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Abstract

The risk or value process of an insurance company, modelled by a Cramer-Lundberg
model, is supposed to be controlled by a reinsurance share, that is a part of the risk is
undertaken, but also premium has to be divided. The aim is to control this reinsurance
level in way, that the discounted value of the risk process maximizes. First, the process
is approximated by a diffusion process, then stochastic control theory is used to find an
optimal value function and an optimal control. Non-cheap reinsurance and a bankruptcy
value are also considered.
In the last part of the thesis Monte-Carlo simulation is used to calculate examples and
verify the solution.

Keywords:
Stochastic Control Process, Cramer-Lundberg Model, Hamilton-Jacobi-Bellman

Equation, Non-cheap proportional Reinsurance, Monte-Carlo Simulation
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Chapter 1

Introduction

In this paper I consider an insurance company which protects itself from ruin with pro-
portional reinsurance. This company (the cedent) has to pay a certain amount of the
insurance premium of each of its costumers to the reinsurance company, but in return
can expect a certain fraction of each claim to be paid by the reinsurance company. If the
safety loading of both insurance and reinsurance premium are the same, which means
the fraction of the premium the cedent has to pass and the fraction of the claim the
reinsurer covers are the same, we call it cheap reinsurance. Usually, the safety loading of
the insurer is higher. This means that there is an extra reinsurance premium added to
the premium of the orignial costumer. This is called non-cheap reinsurance, which I will
consider in this paper since it is much more common.
Let us assume that the insurance company only writes ordinary insurance policies, where
the costumer (or policyholder) has to pay premiums regularly, while he can expect the
company to pay a positive amount of cash when a claim occurs. For example this can
be health, fire or car accidents insurances. I assume that both the size of the claims Ui
can be modelled by a positive random variable with given distribution and the number
of occurrences N(t) up to a given time t. So we can describe the amount the insurance
company has to pay as a postive risk sum

SNt :=
Nt∑
i=1

Ui.

Together with the regularly paid premiums p and p2 for the reinsurance company and the
retention level a, I am able to formulate the risk model for the wealth of the insurance
company. It is a rather standard model in collective risk theory, the so called Cramer-
Lundberg Model

R(t) = (p− (1− a)p2)t− a
Nt∑
i=1

Ui. (1.1)

Only the fraction a of the risk sum has to be paid, while on the other hand the pre-
mium (1 − a)p2 has to be paid to the reinsurer. Therefore 0 ≤ a ≤ 1. Later we will
also introduce an initial capital x of the insurance company and a bankruptcy value P
when the insurance company hits ruin, i.e. R(t) ≤ P for the first t > 0. Since normally
insurance companies are still valuable when hitting ruin, by bankruptcy I speak of the
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state of zero surplus. For example this value can describe non-liquid assets. But P can
also be negative, which means the company is fined for going bankrupt.

In other papers, this or a similar risk process is optimized in a way to minimize the
probability of ruin. But there are no conditions on the wealth or reserve of the insurance
company, just to keep it positive. This models are used for maximizing the expected
future dividends to shareholders.
The model used in this paper is different. Its setting aims to control the proportional
reinsurance in a way to keep the reserve on a high level. The goal is to optimize the risk
process by applying a certain policy π to the retention level aπ. To solve this stochastic
control problem, we will transform the model into a stochastic differential equation. The
original risk process of the reserve of the company (1.1) now formulates

dRπ
t = (µ− (1− aπt )λ)dt+ σaπ(t)tdWt,

where Wt is a standard Brownian motion and µ, λ and σ are constants describing the
setting. aπt has the same restrictions described above for every time t. I introduce a
discount factor r and the time of ruin τ . Also take into account the initial capital x and
the bankruptcy value P . Let Π denote the set of all admissible control policies. Then
the optimal control π∗ has to satisfy

Jx(π
∗) = sup

π∈Π

E

[∫ τπ

0

e−rtRπ
t dt+ e−rτπP

]
.

J is called value function or optimal return function. I use stochastic control theory to
find a solution both to the value function and the corresponding optimal control policy.
It turns out that the solution is highly dependent on the bankruptcy value as well as
the proportion of the original insurance premium and the reinsurance premium. Many
different cases have to be considered.

This paper is organised as followed:

In Chapter 2 the theory to handle the calculation is described. First, I introduce an
important verification theorem on how to solve a stochastic control problem. Second, a
way is described how to approximate the classical Cramer-Lundberg model by a Brownian
motion.
Backed with theory, the final model is described in a mathematical way in Chapter 3
and the solution is derived. Many different cases have to be considered depending on the
variables of the model.
In Chapter 4 Maple 17 is used to implement the optimal solution calculated in the last
chapter to give graphical and numerical examples. Also the challenges and difficulties of
the implementation are described. In a next step the influence of each variable on the
model is studied. Then Monte-Carlo simulations show the efficiency of the calculated
optimal control function in comparison with the discrete risk process.
The observations and results of these calculations are described in the conclusion in
Chapter 5.
The corresponding code of the implementation is given in the Appendix, as well as a
short errata to two of the studied papers.
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Chapter 2

Theory

A short introduction to to the theory of dynamic programming and diffusion approxima-
tions will be given. Knowledge of Itô processes is presumed.

2.1 Stochastic Control Theory and Dynamic Program-
ming

In this section, I provide a quick overview of stochastic control problems of Markov dif-
fusions via dynamic programming. I start with a simple set-up in finite time to describe
the Bellman-principle which is used to describe the Hamilton-Jacobi-Bellman equation
(HJB), a partial differential equation that can be derived from the control problem. Fur-
ther a verification theorem for the HJB equation will be proven, which shows that one has
to solve this stochastic differential equation to find a solution to an optimisation problem.
The model results in a classic stochastic control problem with infinite time horizon, so
the last part of the chapter will focus on the verification theorem in infinite time.

Set in a probability space (Ω,F ,P), we define a filtration Ft and a standard Brownian
motion Wt that is adapted to Ft, while t ∈ [0, T ] with terminal time T . We only consider
the one dimensional case. The standard stochastic control problem, as defined in Saß
[10], consists of the following five components:

Definition 2.1 (Stochastic control problem)

• A control policy πt is an F -progressively measurable process with values in a certain
set U ⊆ R.

• The controlled process Xπ
t is an Itô process with adapted coefficients b and σ, given

by

dXπ
t = b(t,Xπ

t , πt)dt+ σ(t,Xπ
t , πt)dWt, (2.1)

where

Xπ
0 = x0

is the initial value. The superscripted π shows the dependency of the process on
the control policy.
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• For each policy π and regular functions ψ and Ψ, we consider the performance
functional or value function

J(t, x, π) = E

[∫ T

t

ψ(s,Xs, πs)ds+ Ψ(T,XT )|Xt = x

]
. (2.2)

Later, conditions set to ψ will ensure the solvability of the controlled value function.

• Π is the set of all admissible policies π such that there exists a unique solution of
(2.1) and the value function (2.2) is well defined. π ∈ Π is called admissible if these
restrictions hold.

• The optimal value function is defined as

V (t, x) = sup
π∈Π

J(t, x, π). (2.3)

The objective is to find this optimal function V and simultaneously an optimal control
policy π∗ ∈ Π such that V (0, x) = J(0, x, π∗).

To solve problem (2.1) we consider the Bellman-principle found by Richard Bellman in
the 1950s. This takes into account that if one executes an optimal policy from time t up
to time t1, this is globally optimal if one acts optimal after t1 as well. This principle is
expressed in (2.4) and has to be proved in the following.
For simplicity the notation Etx[Y ] := E[Y |Xt = x] is used.

Let V be the solution to the problem (2.1) and πt the possible control policies. Following
assumptions have to be made: Let b(t, x, π), σ(t, x, π) be continuous differentiable and
polynomially growing for all t ≥ 0, and x, π ∈ R. A function F is called polynomially
growing if there exists a constant M , such that ‖F (x)‖2 ≤M(1 + |x|2) for all x ∈ R. The
admissible control policy π is a progressively measurable process with E[

∫ t
0
‖π(s)‖2ds] <

∞.
Following the Bellman-principle we write for t1 > t

V (t,Xt) = sup
π∈Π

Etx

[∫ t1

t

ψ(s,Xs, πs)ds+ V (t1, Xt1)

]
. (2.4)

Applying Itô’s differential rule to V (t1, Xt1) we get

V (t1, Xt1) = V (t,Xt) +

∫ t1

t

(Vt(s,Xs) + Vx(s,Xs)b(s,Xs, πs)

+
1

2
σ2(s,Xs, πs)Vxx(s,Xs))ds+

∫ t1

t

Vx(s,Xs)σ(s,Xs, πs)dWs.

(2.5)

Vt, Vx, Vxx describe the first and second derivatives for t and x respectively. Because of the
assumptions we made the last stochastic integral is bounded and therefore a martingale,
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so the expected value of it equals 0. Inserting (2.5) into (2.4) and subtracting V (t,Xt)
on both sides we get

0 = sup
π∈Π

Etx

[∫ t1

t

ψ(s,Xs, πs) + Aπ(V (s,Xs))ds

]
, (2.6)

where the operator Aπ(.) is defined by

Aπ(V (t,Xt)) := Vt(t,Xt) + Vx(t,Xt)b(t,Xt, πt) +
1

2
σ2(t,Xt, πt)Vxx(t,Xt). (2.7)

Dividing (2.6) through (t1 − t), let t→ t1 and taking expectations we get

0 = sup
π∈Π

(ψ(t,Xt, π) + AπV (t,Xt)). (2.8)

Equation (2.8) is called the Hamilton-Jacobi-Bellman equation. It shows that the optimal
value function is a solution to a nonlinear differential equation.

Now, starting with a solution to the HJB equation, how do you get the value function?
First, find a maximizing π∗. Second, solve the parabolic partial differential equation that
you get when putting π∗ into the HJB equation. Third, proof if π∗ is admissible. Then V ∗
is the value function and a∗ is the optimal control, but only if V ∗ meets certain conditions.
To characterize these conditions we formulate a verification theorem. It states that under
a certain set of onditions a solution to to the HJB equation corresponds with the value
function.

Theorem 2.2 (Verification Theorem with finite time horizon) Using the definitions
described at the beginning of this section: Suppose σ and continuous ψ are polynomially
growing with ‖σ(t, x, π)‖2 ≤ Mσ(1 + |x|2 + |π|2) and ‖ψ(t, x, π)‖2 ≤ Mψ(1 + |x|2 + |π|2)
for some Mσ,Mψ > 0 and all t ≥ 0, x ∈ R, π ∈ U .

(i) If there exists a polynomially growing function f ∈ C2(0,∞), which is a solution
to the HJB equation (2.8) and fulfills the boundary condition

f(T,XT ) = Ψ(T,XT ),

then

f(t,Xt, π) ≥ J(t,Xt, π)

for any admissible control process π and given initial data X0 = x.

(ii) If π∗ is the admissible optimal control, that maximizes the right hand side of (2.8),
then

f(t,Xt, π
∗) = J(t,Xt, π

∗) = V (t,Xt).
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Proof (Theorem 2.2) Let τn be a sequence of an increasing Ft-stopping time with
t ≤ τn ≤ T for any fixed t ∈ [0, T ] defined by

τn := inf(s > t | |Xs −Xt| = n) ∧ T.

The HJB equation for any t ≤ s ≤ τn becomes

0 ≥ (ψ(s,Xs, πτs) + Aπsf(s,Xs)). (2.9)

Itô’s differential rule states

f(τn, Xτn) = f(t,Xt) +

∫ τn

t

Aπf(s,Xs)ds+

∫ τn

t

fx(s,Xs)σ(s,Xs, πs)dWs,

where πs is an admissible control and the operator Aπ is the one defined in (2.7). Because
f ∈ C2 and Xs is bounded, the stochastic part of the integral is a martingale. When we
insert into the term for J up to time τn and take expectations of the last term we obtain

Etx

[∫ τn

t

ψ(s,Xs, πs)ds+ f(τn, Xτn)

]
= f(t,Xt) + Etx

[∫ τn

t

ψ(s,Xs, πs) + Aπsf(τs, Xτs)ds

]
≤ f(t,Xt).

(2.10)

For the inequality (2.9) is used.
As limn→∞ τn = T and from the growth conditions to ψ and f we get∣∣∣∣∫ τn

t

ψ(s,Xs, πs)ds+ f(τn, Xτn , πτn)

∣∣∣∣ ≤ Cψ

∫ T

t

(
1 + ‖Xs‖2 + ‖πs‖2

)
ds+Cf (1+‖XT‖2).

Therefore, with dominated convergence,

lim
n→∞

Etx

[∫ τn

t

ψ(s,Xs, πs)ds+ f(τn, Xτn)

]
= J(t,Xt, πt).

