
Model Driven Systems
Configuration

Improving the Efficiency & Quality of Engineering
Process Assembly based on Variability Modeling

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Kristof Meixner, BSc.
Matrikelnummer 09725208

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl
Mitwirkung: Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Richard Mordinyi

Dipl.-Ing. Dr.techn. Dietmar Winkler

Wien, 19. Februar 2018
Kristof Meixner Stefan Biffl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Model Driven Systems
Configuration

Improving the Efficiency & Quality of Engineering
Process Assembly based on Variability Modeling

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Kristof Meixner, BSc.
Registration Number 09725208

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl
Assistance: Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Richard Mordinyi

Dipl.-Ing. Dr.techn. Dietmar Winkler

Vienna, 19th February, 2018
Kristof Meixner Stefan Biffl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Kristof Meixner, BSc.
Sauerbrunnerstraße 2a, 7033 Pöttsching

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. Februar 2018
Kristof Meixner

v

Acknowledgements

I want to thank my advisors Stefan Biffl, Richard Mordinyi and Dietmar Winkler, for
their valuable guidance and advice, for keeping up the pace, and their invaluable support,
especially at the end of the work. I want to thank Richard Mordinyi in particular for
the initial idea of the work and its continuous evolution. I also want to thank Rick
Rabiser for some goods ideas and references for the thesis. Furthermore, I want to thank
C8H10N4O2 for keeping me awake and C6H12O6 for keeping me happy.

Finally, I want to express my very profound gratitude to my mother, my father, my
loving sister, my daring brother, and especially to Julia Obdrzalek for their endless
support over time and over the course of some of the most challenging times in life. This
accomplishment would not have been possible without every single one of them. Thank
you!

vii

Kurzfassung

Große Planungsprojekte im Anlagenbau finden in einer multidisziplinären Umgebung
statt, in der Ingenieure aus mehreren Disziplinen an einem gemeinsamen Ziel arbei-
ten. Arbeitsprozesse in einer solchen Umgebung werden aufgrund limitierter Datenaus-
tauschmöglichkeiten der Softwarewerkzeuge, die tief in der jeweiligen Disziplin verankert
sind, durch diese bestimmt. Plattformen für Werkzeugintegration, wie der Engineering
Service Bus, integrieren Werkzeuge und Arbeitsprozesse nahtlos. Solche Plattformen
müssen aber an die jeweiligen Werkzeuge und Arbeitsprozesse der Kunden angepasst
werden. Heutzutage wird diese Anpassung durch Anwendungsintegratoren in manueller
Arbeit durchgeführt, die oft mühsam und fehleranfällig ist. Besonders die Anpassung
der Arbeitsprozesse in der Anwendung, deren Konfiguration und die Verbindung mit
Softwareservices ist aufwendig und beschwerlich.

Diese Arbeit beabsichtigt die Frage zu beantworten, inwiefern der Anpassungsprozess
durch einen weiterentwickelten Ansatz verbessert werden kann. Dafür, wird untersucht wie
Varianten von Arbeitsprozessen auf Varianten von Softwareservices abgebildet und mit
einer automatisch unterstützten Methode konfiguriert werden können. Dazu wird erforscht,
wie Konzepte der Variabilitätsmodellierung für Arbeitsprozesse und Softwareservices
adaptiert werden können, um Varianten beider Gruppen aufeinander abbilden zu können.

Im Forschungsteil werden zuerst ähnliche Arbeiten, auf denen aufgebaut werden kann
angesehen. Danach, wird Variabilität in den Arbeitsprozessen von Industriepartnern
und den Services des Engineering Service Bus erforscht. Basierend darauf, wird ein
Ansatz vorgeschlagen, um Varianten von Arbeitsprozessen auf solche von Softwareservices
abzubilden. Schließlich, wird der Ansatz anhand eines Beispiels eines Industriepartners
mit einem Prototypen evaluiert.

Die Resultate der Arbeit sind, ein Ansatz um Variabilität anhand der Business Process
Model & Notation Sprache und Feature Modeling darzustellen, sowie der Vorschlag einer
Methode um Varianten aufeinander abbilden zu können. Die Evaluierung zeigt, dass
der Ansatz machbar ist und den Traditionellen in Komplexität und Aufwand signifikant
reduziert. Zusätzlich, werden die Möglichkeiten für qualitätsgesicherte Maßnahmen erhöht.
Der Ansatz wurde an einem einfachen Beispiel getestet und zeigte die Überlegenheit
gegenüber dem traditionellen Ansatz. Der Autor geht davon aus, dass die Methode noch
vorteilhafter für größere Beispiele ist, was in einer zukünftigen Arbeit zu überprüfen ist.

ix

Abstract

Large-scale projects in Production Systems Engineering occur in multidisciplinary envi-
ronments were engineers of different domains work together in a combined effort. Due to
their limited integration and connectivity, specialized engineering tools, deeply-rooted in
these domains, determine the Engineering Processes. Tool Integration Platforms, like the
Engineering Service Bus, seamlessly integrate processes and tools. Nevertheless, Tool
Integration Platforms need to be tailored to implement the customer’s specific processes
and tools. Today, application integrators manually perform the customization process,
which is tedious and often error-prone. The customization of Engineering Processes
and the configuration of their connection to software services is particularly costly and
cumbersome.

This work aims at answering to what extent the customization process for Engineering
Processes can be improved using a more sophisticated approach than the manual one.
Therefore, it investigates how variants of Engineering Processes can be mapped to service
variants and configured adequately by a (semi) automated method. Beforehand, we need
to examine how concepts of Variability Modeling can model Engineering Processes and
software systems to map variants of either domain?

The research approach, first, investigates related work. Second, variabilities in Engineering
Processes of industry partners and the services of the Engineering Service Bus is examined.
Afterwards, variability models for Engineering Processes and Engineering Service Bus
services are developed. Based on this, we propose an approach for mapping Engineering
Process variants to service variants. Finally, the solution approach is evaluated based on
a real-world example of an industry partner and a prototype.

As results, the thesis proposes an approach to define variability models based on the
Business Process & Model Notification language and Feature Modeling. The main result
is a method to map process templates to Feature Models. The evaluation shows that the
solution is feasible and that the manual approach was reduced in effort and complexity
significantly. Moreover, the proposed solution increased the number of quality assurance
mechanisms. The solution approach was evaluated on a small sample and showed its
superiority compared to the manual approach. The author expects the solution approach
to work even better on more extensive examples, which has to be proved in future work.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Aim of the Work . 8
1.4 Structure of the Work . 9

2 Related Work 11
2.1 Engineering Tool Integration . 11
2.2 Process Modeling . 16
2.3 Variability Modeling . 23

3 Research Issues 31
3.1 Research Issues . 32
3.2 Evaluation Criteria . 36

4 Methodology 39

5 Use Case 43
5.1 Round-trip Engineering . 43
5.2 Round-trip Engineering in Practice . 45
5.3 Signal Change Management Process 48
5.4 Signal Change Management Process Customizations 50
5.5 Summary . 51

6 Solution Approach 53
6.1 Process Variability Model . 54
6.2 Engineering Process Selection . 59
6.3 Platform Variability Model . 60

xiii

6.4 Mapping of Engineering Processes to Software Variants 68
6.5 Improved Customization and Configuration Process 70
6.6 Summary . 71

7 Evaluation 73
7.1 Preparation of the Evaluation . 73
7.2 Prototype for the Evaluation . 77
7.3 Evaluation Procedure . 80
7.4 Evaluation Results . 83
7.5 Summary . 87

8 Discussion and Limitations 89
8.1 Research Issues . 89
8.2 Limitations . 96

9 Conclusion and Future Work 99
9.1 Conclusion . 99
9.2 Future Work . 100

List of Figures 103

List of Tables 104

Listings 104

Acronyms 105

Bibliography 109

CHAPTER 1
Introduction

1.1 Motivation

Large-scale projects in the context of production systems engineering (PSE), such as
planning and constructing power plants or cold rolling mills, are set in a multidisciplinary
environment. In such project settings engineers from different domains, like mechanical,
electrical and software engineering are assembled to a joint team, to perform their
development effort.

Each engineering discipline has its individual view on the model of the production system
under planning. Nevertheless, the various models have commonalities which, from an
engineering perspective, can be seen as ‘common concepts’ [42] and act as interfaces
between several disciplines. Plant planners, for example, design entire building blocks or
factory floors and concentrate on statics and structural properties. Mechanical engineers
then define and place construction units like generators, working cells or conveyor belts on
the previously created floor plan. Electrical engineers, next, specify the control hardware
of the construction units and map the wiring between them. Finally, software engineers
program the control logic and software of the control hardware, as well as customize
and implement the software used by factory workers to control the production system.
Although this seems like a sequential process, working tasks are started and processed
in parallel by the engineers involved [74], once the requirement specification is roughly
defined. Consequently, the results of their work need to be joined and merged at a later
point.

To perform the engineering tasks, distributed over multiple disciplines, engineers use
specific tools to define and manipulate their model of the system. These very specialized
tools usually only contribute to a single discipline and produce proprietary artifacts,
which means they can not be read and used by other tools. Furthermore, such tools are
most of the time isolated from each other regarding data interchange and connectivity.

1

1. Introduction

This tool isolation is owing in large part to tool providers focusing mainly on a particular
engineering discipline and its unique requirements.

Some tool providers offer tool suites [8] that support an assorted set of engineering
disciplines from an industry sector. However, these suites usually do not entirely meet
the needs of a multidisciplinary environment [20]. Therefore, often custom solutions
are ‘patched together’ with tools applied in ways they were not meant to be [8], which
frequently results in erroneous engineering data. An example of such a custom solution
would be the utilization of spreadsheets to manipulate Comma Separated Value (CSV)
data exports from one engineering tool, and their later import to another engineering tool.
If at a single point of this chain the character encoding of the files changes, the target
tool might not able to read the data any more or even worse, loses valuable information.
Due to these limitations of tools and tool suites, project managers often utilize tools that
seem most suitable for their project requirements and combine them in a ‘best of breed’
toolset, which under normal conditions undoubtedly raises similar problems.

These issues lead to a highly heterogeneous tool environment, which forces engineers to
utilize processes that are heavily determined by the tools used [11]. Such processes induce,
for instance, that various artifacts need to be exchanged and synchronized on a regular
basis between the engineers of the involved disciplines to establish model consistency on a
project level [75]. Achieving sufficient consistency requires disciplined cooperation among
numerous participants and detailed coordination of the work during each engineering
phase. The very scale of such projects makes it hard to ensure such objectives without
the support of additional tools.

Biffl and Schatten [3] in their work described the concept of an ‘Engineering Service Bus
(EngSB)’ to enable the development of an integrated engineering environment. Their
idea derives from a software architecture concept called Enterprise Service Bus (ESB),
which illustrates a structure that provides a platform based communication system for
distributed software services with the aim to allow an information interchange between
several participating applications. The EngSB follows this approach and adapts it for
PSE to allow an information interchange among engineering tools and disciplines to
foster seamless cooperation in large-scale engineering projects. To achieve this goal, an
open platform named Open Engineering Service Bus (OESB) was implemented, that
provides features to a) store different engineering models and their data in a versioned
fashion and propagates change between them; b) integrate engineering tools coherently
by offering extendable data endpoints; and c) deploy executable process models that link
process tasks to software services. Furthermore, the platform allows a flexible usage and
extension of its components and functionality through the application of the OSGi (OSGi)
specification. The OSGi specification is a standard specified by the OSGi alliance1, which
aims at the modularization of software components and the interoperability of services
to increase productivity.

1OSGI Alliance – https://www.osgi.org/

2

https://www.osgi.org/

1.2. Problem Statement

1.2 Problem Statement
In the prior section, we briefly discussed the present issues of multidisciplinary engineering
in large-scale industrial projects, leading to heterogeneous tool environments with a lack of
data integration and unsuitable engineering workflows. We also introduced the EngSB as
tool integration platform, which helps to implement an integrated engineering environment
to enable better cooperation between engineering disciplines.

However, to serve different industry sectors and customers of different domains, the EngSB
and its features require tailoring in a Customization and Configuration Process (CCP)
according to individual needs. Customization, in this context, means the adaptation of
the platform to the customer’s engineering culture and tool landscape in a combined
effort with relevant stakeholders of the customer.

Engineering Integration Ecosystem

The implementation of an integrated engineering application and the CCP of this
application is embedded in a broader software ecosystem, which involves several software
components and stakeholders. The concepts of the ecosystem are explained, using
Figure 1.1, in the paragraphs below. The CCP is indicated in the figure by the arrow
between the platform and the instance, and extended for better understanding, at the
lower part of the picture.

CCP

Application
Integrator

E
ng

in
ee

rin
g

Se
rv

ic
e

B
us

Various
Tools and
Tool Data

Engineering
Database

Engineering
Cockpit

Various
Appli-
cation

Modules

Workflow
Engine

Tool Integration Platform

Connectors

Processes

Tools

Models

Platform Provider

Knowledge
Engineer

Tool
Provider

Software
Developer

Special
Field

Expert

Plugins

Modules

Plugins

Project
Manager

E
ng

in
ee

rin
g

Se
rv

ic
e

B
us

Electrical
Planning

Mechanical
Planning

Mechanical
Planning

Engineering
Database

Engineering
Cockpit

Model
Valiation

Workflow
Engine

Integrated Tool Application

Factory Planner Maintainer

Customization & Configuration Process

Figure 1.1: Stakeholders and components in the EngSB approach

On the left-hand side of the picture the stakeholders, the tool integration platform and

3

1. Introduction

available components are displayed, that are involved in the implementation, customiza-
tion, and configuration of the integrated engineering environment. For instance, tool
providers are stakeholders that provide (engineering) tools. Tool providers but also the
platform provider offer tool connectors, which, for example, can be used to read data
from engineering tools.

On the right-hand side of the figure the integrated engineering application, resulting from
the customization, and the stakeholders involved in the engineering and maintenance of
the production systems over its life cycle are depicted. The factory operator runs the
facility and, with the help of the factory maintainer, keeps up its status.

However, some stakeholders are concerned with both phases, like the project manager
and the knowledge engineer, that provide essential information for the CCP. For example,
during the tool integration, the tool connectors are adapted by software developers on
behalf of project managers that define the requirements of the tool integration platform.
The most relevant stakeholders related to the CCP are discussed shortly in the following
paragraphs.

When an engineering company decides to implement an integrated engineering envi-
ronment in cooperation with a platform provider, a project manager, experienced their
typical projects, in combination with an application integrator from the platform provider,
are mandated to set up the artifacts for the integration infrastructure. These artifacts
include specifications of tool requirements, process descriptions of existing engineering
workflows as well as engineering data models, that are defined by knowledge engineers.
The application integrator with the knowledge of the engineering company’s needs then
initiates the CCP.

On the one hand, the project manager, as mentioned in Section 1.1, aims at obtaining an
integration solution, that best supports the needs of the company’s engineering projects.
Project managers, therefore, demand a well-arranged software toolchain, which can be
easily accessed and managed for their purposes. Also, the engineering models used in such
systems should be presented with reasonable complexity, to support comprehensibility.
An example of breaking down the initial complexity would be to enable definable views
for shared large data models.

On the other hand, the application integrator must care which of the needs can be satisfied
with an integrated solution and which exceed the possibilities. Moreover, application
integrators need the CCP to be effective and efficient, to realize the integrated engineering
solution with as minimal effort s possible. Therefore, they need a set of tools to configure
the system solutions in a manner that is functional for them.

The third important stakeholder involved in the CCP is the application maintainer.
After the installation of the integrated engineering application by the platform provider,
the application maintainer is responsible for the correct operation during runtime.
Furthermore, the application maintainer updates the platform and installs additional
features, which might be needed for project management or due to changes in the used
engineering toolset. This stakeholder aims to maintain the application and the tool

4

1.2. Problem Statement

environment with the most effective and efficient configuration and analysis tools to avoid
unnecessary downtime or more severe issues like data loss.

Customization and Configuration Process

We previously mentioned that the EngSB requires being tailored to the specific needs
of the engineering company to be implemented successfully. While the EngSB supports
this, the CCP still remains a complex task in practice. Figure 1.2, shows the sequence
of activities that needs to be performed in the CCP of the EngSB. Based on this the
complexity of the process and the arising issues are explained later on.

Customization & Configuration Process

Requirements Analysis

Platform & Feature Configuration

Tool Integration & Configuration

Process Selection & Definition

Process Configuration

Testing & Deployment

Figure 1.2: Steps of building a customized platform

First, in the Requirements Analysis activity, the demands of the customer towards an
integrated engineering application are collected and described with the help of the project
manager. A list of the tools, used by the client’s engineers to perform their tasks, needs to
be collected. Another goal in the same stage is to illustrate the workflows of the engineers
and individual disciplines. Apart from the primary engineering tools and workflows, the
use of alternative ones within a company is not often visible and rarely documented,
which means the analysis should aim at revealing them. In this step, the workflows
and the application of tools should the thoroughly investigated to optimize existing and
developed novel discipline crossing processes.

In the Platform & Feature Configuration activity of Figure 1.2, the application integrator
selects the components from the platform skeleton and additional modules, that fit the
requirements of the customer, and configures along with the platform. If not already
existing in the platform repository, software components that provide the demanded
functionality, need to be implemented.

The Tool Integration & Configuration step is the next phase in the CCP. Tool connectors,
which are applicable in the particular customization, are configured according to the
configuration of the engineering tools. Otherwise, it needs the implementation of tool

5

1. Introduction

connectors for the particular tool or tool group, which often requires additional interfaces
or software from tool and plugin providers. The same holds true for models of the tool data
formats, which possibly have to be developed by knowledge engineers and implemented by
software developers in a model language known to the platform. Additionally, it requires
the formalization of transformations between the models and those used internally by
the tool integration platform.

The following phase in Figure 1.2 is the Process Selection & Definition activity On the
one hand, several processes used in engineering companies are very similar, especially
when they work in the same domain. Such processes most likely were already deployed
to the platform repositories as models in a formal notation and can be selected and used
with little customization or even off the shelf. On the other hand, optimized or novel
process descriptions developed in the Requirements Analysis are used as blueprints and
formalized to models in this phase.

The process models, selected or defined in the prior phase, need to be configured in the
Process Configuration phase. Therefore, the wiring of the single process activities to the
exact services exposed by the components that result from the selection in the Platform
& Feature Configuration phase. Depending on the process modeling language this is
either done in a separate file or in the process model itself.

Finally, in the Testing & Deployment phase the partial contributions of the prior activities
must be collected and tested, for example, with integration test. Once these tests complete
with a satisfying result, the artifacts need to be assembled to a deployable application
to derive an integrated engineering application that works as expected from existing
components. The created application, again, needs to be extensively tested before its
release to the customer.

Challenges of Customization

The gathering of requirements in the Requirements Analysis phase, depicted in Figure 1.2,
is usually done in a narrative or semi-structured way which often results in loose descrip-
tions of customer needs. Hence, these requirements might be interpreted in different
ways, which leads to problems during the customization process or even worse in the
running system. Moreover, it is challenging to ensure, that existing platform components
meet customer needs, due to the absence of appropriate mechanisms to automatically
match requirements and capabilities.

Furthermore, the selection of the software components, in the Platform & Feature
Configuration and Tool Integration & Configuration phases, is associated with high efforts
since their feature and capability representation rarely exists explicitly. Beyond that,
missing dependency management often leads to the effect, that dependency conflicts in
many cases occur not until the system is up and running.

Two particular complicated parts of the CCP are the Process Selection & Definition as
well as the Process Configuration step.

6

1.2. Problem Statement

First, the application integrator must verify, that for all processes the corresponding
sub-processes are selected. Second, the application integrator must assure, that all
process activities are wired to services and, also, that these services are deployed with the
application. These problems occur despite the fact that the EngSB can interpret process
definitions in different model notations, which eases the configuration of processes.

So one part of the complexity of the CCP arises from the integration of the engineering
tools and their often, proprietary models and export formats. The other part of the
complexity results from the tedious and most of the time manual configuration of
the system, its components, and processes. This complexity causes the effect that the
configuration of such software systems is time-consuming, often error-prone and inefficient
which leads to incorrect results [6]. Besides the issues mentioned above, the quality of the
resulting software systems is difficult to ensure [10]. This shortage of quality is because
of missing metrics for integration solutions, but also due to the lack of automatically
generated and executed end-to-end tests.

But in today’s software engineering pluggable components, specially adapted processes, or
even customized adaptations of the software itself are more common than ever [9]. Thus,
platform providers face the increasing demand of supplying additional and extended
functionality, which allows a flexible configuration and takes a broad spectrum of customer
requirements into account [56, 71]. Also, it is emphasized, that customizations should be
implemented with minimal effort to prevent high costs of development [11].

The issues but also the demands referenced raise the need for approaches to (semi-)
automatically generate and test parts of customized system solution instances, as well as
to assemble them to a deployable integrated engineering application. In the context of
systems and tool integration [4, 41, 6] propose model-driven approaches, to automatically
generate configurations for system integration solutions.

A mainly model-driven approach that gained momentum in research in the recent years is
Variability Modeling (VM). VM is the task of identifying commonalities and variabilities in
a Software Product Line (SPL) and modeling them in formal notation. SPLs (or Software
Product Families (SPFs)) allow related software products to be based on a platform that
shares common features while enabling the implementation of additional product-specific
functionality. For a SPL to be successful in the long run, VM is exceptionally important
[9]. Various approaches of VM exist today, which considering the use cases can be applied
to different requirements [18].

The EngSB approach is already meant to provide a platform that can be extended and
customized to different needs, and is, therefore, well prepared for the adaptation to
an SPL. So the constructs of VM and SPL seem promising to realize approaches to
tackle the challenge of generating parts of customized integrated engineering applications.
Optimized business processes can be a competitive advantage [14] for companies and are
thus of higher interest to be improved. The same holds true for optimized engineering
processes that save engineering effort, but also ensure a higher quality of engineering
results.

7

1. Introduction

As the configuration of processes is an excellent example of the overall customization
process and also highly valuable, this thesis concentrates on the topic of automatically
generating quality assured and configured process variants for integrated engineering
solutions (see component ‘Workflow Engine’ and ‘Processes’ in Figure 1.1). The thesis
understands configured engineering process variants as processes, that correctly refer to
the services, which are deployed with the integrated engineering application.

1.3 Aim of the Work

The goal of this thesis is the development of an approach that enables the generation of
customized and configured process definitions from base processes and platform services
for integration systems configuration and customization in heterogeneous engineering
tool environments. Additionally, a prototype with tool support will be implemented
for this thesis to prove the feasibility of the approach. Moreover, the performance of
the prototype will be analyzed and evaluated to show its suitability in the field and to
disclose benefits for the process of customization and configuration.

This approach should equally address the scientific communities of SPL and Business
Process Management (BPM), as well as Model Driven Software Engineering (MDSE)
to point out a possible advantage to link these research topics in an applied field.
Furthermore, the approach should serve industrial partners as a basis to implement the
findings in practice for their requirements to enhance their actual process of customizing
tool integration platforms for their clients.

To achieve this goal, concepts from VM and BPM alike, will be collected and evaluated,
to select the most promising for the approach. The evaluation will include their suitability
for the use case, but also their tool support and their backup by the scientific communities.

Based on this analysis, a theoretical solution approach will be carved out from the
requirements of the use case and the selected concepts. This method is then implemented
in the prototype, tested, based on an example from industrial partners, and evaluated
employing the defined metrics and its feasibility for the CCP in practice.

The main expected results are the following:

• A description and explanation of the proposed approach

• A set of metrics and key performance indicators to measure the performance of the
approach in contrast to a manual CCP in an integration solution

• An implementation of a prototype with tool support for the CCP based on the
proposed approach

• A collection of data that result from a manual as well as prototype-based configu-
ration and customization

8

1.4. Structure of the Work

• An evaluation of the approach and prototype according to the defined key perfor-
mance indicators

1.4 Structure of the Work
The remainder of this work is structured as follows. Chapter 2 is divided into two parts.
The first part gives an introduction to VM and discusses related work and state-of-the-art
approaches of VM in software engineering and BPM . Furthermore, existing approaches
that attempt to generate deployable software instances from models automatically are
presented. The second part identifies applications and tools from industry and research
that support the research topic and explains how they contributed to the approach
resulting from this thesis. Chapter 3 defines the research issues of this thesis, based
on the work done in the CDL-Flex laboratory and questions that emerged during the
research there, as well as insights acquired from the literature research. Additionally, it
roughly sketches the criteria that were used to evaluate the solution.

The methodological approach to develop a solution considering the research challenges
is outlined in Chapter 4, which also details on the evaluation strategy and its key
performance indicators. A motivational scenario that serves as an operational example
for the thesis is selected from an industrial use case and illustrated in Chapter 5. Chapter 6
thoroughly describes the developed solution, which utilizes Feature Modeling (FM) from
SPLs and abstract Business Process Model and Notation (BPMN) models in order to
derive business processes that are linked to software features and can be deployed to a
Business Process Management System (BMNS). Furthermore, the implemented prototype
of the solution is explained in detail. Chapter 7 evaluates the performance of the solution
employing the implemented prototype according to the raised research issues and the
defined evaluation indicators.

The results of the solution approach and the evaluation of the prototype are summarized
and discussed in Chapter 8. Finally, Chapter 9 gives a conclusion based on the findings
of the discussion and presents an outlook for future research.

9

CHAPTER 2
Related Work

The previous chapter introduced the topic of application and tool integration in the
engineering domain and discussed the challenges of customization and configuration of
individual customer instances.

This chapter discusses related work relevant for this thesis and presents state-of-the-art
methods and models that are exploited to develop the solution approach. In this way, the
research issues relevant to the work can be carved out in Chapter 3. Section 2.1 discusses
the current state of engineering tool integration and a solution approach that was proposed
and evaluated in several industrial cases. Section 2.2 describes several methods of process
modeling that act as solution candidates to represent the engineering processes present
in the production systems engineering (PSE) domain. Finally, Section 2.3 outlines the
two most common concepts of variability modeling and their suitability for the following
proposed solution approach.

2.1 Engineering Tool Integration
As described in Section 1.1, today’s industrial software systems need to provide solutions
for engineering tasks that are distributed over multiple disciplines and often span teams
over different locations. These software systems and the utilized engineering tools are
embedded in a software ecosystem, which is highly complex and tends to grow over time
to serve different project needs. Data interchange and the connectivity between tools
and software components are crucial to support multidisciplinary engineering processes.

2.1.1 Point-to-Point Tool Integration

The issues of engineering tool data exchange are nowadays, still often tackled with
point-to-point (PTP) integration solutions of the tools used and their data pools [20].
Such solutions grow over time, due to the growing complexity of companies or because of

11

2. Related Work

step-by-step digitalization of the engineering work. Figure 2.1 illustrates an example of
such a tool integration solution. Each engineering domain involved uses specific tools that
persist data into their particular data pool or create individual artifacts. Furthermore,
each data pool has to be connected via its particular interfaces to the other data pools,
to enable data exchange.

?

Design Data
Mech 2D

Equipment
Data Sheets

Design Data
Mech 3D

E & I
Data Sheets

Design Data
Instrum.

IQ/OQ
Data Sheets

Design Data
Electrical

Change
ManagementData

Data

Data

Data

Data

Data

Data

Data

Figure 2.1: Tools, their data pools and PTP integration (based on [20] & [26])

While providing a certain level of integration, PTP solutions bring up further problems.
For instance, with the introduction of a new tool to the environment, the number of
connections needed increases exponentially [57]. With exponential growth, additional
connections mean high development efforts for the implementation of tool connectors
and imply the adaptation and maintenance of components, which were finished a long
time ago. This necessity often results in an unmanageable infrastructure and, due to
time pressure, in a poorly documented architecture. The task is even more complicated
due to various proprietary software tool interfaces and costly due to license fees for these
interfaces. Furthermore, the connections in a PTP network imply the risk of single points
of failure. If one of the connections fails, the whole infrastructure might render unusable.
Moreover, PTP data exchange prevents sufficient consistency management, as changes
need to be propagated to the different data pools. PTP integration tends to become
highly complicated and brittle over time.

These issues have the following implications on PSE . Project managers that aim at
obtaining an integration solution, that best supports the needs of their specific project,
as mentioned in Section 1.1, have a limited overview of the heterogeneous data sources,
which makes accessibility difficult. This restricted overview, in turn, hinders, for example,
proper risk management or test automation on a project level, because often not all
of the data sources can be utilized. Additionally, system integrators aim at ensuring
information exchange along defined toolchains. However, the manual and proprietary
configuration of PTP solutions at a low technical level are time-consuming and often
error-prone. Overall PTP integration makes round-trip engineering, as mentioned in

12

2.1. Engineering Tool Integration

[20] increasingly complicated and might lead, for example, to deadlocks when engineers
perform commits in parallel.

