s
FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Kopplung von Simulation und
Automationsinfrastruktur

Eine auf FMI und IEC 61499 basierende Analyse

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Technische Informatik
eingereicht von

Michael H. Spiegel, BSc
Matrikelnummer 01125727

an der Fakultat fur Informatik
der Technischen Universitat Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr. techn. Wolfgang Kastner
Mitwirkung: Dipl.-Ing. Bernhard Heinzl, BSc

Wien, 20. Februar 2018

Michael H. Spiegel Wolfgang Kastner

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. 4+43-1-58801-0 - www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Linking Simulation and
Automation Infrastructure
A Study Based on the FMI and IEC 61499

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Computer Engineering
by

Michael H. Spiegel, BSc
Registration Number 01125727

to the Faculty of Informatics
at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr. techn. Wolfgang Kastner
Assistance: Dipl.-Ing. Bernhard Heinzl, BSc

Vienna, 20" February, 2018

Michael H. Spiegel Wolfgang Kastner

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

Erklarung zur Verfassung der
Arbeit

Michael H. Spiegel, BSc
Wurzbachtalgasse 25, 1140 Wien

Hiermit erklére ich, dass ich diese Arbeit selbstdndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliellich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. Februar 2018

Michael H. Spiegel

Acknowledgements

I would like to thank the Austrian Institute of Technology (AIT) which funded this
thesis and the Automation Systems Group at TU Wien represented by Prof. Wolfgang
Kastner, Dipl.-Ing. Bernhard Heinzl and Dipl.-Ing. Andreas Fernbach who supervised the
presented work, provided valuable scientific input and enabled an abundant collaboration.
Furthermore, I would like to thank Dr. Edmund Widl who encouraged me to extend the
research which was done for my Bachelor thesis and who kindly supervised my work at
the AIT. I also want to express my kind gratitude to my other colleagues at the AIT
and to the participants of the ERIGrid project for the numerous fruitful discussions and
for providing me the initial models of the test cases. This thesis is partly supported by
the European Union’s Horizon 2020 research and innovation program (H2020,/2014-2020)
under project “ERIGrid” (Grant Agreement No. 654113).

Last but not least I want to thank my fiancé Stefanie Berger who spent hours on proof-
reading this thesis as well as her and my family for continuously supporting me in my
studies. Thank you Stefli, Heide, Thomas, Kathi and Georg!

vii

Kurzfassung

Obwohl sie von einer breiten Offentlichkeit oft nicht bemerkt werden, beeinflussen
Automationssysteme weite Bereiche unseres téglichen Lebens. Die Herstellung vieler hoch-
qualitativer Giiter, eine kontinuierliche Energieversorgung oder moderne Gebédudetechnik
beispielsweise basieren auf hochgradig automatisierten Prozessen. Mittels numerischer
Simulation kénnen diese Systeme mit reduziertem Prototypenaufwand entwickelt werden.
Allerdings sind direkte Interaktionsmoglichkeiten mit Automationssystemen wéahrend
deren Laufzeit bislang limitiert. Um die effiziente Entwicklung komplexer, zuverlédssiger
Cyber-physical Systems voranzutreiben, werden im Zuge dieser Arbeit Kopplungsméglich-
keiten zwischen ereignisbasierten Automationssystemen und numerischen Simulationen
systematisch identifiziert. Einsatzbereiche dieser Kopplungspunkte reichen von hybriden
Simulationen kontinuierlicher Anlagenmodelle mit diskreten Regelungen bis hin zur
Emulation realer Anlagenteile, welche in einem Laborumfeld schwer realisierbar sind.

Die hier préasentierte Forschung wird auf Basis offener Standards, speziell der IEC 61499
fiir Automationssysteme und den Functional Mock-up Interface (FMI) Standards fiir
numerische Simulationen, durchgefiihrt. Durch die systematische Diskussion kénnen
zahlreiche Kopplungspunkte und -strategien in einer umfassenden qualitativen Studie
identifiziert und klassifiziert werden. Eine prototypische Implementierung eines Simulati-
onsprogramms zur Erzeugung virtueller Komponenten ergéinzt die eingangs durchgefiihrte
Studie. Um die implementierte Methodik zu evaluieren, werden zwei Testfélle aus dem Be-
reich der intelligenten elektrischen Energienetze umgesetzt und ausgewertet. Die Testfille
demonstrieren, dass die Instanziierung von standardbasierten virtuellen Komponenten in
Automationsinfrastruktur prinzipiell umsetzbar ist und dass der Einsatz einer neuartigen
vorhersagebasierten Ereignissynchronisation die Einbindung von Modellen erméglicht,
die bei klassischer periodischer Synchronisation nicht akkurat gekoppelt werden kénnen.

Die Diskussion zeigt, dass die Menge der identifizierten Kopplungspunkte nicht auf
klassische Hardware-in-the-Loop (HIL) Szenarien beschrankt ist. Damit er6ffnen sich
auch neue Wege in der Testentwicklung. Die praktische Auswertung demonstriert die
Machbarkeit standardbasierter virtueller Komponenten auf der Grundlage ereignisba-
sierter Steuerungen und unterstreicht die Notwendigkeit einer sorgfaltigen Auswahl der
eingesetzten Kopplungsansétze.

ix

Abstract

Although the proper operation of automation systems is widely invisible to the general
public, control infrastructure is extensively deployed and strongly affects our daily
lives. For instance, manufacturing of high-quality mass goods, continuous energy supply
infrastructure, and modern buildings highly depend on automation. Numerical simulation
allows to efficiently engineer these complex systems and reduces the need of costly
prototypes, but direct interaction with automation systems at runtime is still limited.
This thesis addresses the efficient development of complex dependable Cyber-Physical
Systems (CPS) by systematically pinpointing links between event-based automation
systems and numerical simulation. Applications of such links range from hybrid system
simulations, which couple continuous plant models and discrete control logic, to simulation-
backed virtual components, which mimic parts of a system that cannot be easily included
in a laboratory environment.

The research is based on open standards, in particular the IEC 61499 for event-based
automation systems and the Functional Mock-up Interface (FMI) standards for model
exchange and co-simulation. Systematic hierarchical categorization, which is applied in
a comprehensive study, and a qualitative discussion based on a set of relevant features,
such as real-time operation, show a broad range of viable links between IEC 61499
and the FMI. The theoretical study is amended by a prototypical implementation of a
generic component simulator. Two test cases in the context of smart electrical grids are
arranged to assess the implemented methodology. The instantiation of event-based virtual
components in automation systems is successfully demonstrated. By applying a novel
predictive event-based execution, it is shown that models which cannot be accurately
coupled via conventional periodic synchronization, can successfully interact with assessed
controllers.

The study reveals that the range of links between IEC 61499 and the FMI well exceeds the
spectrum of traditional Hardware-in-the-Loop (HIL) setups and may guide test engineers
in implementing novel assessment methodologies. Presented practical evaluations demon-
strate the feasibility of standard-based virtual components and highlight the importance
of a proper methodological selection.

X1

Contents

Kurzfassung ix
Abstract xi
Contents xiii

1 Introduction 1
1.1 Background and Motivation 1
1.2 Problem Statement 3
1.3 Main Goals 5
1.4 Methodology 5
1.5 Structure 6

2 Related Work 7
2.1 TEC 61499 e 7
2.2 Co-Simulation and Model Exchange 13
2.3 Hardware in the Loop and Real-time Simulation 21
2.4 Contribution 23

3 Interaction Study 25
3.1 Preliminary Discussion 25
3.2 Using Model Exchange FMUs in TEC 61499 Applications 30
3.3 Using Co-Simulation FMUs in IEC 61499 Applications 51
3.4 Encapsulating IEC 61499 Applications in Model Exchange FMUs . . . 60
3.5 Encapsulating IEC 61499 Applications in Co-Simulation FMUs 67
3.6 CompariSon e 75

4 Implementation 83
4.1 Software Development Objectives 83
4.2 Simulation Program Flow 86
4.3 Software Design 95
4.4 Implementation and Quality Assurance 101

5 Evaluation 103

5.1 General Timing Evaluation Methodology 104

5.2 General Assessment Methodology 106
5.3 Test Case 1: Open-loop Controller Verification 107
5.4 Test Case 2: Closed-loop CHIL 121
5.5 Combined Results 133
6 Conclusion and Outlook 135
List of Figures 139

Bibliography 141

CHAPTER

Introduction

Our daily life is strongly influenced by ubiquitous technologies. An electrical grid
delivers power for a vast amount of appliances, a chain of complex industrial processes is
maintained to deliver daily goods and a huge amount of systems is connected to provide
mobility services. All these systems and systems of systems require careful engineering
and impose major design challenges to gain appropriate dependability [59]. This thesis
tackles some engineering challenges by studying the linkage of test and automation
infrastructure with mathematical system models.

1.1 Background and Motivation

Manufacturing plays an important role in the economy of the European Union (EU)
and many other economies worldwide. For instance, approximately 20 % of all jobs in
the EU are provided by the manufacturing sector which achieves a turnover of about
7000 billion Euros [28, 56]. Today’s manufacturing industries face many challenges, such
as ever-increasing flexibility requirements, the need to reduce energy consumption, and
the transition towards a more environmentally friendly production [27, 28, 45]. Many of
these challenges are also subsumed in the vision of Industry 4.0 which includes harnessing
and adopting existing advanced technologies from the Information and Communication
Technology (ICT) domain for production [27]. The relevance of modernizing the manu-
facturing sector in the EU was identified years ago [56], but efforts are still ongoing [27,
28, 56, 80].

A large number of initiatives towards the modernization of the production sector have
been launched, but still major obstacles for adopting advanced manufacturing techniques
exist [56]. Data access issues from industry partners and other systems as well as the lack
of advanced development tools were identified as major barriers. Several initiatives to
combat the lack of standardized solutions have been launched, including initiatives from
industry and politics, but many open questions regarding standardization remain [80].

1.

INTRODUCTION

Another domain facing major challenges is the energy sector, including electric and thermal
energy systems [4, 80]. Our economy, which includes the manufacturing sector, as well as
our daily lives vitally depend on energy supply systems as the basis for most technical
processes. A high penetration of Renewable Energy Sources (RES) into the electric grids
is required to reduce the amount of greenhouse gases which are emitted. Nonetheless,
many RES, such as solar resources and wind energy, induce a considerable amount of
power variability which potentially thwarts system stability [93, 94]. Furthermore, a
transition of public and private transport towards a low-emission electrically powered fleet
additionally demands electric energy networks. Flexibility options such as demand-side
response, flexible generation and grid infrastructure, as well as energy storages may be
deployed to foster the integration of RES and electric vehicle charging, but still many
hurdles for a widespread adaption exist. Such open research questions in creating a
flexible, smart electrical grid concern for instance control and scheduling strategies as
well as efficient development, test, and verification infrastructure.

Major challenges in manufacturing as well as in the energy domain are often faced by the
use of advanced automation and ICT [45, 59, 80]. Conventional distribution networks,
for instance, are statically configured and operated. However, a high share of volatile
RES often exceeds the limits given by the static configuration and the renewable energy
that is fed into the grid has to be throttled. Automated grid components such as smart
transformers may provide required flexibility and adapt to volatile renewable power
generation. Since both technical domains, energy and manufacturing automation, are
highly interconnected and often use similar technologies, methodologies from one domain
may be applied to the other domain as well. It was, for instance, shown that particular
controllers can be used in factory and energy system automation [4, 89, 102, 103].

Some years ago, the concept of event-based control in automation was introduced to
supersede and enhance traditional cyclic execution of control algorithms and to increase
the flexibility of traditional automation systems [50, 102, 103]. The International
Electrotechnical Commission (IEC) standard 61499 was created which specifies a system-
level design language of potentially distributed automation systems. Although the
standard is currently not widely used in industry [109], it receives a lot of attention in
academia and is successfully used to implement novel control and engineering concepts
[45, 90, 102]. In particular, the event-based execution model allows to implement a
conventional cyclic operation and novel action-based designs.

Often, additional value is gained by interconnecting automation equipment and by a
coordinated operation. Although the detailed potential of interconnected machines is
still subject to intense research effort, possible use cases include advanced non-local
control and optimization strategies, predictive maintenance, as well as the automation of
manually operated business processes [3, 12, 28, 80]. Interconnected machines, which
incorporate an interaction between an ICT system and a physical process, are often
called Cyber-Physical Systems (CPS) [59]. Following the widespread use of ICT in
many critical processes, dependability requirements, which are fundamentally different
from general-purpose computing, are increasingly important. To efficiently fulfill these

1.2. Problem Statement

requirements, novel development, testing, validation and verification methodologies are
still required [28, 80].

In order to successfully use novel methodologies, the whole engineering workflow has
to be taken into account. Often, it is necessary to adapt the workflow in order to
fulfill particular dependability requirements. For instance, static timing analysis of hard
real-time systems requires adapted coding practice to reach tight execution-time bounds.
A methodology which integrates well into existing workflows may gain broader acceptance
than a methodology which requires to broadly alter well-proven practices. Numerical
models and their simulation are integral parts of many state-of-the-art engineering
workflows. Simulation enables an engineer to assess and optimize major properties of a
system and to reduce the amount of needed prototypes. A vast number of general-purpose
and domain-specific modeling and simulation tools in many scientific and engineering
domains exist [33]. Many of these tools focus on a very limited specialized domain,
such as communication networks or fluids, but also for general-purpose modeling tools,
the range of available models and capabilities varies. To gain a comprehensive view of
complex systems, it is often beneficial to couple simulation tools or to combine models
provided by multiple tools.

Additional need for model exchange and tool coupling arises in domains where multiple
vendors and institutions which provide simulation models of subsystems are involved
[13]. For instance, in the automotive domain, component manufacturers may provide
models of their components which then can be used to assess the overall functionality of
a system. In order to protect the intellectual properties of a component manufacturer,
internals of the model must not be accessible and interactions with other models must
be restricted to component boundaries. Some standards that address the combination
of multiple simulation tools into a co-simulation and the exchange of models exist [38,
39, 40, 51], e.g. the Functional Mock-up Interface (FMI) standards for model exchange
and co-simulation. Several tools from various domains already support one of the FMI
standards, but interaction with the automation domain is still limited [33].

1.2 Problem Statement

One of the main motivations for conducting the work is the need of enhanced testing and
validation techniques in the context of smart grid and automation infrastructure. One
way of testing subsystems in the context of the whole system is to represent other relevant
parts of the setup as virtual components which are interlinked with the physically
available subsystems. Often, the targeted system or the laboratory components are
backed by industrial automation infrastructure. To integrate virtual components into
test setups, the selected point of interaction needs to be capable of emulating models in
real time. Although it may also be constructive to integrate physical components into a
simulation environment, the reversed mindset of integrating virtual components into a
physically available infrastructure may be more intuitive. In the latter case, the models
from previous design and engineering phases may be directly used in the testing phase.

1.

INTRODUCTION

Additionally, expected real-time properties strongly point towards an approach in which
models or simulation tools are integrated into automation infrastructure.

Hardware-in-the-Loop (HIL) tests, which couple physically available hardware and nu-
merical models, have a long tradition and are widely adapted in many industrial areas
such as automotive and power electronics [11, 101]. Subsystem prototypes, for instance,
may be efficiently tested in a HIL setup without the need to build related subsystems.
The Hardware under Test (HuT) can be assessed in well-defined ways such as in rare
events and border conditions which may not be easily triggered within a comprehensive
prototype. The accuracy of HIL tests is strongly influenced by the HIL setup and timing
properties thereof [62, 63, 101]. Insufficient synchronization, for instance, may easily lead
to inaccuracies and instabilities.

Many commercial HIL simulators specifically focusing on solving system models in real
time are available [34, 100]. Such specialized simulators can achieve update frequencies
in the megahertz range and often communicate via dedicated digital and analog 10
lines. To gain such an update performance, the modeling capabilities and the range of
supported models are limited and often focused on a particular application domain. For
many applications, such as static models of power systems and some thermal process
models, the performance of dedicated HIL equipment is not essentially needed [3, 4, 75]
and introduces a considerable cost overhead. In these cases, general-purpose computing
hardware and tool-specific links are often used to reduce costs and to enable new use
cases. Standard automation equipment such as network IO interfaces may be deployed
to access hardware which does not provide a high-level communication interface. Often,
simulation tools and automation infrastructure are coupled via tool-specific interfaces
which increases the development effort. In order to seamlessly create virtual components
in existing laboratory environments such as smart grid test stands [4], a standard-based
interface which covers a broad variety of simulation models and tools is favorable.

Nevertheless, IEC 61499, which is also used in laboratory environments [4], focuses
on control system architecture and run-time aspects and does not cover a detailed
model-based engineering process. Similarly, communication protocol specifications,
such as Modbus and the Abstract Syntax Notation One (ASN.1)-based protocol of
IEC 61499, mostly focus on data exchange of process data only and do not include
considerations on coupling virtual components [50, 65]. For instance, many industrial
communication protocols do not timestamp messages and silently assume a real-time
operation. Contrary, synchronization of simulation time is a crucial part in many co-
simulation scenarios. Associating a message with an instant of time eases synchronization
and the implementation of virtual components.

Some authors have already demonstrated the high potential of coupling simulation
models and automation infrastructure [45, 88, 90, 91, 110] which well exceeds purely
academic use cases. Coupling virtual components and physically available automation
infrastructure, for instance, is used to build a training platform which allows to train
students and personal on using the automation system without the risk of damaging
expensive equipment. Nonetheless, standards for automation systems and system models

1.3. Main Goals

are most often independently conceived and not jointly envisioned. In particular, a
comprehensive discussion on coupling the FMI and IEC 61499 on a general basis is still
missing. It is believed that such a joint discussion enriches future coupling efforts and
eases the selection of an appropriate methodology.

Today, first simulation and automation tools implement basic coupling approaches [26,
66, 86], but a widespread adaption of standard-based simulation tool and automation
infrastructure coupling is not seen. In particular, very little support in linking FMI-based
models and tools to event-based control infrastructure such as TEC 61499-compliant
controllers is available. It was demonstrated that coupling event-based systems and
continuous or hybrid models requires special attention to gain accurate results [8, 68,
108]. Although the initial studies were not applied to real-time systems, the fundamental
principles of synchronization also hold on automation infrastructure. In particular,
applying event prediction as a form of extrapolation may also reduce unwanted delay
effects in real-time systems.

1.3 Main Goals

In order to bridge gaps between IEC 61499 and the FMI, the thesis first presents a
comprehensive theoretical study on linking both standards in a single setup. Thereby,
the study addresses the following research questions:

In which ways can FMI-based models or tools and IEC 61499-based controllers
be coupled? What are the expected implications of each strategy on important
aspects such as real-time operation and automatic model transformation?

The state of the art in linking the FMI and IEC 61499 shall be further advanced by the
implementation and evaluation of one principal way of interaction. In particular, the
implementation tackles a predictive and a periodic synchronization approach. Special
attention is to be put on a broad applicability and re-usability of developed software
components beyond any particular test cases. By design, future testing and validation
efforts should be actively reduced when using the provided tool-independent interface.

The primary aim of the evaluation is to demonstrate findings of the theoretical study
in a proof-of-concept implementation and to further advance the knowledge of major
influence factors on the implementation performance. The evaluation specifically focuses
on HIL-related aspects such as the real-time performance of the implementation. Special
attention has to be put on carving out implications of both synchronization approaches
and on comparing their results to the theoretical expectations derived from the interaction
study.

1.

INTRODUCTION

1.4 Methodology

The theoretical interaction study is conducted by first defining principal ways of interaction
for linking TEC 61499 and the FMI. A set of important features is defined which is then
used to structure the discussion. To achieve the applicability goals, important features
specifically focus on testing, validation and HIL-related aspects. For each principal
way of interaction, one or more coupling strategies are defined and discussed. To ease
generalization and application, the discussion in the theoretical part is entirely based on
the IEC 61499 and FMI standards and does not tackle specific implementations. Since
the implementation and quantitative discussion of every principal way of interaction is
beyond the scope of this thesis, a qualitative comparison between listed linkage strategies
is presented.

Based on the interaction study and the targeted virtual component use cases, an interface
software is designed and implemented. The software design covers a detailed specification
of software objectives and the resulting decomposition into major design entities. A
software development process and quality assurance measures guide the implementation in
order to increase the confidence of the experimental results and to meet the expectations
regarding a general applicability beyond the specified test cases.

For evaluation purposes, a set of test cases as well as a detailed evaluation methodology
are defined. The test cases specifically focus on border cases and may not reflect an
average-case scenario. In particular, the test cases are used to assess the limits of the
implemented coupling approaches and to highlight differences between the approaches. A
monolithic reference simulation which does not use the described standards is conducted
to assess effects and implications of the coupling approaches. The reference simulation
itself is also used to define any control logic and to export relevant models, but will not
directly use the FMI. Hence, effects which occur due to a re-implementation of existing
models can be reduced to a minimum and the coupling strategies can be specifically
studied.

All implemented test cases include external hardware to demonstrate the feasibility of
HIL setups. Nevertheless, pure software implementations are used to study effects which
cannot be easily observed by including external hardware. Such effects include detailed
delay observations which can be more accurately traced without including external
monolithic hardware and network connections.

1.5 Structure

This thesis is structured as follows: Chapter 2 reviews related work and defines the
contribution of the conducted efforts. Various ways of linking IEC 61499 and the FMI
are described in the comprehensive interaction study in Chapter 3. The prototypical
implementation of one principal way of interaction is documented in Chapter 4 and the
evaluation is presented in Chapter 5. Chapter 6 concludes the studies and sketches future
research topics.

CHAPTER

Related Work

2.1 IEC 61499

The IEC standard 61499 provides a system-level design language for distributed automa-
tion systems [50, 103]. The following sections will give an overview of the IEC 61499
itself, summarize the discussions regarding IEC 61499, its application in industry, and
available software tools. Section 2.1.1, which describes the foundations of the IEC 61499,
is partly based on the author’s previous work [85].

2.1.1 TIEC 61499 Component and Execution Model

The TEC standard 61499 targets the design, execution and management of Industrial Pro-
cess Measurement and Control Systems (IPMCSs) [50]. It defines a generic architecture
which may be represented in graphical and textual form. It aims at an implementation-
independent specification such that exchange of information among diverse software tools
is enabled. An IPMCS which is specified and designed by means of IEC 61499 may couple
devices from various vendors. The standard itself is split into three documents. The
first document, IEC 61499-1, defines the reference model which may be used to specify
systems and their components, some predefined instances of components, application
management facilities, and an informal communication protocol. The second document,
IEC 61499-2, defines requirements for software tool support for the specification, analysis
and validation of IPMCSs. The last document, IEC 61499-4, lists rules for the develop-
ment of compliance profiles which promote inter-vendor interoperability of devices and
tools.

The architecture, which is defined in the IEC standard document 16499-1, consists of
various reference models which cover the entire system down to a detailed modeling of
sub-applications by means of a concept called Function Blocks (FBs). A system consists
of a set of interconnected devices which interface a controlled process. The process

7

2.

RELATED WORK

Device | Device Il
| |

I Application 0 l I Application 4

[————]
I Application 1 l

l l Applica-
I (Ap ication 2 I I Application 3 tion 5
Resourlce A “Resource B Resource C Resource A Resource B Resource C

Network Connection

Function Block Networks

Figure 2.1: IEC 61499 device model example [85]

itself is not part of the architecture but communication links are explicitly modeled.
Figure 2.1 shows an example of a system which consists of a communication link and two
devices. Each device may host multiple resources which define an abstract functional
unit with independent control of its execution. A resource may be managed without
directly affecting other resources and defines a scheduling function which controls the
execution of all associated functionalities.

The actual control logic is encapsulated in independent applications which may be
distributed across multiple resources. Applications are not restricted to reside on a single
device and may even be distributed across multiple devices. One key concept of IEC 61499-
based controls is the encapsulation of certain functionalities into reusable FB types which
may be instantiated as FBs. FBs expose their functionality via well-defined interfaces.
Multiple FBs may be connected to an FB network in order to model more complex
behavior. Applications may consist of such an FB network. In addition, IEC 61499
allows to structure applications by means of subapplication types and subapplication
instances. Like in the case of applications, the functionality of subapplications may be
modeled by a network of subapplications and FBs, but subapplications may also expose
their functionality via an FB-like interface. FBs are the basic unit of distribution, i.e. a
single FB instance may only reside on one device. In contrast, subapplications may be
split across multiple devices.

The IEC 61499 introduces the notion of events as an occurrence, which is significant to
trigger the execution of an algorithm. In contrast to the mode of operation defined by

2.1. IEC 61499

& BOOL
WSTRING
ANY

Figure 2.2: TEC 61499 function block interface example

[caLc FHCALCULATE_OUTPUTS[CNE]

[InIT FHsET_vARS[INITO]

Figure 2.3: IEC 61499 ECC example

IEC 61131, algorithms and control logic are not executed periodically per se but on the
occurrence of an associated event. Therefore, subapplication and FB types may specify
event in- and outputs which are used to receive and transmit events. As soon as an event
from a connected FB or subapplication is received, the execution of the encapsulated
control logic starts. Events in the context of IEC 61499 are not directly associated with
data, i.e. an event may be used solely for scheduling and may not be associated with
any variable value. FB types may additionally define data in- and outputs. The type
system as defined in IEC 61131 is used to specify the type of internal variables, in-, and
outputs [50, p.68]. One can use FB data in- and outputs to pass values between FBs and
subapplications. In case of FB types, data in- and outputs may be associated with one
or more event in- and outputs respectively. As soon as an incoming event is triggered,
all associated data inputs will be sampled and the control logic of the FB can access
updated input data. Figure 2.2 shows an exemplary graphical FB interface specification.
By definition, inputs are always drawn at the left, outputs at the right side of the FB.
The top part of the FB representation specifies event in- and outputs and the bottom
part lists available data in- and outputs. In the example, QT and ID are sampled with
the INIT event as indicated by rectangular markings in front of the input names.

The TEC 61499 defines three kinds of FBs: Basic Function Block (BFB), Composite
Function Block (CFB), and Service Interface Function Block (SIFB). All three kinds
differ in the way the behavior of FB instances is specified. BFBs use algorithms and
a mechanism which is called Execution Control Chart (ECC) to define the execution
semantics. An ECC is a structure inside each FB instance which consists of a finite
amount of states and transitions between two states. Figure 2.3 shows a typical graphical
representation of a simple ECC. Algorithms are associated with states and will be
executed as soon as the FB enters the associated state. Transitions may be guarded by
an input event and a guard condition on some variables of the FB. In case the input
event is triggered and the guard condition is fulfilled, the transition is taken and the

2.

RELATED WORK

10

following state is entered. The execution of the FB stops if no more transitions can be
taken. The specification of the algorithms itself is beyond the scope of the standard.
Nevertheless, the languages defined in IEC 61131-3 in general and Structured Text (ST)
in particular are explicitly referenced as specification mechanisms for algorithms. As
soon as an algorithm terminates, an associated output event may be triggered which
schedules the execution of connected FB instances.

The behavior of CFB instances is defined by the component FBs which reside in the
CFB as well as the interconnections between component and CFB in- and outputs. A
CFB input, for example, may be connected to a CFB output or to inputs of hosted FBs.
Incoming events will be relayed to all connected FBs and trigger nested functionality.
Likewise, output events of the CFB are triggered if a connected instance triggers an
event. Consequently, the principal operation of CFBs is similar to the execution of
subapplications. Nevertheless, a CFB cannot be split among multiple resources and is
therefore subject to a single scheduling function only.

SIFBs provide interfaces to resources such as network connections and [O-ports. The be-
havior of SIFB types is specified in an abstract manner by defining the causal dependency
between in- and output events. Service sequence diagrams are used to formally represent
feasible sequences of events. For instance, an event at the initialization input INIT will
eventually trigger an event at the output INITO. The exact behavior in terms of value
transformations and side effects is not formally specified. SIFBs are the only kind of FBs
which can actively trigger an event without previously receiving one. Hence, interactions
may be initiated by the resource and not by the application. SIFBs which provide
application-initiated interactions or a mixture of resource- and application-initiated
interactions are feasible as well. IEC 61499 defines, in addition to the general means for
specifying SIFB types, some generic SIFB types such as communication FBs.

A mechanism for encapsulating event and data flows, which is called adapter interface
is also defined in IEC 61499. Adapter interface types specify a set of in- and output
events and variables one can use to provide and request a certain service. For instance,
controllers which need to pass a work piece from one station to another may encapsulate
a two-way handshake into a single adapter. In case an FB or subapplication provides the
interface specified by the adapter, it exposes a generic plug of the adapter interface type.
All plugs are part of the interface of the particular entity. Similarly, a so-called socket is
exposed in case an FB or subapplication may use the interface which is defined by the
adapter. Plugs and sockets may be connected in CFBs and subapplications to match
provider and acceptor instances. Hence, the adapter mechanism may be used to reduce
the number of connections and to define abstract services between FB instances.

The platform specific program, which interprets the IEC 61499-compliant configuration
and executes the control flow, is often called Run-time Infrastructure (RTI) [37]. Although
some features of the RTI may be accessed via SIFBs, the definition of an RTT itself is
beyond the scope of the IEC 61499.

2.1. IEC 61499

2.1.2 Discussion of the ITEC 61499

IEC 61499 is sometimes referred to as successor of the industry-leading TEC 61131
standard. Although the standard is currently not widely adapted in industry [109], its
capabilities have been examined in various publications [92, 102, 103], showcasing its
benefits in industrial applications [4, 69, 88, 90, 91, 110].

In 2009, Vyatkin described the capabilities of the IEC 61499 standard and motivated its
extensions in comparison to the widely adopted IEC 61131 standard [103]. He noted that
IEC 61499 features a vendor-neutral Extensible Markup Language (XML)-based exchange
format which tackles the limited portability of IEC 61131-based implementations. On
the basis of the first version of IEC 61499, Vyatkin identified some execution issues
and ambiguities. For instance, in some cases, the order of executed events was not
defined unambiguously. Strasser, too, worked out some execution issues which are mostly
related to run-time aspects [92]. He presented several standard-compliant execution
and scheduling models which may lead to different results. A CFB, for instance, may
be executed atomically or transparently via its sub-function blocks. In 2011, Vyatkin
concluded that the second version of the IEC standard eliminates most of the ambiguities
[102].

Chia-Han et al. surveyed model-driven development concepts of control software and
listed several causes of the slow adaption of IEC 61499 in industry [109]. For instance,
IEC 61499-based applications require additional design decisions such as distribution
concepts, which increase the switching costs. A steep learning curve and missing support
in many well-established tools additionally hinders the usage. Existing IEC 61499 tools
are not as mature as conventional software which is used to engineer Programmable Logic
Controllers (PLCs) and portability of program code between different IEC 61499-based
tools is not always guaranteed.

Some effort regarding real-time analysis of IEC 61499-based controls has already been
conducted [61, 92, 102]. For instance, Lindgren et al. noted that it is currently not
possible to express real-time semantics in the execution model defined by IEC 61499
[61]. All timing semantics directly emerge from a specific implementation. The authors
proposed an extension which adds real-time semantics to the IEC 61499. The extension
uses nondeterminism to abstract the actually deployed scheduling policy and to maintain
backwards compatibility. As a proof of concept, timing semantics of IEC 61499 were
implemented in the Real Time For the Masses framework core language.

2.1.3 Application of IEC 61499-based Controls

The applicability of IEC 61499 for control applications was demonstrated in many research
and industrial projects showcasing its capabilities [102]. Strasser studied the application
of IEC 61499 in closed-loop control [89]. He noted the significant difference between the
execution models of IEC 61499 and IEC 61131 which plays an important role for control
applications. While IEC 61131 uses a strictly cyclic execution model, IEC 61499 features
an event-based execution which schedules tasks according to explicitly modeled processing

11

2.

RELATED WORK

12

dependencies [50, 89]. Strasser implemented the cyclic operation of closed-loop controls
via cyclic event execution and demonstrated the control capabilities at a seesaw balancing
experiment [89]. It was noted that special attention has to be put on synchronous
delivery of data and events in case of distributed control algorithms. Similarly, Hametner
applied IEC 61499-based closed-loop control to a helicopter model [44]. He estimated
the Worst Case Execution Time (WCET) of some FBs by measuring the execution time
in various configurations. He pointed out that if the control loop output is not properly
synchronized, the behavior of the system cannot be accurately described in the z-domain.

Hegny et al. used IEC 61499-based applications to execute plant models and to test
IEC 61499-based controllers [45, 46]. The models are represented as timed state charts
which are a subset of Unified Modeling Language (UML) state chart diagrams. Model to
model transformation is used to convert the UML models into IEC 61499 applications.
The concept was tested on the model of a sorting machine. The integration of simulation in
the development process was further discussed in more detail by showing several coupling
concepts [47]. Various levels of integration were identified, ranging from the direct
integration within the controlled plant, models which replace SIFBs, to the interaction
with external simulation tools. Later, the state of the art in model-driven development of
control software was summarized by Chia-Han et al. [109]. Several software components
and frameworks which support modeling and simulation of control applications are already
available. Often, hybrid modeling which supports both continuous and discrete-time
modeling is required. For IEC 61499-based controllers, a design pattern which targets
model-driven design of control applications was developed [47, 58, 109]. The design
pattern is called layered model view controller pattern and separates the plant model
from the control logic such that the control logic can be easily deployed in the production
plants. Further work on integrating IEC 61499-based controls in co-simulation is discussed
in Section 2.2.3.

Andrén et al. proposed a semantic-driven framework for smart grid applications which
combines several domain models to specify key aspects of smart grid applications [5].
IEC 61499 was chosen as a domain model for control-related aspects. The applicability
of TEC 61499-based controls in smart grid applications was demonstrated in various
co-simulation [69, 88, 90, 91, 110], test, and production setups. Andrén et al., for instance,
also presented a HIL test stand which is specifically tailored to smart grid applications [4].
An IEC 61499-based controller and a Supervisory Control and Data Acquisition (SCADA)
system were deployed which control the test stand and provide the required flexibility.

2.1.4 Tool-Support for IEC 61499-based Applications

Several implementations of the IEC standard 61499 are available, ranging from academic
projects to industrial products [109]. One of the first implementations was the Function
Block Development Kit (FBDK) [29, 30]. FBDK consists of an IEC 61499-compliant
editor as well as a run-time environment which executes the control logic. Similarly,
Eclipse 4diac provides an Eclipse IDE-based development environment and a run-time
environment which executes the control applications [22]. Both components are released

2.2. Co-Simulation and Model Exchange

under an open-source license. The run-time environment of Eclipse 4diac is, in contrast
to FBDK, implemented in C4++ and specifically targets small embedded control devices
[37]. Nevertheless, also Windows and Linux workstations are supported.

Also, some commercial TEC 61499-compliant packages are available. NXT Control,
for instance, offers an engineering environment and corresponding controllers which
target IEC 61499 as well as IEC 61131-based control applications [71]. The commercial
engineering environment does not only focus on control applications but also targets
Human Machine Interfaces (HMIs) and SCADA systems.

2.2 Co-Simulation and Model Exchange

Co-simulation corresponds to the process of coupling several domain-specific tools and
models. It is widely applied beyond the automation domain and enables an engineer

or scientist to utilize various domain-specific tools in inter-domain problems [8, 88].

Consequently, tools, which model a specific aspect (e.g. energy consumption) each, can
be jointly executed in a co-simulation. Section 2.2.1, which is partly based on the author’s
previous work [85], describes the concepts of the FMI standards for co-simulation and
model exchange. Sections 2.2.2 and 2.2.3 describe work related to co-simulation standards,
including the FMI, and the use of IEC 61499 in co-simulation, respectively.

2.2.1 Functional Mock-up Interface Standard

The FMI standard defines facilities to couple one or more models and/or co-simulation
tools [13, 38, 39, 40]. At the time of writing, two versions of FMI are available, FMI 1.0
and FMI 2.0. The second version introduced several improvements and optional features.
FMI 2.0 is not fully compatible with the first version of the standard. Nevertheless,
the main concepts, such as the mathematical representation of models and tools, differ
only slightly. Hence, the following section covers both versions and highlights important
differences.

FMI 1.0 is split into two separate standard documents which cover co-simulation and
model exchange separately. FMI for model exchange requires an external component
which numerically solves the exposed model equations. When using FMI for co-simulation,
each coupled tool contains an independent solver. Data is exchanged at discrete points
in simulation time only. The second version of FMI includes both variants in a single
standard document but still differentiates between model exchange and co-simulation.

Simulation models and co-simulation slaves are exported as so called Functional Mock-up
Units (FMUs). An FMU encapsulates all technical information which is needed to
include the model or tool in a comprehensive simulation run. The interface is divided into
two main parts: a static model description which includes metadata and an executable
implementation which runs the model equations or co-simulation tool connection. The
static model description is encoded in an XML format and C functions are defined to
interface the executable implementation. FMI supports both, platform-dependent binary

13

2.

RELATED WORK

14

(Simulation Environment)
t,p1 Vi t,p3 v3
> FMU1 P “> FMU3 P
t,p2 V2
225 FMU 2 P2
\§ J

Figure 2.4: General FMI architecture

shared objects and source code representation of executable implementations. Static
model descriptions are separated from dynamic C code in order to keep the C functions
as lightweight as possible and to allow an embedded operation on constrained devices.
All files which are necessary to describe the model and tool connection respectively are
encapsulated into a single zip-compressed archive file.

To access an FMU, the model description needs to be parsed and the executable must
be interfaced. Before executing a contained model or simulation, an FMU needs to be
instantiated. Per default, multiple instances of a single FMU may be used simultaneously.
In order to differentiate between the independent FMU instances, a data structure is
dynamically generated which contains or references the internal variables of an instance.
The details of that data structure are not exposed to the environment which uses the
FMU. Only a pointer is maintained to address FMU instances.

Simulation or model data is accessed via model variables. Figure 2.4 shows an exemplary
data exchange of FMI-based models or tools. FMUs do not directly exchange data
with each other. The simulation environment actively performs data exchange and sets
input model variables u; according to the connected output variables y;. Additionally,
it manages a synchronized notion of time ¢, sets model parameters p;, and records all
exposed variables v;. Again, static data such as the name and type of each variable is
listed in the model description file. At run-time, variables are accessed via an integer
typed value reference passed on to getter and setter functions. These functions enable an
FMU to cache previously calculated results and to evaluate equations on demand. Four
basic variable data types (real, integer, boolean, and strings) are defined. Additionally,
the model description may define enumerations which are mapped to integer variables
at run-time. FMI does not directly support structural data types such as C structs and
arrays. Nevertheless, an optional variable naming convention which maps structured
data types to multiple variables is included. An FMU may not expose the whole state via
model variables which limits resetting an FMU to a previous state. FMI 2.0 introduces
optional features which allow to save and reset the entire state of an FMU. In addition,
state serialization and de-serialization functions may be provided. Nevertheless, the
format of serialization is beyond the scope of the standard.

2.2. Co-Simulation and Model Exchange

A Step Event State Event Time Event
1 1 1
I I I
% I I I
< \ | L T
ju—.
© ‘ 1 1
1 1
% Integrator Steps I %‘\
I I
O I I I
§ T\/\\\l |
1 1
1 1 1
1 1 1
1 1 1 : t
I I I
Step Event! State Event!
Signalled Detected!
'g w w
1 1 1
A No Time Event! Next Time Event! Time Event!
Registered Registered Executed'
o AN AN
o I
- I
© 1
O |
£ : >
-+ I
C 1
(4]
>
if

Figure 2.5: Event indication mechanisms

An exposed variable may be amended by a more detailed type and unit definition. For
instance, a dedicated velocity type which uses ** as base unit may be defined. Additionally,
several display units can be stated in the model description. FMI 2.0 replaces the simple
identifier-based unit definition system of FMI 1.0 by an exponent-based system. In FMI

2.0, each unit is defined in terms of the seven SI units and an additional factor for angles.

FMI 2.0 additionally allows to specify the structure of the model in more details. In
particular, direct dependencies of each model variable in terms of its unknowns may be
specified. The dependency information may be utilized to deploy an optimized handling
of algebraic loops. An algebraic loop is formed whenever a direct circular dependency
between connected FMU instances occurs. Since the model in- and output variables
directly influence each other, convergence has to be established in order to obtain correct
outputs. The model structure may also be taken into account to efficiently calculate
sparse Jacobians. In general, FMI 2.0 also introduces an optional function which allows
to retrieve partial derivatives of some model variables at a particular instant in time or
at a particular communication point. The information may be utilized in various ways
including advanced integration methods and linearization of a model.

Functional Mock-up Interface for Model Exchange

A model in FMI for model exchange is represented as a set of Ordinary Differential
Equations (ODEs) in state space form with discrete events [39, 40]. All model variables

15

2.

RELATED WORK

16

are functions with respect to an independent time variable. An event in terms of FMI is
a discontinuity of an exposed variable which is assumed to be continuous between two
event instances. In addition to all exposed model variables, an FMU for model exchange
also provides functions to access the vector of states and their derivatives. Hence, an
ODE solver may numerically solve the model. The ODE solver itself is not part of an
FMU. An FMU may indicate events via three distinct facilities. A time event may be
triggered by directly specifying the time instant of the next event while handling the
current one. Hence, an FMU needs to be able to predict the next time event instance
for a future point in time without necessarily knowing the solution at that instant of
time. Dedicated event indicators may be used to signal state events while solving the
continuous ODEs. An event is triggered as soon as the sign of an event indicator changes.
More precisely, it is triggered when an event indicator changes from a value in (0o, 0] to
a value in (0, 00) or vice versa. The ODE solver has to check all event indicators and
must interrupt the process whenever an event is detected. An iterative procedure may
be deployed to precisely determine the time of the current state event. Since the event
indicators may directly depend on the state of the FMU, state event instances cannot be
predicted. The third kind of events is called step events and may be triggered whenever
an integration step finishes and can therefore be evaluated more efficiently than state
events. Figure 2.5 illustrates all three event indication facilities.

Both versions, FMI 1.0 and 2.0, define a state machine which specifies the admissible
sequence of function calls. In principle, modes which handle events and modes which
forward continuous time by integration are supported. In event modes, it is not allowed
to forward the time of the model. Several iterations may be necessary until the solution
at an event instance converges. FMI 2.0 introduces several functions which explicitly
mark mode transitions. These functions have to be called in order to switch the mode of
the FMU. An FMU which follows FMI 1.0 implicitly switches modes by calling event
or time update functions. In addition, an initialization mode was introduced in FMI
2.0 which explicitly allows to deploy a dedicated set of equations which may be used to
evaluate the initial conditions.

