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Abstract
This thesis investigates the effect of rising longevity on the individual’s decision of optimal
education, called Ben-Porath effect and the consequences on the optimal retirement age.
Overlapping generations models with three periods: childhood, working age and old age,
are suitable for modeling the human life cycle, since the transition of life cycles can be
defined in line with individual decisions to optimize the lifetime utility. But also models
with continuous and discrete flows of consumption and utility are investigated in this
thesis. It will be shown that self fulfilling prophecies can occur in an economy that
follows the Ben-Porath effect. The uncertainty of lifetime has a considerable impact on
the dynamics of the Ben-Porath effect. Survival probabilities have strongly increased in
the middle and old age during the last decades and lead to an increase in life expectancy.
The Ben-Porath effect also depends on the change of age specific survival probabilities
significantly. It can be shown as well, that the conditional probability to die at age t,
given the survival until age t, called Hazard rate and conditions of living (like health
and family circumstances) influence the Ben-Porath effect. Additionally, as the level of
education affects the individual lifetime earnings and lifetime labor supply, it is generally
necessary to investigate the effects of rising longevity on the retirement age at the same
time.

Keywords: Longevity, optimal education, retirement age, uncertainty of lifetime, Haz-
ard rate.
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1 Motivation
Longevity, the duration of live, has seen a magnificent increase throughout the last
decades. This circumstance can be causally linked with scientific advances in medical
assistance. It has been a key point of demographic research already for many years. In-
creasing longevity affects societies in many different ways and can result in a significant
change of the human life course. A longer life expectancy allows human beings to spend
more time in different life cycle stages. In this thesis the effects of longevity on the opti-
mal individuals’ decisions to spend time or money for their education will be investigated
and furthermore implications on the macroeconomic level will be studied. This is of great
importance for academic research, policy and insurance industry, as longevity has been
one of the biggest demographic developments during the last century and could lead to
substantial changes in the way how lives are organized in the future.
Figure 1.1 illustrates the increasing life expectancy in Austria from 1970 until 2016 for men
and women separately as well as the overall life expectancy throughout the population.
In general, women have a higher life expectancy than men. It is often argued that women
have a higher individual risk aversion factor and consequently live longer than men. It
can be seen in Figure 1.1, that the overall life expectancy at birth has risen from 70 years
in 1971 to nearly 82 years in 2016. Similar figures can be seen in other highly developed
countries. Especially the survival probabilities at middle and old age have increased
throughout the last decades, which will be crucial for the investigations in this thesis.

Figure 1.1: Own Visualization: Development of life expectancy in Austria. Source of
data: Statistik Austria: Lebenserwartung bei der Geburt 1970 bis 2016 nach
Bundesländern und Geschlecht (2017).
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1 Motivation

In order to study the effects of rising longevity on economic variables, the human life
course is often divided into three periods: childhood, working age and old age. It is
regularly assumed that the first period of life is used for education. Each individual
thereby develops her or his own stock of human capital. In the second period of life this
stock of human capital usually affects the wage rate positively. The old age is mostly
assumed to be the retirement period of the life cycle. Overlapping Generation Models
(see Appendix) are very suitable for modeling this structure.
From an economic point of view it is interesting to investigate, whether increasing life
expectancy results in higher human capital accumulation. Ben-Porath (1967) first in-
vestigated the production of human capital considering life cycle earnings. The idea
that rising longevity affects the optimal education choice of individuals positively, what
consequently leads to increased levels of human capital, is nowadays called Ben-Porath
effect. This argument can be formulated in the following way: If individuals are higher
educated, they earn more money in their working period. Consequently they can afford
more consumption throughout their whole life. Due to a higher life expectancy the rate
of return on investments in education increases, since individuals have more time to use
their stock of human capital to work.
Although a higher human capital intuitively could increase economic growth, this effect
is not always proven empirically. Other effects of rising longevity, for example higher
or lower savings, do have an impact on economic growth as well. Bloom, Canning, and
Sevilla (2004) show that a 5-year increase in life expectancy generates a 21 % rise of the
economic growth rate. Additionally one can argue that the positive Ben-Porath effect
can only occur as long as individuals extend their working period as a result of increased
longevity, since only in this case the rate of return on investments in education increases
significantly as well.
Taking a closer look at longevity in our society, studies show, that the probabilities to
survive another year at certain ages have increased more than in other stages of the
live course. Throughout the last decades the probabilities to survive have increased
mainly in the mid-life and old age periods, whereas they have stayed almost constant
in the childhood (after the decrease of infant mortality). This process if often called
rectangularization of the survival distribution function. Cervellati and Sunde (2013)
show that the effects of increased longevity crucially depend on age specific survival
probabilities and on the amount of life-time labor supply. The authors of this paper
show, that age specific survival probabilities (in the working age) affect the individual
decision on the optimal education period. On the one hand the rise in survival conditions
affect the expected rate of return of investment in education, on the other hand the
opportunity costs of staying in school an additional period rise as well.
Investigating the effect of longevity on human capital accumulation, it is important to
consider its repercussion on life expectancy as well. One can argue, that better educated
people have a more healthful way of living, therefore have an increased life expectancy
and thus again are better educated. Figure 1.2 shows the effects, that will be investigated
in this thesis. The effect of longevity on education (Ben-Porath effect) will be the key
part of this thesis. Different impacts of the amount of education will be discussed. It
is often assumed that the amount of education results in an individual level of human
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1 Motivation

capital, that can be aggregated in a closed economy to its total amount of human capital.
As discussed above it seems plausible to assume that the total amount of human capital
affects the realized longevity.

Figure 1.2: Longevity, Education and Human Capital.

Concerning the studies on an optimal education choice, the decay of human capital is of
vital importance. In almost all overlapping generations models with human capital the
first period of life of an agent is used to build up human capital. This stock of knowledge
is crucial for the amount of wages in the second period of life. In the third period of
life, the human capital, that was built up in the first period, is already partially decayed.
This decay is considerable for the rate of return of investments in human capital, if the
working period is not fixed (endogenous retirement age).
Additionally the total working period or the total labor supply of individuals will be
considered. An increase of the length of life does not automatically lead to an increase of
the working period, as studies like Hazan (2009) show. Therefore the optimal retirement
age has to be taken into consideration as well in order to investigate the Ben-Porath
effect. In fact the total human life course could change as a result of rising longevity.
In Lee and Goldstein (2003), the authors describe the effects of rising longevity on the
human life course. They define the concept of proportional rescaling: As a result of
rising life expectancy, every life cycle stage and transition of the life cycle expands in
proportion to the increased life expectancy. They point out that proportional rescaling
might be realized in some aspects of life, but it clearly does not hold for all aspects.
However it seems a natural way of rescaling the life cycle as a result of increased life
expectancy and can be seen as a benchmark option.
Lee and Goldstein distinguish between strong and weak proportional rescaling. In the
strong form of proportional rescaling, rising longevity results in an adaption of the dis-
tribution of the timing of events. This means for example, that not only the mean age of
giving birth increases, but also the spread around the mean age of giving birth increases
proportionally to the increase of life expectancy. On the contrary, if rising longevity is
only accompanied by an increase of the mean age of timings, but not by an increase of
the spread of timings, the rescaling is called to be weak.
Concerning strong proportional rescaling of the life cycle, it has to be distinguished
between stock and flow variables. The consumption per year, wage rate, interest rate,
knowledge acquisition are flow variables all measured per unit of time. For example
human capital and total lifetime utility are stock variables on the other side. Strong
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1 Motivation

proportional rescaling can either be stock-constrained or flow-constrained. Figure 1.3
visualizes the effects of proportional rescaling on stock and flow variables, where Figures
1.3 (a) and (b) show the effects of strong proportional rescaling and Figures 1.3 (c) and (d)
show the effects of weak proportional rescaling. These Figures visualize a hypothetical
distribution of the age of women, when they give birth. Under strong proportional
rescaling the mean age and the spread around the mean age of giving birth increase
(double in this example) as a result of increased (doubled in this example) life expectancy.
This leads to a doubled fertility in total. Under weak proportional rescaling only the mean
age of giving birth increases (doubles in this example) as a result of increased (doubled in
this example) life expectancy, but the spread stays at the same level. The total fertility
stays at the same level under weak proportional rescaling.

(a) Strong proportional rescaling: rate change (b) Strong proportional rescaling: stock develop-
ment change

(c) Wtrong proportional rescaling: rate change (d) Weak proportional rescaling: stock develop-
ment change

Figure 1.3: Own Visualization: Strong and weak proportional rescaling of the life cycle.
Change in flow and stock variables. Source: Lee and Goldstein (2003)

Stock-constrained strong proportional rescaling means that a certain stock has the same
level after the rescaling process. This means for example that the total lifetime earnings
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1 Motivation

stay at the same level, although the life cycle stage of working has increased in proportion
to the increased life expectancy. However, this implies that the wage rate measured in the
same unit of time has decreased. In fact, stock-constrained strong proportional rescaling
of the life cycle always goes in hand with a decrease of flow variables. Figures 1.4 (a) and
(b) illustrate stock-constraint strong proportional rescaling.
Flow-constrained strong proportional rescaling on the other hand means that the flow
variables have the same value after the rescaling process. For example the wage rate
stays at the same value. But as the life cycle stage of working has increased in proportion
to the increased life expectancy, the stock of total lifetime earnings increase as a result
of flow-constrained strong proportional rescaling. Figures 1.4 (c) and (d) illustrate flow-
constraint strong proportional rescaling.

(a) rate change - proportional rescaling stock con-
strained

(b) stock change - proportional rescaling stock
constrained

(c) rate change - proportional rescaling flow con-
strained

(d) stock change - proportional rescaling flow con-
strained

Figure 1.4: Own Visualization: Change in flow and stock variables under proportional
rescaling. For example the rate of education and the level of the resulting stock
of human capital (sum of yearly education rates) could follow this rescaling
process. Source: Lee and Goldstein (2003)
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1 Motivation

In contrast to animals, where the life cycle can easily be divided into the pre maturity
and maturity period, the transition of life cycles can not be defined in this simple way
concerning the human life cycle as a result of a far more complex social behavior. Events
and life cycles like schooling, moving out, marriage, child bearing can all be seen as a
transition of the life cycle. Hence biological constraints like menarche and menopause as
well as institutional constraints on schooling or retirement age have also be taken into
consideration. The authors point out that while it can be observed that some social
aspects of life are being delayed (such as childbearing and marriage), others seem to
advance to younger ages (for example the beginning of education has shifted to younger
ages from 1964 to 1998, following Lee and Goldstein (2003)). Additionally some aspects,
that can be interpreted as transition of the life cycle are nowadays handled simultaneously,
which makes it even more complicated to rescale the life cycle.
It might seem natural that, as life expectancy rises and survival probabilities, especially
in the old age period, increase, the retirement age should rise as well. Historically seen,
Lee and Goldstein (2003) point out that a long term trend of an earlier retirement age
can be observed, although the decrease of the retirement age has fallen throughout the
last decades. The authors mention that public and private pension systems have made it
easier to retire early (or at the same age) even though the life expectancy has increased.
Also the importance of leisure as a luxury good plays an important role.
Chapter 2 is based on Nishimura, Pestieau, and Ponthiere (2015) and will introduce a
three period OLG model to examine the Ben-Porath effect under exogenous longevity and
certainty about lifetime. This means that the lifetime is exogenously constant and that
there is no risk for individuals to die earlier. Chapter 3 also considers a three period OLG
model in order to show that the Ben-Porath effect can lead to self fulfilling prophecies.
This theory is based on Cipriani and Makris (2006). In Chapters 4 and 5 the uncertainty
of living will be the central topic of investigation. In Chapter 4, based on Cervellati
and Sunde (2013), a discrete model with survival probabilities will be introduced and
it will be investigated, how age-specific changes in survival probabilities have an impact
on the Ben-Porath effect. In this thesis there is also a quantitative investigation of this
model using Austrian specific survival condition in a MATLAB (2015) implementation.
In Chapter 5, the theory of Sheshinski (2009) is mainly based on survival distribution
functions. The three period OLG model of Nishimura, Pestieau, and Ponthiere (2015) in
Chapter 6 uses endogenous longevity in order to study the Ben-Porath effect. Therefore
it will be assumed that longevity depends on education. In this Chapter also the social
optimum of the economy will be investigated. Chapter 7 summarizes the results of all
Chapters and gives an overview on the most important issues concerning the effect of
rising longevity on optimal education and retirement age.
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2 Optimal Education Choice with
Exogenous Longevity

In this Chapter the overlapping generations model of Nishimura, Pestieau, and Ponthiere
(2015) with three periods will be presented. The purpose of this macroeconomic model
is to reexamine the effect of longevity on the optimal education choice of individuals,
called Ben Porath-effect, that was investigated in Ben-Porath (1967) for the first time.
Therefore the model is microeconomic founded. The investigations will first be based on
exogenous longevity. This means that lifetime is exogenously fixed and an increase in
this exogenous parameter will be studied.

2.1 Assumptions
The lives of agents in this model are divided into three periods: childhood, working
age and old age. The length of the first and second period is fixed. If the lifetime of
individuals rises, only the length of the old age period increases in this model. In order
to extend their income, though, individuals can decide to spend some time for old age
labor in the retirement age. In this first period of life, young individuals borrow money,
which they spend for education. There is no possibility to work in the first period, as
well as there is no possibility for education except in this period. There is no uncertainty
of life-length in this model, which means that survival functions are rectangular.
The population of every generation Nt is assumed to stay constant, meaning that there
are exactly as many young individuals born every period, as old people are dying.

Nt = Nt+1 = N ∀t

The production of the economy Yt depends on the capital stock Kt and on the stock of
effective labor Lt. The production function F (Kt, Lt) is assumed to have constant returns
to scale, meaning that aF (Kt, Lt) = F (aKt, aLt).

Yt = F (Kt, Lt)

The factors of production, labor supply and capital, are rewarded by their marginal
productivities, the wage rate and the interest rate.
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2.1 Assumptions

wt = FL(Kt, Lt)
Rt = FK(Kt, Lt)

Capital per effective working unit kt is defined as kt = Kt
Lt
. As a result of constant returns

to scale of the production function, F (Kt, Lt) = LtF (Kt
Lt
., 1) =: Ltf(kt) and therefore

factor rewards can be written in the following way.

wt = FL(Kt, Lt) = ∂

∂L
Ltf(kt) = f(kt)− Ltf ′(kt)Kt

1
L2
t

= f(kt)− ktf ′(kt)

Rt = FK(Kt, Lt) = ∂

∂K
Ltf(kt) = f ′(kt)

1
Lt
Lt = f ′(kt)

Some neoclassical assumptions for f are made: First, it is assumed that the marginal
productivity of capital per effective working unit tends towards infinity, as capital per
effective working unit tends towards zero. Secondly, it is assumed that the marginal pro-
ductivity of capital per effective working unit tends towards zero, as capital per effective
working unit tends towards infinity. These assumptions will be necessary for an interior
optimal level of education and capital in the utility maximization problem.

