing all the target (i.e., evaluation) points. Each box has a radius Rb con-

taining all discretization cells with at least one discretization node inside the box

(see �gure 4.13) which will be used to separate near- and far-�eld solutions.
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Source tree

level 1 octree box

leaf box

Target tree

P2P

M2M

L2L

dual tree traversal

Figure 4.11.: A �ow diagram outlining the FMM method. Showing upward pass
(M2M), downward pass (L2L) and the overall structure of the algo-
rithm. The decision tree for the dual-tree traversal is explained in
section 4.6.4.

Figure 4.12.: Recursive space division using an octree. First, a box spanning all
sources is constructed (red box). The box is recursively split into
eight smaller boxes on each level (one is highlighted in blue), until
each box contains at most Np particles.
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A

B

C

D

Rb

Figure 4.13.: The box radiusRb is de�ned in a way that it contains all discretization
cells with at least one vertex inside the octree box.

4.6.3. Upward Pass

The FMM algorithm starts at the leaf level of the source tree by computing the

source expansions at the leaf box centers for each contained source node. The

process combines surface and volume terms of the source magnetization inside the

node (P2M).

The �actual� upward pass recursively combines the source moments at the parent

cell centers by translation (M2M) until it reaches the root (i.e., top) of the octree.

This step has linear scaling which can be seen by considering an octree. The tree

has 8log8N+1 = N boxes with one set of expansion coe�cients (∝ P 3) for each box,

leading to a complexity of O ((N + 1)P 3)).

4.6.4. Dual-Tree Traversal

The traversal strategy for deciding which cells interact at which level is described

by �gure 4.14. It starts with the initial step, creating octrees for the target and

source spaces and then putting the pair of both root boxes on a stack.

The recursive step can be done in parallel for all available stack entries. A thread

pops the top-most stack entry. The larger tree in the popped pair is split into its
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Source tree Target tree

Initial step:

Put root nodes on stack

Pop stack and split either tree

Recursive step:

R

Rs Rt

?

Check MAC: θ < R
Rs+Rt

Not passed: Put on stack
Leaf Node: direct interaction

Passed: Calculate M2L

Figure 4.14.: A �ow diagram of the dual-tree traversal, showing the initial and
�rst recursive step for a small example tree. The initial step simply
creates the tree and puts the root nodes on the stack. The recursive
step decides what to do with the stack entries; either calculating the
interaction or creating more stack entries on a �ner discretization. R
is the distance between the source and target tree cell. Rs and Rt

stand for the radius of the source and the target cell.
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children, giving at most eight new trees at each step. Afterwards, the multipole

acceptance criterion [MAC] is applied to all the newly created children. All the

children that are not ful�lling the MAC are used to create pairs of source and

target tree nodes for the next �ner level, and are pushed to the stack; otherwise

(for children ful�lling the MAC), the interaction between source and target tree

is calculated either by local expansion (M2L see section 4.4.3) or�at the leaf

level�by direct integration (P2P see section 4.3).

The method and pseudocode for the recursive step is reprinted from [67] in list-

ing 4.1 and listing 4.2.

Listing 4.1: EvaluateDualTreecode()

push pa i r of root c e l l s (A,B) to s tack

while s tack i s not empty do

pop stack to get (A,B)

i f t a r g e t c e l l i s l a r g e r then source c e l l then

for a l l c h i l d r en a of t a r g e t c e l l A do

I n t e r a c t { (a ,B)}

end for

else

for a l l c h i l d r en b of source c e l l B do

I n t e r a c t { (A, b )}

end for

end i f

end while
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Listing 4.2: Interact(A,B)

i f A and B are both l e av e s then

c a l l P2P ke rne l

else

i f A and B s a t i s f y MAC then

c a l l M2L ke rne l

else

push pa i r (A,B) to s tack

end i f

end i f

To examine the number of evaluation steps, consider the interaction list. It con-

tains at most a set number of boxes proportional to θ−3. The contribution of the

dual-tree traversal is proportional to O
(
N
(
P
θ

)3
)
.

4.6.5. Downward Pass

The remaining step evaluates the local moments at the leaves (L2L) and uses the

leaf moments to calculate the moments at the targets (L2P). Starting at the root,

the local moments are distributed to every child box recursively by translation

(L2L see section 4.4.4).