Although a solver may freely set the time within the current integration step, FMI, in
general, only allows increasing time. Hence, special attention has to be put on resetting
to a particular instant of simulation time. Each event may potentially change the internal,
discrete state of an FMU which may not be exposed. Since an FMU is not required
to keep track of its state history, resetting the time before the last event may yield
undesired results. FMI 1.0 uses the standard representation of dense time which is
encoded in a floating point variable. FMI 2.0 extends that notion of time by a superdense
representation. Formally, every time instant ¢ follows the superdense representation
t = (tr,t1) where tg € R and ¢; € N [40, p.69ff]. Intuitively, tg corresponds to the instant
of dense time and ¢; enumerates the chain of causal events. Strict order in superdense
time is defined by (2.1) and equality by (2.2):

2.2. Co-Simulation and Model Exchange

(tr1,t11) < (tr2,tr2) & tr1 <tr2V (trg =tr2Atr1 <tr2) (2.1)
(tr1,t11) = (tr2,t12) & tr1 =tr2 At =ti2

The C interface of FMI 2.0 only implicitly uses superdense time by providing functions
which access the dense time part, tg, of the tuple and a function which increases the
integer part, ¢1, on signaling a new, valid discrete state. Nevertheless, superdense time is
used to specify the exact semantic of the functions.

Functional Mock-up Interface for Co-Simulation

In contrast to model exchange FMUs, the FMI for co-simulation expects the FMUs to
maintain their own solver [38, p.5f]. Communication between different FMUs takes place
at discrete communication points only. Between the communication points, the FMUs
have to solve their respective models independently. FMI for co-simulation specifies
a master-slave architecture in which FMUs are directed by a simulation master. The
communication between FMUs is handled by the simulation master implementing a
master algorithm. The master algorithm itself is not specified by the FMI but it is
advised that the master adapts the algorithm based on the capabilities of coordinated
slaves. Optional capabilities include the support of variable communication step sizes or
higher order signal extrapolation.

The FMI for co-simulation tries to support all stages of a simulation process including
design, deployment, simulation and post-processing [38, p.8ff]. Although the FMI itself
only specifies the interface functions, several different scenarios of model distribution
are stated. These scenarios range from a one process scenario where the FMU directly
executes the simulation code to a fully distributed simulation executed on different
machines. Several communication mechanisms including shared memory or TCP/IP
connections are feasible because the FMI does not specify any particular communication
protocol beyond the C function-based interface.

Within the simulation phase, involved simulation tools regularly exchange information
via the FMI [38, p.16]. It is assumed that the next communication step size is known
a priori and that it is possible to interrupt the current simulation in order to exchange
information at a given instant of time. Depending on the capabilities of the FMU, the
simulation master may also discard and reject communication steps by setting a flag
indicating that the last communication step was not accepted [38, p.29]. The second
version of FMI adds an optional mechanism for directly saving and restoring the state of
an FMU [40, p.24]. A communication step using this version may be rejected by restoring
the previously saved state.

Like the FMI for model exchange, the FMI for co-simulation also relies on a static
description of the FMU and a set of C functions accessing the co-simulation values
[38, p.22ff]. One function, fmiDoStep, is defined to perform the next simulation

17

2.

RELATED WORK

18

step. An asynchronous mode is optionally supported. In this mode, the fmiDoStep
function returns immediately and a callback function may be called on finishing the step.
Additionally, the FMI specifies functions to poll the current status of the FMU. If no
simulation step is in progress, the FMU variables will be accessed using the getter and
setter functions for model variables.

2.2.2 Work Related to Co-Simulation Standards

In order to reduce tool-specific coupling efforts, co-simulation and model exchange
standards, such as the FMI, have been created [8, 13, 40, 51]. Many tools which focus
on simulation already support co-simulation or model exchange standards and the FMI
in particular [33]. Some academic research regarding the FMI standard was already
conducted [8, 9, 10, 13, 68, 108]. Miiller et al. and Widl et al. studied the FMI-based
simulation of discrete-event and continuous systems [68, 108]. They proposed a prediction-
based approach to use FMI-based models in discrete-event simulations. In order to detect
and schedule upcoming events, the imported model is solved beyond the current instant
of simulation time. In case an event is detected during the look-ahead phase, it can
be scheduled by the discrete-event simulator. If another, external event is scheduled
before the predicted event, the model is reset to a previous state and the event can be
applied without introducing any artificial delay. The approach was implemented into an
open-source library called FMI++ and tested in Ptolemy II and GridLAB-D.

The FMI+4+ library itself provides various utilities for two major use cases: importing
FMUs into a simulation tool and exporting functionality via the FMI [95]. The import
utilities define a set of wrappers which encapsulate the low-level functionality of an
FMU and provide high-level functionalities, such as solving the model equations and
synchronizing the operation of an FMU. For instance, one wrapper, which targets
fixed-step-size simulations, and one, which focuses on discrete-event-based coupling,
are available. Additionally, FMI++ contains several utility classes for loading and
instantiating FMUs without the need of directly accessing low-level binary or XML files.
Similarly, the export utilities of FMI++ provide high-level infrastructure to access a
simulation tool via the FMI. An FMI+4++ back-end service may be incorporated into
existing tools and can then be used to expose functionality via a front-end service and the
FMI, without the need of directly implementing communication facilities and low-level
C functions.

Another co-simulation architecture is defined in the Institute of Electrical and Electronics
Engineers (IEEE) standard 1516 which is also called High Level Architecture (HLA)
8,9, 51, 67]. The HLA defines a federation as set of applications which interact with
each other. Object models which define the information produced or required by an
application have to be defined in order to enable seamless interaction. In addition,
the HLA defines programming language-independent interfaces as well as Web Services
Description Language (WSDL), Java and C++ bindings.

Miiller et al. introduced an HLA-based co-simulation in the context of smart grids

2.2. Co-Simulation and Model Exchange

[67]. They noted that smart grid applications often require data exchange and therefore
one needs to include ICT systems in a comprehensive simulation. PowerFactory and
OPNET, a network simulator, were successfully integrated. Awais et al. presented several
approaches which interlink HLA and FMI [8, 9]. The methods cover fixed time-stepped
as well as discrete-event-based HLA components which wrap FMI-based models. The
ordinary fixed time step approach involves a time span where HLA components do
not generate an event. A variable step size approach may, in general, generate fewer
events and increases the simulation performance. The algorithms were evaluated by a
simple dynamic electricity market simulation. The authors concluded that the presented
approaches are suitable for hybrid simulations but the fixed step size algorithm may
suffer from performance issues.

Some frameworks which couple heterogeneous models and tools already exist. Mosaic,
for instance, specifically tackles large-scale scenarios in future energy systems [79] via
co-simulation. Mosaic allows to efficiently describe large-scale scenarios with a rule-based
scenario description language. It implements a time-discrete approach for simulator
coupling which specifically targets stationary simulations. Various API and FMI-support
are provided to couple external models and tools.

The Ptolemy II framework was created to simulate models which do not follow a single
model of computation in a comprehensive simulation [23]. Hierarchical decomposition
is applied to create locally homogeneous models which can be jointly analyzed. Some
implemented computational domains include discrete event, continuous time, and com-
municating sequential process models. FMI-support for Ptolemy II was added by Widl
et al. who applied their predictive approach [108] and Cremona et al. who built an
integrated development environment for FMI-based co-simulations called FIDE on top
of Ptolemy II [18]. In contrast to the predictive coupling, FIDE uses code generation
instead of the Ptolemy II execution engine to generate a binary which co-simulates the
experiment. Although the authors mention the simulation of model exchange FMUs by
wrapping them for co-simulation, model exchange specific feature are not considered in
detail.

Another framework for joint simulation is the Building Controls Virtual Test Bed
(BCVTB) which specifically focuses on applications in the building domain [15, 107].
BCVTB is based on Ptolemy II and uses the software as a middleware for coupling
various simulators in a co-simulation. Notably, BCVTB already supports the BACnet
protocol and some 10 devices for accessing building control systems and external hardware.
Although many modeling domains in Ptolemy IT and consequently in BCVTB support a
soft real-time approach [77], no comprehensive evaluation of the real-time operation is
known to the author.

2.2.3 Use of IEC 61499 in Co-Simulation

Several projects which use IEC 61499-based controllers to model control-specific aspects in
a co-simulation exist. The deployed coupling strategies range from simple tool integration

19

2.

RELATED WORK

20

setups which neglect the execution time of an IEC 61499-based controller to complex
interactions which try to preserve the timing of controllers as accurately as possible.
Yang et al. listed several synchronization issues for including a controller in a closed-loop
co-simulation [110]. Control output, which is read from the controller, needs to be
applied at the correct instance of time. Race conditions and spurious delays may result
from insufficient synchronization. The authors proposed and implemented a proxy-based
algorithm which delays control output by a fixed amount of simulation time to reflect the
execution time of the controller. A circuit protection scheme which was implemented as
IEC 61499-based control application was used to evaluate the synchronization approach.

Strasser et al. demonstrated the use of co-simulation in smart grid applications by
implementing and simulating an On-Load Tap Changer (OLTC) controller [90]. GNU
Octave with the PSAT toolbox was used to simulate the power system. An IEC 61499-
based controller which was coupled via a TCP/IP connection implemented the actual
control logic. In a training platform for smart grid applications, co-simulation was used
to create a comprehensive platform [91]. The PowerFactory simulation tool acts as a
simulation master and implements the model of a power distribution network. The
automation system is implemented in 4diac and a SCADA system. The IEC 61499-based
control logic was accessed via a TCP/IP connection.

Stifter et al. presented a power system co-simulation setup which entirely relies on
open-source software [88]. GridLAB-D is used to coordinate the co-simulation and to
synchronize all individual tools. Therefore, new GridLAB-D plugins which interface
other tools were developed. The acausal modeling concept of OpenModelica is used to
model and include a battery. The battery model was exported and included via the FMI
standard. In addition, GNU Octave and the PSAT toolbox were accessed via a newly
developed wrapper component. As in the training platform, Eclipse 4diac was accessed
via a TCP/IP connection and implemented control-specific logic. The whole setup was
used to implement a simple controller which avoids voltage violations while charging an
electric vehicle. Nikula presented a broker-based co-simulation approach to model heat
trade [69]. The process simulation software Apros is used to simulate the heat network
and an TEC 61499-based controller implements the trade algorithm. In order to couple
both tools, a broker was used. For synchronizing both tools, the coupling software halts
the process simulation while the controller executes. A case study on a simulated heat
network was performed which assesses the trade algorithm as well as the simulation
environment.

A tool which exports the results of FMI-based models to IEC 61499-based controllers was
also developed [85, 86]. A prediction-based approach is used to forecast upcoming events
which should be sent to the controller. Control actions are triggered in a best-effort
real-time approach. Hence, simple co-simulation setups can be realized via the existing
tool. Nevertheless, a closed-loop operation was not implemented.

2.3. Hardware in the Loop and Real-time Simulation

2.3 Hardware in the Loop and Real-time Simulation

HIL simulations denote setups where physically available HuT interacts with simulated
models in a closed-loop fashion. Since hardware inherently operates in real time only,
the simulation must be executed according to the progress of real time. Other use cases
of real-time simulation include co-simulation approaches which implicitly synchronize
simulation time via the progress of real time.

2.3.1 Overview

During development and test cycles, HIL simulations extend pure virtual simulation by
the ability of testing real hardware. Numerous text books which describe the foundation

of closed-loop control and operation of HIL setups are available [20, 21, 55, 62, 63].

In particular, Viehweider et al. studied stability issues in power HIL simulations of
electric energy systems [101]. They noted that stability of these simulations is a necessity,
accuracy a sufficient condition. In the studied scenario, a power system model was
coupled with a real load, forming a closed-loop. A virtual current source mimics the

real load in the model and a real voltage source mirrors the output voltage of the model.

Three methods which improve the system stability were proposed. The first one adds
a hardware inductance in series to the real load. The inductance increases the phase
reserve but suffers from poor accuracy. The second method deploys feedback current
filtering, and the third one uses multi-rate partitioning to increase the sampling frequency
of the hardware coupling subsystem. It turned out that multi-rate partition works best
with respect to stability and accuracy.

Guo et al. conducted a comprehensive smart grid simulation of a large number of
switching devices [43]. The simulation was executed in real time but no HuT was
included. A case study was performed which includes a small community microgrid
which is controlled via a control center. The control center communicates with a circuit
breaker via an IEEE 802.11 network. In particular, the transformation from grid to
islanding mode was simulated. Four distinct real-time simulators are used to execute
the electrical model and a desktop computer runs the network simulator. The authors
concluded that communication networks enable new protection schemes but network
simulation is necessary to predict the behavior of the system accurately.

Andrén et al. described the development and validation process of a coordinated voltage
controller which maintains adequate voltages in a medium voltage grid [3]. The presented
coordinated voltage controller governs the production of active and reactive power at
multiple Distributed Energy Resources (DERs) as well as the tap position of a transformer
in order to maintain admissible voltage levels all over the grid. Hence, the coordinated
voltage controller introduces much more complexity than a local voltage controller
which operates directly at a single DER. Controller HIL tests were presented as a vital
step towards a successful deployment of the newly developed controller. An industrial
communication protocol was used to couple the controller implementation and the
electricity grid simulation. The authors concluded that the controller HIL simulations

21

2.

RELATED WORK

22

allowed to test the stability of the system and the influence of process dynamics, cycle
times, and communication delay.

2.3.2 Standard-based Hardware in the Loop Simulation

A first step towards standard-based HIL simulation was presented by Pang et al. who
coupled a building energy simulation and a real building to compare projected and mea-
sured energy consumption [75]. A Ptolemy II-based software and a communication tool
were used to couple building simulation tools via FMI and the building control hardware.
Weather data was taken as an input to predict the actual energy consumption. Some
notable differences between the calculated output and the measured energy consumption
were detected.

Some commercial FMI-enabled tools which target co-simulation and HIL simulations
are already available [16, 17, 26, 33, 34, 42, 57, 66, 84, 98, 112]. Many tools focus
on the automotive domain but also an industrial automation tool which allows HIL
simulations was presented. Zehetner et al. developed a methodology for bridging hard
real-time systems and non-real-time simulations in a combined co-simulation [66, 112].
Delays between components were identified as one of the main issues in co-simulation
which strongly influence stability and accuracy in a closed-loop operation. The whole
system is partitioned into a real-time capable part and the non-real-time simulations. In
order to reduce occurring delays, coupling elements, which perform low-order polynomial
extrapolation and disrupt the closed loop, were inserted. The methodology was tested
on a combustion engine test stand and a test stand for automotive electronic control
units. Less overshoot of the controlled signals was observed when using the latency
compensation compared to standard coupling.

Several commercial co-simulation environments use well-established industrial commu-
nication interfaces to connect external hardware [57, 84, 98]. TISC Suite, for instance,
interfaces metering systems and test stands via CAN or LIN protocol gateways [98].
Additional interfaces, such as LabView, Simatic S7 PLCSIM and FMI, are also listed
to be available. Also SIMulation Workbench, a model environment for real-time HIL
simulations, lists several available hardware interfaces, such as CAN, FlexRay, EtherCAT,
serial-, and IO-Lines [84]. Some co-simulation tools, such as CarMaker, which targets
virtual test driving of cars, aim for integration in dedicated real-time simulation hardware
for HIL setups [16, 34, 98].

First FMI support in commercial automation-related products is already available [17,
26, 33, 42]. Dassault Systémes offers an automation platform which specifically targets
safety-critical systems [17]. The platform, which is called ControlBuild, can be used to
model, simulate, test, and validate IEC 61131-based control applications. It is listed
to support most variants of the FMI interface [33]. B&R Automation Studio, which
allows to develop ANSI C and IEC 61131-based control applications, was also reported
to support FMI for co-simulation [26, 33, 42]. Gunnarsson and Erwall et al. evaluated
the FMI integration based on a reaction wheel pendulum [26, 42]. A controller was

2.4. Contribution

exported via Automation Studio Target for Simulink and the model of the pendulum was
exported via the FMI. The model was created via Dymola and MapleSim. Several solver
configurations and their impact on the simulation result were studied. A co-simulation
in Automation Studio was performed first. A controller HIL simulation on two dedicated
PLCs, which were connected via EtherCAT, was also conducted. One PLC executed the
controller while the other one simulated the exported plant model. It turned out that all
HIL simulations using Automation Studio are feasible and chosen cycle times strongly
influence the simulation outcome.

Although several HIL tools which support the FMI are already available, event-based
systems and TEC 61499-based infrastructure received only little attention. As described
above, first attempts were made by exporting results to ITEC 61499-based controllers
via the FMI [85, 86]. Nevertheless, to the author’s knowledge, comprehensive studies of
IEC 61499 and event-based integration in HIL simulations have not yet been conducted.

2.4 Contribution

This thesis first presents a comprehensive study on linking event-based automation infras-
tructure following IEC 61499 with FMI-based models or tools. While first considerations
on using FMI for model exchange in IEC 61499-based controllers are already included
in previous work [85], this thesis additionally covers the FMI for co-simulation as well
as the encapsulation of IEC 61499-based facilities into FMUs. The basic operation of
both, predictive and periodic synchronization in coupling FMI for model exchange and
IEC 61499 is also presented in [85]. Preliminary work of the author which presents a
generalized system architecture, considerations on event handling and expected real-time
properties on including FMI-based models in TEC 61499-based applications was published
[86]. In order to be able to present a comprehensive interaction study, some findings
of [86] are included in the extended study as well. This thesis substantially extends
preliminary results by including aspects such as automatic data model transformation
and by providing a qualitative comparison of all discussed coupling approaches.

In the course of this thesis, a preliminary prototype which exports simulation results
of FMI-based models via predictive event synchronization was extended towards a full-
fledged closed-loop coupling tool. In particular, a proper handling of border cases such as
late and concurrent events, refined configuration options such as configurable numerical
integration, as well as support for periodic synchronization were added. The extended
tool including its documentation is released as open-source software [35]. In contrast
to existing tools which couple hardware, automation systems and FMI-based models or
simulators, the extended interface tool specifically focuses on event-based execution and
consequently allows to extensively exploit the capabilities of IEC 61499.

Previous evaluation of the described interface software does include hardware and pure
software setups, but none of them demonstrated a closed-loop operation. This thesis
extends previous results by using the predictive coupling approach in a closed-loop HIL
simulation. A detailed analysis, which also covers deviation sources on a quantitative

23

2. RELATED WORK

and qualitative level, is presented and results of predictive synchronization are compared
to results of conventional periodic synchronization. It is demonstrated that periodic
synchronization shows systematic deficits on systems which require immediate action on
executing events and that predictive synchronization can be successfully used to overcome
these limitations.

24

CHAPTER

Interaction Study

3.1 Preliminary Discussion

Before the various coupling approaches are discussed in detail, an abstract structure is
introduced which guides the following considerations. Section 3.1.1 presents a coarse
but complete decomposition of possible links between IEC standard 61499 and the FMI
standards. Section 3.1.3 refines the initial decomposition such that each identified feature
of Section 3.1.2 can be studied in detail.

3.1.1 Principal Ways of Interaction

Based on the design of the FMI described in Section 2.2.1, the FMI can either be used
actively by instantiating and including existing FMUs within an application or passively
by providing functions used to include the application as an FMU. To differentiate both
scenarios, the first variant is called active use and the second one passive use of the
FMI. Both cases, the active and passive use are illustrated in Figure 3.1. Note that
each scenario may require additional interface components such as ODE solvers which
are omitted in Figure 3.1. A manifold set of applications may utilize the FMI actively
or passively, not restricted to control applications and HIL setups [33]. An application
may even implement passive and active use simultaneously [39, 40]. Nevertheless, each
implementation can be clearly separated and will therefore be discussed separately.
Although the FMI may be deployed in a broad range of applications, the following
sections focus on IEC 61499-based controls and applications in the automation domain
in general.

By active use, an application is able to determine major control flow and timing parameters
such as simulation time progress and FMU invocation. The component actively including
the FMUs also has to implement certain features required by the FMI, including an
ODE solver for model exchange and a master algorithm for co-simulation, respectively

25

3.

INTERACTION STUDY

26

FM l | INIT INITO
EI EO

B ER I

(a) Encapsulating an TEC 61499 applica- (b) Using an FMU in
tion into an FMU an IEC 61499 appli-
cation

Figure 3.1: Principal ways of coupling IEC61499 and the FMI

[38, 39, 40]. Many different algorithms solving ODEs or coordinating co-simulations
already exist, but depending on the use case some of them might be inappropriate [21,
38]. As a consequence, a component actively using an FMU might have to implement a
set of different algorithms or may suffer from poor performance. The implementation of
multiple algorithms increases the implementation effort and the costs of the solution. On
the other hand, the implemented ODE solver or master algorithm can be easily tailored
to the needs of the application.

Passive use generally eases the use of existing code by outsourcing relevant parts to the
co-simulation or model exchange environment. Although this scenario enables another
set of use cases, especially in complex simulations, an FMU generally cannot take any
assumptions about the operation of the master, except those defined in the FMI.

3.1.2 Important Features in Combining IEC 61499 and the FMI

Depending on the actual use case, different parameters and aspects in combining the
IEC 61499 and the FMI become relevant. When using a set of IEC 61499-based controllers
within a non-real-time grid simulation, it is relevant to model time progress in terms of
current simulation time [110]. A delay introduced by the interface is not noticed as long
as the current simulation time is not affected. Within an HIL simulation setup, real-time
parameters like delays or the sample rates are important factors to gain stability and
accuracy [101]. The optimal solution, relevant parameters and features highly depend on
the specific use case. To address different needs, a set of possibly relevant features and
aspects is defined. The following sections explain and justify the criteria used to discuss
different ways of combining the FMI and the TEC 61499.

System Architecture and Model

Depending on the way the IEC 61499 interacts with the FMI components, different system
architectures and views can be used to describe the resulting system. This includes

3.1. Preliminary Discussion

possible component models dividing the system into adequate subsystems as well as
different mathematical techniques applicable to describe the system. A specific point of
interaction may allow various representations and views. For example, using an IEC 61499
controller in a co-simulation of some other components can be seen as coupling multiple
different, equally stated components or as hierarchically integrating the TEC 61499
controller into the co-simulation framework. When building a hierarchy, the controller is
part of the joint simulation which is governed by the framework. Although both views
will result in a similar implementation, they will affect the degree of understanding the
behavior of the coupled system [55, p.29ff]. It is also shown that the structure of the
model does not only affect the degree of understanding, but also influences the emergence
of spurious simulation artifacts [23].

Additionally, the system architecture affects the level of integration and the envisioned
coupling workflow. Loose coupling of independent components features a low level of
integration and a more flexible workflow. Contrary, a tight integration into a specific
co-simulation tool may enable a higher degree of automatic information exchange and a
reduced coupling effort for that specific tool.

Provided system architectures may not only include the components which are directly
interacting with the FMI and the TEC 61499 controllers but also additional hard- and
software. For example, in an HIL setup, the HuT affects the overall system behavior and
has to be considered in the system architecture as well. Depending on the specific use
case, the system architecture may have to be adapted. In the context of this thesis, it is
not possible to state every feasible system model and view, but by explicitly describing
used models, the discussion of other features should be eased.

Event Handling

The IEC standard 61499 and the FMI use different definitions of the term event. On the
one hand, an event in the context of the IEC 61499 describes an instantaneous occurrence
primarily used to schedule the execution of algorithms [50, p.14]. On the other hand, FMI
events indicate possible discontinuities between otherwise continuous signals [39, p.6]. It
is necessary to map FMI events to events triggered within an IEC 61499 application to
enable proper interaction. In case of continuous FMI variables, the FMU does not trigger
any FMI events. To communicate continuous results from an FMU, additional measures
will be necessary which eventually trigger the execution of IEC 61499 components.

Depending on the concept of interaction, events may be mapped differently and triggered
at different instants of time. For example, on the one hand, a strictly periodic design
may be applied which communicates values at fixed instants of time only. On the other
hand, it is also conceivable to employ a variable step size that triggers IEC 61499 events
only on demand. It may also be beneficial to delay certain events in order to meet other
requirements like determinism or real-time operation. As a key feature, the provided
concepts will define and discuss the event handling mechanism based on the questions of

27

3.

INTERACTION STUDY

28

mapping the event types, mapping continuous changes within the FMI to discrete events
used in IEC 61499 and delaying events.

Data Model Transformation

Both standards define their own representation of data and metadata. FMI defines
five scalar data types (including enumerations) [38, 39, 40] and IEC 61499 implicitly
refers to the type system of IEC 61131 to define variable types [50, p.68]. Types
from both standards need to be mapped in order to establish coherent data exchange.
Furthermore, an FMU may encapsulate static variable descriptions such as unit and
derived type definitions which need further investigation. Similarly, structural descriptions
of IEC 61499-based systems and FMI-based models and tools may also be transformed.

Ideally, a point of interaction maps as much information as reasonably possible. Automatic
transformation is preferred over manual intervention. Aspects regarding data model
transformation also cover ways and strategies to transform both data representations.
Significant data losses and required manual configuration of each transformation are
highlighted in the discussion. Additionally, tool integration and user assistance in
configuring a point of interaction are briefly discussed. Due to the limited scope of
the thesis, no comprehensive formal description, e.g. in terms of Extensible Stylesheet
Language Transformations (XSLTs), can be given. Instead, the discussion focuses on the
main aspects of data model transformation only.

Real-time Operation

As stated before, real-time parameters like delays or sample rates have a significant
impact on simulations running in real time, especially for HIL setups [101]. The definition
of real-time systems used in this thesis is based on the definition provided by Kopetz:

A real-time computer system is a computer system where the correctness of the
system behavior depends not only on the logical results of the computations,
but also on the physical time when these results are produced. By system
behavior we mean the sequence of outputs in time of a system. [55, p.2]

Real-time systems can be divided into soft and hard real-time systems [55, p.13ff]. In a
hard real-time system, missing a deadline may have fatal consequences such as harming
humans or losing expensive equipment. Hard real-time systems can be found in fly-by-
wire or electrical energy systems mostly relying on a timely operation. In contrast, soft
real-time systems may tolerate deadline misses without major consequences but with
a degraded functionality. Within a common multimedia system, for example, deadline
misses appear as interruptions and noisy sounds but do not have any major consequences.

Design principles applied to soft and hard real-time systems are fundamentally different
[55, p.13ff]. Performance in hard real-time systems, on the one hand, has to be guaranteed
even in peak load scenarios. In this case, sound assumptions have to be made and the

3.1. Preliminary Discussion

peak load scenario has to be well-defined in order to design a system that can function
even under rare circumstances. The design of a soft real-time system, on the other hand,

mostly focuses on the average performance without taking rare scenarios into account.

Also, error detection and recovery may be user-assisted and not fully automated.

In order to study real-time parameters, we will at first discuss whether a specific point
of interaction can provide response-time guarantees and which assumptions have to be
taken to guarantee a response time. Response time in this context is defined as the
maximum difference of the two instants in real time fe; and te, where tg; corresponds to

the incoming and t¢, to the resulting outgoing event according to the system borders.

Additionally, timely accuracies and the possibility of preserving the event order will be
discussed.

Model and Tool Coupling

The FMI was designed to allow coupling of multiple tools or models in a modeling
framework [38, 39]. Also the IEC 61499 arose from the need of configuring distributed
automation systems covering several units [50]. Unlike the FMI, the IEC 61499 defines
not only the interfaces of components but also a way to couple components. Within a
framework that couples IEC 61499-based controllers and FMUs, different ways of coupling
multiple FMUs and multiple IEC 61499 applications are conceivable. For example, two
model exchange FMUs may be coupled within a single solver or by connecting different
FBs wrapping the FMUs.

Each point of interaction will be evaluated based on the possibility of coupling different
FMUs and applications. For each point of interaction, various ways may be stated and
the limitations will be discussed. The potential of handling algebraic loops, described in
Section 2.2.1, as well as further information needed to couple applications and FMUs
will also be discussed.

Software Interfaces

The IEC 61499 interface considerations include various software implementation and
configuration aspects related to IEC 61499-based systems. To exchange information
with connected FMUs or with simulation tools, proper interfaces within IEC 61499
configurations have to be defined. Interfaces may strongly vary by their implementation
effort and by assumptions concerning the execution platform. Some software components
like ODE solvers or communication protocol implementation may already be available
and may ease implementation.

Also, when passively providing or actively using the FMI, available software may be taken
into consideration. Relevant software and software components include XML parsing
and writing libraries, available FMI libraries as well as ODE solvers and co-simulation
frameworks. In interfacing FMUs, the sequence of allowed function calls has to be checked
against the interfacing algorithm in order to avoid illegal operation of FMUs. Each FMI
interface specifies a state machine and enabled function calls in each state. For example,

29

3.

INTERACTION STUDY

30

increasing the time within a model exchange FMI event state would violate the FMI
specification [39, p.22].

Use Cases

The type of interaction as well as other parameters will strongly affect the use cases of
the interaction. Real-time operation, for example, usually cannot tolerate long simulation
periods which would consume too much time, but it enables the integration of components
which operate in real time only. Also, the way of implementing the FMI restricts certain
use cases. The FMI can either be implemented as a passive component encapsulated
within an FMU or as a tool actively using FMUs, depending on the specific use case.

Within the following sections, some possible use cases of different integration points will
be discussed. However, it has to be noted that the integration points are not restricted
to the presented use cases. They are intended to inspire different applications and to
describe various benefits and drawbacks. Within the theoretical discussion, the use
cases will focus on smart-grid-related scenarios, mostly in the context of testing grid
components and simulating certain aspects of a smart grid.

3.1.3 Structure of the Discussion

The inherent differences between model exchange and co-simulation FMI do not allow
a structured discussion of most aspects without differentiating between the interfaces.
For example, the passive provision of a model exchange FMI requires state derivatives
and event indicators which are not communicated by the FMI for co-simulation [38, 39].
Although the second version of the FMI merges both standards, it also distinguishes
between model exchange and co-simulation applications [40]. This thesis, too, will
separate the two FMI standards and the ways of using them, resulting in four principal
ways of interaction to be discussed. Sections 3.2 and 3.3 describe the active use of model
exchange and co-simulation FMUs within IEC 61499 controllers, respectively. Similarly,
Section 3.4 and 3.5 describe the passive use of the FMI by encapsulating IEC 61499
applications in FMUs. Finally, Section 3.6 compares the different approaches with each
other.

3.2 Using Model Exchange FMUs in IEC 61499
Applications

3.2.1 System Architecture and Model

Model exchange FMUs require the including tool to provide a numerical ODE solver [86].
The IEC 61499 standard does not speak about solving any equations directly [50, 86] but
addresses computational issues on an algorithmic level. For instance, high-level subjects
such as solving ODEs are not directly addressed. Instead, the standard defines ways to
schedule generic program parts, called algorithms. An ODE solver has to be provided in

3.2. Using Model Exchange FMUs in IEC 61499 Applications

|

' continuous

E ,,,,,,,,,
< : continuous |g& W[Lo

' to discrete - EMU !

IEC 61499

Solver

Figure 3.2: Basic abstract model exchange system model [86]

order to combine both levels of abstraction. Since model exchange FMI and IEC 61499
also use different event semantics, it is necessary to convert between both interpretations.

Within the presented setup, the simulation time of an FMU has to be controlled by
explicitly setting the current instant of time [86]. In case the implemented solver increases
the simulation time without any synchronization, results will be pretty meaningless,
because the outputs from an IEC 61499 application and an FMU generally depend on
the current instant of time. As a consequence, time synchronization has to be considered
in the system design and either an IEC 61499 application or the interface component has
to actively coordinate simulation time progress.

Figure 3.2 shows a first abstract system model which includes one or more FMUs,
the solver, the time and event conversion logic, and the actual IEC 61499 application.
In the abstract system model, the application is represented as a single component
without using any IEC 61499-specific points of integration. Hence, the system can be
represented without making excessive restrictions and a first impression of the architecture
is given. An actual implementation will have to refine the abstract model according to
the chosen IEC 61499-specific points of integration. Depending on the actual components’
implementation, mathematical modeling of the system may vary, but in general the
FMUs depend on the application output and vice versa, resulting in a closed-loop system.

It is important to notice that the solver which solves the ODEs is not part of the FMUs
but resides in the interface logic. Consequently, the operation of a solver can be tailored
to specific needs and it is not necessary to assume a generic solver such as the one in FMI
fo co-simulation. For some implementations, it is beneficial to conceive the interface logic
as non-standard part of an IEC 61499-based controller, but to enable a differentiated
and generalized discussion, the presented architecture explicitly states various interface

components which are needed to include FMUs into an ITEC 61499-based application.

Depending on the actual implementation, the interface components may, for example,
be directly part of an IEC 61499-based application or a middleware which bridges both
standards. Section 3.4.6 discusses implementation-related aspects in more detail.

An TEC 61499 application may not only interface FMI-based components but may also
connect to other components using a continuous time domain. For example, by connecting
a HuT to an TEC 61499-based controller, two different subsystems generally acting in

31

3.

INTERACTION STUDY

32

‘Event Mapping} [[EC 61499) Event Mapping FMU
:L ,HUI,J ; discrete to [i discrete to o o e,
| continuous | continuous ol FMU !
fffffffff ' ' S|
» HUT : ! ol "EiaTT
””””” ', cor&tinuous | ol < ' cor&tinuous > wn L,EM,U,J
! to discrete ' | todiscrete [°¢ | | T =i7777
Time-continuous : ' . FMU |
Component P [S I I

Figure 3.3: Extended abstract model exchange system model

a continuous time domain interact by means of the discrete-event-based controller.
Figure 3.3 shows a possible system setup including the FMI and another abstract
component interfacing with the IEC 61499 application. Even if the IEC 61499 application
does not change any value and directly passes incoming events on, the execution time
of the application [101] as well as the synchronization of different clocks [55] have to
be considered. Depending on timing parameters and implementation details of the
IEC 61499 application, the model of it may be simplified to an identity function directly
passing incoming events on.

3.2.2 Event Handling

Since IEC 61499 events can be associated with in- and output variables, the event
handling mechanism has to coordinate data and event exchange [86]. In particular, it
has to set the input data of the FMUs and has to pass IEC 61499 events on to the
FMUs. Additionally, it has to process the output data generated by simulation to trigger
IEC 61499 events for further execution. In the following discussions, it is assumed
that values associated with IEC 61499 events do not change between two consecutive
events. Consequently, the semantics of IEC 61499 events are adapted to FMI event
semantics, where events mark potential discontinuities. From an FMI perspective, an
IEC 61499-based controller, which changes values between events, must either change
the values continuously or an intermediate FMI event has to be triggered. Within a
system operating with time- and value-discrete entities only, continuous changes are not
possible and intermediate FMI events do not allow a one-to-one mapping of FMI events
and TEC 61499 events. Consequently, the constant value assumption enables a one-to-one
event mapping and eases event handling. Note, that FBs may still change the event data
during their execution, but values will not be communicated unless a corresponding event
is triggered. Since an outside entity wont notice intermediate changes, it can further be
assumed that values only exist at instants of time when an IEC 61499 event is triggered.

According to Lunze, an interpolation function has to be used to map the discrete-time
domain of the IEC 61499 to the continuous-time domain featured by the FMI [62, p.418].
Zero-Order Hold (ZOH) is one of the most widely deployed interpolation functions. The
function holds values associated with one discrete-event instance constant until the next
event instance occurs. Other interpolation functions, which may also be applicable,

3.2. Using Model Exchange FMUs in IEC 61499 Applications

IEC 61499 S R .
f lej lej-'—l B len

..

continuous

continuous | __ |

to discrete

FMU and | __ .
Solver simulate

t period

//111011011011111011111117A
wait

tiva

Figure 3.4: Periodic event mapping [86]

include higher-order holding elements. Nevertheless, this thesis will silently assume a
ZOH interpolation unless another function is explicitly stated.

Periodic Event Mapping

First, a very simple periodic approach for synchronizing the operation of an FMU and
an IEC 61499 application [86] is presented. Communication between the IEC 61499
application and the solver is restricted to discrete communication points ¢; = i - T, only,
where T, € R, T, > 0 corresponds to the constant step size and ¢ € N to the number
of the current sample. Note that although no direct communication of the IEC 61499
application and the FMUs is permitted at ¢ # i - T,,7 € N, a solver may access the
FMUs at arbitrary instances of time to get accurate numerical solutions. The sequence of
events and the processes of periodic event mapping is drawn in Figure 3.4. The graphic
follows an adapted syntax which is loosely based on UML 2.3 sequence diagrams [81,
p.209ff]. The current progress in time is visualized by the horizontal axis and individual
components are arranged at the vertical axis. Interactions between different components
are represented by one arrow, each.

The strictly periodic operation with fixed communication points is very similar to the
operation specified by the FMI for co-simulation. An ITEC 61499 event will be generated
by the continuous-to-discrete event mapping component as soon as a synchronization
point t; is reached. In contrast to FMI for co-simulation, communication between the

solver and the FMUs via the FMI is not restricted to predefined communication points.

Hence, arbitrary intermediate steps may be taken. In particular, the solver will locally
process any FMI event between two consecutive communication points ¢; and ¢;4; and
no TEC 61499 event will be generated.

In the other direction, IEC 61499 events e;, 7 € N which occur between two consecutive
synchronization points t; and t;,1 and address the FMUs are delayed until ¢;5.1. According
to the abstract system model which is presented in Figure 3.2, it is assumed that one
single discrete-to-continuous event mapping component receives IEC 61499 events and
associated data atomically and in a well-defined order, i.e. event data is sampled before

33

3.

INTERACTION STUDY

34

any other event arrives and can be clearly associated with a corresponding event. In
IEC 61499-based applications, variable values may depend on the execution order of
connected FBs. The atomicity assumption relaxes the discussion and allows to focus
on coupling-related aspects. Any behavior which emerges from a varying schedule is
considered as part of the IEC 61499 application and will not be discussed in detail.

According to the syntax described by Kopetz [55], t(e;) returns the instant of global
time when event e; happens. Additionally, V(e;) corresponds to the set of variables
associated with event e; at the instant of time ¢(e;). To accurately reflect the system
state at t;41, it is necessary in general to delay events ej,t; < t(e;) < t;41 according
to their time of occurrence t(e;). Note, that it is assumed that an event e; cannot
be simultaneously processed with a communication point and therefore, an event with
t(ej) = t; is, by definition, delayed to #;41. Assume both events e; and ej;q are issued
between t; and t;11. By the atomicity assumption of incoming events, the variable image
after applying both events depends on the event order if and only if e; and e;; share
common variables Veommon = V(e;) NV(ej11) # 0. More precisely, the notion of variables
which are communicated by both events, V ommon, Will depend on the event order. When
applying e;41 before e;, Veommon Will contain the system state at t(e;) instead of ¢;41.
Hence, the discrete-to-continuous event mapping component has to preserve the event
order, or use latest information only, to avoid faulty communication.

Within a single process application, the order of events may be preserved by enumerating
incoming events. By the single process assumption, it is not possible that another
incoming event is passed on to the discrete-to-continuous mapping component unless
the operation processing the previous one is completed. Still, the atomicity assumption
is necessary to guarantee that variables can be clearly associated with a certain event.
However, the IEC 61499 defines a highly distributed architecture separating different
scheduling domains [50] where the assumption of strictly sequential scheduling does not
hold. Within a distributed environment, for example, different network and transport
delays have to be considered. It is easily possible that an event generated after another
event may arrive prior to the earlier one due to different communication times. Since a
process, when mapping discrete events to a continuous state, sorts events based on the
time of arrival, the system state may not be reconstructed properly.

Even by extending IEC 61499 events by time stamps, a proper reordering of events is not
possible in general [55]. According to the model described by Kopetz, a global discrete
reference clock z is introduced, generating periodic events, called ticks. Additionally, each
device c¥ maintains a discrete clock running with a granularity ¢* expressed in number
of nominal ticks of the reference clock z. Each tick will be enumerated, constructing a
temporal order between ticks of a single clock. The function z(microtick!) corresponds
to the i-th tick of clock ¢*, called microtick. The precision II; of a system is defined
in (3.1) as maximum difference of any two clocks in the ensemble of n clocks at a given
microtick <.

o . kY . -
I1; vj’kzr{lgfkgn(]z(mzcrotwkl) z(microtick])|) (3.1)

3.2. Using Model Exchange FMUs in IEC 61499 Applications

The maximum of II; within a defined interval of interest is called precision II of an
ensemble of clocks. A global time maintained by different clocks can be obtained by
selecting a subset of microticks from each clock called macroticks [55]. A global time
base is called reasonable if its granularity g exceeds the precision: g > II. If the global
time base is reasonable, the macroticks recorded by two devices observing the same event
differ by at most one. Events observed by different devices may be reordered if and
only if their time stamps differ by at least two macroticks. Any difference below two
macroticks can be traced back to unavoidable deviations of the controller clocks. As
a consequence, whenever two events are triggered too soon after each other, it is not
possible to reconstruct their order.

The TEC 61499 itself does not specify any means to control the time when events are
triggered [50]. For instance, IEC 61499 events do not have any associated time stamp
which controls the time at which an event is triggered. Furthermore, physical systems
may be connected to the IEC 61499 application, making it impossible to restrict the time,
an event is fired. For example, two independent mechanical switches may be activated
shortly one after another and the resulting events may be time-stamped equally. As a
result, the temporal order of any two events occurring within the IEC 61499 application
generally cannot be reconstructed, even if the event time is recorded. Even worse, ordering
may be performed differently by any two independent processes [55]. If the system output
relies on a consistent view of the state, an agreement protocol has to be used. This is
the case if multiple entities, two unsynchronized models for example, use the same input
variables to calculate an output. Although the agreement protocol cannot re-establish
the temporal order of the events, it guarantees consistent data.

The restrictions on ordering events recorded at different clock domains is inherent in
distributed systems and also IEC 61499 applications not using the FMI suffer from
it. As stated before, a possible way of avoiding these issues within an FMI interfacing
component is to restrict the discrete-to-continuous event mapping part to a single process.
In this setup, it is still possible that IEC 61499 components trigger unordered events but
the connected FMUs will gain a consistent view. Some applications like non-real-time
co-simulations may additionally provide a common time base allowing to reorder the
events accurately.

A major drawback of the periodic event mapping approach is the need for event aggre-
gation between different synchronization points ¢; [86]. The accuracy of the approach
depends highly on the condition of included models and the time difference between two
consecutive sample points. In case the synchronization step size T, is chosen too coarse,
synchronization may lead to significant errors. In particular, if a strong dependency of
triggered events is encountered, the sampling period needs to be carefully chosen. For
instance, an FMU output will be delayed by one entire synchronization period T,, if the
result directly depends on its inputs and an incoming event changes at least one of the
inputs.

35

3.