• limk→0 f
′(k) =∞

• limk→∞ f
′(k) = 0

Effective labor consists of the population size of the working generation Nt multiplied
with the stock of human capital ht and the fraction of the working population of the
old generation Nt−1 multiplied with the human capital of the previous period ht−1. The
variable 0 < zt < 1 represents the part of the old age period, which an individual uses
to work. It also can be interpreted as retirement age, given a specific length of life.
Additionally the decay of human capital throughout one period α has to be taken into
consideration. α = 1 means that there is no decay of human capital, whereas α = 0
means that human capital completely decays throughout one period of life.

Lt = htNt + ztαht−1Nt−1

As a result of CRS (constant returns to scale) of F (Kt, Lt) and a constant population of
N , the production function per capita ỹt = Yt

N
can be written using capital per capita

k̃t = Kt
N

as follows. (Note that the difference between k̃t and kt is, that k̃t describes the
relative stock of capital to a whole generation that is alive, whereas kt describes the stock
of capital relatively to the amount of labor force.)

ỹt = Yt
N

= F (k̃t, ht + ztαht−1)

-8-



2.1 Assumptions

The depreciation rate of physical capital δ is assumed to be 1, meaning that physical
capital completely decays in one period. In this model, the working generation saves
money st for consumption in their old age period Nst and the young individuals borrow
money for their education Net. Consequently the capital-market clearing condition is

Kt+1 +Net = Nst .

In order to secure positive physical capital st > et is assumed. Using the definition of
effective labor, kt+1 can be written as follows.

kt+1 = Kt+1

Nh(et) +Nzt+1αh(et−1)

= N(st − et)
N (h(et) + zt+1αh(et−1))

= st − et
h(et) + zt+1αh(et−1) (2.1)

The stock of human capital ht (of people in the working period) depends on the amount
of education (in their childhood) ht = h(et−1). Without any education, the minimal
individual stock of human capital is assumed to be h(0) = 1. Education affects the stock
of human capital strictly positively but the positive effect decreases with the amount of
education. At a level of no education, its marginal increase affects the stock of education
infinitely large whereas as the level of education tends towards infinity, its marginal
increase does not affect the stock of human capital any longer.

• h(0) = 1

• h′(et−1) > 0

• h′′(et−1) < 0

• limet−1→0 h
′(et−1) =∞

• limet−1→∞ h
′(et−1) = 0

For example the isoelastic function h(et−1) = e1−φ
t−1

1−φ + 1 fulfills these assumptions. See
Chapter 8 Appendix for the definition and properties of the isoelastic or CRRA (constant
relative risk aversion) function. Figure 2.1 illustrates the values of isoelastic functions
h(et−1) with different values of φ. The function is strictly increasing for et−1 > 0. The
higher the value of et−1, the lower the marginal gain of human capital h(et−1) due to an
additonal increase of education et−1 (for φ > 0).

-9-



2.1 Assumptions

Figure 2.1: Accumulation of human capital for an isoelastic function.

In this model, utility functions are assumed in order to model the individual’s preferences.
Utility can be gained from consumption in the second and third period of life. The amount
of education in the first period of life does neither provide direct utility nor disutility.
As mentioned above, individuals can partly work in the third period of life. This old
age labor is assumed to create disutility. Hence the lifetime utility of an individual Ut is
modeled as

Ut = u(ct) + lt+1u(dt+1)

The consumption during the working period is given by ct. Individuals in the old age
consume dt+1, that can be regarded as welfare during the third period of life. dt+1 is
affected by material resources d̃t+1, disutility of old age work v(zt+1, lt+1) and life-length
lt+1. Clearly material resources increase the welfare whereas old age labor has a negative
effect on welfare, relatively to the length of the third period.

dt+1 = d̃t+1 − v(zt+1, lt+1)
lt+1

Some assumptions on the disutility function of old age labor are made: First, this disu-
tility rises in the time spent working in the third period of life. Second, it rises stronger,
the higher the level of the time spent working. And third, the longer the old age, the less
disutility emerges from working in this period. Thus the assumptions on v(zt+1, lt+1) can
be written as following.

-10-



2.2 Utility Maximization

• vz(zt+1, lt+1) > 0

• vzz(zt+1, lt+1) > 0

• vl(zt+1, lt+1) < 0

In order to simplify the investigations Nishimura, Pestieau, and Ponthiere (2015) use a
specific disutility function for old age labor with the above mentioned properties.

v(zt+1, lt+1) = (zt+1)2

2γlt+1
, γ > 0 (2.2)

Hence the derivations of this function can be calculated explicitly.

• vz(zt+1, lt+1) = zt+1
γlt+1

• vlz(zt+1, lt+1) = − zt+1
γ(lt+1)2

• vl(zt+1, lt+1) = −(zt+1)22γ
(2γlt+1)2 = − (zt+1)2

2γ(lt+1)2

• vll(zt+1, lt+1) = (zt+1)216γ3lt+1
(2γlt+1)4 = (zt+1)2

γlt+1

It is assumed that each agent spends all its earnings. Hence, the budget constraint of an
individual in the working period can be written as

ct = wth(et−1)− et−1Rt − st . (2.3)

The consumption in the working period ct is equal to the income wth(et−1) minus the
costs of education of the previous period et−1Rt minus the savings for the old age st. In
the third period, the cohorts can spend their savings as well as additional old age income
zt+1αwt+1h(et−1), which leads to the budget constraint in this period.

d̃t+1 = zt+1αwt+1h(et−1) +Rt+1st (2.4)

In the following section, the utility maximization of individuals will be studied. Under
the above discussed assumption, the optimal values of consumption, old age welfare,
education and old age labor at time t will be calculated. These values are called temporary
equilibrium. An economy is called to be in a steady state, if the decision variables do not
change in time. The Ben-Porath effect will be investigated based on economy in a steady
state. First, all investigations are made with exogenous longevity. In Chapter 6 of this
thesis, longevity will depend on the level of education.

2.2 Utility Maximization
Individuals maximize their lifetime utility at time t by choosing the amount of savings st,
the amount of education et−1 and the amount of old age labor zt+1 with the assumption
of perfect foresight (they expect Re

t+1 and wet+1). Let longevity in the third period of
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2.2 Utility Maximization

life be lt+1 = l. Regarding the budget constraints (2.3) and (2.4), the substituted and
consequently unrestricted optimization problem of every individual can be written as

max
et−1,st,zt+1

u[wth(et−1)− et−1Rt − st] + lu

[
zt+1αw

e
t+1h(et−1)− v(zt+1, l) +Re

t+1st
l

]
(2.5)

Differentiation with respect to st, zt+1 and et−1 leads to the first-order conditions (FOCs)
for optimality.

u′(ct) = Re
t+1u

′(dt+1)
αwet+1h(et−1) = vz(zt+1, l)

u′(dt+1)
[
zt+1αw

e
t+1h

′(et−1)
]

= u′(ct)[Rt − wth′(et−1)]

Using the special form of the disutility of old age labor function (2.2) and the FOC with
respect to st, the FOCs can be rearranged to the following forms.

u′(ct) = Re
t+1u

′(dt+1) (2.6)
zt+1 = αwet+1h(et−1)γl (2.7)

Re
t+1Rt = Re

t+1wth
′(et−1) + α2(wet+1)2h(et−1)γlh′(et−1) (2.8)

Equation (2.6) is the Euler equation for this problem. It states that the marginal utility
of consumption in period t has to equal to the discounted marginal utility of consumption
in period t+1, taking into consideration the expected interest rate Re

t+1. The second FOC
(2.7) states, that the level of income of old age labor has to equal the marginal disutility
of old age labor in an optimum. The last FOC (2.8) points out, that the marginal welfare
gains from education (RHS) have to equal the marginal costs (LHS) of education. The
first term of the RHS in equation (2.8) is the marginal welfare gain from education from
the second period of life, the second term the welfare gain arising in the third period of
life. The temporary equilibrium of the utilization maximization with exogenous longevity
can be summarized as following.

ct = wth(et−1)− et−1Rt − st

dt = zt+1αw
e
t+1h(et−1)− v(zt+1, l) +Re

t+1st
l

u′(ct) = Re
t+1u

′(dt+1)
zt+1 = αwet+1h(et+1)γl

Re
t+1Rt = Re

t+1wth
′(et−1) + α2(wet+1)2h(et−1)γlh′(et−1)

Lt = ht(et−1)N + ztαht−1(et−2)N
Kt = N(st−1 − et−1)
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2.2 Utility Maximization

wt = FL(Kt, Lt)
Rt = FK(Kt, Lt)

It could be the case, that et−1 = 0 or et−1 = ∞ are optimal decisions in sense of wel-
fare maximization. However, the above made assumption guarantee an interior optimal
education level. For et−1 → 0

lim
et−1→0

Re
t+1wth

′(et−1) + α2(wet+1)2h(et−1)γlh′(et−1) =∞ > Re
t+1Rt

since limet−1→0 h
′(et−1) =∞. Hence, at the level of zero education, the marginal welfare

gain of education is greater than the marginal costs of education. On the other hand
limet−1→∞ h

′(et−1) = 0, so at an infinite level of education, marginal cost of education are
greater than marginal gains of additional education.

lim
et−1→∞

Re
t+1wth

′(et−1) + α2(wet+1)2h(et−1)γlh′(et−1) = 0 < Re
t+1Rt

This means that et−1 = 0 and et−1 = ∞ cannot be optimal. Consequently there exists
an interior optimal level of education in the individual’s utility maximization problem.
In order to specify conditions for uniqueness of the level of optimal education, the FOC
with respect to et−1 (2.8) will be differentiated again.

∂

∂et−1

(
Re
t+1wth

′(et−1) + α2(wet+1)2h(et−1)γlh′(et−1)
)

= ∂

∂et−1

(
h′(et−1)[Re

t+1wt + α2(wet+1)2h(et−1)γl]
)

=h′′(et−1)[Re
t+1wt + α2(wet+1)2h(et−1)γl] + [h′(et−1)]2α2(wet−1)2γl

=
[
α2(wet+1)2γl

] [
h′′(et−1)h(et−1) + [h′(et−1)]2

]
+ h′′(et−1)Re

t+1wt (2.9)

Clearly α2(wet+1)2γl is positive, as h′′(et−1)Re
t−1wt is negative. For [h′′(et−1)h(et−1) +

[h′(et−1)]2] < 0 ⇔ |h′′(et−1)|h(et−1) > [h′(et−1)]2], the RHS of (2.9) is negative. This
means that the RHS of equation (2.8) is strictly monotonically decreasing in et−1. Hence,
the optimal interior level of education has to be unique. Consequently the optimal values
for old age labor and savings in the temporary equilibrium are unique as well.
For example the isoelastic function h(et−1) = e1−φ

t−1
1−φ + 1 fulfills this criteria for φ ∈ (0.5, 1).

| − φe−φ−1
t−1 |

e−φt−1
>

e−φt−1
e1−φ
t−1

1−φ + 1

⇔ φe−φ−1
t−1

(
e1−φ
t−1

1− φ + 1
)
> e−2φ

t−1
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2.3 Steady State

⇔ φeφ−1
t−1 > 1− φ

1− φ = 1− 2φ
1− φ

⇔ eφ−1
t−1 >

[
1− 2φ
φ(1− φ)

]

For a numerical example, a logarithmic utility function and this isoelastic human capital
function with φ = 0.75 is used. The production side of the economy is modeled using
a Cobb-Douglas production function F (K,L) = Ka · Lb with a = b = 0.5. Parameters
γ = 1, l = 1 are set. Starting optimization at time t = 0, it is not possible to implement
the assumption of perfect foresight, since future factor rewards do depend on the future
capital stock (per effective working units), that itself is determined by decision variable of
future optimization problems. It is therefore assumed that individuals expect the capital
per effective labor to stay constant ket+1 = kt and following Re

t+1 = Rt and wet+1 = wt.
With initial values for education e0 = 0 and s1 = 0.01, the time paths are visualized in
Figure 2.2. This illustration shows that the economy develops in direction of a steady
state.

(a) Time series of decision variables and capital per
effective labor. Note that the levels of education
increase as well, as visualized in Figure 2.2 (b).

(b) Time series of education. The absolute levels
of education are far below the levels fo savings in
every period. This is a result of the assuptions on
the functional forms especially on h(et−1). However
the goal of this implementation was to show the
developpment towards a steady state.

Figure 2.2: Own Visualization: Time series of quantitative investigation of Nishimura,
Pestieau, and Ponthiere (2015) under exogenous longevity.

2.3 Steady State
In this section, conditions for the existence of a steady state will be presented. In this
model a steady state is characterized by
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2.3 Steady State

st = st+1 ∀t et = et+1 ∀t zt = zt+1 ∀t

This consequently means ct = ct+1 and dt = dt+1 ∀t as well. From equation (2.6) one
can generally implicitly express the level of savings as function of current and expected
factor rewards.

st ≡ s(wt, Rt, w
e
t+1, R

e
t+1, et−1)

In case of a unique interior optimal solution for the level of education, this level of et−1
can be written as function of the factor rewards only (Regarding equation (2.8)).

et−1 ≡ e(wt, Rt, w
e
t+1, R

e
t+1)

Consequently the savings can be written as function of the factor rewards only as well.

st ≡ s(wt, Rt, w
e
t+1, R

e
t+1, e(wt, Rt, w

e
t+1, R

e
t+1))

≡ S(wt, Rt, w
e
t+1, R

e
t+1)

Taking into consideration the development of physical capital (2.1), a two dimensional
state space in capital and education can be expressed by

kt+1 = S(w(kt), R(kt), w(ket+1), R(ket+1))− et
h(et−1) + α2w(kt)[h(et−2)]2γl

et−1 = e(w(kt), R(kt), w(ket+1), R(ket+1))

Regarding the conditions for a steady state, the following conditions have to be fulfilled
in this model for the existence of a steady state.

k = S(w(k), R(k), w(k), R(k))− e
h(e) + α2w(k)[h(e)]2γl ≡ S̃(k)− e

h(e) + α2w(k)[h(e)]2γl ≡ ě(k) (2.10)

e = e(w(k), R(k), w(k), R(k)) ≡ ē(k) (2.11)

Let the level of education, that satisfies equation (2.10), be named ě(k). For ě(k) = ē(k)
the economy is in a steady state. The following assumptions have to be made, in order
to guarantee the existence of a steady state:

• ě(k) is continuous

• There exists only one ka > 0, so that ě(ka) = 0
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2.4 The Ben-Porath Effect

• ě′(ka) < 0

• ě(0) ≥ 0

• ě′(0) > ē′(0)

It is proven in the Appendix of Chapter 2 that

ē′(k) > 0 (2.12)
ē(0) = 0 (2.13)

Figure 2.3: Own Visualization of conditions for steady state, Nishimura, Pestieau, and
Ponthiere (2015) under exogenous longevity.

Let ka > 0 be the unique value of k, so that ě(ka) = 0. Obviously 0 = ě(ka) < ē(ka),
since ē(k) > 0. As ě(k) is continuous and since ě′(0) > ē(0), there has to exist a
unique intersection level k∗, so that ě(k∗) = ē(k∗). This is equivalent to the existence
of a steady state. Figure 2.3 illustrates the existence of the optimal value of the capital
stock k∗ at the intersection of ē(k) and ě(k) under the above assumptions. Using the
assumptions of the numerical example of section 2.2, the steady state is realized at the
levels s = 0.0763, z = 0.1785, e = 0.0083, k = 0.0261.