The complexity of this step is analogous to the upward pass complexity. The tree

has 8log8N+1 = N boxes with one expansion for each box, leading to a complexity

of (N + 1)P 3.

4.6.6. Near-Field Contributions

The near-�eld contributions (P2P) are calculated by direct integration (see sec-

tion 4.3). The interactions are stored in matrices for faster subsequent evaluation.
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4.7. FEM/FMM

Instead of calculating the whole problem, FMM can also be used in conjunction

with the �nite element method, by merely calculating the potential at the bound-

aries and using it as a Dirichlet boundary condition for the FEM code. This

method saves near-�eld calculation time for the FMM by reducing the target eval-

uation points, and it creates a smooth FEM solution (see [68]) in the volume. The

�nite element solution is solved by the weak formulation of the Poisson equation:∫
Ω

∇Φ · ∇ν d3r =

∫
Ω

M · ∇ν d3r ∀ν ∈ V (4.145)

The trial space contains the Dirichlet boundary condition as an essential boundary

condition with Φ ∈ V with Φ(r) = uFMM(r) for r ∈ ∂Ω, where uFMM = u(r) is the

FMM solution of the potential on the boundary.
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The following sections are directly imported from the source documentation. They

include the main page of the documentation and the most important classes for the

user of the library with collaboration diagrams showing their connection to other

classes. This section should be seen as an introduction to using, understanding,

and extending the source code.

5.1. Main Page

microfmm is an implementation of the Fast Multipole Method supporting MPI

and OpenMP. It can either be used as a stand-alone code or interfaced via docker.

The project is split into three directories:

� fmm

� libstray�eld

� python

The fmm directory contains modi�ed and simpli�ed code from exafmm to suit the

needs of micromagnetic calculations.

The libstray�eld directory is the heart of source containing the implementa-

tion of the main implementation, MeshData, NearField, parallelization, and the

FMMFactory class for instantiating a class calculating the �eld or potential.

The python directory contains an interface for fenics which uses numpy arrays.

The interface uses SWIG and is implemented in the stray�eld.i �le.
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5. Documentation

To build the program the following libraries are needed:

� an MPI library (e.g. Open MPI)

� an OpenMP compatible compiler

� Boost

� optional: fenics for the python and FEM interface

To compile and run the test suite, execute the following commands in bash:

mkdir build

cd build

CXX=mpicxx cmake ..

make test_strayfield

cd ..

./build/test/test_strayfield

The program should automatically locate the necessary libraries via CMake.

A simple documented example program using MPI is given in mpi_cubes.cxx.

Overview of the implementation

The struct AbstractFMM provides the ability to calculate the Potential or Field

objects for a problem de�ned by using MeshData. The actual implementation is

done in Stray�eldFMM. The class structure for Stray�eldFMM shows an overview

in form of a collaboration diagram including all the important classes. All classes

containing the string Abstract or Base in their name are used to improve compila-

tion times and decouple the AbstractFMM in stray�eld.h from the Stray�eldFMM

implementation in stray�eld_impl.h by using FMMFactory. The high-level al-

gorithm is implemented in Stray�eldFMM::calculate where an outline is printed

below:

using StrayfieldBase::data;

TreeCalc<O, Kind> calc; // creates the octree and interaction lists

Expansion<O> expansion; // calculates the expansion coefficients

const bool mpi;

Kind calculate(){ // calculates the Field or Potential

calc.near->calculate_matrix(data, calc.targetCells); // calculate near field matrix
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5.2. Stray�eldFMM< O, Kind > Class Template Reference

#pragma omp parallel

{

// calculate moments for local bodies

expansion.calculate_moments(calc.sourceBs, calc.divMParts);

// calculate moments for local octree cells

upwardPass<O>(calc.sourceCells);

if(mpi){

#pragma omp barrier

#pragma omp single

// receive remote magnetization and octree cell moments

alltoallMagnetization(O, calc.cd_set, calc.buf, *data, *data, calc.remoteOrphanCells);

//calculate moments for remote bodies

expansion.calculate_moments(calc.remoteBs, calc.remoteDivMParts);

// calculate moments for local octree cells

upwardPass<O>(calc.remoteTree);

}

#pragma omp barrier

// calculate multipole to local

expansion.evaluate_m2l(calc.m2l_list);

// calculate near-field

calc.near->evaluate_p2p(data->m, calc.p2p_cells);

#pragma omp barrier

// calculate field from local moments

downwardPass<O>(calc.targetCells);

}

// map bodies to Field or Potential

return calc.calculate();

}

}

5.2. Stray�eldFMM< O, Kind > Class Template

Reference

Stray�eldFMM< O, Kind > is the main class implementing the Fast Multipole

Method.