INTERACTION STUDY

36

|EC 61499 S g ————— 7 R R
FMI++ J--] predict predict™) predict*) predictT

Figure 3.5: Prediction-based event mapping using the FMI for model exchange [86]:
External event arrival (left), uninterrupted operation (middle) and FMU-internal event
occurrence (right)

Prediction-based Event Mapping

Miiller et al. and Widl et al. proposed a state prediction-based approach that approxi-
mates future states and events [68, 108]. The approach was implemented in an open-source
library, called FMI++, which allows to couple discrete-event-based systems and FMUs
for model exchange. The main idea of the approach is to predict FMI events in advance,
such that these events can be accurately scheduled by the discrete-event-based system.
For event prediction, they solve the FMU in advance and locally store intermediate states
at equidistant nodes until the end of the prediction period, called lookahead horizon At,
is reached or an event is detected. In both cases, an event is passed on to the simulation
framework in advance, which then can coordinate the execution accordingly. On receiving
a scheduled event by the discrete-event simulation, future predicted results may become
invalid, because the event may change one of the FMU inputs. In case of an incoming
event, the time of the FMU is set to the time of the event and the state of the FMU is
interpolated from the stored nodes. Subsequently, prediction is repeated with the newly
set inputs.

Although upcoming events triggered by FMI++ will be known in advance, there is no
mechanism in IEC 61499 that directly time-stamps events and registers future events,
which should be scheduled at a particular point in time [50, 86]. Consequently, events
registered in advance have to be delayed by the event mapping component until the
simulation or real time proceeds to the predicted event time. The sequence of interactions
for external event arrival (left), uninterrupted operation (middle) and FMU-internal event
occurrence (right) is illustrated in Figure 3.5. According to the general predictive event
mapping approach, an event which is triggered by the IEC 61499 application, causes the
FMI++ interface to re-calculate future states. Such a prediction update may invalidate
previous predictions and requires the event mapping component to remove previously
scheduled events. To synchronize the operation in case no FMI event was encountered

3.2. Using Model Exchange FMUs in IEC 61499 Applications

in the lookahead horizon At, an artificial event is triggered at the end of the lookahead
horizon which itself triggers the next prediction and outputs continuous FMI variables.

Some algorithms implemented in the IEC 61499 domain need to be scheduled immediately
if an input value changes. In addition to the proposed approach of triggering IEC 61499
events at the end of the lookahead horizon, an output deviation-based approach may be
used. In this case, the lookahead horizon depends on the output values of the FMU. If
the deviation between the predicted output value and the output value communicated last
exceeds a certain threshold, an additional IEC 61499 event will be triggered. As stated
by Miiller et al., a maximum lookahead period should still be used to limit performance
losses based on rejected values [68]. First experiments show the best performance in
choosing a lookahead horizon equal to the predicted duration between two consecutive
events which are triggered by the event-based framework.

Whereas events need to be delayed to the next synchronization point in case of a periodic
approach, prediction-based event mapping allows to process events immediately [86]. The
reduction of errors, which are introduced by delayed processing of events, comes with
the requirement of rejecting results beyond the time of IEC 61499 events issued to the
FMU [68, 108]. Such a rejection implies that the state of the FMU has to be reset to
a previous point in time. The FMI 1.0 for model exchange exposes continuous states
which are manipulated by the solver but does not define function for accessing discrete
states [39, 68]. According to the specification, discrete state may not change between
two consecutive FMI events. If an FMI event occurs during prediction, the discrete state
will not be able to change to previous values. Especially when issuing step events during
the prediction phase, the discrete state may change regularly. Since the FMI supports
variable step size integration, step events may be delayed to the end of the actually taken
time period. Every intermediate integration step calculated during the prediction may
be seen as a sub-step not requiring a step event. Depending on the implementation of
the FMU, the reduction of step events may avoid non-resettable state changes but may
introduce inaccuracies due to less frequent step events.

In FMI 2.0, optional functions for retrieving and setting the entire model state, which
includes discrete and internal states, are defined [40]. It will be possible to fully support

the prediction-based approach if an FMU implements these state access functions [86].

In case the optional feature is not supported or on using the first version of the FMI, the
application cannot predict values beyond the first FMI event.

3.2.3 Data Model Transformation

In order to discuss data model transformations, it is assumed that the included FMU is
represented via a single FB. The FB hides implementation details and may be an SIFB,
a BFB which implements the C functions and the solver, or a CFB which combines a
variety of FMU-related FBs. In any case, it is assumed that the FMU FB type including
boilerplate code may be automatically generated by the interface facilities and represents

37

3.

INTERACTION STUDY

38

a virtual instance of the modeled entity. A detailed description of feasible software
interfaces follows in Section 3.2.6 which also justifies the assumption.

FMI model variables which possibly include parameters, in- and outputs may be accessed
via the input and output variables of the FB. FMI specifies a data type system which
differs from the type system of IEC 61499/IEC 61131 [39, 40, 50]. IEC 61499 references
IEC 61131 for defining data types. The later standard defines a hierarchical representation
of elementary data types and facilities to express user-defined data types [19, p.37ff].
For instance, an elementary data type REAL is also a general data type of ANY_REAL,
ANY_NUM, ANY_MAGNITUDE, ANY_ELEMENTARY, and lastly ANY. The type hierarchy
allows to define an FB type without specifying the elementary data type in detail.
Furthermore, user-defined data types may be expressed. Such data types may restrict
the range of an elementary data type or may define enumerations, references, arrays, and
structures. FMI also defines means for specifying user-defined data types. In contrast to
IEC 61499/IEC 61131, user-defined data types are non-structured only and are mapped
to four orthogonal C types [39, 40]. For the types real, integer, and enumeration,
the value range of derived variables may be restricted. An optional variable naming
convention maps structured data types to a set of elementary model variables. In contrast
to IEC 61499, no reference type model variables are defined in the FMI. Similarly,
IEC 61499 does not define any means to directly handle unit definitions.

A model transformation scheme has to map FMI model variable types to IEC 61499/
IEC 61131 types and vice versa. Since several elementary types, such as a two byte
integer from the automation domain, are not available in the FMI, elementary types may
have to be casted. An FMI FB may either restrict automation data types for its in- and
outputs or perform type casting itself. In case in- and output types are restricted, type
conversion needs to take place in the IEC 61499 domain. In order to utilize user-defined
FMI types, a component which includes FMI models in IEC 61499-based applications
may automatically create a user-defined IEC 61131 type for each user-defined FMI type.
Since IEC 61131 also defines range restrictions, minimum and maximum values may
also be transformed without data loss. The FMI unit system which includes base and
display units cannot be directly transformed to the automation domain. Although it
may be possible to make the information available, e.g. via structures or type naming
conventions, an automation type may not be directly amended by its unit. Hence, no
guarantees regarding units can be given.

Special attention has to be put on reference and general IEC 61131 data types. Both
types are not directly supported by the FMI. An interface component must (de-)reference
or disallow any reference type. Furthermore, dynamic type casting or static type inference
must be applied to handle general types from automation components. In case the FMI
FB is automatically generated from the model description, it simply may not use any
types which are not known by the FMI and type conversion is up to the IEC 61499-based
application. In case the FMI model description uses the defined naming convention, a
mapping component may also define and transform structured and array data types.
Each element of the structured data type will have to be mapped to a single model

3.2. Using Model Exchange FMUs in IEC 61499 Applications

variable but the structural information from the FMI may be preserved.

In order to indicate updated values, an FMI FB needs to provide event in- and outputs
which are associated with a certain set of variables. One basic scheme is to provide
one initialization event in- and output each which handles model parameters and static
data. Another pair of event in- and outputs may be used to indicate variable changes
during run-time. In case one event variable is associated with all dynamic FMI model
variables, all variables need to be processed and caching of variables may not be fully
exploited. The system performance may be optimized by manually introducing groups of
variables which share a single event indicator. Since an FMU does not expose information
regarding caching mechanisms and logical semantic grouping of variables, an automatic
mapping from variables to event in- and outputs is limited to trivial cases.

Although a direct transformation of model equations into algorithms may be feasible, the
transformation highly depends on the capabilities of the RTT in interpreting C code. An
FMU vendor may only provide FMUs in binary form or may reference external libraries
and source files. Hence, the RTI needs to be able to interface these entities which is
beyond the scope of IEC 61499. When abstracting the interface via SIFBs, an RTT still
needs to support these SIFB types but interface requirements can be reduced to the
SIFB description which include formal Service Sequence Diagrams (SSDs). In case an
SIFB interface which follows the virtual component scheme is used, direct dependencies
of model variables as encoded by the FMI 2.0 may be transformed to SSDs. As soon
as an event is triggered which updates a variable, all events associated with depending
variables are issued. Nevertheless, the SSDs highly depend on the deployed interface
method.

A transformation may automatically encapsulate the SIFBs which interface FMUs and
generate boilerplate code to gain a virtual component view of the FMUs. All model
variables may be mapped to FB in- and outputs to be accessible. Often, an FMU exposes
various internal variables which should not be used as in- and outputs and instead are
used to record results and debug FMUs. When automatically exposing these variables, it
is not possible to restrict their use within the IEC 61499. A local variable may be fed to
another (virtual) component which violates the FMI 2.0 specification [40, p.46]. An FMU
may also expose numerous variables of which only a few are needed in the IEC 61499
application. Automatically exposing all model variables may therefore clutter the FB
interfaces. A manual selection may be necessary to improve usability and maintainability
of the system.

3.2.4 Real-time Operation
Synchronization of Simulation Time

The strictly periodic approach described in Section 3.2.2 may maintain its own simulation
time different to real time and update it based on the state of the event queue and the
time of the next event. This assumes that the next event time can be calculated by the
IEC 61499 application as well as by the solver which wraps the FMI. Due to the strictly

39

3.

INTERACTION STUDY

40

periodic nature, the IEC 61499 application has to predict triggered events only until the
next synchronization point ¢;41. Since IEC 61499 events initially can only be generated
by resource initiated SIFBs such as timer or interrupt-driven SIFBs [92], it is sufficient
to predict the next time instant at which these FBs will fire an event. Each event will
have to be processed until no more event is left unprocessed or t;4 is reached.

The solver which directs the FMUs may act in a similar way until ¢;11 is reached. At
each instant in simulation time t;, the input and output information has to be exchanged
between the IEC 61499 application and the FMUs. In contrast to the FMI, IEC 61499
does not provide any functionality to control the current progress of time like setting the
actual time instant [39, 50]. Time control functionality would have to be implemented by
the RTT executing IEC 61499 applications. To guarantee a synchronized and deterministic
operation, time synchronization in the IEC 61499 domain has to be done on a level which
covers every deployed entity. If just one resource is used, time has to be synchronized on
resource level. If multiple devices are involved, the devices have to synchronized their
notion of simulation time.

When using the prediction-based approach, a more fine-grained synchronization has to be
used to synchronize simulation time between the IEC 61499 application and the FMUs.
Not only IEC 61499-internal events but also events generated by the FMUs have to be
considered in predicting the next IEC 61499 event. Due to the prediction mechanism,
the time of the next FMI event will be known beforehand and the FMUs can be treated
as native resource-initiated SIFBs. Although some co-simulations show that it is not
impossible to synchronize simulation time [38, 110], it is unlikely that IEC 61499 RTIs
aiming for a real-time-like operation will implement time adjustment features. An RTI
which provides time adjustment features would at least have to implement external
interfaces accessing the controller clock and enhancing the notion of time, if no event
is processed. The additional interfaces introduce a considerable overhead which is not
needed for industrial RTIs.

An alternative to synchronizing time between different simulation components is running
these components in real time, eliminating the need of synchronizing the simulation time
[86]. Additionally, real-time operation of FMUs also enables the use of components such
as HuT or standard TEC 61499 controllers which can only be used in real time. On the
other hand, a real-time operation requires the FMI and each FMU to provide real-time
guarantees. The applicability of such a real-time operation strongly depends on the
targeted time range and the implementation of each FMU. In case the execution time
of an FMU is too long or one FMU is not able to provide any real-time guarantees at
all, a guaranteed real-time operation is not feasible. In addition to the FMUs, also the
interfacing algorithms, such as the solver or event mapping algorithm, must comply to
the real-time requirements.

In order to discuss real-time operation in more detail, the function t¥(¢) is introduced,
which maps the current real-time instant ¢ € R,¢ > 0 to the progress in simulation
time of the k-th component. For the sake of simplicity, it is assumed that both time
scales, the real-time scale and the simulation-time scale can be directly mapped without

3.2. Using Model Exchange FMUs in IEC 61499 Applications

te(t)
A
()]
£
|_
c
2 4 non-monotonic
= 7 simulation time
E) ‘ progress
n
< _synchronization
point
- >t
Real Time

Figure 3.6: Exemplary simulation time function

any transformation, i.e. each instant of simulation time is also a valid instant of real
time and vice versa. The exact shape of the function strongly depends on model- and
tool-specific aspects as well as stochastic effects. Figure 3.6 shows one possible simulation
time progress. One may note that, in general, monotonicity is not required. A simulation
tool may reset any calculation, for instance if the desired accuracy is not achieved.

Real-time Periodic Event Mapping

Assuming strictly periodic event mapping as stated in Section 3.2.2, only synchronization
at the time instants ¢; has to be done in real time. Since involved FMUs and the
IEC 61499 application do not interact between any two instants in time t; = i - Ty, the
time t¥(t) of the k-th component at the global time ¢ may be scaled individually between
two consecutive synchronization points t; <t < t;41 as long as t; < tF(t) < t;41 [86]. At
each synchronization point ¢;, results from the previous period have to be available in
order to be exchanged and the component time has to converge to

t; = lim t*(t). (3.2)
t—t,
Note that time-discrete components at t; may have discontinuities in their simulation
time function ¢¥(¢), which rises the need for a left-hand limit in (3.2). If and only if (3.2)
is met for all components k, it simply follows by (3.3) that if all components converge to
t; in time, every component will be synchronized at ¢;:
Vi:Vk:t; = lim tF(t) = Vi: Vki, ko : lim t¥(t) = lim t2(¢) (3.3)
t—t; t—t; t—t,
In case of synchronized components, each model maintains the same simulation time at
each synchronization point ¢; in real time.

This approach assumes exact time synchronization at each synchronization point ¢;. In
practice, measures like using hardware synchronization or minimizing event jitter have

41

3.

INTERACTION STUDY

42

to be taken to approximate the ideal behavior. Synchronization means including every
event mapping component such as continuous-to-discrete and discrete-to-continuous event
mapping. If an event mapping is distributed over several clock domains, additional
synchronization effort is needed and the maximum accuracy of synchronization is limited
by the precision of the ensemble of synchronized clocks [55].

To ensure hard real-time guarantees, each individual component time tlé(t) must converge
to the synchronization point in time as stated by (3.2). Physical systems use real time
per definition and their time function P (¢) = ¢ always converges to the synchronization
point in time. Depending on the purpose of the coupling scenario, IEC 61499 components
may be seen as physical components which also run in real time. When targeting realistic
device clocks, any deviation from the IEC 61499 device clock is part of the system
behavior and does not need to be considered separately. In this case, the FMI interface
needs to be externally synchronized to account for timing issues introduced by IEC 61499
applications.

When running FMUs and the solvers in a real-time mode, the FMI component will also
have to provide the real-time guarantee of timely finishing the current simulation step.
Assuming that the communication of data between the event mapping component and
the solver is temporarily bound to the WCET, W C ETyy,, the solver has to execute one
or more simulation steps within its WCET WCET,, and (3.4) has to be fulfilled:

WCETy + WCETm < Ts (3.4)

The solver’s WCET highly depends on the WCETs of the FMI functions and the solving
algorithm. Algorithms utilizing a variable step size or an iterative approach may not
even provide a bounded WCET.

If, for example, the step size of an algorithm is determined based on the next upcoming
event e;, each integration step will be performed until max(t;11,t(e;)) is reached. The
number of integration steps m; is m; = n; + 1, where n; corresponds to the number of
FMI events triggered within two consecutive synchronization points ¢; < t(e;) < tit1.
Assuming that the event update function and the numerical integration step have constant
WCETs, WCFET,pq and WC ETe, respectively, and that manipulating the input and
output values of the FMU is bound to WC ET;,, the solver WCET calculates as

WCETy = mi-WCETyep + (mi+1) - WCETypq + WCET,
= (ni+1)- WCETyep + (ni +2) - WCETypq + WCET,. (3.5)

The solver will have to call the event update function after every event instance and after
an integration step is finished [39]. Since setting newly gathered input values at each
synchronization point possibly generates an FMI event, the event update function also
has to be called at the beginning of each period.

It follows from (3.5) that, if the number of triggered events n; is unbounded, the solver
WCET will also be unbounded. As a result, the implemented model does not only have

3.2. Using Model Exchange FMUs in IEC 61499 Applications

to provide WCET guarantees for executing provided functions but also has to limit the
number of events triggered between any two consecutive synchronization points. These
two features highly depend on the implementation of the model and are not covered by
the FMI specification [39].

One naive approach of bounding the number of FMI events triggered is to delay any event
request until the end of the fixed-size integration step is reached. Although some models
may tolerate this approach, it violates the specification claiming that “the simulation shall
integrate at most until time = nextEventTime, and shall call fmiEventUpdate at
this time instant” [39, p.19]. Even if the integration algorithm does not adapt the step
size based on any accuracy considerations, it generally has to support variable step sizes
to handle FMI events.

Real-time synchronization is not necessarily restricted to the FMI, it is also possible to
synchronize the process in- and outputs of the controller- only. Interfacing with FMUs

can be done asynchronously and their results can be used to calculate the control output.

Since the FMU inputs, which are valid at ¢;, are provided after parts of the IEC 61499
application are executed, timing deviations introduced by the controllers cannot be
considered. When executing [EC 61499 applications transparently without taking any
timing deviations into account, the FMI will have to use IEC 61499 events to trigger
its operation. In HIL setups, it might be useful to minimize the impact of IEC 61499
applications altogether. The functionality of the application within the proposed HIL
scenario is not part of the actual simulation, instead the IEC 61499 application has to
provide proper interfaces to access the hardware.

To study the impact of such a scenario, an adapted version of the periodic event mapping
scenario is used. Instead of synchronizing the interface between the IEC 61499 application
and the included FMUs, the interface between the HuT and the IEC 61499 application
is synchronized. The IEC 61499 controllers pre-process measured data and redirect it to
the solver. As soon as results are available, the data may be adapted by the IEC 61499
application to output them at the next synchronization point.

In contrast to the strictly periodic event mapping approach described in Section 3.2.2,
the included models are part of the control operation in calculating the output which is
issued to the HuT. Since the process interfaces of the IEC 61499 application are sampled
periodically and synchronously, it can be safely assumed that the operation of the FMU is
triggered after all input data is available and that no further events have to be considered
during a simulation step. Such an assumption eases interfacing FMUs by reducing the
need of storing previous events.

By synchronizing the in- and outputs of the application only, the system WC E Ty is
extended by adding the WCET of the controller parts WC ET,, the event mapping
WCETy, and the WCET,, of the solver:

WCETyys = WCETun + WCETym + WCET,,. (3.6)

43

3.

INTERACTION STUDY

44

As described above, the solver can be directly called and the event mapping procedure at
the FMI is reduced to solving the system of FMUs. The small communication overhead of
passing on system states to the solver is included in WC ET,). Although event mapping
on the FMI side is reduced, it is still necessary to synchronize any external components.
In order to guarantee the synchronization condition stated by (3.2), each subsystem listed
by (3.6) needs to provide a bound WCET and WC ETgys needs to be smaller that the
sample period Tj.

Real-time Prediction-based Event Mapping

In order to operate the IEC 61499 controller which accesses the model in real time,
each event ey which is issued to the IEC 61499 application needs to be triggered at the
corresponding instance of real time ¢(ej) [86]. One may naively deploy an event queue
which buffers previously detected FMI events ej and continues the simulation. To meet
the real-time constraints, the simulation time of the FMU needs to be at t(e) before
real-time approaches, i.e. (3.7) has to hold. Again, tf™"(#) corresponds to the notion of
FMU simulation time at the global instant of real time ¢t € R, ¢ > 0:

Ttaetect : 0 < tdetect < tlex) A lim tMU(2) = t(ey) (3.7)

t_%tdctcct

It turns out that (3.7) is a necessary, but not a sufficient timing condition for a general
FMI-compliant operation. In particular, some issues arise when an event ey, is enqueued
and the simulation time approaches beyond the FMI event and real time. As stated
in Section 3.2.2, an FMU may not be able to properly reset the state before the last
event time [39]. Assume that event ey is correctly detected and enqueued at time tgetect,
0 < tdetect < t(ex) and that the simulation of the FMU continues to detect further events,
i.e. simulation time is beyond the last event time and assumption (3.8) holds:

Fteont : tdetect < teont < t(@k) A hIP timu(t) > t(ek) (38)
t—t

cont

Since at teont, teont < t(ex), the FMI event ey is still not triggered, an external IEC 61499
event e; may be triggered at the real-time instant t(e;) € R, teont < t(e;) < t(ey), ie. e; is
triggered before ey, is predicted but after the simulation continued at t.ont. Consequently,
the event handling functions, which process ey, are already called at t(e;) and in general
it may not be possible to reset the (discrete) FMU state to t(ej). As a consequence,
queuing of multiple FMI events is not feasible with the restricted first version of FMI
and the real-time constraint for FMI events restricts to (3.9):

t(e) = lim ™t .
(o) =, lim _#() (39)
When distributing an FMI event, the simulation time #™%(#) of the FMU must be aligned

to the current real-time instance [86]. Nevertheless, for FMI 2.0 FMUs which support
state retrieval, (3.8) also provides a sufficient condition, if applied to all FMI events.

3.2. Using Model Exchange FMUs in IEC 61499 Applications

Events transferred in the reverse direction, i.e. from the IEC 61499 application to
the FMUs, are not directly restricted by any real-time constraints [86]. Since multiple
incoming IEC 61499 events may be stored in a queue and tf™(¢) can be set accordingly,
each incoming event can be directly applied without considering real time. It is to
note that the simplistic model of instantaneous triggering of events and simulation time
progress function t™%(¢) hides several implementation challenges and limitations. In
particular, resetting an FMU, processing events, and calculating model outputs requires
a certain amount of time which limits the processing capabilities of other events. For
instance, an FMI event needs to be handled and outputs need to be calculated before the
event can be actually triggered. In case the event update function is not called before the
outputs are fetched, the outputs will be based on the state before the event was triggered
and hence they will be outdated. The processing time opens a time window where other
events may not be processed properly. To analyze the real-time constraints, the event
processing start time of any event ej, t'(e;) is introduced. It corresponds to the instant
of real time when the event e; is removed from the queue and processing of the element
starts.

The solver will have to update and re-predict states and outputs, if an event is triggered
by the IEC 61499 application or by an FMU [86]. In the following discussion, WC ETpeq

denotes the WCET of the state prediction and e; corresponds to the last triggered event.
Assume that WC ET,eq exists and that e; was timely triggered and processed at t'(e;).

Any outgoing FMI event e, which has to be triggered before the prediction operation
finishes and new states are calculated, will violate the real-time condition expressed
in (3.9). To discuss real-time properties in more detail, it is assumed that the notion of
simulation time #f™(#) remains constant until the prediction is fully performed, i.e. in
the worst case (3.10) holds:

Vi € [t'(e;), ' (e5) + WCOETyeq) : I (t) = t(e;) (3.10)

Only after the prediction is completed, the simulation time t(f:mu(t) is eventually advanced.

In case the event ey, t'(e;) < t(er) < t/(ej) + WCOETpyeq is triggered, the real-time
condition (3.9) evaluates to

tlep) = lim #™(#) = lim t(e;) = t(e;) < ¥(e;). 11
(ex) Lt (t) m (ej) = t(ej) < t'(ej) (3.11)

One can note that (3.11) directly violates the assumption that ¢'(e;) < t(ey), which was
stated before, and consequently, the event e; will not be triggered in real time. Similarly,

assume that updating a state and calculating associated outputs takes at most WCET,pq.

Since the update functions have to be performed before an FMI event e, is triggered, no
other event can be processed at (t(ex) — WCET,pq,t(ey)] either. Since the state update
function in the time window has to be called before t(ey), especially no IEC 61499 event
can be processed in that time window.

Form the observations above, it follows that an event e;, which is triggered by an
IEC 61499 application, must not closely occur before FMI events and that FMI events

45

3.

INTERACTION STUDY

46

er, must not be triggered before the last event is fully processed [86]. The actual time
window, in which the next event may safely occur, highly depends on the other events of
the system. In particular, the processing schedule of the solver and even events triggered
by the IEC 61499 application influence the permitted timing of the next FMI event. To
break the complex inter-event dependency and to ease analysis and implementation, an
emulation mode is introduced. In the emulation mode, it is assumed that all events,
which are exchanged between FMUs and an IEC 61499 application are issued in time.
Consequently, also events which are passed on to the FMUs must be delivered in time
and cannot be delayed without violating the emulation mode assumption. Since storing
an IEC 61499 event e; into a queue would delay the execution, queuing in the emulation
mode is not possible at all and every event has to be processed in time. Hence, the
event and execution time requirements of events e; restrict to t'(e;) = t(e;) and the time
between any two events must not fall below WCET,eq + WCET,,q. Additionally, the
application must be able to tolerate event deviations of either FMI events or IEC 61499
events of up to WCET pq.

Although the conditions which follow from the emulation mode are much more restrictive,
the IEC 61499 application and the FMUs can now be analyzed separately [86]. In
contrast to the periodic approach described above, the prediction-based event mapping
still requires timing guarantees between any two events and not just between any two
synchronization points. Whether such timing guarantees can be given, highly depends
on the implementation of the application and FMUs.

The engineering effort of calculating a tight WCET is often very high and the execution
time of some algorithms is not even bounded [86]. Then again, most soft real-time
applications do not need any hard real-time guarantees and late results can be dropped
or can be applied late without fatal consequences. Hence, the implementation effort
can be drastically reduced by a best-effort approach but inaccuracies which result from
deadline misses still have to be considered.

3.2.5 Model Coupling

Basically, two opposite approaches exist in coupling two or more FMUs within an
IEC 61499 framework. The first one uses an FMI wrapper able to couple multiple FMUs
and solve them in the time-continuous domain while the second approach uses means of
IEC 61499 and bounds them via event and data connections. The first approach makes
some demands to the solver and the event mapping component wrapping the FMUs
which exceed single FMU operation. It first has to read additional user input stating
the connections between different FMUs. Connections may not be directly defined by
means of IEC 61499 because IEC 61499 does not provide any connection mechanism
transferring data at any instant in simulation time.

Secondly, a solver handling multiple FMUs without restricting their direct dependencies
has to handle systems of algebraic equations and ODEs [39, 40]. Especially in real-time
operation such a solver has to be analyzed separately in order to gain appropriate real-time

3.2. Using Model Exchange FMUs in IEC 61499 Applications

Figure 3.7: Naive approach for connecting two FMUs

guarantees. Solving each single FMU may not necessarily be performed synchronously.

Instead, the whole subsystem including each FMU and the solver has to fulfill certain
timing requirements. Analysing the overall timing might become much more complicated
compared to a single FMU operation. Some algorithms solving non-linear algebraic
equation systems, like Regula Falsi, use an iterative approach to approximate a solution
[21]. Although it is possible to deduce an order of convergence, it is hard or even
impossible to gain hard real-time constraints for the algorithm.

If it is not necessary to meet any real-time constraints, a dedicated solver capable of
handling algebraic loops will produce more accurate results than coupling components
via time-discrete connections. Time-continuous virtual connections can be modeled
transparently while using sample-and-hold components, which are necessary to couple
the FMUs within a time-discrete network, will introduce bandwidth limitations and
discretisation errors [63]. On the other hand, coupling different FMUs using the event
interface provided by TEC 61499 reduces the need for maintaining separate connection
information. Each FMU may be encapsulated into a separate SIFB and different SIFBs
may be connected by means of IEC 61499.

Depending on the event mapping approach and the timely operation, events issued by

one FMU have to be redirected to connected FMUs in order to process new inputs.

When using a strictly periodic event mapping approach, events may also be issued by
a centralized timing component. In both cases, the sample time of the values has to
be considered. If, for example, component A depends on the output of component B,
the scheduling order of both components determines the output. Figure 3.7 illustrates
the naive connection setup using undetermined scheduling. If component B is scheduled

before A, A will use the outputs of B virtually sampled at the next synchronization point.
If both FMUs execute concurrently, input values of A may even be randomly chosen.
One approach of synchronizing the operation is to use separately synchronized latches.

After every FMU has calculated its output, every component input will be latched and
each FMU uses inputs from the same instant of simulation time. Latching may either be
implemented by the FBs containing the FMUs themselves or by separate D (data latch)
bistable FBs defined in IEC 61499 [50, p.64].

When using the prediction-based event mapping approach to couple multiple FMUs by
means of IEC 61499, algebraic loops have to be taken into account. If two components
outputs mutually depend on each other, an output event may be triggered directly after

47

3.

INTERACTION STUDY

48

the input changes. If both FMUs immediately trigger output events, an event loop will
occur. Convergence of such an event loop would have to be shown separately and the
resulting system may not be stable [63, p.5071f].

When using FMUs coupled via synchronized IEC 61499 connections, real-time analysis is
simplified. Periodic synchronization points allow to calculate the WCET components
separately instead of covering the whole system. The ability to decouple the timing of
components is based on the restriction on sending events. Only at synchronization points
these events will be triggered and data exchange will be issued synchronously. On using
the prediction-based approach, events may depend on each other and these dependencies
will have to be considered when calculating the system WCET.

3.2.6 Software Interfaces

The software interface accessing included FMUs has to provide the above described
components, at least an event mapping component, a solver and several helper functions
which are used to access the information of an FMU. One possible way of including
FMUs is to provide very basic SIFBs to access the C functions which are provided by an
FMU and to implement other parts by means of IEC 61499 [86]. One drawback of such
a solution is the overhead introduced by IEC 61499. IEC 61499 focuses on industrial
control tasks and not on numerical computation [50]. Although it might be possible
to implement a solver by means of IEC 61499, it is most likely much more efficient to
implement it separately. The following section will assume that the solver is implemented
by means other than directly provided by IEC 61499.

The IEC 61499 defines the concept of SIFBs to access external services such as those
provided by an FMU [50, p.44]. Except for few predefined SIFB types, the IEC 61499
does not specify the services itself and the actual implementation always depends on
the executing RTI [86]. In order to implement an FMI service natively, the used RTI
has to be extended such that it can access deployed FMUs. Although such an extension
reduces additional configuration effort, the portability of an FMI-enabled TEC 61499
application is restricted to devices which actually implement the FMI service. Annex
E of the IEC 61499 informatively describes an ASN.1-based protocol which covers uni-
as well as bidirectional data transfer [50, p.95ff]. The protocol can be used to exchange
data within a distributed application and may be used to access third-party tools as
well. Since some RTIs already implement the ASN.1-based protocol, new services can be
coupled via a network connection without modifications of the RT1Is.

To manage the FMI integration, several functionalities for loading and instantiating
FMUs have to be provided. Data transferred between the IEC 61499 application and
FMUs depend on the output capabilities of the FMUs. Management functions have
to parse the static information contained in the FMU to conduct the redirection of
the FMU in- and outputs. The actual SIFB has to provide either a static interface
covering all possible FMU types or a dynamic interface adapting its in- and outputs to
the capabilities of the FMU. A static interface has to provide additional information

3.2. Using Model Exchange FMUs in IEC 61499 Applications

identifying the FMU in- and output of the provided information. A (de-)multiplexing
component has to be implemented by the IEC 61499 application to separate different
value semantics. Although it eliminates the need of adapting the service interface, for
each FMU type a dedicated (de-)multiplexing component has to be created. Additionally,
it is not easily possible to transfer multiple values in parallel unless the SIFB provides
a variable number of in- and output variables. A simple protocol might be needed to
synchronize sequentially arriving values to a common event time.

Sequential data transmission and a separate (de-)multiplexing component can be avoided
by adapting the SIFBs to the capabilities of the FMUs. An adapted SIFB reflects the
capabilities within the IEC 61499 framework but requires the corresponding service
to provide adaptive interfaces. The manual effort for creating an adequate SIFB may
be reduced by integrating proper tool support into the used Integrated Development
Environment (IDE) or by providing a standalone tool. The descriptive XML file included
in the FMU may be parsed to generate an SIFB definition. The XML representation
of the IEC 61499 system might be used to generate the SIFB type without restricting
support to single IDE vendors only.

Each integrated FMU wrapper may either control time by itself or issue results imme-
diately and rely on the IEC 61499 application to delay results appropriately. The first
approach may be useful if the timely behavior of the IEC 61499 application is to be taken
into account. In this case, a different clock maintained by the FMI service has to be
installed and used. The FMI service records IEC 61499 event times based on its own clock
and delays output events accordingly. If the timely behavior of the IEC 61499 application
shall be handled transparently, the application has to perform time coordination. The
FMI service calculates the results as fast as possible and returns them to the application.
The application now has to delay results until they get valid or has to adapt its notion of
time based on the results returned.

Communication following the strictly periodic event mapping approach can be mapped
to a bidirectional data transfer of communication SIFBs [50]. In the first scenario,
the time-controlling FMI service acts like a client device and issues event requests to
the server located at the IEC 61499 application. On receiving the request, the server
snapshots its state and transfers it back to the client. The discrete-to-continuous event
mapping is done partly by the IEC 61499 application by implementing a mechanism for
retrieving previously set variable values. If controlling the time is up to the IEC 61499
application, the FMI service may act as a server providing the result of the next step on
request. Although the FMI service may obtain the current simulation time by counting
periodic requests, it might be useful to include a time stamp mechanism communicating
the current simulation time. Time stamps may be used to initialize the simulation
time individually and to detect communication and timing errors. Unfortunately, the
IEC 61499 does not provide any mechanism for directly reading the device time [50].
Depending on the capability of the RTI, an up-counting approach has to be used by the
IEC 61499 application too.

By using the prediction-based approach, events may be exchanged at any instant of time.

49

3.

INTERACTION STUDY

50

If the current simulation time is controlled by the IEC 61499 application, the controller
has to properly time stamp events to allow the FMI service a temporal reconstruction.
In this scenario, the FMI service acts like a server only, returning the next event time
on request. Since controlling the event time is up to the IEC 61499 application, a logic
has to be implemented which delays or rejects events returned by the server properly.
Additionally, the TEC 61499 application has to settle the current prediction steps or
promote time-stamped events to discard future states. The IEC 61499 neither provides
any mechanism to directly retrieve the time stamp of an event nor provides any means
to control the system time [50]. Implementing a time-controlling IEC 61499 application
may therefore highly depend on the used RTI.

On the other hand, the FMI service implementing the prediction-based approach may
include time management. The service will delay outgoing events according to their
time and will time-stamp incoming events to select the proper state prediction interval.
Additionally, a side channel may be used to adjust the time of the controller in a non-
real-time mode, but this approach requires the IEC 61499 application to properly predict
the next event time. Event prediction is not specified by the IEC 61499 standard either
and therefore also highly depends on the RTI capabilities and implementation. In a
real-time mode, the time of the application does not need to be artificially adjusted and
no RTI-specific functionality, except the FMI service, is needed.

In contrast to the periodic approach, the prediction-based approach timely decouples
in- and outgoing events. An event may either be initiated by the FMI service or by the
IEC 61499 application, resulting in a mixed operation of the FMI service. The operation
may be decoupled by using two different SIFBs, one resource-initiated and one service-
initiated FB, to access the FMI service. Both SIFBs only feature unidirectional data
transfer and may be implemented using a publish-subscribe communication connection.
Alternatively, it is possible to combine service- and application-initiated interactions into
a single SIFB [50, p.44], leading to a more compact FMI service interface.

Several libraries assisting the management of FMUs already exist [14, 32, 36, 48, 68,
108]. Some libraries implementing different algorithms for solving ODEs also exist [2,
41, 49]. By using appropriate libraries instead of starting from scratch, it is believed to
speed up the development process and increase maintainability. However, before using
external libraries, licensing issues and the planned license of the FMI service have to
be investigated carefully. It is also important to check the functionality of the library
carefully against needed features to avoid library lock-in scenarios.

3.2.7 Use Cases

Through the use of FMUs for model exchange in IEC 61499 applications, it becomes
possible to simulate or emulate external components interacting with the IEC 61499
application. The components may be created and exported by any tool that supports
the FMI and the implementation effort which is necessary to include models can be
reduced drastically. Possible applications of virtual components which are integrated

3.3. Using Co-Simulation FMUs in IEC 61499 Applications

via the FMI include model-based design and validation approaches. In these scenarios,
the TEC 61499 application can be tested without the need for providing a test setup
that includes the plant hardware. Depending on timing accuracy requirements of the
simulation, a modified RTI has to be used. A modified RTT has to provide the ability of
scaling time accurately and of simulating long-lasting periods without waiting until the
next event is actually triggered.

During testing and validation, parts of the real hardware may also be included and tested
using the real control algorithm. In contrast to a fully virtual simulation, FMUs and the
controller have to be executed in real time. Scaling the simulation time according to the
next event occurrence is not an option in general. If parts of the HuT directly interact
with simulated system parts, an additional hardware interface and a side channel may
have to be developed. It is either possible to use additional IEC 61499 components not
needed during productive operation or to implement the side channel directly in the
solver or event mapping component.

Strasser et al. proposed a co-simulation-based training platform used to educate laboratory
personnel [91]. FMI could be used to include arbitrary FMUs for model exchange
emulating real hardware. For training, a real-time approach should be used to demonstrate
the system timing behavior. The SCADA system used to control the real plant may also
be used to control the training setup, thereby avoiding confusion that might arise from a
changed user interface.

The application of FMUs included in IEC 61499-based controllers is not limited to testing,
training and validation but may also include productive use. An advanced control scheme
may use predicted values to estimate the system state and to optimize the control output
[6, 63]. Although each FMU will have to provide results without further delaying them, it
might be necessary to provide hard real-time guarantees to calculate the overall real-time
parameters of the system.

3.3 Using Co-Simulation FMUs in IEC 61499
Applications

3.3.1 System Architecture and Model

In contrast to the FMI for model exchange, the FMI for co-simulation does not require
the controller to provide a solver on its own [38, 40]. Equations are solved by the FMUs
themselves and data is only exchanged at well-defined sampling points. The simple
system architecture illustrated in Figure 3.8 does not implement any particular solver but
provides a component which implements the master algorithm. The master algorithm
is split into three subcomponents: the IEC 61499 event to FMI conversion logic, the
FMI to IEC 61499 event conversion logic and a step control logic which manages the
execution of FMUs. Depending on the event handling strategy, the three subcomponents
may be loosely coupled or interact very closely.

51

3.

INTERACTION STUDY

52

IEC 61499| ' Master Algorithm

1 —
R U
T to FMI N

S B
1
IEC 61499 events] ‘-~.‘?::] FMU :
[

|
1
'
1
1
] 1
1
1
1
\

step control

-
=
o
o

Figure 3.8: Basic abstract co-simulation system model

‘Event Mapping} [[EC 61499) ' Master Algorithm

|
' | —

: HUT : : discrete to [_ FMU

_______ | continuous

—————————

1
""""" 1yl continuous
7] _to discrete |

Time-continuous '
Component S

Figure 3.9: Extended abstract co-simulation system model

The TEC 61499 event to FMI and FMI to ITEC 61499 event conversion logic have to
synchronize their operation with the step control logic. Only if the executed FMU has
finished its step, data exchange will be feasible. Depending on the applied event handling
strategy, the IEC 61499 event to FMI conversion logic has to buffer incoming events and
related values until the step control logic has finished the corresponding simulation step.
Interpolating time-discrete values in a time-continuous domain is done by the FMUs itself
and not by any external logic [38, 40]. The FMI standard does not restrict interpolation
to ZOH, it also supports higher-order interpolation. It provides additional functions
for accessing state derivatives at the current sample point optionally provided by an
FMU [38, p.27f]. The IEC 61499 does not specify any higher-order interpolation but
higher-order interpolation may be implemented by IEC 61499 FBs [50]. Alternatively, the
event handling components may provide functions featuring higher-order interpolation.

The master algorithm used may not be restricted in handling only one connected FMU.
Multiple FMUs can either be synchronized by an explicitly given master algorithm or
by connecting several single master components by means of IEC 61499. To indicate
both states, Figure 3.8 shows an optional second FMU but it is important to notice
that the system may handle the integration of multiple FMUs in different ways. Like
in Section 3.2.1, the basic system model is extended by an additional time-continuous
system such as a HuT in a HIL setup. Figure 3.9 shows the extended system model
integrating a time-continuous component. In the extended setup, the co-simulation FMUs
are not able to directly communicate with the time-continuous components.

3.3. Using Co-Simulation FMUs in IEC 61499 Applications

3.3.2 Event Handling

The FMI for co-simulation does not provide any mechanism for directly communicating
discontinuities [38]. Instead, the FMI requires the master algorithm to exchange values,
which is possible at given instances of time only. Between two consecutive communi-
cation points, continuous inputs may be interpolated by a finite order polynomial, but
discontinuities of in- and outputs cannot be represented [21, p.173]. Instead, the function
calculating the next step may fail and return the status code fmiDiscard. A master
algorithm may query the time until the last communication step was successfully calcu-
lated [38, p.30] and adapt its step size accordingly. By the discard mechanism, events can
be signaled indirectly. However, a master algorithm cannot distinguish various reasons
for discarding a result. For instance, the step may fail due to an output discontinuity or
because some internal algorithms of the FMU do not converge. Regardless of the actual
reason, the FMU as well as the master algorithm have to support the discard mechanism.

Periodic Event Mapping

The strictly periodic event mapping approach, which is described in Section 3.2.2, can
be adapted to the FMI for co-simulation. Instead of providing a solver, each FMU is
accessed directly and data aggregated by the IEC 61499 to FMI conversion component
will be communicated periodically. In the simplest implementation, a ZOH interpolation
is used and no state derivative is accessed. The strictly periodic approach does not
require any optionally supported FMU feature and provides compatibility to all FMUs
which follow the FMI specification. If an FMU indirectly signals the master that an
event has occurred, the master algorithm will have to ignore the event and continue the
step. Processing any interrupted step requires subsequent FMUs to accept variable step
sizes or to reject communication steps, which is not supported by all FMUs.

A critical parameter in the strictly periodic event mapping approach is the chosen
communication step size Ty. Selecting a proper step size highly depends on the included
simulation and the capabilities of the tool. According to Shannon’s sampling theorem,
a time-continuous signal can only be reconstructed if its bandwidth B is limited and
does not exceed the half sampling frequency % [20, p.72ff]. If the step size T, = i is
chosen too large, the reconstructed signal will be biased and will not contain the intended
information. Small step sizes, on the other hand, may negatively affect the simulation
performance and can also hinder a successful co-simulation. Some tools may only accept
a limited range of step sizes and the step size of the entire system has to be adapted to
the capabilities of the tools. Although the second version of the FMI includes a preferred
step size definition, step size limitations cannot be communicated directly [38, 40].