2.4 The Ben-Porath Effect
In order to investigate the Ben-Porath effect in this model, the economy is assumed to
be in a steady state.
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2.4 The Ben-Porath Effect

Conditions (2.6) - (2.8) evaluated in a steady state can be used to see, that

wh′(e)
[
R + α2wh(e)γl

]
−R2 = F (l, ê(l)) = ∆ (2.14)

must hold in a steady state. Let ê(l) be the level of education corresponding to the level
of longevity as a result of (2.14). Consequently, using the Implicit Function Theorem,
the effect of longevity on education can be calculated in the following way.

0 = d

dl
F (l, ê(l)) = ∂F (l, ê(l))

∂l
+ ∂F (l, ê(l))

∂ê(l)
∂ê(l)
∂l

= Fl(l, ê(l)) + Fê(l)(l, ê(l))ê′(l)

⇒ ê′(l) = − Fl(l, ê(l))
Fê(l)(l, ê(l))

= − Fl(l, ê(l))
Fê(l)(l, ê(l))

= −∆l

∆e

Differentiation leads to

∆l =h′(e)α2w2h(e)γ
∆e =wh′′(e)R + w2α2γl[h′′(e)h(e) + [h′(e)]2]

Thus the total derivation of education with respect to longevity can be written as

de

dl
= −∆l

∆e

= h′(e)α2w2h(e)γ
−[α2w2γl] [h′′(e)h(e) + [h′(e)]2]− h′′(e)Rw (2.15)

As shown in equation (2.9), −∆e > 0. Hence the effect on the optimal education level of
longevity in this setting is

• increasing with the square of the wage rate w.

• decreasing with the square rate of the human capital decay 1/α.

• decreasing with the strength of the marginal disutility of labor in the old age period
1/γ.

Additionally, some special cases are mentioned and interpreted, as they provide a better
understanding of the Ben-Porath effect.

• No Ben-Porath effect if human capital decays totally!
If α = 0 ⇒ de

dl
= 0. This means that if there is complete decay of human capital

during one period, longevity has no effect on the optimal level of education. This
is a consequence of a very important assumption in this model: Longevity only
increases the length of the third period of live. In contrast to models with age
specific survival probabilities, (ceteris paribus) rising longevity does not increase
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2.5 Appendix Chapter 2

the rate of return of investments in human capital in this setting, if α = 0. As soon
as α > 0 rising longevity affects the rate of return of investments in human capital
and the Ben-Porath effect exists.

• No Ben-Porath effect if individuals refuse old age labor completely!
For γ → 0 ⇒ vz(zt+1, lt+1) = zt+1

γlt+1
→∞ ⇒ de

dl
→ 0

If agents strongly prefer not to work in the old age period, the effect of longevity
on the optimal education level tends to be zero. This is a result of the structure of
the model. Individuals cannot extend their working period. The transition of the
life cycle is technically fixed and only old age labor can be used to gain additional
income.

• A regime with a mandatory retirement age at the beginning of the third period of
life z = αwh(e)γl = 0 also leads to de

dl
= 0

2.5 Appendix Chapter 2
2.5.1 Prove for equation (2.12) and equation (2.13)
The FOC for the optimal level of education (2.8) in a steady state can be written as

w(k)h′(e)[R(k) + α2w(k)[h(e)]γl]−R(k)2 = F (k, ē(k)) ≡ ∆ = 0 (2.16)

As a result of the Implicit Function Theorem:

0 = d

dk
F (k, ē(k)) = ∂F (k, ē(k))

∂k
+ ∂F (k, ē(k))

∂ē(k)
∂ē(k)
∂k

= Fk(k, ē(k)) + Fē(k)(k, ē(k))ē′(k)

⇒ ē′(k) = − Fk(k, ē(k))
Fē(k)(k, ē(k)) = − Fk(k, ē(k))

Fē(k)(k, ē(k)) = −∆k

∆e

Regarding the second-order condition with respect to e, equation (2.9), it is shown that
∆e < 0. Using R′(k) = f ′′(k) and w′(k) = f ′(k) − f ′(k) − kf ′′(k) = −kf ′′(k), the
numerator can be transformed to

∆k = h′(e)
[
w′(k)[R(k) + α2w(k)h(e)γl] + w(k)[R′(k) + α2w′(k)h(e)γl]

]
− 2R(k)R′(k)

= h′(e)
[
2α2w(k)w′(k)h(e)γl + w′(k)R(k) + w(k)f ′′(k)

]
− 2R(k)f ′′(k)

= h′(e)
[
2α2w(k)(−kf ′′(k))h(e)γl −R(k)kf ′′(k) + w(k)f ′′(k)

]
− 2R(k)f ′′(k)

= h′(e)w(k)f ′′(k) (−2α2kh(e)γl + 1)︸ ︷︷ ︸
<1

−h′(e)R(k)kf ′′(k)︸ ︷︷ ︸
>0

−2R(k)f ′′(k)

> h′(e)f ′′(k)w(k)− f ′′(k)R(k) = f ′′(k)(h′(e)w(k)−R(k))
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Transforming equation (2.16), it is known that

R− w(k)h′(e) = α2w(k)2h(e)h′(e)γl
R

> 0

so that ē′(k) > 0. To specify ē(0), equation (2.16) can be transformed to

h′(e)α2w(k)2h(e)γl = f ′(k)[f ′(k)− h′(e)w(k)]

For k → ∞ ⇒ w(k) = f(k) − f ′(k)k → 0. Since limk→0 f
′(k) = ∞, the equation above

can only hold for k = 0 if e = 0. Hence ē(0) = 0, what was the last point to prove.
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3 Self-Fulfilling Prophesies concerning
Life Expectancy and Longevity

In this chapter, self-fulfilling prophecies concerning longevity will be investigated, based
on Cipriani and Makris (2006). If a believe throughout a population causes itself to be
realized as a result of positive interaction between the belief and the behavior of people,
one speaks of a self fulfilling prophecy. It will be shown that a higher life expectancy
throughout the population can result in a longer lifetime in an economy that follows
the Ben-Porath effect. Therefore a simple OLG model with constant population will be
introduced. The individual’s probability to survive the first and second period is 100 %
and the probability to survive to the third period is π. It is assumed that individuals
use the first period of life for education only, spending et ∈ (0, 1) amount of time in
this period for education. The amount of time spent on education creates disutility.
Interpreted in another way one can state that time not spent for schooling in the first
period of life (leisure) results in utility. Otherwise utility arises due to consumption in
the second (adulthood) cat and possibly in the third (old age) cot period of life. All agents
have the same preferences and maximize their lifetime utility U at time t according to

Ut = log(1− et) + δlog(cat ) + φπtlog(cot )

In this context, δ ∈ (0, 1) and φ ∈ (0, 1) are individual discount factors for consumption.
Taking uncertainty to survive to the third period of life into consideration, these param-
eters can be interpreted as individual risk aversion preferences as well. For reasons of
simplicity, these parameters are constant in time.
By assumption, the survival probability πt depends on the average human capital of
the economy πt = π(h̄t) ∈ (ρ, 1), ρ > 0. This function is assumed to be monotonically
increasing in the average level of human capital. The amount of human capital is assumed
to develop the following way with γ ∈ (0, 1].

ht = ht−1(1 + γet) (3.1)

As a result of the uncertainty to survive to the third period of life, the rate of return on
capital is higher than the interest rate, since dying individuals (after the second period
of life) do not consume their savings in the third period of life. Additionally marginal
utilities of education are always assumed to be positive. This leads to the following
budget constraint for individuals.
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3 Self-Fulfilling Prophesies concerning Life Expectancy and Longevity

cat =(1− st)wht

cot =st
R

πt
wht

Every individual earns wht. This amount can be spent for consumption in the second
period of life cat and for consumption in the third period of life cot . st ∈ [0, 1] is the part of
the income, that is saved for consumption in the old age period. The sum of all savings
in the economy is the amount of the capital stock of the current period.
So the individuals utility maximization problem at time t can be written as following.
(Note that individuals use an expected survival probability πt for this optimization.)

max
et,st

log (1− et) + δ log ((1− st)wht) + φπt log
(
st
R

πt
wht

)
(3.2)

Thus, the first-order conditions can be calculated in the following way.

∂Ut
∂st

= δ
−wht

(1− st)wht
+ φπtπt
stRwht

Rwht
πt

= − δ

(1− st)
+ φπt

st
= 0

⇔ δst = (1− st)φπt (3.3)
⇔ st(δ + φπt) = φπt

⇔ st = φπt
δ + φπt

∂Ut
∂et

= − 1
(1− et)

+ δ(1− st)wht−1γ

(1− st)wht−1(1 + γet)
+

φπtst
R
πt
wht−1γ

st
R
πt
wht−1(1 + γet)

= − 1
(1− et)

+ δγ

(1 + γet)
+ φπtγ

1 + γet
= 0

⇔ − 1 + γet
(1− et)

= δγ + φπtγ (3.4)

⇔ 1 + γet = δγ + φπtγ − δγet − φπtγet
⇔ (γ + δγ + φπtγ)et = γ(δ + φπt)− 1

⇔ et = γ(δ + φπt)− 1
γ(1 + δ + φπt)

Equation (3.3) represents the Euler equation for this OLG model. A marginal increase of
savings (individually discounted) has to be equal to the resulting additional old age con-
sumption (individually discounted and regarding the survival probability) in an optimum.
Equation (3.4) pins down the condition for the individual optimal level of education. For
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3 Self-Fulfilling Prophesies concerning Life Expectancy and Longevity

γ(δ+φπt) > 1 the optimal level of education is positive. Hence, this parameter restriction
is assumed. For given individual factors δ and φ, this restriction means that the param-
eter γ, measuring the influence of education on the development of human capital, must
not be too small in order to not allow negative education. The influence of education on
human capital has to be big enough to secure positive education levels. Following the
optimal level of education, the optimal stock of human capital in an equilibrium (h̄t = ht)
evolves according to

ht = ht−1

(
1 + γ(δ + φπ(h̄t))− 1

1 + δ + φπ(h̄t)

)
= ht−1

(1 + γ)(δ + φπ(h̄t))
1 + δ + φπ(h̄t)

(3.5)

Maximizing their lifetime utility, individuals use their expected survival probability. The
effect of this expectation on the individual’s optimal level of education is positive:

∂et
πt

= γφ(γ(1 + δ + φπt))− (γ(δ + φπt)− 1)γφ
[γ(1 + δ + φπt)]2

= φγ(1 + δ + φπt)− φγ(δ + φπt) + φ

γ(1 + δ + φπt)2

= φγ + φ

γ(1 + δ + φπt)2 = φ(γ + 1)
γ(1 + δ + φπt)2 > 0

In general, the development of human capital is not uniquely determined by equation
(3.5), since the level of ht cannot be written explicitly as a function g(ht−1). However,
considering a specific example, the human capital development can be visualized. There-
fore consider the following setting:
Suppose that the economy is at time t = 0 and that the population can either be pes-
simistic, expecting a survival probability π or optimistic, expecting π, with ρ < π < π <
1. It is assumed that all individuals expect the same probability rate. As shown above,
the individual’s optimal level of education increases in the expected survival probability.
The higher the level of individual education, the higher the realized level of individual
and average human capital. Assume that the function for the survival probability is

π(h̄t) =

 π , if h̄t < h∗t
π , if h̄t ≥ h∗t

In this function h∗t is a barrier. If the average human capital h̄t is smaller than h∗t , the
realized longevity becomes π, otherwise π. Depending on the level of human capital ht
one assumption for this barrier h∗t has to be made: For given h0 at t = 0, it is assumed
that (1+δ+φπ)h∗0

(1+γ)(δ+φπ) > h0 ≥ (1+δ+φπ)h∗0
(1+γ)(δ+φπ) . Following equation (3.5) and the function for the

survival probability self-fulfilling prophecies can be observed: If individuals expect a high
survival probability π, it follows that h1 will be greater or equal to h∗0, which leads to a
high survival rate. On the contrary, if individuals expect a low survival probability π,
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3 Self-Fulfilling Prophesies concerning Life Expectancy and Longevity

the average human capital h̄1 will be smaller than h∗0, which leads to a low survival rate.

(a) Development of human captial. (b) Growth of human capital.

Figure 3.1: Own Visualization: Development of human capital at different influence levels
of education γ. Source: Cipriani and Makris (2006).

For a numerical example, δ = 1, φ = 0.9, π = 0.5, π = 0.5 and h∗t = 3 are chosen. For
a positive level of education, δ must therefore be greater than 2/3. The development of
human capital is visualized in Figure 3.1.
In a short summary, the following points can be observed in this model.

• Life expectancy πt affects the amount of investment in education et positively.

• The higher the amount of investment in education, the higher the stock of human
capital ht = ht−1(1 + γet).

• If the amount of human capital increases, the probability to survive could increase
(but cannot decrease!) depending on the form of the function πt(h̄t).

This simple model shows that self-fulfilling prophecies concerning life expectancy and
realizing lifetime can occur in an economy that follows the positive Ben-Porath effect.
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4 Optimal Education Choice
considering Survival Probabilities

In this Chapter, the model of Cervellati and Sunde (2013) will be presented as an example
for the investigation of the effects of rising longevity on the optimal education period
under uncertainty about lifetime. This discrete model is based on other assumptions
than the models in the previous Chapters.