#include <strayfield_impl.h>
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5. Documentation

StrayfieldFMM< O, Kind >

+ calc
+ mpi

+ ~StrayfieldFMM()
+ calculate()
+ calculate_M2P()

AbstractFMM< Kind >

+ AbstractFMM()
+ AbstractFMM()
+ ~AbstractFMM()
+ calculate()

StrayfieldBase

+ StrayfieldBase()
+ StrayfieldBase()
+ ~StrayfieldBase()
+ save_matrix()
+ save_matrix()
+ load_matrix()
+ load_matrix()
# _save_matrix()
# _load_matrix()

MeshData

+ verts
+ tris
+ tets
+ targets
+ m

+ getTri()
+ getTriSrc()
+ getTet()
+ getTetSrc()
+ save()
+ serialize()
+ MeshData()
+ MeshData()
+ set_magnetization()
+ set_magnetization()
+ Simplex()

 +data

TreeCalcBase

+ theta
+ ncrit
+ sourceBs
+ targetBs
+ sourceCells
+ targetCells
+ divMParts
+ p2p_cells
+ m2l_list
+ mpi
+ remoteBs
+ remoteDivMParts
+ remoteOrphanCells
+ remoteTree

+ TreeCalcBase()

 +data

ExpansionBase

# moments_calculated
# tet_moments

+ ExpansionBase()
+ calculate_moments()
+ evaluate_m2l()
+ evaluate_m2l_direct()
# p2mhdl()
# hdrquadrec()
# m2lf()
# cm2p()

 #data

 +calc_base  #calc

exafmm::MPIBuffers

+ body
+ bodyCount
+ cell
+ cellCount
+ tet
+ tetCount
+ tri
+ triCount
+ vert
+ vertCount
+ vertMap

+ MPIBuffers()

 +buf

exafmm::CountAndDispSet

+ CountAndDispSet()
+ CountAndDispSet()

 +cd_set

exafmm::CountAndDispl

+ sendCount
+ recvCount
+ sendDispl
+ recvDispl

+ CountAndDispl()

 +tet
+body
+vert
+cell
+tri

AbstractNear

+ dimension
+ p2p_data
+ full_matrix_calculated

+ AbstractNear()
+ calculate_matrix()
+ calculate_volume()
+ calculate_surface()
+ evaluate_p2p()

 +near

Expansion< O >

+ Expansion()

 +expansion

Figure 5.1.: Collaboration diagram for Stray�eldFMM< O, Kind >.
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5.2. Stray�eldFMM< O, Kind > Class Template Reference

Public Member Functions

� Kind calculate ()

calculates the Field or Potential depending on template argument Kind.

� Kind calculate_M2P ()

calculates the �eld or potential without using the local tree.

Public Attributes

� TreeCalc< O, Kind > calc

creates the octree and multipole interaction lists TreeCalc::m2l_list.

� Expansion< O > expansion

calculates the moments for sources and evaluates multipole to local interaction

using TreeCalcBase::m2l_list.

� const bool mpi

declares whether this class uses MPI parallelization.

� MeshData ∗ data
provides access to the underlying MeshData containing the vertices, tetrahedra,

and triangles of the mesh and their magnetization.

� TreeCalcBase ∗ calc_base
points to the TreeCalc data structure without the need to use templated classes.

Friends

� class FMMFactory

creates Stray�eldFMM instances in the form of AbstractFMM∗.

5.2.1. Detailed Description

Stray�eldFMM< O, Kind > is the main class implementing the Fast Multipole

Method.

This class should be constructed via FMMFactory.
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5. Documentation

To understand the FMM source code, it would be wise look at its collaboration

diagram (�gure 5.1). Starting at the bottom with Stray�eldFMM it has two tem-

plate arguments: Kind describing whether it should calculate Field or Potential

and O de�ning the maximum multipole order. It has a templated public function

for calculating either Field or Potential passed via the template argument Kind,

returning either a vector of vec3 or a vector of scalars. The calculate function

implements the main functionality and is reprinted in the main section of the

documentation.