The IEC 61499 event to FMI conversion component may utilize the information associated
with incoming ITEC 61499 events to approximate the FMUs input derivatives. Prentice
proposed a numerical differentiation algorithm approximating derivatives of a function
without the need of constant sampling step sizes [76]. On receiving an TEC 61499 event
between two subsequent communication points ¢; and t;;1, the associated data will

53

3.

INTERACTION STUDY

54

be sampled and taken as node. Since Prentice’s algorithm does not require the point
of approximation to be a node, the derivatives can be approximated at t;;1 without
receiving an incoming event at this point in time. Alternatively, the derivatives may be
approximated by interpolating cubic polynomial splines using the same, not necessarily
equidistant nodes [24, p.549ff]. In general, numerical differentiation suffers from decreased
accuracy compared to numerical quadrature [24, p.559]. Depending on the IEC 61499
event source and the frequency of events, a constant interpolation is preferred. For
example, a noisy analog input signal may cause large errors in the numerically calculated
derivatives. In this case, a constant interpolation value is expected to be more accurate.

Some FMUs may provide state derivatives approximating the output function. A com-
ponent which generates IEC 61499 events may utilize the provided information to ap-
proximate the simulation output between two subsequent communication points. These
values can be forwarded on request of an IEC 61499 application which decouples the
strictly periodic operation of the event mapping component. Triggering IEC 61499 events
between two subsequent communication points and approximating values between these
points introduces an error R,, where n corresponds to the order of the highest output
derivative provided. Furthermore, ¢ corresponds to the time of the intermediate IEC 61499
event and t; denotes the last communication point. Assuming that the approximated
time-continuous function f(t) is n times continuously differentiable in [t;,¢] and n + 1
times continuously differentiable in (¢;,¢), the magnitude of R,, can be given by [21, 76]

R, = O((t — ;)™ (3.12)

Using Taylor’s theorem, the n-th Taylor approximation of the function f(t) is given by

Zf t—t) + R,

According to the theorem, R, is given by (3.13), with £ € (¢;,1):

_ fI©)

= T T (3.13)

To prove (3.12), it has to be shown that a constant value C' > 0 exists such that (3.14) is
fulfilled [21, p.159]:

(=
(t —t;)n+1

From (3.13) easily follows (3.15) and thereby the existence of a constant value C for
every n € N.

Vn e N:

<C (3.14)

(3.15)

fn+1 _
‘(t—t n+1 n+1

As a consequence of (3.12) and (3.13), the error term increases by increasing the distance
to the last communication point t;. If the IEC 61499 application needs more accurate

3.3. Using Co-Simulation FMUs in IEC 61499 Applications

_____ e I R

€ wceTpreq €x
_____ - |._ R [|.._._4_._._ |.._._._ |.._._._._....
FMU predict calculate predict predict predict
state at g
- 1
| e o _ _ ,{
r at T at

Figure 3.10: Prediction-based event mapping using the FMI for co-simulation

timing data, generally more precise values can be obtained by decreasing the sampling
period T, according to the control requirements. By decreasing the sampling period the

value of f(t) can be directly communicated without introducing any approximation error.

On the other hand, decreasing T, may raise performance issues or may not be supported
by an FMU. In such cases, a polynomial approximation of intermediate IEC 61499 events
is still advisable.

Prediction-based Event Mapping

The prediction-based event handling approach for the model exchange FMI described in

Section 3.2.2 can only be adapted to the FMI for co-simulation in a very limited way.

It strongly relies on calculating, storing and resetting an FMU state at intermediate
points in time until the prediction horizon is reached [68, 108]. An FMU may only
optionally provide the capability of resetting its state and even suitable FMUs in FMI
1.0 are only able to reset the very last communication step [38]. The state machine of
calling sequences defined in the FMI for co-simulation restricts the next simulation time
of a communication step to be either the current simulation time or the previously used
simulation time. In contrast to the FMI for model exchange, directly accessing the state
of a co-simulation FMU is not possible using the first version of the FMI only. FMI 2.0
introduces an optional mechanism to store and recall the entire state of a co-simulation
tool at a particular communication point [40]. As the limited reset functionality provided
by FMI 1.0, the state retrieval mechanism of FMI 2.0 is still optional.

For the prediction of future events, the FMU has to provide the capability of triggering
events. In case of an FMU event e, the processing function fmiDoStep may return
prematurely in which case the event time can be retrieved [38]. Figure 3.10 illustrates the
event mapping approach using the FMI for co-simulation. On receiving IEC 61499 events
ej, the current simulation state has to be reset to the beginning of the communication
step before the event has happened. In case of FMI 1.0, only the very last step may
be reverted. On the other hand, multiple intermediate states may be saved with the
FMI 2.0 which allows a more fine-grained reset mechanism. After the FMU is reset, the

55

3.

INTERACTION STUDY

56

whole step has to be re-calculated until the point of time when the event was triggered.
Re-calculating the state does not only require the FMU to reset predicted states after
the event e; happens but also lacks in efficiency by discarding valid results before the
event e;. Interpolation of intermediate states is not possible because no details regarding
the state are exposed. The prediction-based approach is limited to FMUs which support
variable communication step sizes, rejecting communication steps or exposing the state
and signaling internal events.

Also, a step size reduction which dynamically generates IEC 61499 events on large output
deviations requires a re-calculation of valid results. If an output deviation is larger than
tolerated, the current step has to be re-calculated using a smaller step size. A larger
step size may only be applied for future steps without discarding any results. One may
naively take another step in one prediction, if the output deviation is still tolerable and
no IEC 61499 event should be triggered. When conducting more than one step in a
single prediction period, only the last step of a 1.0 FMU can be properly cancelled while
preceding states, which are sill predictions, cannot be reset. Consequently, to extend
the step size of a single prediction, one would need to discard the valid but short step
and perform a larger step instead. The second version of the FMI limits the need of
discarding results by providing a mechanism for directly accessing the FMU state [40]. If
the optional access mechanism is supported, the FMU may be reset to arbitrary states
and a finer-grained prediction mechanism which includes dynamic step size adaption can
be used.

3.3.3 Data Model Transformation

Since FMI for co-simulation and FMI for model exchange share a common base [38, 39,
40], most findings regarding the data model transformation of Section 3.2.3 can be applied
to co-simulation as well. The only significant difference regard the representation of
model equations and variable extrapolation functions which are available in co-simulation
only. In case the model equations are imported to algorithms, no separate solver logic
needs to be created. Nevertheless, the same limitations regarding the capabilities of
an RTT also exist for co-simulation. An RTT still most likely has to handle external
dependencies which is beyond the scope of IEC 61499. Hence, an interface using SIFBs
may still be favorable.

FMI for co-simulation optionally allows to set and query derivatives of model variables
to extrapolate values in simulation steps. Neither IEC 61499 nor IEC 61131 provide
facilities to amend variables with their derivatives [19, 50]. As stated above, an event-
mapping component may utilize and numerically estimate the derivative values without
exposing them directly. Consequently, an advanced control application cannot directly
use the derivative values. In order to avoid loss of information, derivative values may be
exposed by a separate set of variables. Thereby, either an implementation which adds the
derivatives as separated FB in- and outputs or an implementation which encapsulates the
derivatives and the corresponding variable in a dedicated structural type are conceivable.

3.3. Using Co-Simulation FMUs in IEC 61499 Applications

In any case, manual variable selection may be beneficial to reduce the amount of exposed
data and to gain readability and maintainability.

3.3.4 Real-time Operation

The timely operation of FMUs for co-simulation is very similar to the operation of model
exchange FMUs described in Section 3.2.4. The strictly periodic operation as well as the
predictive operation described in Section 3.3.2 are based on the approaches presented in
Section 3.2.2. Hence, most concepts are applicable to co-simulation FMUs as well. The
following section will only highlight differences in the real-time analysis of both FMIs
without re-stating common concepts.

Periodic Event Mapping

In contrast to the FMI for model exchange, the WCET of solving a complete simulation
step WC' ETg, cannot be divided in an event update and solving portion. The WCET
of the fmiDoStep function WC ET, already contains any event update and equation
solving logic. When using the strictly periodic event mapping approach in conjunction
with FMUs that signal events by partially calculating the next step, fmiDoStep may
have to be called repeatedly. Assuming that the WCET of value in- and output operations
needed to access the in- and outputs of an FMU is bound to WCET}, and that n; and
m; = n; + 1 correspond to the number of triggered events and the number of simulation
steps to take respectively, WCET,, can be given by

WCET, = m;-WCETyep + WCET,
= (ni+1)- WCETyep + WCET,,. (3.16)

By using (3.16), it can be seen that the system will not be able to fulfill the WCET
condition (3.4) if the number of events n; is unbound. Similar to model exchange FMUs,
the real-time criteria (3.2) can only be guaranteed if the number of events is limited or
the FMU does not communicate any event at all.

Prediction-based Event Mapping

State prediction in the FMI 1.0 for co-simulation is performed by calculating one step
ahead. In contrast to the state prediction in FMI for model exchange, it is necessary to
re-calculate the whole period if an external IEC 61499 event has occurred. Similarly, the
period from the last saved state to the event time has to be re-calculated in FMI 2.0
when using the state retrieval mechanism. In case of an external event, the step function
of the FMU has to be called twice and the prediction WCET evaluates to

WCETpreq = 2 - WCETyep + WCET,. (3.17)

As a result of the inefficient operation stated in (3.17), the minimum interval between any
communication point and an IEC 61499 event issued to an FMU is artificially extended
and restricts the real-time capability of the system.

o7

3.

INTERACTION STUDY

58

A WCET analysis may not only have to cover the code of the FMU itself but also that
of connected tools as well as communication facilities. Even if the source code of coupled
tools is available, it is very unlikely that complex simulation tools which are not tailored
for real-time operation provide any tight WCET. Currently, no co-simulation slave
targeting hard real-time operation is known or known to be developed [33]. In addition,
the used communication facility may introduce another source of uncertainty and may
not provide any real-time guarantees either. An application running in real time will
most likely have to implement a best-effort approach without any guaranteed response
time.

3.3.5 Tool Coupling

The FMI for co-simulation needs a master algorithm which actively schedules the execution
of slaves [38, 40]. The master algorithm may either be implemented by means of IEC 61499
or externally using some kind of FMI wrapping component. On the one hand, using
IEC 61499 FBs to implement the master algorithm reduces the implementation effort
of the FMI wrapper and increases the flexibility. The master algorithm can be adapted
to the application requirements without changing the FMI wrapper and a lightweight
wrapper can be used. On the other hand, implementing the master algorithm directly
in the IEC 61499 application adds complexity to the application and may require the
control engineer to deal with the complexity of the master algorithm. Especially on
implementing advanced master algorithms, additional information like the capabilities of
the slave have to be passed on to the IEC 61499 application.

An advanced master algorithm coupling several FMUs does not only have to transfer
the last step results but also has to consider the structure of the FMUs by solving any
occurring algebraic loop at each communication step [38]. When resolving an algebraic
loop, a subset of connected FMUs may have to re-calculate the last step without actually
increasing the global simulation time. Co-simulation slaves which are not involved in any
algebraic loop do not need to be considered while resolving algebraic loops and should
not be reset to gain proper performance. Hence, the advanced master algorithm has to
be aware of the connection structure to detect any loop and resolve it properly.

Although an advanced master algorithm may query connection information of FBs by
using management FBs [50, p.49ff], it adds another layer of complexity to transparently
handle the execution of the FMI FBs. Especially if the control engineer who is configuring
the IEC 61499 application should not have to deal with details of the master algorithm
and if the master algorithm should be able to handle a variable number of connected
FMUs, it is more constructive to implement the master algorithm separately. In case of
an external master algorithm, connection information has to be provided to the external
algorithm. Although the connection information may be tailored to the needs of the
master algorithm, it requires a user and configuration interface dealing with the additional
information.

In case of simple master algorithms such as fixed step size and non-repeating algorithms,

3.3. Using Co-Simulation FMUs in IEC 61499 Applications

the algorithm can be implicitly implemented by means of IEC 61499. The value con-
nections between different FBs which wrap used FMUs directly represent the system
structure. Simple scheduling may be implemented by using event connections. Because
the master algorithm will not utilize any capability information and advanced time
management, the interfaces of the IEC 61499 application to the FMUs can be kept
simple as well. In contrast to the FMI for model exchange, coupling multiple FMUs
by using IEC 61499 connections does not introduce additional errors. Each FMU only
communicates its values at specific points in time and cannot utilize any communication
between these points. For each communication point, it is feasible to trigger an event for
exchanging the calculation result.

3.3.6 Software Interfaces

According to the system model described in Section 3.3.1, a master algorithm as well as
some logic managing connected FMUs are needed. The master algorithm controls the
execution and data exchange of FMUs and may be implemented by simply calling the FMI
value access and fmiDoStep functions on receiving incoming events. Management logic
is needed to load and instantiate connected FMUs and, depending on the implementation
of the master algorithm, to configure the connection structure.

The stated interaction scheme between an IEC 61499 application and one or more FMUs
does not differ significantly between FMI for co-simulation and FMI for model exchange.
Software interface concepts developed for the FMI for model exchange are applicable to
co-simulation as well, assuming the model data is not directly accessed and the operation
of the solver is not restricted beyond the limits provided by the FMI for co-simulation.
Co-simulation constraints include the restriction of data exchange to discrete points in
time only and require the solver to be able to interrupt its operation. All criteria are
met by common solving algorithms which justifies the use of SIFB concepts described in
Section 3.2.6 for co-simulation scenarios as well.

Because every FMU for co-simulation just communicates the in- and output values of
the system instead of requiring a solver which calculates the continuous states, only a
solver which handles algebraic loops has to be provided. Although an FMI service faces
a reduced implementation effort compared to an implementation containing a full-blown
ODE solver, using external libraries that support FMU management still might speed
up the development process. Like for the FMI for model exchange, libraries supporting
the FMI for co simulation are already available [32, 36, 48].

3.3.7 Use Cases

The testing, training and validation use cases presented in Section 3.2.7 can also utilize
the FMI for co-simulation, if each involved tool supports the interface. Instead of using a
solver common to all included models, a set of specialized solvers maintained by coupled
simulation tools can be deployed. By using the FMI for co-simulation, models which do
not provide an ODE representation but maintain an FMI interface, can be included as

59

3.

INTERACTION STUDY

60

well. Such models include lookup tables or other data-driven models like trained artificial
neural networks and support vector machines. These models may be implemented by the
FMI for model exchange which utilizes the event mechanism as well. However, using the
FMI for co-simulation introduces less overhead due to simpler access functions. Currently,
no tool focusing on data-driven models is known but some tools that only support the
FMI for co-simulation exist [33].

As described in Section 3.3.4, it is unlikely that a co-simulation FMU will be able to
provide any hard real-time guarantees. Hence, it is not advised to use these FMUs
to control safety-critical applications. Instead, FMUs may be used to simulate critical
system behavior parallel to its operation and pass the system inputs on to the connected
FMUs [75]. In the parallel observer setup [63, p.335f], large deviations between measured
and simulated values indicate a possible system failure. Although the FMU may not be
able to provide any real-time guarantees, it may be used in safety-critical setups featuring
fault detection and diagnosis.

3.4 Encapsulating IEC 61499 Applications in Model
Exchange FMUs

3.4.1 System Architecture and Model

Encapsulating any external control logic into an FMU requires the executing component
to provide a set of features usually not found in industrial control applications [37]. To
be fully FMI-compatible the notion of time of the FMU must not simply increase linearly
according to real time but has to be controlled by the external solver which includes the
FMU [39, 40]. Additionally, an FMU for model exchange 1.0 is required to use given
memory management functions only [39, p.16] and may be instantiated several times. In
FMI 2.0, an FMU may signal that it is not able to be instantiated multiple times or to
use external memory allocation functions [40] which may slightly ease implementation. In
order to encapsulate an IEC 61499 application or a set of applications into an FMU, for
both FMI versions it is necessary to provide a specialized RTI or to abstract a common
RTT using a component which emulates the code of the RT1I.

Developing a specialized RTI requires detailed considerations about the used software
architecture which is beyond the scope of this thesis. The basic system model illustrated
in Figure 3.11 shall support a basic discussion of encapsulating IEC 61499 applications
into a model exchange FMU and does not provide further details needed to implement
any specialized RTT [55, p.29ff]. The proposed system model also focuses on run-time
aspects of the FMI and does not deal with the infrastructure which is needed to develop
and pack the FMU.

The model encapsulating the IEC 61499 applications, which is called IEC 61499 FMU, has
to expose several features using the FMI. A static model description file containing the
variables of the FMU may be derived from the IEC 61499 system description. Because the
IEC standard 61499 does not specify a unit system based on physical units, a correlation

3.4. Encapsulating IEC 61499 Applications in Model Exchange FMUs

FMU
IEC 61499
Applicationsf~—{pesomsion
RTI
_|Emulator |
Event¢ <> Variable State

—=| Mapping Handling Interface

Figure 3.11: Basic model exchange TEC 61499 FMU

between unit definitions included in the model description and used data types has
to be established [39, 40, 50]. Further information regarding the semantic of a model
variable may be used to enhance the model description by providing adequately scaled
units. Because every component using the FMI has to access the static data before any
C function can be used, the XML-based model description has to be generated before
the IEC 61499 FMU is distributed.

The objective of the event mapping component is to properly indicate changes in the
internal time-discrete state, especially focusing on exposed model variables. If an event
is issued to the IEC 61499 FMU, the FMU will propagate it by using the implemented
event handling strategy. In order to determine the time of an event, the event mapping
component has to implement the time management function which sets the notion of time
for the application. The variable handling component displayed in Figure 3.11 provides
access to virtual in- and outputs of IEC 61499 applications. It has to interpolate every
read variable between two IEC 61499 events and has to provide a continuous time base.
It may also have to trigger IEC 61499 events, if some application-defined criteria are met.
A state interface handling the continuous states of the system must be provided by an
FMI-compatible FMU [38, 40]. Because the IEC 61499 does not define any continuous
states and the electro-physical behavior of a controller will not be covered in this thesis,
no continuous states are communicated. The state interface only provides simple function
stubs which establish FMI compatibility.

Depending on the purpose of the model, either an adapted RTI or a real RTI implemen-
tation which is executed by a software emulation tool may be used. On the one hand,
an adapted RTI may support event prediction and may execute IEC 61499 applications
without the need of emulating any low-level machine code. On the other hand, a software
emulator like an Instruction Set Simulator (ISS) will be able to model the behavior of
the controller more accurately [87] and will not introduce timing deviations based on
RTI modifications.

A controller can only utilize external hardware if the hardware output does not depend

61

3.

INTERACTION STUDY

62

on the current time instant. The solver needs to adjust the current simulation time
according to the implemented algorithm and does not necessarily run in real time. As
the controller generally interacts with external hardware in a bidirectional way and the
FMI neither provides any real-time guarantees nor restricts the use of an FMU, driving
external hardware is not possible. Hence, no system model including external hardware
like those stated in Sections 3.2.1 and 3.3.1 has been developed. If the interaction with
external hardware shall be studied by several independent models, it is advised to use
the FMI for coupling the controller and the hardware model.

3.4.2 Event Handling

Assuming that the RTT which is simulating the IEC 61499 system maintains timed event
queues and provides the capability of predicting the next IEC 61499 event, the FMI
can be integrated by using the provided FMI event mechanism. If the solver conducts
an event update procedure, the next item is removed from the event queue and the
corresponding algorithm is scheduled. If the event update procedure is called by an
externally triggered event, no suitable IEC 61499 event will be present in the event queue
and a resource-initiated TEC 61499 event may be triggered. After the event update has
been executed, the next event time has to be reported to the solver. Reporting may
either be done using the event indicator variables or by returning the next event time
in advance [39, 40]. If the next event time depends on continuous inputs, only event
indicators are feasible. In such an event mapping scheme, IEC 61499 events may be
triggered whenever the input deviation exceeds a certain threshold.

If the RTT is able to predict the next event occurrence, it does not need to reset its
internal discrete state. Algorithms associated with a certain event are executed on calling
the event update function. To model the execution time of algorithms, any subsequent
event can be delayed by an emulated execution time or by annotated static timing data.
If an external event is triggered, it will be scheduled conforming to the scheduling function
of the RTI but does not interrupt any algorithm which is executed on the resource [50].
Even if the intermediate event changes the executed FB inputs, it will not change the
outcome of the algorithm. The ECC state machine will sample input values after an
event is triggered and the algorithm will use the sampled values only [50, p.34]. Since no
incoming event can interfere with the executed algorithm, it is not necessary to reset the
system state.

The assumptions made above require an FMI-tailored RTT which is not available off-the-
shelf. By using an existing RTI which does not provide any interface to the internal
event queue, only events which are propagated to external components will be available.
An event mapping component may conduct the execution of the RTT until the next
IEC 61499 event is triggered or a prediction horizon is reached. The predicted event
time may be passed on to the solver which triggers the next prediction. If an FMI event
happens before the predicted IEC 61499 event is triggered, the IEC 61499 system state
has to be reset to the time of the last event. Resetting may be done by frequently taking
snapshots and re-calculating any period between the last snapshot and the incoming

3.4. Encapsulating IEC 61499 Applications in Model Exchange FMUs

event. Although it is believed that the emulation-based approach gains the most accurate
results, managing the state of an RTI may lead to poor run-time performance.

A periodic event-mapping approach which features an emulated off-the-shelf RTT elim-
inates the need of resetting the system state. The event-mapping component will
periodically indicate events and any communication between the emulator of the con-
troller and variables which are exposed by the FMI will take place at these communication
points only. On receiving an event update indicating a communication point, the RTI is
executed until the subsequent communication point is reached. The RTI or the executing
emulator still have to be able to stop the simulation at any communication point, but
resetting the sate is not needed anymore. Deferring the communication to a dedicated
communication point introduces additional errors and may not accurately reflect the
timing of the controller. Only if the simulated RTT uses a strictly periodic event-mapping
approach too, resulting errors can be seen as a part of the system behavior without
introducing any additional numerical error. In this case, it must be ensured that the
used communication points equal the control sampling points.

3.4.3 Data Model Transformation

The task of an automated or semi-automated data model transformation is to generate the
static FMI model description and binary executables from the IC 61499-compliant system
description according to a particular coupling strategy. Thereby, as much information
as possible should be preserved and manual intervention should be kept at a minimum.
In order to provide IEC 61499 compliant interfaces to external components such as
the simulation tool which uses the IEC 61499 FMU, SIFBs have to be deployed [50].
Depending on the embedded RTI, an FMI implementation may access more information
than those exported via SIFBs, but access methods cannot be represented in terms of
IEC 61499. Similar to Section 3.2.3, an abstraction via generic FBs is used to discuss the
model transformation. Beside an SIFB implementation, some interface logic may also be
represented in terms of IEC 61499 and encapsulated into CFBs.

In order to encapsulate IEC 61499-based systems into FMUs, data types from the target
system need to be transformed to the FMI data type representation. In particular,
IEC 61499/IEC 61131 types need to be casted to the basic FMI data types which are
used in the C interface. Casting can be done either directly in the IEC 61499 system
or by the FMI wrapping component. In case casting is explicitly done by means of
IEC 61499, the interface FB just needs to support the basic data types which can be
directly mapped to FMI types.

Since types which are not directly compatible with the basic FMI type system will not be
exposed, some type information may be lost. When converting types within the wrapping
component, used IEC 61131 types may be transformed to custom type definitions within
the model description. Minimum and maximum values may restrict the range of FMI
types according to the range of IEC 61131 elementary types. Nevertheless, for types
such as TIME and DATE, no corresponding FMI type exists. A mapping convention or

63

3.

INTERACTION STUDY

64

custom mapping function has to be deployed in order to access these types via FMI. For
structural data types of the IEC 61499 system, multiple FMI model variables which follow
the proposed naming convention have to be exported. Since there is no way of directly
specifying units in terms of IEC 61499 [50], FMI unit definitions cannot be automatically
generated. However, a transformation facility may support user-defined type information
to amend exported variables.

The selection of exposed model variables may either be done manually or automatically via
specialized SIFBs which communicate exposed variables. In any case, exported variables
need to be chosen while transforming the data model and generating the IEC 61499
FMU. A manual selection may reduce the amount of exposed variables without changing
the IEC 61499 application but an automatic selection may reduce user intervention
while transforming the system. The encapsulated RTI may additionally provide model
variables beyond the IEC 61499 standard. Such variables may be used to debug the
system and the RTT itself. For instance, an RTI may expose the internal variables of an
FB to debug it. Nevertheless, for the selection of model variables, a separate mechanism
which is beyond the IEC 61499 has to be deployed.

Since IEC 61499-based systems operate in a discrete mode only [50], an IEC 61499 FMU
does not have to expose continuous state variables. Only when interpolating outputs by
other means than ZOH, state variables and continuous outputs are necessary. Since an
IEC 61499 FMU may also allow continuous inputs which will be discretized, state events
may still be used to signal triggered IEC 61499 events. Hence, the FMU may expose a
set of event indicators to trigger event processing.

3.4.4 Real-time Operation

Running the IEC 61499 applications encapsulated into an FMU requires timed data and
event flow from the solver to the IEC 61499 applications. The FMI does not specify
any timing requirements kept by the solver and maintains its own simulation time [39,
40]. The simulation time does not necessarily correspond to real time and the real-time
duration between any two FMI function calls may be arbitrary and unbound. As a
consequence, real-time operation of IEC 61499 applications which requires to receive
events or data before the associated real-time instant is generally not feasible. Particularly,
the event mapping schemes requiring to reset the state of the RTI do not execute in real
time. If a period in time is once executed in real time it cannot be executed again using
the same real-time instances.

The event mapping approach which manipulates the resource event queues requires a
specialized RTT version providing access to the event queues and introduces a certain
access overhead. Because such an RTT is not found in real-time applications, the real-time
execution may either be defined corresponding to the event timing of a reference RTI or
corresponding to external interface timings. The first case strongly depends on the timing
of the FMI event update function, which is not restricted by the FMI. The second case

3.4. Encapsulating IEC 61499 Applications in Model Exchange FMUs

may decouple the reference timing of the interface up to a certain extent but generally
also requires a timed event processing.

A strictly periodic event-mapping approach further decouples the timing of the controller
from the FMI operation. The solver has to issue the synchronization event before the
synchronization point in real time is reached, but if it is triggered too fast, the event
mapping component may block the operation of the solver. For real-time applications,
it is still necessary to restrict and analyze the timing of the solver, but synchronization
efforts do not cover every IEC 61499 event anymore.

Hard real-time operation only based on the FMI specification is not possible but the
used solver may provide certain additional real-time guarantees. To analyze the real-time
behavior of the system, only the event update functions have to be considered. Other
functions which are accessing exposed variables do not directly trigger the IEC 61499
execution [50] and do not have to be targeted during timing analysis. Only when
determining the overall execution time of the solver, the access function timing needs to be
considered. Depending on the implemented event mapping approach and the component
which requires real-time execution, a subset of event update function calls, denoted by
E, must be issued in time. Following the nomenclature described in Section 3.2.4, the
real time (3.2) and (3.9) may be generalized to (3.18) which is applicable to various
use-case-specific timing requirements.

Ver € E:t(eg) = lim M(¢) (3.18)
t—>t(ek)_
For instance, the periodic event mapping approach only requires periodic communication
events to be issued in real time and E is given by

E= {€Z|Z € N/\t(ei) =T, Z}

Because the FMI specifies passive FMUs which are not initiating any action, (3.18) must
be guaranteed by the solver. Every WCET analysis to guarantee the event timing has to
cover the implementation of the solver. Necessary prerequisites of analyzing the timing
of the solver are bound WCETSs of used FMU functions including those provided by an
IEC 61499 FMU.

3.4.5 Model Coupling

The TEC 61499 application which is encapsulated within an FMU may be coupled to
external system models using the FMI [39, 40]. Any logic coupling multiple FMUs must
be implemented by the including software and does not have to be covered by the FMU
itself. However, an IEC 61499 FMU may utilize model coupling to communicate to other
TEC 61499 FMUs via the FMI. Splitting the IEC 61499 system across multiple FMUs
reduces the implementation effort of an FMU to single device or resource implementations
but requires different FMUs to maintain parts of the same IEC 61499 conform system
description. Additionally, the resource or device topology has to be reflected by combined

65

3.

INTERACTION STUDY

66

FMUs and the connections between these FMUs. The solver has to directly utilize
IEC 61499 connection information or the information has to be transformed for a
particular solver to properly model the IEC 61499 system.

Encapsulating every IEC 61499 device into one FMU eliminates the need of synchronizing
any connection information but increases the implementation complexity of the FMU.
The wrapping FMU has to differentiate between multiple independent devices and
must properly shield used resources like virtual hardware ports, memory and processor
time. Moreover, the wrapping FMU must implement virtual network links passing on
information between devices and may have to handle communication aspects such as the
packet timings and failure rates.

3.4.6 Software Interfaces

An IEC 61499 FMU may maintain a set of internal model variables which are exposed by
the FMI. These internal model variables may be accessed by an IEC 61499 application via
SIFBs either in an application-initiated way or by triggering IEC 61499 events whenever
a model variable changes significantly. Each exposed model variable may simulate a
virtual in- or output connection, linking the controllers to external hardware.

Depending on the used event mapping approach, additional software interfaces which
control the current execution and the controller time are necessary. The periodic event-
mapping approach makes the least demands on additional software interfaces. Only
a common time base which properly synchronizes the controller and the FMU time is
needed. If a none-real-time simulation is performed, the event mapping component has
to be able to halt the execution of the RTI upon reaching the next synchronization point.
The event-mapping approach utilizing the event queues of the RTI also requires software
interfaces between the event-mapping component and the RTI which provide access
to the used queues and predict events or reset the state of the RTI. These additional
software interfaces are not specified by the IEC 61499 [50] and have to be implemented
in an RTI-specific way.

In contrast to the other general ways of interaction which were stated so far, the
encapsulation of IEC 61499 applications into a model exchange FMU requires extensive
modifications of the encapsulated RTT or an intermediate layer emulating RTI code. Some
open-source RTIs are currently available which may be modified to support additional
queue interfaces [37, 102]. Alternatively, an ISS which emulates the target device code
may be used to decouple the RTI timing. Some ISS implementations already exist and
may provide a basis for implementing the emulator component [72, 78].

Since the FMI 1.0 for model exchange specifies that only the memory management
function given by the solver shall be used, existing software may violate the FMI 1.0
specification. In contrast to other light-weight FMUs, the use of existing, heavy-weight
software may not be applicable to embedded platforms anyway which limits the impact
of the standard violation drastically. It does not make much sense to implement an
IEC 61499 simulation on an embedded platform that does not feature standard memory

3.5. Encapsulating IEC 61499 Applications in Co-Simulation FMUs

management functions. Instead, the IEC 61499 RTI may be directly deployed. In this
case, any functionality gained by the FMU may be much more efficiently implemented
by the RTT itself. FMI 2.0 relaxes the memory management requirement by providing
an optional capability flag.

3.4.7 Use Cases

The main use cases of the FMI encapsulation correspond to complex simulation and testing
scenarios. By using an IEC 61499 FMU, the behavior of the controller may be integrated
into complex plant models. When using an emulator which is executing the TEC 61499

RTI, it is expected to model timing very accurately down to single processor cycles.

Especially when examining fast, transient phenomena, an emulation-based IEC 61499
FMU may give detailed results. On the other hand, the event queue-based model is
expected to execute much faster due to the decreased overhead and the coarse-grained
granularity making it feasible to simulate long operational periods.

In contrast to the presented co-simulation scenarios [88, 90, 91, 110], an IEC 61499

FMU does not require the including tool to maintain an application-specific interface.

Also, timings may be modeled much more accurately, compared to static delay-based
approaches. However, implementing an IEC 61499 FMU introduces considerable initial
development effort and run-time overhead by frequently triggering FMI events. In
simulation scenarios which include a large amount of equally programmed IEC 61499
application instances, an IEC 61499 FMU may reduce the implementation effort by
avoiding manual instantiation of loosely coupled IEC 61499 controllers. It is expected
that the encapsulation of IEC 61499 applications in an FMU also enhances re-usability
between different models and different tools. A properly packed FMU can be imported
in various tools without establishing a tool-specific connection.

3.5 Encapsulating IEC 61499 Applications in
Co-Simulation FMUs

3.5.1 System Architecture and Model

The FMI for co-simulation requires an FMU to be able to stop its simulation at arbitrary
communication points [38, p.16ff]. Like the FMI for model exchange, a co-simulation
IEC 61499 FMU has to halt the RTI operation. In contrast to the FMI for model
exchange, halting does not necessarily occur if an IEC 61499 event is triggered but on
previously defined time instants. An emulator which is executing the RTI code or an
adapted version of the RTT is needed to control the execution time of the RTI. The
resulting FMI-compliant system model which is illustrated in Figure 3.12 is very similar
to the system model described in Section 3.4.1.

The execution control component stops the execution of the RTI if a communication
point is reached or further execution is not reasonable. It also restarts the execution if the

67

3.

INTERACTION STUDY

68

FMU
IEC 61499
Applications
| RTI |
| Emulator |
Execution Variable Model
Control Handling [iDescription

Figure 3.12: Basic co-simulation IEC 61499 FMU

___|Execution)_| Variable || Model
|EC 61499)((Zon%rlol Hanldling Desc?'i;tion
A lications IEC 61499
pp Network [
Interface
RTI [|
Master Adapter FMU

Figure 3.13: Standard communication facility-based co-simulation FMU

simulation master requests the next simulation step. The variable handling component
interpolates exposed variables between two consecutive IEC 61499 events or between two
consecutive communication points. Depending on the used event handling approach, it
also has to implement a virtual input concept which triggers IEC 61499 events according
to the event mapping approach.

The FMI for co-simulation specification explicitly mentions a distributed co-simulation
scenario connecting different co-simulation tools by a communication infrastructure
[38, 40, p.14]. Also, the IEC 61499 specifies a distributed infrastructure and CFBs
accessing remote services [50, p.47f]. The system model which is illustrated in Figure 3.13
introduces a simple master adapter which connects a co-simulation master and an
IEC 61499 infrastructure by using control-specific communication facilities. Similar
topologies can be found in various co-simulation frameworks and standards such as the
HLA [15, 38, 40, 51, 107], but the architecture specifically assumes the use of control
network facilities. On utilizing the control network facilities, the IEC 61499 infrastructure
does not have to be encapsulated into an FMU and may be deployed by common
IEC 61499 configuration tools. Since the IEC 61499-based infrastructure generally does
not maintain any simulation time different to real time, the master adapter does not
fully conform to the FMI specification and can only approximate the co-simulation
computation flow.

3.5. Encapsulating IEC 61499 Applications in Co-Simulation FMUs

It is easily possible to include external hardware which is connected to the IEC 61499
controllers because the standard communication facility-based architecture operates
in real time only. It is not necessary to modify conventional RTIs which reduces the
implementation effort drastically. However, this simplicity causes decreased accuracy
compared to a time-controlled approach. Whether the simple approach is able to
provide adequate accuracy strongly depends on the implemented master algorithm and
different timings between FMI function invocations. If the master algorithm increases

the simulation time slower than real time, an accurate emulation is generally not feasible.

3.5.2 Event Handling

The event handling controlling the notion of time of an RTI requires the RTI to stop

its operation at a communication point without further increasing its reference time.

This can be done either by an emulating middleware that controls the RTT execution or
by providing an RTT which is directly capable of stopping its execution. In contrast to
model exchange FMUs, it is sufficient to stop the operation without being able to reset
the state or to manipulate the event queue [38, 40, p.16]. Each FMI step function call
executes the TEC 61499 system until the next communication point is reached.

To properly access values exposed by the FMI during communication points, the values
have to be buffered by the variable handling component because an TEC 61499 event
which queries values cannot be issued if the RTI currently halts. If the IEC 61499
infrastructure is executed again, the variable mapping component will accept output
values by receiving IEC 61499 events. In an active event mapping strategy, the variable
handling component has to trigger IEC 61499 events on its own, if a variable value set
by the master algorithm or during interpolation changes significantly. Alternatively, it
may implement a passive concept, providing the current variable value only on receipt of
a requesting IEC 61499 event.

When using the standard communication facility-based architecture and a standard RTT,
a non-blocking event handling strategy has to be used. The proposed event handling
strategy does not require the controller to stop its execution and does not require the
communication facility to transfer timed values. Following these constraints, the master
adapter FMU actively has to control the system time as well as the sample time of exposed
variables and transfer the sampled data to the IEC 61499 controller. The IEC 61499
system may either actively query values which are buffered by the master adapter or
passively receive requests from the master adapter FMU which indicate value changes.

Each calculation needed to compute the result of the next step is implicitly done by
executing the IEC 61499-based system. The doStep function only saves the next
synchronization time ¢; and returns immediately. If the step function blocks until the
next communication point ¢; is reached, the time between sampling the current state
and setting new values, At;, increases by the activity of the master algorithm between
invoking the step function and accessing exposed FMU values. Figure 3.14 illustrates two
possible event mapping sequences and locates the synchronization error At;. Following

69

3.

INTERACTION STUDY

70

Master | i t) Master :
se ste e se
Variable pk 9 _ get step set| | get
Handling r Variable L
Iset t Handling Moot ¢
wait . f .
IE(t:oﬁFll\il‘l99 t IEC 61499 wait Y wait
i to FMI
FMI to v vi
a FMI to y
IEC 61499 . IEC 61499 =
send| |-+receive send .
send| |--receive send
IEC 61499f -~ - t IEC 61499} i
ft>0 at = Orec
(a) Inexact synchronization (b) Exact synchronization

Figure 3.14: Standard communication facility-based event mapping

the FMI for model exchange specification, the simulation time has to stop during a
communication point and At; = 0. A synchronized sampling point cannot be guaranteed
in a real-time operation but the event mapping strategy tries to approximate At; < T,.
To minimize At;, the step function returns immediately and the first call to any getter
function will block until ¢; is reached.

The FMI for co-simulation does not specify the order of setter and getter function
invocations and the implementation has to deal with every possible invocation order. On
the one hand, if a value is set before a getter function has been called and ¢; is reached,
it has to buffer the value until ¢;. Figure 3.14b shows that if the setter function is called
before t;, it will return immediately and sending is triggered at ¢; without any delay.
On the other hand, if a value is set after the communication point ¢;, it has to be set
immediately in order to avoid unnecessary delays. In Figure 3.14a the getter function has
to delay until ¢; is reached but no data was previously set. As soon as the data destined
for the IEC 61499 applications is available, the variable mapping component will send
the values.

To expose an output variable on a controller to a co-simulation master, the master
adapter may either buffer any output value actively transmitted by the controller or
request the output variable values on every synchronization point. The applicability of
each alternative strongly depends on the used communication facility and the capabilities
of the controller in decoupling network outputs from the control operation. If a controller
is not able to store results and has to calculate the output upon request, the resulting
timing may be strongly biased.

Different virtual in- and output schemes can be used to decouple synchronization points
from the scheduling of the IEC 61499 application. Scheduling may either be triggered by
significant input deviations or by timed events which are triggered inside an IEC 61499
application. In the first case, the master adapter keeps track of significant changes and
actively initiates a transmission. The second case requires a passive master adapter
returning previously set values on request. It is important to notice that in both cases
the event time does not necessarily correspond to any communication point.

3.5. Encapsulating IEC 61499 Applications in Co-Simulation FMUs

At each step, getter and setter function take a certain amount of time to execute. Limited
by the execution times, a step size smaller than the accumulated execution time is not
feasible. As a consequence, zero-size steps for event handling and step rejection are not
supported. However, other optional features like variable communication step sizes and
input interpolation can be implemented without restricting the real-time execution.

3.5.3 Data Model Transformation

Transforming variable types and unit definitions is very similar to FMI for model exchange.
Especially for a dedicated co-simulation RTI which encapsulates and executes the system
description, the same model variable transformations apply. Hence, the findings which
are stated in Section 3.4.3 will not be repeated. Instead, the following section highlights
important differences in transforming the IEC 61499 compliant system description to an
FMU for co-simulation.

When using a standard communication facility-based interaction, one may not be able
to automatically differentiate communication SIFBs which are used by the FMU for
co-simulation and communication SIFBs which send messages to external components.
Although the address property of a communication FB may hint the usage, no certain
mapping can be achieved. Additionally, the external system description may no be part
of the FMU itself. Separating the FMU implementation and the IEC 61499-based system
description may ease re-usability of a certain FMU. Hence, user input is required to
generate and configure exposed variables of the co-simulation FMU.

FMI for co-simulation adds optional support of supplying derivatives of model variables
at communication points. An event mapping component may utilize or even generate
derivatives to interpolate continuous IEC 61499 inputs and external continuous signals.
Nevertheless, the maximum order of derivatives has to be encoded in the model description.
The maximum order may depend on the actual application and may have to be provided
by the user before generating the IEC 61499 FMU. Dynamic executable code may have
to be generated according to the maximum order of derivatives, but the model description
is not affected otherwise.

An encapsulated RTT which uses communication facilities may require additional param-
eters such as network addresses to run in a co-simulation. The parameters of an FMU
may be automatically extended to take these run-time parameters into account. Since
exposed model variables are hard-coded into the model description, no generic FMU
which handles all types of systems can be generated. At least exposed variables need
to be set in the FMU on demand. Nevertheless, storing the IEC 61499-based system
description may still be beneficial because often communication interfaces are more stable
than the control logic implementation.

3.5.4 Real-time Operation

Similar to the FMI for model exchange which is described in Section 3.4.4, the FMI for
co-simulation does not specify any real-time requirements or real-time parameters [38,

71

3.

INTERACTION STUDY

72

40]. As a consequence, hard real-time operation covering every master algorithm is not
possible and even a soft real-time implementation suffers from strong limitations and
possible inaccuracies. The first event mapping approach relies on halting the execution
of a system for every communication point. During the system halts, simulation time is
considered to be constant and no event can be processed during the real-time instants used
for communication. Every event e; which is scheduled at a real-time instant reserved for
communication violates the real-time constraint (3.18) given in Section 3.4.4. Unless the
application excludes events during communication points, the application will generally
not be able to trigger every event in real time. Additionally, the emulating component
and the modified RTI, respectively, add another layer of complexity which complicates
triggering events in real time.

The standard communication facility-based approach relies on a real-time operation of
involved controllers but also suffers from similar synchronization inaccuracies. Real-time
operation of this approach is defined by issuing every communication point ¢; in time. To
issue a communication point in time, data passed on to the IEC 61499-based system has
to be known before ¢; occurs, and data sampled at ¢; must be passed on to the simulation
master. Especially the order of the getter and setter function invocations determines
the timely accuracy of the analyzed approach. If the setter functions are called before
any getter function is triggered, the value passed on to the IEC 61499 applications may
be buffered and issued correctly. In this case, the timely synchronization error At; is
determined by the implementation of the master adapter and may be approximated with
At; = 0. However, if the master algorithm inverts the function call order, the results
of the IEC 61499 applications have to be returned before new data can be set. At an
inverted call order, the synchronization inaccuracy is mainly determined by the time
between the getter and the setter function invocation; the inputs at the controller are
applied late.