4.1 Assumptions and Utility Maximization
Age is a discrete variable measuring the years from 0 to T , which means that T is
the maximum lifetime of an individual. The probability to survive until an age of t is
pt ∈ (0, 1), t = 1, ..., T−1 with pT = 0. The life of an agent is divided into three periods.
In the first period from 0 to S, individuals can spend time for education and build up
human capital, in the second period, from S + 1 to R, agents work. The third part is
once again the retirement period. So in the first period of life st ∈ [0, 1] amount of time
is used for education every year and lt = 1− st is the corresponding amount of leisure. In
the working period Lt ∈ [0, 1] is the amount of labor supply and lt = 1− Lt the amount
of leisure every year.
Agents maximize their expected lifetime utility at time t = 0. Utility arises from con-
sumption ct and leisure lt. Additionally individuals are assumed to have a time preference
of ρ. Hence, the expected discounted lifetime utility at time t = 0 can be written as

U =
T∑
t=1

ρt−1pt[u(ct) + v(lt)] (4.1)

Concerning the lifetime budget constraint of an agent, perfect capital and annuity markets
are assumed, in order to simplify investigations. The interest rate r is exogenously given
as well as the functional form of the wage rate, that depends on human capital w(h(S))
with w′(h(S)) > 0 meaning that a higher level of human capital leads to a higher wage
rate. The amount of individual human capital is determined by the amount of years of
education and the intensity st in every year: h(S) = ∑S

t=1 g(st), with g′(st) > 0 and
g′′(st) < 0. This means that the intensity of schooling has a positive effect on the human
capital, but the impact decreases with the level of the intensity. The expected income
discounted to time t = 0 has to equal the expected consumption discounted to time t = 0,
which leads to
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4.1 Assumptions and Utility Maximization

R∑
t=S+1

rt−1ptLtw(h(S)) =
T∑
t=1

rt−1ptct (4.2)

Individuals can choose their consumption path ct t = 1, ..., T , their intensity of education
in the schooling period st t = 1, ..., S, the amount of labor supply Lt t = S + 1, ..., R
in the second period of life and they can choose the length of their schooling years S
at the beginning of their life. This problem is mathematically solved in two steps. In
the first step individuals optimize their expected lifetime utility 4.1 using ct and lt for
t = 1...T as decision variables, subject to the budget constraint 4.2. The retirement age
R and the length of education S is exogenous for the first optimization step. This first
step is repeated for different values of S = 1, 2, 3, 4, .... In the second step, total lifetime
utilities with S years of schooling U(S) are compared to find the optimal amount of
years for education S. Consequently the Lagrangian function for the basic problem to be
maximized with respect to ct and lt is

L =
T∑
t=1

ρt−1pt[u(ct) + v(lt)]− λ
 T∑
t=1

rt−1ptct −
R∑

t=S+1
rt−1ptLtw(h(S))


Differentiation leads to the first-order Conditions:

∂L

∂ct
= ρt−1ptu

′(ct)− λrt−1pt = 0 (4.3)

⇒ ρt−1u′(ct) = λrt−1, t = 1, ..., T (4.4)

∂L

∂lt
= ρt−1ptv

′(lt)− λ
− R∑

i=S+1
ri−1piLi(S)

w′(h(S))g′(st)(−1) = 0

⇒ ρt−1ptv
′(lt) = λw′(h(S))g′(st)

R∑
i=S+1

ri−1piLi(S), t = 1, ..., S (4.5)

∂L

∂lt
= ρt−1ptv

′(lt)− λ(−1)rt−1pt(−1)w(h(S)) = 0

⇒ ρt−1v′(lt) = λrt−1w(h(S)), t = S + 1, ..., R (4.6)

Equation (4.3) implies equation (4.4), which is the Euler equation of this problem, that
shows that the amount of consumption decreases with time for ρ < r: If the individual
discount rate ρ is smaller than the interest rate r, ρt−1 tends faster to zeros than rt−1

for increasing t. As the Lagrangian multiplier λ is constant over time, this effect has to
be compensated by u′(ct), which increases for a falling consumption path over time, as
u′′(ct) < 0. Equation (4.5) states a condition for the optimal intensity of education for
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every year in the education period. The discounted and expected additional marginal gain
of leisure during the education period has to equal the discounted and expected additional
income by increased human capital and consequently increased wages multiplied with
the Lagrangian multiplier. Equation (4.6) pins down a condition for the optimal labor
supply. The discounted additional marginal gain of leisure during the working period has
to equal the discounted income multiplied with the Lagrangian multiplier λ. Equation
(4.4) shows that for u′(.) > 0 and u′′(.) < 0 the optimal path of consumption is unique. If
v′(), w′() > 0 and v′′(), w′′() < 0 is assumed, the path of leisure time lt (and consequently
schooling intensity st and labor supply Lt) is uniquely determined by equations (4.5) and
(4.6). In the second mathematical optimization step, individuals look for the optimal
length of their education period S, given the resulting optimal paths of consumption ct
and leisure lt.
Intuitively, the second optimization step can be interpreted the following way: At an
education period of length S − 1, individuals compare the benefits and opportunity cost
of staying one additional year at school, resulting in a schooling period S. The financial
benefits of one additional year of education are given by the increase of the discounted
(to time t = 0) total expected future lifetime earnings, that is given by

[w(h(S))− w(h(S − 1))] ·
R∑

t=S+1
rt−1ptLt(S)︸ ︷︷ ︸
ETLS

. (4.7)

The first factor in brackets of (4.7) is the difference of the wage rates that results of one
additional year of education. Following the definition of Hazan (2009), the second term
of the financial benefits is the Expected Total Labor Supply ETLS, a measure for time
that is spent working throughout lifetime. On the other hand, the discounted (to time
t = 0) opportunity cost of one additional year of schooling, resulting out of an income
loss in this year is given by the wage rate with S − 1 years of schooling multiplied with
the amount of labor supply in this year and the survival probability

w(h(S − 1)) · rt−1pSLS(S − 1). (4.8)

The term (4.8) points out that only the probability to survive until age S, namely pS, is
influential for the opportunity cost of one additional year of schooling. Time S is the time
of entry into the labor market. On the other hand benefits of another year of education
(4.7) are influenced by survival probabilities until age t S + 1 ≤ t ≤ R.
These theoretical results imply, that survival probabilities of different ages differently
influence the decision of the optimal schooling period. This means that in order to specify
the effect of longevity on the optimal education decision, it is important to analyze which
survival probability changes lead to an increase life expectancy.
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4.2 Quantitative Analysis
This section will present a numerical analysis of this model that is based on the imple-
mentation of Cervellati and Sunde (2013), Section 4. In contrast to Cervellati and Sunde
(2013), the uncertainty of death is implemented using death probabilities of the Aus-
trian population provided by Statistik Austria: Sterbetafeln (2017). Figure 4.1 illustrates
the probabilities to survive until a specific age according to the statistics of Austria’s
population in 1959-1961 and in 2010-2012. Figure 4.1 (a) shows the probabilities at age
t to survive another year pt and Figure 4.1 (b) shows survival probabilities to survive
until a specific age t, Pt. Consequently PT = ∏T

t=0 pt. Figure 4.1 clearly shows the
rectangularization of the survival distribution function.

(a) Probabilities to survive another year at age t. (b) Probability to survive until age t.

Figure 4.1: Survival Probabilities in Austria 1959-1961 and 2010-2012. Source Statistik
Austria: Sterbetafeln (2017)

For the numerical implementation of this model, some functional forms have to be as-
sumed. Following Cervellati and Sunde (2013), the utility function u(ct) is assumed to be
a CRRA function (compare definition in Chapter 8 Appendix) and the earnings functions
w(h) is an exponential function.

u(ct) = c1−σ
t − 1
1− σ

w(h) = w̄ · eγ·θ(h(S))

with

θ(h(S)) = h(S)α 0 < α < 1

h(S) =
S∑
1
st with g(st) = st = 1− lt
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Figure 4.2 visualizes the earnings function and its partial derivatives wh(h) = ∂w(h)
∂h

and
whh(h) = ∂w(h)

∂2h
for different parameters settings. Figure 4.2 (a) shows that a higher value

of α leads to a steeper form of the earnings function, if the level of human capital h
is greater than 1, whereas Figure 4.2 (b) points out that a higher value of γ leads to
a steeper form of the earnings function for all values of human capital h. Figures 4.2
(c) and (d) show the reaction of the earnings for a marginal increase of human capital.
Figure 4.2 (c) illustrates that for a high value of α, the marginal earnings gain increases
with the level of human capital h whereas the gain decreases for a low value of α. Figure
4.2 (d) shows that the higher value of γ, the stronger the marginal earnings gain for a
marginal higher level of human capital h.

(a) Influence of parameter α on w(h, α, γ). (b) Influence of parameter γ on w(h, α, γ).

(c) Influence of parameter α on wh(h, α, γ). (d) Influence of parameter γ on wh(h, α, γ).

Figure 4.2: Own Visualization of the earnings function. Source Cervellati and Sunde
(2013).

Following Cervellati and Sunde (2013) the parameters w̄ and γ are set to 1 and α = 2/3
in the Benchmark. The measure of relative risk aversion σ is set to 2. In this numerical
implementation, the interest rate r and the individual time preference ρ are set to 1,
meaning that there is no decay of capital.
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Equation (4.3) and the assumption r = ρ = 1 imply that the path of consumption ct is
constant over time and equals c. Equation (4.6) and the assumption r = ρ = 1 imply that
the path of labor supply Lt is constant over time L. This means that the first step of the
mathematical optimization for a given number S of years spent at school is to find the
optimal value of consumption c, of labor supply L and S optimal values for the intensity of
schooling st for the S years spent at school. Additionally the budget constraint, equation
(4.2) has to be considered. Hence, S equations for the optimal intensity of schooling st,
one equation for the optimal amount of consumption c, one for the optimal labor supply
L and the budget constraint have to be solved for the equilibrium. In general (depending
on the functional forms) these equations are nonlinear. Therefore MATLAB (2015) and
its implemented function lsqnonlin is used to solve this system. For reasons of simplicity,
the life of individuals is divided into parts of five years. Individuals can than decide to
spend certain periods of life for education. The retirement age R is set to 65 in this
implementation.
The results of the Benchmark scenario are the following. The population chooses to
spend 7 periods (35 years) for schooling. This long period (35 years of schooling) can be
explained as a result of the form of the earnings function with its parameters. Especially
parameter α = 2/3 has a huge positive effect on the rate of return of investment in
education, as visualized in Figures 4.2. The intensity of education for every period of
schooling is: s1 = 0, 4639; s2 = 0, 5022; s3 = 0, 5023; s4 = 0, 5028; s5 = 0, 5034; s6 =
0, 5040; s7 = 0, 5047. Following the intensity of education st = 1− lt, the optimal amount
of consumption in every period is c = 1, 7055 and the amount of labor supply in every
period between S+1 and R is at L = 0, 4639. Figure 4.3 illustrates the change in lifetime
utility as a result of a change in parameter α from 2/3 to 1/3. A reduction of α affects the
form of the earnings function as visualized in Figure 4.2. It leads to an optimal education
period of 15 years, what seems more realistic regarding the developments of Austria’s
population’s schooling behavior.

(a) Lifetime utility given S with α = 2/3. (b) Lifetime utility given S with α = 1/3.

Figure 4.3: Optimal lifetime utility with respect to the form of the Mincerian Earnings
function.

In another numerical implementation of this model, the effect of a change in survival
probabilities is investigated. On the one hand, survival probabilities in Austria in 1959-
1961 are used, on the other hand survival probabilities in Austria in 2010-2012 are used
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provided by Statistik Austria: Sterbetafeln (2017). For this implementation α is set to
1/3, γ and w̄ are 1 and the parameter of relative risk aversion φ is set to 1, 5, meaning
a slight decrease in the individual measure of relative risk aversion. The retirement age
is assumed to be 75. Figure 4.4 shows that the optimal periods of schooling change from
an optimal level of 3 periods in 1960 to an optimum of 4 periods in 2010 as a result of
increasing survival probabilities between 1960 and 2010.

(a) Optimal Lifetime Utility with S periods of ed-
ucation in 1960.

(b) Optimal Lifetime Utility with S periods of ed-
ucation in 2011.

Figure 4.4: The effect of rising survival probabilities on the optimal education period.

These qualitative and quantitative results show that increasing survival probabilities, as
they changed in Austria throughout the last decades, do affect the optimal period of
education positively. The theoretical investigation have shown that the structure of the
change of survival probabilities is crucial for the Ben-Porath effect. The Expected Total
Labor Supply is only influenced by survival probabilities during the working period and
massively affects the benefits of additional time of schooling.
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5 Influence of Survival Conditions on
Education and Retirement Age

In this chapter the influence of survival distribution functions and factors that influence
longevity like health and family circumstances (to be called conditions of living from
here on) on the Ben-Porath effect are studied based on the theory of Sheshinski (2009).
Environment conditions like pollution of drinking water and air, the medical assistance or
the social environment influence the life expectancy and consequently they influence the
Ben-Porath effect. This will be the key point of investigation in this chapter. Uncertainty
of lifetime and the influence of exogenous conditions of living affect the decisions on the
optimal choices of education and retirement age to a great extent, as the investigations
will show.

5.1 Survival Distribution Functions
In this model, age is assumed to be continuous from 0 to a maximum lifetime of T . For
the survival distribution of individuals, the following assumptions are made:

• Conditions of living are summarized in α which is continuous in (0, 1).

• The survival distribution function of any individual is given by F (t, α, T ).

• F (0, α, T ) = 1, F (T, α, T ) = 0 ∀α ∈ (0, 1)

• Lifetime distribution function G(t, α, T ) := 1− F (t, α, T )

• F (., ., .) is differentiable with respect to t : f(t, α, T ) := Ft(t, α, T ) < 0 ∀α, 0 <
t ≤ T
⇒ g(t, α, T ) = Gt(t, α, T ) = −f(t, α, T ) > 0 ∀α, 0 < t ≤ T

• Fα(t, α, T ) = ∂F (t,α,T )
∂α

< 0.

F (t, α, T ) is the probability, that the event of death D is at time t or afterwards, given
conditions of living α : F (t, α, T ) = Pr(D > t|α). Consequently f(t, α, T ) can be
interpreted as probability to survive at age t for a marginal period. On the other hand
G(t, α, T ) = Pr(D ≤ t) and g(t, α, T ) can be interpreted as probability to die at age t,
given the exogenous parameter α. Consequently the life expectancy, exogenously given
conditions of living α is
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5.1 Survival Distribution Functions

Eα = E(t|α) =
∫ T

0
t · g(t, α, T )dt (5.1)

A low value of α → 0 corresponds to the best possible conditions of living. In contrast,
the higher the value of α, the worse the condition to live. Consequently Fα(t, α, T ) < 0
is assumed. For several illustrations in this chapter, the survival distribution function

F (t, α, T ) = e−αt − e−αT

1− e−αT (5.2)

is used. This function F (t, α, T ) is differentiable in t and α with both derivatives being
negative ∀t ∈ (0, T ]. For T → ∞ the survival distribution function F (t, α, T ) → e−αt,
which is the exponential function. Figure 5.1 shows the effects of a change in α and in
the maximal lifetime T on the survival distribution function. For further investigations
in this chapter, the dependence of the survival distribution function on the maximum
lifetime T will not be noted, in order to simplify notation F (t, α, T ) = F (t, α). The
maximum lifetime T will be constant throughout this chapter. Figure 5.1 illustrates the
effects of a change in the conditions of living α and a change in the maximum lifetime T
on a survival distribution function.

(a) A lower value of α increases the probability to
survive until age t.

(b) A higher maximum lifetime also increases the
probability to survive until age t and beyond.

Figure 5.1: Visualization of a survival distribution function.

The conditional probability to die at age t, given the survival until age t is called hazard
rate: H(t, α) = g(t,α)

F (t,α) . Its reaction to a marginal change of the exogenously given param-
eter α for the conditions of living will be crucial for the following investigations. In order
to simplify notation, the function µ(t, α) is introduced and related to the hazard rate in
the following way.
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5.1 Survival Distribution Functions

µ(t, α) := 1
F (t, α)

∂F (t, α)
∂α

= Fα(t, α)
F (t, α) (5.3)

⇒ µt(t, α) = ∂

∂t

Fα(t, α)
F (t, α) = fα(t, α)F (t, α)− f(t, α)Fα(t, α)

F (t, α)2

Hα(t, α) = gα(t, α)F (t, α)− g(t, α)Fα(t, α)
F (t, α)2 = (5.4)

= −fα(t, α)F (t, α) + f(t, α)Fα(t, α)
F (t, α)2 = −µt(t, α)

Hence, the behavior of µ(t, α) in time is the negative of the reaction of the hazard rate
to a change in α. Figure 5.2 visualizes the Hazard rate and the function µt(t, α) for the
survival distribution function of equation (5.2).

