
Smooth Graph Signal Processing:
Recovery and Sampling Schemes

Gita Babazadeh Eslamlou
Matrikelnummer: 1329221

Fakultät für Elektrotechnik und Informationstechnik
Technische Universität Wien

Ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften.

February 2018

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Advisor

Univ.-Prof. Dr.-Ing. Norbert Görtz
Institute of Telecommunications

Technische Universität Wien
Österreich

Abstract

The amounts of data collected by automated software and hardware in various domains, such
as social networks, bioinformatics and wireless sensor networks, are exploding. Beside the
sheer volume of these data-sets also the high velocity (rate of generation) and their variety
(data composed of mixture of audio video text, only partially labeled) pose big challenges
on their processing. A particular useful methodology to cope with big data is provided by
graph signal processing (GSP), which models data-sets as signals defined over large graphs
(complex networks). The usage of graph models within GSP entails efficient distributed
message passing algorithms that are well suited to deal with large volumes of high-speed data.
Moreover, graphs allow to organize heterogeneous data by exploiting application specific
notions of similarity, thereby addressing the variety of big data. A key problem studied in
GSP is the recovery of a graph signal from its noisy samples at few selected nodes. This
problem is relevant, e.g., for semi-supervised learning over graphs, where only few training
examples (represented by graph nodes) are labeled and most examples are unlabeled. The
problem of determining the labels for the unlabeled data is precisely a graph signal recovery
problem. The recovery is feasible for the graph signals which are smooth with respect to the
graph.

In this work, we investigate the problem of recovering a graph signal from the noisy
samples observed at a small number of randomly selected nodes. The signal recovery is
formulated as a convex optimization problem. Our approaches exploit the smoothness of
typical graph signals occurring in many applications, such as wireless sensor networks or
social network analysis. The graph signals are smooth in the sense that the neighboring
nodes have similar signal values. In particular, we propose various graph signal recovery
methods, which are shown to be particularly well suited for smooth graph signal recovery.
Besides, in this dissertation we present a novel and flexible sampling method for signals that
are supported on either directed or undirected graphs. The proposed sampling algorithm
selects the optimal sampling set from the set of arbitrary weighted graph signal, for any
predefined sampling rate, such that the reconstruction (recovery) quality is as high as possible.
The algorithm is able to be adaptively adjusted based on the structure of the underlying graph
and signal model such as nodes degree and smoothness.

iv

The effectiveness of the proposed recovery and sampling methods is verified by numerical
experiments on various random graphs along with a real-world data-set. Numerical evaluations
show that the proposed algorithms render a highly efficient performance compared to the
state-of-the-art methods.

Declaration

I hereby declare that, except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification at this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the references and acknowledgements.

Gita Babazadeh Eslamlou
Feburary 2018

Table of Contents

1 Introduction 1
1.1 Outline . 3

2 Background 7
2.1 Introduction . 7
2.2 Signal processing on graphs . 7

2.2.1 Graph signals fundamental definitions 8
2.2.2 Signal representation on graphs 9

2.3 Compressed sensing . 11
2.3.1 Approximate message passing (AMP) 14
2.3.2 Denoising-based approximate message passing (DAMP) 17
2.3.3 Generalized approximate message passing (GAMP) 18
2.3.4 GAMP for cosparse analysis (GrAMPA) 18
2.3.5 Efficient fused lasso algorithm (EFLA) 19
2.3.6 Final remarks . 19

3 Graph signal recovery using approximate message passing 21
3.1 Introduction . 21
3.2 Problem setup . 22

3.2.1 Elements of graph signal processing 22
3.2.2 The recovery problem . 24

3.3 Graph signal denoising via DAMP . 25
3.3.1 Review of DAMP . 25
3.3.2 Graph signal DAMP (GSDAMP) 26

3.4 Numerical results . 28
3.4.1 Undirected smooth graph signals 28
3.4.2 Recovery performance regarding to NMSE 33
3.4.3 Recovery performance regarding to LRR 35

viii Table of Contents

3.5 Conclusion . 39

4 Graph signal recovery via iterative solvers 41
4.1 Introduction . 41
4.2 System setup . 42
4.3 Recovery problem . 44

4.3.1 Graph signal sampling . 44
4.3.2 Graph signal recovery . 45

4.4 Iterative graph signal recovery . 51
4.4.1 Gauss-Seidel iterative solver . 52
4.4.2 Block Gauss-Seidel iterative solver 54
4.4.3 Convergence criteria . 54

4.5 Numerical results . 55
4.6 Conclusion . 60

5 Adaptive graph signal sampling 63
5.1 Introduction . 63
5.2 Preliminaries . 64

5.2.1 The MST-based sampling . 65
5.3 Adaptive graph signal sampling (AGSS) 66

5.3.1 Illustrative example . 68
5.4 Numerical results . 70
5.5 Conclusion . 75

6 Conclusion 77
6.1 Summary of contributions . 77
6.2 Open issues and outlook . 78

Appendix A 79
A.1 Estimators . 79
A.2 Norms . 80
A.3 Distributions . 81

Appendix B 83
B.1 Recovery performance with respect to LRR 83

Appendix C 85
C.1 List of Notations . 85

Table of Contents ix

C.2 List of Abbreviations . 87
C.3 List of Figures . 89
C.4 List of Tables . 91

Bibliography 93

Chapter 1

Introduction

During the last couple of years, the massive amount of data and information has exceeded
even the most aggressive predictions. Due to the ubiquitous use of the Internet over the
new devices and the rapid adoption of novel technologies and applications such as Internet
of things (IoT) and social networks, this trend is likely to persist. Such data has generally
high complexity in different aspects. First of all, it is extremely high-dimensional which
means that it needs a large volume of storage space. Second, the data is usually irregularly
structured. For example, in the applications such as wireless sensor networks, the senors are
irregularly deployed in the network environment and their collected data highly depends on
their geographical positions. Finally, the structure of data is not necessarily obtained from
single source of information. For instance, a wide range of entities may affect the data and
information extracted from social networks. Hence, in order to represent, compress, recover
and analyze such data and efficient usage of its structure, we need the development of the
new tools and applications.

Graphs have long been adopted in a broad variety of applications, such as analysis of
social networks, machine learning, network protocol optimization, or image processing and
have the ability to model such data and their complex interactions. For instance users in the
social networks such as Facebook can be considered as the graph nodes and their friendship
relationships as the graph edges. Another example is given by 2D images where each pixel
corresponds to a node in a grid graph connecting the nearest pixels with each other. A quiet
popular approach to handle this data is adding attributes to such nodes and modeling those
nodes as signals on a graph. Techniques based on spectral graph theory exploit Fourier
transform, filtering and frequency response of the graph to perform a frequency interpretation
of graph data. The field which encompasses all these, is commonly known as graph signal
processing (GSP) [1]. GSP aims to exploit the well formed tools for representation and

2 Introduction

analysis of conventional signals to the new field of signal processing on graphs while using
the underlying connectivity information.

One of the important features appears in the signal processing on graphs is smoothness.
Smoothness means that the signal coefficients associated with the two end vertices of edges
take the similar values. Smoothness appears in many real-world applications. For example,
consider the graph signal extracted from social network such as Facebook when the signals on
the graph are defined as personal interests. It is generally the case which friends, represented
by connected vertices, have similar interests. In GSP literature, different mathematical
formulations of graph smoothness are adopted. In this dissertation, we use a widely accepted
definition of smoothness which is based on some norm. Smoothness imposes a desirable
signal property which can be exploited in many problems involving sampling [2], along with
graphs regularization [3] for signal recovery and classification [4].

Sampling and recovery are of immense importance in conventional signal processing,
which provide a link between the analog and discrete time signals [5, 6]. Sampling algorithms
are a bunch of techniques which make a sequence from a function. Conversely, recovery
algorithms provide a function from a sequence. The procedure of sampling a function and its
recovery make the foundation of digital signal processing.

One of the main goals of graph signal processing is to derive sampling theorems which
are important for the design of graph signal processing systems. Graph signal sampling is
known as the mechanism of reducing a graph signal to a small number of measurements. For
instance, in the graph signal extracted from Facebook, we select a fraction of users query
their interests and then recover the interest of the rest of the users. The questions arise: how
many and which users should be selected to have precise prediction of the unsampled users
interests. The task of efficient graph signals sampling is, however, not well understood. By
paralleling the Nyquist-Shannon theory for the band-limited signals (in the sense of having
all signals energy confined to a finite interval in frequency domain), the authors of [7] define
notions of (approximately) band-limitedness for the graph signals. For a given bandwidth,
they also construct sampling sets of minimum size which guarantee perfect recovery. The
real-world signals, however, may not be always band-limited [8]. It is also possible to define
the notion of sparse graph signals and apply concepts of compressed sensing (CS) to the graph
structured signals. A first application of CS to the graph signals is based on the graph Fourier
transform (GFT) which is composed of the eigenvectors of the graph Laplacian. Assuming
that the graph signal is sparse in the GFT domain, the authors of [9] propose to subsample
the graph signal according to CS theory. However, in this dissertation we consider a notion of
sparsity different from [9]. In particular, we assume that the graph signal of interest is sparse
in the sense of consisting of few clusters within which the signal is approximately constant.

1.1 Outline 3

Another important problem considered in GSP literature is the recovery of graph signals
from noisy and incomplete measurements. In particular, we are interested in the reconstruction
of a graph signal from a small number of sample values taken on a subset of nodes. The
samples of graph signal are generally assumed to be contaminated by additive noise, which
captures measurement and modeling errors. The recovery algorithms are based on the
assumption of graph signal smoothness with respect to the graph structure. This notion of
graph signal smoothness can be interpreted as a constraint on the regularization of the graph
signal. Our goal is to reconstruct graph signals under a regularization constraint, i.e., total
variation or Tikhonov regularization.

In this dissertation, we pursue our above mentioned goal by addressing, in a mathematically
rigorous manner, the following fundamental question: How to properly sample and recover
the graph signals?

1.1 Outline

This dissertation is structured as follows. Chapter 2 provides a background on signal
processing on graph and compressed sensing. It reviews the existing literature on GSP and
CS. The next part of the dissertation, spanning Chapters 3 and 4 present some efficient
recovery algorithms on smooth graph signals. In these sections we address both Tikhonov
and total variation regularizations. Chapter 5 complements the work by presenting an
adaptive sampling algorithm which selects a subset of graph nodes based on the signal and
graph structure. The remainder of this chapter provides a short abstract of each chapter and
exclusively refers to the papers, which were published by the author.

Chapter 2: This chapter provides a tight definition of GSP and CS in a way that makes
the concepts of this dissertation more accessible. It introduces the state-of-the-art methods
on sampling and recovery of graph signals. Particular light is shed on approximate message
passing (AMP)-based recovery algorithms.

Chapter 3: For discrete time signals, total variation based denoising has been considered
in [10], which applies the AMP framework for denoising structured signals. Moreover, the
authors of [11] present a widely applicable framework, termed denoising-based approximate
message passing (DAMP). This framework is based on combining a given denoiser functions,
tailored to a specific signal model, with the AMP rationale of iteratively recovering signals
from incomplete random measurements. However, to the best of our knowledge, the use of
the DAMP framework for graph signal denoising employing a total variation constraint is
novel. Referring to my work in [12], we formalize the DAMP-based graph signal recovery
problem via total variation regularization (TV-GSDAMP) and Tikhonov regularization

4 Introduction

(Tik-GSDAMP). We show that despite the TV-GSDAMP outperforms the Tik-GSDAMP in
terms of recovery performance, it has higher time complexity than Tik-GSDAMP. We apply
our recovery method to a set of graph signals including real-world data-set obtained from
product rating of a large online retailer.

Chapter 4: Based on our publications in [13, 14] , we formulate the graph signal recovery
problem as an optimization problem using Tikhonov regularization to enforce smoothness of
the recovered signal. The optimization problem produces a signal balancing two terms: the
empirical error, i.e., the deviation of the recovered signal from the observed noisy samples,
and the signal smoothness as measured by the graph Laplacian quadratic form. These terms
are called fidelity term and smoothness term, respectively. A certain scalar known as the
regularization parameter plays a crucial role in controlling the trade-off between fidelity to
the data and smoothness of the solution. The optimal signal is characterized by a system of
linear equations, which we solve using an iterative Gauss-Seidel (GS) method. We relate
the convergence properties of this iterative method to the choice of the sampling set and the
graph topology. In order to improve the time complexity of this iterative recovery method,
we propose to use block Gauss-Seidel (BGS) which is a variation of Gauss-Seidel (GS)
algorithm. The BGS method generalizes the GS algorithm by updating during each iteration
whole blocks of the current estimate in one step instead of single entries. Furthermore, we
show the optimal setting of regularization parameter is highly influenced by signal structure
along with measurement and modeling noise. A very interesting outcome is that the iterative
BGS recovery algorithm provides a tight approximation for optimal solution of Tikhonov
regularization. Besides, we show that the proposed iterative schema shows better results
in terms of recovery performance and time complexity compared to the Tik-GSDAMP
algorithm.