5.2.2. Member Data Documentation

calc_base template<int O, class Kind = Field>

TreeCalcBase∗ StrayfieldBase::calc_base

points to the TreeCalc data structure without the need to use templated classes.

data template<int O, class Kind = Field>

MeshData∗ StrayfieldBase::data

provides access to the underlying MeshData containing the vertices, tetrahedra,

and triangles of the mesh and their magnetization.

The documentation for this class was generated from the following �le:

� libstray�eld/stray�eld_impl.h
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5.3. MeshData Struct Reference

5.3. MeshData Struct Reference

MeshData stores data of a tetrahedral mesh and provides access to its triangles,

tetrahedra, and their magnetization.

#include <mesh_data.h>

MeshData

+ verts
+ tris
+ tets
+ targets
+ m

+ getTri()
+ getTriSrc()
+ getTet()
+ getTetSrc()
+ save()
+ serialize()
+ MeshData()
+ MeshData()
+ set_magnetization()
+ set_magnetization()
+ Simplex()

Figure 5.2.: Collaboration diagram for MeshData.

Public Member Functions

� Stri getTri (const int n) const

returns the coordinates of the nth triangle.

� Stri getTriSrc (const int n) const

returns the magnetization of the nth triangle.
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5. Documentation

� Stet getTet (const int n) const

returns the coordinates of the nth tetrahedron.

� Stet getTetSrc (const int n) const

returns the magnetization of the nth tetrahedron.

� void save (const string &�lename) const

saves the current MeshData.

� template<class Archive >

void serialize (Archive &archive)
� MeshData (const string &�lename)

loads data from a �le generated with MeshData::save.

� void set_magnetization (const int Nm, const double ∗mx, const double ∗my,
const double ∗mz)

sets the magnetization of the mesh from three arrays.

� void set_magnetization (const int Nm, const double ∗m)

sets the magnetization of the mesh from one array containing all three compo-

nents.

Static Public Member Functions

� static MeshData Simplex ()

returns the most basic MeshData (a Simplex).

Public Attributes

� vector< vec3 > verts

coordinates of the vertices

� vector< TriIds > tris

indices of the triangles

� vector< TetIds > tets

indices of the tetrahedra

� vector< vec3 > targets

coordinates of the targets

� vector< vec3 > m

magnetization of the vertices
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5.3. MeshData Struct Reference

5.3.1. Constructor & Destructor Documentation

MeshData() MeshData::MeshData (

const string & filename ) [explicit]

loads data from a �le generated with MeshData::save.

An example on how to import data from MPI is given in create_mpi_data.py.

5.3.2. Member Function Documentation

save() void MeshData::save (

const string & filename ) const

saves the current MeshData. Attention: it cannot be used with MPI yet.

The documentation for this struct was generated from the following �les:

� libstray�eld/mesh_data.h
� libstray�eld/mesh_data.cpp
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6. Results

The �rst two subsections of the results section establish the correctness of the

near-�eld and far-�eld components of the simulation. Section 6.3 shows the shared

memory performance in a weak scaling scenario and compares the performance to a

state of the art hybrid FEM/BEM implementation. The last subsection shows the

strong-scaling properties of the distributed (MPI) implementation on a multi-node

environment using the Vienna Scienti�c Cluster [VSC].

6.1. Discretization and Near-Field Error

This section establishes the correctness of the near-�eld algorithm for calculating

linearly magnetized tetrahedra (see section 4.3).

To test the correctness of the tetrahedral integrals, the results are checked by com-

paring randomly generated tetrahedra with randomly generated evaluation points

to a reference solution. The reference solutions are obtained by numerical integra-

tion using Mathematica's numerical integration routines. These tests are imple-

mented as unit tests in the �les strayfield_test.cpp and potential_test.cpp

and reach a relative accuracy of near machine precision.