(a) Hazard rate for different values of α. (b) µ(t, α) for different values of α.

Figure 5.2: Visualization of the Hazard rate and corresponding function µ(t, α).

Figure 5.3 visualizes Hα(t, α) = −µt(t, α) for different values of α. It shows that
Hα(t, α) > 0, strictly increasing and tends to infinity for t→∞.
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5.2 Utility Maximization

Figure 5.3: Visualization of Hα(t, α) = −µt(t, α).

5.2 Utility Maximization
The life of individuals is divided into three periods. The first period (0, e) is completely
used for schooling. The variable e can be seen as amount of education. In this model
education does not cost any money. The longer the first period, the higher the amount
of education of an agent. As there is no intensity of education in this model, the amount
of time spent for education e equals the individual stock of human capital h = e. The
second period (e, R) can be interpreted as working period, where individuals earn money
w(t, e) (Again in this model leisure time is not implemented). Hence, the variable R can
be seen as retirement age. The last period is the old age (R, T ), where individuals do
not work any more. Individuals maximize their lifetime utility at time 0 under perfect
foresight. On the one hand utility arises out of consumption u(c(t)). The function u(c(t))
is assumed to have positive and diminishing marginal returns u′(.) > 0 and u′′(.) < 0.
On the other hand disutility arises due to labor supply a(t), with a′(.) > 0, so that the
lifetime utility U of an agent can be written as

U =
∫ T

0
u(c(t))F (t, α)dt−

∫ R

e
a(t)F (t, α)dt (5.5)

In order to simplify the investigations, the interest rate r is assumed to be r = 0. Ad-
ditionally perfectly competitive longevity insurance markets are assumed in Sheshinski
(2009). This allows agents to maximize their lifetime utility based on expected cash flows
of earnings and expected cash flows of consumption. The wage rate w(t, e) is assumed to
increase in e and to have diminishing marginal productivity: w2(t, e) = ∂w(t,e)

∂e
> 0 and

w22(t, e) = ∂2w(t,e)
∂e2 < 0. Hence the lifetime budget constraint of an agent can be written

as
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5.2 Utility Maximization

∫ T

0
c(t)F (t, α)dt−

∫ R

e
w(t, e)F (t, α)dt = 0 . (5.6)

Individuals optimize their lifetime utility U (5.5) with respect to the decision variables
consumption c(t), education e, retirement age R subject to the budget constraint equa-
tion (5.6). Consequently the individuals maximization problem can be solved using the
Lagrangian function L.

max
c(t),e,R

L =
∫ T

0
u(c(t))F (t, α)dt−

∫ R

e
a(t)F (t, α)dt

− λ
(∫ T

0
c(t)F (t, α)dt−

∫ R

e
w(t, e)F (t, α)dt

)

Differentiation leads to the first-order conditions:

∂L

∂c(t) =
∫ T

0
u′(c(t))F (t, α)dt− λ

∫ T

0
F (t, α)dt = 0

⇔ u′(c(t)) = λ

∂L

∂R
= −a(R)F (R,α) + λw(R, e)F (R,α) = 0

⇔ a(R) = u′(c)w(R, e)
∂L

∂e
= a(e)F (e, α) + λ

[
−w(e, e)F (e, α) +

∫ R

e

∂

∂e
w(t, e)F (t, α)dt

]

= a(e)F (e, α) + λ

[
−w(e, e)F (e, α) +

∫ R

e
w2(t, e)F (t, α)dt

]
= 0

⇔ a(e)− λw(e, e) + λ

F (e, α)

∫ R

e
w2(t, e)F (t, e)dt = 0

If consumption has positive and diminishing marginal utilities (u′(c(t)) > 0 and u′′(c(t)) <
0), the condition u′(c(t)) = λ implies that the path of consumption over time is constant
in an optimum. Using the budget constraint, the optimal level of consumption can be
explicitly calculated for optimal values of e and R.

c =
∫ R
e w(t, e)F (t, α)dt∫ T

0 F (t, α)dt

For further investigations, the wage rate is assumed to be independent of age w(t, e) =
w(e) and for reasons of simplicity the disutility of labor at the beginning of the working
period is assumed to be zero a(e) = 0. So the first-order conditions can be summarized
as following:
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λ = u′(c(t)) ⇒ c =
∫ R
e w(e)F (t, α)dt∫ T

0 F (t, α)dt
(5.7)

0 = u′(c)w(e)− a(R) ≡ ϕ(R, e, α) (5.8)

0 = 1
F (e, α)

∫ R

e
F (t, α)dt− w(e)

w′(e) ≡ ψ(R, e, α) (5.9)

In this case, a pair (R∗, e∗), that satisfies conditions (5.8) and (5.9) for a specific level of
conditions of living α is called equilibrium.

5.3 Equilibrium
In order to guarantee uniqueness of the optimal level of education and retirement age
(R∗, e∗) some additional assumptions have to be made. For

w′′(e)
w′(e) −

f(e, α)
F (e, α) < 0 (5.10)

and (5.11)

σ = −u
′′(c)c
u′(c) ∈ (0.5, 1) (5.12)

let e(R;ϕ = 0) be the value that satisfies ϕ(R, e;α) = 0 for given R and constant α and
let e(R;ψ = 0) be the value that satisfies ψ(R, e;α) = 0 for given R and constant α. It
is proven in the Appendix Chapter 5, that e(R;ϕ = 0) and e(R;ψ = 0) have a unique
intersection level R∗ and consequently the optimal utility maximizing values (c∗, R∗, e∗)
are unique. Condition (5.10) connects the behavior of the wage rate function with the
hazard rate that is related to the survival distribution function F (t, α). In the Appendix
at the end of this chapter it is shown that ψe(R, e, α) < 0, ϕe(R, e, α) > 0, ψR(R, e, α) > 0
and ϕR(R, e, α) < 0. Figure 5.4 visualizes the unique equilibrium. Therefore a(t) =
(t − e)/2 and CRRA functions are used for u(c) = c1−φ−1

1−φ and w(e) = e1−δ−1
1−δ . These

functions satisfy the necessary conditions and guarantee a unique intersection. It is
visualized in Figure 5.4 b, that a higher value of φ, the measure of relative risk aversion
of individuals, leads to a steeper form of ϕ and consequently to lower optimal values for
e and R.
In the following, the effect of an increasing or decreasing µ(t, α) in time on the equilibrium
(e∗, R∗) will be discussed. Therefore the effect of conditions of living α on the curves
ϕ(R, e, α) and ψ(R, e, α) has to be calculated.
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(a) Unique intersection of ϕ(.) = 0 and ψ(.) =
0.

(b) The measure of relative risk aversion of in-
dividuals φ influences only the curve ϕ(.) = 0.

Figure 5.4: Own Visualization: Unique equilibrium (R∗, e∗). Source Sheshinski (2009).

ϕα(R, r, α) = u′′(c) ∂c
∂α

w(e)

∂c

∂α
=
∫ R
e w(e)F2(t, α)dt

∫ T
0 F (t, α)dt−

∫ R
e w(e)F (t, α)dt

∫ T
0 F2(t, α)dt

(
∫ T

0 F (t, α)dt)2

= w(e)
∫ R
e w(e)F (t, α)dt∫ T
0 F (t, α)dt

[∫ R
e F2(t, α)dt∫ R
e F (t, α)dt

−
∫ T

0 F2(t, α)dt∫ T
0 F (t, α)dt

]
︸ ︷︷ ︸

ν(e,R,α)

As F2(t, α) < 0 and
∫ T

0 F (t, α)dt >
∫ T
e F (t, α)dt it follows that ν(e, T, α) > 0 .

νR(e, R, α) = F2(R,α)
∫ R
e F (t, α)dt−

∫ R
e F2(t, α)dtF (R,α)

(
∫ R
e F (t, α)dt)2

=
∫ R
e F2(R,α)F (t, α)− F2(t, α)F (R,α)dt

(
∫ R
e F (t, α)dt)2

=
F (R,α)

∫ R
e

[
F2(R,α)
F (R,α) −

F2(t,α)
F (t,α)

]
F (t, α)dt

(
∫ R
e F (t, α)dt)2

= F (R,α)∫ R
e F (t, α)dt

∫ R

e

[
F2(R,α)
F (R,α) −

F2(t, α)
F (t, α)

]
︸ ︷︷ ︸

∗

F (t, α)
(
∫ R
e F (t, α)dt)

For µt(t, α) < 0 the term in square brackets, ∗, is less than 0. Consequently νR(e, R, α) <
0. As shown above, ν(e, T, α) > 0. Both results together show that ν(e, R, α) > 0 for
0 ≤ R ≤ T . This leads to the conclusion, that ϕα(R, r, α) < 0. Regarding the two
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dimensional state space (R, e), the effect of alpha on the curve ϕ(R, e, α) = 0 can be
explained in the following way. For a constant R, an increased value of α leads to an
increased value of e, since ϕe(R, e, α) > 0. This means that the curve ϕ(R, e, α) = 0
shifts upwards and to the left as a result of an increased value of α (worse condition of
living).
In a similar way, the effect of α to ψ(R, e, α) can be calculated.

ψα(R, e, α) = −F (e, α)−2
∫ R

e
F (t, α)dt+

∫ R
e F2(t, α)dt
F (e, α)

= 1
F (e, α)

[∫ R

e
F2(t, α)dt− F2(e, α)

∫ R
e F (t, α)dt

F (e, α)

]

= 1
F (e, α)

∫ R

e

[
F2(t, α)
F (t, α) −

F2(e, α)
F (e, α)

]
︸ ︷︷ ︸

∗∗

F (t, α)dt

For µt(t, α) < 0 the term in square brackets, ∗∗, is less than 0. Consequently ψα(R, r, α) <
0. Regarding the two dimensional state space (R, e), the effect of alpha on the curve
ψ(R, e, α) = 0 can be explained in the following way. For a constant R, an increased
value of α leads to a decrease of e, since ψe(R, e, α) < 0. This means that the curve
ψ(R, e, α) = 0 shifts downwards an to the right as a result of an increased value of α
(worse condition of living).

Figure 5.5: Own Visualization: The effect of increasing conditions of living α on the
optimal values (R∗, e∗). Source Sheshinski (2009).

Figure 5.5 visualizes the effect of α on the equilibrium in this model. A decrease of the
conditions of living leads to a lower optimal level of education e∗ and retirement age R∗.
It is worth mentioning once again that this statement does only hold, if µt(t, α) < 0. To
put it in other words: The optimal values of education e∗ and retirement age R∗ decrease
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as a result of a fall in conditions of living α, if the the effect of α on the hazard rate
Hα(t, α) is positive.

5.4 Appendix Chapter 5
5.4.1 Uniqueness of equilibrium
A positive determinant of the Jacobi Matrix J(Ψ(R, e;α)) with Ψ(R, e;α) = (ϕ(R, e;α), ψ(R, e;α))t
is a sufficient condition for a global maximum (R∗, e∗) of this function. To proof this,
several partial derivatives have to be calculated.

ϕR(R, e, α) = u′′(c)w(e) ∂c
∂R
− a′(R)

→ ∂c

∂R
= w(e)F (R,α)∫ T

0 F (t, α)dt

ϕR(R, e, α) = u′′(c)w(e)2F (R,α)∫ T
0 F (t, α)dt

u′(c)
u′(c) − a

′(R)

= u′(c)w(e)

u
′′(c)
u′(c)

w(e)
∫ R
e F (t, α)dt∫ T

0 F (t, α)dt︸ ︷︷ ︸
=−σ<0

F (R,α)∫ R
e F (t, α)dt

− a′(R)

= u′(c)w(e)
(
−σ F (R,α)∫ R

e F (t, α)dt

)
− a′(R) < 0

ψe(R, e, α) = −f(e, α)
F (e, α)2

∫ R

e
F (t, α)dt+ 1

F (e, α)(−F (e, α))− w′(e)2 − w(e)w′′(e)
w′(e)2

= −f(e, α)
∫ R
e F (t, α)dt

F (e, α)2 − 1− 1 + w(e)w′′(e)
w′(e)2

= w(e)
w′(e)

(
w′′(e)
w′(e)

)
− f(e, α)

∫ R
e F (t, α)dt

F (e, α)2 − 2

= w(e)
w′(e)

(
w′′(e)
w′(e) −

f(e, α)
F (e, α)

)
− 2

For w′′(e)
w′(e) −

f(e,α)
F (e,α) < 0, ψe(R, e, α) < 0.

ϕe(R, e, α) = u′′(c)∂c
∂e
w(e) + u′(c)w′(e)

→ ∂c

∂R
= w′(e)

∫ R
e F (t, α)dt− w(e)F (t, α)∫ T

0 F (t, α)dt
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ϕe(R, e, α) = u′′(c)w(e)w
′(e)

∫ R
e F (t, α)dt− w(e)F (t, α)∫ T

0 F (t, α)dt
+ u′(c)w′(e)

= u′(c)w′(e) + u′(c)c
u′(c) u

′′(c)w′(e)− u′(c)c
u′(c) u

′′(c) w(e)∫ R
e F (t, α)dt

= u′(c)
(
w′(e)(1− σ) + σ

w(e)F (t, α)∫ R
e F (t, α)dt

)

For σ < 1, it follows that ϕe(R, e, α) > 0. As a result of equation (5.9), ϕe(R, e, α) can
further be simplified around the optimal values of e∗ and R∗.

ϕe(R, e, α) = u′(c)w′(e) > 0

ψR(R, e, α) = F (R,α)
F (e, α) > 0

For the determinant of the Jacobian Matrix J(Ψ(R, e;α)) to be positive, one more as-
sumption is needed.

det(J(Ψ)) = ϕRψe − ϕeψR

= u′(c)w(e)
(
σ

F (R,α)∫ R
e F (t, α)dt

+ a′(R)
a(R)

)(
2 + w(e)

w′(e)

(
f(e, α)
F (e, α) −

w′′(e)
w′(e)

))

− u′(c)w(e)F (R,α)
F (e, α)

< u′(c)w(e)
(

2σF (R,α)
F (e, α) −

F (R,α)
F (e, α)

)

Hence, for 2σ − 1 > 0, the determinant of the Jacobi Matrix is positive and the optimal
(maximizing) pair (R∗, e∗) is unique.
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6 Optimal Education Choice with
Endogenous Longevity

In this chapter the optimal education choice of individuals will be considered in a model
with endogenous longevity. The theory is based on Nishimura, Pestieau, and Ponthiere
(2015).