2.1.2 Integration with the Engineering Service Bus

In contrary to the PTP approach, [3] proposed the concept of the ‘Engineering Service
Bus (EngSB)’, which allows flexible and efficient integration of engineering tools in a
heterogeneous engineering environment. In [5, 7], the authors extended the model to PSE
due to the need in such environments to cut set-up efforts of tool landscapes and reduce
the complexity of projects. To separate between the requirements during the design
time phase and the run-time phase of projects, they distinguish between the EngSB,
which is used for planning and design, and the ‘Control Service Bus’, which is used to
monitor and control the built factory. Even though these two concepts together build
the so-called Automation Service Bus (ASB), the ASB is a customization of the EngSB
for the automation domain which considers domain-specific software tools. As this thesis
focuses on the design-time phase of the application, it will stick to the term EngSB.

The EngSB utilizes ideas from the Enterprise Service Bus (ESB) [16] and applies them
on PSE . An ESB provides the means to implement a scalable, decoupled, and distributed
network communication infrastructure for integrating enterprise applications on a high
level. The ESB, therefore, uses concepts like web services, messaging, and routing to
enable and control the connectivity and interchange of software services within and
among companies.

However, several shortcomings of the ESB approach were identified [3, 5], that make
it infeasible for the application in combined software and engineering environments.
For instance, the ESB concept usually requires integrated applications to be always
available. However, this is not the case in PSE , where off-shore offline teams need to
create and adapt plans in engineering tool while they are on the production site. In
the same scenario, the ESB approach has drawbacks, because it is designed to connect
heavy-weight business applications instead of light-weight applications that might run
on a laptop computer. Furthermore, the ESB was built with the intention to connect
applications with a well-supported data exchange interfaces, which is not the case in
many engineering applications.

The EngSB approach was conceptualized with these issues in mind and to enable, besides
others, a) stable engineering processes, b) the flexible and efficient configuration of
integration solutions, and c) a mix of backend and frontend tools, for example by utilizing
notifications on artifact changes of frontend applications.

Figure 2.2 shows the architecture of the EngSB and its basic building blocks. Components
in the figure on a gray background run within the EngSB container. The core of the
EngSB is a message or event broker that receives messages from different components
and eventually transforms those messages to normalized messages. Afterwards, these
messages and sent and propagated to other components, that register for the messages or
topics. A message broker also enables an improved asynchronous communication between

13

2. Related Work

En
gi

ne
er

in
g

Se
rv

ic
e

Bu
s

C
Requirements
Management
Tool Data

C
Requirements

Tracing
Tool Data

R
eq

ui
re

m
en

ts
D

om
ai

n

CSoftware IDE
Tool Data

Ex
te

rn
al

A
cc

es
s

C
om

po
ne

nt

CIssuetracker
Tool Data

C
Electrical
Planning

Tool Data

C
Mechanical
Planning

Tool Data

Engineering
Database

Workflow
Engine

Activity 1 Activity 2

Figure 2.2: EngSB with connectors and workflow engine (based on [3])

endpoints, which is the basis for the mentioned support for off-shore teams, and the
implementation of well-known enterprise integration patterns [28].

One way of integrating tools to the EngSB is via tool connectors, that bridge between the
tool and the Application Programming Interface (API) of the EngSB. Connectors are an
integration instrument, well known from the ESB approach. Two forms of tool connectors
can be distinguished. The first one is data integration, were tool connectors read the
specific data model of the tool from their export interfaces and translate them to the
data model internally used by the EngSB. Data coming from the EngSB is transformed
in the tool connectors to the vendor specific data model and then imported to the tool.
Functional integration is the second form of data integration, supported by the EngSB.
In this case, engineering tool vendors provide APIs that are implemented in a tool
connector and exchange the data models via these interfaces. The usage of APIs assumes
cooperation with the vendor, who also defines the level of integration by the functionality
of the API . In Figure 2.2, the Electrical Planning tool, for example, connects via a
specially implemented connector to the EngSB.

The other way of tool integration, which was introduced in the EngSB approach, are
tool connectors that, instead of connecting to the bus directly, use tool domains as
intermediates. A tool domain is a component in the EngSB that acts as a standardized
facade and defines common functions and unified data models for tools from the same
type. Therefore, tool domains enhance stability in the engineering tool environment, as
different tools from the same domain conform to a stable shared model. Furthermore,
it empowers the interchangeability of engineering tools, which makes the utilization

14

2.1. Engineering Tool Integration

of different off-the-shelf tools possible. Additionally a tool domain provides a) data
mapping from the tool data format to the domain data model, b) data enhancement,
for instance by enriching the tool data with statistical data for management use, and
c) functional enhancement, like logging features to control data access. In the figure
above the Requirements Management and Requirements Tracing tools connect to the
tool domain Requirements Domain. This tool domain uses the attributes of requirements
as the common model and implements functionality for their manipulation.

Another component that can be utilized to connect to the EngSB is the External Access
Component. This component exposes the EngSB API to webservices like REST [22],
which can be used by external tools and applications. An example depicted in Figure 2.2
is an integrated software development environment like Eclipse1, that acts as a passive
component only listening to events of the EngSB.

Two core components of the EngSB, displayed in Figure 2.2, are the Engineering Database
and the Workflow Engine. The Engineering Database [72] is a store, which holds the data
of the engineering tools in specific models and provides features like data propagation
between models and querying of the underlying data. The store versions the data, which
means, it saves every stage of the data and can reproduce this stage at an arbitrary point
in time. Finally, the Workflow Engine is a component that enables the usage of process
description languages like Business Process Model and Notation (BPMN) or Drools2 to
implement long-running engineering processes over several tools and services.

2.1.3 Engineering Service Bus Implementations

As mentioned in Section 1.1 one implementation, that derived from the EngSB approach,
is the Open Engineering Service Bus (OESB)3 which is based on the OSGi (OSGi)
container Apache Karaf4. The OESB supports the concepts introduced by the EngSB
approach and provides an engineering model description based on Java classes.

Based on the OESB, the AutomationML Hub (AML.hub) [75, 76] was developed, which
utilizes AutomationML (AML) as description language for the engineering tool data
models. AML is a standardized ‘Industrie 4.0’ data exchange format based on XML, that
utilizes selected other markup languages to enable the modeling of engineering data from
different engineering perspectives [29, 30, 31]. Going back to the PSE example from
Section 1.1, for instance plant planners can describe the overall plant topology in the
CAEX format, while mechanical engineers create models of the plant units in Collada and
software engineers implement functionality with PLCOpen. Using this format, engineers
and industrial partners can exchange a single AML file, which references all of the
mentioned parts.

1Eclipse Foundation – http://www.eclipse.org/
2JBoss Drools – http://drools.org/
3Open Engineering Service B us – http://openengsb.org/
4Apache Karaf – http://karaf.apache.org/

15

http://www.eclipse.org/
http://drools.org/
http://openengsb.org/
http://karaf.apache.org/

2. Related Work

2.2 Process Modeling

Most companies have established specific processes to perform their daily work. The
term business process subsumes these processes. However, different kinds of processes,
like sales, software development or the mentioned engineering processes exist. A business
process consists of a set of related activities and control flows between these activities
with a predefined order and defined start and end points that realize a common business
goal [15, 14, 2, 17].

An example of a business process would be the approval of an insurance claim, that
might consist of the following tasks. First, a customer submits a claim to the insurance
company. Second, an employee checks the claim for validity, for example, if the person
submitting the request is insured or if the specific policy covers the claim. In an further
activity, the employee might request additional evidence for the claim. Finally, after
receiving additional information, a person responsible for the approval of the company
decides whether the claim is justified and the customer gets a compensation.

Either business processes existed implicitly and evolved as a part of the company’s culture,
or they were defined and documented at a particular point in time. For instance, if a
company plans the implementation of a quality management system, like the ISO:9000
or ISO:9001 standards, the careful planning, documentation and establishment of stan-
dardized processes is needed [32, 33]. Process modeling is a model-based approach to
explicitly document and visualize business processes to make them comprehensible for
non-experts [59]. On top, formal notations and languages define grammars that help to
verify the correctness of process models and make them interchangeable. Some of these
notations even support business processes to be executed in workflow engines, which is
of growing interest among researchers and practitioners [17].

Today various notations and languages exist that are utilized for modeling and exchanging
business processes [40]. To evaluate different workflow engines [69] identified some
patterns, that represent requirements for a comprehensive workflow language. The next
sections outline four different, commonly used methods to define and model business
processes, which support these workflow patterns.

2.2.1 Petri nets

Petri nets are directed bipartite graphs that describe a discrete event system and can be
used to model business processes [68]. Petri nets provide a graphical notation and are
based on a mathematically defined foundation. An example of a Petri net can be seen in
Figure 2.3.

The graphical notation defines nodes that are distinguished into places, represented by
circles, and transitions, visualized by rectangles or bars. Places can hold a specific number
of tokens, represented by dots, in the places. The nodes are connected through arcs, with
the restriction that arcs must not connect nodes of the same type. Furthermore, arcs can
be weighted with a number, which represents the tokens needed to activate an incoming

16

2.2. Process Modeling

start finish

pl-in

pl-free

pl-busy

pl-proc

pl-out

Figure 2.3: Petri net example in ready-to-fire state (based on [68])

arc respectively that are generated by an outgoing arc. A transition fires, if all incoming
places hold enough tokens. For example, in the figure pl-in and pl-free both contain at
least one token, which fires transition start and generates a token in place pl-busy and
another one in place pl-proc.

A drawback of Petri nets is that even small examples of processes get very complicated and
are hard to understand for non-experts. Furthermore, there is currently no standardized
exchange format or scalable engine that allows the execution of processes modeled as
Petri nets.

2.2.2 Event-driven Process Chains

Event-driven Process Chains (EPCs), developed at University Saarbrücken by August-
Wilhelm Scheer in cooperation with SAP AG, provide a flowchart-like, graphical notation
to define and re-engineer processes [60]. EPCs basically consist of events, functions,
connectors, and control flows arranged in an ordered graph to reflect a workflow. Figure 2.4
shows a simple example of an EPC .

Fire
stopped

Help
called

Fire
started

Extinguish
fire

xor

Fire
burning

Call fire
squad

Figure 2.4: Event-driven Process Chain example

Events, represented by hexagons, either trigger functions, or are results of functions
which trigger further functions and thus ‘drive the process chain’. The beginning and

17

2. Related Work

the end of an EPC is always marked by an event. Functions, displayed as rounded
rectangles, are elements that perform specific actions or transform input data to output
data. The events and functions are linked together with control flows to create an ordered
graph. Through connectors, the logical relation and flow or the EPC can be controlled.
Connectors, represented by circles, split and join the flow where necessary and enable the
three logic operations AND, OR, and XOR. Extended EPCs provide additional symbols
for data, organizational units, and systems, which provide further functionality, which
can be used to define the needed resources further.

Compared to Petri nets EPCs provide a richer graphical notation and also take additional
resources into account, which makes them easier to understand. Furthermore, they
provide a more intuitive approach due to the usage of natural language in the description
of the nodes. However, EPCs is neither open nor standardized as they are part of a
licensed model of the ARIS Toolset which is heavily bound to SAP.

2.2.3 Activity Diagrams

UML Activity Diagrams are a behavioral diagram type of the Unified Modeling Language
(UML) [47], which is a general purpose modeling language established by the Object
Management Group (OMG). UML defines various diagrams types, that are partitioned
into structural and behavioral diagrams, with the intention to describe different aspects of
software systems. Therefore, UML provides the notation as well as the semantics for the
diagrams. Furthermore, it specifies the Object Constraint Language (OCL) [46], that can
be used to formulate declarative rules for the diagrams, like, for example, that an element
must not be its parent. UML itself is a strongly formalized industry standard, based on
the Meta Object Facility (MOF) [49], which defines a meta-data architecture for modeling
languages including a meta-meta-model as well as the open and vendor-independent data
exchange format XML Metadata Interchange (XMI) [48]. The usage of XMI enables
all models, described in a MOF compliant notation, to be exchanged with the same
mechanisms and semantics. Figure 2.5 displays an example of an activity diagram.

The main building blocks of an activity diagram are activities, represented by rounded
rectangles in the graphical notation, for example ‘Order pizza’ in the figure. Activities
are connected via arrows to build an ordered graph. This flow can be controlled with
the help of decisions, displayed as diamonds, but also splits and joins, depicted as bars,
which indicate a parallel execution of the activities. An activity diagram always starts
with one or more start nodes, presented by black circles, and ends with one or more end
nodes, depicted as circles with a centered dot.

With the standardization of the execution semantics for a foundational subset of UML
[52] and a corresponding action language [51], it is also possible to execute activity
diagrams. However, these approaches are in a very early stage, and to the knowledge of
the author no common available engines exist, that can reliably execute such diagrams.

18

2.2. Process Modeling

Chill wine

Order pizza Cook pasta

yes

no

Dinner for 2?

Figure 2.5: Activity diagram example

2.2.4 Business Process Model and Notation

The Business Process Model and Notation (BPMN) is a standardized notation for
modeling business processes, with the goal to ease the understandability of process
models for stakeholders of different domains, on the one hand, as well as to enable the
exchange of process models between participants and systems, on the other hand, [44, 17].
BPMN was first introduced by the Business Process Management Initiative (BPMI),
which merged with the OMG in 2005. Until version 2.0 BPMN provided a graphical
notation only, which made the use of other languages like Business Process Execution
Language (BPEL) or XML Process Definition Language (XPDL) necessary to exchange
and execute the process models. BPEL is an XML-based orchestration language for web
services standardized by Organization for the Advancement of Structured Information
Standards (OASIS), which allows to exchange and, with the help of engines, execute
business process models. XPDL is an XML-based standard for business process exchange
defined by the Workflow Management Coalition (WfMC). Since version 2.0, BPMN
provides a formalized meta-model and an independent electronic exchange format.

BPMN 2.0 provides four diagram types to express different views on business processes,
namely process, collaboration, choreography, and conversation diagrams. Conversation
diagrams describe high-level interactions between different stakeholders leaving out, for
example, control flows and process steps. Choreography diagrams go into more detail and
describe the message exchange between the participants including gateways and decision
nodes to control the sequence of steps. Due to the representation of business processes
in these two diagram types on a very high-level and their inability to be executed in
standard engines, they are not in the focus of a detailed discussion. The collaboration and
process diagrams, however, will be described in the following paragraphs. To support the
description, Figure 2.6 depicts a simple example of a collaboration and process diagram
and Figure 2.7 shows the most important elements of the BPMN notation.

19

2. Related Work

C
us

to
m

er

Receive
compensationSubmit claim

positive

negative

Window cracked

Claim Request Decision

Insurance Company

Figure 2.6: BPMN collaboration and process diagram example

The basic building blocks of process diagrams are flow objects which include events,
activities, and gateways, that are connected via control flows. Events can be divided in
start, intermediate and end events, as shown in the upper right corner of Figure 2.7. Start
events occur at the beginning of a specific process or sub-process, whereas a process can
have a single but also multiple start events. Some start events can catch results, which
means they react to a trigger from another process. In the example (see Figure 2.6) the
‘Window cracked’ event indicates the start of the process. Intermediate events appear
anywhere within the process between a start and an end event, changing the flow of the
process but without starting or terminating the process. In Figure 2.6, for instance, an
intermediate message event is caught in the customer process, that acts as a basis for the
decision in the next gateway. End events indicate the end of a process, thus terminate
the respective process instance and can create a result and throw it, for example to a
start event. A process might have a single or multiple end events. The example contains
two end events that are either reached when the claim is rejected or when it is accepted
and compensated. From Figure 2.7 one can see that different event types exist which
can be used to indicate specific behavior in the process model. For instance, timer
events represent events that fire either after a certain period or on a specific date. In
the insurance claim example, a timer intermediate event could be added to express, for
example, that after three weeks the customer calls the insurance company if they received
the claim request. Compensation events can be used to cancel process steps or roll back
a state that was done in a process step. An example would be a reservation of a table in
a restaurant that is later canceled by a compensation event because the customer got ill.

20

2.2. Process Modeling

P
oo

l 2
P

oo
l 1

La
ne

 2
La

ne
 1

Pools & Lanes

Task Call Activity

Activities

Task Types

 Business Rule Task

 User Task

 Receive Task

 Send Task

 Service Task

 Script Task

 Manual Task

Activity Markers

 Loop Marker

 Sub-Process Marker

 Sequential MI Marker

 Parallel MI Marker

 Ad-hoc Marker

 Compensation Marker

Gateways

 Exclusive Gateway

 Exclusive Gateway

 Parallel Gateway

 Inclusive Gateway

 Complex Gateway

 Event-based Gateway

Event Types

 Untyped

 Message Event

 Compensation Event

 Timer Event

 Exception Event

 Escalation Event

 Cancel Event

 Terminate Event

Catching Throwing

{{

{Intermediate

Control Flows Data

 Input Data

 Output Data
 Data Store

Association
 Sequence Flow

 Conditional Flow
 Default Flow

Message Flow

Figure 2.7: BPMN 2.0 symbols (based on [44, 17])

Activity in the BPMN context is a ‘generic term for work that companies perform in a
process’ [44]. The process diagram distinguishes tasks, which are atomic activities and
cannot be split into further steps, from sub-processes, which are compound activities that

21

2. Related Work

contain several other process steps. Tasks and sub-processes are depicted as rounded
rectangles in the diagram, whereas sub-processes have an additional sub-process marker,
illustrated as plus sign in a rectangle (see Figure 2.7 upper left corner). Globally defined
tasks and sub-processes, which can be re-used in the process diagram, are named call
activities and marked by a stronger border. Furthermore, activities can have task types
and activity markers assigned. Task types indicate the nature of the activity to be
performed, which means who or what executes an action. Figure 2.7 shows, for example,
the user task and the service task, which means that the action is either performed by
a user in the system or by a software service. Activity markers specify the execution
behavior of the activities, which means how an action is done. Figure 2.7 shows, for
example, the parallel MI marker, which indicates that a task is performed in parallel by
multiple instances that are spawned, or the compensation marker, that is used for tasks
that are rolled back when a compensation event is thrown in the process. To provide
an example, Figure 2.6 defines a task ‘Submit claim’ that needs to be performed by a
person.

Gateways, the third type of flow objects in a process diagram, are used to control the
sequence flow. Therefore, an initiating gateway splits the sequence flow into two branches
which join later to one sequence flow in a corresponding gateway. This semantics also
means, that at a gateway a decision is taken, that determines the triggered branches
in the process. In a BPMN diagram, gateways are illustrated as diamond shapes with
additional markers, which specify the rule which outgoing branches are activated. Such
a gateway can be seen in the Figure 2.6, when, depending on whether the decision
of the insurance company is negative or positive, the process either terminates or the
customer receives a compensation. The most important gateways are exclusive gateways
and parallel gateways, marked by an X or + respectively, as shown in Figure 2.7. At an
exclusive gateway splitting the sequence flow, exactly one of the outgoing branches is
triggered. At an exclusive gateway joining the sequence flow, the gateway awaits precisely
one incoming flow to be activated, before it triggers the outgoing branch. In contrast to
this, a parallel gateway triggers all outgoing branches simultaneously on a split and needs
all incoming branches to be activated on a merge, to trigger the outgoing branch. Inclusive
gateways activate one or more branches on a split, which means at the corresponding
merge gateway all activate incoming branches need to have completed before the outgoing
flow is triggered. Event-based gateways are always followed by catching events or receive
tasks, such as a timer event. Depending on which of the linked events or tasks happen
first, the corresponding branch is activated. Complex gateways are defined as gateways
that define decision behavior not covered by other gateways.

As mentioned above, flow objects in a process diagram are connected with control flows.
Control flows are usually standard sequence flows, depicted as black tipped arrows that
range from the source to the target flow objects (see Figure 2.7 lower left corner), that
define the order of activities. Furthermore, BPMN defines conditional flows and default
flows. Conditional flows, marked with a small diamond shape on the arrow line, are
activated when a certain condition is evaluated to be true. This enables, for instance,

22

2.3. Variability Modeling

the usage of parallel gateways in combination with additional constraints. Default flows,
marked with a slash on the arrow line, are used to label the default branch that is activated
if no other condition holds true, for example, in scenarios with complex gateway.

Further elements in the process diagram are data artifacts (see Figure 2.7 lower right
corner), that are linked to objects in the process diagram. These artifacts can either
be single data objects, data collections or datastores, that are associated with the flow
objects or connecting objects with dashed arrows with an open arrowhead. In contrast,
data input and data output artifacts act as input for an entire process, respectively result
from an entire process.

While process diagrams, with their rich possibilities, can express a detailed description
of a single stakeholder’s process, collaboration diagrams are needed to illustrate the
interactions between different participants. The building blocks of collaboration diagrams
are pools, processes and message flows. Pools represent participants in collaboration and
partition the activities of the different stakeholders. A participant can be an organization
or a role but also a system like a software application. Pools in the diagram are depicted
as rectangles as shown in Figure 2.7, and can either be realized as collapsed pools,
representing a black box, or as expanded pools, which then contain a process that shows
details of the pool. Lanes in a pool are used to further organize and devise pools and
contain several activities of the process described in the specific pool. Message flows
are used to show the information flow between participants across system boundaries
and can be attached to pools, activities and message events. In Figure 2.6 the insurance
company’s process is represented in a collapsed pool, while the customer’s process is
detailed in an expanded pool. Finally, the interactions between the two participants are
realized as message flows that specify the information flow.

Business processes defined in BPMN can be executed in various commercial and open-
source workflow management systems [1], like Bizagi5 or Camunda BPM6. A drawback
of BPMN is, however, the ambiguity of the different diagram types and their overlapping
scopes as well as the various variants a single process can be modeled with different
concepts of BPMN .

2.3 Variability Modeling

In Section 1.2 the concept of Variability Modeling (VM) was introduced as essential part
of Software Product Lines (SPLs) and Software Product Line Engineering (SPLE). SPLE
originates from Product Line Engineering (PLE) in industry, which, in contrast to mass
production, allows the derivation of a variety of customized products (‘variants’) from a
shared platform [25]. An example is today’s automotive manufacturing, where customers
can configure their favorable variant from a basic type of vehicle by selecting different
variations. The referred shared platform is built from core assets common to all variants,

5Bizagi Workflow Engine – https://www.bizagi.com/
6Camunda Workflow Engine – https://camunda.org/

23

https://www.bizagi.com/
https://camunda.org/

2. Related Work

which is then reused in the production. Groups of products that share specific variations
are bundled to a product line or product family. VM is the task of modeling and
managing the commonalities and variabilities of product lines. In SPLE commonalities
are software features, which are needed across several software products and hence build a
platform from which various combinations of software can be constructed and configured
for specific customer needs or a particular market segment.

The introduction of SPLs can induce remarkable benefits for software engineering com-
panies [65], but also raises the complexity and thus the effort of development and
management of software. Bosch [9] and Hallsteinsen et al. [25] carved out some issues of
present software, like the lack of variability, that need to be addressed to make SPLE
successful in the long run. Therefore, several methods and models were developed to
enable appropriate VM in software engineering.

Czarnecki et al. [18] stated that the most relevant approaches in VM are Feature Modeling
(FM) and Decision Modeling (DM), which more and more converge towards each other
over time. FM , introduced by Kang et al. [34], concentrates on the commonalities and
variability of features that software products provide. DM was introduced by McCabe
et al. [39] and aims at providing models that act as a basis for the decisions that need to
be taken when configuring a product. Most present techniques in Feature- and Decision
Modeling were influenced by these works. Nevertheless, also other approaches exist like,
for example, the Common Variability Language (CVL) [45] which was specified by the
OMG as a domain-independent language for defining and resolving variability. However,
as other techniques are marginally used and supported by tools or, as CVL, are not
entirely specified, this chapter will focus on approaches of Feature- and Decision Modeling.

Before Feature- and Decision Modeling are explained in the next two sections, a few
essential criteria are described, that serve as a basis for the selection of the specific
approach for this thesis. A presumption of this thesis is, that for the Customization
and Configuration Process (CCP) process and, furthermore, the linking of software
components to engineering processes, software from existing use cases is utilized. This
software is continuously evolving, and new features are added on a regular basis, which
then either belong to the commonalities or the variabilities of the SPL. The first criterion
is that the selected approach should enable the developer of the variability model to
relatively easy extract parts of the model from existing components or their source code.
Second, as the software components advance, the efforts to adapt the variability model
to reflect the changes should be as low as possible. Third, the selected approach should
be formal enough, to enable the generation of a machine-readable file from the variability
model to further process it. Finally, existing tool support for the approach is desirable,
to create and manipulate the variability model in a simple way.

2.3.1 Feature Modeling

In 1990 Kang et al. [34] published their work Feature-Oriented Domain Analysis (FODA)
which influenced most of today’s FM approaches [18, 35]. In their technical report, they

24

2.3. Variability Modeling

discuss a method to reveal and model commonalities in software systems related amongst
each other, by utilizing the process of identifying, collecting, organizing, and representing
the relevant information in a domain based on the study of existing systems. The goal of
the approach is the identification of prominent or distinctive features of software systems
in a domain. A domain, by their definition, is a set of current and future applications
which share a set of common capabilities and data. Beyond that, the authors specified
features as user-visible aspects or characteristics of the domain.

Based on prior research, the authors identified three core tasks necessary for the process
of the domain analysis: a) a context analysis that defines the limits of the domain to be
analyzed; b) the domain modeling that outlines the issues of the domain covered by the
software applications; c) an architecture modeling that depicts the solution architecture
to the issues of the domain. A major output of the domain modeling phase is the feature
model that results from a feature analysis. The feature analysis aims at gathering and
structuring the capabilities of the applications of a domain relevant for end-users in a
concise model. Therefore, it classifies the features in commonalities (mandatory features)
and variabilities, which can be differentiated into alternative and optional features.

Phone

Protocol

UMTS LTE

Screensize

5.1” 5.8”

Audio

WAV MP3

MP3 Recording
requires

Legend

abstract concrete mandatory optional or xor

Figure 2.8: Feature model in tree notation - adapted from [18]

An example of such a feature model is shown in Figure 2.8, which is slightly adapted
from [18] and takes several of the enhancements from the original FODA approach into
account. The figure exemplifies a feature model of a product line of mobile phones. The
graphical notation depicts features as rectangles with rounded corners and connects them
with lines to sub-features to build a feature tree. Features in a feature model can either be
defined abstract or concrete. Abstract features group sub-features regarding aggregation
and generalization. Aggregation resembles a consists-of relationship as in ‘a car consists
of an engine and four wheels’ (as well as other parts). Generalization equals a is-a
relationship as in ‘a snow tire is a special type of tire’. The notation does not distinguish
between abstract and concrete features symbolically, however, in the figure they are
shown in slightly different colors. A phone in the feature model has the mandatory

25

2. Related Work

abstract features Protocol and Screensize, which are marked with a black circle on top.
The concrete protocol feature UMTS is mandatory and thus always included in a phone.
Additionally, the optional protocol feature LTE can be selected. Optional features in the
feature diagram are indicated by a bordered circle on top of the feature. Considering
the screen size, either a 5.1" or 5.8" inch screen can be chosen, which corresponds to an
exclusive disjunction. Such a logical XOR is displayed by a bordered arc that spans over
the connections of the features. For the optional abstract feature Audio, one or more of
the concrete options WAV and MP3 can be selected. These OR variants are represented
by a black arc that spans over the connections of the features. However, if the optional
concrete feature MP3 Recording is desired, then it also requires the feature MP3 to be
present for the variant of the phone. A requirement connection is indicated by an arrow
from a feature to the required feature. Often such constraints are kept in an additional
section of the diagram to avoid clutter.

With the described notation, the aspects of a SPL can be concisely visualized in a
tree format. Nevertheless, feature models of real-world software tend to get large and,
furthermore, grow in size and complexity over time. This complexity makes tool support
for handling and managing those models inevitable.

FeatureIDE

The FeatureIDE is an extensible, open-source software tool, based on the Eclipse IDE,
that supports the concept of Feature-Oriented Software Development (FOSD) respectively
Feature-Oriented Programming (FOP) [36, 67]. FOP is an approach that treats features
as the primary building blocks of software respectively products of software development
and allows a compositional combination of these features to applications [55]. This
composition is achieved through selection and parameterization of the features in order to
create a software system. The framework supports several FOP languages and paradigms,
like Antenna7, an annotation-based preprocessor for Java, or FeatureHouse8, which is
a language-independent approach, that derives concrete classes via superimposition or
three-way-merge of source files written in different programming languages.

Another aspect of the FeatureIDE, especially relevant for this thesis, is the option to create
feature models in a graphical editor. Similar to the feature model shown in Figure 2.8, the
user can construct the features as well as define their hierarchy. Furthermore, constraints
can be formulated in a simple language that supports a selected set of logical operations.
The editor calculates the validity of the model based on the feature attributes and the
expressed constraints and displays possible issues. If, for example, several contradictory
constraints were specified, that prevent a feature to be selected, the editor will mark the
feature as well as the involved constraints and display an error message. The resulting
models are stored in an XML-based format, which makes them machine-readable and easy
to exchange. A drawback of the format is, that no schema definition of the underlying
XML exists, which makes it harder to interpret by other tools.