Inserting this in the first part of (2.10) we proved (i).
Inequality (2.9) is an equality if the maximizing control π∗ is used. Then, also (2.10) is
an equality which immediately proves (ii). �

Since the control model described in the next chapter deals with an infinite time horizon,
I formulate an expansion to the model. From now on we assume, that the coefficients
b, σ do not depend on the time t anymore. Let X0 = x. The controlled process X and
the operator A are now of the form

Xπ
t = b(Xt, πt)dt+ σ(Xt, πt)dWt

Aπ(V (Xt)) := Vx(Xt)b(Xt, πt) +
1

2
σ2(Xt, πt)Vxx(Xt). (2.11)

As integration’s limit we denote the stopping time T as the exit time of X from a given
value region O of X in R. If X(s) ∈ O for all s ≥ 0 we define T =∞ .
We introduce a discount factor r > 0 and obtain a new discounted value function

J(x, π) = E0x

[∫ T
0

e−rsψ(Xs, πs)ds+ χ(T <∞)e
−rTΨ(T , XT )

]
,
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where χ is the indicator function of the event T <∞.
Let β, σ, ψ be of polynomial growth as before and Π denotes the set of all progressively
measurable admissible control strategies.

Theorem 2.3 (Verification Theorem with infinite time horizon) With the restrictions
formulated before:

(i) If there exists a polynomially growing function f ∈ C2(0,∞) which is a solution to
the (new) HJB equation

0 = sup
π∈Π

(ψ(Xt, π) + Aπf(t,Xt)− rf(t,Xt)) (2.12)

with given initial dataX0 = x and boundary data f(XT ) = Ψ(XT ), then f(Xt, π) ≥
J(Xt, π) for any admissible control process π and

lim inf
t1→∞

(
e−rt1Ex[χ(T ≥t1)f(Xt1)]

)
≥ 0. (2.13)

(ii) Let π∗ be the admissible optimal control, that maximizes the right hand side of
(2.12), then f(Xt, π

∗) = J(Xt, π
∗) = V (Xt) and

lim
t1→∞

(
e−rt1Ex[χ(T ≥t1)f(Xt1)]

)
= 0. (2.14)

Proof (Theorem 2.3) Only a sketch is given, as it is very similar to the proof of
Theorem 2.2.
By using the HJB equation with finite time horizon (2.8) for f̃(Xt) := e−rtf(Xt), we
obtain for the old operator (2.7) since f does not depend on t anymore

Aπf̃(Xt) = Aπ(e−rtf(Xt))

= −re−rtf(Xt) + e−rtfx(Xt)b(Xt, πt) + e−rt
1

2
σ2(Xt, πt)fxx(Xt)

= e−rt
(
−rf(Xt) + fx(Xt)b(Xt, πt) +

1

2
σ2(Xt, πt)fxx(Xt)

)
.

After plugging the result into the old HJB, dividing through e−rt and defining the new
operator A as in (2.11), we get the new HJB equation (2.12).

Again, we define a F -stopping time τn with τn → ∞. When applying Itô’s differential
rule to f̃ we get

f̃(Xτn) = e−rτnf(Xτn)

= f(x) +

∫ τn

0

e−rs(−rf(Xs) + Aπf(Xs))ds+

∫ τn

0

e−rsfx(Xs)σ(Xs, πs)dWs,

(2.15)

where the stochastic part again is a martingale.
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Similar to proof (2.2) for any τn <∞ we take expectations from J up to τn and obtain

E0x

[∫ τn∧T

0

e−rsψ(Xs, πs)ds+ e−rτnχ(T ≥τn)f(Xτn) + e−rT χ(T <τn)Ψ(XT )

]
≤ f(x).

For the inequality (2.15) is plugged into the last term and (2.12) is used. For the max-
imizing π∗ equality holds. We further proceed analogously to the last proof, where the
terms (2.13) and (2.14) arise from n→∞ for τn. �
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2.2 Diffusion Approximation of a Risk Process in the
CLM

To model the wealth of an insurance company we use a standard model of collective
risk theory, the so-called Cramer-Lundberg Model. This process is also referred to as the
renewal model. The following is a standard definition from Embrechts et al. [2].

Definition 2.4 (Cramer-Lundberg Model)

• The claim size is given by the process {Ui; i = 1, 2, . . . }. The positive claims Ui are
independent, identically distributed random variables with finite expected value µ
and variance σ2.

• The claims occur at the random instants of time

0 < T1 < T2 < . . . a.s.

• N(t) = Nt denotes the number of claims up to time t

Nt = sup(n ≥ 1 : Tn ≤ t), t ≥ 0,

where by convention sup(∅) = 0.

• The inter-arrival times Yt are independent, identically exponentially distributed
with finite mean 1

λ
.

Y1 = T1, Yk = Tk − Tk−1, k = 2, 3, . . .

• The sequences {Ui} and {Yi} are independent of each other.

As a consequence of this definitionNt follows a homogenous Poisson process with intensity
λ > 0.

P(N(t) = k) = e−λt
(λt)k

k!
, k = 0, 1, 2, . . .

Following the definition of the CLM, we can state the stochastic risk sum St that the
insurance company has to pay up to time t:

S(t) :=

{ ∑Nt
i=1 Ui, Nt > 0

0, Nt = 0
(2.16)

Next, we consider an initial risk reserve x > 0 and the regularly paid premium p. Let
R(t) = Rt be the corresponding risk reserve of the insurance company. We obtain the
risk process of the CLM

Rt = x+ pt− SNt (2.17)

as the wealth of the company. When RT ≤ 0 for some T , we call this point in time the
ruin or bankruptcy time of the company.
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For studies of this risk process it is helpful to formulate it as a diffusion process to use
the results about control theory from the last chapter. In the following I will describe the
approach of Iglehart [5] in a simplified way and will use the same notation. He applies the
theory of weak convergence of probability measures on function spaces to show that this
positive risk sum can be approximated by a diffusion process. By constructing a certain
sequence of risk processes {Rn(t)} he aims to find an approximation of the distribution
of Rt. It can be shown, that these processes converge weakly to a Brownian motion with
drift.

For consistent notation I start with some basic definitions of convergence in metric spaces.

In the setting of a metric space S with metric ρ let S be the class of Borel sets. For two
probability measures Pn and P on S we say that Pn converges weakly to P as n→∞ if

lim
n→∞

∫
S

fdPn =

∫
S

fdP

for every bounded, real valued, continuous function f on S. We write

Pn ⇒ P.

Let (Ω,B,P) be a probability space and X be a random variable into S. The probability
measure P = PX−1 is the distribution from X on (S,S). Let {Xn} be a sequence of
random variables on S. If the distribution of Pn ofXn converges weakly to the distribution
of X (Pn ⇒ P ), we say that Xn converges in distribution to X. For convenience we write
as well

Xn ⇒ X.

Let Xn, Yn be two different random elements of S. Since S is separable, ρ(Xn, Yn) is a
random variable as well. If

P (ρ(Xn, Yn) ≥ ε)→ 0

for each ε > 0, we say that ρ(Xn, Yn) converges in probability and write

Xn
P∼ Yn.

Now let S be the space C(0,∞) of of all continuous, real-valued functions with the
uniform metric ρ. As a preparation to the needed case, we first build a special random
function Yn similar to a continuous version of the risk process

Yn(t, ω) :=
S

(n)
[nt](ω)
√
nσ

+ (nt− [nt])
X

(n)
[nt]+1(ω)
√
nσ

, (2.18)

where X(n)
1 , . . . , X

(n)
n is a triangular array of independent and identically distributed ran-

dom variables for each n = 1, 2, . . . with E[X
(n)
i ] = 0, V ar[X(n)

i ] = σ2
n > 0. The functions
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S
(n)
i are defined like before as S(n)

0 = 0 and S(k)
k = X

(k)
1 + · · ·+X

(k)
k .

Prokhorov [9] stated in 1956 in a more generalised functional central limit theorem that
this process converges in probability to a standard Brownian motion. I will state the
simplified version of this theorem without proof.

Theorem 2.5 (Prokhorov [9] theorem 3.1) With the notation made before assume that
σ2
n → σ2 > 0 and that E[(X

(n)
i )2+ε] is bounded in n for some ε. Then

Yn ⇒ W,

where W is a standard Brownian motion with W (0) = 0.

Since the original risk process is not continuous it is not in the space C(0,∞). Therefore
we need to focus on the space D(0,∞) of all real-valued functions X(t) that are right-
continuous and have left limits (abbreviated in french ’càdlàg’): for every t ∈ (0,∞) the
limits X(t−) and X(t+) exist and additionally X(t+) = X(t).

Skorohod1 introduced his so-called J1 topology on D(0, 1) to make this space become a
complete separable metric space. Billingsley[1] described a metric in 1968 to form such
a topology: Let λ denote a strictly increasing, continuous mapping of D(0, 1) onto itself
and Λ be the class of all such functions. Then for λ ∈ Λ one has λ(0) = 0 and λ(1) = 1.
For simplicity I will write λt for λ(t). Let

‖λ‖ := sup
s 6=t

∣∣∣∣log
λt− λs
t− s

∣∣∣∣ .
The metric d(x, y) for x, y ∈ D is defined for an existing λ ∈ Λ as

d(x, y) := inf {ε > 0 : ‖λ‖ ≤ ε and ρ(x(t)− y(λt)) ≤ ε} .

We can think of λ as a new timescale and the conditions in the definition of the new
metric as an restriction of the time deformation. This metric generates the Skorohod J1

topology on D(0, 1), which coincides with the uniform topology when being restricted to
C(0, 1). A sequence {xn} converges to an element x in J1 if there exists a sequence of
continous mappings λn ∈ Λ such that xn ◦ λn

P∼ x and λn
P∼ e, where e(t) = t.

Stone [11] developed a topology using this metric to expand this property in a first step
to the space D(0, N) and subsequently to D(0,∞). It essentially requires convergence
for each metric dN for each N > 0.
A good introduction to the function space D, often used for applied probability theory,
and the corresponding metric and topology can be found in Iglehart[6] Chapter 2.

Liggett and Rosèn stated that the property of weak convergence can be connected in the
two function spaces C and D.

1A. V. Skorohod, Limit theorems for stochastic processes. (1956)
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Theorem 2.6 (Ligget and Rosèn) {Xn} is sequence of random functions in (D, d), {Yn}
a sequence of random functions in (C, ρ), and X a random function in (C, ρ).

Xn ⇒ X in (D, d) if and only if
Yn ⇒ X in (C, ρ).

As a next step let us now define the process Xn in (D, ρ) as

Xn(t, ω) :=
S

(n)
[nt](ω)
√
nσ

. (2.19)

Since Xn
P∼ Yn with Yn as defined in (2.18), we link the results of Theorem 2.5 and

Theorem 2.6 and obtain

Xn ⇒ W.

However, the risk process Rt (2.17) we are interested in, differs from (2.19) as we are
interested in sums of random number of random variables.
To follow Iglehart’s notation now define ηi := Yi as the time between any occurence of
each claim Ui and Ui−1. Hence {ηn;n = 1, 2, . . . } form a sequence of positive, identically
distributed random variables. Let E(ηi) = 1

λ
> 0. Now define N(t) as the number of

claims or renewals up to time t ≥ 0 as

N(t) := max

{
k :

k∑
i=1

ηi ≤ t

}
, (2.20)

where N(t) = 0 if η1 > t. As a random function, N(n·) is in the space D as well for any
n = 1, 2, . . . . Let Λ denote the constant-valued function Λ(t) = λt. Following a functional
central limit theorem connected with renewal theory of Billingsley[1] (Theorem 14.6. p.
154) we conclude from the proof that

N(n·)
n
⇒ Λ. (2.21)

Billingley also stated that weak convergence of random functions like (2.19) in D is still
valid after certain random modifications of the time scale. Since (2.20) is such a time-
scaling function in D that converges to a constant, this theory can be used.

Theorem 2.7 Let

Zn(t, ω) :=
S

(n)
N(nt)(ω)
√
nσ

.

Then

Zn ⇒ W ◦ Λ.
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The last goal is to construct a sequence of risk processes {Rn(t)} from the original pro-
cess (2.17) and use the stated theory to show that they converge weakly. This is done by
compressing the original time scale t by 1

n
.

Let xn, pn > 0 denote the initial risk reserve and the regularly risk premium respectively
for the n-th process. {U (n)

i } is the sequence of independent, identically distributed claims
with E[U

(n)
i ] = µn > 0 and σ2(U

(n)
i ) = σ2

n > 0 that occur at the jumps of a renewal
process. N(t) is defined as before in (2.20) as the sum of these jumps up to time t. We
get

Rn(t) = xn + pnnt− SN(nt),

and are able to state the final result of this section.

Theorem 2.8 (Iglehart) If xn := x
√
n + o(

√
n), pn := p√

n
+ o( 1√

n
), µn := µ√

n
+ o( 1√

n
),

σ2
n → σ2 > 0 and E[(X

(n)
i )2+ε] is bounded in n for some ε > 0, then

Rn√
n
⇒ x+ Γ + σ

√
λW,

where the constant-valued function Γ is defined as Γ(t) := (p− µλ)t.

Proof (Theorem 2.8) After standardising the stochastic term of Rn using the expected
value of the risk sum, we can apply Theorem 2.7 to obtain

S
(n)
N(n·) − µnN(n·)

√
n

⇒ σW ◦ Λ.

From (2.21) we know that

µn
N(n·)
n
⇒M,

where we define M(t) := λµt. A continuous mapping theorem of the theory of weak
convergence states, that weak convergence holds after a continuous, measurable mapping
of the metric space into itself. So we can change signs to get the actual negative part of
Rn.
Furthermore we know that if two sequences of random functions converge in probability
and one converges weakly to a random function, the other one does too. That is a special
case of Theorem 2.6 on the same space. Therefore we can standardise directly with M .