6.1 Model assumptions
This model uses the same structure as the model in Chapter 2. All variables are defined
analogously. The only difference is, that longevity is not taken exogenously, but instead
it will be assumed that, longevity positively depends on the level of individual education.
It is assumed that the lifetime in the third period of life lt+1 depends on the level of
education at time t− 1, et−1.

lt+1 = l(et−1)

It is assumed that there exists a minimum length of lifetime in the third period l. This
length increases with the amount of education in the first period. The higher the amount
of education, the lower the marginal increase in l(et−1). If the level of education l(et−1)
tends towards 0, the longevity gain from a marginal increase of education tends towards
infinity and if the level of education l(et−1) tends towards infinity, the longevity gain from
a marginal increase of education tends towards zero. This means that at a very low level
of education, a marginal increase of education affects longevity massively, whereas at a
very high level of education, a marginal increase of education does not affect longevity
strongly. Additionally a maximum length of lifetime l̄ will be assumed.

• l(0) = l > 0

• l′(et−1) > 0

• l′′(et−1) < 0

• limet−1→0 l
′(et−1) =∞

• limet−1→∞ l
′(et−1) = 0

• limet−1→∞ l(et−1) = l̄ < 1

6.2 Utility Maximization
The total individual’s lifetime utility to be maximized at time t can be written as
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6.2 Utility Maximization

max
et−1,st,zt+1

u[wth(et−1)− et−1Rt − st]

+ l(et−1)u
(
zt+1αw

e
t+1h(et−1)− v(zt+1, l(et−1)) +Re

t+1st
l(et−1)

)

Differentiation with respect to st, zt+1 and et−1 leads to the first-order conditions for
optimality:

u′(ct) = Re
t+1u

′(dt+1) (6.1)
αwet+1h(et−1) = vz(zt+1, l(et−1)) (6.2)

u′(ct)[Rt − wth′(et−1)] = l′(et−1)u(dt+1)

+ l(et−1)u′(dt+1)
zt+1αw

e
t+1h

′(et−1)− vl(., .))l′(et−1)
l(et−1)

−

(
zt+1αw

e
t+1h(et−1)− v(zt+1, l(et−1)) +Re

t+1st
)
l′(et−1)

l(et−1)2


(6.3)

Using v(zt+1, l(et−1)) = z2
t+1

2γl(et−1) , equation (6.2) and using
dt+1 = zt+1αwet+1h

′(et−1)+Ret+1st−v(zt+1,l(et−1))
l(et−1) , equation (6.3) can be transformed, so that the

necessary conditions for optimality are

u′(ct) = Re
t+1u

′(dt+1) (6.4)
zt+1 = αwet+1h(et−1)γl(et−1) (6.5)

u′(ct)[Rt − wth′(et−1)] = u′(dt+1)
[
zt+1αw

e
t+1h

′(et−1)
]

+ l′(et−1) [u(dt+1)− u′(dt+1)vl(zt+1, l(et−1))− u′(dt+1)dt+1] .
(6.6)

Comparing the FOCs in this setting and in the setting of exogenously given longevity in
Chapter 2, only the FOC with respect to education, equation (6.6), differs from equa-
tion (2.8). The additional term l′(et−1) [u(dt+1)− u′(dt+1)vl(zt+1, l(et−1))− u′(dt+1)dt+1]
appears, since the level of education now has an effect on the duration of life in the third
period. Let ε = u′(d)d

u(d) be the elasticity of the utility function u(.). This elasticity is a
measure for the relative change of the utility (output) as a result of a change of consump-
tion (input). Equation (6.3) implies that u′(ct)

u′(dt+1) = Re
t+1. Consequently equation (6.6)

becomes

Re
t+1[Rt − wth′(et−1)] = zt+1αw

e
t+1h

′(et−1)

+ l′(et−1)u(dt+1)
u′(dt+1) − [vl(zt+1, l(et−1)) + dt+1] l′(et−1)

-42-



6.3 Steady State

⇔
Re
t+1Rt = h′(et−1)

[
zt+1αw

e
t+1 + wtR

e
t+1

]
+ l′(et−1)

[1
ε
dt+1 − vl(zt+1, l(et−1))− dt+1

]
⇔

Re
t+1Rt = h′(et−1)

[
α2(wet+1)2h(et−1)γl(et−1) + wtR

e
t+1

]
+ l′(et−1)

[1
ε
dt+1 − vl(zt+1, l(et−1))− dt+1

]
.

(6.7)

If 1
ε
dt+1−vl(zt+1, l(et−1))−dt+1 is positive, a marginal increase in the amount of education

creates utility, as l′(et−1) is assumed to be greater than 0. This means that in this setting
of endogenous longevity, the marginal welfare gains of additional education is greater than
the effect in the model with exogenous longevity, as long as 1

ε
dt+1−vl(zt+1, l(et−1))−dt+1 >

0. So the necessary temporary equilibrium conditions in the case of endogenous longevity
can be summarized as following.

ct = wth(et−1)− et−1Rt − st

dt = zt+1αw
e
t+1h(et−1)− v(zt+1, l(et−1)) +Re

t+1st
l(et−1)

u′(ct) = Re
t+1u

′(dt+1)
zt+1 = αwet+1h(et+1)γl(et−1)

Re
t+1Rt = h′(et−1)

[
α2(wet+1)2h(et−1)γl(et−1) + wtR

e
t+1

]
+ l′(et−1)

[1
ε
dt+1 − vl(zt+1, l(et−1))− dt+1

]
Lt = ht(et−1)Nt + ztαht−1(et−2)Nt−1

Kt = N(st−1 − et−1)
wt = FL(Kt, Lt)
Rt = FK(Kt, Lt)

As a result of the assumptions on the derivatives of the longevity and human capital
function (see Section 2.1), there exists an interior optimal level of education. For 0 < ε <
1 and |h′′(et−1)|h(et−1)l(et−1) > (h′(et−1))2l(et−1) + 2h′(et−1)h(et−1)l′(et−1), the optimal
level of education is unique (Proof in the Appendix of Chapter 6). Consequently there
exists a unique temporary equilibrium under the above assumptions.

6.3 Steady State
As in Section 2.3, a steady state is characterized by
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6.3 Steady State

st = st+1 ∀t et = et+1 ∀t zt = zt+1 ∀t

This consequently means ct = ct+1 and dt = dt+1 ∀t as well. In order to investigate
the existence of a steady state, the first-order conditions (6.4), (6.5) and (6.7) can be
used to find conditions for a two dimensional state space in e and k. Using equation
(6.4), the savings per young worker st can be written as a function of present and future
(expected) factor rewards and of the education level, since ct and dt+1 are only functional
forms of present and future factor rewards and the education level. Assuming existence
and uniqueness of the temporary equilibrium, the education level itself can be written
as function of present and future factor rewards and of the savings per young worker
(regarding equation (6.7)).

st ≡ ŝ(wt, Rt, w
e
t+1, R

e
t+1, et−1)

et−1 ≡ ê(wt, Rt, w
e
t+1, R

e
t+1, st)

= ê(wt, Rt, w
e
t+1, R

e
t+1, ŝ(wt, Rt, w

e
t+1, R

e
t+1, et−1))

Using equation (6.5), the capital accumulation (see definition in equation (2.1)) can be
written as following.

kt+1 = ŝ(w(kt), R(kt), w(ket+1), R(ket+1), et−1)− et
h(et−1) + α2w(kt)[h(et−2)]2γl(et−2) .

Since the optimal level of education only depends on current and future factor rewards,
it also can be written as a function of the per capita capital stock.

et−1 ≡ e(w(kt), R(kt), w(ket+1), R(ket+1), ŝ(w(kt), R(kt), w(ket+1), R(ket+1, et−1))

Regarding the conditions for a steady state (kt+1 = kt and et+1 = et), the steady state in
this model, where longevity depends on the level of education, has to satisfy the following
conditions:

k = ŝ(w(k), R(k), w(k), R(k), e)− e
h(e) + α2w(k)[h(e)]2γl(e) ≡ s̃(k, e)− e

h(e) + α2w(k)[h(e)]2γl(e) (6.8)

e = ê(w(k), R(k), w(k), R(k), s̃(k, e)) ≡ ẽ(k, s̃(k, e)) (6.9)

It will be shown that there exists a steady state - a pair (k, e) that satisfies equations
(6.8) and (6.9). Equation (6.8) can be rearranged to
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6.4 Ben-Porath Effect

h(e)
[
1 + α2w(k)h(e)γl(e)

]
= s̃(k, e)− e

k
. (6.10)

For a given k, let ě(k) be the solution of equation (6.10) and ē(k) be the solution value
of e for e = ẽ(k, s̃(k, e)). Considering equation (6.10) it makes sense to assume that
an increase of k also increases ě(k), ě′(k) > 0: A higher per capita capital stock k
goes hand in hand with a lower interest rate because R(k) = f ′(k) and f ′′(k) < 0. A
higher per capita capital stock k also goes hand in hand with a higher wage rate, since
w′(k) = −kf ′′(k) > 0. On the one side a fall of the interest rate results in an increase in
the rate of return of investment into education, since intuitively the price for borrowing
money for education falls. On the other side an increase of the wage rate w can be
interpreted as a fall of the costs for education. If additionally ē(0) = 0 is assumed, the
function ē(k) is increasing passing through the pair (e, k) = (0, 0).
Let ka > 0 be the value of k, such that ě(ka) = 0. As ē(0) = 0 and ē′(k) > 0, ē(ka)
has to be greater than ě(ka). Assuming ě′(0) > ē′(0) and ě(0) ≥ 0, there has to be a k̄
with ě(k̄) < ē(k̄). Hence, assuming continuity, there exists an intersection e∗ = ē(k∗) and
e∗ = ě(k∗) fulfilling both equations (6.8) and (6.9). This intersection characterizes the
existence of a steady state in the case of endogenous longevity with perfect foresight.
The conditions for the existence of a steady state can be summarized as follows:

• Let ē(k) be the level of e satisfying e = ẽ(k, s̃(k, e)) for a given k, than it has to be
assumed that
– ē(0) = 0
– ē′(k) > 0

• Let ě(k) be the level of e satisfying h(e)[1+α2w(k)h(e)γl(e)]+ e
k

= s̃(k,e)
k

for a given
level of capital k
– The level of k, so that ě(k) = 0 is unique
– ě(k) is continuous
– ě′(0) > ē′(0)
– ě(0) ≥ 0

6.4 Ben-Porath Effect
In order to investigate the effect of longevity on the optimal education choice in this
model, ∂e

∂l
will be calculated and studied. Rearrangement of equation (6.7), evaluated in

steady state leads to the following condition, that holds if the economy is in a steady
state

R = wh′(e)
[
1 + αz

R

]
+ l′(e)d

R

[1
ε
− 1

]
− l′(e)vl(z, l(e))

R
(6.11)
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6.4 Ben-Porath Effect

This can be interpreted in the following way: The left hand side, R, pins down the
marginal cost of additional education, which is of course the interest rate. The right
hand side is the gain from marginal additional education, consisting of three terms. The
first term of the RHS of equation 6.11 wh′(e)

[
1 + αz

R

]
corresponds to the earnings in

the second, and the discounted earnings in the third period of life. The second term
l′(e)d
R

[
1
ε
− 1

]
is a result of the positive effect of education on longevity l′(e) > 0 and

increases the gain of additional marginal education. The third term l′(e)vl(z,l(e))
R

arises as
a result of the positive effect of education on the disutility of old age labor. This means
that disutility of old age labor decreases, if the level of education rises ceteris paribus:
e ↑ ⇒ l(e) ↑ ⇒ v(z, l(e)) ↓.
In order to investigate the Ben-Porath effect, l̃(e) = λl(e) is used to describe the FOC
with respect to e and z = αwh(e)γλl(e).

h′(e)w [R + αz] + λl′(e)
[
d
(1
ε
− 1

)
− vl(z, λl(e))

]
−R2 = ∆

Analogously to section 2.4, using the Implicit Function Theorem de
dλ

can be calculated.

∆λ = h′(e)w2α2h(e)γl(e) + l′(e)
[
d
(1
ε
− 1

)
− vl(z, λl(e))

]
+λl′(e)

[
∂d

∂λ

(1
ε
− 1

)
− vlz(z, λl(e))αwh(e)γl(e)− vll(z, λl(e))l(e)

] (6.12)

Using the special form of the disutility function and its derivatives, this equation can be
rearranged. Therefore, note, that

λl(e)vll(z, l(e)) + zvlz(z, λl(e)) = λl(e) z2

γl(e) + z(− z

γl(e)2 )

= z2

γl(e)2 −
z2

γl(e)2 = 0

and consequently equation (6.12) can be written as

∆λ = h′(e)w2α2h(e)γl(e)− l′(e)vl(z, λl(e)) + l′(e)
(1
ε
− 1

)(
d+ λ

∂d

∂λ

)

Hence

de

dλ
= ∆λ

−∆e

=
h′(e)w2α2h(e)γl(e)− l′(e)vl(z, λl(e)) + l′(e)

(
1
ε
− 1

) (
d+ λ ∂d

∂λ

)
−∆e

(6.13)

For an interpretation of the Ben-Porath effect (6.13) in this setting it will be shown that
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6.4 Ben-Porath Effect
(
d+ λ ∂d

∂λ

)
> 0. Therefore note that

d =zαwh(e)− v(z, l(e)) +Rs

λl(e) =

=
α2w2h(e)2γλl(e)− α2w2h(e)2γ2λ2l(e)2

2γλl(e) +Rs

λl(e)

=
α2w2h(e)2γλl(e)− 1

2α
2w2h(e)2γλl(e)

λl(e) + Rs

λl(e)

=α
2w2h(e)2γλl(e)

2 + Rs

λl(e)

So, the FOC with respect to s, (6.4) can be written as

F (λ, s(λ)) = −u′(wh(e)− eR− s) + u′(α
2w2h(e)2γλl(e)

2 + Rs

λl(e)) = 0 (6.14)

Consequently ∂s
∂λ

can be calculated.

∂s

∂λ
= − Fλ

Fs(λ)
= −

−R2u′′(d)s
λl(e)λ

u′′(c) + R2

λl(e)u
′′(d)

=
 R2

λl(e)u
′′(d)

u′′(c) + R2

λl(e)u
′′(d)

 s

λ

Thus ∂d
∂λ

can be calculated.

∂d

∂λ
= ∂

∂λ

Rs

λl(e) = R

l(e)
∂

∂λ

(
s(λ)
λ

)
= R

l(e)

λ∂s(λ)
∂λ
− s(λ)
λ2


= R

λl(e)

(
∂s

∂λ
− s

λ

)
= R

λl(e)

 R2u′′(d)
λl(e)

u′′(c)λl(e)+R2u′′(d)
λl(e)

s

λ
− s

λ


= R

λl(e)

(
R2u′′(d)

u′′(c)λl(e) +R2u′′(d)
s

λ
− s

λ

)

= Rs

λ2l(e)

 R2u′′(d)
R2u′′(d)

(
u′′(c)λl(e)
R2u′′(d) + 1

) − 1


= Rs

λ2l(e)

1−
(
1 + u′′(c)λl(e))

R2u′′(d)

)
u′′(c)λl(e)
R2u′′(d) + 1


= Rs

λ2l(e)

 −u′′(c)
u′′(c) + R2

λl(e)u
′′(d)

 < 0

However
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6.5 Social Optimality

d+ λ
∂d

∂λ
≥ Rs

λl(e) + λ
∂s

∂λ
= Rs

λl(e)

1− u′′(c)
u′′(c) + R2

λl(e)u
′′(d)

 = Rs

λl(e)

 R2

λl(e)u
′′(d)

u′′(c) + R2

λl(e)u
′′(d)

 > 0

Concerning the interpretation of the effect of longevity on education in this 3 period OLG
model with endogenous longevity, calculated in equation (6.13), the following statements
can be made:
• As shown in the Appendix at the end of this chapter −∆e > 0. It can be seen easily

that for l(e) → 0 the effect of longevity on education is the same as in the setting
with exogenous longevity, as only the first term of the numerator remains.