Chapter 5: This chapter is based on our work in [15], we extend the theory of graph
signal sampling by developing a fast and efficient algorithm for selecting the sampling set
of an arbitrary graph signal. The sampling theory deals with measuring a graph signal on
a reduced set of nodes with conditions under which the signal has a stable reconstruction.
Our goal is to select the minimum number of nodes in a way that it yields the reliable
reconstruction of a signal. The process of graph signal sampling is highly dependent on the
structure of the graph signal. The smoothness factor, which is defined generally in terms of
the signal’s Fourier transform, is one of the main players in selecting the efficient sampling
set of a graph signal. In a smooth graph signal, the signal values of neighbouring nodes are
similar. Hence, the sampling algorithm should be properly adjusted to avoid having a bulk
of samples in a certain part of the graph. The degree of the nodes in the graph is another
factor which affects the sampling algorithm. In order to obtain the above mentioned goal with

1.1 Outline 5

respect to the influence of smoothness and node degree variance we propose a new adaptive
graph signal sampling (AGSS) algorithm to sample the nodes such that the recovery error
is minimized. We confirm the performance of proposed sampling algorithm by conducting
illustrative numerical experiments on various graphs.

Chapter 6: In this chapter we summarize our contributions, discuss open issues and
possible directions for future research.

Chapter 2

Background

2.1 Introduction

In this chapter, we discuss about some of the important concepts that are employed throughout
this dissertation. We review fundamental GSP methods from the literature, which are related
to the problems studied in this dissertation. We give the primary definitions and notations
for graphs and signals on graphs, which are used. Then, we present the basics of CS,
along with briefly reviewing the AMP framework and its corresponding algorithms such
as DAMP, generalized approximate message passing (GAMP), and GAMP for cosparse
analysis (GrAMPA) algorithms as well as the efficient fused lasso algorithm (EFLA) that
effectively recover signal x from the noisy measurements. It should be noted that, our main
focus resides on presenting the recovery and sampling algorithms which allow us to use the
prior knowledge that highly improves the performance.

2.2 Signal processing on graphs

In the last few years, the research in the field of signal processing on graphs has been
motivated and influenced multiple disciplines [16–18]. In order to represent the signal
processing on graphs efficiently, one requires to consider the intrinsic geometric structure of
the underlying graph. Signal models like smoothness depend on the irregular structure of the
underlying graph, i.e., the graph on which the signal resides. Therefore, the classical signal
processing methods which have been designed for regular signal structures are not suitable
for the irregular structures of the graph. Recently, there has been a lot of effort dedicated to
designing new algorithms and methods for efficiently handling the new challenges arising
from the irregular structure of graphs [19, 20]. Signal processing on graphs has multiple

8 Background

popular application areas, including approximation, sampling, classification, inpainting, and
clustering of signals on graphs [21–26]. We provide an overview of recent work in this area.

2.2.1 Graph signals fundamental definitions

Here, we briefly mention basic definitions for graph signals. Besides, we will recall and add
some extra definitions in the system setup section of forthcoming chapters. We generally
consider an undirected weighted graph G = (V, E,W), with node set V and edge set
E ⊆ V ×V. The weights matrix is represented by W ∈ RN×N , where all of its components
are positive; Wl j = 0 if there is no edge between vertices l and j. In particular, Wl j , 0 only
if (l, j) ∈ E. A sample generic graph signal is shown in Figure 2.1.

x 1

x 2
x 3

x 4

x 5

x 6

W1,2

node set V = { 1, 2, 3, 4, 5, 6}
edge set E = { (1 , 2) , (1 , 4) ,
(2 , 4) , (3 , 4) , (4 , 5) , (4 , 6) }

Figure 2.1. Generic graph signal with vertex setV and edge set E.

We assume that our graph is connected and it consists of N nodes. The δl j is the distance
metric which shows the number of edges in a shortest path (also called a graph geodesic)
connecting node l and j. The k-step neighbourhood N k

l = { j ∈ V : δl j = k} of the node
l is the set of all nodes which are at distance k from the node l. The combinatorial graph
Laplacian matrix L is defined as [19]

L := D −W, (2.1)

where the degree matrix D is a diagonal matrix whose ℓth diagonal element Dℓ is equal to
the sum of the weights of all the edges connected to vertex ℓ, i.e.,

Dℓ =
∑
j∈V

Wℓ j . (2.2)

It is a positive semi-definite matrix that has a complete set of real orthonormal eigenvectors,
with corresponding nonnegative eigenvalues [27].

2.2 Signal processing on graphs 9

For a connected graph, the normalized graph Laplacian is closely related to the combina-
torial Laplacian and is defined as

L = D−
1
2LD−

1
2 (2.3)

= I − D−
1
2WD−

1
2 , (2.4)

where I is the identity matrix. The combinatorial and the normalized graph Laplacians
are both examples of generalized graph Laplacians [28–30] and they are both popular in
many graph related applications. Generally, when the graph is regular or semi-regular, the
combinatorial Laplacian and the normalized Laplacian have almost identical spectra. But the
combinatorial Laplacian has been widely used in the literature, specially in applications that
have a random walk, or in applications where weighting vertices by their degrees is more
natural. For these reasons, in this dissertation, we use the combinatorial graph Laplacian.
We focus only on weighted undirected graphs. For the sake of completeness though, we note
that the definition of the Laplacian can be easily extended to directed graphs [31].

2.2.2 Signal representation on graphs

The fundamental similarity between conventional signal processing and graph signal pro-
cessing is established using spectral graph theory [27]. The classical Fourier transform is
generalized to graph settings by using the eigenvectors and the eigenvalues of the graph
Laplacian matrix which defines a notion of frequency for graph signals [32]. In particular,
the graph Laplacian eigenvectors associated with small eigenvalues can be associated with
the low frequency concept. This means that if two nodes are connected with a large weighted
edge, the low frequency eigenvector values at those points tend to be similar. The eigenvectors
associated with small eigenvalues correspond to signals that vary slowly across the graph.
However, the graph Laplacian eigenvectors associated with larger eigenvalues correspond
to signals that rapidly change on the graph and have different values on neighboring nodes.
Hence, in graph signals, the graph Laplacian eigenvectors characterize a Fourier basis, which
can be selected as the eigenvectors of the combinatorial or the normalized graph Laplacian
matrices.

A lot of researches have been dedicated to developing methods specifically designed for
processing and analyzing of data in graph signals. In particular, the authors in [33] have
presented a new discrete signal processing framework for structured datasets and they study
the datasets directly. The framework is called discrete signal processing on graphs (DSPG);
for the representation, analysis, and processing of data indexed by arbitrary graphs. DSPG
extends traditional discrete signal processing theory with linear structure to datasets with

10 Background

complex structure that can be represented by graphs. The authors demonstrate that, if a graph
signal is sparsely represented in the spectral domain, i.e. its frequency content is dominated by
few frequencies, then it can be efficiently approximated via only a few spectrum coefficients.
They consider three standard orthogonal transforms: the discrete Fourier transform (DFT),
discrete cosine transform (DCT), and discrete wavelet transform (DWT). Results show that,
the graph Fourier transform leads to smallest errors regardless of the number of the spectrum
coefficients applied for approximation [34].

In [35], a new algorithm for denoising of signals residing on arbitrary graphs is presented.
The authors derive an exact closed-form solution and an approximate iterative solution based
on an inverse and a standard graph filters, respectively. The closed form solution needs the
inversion operation, which is expensive and numerically unstable for high-dimensional graph
signals. In order to overcome this problem, an approximation of the exact solution (graph
filter) is represented. Graph filter produces very similar denoising errors, which highlights its
practical usefulness in data denoising. The authors evaluate the derived algorithms, apply
them to denoising of measurements from temperature sensors and to combining opinions
from multiple experts.

The Nyquist-Shannon theory of sampling to graph signals is extended and a cut-off
frequency for all bandlimited graph signal is established in [23]. Besides, the authors provide
a novel greedy algorithm to choose the smallest possible sampling set for a given bandwidth.
A graph spectral compressed sensing technique is presented in [36]. This technique gathers
the measurements from a random subset of nodes and then interpolates with respect to the
graph Laplacian eigenbasis, leveraging ideas from compressed sensing. It requires a small
portion of the whole sensor nodes to sample and transmit the data, and applies the partial
graph Fourier ensemble as the sensing matrix for smooth graph signals. Based on this
technique, two algorithms are developed for wireless sensor networks to deal with temporally
or spatially correlated signals. Both algorithms demonstrate great improvement in saving the
bandwidth resources and the energy consumption.

The authors in [7] propose a new class of graph signals, called approximately bandlimited,
along with two graph recovery strategies based on the random sampling and the experimentally
designed sampling. They show that for an irregular graph, given that we have an unbiased
estimator for the low frequency components, the convergence rate of experimentally designed
sampling algorithm outperforms that of random sampling. One of the objectives of this
dissertation is exactly to design structured graph sampling algorithm, which can be efficiently
implemented and used with suitable graph signal recovery algorithms.

2.3 Compressed sensing 11

K
 s

p
a

rse
 sig

n
a

l

N

M

y
A

x

M

N

(a)

K
 s

p
a

rse
 sig

n
a

l
N

M

y
A

x

n

M

N

(b)

Figure 2.2. Main concept of CS.

2.3 Compressed sensing

The foundation of the term CS [37–39] lies in a particular interpretation of CS algorithms as
a technique to compress the signal x. CS is a signal processing method to represent sparse
signals in a compressive way and to fully recover sparse signals from much fewer samples
than the classical Nyquist rate would suggest. Vast number of practical systems sample a
signal at a rate above the Nyquist rate. They transform the signal to a basis which concentrates
the signal’s energy into a few large components and achieve compression by keeping these
dominant coefficients. Since the signal is determined with only a few coefficients, it seems
reasonable to ask if fewer measurements could have been taken in the first place. This can
be a significant step to assemble the huge volumes of data from social networks, wireless
sensors, online retailers and many other applications in the big data millennium.

CS exploits the signal model, like sparsity, to sample the signal more efficiently than the
Shannon-Nyquist scheme. CS along with suitable recovery techniques have a huge influence
on the scientific community specially by reducing the amount of collected and processed
data. Although the CS field has been known for less than a decade, it has already many
applications. Sum of the most typical applications of CS are image inpainting [40], magnetic
resonance imaging (MRI) [41–43], lens imaging [44] and single pixel camera [45]. Besides,
CS has found applications in fields like machine learning [46, 47], astronomy [48, 49],
electro-magnetics [50], computational biology [51, 52], multi user detection [53–56], and
radar [57, 58].