7Feature Preprocessor – http://antenna.sourceforge.net/
8Java Feature Extension – http://www.fosd.de/fh

26

http://antenna.sourceforge.net/
http://www.fosd.de/fh

2.3. Variability Modeling

In addition to the export, the FeatureIDE provides the possibility to create ‘product’
configurations based on a specific feature model in the, so called, ConfigurationEditor [53].
This editor predetermines a configuration process for product derivation and guides the
user through the necessary steps to create a product variant. The application validates
the configurations on the fly, according to their correctness related to the feature model,
its dependencies, and constraints. This just-in-time validation means that the editor
immediately responds to invalid configurations and communicates them to the user.

To summarize, FM provides methods to reflect the commonalities and variabilities of a
SPL in a concise tree-based model, which is capable of representing the dependencies
and constraints amongst the features. Considering the criteria mentioned above, the
following conclusions can be made. Although not explicitly formalized in the work of
Kang et al. [34], a formal specification for the feature model can be derived. For existing
software, the feature model needs to be generated in an initial analysis. Depending on the
complexity of the software and the system knowledge, the modeler has, the effort for this
analysis can vary sharply. The feature model needs to be readjusted in parallel with the
changes introduced to the corresponding software. The effort for this task, as mentioned
before, also depends on the overall complexity of the software, however, if consequently
done it should be within calculable limits. With the FeatureIDE a tool is provided, that
adequately supports the creation, adaptation, and management of the feature models
and its possible configurations of a SPL. Furthermore, the FeatureIDE provides an XML
exchange format, which enables other tools to handle the feature models.

2.3.2 Decision Modeling

The basic concepts of DM were introduced in 1993 by McCabe et al. [39] in the Synthesis
methodology. The methodology enables project engineers to understand and model
similarities and variations in software systems, to later exploit those similarities to
eliminate redundant work. Therefore, the approach provides the means for building and
maintaining a decision basis, which is used by project engineers to satisfy their customer’s
needs by merely answering the questions that are left open because of variations during
software derivation and configuration.

The approach defines a process, that is based the following core principals, that are
utilized in different of its steps: a) the formalization of a domain as product families,
that significantly share common aspects, but vary in parts among instances; b) system
building which, with the application of this approach, should be reduced to the selection
and configuration of decisions, that represent variations points in products; c) and the
reuse of software by selection or adaptation of components and their configuration.

This primary process distinguishes between Application Engineering and Domain En-
gineering as its foundational sub-processes. Application Engineering is defined, by the
authors, as the standardized task of producing and delivering software to customers and
corresponds to the before mentioned system building. This includes a description of the
requirements and of the system to be built, as well as the selected engineering decisions,

27

2. Related Work

that result from the structured resolution of a variation questionnaire. This questionnaire
is backed by a decision model, which itself is built in the Domain Engineering phase,
for the specific system or product family. From the decision model and the selected
engineering decisions, the work products for the final product are generated and config-
ured. Domain Engineering corresponds to the formalization of the domain and is the
iterative activity of managing and implementing work products of a product family. This
process also includes the Domain Specification which, as output, produces a Decision
Model that supports the Application Engineering task. The Decision Model represents
the requirements and engineering decisions, as well as the logical relationships among
them, that need to be considered to construct an application. In this way, the model
determines the variety of instances in the specific system domain by reusing software
components.

Name Description Range Cardinality Relevancy/Constraints
LTE Is LTE supported? true | false

Screensize How big is
the screen? 5.1" | 5.8"

Audio Which audio types
are supported? WAV | MP3 1:2

Recording Is MP3 recording
supported? true | false requires Audio.MP3

Table 2.1: Decision model as table (based on and adapted from [18] and [61])

The definition of the initial decision model, to represent variability in software, in the
Synthesis methodology acts as a basis for most of the DM approaches. An example of a
decision model in table notation, which uses the proposed adaptations by Schmid and John
[61], is shown in Table 2.1. The adaptations make the decision model more comprehensive,
regarding the contained information, and notation independent, by defining decision
variables which are referenced at the variation points using decision evaluation primitives.
The example in Table 2.1 represents the same variabilities of an exemplary phone product
family as the feature model in Figure 2.8. A decision has a Name, which acts as a
unique identifier, and a Description, that is formulated as a question to be used in the
questionnaire. Furthermore, each decision defines a Range of values that it can hold.
These values can be enumerations such as true/false or object references, like Audio.MP3,
but also ranges of values, like 1. . . 5. The Cardinality indicates how many of the values a
decision can hold. Finally, the Relevancy and the Constraints define whether a decision
is relevant in the current configuration and which logical relationships the decision has to
other decisions. In the example, the constraint requires Audio.MP3 indicates, similar to
the exemplary feature model, that the decision Recording needs the decision Audio.MP3
to be selected.

The building and management of a decision model, especially of the logical relationships
and constraints among the decisions, but also the automated creation of a variation

28

2.3. Variability Modeling

questionnaire from the model, as well as the derivation of the work products, requires
sophisticated tool support to make the approach usable.

DOPLER Meta-Tool

In Dhungana et al. [19] the authors present the Decision-Oriented Product Line Engi-
neering for effective Reuse (DOPLER) meta-tool, that supports a flexible and extensible
variability modeling approach based on DM . In their work, they conduct a case study
with several industry partners, to prove the applicability of their tool and the underlying
concepts in different industrial areas. The implemented tool, which is based on the Eclipse
platform, enables a guided product derivation and automated variant configuration in a
specific domain.

The decision model, used for product derivation, is defined in DoplerVML, a variability
modeling language proposed by in the working group of the authors. DoplerVML allows
modeling the problem space as decision model as well as modeling the solution space with
the help of, so called, asset models, which are collections of functionally and structurally
grouped assets. Assets are models of artifacts, specified for a particular domain, which
provide a solution fragment for the creation of a product instance. An example would be
a service that covers functionally for the calculation of specific problems and provides an
URL as attribute where it can be reached. The modeling approach provides extended
flexibility, as, depending on the requirements of the domain, the assets can be precisely
defined in the granularity needed. For example, today’s software architectures range
from classical client-server solutions to microservice architectures and even serverless
computing, which makes it impossible to fit the solution fragments in a single rigid model.
The asset model and the decision model of the domain are linked together according to
the core meta-model of DoplerVML, which allows multiple decisions to be included in
specific assets. In this way, product instances can be derived from the assets, which are
selected and configured via a guided questionnaire.

The DOPLER meta-tool is feasible of providing the necessary features to create and
manage a variability model, that can be used to link software variants to engineering
processes. However, the DOPLER meta-tool is neither publicly available nor open-source.
Nevertheless, according to the authors, it is possible to retrieve a research license for tool
evaluation and development.

To sum up DM , the approach provides concepts to model variabilities of product lines
utilizing decisions that need to be made to derive valid product variants and their
configurations. In contrast to FM , which also models the commonalities, DM concentrates
on the variabilities between the product instances. The most common notation for a
decision model is table based and was introduced in the Synthesis methodology [39].
However, the notation and the underlying model was adapted and extended over time
in other works [61, 19]. In regards to the criteria defined previously, it can be noticed
that the concepts of DM are well formalized in various works. Likewise to the FM
approach, the initial effort to derive a decision model from existing software depends on

29

2. Related Work

the complexity. The same holds true for the adaptations of the software described in the
model, but it can be stated that an additional change to the decision model results in a
relatively small effort. Compared to the feature model the efforts of model creation and
maintenance are quite similar. A defined exchange format is not known to the author,
however, is does not seem very complicated to develop such a format from the notations
available.

30

CHAPTER 3
Research Issues

Chapter 1 framed this thesis in the context of production systems engineering (PSE)
and their heterogeneous tool environments. The need for tool integration platforms, due
to the issues arising in such complex environments, was motivated in Chapter 1 and
discussed in detail in Chapter 2. Moreover, in Chapter 1 the Engineering Service Bus
(EngSB) approach, which allows to seamlessly integrate engineering tools and processes
for improved cooperation among engineering disciplines, was briefly introduced and
further presented in the related work (see Section 2.1).

Application
Customization

Customer
Requirements

Integrated Tool
Application

CCP CCP Method
& Tools

Software
Components

Mapping
Mapping Method & Tools

Platform
Variability Model

Variable
Components

Selection

Process Variability Model

Base Processes

Combined Processes

Selection Method & Tools

1

2b

2a

3b

3a

Figure 3.1: IDEF0 of the science contributions of the thesis

As stated in the introduction, the EngSB needs tailoring to the client’s requirements in
a Customization and Configuration Process (CCP) to be successfully implemented in

31

3. Research Issues

engineering companies. The specific problems of the CCP were outlined, which result from
the tedious, most of the time manual, configuration and the missing quality assurance
due to a lack of automation. A primary aim of the thesis is to provide a better quality of
the resulting customized applications and save efforts at the same time. Therefore, the
need for Model Driven Software Engineering (MDSE) approaches to support the CCP
by generating parts of customized components or configuration, was motivated.

Besides the EngSB tool integration approach, in Chapter 2 related work was presented,
that covers methods and notations to model processes, primarily in the business area.
These findings can similarly be used to express workflows from the engineering domain.
Furthermore, the two most common concepts used to handle variability in software
systems were described in the chapter.

Due to missing approaches that handle the variability of software components and
processes at the same time, the thesis concentrates on the selection of engineering
processes and their mapping to software components. These two activities of the CCP
result in process variants that are linked to component or service variants and can be
executed in workflow engines that run on the tool integration platform.

From the focus of the work and the issues of the CCP raised in Section 1.2, but also the
approaches that were discussed in the related word, the research questions and evaluation
criteria for the proposed solution are defined in this chapter.

Figure 3.1 shows those tasks of the CCP that are within the focus of the thesis and the
contributions the thesis provides in an IDEF0 diagram. An IDEF0 diagram is composed
of a set of functional blocks that represent actions as well as data and object flows
depicted by arrows. In this case, the relevant tasks that need to be fulfilled to create a
customized integrated tool application instance and the flow of information between them
are displayed. On the left side of a functional block inputs, like customer requirements,
for the tasks enter. On the right side of a functional block outputs from the specific
task exit. These outputs can then be used in other functional blocks. For example, the
processes selected and combined exit the selection task and are used as input in the
mapping task. Mechanisms or resources, like methods or models, enter a functional block
from the bottom and provide the means to fulfill a task. For instance, the selection
task takes the base processes as input and transforms them with the means of a process
variability model to a set of combined processes which serve as input for the next task.
The following research issues will be motivated according to this image in combination
with Figure 1.1 from Chapter 1.

3.1 Research Issues

Based on related work of Chapter 2 and the problem description of Section 1.2 we
identified a set of research issues, which are discussed in the sections below.

32

3.1. Research Issues

RI-1: Improvements of Tool Integration Platform Customizations

At the moment, the CCP needs to be performed by experts - the application integrators,
because not only an intense knowledge of the available platform components and their
capabilities is required, but also profound insights in the engineering processes that are
adapted and implemented. Moreover, the experts need to know, how a specific set of
components matches a possible set of activities in the engineering processes considering
their dependencies amongst each other. The complexity of the CCP and the current
manual approach often result in a high error rate within the process and a low initial
quality of the resulting application. These difficulties lead to increased efforts of expensive
application integrators, as they need to repeat tasks of the process in case of faults and
are thus blocked for other work. This complexity also represents a steep entry barrier for
new application integrators, especially when the platform continuously evolves.

The effects of the mentioned issues worsen when the risk of an expert shortage is
considered. If no resources are available to perform customization tasks, the process
is delayed or even worse suspended. This can be the case, if, for example, engineers
need to step in for application integrators to acquire the knowledge of the process. The
probability of such events should not be underestimated. Therefore, the major question
that needs to be raised is:

To what extent can the traditional CCP for tool integration platforms and
the activities of engineering process selection, engineering process variant
to software component mapping and engineering process configuration be
improved to enable the generation of fully configured process instances?

RI-1 aims at the improvement of a) the efficiency of the CCP due to a lower level of
complexity and effort; and b) due to a higher level of automation; as well as c) the
effectiveness of quality assurance by applying possible checks during the process.

From the experience of Continuous Integration and Deployment (CID), the automation
of a build process can mean a significant improvement in quality and in saving working
effort [21, 24]. CID saves time and working effort because the process runs without the
constant attendance of a user, and the user is only asked for input to certain steps. CID
also improves quality because checks can be run during the process that ensures the
quality and correctness, or respond to issues that occur. An increased level of automation
and additional entry points for quality assurance checks, go hand in hand with a faster
customization process, less manual efforts of experts and makes errors visible earlier.
Furthermore, a decreased level of complexity fosters the transparency of the process,
which lowers the entry barrier for non-experts.

An essential aspect for the improved CCP is the acceptance amongst stakeholders involved.
Therefore, tools supporting the tasks of the process should be investigated. As it is likely,
that only parts of the activities can be backed by tools, it should be examined what
other mechanisms exist to help engineers. So a question in this context is: Which already

33

3. Research Issues

existing tools support the approach of modeling and linking process variants, and which
tools are needed on top of this toolset?

From the answers gathered to RI-1 it should be possible to propose a solution for an
improved CCP and implement a prototype of the method that can be evaluated consid-
ering its performance. The contributions of RI-1 should lead to an overall improvement
of the CCP as indicated by the node 1 in Figure 1.1 and 3.1.

RI-2: Mapping of Engineering Process variants to Software variants

The activity of process mapping will be described in detail in Section 6.4, however, the
general approach works as follows. An application integrator takes a process description
and compares it to process definitions from former existing projects. These process
definitions either exist as a formal description or more often are encapsulated in some
orchestration component in the code itself. The process definition is then copied and
adapted to the needs of a specific customer. When the newly adapted process definition
fits the use case, the application integrator has either candidate for possible software
components in mind or needs to find such components and map them to the process
tasks. Afterwards, the application integrator can link the process tasks and the software
components either by writing the calls to the components into the process definition or
the orchestration class. It can be imagined, that these activities are as well tedious an
error-prone. Therefore, the aspects of the following question need to be investigated:

How can variants of engineering processes be semi-automatically selected,
mapped to software component variants and configured with service calls?

The question investigates how the three single steps of the process selection activity
can be changed in a way that allows them to be better structured or even formalized
to support the application integrator and, also, how tool support can be provided that
executes parts of these steps automatically.

To do that, another question needs to be answered: Which parts of the improved process
can be automated and which tasks still need to be manually done? This means it needs to
be investigated which steps need human knowledge or intervention and which parts can
be run automatically with additional quality checks that assure their correctness.

The prototype for the solution approach should consider the findings of the raised
questions, to automate the process. From several runs of the prototype, data should be
collected, contribute to RI-1 using the evaluation criteria, developed below in Section 3.2.
Furthermore, the answers to this research question should contribute to the improvement
of the CCP. In the overview figure (Figure 1.1) and the IDEF0 diagram (Figure 3.1, the
improved engineering process selection is shown as contribution 2a, and the mapping of
the selected processes to reasonable software components is shown as contribution 2b.

34

3.1. Research Issues

RI-3: Variability Modeling for Engineering Processes and Services

To allow the process selection, the creation of process instances, and, in the further
course, the mapping of these instances to specific software components, a representation,
is needed, that models variations of the concepts common to both, the processes and the
components. Therefore, the question that can be raised is:

How can concepts of Variability Modeling (VM) be utilized for modeling
engineering processes and software systems to allow mapping between process
variants and software variants?

In Section 1.2, VM were assumed promising for the generation of customized parts for
integrated engineering applications and especially the creation of configured process
variants. Section 2.3 introduced common approaches of VM , that enable the representa-
tion of commonalities and variabilities in software. It should, therefore, be proved that
some models and methods from VM can be exploited to develop an improved CCP,
which can support stakeholders to select process variants and link them to services in the
application. The research question aims at the identification of concepts from VM and
their investigation according to the needs of the use case. Moreover, the question aims at
the creation of a process, that is superior to the actual CCP, which is manually done.
Before the investigation of which concepts of VM can be utilized, and the question
above can be answered, it needs to be clear where in the platform variability points can
be found. For example, during the CCP several components can be selected to fulfill
customer requirements, that provide very similar features and often just differ in how
they do something. For instance, the data of the engineering tools need to be saved as
a model in a model repository, so there might be a ModelRepository service. However,
often models reference files that also need to be stored in combination. So there might
be a UnifiedRepositroy service that saves the models in a store optimized for models
and the files in a different store optimized for files. So before helpful concepts of VM
can be identified, the following question needs to be addressed: Which components, that
are used to assemble an integrated engineering application, can vary between application
instances and which distinct aspects does a component have?.
After the components, that provide points of variability, are identified, concepts from the
field of VM can be investigated, whether they can be utilized for the type of variability
and how the variability can be modeled with this concept. When the best fitting models
and methods of VM were selected, there might remain a gap between their intended
use and how they can be applied for the approach to be proposed. For example, the
grammar or the semantics of a concept might need to be slightly changed or updated,
to serve the goal of the thesis approach. To reply to this issue, the following must be
asked: To what extent do models and methods identified need to be adapted to support an
improved CCP?.
From the answers to the question and its subquestions, it should be possible to propose
methods that allow creating models of the process base as well as the software base. These

35

3. Research Issues

models should the be used to allow the selection of process variants and their mapping to
software component variants. In other words, the first part of the the research question
should be a Process Variability Model (3a in the supporting figures) that contributes to
the Selection (2a). The second contribution of the research question should be a Platform
Variability Model (3b in the figures) that supports the Mapping (2b).

3.2 Evaluation Criteria

To respond to the research issues mentioned above and RI-1 in particular, and to evaluate
the proposed method through the implemented prototype, Key Performance Indicators
(KPIs) for the CCP must be searched and defined. These KPIs must be equally applicable
for both, the traditional and the improved process.

Before indicators can be defined two variants of customization that differ must be
distinguished. The first type is the customization of the platform to a ‘standardized’
integration application, that can be used by several companies of the same engineering
sector or group for well-known engineering projects. The second sort is the customization
for one specific customer with special requirements, that uses the integrated application
for the kind of projects typical in the customer’s field or frequently changing engineering
tools. The first task is done once and can be used by multiple clients; the second is done
once for a single client. So the cost of customization in the first case decreases with every
additional client, while it stays the same in the latter approach. The scope in this work
is set to the ‘one customer’ cost model, as it would be hard to include and predict the
marginal cost saving of a new customer of the ‘standardized’ application.

KPI-1 - Complexity

The CCP is a complicated process, that might take several months of work and needs
multiple iterations. Undoubtedly, a process that is less complex is also less error-prone
and creates results that be better understand. Because of the existing complexity and
the aim to reduce it, the measurement of complexity on top of the CCP is a valuable
magnitude. However, the measurement of process complexity is a relatively new field of
research and a difficult task to conduct [14].

In the literature, different metrics for the complexity of processes exist, which are mostly
developed for business processes in business process management. As the CCP itself
can be seen as a business process in the broader sense, this thesis utilizes several of
the proposed methods. One indicator that is emphasized as an indicator for process
complexity is the perceived psychological or cognitive complexity [15, 12]. However, as
this is exceptionally hard to measure and can only be achieved with the additional help of
surveys, its measurement is out of the scope of this thesis. Two complexity measurement
approaches that seem more promising and can be applied on the CCP are the activity
complexity and the control flow complexity [15, 13]. From these approaches, the used
KPI are derived.

36

3.2. Evaluation Criteria

KI-1.1 is defined as the number of manual activities in the CCP, while KI-1.2 is defined
as the number of manual activities in the CCP in relation to the number of automated
activities. The last indicator can also be seen as the degree of automation of the process.
As no formal or strict description for the traditional approach exists, it is also difficult to
apply these measures. However, the approximate sequence of activities in the traditional
approach will be outlined in this work and used to apply these measures. KI-1.1 is
expected to be lower in the improved process compared to the traditional approach.
KI-1.2 is expected to be far lower in the improved process compared to the traditional
approach, as the process should mainly be an automated process.

For future research, the investigation of control flow complexity as an indicator for the
improved CCP is recommended.

KPI-2 - Effort

In the traditional CCP, an application integrator or release manager manually performs
the tasks that are associated with the configuration, while software developers implement
additional software components and business process experts design the engineering
processes. As the assignments of the application integrators are manually done, they are
time-consuming which blocks away from the integrators from other tasks in the meantime.
So an essential magnitude of the CCP is the effort it takes to generate a customized
integrated application. However, the effort must be evaluated for at least the following
two different scenarios.

An important indicator, for the performance of the method, is defined as the effort in
working hours, invested in the CCP for a customized tool integration platform with a set
of stable requirements [KI-2.1]. Still, the effort for the set up of the prototype needs
to be taken into account to the overall effort to make these two approaches comparable.
Because the initial effort is taken into account, the indicator needs to be measured for
each of the two approaches and two subsequent customizations respectively to show the
possible cost-saving effect on the second customization.

The second indicator concerns the additional functionality and features realized over
time, which enables further application variants to be created. Such developments mean,
the application integrator needs to include these components into the set of solution
elements for the CCP. Therefore, the effort in steps for a customization after a marginal
change of the solution set is defined as KPI [KI-2.2].

KPI-3 - Quality

As already noted, the quality of the resulting approach is hard to ensure. Especially RI-1
covers the question how the quality can be increased. However, one issue mentioned are
missing tests that cover the customized components and their interaction correctly.

From this question raised, two further indicators are defined, that is applied to the
traditional as well as the improved process to evaluate their performance. The first

37

3. Research Issues

one is the number of activities in the CCP, where quality and test mechanisms are
implemented out-of-the-box [KI-3.1]. The second is defined as the number of quality and
test mechanisms that can easily be implemented and automatically be run in the process
[KI-3.2].

It is expected, that both values are lower for the traditional approach and higher for
the improved CCP. This result means that the platform provider can run more test and
quality assurance measures and, furthermore, that they can also be automated.

38

CHAPTER 4
Methodology

This chapter will outline the research approach and the methodology applied in the
present work.

IS Research

Analyze

Build

Evaluate

Environment

People

Organizations

Technology

Knowledge Base

Foundations

Methodologies

Bu
sin

es
s

N
ee

ds

A
pp

lic
ab

le
K

no
w

le
dg

e

Figure 4.1: Methodology framework (based on [27])

This thesis follows the constructive Design Research approach proposed by March and
Smith [38] and Hevner et al. [27]. The two approaches and their concepts will be discussed
concisely, and the activities carried out in this work will be associated with the presented
concepts.

According to March and Smith [38] two types of research approaches for information
systems can be distinguished. Natural Research, on the one hand, is often utilized
in traditional research, like physics or biology, and consists of the two basic activities
Theorize and Justify. This means researchers in their work create theories or hypotheses,
that are then justified or invalidated. Design Research, on the other hand, is a constructive
approach seeking an applied solution for a problem. Design Research consists of the two
basic activities Build, which creates the artifacts Constructs, Models, Methods as well
as Instantiations, and Evaluate. While Building is defined as the process of designing

39

4. Methodology

and implementing the before mentioned artifacts, Evaluating is defined as the process of
testing whether the artifact is applicable for the intended use.

In addition to the original approach, Hevner et al. [27] presented a framework taking
the influential forces on the research process into account. Their framework seeks to
provide the means to understand and successfully execute Information Systems Research
by combining Design Research and Behavioral Research, which to them is fundamental
for effective research. They, therefore, introduce a set of guidelines that aim at helping
researchers to understand the requirements to conduct Design Research properly.

To explain how Design Research was utilized in this thesis, Figure 4.1 shows a simplified
and slightly adapted version of the Information Systems Research Framework [27]. On
the left side of the figure, the research Environment with its stakeholders is depicted,
which demands research relevance and exposes real-world problems that lead to research
topic and questions. In the case of this work, industrial partners motivated the need for
an effective customization and configuration process in the context of engineering tool
integration platforms. Furthermore, they provided insights into engineering processes and
needs of engineering stakeholders. On the right side, the Knowledge Base is shown, that
provides foundations, like theories, instruments, and constructs, as well as methodologies
to conduct the research activities of building and evaluating artifacts. Furthermore, the
scientific communities that mind for the knowledge base are mandated to test the research
produced. In the central section of Figure 4.1 the research process itself is depicted. For
the thesis, the figure was extended by the Analyze activity. This phase includes the
activities performed before the research artifacts could be designed and implemented in
the build phase. This means, for example, the task to investigate whether the research
topic was relevant both for the industrial partners as well as the addressed scientific
communities.

In the following paragraphs the three research activities Analyze, Build and Evaluate are
underpinned with the tasks executed in this thesis.

Analyze activity

In Chapter 1 we present a motivational example and a brief problem description, which
was adopted from relevant industrial partners and own experience in the CDL-Flex
research laboratory. After a more precise description of the problem and the research
topic, the research issues are defined in Chapter 3. Moreover, through a requirements
analysis with industrial partners, further needs are weaved into the research questions. To
detect concepts and methods, a careful literature study is conducted, of relevant research
areas, which seem promising to contribute to a solution. The results are presented in
Chapter 2 with a particular focus on the fields of Variability Modeling (VM) and Business
Process Management (BPM). Additionally, the literature study thoroughly investigates
the relevance of the research topic in the addressed scientific communities. A selection
of concepts is then matched to the research topic. Furthermore, a tool study is carried
out and discussed in Chapter 2 to collect and evaluate tools that can be exploited for an

40

applied solution prototype. Also in this activity, the evaluation criteria are formulated,
and key performance indicators are defined, to enable an adequate evaluation.

To be able to evaluate the approach proposed by the thesis, a set of metrics for configura-
tion efforts needs to be developed. Moser et al. [43] defined performance indicators that
measure the effort for an integration solution. Broy [10] specified further aspects and
metrics that indicate and measure the quality of large software systems. As a starting
point, the aforementioned metrics can be considered. The specific set of metrics to be
used is part of the investigation in the thesis. When the set of metrics is defined, it should
be applied to the resulting prototype to determine the efforts of the (semi)automated
customization of the platform.

Build activity

In the build phase, that follows the analysis phase, first a specific use case is formulated
and explained in the Chapter 5, that serves as underlying sample for the solution approach
and the evaluation. Second, applying and extending the selected constructs and methods
from VM and BPM as well as providing own ideas, a theoretic method is developed
that provides a solution for the research topic. In order to test the proposed method,
the selected concepts and the formulated approach are used to build models on top
the defined use case. Furthermore, the findings of the theoretical solution will then be
implemented in a simple software prototype that provides tool support and automation
features. Finally in this phase, the models are used in the prototype, to test its basic
applicability for the research problem.

Evaluate activity

In order to evaluate the solution approach for the method the implemented prototype
is evaluated. Therefore, the prototype is assessed according to the metrics defined in
Chapter 6. A discussion of the approach and the evaluation in Chapter 8 will conclude
the evaluation.

41

CHAPTER 5
Use Case

Chapter 3 raised the research questions that this thesis examines and defined Key
Performance Indicators (KPIs) that are used as metrics to evaluate the solution approach
and its impact on the Customization and Configuration Process (CCP). Alongside,
Chapter 4 introduced Design Research which is used throughout this work as methodology
and defines three stages to conduct research in the area of Computer Science.

To apply the methodology on the one hand, but also to underpin the answers to the
research questions, on the other hand, the utilization of a specific use case seems helpful,
if not necessary. In Chapter 1 a very simplistic example of an engineering process was
outlined, that frequently emerges in production systems engineering (PSE). This chapter
details on the use case, according to with its necessary processes and the underlying tool
integration platform and its services. The use case is referred over the course of the thesis
to explain the solution concepts and develop the prototype. Moreover, the example is
used to test the methods and models as well as evaluate them on a real-world instance.

5.1 Round-trip Engineering

As described in Section 1.1 engineering companies establish various processes to perform
their daily work. Although these processes differ in many activities, several similar and
recurring tasks can be identified. As mentioned, Chapter 1 provided a central example,
where engineers of different domains manipulated planning artifacts and stored afterward.
Activities that support the planning of production systems, like the one described, can be
found in most engineering companies. This similarity among customers is an advantage
for platform providers, as they can design processes which can be used as blueprints for
process definitions in other engineering companies.

A primary process, which is widespread in many engineering companies, is the planning
of production sites. This process requires several engineers from different disciplines to

43

5. Use Case

work together on shared parts of a production system. However, the models of these
disciplines are rarely stored in the same artifacts. Instead, these models are distributed
over various source files, that can usually only be accessed, viewed and manipulated with
specific engineering tools.

In contrast, integrated tool applications act as single-source providers, as the data of the
engineering models can be accessed by different engineering disciplines over standardized
interfaces, although the data is persisted in a repository that transparently propagates
changes across engineering disciplines. This kind of engineering is called round-trip
engineering (RTE) [20] and facilitates parallel planning as well as better traceability of
changes in the engineering project.