To analyze the discretization error and the correctness of meshes of tetrahedra

two geometries with known analytical solutions are used, namely a homogeneously

magnetized sphere [69] and a homogeneously magnetized cube. Both geometries

were magnetized withMx = My = 0;Mz = 1. Figures 6.1 and 6.2 show the results

for sphere and cube respectively. The Euclidean norm L2((H−Href)/Href) is used

to measure the discretization error, where Href is the analytical solution of the
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Figure 6.1.: L2((H − Href)/Href) error on a homogeneously magnetized M =
(0, 0, 1)T sphere mesh for direct calculation of �eld (i.e., discretization
error), via discretized potential, or using a FEM/BEM simulation.
Href is the analytic solution of the ideal (i.e., not discretized) sphere.
The H �eld is evaluated at the cell centers, and the potential u is
converted to H by cell-wise integration [70].

problem. The potential is di�erentiated cell-wise for comparison with the �eld H

[70], giving a cell-wise constant �eld.

Figure 6.1 shows the discretization error of a homogeneously magnetized sphere.

It displays a decreasing error with an increasing number of degrees of freedom

[DOF]. Furthermore, it allows a comparison of the various near-�eld implementa-

tions, namely direct �eld, direct potential, and �nite element solution. The error

might seem large, but �gure 6.3 shows that the energy error is small enough for

micromagnetic simulations.

Analogously, �gure 6.2 shows the �eld of a homogeneously magnetized cube. The

direct �eld error is omitted because the solution is at machine precision for the

given problem.
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6.2. Multipole-Expansion Error
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Figure 6.2.: L2(H − Href)/L
2(Href), error on a cube (constant magnetization in

z-direction Mz = 1 ) for discretized calculation of �eld, via potential
and FEM/BEM simulation. Href is the analytic solution of the cube
[69, 70]. The H �eld is evaluated at the cell centers.

To further check the correctness of the near-�eld code the micromagnetic standard

problem 4 [71] is solved using only the near-�eld solution. The standard problem

4 proposes two switching �elds; only switching �eld 1 is used in �gure 6.3. The

initial relaxed state is calculated with FEM/BEM using magnum.fe [72], providing

an identical starting point for all simulations. The mesh is created using Dol�n's

[73] BoxMesh with a box size of (100, 25, 1). Both direct-potential and direct-�eld

solution display correct switching behavior as can be seen in �gure 6.3 [70]. Time

integration is done using a preconditioned time integration method [74].

6.2. Multipole-Expansion Error

Figure 6.4 shows the trade-o� that has to be done between solve time and maxi-

mum error with varying multipole order P . The method for obtaining the error is

taking the maximum error of a the potential evaluation on each vertex of a ran-

domly magnetized cube with saturation magnetization MS=1 A m−1, 134 vertices,
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Figure 6.3.: Comparison of the magnetization in x-, y-, and z-direction for the
standard problem 4 with switching �eld 1 [71] using a higher order
preconditioned BDF scheme [74] for time integration.
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6.3. FMM Shared Memory Performance
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Figure 6.4.: Comparison between error, solve time and mulitpole order P of a
randomly magnetized cube of 134 vertices.

and a MAC of θ = 0.7. The reference solution is calculated by solely applying the

near-�eld solution. The error displays the expected θP proportionality, and the

solve time and storage space of multipole evaluations increase with ∝ P 3. This

test is a strong indicator that the expansions are implemented correctly.

6.3. FMM Shared Memory Performance

Shared memory (OpenMP) parallelizes code on one compute node, i.e., all CPUs

can access the same physical memory (RAM). Shared memory enables paralleliza-

tion with minor modi�cations to serial code, but is limited in the number of CPUs

that can be used.

This section shows the weak scaling (i.e., �xed problem size) performance on a

single shared memory machine with up to 16 cores and a comparison of a hybrid

FEM/BEM code using a conjugate gradient solver with an algebraic multigrid

preconditioner to the presented hybrid FEM/FMM solver (see section 4.7).
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Figure 6.5.: This �gure shows the decreasing solve time of a cube with constant
magnetization using an increasing number of cores (1-16). The simu-
lation shows near-perfect weak-scaling properties.

Figure 6.5 shows the near-optimal scaling properties of the stray-�eld problem. It

calculates a �eld evaluation after initialization for 357,911 vertices with the pa-

rameters MAC θ = 0.3 and maximum multipole order P = 4 on a homogeneously

magnetized cube with up to 16 cores. The simulations are done on a shared mem-

ory machine using two Intel Xeon E5-2650v2 2.6 GHz processors with eight cores

each.