If the execution of the co-simulation does not gain any results before the real-time
instance of the next communication point occurs, the system may be sampled without
any getter function call. In this case, the additional delay adds to the synchronization
inaccuracy At; and a buffer has to be implemented which holds previously sampled
results. To maintain the sampling scheme which is specified by the co-simulation FMI
and to minimize the synchronization error, it is important that the master algorithm and
other included co-simulation components finish the simulation step before t;. Any late
result will be biased and therefore be of limited use even in a soft real-time application.

Providing hard real-time guarantees is not possible in general and practically not feasible,
but a best-effort operation may provide adequate results. To produce resilient results, the
synchronization error as well as any buffer overflow due to consecutive deadline misses
should be recorded and evaluated. Only if synchronization errors can be considered small
compared to the sampling size, the real-time approach will be feasible.

The communication facility introduces additional delays and jitters which may influence
the simulation output. If the communication facility does not support a timed transmission
or time-stamped values, its timing will have to be considered as a part of the control

3.5. Encapsulating IEC 61499 Applications in Co-Simulation FMUs

operation. Including the communication timing may on the one hand increase the
simulation accuracy if the master adapter behaves like a remotely added in- and output
device. On the other hand, network delays may not be well controllable and add a source
of uncertainty. Only if a timed operation is possible, the master adapter will be able to
operate without an own clock and the communication timing can be neglected [55].

3.5.5 Tool Coupling

The communication between different tools within an FMI co-simulation setup is handled
by the FMI master. Each FMU only has to maintain the connection to the coupled tool
or simulator [38]. The first event mapping approach accessing a modified RTI or an
emulator may either directly include the code of the tool into the FMU or maintain a
connection to an external implementation. Encapsulating the whole RTT may ease the
FMU deployment by eliminating the need for maintaining a separate tool installation,
but it also restricts the system integration of the tool. An FMU-encapsulated tool may
only use files contained in the archive and may not be able to modify system parts which
require a high level of privileges.

The standard communication facility-based approach assumes a distributed scenario and
may use various communication media to couple the IEC 61499-based RTI. IEC 61499 only
defines communication via an ASN.1-based protocol [50] but available RTIs implement
different network protocols such as Modbus TCP or MQTT as well [37]. Compatibility
to different existing RTIs will be enhanced, if an existing protocol is used instead of
creating a new one. By relying on implemented protocols, the RTI can be used out of the
box without implementing any communication facility on the controller side. Contrary, a
tailored network protocol or communication facility such as shared memory may reduce
the impact on the simulation results by providing a time-stamped transmission and less
communication overhead.

3.5.6 Software Interfaces

Like for the model exchange FMI described in Section 3.4.6, co-simulation IEC 61499
FMUs following the stopping-based approach also require a modified RTI or an emulator
which executes the RTI. Exposed model variables may be accessed in a very similar
way but the execution control can be implemented on a coarse level. The FMU only
has to stop the operation of the controllers if a communication point is reached and
does not need to take single events into account. Although the approach also needs a
communication channel which transfers execution control information, it can be much
simpler and modifications on the RTI or an emulator may be limited.

A master adapter which accesses a standard communication facility does not have to
deal with any IEC 61499 RTI directly but only implements the communication protocol.
The communication mapping between the FMI interface and the communication facility
highly depends on the communication paradigm of the protocol. In case of an ASN.1
over TCP /IP-based solution, the master adapter may either implement a passive server

73

3.

INTERACTION STUDY

74

or an active client application [50]. A passive master adapter which implements the
server listens until a client controller connects to it and the server accesses exposed
variables buffered within the master adapter only on client requests. An actively acting
master adapter on the other hand connects to a server provided by the controller and
queries values at every communication point. It reduces the network load by requesting
only needed values but requires the controller to decouple its operation from incoming
communication requests. If the controller only schedules FB execution on incoming
requests, the resulting timing depends on the communication points of the FMI and may
not reflect field operation.

Some software libraries which implement different network protocols are already available
and may support the development process of a master adapter. In particular, many
operating systems already implement a TCP/IP network stack [54, 111], some fieldbus
protocol implementations are available [60, 65, 106], and ASN.1 libraries and compilers can
be used to support the development of ASN.1-based protocols [53, 105]. Considerations
taken in Section 3.2.6 regarding the usefulness of ODE solving libraries also apply to
communication libraries. It is still important to check supported features, licenses,
development statuses and supported environments before using an external software
library.

3.5.7 Use Cases

On using a co-simulation IEC 61499 FMU, control aspects can be included in co-
simulations which cover multiple simulation tools. In such a co-simulation setup, the
IEC 61499 FMU models control aspects like process automation based on an IEC 61499-
compliant control system description. On successfully testing the control scheme, it can
be deployed on the targeted infrastructure including only minor changes of interfaces.
The common XML format specified by IEC 61499 eliminates the need of manually
transforming the application model into the input format of the controller. In contrast to
the co-simulation approach using a master algorithm which is embedded in a controller,
the TEC 61499 FMU-based approach features an external master algorithm which may
adapt to the other co-simulation tool capabilities.

Possible use cases of an TEC 61499 FMU for co-simulation include testing and validation
scenarios which integrate multiple co-simulation tools coupled by an external master
algorithm. The stopping-based approach focuses on scenarios requiring a detailed view
on the timely behavior of the controller. If the co-simulation focuses on transient activity
with time constants near the control response time, it is expected that the stopping-based
approach will deliver more accurate results. If the stopping time of the model is short
compared to a communication step and it is feasible to run the simulation in real time, the
standard communication facility-based approach will entangle a simpler implementation
and the availability of standard components.

For HIL setups using an IEC 61499 FMU for co-simulation, only the presented real-
time-capable approach is feasible. It is important to notice that the approach does not

3.6. Comparison

provide any real-time guarantees at all and is therefore not well-suited for safety-critical
applications. Any safety-critical application must implement safety measures which avoid
any harm, in case that the FMU does not deliver correct results in time. Controlling,
for example, a HIL-based experiment is up to the external master algorithm which may
be embedded into a comprehensive scientific workflow. Such a workflow may not only
include the experiment itself but also some setup activities and some post-experiment
evaluations.

3.6 Comparison

Tables 3.1 to 3.3 summarize different event handling, model and tool coupling approaches
which are described in Sections 3.2 to 3.5. The tables further indicate strengths and
weaknesses of the approaches by scoring different factors. Scores are given from “+ +”
corresponding to the best expected results to “- -” corresponding to the worst. Since
objectively measuring discussed criteria lies far beyond the scope of this thesis, only a
rough estimation based on previous insights can be given.

3.6.1 Event Handling Approaches

The periodic event handling approaches described in Table 3.1 sample the state of the
FMU and exchange information at discrete points in time only. The prediction-based
event handling approaches try to estimate the next FMU event occurrence in order to
issue IEC 61499 events in time. The internal event propagation described in Section 3.4.2
triggers an FMI event on every occurrence of an internal IEC 61499 event. Interface
event mapping does not propagate every internal event but triggers an FMI event on
every IEC 61499 event passed on to the FMI. The stopping-based co-simulation approach
which halts the system on every communication point and the communication-based
approach which utilizes standard infrastructure are both described in Section 3.5.2 and
are considered in Table 3.1.

HIL setups require the system to include external hardware driving the HuT. As stated
in Table 3.1, not every event handling approach supports the use of external equipment.
The encapsulation of IEC 61499-based controllers into a model exchange FMU shields
the controller and sets the execution time of the controller according to the synchronized
simulation time. Both features are highly counterproductive in HIL setups. On the other
hand, periodic event handling, especially when it includes model exchange FMUs, allows
highly predictive timings which are controlled by the IEC 61499 application and may be
successfully used in HIL setups.

The real-time operation column summarizes the ability of providing real-time guarantees
and of running the IEC 61499-based controller in a real-time mode. Since real-time
operation is a vital part in HIL setups, results highly correlate. Prediction-based event
handling in co-simulation most likely will not achieve any hard real-time guarantees but
may be operated by a best-effort strategy suitable for some HIL setups. In this case, the

75

Real-time Software Implementation

Point of Interaction HIL Setups Accuracy FMI Features

Operation Support Effort

Model Exchange in IEC 61499:

Periodic Event Handling + + + + - + + + + +

Prediction-Based Event Handling - -- + + + + -
Co-Simulation in TEC 61499:

Periodic Event Handling + + - + + 4+ + 4+

Prediction-Based Event Handling - - - + - - -
TEC 61499 in Model Exchange:

Periodic Event Handling - - - - 4+ 4 -

Internal Event Propagation - - - - + + + + - - - -

Interface Event Propagation - - - - + + + - -
TEC 61499 in Co-Simulation:

Stopping-Based Integration - - - 4 + - -

Communication-Based Integration + + - - - - + + 4+ o+

INTERACTION STUDY

3.

Table 3.1: Comparison of event handling approaches

76

3.6. Comparison

soteoldde UOIjRULIOSURI) [9POU dIjRIIOINE JO UosLIRAUIO)) :7°¢ d[qR],

+ + - - - - UOT)RISIIU] Pose-UOIIRITUNUITO))
—+ + 4+ + + + QOE@ﬂDmQ@OQm JOII(I
TN UOHRMUIS-0) Ul 66719 DI
- - + + + + + SO[qRLIBA [OPOIN 66719 DHT PodAT, Arerousn
+ + + + - SO[qRLIRA [9POIN 66719 DHT PRIy odAT,
TINA 93uetPXY [PPOIN 0% 66719 DHI
- - + + + + + TN pedAT, Afemousn
+ + + + + - [N poruysoy odAT,
66719 DHT 03 TINA
QOE@MNMMW (g QOMMMMMSH\/MQH MMMMMM\W sodA T, o[qerrep yoroxddy uorjeuLIOjSURIT,

7

3.

INTERACTION STUDY

78

HIL capability is scored slightly better than the real-time capability which focuses on
predictive timings.

Accuracy mostly focuses on errors introduced by the co-simulation and event mapping ap-
proach. Some approaches such as the prediction-based event mapping for model exchange
communicate every relevant event at the time of its occurrence and do not introduce
any additional error. Other approaches, such as the communication-based co-simulation,
delay event transmission and introduce notable deviations. The communication-based
approach only exchanges data at communication points and, depending on the master
algorithm, introduces an additional timely inaccuracy at every synchronization point.

The FMI feature column weighs the number of optional FMI features and assumptions
about the FMI operation which are necessary to implement the approach and which
could be provided to external software, respectively. For example, the event propagation
approaches for a model exchange encapsulation of IEC 61499-based controllers fully
support the FMI specification without relying on frequent step-event emissions. The
communication-based co-simulation approach only receives a low score in the FMI feature
category because it requires the master algorithm to follow an invocation sequence which
is not specified by the FMI standard.

The software support and implementation effort scores deal with additional software to
be developed but do not cover any configuration details necessary to integrate FMUs.
Software support summarizes the availability of tools and libraries which support the
development process. For many approaches using FMUs in IEC 61499 applications, some
libraries and tools supporting FMU handling already exist. Encapsulating IEC 61499
applications into FMUs mostly requires significant changes of the executing RTI and
suffers from high implementation efforts.

3.6.2 Data Model Transformation Approaches

Automatic and semi-automatic model transformation approaches are briefly summarized
in Table 3.2. Since the data models of FMI for model exchange and FMI for co-simulation
are closely related in terms of model variable and type definitions, the integration of
FMUs in TEC 61499-based applications is covered by one entry. Type-restricted coupling
refers to transformation strategies where the set of allowed data types which are used in
an interface is restricted to common types only. Casting may have to be done manually
within the model or application. Contrary, generally typed approaches try to transform
and generate custom data types whenever feasible. The direct encapsulation of IEC 61499-
based systems in FMUs for co-simulation includes the RTT into the FMU and allows a
more extensive model transformation. Communication-based integration, in contrast,
restricts interfaces to general communication interfaces only and therefore limits model
transformation.

The transformation of data types is always limited by FMI type definition facilities.
Especially on using standard communication facilities, types are bound to supported
protocols. Nevertheless, generally typed approaches may exploit existing facilities to

3.6. Comparison

preserve as much information as possible. Similarly, the transformation of units is strongly
limited by the lack of IEC 61499 unit support. A generally typed approach may encode
units into custom IEC 61499 type definitions, but native unit support is not achieved.

The interface variable column of Table 3.2 rates the level of automatic variable trans-
formation support. It is thereby assumed that the interface of the included system is
transformed to the including system. For instance, the model variables of an FMU
are transformed to FB variables in an IEC 61499-based system. Since the FMI clearly
defines all variables and introduces a variable naming convention for structural data types,
transformation of interface variables is generally well-supported. Only in a communication-
based integration an IEC 61499 system description may not be fully available to generate
an FMU for co-simulation. Additionally, the set of relevant communication FBs may not
be easily identified.

Some transformation approaches may require manual user intervention which limits the
applicability of an automatic transformation. For instance, the communication-based
approach requires a manual identification of relevant FB definitions to generate a set of
model variables. Contrary, other approaches support automatic detection of interface
variables in case dedicated FB types are used. Hence, automatic transformation is
considered to be generally well-supported.

The implementation effort in Table 3.2 considers the effort of implementing metadata
transformation routines only. Tool-specific interface implementations such as implement-
ing a custom RTI are not covered. Since generally typed approaches require management
of custom types, implementation effort is considered to be high in comparison to type
restricted approaches. Due to the limited support of automatic transformation, the imple-
mentation effort of a communication-based integration is limited to variable identification
and therefore considerably lower than for other approaches.

3.6.3 Model And Tool Coupling Approaches

Table 3.3 summarizes different approaches to use multiple FMUs or to distribute an
IEC 61499-based system to a set of FMUs. When using a set of connected FMUs within
an IEC 61499 application, they may either be coupled by the interface logic implemented
in the RTI or by IEC 61499 FB connections. When using IEC 61499 FB connections,
the interface implementation which accesses single FMUSs becomes less complex but the
configuration effort which is necessary to integrate the FMUs in the application rises. An
IEC 61499-based control system can either be encapsulated in a single FMU or distributed
among several FMUs which are connected by a solver or master algorithm. In case of a
distributed scenario, the connection information contained within an IEC 61499-compliant
description has to be synchronized with the connection information which is maintained
by the simulation master or solving tool.

The first evaluated criterion is the ability to resolve algebraic loops. It only applies to
IEC 61499 applications including some FMUs because the resolution of algebraic loops
is up to the master algorithm and the solver, respectively. For the encapsulation of

79

INTERACTION STUDY

3.

Point of Interaction Algebraic Loops EC MMW@NQMMWSMWS% Hsﬁmmﬁwmos HEEAWWMMMQSOS
Model Exchange in IEC 61499:

IEC 61499-Based FMU Coupling - + + - - + +

External FMU Coupling + + -- + + .
Co-Simulation in TEC 61499:

IEC 61499-Based FMU Coupling - + + - + +

External FMU Coupling + + - - + -
IEC 61499 in Model Exchange:

Multiple Devices Per FMU + + + -

One Device Per FMU - - - -
IEC 61499 in Co-Simulation:

Multiple Devices Per FMU + + + -

One Device Per FMU

Table 3.3: Comparison of model and tool coupling approaches

80

3.6. Comparison

TIEC 61499 applications into FMUs, no scores are given. IEC 61499-based tool coupling
requires the TEC 61499 application to implement an algorithm which solves algebraic
loops. Although it is not impossible to implement a stable algorithm which solves
equations by means of IEC 61499, it is most likely more tedious than using a service
interface capable of connecting multiple FMUs.

The IEC 61499 already defines a mechanism to specify connections between FBs. This
mechanism may also be used to specify connections between different included FMUs.
Additionally, it might be necessary to preserve the device connection structure if an
IEC 61499 application is distributed among several FMUs. The corresponding score
illustrates the ability of utilizing this kind of connection information. In case coupling
of multiple FMUs is directly implemented by an IEC 61499 application, no further
connection input is needed.

The integration effort score corresponds to the work which is necessary to integrate a set
of FMUs into an IEC 61499 application and to encapsulate an IEC 61499-based system
into FMUs. External model exchange FMU coupling ideally only requires to include a
proper SIFB. Coupling multiple FMUs by means of IEC 61499 requires a much higher
integration effort such as manual consideration of algebraic loops to gain an equally good
result.

Similar to the implementation effort score provided for event handling approaches, the
implementation effort of different model and tool coupling approaches is estimated.
Since no standard software is available which encapsulates IEC 61499 applications into
FMUs, the implementation effort of these approaches is expected to be considerably
higher than that of other approaches. If the FMI wrapper which includes FMUs into an
IEC 61499 application does not have to deal with connection information, a decreased
implementation effort will be expected but integration work will increase.

No single approach summarized in Tables 3.1 and 3.3 outperforms every other approach.
The actual choice mainly depends on the use case and required accuracy. For example,
some use cases require real-time execution and tolerate a decreased precision while others
strongly focus on most accurate results. Before selecting a point of integration, the use
case should be specified and the scope of this use case has to be defined.

81

CHAPTER

Implementation

The previous Chapter 3 describes several orthogonal approaches in coupling IEC stan-
dard 61499-based controllers with FMI-compliant models and tools. The practical
demonstration and evaluation of all approaches would be far beyond the scope of this the-
sis. Nevertheless, the value of the theoretical work is to be demonstrated by implementing
and evaluating some of the major concepts. Findings of Chapter 3 are used to select,
justify, and guide the implementation of a particular point of interaction. The chosen
coupling strategy and its implementation are quantitatively evaluated and compared to
the theoretical expectations.

4.1 Software Development Objectives

Two principal ways of interaction which feature virtual components in IEC 61499 appli-
cations were discussed in Sections 3.2 and 3.3. Either model exchange or co-simulation
FMUs may be included in ITEC 61499-based applications. One of the most commonly
used and broadly studied coupling strategies is periodic synchronization [20, 26, 62, 63,
82, 101, 112]. Thereby, results and measurements are exchanged periodically between
the virtual component and the automation infrastructure. In case some value changes in
between two synchronization points, it is artificially delayed. Another coupling strategy
which predicts future states and resets the model in case the predictive assumptions fail to
hold is also analyzed in Chapter 3. Due to its novelty [68, 108], the real-time performance
of the predictive approach was only studied in a very limited way [85, 86]. At the time of
writing, no closed-loop interface component which implements the predictive approach is
available. The chosen implementation should fully support both, the periodic and the
predictive approach.

83

4.

IMPLEMENTATION

84

4.1.1 Coupling Requirements

Since FMUs for co-simulation impose several major restrictions in using the predictive
approach, FMI for model exchange was chosen to interface virtual components. From the
requirements regarding the coupling approach, two software development objectives are
derived. First, an interface software must support and implement both, predictive and
periodic synchronization. A user may choose the one which best suits her requirements
before starting the virtual component. Secondly, the interface software must support
the inclusion of FMI for model exchange version 1.0 and 2.0 compliant models. Since
multiple FMUs may be coupled to a single model via external programs, the interface
program does not need to couple multiple FMUs in a single program instance.

4.1.2 Timing Requirements

One of the results of Chapter 3 is that hard real-time operation of arbitrary FMUs is
not feasible. Consequently, the interface component is to be designed as soft real-time
program which operates in best effort. To judge the quality of simulation results, any
timing deviation and delays according to the internal reference clock must be recorded.
An interface program must log the expected time of each synchronization point as well as
the time when the data is actually exchanged. Since data transfer takes a finite amount
of time, it is advised to record the time which is required to distribute the data, too.
Facilities must be provided to evaluate the timing records and to list achieved worst
observed execution delays.

4.1.3 Numerical Integration Requirements

An interface tool which emulates components via FMI for model exchange must solve the
models via a numerical integrator. Various numerical integration methods are available
which handle different classes of models and which differ significantly in properties such
as execution time predictability and precision [21]. For instance, a particular adaptive
algorithm which dynamically adjusts the integration step size may solve problems which
cannot be solved otherwise but imposes considerable timing uncertainties. It is not
expected that a single integration method serves all targeted use cases. Therefore,
an interface software must implement multiple integration methods from which an
appropriate one can be chosen before starting the virtual component. One objective is to
provide at least one method which supports adaptive step sizes and one which uses fixed
step sizes only. A user must also be able to adjust major integration parameters such as
step sizes and targeted precision.

4.1.4 Interface Requirements

Several options in integrating a virtual component into automation infrastructure exist.
For instance, an RTI which directly solves included models or a dedicated real-time
hardware which solves the model and provides simple analog 10 interfaces may be deployed.
Automation infrastructure often uses specialized communication facilities to link multiple

4.1. Software Development Objectives

subsystems. Sensors, for example, are often connected via fieldbus connections to PLCs
which implement the control logic. On using standardized communication infrastructure,
even devices from multiple vendors may be deployed in one connected system. In order to
reduce dependencies from specific vendors and RT1Is, a stand-alone interface component
design which connects to automation infrastructure via communication links is chosen.
Since many FMU vendors only provide binary FMUs, the interface component must
not rely on a dedicated real-time hardware. It is not expected that one communication
protocol will be sufficient to serve all targeted use cases. Various industrial automation
protocols co-exist and many devices only implement a few of them. Consequently, a
versatile interface component which creates virtual components must be protocol-agnostic
in a way that another communication protocol can be easily implemented. Nevertheless,
to demonstrate the value of virtual components and the chosen coupling approach, only
a single protocol needs to be actually implemented. One objective is that the interface
component must at least implement the ASN.1-based communication protocols which
are specified in IEC 61499. A user must be able to configure an arbitrary amount of
connections and must be able to specify the mapping of exposed FMI variables to network
connections. The interface component must be able to receive data from the automation
infrastructure and to send the results from the model according to the chosen processing
scheme. Hence, a closed-loop operation must be implemented.

4.1.5 Software Design Requirements

Special emphasis should be put on a flexible software design which eases maintenance and
adoption to changed requirements. During the first efforts in developing an open-loop
interface program, some design targets were stated [85]. In particular, it should be
possible to make certain changes without re-factoring unrelated parts of the program.
The following change cases were listed in [85]:

e Add additional configuration options to refine the behavior of the program.

Use another predictive event source.

Add new transmission protocol implementations.

Transfer the management of real-time instants (the authoritative clock) to another
connected device.

o Add various external event sources.

In addition to these change cases, the following cases have been identified and should be
considered during the software design of the closed-loop interface component.

e Add another numerical integration method.

85

4.

IMPLEMENTATION

86

e Use an event source instead of the model as long as it is able to return future events
and to process arbitrary incoming events which date between the last and the next
predicted event.

To gain scientifically sound results, it must be assured that the interface component
correctly executes the specified workflow. To increase the confidence in a correct operation,
quality assurance measures have to be taken. Each unit of the interface component has
to be thoroughly tested via automated unit tests. Hence, testing aspects also have to be
considered in the software design. A standard development process which includes issue
management as well as source code and user documentation rules is to be implemented.
Nevertheless, the detailed description of any development process is beyond the scope of
a thesis which focuses on computational aspects.

4.2 Simulation Program Flow

The specified interface program requires at least two modes of operation, one which
executes a predictive approach and one which implements periodic synchronization. For
each mode of operation, the main program flow is specified and analyzed. Processing
steps such as parsing a user configuration, initializing a model, and error handling are
omitted, in order to increase readability. Processing a possibly continuous model is
abstracted in a single step which returns the next prediction or the state at the next
synchronization point.

4.2.1 Predictive Program Flow

The basic program flow was already described in the open-loop implementation [85, 86].
Figure 4.1 shows the basic program flow and additionally highlights dedicated queue
management tasks. Since the occurrence of external events is independent from the main
program flow, it is divided into multiple concurrent tasks. Figure 4.1a describes the main
program flow of the task which does the predictive steps, and Figure 4.1b shows the
basic program flow of each concurrent receiver. A central event queue is used to decouple
the main and the receiver program flow. Additionally, it avoids event loss in case the
implemented best-effort approach fails to deliver all events in time.

Main Program

In each emulation step, the next event time is predicted based on the current knowledge
of the system state. Note that only the next event time and the state before the event,
not the final state after the event are initially predicted. The event itself is not executed
in order to allow a reset operation of the included FMU. The predicted event is added
to the queue according to the prediction time and the main program flow is delayed
until the next event in the queue must be scheduled. The next event may either be the
predicted event, which was inserted before, or an external event, which was added by a
concurrent entity. In case a predicted event is returned, the final outputs still need to

4.2. Simulation Program Flow

D D
AV AV
Predict the next Listen for incoming
event time events
. v o
Add the event >
to the managed Dequeue future | ® &
queue predicted events | 3 2
I 3
| 89
Wait until the next Add eventtothe | @ 3
event time event queue & o
c ©
" Is the next event a e
predicted one?
yes
Calculate the
outputs of the
model
Distribute the
event
Update the inputs
of the model
@ ------------- I Is the end of the
X emulation reached?
(a) Main program flow (b) Event receiver program flow

Figure 4.1: Basic interface program flow [85]

87

4.

IMPLEMENTATION

88

triggers
------------------------- A
epred 1 lepred,3
triggers
------------------- N
Ceoxt 1 lepred,z

event queue state

Figure 4.2: Concurrency issues of the basic program flow

be calculated. Since in this case the real-time instant of the predicted event is reached,
it is now safe to fix the state of the model by executing the FMI event and querying
the outputs. An external event does not require any additional processing step and the
program can directly begin to distribute the event. Finally, the model is notified of any
scheduled event and may need to update its input variables according to the received
data. It may also be feasible to execute the input update step if and only if the event is
an external one, but an unconditional update step was chosen in order to simplify the
software design and to ease the implementation of other processing schemes.

Each predicted event is based on the assumption that no external event changes the
system state in the prediction period. In case an external event is received prior to the
next predicted event, the predicted event must be invalidated and removed from the queue.
The queue management task is done in the threads which manage external receivers
before adding a newly received event. Each concurrent receiver needs to terminate its
operation as soon as the main thread stops the emulation. The termination of any receiver
is intentionally omitted in Figure 4.1 in order to simplify the program flow diagram.

Important Corner Cases

Special attention has to be put on processing late external events, external events which
are added before the previous prediction finishes, and concurrent event occurrences. Take,
for instance, the situation in which an external event eex,1 is to be scheduled at the
same time instant as a predicted event epred 1, i-€. t(€ext,1) = t(€pred,1). It is assumed
that hardware outputs never directly depend on inputs from the software, i.e. the event
€pred,1 NEVer causes an instantaneous external event ecy 1. The assumption is justified by
noting that external, digital hardware always takes a finite amount of time to process an
FMI event. Consequently, both events do not causally depend on each other and may
have associated data which need to be distributed. Figure 4.2 illustrates the occurrence
of two simultaneous events and the resulting queue state.

The first event being scheduled always updates the state and calls the FMI event update
function. On following the basic scheme, a new prediction epreq,2 is added to the queue. In
the next iteration, the second concurrent event is processed and another prediction epreq 3
is added to the queue, although the previous prediction epreq,2 is not removed. Without
further considerations, it may still be valid that more than one predicted event, e.g.

4.2. Simulation Program Flow

€pred,1 and €pred 2, is part of the event queue. Simply removing all predicted events from
the queue on inserting another predicted event is not an option. In order to overcome the
limitations of the basic interface program flow in [85, 86], the presented work is refined
and border cases are explicitly handled.

Extended Queue Management

To gain consistency, each predicted event which has the same timestamp as an external
event will be scheduled before the external event. Consequently, the model state is

updated before the external model inputs are settled and the external event is processed.

This policy also improves the real-time performance since only model events need to be
scheduled in real time. Prioritizing predicted events also avoids that transient intermediate
results from predictions that remain valid are lost.

In addition to a guaranteed event order, the specification of queue management functions
is further refined. Instead of directly adding events to the queue, a cleanup and add
procedure is performed. The correctness of the entire program flow relies on the following
assumptions for scheduling events.

1. A predicted FMI event epreq,; Will be scheduled if and only if it depends on every
event which has to be scheduled strictly before the predicted event. This condition
uses two assumptions on the dependency structure. The first one is that all previous
events possibly influence the outcome of the current prediction. Some predicted
events may not depend on every previous event but the generalization allows a
judgment without detailed knowledge of the included model. The second assumption
is that any external event with the same time as a predicted one cannot be caused
by the predicted one. Consequently, predicted events can be safely scheduled before
concurrent external ones. In case another predicted event is directly caused by
an external event, the predicted one will be scheduled after the external event is
processed. This design decision may degrade real-time performance but avoids loss
of important intermediate events.

2. Every external event ecy; will eventually be scheduled and used to update the
model. In case it arrives late, it may be scheduled to a later instant of simulation
time but it will be scheduled. The scheduling guarantee is needed to avoid data
loss and to assure the correct state of the model.

3. In case the operation is not delayed and all real-time criteria are met, all valid
events will be scheduled in the order of their associated time.

4. After an event has been added to the queue, the queue will never be empty. The
basic program flow specifies a step in which the next event time is awaited. In
case the event queue is empty, the next event time is undefined. Hence, it will be
assured that at least one next event is available.

89

4.

IMPLEMENTATION

90

AV

Remove future
predictions @

Is e predicted?

no
yes
Are there any events
yes prior to e?
no

Remove concurrent
predictions @

-® p

Add e to the
ordered queue

AV

End

Figure 4.3: Program flow of the add operation

Figure 4.3 shows the program flow of adding an arbitrary event e to the queue. It
combines both operations, a cleanup step and the actual step of adding the event to the
queue. First, every predicted event having an event time strictly later than the time of
the current event e will be removed from the queue. In case e is predicted and there are
already some events strictly before ¢(e) in the queue, e is considered outdated and will
not be added to the queue. In case e is a predicted event and not already outdated, all
other predictions which have the same timestamp as e will be removed from the queue
before e is added. Finally, each external event is directly added to the queue.

Queue Management Implications

In the following discussion, the state of the event queue is represented by a finite sequence
of events (e1,...,en). An optional queue entry e is denoted by [e,]. To argue the first
condition regarding the scheduling of predicted events, two invariants are introduced
which hold before and after every queue operation. In particular, the content of the
queue always follows the form

([epred,k;] €ext,l1s Cext,los -+ 5 eext,ln) = (617 ceey em)

4.1
Vi:l<i<m,t(e) <tlep1). (4.1)

4.2. Simulation Program Flow

The very first element e; of the ordered queue (ey,...,e,) may be a predicted event, all
other elements must be external events. Additionally,

epred,; Must depend on all events which have been scheduled before. (4.2)

Consequently, if there is a prediction epreq,r in the queue, it must be the prediction which
was conducted last. Otherwise there exists an event, namely the event which triggers the
newer prediction, which is not considered in epreq r and hence, (4.2) is violated.

It is still open to show that the conditions are indeed invariants. For an empty event
queue, as it is present just after initializing the program, the invariants (4.1) and (4.2)
hold trivially. In case the invariants hold and the first event of the queue, ey, is scheduled
and removed from the queue, no predicted event will be present and the invariants hold
for the new queue state, too. Assume that (4.1) and (4.2) are fulfilled and that an
arbitrary event e is added to the queue. The event may either (1) be strictly earlier than
any other event e; in the queue, (2) equally timed to the first event e; or (3) it may be
later than the first event. Assume case 1, V1 < i < m,t(e) < t(e;). After the first step
of the algorithm in Figure 4.3, any predicted event is removed from the queue and the
queue is of the form

(eext,ll) eext,lgv ceey eext,ln)

Since there are no events prior to e, the path omitting the add step is not feasible and e
is added to the queue. Also, there are no more concurrent predictions which would have
been removed, so that after adding the element the structure of the queue follows (4.3)
and consequently (4.1) holds.

(67 €ext,l1 Cext,los + -+ s 6ext,ln) (4'3)

Event e may be the only prediction in the queue. In case e is predicted, it follows from
the basic program flow in Figure 4.1, that e directly depends on all previously scheduled
events. Hence, both invariants are fulfilled in case 1.

Next, assume case 2, de; A t(e) = t(e1), i.e. the event e has the same time stamp as the
very first event in the queue. Since there are no predicted events after ey, the first step of
the algorithm will not alter the queue. Furthermore, there are no elements strictly prior
to e and e will be added to the queue. Assume that both events, e and e are predictions.
In this case, e will replace e; (e; will be removed and e will be added in place) and the
invariants (4.1) and (4.2) are fulfilled. In case only e; is a predicted event, it will remain
the last predicted event which takes every previously scheduled event into account and
e will be inserted after e;. If e is a predicted event and e; is not, e is the most recent
prediction and e will be inserted before e;. Consequently, the invariants (4.1) and (4.2)
hold, too.

Last, assume case 3, de; At(e) > t(e1). In any case, no event will be dropped by the first
step of the algorithm because the only prediction is earlier than e. Consequently, the
invariants hold after the first step, too. If e is a predicted event, it will be immediately

91

4.

IMPLEMENTATION

92

dropped because there is at least one event e; prior to e. Consequently, the structure of
the queue does not change and e is never scheduled. If e is not a predicted one, it will
be inserted after e; and the structure condition (4.1) still holds. Since eppeq r does not
change, it still depends on all previously scheduled events. Hence, the invariant (4.2) is
also fulfilled in case 3 and generally both invariants (4.1) and (4.2) will hold after the
execution of the add procedure.

From the invariant, it can be trivially concluded that, if a predicted event epreq ; is
scheduled, it will depend on all previously scheduled events. In case a predicted event
epred,j depends on all previously scheduled events, it will be generated and added to the
queue just after all previous events have been scheduled. Otherwise it cannot incorporate
all previous events. Assume that the queue is in an arbitrary state in which (4.1) holds
and epreq,; should be added to the queue. Since epreq,; is added after all previous events
have been scheduled, there are no events prior to epreq,; in the queue. In case the first
event of the queue is a predicted one, it will be replaced by epred,j, and epreq,; Will be
inserted at the very first position. By the assumption that all events which should
be scheduled before epeq,; are already scheduled, and the assumption that the queue
is ordered, every event which is added after eyeq; Will be inserted after the current
prediction. Consequently, epreq,; Will eventually be scheduled by the main program flow
and the first queue management condition holds.

Every operation in the add function which deletes an event before it is scheduled
exclusively deletes predicted events. External events cannot be removed from the queue
without scheduling them. On assuming progress on simulation time — there is still the
possibility that only events with the same simulation time instant are added and no
progress is observed — every external event will eventually be scheduled. From the fact
that (4.1) holds, the queue will always be ordered according to the simulation time. In
case the real-time operation is not delayed, each event will be scheduled in the order of
its simulation time. Note that for equally timed events, in general, no order is defined.

Finally, have a look at the last condition which states that a queue never becomes empty
on executing the add workflow. The queue may only be empty if the current event e
is not added, which leaves a single execution path. Consequently, e must be predicted
and there are some events prior to e after removing future predictions. This directly
contradicts the assumption that queue is empty afterwards and it can be concluded that
the queue cannot become empty by calling the add function.

The discussion shows that the refined queue management functions meet the requirements
which are imposed by the basic simulation flow and that special measures are needed to
deal with concurrent events. In practice, concurrent events will drastically deteriorate the
simulation performance and should be avoided if reasonably possible. It has to be noted
that, for instance, models which directly output an event as soon as an input event occurs
cannot be executed in strict real time. Thereby, the minimum delay condition would
be violated and two events would have to be processed simultaneously. Nevertheless,
achieved delays may be tolerable and the application may still be more responsive than
other approaches.

4.2. Simulation Program Flow

4.2.2 Periodic Synchronization Program Flow

In order to feature a unified software design, the program flow of the periodic synchroniza-
tion approach strongly relies on the program flow of the predictive approach. A central
event queue is used to manage both, FMI and external events, although an operation
without queuing FMI events may be feasible. Thereby, code implementing the queue
and real-time management can be used for both simulation workflows and the objective
of featuring both approaches is supported. Figure 4.4 shows the main program flow of
the periodic synchronization approach. The program flow of all concurrent receivers is
identical to the main program flow of the predictive approach in Figure 4.1b.

At the end of each synchronization period, an event which conveys the simulation results
is triggered and added as a prediction to the managed queue. As a consequence of using
the same queue implementation for both simulation approaches, a synchronization event
may be dequeued in case an external event is received. Hence, it is deleted and must be
added again until the event is finally scheduled. To keep the overhead of using the same
event queue implementation within reasonable bounds, a simple caching mechanism is
used to store the latest valid simulation result. At the beginning of each main iteration,
it is checked whether a valid result is available. In case no results are present, the model
is forwarded to the next synchronization point and the outputs are directly calculated
and cached. Direct output evaluation is feasible since the model will not have to be
reset again and inputs will always be applied to the current state of the model. The
synchronization period may either be chosen as fixed intervals or the first FMI event
determines the end of a synchronization period. Note that none of the two methods
allows a dynamic step size according to external events because no reset operation is to
be implemented. However, the step size can optionally be chosen according to the next
FMI event.

In a next step, the current synchronization event, either a newly calculated or a cached
one, will be added to the event queue. For the add operation, the very same procedure
as for the predictive approach is used. After the current event has been scheduled, it
is distributed. In case an external event was obtained from the queue, any associated
data is delayed until the end of the current synchronization period. Since the model is in
exactly this state, external data can be directly applied without a reset operation. Any
scheduled model event will be taken as an indicator that the simulation time is reached
and that the model event is actually taken. Consequently, cached results are invalidated
and the next synchronization period is going to be processed in the upcoming cycle.

In case an external event eexs; With t(€sync j—1) < t(€ext,i) < t(esync,j) is received after the
synchronization event egync,j is scheduled, the model will not be reset either. Consequently,
eext,; Will not be applied at t(egync,j) but on the next synchronization point, e.g. t(esync,j+1)-
Since the queue always schedules synchronization events before external ones, external
events which date to a synchronization point will be delayed by an entire synchronization
period. The design decision of prioritizing synchronization events slightly decreases the
worst case delay of a timely operation by the smallest representable time unit. Prioritizing

93

4. IMPLEMENTATION

Is there a valid

yes simulation result?

no

\V/
Solve the model
until the next
time step

RO

Add the event
to the managed
queue

!

Wait until the next
event time

0

Distribute the
event

Is the next event
an external one?
l yes no l

Apply inputs to the Invalidate cached

current state . .
of the model simulation results

I |

()R 1 Is the end of the
X emulation reached?

Figure 4.4: Main periodic synchronization program flow

94

4.3. Software Design

, Basic Services

Application Context Configuration Model H
Networking Event Dispatching Model Interface
Publisher ~<— Event < .
| Dispatcher 5| Event Predictor
Publisher |4 | V4
Subscriber 4 Event)
Queue FMU via FMI++
Subscriber

Figure 4.5: Basic program design [85]

external events in case of a concurrent synchronization event would allow to instantly
reflect external data in the model, but an approach which unifies both emulation program
flows is chosen. Termination of the emulation run is handled in the same way as in
the predictive approach. At the end of each processing cycle, the current event time is
evaluated and the emulation is terminated, if necessary.

4.3 Software Design

A basic design of a bidirectional FMI TEC 61499 interface program was already presented
[85]. Nevertheless, only a one-directional communication was actually implemented.
Due to extended objectives, several major redesign and refactoring steps were necessary.
However, the basic program structure was kept and successfully extended. Figure 4.5
shows the basic program design which widely uses the existing structure [85].

The basic services provide functionality which is commonly used by all other building
blocks. An application context object encapsulates the global configuration as a unified
property tree. Furthermore, several utility classes form a compound configuration model
which explicitly stores configuration options in a parsed format. The network stack is
implemented as an independent unit which encapsulates all network-related functionality.
Dedicated interfaces are used to receive and submit events. An event dispatching
component synchronizes the progress of simulation time with the computer clock and
organizes scheduling according to the policies of Section 4.2.

95

4.

IMPLEMENTATION

96

The model interface implements the generalized event prediction and solves the connected
model. Note that, although the periodic synchronization approach does not use prediction
in the strict sense, it is also accessed via generalized prediction software interfaces. The
actual FMU is included and solved via the software library FMI4++. Although some
extensions to FMI4++ were necessary to implement the interface component, the detailed
design of the FMI++ library is beyond the scope of the thesis.

4.3.1 Basic Service Design

Basic services mainly target user configuration and extendability objectives. Although
the services implement a configuration model which stores main aspects of the run-time
configuration in dedicated objects, they do not directly implement application-specific
functionality. E.g. several objects which encapsulate the intended structure of the
network stack are implemented in the basic services but the actual data routing and
networking functionality is implemented outside.

One of the main classes which are used to access most of the basic services is the Appli-
cationContext class. ApplicationContext was already introduced in [85] but substantially
modified to support a closed-loop operation. Still, a unified property tree is used to store
all user configuration options as well as various dynamically added content such as the
name of the currently running executable. Since the property tree does not statically limit
stored information, new configuration options may easily be implemented by querying
the corresponding keys.

ApplicationContext also implements access functions which create the configuration model
classes from the property structure on request. The configuration model classes provide
several functions to directly list and access encoded information but also link to the
corresponding branch in the property tree. Consequently, configuration options may be
added without the need of directly extending the configuration objects or re-implementing
the parsing logic. On using dedicated configuration objects, such as transmission channel
configurations, duplicate code for parsing the user configuration is avoided and common
functionality is hosted by the basic services. Figure 4.6 illustrates the structure of the
main configuration objects.

A ChannelMapping object stores all the data routing information and associates FMI
model variables and the corresponding network variables, called ports. The network
implementation supports multiple independent transmission channels which group an
arbitrary number of network ports. One transmission channel implements exactly one
protocol and is intended to have one end point. E.g. one transmission channel connects
to a single Transmission Control Protocol (TCP) / Internet Protocol (IP) endpoint and
sends one static set of model variables which are encoded via IEC 61499 ASN.1. In case
an event is emitted, associated data of each network port is combined to a single message.
A protocol implementation may dynamically query associated properties to configure its
operation.