−
S

(n)
N(n·)√
n

+M ⇒ σW ◦ Λ.

Considering the other terms of Rn we get the result

Rn√
n
⇒ x+ Γ + σW ◦ Λ.
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For Gaussian processes it is sufficient to show that the mean and covariance are the same
to prove that they are identical. Since W ◦ Λ has the same distribution as

√
λW , the

proof is complete. �

When the risk process is approximated in such a way, the parameters of the Brownian
motion µ and σ can be determined by matching the first two moments of the original
process Rn and the Wiener process.
The approximation gets better the greater n gets and therefore the higher t of Rn(t) is.
But from Theorem 2.8 we see that the starting value x also has a great impact on the
quality of the approximation.
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Chapter 3

Formulated Problem and Solution

We will now start to describe the control problem in detail and formulate the corre-
sponding stochastic control problem we will have to solve. We begin with a classical
Cramer-Lundberg Model (CLM) as defined in (2.4), which uses a compound Poisson pro-
cess to describe the risk process of an insurance company

R(t) = x+ pt−
Nt∑
i=1

Ui.

Here, the initial position x of the risk process corresponds to the initial capital of the
insurance company x ∈ [0,∞), p is the premium rate, Ui is the size of each claim i and
Nt corresponds to the number of claims in the time interval [0, t]. The claims Ui are i.i.d.
random variables with positive finite first an second moments m and s2. Furthermore
they are independent of Nt, which is a Poisson process with intensity β. The event of
the process R(t) hitting zero or a given bankruptcy value P is called ruin. When this
happens, we call the time T bankruptcy or ruin time, with T = inf{t : R(t) ≤ 0} or
T = inf{t : R(t) ≤ P}, respectively.

In the simplest case of proportional reinsurance, the company introduces the retention
level a ∈ [0, 1]. a = 1 means taking no reinsurance and covering all the risk yourself,
while a = 0 means covering no risk at all and pass it to the reinsurance company. Hence,
on the one hand the insurance company only insures a fraction of each claim a · Ui, but
earns only a fraction of the premium a · p on the other hand. The process of surplus
becomes

R(t) = x+ apt− a
Nt∑
i=1

Ui.

Because there is no extra fee added for the reinsurance premium rate, this model is called
cheap reinsurance. It is described in [12], where a similar model is considered.
Usually, reinsurance premium rate is higher than the insurance premium rate, so we
introduce the premium rate p2 with p2 > p. The earned premium rate for the initial
company now reduces to p− (1− a)p2. This model is called non-cheap reinsurance. Now
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the risk process formulates like this:

R(t) = x+ (p− (1− a)p2)t− a
Nt∑
i=1

Ui. (3.1)

Our goal is of course to control the retention level a, so that the process R(t) does not
hit ruin.

In order to use dynamic programming to find a closed form solution of this problem,
we need to transform (3.1) into a diffusion process. According to Section 2.2 it can be
approximated by a Brownian motion with drift, where we match expected value and
variation. For simplicity we write Rt instead of R(t). Since the expected value of (3.1)
by Walds formula equals

E[Rt] = (p− (1− a)p2)t− amβt,

we can write the drift of the diffusion process as µ − (1 − a)λ, where µ = p − βm and
λ = p2 − βm. The variance of the poisson process equals

σ2(Rt) = βtm2 + βts2.

Therefore we are able to set the diffusion for the transformed process as aσ, with σ2 =
β(s2 +m2). p = p2 and therefore λ = µ would be the case of cheap reinsurance.

To find an exact solution I want to formulate this diffusion model in a mathematical way.
Given a probability space (Ω,F ,P) we name a standard Brownian motion Wt adapted to
the filtration Ft. The diffusion risk process under the control policy π with initial capital
x is given by

dRπ
t = (µ− (1− aπt )λ)dt+ σaπ(t)tdWt, with

Rπ
0 = x.

(3.2)

The control process aπt describes the amount reinsured of the claims and therefore satisfies
0 ≤ aπt ≤ 1 for all t ≥ 0. We choose aπt to be Ft measurable. By Π we denote the set of
all the admissible controls strategies.
Similar to the Cramer-Lundberg model we define a ruin time by

τπ = inf{t : Rπ
t ≤ 0}.

Furthermore, with a given admissible policy π, a discount factor r and value of bankruptcy
P we define the return function by

Jx(π) = E

[∫ τπ

0

e−rtRπ
t dt+ e−rτπP

]
Here x refers to the initial capital of the risk process as in (3.2).

So in our case the previously defined stochastic control problem (2.1) formulates as fol-
lows.
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• The control policy aπt is adapted to the filtration Ft with values in [0, 1].

• The controlled process Rπ
t is described by

dRπ
t = µaπt dt+ σaπt dWt, with

Rπ
0 = x.

• The associated performance functional is

Jx(π) = E

[∫ τπ

0

e−rtRπ
t dt+ e−rτπP

]
.

• All admissible policies are denoted by Π.

• The optimal value function is

V (x) = sup
π∈Π

Jx(π).

Our goal is to find this optimal return function and the corresponding optimal control
π∗, so that Jx(π∗) = supπ∈Π Jx(π). The optimal control process aπ∗(Rt) = a∗ is called
optimal feedback control. It describes the value of the optimal retention level a for a given
surplus of the risk process Rt.

3.1 HJB Equation
With the theory stated in Chapter 2.1 we are able to formulate the associated HJB
equation that we have to solve. When˜denotes the notation in the last chapter, we set
ψ̃ := x, b̃ := µ− (1− a)λ and σ̃2 := σ2a2. We obtain

max
a∈[0,1]

[
σ2a2

2
f ′′(x) + (µ− (1− a)λ)f ′(x)− rf(x) + x

]
= 0 (3.3)

with the boundary conditions

f(0) = P, and

lim sup
x→∞

|f(x)|
x

<∞.
(3.4)

According to (2.3) we have to solve this nonlinear ordinary differential equation to find
the optimal return function V and the optimal feedback control a∗. This is done in the
following chapter.
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3.2 Solution to the HJB equation
From here on we assume that p2 > p, i.e. λ > µ to consider only the more realistc
case of non-cheap reinsurance. p = p2 and therefore λ = µ would be the case of cheap
reinsurance.
To find a solution to this problem we use an heuristic approach. We assume that we
found a solution f to the HJB equation (3.3) and use its characteristics to get an ex-
act definition of the value function and the optimal feedback control. We have to verify
all the characteristics of f and all the assumptions we will make once the solution is found.

We start with an measurable interval O = [0, x1) for a fixed x1 ∈ [0,∞) and assume that
we found a solution f , such that 0 < a∗(x) < 1 for every x ∈ O. We further assume that
f is strictly concave on O.
Now, to find the maximum in (3.3) in O we differentiate the left hand side with respect
to a to find a∗. As an extremum it should equal 0

σ2af ′′(x) + λf ′(x) = 0,

which transforms to

a(x) = − λf ′(x)

σ2f ′′(x)
, x ∈ O. (3.5)

Now we substitute the last term into (3.3) and see that f satisfies

− λ
2f ′(x)2

2σ2f ′′(x)
+ (µ− λ)f ′(x)− rf(x) + x = 0. (3.6)

By our assumption f is strictly concave, so we are able to use a transformation to sim-
plify the following steps. Since f ′′(x) is negative and a(x) is positive, we obtain from
(3.5) that f ′(x) is strictly positive and therefore decreasing. Therefore, since f(x) is
increasing, −ln(f(x)) is strictly increasing and there exists a function X(.) such that
− ln(f ′(X(z))) = z. Also

f ′(X(z)) = e−z,

f ′′(X(z)) =
−e−z

X ′(z)
.

(3.7)

This transformation is also used in Presman and Sethi[8] among others.

Defining B such that X(B) = 0 and f ′(0) = e−B, we get X : [B,∞) → [0,∞). After
substituting x = X(z) into (3.6) and using (3.7) we obtain

− (λe−z)2

2σ2 −e−z
X′(z)

+ (µ− λ)e−z − rf(x) + x

=
λ2

2σ2
X ′(z)e−z + (µ− λ)e−z − rf(X(z)) +X(z) = 0. (3.8)
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By differentiating the last term with respect to z, applying (3.7) once again we get

λ2

2σ2
X ′′(z)e−z − λ2

2σ2
X ′(z)e−z − (µ− λ)e−z − re−zX ′(z) +X ′(z) = 0.

By multiplying this expression by c := 2σ2

λ2
and e−z we can rewrite (3.8) as

X ′′(z)− (1 + cr − cez)X ′(z)− c(µ− λ) = 0 (3.9)

We solve this ODE with the technique of variation of constants. First, we easily find a
solution to the corresponding homogenous equation

X ′′(z)− (1 + cr − cez)X ′(z) = 0

and get

X ′h(z) = k1e
[(1+cr)z−cez ], (3.10)

where k1 is a constant.
To find a particular solution to the non-homogeneous equation, we use the approach
X ′p(z) = d(z)X ′h with the differentiable function d(z). Now we plug this term into (3.9)
to obtain d′(z).

X ′′p (z)− (1 + cr − cez)X ′p(z)− c(µ− λ)

= d′(z)e[(1+cr)z−cez ] + d(z)e[(1+cr)z−cez ]((1 + cr)− cez)
− (1 + cr − cez)d(z)e[(1+cr)z−cez ] − c(µ− λ) = 0.

When we integrate

d′(z) = c(µ− λ)e−[(1+cr)z−cez ]

we obtain the solution for X ′p(z). The final result is

X ′(z) = X ′h +X ′p

= c(µ− λ)e[(1+cr)z−cez ]

∫ z

B

e[−(1+cr)y+cey ]dy + k1e
[(1+cr)z−cez ].

(3.11)

For simplification we will use the density function g(.) of a Gamma distribution with
parameters (cr + 1, 1/c):

g(x) =
ccr+1

Γ(cr + 1)
xcre−cx, (3.12)

where Γ is the Gamma function

Γ(z) =

∫ ∞
0

xz−1e−xdx.
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We plug g(ez) into (3.11) to get

X ′(z) = c(µ− λ)ezg(ez)

∫ z

B

1

eyg(ey))
dy + k1

Γ(cr + 1)

ccr+1
ezg(ez).

We set k2 := k1
Γ(cr+1)
ccr+1 and use the substitution u = ey to define

H(z) :=

∫ z

eB

1

u2g(u)
du, for z > eB. (3.13)

The simplified version of (3.11) is

X ′(z) = c(µ− λ)H(ez)e(z)g(ez) + k2e
zg(ez).

By integrating this term we obtain a solution of (3.9) for z > B:

X(z) =

∫ z

B

[c(µ− λ)H(ey)eyg(ey) + k2e
yg(ey)]dy + k3 = K(ey) + k3,

where we use the same substitution as in (3.13) to define

K(z) :=

∫ z

eB
[c(µ− λ)H(u)g(u) + k2g(u)]du, for z > eB. (3.14)

Since by our definition X(B) = 0, we get k3 = 0, and therefore X(z) = K(ez).
X(z) and and ez are both monotone, so K(.) is invertible. Let K−1 denote the inverse of
K. By our definition of X(z) to formulate (3.7) and the substitution X(z) = x we get

− ln(f ′(X(z))) = z = ln(K−1(x)),

which results in

f ′(x) =
1

K−1(x)
,

f ′′(x) = − 1

k(K−1(x))(K−1(x))2
.

(3.15)

Here

k(z) = c(µ− λ)H(z)g(z) + k2g(z) (3.16)

is the derivative of K(z).
When we insert (3.15) into (3.5) we get a first result of the optimal feedback control on
the interval O = [0, x1)

a(x) =
λ

σ2
k(K−1(x))K−1(x). (3.17)
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We also find a first solution for the value function on O by integrating (3.15) an using
the boundary condition at zero

f(x) =

∫ x

0

1

K−1(y)
dy + P, for x ∈ O.

We assumed that 0 < a(x) < 1 on O. As a next step we also assume that the border
of the interval x1 exists and a(x1) = 1. Of course a(x) = 1 for every x > x1, because it
represents the retention level of the insurance company. Setting a = 1 in (3.3) we get

σ2

2
f ′′(x) + µf ′(x)− rf(x) + x = 0. (3.18)

To solve this ODE of second order with constant coefficients, we first consider the char-
acteristic polynomial of the homogenous part (See [7]).

f 2 +
2µ

σ2
f − 2r

σ2
= 0 (3.19)

The fundamental set of solutions for the homogenous part of (3.18) is given by

f = c1e
f1x + c2e

f2x,

where f1, f2 are the solutions of (3.19) and c1, c2 are constants. The solutions are

f1,2 =
−2µ
σ2 ±

√
4µ2

σ4 + 4 2r
σ2

2
= −µ±

√
µ2 + 2rσ2

σ2
.