As we mentioned earliar, CS exploits the signal model, like sparsity. A signal is K-sparse
if it has at most K non-zero components, where K << N (N is the signals dimension). A

12 Background

conventional measure to find the number of non-zero components is the ℓ0-seminorm 1 [59]

∥x∥0 = lim
p→0
∥x∥pp = lim

p→0

N∑
n=1

|xn |
p = |{n : xn , 0}|. (2.5)

In order to search for sparse solutions (2.5) is later used to constrain the problem formulation.
As depicted in Figure 2.2-(a), CS typically considers linear regression problem of

y = Ax, (2.6)

where y ∈ RM is the observation or the measurement vector, and A ∈ RM×N is the
measurement matrix. The goal in CS is to reconstruct an N-dimensional signal x ∈ RN from
under-determined systems of the linear equations, i.e., from M ≪ N linear measurements.
In the under-determined system, regarding the measurement matrix A, there exist infinite
solutions for problem (2.6). In order to solve this kind of problems the minimal ℓ2-norm
solution, i.e., the least squares utilization is a standard approach

x̂ = arg min
x
∥x∥2 subject to y = Ax. (2.7)

It should be noted that the optimization problem in (2.7) does not enforce sparsity. Hence,
the basic approach to enforce the sparsity is

x̂ = arg min
x
∥x∥0 subject to y = Ax. (2.8)

(2.8) is infeasible to solve for a large dimension N , hence in order to make it solvable,
ℓ0-seminorm is replaced with ℓ1-norm

x̂ = arg min
x
∥x∥1 subject to y = Ax. (2.9)

This problem is commonly known as basis pursuit (BP). When the data is noisy

y = Ax + n, (2.10)

as shown in Figure 2.2-(b), we can relax the constraint to some degree. In (2.10), A ∈

RM×N is the sampling or measurement matrix, which has been scaled to unit ℓ2-column-
norm (M << N) and n = {nℓ, ℓ = 1, 2, ...,M}, is the noise vector modeled as component-wise

1 While ∥ · ∥0 does not satisfy the homogeneity condition of the norm so it is not a norm and we call it
ℓ0-seminorm

2.3 Compressed sensing 13

independent additive white Gaussian noise (AWGN) with zero-mean and variance σ2, i.e.,
nℓ ∼ N(0, σ2). The least squares approach minimizes the error with respect to the ℓ2-norm
and the optimization problem is reformulate as

x̂ = arg min
x
∥x∥1 subject to ∥y − Ax∥22 ≤ ϵ, (2.11)

where ϵ ≥ ∥n∥22 . This problem is called basis pursuit denoising (BPDN), which is the
noise tolerable version of BP. We can reach to the least absolute shrinkage and selection
operator (LASSO) formulation [60], by exchanging the constraint and the objective function
of BPDN and bringing the sparsity level

x̂ = arg min
x

(
1

2
∥y − Ax∥22 + λ∥x∥1

)
, (2.12)

where a Lagrangian penalty λ enforces the sparsity constraint of the solution. Iterative thresh-
olding algorithms [61–63] are very efficient recovery methods that depend on thresholding
functions. The iterative hard thresholding (IHT) [64, 65] is based on the ℓ0-regularized
problem

x̂ = arg min
x

(
1

2
∥y − Ax∥22 + λ∥x∥0

)
, (2.13)

while iterative soft thresholding (IST) [66, 67] is based on the ℓ1-regularized problem (2.12).
Both IST and IHT methods provide very simple, and fast (suboptimal) solution for pursuit
methods. They both alternates between steps of the form

x̂(t+1) = η
(
x̂(t) + ATz(t); τ(t)

)
, (2.14)

z(t) = y − Ax̂(t), (2.15)

where z(t) is an estimate of the current residual, η is the thresholding function and τ(t) is the
threshold parameter which adapts during the iterations.

A generalization of LASSO which is called fused lasso [68] intends to penalize the
ℓ1-norm of both the coefficients and their successive differences. This definition contains
both the sparsity of coefficients and sparsity of their differences, i.e., local constancy of the
coefficient profile. It is defined as

x̂ = arg min
x

(
1

2
∥y − Ax∥22 + λ1∥x∥1 + λ2

N∑
i=1

|xi − xi−1 |

)
. (2.16)

14 Background

Work on CS has driven research into several classes of algorithms for under-determined
linear regression, including methods in convex optimizations, heuristic techniques and
different Bayesian approaches. Of particular interest in this dissertation are AMP [69–72]
and the AMP-based algorithms such as DAMP [11], GAMP [73, 74], the GrAMPA [75],
along with EFLA [76] algorithm, which offer the state-of-the-art performance for linear CS
problems.

2.3.1 Approximate message passing (AMP)

The AMP algorithm is introduced in [69–71]. AMP is an iterative thresholding algorithm
[77, 78, 63] motivated by belief propagation in graphical models. It is a message passing-
based framework [79] developed for solving the basis pursuit or the basis pursuit denoising
problem [80]. AMP has significantly better sparsity under-sampling trade-off compared to
the other iterative thresholding algorithms such as IHT or IST techniques. The measurement
vector, y ∈ RM is assumed to be obtained via an unknown vector (true solution) x ∈

RN. According to (2.10) the sampling rate is denoted by δ = M
N , the number of non-zero

elements in x is denoted by k and the sparsity is shown by ρ = K
M . The first order AMP

algorithm proceeds iteratively:

x̂(t+1) = η
(
ATz(t) + x̂(t); τ(t)

)
, (2.17)

z(t) = y−Ax̂(t)+
1

δ
z(t−1)

〈
η′

(
ATz(t−1) + x̂(t−1); τ(t−1)

)〉
, (2.18)

where, η(·) is the soft thresholding function, τ(t) is the threshold parameter, AT denotes
the transpose of measurement matrix A. Initially, x̂(0) = 0, z(0) = y, x̂(t) and z(t) are
the estimate of x and the residual at iteration t, respectively. The derivative of thresh-
olding function is shown by η′,where < · > is the averaging operator and the term
1
δz
(t−1)η′

(
ATz(t−1) + x̂(t−1); τ(t−1)

)
is the Onsager correction term. The Onsager correction

term is derived by applying the theory of belief propagation. It substantially improves the
sparsity under-sampling trade-off and has a significant influence on the performance of the
algorithm [81, 82].

In order to understand how one can design new AMP-based algorithms regarding to new
sophisticated priors on the signal, some of the main steps of deriving AMP algorithm are
briefly explained. The derivation of AMP is divided into three steps: first derive the exact
update rules and then, take the large system and β limits, and finally, reduce the number of
messages.

Step 1: Derive update rules using the sum-product method

2.3 Compressed sensing 15

In the AMP derivation, the prior distribution p(xi) over each component of x is assumed to
be a Laplace distribution with a common hyper-parameter β.

p(xi) =
βλ

2
exp (−βλ |xi |). (2.19)

Since the noise is independent and identically distributed (i.i.d.) Gaussian distributed, the
likelihood function is:

p(y|x) = N
(
y|Ax, β−1IM

)
, (2.20)

where β is the noise precision and IM is the identity matrix. With respect to these two
equations, the joint distribution is written as follows:

p(x, y) = p(x)p(y|x) =
N∏

i=1

p(xi)

M∏
a=1

p(ya |x). (2.21)

This is equivalent to the factor graph1 [83, 84] where x denotes the concealed variables
and y denotes observed variables. The resulting factor graph for the joint distribution given in
(2.21) is shown in Figure 2.3. The factor graph consists of multiple loops and it needs to deal

x 1

x 2

...

xn

p(x 1)

p(x 2)

...

p(x n)

p (y1 |x)

p (y2 |x)

p (ym |x)

y1

y2

...

ym

Figure 2.3. Factor graph for (2.21).

with loopy message passing by deriving the loopy sum product messages for the posterior

1A factor graph is a bipartite graph consisting of a set of edges and two disjoint sets of nodes: variable nodes
and factor nodes. Each variable node is represented by a circle and corresponds to a unique variable in the
global function. Each factor node is represented by a filled black square and corresponds to a unique factor
function in the decomposition of the global function.

16 Background

of xi, which is the product of the incoming messages at variable node xi.

p(xi |y) = µp(xi)→xi (xi)
∏

a

µp(ya |x)→xi (xi). (2.22)

Here, the variables i, j ∈ [N] are the variable nodes indices, a, b ∈ [M] are the factor nodes
indices, µp(xi)→xi (xi) is the message from p(xi) to xi which correspond the prior density
(Laplace distribution), and µp(ya |x)→xi (xi) is the message from p(ya |x) to variable node xi . To
simplify the notations consider µp(ya |x)→xi (xi) = µa→i(xi) and µxi→p(ya |x)(xi) = µi→a(xi).

Step 2: Taking the large system and β limit
In this step the goal is to approximate both the µa→i(xi) and µi→a(xi) messages by simple
parametric densities when M, N → ∞. In particular, using a variant of the Berry-Esseen
central limit theorem (CLT), when N →∞, the messages from factor nodes to variable nodes,
µa→i(xi), can be approximated by a Gaussian distribution. The messages from variable nodes
to factor nodes, µi→a(xi), can be approximated by the product of a Laplace and a Gaussian
distribution. To reach this goal a family of densities fβ(x, s, b) are defined as follows:

fβ(x, s, b) ≡
1

Zβ
exp

[
−β |x| − β

2b
(s − x)2

]
. (2.23)

This family of densities is a product of a Laplace distribution and a Gaussian distribution
with varying parameters s, β, and b. In the second part of this step, it can be shown that in
limit β→∞, the mean and variance of fβ distribution are soft thresholding and its derivative,
respectively. By substituting these concepts of mean and variance into the update equations,
the message passing schemes can be significantly simplified.

Step 3: Reduce the number of messages
As we mentioned before, AMP is an iterative algorithm. By some mathematical manipulations
[71], messages can be updated according to the following rules

x̂(t+1)i→a = ηt
©«

∑
b∈[m]\a

Abiz
(t)
b→i; τ

(t)ª®¬ , (2.24)

z(t)a→i = ya −
∑

j∈[n]\i

A ja x̂(t)j→a, (2.25)

where in each iteration 2MN messages are propagated. In order to reduce the number of
messages Donoho et al.[70] introduced another approximation. The idea is to approximate

2.3 Compressed sensing 17

x̂(t)i→a and z(t)a→i as follows

x̂(t)i→a = x̂(t)i + ϵ . x̂
(t)
i→a + O

(
1

M

)
, (2.26)

z(t)a→i = z(t)a + ϵ .z
(t)
a→i + O

(
1

M

)
, (2.27)

the reason to do that is in (2.24) it is seen that x̂(t)i→a only depends weakly on index a, since the
right hand side only depends on index a, through the missing term in the sum. Analogously,
the same is true in (2.25) for z(t)a→i and index i. By substituting these two expressions in
(2.24) and (2.25) and using first order approximation along with the law of large numbers,
the update equations forms as follows

x̂(t+1) = η
(
ATz(t) + x̂(t); τ(t)

)
, (2.28)

z(t) = y−Ax̂(t)+
1

δ
z(t−1)

〈
η′

(
ATz(t−1) + x̂(t−1); τ(t−1)

)〉
. (2.29)

This algorithm only requires propagating M + N messages in each iteration. Thus, the
dominating operations in each iteration is the two matrix multiplications, Ax̂(t) and ATz(t),
which both scale as O(MN). Therefore, each iteration has complexity O(MN).

2.3.2 Denoising-based approximate message passing (DAMP)

A new CS recovery framework named DAMP has been designed in [11]. DAMP uses a
denoising algorithm to recover signals from compressive measurements. Many applications
like images do not have a sparse representation in a well-known basis such as wavelet and
DCT. For this reason the authors designed an improved and more general CS recovery
framework based on AMP algorithm.

DAMP has special advantages and can be applied to many different signal models such
as sparse, smooth, or low-rank signals. This framework is capable of high performance
reconstruction and overcomes the drawbacks of AMP and other AMP-based algorithms,
e.g., DAMP offers state-of-the-art CS recovery performance for natural images, for an
appropriate choice of denoiser. Depending on the signal model, the main goal of the DAMP
framework is to use appropriate denoiser which leads to near optimum recovery. Depend
on the specific signal model, family of denoisers (e.g non-local means (NLM) [85], block
matching 3D (BM3D) [86]) are used to achieve a good estimate of the true signal x ∈ C,
where C is class of signals from (2.10).

To avoid the non-Gaussianity of the estimated noise, a proper Onsager correction term is
employed in the DAMP iterations. The Onsager correction term forces the distribution of the

18 Background

signal error at each iteration to be very close to white Gaussian noise which denoisers are
typically designed to remove. We will discuss DAMP in more detail in the chapter 3.

2.3.3 Generalized approximate message passing (GAMP)

The GAMP algorithm is introduced in [73]. Rangan generalized the AMP algorithm to deal
with arbitrary noise and prior distributions. Hence, GAMP is a generalization of AMP, where
AMP is applicable only for Gaussian channels. The GAMP analysis follows the AMP analysis
of [87] and it is also very related to [88, 89], but states a precise analysis with a dense matrix
A, along with a simpler implementation.

GAMP’s flexibility permits to do efficient inference via sparsity supporting prior distribu-
tions like the spike and slab prior [90]. Besides, GAMP could be used for classification when
the noise follows the binomial distribution [91]. Although GAMP’s flexibility is significantly
increased, the computational complexity remains the same as AMP, i.e., O(N M).