4.3. Software Design

4 ChannelMapping I
(TransmissionChannel
(Network Port 1 %) (Model Variable 1)
(Network Port 2 &%) (Model Variable 2)
(Network Port n_) (Model Variable m)

BN
o %
&® Link to Property Tree

Figure 4.6: Channel mapping configuration objects

Event

+ getTime(): fmiTime
+ getVariables(): vector<Variable>
+ toString(): string

P VAR N Y

LazyEvent StaticEvent PartialEvent

- predictor_: EventPredictor + getVariables(): vector<Variable>

+ toString(): string + getVariables(): vector<Variable>

+ toString(): string
+ pushNextValue(value)
+ ignoreNextValue()

+ getVariables(): vector<Variable>
+ toString(): string

Figure 4.7: Event class hierarchy

Each model variable is identified by an internal identifier. The identifier combines the
FMI data type and an arbitrary integer. Since early versions of FMI++ did not expose
the FMI value references, the used variable identifier does not correspond to this reference.
FEach ChannelMapping object stores the association of model variable names and the
internal identifier. The generalized event predictor queries this information and uses it to
properly access the included FMU. FMI also defines unique model variable names which
may also be used to internally identify the model variable. Within the simulation flow,
variable identifiers are frequently used to label associated data. To avoid the overhead of
human-readable identifiers, a numeric identifier was introduced, and it was chosen not to
utilize the variable names to directly label data.

4.3.2 Event Queuing and Dispatching Design

The event queuing and dispatching components implement the main program flow. Data
exchange and scheduling is entirely based on timed events. Therefore, an abstract event
class was defined which stores the time of the event and defines an abstract function
which queries associated data. Figure 4.7 outlines the event class and the major child

97

4.

IMPLEMENTATION

98

EventSink

+ pushExternalEvent(Event)
+ getTimeStampNow(): fmiTime

A

EventQueue

+ initStartTimeNow(fmiTime)
+ add(Event, PredictionFlag)
+ get(): Event

Figure 4.8: Event queue and event sink interface

classes. Data is stored in terms of an arbitrarily sized vector of variables. Each variable
carries the unique identifier which is defined by the basic services and a boost: :any
field which actually hosts the data.

An event implementation may either statically store associated data or query the model
outputs on request. StaticEvent and PartialEvent both implement the first storage
approach which embeds associated data before the event is added to the queue. In
contrast to StaticEvent, PartialEvent allows to sequentially populate an event, in case
not all variables are instantly available. For instance, a network protocol implementation
utilizes PartialEvent to intermediately store external events which are not entirely received.
Still, PartialEvent does not allow to calculate the model outputs on request. In contrast,
LazyEvent implements the second approach and does not require all outputs to be present
when added to the queue. As soon as the data is requested, LazyEvent queries the event
predictor and returns the model outputs. Since the event dispatching component does
not query any variables before the event is actually scheduled, the model may still be
able to reset the state in case a LazyEvent instance is dropped.

Scheduled events are distributed via an event listener interface, as shown in Figure 4.9,
which simply defines an abstract function to receive events. The event dispatcher object
maintains a list of registered event listener instances and distributes scheduled events
among them. Additionally, it returns an event sink instance which may be used to register
external events. Internally, the event dispatcher maintains an event queue instance which
implements the queuing and real-time logic. Figure 4.8 shows the event sink and event
queue interfaces. In case another scheduling mechanism, such as external real-time clocks,
should be used, an abstract queue interface may be implemented, and the currently used
queue implementation can easily be exchanged.

The event dispatcher object expects an AbstractEventPredictor instance which is then
used to generate predicted events. Consequently, alternative event predictor implemen-
tations can be used as long as they are able to receive scheduled events and return the
upcoming event upon request. The abstraction of all major functions does not only
support defined change cases but also allows to implement dedicated testing facilities.
For instance, an event predictor which simply returns equidistant events is used to test
the event dispatcher and scheduling implementation.

4.3. Software Design

EventListener

+ eventTriggered(Event)

I

AbstractEventPredictor

+ configureDefaultApplicationContext(ApplicationContext)
+ init()
+ predictNext(): Event

Figure 4.9: Abstract event predictor

To reach the real-time logging objective, a dedicated event timing logger was implemented.
An event dispatcher as well as an event queue use the event logger to record the current
timing status at various processing stages. The logger queries the current real-time
instant from the operating system and stores it in a dedicated timing file. In order to
keep the run-time overhead as low as possible, delay and delay distribution analysis are
done in post-processing steps and are not directly implemented in the interface program.

An additional event data logger is used to record all variables associated with a certain
event. In contrast to the event timing logger, the event data logger directly uses the event
listener mechanism to receive all scheduled events. The data logging functionality can be
loosely coupled to the other components without the need for a tight integration into the
queuing and dispatching facilities. As a consequence, recorded data only contains the
simulation time and does not directly refer to real-time parameters. Like the timing file,
the logged data file does only contain variable data associated with a certain event and
no further processing is implemented in the interface component. Post-processing may
be used to interpolate values which are not directly associated with a certain event and
to filter events which do not change the state of any variable.

4.3.3 Model Interface Design

The model interface is used to access and solve FMUs. Each approach is implemented in a
dedicated abstract event predictor class which interfaces the FMU via FMI4++. Figure 4.9
illustrates the interface design of an event predictor. A factory class instantiates the event
predictor according to the user’s choice. The actual FMI++ interface depends on the
emulation approach. Periodic synchronization accesses a wrapper class which provides
integration facilities but does not provide a reset mechanism. The predictive event source
uses another FMI++ layer which stores intermediate predictions and implements the
reset operation. Via FMI+4++, both FMI versions can be handled transparently and
version-specific code can be reduced to a minimum.

Since FMI++ is used to implement the computational details of solving a model and
predicting future states, the logic of each abstract event predictor focuses on managing
the prediction program flow and converting the internal data representation into a
format which can be handled by FMI++. Shared functionality, such as loading an FMU

99

4.

IMPLEMENTATION

100

EventlListener

+ eventTriggered(Event)

A

Subscriber

Publisher
+ initAndStart(TransmissionChannel, EventSink, ErrorCallback)
+ terminate()

+ init(TransmissionChannel)

(a) Publisher interface (b) Subscriber interface

Figure 4.10: Main networking interfaces

according to the user configuration, is implemented via dedicated helper classes. FMI++
allows to dynamically change the deployed numerical integration algorithm as well as
major parameters thereof. Among others, it implements a variable-step Runge-Kutta
method (Dormand-Prince) as well as a fourth-order Runge-Kutta method with constant
step size [96, 97]. A solver configuration class evaluates the user configuration and
provides the integrator parameters to fulfill the corresponding design objectives.

Since most numerical aspects are handled by FMI++, the change case of implementing an-
other integration algorithm either needs to be directly tackled in FMI4++ or implemented
via another predictor instance. FMI++ uses dedicated integrator interfaces [96] which
may be used to implement another integrator. The change case of an alternative event
source is directly addressed by the abstract event predictor interface. Each event source
which follows the specification can be easily integrated into the interface component.

4.3.4 Network Design

The implementation of the network functionality is mainly organized via two independent
interfaces, a publisher and a subscriber interface, which are illustrated in Figure 4.10.
Each publisher receives scheduled events, selects the events according to the configuration
objects and distributes the data according to the implemented protocol. A subscriber
manages incoming data and registers external events via an event sink interface. Two
life-cycle functions, a start and a terminate function, are used to control the possibly
concurrent operation of a subscriber. Since each subscriber operates independently and
registers events autonomously, it does not need to provide any other interface function.
A network manager class controls the life cycle of each publisher and subscriber. In
particular, it creates the concrete objects which implement a specific protocol according
to the user configuration.

Two change cases are directly addressed by the publisher and subscriber interfaces. First,
another transmission protocol may be implemented via a dedicated pair of subscriber and
publisher instances. Second, various external event sources may be connected concurrently,
because network entities can be instantiated independently of each other. A drawback of
the simple network interface design is the lack of a shared network connection between
certain publishers and subscribers. In order to save resources by sharing a connection

4.4. Implementation and Quality Assurance

and to easily include endpoints which require a shared, bidirectional connection, future
versions of the interface program may extend the publisher and subscriber interfaces. A
generic shared network connection may be introduced which is passed to exactly those
entities which require access to it. Nevertheless, to ease the initial implementation, which
focuses on the IEC 61499 ASN.1 protocol only, shared connection objects are not included
in the current design.

The IEC 16499 ASN.1 implementation uses two separate class hierarchies for decoding
and encoding packets, respectively. Two abstract base classes implement the ASN.1
encoding and decoding logic. Transport protocol specifics are outsourced to dedicated
child classes which are instantiated by the network manager. In addition, a concurrent
subscribe class was created which generically starts a subscription thread and manages
its termination. The ASN.1 subscriber base class inherits from the concurrent subscriber
to operate independently of the main program flow.

Data routing is implicitly implemented via filtering and buffering of event variables. In
general, each publisher receives all scheduled events, regardless of the set of contained
event variables. Therefore, the received event may contain all, none or some of the
published variables. Since the ASN.1 protocol implementation always sends a fixed set
of variables, each ASN.1 publisher maintains the current status of all published network
ports and updates it according to the received event variables. In case the event does
not contain any published variables, the output event is suppressed. The design decision
of applying filtering within each publisher unifies and simplifies the event distribution
mechanism and avoids the change of a scheduled event by filtering variables. Nevertheless,
central hierarchical filtering and event distribution may be able to further increase the
performance of the developed interface component.

4.4 Implementation and Quality Assurance

The previously described and designed interface component, which is called FMITer-
minalBlock, is implemented in C++11. The toolchain and several external libraries
are described in detail in the corresponding Bachelor thesis [85]. FMITerminalBlock is
released as an open-source project [35]. Some development tools, such as a public issue
tracker and a publicly hosted usage documentation, are added to the toolchain.

To speed up the development process and to increase the quality of FMITerminalBlock,
several external libraries are utilized. In particular, FMI++ Import Utilities and some
Boost libraries [85] are included. Since the required C++ version was enhanced to C++11,
several new language features and C++4 standard library components are available. For
instance, thread support is now provided by the standard library and does not have to
be obtained by using the corresponding Boost library anymore.

Several measures which tackle quality assurance are implemented. First, an issue tracker
is used to record known issues and planned refactoring operations. Each function is
thoroughly documented in the source code, and a usage documentation describes the

101

4. IMPLEMENTATION

Jenkins FMITerminalBlock FMITerminalBlock - Linux Full
& - - .
Back io Dashboard Project FMITerminalBlock - Linux Full
O status
_ Builds and tests a full configuration FMITerminalBlock
=t Changes Test Result Trend
(¥ Workspace E Workspace L[—
- 350
[7] cit Poliing Log p— 300
/ Recent Changes o 250 deeeee D
= ER
Build History trend =]
150
#61 Latest Test Result (1 failure / £0) 100
#60 501
#59 i uZEEZENERE%%ﬂRﬂ:SEE?:EG
@5 Permalinks FEFFAFIERER SRS RIIRREAR R
@ 52 2017 5:15 PW _ (lust show failures) enlarge
e Last build (#61). 3 days 18 hr ago
#5T 17 1:49 PW « Last successful build (#61). 3 days 18 hr ago
« Last failed build (#59). 4 days 23 hr ago
#56 MNov 29, 2017 10:49 AM ® Last unstable build (#61). 3 days 18 hr ago

« Last unsuccessful build {#61). 3 days 18 hr ago

Figure 4.11: Exemplary Jenkins project overview

intended operation and features of FMITerminalBlock. Each software component is tested
via a set of automated unit tests. Several mock-up and test classes are implemented to
assess specific functionalities without external dependencies. For instance, a raw TCP
test data source sends arbitrary packets to validate the ASN.1 decoding functionality.

All test cases are integrated into a Jenkins CI [52] which executes the test cases as
soon as the source code of FMITerminalBlock or FMI++ changes. Additionally, the
unit tests of FMI++ are executed on the target platforms to check ongoing support.
Figure 4.11 shows an exemplary project summary of the Jenkins setup. The build and
test steps are executed in various environments such as Windows 7 with Microsoft Visual
Studio Compiler 14.0 and Debian Jessie with GCC 4.9.2. Further manual tests and
the detailed evaluation within various use cases complement the implemented quality
assurance strategy which is demanded by the development objectives.

102

CHAPTER

Evaluation

The envisioned and implemented methodologies of creating virtual components are
evaluated in two test cases. Conducted experiments mainly target research questions
regarding the feasibility, limits, and possible improvements of all implemented coupling
approaches. It is not focused on describing a targeted average case experiment but on
implementing experiments which introduce demanding requirements, e.g. with respect to
timing parameters.

A basis for both experiments is an OLTC setup that includes a smart transformer and
a controller which maintains the output voltage of the transformer. The OLTC itself
is a device which switches the number of active windings in the transformer while the
transformer is operating. Consequently, the output voltage of the transformer is changed
and can, for instance, be adapted to volatile RES production [3]. Simple load and
grid models border the virtual system under test and feed the artificial test pattern.

OLTC and Transformer

OLTC Controller

Figure 5.1: Overview of the smart transformer setup, including voltage source (left), load
(right) and controller

103

d.

EVALUATION

104

Figure 5.1 illustrates the structure of the setup. The first test case, which is described in
Section 5.3, compares the output of several controller implementations in an open-loop
setup. One implementation is thereby physically available, others are introduced as
virtual components. The test case is conducted in order to show and evaluate various
delay effects of the coupling strategies. Additionally, it points towards a model-based
testing and assessment workflow in which the outputs of developed hardware are directly
compared to the reference model.

The second test case in Section 5.4 covers various closed-loop setups of a virtual trans-
former and an OLTC controller. The controller is once realized as dedicated hardware,
once as a programm running on a software PLC, and once in a monolithic model. The
transformer is always included as a virtual component. Test case 2 mainly focuses
on demonstrating closed-loop aspects such as stability and the propagation of varying
communication delays. Hence, it complements test case 1 which uses an open-loop setup,
only.

Both test cases are conducted in the context of the ERIGrid horizon 2020 infrastructure
research project [25]. The initial model as well as any hardware implementation are
provided by the project partners from Ormazabal [73]. The thesis only coarsely describes
given models and implementations and focuses on applied changes and optimizations.

5.1 General Timing Evaluation Methodology

The design of the interface component, which is called FMITerminalBlock, requires a
careful evaluation of timing parameters during a simulation run. In case the emulation
run is not able to execute in real time, results and measurements from one component may
be incorporated late and may deteriorate gained results. Acceptable timing deviations
strongly depend on the specific use case. For instance, the analyzed electrical transformer
model shows transitive electrical effects which last well below 100 ms but mechanical and
control delays are in the range of 500ms to 1s. In general, the investigation of transitive
electrical effects requires a much higher timing precision than observing effects caused by
mechanical delays [62, 63]. A general timing evaluation methodology and tools which do
not focus on a particular use case should be provided in order to ease the implementation
of other use cases. The implemented timing evaluation methodology focuses on the
general quantification of achieved timing parameters rather than quantifying the effects
on results of any timing deviation. Hence, a continuative discussion, which relates the
timing effects revealed in the general timing evaluation to a particular test case, is still
required to assess the overall quality of gained results. The presented timing evaluation
methodology forms a foundation of such a comprehensive evaluation.

Section 4.3.2 briefly outlines the software component which records raw timing data
during an emulation run. At various points in time, the current state of the computer
clock and the destined simulation time of the currently processed event are recorded.
Since the computer clock usually uses another standard epoch than the simulation, time
values are converted between the two representations. For instance, a computer clock

5.1. General Timing Evaluation Methodology

Nr. Name Description

1 Real-time Generation After the event submission by an external real-time
entity

2 Prediction After the event submission by an abstract event pre-
dictor

3 Begin of Distribution After scheduling a certain event

4 End of Distribution On finishing the distribution and model update

5 Outdating On deleting a predicted event from the queue

Table 5.1: Sampled real-time instants

may count time from 1970-01-01 00:00 on, and the simulation may use the instant of time
from where it is started to mark its standard epoch, t = 0. In addition to the absolute
time of the computer clock, FMITerminalBlock converts each real-time stamp to the
simulation time representation. The simulation time representation of real-time instants
allows to quickly quantify the timing status of the program flow.

The timing of each event is recorded at several locations in the program flow. Ta-
ble 5.1 summarizes each call to the time logging facility. The numeric annotations in
Figures 4.1, 4.3, and 4.4 correspond to the sampling point numbers in Table 5.1 and
illustrate the location of each call in the program flow. Some of the timing facilities are
already present in the first implementation of the interface component [85]. Nevertheless,
the timing data interface as well as the assessment methodology have been substantially
extended by recording dropped events and by converting the standard epochs. The first
extension allows to easily recover the state of the event queue at a particular point in
time, and converting standard epochs avoids a time offset assumption on estimating
achieved delays.

In a post-processing step, the timing of each event at the recorded points is re-assembled
and combined into one data set. Thereby, the state of the event queue is simulated and
only the set of active events is kept in memory. Since the event time stamp is used
to identify an event, simultaneous events may not be properly processed. In case of
concurrent (external) events, the affected events will either be dropped or a warning is
issued. Future implementations may utilize an event ID mechanism which introduces an
unique identifier for each event. Since the ID mechanism introduces several other issues,
such as a possible reduction of concurrency, the current implementation is reduced to
simple time stamping. In practice, no concurrent input event was observed because each
test case only uses a single subscriber.

From the processed data set, the delay of each event at various stages in the program flow
is calculated, i.e. the difference between the current real-time instant, which is expressed
in terms of simulation time and the associated simulation time itself is expressed. For
each stage, delay statistics such as average, minimum and maximum delay are calculated.
Filtering is applied to limit the statistics to a certain set such as predicted events.

105

d.

EVALUATION

106

Histograms of each set of delay values are further used to give an impression of the shape
of the delay distribution.

For real-time operation, the timely aligned distribution of predicted events is a signif-
icant aspect. According to the intended program flow, FMITerminalBlock begins the
distribution of each event as soon as the simulation time is reached. Late events are
scheduled immediately. For protocol implementations which block until the event has
been sent, the time span in which an event is emitted can be estimated from the begin
and end time stamp of the distribution phase. Hence, mainly the statistics of these two
stages are used to assess timing quality.

Recorded timing data sets are also used to gain additional insights into possible sources
of delay and to optimize included models. When calculating the time spans between
one processing stage and another, the duration of each stage is estimated. Especially
periods not affected by the wait operation of the scheduler may reveal further optimization
potential. For instance, the duration from scheduling one event to predicting the following
event highly depends on the performance of the included model and its solver. Similarly,
the time of the distribution phase, especially when using the periodic synchronization
approach, highly depends on the performance of a protocol implementation. A post-
processing framework which is written in Python implements main analysis steps and is
used to conduct the timing analysis in test case 1 and 2.

5.2 General Assessment Methodology

The assessment methodology first targets FMITerminalBlock in general and the im-
plemented coupling approaches in particular. Additionally, the embedded controller
hardware needs to be tested and validated in the system context of an OLTC transformer.
Both test cases are designed such that FMITerminalBlock as well as the controller hard-
ware can be evaluated. Therefore, recorded outputs are compared to a purely virtual
baseline model.

The initial models of the system, i.e. the smart transformer setup, were provided as
monolithic Simulink models. First, the purely virtual Simulink models were slightly
adapted for real-time operation. Some blocks which caused unpredictable timing and
inaccuracies due to resetting the simulation time within one integration step were
substituted by equivalent subsystems. For instance, transport delay blocks, which
caused inaccuracies were substituted by equivalent implementations and zero-crossing
was enabled to accurately locate events. Sections 5.3.2 and 5.4.2 provide more details on
the conducted model optimizations. A test set, which was applied to the model, was used
to asses the quality of the model changes. The improved monolithic Simulink models
were used as a baseline for evaluating the coupling methodologies.

In a subsequent step, relevant models were exported as FMUs via FMI Kit for Simulink
[31] and accessed via FMITerminalBlock. As target version, FMI 2.0 was selected.
Although FMITerminalBlock also supports FMI 1.0, the dedicated event modes of

5.3. Test Case 1: Open-loop Controller Verification

FMI 2.0 ease debugging of connected FMUs and allow a more fine-grained control over
event execution procedures. An Eclipse 4diac FORTE [37] software PLC is used to couple
models and hardware as well as to implement a reference controller. Additional data
logging functionality is implemented in the software PLC to gain timing and data records
which are more independent from FMITerminalBlock.

It is expected that the quality of any results strongly depends on the configuration
parameters of FMITerminalBlock. For instance, improper integrator settings may prevent
real-time operation and therefore may drastically degrade the accuracy. Nevertheless,
a comparison between the implemented coupling approaches should be performed. To
limit the impact of improper configuration, most settings, such as the network protocol

and most integrator configurations, are kept unchanged between the simulation runs.

Only parameters that are specific to a certain coupling approach are optimized before
conducting the actual simulation run.

For the periodic synchronization approach, the cycle time is minimized such that observed
timing deviations are within reasonable bounds and do not decrease the accuracy. For
the predictive approach, the look-ahead horizon is chosen according to the delays within
the simulated models. Intermediate integrator steps are reduced such that no significant
deviations from the expected model output can be observed. All optimization steps were
conducted manually. It is expected that automatic parameter optimization would result
in even better configurations, but the implementation of such an optimization procedure
is beyond the scope of the thesis.

For each data source, recorded data is stored in a CSV file. Several Python scripts are
used to process, evaluate and plot gained results. The external Python libraries Pandas
[74], Numpy [70] and Matplotlib [64] are used to aid the evaluation.

For each experiment, every software component was executed on a Windows 7 PC which
features an Intel Xeon dual core CPU W3505 at 2.53 GHz clock rate and 6 GB of main
memory. In order to reduce the dependencies to unrelated programs and services, relevant
processes, such as the interface program and software PLCs, were started with high
process priority.

5.3 Test Case 1: Open-loop Controller Verification

5.3.1 Experimental Setup

The first test case uses an experimental setup which compares the outputs of two virtual
component configurations and one hardware implementation simultaneously. Figure 5.2
illustrates test case 1. Each FMU instance as well as the hardware controller implements
the same control algorithm. In particular, the same FMU, which was exported from
the Simulink implementation of the OLTC controller, is instantiated twice to evaluate
different coupling configurations. The PLC implementation of the OLTC controller is
not used in test case 1, because it would not improve the visibility of delay effects. The

107

d.

EVALUATION

108

Different OLTC
| Controller Implementations |

s) ASN.1
FMI Implementation B | Softh?Lrg
(Predictive) = i
(o b, !Z!
=
10 Emulator i () Modbus
(Transformer) HW Implementation E |
- o == CRRl | .
\ y, Coupling CSV Files
ASN.1
FMI Implementation §E) V
(Periodic) . Hv
fm J -~ v

Figure 5.2: Setup of test case 1

outputs of all controller instances are recorded and used to evaluate differences in the
implementations and coupling strategies.

In its destined operation, the hardware OLTC controller uses dedicated IO lines to
directly control the OLTC actuators and to read the Low Voltage (LV) measurement
signal. The current prototype implements a 0V to 5V signal to represent analog reading
of the LV sensor and some digital signals which adhere to the same voltage levels to
encode the ready signal and the control commands. For debugging and configuration,
the hardware controller implements a Modbus TCP interface [65] over Ethernet. The
interface exposes, for instance, the currently read and averaged LV values, the current
control output, as well as a transformer status signal. The scaling of the analog voltage
input can be adjusted via Modbus. An embedded development board featuring an
ATmega2560 Microcontroller Unit (MCU) [7] from Microchip and a W5100 Ethernet —
TCP/IP driver [104] from WIZnet is used to build the hardware controller.

A software PLC periodically polls the current and average voltage readings as well
as the control and status output via Modbus. Since Modbus does not allow a slave
device-initiated communication, polling is used for both, the periodic and the predictive
configuration. A polling interval of 200 ms is chosen — as short as possible such that
the MCU is not congested. As soon as a changed value is encountered, it is distributed.
Changed low voltage and transformer status readings are instantly relayed to all connected
FMUs. Changed control outputs from the hardware controller need to be post-processed.
A single output variable, which stores the control action, is polled. In total, seven control
actions from the OLTC controller are encoded; two blocking actions, a standard up, a
fast up, a standard down, a fast down, and no action. The control action is periodically
updated by the hardware controller as soon as new voltage readings are available. In
particular, the control variable is updated in the same processing cycle regardless of
being a fast or standard action. Nevertheless, to overcome transient inputs, the control
algorithm requires to delay a control action depending on its particular type. For instance,
a fast up action requires less delay than a standard up action until the OLTC is actually

5.3. Test Case 1: Open-loop Controller Verification

DIRECT OUT

CNF
SET_OUTPUT e AOUT

SW _UP DOWN

E MERGE

DELAY UP

START EO
STOP
E DELAY

DT

E SWITCH

Figure 5.3: Control action delay composite network

ACTION DECODER OUTPUT DRIVER
REQ REQ CNF REQ CNF CNF
ACTION ACTION DECODER OUTPUT DRIVER up
READY»— - - DOWN
ACTION OVERVOLTAGE BLOCK —>{READY uP
FAST UP FAST UP DOWN
STANDARD UP STANDAD UP
NORMAL | | STANDARD DOWN
STANDARD DOWN l FAST DOWN
FAST DOWN \
UNDERVOLTAGE BLOCK

Figure 5.4: Delay compensation logic

commanded to switch one step up. The following Section 5.3.2 describes the control
algorithm in more detail.

To emulate the missing delay operations of the hardware controller, an FB network
is created which delays the output signal according to the control action. The FMU
implementations of the controller internally delay the control actions themselves and are
therefore not affected by the software PLC implementation. Figure 5.3 illustrates the
composite network which delays a single boolean action control signal. The whole delay
FB network is implemented into a dedicated CFB type. First, the event switch function
block splits the execution path according to the action signal. The delay FB is started as
soon as the corresponding action input is true and resets when the input becomes false

again. An RS flip-flop block converts the execution path back to a single event semantic.

The event merge FB is used to ease subsequent processing by generating an output event
immediately, even if the output variable is delayed.

For each output action, an action delay FB is instantiated with the corresponding delay.

A simple boolean disjunction connects all up and down switching signals, respectively. In
case the ready signal is set to false, no output control will be asserted. The whole delay
and merge logic is encapsulated into a dedicated output driver CFB type. Figure 5.4
shows the FB network which adapts the action signal from the hardware controller to
the jointly used format.

The software PLC records every reading from the hardware controller as well as delayed
control actions into a set of Comma Separated Values (CSV) files. Each recorded event is

109

d.

EVALUATION

110

amended by its time stamp. Therefore, a function block which queries the local clock of
the PLC is implemented. Similarly, control events from both included FMITerminalBlock
configurations are recorded. Each FMITerminalBlock instance sends output events via
the TEC 61499 ASN.1-based protocol to a listening TCP server SIFB. In contrast to
the Modbus connection, FMITerminalBlock directly exposes the up and down control
signals from the controller model without the need of further processing them. For
each event between the software PLC and an FMITerminalBlock instance, also a time
stamp which is recorded by the PLC is available. Although the PLC instance and the
FMITerminalBlock instances are executed on the same machine, the PLC time stamps
are used to assess the timing performance of FMITerminalBlock and the included model.
It has to be noted that deviations originating from the computer clock cannot be assessed
by the deployed methodology, but communication delays and scheduling inaccuracies of
FMITerminalBlock may still be assessed.

Since the inputs of all controller implementations are manually generated via a simple
IO interface, the control inputs may significantly vary between one experiment run and
another. The hardware controller implementation also supports to acquire its inputs via
Modbus instead of the simple IO interfaces. Hence, a fixed input sequence could be applied
to the controller via the network protocol and the software PLC which implements the
coupling logic. To test the IO interfaces of the controller and the application of external
inputs which do not origin from the system itself, it was decided to use the external
inputs instead of the Modbus connection. Still, two FMITerminalBlock configurations
should be evaluated and compared to each other. Hence, it was decided to run both
FMITerminalBlock instances in parallel on a multi-core system. It is assumed that
roughly the same input data, timing and processing load constraints now apply to both
virtual components. It may still be feasible to replay recorded inputs via a scheduling
mechanism at the software PLC but this scheduling mechanism may suffer from the same
theoretical drawbacks as the scheduling mechanism of FMITerminalBlock. Nevertheless,
it has to be noted that the operating system scheduler may still distort the timing of
gained results in a parallel setup but it is believed that these deviations are less significant.

A single simulation run which covers multiple control output changes is evaluated in a
post-processing step. According to Section 5.2, the deviations between each controller
implementation are evaluated and the timing of each control action is quantified. Since
one experiment covers multiple control actions, it is reasonable to statistically evaluate
timing deviations of control actions. Due to the large time span covered by a simulation
run, except for some outliers, repeating a simulation run will not drastically alter the
outcome. In particular, only small deviations of the final results were observed during
setup tests.

As shown in Figure 5.2, the setup of test case 1 covers three distinct configurations of the
same controller which are all executed in real time. All of these configurations include
components with unknown timing and execution properties. The FMI implementations
use FMITerminalBlock which is to be evaluated and the exact behavior of the hardware
implementation is not fully known either. A purely virtual reference simulation of the

5.3. Test Case 1: Open-loop Controller Verification

OLTC Controller

Voltage Input Transformer Up

Figure 5.5: External interfaces of the OLTC controller model

Simulink controller model is additionally created to establish a common reference. The
reference simulation is conducted offline and without any real-time synchronization in
order to minimize synchronization effects and in order to keep the complexity as low as
possible.

To create a useful reference, both the virtual simulation and the real-time setup of
Figure 5.2 require synchronized inputs. Either a defined input pattern is applied to both,
the hardware implementation via the IO emulator and the reference model, or inputs of
the hardware implementation are recorded and passed on to the Simulink reference model.
Since the manually operated IO emulator does not allow to playback a defined pattern, the
second option was chosen and input voltage recordings from the hardware implementation
are used to drive the Simulink model. Consequently, input voltage readings from the
hardware implementation are biased by any deviations of the input measurement unit of
the hardware controller, but the reference simulation can be directly used to evaluate
the FMI implementations of the controller. An independent measurement device which
records applied input voltages would be required to also assess the measurement unit of the
hardware controller. Nevertheless, the detailed assessment of the hardware controller is
beyond the scope of the thesis which focuses on virtual lab components, and consequently
the simpler approach without external measurement equipment is chosen. Still, the
hardware control algorithm can be compared to the reference simulation because (under
the assumption that measurements are communicated correctly) it does not alter any
results of the measurement unit.

Since the hardware controller does not time-stamp any measurement, the clock of the
software PLC is also used to timely align the inputs of the reference simulation. Except
for some timing evaluations which use the clock of the FMI interface component, all
evaluations refer to the timing of the software PLC process and its clock. Consequently,
results can be directly compared without taking any clock deviation into account.

5.3.2 Models and Configurations

In test case 1, a virtual controller, which is based on a Simulink model, is instantiated
twice. The corresponding Simulink model, which is exported as an FMU, is outlined in
Figure 5.5. The model is continuously solved, i.e. voltage inputs and the boolean ready
signal are not sampled. The controller divides the input voltage into several consecutive
voltage bands. In particular, one voltage band is spanned around the set point and does

111

d.

EVALUATION

112

Fast Action —— Average Voltage

500

P
a
o

e L L L NG Aotion

Low Voltage [V]
ey
o
o

350 Fast Action

—
-
o
(U]

Control Signal
o
Iy
\
o
[¢]
(72
¢
o
w

False

212 214 216 218 220 222 224 226

Figure 5.6: Exemplary controller operation

[i/Delay —»

> —
CO—t [—r= RGP
n gl Output Trigger

Delay Process

Figure 5.7: Optimized control action delay model

not trigger any control action. As soon as an adjacent voltage band is reached, a standard
control action is initiated. Similarly, the outer voltage bands trigger a fast control action
and, in case the input voltage deviates too much from the set point, the operation of the
OLTC controller is entirely blocked for safety reasons.

Figure 5.6 illustrates a typical controller output as captured by the reference simulation.
As soon as a standard control action is initiated, a delay of 1s is awaited until the
corresponding up or down signal is asserted and the OLTC is instructed to switch the
tap by one step. A fast action request will be delayed by only 500 ms until it is presented
at the output. Changes on the ready signal will instantly affect the model output and no
delay operation is performed. In particular, if the ready signal is deasserted, all control
outputs will immediately evaluate to false. In case the input voltage switches from a fast
to a slow action voltage band or vice versa, the delay starts again.

Initially, the delay operation was implemented via transport delay blocks which, in an
idealized view, delay the incoming time-continuous signal by a finite and constant amount
of time [99]. In practice, a transport delay block stores various intermediate values
and outputs them according to the currently set simulation time instant. For storing

5.3. Test Case 1: Open-loop Controller Verification

intermediate values, an internal buffer, which was not further analyzed, is used. When
exporting the model as an FMU, the buffer is not exposed in any state variable and can
therefore not be properly reset to a previous state. Additionally, large intervals between
calling the complete integrator step function decrease the accuracy of the transport delay
block and limit the applicability of the predictive approach.

Although a transport delay block may process value-continuous inputs, the controller
model exclusively uses the blocks for boolean signals which are encoded into floating
point numbers. In general, a transport delay block may store multiple transitions of
the input data at the same time. Nevertheless, the model is designed such that only
one positive transition is delayed at once. Storing multiple transitions at once may
even lead to unwanted glitches. To overcome the limitations of the existing action delay
implementation, an implementation which uses an integrator state variable to store the
current progress of a delay operation is introduced. Thereby, the complexity of storing and
managing multiple intermediate nodes is reduced to a single state variable. The exposed
state also simplifies reset operations and increases the accuracy of the prediction-based
approach.

Figure 5.7 shows the revised one-sided action delay implementation. It provides the same
functionality as the PLC implementation in Figure 5.3 but uses continuous Simulink
signals instead. In case the input of the action delay block is asserted, the integrator
linearly increases its state from 0.0 until the maximum value of 1.0 is reached. The
state derivative therefore is the inverse of the targeted delay. The output is asserted as
soon as the maximum value is reached. A dedicated comparison block is used to enable
zero-crossing detection and to properly determine the timing of the switching event. It
turned out that, without enabling zero-crossing detection, the generated Simulink FMU
does not trigger an FMI event. As soon as a falling edge in the input is observed, the
integrator resets to its initial value and a derivative of 0.0 is applied. Consequently, the
output immediately evaluates to false and does not change until the next delay period is
awaited.

The whole model as shown in Figure 5.5 is exported as a version 2.0 FMU. In addition to

the main model in- and outputs, the FMU also exposes several state and debug variables.

Nevertheless, to reduce timing overhead, none of these additional variables was accessed
in the final experiment run. The entire model exposes exactly four derivative variables,
one for each deployed control action delay block. The other Simulink blocks of the
controller do not manage and expose a continuous state. In total, 22 event indicator
variables control the the timing of model events. Although also the time event mechanism
may be used to schedule the occurrence of discrete actions, the controller solely uses state
events to indicate event occurrences. During debugging FMITerminalBlock in general
and the FMU in particular, no time event was observed.

Table 5.2 summarizes the main simulation settings of both FMITerminalBlock instances.

In the predictive configuration, direct output dependency support of FMITerminalBlock
was enabled, i.e. every input event of the model directly triggers an output event which
communicates the state of the model after the input event has been applied. Although

113

5. EVALUATION
Property Predictive Config. Periodic Config.
Direct Output Dependency Yes -
Variable Synchronization Step Size Yes (Always) No
Event Search Precision 1ms 1ms
Integration Method Euler Euler
Integration Step Size Default (50 ms) Default (3 ms)
Look-ahead/Synchronization Time 1s 30 ms
Look-ahead Step Size 500 ms -

114

Table 5.2: FMITerminalBlock simulation settings in Test Case 1

this option decreases the real-time accuracy of a particular event, it is necessary in
order to immediately send control output changes due to the new input conditions. In
particular, when exiting a certain voltage region, the control output is immediately
deasserted on processing the input events and calling the event handling functions. Due
to the immediate nature of the control action, no event which follows the input event is
triggered. In case direct output dependency support would be disabled, the immediate
control action output would be delayed until the next model event or by the look-ahead
horizon time.

In contrast, the periodic configuration does not support direct output dependencies and
always delays communication to the next synchronization event. Any direct output
dependency support on the periodic approach would require to delay the final event exe-
cution and output calculation beyond the next synchronization point. Such a retardation,
which is similar to the predictive approach, may be technically feasible but degrades the
real-time performance of synchronization events and violates the described principle of
the periodic approach. Again, the implementation of another execution variant and the
detailed study of delay effects thereof is beyond the scope of the thesis.

The predictive approach inherently supports variable step sizes. In contrast, the periodic
operation may be configured to schedule the next synchronization event as soon as a
model event is encountered. To simplify the evaluation and to cleanly relate observed
effects to the simulation approach, the variable step size feature is not enabled in the
periodic configuration. For both configurations, an event search precision of 1 ms is used.
The precision controls the accuracy of any state event detection. As soon as the time
range, in which a zero-crossing of an event indicator is observed, drops below the event
search precision, the event location is approximately fixed to one point inside this range.

To study the effects of the synchronization methodology, both configurations use the
same integrator. Since all continuous states of the model directly relate to the state of
the integrator block in Figure 5.7, it can be seen that the state derivative will most likely
be constant between two FMI events. Consequently, a very simple numerical integration
algorithm is sufficient to solve the model accurately. Euler’s algorithm was chosen as the
most simple and deterministic one. Due to the constant step size, the same number of

5.3. Test Case 1: Open-loop Controller Verification

integrator step is used to solve a single look-ahead or synchronization step. Due to the
different timing horizons in both configurations, no unified integrator step size is feasible.
For both configurations, the sensible default value of 50 ms and 3 ms, respectively was
chosen, which corresponds to ten integrator steps per look-ahead or synchronization step.
Although the state equation may be exactly solved in just one integrator step, it was
decided to use the default parameter to account for possibly nonlinear implementations.
Additionally, during the manual optimization step, only little impact was observed on
changing the integration step size by one order of magnitude.

Two of the main influencing factors of the timing accuracy are look-ahead horizon time
and synchronization step size, respectively. Both were selected such that average control
action delays according to the software PLC clock are as low as possible. Additionally,
the timing evaluation output of FMITerminalBlock was checked whether observed event
delays eventually dissipate and an average real-time execution is feasible. Especially
for the periodic configuration, the size of the synchronization step crucially influences
the timing accuracy. In case the step size is chosen too coarse, control actions are
delayed unnecessarily. In case a too fine-grained synchronization is chosen, the model
cannot be solved in real time and processing delay is introduced. It turned out that
a synchronization period in the order of 30 ms provides best results. In the predictive
configuration, the length of the look-ahead horizon in conjunction with the look-ahead
step size have the greatest impact on the accuracy. Due to the simplicity of the state
structure, only few nodes are sufficient to properly reset and interpolate the state. A
look-ahead horizon of 1s and one intermediate node turned out to produce satisfying
results. Larger values result in an extended prediction time while smaller values create
numerous unnecessary events.

5.3.3 Results

Before assessing the accuracy of all configurations, the real-time performance is evaluated
as described in Section 5.1. Especially the delay, which is the difference in the measured
real-time instant to the intended simulation time, is evaluated. Table 5.3 summarizes
the main statistics of observed delay values of both FMITerminalBlock instances. The
stage column lists the point in the processing flow at which the time is sampled. The
registration stage subsumes both possible event sources, model events and externally
added ones. Since model events may not be scheduled in case external events outdate
the results, the number of sampled registrations is higher than the number of actually
scheduled events.

The periodic configuration generates much more events, due to a small synchronization
period of 30ms compared to the look-ahead horizon of 1s for the predictive one. In
particular, the average distance between two events in terms of simulation time is 29 ms
for the periodic configuration and 303 ms for the predictive one. Since the execution
time of both experiments is (roughly) the same, the difference in the event rate by
one order of magnitude is also reflected in the total number of recorded samples. Note
that the high number of scheduled samples for the periodic configuration does not

115

5. EVALUATION
Delay Statistics
Stage Clean Samples Mean Variance Min. Max.
Config. 9
[s] [s°] [s] [s]
Registration no 1061 -0.425 0.2184 -1 0.078
Registration yes 1009 -0.422 0.2162 -0.974 0.0322
Predictive Begin Dist. no 791 0.0162 2.566e-4 0 0.078
Begin Dist. yes 753 0.0155 2.161e-4 0 0.0462
End Dis. no 791 0.0169 2.712e-4 0 0.125
End Dist. yes 753 0.0162 2.184e-4 0 0.0468
Registration no 11285 -0.00802 2.218e-4 -0.03 0.149
Registration yes 10721 -0.0087 1.543e-4 -0.0289 0.0258
Periodic Begin Dist. no 11015 0.0194 1.753e-4 0 0.179
Begin Dist. yes 10465 0.0191 1.412e-4 3.65e-4 0.0439
End Dist. no 11015 0.0201 1.773e-4 Te-6 0.179
End Dist. yes 10465 0.0197 1.398e-4 9.49e-4 0.0442

116

Table 5.3: FMITerminalBlock real-time performance parameters (open-loop experiment)

necessarily correspond to a high number of actually distributed events. In the IEC 61499
ASN.1 implementation, no event message is sent in case the scheduled event does not
contain any changed data. Hence, the periodic implementation allows a relatively small
synchronization period without frequently overloading connected components.

For each processing stage in Table 5.3, one cleaned row is presented in which outliers
are removed prior to calculating the statistics. A simple outlier detection is used which
symmetrically drops 5 % of the samples sorted by their delay. For both configurations, the
outlier removal reveals that only few events show very high delays of up to 179 ms. While
for the predictive configuration a maximum delay value at the end of the distribution
phase of 125 ms was observed, 97.5 % of the delays stayed below 47 ms. Similar drops in
the maximum delay values are also observed for the periodic configuration.

Figures 5.8 and 5.9 further illustrate the delay distribution of the predictive and periodic
configuration, respectively. Both figures show the delay histogram for the processing
stages in Table 5.3 without removing outliers a-priori. From these figures it is also visible
that the majority of observed delays stayed well below 50 ms. For the controlled process
of an OLTC transformer, which features mechanical switching times of about 500 ms and
intended control delays in the same order of magnitude, achieved delays are, for both
configurations, denoted as acceptable.

From Table 5.3, it is obvious that all distribution phase statistics reside within the same
order of magnitude. Only minimum and maximum registration delays strongly differ
between the configurations. In principle, the registration delay is the delay when a new
event is added to the queue. Since a predicted event is ideally added before it should

5.3. Test Case 1: Open-loop Controller Verification

Registration Begin Distribution End Distribution
300
500
300
(2]
€ 250
@ 400
@ 2001 200
%S 300 -
[150 T
3 200
100 A i
g 100
Z 100 50 -
0 - 0- — 0 -
-1.0 -0.5 0.0 0.000 0.025 0.050 0.075 0.00 0.05 0.10
Delay [s] Delay [s] Delay [s]

Figure 5.8: Histogram of observed execution delays (predictive open-loop configuration)

Registration Begin Distribution End Distribution
5000
® 5000 4 5000 -
2
S 4000 1
S 4000 4000 1
= 3000
6 3000 - 3000 A
S
[}
_g 2000 - 2000 - 2000 -
=]
Z 1000 A 1000 - 1000
0- 0- 0 -
000 0.05 0.10 0.15 000 0.05 0.10 0.15 000 0.05 0.10 0.15
Delay [s] Delay [s] Delay [s]

Figure 5.9: Histogram of observed execution delays (periodic open-loop configuration)

be scheduled, negative delay values do not degrade the real-time performance. For both
configurations, minimal delay values which equal the synchronization period and the
lookahead horizon, respectively, are observed. For the minimum delay events, generalized
prediction could be conducted faster than the platform-dependent granularity of the
timing recordings. In the current implementation, registration delays of external events
are always positive because the simulation time is set to the real-time instant on receiving
an external event. Consequently, the maximum registration delay of all events is equal
to or bigger than zero as soon as a single external event is received. Nevertheless, the
maximum registration delay for both configurations is caused by a predicted event which
was submitted late.