Commit Plant
Topology

Plant Topology &
Mechanical View

Plant Topology &
Electrical View

Update
Electrical
Planning Data

Plant Topology &
Software View

Update
Software

Planning Data

Mechanical
Engineer

Software
Engineer

Electrical
Engineer

Plant
Planner

Update Mechanical
Planning Data

Integration
Platform

1

2

3

4 5

6

7

Figure 5.1: Round-trip engineering process

The workflow of RTE in PSE is displayed in Figure 5.1 and explained in the following.
In a first step, a plant planner plans and commits the plant topology to the integrated
engineering application. This plant topology is then checked out, in Step 2, by a
mechanical engineer, who adds the mechanical view and respective components. Therefore,
the engineer changes and updates several engineering artifacts, and commits them, in
Step 3, to the integrated engineering application after completion. Fourth, the electrical
engineer checks out the planning data that exists so far and enriches the plans with the
electrical data. These changes are then committed in Step to the integrated engineering
application. Finally, in Steps 6 and 7, the software engineer checks out the data,
implements the necessary components that control the hardware components, and again
commits it to the shared repository.

44

5.2. Round-trip Engineering in Practice

As illustrated, the RTE process starts with the planning of the general plant topology.
From this point on, the process is not strictly sequential. On the one hand, multiple
engineers of the same discipline work on different parts of the production systems. On
the other hand, as soon as engineers from different disciplines can use pieces of these
plans, they start and perform their tasks.

While RTE was explained in general as a frequently emerging process in PSE in this
section, the next section details on an engineering process and use case from an industry
partner of the CDL-Flex, that implemented RTE which the Engineering Service Bus
(EngSB) and AutomationML Hub (AML.hub) approach.

5.2 Round-trip Engineering in Practice
Over the course of the CDL-Flex laboratory, several engineering processes of industry
partners were investigated, analyzed and optimized for the use in PSE . From these inves-
tigations, a set of standard processes which are part of RTE were identified. Depending
on the engineering company but also depending on their projects, these processes showed
different variations in their tasks and sequence flows.

In this section, first, the traditional approach of a particular industry partner is introduced.
Afterwards, the newly implemented RTE process is described and prepared for the
development of the thesis’s approach and the reply to the research issues. In this way,
the variations in the process can be exploited to develop parts of the solution’s methods.

5.2.1 Traditional engineering approach

The industry partner is an engineering company that operates in the field of hydropower
plant planning and construction. The engineering process of the company follows a
waterfall model with slight adaptations, taking customer change requests into account
and feeding back information from the construction site of the plant. A waterfall model
follows a relatively sequential order of steps to design and implement a system. Usually,
a requirements phase is followed by a design, implementation and commissioning stage,
which is then followed by the operation and maintenance phase. A drawback of the
waterfall model is the often missing feedback loop. The lack of feedback means changes
that are necessary after the requirements phase or issues found in the commissioning
phase are difficult to implement due to re-planning chain and thus very costly.

A typical project, planned by this company, starts with a requirements phase where the
engineering company gathers the needs of their customer towards the hydro power plant.
Then, in a first engineering phase, the general structure, like buildings and floors, of
the power plant is planned and placeholders for units, like turbines and generators, are
placed. These plans also represent the topology of the project which uses the strictly
structured ‘Kraftwerk-Kennzeichensystem (KKS)’ [70]. According to the KKS structure
mechanical engineers in their engineering tools place and configure the before mentioned
units.

45

5. Use Case

The relevant data is then exported to Excel sheets, which are used by electrical engineers
to build up the electrical plans in their tools. However, as the export to Excel loses the
structural information and encodes the KKS data in a field, the KKS data needs to be
decoded by the electrical engineer from the export. Once again, from these tools, the
data is exported to Excel sheets and sent to the customer for inspection and approval. If
adaptations are needed, the customer changes the values in the Excel sheets and sends
them back to the engineering company. One of the engineers then has to painstakingly
examine the sheets for change requests and transfer them to the respective tools by
importing parts of the sheets into the tools. In this process, the engineering has to take
care, which the customer did not change data that is excepted from adaptations. It needs
not to be mentioned that this process is highly error-prone and generates high efforts,
but also makes changes between disciplines hard to trace.

To make the situation worse, engineers need to travel to the constructions sites on a
regular basis to observe and monitor the construction progress. If something in the facility
changes on the construction site, the plans need to be readjusted there offline. As most
of the time the engineers on the construction site are not connected with their computers
to the engineering company systems, the changes introduced need to be integrated into
the plans at the company, after the engineers return.

5.2.2 Round-trip Engineering with the AML.hub
From the prior description, it can unquestionably be understood, that the engineering
processes and the data exchange policies of the partnering engineering company would
benefit from re-engineering and the implementation of an integrated tool application. In
a project, the CDL-Flex proposed several improvements to lead the company towards an
integrated tool environment and developed a customized solution.

As basic tool integration platform the AML.hub, presented in Section 2.1, was used.
The AML.hub, as mentioned before, is based on the Open Engineering Service Bus
(OESB) and allows components and services to be loaded during runtime, which makes
it very flexible as a re-configuration can be done at any point. Software components or
services in the OESB are implemented as OSGi (OSGi) bundles. OSGi bundles are Java
packages with an explicitly specified life cycle, that can be dynamically loaded into an
OSGi environment. The services in the OESB always conform to a specific interface,
which allows exchanging a service for other services even during the runtime of the
integrated too application. To support this concept, Maven1 which is a build automation
and software project management tool, is used. Maven, besides other features, has the
capability of resolving necessary dependencies during build time and configuring the
components according to a setting that is read from an external file.

An essential component of the AML.hub is the unified repository - the Engineering
Database (see also Figure 2.2), that holds and revisions the data of the engineering tools
with the help of AutomationML (AML) models. The AML models as well as other

1Maven Build Tool – https://maven.apache.org/

46

https://maven.apache.org/

5.2. Round-trip Engineering in Practice

models can be registered in the AML.hub and are realized with the Eclipse Modeling
Framework (EMF)2. The EMF allows to specify models in a structured format named
XML Metadata Interchange (XMI) and, furthermore, provides sophisticated tools to
create and manipulate these models.

For the project, an integrated data model for hydropower plant engineering was developed
in AML and implemented in EMF , which included the domain knowledge of the involved
engineering disciplines. This data model included the shared concepts of the engineering
disciplines in a unified perspective, but also provided discipline-specific views on the data.
For example, in the common perspective an engineering unit has the KKS number and a
description as attributes, while the electrical view on the integrated model, additionally
contains the component number that indicates the location in the control cabinet.

Since the engineering tools used by the company did not provide interfaces that could be
utilized to connect them to the AML.hub directly, their proprietary export formats and
functions had to be exploited. The export functions that were insignificantly configurable
within the tools generated Comma Separated Value (CSV) files that contained the tool
data of the specific engineering project. To process these CSV files in the AML.hub a
couple of software components were needed. First, a further model, that represented the
CSV format was defined and realized as simple table model in EMF . This table model
maps every cell in a CSV file to a cell in the table model. Second, a transformation
engine was implemented, that was capable of transforming values of one model to the
values of another model. Finally, several user interface components were needed, to let
the users interact with the integrated tool application. The AML.hub, therefore, provides
a framework, that enables the dynamic inclusion of web user interface components. With
the support of this framework, a visual editor called Transformation Editor was created,
that provided the means to define and test transformation rules and save those rules as
transformers. These transformers are interpreted by the transformation engine to map
between the models.s Furthermore, a component for the import of the tool data into
the AML.hub and another component for the export of the discipline-specific data view
to a tool import format was implemented. Additional user interface components that
provided further features, like management capabilities as the project progress evaluation,
were designed to support the employees of the engineering company.

Before it is possible to implement the RTE workflow in the integrated tool application, it
needs to be investigated on an abstract level and break up into its central activities. From
Figure 5.1 reveals, that RTE consists of certain activities that recur for each engineering
discipline. One of these activities is the import of the engineering tool data into the
AML.hub. The other activity is the export of the data views from the AML.hub to the
engineering tools. While the export process is simple, because the data just needs to be
transformed into the discipline-specific export format and then downloaded, the import
of the data into the integrated tool application is more complicated. The next section,
therefore, describes the import process (indicated by steps 1, 3, 5 & 7 in Figure 5.1) in
detail.

2Eclipse Modeling Framework – https://projects.eclipse.org/projects/modeling.emf

47

https://projects.eclipse.org/projects/modeling.emf

5. Use Case

5.3 Signal Change Management Process

From the explanation of RTE in theory and practice in the previous two sections, it
becomes clear, that several software components and a detailed process is needed, to
support engineers in committing their data to the integrated tool application.

Recognize
model

X X
Check
AML

quality
X Compare

AML

Check
Table

quality

Select
changes

Checkin file Checkin
AML

Check
AML

consistency

Merge
AML

changes

Check
AML

compliance

X

Notify
users

no

yes yes

no

Model known? is AML?

Figure 5.2: Signal change management process (based on [74])

Such a structured process for ‘checking in’ data to the integrated engineering application,
was identified as Signal Change Management Process (SCMP) and explained by Winkler
et al. [74]. Signals, in this case, are single planning units such as sensors or valves that
are planned into the production system. Figure 5.2 displays a slightly adapted process,
that was used in the use case of the engineering company described in the prior chapter
as leading process.

The process consists of the following steps. The user checks in a CSV file from the
supported engineering tools. The Recognize model task, calls a service that tries to
identify whether the file checked in is one of the known file formats. This task can either
be done by a service that interprets the file ending of the file or service that peeks into
the file and guessed the format with the help of the file header.

48

5.3. Signal Change Management Process

Transform
CSV

to EPL

Assure
EPL

quality

Transform
EPL to
AML

Transform
AML

to EPL

Select
EPL

changes

Transform
EPL to
AML

(a)

(b)

Figure 5.3: Quality assurance and signal selection subsprocess for EPL tool

If the service identifies no model at all, the Checkin file task checks in the file into the
repository, as it is assumed that the file is an artifact, which does not have a model
representation such an electrical plan in a PDF file format. If the service identifies a
model, it depends on the model type which action comes next. If the file is already a
AML file a service checks the quality of the file in the Check AML quality step. This
means that, for example, the consistency of the KKS numbers is checked as this number
should be unique in the production system to be planned.

In contrast to the activities before, this activity does not call a service directly, but a
sub-process that was defined elsewhere instead. While direct calls to software components
are depicted in grey, sub-process calls in Figure 5.2 are represented in a blue color. In
case a table model is detected, similar to the AML quality check, the table is checked for
its quality in the Check Table quality activity. However, the called sub-process differs
in two things. First, depending on the engineering tools used in the project another set
of quality checks is used and second, also depending on the kind of table models two
different sub-processes are used. This is because data from OPM, in contrast to EPL,
needs to be enriched before it can be translated to the internally used AML model. The
quality assurance sub-processes for each tool and their activities can be seen in Figure 5.3
(a), respectively Figure 5.4 (a).

After these steps were performed, in the Compare AML step the resulting AML data is
compared to the version in the Engineering Database for changes. In the Select changes
step, depending on the model that is checked in, different sub-processes can be called.
In principle, the sub-process does the following. If changes, like additional, deleted or
modified signals are present in the checked in data, they are either run through a service,
that selects the signals that are later committed to the database or displays the changes
in a user interface for a manual selection by an engineer. However, before the changes
can be displayed, they might need to be transformed so that they make sense to the
engineer. The sub-processes for the EPL and OPM tool can be seen in Figure 5.3 (b)
and Figure 5.4 (b).

The next remaining steps stay the same for all model and consist of several further quality

49

5. Use Case

checks, an action that merges the changed data into the existing data and commits these
changes to the Engineering Database. At the end of the process, the relevant users are
notified of the changes in the project. Although the steps in this process stay the same,
except for the sub-process calls, different services can be used from project to project for
the single steps. Also, it is also possible that the sequence flow itself changes, but this
example does not cover that case.

Transform
CSV to
OPM

Assure
OPM

quality
Enrich
OPM

Transform
OPM to

AML

Transform
AML to

OPM

Reduce
OPM

Select
OPM

changes
Enrich
OPM

Transform
OPM to

AML

(a)

(b)

Figure 5.4: Quality assurance and signal selection sub-process for OPM tool

For the thesis, this SCMP will be taken as the lead process, which means it will be used
to create different process variations and link the activities of these variations to variants
of software components.

5.4 Signal Change Management Process Customizations

The last section described the SCMP, which allows committing the discipline-specific tool
data into the integrated tool application, in detail with its different possible sub-processes.
This section explains the CCP for this specific process and the tasks that need to be
performed to generate a valid process which is linked to the software services that a
particular customer requires. It is assumed here, that the processes used are formally
modeled in a process notation and that a pretty similar model of the process was already
created beforehand or is reused from another customization project.

First, the application integrator selects the process model and copies it to the workspace
which he uses for this customization project. For the use case described, he would
select and copy the model of the SCMP that is depicted in Figure 5.1. Afterwards, the
integrator needs to adapt the control flows and add or delete activities of this main
process to meet the customer requirements. This practice is called clone-and-own [23] as
the relevant artifacts are first copied from another project and then owned by the new
project.

50

5.5. Summary

Second, the integrator investigates all remaining call activities in the main process and
checks which sub-processes are called from these activities. He then needs to search
where the models of these sub-processes are located. These models can, for example,
be located directly in the process modeling software on his computer, but also in a
distributed storage on of company doing the customization. When the models are found,
the integrator copies the sub-process models into his workspace. Regarding the use case,
the sub-processes of the three call activities Check AML quality, Check Table quality and
Select changes would be effected.

However, as the sub-process models come from another project, they are present in a
configuration that conforms to the requirements of another customer. This means there
might be parts of the desired process missing or several, in principle separated activities,
are merged into a combined sub-process. The integrator now, in a manual third step
needs to either combine the selected sub-processes with additional sub-processes, relevant
for the new customer, or he has to cut out parts of the available process.

The fourth step of the integrator is now to go through all tasks of the adapted main
process as well as the adapted sub-processes and investigate which service fits the specific
task. Therefore, he either has to have the available services, that support a task in
the process, in mind or he accesses some documentation database within the company,
that describes the available software services and how they match different tasks and
requirements. A particular extensive task is to go through the different available services
and choose the one that fits the requirements of the customer best.

The next customization activity the integrator performs is the time-consuming work
to resolve the dependencies and constraints of the services that are planned for the
processes. For example, Service X might require another software component here called
Component A to work correctly. However, Service Y which the integrator intends to
use for a specific task, might not be compatible with Component A and should thus
not be used in the customized application. A solution might, for instance, be to use
Component B instead, which is compatible with Service X and Service Y. To perform
such a dependency resolution requires a deep insight into the platform and their services
and is hardly possible without proper tool support.

Finally, the revised processes and the corresponding services that are compatible amongst
each other need to be wired together. Therefore, the application integrator configures
each task in the process and assigns a specific service call to the task.

From the description above it becomes even more evident, that the customization of the
processes and their mapping to relevant services is done in time-consuming work, done
by expert users.

5.5 Summary
To summarize, this chapter introduced RTE , which is a common practice in PSE , in
Section 5.1. RTE describes a sequence of activities that should be considered in artifact

51

5. Use Case

exchange to foster an improved planning process in the industry. The approach has even
more impact if a standard exchange format is used among the engineering disciplines
which can, for example, be achieved with AML.

The second section, explains how engineering is done by an industry partner of the
CDL-Flex and the steps that were taken to support RTE with a customized integrated
tool application based on the AML.hub. This use case and the customized solution will
be used to investigate possible solution approaches for the selection and mapping of
process variants to software component variants.

Section 5.3, presented a lead process, that was found by the investigation of several
industrial partners and explained in Winkler et al. [74]. The section then detailed on a
specific variant of the process, that was utilized for an industry partner.

Finally, Section 5.4 described how the CCP for a specific process, like the one introduced
in this chapter, looks like and discloses the issues that lead to the amount of effort that
needs to be investigated in the process. From the description follows that the complexity
of the CCP grows massively with the number of available software service candidates for
a task and their dependencies and constraints amongst each other.

52

CHAPTER 6
Solution Approach

The previous chapter discussed round-trip engineering (RTE) a best practice approach
regarding the utilization of standardized exchange formats or integrated tool applications
to support the planning process in production systems engineering (PSE). Furthermore,
the chapter showed how industrial partners currently apply planning processes and
explained how RTE can be implemented in engineering companies using the Engineering
Service Bus (EngSB) approach, which enables a seamless tool integration by adopting
concepts of the Enterprise Service Bus (ESB). However, for a successful implementation
the EngSB requires tailoring to the specific engineering company’s needs and especially
the customization and configuration of the engineering processes. Therefore, in the last
section of Chapter 5 the signal change management process as a real-world example was
introduced, and some of its variabilities examined. It is an important part of RTE and
was investigated by Winkler et al. [74] in detail.

Customization & Configuration Process1

. . .

Process Selection & Configuration
. . .

Selection Linking Mapping Configuration
2a 2b

Process
Variability

Model

Platform
Variability

Model3a 3b

Figure 6.1: Contributions to the solution approach

53

6. Solution Approach

This chapter proposes a solution approach, to the tedious and error-prone process of
engineering process selection as well as the mapping of the process activities to software
services, which are called during the execution of the engineering process within the
integrated tool application during runtime. Figure 6.1 shows the single contributions of
the sections to the overall solution application and how they are related to each other.
The structure of the chapter follows the structure of the figure and, as the contributions
build on each other, are presented from bottom to top.
First, Section 6.1.2 discusses how variability can be modeled in engineering processes
to cover the different variations of engineering processes that engineering companies
experience (contribution 3a in the figure). Section 6.2 after that, picks up the contribution
from the section before and defines how engineering process variants depending on each
other can be effectively selected during the Customization and Configuration Process
(CCP) to create valid processes. This contribution is indicated with 2a in Figure 6.1.
Third, Section 6.3 (see 3b in the figure) characterizes how the variability of software
services in tool integration platforms, using the EngSB approach, is represented in a
model that can be utilized in the next step. Section 6.4, marked by 2b in the figure,
then proposes a method to map the engineering process variants resulting from the
selection of software service variants that are represented by the platform variability
model. Finally, in Section 6.5 – see 1 in Figure 6.1 – the contributions from the prior
sections are summarized, and their impact on the CCP is explained when they are put
together in a process with proper tool support, which helps to automate central parts of
the otherwise manual work.

6.1 Process Variability Model
Besides the possibility to integrate engineering tools via standardized procedures, a
valuable feature of an integrated tool application is the visualization and formalization of
engineering processes, which are often implicitly utilized by engineering companies. This
visualization often also leads to the application of more efficient engineering processes
in the companies. Primarily, there are two ways of including engineering processes,
found in the requirements phase of the CCP, into the integrated tool application. Either
an engineering process resembles another process, that was already used in another
customization project, or the specific process needs to be designed and implemented
for the customer. In the latter case, the resulting process might also be reused in other
projects, which have very similar processes. However, it is likely that the processes differ
in specific points, which results in different variations of the basic process. This technique
is called clone-and-own as mentioned in the description of the use case in Chapter 5.
One issue with this approach is that it results in various process variants that are each
included in a single project but do not build a structured catalog of independently
reusable processes. To make the step of engineering process selection and adaptation in
the CCP more efficient and allow the efficient reuse of processes, a format that enables
variants of engineering processes to be described, needs to be developed, which then
builds a catalog of possible process instances.

54

6.1. Process Variability Model

This section aims to develop a very simple process variability model, which helps to
quickly select specific process variants while being flexible enough to restructure the
process if necessary. First, the methods and models for business process modeling from
the related work are recapped and evaluated, to select an approach that seems most
reasonable for the use case. Second, the types of variability that occur in processes and
that are covered by the proposed solution approach are explained. Finally, a simple
variability model for processes is defined, that supports a semi-automated selection of
processes and their sub-processes.

This section contributes to defining variability on a process level, which is needed for the
improvement of the CCP. The contribution to the big picture of the solution approach is
indicated as 3a in Figure 1.1.

6.1.1 Process Modeling Method

In Section 2.2 different methods and models of business process modeling were discussed
with their advantages and limitations. In the following paragraph, those approaches will
be investigated considering their suitability for the expression of engineering processes and
their integration to the AutomationML Hub (AML.hub) that is used as tool integration
platform.

The principles of Petri nets, the first method described in the related work, are easy to
understand due to their simple logic and their limited concepts, yet Petri nets remain
very expressive. However, even small Petri nets and their logical flows can be hard to
comprehend and tend to dramatically grow in complexity when bigger problems are
modeled with this method. This lack of understandability and the poor integration
possibilities into existing software are a downside for the utilization of Petri nets in
engineering projects.

The other three approaches presented in Section 2.2 provide symbols that work on higher
semantic levels than the ones of Petri nets. For example, Event-driven Process Chains
(EPCs) allow logic connector like OR and XOR and Activity diagrams allow forks, joins
and decision nodes. Therefore, they are easier to understand and can better picture
complex processes. From the possibilities to model the most relevant workflow patterns
[69], EPCs, Activity diagrams and Business Process Model and Notation (BPMN) are
equally expressive [73, 37]. Modeling tools such as the Camunda Modeler mentioned
before, which allow users to design and specify models in one of the technologies in closer
consideration, are publicly available.

However, as EPCs do not have a standardized exchange format and no runtime tools,
that are openly available, it would be hard to integrate this approach into the AML.hub
as tool integration platform. Activity diagrams, with Unified Modeling Language (UML),
provide a standardized exchange format and can also be executed with special frameworks
as noted in Section 2.2. With the partially open-source workflow engine Camunda that
can also be run in an OSGi (OSGi) container, BPMN provides the best integration
possibilities compared to the other technologies.

55

6. Solution Approach

BPMN , at a closer look, provides several other advantages. In the description of the use
case in Chapter 5, it was mentioned that, depending on the project, different software
components could be used for a specific activity in the engineering process. The selection
of the changes that are committed to the Engineering Database can, for example, either
be performed manually by an engineer or automatically by a service, that has a rule set
defining the selection criteria. In BPMN it can be defined which type an activity has. In
this case, it would be possible to define a task as human task, to permits links to software
components that provide a user interface. Furthermore, Petritsch [54] already sketched
some processes, that describe parts of the change management process mentioned in
Section 5.3. Because of these advantages, BPMN was selected as technology to define
the engineering processes and based on the model that allows describing the variability
of the processes.

6.1.2 Types of Engineering Process Variability

The last section reasoned why BPMN is used in the solution approach to model variability
in engineering processes. However, before the variability of the engineering processes
can be modeled explicitly for specific processes, the types in which BPMN processes
themselves can vary need to be identified, which is done in this section. Before the
variability mechanisms are described in the next paragraphs, the semantics of BPMN
from Section 6.1.2 are recalled shortly for a better understanding. In BPMN , three
different types of activities exist in a process. Tasks are atomic activities and execute a
specific behavior, sub-processes are self-contained processes, and call activities allow the
calling of re-usable tasks as well as sub-processes [44].

In Schnieders [62] and Schnieders and Puhlmann [63] the authors describe several variabil-
ity mechanisms that frequently occur in business processes and outline approaches how
these mechanisms can be implemented using the concepts of object-oriented programming
in Java. The approaches are not applied directly in this work, as the engineering processes
should be designed as models in a formal notation instead of program source code. The
most relevant variability mechanisms presented by the authors and adapted in this work
are a) encapsulation of varying sub-processes and b) addition, replacement, and omission
of single elements.

The encapsulation of varying sub-processes is described in the context of the use case in
Section 5.3 where, for instance, the Check AML quality activity can call a sub-process that
might vary in a customization. For the Select changes activity even several sub-processes
exist that might need to be combined to a single sub-process to be correctly called from
the main process.

The addition, replacement, and omission of single elements needs to be differentiated for
this work. The omission of single elements in regards to the thesis are interpreted as the
addition of individual tasks, call activities or control flow elements in the main process
or a sub-process. In the example, this means, that a certain task or branch, such as the
Checkin file branch in Figure 5.3 is omitted. Addition of single elements is very similar to

56

6.1. Process Variability Model

the described omission. It means that an additional activity is introduced in the process.
However, this task should then be considered for all upcoming customizations in the
first place and, if not needed in a customization, omitted during the CCP. In both cases,
the application integrator needs to take care, that the output models of the activity
performed first corresponds to the input model of the activity performed later and, that
those necessary parameters are forwarded to the next activity. The replacement of single
elements is understood, in the context of this thesis, as the replacement of a software
service, that is called in a process task, with an alternative software service from the
available modules. Considering the use case, this would mean that, for instance, the
comparison of the data in the Compare AML activity could be executed by two different
services and that one particular of them, is selected during the customization.

To summarize, the variability mechanisms considered for the process variability model are
a) process variability, in terms of varying tasks and sub-processes called from a BPMN
call activity (see also Figure 2.7) and b) a varying sequence of process activities as well
as their addition or omission, and furthermore c) the service variability, which is realized
by the call of different software service variants in process tasks.

6.1.3 Variability Model for BPMN Processes

Considering the types of variability identified in the prior section, this section aims at the
definition of a variability model for BPMN process models. Each of the next paragraphs
is related to one variability mechanism and explains the solution approach to model
variability within this type. To support the assignment of BPMN elements to activities
in a later phase, then the initial modeling phase, the BPMN model needs to be enriched
in a way that enables the allocation of the right elements. In the use case, for example,
the sub-processes which can be used for the Select changes call activity must later be
found automatically by a configuration software. Therefore, concepts of BPMN for the
specific elements are exploited to perform the enrichment. The definition of the variability
models should consider that these models need to support the following two tasks in
the CCP. First, the selection of processes and sub-processes as described in Section 6.2
and second, the mapping of specific process activities to software service instances as
described in Section 6.4.

1 <bpmn:callActivity id="1" name="Select changes"
2 calledElement="SelectChanges"/>

Listing 6.1: calledElement in a callActivity

The first variability mechanism of process variability covers call activities. In BPMN a call
activity has an attribute calledElement which should reference a CallableElement,
which is the abstract super class of all BPMN activities. Listing 6.1 shows the usage
in a BPMN snippet for the before mentioned Select changes call activity. To enable
sub-processes to be related to the call activity it is defined, that the calledElement
attribute contains a template prefix which is used to retrieve corresponding processes.

57

6. Solution Approach

For example the calledElement attribute in the activity Select changes is prefixed
and results in template:SelectChanges. The relevant processes for this call activity
are then located by definition in a folder named SelectChanges-Templates.

The changing sequence of activities in the variability model and the addition or omission of
activities is only considered insofar, that it is assumed for this thesis that these operations
can be performed as long as the output and input models of two sequential activities are
compatible. This is somehow a limitation that will be discussed in Section 6.2 and is
subject to future work.

1 <bpmn:serviceTask id="2" name="Compare AML"
2 operationRef="AMLComparison">

Listing 6.2: operationRef in a serviceTask

The variability mechanism of process variability covers task elements in BPMN models.
Section 2.2 remarks that task can have different task types, which are depicted in
Figure 2.7. These task types can, following the BPMN semantics, be separated into three
distinct groups. User tasks, manual tasks and business rule tasks are not connected to
any automated component in a workflow engine. So, in this case, the implementation of
the specific workflow engine has to decide how to handle those tasks. Usually, workflow
engines provide components like web user interfaces that allow confirming the completion
of such tasks of proceeding further with the process. For business rule tasks workflow
engines often provide implementations that allow a ruleset to be defined, that is fired
on the input parameters and then decides about the outcome of the task. Script tasks
simply refer the inputs to external scripts, that handle these variables and according to
the flow in the script. Service tasks and message tasks are in the main focus of this work.
BPMN defines an attribute operationRef for these tasks, that reference a BPMN
Operation. Such an Operation can be utilized in an interface that is implemented
by a particular service. Listing 6.2 shows the attribute used for a service task. It is
defined for the thesis that the value of the operationRef attribute is prefixed with an
abstract keyword, to reference service implementations in a task. In case of the service
task from Listing 6.2, the attribute value would be abstract:AMLComparison and
the service implementations need to have a mapping according to this attribute value.

Using the use case from Chapter 5, the variability model will be explained for better
comprehensibility. The Signal Change Management Process (SCMP), shown in Figure 5.2,
is first modeled with its activities with the help of a BPMN tool. Next, the sub-process
variants that can be called in call activities are modeled in the same tool as isolated
processes. Isolated in this context means, that each variant is defined in its model.
For example, for the EPL and the OPM engineering tool, mentioned in the use case
description, each variant of the sub-process is created in a different model instead of
already combining them. Afterwards, the following enrichments are performed in the
notations XML format. First, the calledElement attributes of the call activities in
the main process model are set to a value that holds a unique name in the model and is

58

6.2. Engineering Process Selection

prefixed with a template prefix. Second, the operationRef attributes of the single
tasks, in a further step, are also assigned with a unique name in the model but in this
case, prefixed with a abstract string. Finally, in both cases, the possible variants
that can be selected for the, at the moment placeholder variables, must be resolved and
exchanged with the concrete value at a later point.