It should be noted that the GAMP derivation is mainly based on the Taylor series and an
application of CLT, which is more straightforward than the derivation of AMP. The GAMP
framework is configured not only to perform maximum a-posteriori probability (MAP)
estimation using max-sum message passing but also to perform minimum mean squared
error (MMSE) estimation using sum-product message passing. The authors provide two
versions of GAMP for both MMSE and MAP estimations. The simplified version of the
GAMP framework corresponds to the AMP algorithm, if the prior and noise distribution are
chosen to be Laplace and Gaussian, respectively.

2.3.4 GAMP for cosparse analysis (GrAMPA)

The GrAMPA framework [75] is based on a Bayesian approach to cosparse analysis CS
which leverages GAMP algorithm. In cosparse analysis CS, we aim to estimate a non-sparse
signal from a noisy under-determined system where the signal is cosparse for a certain linear
transform. The GrAMPA has very good universality to signal models and noise channels. It
provides a novel approach to cosparse analysis CS.

This Bayesian approach works with a generic analysis operator and vast range of signal
priors. It encapsulates both MAP and MMSE estimations of true signal x efficiently to decrease
the computational complexity. Furthermore, in this work, a sparse non-informative parameter
estimator (SNIPE) denoiser algorithm is represented, which supports Bernoulli-Uniform
and Bernoulli-Gaussian priors. Numerical results show improved recovery performance and
an excellent runtime of GrAMPA-SNIPE approach compared with other recent analysis-CS
algorithms.

2.3 Compressed sensing 19

2.3.5 Efficient fused lasso algorithm (EFLA)

The authors in [76] focused on optimizing a class of problems with the fused lasso penalty.
The problem in (2.16) is challenging to solve as it leads to a class of non-smooth and
non-separable optimization problems. The fused lasso penalty imposes sparsity in the
coefficients and their successive differences, which is desirable for applications with features
ordered in some meaningful way. Most of the presented techniques have high computational
complexity and do not scale well to large-size problems.

For optimizing this class of problems, the objective function is considered the fused
function as a mixture of with the smooth part and the other non-smooth part. The authors
proposed to apply the Nesterov’s method [92] to develop EFLA. Nesterov’s method is a
first order black-box method for smooth convex optimization. The EFLA method leverages
the special structure of defined problem (2.16) to achieve the optimal first-order black-box
methods convergence rate of O

(
1
k2

)
for k iterations. Applying the first-order black-box

method to solve the non-smooth problem (2.16) leads to the convergence rate of O
(
1√
k

)
which is much slower than O

(
1
k2

)
. Using empirical evaluations, the authors have shown

that EFLA significantly outperform existing solvers, and claimed that it is applicable for
large-scale problems.

2.3.6 Final remarks

Developing new recovery algorithms for different signal models specially for sparse recovery
is a very active field of research and new algorithms are proposed monthly. In addition to the
algorithms that we discussed above there are still many high qualified research works in this
field. Here, we focused on the state-of-the-art algorithms which we want to exploit in our
work.

Chapter 3

Graph signal recovery using approximate
message passing

3.1 Introduction

As mentioned briefly in the previous chapters, in this dissertation we mainly focus on the
problem of recovering a graph signal from noisy and incomplete information. Particularly in
this chapter, we propose an AMP flavored method for graph signal recovery. The recovery
of the graph signal is based on noisy signal values at a small number of randomly selected
nodes. We exploit the smoothness of typical graph signals occurring in many applications,
such as wireless sensor networks or social network analysis. The graph signals are smooth in
the sense that neighbouring nodes have similar signal values.

Based on our work in [12], the contribution of the chapter is summarized as follows. We
design an AMP-based graph signal recovery method which is able to cope with incomplete
and noisy measurements. Methodologically, this algorithm can be regarded as an instance
of the denoising framework in [11] for the special case of graph signals having small total
variation, i.e., which consist of few clusters within which the signal values do not vary
significantly. The signal recovery is based on a small number of noisy samples of the smooth
graph signal. We conduct illustrative numerical experiments which validate the performance
of the proposed recovery method and reveal superiority of our approach against existing
methods in some relevant scenarios.

The rest of this chapter is organized as follows. First, in Section 3.2, we formalize the
problem of graph signal recovery from incomplete and noisy measurements. The novel
DAMP-based recovery method is presented in Section 3.3. Finally, some numerical results
are presented and discussed in Section 3.4.

22 Graph signal recovery using approximate message passing

3.2 Problem setup

In the Section 3.2.1 we focus on the GSP concept in more detail and afterwards in Section 3.2.2,
we will describe the recovery problem which we are interested in.

3.2.1 Elements of graph signal processing

The emerging field of GSP [1, 19] aims at dealing efficiently with decentralized, graph-
structured data as encountered in modern information networks. GSP is a generalization
of discrete time signal processing. Specifically, discrete time signals may be interpreted as
graph signals defined over a chain graph whose nodes represent the discrete time instants. A
general graph signal is obtained by allowing for general graph structures (see Figure 3.1).

 (a) (b)

x
k

x
3

x
k-1

x
k+1

x
1

x
2

Figure 3.1. Chain graph underlying discrete time signal processing (a) and generic graph
signal (b).

More formally, we consider the undirected weighted graphs G = (V, E,W) with node
set V = {1, . . . , N} and the edge set E consisting of unordered node pairs (r, s) for which
Wrs , 0. For a given graph G, a graph signal x is a mapping from the node set into the reals.
We can represent a graph signal conveniently as a vector x ∈ RN by defining xr to be the
value of the graph signal at node r ∈ V.

For the undirected weighted graphs like the graph in Figure 3.2, W ∈ RN×N is symmetric,
i.e., W =WT . A non-zero entry of the weight matrix Wrs represents the strength of the
correlation between signal values xr and xs. In a wireless sensor network application, the
entry Wrs could reflect the distance between sensor nodes r and s. It is reasonable to assume
that the sensor values xr and xs of nearby sensor nodes to be strongly correlated. Another
important matrix associated with a graph is the graph Laplacian matrix L, defined as

L = D −W. (3.1)

3.2 Problem setup 23

x
4

x
5

x
3

x
2

x
1

Figure 3.2. The sample undirected weighted graph, and its weighted adjacency matrix, where
the signal values are 1 (red) and −1 (blue).

Here, D denotes the diagonal matrix with the rth diagonal element given by

Drr =
∑

r ′∈V

Drr ′, (3.2)

i.e., the sum of the weights of all the edges connected to node r .Many methods of discrete
time signal processing (e.g., denoising), rely on smoothness of the signal with respect to the
underlying graph. In order to make the notion of graph signal smoothness precise, we follow
[19] and introduce the graph gradient

∥∇rx∥2 :=

[∑
r ′∈N(r)

Wrr ′(xr ′ − xr)
2

]1/2
. (3.3)

The norm ∥∇rx∥ of the local gradient is termed local variation and measures the variability
of the graph signal at a given node r . Here, N(r) := {r′ : Wrr ′ , 0} is the neighbourhood of
node r ∈ V. A global measure of the graph signal smoothness is then obtained by

Sp(x) = (1/p)
∑
r∈V

∥∇rx∥
p
p, (3.4)

24 Graph signal recovery using approximate message passing

for some p ∈ [1,∞). In order to compare the smoothness of various graph signals with each
other, we define a new smoothness factor S′p(x) which can be obtained by normalizing the
value of Sp(x):

S′p(x) =
Sp(x)
∥x∥pp

. (3.5)

In what follows we will consider only two specific choices for p, i.e., p = 1 and p = 2. For
p = 1 the measure Sp(x) is termed the graph total variation [93] and when p = 2 the measure
Sp(x) reduces to the graph Laplacian form [19]

S2(x) = (1/2)
∑
r∈V

∑
r ′∈N(r)

Wrr ′(xr ′ − xr)
2 = xTLx. (3.6)

We have now the tools at hand to formalize the graph signal recovery problem that is
considered in this chapter.

3.2.2 The recovery problem

Our approach is based on the hypothesis that the true graph signal x is smooth, i.e., the
measure Sp(x) (p ∈ {1, 2}) is small. We have access to the graph signal x only via its values
at a randomly selected small subset S = {i1, . . . , iM} ⊆ V of graph nodes. Moreover, the
observed signal values are corrupted by measurement noise. Thus, the observation is given
by

y = x
��
S
+ σn, (3.7)

where the restriction x
��
S

is obtained from x by selecting the entries of x with indices in S.
The noise vector n is assumed to be white Gaussian noise with zero-mean and unit variance,
i.e., n ∼ N(0, I). Alternatively, we can represent the vector y as

y = Ax + σn. (3.8)

The measurement matrix A ∈ {0, 1}M×N models the selection of the subset S: It contains
exactly one non-zero element in each row. Since the subset S is chosen randomly, the matrix
A is random as well.

While the recovery of graph signals from incomplete noisy measurements has been
considered already in [35], the application of AMP to the recovery of smooth graph signals
recovery based on constraining the graph total variation seems to be new. The subsampling
exploits the intrinsic low-dimensional structure inherent to graph signals which are smooth,

3.3 Graph signal denoising via DAMP 25

i.e., when the quantity Sp(x) (p ∈ {1, 2}) is small. Since our recovery problem can be
interpreted as a structured signal recovery problem using incomplete information, we will
now propose a recovery method based on the DAMP framework which is well suited for such
recovery problems to deal with subsampled structured signals.

3.3 Graph signal denoising via DAMP

In this section, first we recall the DAMP method then we state a detailed description of our
proposed algorithm named graph signal DAMP (GSDAMP).

3.3.1 Review of DAMP

Consider a signal x ∈ RN which is known to belong to some signal class C, e.g., graph
signals with small total variation. For many important signal classes C, one can find efficient
denoising functions Dσ(·) which operate on the noisy signal

y = x + σn, (3.9)

where n is modeled as zero-mean white Gaussian noise with unit variance, i.e., n ∼ N(0, I).
The denoising mapping Dσ(·) typically depends on the variance σ2 of the additive noise in
(3.9). However, the notation Dσ(·) does not make explicit that the denoiser also depends
on the signal model C. The output Dσ(y) of the denoiser, when applied to the noisy
signal y, is an estimate for the true signal x. For C being the set of sparse signals, i.e.,
C = Xs := {s ∈ R

N : ∥s∥0 ≤ s} it is known that an efficient denoising mapping is obtained
by retaining the s largest (magnitude) entries of y and zeroing the rest.

However, as opposed to the signal in noise model (3.9), recently much interest has been
devoted to the problem of recovering a structured signal x from incomplete information
given by noisy low-dimensional random projections (3.8), where A ∈ RM×N , with M ≪ N ,
denotes a random projection matrix. A widely used choice for A is the Gaussian ensemble
which is a matrix consisting of i.i.d. zero-mean Gaussian variables with variance 1/M (which
ensures column normalization). By leveraging the principles behind AMP, which considers
the special case of sparse signals C = Xs, the authors of [11] propose an efficient iterative
method, termed DAMP, for recovering a structured signal x ∈ C from the measurements y in
(3.8) for a general signal class C with associated denoiser Dσ(·).

26 Graph signal recovery using approximate message passing

In particular, DAMP constructs a sequence x̂(t), t = 1, 2, . . ., of signal estimates by
iterating the following steps [11, Eq. (4)]

x̂(t+1) = Dσ̂(t)
(
ATz(t) + x̂(t)

)
, (3.10)

z(t) = y−Ax̂(t)+
1

M
z(t−1)∇·Dσ̂(t−1)

(
ATz(t−1)+x̂(t−1)

)
, (3.11)

σ̂(t) =
√
(1/M)∥z(t)∥22, (3.12)

the initial choice for the estimate x̂ and residual z is x̂(0) = 0 and z(0) = y, respectively.
The DAMP iterations (3.10)–(3.12) are able to accurately recover the structured signal

x ∈ C from the noisy measurements y in (3.8). The correction term in (3.11), i.e.,
1
M z(t−1)∇·Dσ̂(t−1)(A

Tz(t−1)+x̂(t−1)) is crucial for the success of the DAMP algorithm, where
∇·Dσ̂(t−1)(·) is the derivative of the denoiser Dσ̂(t−1)(·). The effect of including this term in
(3.11) is that the equivalent estimation noise n(t) := ATz(t) + x̂(t) − x behaves nearly like a
multivariate normal random vector [11]. The (approximate) Gaussianity of the effective
noise vector n(t) is clearly desirable since the denoiser Dσ̂(t)(·) is typically trimmed to remove
additive Gaussian noise and the first step (3.10) of DAMP just amounts to the denoising
operation

x̂(t+1) = Dσ̂(t)
(
x + n(t)

)
. (3.13)

3.3.2 Graph signal DAMP (GSDAMP)

Let us now specialize the generic DAMP algorithm, given by the iterations (3.10)–(3.12), to
the problem of graph signal denoising. We assume that the true signal belongs to the class C
of smooth graph signals, given explicitly by C = {x : Sp(x) ≤ τ}. A natural choice for the
corresponding denoiser, which is to be applied to a noisy graph signal s = x + σn, would be
given by the minimizer of the following problem:

min
x∈RN

∥s − x∥22 s.t. Sp(x) ≤ τ. (3.14)

However, we will find it more convenient to use the “penalized version” of (3.14), i.e.,

Dλ,W (s) := arg min
x∈RN

∥s − x∥22 + λSp(x). (3.15)

For convex Sp(x), which is the case for p ≥ 1, the two problems (3.14) and (3.15) are
equivalent by Lagrangian duality [94]. In fact, for each choice of τ there exists a choice
for λ such that a minimizer (3.14) is simultaneously a solution to (3.15) and vice versa.