Figure 5.10 shows recorded values during the entire experiment. The top row illustrates
the low voltage reading which was accessed from the controller hardware and sent to all
other components of the setup. Several voltage band crossings are included in the entire
voltage curve. Each crossing triggers a control action as described in Section 5.3.2. In

117

d.

EVALUATION

118

- S S S N S S S -
. I —— Average Voltage
E L ® Instant Voltage

550

.

500

450

400

350

Low Voltage Measurement [V]

True V7T — L1
Reference Simulation
FMU, Predictive
FMU, Periodic

Hardware

Up-Signal

False

True F—F—mm— NN — T 1.
Reference Simulation

—— FMU, Predictive
—— FMU, Periodic

Hardware

Down-Signal

False

Tt

1

150 200 250 300 350 400 450
Time [s]

Figure 5.10: Overview of the open-loop experiment

principle, both configurations and the hardware output the same control action signals. In
particular, no control action is omitted and no spurious control action with respect to the
offline reference simulation was observed. Nevertheless, the recorded timing slightly varies
between each controller realization. Figure 5.11 shows three control signal transitions in
more detail and visualizes typical timing deviations.

In a post-processing step, the time of each signal transition is identified and the delay
between the signal and the reference simulation is calculated. Table 5.4 summarizes
the delay statistics of every recorded signal. Additionally, a cumulative statistic which
includes both signals of each configuration is given. Most obvious, all delays, except for the
hardware implementation, are positive, i.e. the output of the virtual components in the
predictive and periodic configurations are always changed later than the reference outputs.
In contrast, minimal hardware delays of up to —516 ms are observed. Consequently, the
hardware output is delivered before the reference output changes, but also the reversed
effect of late hardware outputs is observed.

5.3. Test Case 1: Open-loop Controller Verification

H H H T H
—*— Ave

ra'ge' letage

% 500 e |nstant Voltage
[=
g 475
g
§450
S 425
Q
§400
S 375
%350
-

825 e e e e e e e e e
s T 7 1 [[[| — Reference Simuaion |
) bbb = FMU, Predictive
a2] — P peride
2 " — Feference Simuaton T T T T
® j— PMU.Predictive & bl b i
£ | FMU. Periotic ARTR N NN NN AR AR N 1 (AR
3 | — Hardware EEREEEI EEEEEEEEEENL] BENE
Q False 4 —_ O

166 168 170 172 174 176 178

Time [s]

Figure 5.11: Exemplary output timing in the open-loop experiment

The software PLC queries each value from the hardware independently and does not
execute an atomic read operation. After each variable is queried, the next polling cycle
is awaited. The hardware controller updates the Modbus register values periodically
and processes pending read requests after the update has been performed. Due to the
non-atomic nature of request operations, an inconsistent view of the controller state is
transiently processed. In particular, it is observed that the voltage readings are queried
before the controller updates its state and the control outputs are queried after an update.
Hence, one event which contains the old voltage but the updated control action values
from the hardware is processed by the software PLC. At the next successful polling cycle,
the updated voltage value is processed, too.

Due to the limited resources of the controller hardware, in rare cases successful polling
cycles of up to 515 ms can be observed during the experiment run. Each extreme minimum
delay of up to —516 ms can be tracked down to a combination of late voltage updates
and delayed polling cycles. The positive maximum values of up to 169 ms can be tracked

119

5. EVALUATION

Delay Statistics
Signal Samples Median Mean Variance Min. Max.

Config. 9

[s] [s] [s] [s] [s]

Predictive Down 46 0.03 0.0246 0.0001616 0 0.084
Up 30 0.016 0.0428 0.007932 0 0.498
Periodic Down 46 0.062 0.0567 0.0002295 0.03 0.094
Up 30 0.062 0.0781 0.006728 0.031 0.498
Hardware Down 46 -0.327 -0.264 0.02085 -0.516 0.015
Up 30 -0.327 -0.236 0.02868 -0.515 0.169
Predictive Both 76 0.023 0.0318 0.003307 0 0.498
Predictive (Cl.) Both 75 0.016 0.0256 0.0004148 0 0.169
Periodic Both 76 0.062 0.0651 0.002904 0.03 0.498
Periodic (Cl.) Both 75 0.062 0.0594 0.0004109 0.03 0.169
Hardware Both 76 -0.327 -0.253 0.02413 -0.516 0.169

120

Table 5.4: Signal delay statistics (open-loop experiment)

down to scheduling latencies within the software PLC. The voltage and control output
readings are queried synchronously from the hardware, and, consequently, the reference
model is updated as expected. Nevertheless, the delayed response of the software PLC is
timed well beyond the intended timing and a positive delay was observed. Since both
phenomena which cause the extreme delay are not caused by FMITerminalBlock but by
the connected HuT, no further investigation is conducted.

Since none of the FMITerminalBlock instances receives a voltage reading before it is
processed by the software PLC, all delays are in the positive domain. In rare cases,
delays of up to 500 ms are recorded by the PLC. The switching event can be tracked
down to a particular set of FMI events which show only a delay of up to 40 ms in the
FMITerminalBlock timing recordings. The output event timing in terms of simulation
time corresponds exactly to the expectations from the Simulink model. Hence, the
delay may either be caused by an erroneous real-time tracking of FMITerminalBlock
or by network and scheduling delays within the software PLC. Since the time tracking
facilities of FMITerminalBlock were carefully assessed within the development phase,
both configurations simultaneously showing the peak value and similar scheduling effects
being observed at the hardware configuration, it is strongly believed that the outliers
were generated outside the domain of FMITerminalBlock. On removing the single outlier,
which accounts for 1.3 % of the samples, from the statistics, at most 169 ms of delay is
observed. When considering that the reference Simulink model mostly uses a step size of
10 ms to store simulation results, maximum delay values of 169 ms directly correspond to
the expectations from the timing analysis.

5.4. Test Case 2: Closed-loop CHIL

e] N
m OLTC and Transformer Virtual
Component

\
R N R _
g ASN.1 N
|
| . / . . 4 |
'l(w¢ Protocol Bridge '1|(me OLTC Controller !
: Software PLC]: :[‘4 Software PLC]:
I A [N /
| Modbus I ST TS T T T -
|
I A 4 I
I == I
! | ! One Controller
!] ! _Realization
: : Simultaneously
| OLTC Controller |
\ Hardware /

—_ _ e e - e e e _ _ _ _ = =

Figure 5.12: Setup of test case 2

5.4 Test Case 2: Closed-loop CHIL

5.4.1 Experimental Setup

In contrast to the open-loop setup of test case 1, which primarily targets the quantitative
evaluation of delay sources, the test case 2 experiments aim at qualitatively describing
the effects of the coupling approaches on a closed-loop setup. The test case consists
of multiple experiments which implement a single configuration at once. Figure 5.12
illustrates the basic scheme of each experiment. A power hardware model is exported
as an FMU and used to create a virtual component via FMITerminalBlock. The OLTC
controller is realized in two different ways. First, the OLTC controller hardware from
test case 1 is accessed via a protocol bridge which translates the ASN.1-based protocol
and Modbus. Alternatively, a PLC OLTC controller implementation is used to suppress
delays which are introduced by polling a Modbus device. FMITerminalBlock connects to
the software PLC and sends two process variables, the LV measurement and a status flag
indicating whether the OLTC is ready to accept new control commands. Simultaneously,
it receives the status of two control signals, one for increasing and one for decreasing the

121

5. EVALUATION
VOLTAGE_BAND CONTROLLER OUTPUT_DRIVER
REQ REQ CNF REQ CNF CNF
N BAND_CONTROLLER OUTPUT_DRIVER -
READY - - = DOWN
551.25[(UMAX ~ OVERVOLTAGE_BLOCK —>{READY UP |+
U FAST_UP FAST_UP DOWN [—
STANDARD_UP STANDAD_UP
NORMAL| —— > STANDARD DOWN
STANDARD_DOWN [— [—>{ FAST_DOWN
FAST_DOWN -

UNDERVOLTAGE_BLOCK

J

122

Figure 5.13: OLTC controller PLC implementation

output voltage.

The protocol bridge for accessing the embedded OLTC controller hardware converts
between the periodic communication scheme of Modbus and the event-based communi-
cation scheme of the IEC 61499 protocol. The control outputs of the OLTC controller
are polled periodically with a nominal polling cycle of 200 ms. Since the same hardware
controller implementation is used for test case 1 and 2, also the same polling interval
is used. In contrast to the first test case, the controller hardware is now configured via
Modbus registers such that the sampled input voltage is read from another Modbus
register instead of sampling analog 10 lines. As soon as the virtual component reports a
changed voltage value, the new reading is relayed via Modbus without awaiting the next
polling cycle. Hence, in one direction, the software PLC has to poll the control outputs
and in the other direction, new voltage readings can be instantly applied.

After each polling cycle, the software PLC internally generates an event regardless of
any actual value changes. To fully exploit the capabilities of an event-based execution
model within the protocol bridge, events which are not associated with changed control
outputs are filtered before processing the data. Still, the semantic and the timing of a
control output has to be adapted to the requirements of the OLTC transformer model.
The same delay compensation logic from the first test case in Figure 5.4 is also used
in the protocol bridge. After adapting the representation of control commands, output
events are directly relayed to a connected FMITerminalBlock instance.

To compare the effects of multiple virtual component configurations more easily, an
event-based software PLC implementation of the OLTC controller was created. The
software PLC controller thereby uses the same functional principles and timeouts as the
hardware implementation which is already described in Section 5.3.2. In contrast to
the hardware implementation, no polling is involved and changed control outputs can
be directly sent to the virtual OLTC transformer instance. Figure 5.13 shows the main
components of the PLC implementation. A voltage band controller BFB implementation
converts the voltage reading to a set of variables which indicate the currently active
voltage band. A maximum voltage parameter is used to internally scale the voltage bands
according to the actual transformer implementation. The output driver FB delays and
converts the band signals into the final control output signals. The implementation of

5.4. Test Case 2: Closed-loop CHIL

the output driver is taken directly from the protocol bridge and from test case 1 which
increases comparability by using the same timeout mechanisms.

The test case focuses on two main aspects. The first one is to qualitatively assess
the closed-loop performance of involved hardware and software components and the

second one is to compare the performance of the periodic and the predictive approach.

Two experiments, which both use the predictive configuration, specifically tackle the
first focus of closed-loop assessment. The first one directly deploys the controller at
the software PLC and the second one uses the dedicated controller hardware. When
comparing both experiments with the reference simulation, differences in the controller

implementations and communication strategies in a closed-loop operation become visible.

A third experiment is conducted which uses periodic synchronization in order to compare
different synchronization strategies of virtual components. To limit the impact of
connected hardware on the simulation results, only a software PLC implementation of
the OLTC controller and no polled hardware is used. Again, the results of the virtual
component setups are compared to the ground truth reference simulation.

5.4.2 Models and Configurations

Similar to the controller model, the OLTC and transformer models were provided by
Ormazabal [73] as a monolithic Simulink model. The model uses components from the
Simscape Power Systems library [83] which are configured to use phasors to solve the
circuit. One three-phase programmable voltage source block is used to represent the
medium voltage grid. In order to simulate voltage changes and to trigger switching
actions, multiple voltage steps are applied via the voltage source. A static and fixed
load is used at the low voltage side of the transformer. The entire model exports the
absolute Medium Voltage (MV) levels for debugging, the LV measurement, the current
tap position as well as a ready signal. Two input control signals, one for switching the
current tap towards a higher LV and one for decreasing the LV, are required to drive the
virtual OLTC transformer model. Note that the MV profile is statically entered in the
model and cannot be changed via model inputs. Consequently, no MV profile has to be
generated to drive a virtual component, simplifying its usage.

Beside various detailed electrical characteristics, the model also covers several mechanical
properties of the OLTC. In particular, the time required by the OLTC to switch taps
is covered. As soon as a positive edge on one of the control signals is encountered,
a switching action is started. The OLTC indicates that it is currently switching tap
by deasserting the ready signal. As soon as the switching action is finished, ready is
asserted again by the OLTC hardware and the tap position output changes. The partly
asynchronous nature of the control and ready signals is exploited by the OLTC controller
implementations to switch multiple taps in a row unless the low voltage value is in the
desired voltage band. The controller model will instantly deassert any action output in
case the ready input evaluates to false. As soon as the ready input is asserted again, the
control output can be applied without awaiting any artificial delay. Consequently, the
transformer model can initiate the next switching operation after the previous one has

123

d.

EVALUATION

124

Input Trigger

R)
Ready Trigger f Ready
£

up

Upper End TapNo

down

1/MecDelay
v X >

1 Speed -
up Relative Speed o5 1
s
Up direction
down Ext. Req X0 %

Down — - - — h - ... Lower End
Direction Sampler Init Switch Position Relative Switch Position Tap Changer

Figure 5.14: Adapted Simulink tap control implementation

been completed. Via the feedback loop formed by the ready signal, a controller does
not have to consider any (worst case) switching delay of an OLTC but adapts to the
delay of the hardware. Nevertheless, the implementation is not fully delay-insensitive
because the rising edge of the ready signal does not depend on any falling edge of a
control signal. Such a behavior is considered as a part of the system properties and is
therefore preserved.

Similar to the controller model described in Section 5.3.2, mechanical delays in the OLTC
were initially modeled by transport delay blocks. To increase the accuracy of a prediction-
based approach, the tap control implementation was changed to an implementation which
uses an integrator block to represent the current status of the mechanics. Figure 5.14
shows the adapted implementation of the tap control model. The relative switch position
integrator thereby reflects the mechanical position and consequently the delay until the
next winding is switched. It does not encode an absolute switch position. The direction
sampler simply outputs the domain of one of the input signals as soon as a rising edge is
detected. Simultaneously, the integrator is reset to zero. As soon as the integrator reaches
the border position of plus or minus one, it is stopped and the final position is indicated
via the upper and lower end comparisons. To initially assert the ready signal and to
avoid an initial switching operation, a dedicated block initially resets the integrator to a
border position. As soon as one control signal is asserted for a control action request, the
integrator is reset to zero instead. The tap changer block maintains the actual absolute
tap position and updates its state as soon as a switching operation is completed and the
ready signal rises again.

To create a reference simulation, the closed-loop setup, which includes the controller
as well as the transformer models, was first simulated as a monolithic Simulink model.
Due to the complexity and condition of the model, only a variable step size solver was
able to satisfyingly solve the embedded ODEs. Solvers which feature a fixed step size
either showed divergent results or suffered from an unacceptable execution time. As
the controller model, the OLTC transformer model is exported as a version 2.0 FMU.
In addition to the previously described model in- and outputs, the FMU also exposes
several internal signals and states. Nevertheless, none of these are used in the virtual
component configuration which only accesses the two control inputs as well as the tap
position, ready, and voltage outputs. The entire continuous dynamic state of the model is
encapsulated into nine state variables, and 13 state event indicators are used to indicate

5.4. Test Case 2: Closed-loop CHIL

Property Predictive Config. Periodic Config.
Direct Output Dependency Yes -
Variable Synchronization Step Size Yes (Always) No
Event Search Precision 1ms 1ms

. Adams-Bashforth- Adams-Bashforth-
Integration Method Moulton Moulton
Integrator Library Sundials Sundials
Initial Integration Step Size Default (10 ms) Default (10 ms)
Absolute Integrator Tolerance 1074 104
Relative Integrator Tolerance 104 104
Look-ahead /Synchronization Time 1s 100 ms
Look-ahead Step Size 100 ms -

Table 5.5: FMITerminalBlock simulation settings in Test Case 2

model events such as tap switching operations. On creation, the FMU is configured such
that S functions are loaded from binary MEX files. This is necessary to successfully
export and run the model.

Two distinct configurations are used to create virtual components. Table 5.5 summarizes
the main configuration settings for both of them. The same interface settings, such as the
order and amount of communicated model variables, are used in all configurations and
are therefore not listed. Direct output dependency support is enabled at the predictive
configuration because the assertion of one control signal may immediately trigger a falling
edge on the ready signal. Without direct dependency support, the transition would be
delayed until the next event, leading to possibly missed pulses on the ready signal. As
for test case 1, variable step size support is disabled for the periodic configuration and
the event search precision is set to 1ms for both configurations.

Following the observations of the reference simulation, an adaptive integration algorithm
was chosen to solve the model. In the FMI++ documentation [96], the Adams-Bashforth-
Moulton integrator is recommended to solve models which require a high effort for
computing the model equations. While the generated FMU only exports a few model
variables, considerable computation effort was observed for evaluating the derivative
functions. Consequently, an Adams-Bashforth-Moulton integrator was chosen. It turned
out that the Sundials implementation [49] of the integration algorithm performs signifi-
cantly better than the Boost Odeint implementation [1] which both can be accessed via
FMI++. Preliminary tests showed that only the Sundials implementation is able to solve
the model without accumulating delay values. Consequently, the faster implementation
is selected for all configurations. To increase the comparability of gained results, both
configurations select the default initial step size of 10 ms and the same tolerance values.

The look-ahead horizon, synchronization time and look-ahead step size are chosen such
that the models can be solved in nearly real time and that delay values accumulated

125

5. EVALUATION
Delay Statistics

Experiment Stage Clean Samples Mean Variance Min. Max.

[s] [s%] [s] [s]
Reg. no 379 -0.218 0.1291 -0.896 0.187
Reg. yes 361 -0.211 0.1206 -0.837 0.172
PLC Begin Dist. no 282 0.0903 0.003331 0 0.187
Predictive Begin Dist. yes 268 0.0904 0.003101 0.00596 0.172
End Dist. no 282 0.0909 0.003335 0 0.187
End Dist. yes 268 0.091 0.00311 0.00617 0.172

Reg. no 842 -0.0376 0.0001798 -0.0688 0

Reg. yes 800 -0.0382 0.0001463 -0.0503 0
PLC Begin Dist. no 771 0.0262 2.176e-05 0.0156 0.0336
Periodic Begin Dist. yes 733 0.0262 1.933e-05 0.0183 0.0332
End Dist. no 771 0.0275 4.919e-05 0.0181 0.0468
End Dist. yes 733 0.0273 3.98e-05 0.0185 0.0468
Reg. no 293 -0.271 0.12 -0.837 0.187
Reg. yes 279 -0.268 0.1136 -0.83 0.0156
HW Begin Dist. no 222 0.0219 0.001354 0 0.187
Predictive Begin Dist. yes 212 0.0185 0.0007501 0 0.172
End Dist. no 222 0.0224 0.001381 0 0.187
End Dist. yes 212 0.0191 0.0007828 0 0.172

126

Table 5.6: FMITerminalBlock real-time performance parameters (closed-loop experi-
ments)

during a short period of time quickly decay to their minimum value. It turned out
that, in most cases in the periodic configuration, due to the limited precision, simulated
LV readings vary slightly from one steady-state period to another. The resulting fully
distributed output event at nearly every synchronization point limits the performance
and further leads towards the synchronization period of 100 ms.

5.4.3 Results

Again, the real-time performance parameters are evaluated prior to the simulation results.
Table 5.6 summarizes the main timing statistics of every evaluated experiment run.
The first two blocks cover the software PLC implementation with a predictively and
periodically synchronized virtual component, respectively. The last block corresponds
to the experiment which interfaces the OLTC controller hardware. Observed absolute
event delays first indicate that the model requires much more computational effort than
the OLTC controller model of test case 1. Especially for the predictive configurations,
delay values of up to 187 ms, even at registration, are observed. Unlike test case 1, the
maximum values are not dominated by few outliers, but several predictive samples with

5.4. Test Case 2: Closed-loop CHIL

Registration Begin Distribution End Distribution
100 T 50 T 50 I
(2]
t 807 40 1 40 1
Q
@
- 60 30 A 30 4
)
S
g 40 4 20 A 20 A
£
Z 201 10 4 10 -
0- 0- 0-
-0.75 -0.50 -0.25 0.00 0.00 005 0.10 0.15 0.00 0.05 0.10 0.15
Delay [s] Delay [s] Delay [s]
Figure 5.15: Histogram of observed execution delays (predictive, PLC controller)
Registration Begin Distribution End Distribution
| 150
300
% 250 125
100
& 200
S 75
o 150
38
€ 100 50 7
=]
Z 50 25+
0 0-
-0.06 -0.04 -0.02 0.00 0.015 0.020 0.025 0.030 0.02 0.03 0.04
Delay [s] Delay [s] Delay [s]

Figure 5.16: Histogram of observed execution delays (periodic, PLC controller)

distribution delay values in the order of 180 ms are observed.

Figures 5.15 to 5.17 show the delay distributions for each experiment and give further
insights into the structure of observed delay values. For the predictive PLC controller
experiment run, multiple samples yield distribution delay values above 150 ms. In the
hardware controller experiment, much fewer samples above that threshold are observed,
although the same FMITerminalBlock configuration is used. Due to polled, external
hardware, fewer events are triggered and processed in the hardware controller experiment
than in the PLC version. In particular, the timing analysis of the hardware controller
experiment covers 292 events, while 378 events are processed for the PLC controller. Since
both experiments cover approximately 70s of simulation time, the average time between
two events is proportionally larger in the hardware controller experiment. Figure 5.18
plots the histograms of inter-event time spans for both predictive experiments. The
histograms show that the number of events triggered shortly after another event is much
higher for the PLC experiment. Due to the high computational effort to solve the model,

127

5. EVALUATION
Registration Begin Distribution End Distribution
@ 125 150 - 150
c
2 100
1T
100 A 100 A
S 75
S
3 50
g 50 - 50 -
Z 25
0 0 — 0 — N
-0.5 0.0 0.0 0.1 0.0 0.1
Delay [s] Delay [s] Delay [s]

128

Figure 5.17: Histogram of observed execution delays (predictive, HW controller)

120 A

200 4

-

o

o
!

150 4

[02]
o
!

[22]
o
!

100 -

H
o
!

Number of Events
Number of Events

50 -
20 A
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Event Distance [s] Event Distance [s]
(a) HW controller (b) PLC controller

Figure 5.18: Event distance distribution (predictive, closed-loop experiments)

such events often cannot be predicted and delivered in real time and contribute to high
real-time delay values.

For the periodic configuration, observed maximum delay values of up to 47 ms are a
lot smaller than for the predictive configuration. Note that the synchronization step
size of the periodic approach is one order of magnitude lower than the look-ahead time.
Consequently, a smaller simulation-time span needs to be processed in order to compute
a single event. Since the computational effort of computing a single event is lower,
also absolute delay values of the periodic experiment are reduced. In addition, the
update procedure of applying external inputs to the model does not indirectly cause
a computationally expensive prediction step and the real-time evaluation shows less
accumulated delay of multiple late events. Due to the high frequency of emitted events,
most of the 841 processed events are nominally delayed by the synchronization time of
100 ms.

5.4. Test Case 2: Closed-loop CHIL

2 et [i e e i [T feeer b [T e T LTS
® 015 ! bo#oTo!’g eded o em'e uTotoT@_ﬂzloo | o 000000 ? L] predicted i
E [r e r i X extemnal
Ll i IR R R R L KX e R i
m010 i o e 1 ee; @ 1 e [ed (e [L . [i
£ i Il eam | e me| | | ol odessesstemim ¢ 0| I 1 1 | |cciemessss @ eedededed |
n i I eme Pl e I 1 b e gessse e ie | P | Goes im0 @ @0 | | | i
» 0.05 1 —— —— —— et —— —— —— !
T e | [k el | e | 1]
o i P P i P g:r.h'*x i oo oo i
E 0.00 T — ?“l T .wl —— |::;.c:.: lm' —— —— A‘, x. — +
0 10 20 30 40 50 60 70

Simulation Time [s]

Figure 5.19: Duration of subsequent event predictions (predictive, PLC controller)

w I R D e e e e e e
@ 006 Tt el bbb o predicted
E fHl e[Uhel] Dol ldel D] Lol 1111} % odomal
m0'04llllllllllllllllllllllllllllll
.E :IIIIIIII||||||||||||||||||||:
7] NN
8 OO T [ke [ik ek]
S IR EEEREEE RN RRERE SRR REEREE
@ 0.00 i —Dgese e : o ——L X . S S —
0 10 20 30 40 50 60 70

Simulation Time [s]

Figure 5.20: Duration of subsequent event predictions (periodic, PLC controller)

Figures 5.19 and 5.20 show the duration of the event prediction phase which follows the
distribution of a given event. Points are separated by the type of the event which triggers
the event prediction. Results of the periodic synchronization experiment in Figure 5.20
support the observation of an inexpensive model update process. For all external events,
the time for applying changed inputs is lower than any observed prediction time. Most
synchronization steps are solved within 32ms and every step is solved faster than the
real-time duration of 100 ms with a maximum prediction time of 62 ms.

In the predictive PLC controller experiment, a larger variation and higher prediction
time values of up to 171 ms are observed. Both approaches show average processing time
values for predicting a full period of 31 ms and 111 ms, respectively. Both average and
maximum processing time of a single period are much higher for the predictive experiment
but they stay well below the expectation of one order of magnitude. Processing time
results indicate an increased overhead due to frequent event emission.

An external event in the predictive approach may be a trigger for processing a whole
prediction interval but observed processing times mostly stayed well below the times for
predicted events. Since direct dependency support is enabled for both experiments, each
external event triggers an immediate reply. Such an event is generated by resetting the

129

EVALUATION

d.

70

60

|||||||||||||||||||||

—— Reference Simulation

—-= PLC Contr. (Periodic)
—— HW Contr. (Predictive)

300 4 —— PLC Contr. (Predictive)

250 1

uolyisod dej

50

40

Time [s]

Figure 5.21: Overview of the closed-loop experiment
state of the model, applying external inputs, executing any events, and calculating the

outputs. Note that it is not necessary to solve the continuous equations until the next
event is detected, and, consequently, lower processing time values for external events are

observed. The solution of the next prediction interval is postponed to the subsequent

model event and the full processing time does not account for the external one.

Figure 5.21 shows the resulting signals of all three experiment runs and the reference
simulation. For all experiments, the same MV pattern is applied in the model. Since
the Simulink implementation does not directly trigger events on MV changes, slight

deviations in the signal output are observed. Note that only

the debugging output and

not the internal representation of the MV value is affected. Each MV step, except for

130

5.4. Test Case 2: Closed-loop CHIL

f—s I.?efereﬁce.Sirﬁulétion
—— PLC Contr. (Predictive)

—-= PLC Contr. (Periodic)
—— HW Contr. (Predictive)

||||||||||

< ™ N ~—

uoljisod dej

20

19

18

17

16

15

Time [s]

Figure 5.22: Exemplary switching operation

A

the undervoltage condition, causes multiple subsequent tap switching operations.
tap switching operation is initiated by a positive pulse on one control line. Blocks of

which the controllers signal actions. Due to the implementation of the reference model
and controller, commands may still be issued in case the minimum or maximum tap

overlapping pulses on the control line indicate transition phases in the experiment at
position is reached.

To further study the outcome of the experiments, one exemplary set of tap switches is

plotted in Figure 5.22. Each experiment differs in duration of the positive pulses. While

all other

experiments show pulse widths in the order of a few hundred milliseconds. The width of

the reference simulation only shows short spikes of exactly one integration step,

131

d.

EVALUATION

132

such a control pulse is directly influenced by communication and processing delays. As
soon as a rising control edge is encountered, the model deasserts the ready signal and
a controller ideally outputs a falling edge on the control line. To break algebraic loops,
unit delays are inserted and the falling edge is issued one integration time step later than
the rising one. All other experiments include communication steps, one which signals
changed control commands and one which transports altered ready signal and voltage
readings. Due to the asynchronous nature of subsequent control actions, communication
and processing delays are directly reflected in the signal timing.

As expected, tap switches are issued first in the reference simulation, and the interval
between single switching actions is solely influenced by the unit delay and the mechanical
delay of 500ms. In the exemplary switching operation, the first control action in the
predictive PLC controller experiment arrives 21 ms after the reference signal and the
model instantly issues a falling edge on the ready signal. Since previous events are still
being processed, the falling edge of the ready signal is distributed late by up to 156 ms,
which directly affects the reply of the first falling control signal arriving 193 ms after the
reference simulation. Observed delays for falling control signals do not add up at multiple
switching commands because the mechanical delay of the transformer is independent
from the falling edge of that signal. Still, communication delays of each rising command
edge add up between multiple switching commands.

When including a hardware controller in the closed-loop, communication delays in both
directions drastically influence the rising edges on each control command. The effects
of these delays can be directly seen in Figure 5.22 where the delays of the hardware
correspond to the worst observed delays but still correspond to the expectations from a
polling cycle of 200 ms.

Pulse width and delays are in the order of the other signals but slightly other delay
mechanisms apply to the experiment with periodic configuration. The initial control
pulse, for instance, is delayed by 37 ms, which is in the same time range as for the
predictive counterpart and can be directly related to a communication delay between
the PLC and the virtual controller. Due to the mode of operation, control inputs have
to be delayed until the next synchronization point. In case of the first control action,
the total input delay accounts for 100 ms until applied to the model. Since the periodic
synchronization approach requires all outputs readily calculated before inputs are applied,
the directly reset ready signal is issued at the subsequent synchronization point only and
results in a total delay of 200 ms. Further 24 ms later, the cleared control signal from
the software PLC arrives. Similarly, due to synchronization, the rising edge of the ready
signal is delayed until the next synchronization point which manifests in 200 ms total
delay compared to the reference simulation.

The last rows of Figures 5.22 and 5.21 indicate that, although no opposite control pulse
is issued, a deviating final tap position is reached for the periodic virtual component.
Both final voltage levels reside in the voltage band which does not indicate an action
but, due to the different tap position, other final voltage levels are reached. Since the
transformer model also covers the electrical characteristics, on switching taps, voltage

5.5. Combined Results

levels do not instantly decrease but are subject to continuous change. In most cases,
no intermittent voltage reading is communicated due to the fast transition time and a
reduced timing accuracy in comparison to the reference simulation.

In the reference simulation, the controller uses the voltage reading at the time instant
when the ready signal is up and the tap is switched. Although the updated discrete tap
position is still available, the electrical system has not reached a new steady state yet
and the next control output is based on non-steady state voltage readings. A predictive
virtual component uses the switching event to synchronize data which allows to issue
the outputs at the same simulation time instant as the switching operation is conducted.
Consequently, the correct (with respect to the reference simulation) transient states
can be transferred, even if data exchange is late. Periodic synchronization delays the
switching operation to the beginning of a synchronization period and outputs the results
at the end. Due to the small electrical time constants, the steady state at the end of the
synchronization period is (nearly) reached and the upcoming control decision is based on
different states of the transformer. As a manifestation of the varying sampled state, the
OLTC controller, which is connected to the periodic virtual component, issues one tap
switch operation less.

On solely examining the real-time performance of the periodic approaches without any
reference simulation, one has to add up to 187 ms per switching cycle. Since transformer
model outputs often directly depend on its inputs, significant dynamics are introduced
by the simulation method. Without an in-depth discussion, the detailed dynamics of a
switching operation cannot be directly mapped between the reference simulation and the
other experiments. Nevertheless, results indicate that system dynamics in the range of
few seconds can be accurately represented.

5.5 Combined Results

To limit the impact of periodic synchronization, it is demonstrated that the synchroniza-
tion intervals have to be a lot smaller than the look-ahead horizons of the predictive
configurations. Consequently, the periodic configurations in both test cases trigger more
events than the predictive configurations. Whether such an increased event emergence
results in a higher number of actually distributed events, depends on the particular
model. In test case 1, where all model outputs are discrete outputs, event filtering of
FMITerminalBlock marks most of the additional events as redundant and avoids their
distribution to remote devices. Contrary, the transformer model of test case 2 features a
continuous output which rarely stays constant between two given synchronization points.
Hence, the implemented simple event filtering mechanism is not able to drastically reduce
emitted events and the periodic approach results in an increased workload of connected
devices.

Both test cases showed different real-time delay distributions and even for a single test
case, observed event delays depend on the particular configuration. In the first test case,
the largest delay values observed are dominated by few outliers while in the second test

133

d.

EVALUATION

134

case, a higher share of large delay values is observed. In particular, the second test case
demonstrated, that even for the same model, delays in different configurations can vary
drastically. Due to decreased effort of solving a smaller synchronization interval, less
absolute real-time delay is found in the periodic configuration of test case 2. In general,
various real-time delay phenomena are observed and no synchronization approach clearly
yields a better real-time performance.

Except for delays which are introduced by the real-time operation and small numerical
errors, both test cases show matching results between the predictive configurations and
the reference simulation. In particular, correct steady-state solutions of all predictive
configurations are observed and no bias is introduced. Also, conventional periodic
synchronization in test case 1 shows no deviating steady-state results, but test case 2
reveals a systematic bias due to periodic synchronization and closed-loop operation. In
case results depend on sampling and communicating the model outputs at the point
of time when a particular event occurs, delaying the communication until the next
synchronization point can lead to a significant error. Especially, when generating an
event at a transient state, outputs at the next synchronization point can deviate strongly
from the outputs at the event. It is demonstrated that the predictive approach provides
a viable alternative by communicating outputs at the event, instead of sampling the
outputs at fixed intervals.

Access of external hardware is successfully demonstrated in both test cases. Due to
the involved polling mechanism and the need of an additional protocol translation, a
substantial increase in signal delay is observed. Since delays which are introduced by
accessing connected hardware are accounted as external quantities, the delays cannot
be identified by FMITerminalBlock itself. Hence, the deviations of control signals are
evaluated with respect to a reference simulation. Detailed analysis of test case 1 reveals
the occurrence of transiently inconsistent states, which are caused by non-atomic read
and update operations of the protocol bridge and the controller, respectively. Due to the
experimental design, the inconsistent states have no impact on the steady-state results
and do not influence the outcomes of the methodological synchronization assessment.

CHAPTER

Conclusion and Outlook

Prior to any implementation, the research questions regarding potential ways of linking
IEC 61499 and the FMI were tackled. In principle, a broad spectrum of coupling strategies
exists. For instance, a controller may be encapsulated into an FMU or can utilize models
which are exported via the FMI. Four principal ways of interaction were identified,
each covering a general coupling strategy. For every principal way, different strategies
to implement the general paradigm can be utilized. For example, a controller may
synchronize an included FMI-based model periodically or it may use extrapolation to
predict future states and may reset them, if necessary. For each principal way, multiple
exemplary strategies for various aspects are given and discussed. Nevertheless, only an
excerpt of relevant properties and strategies can be given in the scope of the thesis. A
final qualitative comparison of the strategies indicates that no single coupling approach is
able to serve all classes of use cases. One approach, for instance, may yield good real-time
properties while another approach may be effectively used to model detailed controller
timings in an offline simulation. A suitable coupling strategy must always be selected
according to the targeted use case.

One potential way of creating virtual components via FMI-based models was successfully
implemented by extending a dedicated software component. Although it was feasible
to follow the initial software design of this component, several major modifications and
amendments were necessary to implement a closed-loop operation. It is demonstrated
that the software design tackling a predictive synchronization approach can also be used
to flexibly implement periodic synchronization. Nevertheless, some limitations regarding
the abstract network stack implementation were encountered. The implementation of
protocols which require shared low-level connections may create considerable development
overhead because the current design manages network entities separately. Nevertheless,
the currently used ASN.1-based protocol implementation does not directly suffer from this
limitation. Special attention has to be put on the queue management of exchanged events.
It is shown that in particular late and equally timed events which prohibit a hard real-time

135

6.

CONCLUSION AND OUTLOOK

136

operation require dedicated processing steps. An event queuing and processing scheme is
introduced which supports the implementation of the synchronization approaches and
maintains several assumptions on the state of the event queue.

A proposed general timing and result assessment methodology is successfully applied to
two dedicated test cases in the context of a smart transformer. Results from both test
cases indicate that real-time operation of the virtual components is feasible in principle,
but the accuracy of results strongly depends on timing properties of the processes. While
it is not feasible to investigate transient electrical phenomena in a sub-milliseconds range,
presented components can be used well to study effects in a seconds and sub-seconds
range. Such processes may include electrical systems in steady states, thermal processes
in the building sector, some mechanical, and a variety of chemical processes. Although
the chosen test cases are specifically selected to challenge the approaches and to study
the limits thereof, both test cases successfully demonstrate their capabilities in assessing
the operation of controller hardware. On accessing external hardware, it is shown that
special attention has to be put on the properties of the communication protocol which
highly influences the timing.

The test cases also indicate that the real-time performance of open- and closed-loop setups
strongly depend on the instantiated models and the configuration of the virtual compo-
nents. For instance, the numerical integration method and the deployed synchronization
strategies strongly affect delays and delay variances. In case the model cannot be solved
accurately within the limits of real time, delays may accumulate and invalidate any result.
Since accessed models and solvers, in general, do not provide any guarantees, a real-time
evaluation after each experiment run is necessary. Presented test cases not only use the
internal real-time assessment methodology of the developed interface component but
also successfully validate timings based on external measurements. A detailed analysis
of observed timing deviations and delays reveals major delay sources and effects which
influence the outcome of the experiments. For instance, delays in the predictive approach
are mainly caused by a violation of the idealistic hard real-time assumption that two
events must not be triggered close to each other.

The test cases further present some ways of improving the performance of exported
Simulink models by reducing the need for internal data buffers which decrease the
simulation performance. Monolithic reference simulations are used to highlight the effects
of the evaluated coupling approaches on the outcome of the experiment. Except for
unavoidable timing deviations for transitive states, one experiment also showed varying
steady-state results. The deviation can be tracked down to the operation principle of
the conventional periodic synchronization approach and further reveals the relevance in
properly selecting the simulation methodology.

Although the thesis successfully demonstrated the application of virtual components,
further research and engineering effort may be conducted to broaden the applicability
of the presented approaches. For instance, the networking stack may be refactored and
extended to support a more versatile spectrum of communication protocols. Detailed
performance benchmarks may be performed to further reveal and reduce processing

delays and to increase simulation performance. In particular, the influence of accessed
libraries and operating system calls on the real-time performance is not well understood,
yet. Network stacks and the scheduling mechanism may be improved, such that less
delay and delay jitter is observed.

In order to reduce the effort in using FMITerminalBlock, the user interface can be
substantially extended. Currently, it is necessary to configure a simulation run via
command-line arguments. Dedicated configuration files or an interactive graphical user
interface may guide an engineer in executing a simulation. Some efforts in testing the
interoperability of FMUs are still required, too, to improve the confidence in the interface
program. So far, FMITerminalBlock was mainly tested with dedicated test and Simulink
FMUs. Testing the interface with FMUs by other vendors may reveal some details, which
are not yet tackled. Further attention may be put to the description of use cases which do
not have an adequate HIL library support and strongly benefit from FMI-based coupling.

The implementation of an adaptive event triggering mechanism, which automatically
generates model events on continuous outputs, may further increase the accuracy of
simulations. Similarly, the optional state retrieval feature of FMI 2.0 may be used to
improve reset capabilities of the predictive approach. Since state retrieval would allow to
extend the prediction beyond a single event, it is still to discuss, how the optional feature
can be utilized best. A detailed study of influencing simulation parameters towards an
automatic model parameter optimization may additionally advance the understanding
of the described coupling strategies and ease the practical implementation. Another
feature, which is not yet implemented, is automatic model transformation from FMUs to
IEC 61499-based applications. Currently, coupling needs to be manually implemented by
instantiating network SIFBs. Automatic model transformation may reduce the need for
configuring the network connection and may tighten the integration of virtual components
into automation systems.

Accessing external hardware via the presented methodologies may also receive further
attention. For event-based systems, atomic network access and protocol implementa-
tions need to be studied and featured. Additionally, the reduction of communication
delays and hardware access by other means than conventional polling may broaden the
applicability of virtual components. Since FMITerminalBlock focuses on standard-based
interfaces, it may be directly used to create virtual lab components inside an existing
laboratory infrastructure which exceeds one controller under test. Nevertheless, practical
implementation of such a setup is still open. Similarly, several other coupling strategies,
which are described in Chapter 3, have not yet been implemented and may improve
traditional assessment methodologies.

137

List of Figures

2.1 IEC 61499 device model example [85] 8
2.2 1EC 61499 function block interface example 9
2.3 1IEC 61499 ECC example 9
2.4 General FMI architecture, 14
2.5 Event indication mechanisms L L. 15
3.1 Principal ways of coupling IEC61499 and the FMI 26
3.2 Basic abstract model exchange system model [86] 31
3.3 Extended abstract model exchange system model 32
3.4 Periodic event mapping [86] 33
3.5 Prediction-based event mapping using the FMI for model exchange [86]:
External event arrival (left), uninterrupted operation (middle) and FMU-
internal event occurrence (right) 36
3.6 Exemplary simulation time function00 41
3.7 Naive approach for connecting two FMUs 47
3.8 Basic abstract co-simulation system modelo o000 52
3.9 Extended abstract co-simulation system model 52
3.10 Prediction-based event mapping using the FMI for co-simulation 55
3.11 Basic model exchange IEC 61499 FMU 61
3.12 Basic co-simulation IEC 61499 FMU 68
3.13 Standard communication facility-based co-simulation FMU 68
3.14 Standard communication facility-based event mapping 70
4.1 Basic interface program flow [85] oL 87
4.2 Concurrency issues of the basic program flow 88
4.3 Program flow of the add operation 90
4.4 Main periodic synchronization program flow 94
4.5 Basic program design [85] Lo Lo 95
4.6 Channel mapping configuration objects 97
4.7 Event class hierarchy oo o oL 97
4.8 Event queue and event sink interface 98
4.9 Abstract event predictor 99
4.10 Main networking interfaces 100

4.11 Exemplary Jenkins project overview 102

5.1 Overview of the smart transformer setup, including voltage source (left), load

(right) and controller 103
5.2 Setupoftestcasel. 108
5.3 Control action delay composite network 109
5.4 Delay compensation logico oL 109
5.5 External interfaces of the OLTC controller model 111
5.6 Exemplary controller operation L0 L. 112
5.7 Optimized control action delay model 112
5.8 Histogram of observed execution delays (predictive open-loop configuration) 117
5.9 Histogram of observed execution delays (periodic open-loop configuration) 117
5.10 Overview of the open-loop experiment 118
5.11 Exemplary output timing in the open-loop experiment 119
5.12 Setup of test case 2. e 121
5.13 OLTC controller PLC implementation 122
5.14 Adapted Simulink tap control implementation 124
5.15 Histogram of observed execution delays (predictive, PLC controller) . . . 127
5.16 Histogram of observed execution delays (periodic, PLC controller) 127
5.17 Histogram of observed execution delays (predictive, HW controller) 128
5.18 Event distance distribution (predictive, closed-loop experiments) 128
5.19 Duration of subsequent event predictions (predictive, PLC controller) . . 129
5.20 Duration of subsequent event predictions (periodic, PLC controller) . . . 129
5.21 Overview of the closed-loop experiment 130
5.22 Exemplary switching operation, 131

140

Bibliography

Karsten Ahnert and Mario Mulansky. Boost. Numeric. Odeint. 2015. URL: http:
//www.boost .org/doc/libs/1_61_0/1libs/numeric/odeint /doc/
html/index.html (visited on 12/18/2017).