Using the condition (3.4) that f should not grow too fast for x → ∞ I only use the
negative solution and define

θ− :=
−µ−

√
µ2 + 2rσ2

σ2
. (3.20)

We get

fh(x) = k4e
θ−x,

where k4 is a constant.
As before in (3.11) we use variation of constants to get a particular solution the non-
homogeneous equation. Because of the special form of the source term I use the approach
fp(x) = q1x+ q0 with constant coefficients c1, c0. After plugging this term into (3.18) we
get

µq1 − r(q1x+ q0) + x = 0.

To satisfy this equation we get the two conditions

µq1 − rq0 = 0 and (3.21)
−rq1x+ x = 0, (3.22)
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which leads to the particular solution

fp(x) =
µ

r2
+
x

r
.

The solution to f(x) is given by

f(x) = fp(x) + fh(x) =
µ

r2
+
x

r
+ k4e

θ−x, for x ≥ x1.

Now, we can summarize our suggested solution

f(x) =

{ ∫ x
0

1
K−1(y)

dy + P, 0 ≤ x < x1
µ
r2

+ x
r

+ k4e
θ−x, x ≥ x1

(3.23)

We still have to determine the values of the constants k2, B, k4 and x1, before we have to
prove that all the assumptions hold that we did at the beginning.

We use the principle of smooth fit. Let f1 denote the function f for x < x1 and f2 is f
for x ≥ x1. Now some of the constants are chosen, so that the first an second derivative
of the value function f1 and f2 become equal in the point x1.
After differentiating (3.23) we get

f ′2(x1) =
1

r
+ k4θ−e

θ−x1 ,

f ′′2 (x1) = k4θ−e
θ−x1

and from (3.15)

f ′1(x1) =
1

K−1(x1)
.

For the second derivative of f1 we don’t use (3.15) but the special case of the control
process a in x1 from (3.5). So from

a(x1) = 1 = − λf ′1(x1)

σ2f ′′1 (x1)

we get

f ′′1 (x1) = − λ

σ2
f ′1(x1).

We obtain the following two continuity equations

1

K−1(x1)
=

1

r
+ k4θ−e

θ−x1 , and

− λ

σ2

1

K−1(x1)
= k4θ−e

θ−x1 .

(3.24)
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We solve this these equations for x1 and k4 and can state the following as a first result

K−1(x1) = r

(
1 +

λ

σ2θ−

)
, (3.25)

k4e
θ−x1 =

−λ
r(σ2θ2

− + λθ−)
. (3.26)

Since f(x1) > 0 and therefore K−1(x1) > 0, from (3.25) and the definition of θ− (3.20)
we get the request λ < µ+

√
µ2 + 2rσ2. So we can solve (3.25) and (3.26) explicitly

x1 = K

(
r

(
1 +

λ

σ2θ−

))
,

k4 =
−λ

r(σ2θ2
− + λθ−)

e−θ−x1 . (3.27)

By the solution of a(x) on O, see (3.17), in the point x1 and using the form of k(.) in
(3.16) we get

a(x1) = 1 =
λ

σ2
K−1(x1)

(
c(µ− λ)H(K−1(x1))g(K−1(x1)) + k2g(K−1(x1))

)
.

So

k2 =
σ2

λK−1(x1)g(K−1(x1))
− c(µ− λ)H(K−1(x1)). (3.28)

Since K−1(x1) is positive and λ > µ we know that k2, x1 > 0 as well.
The updated version of (3.23) with K(.) given by (3.14) and θ− given by (3.20) is

f(x) =

{ ∫ x
0

1
K−1(y)

dy + P, 0 ≤ x < x1,
µ
r2

+ x
r

+ −λ
r(σ2θ2−+λθ−)

eθ−(x−x1), x ≥ x1.

Finding a solution to eB gets more complicated, as it is used in the definition of K(.) and
H(.). It will be necessary to make an additional assumption, as this is also needed to
formulate the solution for the maximizing function of the HJB equation (3.3), the optimal
feedback control.

We set α := K−1(x1) since this solution is known from (3.25). K−1(x) exists and is
increasing on [0, x1), if the derivation k(y) > 0 for all eB < y < α. Additionally K−1(0) =
eB. Furthermore, from the positivity property of K−1 and the derivations f ′1, f ′′1 we see
that f is strictly concave on O.
We insert (3.28) into (3.16) and get the inequality

k(y) = c(µ− λ)H(y)g(y) +
σ2

λαg(α)
− c(µ− λ)H(α)g(y)

= c(λ− µ)g(y)(H(α)−H(y)) +
σ2g(y)

λαg(α)
> 0

(3.29)
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Hence, our solution to a∗ is given by

a∗(x) =

{
λ
σ2k(K−1(x))K−1(x), if 0 ≤ x < x1,
1, if x ≥ x1.

(3.30)

To get a solution to B, we use the boundary condition at 0 and the fact that f(0+)
should behave continuous at 0. f has to be a solution to the HJB equation (3.3) for all
x ≥ 0. Therefore we let f(0+) near f(0) in the limit x→ 0.
First, we insert (3.29) into (3.30) near 0 and use K−1(0) = eB,

a∗(0+) =
λeB

σ2

(
c(λ− µ)g(eB)(H(α)−H(eB)) +

σ2g(eB)

λαg(α)

)
.

With H(eB) = 0 and the definition of c = 2σ2

λ2
we get

a∗(0+) =
eBg(eB)

αg(α)
+

2(λ− µ)

λ
eBg(eB)H(α). (3.31)

Second, we use the already rearranged version (3.6) of the HJB equation and the boundary
condition f(0) = P . We get

λ

2
a∗(0+)f ′(0+) + (µ− λ)f ′(0+)− rP = 0.

Now we insert f(0) = e−B and a∗(0+) from (3.31) and get

λ

2

(
g(eB)

αg(α)
+

2(λ− µ)

λ
g(eB)H(α)

)
+ (µ− λ)e−B − rP = 0. (3.32)

We want to solve this equation for B, which cannot be done in an explicit way. Instead
we are going to show that it has a unique solution. To prove that, we split (3.32) into
two new defined functions F (.) and G(.) and show that these functions have a unique
crossing point in O.
To define these functions we set y := eB, multiply (3.32) with y and use the definition of
H(.),

F (y) :=
yg(y)

αg(α)
+

2(λ− µ)

λ
yg(y)

∫ α

y

1

z2g(z)
dz,

G(y) :=
2rP

λ
y +

2(λ− µ
λ

.

First, we show that F ′(y) has no local minimum on (0, α), which is the new definition set
after the transformation of O. To derivate F (.), we first calculate the derivation of yg(y)
with the gamma density function g(.) (3.12),

(yg(y))′ =

(
ccr+1

Γ(cr + 1)
ycr+1e−cy

)′
=

ccr+1

Γ(cr + 1)

(
(cr + 1)ycr+1e−cy − cycr+1e−cy

)
= g(y)(1 + cr − cy).

(3.33)
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So we get

F ′(y) =
1

y

(
F (y)(1 + rc− cy)− 2(λ− µ)

λ

)
and

F ′′(y) =
1

y
(F ′(y)(rc− cy))− cF (y)

y
.

(3.34)

When we assume that there exists an extremum y∗ ∈ (0, α) with

F ′′(y∗) = 0, (3.35)

then we get from (3.34)

F ′(y∗) =
cF (y∗)

rc− cy∗
> 0 and

F ′′′(y∗) = −2cF ′(y∗)

y∗
< 0.

So the assumed extreme point is a local maximum and therefore F ′ has no local minimum
on (0, α). This is why F is strictly increasing and concave.
Next, we compare the values of F and G at the boundaries 0 and α with each other. For
the value of F at 0 we use L’Hospital’s rule for y → 0,

lim
y→0

F (y) = lim
y→0

1
αg(α)

+ 2(λ−µ)
λ

∫ α
y

1
z2g(z)

dz
1

yg(y)

= lim
y→0

2(λ−µ)
λ

−1
y2g(y)

−g(y)(1+rc−cy)
y2g(y)2

=
2(λ− µ)

λ(1 + rc)
,

where (3.33) was used once again.
So

F (0) =
2(λ− µ)

λ(1 + rc)
<

2(λ− µ)

λ
= G(0).

If F (α) > G(α) then (3.32) has a unique solution, because of the shown properties of F
and G is linear,

F (α) = 1 > G(α) =
2rP

λ
α +

2(λ− µ)

λ
.

To ensure this

G(α) =
2rP

λ
α +

2(λ− µ)

λ
< 1,

P <
2µ− λ

2rα
.

We are now able to summarize the result in the different cases of the starting variables
µ, σ, P, λ and r. Also, we are going to prove the suggested solutions to verify the assump-
tion we made for deriving them. Depending on the starting variables the value function
and the optimal control differ, since x1 and therefore the domain O does not always exist.
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Before we state the results in theorems, we prove that the optimal feedback control a∗(x)
we found in (3.17) for the domain O = [0, x1) fulfills our assumptions as an optimal
reinsurance policy.

Lemma 3.1 Let µ < λ < µ+
√
µ2 + 2rσ2. Then

a(x) =
µ

σ2
k(K−1(x))K−1(x)

is increasing and 0 < a(x) < 1 for all x ∈ [0, x1).

Proof Defining y := K−1(x) we have to show

a1(y) =
µ

σ2
k(y)y ∈ (0, 1) for y ∈ [eB, α)

We already showed in (3.29) that k(y) > 0 and therefore a1(y) > 0 on [eB, α).
Similar to calculations before, we show that a1(y) has no local minimum on the observed
domain and use that to show it is increasing as well. First, we use (3.33) and the
definitions of k(.) and H(.) to show

a′1(y) =
1

y

(
a1(y)(1 + cr − cy) +

λc

σ2
(µ− λ)

)
and

a′′1(Y ) =
1

y
(a′1(y)(cr − cy))− ca1(y)

y
.

Again we assume that there exists an extremum y∗ ∈ (eB, α), which fulfills

a′1(y) = 0.

Due to

a′′1(y) = −ca1(y)

y
< 0,

the extremum is a local maximum and so no local minimum exists.
a1(.) is a continuous function and therefore should fit for y → α. Since we know a1(α) = 1
we set

a′1(α−) =
1

α

(
(1 + cr − cα) +

λc

σ2
(µ− λ)

)
.

When we insert the definition of c = 2σ2

λ2
, α = r(1 + λ

σ2θ−
) and θ− =

−µ−
√
µ2+2rσ2

σ2 into the
numerator, it transforms to

a′1(α−) =
1

α

−1

λθ−
(λθ− + 2r − 2µθ−) =

=
2µ(µ+

√
µ2 + 2rσ2) + 2rσ2 − λ(µ+

√
µ2 + 2rσ2)

λ(µ+
√
µ2 + 2rσ2)α

.
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Using the condition λ < µ+
√
µ2 + 2rσ2 we see that

a′1(α−) >
2µ(µ+

√
µ2 + 2rσ2) + 2rσ2 − (µ+

√
µ2 + 2rσ2)2

λ(µ+
√
µ2 + 2rσ2)α

= 0

where we set λ = µ+
√
µ2 + 2rσ2 in the numerator.

We obtain that a′1(y) > 0 for all y ∈ [eB, α), since a1 has no local minimum and the
derivation next to α is positive. Furthermore, we see that 0 < a1(y) < 1 for all y ∈ [eB, α)
from a1(α) = 1. �

We will now state the solution to the HJB equation (3.3) for the different cases of starting
variables.

Theorem 3.2 (Solution to the HJB-equation 1) Let again be µ < λ < µ+
√
µ2 + 2rσ2.

1. If P < 2µ−λ
2rα

then the solution to the HJB equation (3.3) with the boundary condi-
tion (3.4) is given by

f(x) =

{ ∫ x
0

1
K−1(y)

dy + P, 0 ≤ x < x1,
µ
r2

+ x
r

+ −λ
r(σ2θ2−+λθ−)

eθ−(x−x1), x ≥ x1,

where K(.) is given by (3.14), θ− is given by (3.20) and x1 is determined by (3.27),
k2 by (3.28) and eB is the unique solution to (3.32).

In this case the optimal feedback control is given by

a∗(x) =

{
λ
σ2k(K−1(x))K−1(x), if 0 ≤ x < x1,
1, if x ≥ x1,

where k(.) is given by (3.29).

2. If 2µ−λ
2rα

< P < µ
r2

then the solution is

f(x) =
µ

r2
+
x

r
+ (P − µ

r2
)eθ−x, x ≥ 0.

In this case the optimal feedback control is

a∗(x) = 1.

Proof (Theorem 3.2)

1. The construction of f ensures that f ∈ C2((0,∞)) and the boundary conditions
(3.4) hold. Because 1

K−1(x)
is decreasing and θ− < 0, the first derivative of f is

polynomially growing, f ∈ Cp((0,∞)). So we only have to show that our solution
satisfies the HJB equation (3.3).
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On the interval O, when the right hand side of (3.5) is in (0, 1), the HJB equation
is equivalent to (3.6). With the restrictions on P we see from Lemma 3.1, that our
construction of f ensures that f solves (3.6) and therefore (3.3). Lemma 3.1 also
states a∗(x).