To summarize, two specific variability mechanisms are achieved by the exploitation and
enrichment of the activity attributes defined in BPMN . In case of call activities, the
calledElement attribute is utilized and prefixed with a template string to search
all applicable sub-processes. In case of service and message tasks, the operationRef
attribute is enriched with an abstract keyword to find corresponding service imple-
mentations later in the customization process. These definitions together build a very
basic variability model for BPMN processes that are used to describe the engineering
processes of companies in the domain of PSE . This variability model will contribute to
the selection process of the CCP explained in the next section.

6.2 Engineering Process Selection
In Section 5.3 it was mentioned that during the course of the Customization and Con-
figuration Process (CCP), engineering processes are often selected and defined with an
approach called clone-and-own. This approach results in various engineering process
variants that are scattered over different projects. This dispersal of variants not only
prevents the maintenance and improvement of several processes in a single step but also
makes it harder to keep track of the different existing variants. However, the engineering
processes can often be broken apart into smaller independent processes, which encapsulate
a certain functionality and can effectively be reused in other processes of a higher order.
Together these processes then build a variant catalog that can be used during the CCP.
As call activities only support a single process to be called, the independent sub-processes
need to be combined and enhanced with, for instance, additional sequence flows, to form
a joint coordinated process.

The previous section contributed a variability convention for Business Process Model
and Notation (BPMN) processes that allows the definition of process and sub-process
templates and their dependency amongst each other. However, application integrators
performing CCP to modify a tool integration platform for a specific customer, need
support for the efficient selection of the engineering process templates and their sub-
process templates to be able to use the full capacity of such a process catalog. In this
section, the selection process, implemented in a software prototype that is introduced in
Section 7.2, is explained in detail. Therefore, it is assumed that a process catalog with
variants of engineering process templates and their sub-processes already exists or at
least, that the sub-processes are defined in independent models.

As a first step of the ‘engineering process selection’, the application integrator selects a
template of the main process, for example, a model of the Signal Change Management
Process (SCMP), from the catalog. This catalog can either be stored in a distributed file

59

6. Solution Approach

system or in, a more sophisticated tooling environment, in some sort of repository that
allows the search and resolution of ‘artifact addresses’.

After this step, the selected process template is parsed for call activities and their
calledElement attribute. Within this attribute, the template prefix is stripped
away to read the unique name or an address where the templates of matching sub-
processes are located. The selection tool then resolves the location of the sub-process
templates and presents the sub-process variants to the application integrator. From these
sub-processes, the integrator selects the ones, which are needed to fulfill the requirements
of the engineering process. For instance, based on the use case from Section 5.3 the
integrator can identify the need for a process, that allows checking the quality of data
from the EPL and the OPM engineering tool. When the CCP support tool parses the
main process, it would ask the integrator which sub-process templates should be used.
From the different variants, he chooses the ones that cover the customer’s requirements
best. For example, he would select the relevant sub-process templates for EPL and OPM
quality checks which are subsequently processed by the support tool.

In a next step the sub-processes, chosen in the prior action, need to be merged to a
combined sub-process in a BPMN modeling tool. This step has to be done manually
by the integrator at the moment, which is a limitation of the current solution approach
and subject to future research. As an example, the involved sub-processes, like the ones
shown in Figure 5.3 - (a) and Figure 5.4 - (b) need to be merged to share a common
start and end event. Therefore, the engineer selects the proposed sub-process templates
and the support tool copies them to a place were the modeling tool can access them so
that the integrator can combine them.

Finally, the tool saves the combined process and assigns a name that is then written into
the calledElement attribute of the main process. The name is resolved at runtime by
the workflow engine to call the specific sub-process. The prepared main process and the
combined sub-processes are then used in the mapping step to link them with the service
variants that the tool integration platform provides.

Together with the contribution from the prior section, the introduced concepts allow the
creation and effective selection of engineering process variants for the CCP in BPMN .
With tool support, the approach can be further automated to assist the application
engineer during the customization better. The next sections describe a platform variability
model and a mapping approach that enable the application engineer to map the chosen
engineering processes to specific software service variants.

6.3 Platform Variability Model

The last two sections introduced concepts that allow creating different variants of engineer-
ing processes in BPMN to build a catalog of predefined processes for the customization of
tool integration platforms to integrated tool applications according to the needs of specific
engineering companies. Furthermore, the sections proposed a solution to effectively select

60

6.3. Platform Variability Model

and configure the process variants to later include them in the integrated tool application.
To create processes that can be executed by a workflow engine, the activities in the
processes need to be configured to call certain software services. As different services can
be used in an activity to fulfill the task, it is needed that the service variants matching an
activity are acutely identified and can be located by the engineer during the CCP. This
section describes how a variability model of the service variants, that are implemented in
the tool integration platform and its corresponding modules, can be defined.

6.3.1 Service Variability Modeling Method

In Section 2.3 two approaches were presented that allow the modeling of variability in
software. The following paragraphs recap the approaches and examine which of them
fits most, to represent the variability in a tool integration platform like the Engineering
Service Bus (EngSB).

Feature Modeling (FM) models the commonalities and variabilities of a specific domain as
features, in which a domain is defined as current and future applications and a feature as
a user-visible aspect of the domain [34]. For example, a feature can be the audio format
a cellphone can understand, but can also be a software service that allows writing an
email. Based on this concept several works developed different, but very similar kinds, of
FM . Features in such a model can be mandatory, which means they need to be included
in a specific entity of an application, or optional, which means they can be omitted.
Furthermore, the features can exclude each other in the final application or they can
run in parallel. Finally, features can also depend on other features, which means if, for
example, feature B is needed in an application feature A which feature B depends on
also needs to be included. Feature models have a graphical notation that is shown for
an example in 2.8 and can be translated to a formal notation. The FeatureIDE [36] is a
tool framework which allows users to create feature models and generate parts of the
source code for further implementation. Additionally, the FeatureIDE enables a user to
generate a configuration for a specific variant of the model and to afterward validate this
configuration according to the constraints in the model.

Decision Modeling (DM) was introduced by McCabe et al. [39] in the Synthesis approach.
The approach also aims at understanding the commonalities and variabilities of application
domains, but in contrast to feature modeling, concentrates on the variations of the
underlying domain [18] and builds entity configurations by answering the questions that
are left open because of variations. Similar to FM , DM defines alternatives that can
be chosen and which or how many of the alternatives can be selected. However, DM
leaves out the parts that are mandatory in an application and, therefore, are similar to
all application entities. The decisions from the model, that, for example, an application
engineer has to make are extracted from the domain as questions and prepared for the
user. The DOPLER meta-tool [19] is a framework for DM based on the DoplerVML, a
modeling language that allows modeling the decision space and the solution space of a
domain to link the decisions with the software artifacts.

61

6. Solution Approach

Compared to each other, the two approaches are very similar in what they can achieve
for modeling variability in software systems. However, FM provides some advantages
considering the use case described in Chapter 5 and the existing implementations of the
EngSB.

The software artifacts of the platform build a sharp hierarchy, which seems more natural
to model in FM , as the concept of hierarchy is built into FM due to the tree-like
organization of features [18]. In contrast to DM it also seems more feasible to the author,
to extract the features for the feature model using, for example, software component
names from the underlying software platform than to extract questions about what
has to be fulfilled to produce a particular application variant. Furthermore, as already
several implementations of the tool application platform exist, the author from the own
experience of customizing such platforms, believes that it is essential for the application
engineer also to reveal the commonalities of the platform. Especially in consideration of
the adaptation of the model when new components and services are implemented, that
need to be reflected by the model. As the EngSB projects Open Engineering Service
Bus (OESB) and AutomationML Hub (AML.hub) are build with the software build tool
Maven it is more likely that a semi-automated generation of the feature model, based
on the dependencies between the components, is successful. Such a semi-automated
approach is in the focus of future work. Finally, the existence of the FeatureIDE as open
source tool to generate feature models and their configuration is a significant benefit in
comparison to the DOPLER meta-tool, which is of limited availability for the public.

6.3.2 Variability in EngSB implementations

In the last section, the use of FM for the variability model of EngSB implementations was
motivated. This section explains how variability is modeled in practice for the existing
implementations of the EngSB, to support the proposed approach of mapping engineering
process variants to software service variants. Accordingly, the AML.hub is used as a
general example for the existing implementations of the EngSB. To recall, the AML.hub
is a specific implementation of the EngSB approach that uses the industrial exchange
format AutomationML (AML) as a central data model for the engineering domain.

As mentioned before, in Kang et al. [34] features were defined as user-visible aspects of
an application domain. Czarnecki et al. [18] found that this definition was more and
more softened up over time, to a broader concept that regards to properties of different
types in a software system. For this thesis, the broader term of a feature is adopted and
adjusted for the application of tool integration platforms based on the EngSB approach.
Therefore, the term feature is as a result of this defined as:

A self-contained software component or software service providing functionality
which adds significant additional value to the execution of a specific engineering
task and is specified by a strict interface definition to other services.

62

6.3. Platform Variability Model

Using this definition, a feature is not limited to components that are directly visible to
the user but also includes features like models of engineering tool data or services that
run in the background of the platform like REST services.

Section 2.1 mentioned, that the AML.hub uses OSGi (OSGi) as technology to achieve
a high level of modularization. The implemented software services and components of
the tool integration platform are deployed and run in the OSGi container Apache Karaf.
These services can be installed, started, stopped and even updated during runtime, which
makes the approach very flexible and comparable to a microservice architecture. Apache
Karaf, furthermore, provides a sophisticated communication and modularization concept,
which allows several instances of the container to be run in parallel and to discover and
call services across container borders.

In OSGi it is common practice to separate the definition of services from their implemen-
tations, using abstraction via interfaces, and deploy them independently. Interfaces, in
software engineering, describes the abstract operations of an entity as ‘method signature’
without containing data or executable code. This concept is mainly used to abstract
the function of software from the implementation. Consequently, the realization of an
interface is called implementation. This means in OSGi, that an interface of a service is
defined and realized, for example, as Java interface, see Listing 6.3 - line 1, and compiled
to an OSGi bundle. An OSGi bundle is a JAVA archive (JAR) with additional metadata
that provide a symbolic name to discover the bundle and the exported interfaces, but
also the requirements it has towards other bundles. A JAR itself is a ZIP archive which
includes the compiled program files and a META-INF/MANIFEST.MF file that contains
at least the Java version and the name of the main entry method, if it exists. At runtime,
the interface bundle is then deployed to the container so that it can be discovered by the
system components.

1 interface X { int returnAbsolutZero(); }
2
3 class Y implements X { int returnAbsolutZero() { return -273; } }
4
5 class Z {
6 private X x;
7 public Z() {
8 x = serviceLocator.getService(X.class, "filter:ranking=1");
9 }

10 public void doSomething() { x.returnAbsolutZero(); }
11 }

Listing 6.3: Interface, service provider and service consumer in OSGi

Software bundles that provide services implement a specific interface and its methods and
export an interface reference. Additionally, service provider bundles can export several
service properties, which make them discoverable and filterable within the container.
Listing 6.3 shows such a simple service implementation in line 3. For example, a service

63

6. Solution Approach

Y exports an interface X and provides an attribute ranking with value 1. Services that
implement the interface can then be discovered by its interface class, and the resulting
list can be narrowed down with a filter, for instance, ranking=1.

Service consumers, in their program code, use the interface reference to call certain
functions of a service provider implementation. In lines 5 - 11, Listing 6.3 shows class
Z which consumes the service method returnAbsolutZero solely via the interface
definition. At runtime, the service consumers then find the service implementations in
the OSGi container by their interface class and the mentioned optional filters, which can
be seen in line 8 of the listing. The advantage of this code is that the implementation of
the service can be easily exchanged without changing any of the code.

So the most common way variability is realized in the AML.hub is via the concept of
abstraction and inheritance using interfaces and their implementations. Another way is
the dynamic parametrization of the software components. As mentioned OSGi allows the
reconfiguration of bundles during runtime. Apache Karaf, therefore, provide functionality
to change the attributes of services via a console interface and also a web interface. The
initial values of the service attributes are defined at the compile time of the software
bundle. This thesis focuses on the first variability mechanism to build a feature model of
the platform services and modules that can be used during customization.

6.3.3 Feature Model for EngSB implementations

In the last section the meaning of the term feature, in the context of this thesis, was
defined as a software component that provides additional value to the execution of a task.
Furthermore, the interface design pattern, as it is used in OSGi to separate different
service implementations and how it is used in EngSB, was explained. Picking up these
concepts, this section describes how feature models for EngSB implementations can be
built. To underpin the description, the example use case from Section 5.3 and specially
the signal change management process depicted in Figure 5.2 is used.

In the further course, the feature model is constructed from the tool integration platform
as described in the following paragraphs. Therefore, Figure 6.2 will be used to explain
the assumptions and construction rules for the feature model of the tool integration
platform. The figure shows a detail of the feature model of the tool integration platform
services that are relevant feature candidates for the signal change management. The
model derives from a common root for organizational reasons and to distinguish it from
other feature models. In Figure 6.2 it is named Checkin.

Abstract features, shown in light blue in the figure, represent interface bundles, that
serve as a functional definition of service implementations. Their name is derived from
the bundle name for simplicity and must be unique in the model. For example, the
model defines the abstract optional feature Commit, which can be seen in the middle of
the figure. This feature represents the functional definition for the services that commit
data to the integrated repository. Thum et al. [66] discuss several issues that come
with the usage of abstract features. One issue is, for example, that the satisfaction

64

6.3. Platform Variability Model

Checkin

Repository

File Unified

Commit

AML-Commit

AML-C AML-A

File-Commit

File-C

Model

Table

EPL OPM

AML

Model → Unified AML-Commit → AML

Legend

abstract concrete mandatory optional or xor

Figure 6.2: Signal change management detail of the platform feature model

constraint resolvers used today, can run into errors while evaluating the configuration
for a particular feature model. The author is aware of the problems that come with the
usage of abstract features, and tries to circumvent them by carefully creating the feature
models for the tool integration platform. Nevertheless, it seemed the best way to use
abstract features for interface bundles, as they have no functionality themselves. The
branch of the Commit feature is optional as it can be omitted in the final version if, for
example, the quality assurance activities are not needed at all in an engineering process.
The two abstract features AML-Commit and File-Commit descend from the quality
interface bundle and thus the respective feature. If the feature model gets too cluttered,
abstract features might also be used to organize it farther. However, using abstract
features for grouping should be used sparingly due to the threat of misunderstandings
and the reasons mentioned in [66].

Concrete features, shown in dark blue, are features that refer to an individual interface
implementation. For instance, the concrete features AML-C, AML-A and File-C each
refer to a specific service implementation in the pool of services of the platform which all
implement the general Commit interface. If you recall Figure 5.2 there are two service
tasks called Checkin file and Checkin AML. These tasks can call one of the variants
depicted in the feature model. So for example, the feature model provides two alternatives,
AML-C and AML-A, for the Checkin AML task. The features in the model have a direct
mapping to one of the service implementations in the platform.

One essential part of the feature model is that the constraints between the features,
which represent the dependencies amongst interfaces and services can be defined. In
Figure 6.2 the constraints are stated directly over the legend of the feature model. In

65

6. Solution Approach

the use case, several services need the model of the data format that is checked into the
platform. For instance, the AML model component is needed for operations with the
AML tool data and the EPL and OPM model bundle is need when CSV data from the
respective tools are imported. In case of the example, the abstract feature AML-Commit
requires the AML model feature to be present in a valid configuration of the integrated
tool application. Besides, any Model feature requires the Unified repository to be present,
that allows the check-in of models as well as files.

Another relevant part is how the features are marked according to the options that a
feature model provides. The provided feature options and their relation amongst each
other, are the ones in the middle and right section of the legend in Figure 6.2 in particular
mandatory, optional, or and xor. The rules that are defined for the feature model are
explained in the following. If an abstract feature is needed by all services, it should be
marked mandatory. If not, it should be marked optional, and the features using it need
to define a specific constraint, that indicates the dependency. For example, in Figure 6.2
the Commit feature is marked optional, as it might not be needed for the integrated
tool application if the data should not be stored, but, for instance solely checked for
its correctness. If an abstract feature has several concrete features, as, for example, the
Repository feature in the figure, those features have to be marked as alternatives, in order
that at least one of them is selected during the configuration. Concrete features that are
the only child of an abstract feature, need to marked as mandatory so that if the abstract
ancestor is selected in a configuration, the descendant needs to be selected for a valid
configuration.

The feature model with its features and constraints must be created in an initial effort
by an engineer which is quite familiar with the tool integration platform and experienced
in the CCP. This effort must also be counted to the overall effort of the CCP. However,
with an automated process, the invested effort should pay off quickly. Another aspect,
which has to be taken into account, is the change of the feature model when the platform
modules change. This would, for example, be the case if new modules are implemented
and represent a new service variant or old modules are ‘retired’ for further usage in
projects. Such a marginal adaptation of the feature model should not result in too
much effort as also only parts of the model change and constraints might have to be
reformulated. As dependencies between the interfaces and their implementations are
also existing in the source code which is supported by the build tool Maven, the author
proposes to investigate the possibility to semi-automatically create parts of the feature
model based on these dependencies in future work.

6.3.4 Tool Support and Data Format

The FeatureIDE as tool supports the creation of feature models and their configuration,
as mentioned in Section 2.3. The feature model for the use case was manually created
within this tool. The FeatureIDE also provides an XML notation for the feature model
and its constrains. A detail of the XML representation of the feature model for the signal
change management engineering process can be seen in Listing 6.4.

66

6.3. Platform Variability Model

The structure of the feature model is described within the struct section, while the
constraints are defined within the constraints section of the XML document. Features
have a name as attribute and can be set abstract and mandatory via the respective
XML attributes. The structure of the feature model is built via and tags, or in the
case that the features exclude each other, via alt tags. Features that are leaves in the
feature graph use feature tags. Constraints are defined via the rule tags and contain
several basic commands to build such rules. For instance, as the Model feature requires
the Unified feature to be present, the feature names are used as variables and combined
by the imp (implies) tag.

The XML exchange format for feature models provided by the FeatureIDE will be used
to support the mapping of service instances represented in the model with the variants
in the BPMN process descriptions. This process will be described in detail in the next
section.

1 <featureModel>
2 <struct>
3 <and abstract="true" mandatory="true" name="Checkin">
4 <and abstract="true" name="Commit">
5 <and abstract="true" name="AMLCommit">
6 <feature mandatory="true" name="AMLGitCommit"/>
7 </and>
8 </and>
9 <alt abstract="true" mandatory="true" name="Repository">

10 <feature name="File"/>
11 <feature name="Unified"/>
12 </alt>
13 </and>
14 </struct>
15 <constraints>
16 <rule>
17 <imp>
18 <var>Model</var>
19 <var>Unified</var>
20 </imp>
21 </rule>
22 </constraints>
23 </featureModel>

Listing 6.4: Detail of the signal change management feature model in XML

To summarize this section, the concepts of interfaces as abstractions for concrete imple-
mentations and how this can describe a way of variability was discussed. Furthermore,
the section explains how the concepts are used in OSGi and the EngSB implementations.
Afterwards, an approach was presented, that considers these concepts to build feature
models from the services of the tool integration platform by defining interface bundles
as abstract features and their implementations as concrete features in the model. The

67

6. Solution Approach

definition was build looking at the use case of signal change management as a real-world
example. Finally, it was discussed that the FeatureIDE enables the creation of feature
models but also provides an XML notation for the model that contains the structure
as well as the constraints. This XML notation will be exploited to map features with
BPMN process activities.

6.4 Mapping of Engineering Processes to Software
Variants

In the last sections, the basis was laid to allow the generation and selection of engineering
process variants. Furthermore, a variability model for the existing software service
variants of the tool integration platform was defined.

This section now describes how the engineering process variants should be mapped to
service variants, which are described in the feature model. The feature model must,
however, already exist or an expert must create it beforehand.

The mapping process will be explained using Figure 6.3. The upper part of the figure
contains an engineering process template for the quality assurance process in BPMN ,
that should be mapped to a particular variant of a software component configuration.
The lower part of the figure depicts a feature model of the services available in the
tool application platform. The feature model displays features representing software
components, which can be called by the process activities and are mainly services as
well as their abstract ancestors. Furthermore, the feature model shows dependencies
in between the features, in this case, that the feature EMF requires a Unified Repo
to be present to work as expected. In the middle of the figure, a placeholder for the
configuration of the feature model is illustrated. Such a configuration contains a set
of features as well as the features they depend on, according to the constraints in the
feature model. The configuration can have two different states. The first state is a valid
one in respect to the feature model, and thus holds all necessary features to meet the
constraints of the model. The second state is incomplete or invalid, which means, either
concrete features are missing and the configuration needs to be further completed, or
the configuration violates the model constraints, for example, because two features are
selected that exclude each other.

In Section 6.1.2 it was mentioned, that for process tasks the BPMN notation defines
an attribute operationRef. This attribute is used to reference a specific operation or
service that is called during the execution of the process. In the same section, the author
stated that for the approach of the thesis, this attribute is filled with a placeholder,
instead of the service call itself, which is created from a name and the prefixed keyword
abstract. At the same time, the feature model, which is used to model the variability
of software services in the tool integration platform as described in Section 6.3, contains
an abstract feature, which is specified by the same name as the operationRef attribute,
but without prefix. So BPMN process tasks, in their XML notation, reference names of

68

6.4. Mapping of Engineering Processes to Software Variants

Checkin

CSV2EPL

Simple Auto

EPLQuality

KKS Manual

EPL2AML

NoSql EMF

Unified Repo
requires

<bpmn:serviceTask operationRef="abstract:EPLQuality">

Transform
CSV

to EPL

Assure
EPL

quality

Transform
EPL to
AML

Config

1

2

* 3

<alt abstract="true" mandatory="true"
name="EPLQuality">
<feature name="KKS">
<feature name="Manual">

</alt>

Figure 6.3: Mapping of engineering process activities with software features

abstract features from the feature model. For example, in Figure 6.3 the Assure EPL
quality task, in its operationRef attribute, holds the value abstract:EPLQuality.
The same value, without the prefix, is used for the abstract feature EPLQuality in the
feature model. The EPLQuality feature has the two concrete features KKS and Manual
as descendants. These features refer to specific services of the tool integration platform,
which can be added to the integration tool application during the CCP and then called
during runtime. To map the process activities to the services, one of the concrete features
need to be selected during the mapping process.

The mapping process itself consists of the following subsequent steps that are described
in the paragraphs below. First, from the BPMN process templates chosen and combined
by the application integrator, all operationRef attributes are extracted, and their
prefixes are stripped away to receive the relevant part. The values are then written into
a basic configuration for the feature model. This step is marked in Figure 6.3 with 1 and
results in a configuration with the values CSV2EPL, EPLQuality and EPL2AML. The
configuration now contains the abstract features that are referenced by the engineering
process template. However, this configuration is incomplete and invalid as a valid
configuration might only contain concrete features, and most likely the constraints of the
feature model are not met. For example, the requires dependency between the EPL2AML
and the Unified Repo feature are not met.

69

6. Solution Approach

The next step is to load the incomplete configuration into a tool like the FeatureIDE
that is capable of manipulating and validating the configuration according to the feature
model. In this tool, the application integrator selects concrete features corresponding to
the proposed abstract features. This step is indicated by 2 in the corresponding figure.
The configuration is validated on-the-fly to inform the application integrator whether his
choices are allowed or not.

The valid configuration resulting from the previous step contains the needed features
as well as the dependencies these features require. In the XML notation of the feature
model, the features have a name attribute, as shown in Listing 6.4, containing a value
that is unique within the model. However, this name does not necessarily match the exact
call that needs to be used in the specific process task to trigger the service. Therefore, a
mapping table is created during the definition of the feature model, that maps the name
of the concrete feature of the model to the concrete call that is used to trigger the service
during runtime. In the final step, highlighted with 3 in Figure 6.3, the process tasks are
enriched with the concrete service calls, which correspond to the features in the final
configuration.

To summarize this section, based on the previous contributions that provide a variability
model for BPMN processes and a variability model for the software services of a tool
integration platform, a method was explained how these models could be mapped to
enrich the process tasks with valid service variants according to a feature model.

6.5 Improved Customization and Configuration Process
The last four sections provided concepts to model the variability in engineering processes
– contribution 3a – and the variability in the software services of the tool integration
platform – contribution 3b. Furthermore, these sections described a mechanism to select
engineering process templates and their dependencies based on the process variability
model – contribution 2a – and finally characterized a method to map the engineering
process templates for software service variants – contribution 2b – in order to generate
engineering process variants, that are able to call services in a customized integrated tool
application.

This short section puts the bits and pieces from the previous sections together, to form
the big picture of the solution approach. This way, the improvements that were achieved
for the CCP, in comparison to the traditional approach, which was performed manually,
will be shown.

The following paragraphs will discuss the parts that changed in the CCP. At the beginning
of this chapter, Figure 6.1 was used to structure the sections and contributions of the
solution approach. This time, the figure will be used to explain what the solution
approach changed in the Process Selection and Configuration task of the CCP.

In the traditional approach the Selection step (see 2a in the figure) was performed by
cloning and owning existing engineering processes from other customization projects or

70

6.6. Summary

completely generating them from scratch. The catalog of engineering process templates,
which is created using the Process Variability Model, helps the application integrator
during the CCP to select process templates, that are then adapted to the requirements
of the customer.

The Linking step, where parts of the selected engineering processes are rearranged or
combined in case of sub-processes, is still the way it was in the traditional approach.
However, the starting situation for this step has changed, as only processes need to be
adapted, that were already pre-filtered by the selection backed by the solution approach.

One especially tedious activity in the CCP is the Mapping of the engineering process
tasks to the service variants that are called by the processes during runtime (see 2b in
Figure 6.1). In this step, the application integrator needs to search in a sometimes vast
catalog of possible services and their dependencies to choose valid service configurations.
The solution approach supports this step by providing a method that allows a systematic
mapping of engineering process templates to service variants, modeled in the Platform
Variability Model.

Finally, the enrichment of the process tasks with the service calls was done by searching
the respective call values and writing them into the process tasks. The solution approach
provides a mapping table that allows finding the values corresponding to the chosen
service variants quickly.

Overall, by the application of the solution approach to the CCP two main goals should
be reached. First, the process should gain tremendously in efficiency compared to the
traditional approach, that was done in tedious and manual work by the application
integrator with his expertise. Second, the improved process should provide additional
spots where quality assurance mechanism can be plugged in to prevent the production of
error-prone integrated tool applications.

6.6 Summary

This chapter proposed a solution approach to the manual and error-prone Customization
and Configuration Process (CCP) for tool integration platforms by applying methods
and models from Variability Modeling and weaving them into an improved process. The
chapter was organized into five sections, that each contributed to the whole solution
approach, according to Figure 6.1. The first section explained how a Process Variability
Model could look like for engineering processes that are modeled in Business Process
Model and Notation (BPMN) by using attributes of the syntax to refer to templates of
sub-processes and service references. The second section illustrated a method that uses
the Process Variability Model from Section 6.1 to support the Selection phase of the CCP
by following the template references to gather the relevant parts of an engineering process.
Third, the Platform Variability Model and how it is built on Feature Modeling (FM) was
illustrated, that serves as input for the Mapping phase of the CCP. Section 6.4 introduces
a method to map the engineering process templates, resulting from the Selection phase,

71

6. Solution Approach

with the software components of the tool integration platforms represented by the feature
model whose semantics were defined in Section 6.3. Finally, a short section on the changes
in the CCP summarizes what was improved for the process.

The next chapter presents the evaluation of the solution approach proposed in this
chapter supported by a prototype that was developed for this purpose, by applying it on
a real-world use case, which was investigated at an industry partner.

72

CHAPTER 7
Evaluation

In the previous chapter, a solution approach was formulated to improve the Engineering
Process Selection and Configuration phase of the Customization and Configuration Process
(CCP) for tool integration platforms based on the concepts of the Engineering Service Bus
(EngSB). Following the methodology for this work described in Chapter 4, the previously
proposed approach was evaluated utilizing a ‘real world’ example in combination with a
simple prototype, which implements the relevant parts of the approach. The evaluation
set up and the findings of this evaluation are described in this chapter.

The remainder of this chapter is organized as follows. Section 7.1 describes the tasks
that needed to be performed to create the Platform Variability Model and to prepare
the existing engineering processes to generate the Process Variability Model. Section 7.2
introduces the prototype and explains how it supports the evaluation regarding assisting
the application integrator during the Engineering Process Selection and Configuration.
Section 3.2 discusses how the use case from Section 5.3 was applied and how the evaluation
was conducted. Finally, Section 7.4 presents the results of the evaluation.