3.3 Graph signal denoising via DAMP 27

The objective function in (3.15) is a weighted sum of two convex terms: the regularization
term and the data fidelity term. The regularization parameter λ plays a significant role in
the accurate recovery of graph signals. Choosing a proper value for λ, leads to attain a
compromise to suppress the noise and preserve the original graph signal. If we use a very
small value for λ, then the solution will be under-smooth, it will fit the given data properly
but it will preserve the noise in homogeneous areas. However, if we use a very large value for
λ, then the solution will not fit the measured noisy graph signal values accurately while it
will be over smooth and remove not only the noise but also the important details of the data
[95]. Obviously, choosing a proper value for λ is really tricky and most importantly depends
on the signal structure. To have a best recovery solution we should be able to set a value in a
way that leads to a good compromise of the above mentioned outcomes.

In order to deploy DAMP for graph signal denoising, we require an efficient implementation
of the denoiser mapping Dλ,W (·) and its divergence ∇·Dλ,W (x) :=

∑N
k=1

∂
∂xk

Dλ,Wk
(x), where

xk is the kth element of signal x and Wk is the kth row of the symmetric weight matrix
W. Note that the denoiser amounts to solving a convex optimization problem allowing for
efficient numerical implementations. In particular, we rely on the freely available software
package GSPBox [96]. In order to evaluate the divergence ∇·Dλ,W (x), we follow [11]: An
approximation of the divergence can be obtained by [97]

∇·Dλ,W (x) ≈ Eb
{
(1/ε)bT (

Dλ,W (x + εb) −Dλ,W (x)
)}
, (3.16)

for some small ε > 0. However, in the numerical implementation we will make a further
approximation by replacing the expectation in (3.16) with a sample mean, i..e, we use

d̃(x) :=
1

L

L∑
l=1

(1/ε)bT
l
(
Dλ,W (x+εbl)−Dλ,W (x)

)
, (3.17)

where b1, . . . , bL are i.i.d. realizations of the random vector b ∼ N(0, I) and L is the number
of the realizations. One can choose a very large value for L, e.g., L = N , where N is number
of the graph signal components.

The summary of our method, which we term graph signal denoising using AMP
(GSDAMP), is given in Algorithm 1.

There are various possibilities for the stopping criterion in Line 10 of Algorithm 1, e.g.
a maximum number of iterations. For the numerical experiments discussed in Section 3.4,
we used as convergence criteria a maximum number of iterations, along with the relative
progress ∥x̂

(t)−x̂(t−1)∥2
∥x̂(t)∥2

and Algorithm 1 stopped if it was below a given threshold ϵ .

28 Graph signal recovery using approximate message passing

Algorithm 1: Graph signal denoising AMP (GSDAMP)
1 Input: given the noisy graph signal samples y (cf. (3.8)), sampling pattern S, and

denoising parameter p (cf. (3.15)) perform the following:
2 Initialization: set t = 0, x̂0 = 0, ẑ0 = y,
3 Implement: a DAMP iteration via
4 x̃(t) = ATz(t) + x̂(t)

5 σ̂(t) =
√
(1/M)∥z(t)∥22 (compute σ̂(t) by (3.12))

6 λ̂(t) = 1 − exp
(
−σ̂(t)

)
7 x̂(t+1) = Dλ̂(t),W (x̃

(t)) (using the denoiser (3.15))
8 z(t) = y−Ax̂(t)+ 1

M z(t−1)d̃(x̃(t−1)) (using approximation (3.17))
9 t := t + 1

10 Output: final estimate x̂(t) if stopping criterion satisfied, otherwise go back to Line 3.

3.4 Numerical results

In this section, we present the results of the numerical experiments validating the performance
of the proposed method using various undirected graphs such as the undirected random
irregular (RIR) graph [96], the undirected Bunny graph [96], the Minnesota road graph
(network) [98], as well as a graph of real-world data-set, i.e., the Amazon product rating
graph [99]. In the first part of the performance validation, we analyze normalized mean
squared error (NMSE) for varying sampling rate M/N, and noise standard deviation σ. In
the next part, we focus on analyzing the label recovery ratio (LRR) with varying sampling
rate M/N, and noise standard deviation σ.

Here, we use Algorithm 1 with total variation (p = 1 in (3.4)) [93] and Tikhonov
(p = 2 in (3.4)) [100] denoisers. We refer to these two instances of Algorithm 1 as total
variation GSDAMP (TV-GSDAMP) and Tikhonov GSDAMP (Tik-GSDAMP) respectively,
and compare their efficiency with EFLA [76] and GrAMPA [75] the state-of-the-art graph
signal recovery algorithms. A rigorous description regarding to the EFLA and GrAMPA
algorithms is provided in Chapter 2. In order to implement EFLA and GrAMPA, we use the
online available codes in [101] and [102] respectively.

3.4.1 Undirected smooth graph signals

Using the GSPBox software [96], we generate three distinct undirected graphs, i.e., the RIR
graph with size N =1000, E = 3362 edges and the average node degree of 6.7, the Bunny
graph with size N =2503, E = 13726 edges and the average node degree of 11, as well as the

3.4 Numerical results 29

Minnesota road graph with size N =2642 and E = 3304 edges and the average node degree of
3. In addition to these three graphs, we applied our algorithm along with the other recovery
algorithms to the real-world data-set of the Amazon product rating graph [99].
The Amazon product rating data-set was collected by crawling the website of the Amazon
Internet-based retailer [99]. This data-set consists of rating information of four different
product categories: books, music CDs, DVDs and video tapes. The products are represented
by the nodes of the graph. The nodes representing two particular products are connected
by an edge if they are co-purchased often. Each product is assigned ratings by the users
who bought it, taking values in the set 1/2{0, 1,. . . , 9, 10}. We then obtain a graph signal
x0 by setting its value at node i to the average of all ratings for the product i. The graph of
the raw data contained isolated nodes and several small components. We select the largest
connected subgraph G for our numerical experiments. In this graph, there are N = 290744

nodes, |E | = 729048 edges and the average degree of each node is 5. In order to obtain the
undirected Amazon product rating graph the edge directions were ignored.

We randomly selected M noise-contaminated signal samples xi and this way obtained the
measurement vector y. For sufficient statistical significance of the results we ran the recovery
method for 500 times and each time with different noise realizations. We set the stopping
criteria in a way that the algorithm either reaches the maximum number of 50 iterations or
the relative progress saturates according to ∥x̂

(t)−x̂(t−1)∥2
∥x̂(t)∥2

≤ ϵ , where the threshold ϵ = 10−2.
The Algorithm 1 stops when it meets either one of the mentioned criteria. The final result is
averaged over the outcomes of the individual runs of the recovery scheme. All of the graph
signals are smooth and, except for the Amazon product rating graph signal, the rest of the
graph signals take values 1 and -1 coded by red and blue colours in Figures 3.3 to 3.5.

In particular, Figures 3.3 to 3.5 show the original graph signal G and four recovered
graph signals of the mentioned recovery algorithms. As evident, the graph signals recovered
by TV-GSDAMP and Tik-GSDAMP are much more similar to the original graph signals
compare to the results of EFLA and GrAMPA recovery algorithms.

30 Graph signal recovery using approximate message passing

Original signal

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Tik-GSDAMP

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

TV-GSDAMP

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

EFLA

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

GrAMPA

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.3. The original RIR graph G and its recovery with four different recovery algorithms
for a sampling rate M/N = 0.3 and a noise standard deviation σ = 0.3.

3.4 Numerical results 31

Figure 3.4. The original Bunny graph G and its recovery with four different recovery
algorithms for a sampling rate M/N = 0.3 and noise standard deviation σ = 0.3.

32 Graph signal recovery using approximate message passing

Original signal

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Tik-GSDAMP

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

TV-GSDAMP

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

EFLA

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

GrAMPA

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.5. The original Minnesota road graph G and its recovery with four different recovery
algorithms for a sampling rate M/N = 0.3 and a noise standard deviation σ = 0.3.

3.4 Numerical results 33

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

RIR graph signal with σ = 0

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

RIR graph signal with σ = 0.5

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Bunny graph signal with σ = 0

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Bunny graph signal with σ = 0.5

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

Figure 3.6. NMSE vs sampling rate M/N for RIR and Bunny graphs, where the noise
standard deviation σ is set to 0 and 0.5.

The influence of sampling rate M/N and noise standard deviation σ on recovery perfor-
mance of the mentioned graph signals is investigated in the Section 3.4.2 and Section 3.4.3,
respectively.

3.4.2 Recovery performance regarding to NMSE

In Figures 3.6 and 3.7, we plot the NMSE over sampling rate M/N for TV-GSDAMP and
Tik-GSDAMP. We show the corresponding plots for the EFLA and GrAMPA recovery
methods as well. In these figures, the x-axis is sampling rate M/N ∈ [0.05, 0.95] and the
y-axis is the NMSE. As clear from Figures 3.6 and 3.7, for all four graph signals the NMSE
of TV-GSDAMP and Tik-GSDAMP is always smaller compared to other solvers, for both
noiseless and noisy graph signals.

34 Graph signal recovery using approximate message passing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Minnesota graph signal with σ= 0

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Minnesota graph signal with σ= 0.5

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Amazon graph signal with σ = 0

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Amazon graph signal with σ = 0.5

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

Figure 3.7. NMSE vs sampling rate M/N for Minnesota and Amazon graphs, where the
noise standard deviation σ is set to 0 and 0.5.

Apart from the impact of sampling rate on NMSE, we also investigate the dependence
of NMSE on the noise standard deviation σ for sampling rates of M/N ∈ {0.2, 0.4}. In
Figures 3.8 and 3.9, the x-axis is the noise standard deviation σ ∈ [0, 1] and the y-axis is the
NMSE. As evident from Figures 3.8 and 3.9, for all scrutinized graph signals the proposed
methods outperform the other algorithms, particularly in low sampling rates regime.

With respect to Figures 3.6 to 3.9, both Tik-GSDAMP and TV-GSDAMP show signifi-
cantly better recovery performance, on average more than 2 times better, than GrAMPA and
EFLA, specially for low sampling rates, i.e., when M/N ≤ 0.1, generally fail to recover the
graph signal.

3.4 Numerical results 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

RIR graph signal with M/N = 0.2

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

RIR graph signal with M/N = 0.4

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Bunny graph signal with M/N = 0.2

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Bunny graph signal with M/N = 0.4

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

Figure 3.8. NMSE vs noise standard deviation σ for RIR and Bunny graphs, where the
sampling rate M/N is set to 0.2 and 0.4.

3.4.3 Recovery performance regarding to LRR

Another figure of merit, beside the NMSE, is the LRR aη (3.18) defined as the fraction of
nodes i ∈ V, for which the recovery error |xi − x̂i | does not exceed the threshold η, i.e.,

aη =| {i ∈ V, | xi − x̂i |≤ η} | /N, (3.18)

where, xi is the original signal value at node i, and x̂i is the recovered signal value.
To obtain the value of aη, first we round the recovered signal value to the nearest signal

value in the signal value set. In the Amazon product rating data-set, since the rating of
the products come from the set xi ∈ 1/2 {0, 1, 2, . . . , 10}, we have η ∈ 1/2 {0, 1, 2, . . . , 10}.
However, in RIR, Bunny and Minnesota road graphs the signals come from the set xi ∈ {−1, 1},
hence we have η ∈ {0, 2}. In this chapter, we compare the exact recovery performance of the
proposed algorithms with GrAMPA and EFLA algorithms for all investigated graph signals

36 Graph signal recovery using approximate message passing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Minnesota graph signal with M/N= 0.2

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Minnesota graph signal with M/N= 0.4

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Amazon graph signal with M/N = 0.2

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Amazon graph signal with M/N = 0.4

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

Figure 3.9. NMSE vs noise standard deviation σ for Minnesota and Amazon graphs, where
the sampling rate M/N is set to 0.2 and 0.4.

where the value for η is set to zero, i.e., we compare the number of the samples that exactly
recovered exploiting each recovery algorithm.