• For the second term: −l′(e)vl(z, λl(e)) it is important to remember that l′(e) > 0
and vl(z, λl(e)) < 0 is assumed. Thus, −l′(e)vl(z, λl(e)) points out, that there is a
channel from education to longevity and consequently to disutility of old age labor.
This channel increases the utility of additional education and hence increases the
effect of longevity on education.

• The third term l′(e)
(

1
ε
− 1

) (
d+ ∂d

∂λ

)
affects the Ben-Porath effect positively as

well, since 0 < ε < 1 and d+ ∂d
∂λ
> 0. Clearly, the smaller the elasticity of utility ε,

the greater the effect of longevity on the optimal education level. This means that
the preferences of individuals are important for the size of the Ben-Porath effect in
the case of endogenous longevity. It is interesting, that ∂d

∂λ
< 0, what means that

increased life-length leads to less consumption in the third period of life. However
it is shown above that d + ∂d

∂λ
> 0, that secures a positive effect of longevity on

education as well for the last term l′(e)
(

1
ε
− 1

) (
d+ ∂d

∂λ

)
.

6.5 Social Optimality
In this section, the social planners problem of this model will be investigated. The
social planer intends to optimize the total utility of individuals (for all generations). The
optimal values of consumption ct, old age welfare dt, education et, old age labor zt and the
per capita capital stock k̃t = K/N are chosen with respect to the resource constraint of
the total economy, equation (6.15). The production of the closed economy in one period
in this model consists of the amount of consumption of the working generation and of
the retired generation and of the investment of the young generation in education and of
the savings of the working generation. So the total production of the economy F (K,L)
must satisfy

F (K,L) = Nct +Nd̃t +Net +Kt .

The production function F (K,L) has the property of constant returns to scale. Using
the definition of effective labor (see section 2.1) Lt = htNt + ztαht−1Nt−1 the production
function can be written as
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6.5 Social Optimality

F (K,L) = NF (K/N,L/N) = NF (k̃t, h(et−1 + ztαh(et−2))).

Additionally it can be seen that the definition of old age welfare is equivalent to

dt = d̃t − v(zt, l(et−2))
l(et−2)

⇔
dtl(et−2) = d̃t − v(zt, l(et−2)) .

Consequently the resource constraint of the total economy is

F (k̃t, h(et−1 + ztαh(et−2))) = ct + dtl(et−2) + v(zt, l(et−2)) + et + k̃t+1 . (6.15)

Let β be the time preference. The social planer’s optimization problem can be solved
using a Lagrangian function. The utility of all of all generations ∑t=tstart β

t[u(ct) +
l(et−1)u(dt+1)] should be maximized subject to the resource constraint of the economy
equation 6.15. Consequently the maximization problem for the social planner can be
written:

max
ct,dt,et,zt,kt

L =
∑

t=tstart
βt[u(ct) + l(et−1)u(dt+1)]− λt

[
ct + dtl(et−2) + v(zt, l(et−2))

+ et + k̃t+1 − F (k̃t, h(et−1 + ztαh(et−2)))
] (6.16)

Differentiation leads to the first-order conditions:

∂L

∂ct
= 0⇒ βtu′(ct) = λt (6.17)

∂L

∂dt
= 0⇒ βt−1u′(dt) = λtl(et−2)

∂L

∂et
= 0⇒ βt+1l′(et)u(dt+2)− λt+2dt+2l

′(et)− λt + λt+1F2(k̃t+1, h(et) + zt+1αh(et−1))h′(et)

+ λt+2F2(k̃t+2, h(et+1) + zt+2αh(et))αzt+2h
′(et)− λt+2vl(zt+2, l(et))l′(et) = 0

∂L

∂zt
= 0⇒ λtF2(k̃t, h(et−1 + ztαh(et−2)))αh(et−2) = λtvz(zt, l(et−2))

∂L

∂k̃t
= 0⇒ λt−1 = λtF1(k̃t, h(et−1 + ztαh(et−2)))

In a steady state ct = ct+1 holds. Hence equation (6.17) implies that λt = βλt−1 must
hold. Additionally F2(.) = w and F1(.) = R. Hence, the FOC with respect to e in a
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steady state can be summarized as follows

1 = F2(k̃, h(e) + zαh(e))h′(e)(β + β2zα)− l′(e)(−βu(d) + β2d+ β2vl(z, l(e)))

β−1 = wh′(e)(1 + βzα) + l′(e)β
[
u(d)
u′(d) − d− vl(z, l(e))

]

β−1 = wh′(e)(1 + βzα) + l′(e)β
[
d
(1
ε
− 1

)
− vl(z, l(e))

]
(6.18)

For β−1 = R this condition equals equation (6.7), which is the condition for the optimal
education level in the individuals utility maximization problem evaluated in a steady
state. This means that the social optimal values for consumption, education and retire-
ment age are realized in the laissez faire economy as well, if the per capita capital stock
of the laissez faire economy fulfills the modified golden rule :

∂F (k̃∗, h(e)(1 + zα))
∂k̃

= β−1 (6.19)

This result shows the importance of the time preference β that is decisive for the optimal
values of savings, education and retirement age. If the capital stock in the decentralized
model is lower than the social optimal capital stock, the interest rate R is higher than
its social optimal value. Consequently the cost of education increases and the optimal
value of education in the laissez faire economy is lower than socially optimal. In terms of
governmental regulations of the laissez faire economy, this means that the social optimal
values of the decision variables can be realized in the decentralized model as well by
imposing a mandatory lump sum transfer from the working generation to the young
generation, so that the optimal levels of education are funded.

6.6 Appendix Chapter 6
6.6.1 Proof of unique optimal level of education under endogenous

longevity
Note that the FOC with respect to et−1 fulfills

lim
et−1→0

h′(et−1)
[
α2(wet+1)2h(et−1)γl(et−1) + wtR

e
t+1

]
+ l′(et−1)
u′(dt+1) [u(dt+1)− u′(dt+1)dt+1 − u′(dt+1)vl(zt+1, l(et−1))]

=∞ > Re
t+1Rt

and
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lim
et−1→∞

h′(et−1)
[
α2(wet+1)2h(et−1)γl(et−1) + wtR

e
t+1

]
+ l′(et−1)
u′(dt+1) [u(dt+1)− u′(dt+1)dt+1 − u′(dt+1)vl(zt+1, l(et−1))]

= 0 < Re
t+1Rt

This means, that the if the level of education tends towards zero, the marginal welfare
gain from additional education is greater than the marginal costs of additional education.
On the other hand, if the level of education tends towards infinity, the marginal welfare
gain from additional education tends towards zero and hence is smaller than the marginal
costs of additional education. So the levels 0 and ∞ of education cannot be optimal. As
a result of differentiability assumptions (and continuity), there has to exist an interior
optimal level of education in this setting of endogenous longevity as well. In order to
specify conditions for uniqueness of the level of optimal education the FOC with respect
to et−1 will be differentiated again.

∂

∂et−1

h′(et−1)
[
α2(wet+1)2h(et−1)γl(et−1) + wtR

e
t+1

]

+ l′(et−1)
u′(dt+1) [u(dt+1)− u′(dt+1)dt+1 − u′(dt+1)vl(zt+1, l(et−1))]


=h′′(et−1)

[
α2(wet+1)2h(et−1)γl(et−1) + wtR

e
t+1

]
+ h′(et−1)

[
α2(wet+1)2h′(et−1)γl(et−1) + α2(wet+1)2h(et−1)γl′(et−1)

]
+
l′′(et−1)u′(dt+1)− l′(et−1)u′′(dt+1)∂dt+1

∂et−1

(u′(dt+1))2 [u(dt+1)− u′(dt+1)dt+1 − u′(dt+1)vl(zt+1, l(et−1))]

+ l′(et−1)
u′(dt+1)

u′(dt+1)∂dt+1

∂et−1
− u′′(dt+1)∂dt+1

∂et−1
dt+1 − u′(dt+1)∂dt+1

∂et−1

− u′′(dt+1)∂dt+1

∂et−1
vl(zt+1, l(et−1))− u′(dt+1)vlz(zt+1, l(et−1))∂zt+1

∂et−1

− u′(dt+1)vll(zt+1, l(et−1))l′(et−1)

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=h′′(et−1)
[
α2(wet+1)2h(et−1)γl(et−1) + wtR

e
t+1

]
+ h′(et−1)

[
α2(wet+1)2h′(et−1)γl(et−1) + α2(wet+1)2h(et−1)γl′(et−1)

]
+ l′′(et−1)

[
dt+1

(1
ε
− 1

)
− vl(zt+1, l(et−1))

]

+ l′(et−1)
− u′′(dt+1)u(dt+1)

u′(dt+1)2
∂dt+1

∂et−1
+ u′′(dt+1)dt+1

u′(dt+1)
∂dt+1

∂et−1

+ u′′(dt+1)vl(zt+1, l(et−1))
u′(dt+1)

∂dt+1

∂et−1
+ ∂dt+1

∂et−1
− u′′(dt+1)dt+1

u′(dt+1)
∂dt+1

∂et−1
− ∂dt+1

∂et−1

− u′′(dt+1)vl(zt+1, l(et−1))
u′(dt+1)

∂dt+1

∂et−1
− vlz(zt+1, l(et−1))∂zt+1

∂et−1
− vll(zt+1, l(et−1))l′(et−1)


=h′′(et−1)

[
α2(wet+1)2h(et−1)γl(et−1) + wtR

e
t+1

]
+ h′(et−1)

[
α2(wet+1)2h′(et−1)γl(et−1) + α2(wet+1)2h(et−1)γl′(et−1)

]
+ l′′(et−1)

[
dt+1

(1
ε
− 1

)
− vl(zt+1, l(et−1))

]

+ l′(et−1)
− vll(zt+1, l(et−1))l′(et−1)− u′′(dt+1)u(dt+1)

u′(dt+1)2
∂dt+1

∂et−1

− vlz(zt+1, l(et−1))
[
αwet+1γ (h′(et−1)l(et−1) + h(et−1)l′(et−1))

] 
=h′′(et−1)

[
α2(wet+1)2h(et−1)γl(et−1) + wtR

e
t+1

]
+ h′(et−1)

[
α2(wet+1)2h′(et−1)γl(et−1) + α2(wet+1)2h(et−1)γl′(et−1)

]
+ l′′(et−1)

[
dt+1

(1
ε
− 1

)
− vl(zt+1, l(et−1))

]
+ l′(et−1)

[
−vll(zt+1, l(et−1))l′(et−1)− vlz(zt+1, l(et−1))zt+1

(
h′(et−1)
h(et−1)

l′(et−1)
l(et−1)

)]

+ l′(et−1)(−u
′′(dt+1)u(dt+1)
u′(dt+1)2

∂dt+1

∂et−1
)

(6.20)

Using−vll(., .)−vlz(., .) zt+1
l(et−1) = 0 the forth term becomes l′(et−1)vlz(zt+1, l(et−1))zt+1

h′(et−1)
h(et−1) .
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= α2(wet+1)2γ
[
h′′(et−1)h(et−1)l(et−1) + (h′(et−1))2l′(et−1) + 2h′(et−1)h(et−1)l′(et−1)

]
+ h′′(et−1)wtRe

t+1

+ l′′(et−1)
[
dt+1

(1
ε
− 1

)
− vl(zt+1, l(et−1))

]
+ l′(et−1)

(
−u

′′(dt+1)u(dt+1)
u′(dt+1)2

∂dt+1

∂et−1

)
(6.21)

Clearly, the second term is negative. As well is the third term, for ε < 1. It can be shown
that the forth term is negative by taking into consideration that a change of et−1 results
in a change of st:

dt+1 =zt+1αw
e
t+1h(et−1) +Re

t+1st − v(zt+1, l(et−1))
l(et−1) = α2(wet+1)2(h(et−1))2γ

2
Re
t+1st

l(et−1)
∂dt+1

∂et−1
=2α2(wet+1)2h(et−1)h′(et−1)γ

2 +Re
t+1

 ∂st
∂et−1

l(et−1)− stl′(et−1)
(l(et−1))2


=α2(wet+1)2h(et−1)h′(et−1)γ + Re

t+1
l(et−1)

(
∂st
∂et−1

− l′(et−1)
l(et−1) st

)

Using equation (6.7) in form of

Rt − wth′(et−1) = 1
Re
t+1

α2(wet+1)2h′(et−1)h(et−1)γl(et−1)

+ l′(et−1)dt+1(1
ε
− 1)− l′(et−1)vl(zt+1, l(et−1))


∂st
∂et−1

can be calculated:

∂st
∂et−1

= −Fe
Fs

=−
−u′′(ct) (wth′(et−1)−Rt) +Re

t−1u
′′(dt+1)

(
α2(wet+1)2h(et−1)h′(et−1)γ − Ret+1st

(l(et−1))2 l
′(et−1

)
u′′(ct) + (Re

t+1)2 1
l(et−1)u

′′(dt+1)

=−
u′′(ct)
Ret+1

(
α2(wet+1)2h′(et−1)h(et−1)γl(et−1) + l′(et−1)dt+1(1

ε
− 1)− l′(et−1)vl(zt+1, l(et−1))

)
−u′′(ct) + (Re

t+1)2 1
l(et−1)u

′′(dt+1)

+
Re
t−1u

′′(dt+1)
(
α2(wet+1)2h(et−1)h′(et−1)γ − Ret+1st

(l(et−1))2 l
′(et−1

)
u′′(ct) + (Re

t+1)2 1
l(et−1)u

′′(dt+1)

-53-



6.6 Appendix Chapter 6

=−
α2(wet+1)2h(et−1)h′(et−1)γ

(
u′′(ct)
Ret+1

l(et−1) +Re
t+1u

′′(dt+1)
)

u′′(ct) + (Re
t+1)2 1

l(et−1)u
′′(dt+1)

− l′(et−1)
u′′(ct) + (Re

t+1)2 1
l(et−1)u

′′(dt+1) ·(
u′′(ct)
Re
t+1

(
dt+1(1

ε
− 1)− vl(zt+1, l(et−1))

)
−

(Re
t+1)2stu

′′(dt+1)
(l(et−1))2

)

=− l(et−1)
Re
t+1

α2(wet+1)2h(et−1)h′(et−1)γ

−
l′(et−1) ·

u′′(ct)
Ret+1

(
dt+1(1

ε
− 1)− vl(zt+1, l(et−1))− (Ret+1)2stu′′(dt+1)