7.1 Preparation of the Evaluation
As mentioned in the introduction of this chapter, the solution approach was evaluated by
taking advantage of a ‘real world’ example. Section 5.3, therefore, introduced the Signal
Change Management Process (SCMP), which was identified as an important process
part of round-trip engineering (RTE). The SCMP was observed during investigating
the processes of an industry partner and described by Winkler et al. [74]. It was also
observed, that different variants of the SCMP were utilized by the engineers of the
specific industry partner. Additionally, researchers of the CDL-Flex experienced that
other industry partners, whose processes were examined, applied very similar processes
to the one already described. Because of the frequent occurrence of this engineering
process at industry partners, the evaluation of the approach proposed in Chapter 6 was

73

7. Evaluation

based on the use case of one of the specific industry partners. This industry partner
already uses a customized version of the AutomationML Hub (AML.hub) as integrated
tool application and implemented an individual version of the SCMP. For the evaluation
this means the engineering process of the industry partner was used as a basis for the
Process Variability Model and the existing platform and its services were used as a basis
for the Platform Variability Model. Before the evaluation could be conducted, several
elements had to be set up beforehand.

7.1.1 Platform Variability Model preparation

The first preparation task was to create the Platform Variability Model from the software
services of the tool integration platform. This step had to be performed manually by an
expert with a good knowledge of the platform, the software services within the platform
and especially their dependencies amongst each other. The expert thoroughly investigated
the platform and created a feature model from the services and their dependencies in the
FeatureIDE.

As described in Section 6.3, the interface bundles, which are deployed separately from the
service implementations to the OSGi (OSGi) container, were used as abstract features of
the feature model. For example, for the service that checks the AutomationML (AML)
consistency and is used for the Check AML consistency task shown in Figure 5.2, a
Maven module was available, that only contained the Java interface. As an explanation,
Maven is a software project management and build tool that is widely used in Java
programming to structure and build software projects. In Maven it is possible to structure
and separate components using Maven modules. This also allows components to be
build and deployed separately. Furthermore, Maven provides a dependency management
system, that automatically resolves dependencies that are stored in a Maven repository.
This interface contained the functional specification of the methods, their input values
as well as their return parameters for a service that is able to check the correctness
of an AML file. The expert also found an obvious dependency to a software interface
bundle, that described the AML model. This dependency was added as a constraint to
the feature model. For better comprehensibility, the expert, added several abstract to
further structure the model.

The concrete features of the feature model were derived from the specific service imple-
mentations that existed in the platform. Therefore, the expert listed the existing service
implementations and then examined which interfaces these implementations used. He
then created the respective concrete feature in the feature model below the corresponding
abstract feature that represents the service interface.

According to the rules defined in Section 6.3 the features in the model, then needed to be
classified according to the available options. In particular, this means that the features
needed to be marked whether they are mandatory or optional and if two concrete features
are an alternative (xor relation) or can be used in combination (or relation). So the
abstract features were then marked as optional to indicate that they can be selected in

74

7.1. Preparation of the Evaluation

the configuration. If a concrete feature was the only descendant of an abstract feature, it
was marked mandatory. If a concrete feature, on the other hand, had a sibling, it was
marked as an alternative using the xor relation, to indicate that either one of them can
be used in the final configuration.

Finally, the expert had to create the mapping table, which defines the service calls which
are used in the service tasks to call the specific service instance. Therefore, the expert
created a simple text file, which contained the names of the concrete features and for
each of these names the correct service call under which the service can be reached from
the workflow engine.

The preparations described in this section resulted in a feature model that represented
the services and components of the tool integration platform and their dependencies
amongst each other. The feature model was created using the FeatureIDE and saved as
a model file in an XML representation. Furthermore, a mapping table was defined to
link the feature names of concrete features with the respective service calls that are used
within the running platform. These two artifacts together build the necessary parts for
the Platform Variability Model, that is used in the Mapping activity of the Engineering
Process Selection and Configuration task.

7.1.2 Process Variability Model preparation

The second preparation activity was to prepare the existing engineering processes, to
afterward create a Process Variability Model, as proposed in Section 6.1. Therefore, the
process needed to be modeled in Business Process Model and Notation (BPMN) first,
which was done using the Camunda Modeler1. The Camunda Modeler is a freely available
tool, which allows creating BPMN process and DMN [50] diagrams and is distributed
by Camunda, which is the same company that develops the Camunda Workflow Engine.
This modeling step resulted in four BPMN process diagrams. One that looks very similar
to the engineering process shown in Figure 5.2 and three sub-processes diagrams for the
respective call activities. Each of these diagrams is backed by an XML file containing
the process models in BPMN notation. Figure 7.1, for example, shows the sub-process
of the Select changes call activity. Depending on the model (AML, EPL or OPM) that
is checked in, different steps have to be executed before the changes in the data can be
selected to commit them to the database afterward.

As the sub-process contained a combined process of rather an independent process, the
sub-process need to be separated into its minimal viable processes, as recommended in
the solution approach. This second step was necessary, to build the catalog of templates,
that can be reused in the Customization and Configuration Process (CCP). This step
resulted in the blueprint of the main process, as described above, and several separated
sub-process templates, that look very similar to the processes shown in Figure 5.3 and
Figure 5.4. For example, the Select changes sub-process was split into three sub-process
templates, corresponding to the type of model that is checked in.

1Camunda Modeler – https://camunda.com/download/modeler/

75

https://camunda.com/download/modeler/

7. Evaluation

X
Select
AML

changes
X

X
Transform

AML
to EPL

Select
EPL

changes

Transform
EPL to
AML

X

Transform
AML to

OPM

Reduce
OPM

Select
OPM

changes
Enrich
OPM

Transform
OPM to

AML

is AML?

is EPL?

yes

yes

no

Figure 7.1: Sub-process before separation to minimal processes

The process templates were then stored as follows, to create the process catalog as
mentioned in Section 6.1. A root folder was defined, that held all top-level engineering
process templates. For example, the main process, depicted in Figure 5.2, was saved as
Checkin.bpmn in this root folder.

The sub-process templates for each call activity, which derived from the separation of the
combined sub-processes, were saved in a folder named after the call activity postfixed
by the string Templates. For instance, the three separated sub-process templates
of the Select changes sub-process, shown in Figure 7.1, were stored in a folder named
SelectChanges-Templates.

Finally, the BPMN process activities needed to be adapted to represent the variability of
the processes. This means, call activities needed to refer to sub-process templates and
process tasks needed reference an abstract feature of the feature model. As mentioned in
section 6.1.2, BPMN provides the semantics to call sub-processes and services via specially
defined attributes within process activities. Therefore, on the one hand, each of the
calledElement attributes in a call activity got the value of the folder assigned, where
the sub-process templates were stored, prefixed by the template keyword. On the other
hand, each process task was enriched by the name of the corresponding abstract feature
from the feature model, prefixed by the abstract keyword for the opertionRef
attribute. However, during the modeling of the processes in Camunda Modeler, the
author experienced, that the process model defined within the Modeler does not include
an operationRef attribute in the process task that can be easily accessed in the
tool. The author, therefore, decided for the evaluation of the solution approach, that
the attribute camunda:delegateExpression is used instead of the operationRef

76

7.2. Prototype for the Evaluation

attribute to reference the abstract features. In future work, this issue should be addressed
by either extending the modeling tool or the prototype.

To sum up, this section described which tasks had to be performed, to create the Process
Variability Model from the engineering processes implemented at the industry partner.
First, the processes were modeled in BPMN and their sub-processes separated into
their minimal viable processes. Second, the process templates were stored in a folder
structure that can be used as a catalog for the CCP. Finally, the processes were adapted
corresponding to the recommendations in Section 6.1.2 to refer to sub-process templates
and abstract features.

7.2 Prototype for the Evaluation

To properly evaluate the solution approach proposed in Chapter 6 and show its feasibility,
a simple prototype was created, that reproduces the Customization and Configuration
Process (CCP) and in particular, the tasks of the Engineering Process Selection and
Configuration as depicted in Figure 6.1. This section introduces the prototype and the
functionality it provides, to support an application integrator during his configuration
work.

To better explain what the prototype does and how the evaluation was conducted, the
tasks of the Engineering Process Selection and Configuration in its improved form are
recapped. First, the top-level process templates as well as the sub-process templates,
that are referenced by the top-level processes, need to be selected by the application
integrator. Second, in a manual step, the application integrator needs to combine the
selected sub-processes of each call activity to form a single sub-process. In a third step,
the chosen processes are analyzed and basic configuration for the Platform Variability
Model is written. Afterwards, this configuration is completed by the application integrator
in the FeatureIDE to create a valid configuration according to the constraints of the
Platform Variability Model. Finally, the valid configuration is used to enrich the chosen
processes with the service calls that are used during runtime by a workflow engine to
trigger the specified functions. The described functionality should be supported by the
prototype as good as possible, which also means, that as many of the steps as achievable
should be automated.

1 xmlstarlet sel -t -m "//bpmn:callActivity" -v "@calledElement" -n $x

Listing 7.1: Extraction of sub-process template

The prototype itself consists of a set of scripts, which mostly make use of XMLStarlet2.
XMLStarlet is a command line tool to directly query but also manipulate the XML

2XMLStarlet – http://xmlstar.sourceforge.net/

77

http://xmlstar.sourceforge.net/

7. Evaluation

documents utilizing XPath3 and XSLT4. In this case, the tool is used to query and
manipulate representations of the Business Process Model and Notation (BPMN) process
templates as well as the feature model.

The prototype requires the following parameters to start the process: a) the location of
the root folder was the process templates are stored; b) the location of the folder were
the configured processes are saved; c) the file location of the XML representation of the
feature model that is analyzed; d) the file configuration of the configuration file where
the basic configuration is saved, and the finished configuration is written to, and finally
e) the file location of the mapping file that contains the service call mapping.

1 xmlstarlet sel -t -m "//bpmn:serviceTask"
2 -v "@camunda:delegateExpression" -n $x

Listing 7.2: Extraction of the abstract feature reference

The prototype now does the following. The prototype, first, searches all existing top-level
process templates by their .bpmn file ending from the root folder and presents them
to the application integrator. The application integrator selects the templates that are
suitable for the specific customization of the tool integration platform. From each of the
selected top-level process templates the sub-process template references are automatically
extracted using the command shown in Listing 7.1, whereas $x is the specific BPMN
file, and cutting of the template prefix. Similar to the process templates, the list of
extracted sub-process templates is presented to the application integrator, who selects the
relevant ones. The top-level templates with their corresponding sub-process templates
are copied to the target folder for further processing.

1 xmlstarlet sel -t -m "//bpmn:callActivity[
2 starts-with(@calledElement,’template’)]"
3 -v "@calledElement" -n $process

Listing 7.3: Retrieval of all call activity starting with template

After these steps, the application integrator needs to manually combine the sub-process
templates of a specific call activity to a single sub-process. Furthermore, he needs to
change the top-level process templates the way he needs them to be from the perspective
of the sequence flow. When the task of changing and combining the process templates is
finished, the prototype can perform the next steps.

To create the initial set of values for the feature model configuration, the prototype would
go through all the remaining .bpmn files in the folder and extracts their service call refer-
ences defined in the operationRef attribute. However, as mentioned before, instead of
the operationRef attribute, the Camunda specific camunda:delegateExpression

3W3C XPath – https://www.w3.org/TR/xpath/
4W3C XSLT – https://www.w3.org/TR/xslt/

78

https://www.w3.org/TR/xpath/
https://www.w3.org/TR/xslt/

7.2. Prototype for the Evaluation

attribute was used for the evaluation. Listing 7.2 shows the xmlstarlet command that
was used for the extraction of the abstract feature references from the process templates.
The abstract keyword is stripped from the values, and they are then written to the
initial configuration file.

1 xmlstarlet ed --inplace
2 --update "//bpmn:callActivity[
3 @calledElement=’$template’
4]/attribute::calledElement"
5 -v "$variable" $process

Listing 7.4: Enrichment of the call activity

The basic configuration then needs to be completed by the application integrator in
the FeatureIDE. Therefore, the application integrator loads the basic configuration
into the configuration editor of the, where he gets a tree view of the configuration
with the abstract features checked. The integrator then needs to subsequently select
concrete features for the abstract ones until the editor validates the configuration as valid.
The configuration editor, in the background, automatically checks with every change,
whether the configuration is still invalid or already valid considering the constraints
of the underlying feature model. When the application integrator is satisfied with the
configuration, and the configuration is valid he saves the file and proceeds with the
process by using the prototype again.

1 xmlstarlet sel -t -m "//feature[
2 @name="’$feature’"]/ancestor::*[@abstract][1]"
3 -v "@name" -n $model_file

Listing 7.5: Retrieval of the ancestor of a concrete feature

The prototype now does two things. First, the calledElement attributes of the
top-level process blueprints in the target folder are configured with the correct call of
the sub-process instead of the template files. This enrichment is done with the two
commands shown in Listing 7.3 and 7.4. The first command retrieves all attribute values
of calledElement attributes that start with the keyword $template. This list is
then fed to the second command, which searches the callActivity element with the
particular $template value and changes it from the sub-process template placeholder
to the specifically combined sub-process, that was created manually by the application
integrator.

Second, the prototype enriches the process tasks with the concrete service calls. Therefore,
it takes the concrete feature values from the valid configuration file one by one and
searches the first direct ancestor of the concrete feature in the XML representation of
the feature model. This feature is the corresponding abstract feature that is referenced
in the process template. The command and query for this task are listed in Listing 7.5.

79

7. Evaluation

The prototype then with a second command – see Listing 7.6 – searches the abstract
feature in the process template and assigns the the value of the concrete service from the
mapping file (see Line 6 of the listing – ${${service_mapping[$feature]}}) to
the camunda:delegateExpression.

1 xmlstarlet ed --inplace
2 --update "//*[
3 @camunda:delegateExpression=
4 ’abstract:$service’
5]/attribute::camunda:delegateExpression"
6 -v "\${${service_mapping[$feature]}}" $process

Listing 7.6: Enrichment of the process task

After this step, the BPMN files stored in the output folder, were assembled according to
the requirements of the application integrator respectively the customer. The service
tasks within the engineering processes models were mapped to the selected software
service variants and configured with the proper service calls. The BPMN files, after this
task, are ready to be deployed to the integrated tool application that runs a workflow
engine like Camunda.

To sum up, this section provided an overview of the prototype and how it was implemented.
Furthermore, the section outlined what the prototype does to support the Engineering
Process Selection and Configuration tasks in consideration of the proposed solution
approach of Chapter 6.

7.3 Evaluation Procedure
The last section described the prototype that was used to evaluate the proposed solution
approach for an improved Customization and Configuration Process (CCP) for tool
integration platforms. This section discusses how the evaluation was conducted to
measure the relevant results for the Key Performance Indicators (KPIs), which are used
as performance metrics, to compare the traditional and the improved process.

7.3.1 Evaluation use case

The evaluation of the solution approach was similarly performed on the Signal Change
Management Process (SCMP) use case described in Chapter 5, for both the traditional
as well as the improved CCP. This includes, on the one hand, the SCMP engineering
process, as outlined in Section 5.3 (see also Figure 5.2), and, on the other hand, the
customized AutomationML Hub (AML.hub), as it was delivered to the industry partner,
as an example for an integrated tool application. First, the traditional approach was
played through and measured, afterward, the improved approach was performed and the
results recorded. The feature model utilized for the improved approach represented a
detail of a bigger feature model, which models the services and components available

80

7.3. Evaluation Procedure

for and within the tool integration platform. To explain the tested real-world example
in detail, table 7.1 shows some relevant statistics of the SCMP engineering process and
the underlying customized AML.hub and accordingly the created feature model for the
integrated tool application. Additional material like the sources for the use case, the
processes and the feature model can be found in the corresponding repository5.

SCMP Entities Sum
Process tasks Recognize model, Compare AML, Check AML compli-

ance, Merge AML changes, Check AML consistency,
Checkin AML, Checkin file, Notify users

8

Call activities Check AML quality, Check Table quality, Select
changes

3

SP variants Check AML quality, Check EPL quality, Check OPM
quality, Select AML changes, Select EPL changes,
Select OPM changes

6

SP tasks Transform CSV to EPL, Assure EPL quality, Trans-
form EPL to AML, Transform AML to EPL, Se-
lect EPL changes, Transform CSV to OPM, Assure
OPM quality, Enrich OPM, Transform OPM to AML,
Transform AML to OPM, Reduce OPM, Select OPM
changes, Select AML changes, Assure AML quality

14 (+3)

Services see corresponding Repository 27 (+2)
Constraints see corresponding Repository 20

Table 7.1: Statistics of the SCMP

For the engineering process itself the following statistics apply. The top-level process
template contained 8 regular process tasks – see also Figure 2.7, which are listed in
the first row of Table 7.1. Additionally, the top-level process included 3 call activities,
which referred to different sub-process template categories. For these call activities, 6
independent sub-process templates were listed in the process catalog that was built from
the process. Within the sub-process templates, 17 process tasks were found, whereas 3
tasks reoccurred in other sub-process templates, which makes 14 distinct process tasks
with the templates.

For the corresponding feature model the last two lines of the table are relevant. First,
24 services and components relevant for the engineering process itself were identified
and modeled as features, at which for two abstract features – Notfication and EPLQual-
ityAssurance – in each case two service implementations were found as variation points.
Furthermore, 5 components were found and modeled as features, which needed to be
included because of the dependencies between them. Finally, 20 constraints were formu-
lated in the feature model, to describe the dependencies among the software components
respectively the features in the model.

5Additional material – https://bitbucket.org/mercynary/thesis-additional

81

https://bitbucket.org/mercynary/thesis-additional

7. Evaluation

7.3.2 Measurement of KPIs

Section 3.2 defines several KPIs that were used to measure the performance of the
solution approach. The following paragraphs describe how the measuring was done for
the different KPIs. In the course of this section the term ‘configuration process’ is used for
the tasks of Engineering Process Selection and Configuration for simplicity. Furthermore,
the term ‘approach’ is used to either describe the traditional configuration process or the
improved one.

The first two KPIs defined – KI-1.1 and KI-1.2 – consider the number of activities
that need to be performed during the configuration process. While KI-1.1 uses the
manually performed activities, KI-1.2 also takes the automated activities into account.
For both KPIs the number of activities was counted to record the values and calculate
the KPIs. For the traditional as well as the improved configuration process the following
activities were counted as one point: a) each creation of a single feature in the feature
model, regardless whether the feature is abstract or concrete; b) each creation of a single
constraint in the feature model, whereas the classification as, for example, mandatory
also counts as constraint; c) each creation of an entry for the mapping table; d) each
selection of a top-level process or template; e) each selection of a sub-process or template;
f) each combination or separation of a sub-process or template; g) each search step for
a service call – meaning if several alternatives exist, each alternative that needs to be
found is counted as one step; h) each selection of a service to call; i) each resolution of a
dependency for a selected service, and finally; j) each configuration of a process task with
the specific service call. Obviously, for activities not needed for one of the approaches,
zero points are counted.

The second set of KPIs uses the working effort of the configuration process as measurement
category. The first KPI (KI-2.1) measures the overall effort invested in the configuration
process. Therefore, the time needed to go through the configuration process once was
measured in minutes for each of the approaches. However, the manual task of process
combination was left out of this metering. The combination task is either needed to
cut out some activities of a sub-process that was cloned or to combine the sub-process
templates from the Platform Variability Model. In this task, the time of modeling the
process in Camunda Modeler strongly depends on various fuzzy values like, tool skills or
diagram alignment, and is thus not very accurate. It is estimated, that these two tasks
take nearly the same amount of time. The second indicator (KI-2.2) measures the effort
when: a) a process task is added to an engineering process that uses an existing service,
b) an additional service is added to the platform, and c) a process task is added together
with an interface and two service implementations. For this indicator, the additional
steps that are necessary to adapt and configure the engineering process were measured.

At last, the KPIs KI-3.1 and KI-3.2 measure were quality mechanisms, to ensure the
correctness of the resulting processes, are already implemented in the configuration process
and were such quality mechanisms can be run in an automated fashion to minimize the
manual effort. For each of these indicators, the number of mechanisms in the traditional

82

7.4. Evaluation Results

and the improved approach is counted and summed up.

The values for the KPIs were measured by hand. Although this is not the most reliable
method, for the traditional CCP it is not possible to measure the values otherwise. An
improvement, however, would be to measure the activities under the supervision of other
researchers or in a case study to be able to calculate an average from the results of
different test subjects.

7.4 Evaluation Results
The following section presents the evaluation results of the solution approach performed
with a prototype, implemented, therefore, compared to the traditional approach of
Engineering Process Selection and Configuration. The sections are grouped by the sets of
KPIs described in Section 3.2 and Section 7.3.2.

7.4.1 Evaluation results for Complexity indicators

First, the results for the measuring of the first set of KPIs (KI-1.1 and KI-1.2) are
presented. Table 7.2 shows the raw numbers for the measuring of the traditional and the
improved approach for the calculation of KI-1.1 and KI-1.2.

Activity ↓ Manual steps → Traditional Improved
Feature model a) 0 70
Constraints b) 0 75
Mapping entries c) 0 29
Process selection d) 1 1
Sub-process selection e) 0 6
Process combinationf) 3 3
Service search g) 22 + 2 0
Service selection h) 22 22
Constraint resolution i) 20 0
Task configuration j) 25 0
Sum initial run 95 206
Sum every additional run 95 32

Table 7.2: Evaluation measurements for KI-1.1 and KI-1.2

The creation of the features in the feature model – see Section 7.3.2 a) – was performed
in 70 manual steps. This also included the proper structuring of the model to make it
easy to understand for engineers, that are not very familiar with the underlying tool
integration platform.

The creation of the constraints – b) – took 75 manual steps. This included the definition
of explicit constraints in the constraint language of the feature model, as well as implicit

83

7. Evaluation

constraints such as the categorization of a feature as alternative (xor relation) to another
one.
The creation of the entries for the mapping table took 29 steps, as for each of the concrete
features an entry in the mapping table needed to be created.
The selection of the top-level process – d) – needed to be done in the traditional approach
and the improved one. However, the selection, in the latter case, was supported by the
prototype instead needing to search the process. Nevertheless, for each of the approaches,
1 point was counted.
For the sub-process selection – e) – it is assumed, that the cloned engineering process
already includes the sub-processes to be called in the same diagram. Therefore, no
manual step was needed and counted.
On the other hand, the prototype developed for the improved approach, let the application
integrator choose from the sub-process templates which ones to take. As 6 sub-process
templates were needed for the SCMP, the application integrator selected them in 6
manual, but prototype supported steps.
The possible adaptation of the sub-processes and the combination of the selected sub-
process templates – f) – was counted with 3 points for each of the sub-process calls that
are made by the call activities.
For the step of searching the services that fit to the engineering process tasks – g), 24
manual steps were needed in the traditional approach, 22 steps were needed to search
the services for the engineering process and 2 additional steps were needed to find the
alternative services that could have been selected for the final engineering process. The
improved approach already has to services defined in the feature model and finds them
automatically, so no manual step is needed.
The selection of the concrete service – h) for the process tasks took 22 steps for each
of the approaches, as each for process task that was found in the engineering process a
service was selected. For the traditional approach, it is assumed, that the application
integrator remembered the service that was used for the three reoccurring process tasks.
Otherwise, the process selection count for the traditional approach would have been 25.
For the improved approach, the application integrator needed to select 22 services in the
configuration editor of the FeatureIDE.
The constraint resolution – i) – took 20 manual steps for the traditional approach and
zero for the improved approach as the configuration editor does this resolution based on
the constraints defined in the underlying feature model.
Finally, the task configuration – j) – was done in 25 manual steps for the traditional
approach as each of the process tasks needed to be touched once to assign the service
call to the particular task. It is also assumed for the measuring, that the application
integrator, in the traditional approach, recalled or wrote down the specific service calls
for the services he selected in step h, otherwise, he would have needed 25 additional
manual steps to search the service calls for the services he selected.

84

7.4. Evaluation Results

KI-1.1 KI-1.2
Traditional Approach 95 95/0
Improved Approach 206 (32) 206/69 (32/69)

Table 7.3: KI-1.1 and KI-1.2 for the traditional and improved approach

From these raw numbers the KPIs were calculated as seen in Table 7.3. The numbers in
parentheses are the adjusted KPIs after the first run of the configuration process. KI-1.1
for the traditional approach was 95, which are the overall manual steps performed in the
Engineering Process and Selection phase. For the improved approach, KI-1.1 was 206,
including the steps to prepare the engineering processes for the approach and create the
feature model. A second run of the configuration processes would take 32 steps, as the
preparation tasks do not need to be executed.

KI-1.2, for the traditional approach, accounted with a relation of 95/0 or 95 manual
versus zero automated steps. For the first run of the improved approach, the relation is
206/69 (or ~3 in absolute numbers), and 32/69 (or ~0.46) for the runs after the first one.

7.4.2 Evaluation results for Effort indicators

As mentioned in Section 3.2 the second set of metrics considered the working effort that
is invested tasks of the configuration process. As KI-2.1 and KI-2.2 in contrast to the
previous set of indicators examine different aspects, they are split up into two parts.

KI-2.1
Traditional Approach 125 minutes
Improved Approach 1200 (25) minutes

Table 7.4: KI-2.1 for the traditional and improved approach

For KI-2.1 the working effort to go through the configuration process once was measured
in minutes. The KPIs are displayed in Table 7.4. It took the author 125 minutes to go
through the traditional approach. This included the cloning of the engineering process,
the manual search of the services in the Maven modules and the artifact repository, the
service selection, and constraint resolution, and, finally the process task configuration.
For the improved approach, it took the author approximately 12 hours to create the
feature model to a point where it was mature enough to serve as a basis for the process.
Furthermore, the author invested roughly 5 hours in preparing the engineering processes
and their minimal viable sub-processes. Afterwards, it took about 25 minutes to go
through the configuration process with the support of the prototype. This is also the
time that is needed after the first run for each additional run. The development of the
prototype is not included in this effort.

The results for KI-2.2 are displayed in Table 7.5 and split into three columns to address
the three cases described in Section 7.3. For the first indicator – KI-2.2 a – a single

85

7. Evaluation

KI-2.2 - a KI-2.2 - b KI-2.2 - c
Traditional Approach 2 0 3
Improved Approach 2 4 8

Table 7.5: KI-2.2 for the traditional and improved approach

process task is added to a top-level process template, which refers to a service that
is already implemented and can be used multiple times, such as the Transform AML
to EPL process task, shown in Figure 7.1. In both, the traditional and the improved
configuration approach, the additional process task first needs to be weaved into the
engineering process respectively the process blueprint. Also in both cases either the
service reference is already assigned (this is the case when the task is copied within the
process), or the process task needs to be configured with the specific service call or the
placeholder in the improved approach.

For indicator KI-2.2 b, a newly implemented service is added to the tool integration
platform. For the traditional approach, the service is just implemented, for example,
as a Maven module, nothing has to be done for the configuration process. For the
improved approach, the service needs to be added to the feature model. It is assumed
here, that the service implements an already existing interface and that there is one
dependency to another service. The creation of the service in the feature was done in
1 step. Additionally, 1 step was used to mark the feature as an alternative and 1 step
to define the constraint for the dependency. Furthermore, the service call needed to be
added to the mapping table in 1 steps.

KI-2.2 c measures the steps necessary, to add a process task together with an interface
component and two service implementations. In the traditional approach, in this case,
an engineer added the process task to the engineering process, then needed to find the
correct service call in one step and afterward assigned the service call to the process task.
This resulted in an overall of 3 manually performed steps. In the improved approach,
several other steps needed to be performed. First, an abstract feature was created in the
feature model for the interface. Second, the two service implementations were modeled as
concrete features. In a next step, the xor constraint between the two concrete features was
defined. Furthermore, for each of the service implementations, an entry in the mapping
table was created. Afterwards the process task was added to the engineering process
blueprint, and finally, the process task in the blueprint got the abstract feature name
assigned. This task was performed in 8 manual steps.

7.4.3 Evaluation results for Quality indicators

The third set ofKPIs covered the quality mechanisms, which are utilized by the different
approaches. The first indicator – KI-3.1 – investigates the quality assurance mechanisms
that come out of the box for the specific approach. The second indicator – KI-3.2 –
examines the quality mechanisms that can easily be implemented and supported by

86

7.5. Summary

KI-3.1 KI-3.2
Traditional Approach 0 1
Improved Approach 1 5

Table 7.6: KI-3.1 and KI-3.2 for the traditional and improved approach

automation to minimize manual work. Table 7.6 visualizes the results for the evaluation
of the indicators.

The traditional approach had no explicit quality assurance mechanisms implemented,
apart from manual control of the outcomes of the process. The improved approach
at least provides an automated quality assurance mechanism, as the configuration is
consistently checked for validity during the configuration process.

The second indicator analyzes where quality assurance mechanisms can be plugged in
to run as far as possible automatically and independently to minimize the effort of
application integrators. For the traditional approach, the author only found a single
extension point in the configuration process, where quality assurance checks could be
installed, considering the engineering process and service calls of the process. A point in
the traditional approach where a quality mechanism could be easily implemented and
run automatically was the finished engineering process, were each of the process tasks
could be checked, whether they have a service call assigned. However, the correctness of
the assignment could only be tested in a test run of the system during runtime.