The LRR of TV-GSDAMP, Tik-GSDAMP, EFLA and GrAMPA recovery methods over
varying noise standard deviations σ is illustrated in Figure 3.10, where the sampling rate
M/N is set to 0.2. As shown in Figure 3.10, for RIR, Bunny and Minnesota graph signals
with the same graph value set i.e., xi ∈ {1,−1}, even with low sampling rate M/N = 0.2, and
high noise standard deviation σ = 1, TV-GSDAMP and Tik-GSDAMP recovery algorithms
can recover more than 97% of the graph values (a0{TV−GSDAMP,Tik−GSDAMP} ≥ 0.97) which
is at least 29% higher than the recovery performance of GrAMPA (a0{Gr AMPA} ≤ 0.75) and
more than 53% higher than the recovery performance of EFLA (a0{EFL A} ≤ 0.63) with the
same settings. For noise standard deviation σ = 0 and sampling rate (M/N = 0.2), the
proposed algorithms recover 98% to 99% (a0{TV−GSDAMP,Tik−GSDAMP} ≥ 0.98) of the graph

3.4 Numerical results 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation ()

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o
 (

L
R

R
)

RIR graph signal with M/N = 0.2

TVGSDAMP

TikGSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation ()

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o
 (

L
R

R
)

Bunny graph signal with M/N = 0.2

TVGSDAMP

TikGSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation ()

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

L
a
b

e
l
re

c
o
v
e
ry

 r
a
ti
o
 (

L
R

R
)

Minnesota graph signal with M/N = 0.2

TVGSDAMP

TikGSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation ()

0.15

0.2

0.25

0.3

0.35

0.4

0.45

L
a
b

e
l
re

c
o
v
e
ry

 r
a
ti
o
 (

L
R

R
)

Amazon graph signal with M/N = 0.2

TVGSDAMP

TikGSDAMP

EFLA

GrAMPA

Figure 3.10. LRR vs noise standard deviation σ, where the sampling rate M/N is set to 0.2.

signals values which are again superior to the recovery performance of GrAMPA and EFLA
recovery algorithms. One can also see from Figure 3.10 the superiority of the proposed
algorithms in recovery of Amazon graph signals values, where the TV-GSDAMP recovery
rate is 7% higher than the LRR of Tik-GSDAMP, 33% more than LRR of GrAMPA and 64%
more than LRR of EFLA algorithm for the same sampling rate and noise standard deviation
σ = 1. For the noiseless scenario the recovery percentage of the proposed algorithms is even
much higher (at least twice) compared to the rest of the algorithms.

The LRR of TV-GSDAMP, Tik-GSDAMP, EFLA and GrAMPA recovery methods over
varying sampling rate M/N is illustrated in Figure 3.11, where the noise standard deviation
σ is set to 0. Intuitively, the LRR of all the recovery algorithms improve for higher sampling
rates. In the noiseless setting with the maximum error threshold η = 0 and sampling rate
M/N = 0.95, for all scrutinized graph signals the proposed algorithms are able to recover
the correct ratings of more than 99% of the graph values. The other recovery algorithms
are able to give the same result for the RIR, Bunny and Minnesota graphs. However,

38 Graph signal recovery using approximate message passing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o
 (

L
R

R
)

RIR graph signal with = 0

TVGSDAMP

TikGSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o
 (

L
R

R
)

Bunny graph signal with = 0

TVGSDAMP

TikGSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

L
a
b

e
l
re

c
o
v
e
ry

 r
a
ti
o
 (

L
R

R
)

Minnesota graph signal with = 0

TVGSDAMP

TikGSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
a
b

e
l
re

c
o
v
e
ry

 r
a
ti
o
 (

L
R

R
)

Amazon graph signal with = 0

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

Figure 3.11. LRR vs sampling rate M/N, where the noise standard deviation σ is set to 0.

for Amazon product rating graph the LRR of GrAMPA is less than (a0{Gr AMPA} ≤ 0.65)
which is at least 85% higher than the LRR of EFLA (a0{EFL A} ≤ 0.35). Besides, in
Amazon product rating graph when we set the sampling rate to 0.05, the TV-GSDAMP and
Tik-GSDAMP algorithms are able to recover the correct ratings of more than 22% of the
products (a0{TV−GSDAMP,Tik−GSDAMP} ≥ 0.22) which is 46% higher than LRR of GrAMPA
(a0{Gr AMPA} ≤ 0.15). The EFLA recovery algorithm is able to recover the correct ratings of
10% of graph values (a0{EFL A} = 0.1).

Again incrementing the noise level harms the recovery performance, e.g., for noise
standard deviation σ = 0.5, the recovery performance decreases for all of the compared
algorithms (see Appendix B for more results). By increasing the noise standard deviation, the
recovery slopes show that the TV-GSDAMP and Tik-GSDAMP algorithms are more robust
to the noise compared to EFLA and GrAMPA algorithms. Even in the high noise standard

3.5 Conclusion 39

deviation regime and for all graph signals the proposed algorithms outperform both EFLA
and GrAMPA in all scrutinized scenarios.

3.5 Conclusion

In this chapter we present a new AMP-based method for recovering smooth graph signals
based on a preferably small number of noisy signal samples. We exploit the smoothness of
typical graph signals occurring in many applications, such as Internet-based retailers or social
network analysis. For the graph signal recovery, we combine graph signal denoisers i.e.,
total variation and Tikhonov denoisers, with the AMP framework. Supported by illustrative
numerical experiments, we show that our proposed algorithms significantly outperform
existing methods particularly for very low sampling rates in several relevant regimes.

Chapter 4

Graph signal recovery via iterative
solvers

4.1 Introduction

This chapter focuses on the concept of graph signal recovery in more depth. Like previous
chapter here in the considered system set up the graph signal recovery is formulated as a CS
measurement, the graph signal values are obtained using CS recovery by Laplacian iterative
methods. For the sake of comprehensiveness, some basic concepts of GSP are restated in this
chapter.

As mentioned in the previous chapter, we are interested to reconstruct a graph signal
from partially observed samples (possibly noisy), which is a key problem studied in GSP.
Recovery algorithm uses the prior knowledge that the true graph signal is smooth with respect
to the graph structure. A graph signal is called smooth, when signal values of connected
nodes do not vary significantly. To indicate the smoothness of the graph signal, we use the
notion of graph gradients. Several approaches to the graph signal recovery problem have been
put forward. Recently, there have been some attempts to apply the AMP framework to the
problem of the graph signal recovery like total variation AMP (TV-AMP) [103], GSDAMP
[12], and GrAMPA [75]. Another wide family of graph recovery algorithms is obtained by
convex optimization methods [104–106]. Within this class, methods based on Tikhonov
regularization using the graph Laplacian quadratic form are appealing, since they amount to
solve systems of linear equations involving the graph Laplacian [29].

Based on our work in [13], the contribution of this chapter is summarized as follows. We
formulate the graph signal recovery problem as an optimization problem using Tikhonov
regularization of noisy graph signals. The optimization problem consists of two quadratic

42 Graph signal recovery via iterative solvers

terms. The first term is to measure the fidelity of the recovery and the second term, which is
the graph Laplacian quadratic form, measures the smoothness of the reconstructed graph
signal. To solve the optimization problem, we first derive a closed-form solution that leads to
a system of linear equations, which can be solved, e.g., by iterative techniques known from
the literature such as the GS [107] or the BGS [108, 109] methods. We use those iterative
techniques as recovery methods to solve our graph signal recovery problem and we also
provide convergence criteria. Computationally more efficient methods exist (e.g. [110, 30])
to solve the linear systems we consider1, but we don’t use those advanced techniques in this
work for simplicity of the implementation and because the conventional BGS method was
sufficiently efficient for the simulations we conducted.

After we explain the system set up in Section 4.2. In the interest of clarity, we first explain
the sampling of graph signal and formalize the graph signal recovery problem in Section 4.3.
We will then discuss about iterative solvers in Section 4.4 and finally in Section 4.5 we will
be discussing the results of numerical experiments.

4.2 System setup

We consider an undirected weighted graph G = (V, E,W), as illustrated in Figure 4.1, with
node set V = {1, . . . , N} and edge set E ⊆ V × V. We assume the graph to be simple,
i.e., it does not have any self-loops. Thus, (ℓ, j) ∈ E implies ℓ , j and (j, ℓ) ∈ E (since the
edges are undirected). The entries Wℓ j (all non-negative) of the symmetric weight matrix
W ∈ RN×N quantify the strength of the connections in the graph. The neighbourhood of the
node ℓ ∈ V is defined as Nℓ := { j ∈ V |Wℓ j , 0 }. In particular, Wℓ j , 0 only if (ℓ, j) ∈ E,
i.e., the support of the matrix W reflects the edge structure of the graph G.

A graph signal x : V → RN defined on the graph G = (V, E,W) is a labeling of the
graph nodes with real numbers, i.e., each node ℓ ∈ V is assigned a graph signal value xℓ ∈ R.
We stack the graph signal values into a vector x ∈ RN , whose ℓth entry is the graph signal
value xℓ at node ℓ ∈ V. The graph signals arising in many important applications are smooth
in the sense that the signal values xℓ, x j for neighbouring nodes ℓ, j ∈ V are similar in
general, i.e., for (ℓ, j) ∈ E, xℓ ≈ x j . We use the gradient of a graph signal at node ℓ as a
smoothness metric [19] and define the global smoothness of the graph signal x around node ℓ

1Any linear system Bx = b with the system matrix B, symmetric and diagonally dominant (SDD) system
can be transformed [111, 112] into a Laplacian system (of twice the size) for which very efficient solutions are
discussed, some with a complexity that is only linear in the number of edges of the underlying graph [110, 30].

4.2 System setup 43

x1

x2

x6

x7

x4

x3

x5

w13

w12

w24w14

w45
w46

w47
w57

w67

w35

x1

x2

x6

x7

x3

x5

w13

w12

w24w14

w45
w46

w47
w57

w67

w35
x4

Figure 4.1. Undirected graph with signal components xi and weights {wℓ j = w jℓ, ℓ, j =
1, 2, ..., N}.

as

| |▽ℓx| |2 =

∑
j∈Nℓ

Wℓ j
(
x j − xℓ

)2
1
2

. (4.1)

Here, ▽ℓx is the graph gradient of x at node ℓ. This measure is small when x has similar
values at ℓ and its neighbouring nodes. The smoothness of graph signal x can be quantified by

S(x) = 1

2

∑
ℓ∈V

| |▽ℓx| |22 =
1

2

∑
ℓ∈V

∑
j∈Nℓ

Wℓ j
(
x j − xℓ

)2 (4.2)

=
∑
(ℓ, j)∈E

Wℓ j
(
x j − xℓ

)2
= xTLx , (4.3)

where the combinatorial graph Laplacian matrix L is defined as

L := D −W, (4.4)

and the degree matrix D is a diagonal matrix whose ℓth diagonal element Dℓℓ is equal to the
sum of the weights of all the edges connected to node ℓ, i.e.,

Dℓℓ =
∑
j∈V

Wℓ j . (4.5)

We normalize the value of S(x) in order to compare the smoothness of various graph signals
with each other

S′(x) = S(x)
∥x∥22
. (4.6)

44 Graph signal recovery via iterative solvers

4.3 Recovery problem

The graph signal recovery problem arises, when we assume that only a few components x j of
the signal x are observed. In the next subsections we explain the concept of sampling of graph
signal and then we will consider the problem of recovering a graph signal x with respect to
the prior information, i.e., signal model and noisy or noiseless samples, that we already have.