If x > x1 then f satisfies

σ2

2
f ′′(x) + (µ)f ′(x)− rf(x) + x = 0. (3.36)

To prove that f also satisfies (3.3), we have to show that

σ2a2

2
f ′′(x) + (µ− (1− a)λ)f ′(x)− rf(x) + x < 0, (3.37)

for every a < 1. Combining (3.36) and (3.37) we see that it is sufficient to prove
that

F (a, x) :=
σ2(1− a2)

2
f ′′(x) + λ(1− a)f ′(x) ≥ 0 for all a ∈ [0, 1].

With the derivations

f ′(x) =
1

r
+

−λθ−
r(σ2θ2

− + λθ−)
eθ−(x−x1) and

f ′′(x) =
−λθ−

r(σ2θ2
− + λθ−)

eθ−(x−x1),

we get

e−θ−(x−x1)F (a, x) =
σ2(1− a2)

2
βθ2
− + λ(1− a)

(
e−θ−(x− x1)

r
+ βθ−

)
, (3.38)

where β := −λ
rσ2θ2−+λθ−

.

We set

G(a, x) :=
σ2(1− a2)

2
βθ2
− + λ(1− a)(

1

r
+ βθ−)

as a lower boundary for the right hand side of (3.38). Since we know from (3.24)
that β < 0, we see from the derivatives of G with respect to a

G′(a, x) = −σ2aβθ2
− − λa

(
1

r
+ βθ−

)
,

G′′(a, x) = −σ2βθ2
−,

that G(.) is a convex function, because the second derivative is positive. Therefore
its minimum is reached when the first derivative equals 0. From G′(a∗, x) = 0 we
get

a∗ = −
λ
(

1
r

+ βθ−
)

σ2βθ2
−

= 1,

when we plug in β. Finally from F (1, x) = 0 we obtain that F (a, x) ≥ 0 for all
a ∈ [0, 1].
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2. For 2µ−λ
2rα

< P < µ
r2

we assume that a∗(x) = 1. With the boundary conditions (3.4)
we get the constant for the homogenous solution for (3.20). We obtain

f(x) =
µ

r2
+
x

r
+
(
P − µ

r2

)
eθ−x. (3.39)

Obviously f ∈ C2((0,∞)) ∩ Cp((0,∞)). We have to show that f satisfies (3.3),
which will implicitly also prove our conjecture of a∗(.).

We insert the derivations of f into (3.5) and obtain

a(x) = − λf ′(x)

σ2f ′′(x)
= −λ

θ

1
r

+ (P − µ
r2

)θ−e
θ−x

(P − µ
r2

)θ2
−e

θ−x

= − λ

σ2r(P − µ
r2

)θ2
−e

θ−x
− λ

σ2θ−
.

So a(.) is an increasing function in x and therefore a(x) ≥ a(0) for x ≥ 0. Since
P ≥ 2λ−µ

2rα
we establish the inequality

a(0) = − λ

σ2r(P − µ
r2

)θ2
−
− λ

σ2θ−

≥ − λ

σ2r(2µ−λ
2rα
− µ

r2
)θ2
−
− λ

σ2θ−
= −λ(2αµθ− + λrθ− − 2µrθ− − 2αr)

σ2(2αµ+ λr − 2µr)θ2
−

= 1,

and obtain a(x) ≥ 1, where the last equality generates when we plug in the defini-
tions of α and θ−. Therefore f(.) given by (3.39) satisfies (3.3).

�

Theorem 3.3 (Solution to the HJB-equation 2) If λ ≥ µ+
√
µ2 + 2rσ2 and additional

P < µ
r2
, the solution to (3.3) is given by

f(x) =
µ

r2
+
x

r
+ (P − µ

r2
)eθ−x, x ≥ 0,

where θ− is given by (3.20). The optimal feedback control is

a∗(x) = 1.

Proof (Theorem 3.3) As in the proof of Theorem 3.2 2., we get the same solution for
f and have to show that it satisfies (3.3). By the same calculations as before we know
that

a(x) ≥ a(0) = − λ

σ2r(P − µ
r2

)θ2
−
− λ

σ2θ−
. (3.40)
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Again we assumed that a∗(x) = 1 and now need to show that a(0) ≥ 1. When we plug
the first into (3.40) and transform the inequality we get

λ

σ2θ−
+ 1 ≥ − λ

σ2r(P − µ
r2

)θ2
−
.

In a next step we have to prove that this holds for all P < µ
r2
. Transformed once more

we see that(
P − µ

r2

)
(λθ− + σ2θ2

−) ≥ −λ
r
.

By the definition of θ− the condition λ ≥ µ +
√
µ2 + 2rσ2 is equivalent to λ ≥ −θ−σ2.

Therefore left hand side of the last inequality is positive and it holds. This proves the
assumption to be correct. �

Theorem 3.4 (Solution to the HJB-equation 3) If P = µ
r2

the solution is given by

f(x) =
µ

r2
+
x

r
, x ≥ 0.

The optimal feedback control in this case is

a∗(x) = 1.

Proof (Theorem 3.4) Since f is linear, it is an element of C2((0,∞)) ∩ Cp((0,∞)).
Furthermore f fulfills the boundary conditions. From the derivations of f we get a new
HJB equation

max
a∈[0,1]

(
(µ− (1− a)λ)

1

r
− r µ

r2
+
x

r
+ x

)
= 0,

where it is easily seen that a∗(x) = 1. �

Theorem 3.5 (Solution to the HJB-equation 4) Now let P > µ
r2
. If λ ≤ µ+

√
µ2+2rσ2

2

the solution to (3.3) is given by

f(x) =
µ

r2
+
x

r
+ (P − µ

r2
)eθ−x, x ≥ 0, (3.41)

where θ− is given by (3.20). The optimal feedback control is

a∗(x) = 1.

34



Proof (Theorem 3.5) From the last Theorem 3.4 we conjecture that for P getting even
greater, a∗(x) = 1 holds as well. With the boundary conditions we are able to formulate
f . To show that it satisfies the HJB equation we only consider the part of (3.3) that
contains a. It should be at maximum when a(x) = 1.

σ2a2

2
f ′′(x) + λaf ′(x) =

(
σ2a2

2

(
P − µ

r2

)
θ2
− + λa

(
1

r
e−θ−x +

(
P − µ

r2

)
θ−

))
eθ−x

The last term is a quadratic polynomial in a which is convex, since the coefficient of
a2 is positive. Therefore the maximum in the interval [0, 1] can only be obtained at a
boundary point. At the point a = 0 the value of the function is 0. On the other hand at
a = 1 because of the conditions on P and λ

σ2

2
f ′′(x) + λf ′(x) =

(
σ2

2

(
P − µ

r2

)
θ2
− + λ

(
1

r
e−θ−x +

(
P − µ

r2

)
θ−

))
eθ−x

≤
(
P − µ

r2

)(σ2θ2
−

2
+ λθ−

)
eθ−x ≤ 0.

This shows that

arg max
0≥a≥1

(
σ2a2

2
f ′′(x) + λaf ′(x)

)
= 1,

which verifies (3.3). �

Remark 3.6 When P > µ
r2

and λ > µ+
√
µ2+2rσ2

2
finding a solution is not ensured. But

from the last theorem (3.5) it is seen, that when the starting variables P, µ, σ2, r and x
satisfy(

P − µ

r2

)(σ2θ2
−

2
+ λθ−

)
eθ−x +

λ

r
≥ 0,

the solution is (3.41). Otherwise we cannot use the HJB equation to find a solution, but
we still know that the optimal feedback control is

a∗(x) = 1.

Remark 3.7 The special cases for P = 0 are already considered in the stated Theo-
rems 3.2 and 3.3. They coinside with the results of Højgaard and Taksar [4], where no
bankruptcy value was considered at all.
First, in the case of 0 = P < 2µ−λ

2rα
, i.e. λ < 2µ, the condition can be simplified to

µ < λ < min(2µ, µ+
√
µ2 + 2rσ2) = 2µ.

The solution to both the value function and the optimal control can be seen in Theorem
3.2 1.
Second, when 2µ−λ

2rα
< P = 0 < µ

r2
, i.e. λ ≥ 2µ, Theorem 3.2 2 and Theorem 3.3 show the

solutions.
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Chapter 4

Analysis

This chapter focuses on the interpretation of the found solutions for the optimal return
function and the control process. Maple 17 is used to model the process and provide
graphical illustrations. In the first part of this chapter implementation challenges are
described. The corresponding code is given in the Appendix.
Later, I focus on each variable in an economic way. Illustrations are given to show the
influence of different values of the used variables.
In the last part of the chapter numerical calculations are done to check if the calculated
control process is truly optimal. I use Monte-Carlo simulations for the surplus process
for different distributions of the claim process.

4.1 Maple 17 Implementation
Using the statistics and finance package in Maple 17, most of the auxiliary functions of
the solution can easily be implemented for a start. For example there are functions for the
Gamma function as used in (3.12) (as probability function of the Gamma distribution:
PDF(GammaDistribution(.,.),.)) or a numerical solve function (fsolve) for finding
the solution for eB in (3.32).

But when it comes to the complicated solution as stated in Lemma 3.2, the easiest imple-
mentation either takes a very long time or fails at all. As there is no closed form solution
to the optimal return function f(x) for x < x1, many succesive (solving-)functions have
to be called. Because of Maple trying to evaluate an equation first before solving it for an
output parameter, the (numerical) solving operation can easily fail as there are too many
unknown variables. This especially occurs, when successive solving-functions are called.
Also using different input variable names at the declaration of a function can effect these
successive functions to abort.

Some of these problems can be eliminated with the right nomenclature and by forcing
every subfunction to be solved first before being evaluated in the next function. But
especially the latter can lead to very long calculation time when a function is required to
be evaluated at many points and each of this points requires more numerical evaluations
of g(.) and H(.).
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Calculating the inverse of K(.) (3.14), which is defined as a definite integral, is such
a problem. K(.) has to be numerically evaluated at many points to find the value for
K−1(.), where each point requires a numerical calculation

K(z) :=

∫ z

eB
[c(µ− λ)H(u)g(u) + k2g(u)]du, for z > eB.

With a different approach of differential equations and the corresponding implemented
Maple functions, calculation time can be saved dramatically.
First, we consider the differential of the process K(.)

dK

dz
= c(µ− λ)H(z)g(z) + k2g(z),

with K(eB) = 0.
We have shown before that the inverse exists, therefore we can consider z(.) as a function
of K as well. It satisfies the new differential equation

dz(K)

dK
=

1

c(µ− λ)H(z)g(z) + k2g(z)
, (4.1)

with the initial condition

z(0) = eB. (4.2)

Using the Maple function diff, equation (4.1) can be implemented and then solved
with the calling sequence dsolve for solving ordinary differential equations numerically
considering the initial condition.
This works great for the cases of cheap reinsurance, when the denominator simplifies to
k2g(z). By replacing K−1(.) in the piecewise solution of the optimal return function with
the solution of (4.1), significant computation time was saved in some of the following
examples.

Unfortunately, in the case of non-cheap reinsurance Maple cannot solve the integral of
H(.) originally defined in (3.13)

H(z) :=

∫ z

eB

1

u2g(u)
du, for z > eB

in the numerical evaluation. But if H(z(K)) is differentiated for K, the solution gets
numerically solvable,

dH(z)

dK
=

dz
dK

z2g(z)
.
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In a next step I differentiate (4.1) a second time to obtain a second order differential
equation

d2z

dK2
=

dz
dK

(
cλdH

dK
g(z)− cµdH

dK
g(z) + cλH(z) dg

dK
− cµH(z) dg

dK
− k2

dg
dK

)
g(z)2(cλH(z)− cµH(z)− k2)2

. (4.3)

To eliminate H(z) in this equation, I solve (4.1) for it to get

H(z) =
dz
dK
g(z)k2 − 1

dz
dK
cg(z)(λ− µ)

. (4.4)

Inserting the values of H(.) and its differential into (4.3), I obtain

d2z

dK2
=

(cλ( dz
dK

)2g(z)− cµ( dz
dK

)2g(z)− z2 dg
dK

)( dz
dK

)2

z2g(z)
. (4.5)

Since we know that H(eB) = 0, we get another initial condition for this new simplified
ODE (4.5) by evaluating (4.4) at this point

dz

dK
(0) =

1

k2g(eB)
. (4.6)

Maple still has problems evaluating equation (4.5) using dsolve because of the differential
of g(z(K)),

dg(z)

dK
= −

(
dz
dK

)
c2e−zc(−r + z)(zc)cr

zΓ(cr + 1)
.

Now, as soon as this differential is inserted into (4.5), this this simplified ODE can be
solved using dsolve with the two initial conditions (4.2) and (4.6) as a replacement for
calculating K−1(.).

It has to be noted that this kind of numerical evaluation for non-cheap reinsurance models
also leads to calculation errors.
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Figure 4.1: Value function for µ = 4, λ = 4, σ =
√

10, r = 0.7 and P = 4.33

4.2 Economic Analysis
Here, the influence of each variable on the control process and the optimal return function
are studied.

As a first introduction we look at an example from Taksar [12] with µ = 4, λ = 4, σ =√
10, r = 0.7 and P = 4.33. This is the case of cheap reinsurance as µ equals λ. The

solution (3.2) is used for the calculation. Figure 4.1 shows the corresponding optimal
control process and the value function for each capital x from 1 to 4. The point x1, where
the optimal control a∗ changes to 1, is clearly seen.