For the improved approach, the author found 5 extension points, where quality checks
could be implemented. First, the engineering process templates can be tested, if every call
activity has a template value assigned respectively if each process task has an abstract
feature value assigned. Second, before the configuration process, the assigned features
values for process tasks can be checked for validity considering the feature model and
its abstract features. A third test would be to check whether all concrete features are
present in the mapping table. Finally, after the configuration of the engineering process,
it can be analyzed, if all call activities have a particular sub-process model assigned and
if every service was configured with a specific service call from the mapping table.

7.5 Summary

This chapter explained the evaluation setup and procedure and presented the evaluation
results. The first section outlined which tasks had to be performed to prepare the
evaluation. On the one hand, the section covered how the feature model, which represents
the Platform Variability Model from Section 6.3, was created from the services and
components of the AML.hub. On the other hand, the section illustrated how the existing
SCMP was translated to the Process Variability Model. Section 7.2 then introduced
the prototype, which is based on several scripts that exploit the command line tool
XMLStarlet, and how the prototype uses and manipulates the two variability models

87

7. Evaluation

described before, to support the application integrator during the CCP. The third section
detailed on the use case from Chapter 5 as well as how the evaluation and notably the
measurement of the metrics was conducted. The last section of this chapter presented the
results of the evaluation, including the performance results of the traditional approach
and the improved approach, that was supported by the prototype, but also the values for
the KPIs defined in Section 3.2 and refined in Section 7.3.

The next chapter – Chapter 8 – interprets the results, presented in this chapter, and
discusses the findings in consideration of the research issues.

88

CHAPTER 8
Discussion and Limitations

The last chapter explained the evaluation setup and the prototype that was developed to
support the evaluation of the solution approach. Furthermore, the chapter presented the
evaluation results according to the proposed Key Performance Indicators (KPIs).

This chapter picks up the results from the previous chapter, attempts an interpreta-
tion considering the research issues motivated in Chapter 3 and discusses the findings.
Furthermore, the limitations of the solution approach and the prototype will be discussed.

8.1 Research Issues

In the following sections, the research issues are discussed considering the evaluation
results. The section starts with RI-1, but then discusses RI-3 before RI-2 as the latter
builds on the concepts of RI-3.

8.1.1 RI-1 – Improvements of the Customization Process

The aim of RI-1 was to find out, to what extent the proposed solution improved the phase
of Engineering Process Selection and Configuration, to create fully configured variants
of engineering processes. The Engineering Process Selection and Configuration phase is
a sequence of customization and configuration activities within the Customization and
Configuration Process (CCP) for tool integration platforms, as depicted in Figure 6.1. By
fully configured, this work understands engineering processes which, after configuration,
refer to software services, which were selected during the customization of a tool integration
platform as service variants and are deployed with the integrated tool application, resulting
from the CCP. RI-1 also listed three particular areas of improvement, which needed to
be addressed by the proposed solution approach. First, the improvement of efficiency of
the process, due to a lower level of complexity and effort. Second, the improvement of

89

8. Discussion and Limitations

efficiency of the process, due to a higher level of automation, and third, the effectiveness
of quality assurance.

To underpin the expected improvements of the solution approach, several KPIs were
proposed for the evaluation in Section 3.2 and further refined in Section 7.3.2. The KPIs
relevant to answer the first area of RI-1, as mentioned in the paragraph above, are KI-1.1
as well as KI-2.1 and KI-2.2. KI-1.1 measured the complexity of the Engineering Process
Selection and Configuration regarding activities that had to be performed manually
during the phase. While this indicator was primarily meant to measure complexity, the
author found during the evaluation, that it also represents a metric for effort, which has
to be invested into the configuration process and that the indicator is very similar to
KI-2.1. KI-2.1 directly aimed at the measurement of the working effort in time that
the configuration process took to run through it once. KI-2.2 measured the impact of
changes in the underlying engineering processes and software components to the different
approaches.

During the evaluation of the solution approach, which was executed on the Signal Change
Management Process (SCMP) as an example, the author recorded the raw data for the
KPIs to later calculate their values. Table 7.2 shows the raw data for the indicator KI-1.1
for each, the traditional and the improved approach. Table 7.3 shows the calculated
values of the indicators for the approaches and, furthermore, the first and every other
run of the approaches. Table 7.4 and Table 7.5 show the values for KI-2.1 and KI-2.2.

The results of KI-1.1 and KI-2.1 reveal that the preparation of the engineering process
templates and the creation of the feature model are complex and time-consuming, as
these tasks took 174 manual activities respectively approximately 16.5 hours to complete.
However, the indicators also reveal, and this is even more important, that after this
initial preparation and creation phase, which is needed for the improved process only, for
each additional iterations of the process, a significant amount of time is saved and the
complexity of the process stays at a much lower level. This decrease can obviously be
seen, if the values of KI-1.1 and KI-2.1 for the traditional approach and the improved
approach, after the first run, are set in relation. While the traditional approach required
95 manual activities to be performed – KI-1.1, the improved approach required only
32 manual activities to be performed, which is roughly a third of the steps. The time
needed for the configuration process to go through once – KI-2.1 – was 125 minutes for
the traditional approach, in contrast to 25 minutes for the improved process, after the
first iteration.

As mentioned before, KI-1.1 can also be interpreted as effort, as every manual activity
means an invested amount of time as well. If the indicator is interpreted this way, it
can be easily expressed after how many iterations the improved process is superior to
the traditional one. This relation is expressed and shown in Figure 8.1. The x-axis
shows the number of iterations that the configuration process is performed. The y-axis
displays the number of manual steps that are performed. TA labels the function of the
traditional approach and IA labels the function of the improved approach. It can be

90

8.1. Research Issues

manual steps

iterations
1 2 3 4 5

100

200

300

400

TA

IA

~262

~2.76

Figure 8.1: Development of manual steps over configuration iterations

seen, that the improved process, supported by the prototype, pays off after a little less
than three customization iterations.

An important part to show, that the proposed solution improves the Engineering Process
Selection and Configuration considering a raised efficiency, is that the introduction of
variability models must not over-proportionally increase the maintenance cost in relation
to the savings from the decreasing complexity and effort. Table 7.5 shows and compares
three different examples and sums up how many steps were needed to adapt the ‘solution
set’ for the configuration process in either case of the traditional and the improved
approach. By ‘solution set’ the author understands, in case of the traditional approach
the engineering process regardless whether it was already cloned or adapted in place
of the customized application as well as the collection of services in the platform. In
case of the improved approach, the author means the adaptation of the engineering
process templates, the feature model, and the mapping table. KIK-2.2 a is equal for
both approaches and thus not discussed any further. KI-2.2 b – the addition of a single
service to the platform – and KI-2.2 c – the addition of an engineering process task,
an interface, and two corresponding service implementations – require more steps to be
performed in the improved as in the traditional approach. However, if these numbers
are compared to the decreased steps in the configuration process, the comparison shows,
that the traditional approach outnumbers the improved approach in steps and is hence
inferior. Table 7.5 shows that for the adaptation of the solution set 3 steps in the
traditional approach and 8 steps in the improved approach are needed. In contrast, using
the traditional approach during the configuration process following the description in
Section 7.3, it needs two steps to search the demanded service, one step to find the
correct service call and one step for the configuration of the process task. Summed up,
these are 4 additional steps, which need to be performed in the configuration process in
comparison to the improved approach. Once again, KI-2.2 is defined as the number of

91

8. Discussion and Limitations

steps needed to adapt the underlying solution set. The values for KI-2.2 c – the worst
case – in relation to the additional steps that are needed during configuration shows –
similar to KI-1.1 – that the improved approach outperforms the traditional one after
about three iterations.
In consideration of the second area, which covered the improvement due to a higher level
of automation, Table 7.3 KI-1.2 shows, which compared to the traditional approach
the improved approach offers an essential higher level of automation. In the traditional
approach, no automated tasks were performed. In the improved approach for the first
iteration, which also includes the preparation of the solution set, KI-1.2 shows, that
about a quarter of all steps in the configuration process was automated. Even better, for
the iterations after the first one, approximately two-thirds of all steps are automated.
The third area of improvement, that was motivated in Chapter 3, and takes the quality
mechanisms into account, that can be realized based on the two approaches. While
KI-3.1 examines the number of quality assurance mechanisms that are implemented
out-of-the-box, KI-3.2 represents the number of quality assurance mechanisms that can
easily be implemented to support the approach. For the traditional approach, it can
be seen, that no quality assurance mechanisms whatsoever where implemented – see
Table 7.6 KI-3.1. The quality assurance in the assembly process so far concentrated on
the experience of the application integrators and integration tests, that where run after
the customization. It must, nevertheless, be mentioned, that the customization of such
an integrated tool application often lasted over several months and was frequently but
manually checked. The improved approach provided the automated validation of the
configuration as an automated mechanism for quality assurance, which is only a drop in
the bucket of what would be favored.
If KI-3.2 is investigated, it shows, that for the traditional approach the possibility
to implement additional quality assurance mechanisms is limited. For the improved
approach at least several extension points were found that support the application of
techniques to check the correctness of the intermediate as well as the final results of the
Engineering Process Selection and Configuration.
To summarize, the KPIs and their interpretation unquestionably show that the proposed
solution approach, improves the Engineering Process Selection and Configuration to a
great extent. This holds true if the approach is systematically applied, as the effort of
preparation of the engineering process templates and creation of the feature model should
not be underestimated. However, after only about three platform customizations on the
same solution set, the usage of the solution approach pays off.

8.1.2 RI-3 – Variability modeling for processes and software services

In the context of the discussion, RI-3 is answered before RI-2 as the solution approach
for the latter one is based on the answer to this research issue.
RI-3 investigated how concepts of variability modeling can be utilized for modeling
engineering processes and software systems to allow mapping between variants of each of

92

8.1. Research Issues

these models. To answer this question, it is split into two questions. The first question
considers the software systems that are represented by the services and components of
the tool integration platform. The second considers the engineering processes that exist
in the engineering companies to organize the work.

The following two paragraphs, try to discuss and answer the first of these questions. At
the beginning of this question the first sub-question of RI-1, which parts of the services
vary between the different customizations of the tool integration platform, needed to
be answered. The author found, that the services in the platform are distinguished
based on which interfaces they implement. This distinction can be made because in
OSGi (OSGi) service providers are discovered and resolved based on the interfaces they
implement and also export to provide certain functionality. In an OSGi container, this
means the following. The interface bundles are deployed as independent components.
The service providers implemented the functionality of these interfaces and exported
them by themselves. The container then resolved these dependencies and automatically
linked the service providers to the service consumers. This concept was also applied in
the different customizations of the tool integration platform. The service interfaces were
deployed to the integrated tool applications, and then the service implementations, that
fit the specific problem of the customer were deployed to the customization too.

Having these occurrences of variability in the tool integration platform in mind, the author
investigated related work and discovered, that feature models from the Feature Modeling
(FM) approach provide variability mechanisms that fit this pattern. FM as an approach
to model variability in systems, provided as a method to model variability an artifact
called feature models. This concept fits well because, feature models provide the means
to describe the commonalities and the variabilities of systems, which is very similar to the
services of the platform that share the interface as a description of the functionality, but
vary in methods or implementation. This work, therefore, picked up the concepts of the
feature model and adapted them to its needs, as FM itself provides a limited explanation
on what should be modeled how. This answers the second sub-question of RI-1. The
author defined for this work that the service interfaces are modeled as abstract features
in the feature model. Furthermore, is was defined, that service implementations are
modeled as concrete features that are descendant features of the features that represent
their implemented interfaces. Also, the solution approach assumes, that the dependencies
between the software components are modeled as constraints in the feature model. From
these rules a feature model for tool integration platforms based on the Engineering Service
Bus (EngSB) approach was derived and used in the solution approach.

Considering the second question, raised above, this work examined the engineering
processes and their variability as they occur at industry partners. Especially the SCMP
as engineering process of round-trip engineering (RTE) was taken into consideration,
as it is used in several variations at the industry partner and was already discussed by
Winkler et al. [74]. Picking up the first sub-question of RI-1, which components between
customizations vary, the author identified, that most of the time either engineering
sub-processes differ or, that services called from the engineering processes vary. Based

93

8. Discussion and Limitations

on these findings, a simple variability model for engineering processes based on Business
Process Model and Notation (BPMN) was proposed. Therefore, the engineering processes
were first modeled in BPMN separating the sub-processes from their main processes
and separating them from each other by creating minimally viable sub-processes. These
process fragments were used in the further course as engineering process templates and
together build a catalog of engineering process templates. The calls to sub-processes and
services within the BPMN process templates were replaced by placeholders that followed
a specific convention. Call activities got placeholders with a template keyword prefixed
that refer to a certain set of sub-process templates. Process tasks were enriched with
placeholders that referred to the feature model and were prefixed with an abstract
keyword.

The evaluation showed, that both of these variability models can be used, to develop
a mapping mechanism to increase the efficiency and quality of the Engineering Process
Selection and Configuration as part of the CCP.

8.1.3 RI-2 – Mapping of process variants to software variants

RI-2 aimed to investigate and answer how variants of engineering processes can be used
in the Engineering Process Selection and Configuration phase together with software
service variants, to create fully configured engineering processes. In the solution approach,
the author described a method, how BPMN process templates can be selected and
afterward be mapped and configured to refer to service instances that are modeled in a
feature model. To answer the question in detail, it is split up into three parts: a) how
can engineering process variants be selected with tool support, b) how can the selected
engineering process variants be mapped to software service variants, and c) how can the
resulting engineering process variants be configured.

To answer part a of the question, the proposed approach from Section 6.2 is recalled.
As described, before a first iteration of the selection process can be performed, the
engineering process catalog, containing the process templates, needs to be prepared.
The selection of the engineering process templates is based on an addressing convention,
which utilizes the concepts defined for the process variability model, that allows a tool
to locate the templates. While a very simple convention is proposed in this work to
show the feasibility, a more sophisticated convention is planned for future work. A tool
that supports the convention, in this case, the prototype, reads in the template catalog
and presents the top-level processes to an application integrator, who selects them. In a
subsequent activity, the tool goes through all selected top-level templates, resolves the
referenced sub-process templates and offers them to the application integrator for further
selection.

The concepts to answer part b of the question above, were presented in Section 6.4 and
will be recapped in this paragraph. The feature model for the software services of the tool
integration platform contains abstract and concrete features. While abstract features refer
to interface bundles of the platform, concrete features refer to service implementations. In

94

8.1. Research Issues

the engineering process templates the process tasks were enriched with placeholders, which
referred to the abstract features of the feature model. The mapping of the engineering
process variants to the feature model was proposed as follows. The placeholders from
the engineering processes are collected and written into a basic configuration. This basic
configuration is loaded into the FeatureIDE and completed an application integrator in the
configuration editor of the FeatureIDE with the concrete features. In the background, the
configuration is continuously validated for correctness according to the constraints of the
corresponding feature model. The result is configuration that mapped the process tasks
to the concrete features, which on their side refer to particular service implementations.

Part c of the question is directly tied to part b. From the completed and validated
configuration, resulting from the previous step, the concrete features are taken as input
for the search of their abstract feature ancestors in the XML representation of the
feature model. The values of these abstract ancestors are searched within the engineering
processes that were selected before and changed to process task calls, which directly refer
to the correct service calls. These service calls are again read from a mapping table,
that contains the concrete feature names and their service call reference. The resulting
configured engineering processes as BPMN files are then stored at a location desired by
the application integrator for further use.

To quickly summarize, the last three paragraphs described how variants of engineering
processes are selected, mapped to software component variants and configured with
the correct service calls. The evaluation based on the proposed solution approach and
supported by a prototype demonstrated, that the described method is feasible and
outperforms the traditional approach of the configuration process.

Finally, one question needs to be answered for RI-2, that asks which parts of the
Engineering Process Selection and Configuration still need to be done manually and
which parts were automated. Table 7.2 shows that the following tasks need to be performed
manually: 1. the process selection, which, however, is supported by the prototype that
searches for process templates 2. the selection of the sub-process templates, which is now
also supported by the prototype 3. the aggregation of the sub-process templates to a
combined sub-process, and 4. the service selection during the configuration, which is also
supported by the configuration editor. On the other hand, the following activities were
automated by the solution approach: 1. the search for the services and their alternative
services 2. the resolution of the constraints within the tool integration platform, and 3. the
task configuration of the process tasks in the engineering processes. While this might not
sound as the Engineering Process Selection and Configuration was much improved, the
evaluation shows that, although the engineering process templates need to be prepared
and the feature model needs to be created, the solution approach significantly improved
the traditional approach.

Nevertheless, the proposed and tested solution approach still has a couple of limitations,
that will be discussed in the next section.

95

8. Discussion and Limitations

8.2 Limitations

During the course of the thesis, several limitations of the approach, the prototype, and
the evaluation were found, which are brought up in the following paragraphs. These
limitations could not be covered in the restricted scope of this thesis. However, they can
be addressed in future work (see also Section 9.2 - ‘Future Work’).

8.2.1 Limitations of the Evaluation Procedure

As mentioned in Section 7.3.2 - ‘Measurement of KPIs’ the raw data for the KPIs
was recorded by the author by hand. This was mainly done because the traditional
approach is manually performed and does not allow the implementation of an automated
step-counting mechanism. Furthermore, the CCP was only documented as text without
certain checklists, which could have helped to provide a stricter protocol. Although the
author thoroughly conducted the evaluation and counter-checked the results, the threat
of minors errors, which is a threat to validity, can not be eliminated. However, the author
is aware of this and proposes at least a supervised measurement of the KPIs and an
adaptation of the prototype to automatically count the values for the improved approach.

The improved solution approach was also only tested on the SCMP as a single engineering
process. The SCMP is a process of medium complexity, that uses quite simple sequence
flows. Nevertheless, was directly derived from a real-world example at an industry
partner. In the discussion of this thesis, the author shows, that the proposed solution
approach after several iterations of the CCP is in principle superior to the traditional
approach. However, the author cannot guarantee, that for engineering processes of much
higher complexity or engineering processes that are modeled very differently, and use, for
example, extended message flows, the same holds true.

Furthermore, the evaluation was solely executed and tested on a single customized version
of the AutomationML Hub (AML.hub) as there were limited customized integrated tool
applications available. This as well represents a threat to validity for the evaluation
results and their interpretation. An evaluation of the prototype and the solution approach
on a broader base would back the findings of this thesis.

8.2.2 Manual creation of the Feature Model

As mentioned in Section 7.1.1, the feature model proposed as variability model for the
service components of the tool integration platform needs to be created in advance to
the execution of the proposed approach. From the values of the KPIs introduced in
Section 3.2 and detailed in Section 7.3.2 it can certainly be seen that this part of the
improved approach is by far the one that is associated with the most effort and complexity.
On top of the effort, the preparation of the feature model is the part with the highest
probability of errors as it is performed manually. Even a semi-automated creation of
the feature model based on the software components of the underlying tool integration
platform would largely decrease the manual effort for the solution approach.

96

8.2. Limitations

8.2.3 Variability of Engineering Processes
The proposed variability model for engineering processes is a very simplistic approach,
that takes only the most important types of process variability identified in Schnieders
[62] and Schnieders and Puhlmann [63] into account (see also Section 6.1.2). Several
other sources of variability can be found in engineering and business processes, which
come up in real-world scenarios. This issue impedes the applicability of the solution
approach to a broader field of adaptations of the engineering processes. The proposed
solution approach would benefit from a more sophisticated variability model based on
BPMN . Second, the manual combination of the engineering process templates, as it is
performed in this work, can be tedious and is also a source of error. At least a mechanism
to better assure the quality of the resulting engineering process variants would help the
approach to gain relevance for the industry. If parts of the adaptation could be executed
based on predefined rules, it would be even better for consistent results of this step of
the CCP.

8.2.4 Engineering Process Catalog

For the engineering process templates the creation and usage of a structured catalog
was motivated in Section 6.1 - ‘Process Variability Model’. For the evaluation, described
in Section 7.1.2 the catalog was utterly created using the file system. In a real-world
scenario, this would have several limitations, like the accessibility in a distributed setting,
the traceability of changes and the structured revisioning of process templates, to name
a few. However, several technologies and methods exist to overcome such issues and
create a better system for a structured catalog of process blueprints that is properly
addressable.

8.2.5 Restrictions due to limited Workflow Engine integration

A goal of the thesis was to improve the Engineering Process Selection and Configuration
phase to generate fully configured engineering processes. As mentioned before, fully
configured in this case means, that the engineering processes are correctly configured with
service calls of the same services, which are deployed in the integrated tool application.
Ideally, these engineering processes would have been deployed to the integrated tool
application, in this case, the AML.hub, and executed in the workflow engine within this
application. Due to the limited integration of the workflow engine in the AML.hub, the
configured engineering processes were not be executed within the customized environment.
This would contribute further to show, that the improved configuration process is superior
to the traditional approach. An execution of the generated and configured engineering
processes would additionally increase the quality of the resulting engineering process
variants.

97

CHAPTER 9
Conclusion and Future Work

In the previous chapter, the evaluation from Chapter 7 was discussed in consideration of
the research issues introduced in Chapter 3 and the findings presented. Furthermore, in
the previous chapter, the author described the limitations of the solution approach and
the prototype, that still exist.

This chapter draws a conclusion out of the discussion and findings from Chapter 8 and
presents, based on this thesis, future work that needs to be done.

9.1 Conclusion
Large-scale projects in production systems engineering (PSE), like the planning of hy-
dropower plants, are set in a multidisciplinary tool environment. In such projects,
engineers of diverse domains work together in a combined effort to perform their engineer-
ing tasks. In such environments, various specialized tools deeply-seated in the different
domains determine the engineering processes [11]. Unfortunately, these domain-specific
tools often have quite limited data connectivity capabilities. Project consistency, in such
settings, therefore, requires a continuous artifact exchange [75]. While, the Engineering
Service Bus (EngSB) [5] provides a generic approach to integrate engineering tools and
processes seamlessly, this integration platform requires tailoring to customer specific
needs. However, this Customization and Configuration Process (CCP) is tedious and
error-prone manual work that has to be performed by experts.

This work proposed an approach to improve the traditional and manual approach of
Engineering Process Selection and Configuration by utilizing concepts of Variability
Modeling, especially Feature Modeling (FM), and Process Modeling, especially Business
Process Model and Notation (BPMN). These concepts were utilized for engineering
processes and the software services of tool integration platforms to define a Process
Variability Model and a Platform Variability Model. The introduced models were then

99

9. Conclusion and Future Work

used to propose an approach, which enables a (semi)automated selection of engineering
process templates to build engineering process variants, their mapping to software service
variants and, finally, the configuration of these engineering process variants to deployable
process descriptions. The approach now allows to map engineering process blueprints in
BPMN to service variants, that referenced in a feature model.

In an evaluation based on a real-world use case from an industry partner and using a
prototype developed for this purpose, the solution approach was examined. The tested use
case is one variant of the Signal Change Management Process (SCMP) [74], which is part
of round-trip engineering (RTE) [64], a cyclic development process for iterative refinement,
that is common practice in engineering. The evaluation in this thesis showed that the
proposed method for engineering process and service mapping is feasible. Furthermore,
based on the evaluation results, which were measured for the above-mentioned sample, the
method showed significant better results than the traditional approach of customization
and configuration. This mainly concerns the decreased complexity and amount of working
effort for the Engineering Process Selection and Conclusion phase, that kicks in after
the first iteration of the configuration process. The first iteration is, however, burdened
by the preparation of the engineering process templates and the creation of the feature
model. The second improvement concerns the far better rate between automation and
the increased number of extension points for quality assurance mechanisms, which further
proofs the increase of efficiency and the quality due to the solution approach. It is
expected, that for larger and more complex examples, the solution approach works even
better than for the already evaluated ones.

Nevertheless, due to the limited scope of the work, several topics remained as future
work, which will be outlined in the next section.

9.2 Future Work

The following sections discuss future work, that result from the limitations outlined in
Section 8.2.

9.2.1 Case Study with the Solution Approach

In Section 8.2, the author mentioned the limitation of the evaluation procedure, due to
the examination of the solution approach with the prototype just for a single engineering
process and a single customized integrated tool application. Furthermore, the author
mentioned, that the manual measurement of the raw data for the Key Performance
Indicators (KPIs) is a threat to the validity of the thesis. Future work, for this limitation,
would be a case study with a larger sample of engineering processes as well as a greater
sample of customized applications. Also, a strict evaluation protocol should be developed
that makes the traditional and the manual approach better comparable.

100

9.2. Future Work

9.2.2 (Semi)automated Creation of the Feature Model

One limitation mentioned in Section 8.2 in the previous chapter, concerned the manual
creation of the feature model for the tool integration platform. The discussion in the
previous chapter showed that this task is very labor intensive and prone to errors. The
partially automated creation of the feature model or parts of feature model would further
support the solution approach as a great part of the manual work could be omitted. In
Section 6.3 - ‘ Platform Variability Model’ the author mentioned that the EngSB uses
Maven as build tool, that provides a sophisticated dependency management. Based on
the dependencies between the services organized in Maven modules and Maven as a tool,
an automated creation of the feature model, that is afterward completed by an engineer
familiar with the tool integration platform to omit manual work is in the scope of future
work.

9.2.3 Variability of Engineering Processes

The thesis, in its restricted scope, provided a simple variability model for engineering
processes. A limitation is the manual aggregation of the sub-process templates to a
combined sub-process which can be called with a single reference from the call activities.
The threat is, that, because of missing aggregation rules, engineering processes are
created very differently. A survey by Rosa et al. [58] investigated the topic of Business
Process Families, which introduces different ways to model sets of processes that similar
to each other. Future work would also be, to improve the proposed variability model for
engineering processes by using concepts of the survey.

9.2.4 Execution of Engineering Processes

The limitations discussed in Chapter 8 mentioned that, while the engineering processes
resulting from the improved approach are fully configured in the sense of the thesis,
the engineering processes were not executed in the integration tool application due to
the limited implementation of a BPMN workflow engine in the AutomationML Hub
(AML.hub). An implementation of, for example, the Camunda workflow engine into the
AML.hub and the execution of the engineering processes resulting from customization,
further proof the validity of the solution approach.

9.2.5 Storage of the Process Blueprints in Repositories

The evaluation described in Chapter 7 used the file system to store the engineering process
template catalog. This raised some issues for the usage in a production environment such
as traceability of changes. Modern software engineering used source code repositories,
on the one hand, and binary artifact repositories, on the other hand. The utilization of
a binary artifact repository such as Artifactory1 as engineering process variant catalog
would be an interesting topic to investigate.

1JFrog Artifactory – https://jfrog.com/artifactory/

101

https://jfrog.com/artifactory/

9. Conclusion and Future Work

9.2.6 Implementation of Quality Assurance Mechanisms

In the evaluation of the solution approach and the investigation of KI-3.2, this thesis
shows possible extension points for quality assurance mechanisms. In the future, it
would be possible to investigate these extension points and implement quality assurance
mechanisms that fit these extension points to improve the improved approach further.