4.3.1 Graph signal sampling

In this chapter, we consider the problem of recovering a smooth graph signal x = {x j, j =
1, 2, ..., N} (true graph signal) from its noisy samples

yk = xsk + nk, k ∈ {1, 2, ...,M}, (4.7)

where
sk ∈ {1, 2, ..., N} and sk , sk ′ for k , k′, (4.8)

and the set
S = {s1, s2, ..., sM}, (4.9)

is, for M < N , a subset of the nodes setV. We assume the number M of samples to be much
smaller than the graph signal size N . By placing the observations yk into the measurement
vector y = {yk, k = 1, 2, ...,M} ∈ RM , we obtain a linear measurement model

y = Ax + n, (4.10)

where n = {nk, k = 1, 2, ...,M}, is the noise vector modeled as component-wise independent
AWGN with zero-mean and varianceσ2, i.e., nk ∼ N(0, σ

2). The noise vector is to encompass
the effects of measurement and modeling errors. The measurement matrix A ∈ {1, 0}M×N

represents the sampling process. It mostly consists of zeros, with at most one non-zero entry
in each column and exactly one non-zero entry in each row. Each row of A corresponds to
selecting a graph signal value xℓ for some ℓ ∈ S. For example the measurement matrix A for
the graph depicted in the left-side of Figure 4.1 is

A =
©«
0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 1

ª®®¬ , (4.11)

4.3 Recovery problem 45

where signal components x2, x3, x7 are the selected (sampled) nodes of the graph (in
Figure 4.1 sampled nodes are marked by squares around them). It should be noted that, any
set of M (out of N) graph signal components can be chosen; moreover, the measurement
matrix A is not unique, even if the same nodes are sampled, as, rows of A can be flipped.

4.3.2 Graph signal recovery

The graph signal recovery from the samples in (4.10) is (for M < N) an under-determined
problem, but it can be solved by exploiting the weight matrix enforcing a smoothness criterion.
The idea is to search for a graph signal vector x̂ that reproduces the observations “as accurate
as possible” while at the same time the information from the weight matrix is used to infer
the missing components.

Since we assume that the true graph signal x is smooth with respect to the underlying
graph G, we can use this prior information using regularization by (4.2) and (4.3). Our
approach for recovering the true graph signal x from the noisy samples yk , k = 1, 2, ...,M,
from (4.7) is based on balancing the empirical error

E(x) =
M∑

k=1

(yk − xsk)
2 = ∥y −Ax∥22, (4.12)

with the smoothness S(x) (defined in (4.2) and (4.3)) of the recovered signal x. Thus, a graph
signal recovery strategy is given by the optimization problem

x̂ = arg min
x∈RN

E(x) + λS(x)︸ ︷︷ ︸
� F(x)

. (4.13)

The first term in (4.13) requires the reconstructed signal Ax to be close to y and the second
term enforces the smoothness of the solution. To determine the trade-off between accuracy
E(x) and smoothness S(x) of the reconstruction x̂, the tuning parameter λ > 0 is introduced;
a small parameter λ puts more emphasis on accuracy and less on smoothness (and vice
versa). In order to recover the noisy graph signal from a small number of noisy samples we
have to minimize the objective function F(x) in (4.13), which is a linear combination of two
quadratic functions of x. The optimization in (4.13) has to be conducted over N-dimensions
(the dimensionality of the graph signal vector x).

In what follows, we first use a “scalar” approach to derive a solution, which is based
on taking partial derivatives for the components; this reveals the structure of the problem
and motivates an efficient method for recovery. A second vector-based approach allows for

46 Graph signal recovery via iterative solvers

compact statements, under which conditions a unique solution for the recovery problem
exists.

A. Scalar approach

We write F(x) in (4.13) according to

F(x) =
M∑

k=1

(yk − (Ax)k)2 + λ
1

2

N∑
i=1

N∑
j=1, j,i

Wi j(xi − x j)
2 , (4.14)

with (Ax)k denoting the kth component of the vector Ax. The summation in the right
double-sum was expanded over all nodes of the set V = {1, 2, ..., N}; only for the
nodes in the neighbourhood Ni of node i, the entries Wi j of the weight matrix will be
non-zero, so the result is equivalent to (4.2). We take partial derivatives for the graph
signal components xℓ, ℓ = 1, 2, ..., N

∂F(x)
∂xℓ

= −2
M∑

k=1

(yk − (Ax)k)Akℓ (4.15)

+
λ

2

(N∑
j=1, j,l

2Wℓ j(xℓ − x j) +

N∑
i=1,i,ℓ

(−2)Wiℓ(xi − xℓ)
)

= −2
M∑

k=1

(
yk −

N∑
n=1

Aknxn
)
Akℓ + 2 λ

N∑
j=1, j,l

Wℓ j(xℓ − x j), (4.16)

where the symmetry Wℓ j = W jℓ was used. Then we set the right-side of (4.16) to zero
to find the extremum:

M∑
k=1

Akℓ yk =

N∑
n=1

xn

M∑
k=1

Akn Akℓ + λ

N∑
j=1, j,l

Wℓ j(xℓ − x j),

=

N∑
n=1,n,ℓ

xn

M∑
k=1

Akn Akℓ + xℓ
M∑

k=1

AkℓAkℓ + λ

N∑
j=1, j,l

Wℓ j(xℓ − x j),

=

N∑
n=1,n,ℓ

xn

M∑
k=1

Akn Akℓ + xℓ
M∑

k=1

AkℓAkℓ + xℓ λ
N∑

j=1, j,l

Wℓ j − λ
N∑

j=1, j,l

Wℓ j x j,

=

N∑
j=1, j,ℓ

x j

M∑
k=1

Ak j Akℓ − λ

N∑
j=1, j,l

Wℓ j x j + xℓ
M∑

k=1

AkℓAkℓ + xℓ λ
N∑

j=1, j,l

Wℓ j,

4.3 Recovery problem 47

=

N∑
j=1, j,ℓ

x j

M∑
k=1

Ak j Akℓ +

N∑
j=1, j,l

x j
(
− λWℓ j

)
+ xℓ

M∑
k=1

AkℓAkℓ + xℓλ
N∑

j=1, j,l

Wℓ j,

=

N∑
j=1, j,ℓ

x j

(M∑
k=1

Ak j Akℓ +
(
− λWℓ j

))
+ xℓ

M∑
k=1

AkℓAkℓ + xℓλ
N∑

j=1, j,l

Wℓ j .

We obtain the system of linear equations

M∑
k=1

Akℓ yk︸ ︷︷ ︸
bℓ

=

N∑
j=1, j,ℓ

x j

(M∑
k=1

Ak j Akℓ − λWℓ j
)

︸ ︷︷ ︸
Cℓ j

+ xℓ
(M∑

k ′=1

A2
k ′ℓ +

N∑
j ′=1, j ′,l

λWℓ j ′
)

︸ ︷︷ ︸
Cℓℓ

,

(4.17)

for ℓ = 1, 2, ..., N , with the coefficients bℓ and Cℓ j that can be computed from the given
measurements yk , the measurement matrix coefficients Ak j and the weight matrix
coefficients Wℓ j . It should be noted that the system of equations (4.17) applies for any
sampling matrix A ∈ RM×N . The system may not have a unique solution (which would
mean unique recovery is impossible), so it needs to be clarified when a solution is
possible.

B. Vector-based approach

The objective function in (4.13) can (see (4.3)) be equivalently written as

F(x) = ∥y −Ax∥22 + λ xTLx (4.18)

=
(
y −Ax

)T (
y −Ax

)
+ λ xTLx (4.19)

= yTy − 2 yTA x + xT
(
ATA + λL

)
x . (4.20)

The gradient, taken for the unknown vector x, set to zero leads to

ATy︸︷︷︸
b

= (ATA + λL)︸ ︷︷ ︸
C

x, (4.21)

with the definitions of the column vector b = (b1, b2, ..., bN)
T and the matrix C =

{Cℓ j, ℓ, j = 1, 2, ..., N} inserted, the solution (4.21) equals the solution in (4.17).

48 Graph signal recovery via iterative solvers

The solution of linear system (4.21) which is equivalent to the optimal solution of
(4.13) is

x̂ = C−1b. (4.22)

It is clear from (4.22) that the matrix C has to be invertible, for a unique solution of
(4.21) (and, hence, of (4.17)) to exist.

C. Invertibility and positive definiteness of the system matrix

Since we consider high-dimensional problems with large N to solve the systems of
linear equations, an inversion of the matrix C as well as standard approaches like
Gaussian elimination or QR decomposition are not preferred due to the complexity.
Therefore, here we consider an iterative approach – the well-known Gauss-Seidel
method – that is immediately suggested by (4.17). The idea is to solve the problem for
x̂ℓ and compute an update for it while all the other components x̂ j , j , ℓ are kept fixed.
This approach can be done alternatively for all of the components. The question is if this
process converges to a unique solution, and in Section 4.4 convergence statements for
this iterative process known from the literature are given. They require such a unique
solution to exist, which in turn means that the system matrix C has to be invertible.
Therefore, we now consider our specific sampling matrices A which consists mostly of
zeros and have at most one “1”-entry in each column and exactly one “1”-entry in each
row; an example is given in (4.11).

The N × N matrix ATA then consists almost entirely of zero-entries, with “1”-
components in those locations on the main diagonal which correspond to the index of
the nodes that are sampled. The matrix ATA stays the same, when the rows of A are
flipped, this can be easily verified by inspection of examples. Hence, in the system
matrix

C = ATA + λL, (4.23)

the selected sampling matrix adds the values of “1” to the main diagonal of the λL
matrix in the locations that correspond to the sampled graph signal components. As an
example in (4.11), we have

4.3 Recovery problem 49

ATA =

©«

0 0 0

1 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1

ª®®®®®®®®®®®®¬

©«
0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 1

ª®®¬ ,

ATA =

©«

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

ª®®®®®®®®®®®®¬
. (4.24)

The graph Laplacian L itself is a singular matrix, as by definition at least one arbitrary
row can be made “all-zero” by adding all the other rows to it. Hence, it is clear that
L has at least one eigenvalue that is “zero” and it is also known [19] that L has only
non-negative eigenvalues. However, “zero” appears as an eigenvalue with a multiplicity
that equals the number of separable subgraphs [19]. These are the subsets of the nodes
in the graph that are intra-connected but have no connections (through non-zero entries
in the weight matrix) to other parts of the graph. In the sampling matrix selection, we
have to make sure that all of the zero eigenvalues of L disappear by adding “1”-values
to the main diagonal in the right places while with the non-zero eigenvalues, system
matrix C will be invertible.

If we assume that L corresponds to a connected graph the matrix has exactly one
eigenvalue that is zero. As the nodes can be arbitrarily labeled, without loss of generality
we assume that only node ℓ = 1 is sampled. Then for λ > 0 we have

C
λ
=

©«
1
λ + D11 −W12 −W13 . . . −W1N

−W12 D22 −W23 . . . −W2N

.

−W1N −W2N −W3N . . . DNN

ª®®®®®¬
, (4.25)

50 Graph signal recovery via iterative solvers

where the diagonal terms Dℓℓ, ℓ = 1, 2, ..., N , are defined in (4.5). When we add the
rows 2, 3, ..., N to the first, we obtain

1

λ
C =

©«
1
λ 0 0 . . . 0

−W12 D22 −W23 . . . −W2N

.

−W1N −W2N −W3N . . . DNN

ª®®®®®¬
. (4.26)

Now we can make the matrix “upper triangular” by successively scaling (with strictly
positive factors) the elements Dℓℓ > 0 for ℓ = 2, 3, ..., N on the main diagonal
appropriately to cancel all elements of the columns below the main diagonal in the ℓth

column. This is possible, because the terms Dℓℓ on the main diagonal are by definition
in (4.5) guaranteed to be positive, as they contain the sum of all the weights in a
column of W and we assumed the graph is connected. The determinant of C (using the
constructed upper triangular matrix) equals the product of the elements on the main
diagonal, i.e.,

det(C) = λ
(1
λ

) (
D2

) N∏
ℓ=3

(
αℓDℓℓ

)
, (4.27)

where we have 0 < αℓ < ∞. The sum of the columns of a connected weight matrix
must contain at least one positive component Wℓ j and all the elements off the main
diagonal are negative. Hence, a positive factor must be chosen to cancel those elements;
the factor αℓ is the result of such repeated scaling operations. As all the terms in (4.27)
are positive, det(C) > 0 is guaranteed. So, we need to sample at least one component
in a connected graph to make C invertible. Sampling more nodes does no harm, as
then the positive main diagonal elements are made even larger.