Dependency on P

With non-cheap reinsurance as discussed in this paper, many different cases can occur.
In a first step I discuss the dependency on the bankruptcy value P .
As it is clearly seen, the solution of the optimal return function and the control process are
highly dependent on P . The more we know about the financial situation of the insurance
company at the time of bankruptcy for the examined product line or class of risks, the
more we know about the reinsurance strategy and the optimal return function.
In Theorem 3.4 we saw that a∗(x) = 1 for x ≥ 0 if P = µ

r2
, i.e. the insurer is not going to

reinsure at all and bears all the risk himself but also retains all the potential profit. The
suggestion, that if P gets even greater no reinsurance is concluded as well, was shown
in Theorem 3.5 and Remark 3.6. But we can also look at this in a more reality relevant
expected value perspective.
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If P is high (P ≥ µ
r2
) we assume that the reinsurance factor is a∗(x) = 1 for x ≥ 0 and

donate this strategy as π1. Let π2 be the optimal strategy in this case. In an expected
value approach we get

E

(∫ τπ1

0

e−rtRπ1dt+ e−rτπ1P

)
=E

(∫ τπ1

0

e−rtRπ1dt+ e−rτπ1
µ

r2

)
+ E

(
e−rτπ1

(
P − µ

r2

))
≤E

(∫ τπ2

0

e−rtRπ2dt+ e−rτπ2
µ

r2

)
+ E

(
e−rτπ2

(
P − µ

r2

))
≤E

(∫ τπ1

0

e−rtRπ1dt+ e−rτπ1
µ

r2

)
+ E

(
e−rτπ2

(
P − µ

r2

))
The last inequality holds because we know that if P = µ

r2
the optimal reinsurance strategy

is π1, i.e. to not reinsure at all. Therefore the focus is on P − µ
r2
. From the inequalities

we get

E
(
e−rτπ1

(
P − µ

r2

))
≤ E

(
e−rτπ2

(
P − µ

r2

))
, (4.7)

which is only possible if τπ2 ≤ τπ1 . If the optimal strategy π2 does not equal π1, it means
that some reinsurance is taken. But (4.7) shows that this would speed up the time of ruin
of the insurance company, which is in contrast to the objective of reinsurance, decreasing
the risk. Therefore we see that the insurance company would not reinsure and π2 = π1

for P ≥ µ
r2
.

On the other hand for very small values of P → 0 the amount of reinsurance to be taken
depends on the relationsship of µ and λ. This was described in Remark 3.7. In the paper
by Taksar and Hunderup [12] only cheap reinsurance was considered. That is why for
bankruptcy values P ≤ 0 the probability of hitting ruin equals 0, because no risk is taken
at all. In the case of non-cheap reinsurance this statement is not valid anymore, since
ruin would also be hit because of the higher reinsurance premium.

In the next step I focus on the optimal return function. Plotting the function using Maple,
the influence of P is clearly seen. While other papers (e.g. Højgaard and Taksar [4]) set
P = 0, the return functions were all concave. I our case, the optimal return function can
be of every type. It can be convex, linear or concave, depending on the bankruptcy value
P . This is seen in Figure 4.2, where we see three calculations of V (x) for different values
of P .
We also see in this Figure, that in a certain point the value function for P ≥ µ

r2
is

not monotone and increasing anymore. Setting the first derivative of solution (3.41) of
Theorem 3.5 zero, we see that if

P >
µ

r2
− 1

rθ−

V is decreasing in a neighbourhood of 0. Economically this means that because of a high
value of P , immediate ruin gains a higher value for the company than running business.
Since this is not an option in this model, because of the discount factor r the present
value of future profits and the discounted bankruptcy value P are lower than the current
or starting value x.

40



Figure 4.2: Value function for µ = 1.5, λ = 3, σ = 1, r = 0.1 and P = {140, 150, 160}

In all cases the optimal control is a∗ = 1. When P = 160 there is no explicit solution
given for x ≥ 0. V (x) can only be plotted for the domain where(

P − µ

r2

)(σ2θ2
−

2
+ λθ−

)
eθ−x +

λ

r
≥ 0,

see Remark 3.6.
In Figure 4.2 it is clearly seen, that the influence of P on the value function is stronger,
the smaller the actual or starting value x is. For a company with a huge initial capital the
bankruptcy value rarely affects the control policy and the corresponding optimal return.
The greater x gets, the more similar the different versions of V (x) get.

Dependency on σ

If σ converges to 0, we expect from the definition of the risk process Rt the value function
to approach to the linear function µ

r2
+ x

r
. Obviously, in this case no reinsurance is needed

as it is a non-stochastic function.
In the case where P ≥ µ

r2
no reinsurance is going to be taken at all, but the smaller σ gets,

the faster V (x) converges to this linear function. An interpretation of the strong convexity
in such a case would be, that the bankruptcy value P is higher than the expected return,
which was also discussed at the dependency on P . This is seen in Figure 4.3. This also
occurs because of the approximation as a diffusion process, as we will see in the next
Section 4.3. For simplicity, again the case considering cheap reinsurance is used.
The more risk has to be taken when offering insurance policies, i.e. the greater σ gets,
the more reinsurance is taken for small initial capital x. This can be seen in Figure 4.4.
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Figure 4.3: Value function for µ = λ = 4, r = 0.7, P = 10 and σ = {
√

30,
√

10, 1}

Figure 4.4: Value function for µ = λ = 4, r = 0.7, P = 4.33 and σ = {
√

30,
√

10, 1}
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Figure 4.5: Value function for µ = λ = 4, P = 4.33, σ =
√

10 and r = {0.1, 0.15, 0.2}

Dependency on r

The discount factor r describes the importance of future payments in our model. As seen
in the different solutions, the optimal return function tends to converge to f(x) = µ

r2
+ x

r
.

The smaller r gets, the greater optimal return is calculated for any given starting capital
x. This property intensifies even more when the volatility σ decreases. A small σ makes
ruin in the future more unlikely, therefore the process gains value very fast. The higher
x is, the more unlikely ruin gets. Figure 4.5 shows this for different values of r.

Dependency on µ and λ

The influence on the value function of µ and λ, or particularly between the original
premium rate p and the reinsurance premium rate p2, is mainly dependent on µ. Reca-
pitulate, that µ = p−βm and λ = p2−βm. The ratio of P and µ describes if reinsurance
is needed in the first place. But even if P < µ

r2
, reinsurance is only concluded if λ < 2µ,

which is seen in Theorem 3.2. The more expensive the reinsurance premium gets, the
less likely reinsurance is going to be used. Transformed into the original premium rates,
reinsurance could only be necessary if p2 < 2p− βm, where βm describes the amount of
expected claim size up to time t = 1.
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4.3 Numerical Calculations
In this section I compare the calculated optimal solution to numerical illustrations of the
original process of the used model. I use Maple 17 to describe the Cramer-Lundberg-
Model of the risk process (3.1). Different assumptions on the underlying distributions
are taken, which were not relevant for the theoretical solution. Monte Carlo simulation is
used to test different outcomes of the discrete return function. By applying custom rein-
surance strategies I am able to compare the corresponding return function to the above
result of the optimal return function and study the efficiency of the optimal control.

The risk process and the stated solution depend on the two assumptions of the claim size
and claim occurence distribution. Since we studied in the setting of the Cramer-Lundber-
Model, the aggregated claim size model depends on a compound Poisson process. As
stated before the number of claims up to time t is Poisson distributed.

P(N(t) = k) = e−λt
(λt)k

k!
, k = 0, 1, 2, . . .

Other discrete distributions of the claim number could be negativ-binomial, logarithmic,
geometric or binomial. As a way of deciding if the Poisson distribution fits to the observed
number or another distribution would fit more, one can use the index of dispersion or
variance-to-mean ratio (VMR). It is defined as the ration between variance σ2 and mean
µ

VMR =
σ2

µ
.

For the Poisson distribution VMR = 1 applies, as it has equal variance and mean.
If VMR < 1 the binomial distribution would be a guess for the number of claims, if
VMR > 1 the negative binomial distribution fits more.
Since finding a solution for the optimal value function takes the Poisson distribution as
a starting point, in the following it will be set fixed as claim occurence distribution.

The presets for claim size distribution are not that strict. Since the CLM does not
depend on a certain distribution, studies are done for different claim distributions. These
distributions can be for example

• Gamma distribution

• Exponential distribution (Special case of gamma distribution as a rough model for
small claims in household, third-party vehicle insurance or automobile insurance)

• Pareto, Burr, Log-Gamma or Log-Normal distribution (heavy-tailed distributions
for problems where large claims may occur)

• Inverse Gaussian distribution

The following studies will focus on differences how these distributions influence the model.
For better comparison the same expected value E and variation σ2 for all different types
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Figure 4.6: 10 simulations of the risk process Rt. p1 = p2 = 7.33, m = 10, β = 0.33 and
x = 10.

of distributions is used.

First, I will use exponential distribution to describe the way to model the Monte Carlo
simulation of the risk process.

Parameters are set as in simple example calculations before. Premium costs in the cal-
culated solution are µ = λ = 4. Therefore, with the notation introduced in Chapter 3,
premium costs in CLM result in p1 = p2 = 7.33. Claim distribution is set with mean
m = 10, the claim number with intensity β = 0.33. Thus, the second moment of the
exponential distribution equals s2 = 200.

The original discrete risk process R(t) (3.1) is modelled as a function in Maple. Figure 4.6
shows 10 simulations of R(t) starting at x = 10 with no reinsurance and a minimisation
at 0. The first time that any of these sample paths hits 0 is the corresponding ruin
time τi for simulation i (i = 1, . . . , 10). In our simplified example, up to time 20 only 3
simulations hit ruin.

As a next step I model the corresponding value function, to compare the result with the
calculated solution. First the stopping time τi for each simulation is calculated, then the
cash value at time t = 0 is computed by discounting the values of Ri(t) up to τi with a
given discount factor r. At the time of ruin the bankruptcy value P is added if τi 6= ∞
and τi ≤ N , where N is the limit of t for simulation purposes.
Figure 4.7 shows the net values of the 10 simulations of Figure 4.6. The simulation path
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Figure 4.7: Net values of 10 Simulations of the risk process Rt. p1 = p2 = 7.33, m = 10,
β = 0.33, x = 10, P = 4.33 and r = 0.05.

has been extended for t to N = 1000, which one can argue that τi = ∞ if t hits N , as
with the given discount factor r = 0.05 values of R(t) get neglectable.

As the last step, the mean of the simulated sample value functions describe the value of
the return function at x = 10, in this case J10 = 1532.30.

Repeating these steps, values for all positive starting points x can be calculated. Fig-
ure 4.8 shows a pointplot of the value or return function J for x = 0, . . . , 20 at timesteps
of 0.1. For each value of x 500 simulations were made to calculate the mean.
By definition ruin is hit immediately at the starting point x = 0, therefore at this point
the simulation equals P = 4.33. With the given parameters, the probability of hitting
ruin is very small. That is why for each postitive x the mean of the Monte Carlo sim-
ulation converges to a value starting around 1200, where future profits get neglectable
because of the high discount rate.

It has to be remembered, that in this simulation no reinsurance is taken at all, thus a = 1.
Figure 4.9 shows the calculated optimal control function a∗ for the given parameters.

The easiest implementation of a reinsurance share is to adjust the control level in the
Monte Carlo simulation analogous a∗ for each starting point x and keep it at the same
level for the ongoing simulation of Rt in time. This way a great level of reinsurance is
taken for small values of x. As it is not changed, the insurance company only gains a
small amount of profit, which can be seen in Figure 4.10.
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Figure 4.8: Simulation of the value function J without reinsurance for x = 0, . . . , 20.
p1 = p2 = 7.33, m = 10, β = 0.33, x = 10, P = 4.33 and r = 0.05.

Figure 4.9: Optimal control a∗ for the optimal return function of Figure 4.8.
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Figure 4.10: Comparison of the simulated value function of Figure 4.8 with a simulated
value function with fixed control level.

This is not the intended control mechanism. Therefore the next step of the simulation
should take the optimal strategy into account at every time step. This can only be
done recursively, as in every simulated path of the risk process R(t) the proportion of
reinsurance to be taken depends on the value of R(t− 1). This is why it is not possible
anymore to model the risk process using a pre-defined Maple function.
In a first step I simulate a sample path of the stochastic sum of claims, which is defined
by a Poisson process. 10 simulations of the sum of claims can be seen in Figure 4.11.
Second, I calculate the discrete risk process step by step until it hits 0 or ruin for the first
time. This time point is saved as the corresponding ruin time. These calculations take a
long time, therefore only 100 simulations are done for each starting point x. Furthermore,
it is necessary to clean the internal memory of Maple during the calculations. That is why
after every 50 starting points I run the garbage collecting function gc(), which deletes
all data to which no references are made. This operation ist also quite time consuming.
Figure 4.12 shows the comparison of this recursively controlled function with the simu-
lation of no reinsurance.

It is clearly seen that this recursively controlled value function yields to higher values for
small starting values. This is the expected behavior, as it is more likely for small starting
values to hit ruin when no reinsurance is taken at all. The higher the starting values
get, the more the two functions approach. With the given parameters it is very unlikely
to hit ruin with a starting value when no reinsurance is taken at the beginning. That
is why to the end of the simulation the two plots of the functions are hard to differentiate.
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Figure 4.11: 10 Simulations of the claim sum. m = 10 and β = 0.33.