102

List of Figures

1.1 Stakeholders and components in the EngSB approach 3
1.2 Steps of building a customized platform 5

2.1 Tools, their data pools and point-to-point (PTP) integration (based on [20] &
[26]) . 12

2.2 EngSB with connectors and workflow engine (based on [3]) 14
2.3 Petri net example in ready-to-fire state (based on [68]) 17
2.4 Event-driven Process Chain example . 17
2.5 Activity diagram example . 19
2.6 BPMN collaboration and process diagram example 20
2.7 BPMN 2.0 symbols (based on [44, 17]) . 21
2.8 Feature model in tree notation - adapted from [18] 25

3.1 IDEF0 of the science contributions of the thesis 31

4.1 Methodology framework (based on [27]) 39

5.1 Round-trip engineering process . 44
5.2 Signal change management process (based on [74]) 48
5.3 Quality assurance and signal selection subsprocess for EPL tool 49
5.4 Quality assurance and signal selection sub-process for OPM tool 50

6.1 Contributions to the solution approach . 53
6.2 Signal change management detail of the platform feature model 65
6.3 Mapping of engineering process activities with software features 69

7.1 Sub-process before separation to minimal processes 76

8.1 Development of manual steps over configuration iterations 91

103

List of Tables

2.1 Decision model as table (based on and adapted from [18] and [61]) 28

7.1 Statistics of the SCMP . 81
7.2 Evaluation measurements for KI-1.1 and KI-1.2 83
7.3 KI-1.1 and KI-1.2 for the traditional and improved approach 85
7.4 KI-2.1 for the traditional and improved approach 85
7.5 KI-2.2 for the traditional and improved approach 86
7.6 KI-3.1 and KI-3.2 for the traditional and improved approach 87

Listings

6.1 calledElement in a callActivity 57
6.2 operationRef in a serviceTask 58
6.3 Interface, service provider and service consumer in OSGi (OSGi) . . . 63
6.4 Detail of the signal change management feature model in XML 67
7.1 Extraction of sub-process template . 77
7.2 Extraction of the abstract feature reference 78
7.3 Retrieval of all call activity starting with template 78
7.4 Enrichment of the call activity . 79
7.5 Retrieval of the ancestor of a concrete feature 79
7.6 Enrichment of the process task . 80

104

Acronyms

AML AutomationML. 15, 46, 47, 49, 52, 62, 66, 74

AML.hub AutomationML Hub. 15, 45–47, 52, 55, 62–64, 74, 80, 81, 87, 96, 97, 101

API Application Programming Interface. 14, 15

ASB Automation Service Bus. 13

BMNS Business Process Management System. 9

BPEL Business Process Execution Language. 19

BPM Business Process Management. 8, 9, 40, 41

BPMI Business Process Management Initiative. 19

BPMN Business Process Model and Notation. 9, 15, 19–23, 55–60, 67–71, 75–78, 80,
94, 95, 97, 99–101, 103

CCP Customization and Configuration Process. 3–8, 24, 31–38, 43, 50, 52, 54, 55, 57,
59–61, 66, 69–73, 75, 77, 80, 83, 88, 89, 94, 96, 97, 99

CID Continuous Integration and Deployment. 33

CSV Comma Separated Value. 2, 47, 48

CVL Common Variability Language. 24

DM Decision Modeling. 24, 27–29, 61, 62

DOPLER Decision-Oriented Product Line Engineering for effective Reuse. 29

EMF Eclipse Modeling Framework. 47

EngSB Engineering Service Bus. 2, 3, 5, 7, 13–15, 31, 32, 45, 53, 54, 61, 62, 64, 67, 73,
93, 99, 101, 103

105

EPC Event-driven Process Chain. 17, 18, 55

ESB Enterprise Service Bus. 2, 13, 14, 53

FM Feature Modeling. 9, 24, 27, 29, 61, 62, 71, 93, 99

FODA Feature-Oriented Domain Analysis. 24, 25

FOP Feature-Oriented Programming. 26

FOSD Feature-Oriented Software Development. 26

JAR JAVA archive. 63

KKS Kraftwerk-Kennzeichensystem. 45–47, 49

KPI Key Performance Indicator. 36, 37, 43, 80, 82, 83, 85, 86, 88–90, 92, 96, 100

MDSE Model Driven Software Engineering. 8, 32

MOF Meta Object Facility. 18

OASIS Organization for the Advancement of Structured Information Standards. 19

OCL Object Constraint Language. 18

OESB Open Engineering Service Bus. 2, 15, 46, 62

OMG Object Management Group. 18, 19, 24

OSGi OSGi. 2, 15, 46, 55, 63, 64, 67, 74, 93, 104

PLE Product Line Engineering. 23

PSE production systems engineering. 1, 2, 11–13, 15, 31, 43–45, 51, 53, 59, 99

PTP point-to-point. 11–13, 103

RTE round-trip engineering. 44, 45, 47, 48, 51–53, 73, 93, 100

SCMP Signal Change Management Process. 48, 50, 58, 59, 73, 74, 80, 81, 84, 87, 90,
93, 96, 100, 104

SPF Software Product Family. 7

SPL Software Product Line. 7–9, 23, 24, 26, 27

SPLE Software Product Line Engineering. 23, 24

106

UML Unified Modeling Language. 18, 55

VM Variability Modeling. 7–9, 23, 24, 35, 40, 41

WfMC Workflow Management Coalition. 19

XMI XML Metadata Interchange. 18, 47

XPDL XML Process Definition Language. 19

107

Bibliography

[1] S. Adam, N. Riegel, T. Jeswein, M. Koch, and S. Imal. Studie-BPM Suites 2013.
Fraunhofer IESE, SP Consulting GmbH, 2013.

[2] C. Ayora, V. Torres, V. Pelechano, and G. H. Alférez. Applying CVL to Business
Process Variability Management. In Proceedings of the VARiability for You Workshop:
Variability Modeling Made Useful for Everyone, VARY ’12, pages 26–31, New York,
NY, USA, 2012. ACM. ISBN 978-1-4503-1809-9. doi: 10.1145/2425415.2425421.
URL http://doi.acm.org/10.1145/2425415.2425421.

[3] S. Biffl and A. Schatten. A Platform for Service-Oriented Integration of Software
Engineering Environments. In Proceedings of the 2009 conference on New Trends
in Software Methodologies, Tools and Techniques (SoMeT 09), pages 75–92, Par-
gue, CZE, 2009. IOS Press. URL http://dl.acm.org/citation.cfm?id=
1659308.1659316.

[4] S. Biffl, R. Mordinyi, and A. Schatten. A Model-Driven Architecture Approach
Using Explicit Stakeholder Quality Requirement Models for Building Dependable In-
formation Systems. In Fifth International Workshop on Software Quality (WoSQ’07:
ICSE Workshops 2007), Los Alamitos, CA, USA, 2007. IEEE Computer Society.
ISBN 0-7695-2959-3. doi: 10.1109/WOSQ.2007.1.

[5] S. Biffl, A. Schatten, and A. Zoitl. Integration of heterogeneous engineer-
ing environments for the automation systems lifecycle. In 2009 7th IEEE
International Conference on Industrial Informatics, pages 576–581. IEEE,
June 2009. ISBN 978-1-4244-3759-7. doi: 10.1109/INDIN.2009.5195867.
URL http://ieeexplore.ieee.org/ielx5/5175248/5191764/
05195867.pdf?tp=&arnumber=5195867&isnumber=5191764http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5195867.

[6] S. Biffl, R. Mordinyi, and T. Moser. Automated Derivation of Configurations for
the Integration of Software(+) Engineering Environments. In Proceedings of the
1st International Workshop on Automated Configuration and Tailoring of Applica-
tions (ACoTA 2010), pages 6–13, 2010. URL http://publik.tuwien.ac.at/
files/PubDat_187568.pdf.

109

http://doi.acm.org/10.1145/2425415.2425421
http://dl.acm.org/citation.cfm?id=1659308.1659316
http://dl.acm.org/citation.cfm?id=1659308.1659316
http://ieeexplore.ieee.org/ielx5/5175248/5191764/05195867.pdf?tp=&arnumber=5195867&isnumber=5191764 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5195867
http://ieeexplore.ieee.org/ielx5/5175248/5191764/05195867.pdf?tp=&arnumber=5195867&isnumber=5191764 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5195867
http://ieeexplore.ieee.org/ielx5/5175248/5191764/05195867.pdf?tp=&arnumber=5195867&isnumber=5191764 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5195867
http://publik.tuwien.ac.at/files/PubDat_187568.pdf
http://publik.tuwien.ac.at/files/PubDat_187568.pdf

[7] S. Biffl, R. Mordinyi, and T. Moser. Integriertes Engineering mit Automation Service
Bus - Paralleles Engineering mit heterogenen Werkzeugen. atp edition, 12:36–43,
2012.

[8] S. Biffl, R. Mordinyi, and T. Moser. Anforderungsanalyse für das integrierte
Engineering - Mechanismen und Bedarfe aus der Praxis. atp edition, 5:28–35,
2012.

[9] J. Bosch. Software Product Line Engineering. In R. Capilla, J. Bosch, and K.-C. Kang,
editors, Systems and Software Variability Management SE - 1, pages 3–24. Springer
Berlin Heidelberg, 2013. ISBN 978-3-642-36582-9. doi: 10.1007/978-3-642-36583-6\
_1. URL http://dx.doi.org/10.1007/978-3-642-36583-6_1.

[10] M. Broy. Software Quality: From Requirements to Architecture. Software Quality.
Increasing Value in Software and . . . , pages 1–2, 2013. ISSN 18651348. doi:
10.1007/978-3-642-35702-2_1. URL http://link.springer.com/chapter/
10.1007/978-3-642-35702-2_1.

[11] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, and D. Ratiu. Seamless
model-based development: From isolated tools to integrated model engineering
environments. Proceedings of the IEEE, 98(4):526–545, 2010. ISSN 00189219. doi:
10.1109/JPROC.2009.2037771.

[12] S. N. Cant, D. R. Jeffery, and B. Henderson-Sellers. A conceptual model of
cognitive complexity of elements of the programming process. Information and
Software Technology, 37(7):351–362, 1995. ISSN 0950-5849. doi: http://dx.doi.
org/10.1016/0950-5849(95)91491-H. URL http://www.sciencedirect.com/
science/article/pii/095058499591491H.

[13] J. Cardoso. Approaches to Compute Workflow Complexity. In F. Leymann, W. Reisig,
S. R. Thatte, and W. van der Aalst, editors, The Role of Business Processes in Service
Oriented Architectures, volume 06291 of Dagstuhl Seminar Proceedings, pages 16–21,
Dagstuhl, Germany, 2006. Internationales Begegnungs- und Forschungszentrum
f{ü}r Informatik (IBFI), Schloss Dagstuhl, Germany. ISBN 1862-4405. URL
http://drops.dagstuhl.de/opus/volltexte/2006/821/.

[14] J. S. Cardoso. Business Process Control-Flow Complexity: Metric, Evaluation, and
Validation. Int. J. Web Service Res., 5(2):49–76, 2008. doi: 10.4018/jwsr.2008040103.
URL https://doi.org/10.4018/jwsr.2008040103.

[15] J. S. Cardoso, J. Mendling, G. Neumann, and H. A. Reijers. A Discourse on
Complexity of Process Models. In J. Eder and S. Dustdar, editors, Business
Process Management Workshops, {BPM} 2006 International Workshops, BPD,
BPI, ENEI, GPWW, DPM, semantics4ws, Vienna, Austria, September 4-7, 2006,
Proceedings, volume 4103 of Lecture Notes in Computer Science, pages 117–128.
Springer, 2006. ISBN 3-540-38444-8. doi: 10.1007/11837862_13. URL https:
//doi.org/10.1007/11837862{_}13.

110

http://dx.doi.org/10.1007/978-3-642-36583-6_1
http://link.springer.com/chapter/10.1007/978-3-642-35702-2_1
http://link.springer.com/chapter/10.1007/978-3-642-35702-2_1
http://www.sciencedirect.com/science/article/pii/095058499591491H
http://www.sciencedirect.com/science/article/pii/095058499591491H
http://drops.dagstuhl.de/opus/volltexte/2006/821/
https://doi.org/10.4018/jwsr.2008040103
https://doi.org/10.1007/11837862{_}13
https://doi.org/10.1007/11837862{_}13

[16] D. A. Chappell. Enterprise Service Bus. O’Reilly, 2004. ISBN 978-0-596-00675-4.

[17] M. Chinosi and A. Trombetta. BPMN: An introduction to the standard. Computer
Standards & Interfaces, 34(1):124–134, 2012. ISSN 0920-5489. doi: https://doi.org/
10.1016/j.csi.2011.06.002. URL http://www.sciencedirect.com/science/
article/pii/S0920548911000766.

[18] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. Wasowski. Cool Features
and Tough Decisions : A Comparison of Variability Modeling Approaches. 6th Int’l
Workshop on Variability Modelling of Software-intensive Systems (VaMos’12), pages
173–182, 2012. doi: 10.1145/2110147.2110167.

[19] D. Dhungana, P. Grünbacher, and R. Rabiser. The DOPLER meta-tool for decision-
oriented variability modeling: A multiple case study. Automated Software Engineer-
ing, 18(1):77–114, 2011. ISSN 09288910. doi: 10.1007/s10515-010-0076-6.

[20] R. Drath. Datenaustausch in der Anlagenplanung mit AutomationML. Springer-
Verlag Berlin Heidelberg, 1 edition, 2010. ISBN 9783642046735. doi: 10.1007/
978-3-642-04674-2.

[21] P. M. Duvall, S. Matyas, and A. Glover. Continuous integration: improving software
quality and reducing risk. Pearson Education, 2007.

[22] R. T. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, 2000. AAI9980887.

[23] S. Fischer, L. Linsbauer, R. E. Lopez-Herrejon, and A. Egyed. Enhancing Clone-
and-Own with Systematic Reuse for Developing Software Variants. In 2014 IEEE
International Conference on Software Maintenance and Evolution, pages 391–400,
sep 2014. doi: 10.1109/ICSME.2014.61.

[24] M. Fowler and M. Foemmel. Continuous integration. Thought-Works)
http://www.thoughtworks.com/Continuous Integration.pdf, 122, 2006.

[25] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. Dynamic Software Product
Lines. In R. Capilla, J. Bosch, and K.-C. Kang, editors, Systems and Software
Variability Management SE - 1, pages 253–260. Springer Berlin Heidelberg, 2013.
ISBN 978-3-642-36582-9. doi: 10.1007/978-3-642-36583-6. URL http://link.
springer.com/10.1007/978-3-642-36583-6.

[26] R. Heidel. Industrie 4.0: Ohne Normung geht es nicht. IEC TC 65: Industrial-process
measurement, control and automation. Blomberg, oct 2014.

[27] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design Science in Information
Systems Research. Design Science in IS Research MIS Quarterly, 28(1):75–105,
2004. ISSN 02767783. doi: 10.2307/25148625.

111

http://www.sciencedirect.com/science/article/pii/S0920548911000766
http://www.sciencedirect.com/science/article/pii/S0920548911000766
http://link.springer.com/10.1007/978-3-642-36583-6
http://link.springer.com/10.1007/978-3-642-36583-6

[28] G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003. ISBN 0321200683.

[29] IEC. IEC 62714-1:2014 - Engineering data exchange format for use in industrial
automation systems engineering - Automation markup language - Part 1: Ar-
chitecture and general requirements, 2014. URL https://webstore.iec.ch/
publication/7388. [Online; accessed 2017-10-05].

[30] IEC. IEC 62714-2:2015 - Engineering data exchange format for use in industrial
automation systems engineering - Automation markup language - Part 2: Role
class libraries, 2015. URL https://webstore.iec.ch/publication/22030.
[Online; accessed 2017-10-05].

[31] IEC. IEC 62714-3:2017 - Engineering data exchange format for use in industrial au-
tomation systems engineering - Automation markup language - Part 3: Geometry and
kinematics, 2017. URL https://webstore.iec.ch/publication/34158.
[Online; accessed 2017-10-05].

[32] ISO. ISO 9000:2015 - Quality management systems - Fundamentals and vo-
cabulary, 2015. URL https://www.iso.org/obp/ui/#iso:std:iso:9000:
ed-4:v1:en. [Online; accessed 2017-10-05].

[33] ISO. ISO 9001:2015 - Quality management systems - Requirements, 2015. URL
https://www.iso.org/obp/ui/#iso:std:iso:9001:ed-5:v1:en. [On-
line; accessed 2017-10-05].

[34] K. C. . Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report November,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, 1990.

[35] K. C. Kang and H. Lee. Variability modeling. In Systems and Software Variability
Management, pages 25–42. Springer, 2013.

[36] C. Kastner, T. Thum, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and S. Apel.
FeatureIDE: A Tool Framework for Feature-oriented Software Development. In
Proceedings of the 31st International Conference on Software Engineering, ICSE
’09, pages 611–614, Washington, DC, USA, 2009. IEEE Computer Society. ISBN
978-1-4244-3453-4. doi: 10.1109/ICSE.2009.5070568. URL http://dx.doi.org/
10.1109/ICSE.2009.5070568.

[37] K. Kruczynski. Business process modelling in the context of soa–an empirical study
of the acceptance between epc and bpmn. World review of science, technology and
sustainable development, 7(1-2):161–168, 2010.

[38] S. T. March and G. F. Smith. Design and natural science research on information
technology. Decision Support Systems, 15(4):251–266, 1995. ISSN 01679236. doi:
10.1016/0167-9236(94)00041-2.

112

https://webstore.iec.ch/publication/7388
https://webstore.iec.ch/publication/7388
https://webstore.iec.ch/publication/22030
https://webstore.iec.ch/publication/34158
https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-4:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-4:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9001:ed-5:v1:en
http://dx.doi.org/10.1109/ICSE.2009.5070568
http://dx.doi.org/10.1109/ICSE.2009.5070568

[39] R. McCabe, G. Campbell, N. Burkhard, S. Wartik, J. O’Connor, J. Valent, and
J. Facemire. Reuse-driven software processes guidebook. techreport SPC-92019-CMC,
Version 02.00.03, Software Productivity Consortium, Nov. 1993.

[40] J. Mendling, G. Neumann, and M. Nüttgens. A Comparison of XML Interchange
Formats for Business Process Modelling. In EMISA, volume 56, pages 129–140,
2004.

[41] R. Mordinyi, T. Moser, E. Kühn, S. Biffl, and A. Mikula. Foundations for a Model-
Driven Integration of Business Services in a Safety-critical Application Domain. In
Proceedings of the 35th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA 2009), pages 267–274. IEEE Computer Society, 2009. ISBN
978-0-7695-3784-9. doi: 10.1109/SEAA.2009.19. URL http://publik.tuwien.
ac.at/files/PubDat_179464.pdf.

[42] T. Moser and S. Biffl. Semantic Integration of Software and Systems Engineering
Environments. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), 42(1):38–50, jan 2012. ISSN 1094-6977. URL http://
dblp.uni-trier.de/db/journals/tsmc/tsmcc42.html{#}MoserB12.

[43] T. Moser, R. Mordinyi, A. Mikula, and S. Biffl. Efficient Integration of Complex
Information Systems in the ATM Domain with Explicit Expert Knowledge Models.
In Complex Intelligent Systems and Their Applications, pages 1–19. Springer-Verlag,
New York, 2010. ISBN 978-1-4419-1635-8. doi: 10.1007/978-1-4419-1636-5\{_\}1.
URL http://publik.tuwien.ac.at/files/PubDat_192639.pdf.

[44] OMG. Business Process Model and Notation (BPMN), Version 2.0, Jan. 2011. URL
http://www.omg.org/spec/BPMN/2.0/. [Online; accessed 2017-10-05].

[45] OMG. Common Variability Language (CVL), OMG Revised Submission,
Aug. 2012. URL http://www.omgwiki.org/variability/lib/exe/fetch.
php?media=cvl-revised-submission.pdf. [Online; accessed 2017-10-05].

[46] OMG. Object constraint language (ocl), version 2.4, Feb. 2014. URL http:
//www.omg.org/spec/OCL/2.4/. [Online; accessed 2017-10-11].

[47] OMG. Unified modeling language (uml), version 2.5, Mar. 2015. URL http:
//www.omg.org/spec/UML/2.5/. [Online; accessed 2017-10-11].

[48] OMG. Xml metadata interchange (xmi), version 2.5.1, June 2015. URL http:
//www.omg.org/spec/XMI/2.5.1/. [Online; accessed 2017-10-11].

[49] OMG. Meta object facility (mof), version 2.5.1, Nov. 2016. URL http://www.
omg.org/spec/MOF/2.5.1/. [Online; accessed 2017-10-11].

[50] OMG. Decision Model and Notation (DMN), Version 1.1, June 2016. URL http:
//www.omg.org/spec/DMN/1.1/. [Online; accessed 2017-10-05].

113

http://publik.tuwien.ac.at/files/PubDat_179464.pdf
http://publik.tuwien.ac.at/files/PubDat_179464.pdf
http://dblp.uni-trier.de/db/journals/tsmc/tsmcc42.html{#}MoserB12
http://dblp.uni-trier.de/db/journals/tsmc/tsmcc42.html{#}MoserB12
http://publik.tuwien.ac.at/files/PubDat_192639.pdf
http://www.omg.org/spec/BPMN/2.0/
http://www.omgwiki.org/variability/lib/exe/fetch.php?media=cvl-revised-submission.pdf
http://www.omgwiki.org/variability/lib/exe/fetch.php?media=cvl-revised-submission.pdf
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/XMI/2.5.1/
http://www.omg.org/spec/XMI/2.5.1/
http://www.omg.org/spec/MOF/2.5.1/
http://www.omg.org/spec/MOF/2.5.1/
http://www.omg.org/spec/DMN/1.1/
http://www.omg.org/spec/DMN/1.1/

[51] OMG. A uml action language: Action language for foundational uml (alf), version
1.1, July 2017. URL http://www.omg.org/spec/ALF/1.1/. [Online; accessed
2017-10-11].

[52] OMG. Semantics of a foundational subset for executable uml models (fuml), version
1.3, July 2017. URL http://www.omg.org/spec/FUML/1.3/. [Online; accessed
2017-10-11].

[53] J. A. Pereira, S. Krieter, J. Meinicke, R. Schröter, G. Saake, and T. Leich. Fea-
tureIDE: Scalable Product Configuration of Variable Systems. In Proceedings of the
15th International Conference on Software Reuse: Bridging with Social-Awareness -
Volume 9679, ICSR 2016, pages 397–401, New York, NY, USA, 2016. Springer-Verlag
New York, Inc. ISBN 978-3-319-35121-6. doi: 10.1007/978-3-319-35122-3_27. URL
https://doi.org/10.1007/978-3-319-35122-3{_}27.

[54] M. Petritsch. Process and product analysis in multidisciplinary, heterogeneous
engineering environments. Master’s thesis, TU Wien, Mar. 2016.

[55] C. Prehofer. Feature-oriented programming: A fresh look at objects, pages 419–443.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1997. ISBN 978-3-540-69127-3. doi:
10.1007/BFb0053389. URL https://doi.org/10.1007/BFb0053389.

[56] J. Recker, J. Mendling, W. Van Der Aalst, and M. Rosemann. Model-driven
enterprise systems configuration. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
4001 LNCS:369–383, 2006. ISSN 03029743. doi: 10.1007/11767138_25.

[57] A. Reeve. Managing data in motion: Data integration best practice techniques and
technologies. Morgan Kaufmann, 2013. ISBN 9780123971678.

[58] M. L. Rosa, W. M. P. Van Der Aalst, M. Dumas, and F. P. Milani. Business Process
Variability Modeling: A Survey. ACM Comput. Surv., 50(1):2:1—-2:45, mar 2017.
ISSN 0360-0300. doi: 10.1145/3041957. URL http://doi.acm.org/10.1145/
3041957.

[59] M. Rosemann. Potential pitfalls of process modeling: part A. Business Proc.
Manag. Journal, 12(2):249–254, 2006. doi: 10.1108/14637150610657567. URL
https://doi.org/10.1108/14637150610657567.

[60] A.-W. Scheer, O. Thomas, and O. Adam. Process Modeling Using Event-Driven
Process Chains. In M. Dumas, W. M. P. Van Der Aalst, and A. H. M. Ter Hofstede,
editors, Process-Aware Information Systems: Bridging People and Software Through
Process Technology. Wiley, 2005. ISBN 978-0-471-66306-5.

[61] K. Schmid and I. John. A customizable approach to full lifecycle variability manage-
ment. Science of Computer Programming, 53(3):259–284, 2004. ISSN 0167-6423. doi:
https://doi.org/10.1016/j.scico.2003.04.002. URL http://www.sciencedirect.
com/science/article/pii/S0167642304000929.

114

http://www.omg.org/spec/ALF/1.1/
http://www.omg.org/spec/FUML/1.3/
https://doi.org/10.1007/978-3-319-35122-3{_}27
https://doi.org/10.1007/BFb0053389
http://doi.acm.org/10.1145/3041957
http://doi.acm.org/10.1145/3041957
https://doi.org/10.1108/14637150610657567
http://www.sciencedirect.com/science/article/pii/S0167642304000929
http://www.sciencedirect.com/science/article/pii/S0167642304000929

[62] A. Schnieders. Variability mechanism centric process family architectures. In 13th
Annual IEEE International Symposium and Workshop on Engineering of Computer-
Based Systems (ECBS’06), pages 10 pp.–298, mar 2006. doi: 10.1109/ECBS.2006.72.

[63] A. Schnieders and F. Puhlmann. Variability Mechanisms in E-Business Process
Families. In W. Abramowicz and H. C. Mayr, editors, Business Information Systems,
9th International Conference on Business Information Systems, {BIS} 2006, May 31 -
June 2, 2006, Klagenfurt, Austria, volume 85 of LNI, pages 583–601, Klagenfurt, 2006.
GI. ISBN 3-88579-179-X. URL http://subs.emis.de/LNI/Proceedings/
Proceedings85/article4299.html.

[64] D. Schreiner. Component Based Communication Middleware for AUTOSAR. Frame-
work, (9026735), 2009.

[65] Software Engineering Institute. Software product lines, May 2014. URL https:
//www.sei.cmu.edu/productlines/. [Online; accessed 2017-11-28].

[66] T. Thum, C. Kastner, S. Erdweg, and N. Siegmund. Abstract features in feature
modeling. In Software Product Line Conference (SPLC), 2011 15th International,
pages 191–200. IEEE, 2011.

[67] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich. FeatureIDE:
An Extensible Framework for Feature-oriented Software Development. Sci. Comput.
Program., 79:70–85, jan 2014. ISSN 0167-6423. doi: 10.1016/j.scico.2012.06.002.
URL http://dx.doi.org/10.1016/j.scico.2012.06.002.

[68] W. M. P. Van Der Aalst and K. M. Van Hee. Business process redesign: A Petri-
net-based approach. Computers in industry, 29(1):15–26, 1996.

[69] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P.
Barros. Workflow Patterns. Distrib. Parallel Databases, 14(1):5–51, jul 2003. ISSN
0926-8782. doi: 10.1023/A:1022883727209. URL https://doi.org/10.1023/A:
1022883727209.

[70] VGB. Kks kraftwerk-kennzeichensystem, Jan. 2010. URL https://www.vgb.
org/shop/b105.html. [Online; accessed 2017-10-11].

[71] S. Walraven and P. Verbaeten. AO middleware supporting variability and dynamic
customization of security extensions in the ORB layer. Companion ’08 Proceedings
of the ACM/IFIP/USENIX Middleware ’08 Conference Companion, pages 121 –
123, 2008. doi: 10.1145/1462735.1462771. URL http://dl.acm.org/citation.
cfm?id=1462771.

[72] F. Waltersdorfer, T. Moser, A. Zoitl, and S. Biffl. Version management and con-
flict detection across heterogeneous engineering data models. In 2010 8th IEEE
International Conference on Industrial Informatics, pages 928–935, July 2010. doi:
10.1109/INDIN.2010.5549617.

115

http://subs.emis.de/LNI/Proceedings/Proceedings85/article4299.html
http://subs.emis.de/LNI/Proceedings/Proceedings85/article4299.html
https://www.sei.cmu.edu/productlines/
https://www.sei.cmu.edu/productlines/
http://dx.doi.org/10.1016/j.scico.2012.06.002
https://doi.org/10.1023/A:1022883727209
https://doi.org/10.1023/A:1022883727209
https://www.vgb.org/shop/b105.html
https://www.vgb.org/shop/b105.html
http://dl.acm.org/citation.cfm?id=1462771
http://dl.acm.org/citation.cfm?id=1462771

[73] S. A. White. Process modeling notations and workflow patterns. Workflow handbook,
pages 265–294, 2004.

[74] D. Winkler, T. Moser, R. Mordinyi, S. W. D. Sunindyo, and S. Biffl. Engineering
object change management process observation in distributed automation systems
projects. In 18th EuroSPI Conference, 2011. URL http://www.ifs.tuwien.
ac.at/~mordinyi/papers/2011eurospi.pdf.

[75] D. Winkler, S. Biffl, and H. Steininger. Integration von heterogenen Engineering
Daten mit AutomationML und dem AML.hub: Konsistente Datenüber Fachbere-
ichsgrenzen hinweg. develop3 systems engineering, (3):62–64, 2015.

[76] D. Winkler, R. Mordinyi, and S. Biffl. Qualitätssicherung in heterogenen und
verteilten Entwicklungsumgebungen für industrielle Produktionssysteme, pages 259–
278. Springer Berlin Heidelberg, Berlin, Heidelberg, 2017. ISBN 978-3-662-53248-
5. doi: 10.1007/978-3-662-53248-5_89. URL https://doi.org/10.1007/
978-3-662-53248-5{_}89.

116

http://www.ifs.tuwien.ac.at/~mordinyi/papers/2011eurospi.pdf
http://www.ifs.tuwien.ac.at/~mordinyi/papers/2011eurospi.pdf
https://doi.org/10.1007/978-3-662-53248-5{_}89
https://doi.org/10.1007/978-3-662-53248-5{_}89

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Structure of the Work

	Related Work
	Engineering Tool Integration
	Process Modeling
	Variability Modeling

	Research Issues
	Research Issues
	Evaluation Criteria

	Methodology
	Use Case
	Round-trip Engineering
	Round-trip Engineering in Practice
	Signal Change Management Process
	Signal Change Management Process Customizations
	Summary

	Solution Approach
	Process Variability Model
	Engineering Process Selection
	Platform Variability Model
	Mapping of Engineering Processes to Software Variants
	Improved Customization and Configuration Process
	Summary

	Evaluation
	Preparation of the Evaluation
	Prototype for the Evaluation
	Evaluation Procedure
	Evaluation Results
	Summary

	Discussion and Limitations
	Research Issues
	Limitations

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Listings
	Acronyms
	Bibliography