(l(et−1))2

)
u′′(ct) + (Re

t+1)2 1
l(et−1)u

′′(dt+1)

Hence

∂dt+1

∂et−1
=α2(wet+1)2h(et−1)h′(et−1)γ + Re

t+1
l(et−1)

 l(et−1)
Re
t+1

α2(wet+1)2h(et−1)h′(et−1)γ

−
l′(et−1) ·

u′′(ct)
Ret+1

(
dt+1(1

ε
− 1)− vl(zt+1, l(et−1))− (Ret+1)2stu′′(dt+1)

(l(et−1))2

)
u′′(ct) + (Re

t+1)2 1
l(et−1)u

′′(dt+1) − l′(et−1)
l(et−1) st


=− l(et−1)

u′′(ct) + (Ret+1)2

l(et−1) u
′′(dt+1)

Re
t+1

l(et−1)

u′′(ct)
Re
t+1

dt+1(1
ε
− 1)− vl(zt+1, l(et−1))

−
(Re

t+1)2stu
′′(dt+1)

(l(et−1))2

+ st
l(et−1)

(
u′′(ct) + (Re

t+1)2

l(et−1) u
′′(dt+1)

)
=− l(et−1)

u′′(ct) + (Ret+1)2

l(et−1) u
′′(dt+1)

·

 u′′(ct)
l(et−1)

dt+1(1
ε
− 1)− vl(zt+1, l(et−1))


︸ ︷︷ ︸

<0

+ (Re
t+1)2stu

′′(dt+1)(1 + ret+1) +Re
t+1stu

′′(dt+1)
(l(et−1))2︸ ︷︷ ︸

<0



As ∂dt+1
∂et−1

< 0, the FOC with respect to et−1, calculated in equation (6.7), is strictly
monotonically decreasing in et−1, which means that the interior optimal level of education
in this setting with endogenous longevity is unique as well.
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7 Conclusion
This thesis investigates aspects, that influence the mechanism of the Ben-Porath effect,
which states in general that the optimal amount of schooling increases as a result of in-
creasing lifetime working hours (see Acemoglu and Johnson (2007)). For example lifetime
utility, consumption, the wage rate, the interest rate, leisure time, survival probabilities
and the conditions of living affect the dynamics of the Ben-Porath effect. As already
mentioned in Chapter 1, biological and institutional constraints could either restrict the
Ben-Porath effect or could even support it.
The three period OLG model of Nishimura, Pestieau, and Ponthiere (2015), that is
presented in Chapters 2 and 6 shows, that the wage rate positively affects the impact
of rising longevity on the optimal education decision, whereas human capital decay and
the individual’s rejection of old age labor decrease the consequences of rising longevity.
In the case of endogenous longevity (Chapter 6) it is shown that for a higher influence
of the level of education on longevity, the Ben-Porath effect becomes stronger. It is also
mentioned in this Chapter, that the level of education affects the disutility of old age
labor, which again supports the Ben-Porath effect.
The theory in Chapter 3, based on Cipriani and Makris (2006), points out that expec-
tations throughout a population can lead to a self-fulfilling prophecy, if the economy
follows the Ben-Porath effect. This means that a higher life expectancy (and an adapted,
healthier lifestyle) can lead to an increased lifetime.
Chapter 4, based on Cervellati and Sunde (2013), discusses the influence of survival prob-
abilities on the Ben-Porath effect. Thereby rising longevity is specified by the origins of
the increased life expectancy. In fact, especially survival probabilities in the last part of
life have increased throughout the last decades. It is shown that survival probabilities
in high ages mainly increase the rate of return of investments in education, but do not
heavily affect the cost of a longer education period. This can be seen as an indication
that rising longevity throughout the last decades has increased the optimal level of edu-
cation. This theoretical result can also numerically be observed in Chapter 4 on the basis
of a quantitative analysis of this theory using Austrian survival probabilities Statistik
Austria: Sterbetafeln (2017). In this numerical example, the optimal education period
for individuals in 1960 and 2010 is calculated and an increase from 15 years in 1960 to
20 years in 2010 is observed.
Chapter 5, based on Sheshinski (2009), shows that the Hazard Rate can be used to
specify the impact of the Ben-Porath effect. This Chapter additionally points out that
the conditions of living positively affect the optimal education period and the retirement
age.
In this thesis, four different models have been introduced in order to study the effect of
longevity on the optimal education choice and retirement age. To model the Ben-Porath
effect, overlapping generations models are commonly used. Their structure suites this
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problem very well, since periods of life, where individuals are retired or in a schooling
process can be modeled as own life cycle stages.
The second commonly used type of model in order to investigate the Ben-Porath effect
has a structure, that is similar to a Ramsey model. Flows of consumption, education,
earnings and other variables are thereby investigated. Age can either be modeled as a
discrete variable or as a continuous variable. In discrete models flows of variables per
unit of time (consumption per year) are studied.
In both commonly used types of models, different aspects can be implemented. Chap-
ter 4 and Chapter 5 show that the implementation of survival probabilities or survival
distribution function increase the complexity of a model massively. Also the implemen-
tation of leisure and an endogenously determined retirement age increase the complexity
of models.
In a conclusion I want to point out that the adaption of the human life cycle as a
result of increasing longevity is a very complex process. Consequently many different
aspects influence the Ben-Porath effect. Hence it is not straight forward to state, that
rising longevity positively affects the optimal education period and the retirement age.
However most results also of this thesis show that in general, longevity has a positive
effect on the optimal education period and the retirement age.
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8 Appendix

8.1 OLG Models
The basic idea of overlapping generations models, that started with Samuelson (1958)
and Diamond (1965) is to use the human life cycle and to create a heterogeneity in
the population concerning the age of individuals. This is technically done by dividing
the population into generations. Every generation lives for a certain amount of periods.
Agents are assumed to have a finite life time, whereas the economy has an infinite life
time. Figure 8.1 illustrates an overlapping generations model with three periods.

Figure 8.1: Overlapping Generations and Aggregate Economy

8.2 Elasticity
For a function f(x) = y, the point elasticity εx,y is a measure of a relative change of y as
a result of a relative change of x.
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εx,y =
∆y
y

∆x
x

∆→0=
dy
y

dx
x

= dy
dx

x

y
= y′

x

y
= d ln(y)

d ln(x)

For 0 < |εx,y| < 1 the variable y is called to be inelastic, since it changes relatively less as
result of a change in x than the variable x relatively changes itself. The opposite holds
for |εx,y| > 1, where y is called to be elastic. For |εx,y| → 0, y is called to be absolutely
inelastic and for |εx,y| → ∞, y is called to be completely elastic. For the function of
relative risk aversion CRRA (introduced also in the Appendix), Figure 8.2 visualizes the
elasticity of utility for different relative risk aversion parameters σ. This Figure shows,
that the Elasticity of the CRRA function is negative for 0 < x < 1. This means that
y decreases for a marginal increase of x. On the other hand for 1 < x, the elasticity is
positive, implying that a marginal increase of x also increases the output y. Figure 8.2
additionally points out that the output of a CRRA function is very sensitive for values x
near 1.

εc,u = c−φ · c ·
(
c1−φ − 1

1− φ

)−1

= c1−φ
(
c1−φ − 1

1− φ

)−1

(8.1)

Figure 8.2: Elasticity of a CRRA function.
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8.3 Inter temporal elasticity of substitution and relative
risk aversion

The inter temporal elasticity of substitution is defined as marginal change in the growth
of consumption due to a marginal increase in the growth of utility.

IES(c) = − d ln(ct+1/ct)
d(ln(u′(ct+1)/u′(ct)))

For continuous consumption, the inter temporal elasticity of substitution can be written
as

IES(c) =− ∂(ċt/ct)
∂(u̇′(ct)/u′(ct))

= − ∂(ċt/ct)
∂(u′′(ct)/dotct/u′(ct))

=

− ∂(ċt/ct)
∂(u′′(ct)/u′(ct) · ċt/ct)

= − u′(ct)
u′′(ct) · ct

The Arrow-Pratt measure of relative risk aversion is defined as

RRA(c) = −d(u′(ct))
d(ct)

ct
u′(ct)

= −u
′′(ct) · ct
u′(ct)

Per assumption utility rises in consumption u′(c) > 0 but the increase of utility decreases
with the amount of consumption u′′(c) < 0. An agent with a concave utility function is
called to be risk averse, as its utility of the expected value of a gamble is greater than
the expected value of the gamble E(u(c)) < u(E(c)). The following function u(c) is
called constant relative risk aversion (CRRA) function, since the Arrow-Pratt measure
for relative risk aversion of an agent with this utility function is constant in consumption.

u(c) = c1−φ − 1
1− φ (8.2)

u′(c) = c−φ

u′(c) = −φc−φ−1

RRA(c) = −−φc
−phi−1c

c−φ
= φ

IES(c) = 1
φ

Figure 8.3 illustrates the CRRA function for different values of φ. It shows that the
utility gain of consumption for 0 < c < 1 is very high, whereas it flattens for c > 1. For
higher values of φ, the curvature increases.
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Figure 8.3: CRRA function visualized for different parameters.
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8.4 Matlab Code Chapter 4
p=x l s r e ad ( ’ surv_probs . x l sx ’ , 1 , ’A2 : A102 ’ ) ;

%Read s u r v i v a l p r o b a b i l i t i e s f o r one year
p5=ones (1 ,Tmax5 ) ;
p5 (1 ) = p (1)∗p (2)∗p (3)∗p (4)∗p ( 5 ) ;

for j = 2 :Tmax5
p5 ( j )=p5 ( j −1);

for i = 1 :5
p5 ( j ) = p5 ( j )∗p ( ( j−1)∗5+ i ) ;

end
end

%c a l c u l a t e s u r v i v a l p r o b a b i l i t i e s f o r 5 year per iod s

s o l u t i o n s = zeros ( 1 0 , 1 3 ) ;
s o l u t i o n s ( 1 , 1 : 4 ) = l s qnon l i n (@find_opt1 , [ 1 , 2 , 0 . 9 , 0 . 5 ∗ ones ( 1 , 1 ) ] ,

[−1000 , zeros ( 1 , 3 ) ] , [ 1 0 00 , 1 0 00 , ones ( 1 , 2 ) ] ) ;
s o l u t i o n s ( 2 , 1 : 5 ) = l s qnon l i n (@find_opt2 , [ 1 , 2 , 0 . 9 , 0 . 5 ∗ ones ( 1 , 2 ) ] ,

[−1000 , zeros ( 1 , 4 ) ] , [ 1 0 00 , 1 0 00 , ones ( 1 , 3 ) ] ) ;
s o l u t i o n s ( 3 , 1 : 6 ) = l s qnon l i n (@find_opt3 , [ 1 , 2 , 0 . 9 , 0 . 5 ∗ ones ( 1 , 3 ) ] ,

[−1000 , zeros ( 1 , 5 ) ] , [ 1 0 00 , 1 0 00 , ones ( 1 , 4 ) ] ) ;
s o l u t i o n s ( 4 , 1 : 7 ) = l s qnon l i n (@find_opt4 , [ 1 , 2 , 0 . 9 , 0 . 5 ∗ ones ( 1 , 4 ) ] ,

[−1000 , zeros ( 1 , 6 ) ] , [ 1 0 00 , 1 0 00 , ones ( 1 , 5 ) ] ) ;
s o l u t i o n s ( 5 , 1 : 8 ) = l s qnon l i n (@find_opt5 , [ 1 , 2 , 0 . 9 , 0 . 5 ∗ ones ( 1 , 5 ) ] ,

[−1000 , zeros ( 1 , 7 ) ] , [ 1 0 00 , 1 0 00 , ones ( 1 , 6 ) ] ) ;
s o l u t i o n s ( 6 , 1 : 9 ) = l s qnon l i n (@find_opt6 , [ 1 , 2 , 0 . 9 , 0 . 5 ∗ ones ( 1 , 6 ) ] ,

[−1000 , zeros ( 1 , 8 ) ] , [ 1 0 00 , 1 0 00 , ones ( 1 , 7 ) ] ) ;

u t i l i t y = zeros ( 1 0 , 1 ) ;
for j = 1 :10

for i = 1 : j
u t i l i t y ( j ) = u t i l i t y ( j , 2 ) + p5 ( i ) ∗ (u( s o l u t i o n s ( j , 2 ) )

+ u(1− s o l u t i o n s ( j , i +3)) ) ;
end
for k = ( j +1):Tmax5

u t i l i t y ( j ) = u t i l i t y ( j , 2 ) + p5 (k ) ∗ (u( s o l u t i o n s ( j , 2 ) )
+ u(1− s o l u t i o n s ( j , 3 ) ) ) ;

end
end

%%%%%END%%%%%

function [ opt ] = find_opt5 ( input )

Tmax5=20;
p=x l s r e ad ( ’ surv_probs . x l sx ’ , 1 , ’A2 : A102 ’ ) ;
p5=ones (1 ,Tmax5 ) ;
p5 (1 ) = p (1)∗p (2)∗p (3)∗p (4)∗p ( 5 ) ;

for j = 2 :Tmax5
p5 ( j )=p5 ( j −1);

for i = 1 :5
p5 ( j ) = p5 ( j )∗p ( ( j−1)∗5+ i ) ;

end
end
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8.4 Matlab Code Chapter 4

S = 5 ; %e n t s p r i c h t 10 Jahren
R = 15 ; %e n t s p r i c h t 13∗5=65 Jahren

h = @( l e i s u r e ) sum( l e i s u r e ) ;

BC1 = 0 ;
for i = (S+1):R

BC1 = BC1 +p5 ( i ) ;
end

BC2 = 0 ;
for i = 1 :Tmax5

BC2 = BC2 + p5 ( i ) ;
end

lambda = input ( 1 ) ;
c = input ( 2 ) ;
Labor = input ( 3 ) ;

edu_intense = zeros (1 , S ) ;
for i = 1 : S

edu_intense ( i ) = input ( i +3);
end

opt (1 ) = uabl ( c)−lambda ;
opt (2 ) = uabl (1−Labor ) − lambda ∗ wage (h( edu_intense ) ) ;
opt (3 ) = wage (h( edu_intense ) )∗BC1∗Labor−c∗BC2;
opt (4 ) = p5 (1) ∗ uabl (1−edu_intense ( 1 ) )

− lambda ∗ wage_abl (h( edu_intense ) )∗ Labor∗BC1;
opt (5 ) = p5 (2) ∗ uabl (1−edu_intense ( 2 ) )

− lambda ∗ wage_abl (h( edu_intense ) )∗ Labor∗BC1;
opt (6 ) = p5 (3) ∗ uabl (1−edu_intense ( 3 ) )

− lambda ∗ wage_abl (h( edu_intense ) )∗ Labor∗BC1;
opt (7 ) = p5 (4) ∗ uabl (1−edu_intense ( 4 ) )

− lambda ∗ wage_abl (h( edu_intense ) )∗ Labor∗BC1;
opt (8 ) = p5 (5) ∗ uabl (1−edu_intense ( 5 ) )

− lambda ∗ wage_abl (h( edu_intense ) )∗ Labor∗BC1;

end

%%%%%END%%%%%
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