Figure 4.12: Comparison of the simulated value function of Figure 4.8 with a simulated
value function with recursive optimal control.
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Up to this point all simulations are done with exponential claim distribution. In the next
step I will check for major differences if different claim distributions are chosen.
The same calculation steps are repeated with the claim size following a log-normal dis-
tribution and an inverse Gaussian distribution. For better comparison, I will choose
parameters in a way that they will have the same expected value m = 10 and second
moment s2 = 200. The intensity of the Poisson process is locked at β = 0.33.

First, I will focus on log-normal distributed claims.
The first and second moment of the log-normal distribution LN (αLN , βLN) are

m = eαLN+ 1
2
β2
LN and

s2 = e2β2
LN+2αLN .

When the values of m and s2 are set, the corresponding parameters are calculated as

αLN = −1

2
ln

(
s2

m2

)
+ ln(m) and

βLN =

√
ln

(
s2

m2

)
.

In this example the parameters are set as αLN = 1.9560 and βLN = 0.8326. All steps for
calculating and simulating a recursively controlled value function are repeated. Figure
4.13 shows the comparison to the previously calculated non-controlled value function.
The result is similar as in Figure 4.12 with exponential distributed claims.

Next, these calculations are repeated when the claims are supposed to be invers Gaussian
distributed IG(αIG, βIG). The first and second moment are

m = αIG and

s2 =
α2
IG(αIG + βIG)

βIG
.

As before the parameters are calculated using

αIG = m and

βIG = − m3

m2 − s2

to get αIG = 10 and βIG = 10. This simulation yields to the same results as before. The
comparison with the non-controlled value function is seen in Figure 4.14.

Now I can compare the results of the Monte-Carlo simulations to the calculated optimal
return function V from Section 3.2.

Figure 4.15 shows the different graphs of all simulated value functions with different kinds
of claim distributions as well as the continuous optimal return function.
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Figure 4.13: Comparison of the simulated value function of Figure 4.8 with a simulated
value function with recursive optimal control and log-normal distributed claims.

Figure 4.14: Comparison of the simulated value function of Figure 4.8 with a simulated
value function with recursive optimal control and inverse Gaussian distributed claims.
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Figure 4.15: Comparison of the simulated value function of Figure 4.8 with the corre-
sponding optimal return function.

First, this shows that all simulations are very similar with no recognizable differences
depending on the claim size distribution. This was assumed in the last figures.
The comparison with the optimal return function shows the common starting value, as
by definition all plots start at P = 4.33 for x = 0. For small starting values the simulated
functions gain higher values than the continuous function. So one can argue, that the
optimal return function V is not optimal. But we know from Section 2.2 that the ap-
proximation of the discrete risk process as a diffusion process gets better the higher the
starting value x gets. As this is used finding the solution of the optimal return function, a
good fit at small values of x is not expected. This is also seen in the graph. The higher the
starting value is, the better the calculated optimal solution coincides with the simulation.

It has to be noted, that these examples only considered cheap reinsurance, but the inter-
esting case where a reinsurance share is concluded.

Next, the simulation is also done for the case described in Figure 4.2 with P = 160, where
no reinsurance is taken at all, but the optimal value function is convex. As before, the
parameters of the gamma distribution and the Poisson process are chosen in a way to fit
the parameter values of the approximated solution. Figure 4.16 shows the comparison
of the optimal return function and the Monte Carlo simulation. As described in the last
Section for Figure 4.2, the optimal return function is descending in the neighbourhood of
0. Because the risk of hitting ruin is so low, the bankruptcy value does not have great
impact on the wealth of the company when calculating the discounted reserve.
This is immediately seen in the simulation, where the return of the insurance company
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Figure 4.16: Comparison of the optimal return function of Figure 4.2 with P = 160 and
the corresponding simulated value function.

is increasing for any value starting value x > 0. Only at x = 0, where ruin is hit by
definition, the function and the simulation coincide at the bankruptcy value P . The
decreasing part of the return function, which is a result of the approximation, cannot be
simulated.
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Chapter 5

Conclusion

The objective of this paper is to maximize the total discounted reserve of an insurance
company including a bankruptcy value by controlling the reinsurance factor. Non-cheap
reinsurance is considered, that means the reinsurance premium λ can be higher than the
premium µ. By approximating the value process with a diffusion process a solution was
found. Depending on the variables, especially the bankruptcy value P and the proportion
between µ and λ, different cases have to be considered.

Theorems 3.2, 3.3, 3.4 and 3.5 state the results of the optimal risk control and also give
a solution of the optimal return function.
In most of the cases no reinsurance is taken at all, be it because the bankruptcy value
when hitting ruin is too big or the reinsurance premium is too high. In these cases the
optimal return functions can be of different types, either concave, linear or convex. The
influence of each parameter on the solution is discussed in detail in Section 4.2.

In the second part of this paper I studied whether the theoretical solution of optimal
control has positive impact on any ’real’ Monte Carlo simulation.
Because there is no closed-form solution of the optimal control, a relatively fast imple-
mentation is derived using ordinary differential equations. Building on that, a recursive
Monte Carlo simulation is calculated that takes the reinsurance share depending on the
current wealth of the company into account at every time step. This model is then com-
pared with different calculated optimal solutions of Section 3.2.

The biggest differences between the calculated optimal value function and the simulated
risk processes occur for small starting values x, while they tend to coincide for large x.
This is an assumed behavior because of the approximation in Section 2.2 that was used
deriving the solution.
On the other hand the positive neighbourhood of 0 is also the area of interest, where the
risk to hit ruin is the highest as the wealth of the insurance company is still very small.
In certain cases (x < x1, depending on P , µ and λ) reinsurance has to be taken, which is
generally not the case for high starting values.
One can argue, that the calculation of the optimal control also depends on the approxi-
mation as a diffusion process and therefore the optimal value function. This is why the
solution for controlling the model at small starting values is questionable.
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But as the comparison with the Monte-Carlo simulation showed, using the optimal control
strategy on the discrete risk model gains a positive effect. This is clearly seen in Figure
4.12 and the following. So although the statement of the optimal return function is not
valid for small starting values, the calculated control can be used.
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Appendix

Maple Code
Maple 17 was used for all calculations and generated figures. Here the corresponding
code is given.
The following packages were loaded to use build-in commands.

with ( S t a t i s t i c s ) ; with ( p l o t s ) ; with ( f i nanc e ) ; with ( L i s tToo l s ) ;

The value function V and optimal control a∗ are defined for all cases. As a start, the fol-
lowing code was used as a straight-forward implementation using given Maple functions.
As described in Section 4.1, numerical calculation of K−1 consumes a lot of time.

i f lambda < mu + sq r t (mu^2 + 2∗ r ∗ sigma^2) and P < (2∗mu − lambda
) /(2∗ r ∗ alpha ) then
g := X −> PDF( GammaDistribution (1/ c , c∗ r+1) , X) :
expB := f s o l v e ( lambda /2∗( g ( x ) /( alpha ∗g ( alpha ) )+2∗(lambda−mu)

/lambda ∗ g (x ) ∗ i n t (1/( y^2 ∗ g (y ) ) , y = x . . alpha ) ) ∗x +(
mu−lambda ) −r ∗P∗x=0, x = alpha /2) :

H := Z −> in t (1/( y^2 ∗ g (y ) ) , y = expB . . Z) :
K := X −> in t ( c ∗ (mu − lambda ) ∗ H(y ) ∗ g (y ) + k2 ∗ g (y ) , y

= expB . . X) :
K_inv := Y −> f s o l v e (K(X) = Y, X=1) :

k2 := sigma^2/(mu∗ alpha ∗g ( alpha ) ) − c ∗(mu−lambda ) ∗H( alpha ) :
x1 := K( alpha ) :

k := X −> c ∗(mu − lambda ) ∗ H(X) ∗ g (X) + k2 ∗ g (X) :

A_ast := X −> pi e c ew i s e (X < 0 , 0 , X < x1 , lambda/sigma^2 ∗ k
(K_inv(X) ) ∗ K_inv(X) ,1 ) ;

V := X −> pi e c ew i s e (X < 0 , 0 , X < x1 , i n t (1/K_inv , 0 . .X )+P,
X/ r+mu/ r^2 −lambda /( r ∗( sigma^2 ∗ theta^2 +lambda∗ theta )

) ∗ exp ( theta ∗(X−x1 ) ) ) ;

e l i f P < mu/( r ^2) then
A_ast := X −> 1 :
V := X −> X/ r + mu/ r^2 + (P − mu/ r ^2) ∗ exp ( theta ∗X) ;
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e l i f P = mu/( r ^2) then
A_ast := X −> 1 :
V := X −> X/ r + mu/ r ^2;

e l i f P > mu/ r^2 and lambda <= (mu + sq r t (mu^2 + 2∗ r ∗ sigma^2) ) /2
then
A_ast := X −> 1 :
V := X −> X/ r + mu/ r^2 + (P − mu/ r ^2) ∗ exp ( theta ∗X) ;

e l s e
A_ast := X −> 1 :
V := X −> pi e c ew i s e ( (P−mu/ r ^2) ∗ ( ( sigma^2∗ theta ^2)/2 + lambda

∗ theta ) ∗ exp ( theta ∗X) + lambda/ r >= 0 ,X/ r + mu/ r^2 + (P −
mu/ r ^2) ∗ exp ( theta ∗X) ) ;

end i f :

Next, the solving method using ODEs as described in Section 4.1 is used. A case differ-
entiation has to be done for cheap and non-cheap reinsurance.
This definition of V and a∗ is saved as external file solution_wu_new.txt that is later
read by Maple for easier calculations.

i f lambda < mu + sq r t (mu^2 + 2∗ r ∗ sigma^2) and P < (2∗mu − lambda
) /(2∗ r ∗ alpha ) then
g := X1 −> eva l f (PDF( GammaDistribution (1/ c , c∗ r+1) , X1) ) :
expB := f s o l v e ( lambda /2∗( g ( x ) /( alpha ∗g ( alpha ) )+2∗(lambda−mu)

/lambda ∗ g (x ) ∗ i n t (1/( y^2 ∗ g (y ) ) , y = x . . alpha ) ) ∗x +(
mu−lambda ) −r ∗P∗x=0, x = alpha /2) :

H := Z −> eva l f ( Int (1/( y1^2 ∗ g ( y1 ) ) , y1 = expB . . Z) ) :
K := X2 −> eva l f ( Int ( c ∗ (mu − lambda ) ∗ H(y ) ∗ g (y ) + k2 ∗

g (y ) , y = expB . . X2) ) :

k2 := sigma^2/( lambda∗ alpha ∗g ( alpha ) ) − c ∗(mu−lambda ) ∗H(
alpha ) :

x1 := e v a l f (K( alpha ) ) :

i f mu = lambda then
ode := d i f f ( x (F) , F) = 1/( k2∗g (x (F) ) ) :
s o ln := dso lve ({ ode , x (0 ) = expB} , x (F) , numeric , output=

l i s t p r o c e du r e ) :
e l s e

ode := d i f f ( x (F) , F , F) = ( c ∗(D(x ) ) (F)^2∗ lambda∗g (x (F) )−c
∗(D(x ) ) (F)^2∗mu∗g (x (F) )−x (F)^2∗ p i e c ew i s e ( x (F) < 0 . , 0 ,
−1.∗(D(x ) ) (F) ∗c^2∗exp (−1.∗x (F) ∗c )∗(− r+x (F) ) ∗( x (F) ∗c ) ^( c
∗ r ) /(x (F) ∗GAMMA( c∗ r +1.) ) ) ) ∗(D(x ) ) (F) ^2/(g (x (F) ) ∗x (F) ^2)
:

s o ln := dso lve ({ ode , x (0 ) = expB , (D(x ) ) (0 ) = 1/( k2∗g ( expB
) ) } , x (F) , numeric , output = l i s t p r o c e du r e ) :
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end i f :
s o ln1 := eva l ( x (F) , s o ln ) :

k := X4 −> c ∗(mu − lambda ) ∗ H(X4) ∗ g (X4) + k2 ∗ g (X4) :

A_ast := X5 −> pi e c ew i s e (X5 < 0 , 0 , X5 < x1 , lambda/sigma^2
∗ k ( so ln1 (X5) ) ∗ so ln1 (X5) ,1 ) ;

V := X6 −> pi e c ew i s e (X6 < 0 , 0 , X6 < x1 , Int (1/ so ln1 (X3) , X3
=0. .X6 )+P, X6/ r+mu/ r^2 −lambda /( r ∗( sigma^2 ∗ theta^2 +
lambda∗ theta ) ) ∗ exp ( theta ∗(X6−x1 ) ) ) ;

e l i f P < mu/( r ^2) then
A_ast := X −> 1 :
V := X −> X/ r + mu/ r^2 + (P − mu/ r ^2) ∗ exp ( theta ∗X) ;

e l i f P = mu/( r ^2) then
A_ast := X −> 1 :
V := X −> X/ r + mu/ r ^2;

e l i f P > mu/ r^2 and lambda <= (mu + sq r t (mu^2 + 2∗ r ∗ sigma^2) ) /2
then
A_ast := X −> 1 :
V := X −> X/ r + mu/ r^2 + (P − mu/ r ^2) ∗ exp ( theta ∗X) ;

e l s e
A_ast := X −> 1 :
V := X −> pi e c ew i s e ( (P−mu/ r ^2) ∗ ( ( sigma^2∗ theta ^2)/2 + lambda