Karsten Ahnert and Mario Mulansky. ODEINT. 2012. URL: http://headmysh
oulder.github.io/odeint-v2/ (visited on 02/17/2018).

Filip Andrén, Sawsan Henein, and Matthias Stifter. “Development and validation
of a coordinated voltage controller using real-time simulation”. In: JECON 2011
- 87th Annual Conference on IEEE Industrial Electronics Society. Nov. 2011,
pp. 3713-3718. pOI: 10.1109/IECON.2011.6119913.

Filip Andrén, Felix Lehfuf}, and Thomas Strasser. “A Development and Validation
Environment for Real-time Controller-hardware-in-the-loop Experiments in Smart

Grids”. In: International Journal of Distributed Energy Resources and Smart Grids
9.1 (Hardware-in-the-loop Testing July 2013), pp. 27-50. 1sSN: 1614-7138.

Filip Andrén, Matthias Stifter, and Thomas Strasser. “Towards a Semantic Driven
Framework for Smart Grid Applications: Model-Driven Development Using CIM,
IEC 61850 and IEC 61499”. English. In: Informatik-Spektrum 36.1 (2013), pp. 58—
68. 18SN: 0170-6012. DOI: 10.1007/s00287-012-0663—-y.

Michéle Arnold and Goéran Andersson. “Model Predictive Control of Energy
Storage including Uncertain Forecasts”. In: 17th Power Systems Computation
Conference. Stockholm, Sweden, 2011.

Atmel ATmega640/V-1280/V-1281/V-2560/V-2561/V. Atmel Corporation. 2014.
URL: http://www.atmel . com/ Images/Atmel -2549-8—-bit - AVR-
Microcontroller—-ATmega640-1280-1281-2560-2561_datasheet .
pdf (visited on 12/19/2017).

Muhammad Usman Awais. “Distributed hybrid co-simulation”. Dissertation. Tech-
nische Universitdt Wien, 2015.

Muhammad Usman Awais, Peter Palensky, Wolfgang Mueller, Edmund Widl, and
Atiyah Elsheikh. “Distributed hybrid simulation using the HLA and the Functional
Mock-up Interface”. In: Industrial Electronics Society, IECON 2013 - 39th Annual
Conference of the IEEE. 2013, pp. 7564-7569. DOI: 10.1109/IECON.2013.
6700393.

141

http://www.boost.org/doc/libs/1_61_0/libs/numeric/odeint/doc/html/index.html
http://www.boost.org/doc/libs/1_61_0/libs/numeric/odeint/doc/html/index.html
http://www.boost.org/doc/libs/1_61_0/libs/numeric/odeint/doc/html/index.html
http://headmyshoulder.github.io/odeint-v2/
http://headmyshoulder.github.io/odeint-v2/
http://dx.doi.org/10.1109/IECON.2011.6119913
http://dx.doi.org/10.1007/s00287-012-0663-y
http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
http://dx.doi.org/10.1109/IECON.2013.6700393
http://dx.doi.org/10.1109/IECON.2013.6700393

[11]

[12]

[13]

[14]

[17]

[18]

[19]

142

Muhammad Usman Awais, Peter Palensky, Atiyah Elsheikh, Edmund Widl, and
Matthias Stifter. “The high level architecture RTI as a master to the functional
mock-up interface components”. In: Computing, Networking and Communications
(ICNC), 2013 International Conference on. Jan. 2013, pp. 315-320. DOI: 10.
1109/ICCNC.2013.6504102.

Marko Bacic. “On hardware-in-the-loop simulation”. In: Proceedings of the 44th
IEEE Conference on Decision and Control. 2005, pp. 3194-3198. pO1: 10.1109/
CDC.2005.1582653.

Stefan Biffl, Alexander Schatten, and Alois Zoitl. “Integration of heterogeneous
engineering environments for the automation systems lifecycle”. In: Industrial
Informatics, 2009. INDIN 2009. 7th IEEE International Conference on. 2009,
pp. 576-581. DOL: 10.1109/INDIN.2009.5195867.

Torsten Blochwitz, Martin Otter, Martin Arnold, C Bausch, Christoph Clau$,
Hilding Elmqvist, Andreas Junghanns, Jakob Mauss, M Monteiro, T Neidhold, et
al. “The functional mockup interface for tool independent exchange of simulation
models”. In: 8th International Modelica Conference, Dresden. 2011, pp. 20-22. URL:
https://www.modelica.org/events/modelica2011/Proceedings/
pages/papers/05_1_ID_173_a_fv.pdf (visited on 07/04/2017).

David Broman, Christopher Brooks, Edward A. Lee, Thierry Stephane Nouidui,
Stavros Tripakis, and Michael Wetter. JEMI - A Java Wrapper for the Functional
Mock-up Interface. Apr. 2013. URL: http://ptolemy.eecs.berkeley.edu/
java/jfmi/ (visited on 02/17/2018).

Building Controls Virtual Test Bed. Lawrence Berkeley National Laboratory.
2016. URL: http://simulationresearch. lbl.gov/bcvtb (visited on
02/05/2018).

CarMaker. Virtual Testing of Automobiles and Light-Duty Vehicles. IPG Auto-
motive GmbH. URL: https://ipg-automotive.com/?1d=266 (visited on
07/07/2017).

ControlBuild. Designing Automation and Embedded Control Systems. Dassault
Systemes. 2017. URL: https://www.3ds.com/products—-services/cati
a/products/controlbuild/.

Fabio Cremona, Marten Lohstroh, Stavros Tripakis, Christopher Brooks, and
Edward A. Lee. “FIDE: An FMI Integrated Development Environment”. In:
Proceedings of the 31st Annual ACM Symposium on Applied Computing. SAC ’16.
Pisa, Italy: ACM, 2016, pp. 1759-1766. 1SBN: 978-1-4503-3739-7. DOI: 10.1145/
2851613.2851677.

DIN EN 61131-83 Speicherprogrammierbare Steuerungen. Teil 3: Programmier-
sprachen (IEC 61131-3:2013). DIN/VDE-DKE Deutsche Kommission Elektrotech-
nik Elektronik Informationstechnik, June 2014.

http://dx.doi.org/10.1109/ICCNC.2013.6504102
http://dx.doi.org/10.1109/ICCNC.2013.6504102
http://dx.doi.org/10.1109/CDC.2005.1582653
http://dx.doi.org/10.1109/CDC.2005.1582653
http://dx.doi.org/10.1109/INDIN.2009.5195867
https://www.modelica.org/events/modelica2011/Proceedings/pages/papers/05_1_ID_173_a_fv.pdf
https://www.modelica.org/events/modelica2011/Proceedings/pages/papers/05_1_ID_173_a_fv.pdf
http://ptolemy.eecs.berkeley.edu/java/jfmi/
http://ptolemy.eecs.berkeley.edu/java/jfmi/
http://simulationresearch.lbl.gov/bcvtb
https://ipg-automotive.com/?id=266
https://www.3ds.com/products-services/catia/products/controlbuild/
https://www.3ds.com/products-services/catia/products/controlbuild/
http://dx.doi.org/10.1145/2851613.2851677
http://dx.doi.org/10.1145/2851613.2851677

[27]

[29]
[30]

[31]

Gerhard Doblinger. Zeitdiskrete Signale und Systeme; eine FEinfiihrung in die
grundlegenden Methoden der digitalen Signalverarbeitung. 2., iiberarb. Aufl. Wilburg-
stetten: Schlembach, 2010. 1SBN: 978-3-935340-66-3.

Michael Drmota, Bernhard Gittenberger, Giinther Karigl, and Alois Panholzer.
Mathematik fir Informatik. 2nd ed. Vol. 17. Berliner Studienreihe zur Mathematik.
Lemgo: Heldermann, 2008. 1SBN: 978-3-88538-117-4.

Eclipse 4diac - The Open Source Environment for Distributed Industrial Automa-
tion and Control Systems. Eclipse Foundation. URL: http://www.eclipse.
org/4diac/ (visited on 07/03/2017).

Johan Eker, Jorn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong. “Taming heterogeneity —
the Ptolemy approach”. In: Proceedings of the IEEE 91 (1 Jan. 2003), pp. 127-144.
ISSN: 0018-9219. po1: 10.1109/JPROC.2002.805829.

Gisela Engeln-Miillges, Klaus Niederdrenk, and Reinhard Wodicka. Numerik-
Algorithmen. Verfahren, Beispiele, Anwendungen. 9th ed. Xpert.press. Berlin,
Heidelberg: Springer-Verlag Berlin Heidelberg, 2005. 1SBN: 9783540263531.

ERIGrid — H2020 Research Infrastructure Project. 2017. URL: https://erigri
d.eu/ (visited on 12/15/2017).

Charlie Erwall and Oscar Martensson. “Model-based design of industrial au-
tomation solutions using FMI”. eng. master. Sweden: Department of Automatic
Control, Lund University, 2016. URL: http://lup.lub.lu.se/student-
papers/record/8894129 (visited on 07/07/2017).

Factories 4.0 and Beyond. Recommendations for the work programme 18-19-20
of the FoF' PPP under Horizon 2020. European Factories of the Future Research
Association. Sept. 2016. URL: http://www.effra.eu/sites/default/
files/factories40_beyond_v31l_public.pdf (visited on 01/23/2018).

Factories of the Future. Multi-annual roadmap for the contractual PPP under
Horizon 2020. 2013. 1SBN: 978-92-79-31238-0. DOI: 10.2777/29815. URL: http:
//www.effra.eu/sites/default/files/factories_of_the_ future
_2020_roadmap.pdf (visited on 01/23/2018).

FBDK - The Function Block Development Kit. Holobloc Inc. Mar. 2011. URL: http:
//www.holobloc.com/doc/fbdk/index.htm (visited on 07/03/2017).

FBDK 2.6 - The Function Block Development Kit. Holobloc Inc. Mar. 2017. URL:
http://www.holobloc.com/fbdk2/index.htm (visited on 07/03/2017).

FMI Kit for Simulink. version 2.4.0. Dassault Systemes. 2017. URL: https:
//www.3ds.com/fileadmin/PRODUCTS/CATIA/DYMOLA/PDF/FMI_Kit_
for_Simulink.pdf (visited on 12/18/2017).

FMI Library. Modelon AB. 2014. URL: http://www. jmodelica.org/FMIL1
brary (visited on 02/17/2018).

143

http://www.eclipse.org/4diac/
http://www.eclipse.org/4diac/
http://dx.doi.org/10.1109/JPROC.2002.805829
https://erigrid.eu/
https://erigrid.eu/
http://lup.lub.lu.se/student-papers/record/8894129
http://lup.lub.lu.se/student-papers/record/8894129
http://www.effra.eu/sites/default/files/factories40_beyond_v31_public.pdf
http://www.effra.eu/sites/default/files/factories40_beyond_v31_public.pdf
http://dx.doi.org/10.2777/29815
http://www.effra.eu/sites/default/files/factories_of_the_future_2020_roadmap.pdf
http://www.effra.eu/sites/default/files/factories_of_the_future_2020_roadmap.pdf
http://www.effra.eu/sites/default/files/factories_of_the_future_2020_roadmap.pdf
http://www.holobloc.com/doc/fbdk/index.htm
http://www.holobloc.com/doc/fbdk/index.htm
http://www.holobloc.com/fbdk2/index.htm
https://www.3ds.com/fileadmin/PRODUCTS/CATIA/DYMOLA/PDF/FMI_Kit_for_Simulink.pdf
https://www.3ds.com/fileadmin/PRODUCTS/CATIA/DYMOLA/PDF/FMI_Kit_for_Simulink.pdf
https://www.3ds.com/fileadmin/PRODUCTS/CATIA/DYMOLA/PDF/FMI_Kit_for_Simulink.pdf
http://www.jmodelica.org/FMILibrary
http://www.jmodelica.org/FMILibrary

[40]

[42]

[44]

144

FMI Support in Tools. Modelica Association Project. 2017. URL: https://www.
fmi-standard.org/tools (visited on 03/24/2017).

FMI Use Case - dSpace. Integrating Functional Mock-up Units for HIL Simulation.
dSPACE GmbH. 2017. URL: https://www.dspace.com/en/pub/home/
products/hw/simulator_hardware/scalexio/scalexio_fmi/hil_

fmi.cfm (visited on 07/07/2017).

FMITerminalBlock: FMI - Fieldbus Interface. AIT Austrian Institute of Technology
GmbH. 2017. URL: https://github.com/AIT-IES/FMITerminalBlock
(visited on 12/13/2017).

FMU SDK 2.0.5. QTronic GmbH. 2018. URL: http://www.gtronic.de/en/
frmusdk.html (visited on 02/17/2018).

FORTE - jdiac runtime environment. Eclipse Foundation. URL: http://www.
eclipse.org/4diac/en_rte.php (visited on 07/03/2017).

Functional Mock-up Interface for Co-Simulation. Version 1.0. Modelica Association
Project. MODELISAR consortium, Oct. 2010. URL: https://svn.modelica.
org/fmi/branches/public/specifications/v1.0/FMI_for_CoSimu
lation_v1l.0.pdf (visited on 02/17/2018).

Functional Mock-up Interface for Model Exchange. Version 1.0. Modelica As-
sociation Project. MODELISAR consortium, Jan. 2010. URL: https://svn.
modelica.org/fmi/branches/public/specifications/v1.0/FMI_
for_ModelExchange_vl.0.pdf (visited on 02/17/2018).

Functional Mock-up Interface for Model Exchange and Co-Simulation. Version 2.0.
Modelica Association Project. MODELISAR consortium, July 2014. URL: https:
//svn.modelica.org/fmi/branches/public/specifications/v2.
0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf (visited on
03/28/2017).

Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Patrick
Alken, Michael Booth, and Fabrice Rossi. GNU Scientific Library Reference

Manual (3rd Ed.) Ed. by Brian Gough. 2009. URL: http://www.gnu.org/
software/gsl/ (visited on 02/17/2018).

Sara Gunnarsson. “Evaluation of FMI-based workflow for simulation and testing
of industrial automation applications”. eng. master. Sweden: Department of
Automatic Control, Lund University, 2016. URL: http://lup.lub.lu.se/
student-papers/record/8776878 (visited on 07/07/2017).

Feng Guo, Luis Herrera, Robert Murawski, Ernesto Inoa, Chih-Lun Wang, Philippe
Beauchamp, Eylem Ekici, and Jin Wang. “Comprehensive Real-Time Simulation
of the Smart Grid”. In: Industry Applications, IEEE Transactions on 49.2 (Mar.
2013), pp. 899-908. 1ssN: 0093-9994. DOI: 10.1109/TIA.2013.2240642.

Reinhard Hametner. “Modellierung von Regelungsstrategien in einer event-basierten
Echtzeitsteuerungsumgebung”. Technische Universitat Wien, 2008.

https://www.fmi-standard.org/tools
https://www.fmi-standard.org/tools
https://www.dspace.com/en/pub/home/products/hw/simulator_hardware/scalexio/scalexio_fmi/hil_fmi.cfm
https://www.dspace.com/en/pub/home/products/hw/simulator_hardware/scalexio/scalexio_fmi/hil_fmi.cfm
https://www.dspace.com/en/pub/home/products/hw/simulator_hardware/scalexio/scalexio_fmi/hil_fmi.cfm
https://github.com/AIT-IES/FMITerminalBlock
http://www.qtronic.de/en/fmusdk.html
http://www.qtronic.de/en/fmusdk.html
http://www.eclipse.org/4diac/en_rte.php
http://www.eclipse.org/4diac/en_rte.php
https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_for_CoSimulation_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_for_CoSimulation_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_for_CoSimulation_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_for_ModelExchange_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_for_ModelExchange_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v1.0/FMI_for_ModelExchange_v1.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://lup.lub.lu.se/student-papers/record/8776878
http://lup.lub.lu.se/student-papers/record/8776878
http://dx.doi.org/10.1109/TIA.2013.2240642

[48]

[49]

Ingo Hegny. “Development and simulation framework for industrial production
systems”. Technische Universitiat Wien, 2014.

Ingo Hegny, Monika Wenger, and Alois Zoitl. “IEC 61499 based simulation
framework for model-driven production systems development”. In: Emerging
Technologies and Factory Automation (ETFA), 2010 IEEE Conference on. Sept.
2010, pp. 1-8. DOI: 10.1109/ETFA.2010.5641364.

Ingo Hegny, Alois Zoitl, and Wilfried Lepuschitz. “Integration of simulation in the
development process of distributed IEC 61499 control applications”. In: Industrial
Technology, 2009. ICIT 2009. IEEE International Conference on. Feb. 2009, pp. 1—
6. DOI: 10.1109/ICIT.2009.4939681.

José Juan Hernandez-Cabrera, José Evora Gémez, and Octavio Roncal-Andrés.
javaFMI. Sept. 2016. URL: https://bitbucket.org/siani/ javafmi/
wiki/Home (visited on 02/17/2018).

Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L. Lee, Radu Serban,
Dan E. Shumaker, and Carol S. Woodward. “SUNDIALS: Suite of nonlinear and

differential /algebraic equation solvers”. In: ACM Transactions on Mathematical
Software (TOMS) 31.3 (2005), pp. 363-396.

IEC 61499-1/Ed.2: Function blocks - Part 1: Architecture. International Elec-
trotechnical Commission, IEC, Nov. 2012.

IEEE Standard for Modeling and Simulation (MES) High Level Architecture
(HLA) — Framework and Rules. Aug. 2010, pp. 1-38. DOI: 10.1109/IEEESTD.
2010.5553440.

Jenkins. 2017. URL: https://jenkins.io/ (visited on 12/13/2017).

Simon Josefsson and Nikos Mavrogiannopoulos. GNU Libtasnli. Free Software
Foundation, Inc. Jan. 2018. URL: https://www.gnu.org/software/libta
snl/ (visited on 02/17/2018).

Andi Kleen and Michael Kerrisk. TCP (7) Linux Programmer’s Manual. Linux
man-pages project. Sept. 2017. URL: http://man7.org/linux/man-pages/
man7/tcp.7.html (visited on 02/17/2018).

Hermann Kopetz. Real-Time Systems; Design Principles for Distributed Embedded
Applications. Real-Time Systems Series. Boston, MA: Springer Science+Business
Media, LLC, 2011. 1sBN: 9781441982377. po1: 10.1007/978-1-4419-8237-17.

Henning Kroll, Giacomo Copani, Els Van de Velde, Magnus Simons, Djerdj Horvat,
Angela Jager, Annelies Wastyn, Golboo PourAbdollahian, and Mika Naumanen.
An analysis of drivers, barriers and readiness factors of EU companies for adopting
advanced manufacturing products and technologies. Sept. 2016. 1SBN: 978-92-79-
64467-2. DOI: 10.2873/715340. URL: https://ec.europa.eu/docsroom/
documents /20926 /attachments/1/translations/en/renditions/
native (visited on 01/19/2018).

145

http://dx.doi.org/10.1109/ETFA.2010.5641364
http://dx.doi.org/10.1109/ICIT.2009.4939681
https://bitbucket.org/siani/javafmi/wiki/Home
https://bitbucket.org/siani/javafmi/wiki/Home
http://dx.doi.org/10.1109/IEEESTD.2010.5553440
http://dx.doi.org/10.1109/IEEESTD.2010.5553440
https://jenkins.io/
https://www.gnu.org/software/libtasn1/
https://www.gnu.org/software/libtasn1/
http://man7.org/linux/man-pages/man7/tcp.7.html
http://man7.org/linux/man-pages/man7/tcp.7.html
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.2873/715340
https://ec.europa.eu/docsroom/documents/20926/attachments/1/translations/en/renditions/native
https://ec.europa.eu/docsroom/documents/20926/attachments/1/translations/en/renditions/native
https://ec.europa.eu/docsroom/documents/20926/attachments/1/translations/en/renditions/native

[60]
[61]

[64]
[65]

[66]

[67]

146

LABCAR-OPERATOR V5.4.2. User’s Guide. ETAS GmbH. 2016. URL: https:
//www.etas.com/download-center-files/products_LABCAR_Softw
are_Products/LABCAR-OPERATOR_V5.4.2_UsersGuide.pdf (Visited on
07/07/2017).

Layered Model-View-Control Design Pattern. Holobloc Inc. Jan. 2011. URL: http:
//www.holobloc.com/doc/despats/mvc/ (visited on 07/03/2017).

Edward A. Lee. “Cyber Physical Systems: Design Challenges”. In: 2008 11th
IEEFE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC). 2008, pp. 363-369. DOI: 10 .1109/ISORC.
2008.25.

libmodbus. URL: http://libmodbus.org/ (visited on 02/17/2018).

Per Lindgren, Marcus Lindner, Andreas Lindner, Valeriy Vyatkin, David J. Pereira,
and Luis Miguel Pinho. “A Real-Time Semantics for the IEC 61499 standard”.
In: Luxembourg, Sept. 2015. 1SBN: 978-1-4673-7929-8. URL: http://1ltu.diva-
portal.org/smash/get/diva2:1010414/FULLTEXTO01 .pdf (visited on
07/03/2017).

Jan Lunze. Regelungstechnik 1; Systemtheoretische Grundlagen, Analyse und
Entwurf einschleifiger Regelungen. 9., iiberarbeitete Aufl. 2013. Springer-Lehrbuch.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. 1SBN: 978-3-642-29533-1.

Jan Lunze. Regelungstechnik 2; Mehrgrofiensysteme, Digitale Regelung. Springer-
Lehrbuch. Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
ISBN: 978-3-642-10197-7. DOoI1: 10.1007/978-3-642-10198-4.

Matplotlib: Python plotting — Matplotlib 2.1.1 documentation. 2017. URL: http:
//matplotlib.org/ (visited on 12/18/2017).

Modbus Technical Resources. Modbus Organization, Inc. URL: http://www.
modbus.org/tech.php (visited on 12/19/2017).

Model. CONNECT™ . Integration of virtual and real components. AVL LIST
GmbH. 2017. URL: https://www.avl.com/en/iodp/-/asset_publishe
r/MQahPiTr3eTp/content/model-connect— (visited on 07/07/2017).

Sven Christian Miiller, Hanno Georg, Markus Kiich, and Christian Wietfeld.
“INSPIRE - Co-Simulation of Power and ICT Systems for Evaluation of Smart
Grid Applications”. In: At-Automatisierungstechnik 62(5) (Apr. 2014), 315-324.
ISSN: 0178-2312. po1: 10.1515/auto-2014-1086.

Wolfgang Miiller and Edmund Widl. “Linking FMI-based components with discrete
event systems”. In: Systems Conference (SysCon), 2013 IEEE International. Apr.
2013, pp. 676—680. DOI: 10.1109/SysCon.2013.6549955.

https://www.etas.com/download-center-files/products_LABCAR_Software_Products/LABCAR-OPERATOR_V5.4.2_UsersGuide.pdf
https://www.etas.com/download-center-files/products_LABCAR_Software_Products/LABCAR-OPERATOR_V5.4.2_UsersGuide.pdf
https://www.etas.com/download-center-files/products_LABCAR_Software_Products/LABCAR-OPERATOR_V5.4.2_UsersGuide.pdf
http://www.holobloc.com/doc/despats/mvc/
http://www.holobloc.com/doc/despats/mvc/
http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1109/ISORC.2008.25
http://libmodbus.org/
http://ltu.diva-portal.org/smash/get/diva2:1010414/FULLTEXT01.pdf
http://ltu.diva-portal.org/smash/get/diva2:1010414/FULLTEXT01.pdf
http://dx.doi.org/10.1007/978-3-642-10198-4
http://matplotlib.org/
http://matplotlib.org/
http://www.modbus.org/tech.php
http://www.modbus.org/tech.php
https://www.avl.com/en/iodp/-/asset_publisher/MQahPiTr3eTp/content/model-connect-
https://www.avl.com/en/iodp/-/asset_publisher/MQahPiTr3eTp/content/model-connect-
http://dx.doi.org/10.1515/auto-2014-1086
http://dx.doi.org/10.1109/SysCon.2013.6549955

[81]

[82]

Heikki Nikula, Eero Vesaoja, Seppo Sierla, Tommi Karhela, Paul G. Flikkema,
Antti Aikala, Tuomas Miettinen, and Chen-Wei Yang. “Co-simulation of a dynamic
process simulator and an event-based control system: Case district heating system”.
In: Proceedings of the 2014 IEEE Emerging Technology and Factory Automation
(ETFA). Sept. 2014, pp. 1-7. DO1: 10.1109/ETFA.2014.7005184.

NumPy v1.13 Manual. The Scipy community. 2017. URL: https://docs.scipy.
org/doc/numpy/ (visited on 12/18/2017).

nxtControl — nztSTUDIO. nxtControl GmbH. 2017. URL: http://www.nxtcon
trol.com/engineering/ (visited on 07/03/2017).

Open Virtual Platforms™ (OVP™) portal. Imperas Software Limited. URL:
http://www.ovpworld.org/ (visited on 02/17/2018).

Ormazabal | Reliable innovation. Personal solutions. 2017. URL: https://www.
ormazabal.com/ (visited on 12/15/2017).

pandas: powerful Python data analysis toolkit. 2017. URL: http://pandas.
pydata.org/pandas-docs/stable/ (visited on 12/18/2017).

Xiufeng Pang, Thierry S. Nouidui, Michael Wetter, Daniel Fuller, Anna Liao, and
Philip Haves. “Building energy simulation in real time through an open standard
interface”. In: Energy and Buildings 117 (Apr. 2016), pp. 282-289. 1sSN: 0378-7788.

J.S.C. Prentice. “Numerical differentiation — a general purpose algorithm”. In:
International Journal of Mathematical Education in Science and Technology 44.1
(2013), pp. 116-122. DOI: 10.1080/0020739X.2012.662296.

Claudius Ptolemaeus, ed. System Design, Modeling, and Simulation using Ptolemy
1I. Ptolemy.org, 2014. 1SBN: 978-1-304-42106-7. URL: http://ptolemy.org/
books/Systems (visited on 02/05/2018).

Jose Renau, Basilio Fraguela, James Tuck, Wei Liu, Milos Prvulovic, Luis Ceze,
Smruti Sarangi, Paul Sack, Karin Strauss, and Pablo Montesinos. SESC simulator.
2005. URL: http://sesc.sourceforge.net (visited on 10/06/2014).

Sebastian Rohjans, Edmund Widl, Wolfgang Miiller, Steffen Schiitte, and Sebas-
tian Lehnhoff. “Gekoppelte simulation komplexer energiesysteme mittels mosaik
und FMI”. In: At-Automatisierungstechnik 62 (5 May 2014), pp. 325-336. ISSN:
01782312. por: 10.1515/auto-2014-1087.

Rolling Plan for ICT Standardisation. European Commission. 2017. URL: https:
//ec.europa.eu/docsroom/documents/24846/attachments/1/tran
slations/en/renditions/native (visited on 01/19/2018).

Bernhard Rumpe. Modellierung mit UML. Sprache, Konzepte und Methodik.
2nd ed. Xpert.press. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
ISBN: 9783642224133. DOI: 10.1007/978-3-642-22413-3.

Martin Schlager. “Interface Design for Hardware-in-the-Loop Simulation of Real-
Time Systems”. Disertation. Technischen Universitdt Wien, Fakultat fiir Infor-
matik, Sept. 2007.

147

http://dx.doi.org/10.1109/ETFA.2014.7005184
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
http://www.nxtcontrol.com/engineering/
http://www.nxtcontrol.com/engineering/
http://www.ovpworld.org/
https://www.ormazabal.com/
https://www.ormazabal.com/
http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
http://dx.doi.org/10.1080/0020739X.2012.662296
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems
http://sesc.sourceforge.net
http://dx.doi.org/10.1515/auto-2014-1087
https://ec.europa.eu/docsroom/documents/24846/attachments/1/translations/en/renditions/native
https://ec.europa.eu/docsroom/documents/24846/attachments/1/translations/en/renditions/native
https://ec.europa.eu/docsroom/documents/24846/attachments/1/translations/en/renditions/native
http://dx.doi.org/10.1007/978-3-642-22413-3

[87]

[89]

[91]

148

Simscape Power Systems. Model and simulate electrical power systems. The
MathWorks, Inc. 2018. URL: https://www.mathworks .com/products/
simpower.html (visited on 01/11/2018).

SIMulation Workbench. SIMulation Workbench. URL: http://wiki.simwb.
com/wiki/Main_Page (visited on 07/07/2017).

Michael H. Spiegel. Integrating the Functional Mockup Interface into IEC 61499-
based components. Tech. rep. 183/1-175. A-Lab @ Automation Systems Group,
TU Vienna, Nov. 2015, p. 8. URL: http://www.auto.tuwien.ac.at/bib/
pdf_TR/TR0175.pdf (visited on 03/24/2017).

Michael H. Spiegel, Fabian Leimgruber, Edmund Widl, and Giinther Gridling.
“On using FMI-based models in IEC 61499 control applications”. In: Modeling
and Simulation of Cyber-Physical Energy Systems (MSCPES), 2015 Workshop on.
Apr. 2015, pp. 1-6. DOI: 10.1109/MSCPES.2015.7115407.

Stefan Stattelmann, Oliver Bringmann, and Wolfgang Rosenstiel. “Fast and
Accurate Source-level Simulation of Software Timing Considering Complex Code
Optimizations”. In: Proceedings of the 48th Design Automation Conference. DAC
"11. San Diego, California: ACM, 2011, pp. 486-491. 1sBN: 978-1-4503-0636-2. DOTI:
10.1145/2024724.2024838.

Matthias Stifter, Edmund Widl, Filip Andrén, Atiyah Elsheikh, Thomas Strasser,
and Peter Palensky. “Co-simulation of components, controls and power systems
based on open source software”. In: Power and Energy Society General Meeting
(PES), 2013 IEEE. July 2013, pp. 1-5. DOL: 10.1109/PESMG.2013.6672388.

Thomas Strasser, F. Auinger, and Alois Zoitl. “Development, implementation and
use of an IEC 61499 function block library for embedded closed loop control”. In:
Industrial Informatics, 2004. INDIN °04. 2004 2nd IEEFE International Conference
on. June 2004, pp. 594-599. pO1: 10.1109/INDIN.2004.1417415.

Thomas Strasser, Matthias Stifter, Filip Andrén, Daniel Burnier de Castro, and
Wolfgang Hribernik. “Applying open standards and open source software for smart
grid applications: Simulation of distributed intelligent control of power systems”.
In: Power and Energy Society General Meeting, 2011 IEEE. July 2011, pp. 1-8.
DOI: 10.1109/PES.2011.6039314.

Thomas Strasser, Matthias Stifter, Filip Andrén, and Peter Palensky. “Co-Simula-
tion Training Platform for Smart Grids”. In: Power Systems, IEEE Transactions
on 29.4 (July 2014), pp. 1989-1997. 1sSN: 0885-8950. DOT: 10.1109/TPWRS .
2014.2305740.

Thomas Strasser, Alois Zoitl, James H. Christensen, and Christoph Stinder. “De-
sign and Execution Issues in IEC 61499 Distributed Automation and Control
Systems”. In: Systems, Man, and Cybernetics, Part C: Applications and Re-
views, IEEE Transactions on 41.1 (Jan. 2011), pp. 41-51. 1SsN: 1094-6977. DOTI:
10.1109/TSMCC.2010.2067210.

https://www.mathworks.com/products/simpower.html
https://www.mathworks.com/products/simpower.html
http://wiki.simwb.com/wiki/Main_Page
http://wiki.simwb.com/wiki/Main_Page
http://www.auto.tuwien.ac.at/bib/pdf_TR/TR0175.pdf
http://www.auto.tuwien.ac.at/bib/pdf_TR/TR0175.pdf
http://dx.doi.org/10.1109/MSCPES.2015.7115407
http://dx.doi.org/10.1145/2024724.2024838
http://dx.doi.org/10.1109/PESMG.2013.6672388
http://dx.doi.org/10.1109/INDIN.2004.1417415
http://dx.doi.org/10.1109/PES.2011.6039314
http://dx.doi.org/10.1109/TPWRS.2014.2305740
http://dx.doi.org/10.1109/TPWRS.2014.2305740
http://dx.doi.org/10.1109/TSMCC.2010.2067210

[96]

[102]

[103]

[104]

Technology Roadmap. Smart Grids. International Energy Agency. 2011. URL:
http://www.ilea.org/publications/freepublications/publicati
on/smartgrids_roadmap.pdf (visited on 01/23/2018).

Technology Roadmap. Solar Photovoltaic Energy. International Energy Agency.
2014. URL: http://www.iea.org/media/freepublications/technolo
gyroadmaps/solar/TechnologyRoadmapSolarPhotovoltaicEnergy_
201l4edition.pdf (visited on 01/23/2018).

The FMI++ Library — Version 1.0. Documentation. AIT Austrian Institute of
Technology GmbH. Feb. 2015. URL: https://sourceforge.net/projects/
fmipp/files/fmipp_doc_v2015-02-11-17-29.pdf/download (visited
on 02/17/2018).

The FMI++ Library / Code / [b81b8/] /import/integrators/include/Integrator
Stepper.h. AIT Austrian Institute of Technology GmbH. 2017. URL: https :
//sourceforge.net/p/fmipp/code/ci/master/tree/import/integ
rators/include/IntegratorStepper.h (visited on 12/13/2017).

The FMI++ Library / Code / [b81b84] /import/integrators/include/Integrator
Type.h. AIT Austrian Institute of Technology GmbH. 2017. URL: https://sourc
eforge.net/p/fmipp/code/ci/master/tree/import/integrators/
include/IntegratorType.h (visited on 12/12/2017).

TISC Suite — Software zur Kopplung mehrerer Simulationswerkzeuge. TLK-
Thermo GmbH. 2016. URL: https://www.tlk—-thermo.com/index.php/
de/softwareprodukte/tisc-suite (visited on 07/06/2017).

Transport Delay. MathWorks, Inc. 2017. URL: https://de.mathworks.com/
help/simulink/slref/transportdelay.html (visited on 12/20/2017).

Typhoon HIL604. Typhoon HIL GmbH. 2018. URL: https://www.typhoon—
hil.com/doc/products/Typhoon-HIL604-brochure.pdf (visited on
01/26/2018).

Alexander Viehweider, Georg Lauss, and Felix Lehfuss. “Stabilization of Power
Hardware-in-the-Loop simulations of electric energy systems”. In: Simulation
Modelling Practice and Theory 19.7 (2011), pp. 1699 —1708. 1sSN: 1569-190X. DOTI:
10.1016/5.simpat.2011.04.001.

Valeriy Vyatkin. “IEC 61499 as Enabler of Distributed and Intelligent Automation:
State-of-the-Art Review”. In: Industrial Informatics, IEEE Transactions on 7.4
(Nov. 2011), pp. 768-781. 1sSN: 1551-3203. pO1: 10.1109/TII1.2011.2166785.

Valeriy Vyatkin. “The IEC 61499 standard and its semantics”. In: Industrial
Electronics Magazine, IEEE 3.4 (Dec. 2009), pp. 40-48. 1SSN: 1932-4529. DOI:
10.1109/MIE.2009.934796.

W5100 Datasheet. Version 1.2.7. WIZnet Co., Inc. 2011. URL: http://www.wi
znet .io/wp—-content/uploads/wiznethome/Chip/W5100/Document /
W5100_Datasheet_v1.2.7.pdf (visited on 12/19/2017).

149

http://www.iea.org/publications/freepublications/publication/smartgrids_roadmap.pdf
http://www.iea.org/publications/freepublications/publication/smartgrids_roadmap.pdf
http://www.iea.org/media/freepublications/technologyroadmaps/solar/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.pdf
http://www.iea.org/media/freepublications/technologyroadmaps/solar/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.pdf
http://www.iea.org/media/freepublications/technologyroadmaps/solar/TechnologyRoadmapSolarPhotovoltaicEnergy_2014edition.pdf
https://sourceforge.net/projects/fmipp/files/fmipp_doc_v2015-02-11-17-29.pdf/download
https://sourceforge.net/projects/fmipp/files/fmipp_doc_v2015-02-11-17-29.pdf/download
https://sourceforge.net/p/fmipp/code/ci/master/tree/import/integrators/include/IntegratorStepper.h
https://sourceforge.net/p/fmipp/code/ci/master/tree/import/integrators/include/IntegratorStepper.h
https://sourceforge.net/p/fmipp/code/ci/master/tree/import/integrators/include/IntegratorStepper.h
https://sourceforge.net/p/fmipp/code/ci/master/tree/import/integrators/include/IntegratorType.h
https://sourceforge.net/p/fmipp/code/ci/master/tree/import/integrators/include/IntegratorType.h
https://sourceforge.net/p/fmipp/code/ci/master/tree/import/integrators/include/IntegratorType.h
https://www.tlk-thermo.com/index.php/de/softwareprodukte/tisc-suite
https://www.tlk-thermo.com/index.php/de/softwareprodukte/tisc-suite
https://de.mathworks.com/help/simulink/slref/transportdelay.html
https://de.mathworks.com/help/simulink/slref/transportdelay.html
https://www.typhoon-hil.com/doc/products/Typhoon-HIL604-brochure.pdf
https://www.typhoon-hil.com/doc/products/Typhoon-HIL604-brochure.pdf
http://dx.doi.org/10.1016/j.simpat.2011.04.001
http://dx.doi.org/10.1109/TII.2011.2166785
http://dx.doi.org/10.1109/MIE.2009.934796
http://www.wiznet.io/wp-content/uploads/wiznethome/Chip/W5100/Document/W5100_Datasheet_v1.2.7.pdf
http://www.wiznet.io/wp-content/uploads/wiznethome/Chip/W5100/Document/W5100_Datasheet_v1.2.7.pdf
http://www.wiznet.io/wp-content/uploads/wiznethome/Chip/W5100/Document/W5100_Datasheet_v1.2.7.pdf

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

150

Lev Walkin. Open Source ASN.1 Compiler. 2017. URL: http://lionet.info/
asnlc/compiler.html (visited on 02/17/2018).

Christian Walter. FreeMODBUS - A Modbus ASCII/RTU and TCP implemen-
tation. embedded solutions. June 2010. URL: http://www.freemodbus.org/
(visited on 02/17/2018).

Michael Wetter and Philip Haves. “A Modular Building Controls Virtual Test Bed
for the Integrations of Heterogeneous Systems”. In: SimBuild 2008. June 2008.
URL: http://www.osti.gov/scitech/servlets/purl/936246 (visited
on 02/05/2018).

Edmund Widl, Wolfgang Miiller, Atiyah Elsheikh, Matthias Hoértenhuber, and
Peter Palensky. “The FMI+4+ library: A high-level utility package for FMI for
model exchange”. In: Modeling and Simulation of Cyber-Physical Energy Systems
(MSCPES), 2013 Workshop on. May 2013, pp. 1-6. DOI: 10.1109/MSCPES.
2013.6623316.

Chia-Han Yang, Valeriy Vyatkin, and Valeriy Cheng Pang. “Model-Driven De-
velopment of Control Software for Distributed Automation: A Survey and an

Approach”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems
44(3) (May 2014), pp. 292-305. 1SSN: 2168-2216.

Chia-Han Yang, Gulnara Zhabelova, Chen-Wei Yang, and Valeriy Vyatkin. “Cosim-
ulation Environment for Event-Driven Distributed Controls of Smart Grid”. In:
Industrial Informatics, IEEE Transactions on 9.3 (Aug. 2013), pp. 1423-1435.
ISSN: 1551-3203. por: 10.1109/TI1.2013.2256791.

Sherali Zeadally, Ligiang Zhang, Zhaoming Zhu, and Jian Lu. “Network application
programming interfaces (APIs) performance on commodity operating systems”. In:
Information and Software Technology 46.6 (2004), pp. 397-402. 1SsN: 0950-5849.
DOI: 10.1016/7j.infso0f.2003.08.005.

Josef Zehetner, Georg Stettinger, Helmut Kokal, and Bart Toye. “Echtzeit-Co-
Simulation fiir die Regelung eines Motorpriifstands”. In: ATZ — Automobiltechnis-
che Zeitschrift 116.2 (2014), pp. 40-45. 1SSN: 2192-8800. DOI: 10.1007/s35148—
014-0042-x.

http://lionet.info/asn1c/compiler.html
http://lionet.info/asn1c/compiler.html
http://www.freemodbus.org/
http://www.osti.gov/scitech/servlets/purl/936246
http://dx.doi.org/10.1109/MSCPES.2013.6623316
http://dx.doi.org/10.1109/MSCPES.2013.6623316
http://dx.doi.org/10.1109/TII.2013.2256791
http://dx.doi.org/10.1016/j.infsof.2003.08.005
http://dx.doi.org/10.1007/s35148-014-0042-x
http://dx.doi.org/10.1007/s35148-014-0042-x

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background and Motivation
	Problem Statement
	Main Goals
	Methodology
	Structure

	Related Work
	IEC 61499
	Co-Simulation and Model Exchange
	Hardware in the Loop and Real-time Simulation
	Contribution

	Interaction Study
	Preliminary Discussion
	Using Model Exchange FMUs in IEC 61499 Applications
	Using Co-Simulation FMUs in IEC 61499 Applications
	Encapsulating IEC 61499 Applications in Model Exchange FMUs
	Encapsulating IEC 61499 Applications in Co-Simulation FMUs
	Comparison

	Implementation
	Software Development Objectives
	Simulation Program Flow
	Software Design
	Implementation and Quality Assurance

	Evaluation
	General Timing Evaluation Methodology
	General Assessment Methodology
	Test Case 1: Open-loop Controller Verification
	Test Case 2: Closed-loop CHIL
	Combined Results

	Conclusion and Outlook
	List of Figures
	Bibliography