Figure 6.6 compares potential evaluation performance of two algorithms for in-

creasingly larger homogeneously magnetized box meshes. FEM/FMM is the hybrid

algorithm described in section 4.7. The FMM parameters used in the simulation

are multipole acceptance criterion θ = 0.5 and maximum multipole order P = 3.

FEM/BEM is a state of the art �nite element implementation using a conjugate

gradient solver with an algebraic multigrid preconditioner [75]. Both simulations

are done using the same machine as above and called using a python interface for

comparability.
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6.4. Distributed Performance
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Figure 6.6.: This �gure shows the solve time of FEM, BEM, and FMM with in-
creasing degrees of freedom [DOF] compared to a linear increase in
run time. The FEM simulation needs to be done in both cases. The
BEM simulation includes the solution of a second FEM problem for
the inhomogeneous solution.
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Figure 6.7.: The geometry used for the MPI test is a series of cubes arranged next
to each other. Each cube is stored on a separate MPI rank.
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6. Results

6.4. Distributed Performance

The distributed programming model shares data by passing messages. Each thread

needs to receive a copy of the necessary data by using the Message Passing Interface

[MPI]. Distributed software is slower and more di�cult to manage than shared

memory software but allows many more CPUs to work in parallel.

This section shows preliminary results using a large number of CPUs with MPI.

The implementation shows promising performance and is a working prototype that

can be expanded into a production-ready many-core software. The results show

the strong-scaling performance for calculating the �eld of a series of homogeneously

magnetized cubes positioned next to each other as seen in �gure 6.7. This example

uses the FEM/FMM hybrid method (see section 4.7) for calculating the potential

on the surface of a cube with 68,921 vertices. The parameters are a MAC of θ = 0.5

and a maximum multipole order of P = 3. Figure 6.8 shows the strong-scaling

performance of the code from tens of thousands to tens of millions of DOFs or

one to 256 CPUs. The image shows a three-fold increase in solve time for �eld

evaluation of the boundary problem when increasing problem size by a factor of

a thousand [67] using MPI only parallelization (i.e., no OpenMP) on the VSC3.

The compute nodes provide two Intel Xeon E5-2650v2 2.6 GHz processors with

eight cores each meaning that for a simulation on 256 CPUs 16 nodes are used.

Simulations from 1 to 16 CPUs are done on a single node with MPI. Inter-node

communication is done using in�niband.
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Figure 6.8.: This �gure shows strong scaling from 6.9× 104 to 7.06× 107 vertices.
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7. Conclusion

This work demonstrates the speed and feasibility of the Fast Multipole Method

[FMM] for micromagnetism. All the necessary steps are derived, implemented,

explained, and veri�ed. The working implementation can be used for the stray-

�eld calculation of the whole problem, in combination with existing �nite element

software, or as a Dirichlet boundary condition.

The software shows near optimal scaling on shared memory machines and the

MPI implementation allows distributed execution of large meshes. The inherent

scalability of the FMM, which focuses on minimizing inter-node communication,

makes it an attractive solution for the foreseeable future where parallelization is

the primary mode for increasing processing power.

The most time-consuming part of micromagnetism�the stray �eld�is successfully

parallelized. That said, for a fully functional parallel micromagnetic code a parallel

LLG time integration is still missing and would present an interesting follow-up

project.
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A. Appendix: Gaussian

Quadrature

Gaussian quadrature is a method to approximate de�nite integrals over the region

[-1;1] of a function f(x) to a weighted sum:∫ 1

−1

f(x) dx =
n∑
i=0

wif(xi) (A.1)

with n evaluation points xi and weights wi. The approximation is exact for poly-

nomials of degree 2n− 1.

Gaussian quadrature can be extended to an integration over a triangle ∆ with area

A [76]: ∫
∆

f(r) d2r = A
N∑
i=1

wif(r(λi)), (A.2)

where λ are barycentric coordinates (see section 4.1). The weights and coordinates

are tabulated in [76].

The function point f(r(λ)) can easily be evaluated at evaluation point r(λ) by

r(λ) =
3∑
j=0

rjλj, (A.3)

where the index j indicates the vertex of the triangle ∆ and should not be confused

with the weight-index i.
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