∗ theta ) ∗ exp ( theta ∗X) + lambda/ r >= 0 ,X/ r + mu/ r^2 + (P
− mu/ r ^2) ∗ exp ( theta ∗X) ) ;

end i f :

To generate the Figures the following code was used. This example generated Figure 4.1.

with ( S t a t i s t i c s ) ; with ( p l o t s ) ; with ( f i nanc e ) ;
mu := 4 ; lambda := 4 ; sigma := sq r t (10) ; r := . 7 ; P := 4 . 3 3 ;

c := 2∗ sigma^2/lambda^2:
theta := (−mu−s q r t (2∗ r ∗ sigma^2 + mu^2) ) / sigma ^2:
alpha := r ∗(1+lambda /( theta ∗ sigma^2) ) :

read "solution_wu_new . txt " ;
p l o t ( [ A_ast , V] , 0 . . 4 , r e s o l u t i o n = 50 , numpoints = 50) ;

As a start for Monte Carlo simulation, the discrete risk process is modeled assuming
exponential claim distribution. The result is shown in Figure 4.6.

mu := 1 . 5 ; lambda := 3 ; sigma := 1 ; r := . 1 ; P := 140 ;
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beta := 1/(m̂ 2+s2 ) ; a := 1 ;
U := RandomVariable ( LogNormal (1 , 1) ) :
S := Poi s sonProces s ( beta , U) :
m := ev a l f (Moment(U, 1) ) ; s2 := e v a l f (Moment(U, 2) ) ;
p1 := beta ∗m+mu; p2 := beta ∗m+lambda ; sigma := sq r t ( beta ∗(m̂ 2+s2

) ) ;
Rd := proc ( t ) opt ions operator , arrow ; p i e c ew i s e ( t <= 0 , x , max

(x+(p1−(1−a ) ∗p2 ) ∗ t−a∗S( t ) , 0) ) end proc
PathPlot ( s imulat ions , markers = f a l s e , c o l o r = red . . blue ,

t h i c kne s s = 3 , g r i d l i n e s = f a l s e , axes = BOXED) ;

To model the return function, Monte Carlo simulation is used. The simulation is saved
to the file mc_wu.txt.

s imu la t i on s := SamplePath (Rd( t ) , t = 0 . . N, t imes teps = N,
r e p l i c a t i o n s = rep ) :

pres_value := Vector ( rep ) :
stopt ime := Vector ( rep ) :

f o r count1 from 1 to rep do
# i f stopt ime = in f , NULL i s a s s i gned
stopt ime ( count1 ) := S e l e c t F i r s t ( proc ( r ) opt ions operator ,

arrow ; eva lb ( r = 0) end proc , convert ( s imu la t i on s ( count1 , 1
. . N+1) , l i s t ) , output = i nd i c e s ) ;

count2 :=0:
f o r count2 from 1 to min ( stopt ime ( count1 ) , N+1) do

pres_value ( count1 ) := pres_value ( count1 ) + ev a l f ( exp(−r ∗(
count2−1) ) ∗ s imu la t i on s ( count1 , count2 ) ) :

end do :
i f type ( stopt ime ( count1 ) , ’ i n t ege r ’ ) and stopt ime ( count1 ) <= N

then
pres_value ( count1 ) := pres_value ( count1 ) + ev a l f ( exp(−r ∗(

count2−2) ) ∗ P) :
end i f

end do :

This simulation is called for every starting point x = 0, . . . , 20. The result is shown in
Figure 4.8.

N := 50 ; rep := 100 ;
exp_value := [ ]
f o r run from 0 by 0 .1 to 20 do

x := run ; read "mc_wu. txt " ;
exp_value := [ op ( exp_value ) , [ run , Mean( pres_value ) ] ] :

end do :

p lo t1 := po in tp l o t ( exp_value , c o l o r = red )
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d i sp l ay ( p lo t1 ) ;

This simulation is repeated with the control parameter being dependent on the starting
value x, as seen in Figure 4.10.

Rd := proc ( t ) opt ions operator , arrow ; p i e c ew i s e ( t <= 0 , x , max
(x+(p1−(1−A_ast (x ) ) ∗p2 ) ∗ t−A_ast (x ) ∗S( t ) , 0) ) end proc ;

exp_value_ast := [ ] ;
f o r run from 0 by . 1 to 20 do

x := run ; read "mc_wu. txt " ;
exp_value_ast := [ op ( exp_value_ast ) , [ run , Mean( pres_value ) ] ]

end do ;

p lo t4 := po in tp l o t ( exp_value_ast , c o l o r = black ) ;
d i sp l ay ( plot1 , p lo t4 ) ;

For recursive modelling of the risk process, a new routine has to be written. It is saved
to mc_wu_rec.txt.

Ss imu la t i ons := SamplePath (S( t ) , t = 0 . . N, t imes teps = N,
r e p l i c a t i o n s = rep ) :

s imulat ionsR :=0∗ Ss imu la t i ons :
pres_value := Vector ( rep , 0 ) :
stopt ime := Vector ( rep ,N+1) : #standard : Stoptime = max

f o r count1 from 1 to rep do
s imulat ionsR ( count1 , 1 ) :=x ;
i f s imulat ionsR ( count1 , 1 )=0 then stopt ime ( count1 ) := 1 : e l s e

f o r count3 from 2 to (N+1) do
s imulat ionsR ( count1 , count3 ) := max(x+ (p1 −(1−A_ast (

s imulat ionsR ( count1 , count3−1) ) ) ∗p2 ) ∗( count3−1) −A_ast
( s imulat ionsR ( count1 , count3−1) ) ∗ Ss imu la t i ons ( count1 ,
count3 ) , 0) ;

i f s imulat ionsR ( count1 , count3 )=0 then stopt ime ( count1 ) :=
count3 : break end i f :

end do ;
end i f :

count2 :=0:
f o r count2 from 1 to min ( stopt ime ( count1 ) , N+1) do

pres_value ( count1 ) := pres_value ( count1 ) + ev a l f ( exp(−r ∗(
count2−1) ) ∗ s imulat ionsR ( count1 , count2 ) ) :

end do :
i f type ( stopt ime ( count1 ) , ’ i n t ege r ’ ) and stopt ime ( count1 ) <= N

then
pres_value ( count1 ) := pres_value ( count1 ) + ev a l f ( exp(−r ∗(
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count2−2) ) ∗ P) :
end i f

The following code was used to generate the recursive simulation with exponentially
distributed claims. The simulation is split into four parts, where each result is saved in
an external file. This way, I can continue with already calculated means if Maple freezes
because of the calculations taking too long. The result can be seen in Figure 4.12.

with ( S t a t i s t i c s ) ; with ( p l o t s ) ; with ( f i nanc e ) ; with ( L i s tToo l s ) ;
beta := 1/3 ; P := 4 . 3 3 ; r := 0 .5 e−1; p1 := 7.+1/3; p2 := 7.+1/3;
m := 10 ; s2 := 200 ;
U := RandomVariable (Gamma( alpha1 , beta1 ) ) ;

parameters := so l v e ({m = eva l f (Moment(U, 1) ) , s2 = ev a l f (Moment(
U, 2) ) } , {alpha1 , beta1 }) ;

a s s i gn ( parameters ) ;
U := RandomVariable (Gamma( alpha1 , beta1 ) ) ;
S := Poi s sonProces s ( beta , U) ;
mu := −beta ∗m+p1 ; lambda := −beta ∗m+p2 ; sigma := sq r t ( beta ∗(m̂ 2+

s2 ) ) ;

Rd := proc ( t ) opt ions operator , arrow ; p i e c ew i s e ( t <= 0 , x , max
(x+(p1−(1−a ) ∗p2 ) ∗ t−a∗S( t ) , 0) ) end proc ;

N := 1000 ; rep := 100 ;
read "solution_wu_new . txt " ;

a := 1 ;
exp_value := [ ] ; f o r run from 0 by . 1 to 20 do x := run ; read "

mc_wu. txt " ; exp_value := [ op ( exp_value ) , [ run , Mean(
pres_value ) ] ] end do ;

p lo t1 := po in tp l o t ( exp_value , c o l o r = red ) ;

save exp_value , "exp_value " ;
gc ( ) ;
exp_value_ast := [ ] ;

f o r run from 0 by . 1 to 5 do x := run ; read "mc_wu_rec . txt " ;
exp_value_ast := [ op ( exp_value_ast ) , [ run , Mean( pres_value ) ] ]
end do ;

save exp_value_ast , "exp_value_ast_gamma " ;
gc ( ) ;
f o r run from 5 .1 by . 1 to 10 do x := run ; read "mc_wu_rec . txt " ;

exp_value_ast := [ op ( exp_value_ast ) , [ run , Mean( pres_value ) ] ]
end do ;

save exp_value_ast , "exp_value_ast_gamma " ;
gc ( ) ;
f o r run from 10 .1 by . 1 to 15 do x := run ; read "mc_wu_rec . txt " ;

exp_value_ast := [ op ( exp_value_ast ) , [ run , Mean( pres_value )
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] ] end do ;
save exp_value_ast , "exp_value_ast_gamma " ;
gc ( ) ;
f o r run from 15 .1 by . 1 to 20 do x := run ; read "mc_wu_rec . txt " ;

exp_value_ast := [ op ( exp_value_ast ) , [ run , Mean( pres_value )
] ] end do ;

save exp_value_ast , "exp_value_ast_gamma " ;
read "exp_value_ast_gamma " ;
p lo t2 := po in tp l o t ( exp_value_ast ) ;

d i sp l ay ( plot1 , p lo t2 ) ;

The following was used to simulate an existing optimal return function, the result can be
seen in 4.16.

mu := 1 . 5 ; lambda := 3 ; sigma := 1 ; r := . 1 ; P := 160 ;

read "solution_wu_new . txt " ;
p lo t1 := p lo t ( [V] , 0 . . 4 , 130 . . 190 , r e s o l u t i o n = 100 ,

numpoints = 100 , d i s con t = true ) ;

m := 1 ; beta := 1/3 ; s2 := so l v e ( sigma = sq r t ( beta ∗(m̂ 2+s2 ) ) , s2
) ;

p1 := beta ∗m+mu; p2 := beta ∗m+lambda ;

U := RandomVariable (Gamma( alpha1 , beta1 ) ) ;
parameters := so l v e ({m = eva l f (Moment(U, 1) ) , s2 = ev a l f (Moment(

U, 2) ) } , {alpha1 , beta1 }) ;
a s s i gn ( parameters ) ;
U := RandomVariable (Gamma( alpha1 , beta1 ) ) ;
S := Poi s sonProces s ( beta , U) ;

N := 1000 ; rep := 200 ;
exp_value_ast := [ ] ;

f o r run from 0 by . 1 to 2 do x := run ; read "mc_wu_rec . txt " ;
exp_value_ast := [ op ( exp_value_ast ) , [ run , Mean( pres_value ) ] ]
end do ;

gc ( ) ;

p l o t2 := po in tp l o t ( exp_value_ast ) ;

d i sp l ay ( plot1 , p lo t2 ) ;
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Short Errata to studied Papers

Taksar and Hunderup (2007) [12]

Studying controlled diffusion models with proportional reinsurance strongly set up on the
paper by M. Taksar and C. L. Hunderup The influence of bankruptcy value on optimal
risk control for diffusion models with proportional reinsurance [12]. It has a very similar
set up, but only deals with the case of cheap reinsurance, i.e. in the notation of chapter
3 λ = µ.
Some typos and mistakes were found in this paper which are collected in the following
list.

• p. 313, theorem 3.1.:

f(x) ≥ V (x).

• p. 314, theorem 3.1.:
Let A∗(x) be the maximizer of the left hand side . . .

• p. 314, before (3.8):
. . . we can find A∗(x) differentiating the left hand side of (3.1) . . .

• p. 315, before (3.15):

A(y) =
µk1

σ2
yg(y)

• p. 315, after (3.15):
Since A(−k2) = 0, . . .

• p. 316, top line:

F (x) =
µ2

2σ2
k1g

(
G−1

(
x+ k2

k1

))
• p. 319, Proof 2.:

A(x) = . . . = − µ

σ2γθ2
−(P − µ

γ2
)eθ−x

− µ

σ2θ−
.

Wu, Wu and Zhou (2011) [13]

Also the paper Optimal risk control policies for diffusion models with non-cheap propor-
tional reinsurance and bankruptcy value by M. Wu, R. Wu and A. Zhou [13] was studied
intensely, which expanded the control model to non-cheap reinsurance.

• p. 905, last paragraph:
. . . ; by Theorem 2, when 0 = 2µ−λ

2rα
≤ P = 140 < µ

r2
, . . .

It also should be noted that the optimal return function cannot be described on
the whole interval in this case. For details see the description to Figure 4.2 in this
paper.
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