In the more general case, when the graph consists of several subgraphs , the problem
can be decomposed into several independent problems. Hence, at least one signal
component must be sampled from each of the disconnected subgraphs, and then (and
only then) the matrix C invertibility is guaranteed2.

For the convergence of the iterative methods discussed in the next section, results are
available from the literature that the system matrix C need to be positive definite. The
matrix C is real and symmetric by definition according to (4.23) and by the definition
of the graph Laplacian in (4.4). But it should be noted that C is not a Laplacian matrix

2If there is no sampled component in a disconnected subgraph, a row in C can be made zero (as the 1/λ-term
would be missing, see (4.25)) and then C would not be invertible.

4.4 Iterative graph signal recovery 51

as the row- and column-sums are non-zero. From Sylvester’s criterion [113], [114,
Section 4.2.1], it is known that a real and symmetric matrix is positive definite if and
only if all its leading principal minors are positive. This property can be shown for the
matrix (4.25) to hold by considering the upper triangular form of the system matrix
C. Since for a triangular matrix, the ℓth leading principal minor is the product of the
first ℓ elements on the main diagonal and all the elements on the main diagonal of the
upper triangular form of C are positive, the matrix C in (4.25) must be positive definite.
If more than one measurement is taken, there will be more diagonal elements in the
matrix C that a “1” is added to, so the elements will remain positive and the same
argumentation as above will apply. Hence, if at least one measurement is taken and
the graph does not contain disconnected subgraphs, then the matrix C will be positive
definite.

4.4 Iterative graph signal recovery

In what follows, we consider graph signals defined over the connected graphs. This assumption
does not incur any loss of generality. Indeed, if the graph is composed of several not inter-
connected subgraphs, the recovery problem (4.13) and the associated linear system of equation
(4.21) would split into independent subproblems, one for each subgraph.

The general system of linear equations in (4.17) can be specialized to the specific sampling
matrices. As there is at most one “1” in each column of A, we have Ak j Akℓ = 0 for j , ℓ, so

Cℓ j = −λWℓ j , (4.28)

for ℓ, j = 1, 2, ..., N .
If there is no measurement of the component xℓ, i.e. ℓ < S, we have

∑M
k ′=1 A2

k ′ℓ = 0

because there is no non-zero element in column ℓ in any row of A. If there is a non-zero
element in some row of the column ℓ, i.e., ℓ ∈ S, regarding to the construction of A it will
only be one (non-zero), and its value will be “1”. Hence,

Cℓℓ =

1 + λDℓℓ for ℓ ∈ S

λDℓℓ for ℓ < S
, (4.29)

for ℓ = 1, 2, ..., N , where

Dℓℓ =
N∑

j=1, j,ℓ

Wℓ j . (4.30)

52 Graph signal recovery via iterative solvers

For the left-side of the linear system in (4.17), we obtain

bℓ =
M∑

k−1

Akℓ yk =

{
yk for ℓ ∈ S with Akℓ = 1

0 for ℓ < S
. (4.31)

4.4.1 Gauss-Seidel iterative solver

In order to obtain the recovered signal x̂, we have to solve the system of linear equations
in (4.17). An iterative method is suggested to compute an update for x̂ℓ and keep the other
components x̂ j , j , ℓ fixed: a refinement, which is used below and is known as the GS
method in the literature (e.g. [107, 109]), is to immediately use the recently updated values of
nodes when other nodes are updated. The GS method then constructs from (4.17) a sequence
x̂(t) by iterating, for t = 1, 2, . . . , the node-wise updates

x̂(t)
ℓ
=

1

Cℓℓ

(
bℓ −

ℓ−1∑
j=1

Cℓ j x̂
(t)
j −

N∑
j=ℓ+1

Cℓ j x̂
(t−1)
j

)
, (4.32)

where for ℓ = 1 the first sum is not computed, because (as a convention) the upper sum-index
l − 1 is smaller than the lower one, and similarly for ℓ = N , the second sum is not computed.
Now we use (4.28), (4.29); this leads to

x̂(t)
ℓ
=

1

1 + λDℓℓ

(
yℓ + λ

(ℓ−1∑
j=1

Wℓ j x̂
(t)
j +

N∑
j=ℓ+1

Wℓ j x̂
(t−1)
j

))
ℓ ∈ S

1

Dℓℓ

(ℓ−1∑
j=1

Wℓ j x̂
(t)
j +

N∑
j=ℓ+1

Wℓ j x̂
(t−1)
j

)
ℓ < S

. (4.33)

As a stopping criterion for the iterations, we use a pre-specified threshold ε on the squared
error between the left- and right-side of (4.17), i.e.,

E =
N∑
ℓ=1

(
bℓ −

N∑
j=1

Cℓ j x̂(t)j

)2
,

into which (4.28) and (4.29) are inserted. The result can be written as given in Line 9 of
Algorithm 2, which summarizes the iterative scheme.

Algorithm 2 does not assume that the graph is sparse. If it is, the scheme in Algorithm
2 can be made much faster, because the sums in Line 5 and Line 7 can be limited to the
neighbourhood Nℓ of the node xℓ (see 4.2) in which the weights Wℓ j are non-zero: for a
sparse weight matrix, that neighbourhood set will be small.

4.4 Iterative graph signal recovery 53

Algorithm 2: Graph signal recovery via GS method
1 Input: symmetric weighted N × N adjacency matrix W, M × N sampling matrix A,

measurement vector y = (y1, ..., yM)
T , parameter λ > 0 to balance accuracy and

smoothness of the solution, error threshold ε > 0 for the stopping criterion
2 Initialization: set t = 0, compute Dℓℓ =

∑N
j=1 Wℓ j , bℓ =

∑M
k=1 Akℓyk and set

x̂(0)
ℓ
= 0, for ℓ = 1, 2, ..., N .

3 repeat
4 t := t + 1
5 for ℓ ∈ S do

x̂(t)
ℓ
=

yℓ + λ
ℓ−1∑
j=1

Wℓ j x̂(t)j + λ
N∑

j=ℓ+1
Wℓ j x̂(t−1)j

1+λDℓℓ

6 end for
7 for ℓ < S do

x̂(t)
ℓ
=

ℓ−1∑
j=1

Wℓ j x̂(t)j +
N∑

j=ℓ+1
Wℓ j x̂(t−1)j

Dℓℓ

8 end for

(Note: if ℓ = 1 the sum
ℓ−1∑
j=1

is not computed; and if ℓ = N the sum
N∑

j=ℓ+1
is not computed)

9 Compute error

E =
∑
ℓ∈S

(
(bℓ − x̂(t)

ℓ
) − λqℓ

)2
+

∑
ℓ<S

(
λqℓ

)2
with

qℓ = Dℓℓ x̂(t)
ℓ
−

N∑
j=1, j,ℓ

Wℓ j x̂(t)j

10 until E < ε
11 Output: recovered graph signal x̂ =

(
x̂(t)1 , x̂

(t)
2 , ..., x̂

(t)
N

)T .

54 Graph signal recovery via iterative solvers

4.4.2 Block Gauss-Seidel iterative solver

The Block GS (BGS) method [108, Chap 10] generalizes the GS method by updating during
each iteration whole blocks of the current estimate x̂(t) in one step instead of single entries
(as in (4.33)). This allows for parallel computations and, hence, significant increase in speed,
even though the complexity of one update step may appear to be higher for BGS in general.
However, a major advantage of BGS is that it typically requires fewer iterations to reach a
given solution accuracy. The BGS method is based on partitioning the system matrix C,
solution vector x and vector b of (4.21), into p blocks according to

C =

©«
C11 C12 . . . C1p

C21 C22 . . . C2p

...
...
. . .

...

Cp1 Cp2 . . . Cpp

ª®®®®®¬
, x =

©«
x1
x2
...

xp

ª®®®®®¬
, b =

©«
b1
b2
...

bp

ª®®®®®¬
. (4.34)

The iterations in the BGS method for solving (4.21) are defined by generalizing (4.33);
the scheme is stated in Algorithm 3.

Algorithm 3: Smooth graph signal recovery via BGS
1 Input: x0 ← 0, C = ATA + λL , t = 0, number of partitions p, noisy samples
{yℓ}ℓ∈S , sampling set S, and parameter λ

2 repeat
3 for ℓ = 1 : p do
4 b̃← (b)ℓ −

∑ℓ−1
j=1 Cℓ j x̂(t)j −

∑N
j=ℓ+1 Cℓ j x̂(t−1)j

5 Solve Cℓℓx̂ℓ = bℓ using (4.33) to obtain x̂(t)
ℓ

6 end for
7 t ← t + 1
8 until the stopping criterion is met.
9 Output: recovered graph signal x̂ = x̂(t−1)

ℓ
.

The convergence of Algorithm 2 and Algorithm 3 will be discussed in Section 4.4.3.

4.4.3 Convergence criteria

In order to proof the convergence of the sequence x̂(t) t = 1, 2, ..., generated by both the
point-wise and the block GS Algorithm, we consider the coefficient matrix C in (4.21). The
diagonal entries of coefficient matrix C are obtained from (4.29) and its off diagonal entries

4.5 Numerical results 55

are given by Cℓ j = −λWℓ j . With the definition of irreducibly diagonally dominant matrices
from [107, Def 4.5], the ℓth row of the matrix C is either strictly dominant for ℓ ∈ S, as∑

j∈V,ℓ, j

| λWℓ j |< 1 + λDℓℓ, (4.35)

or weakly dominant for ℓ < S, as ∑
j∈V,ℓ, j

| λWℓ j |≤ λDℓℓ . (4.36)

This makes the matrix C irreducibly diagonally dominant. From [107, Theorem 4.9], if the
matrix C is an irreducibly diagonally dominant matrix, then x̂ generated by Algorithm 2 or
Algorithm 3 converges to the unique solution.

4.5 Numerical results

In order to assess the accuracy of the Laplacian solvers, we compare the efficiency of
BGS-recovery algorithm with Tik-GSDAMP [12] graph signal recovery method along with
the OPT-recovery method which is obtained by solving (4.22) using matrix inversion. We
apply these recovery methods to various connected smooth graph signals, such as signals on
a RIR graph, signals on a Bunny graph and etc. The detailed description of the compared
graphs is in Section 3.4.

In the simulations, we exploit a random sampling method for selecting M signal samples
xℓ and add zero-mean AWGN noise with variance σ2. Thus, we obtain a measurement vector
y conforming to the model (4.10). In order to accelerate the recovery of x from the noisy
measurements (4.7), we apply Algorithm 3 using a partitioning of the graph into p = 40

blocks of equal size for the Amazon product rating graph signal. However, due to the small
size of the RIR, Bunny and Minnesota graph signal we set the number of partitions to p = 4.
The stopping criteria used for Algorithm 3 is either it reaches the maximum number of 50
iterations or the relative progress saturates according to ∥x̂

(t)
−x̂(t−1)∥2
∥x̂(t)∥2

≤ 10−2. To have an
accurate and reliable comparison of the recovery schemes, we use exactly the same settings for
all of the recovery schemes i.e, the same number of samples M and noise standard deviation
σ.

In Figure 4.2 and Figure 4.3, we investigate the optimal value of the regularization
parameter λ, i.e., λopt . We run both OPT- and BGS-recovery methods for different λ values
(cf. (4.13)). Our goal is to find the optimum value of λ by adopting a two-fold search
strategy which yields the best performance in terms of the NMSE over different noise standard

56 Graph signal recovery via iterative solvers

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 Noise standard deviation(σ)

0

0.5

1

1.5

2

2.5

3

3.5

4

L
a

m
b

d
a

 o
p

ti
m

u
m

 (
λ

o
p
t)

RIR graph signal

BGS-recovery, M/N= 0.2

OPT-recovery, M/N= 0.2

BGS-recovery, M/N= 0.4

OPT-recovery, M/N= 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0

0.5

1

1.5

2

2.5

L
a

m
b

d
a

 o
p

ti
m

u
m

 (
λ

o
p
t)

RIR graph signal

BGS-recovery, σ=0

OPT-recovery, σ=0

BGS-recovery, σ=0.5

OPT-recovery, σ=0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 Noise standard deviation(σ)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L
a

m
b

d
a

 o
p

ti
m

u
m

 (
λ

o
p
t)

Bunny graph signal

BGS-recovery, M/N= 0.2

OPT-recovery, M/N= 0.2

BGS-recovery, M/N= 0.4

OPT-recovery, M/N= 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 Sampling rate (M/N)

0

0.2

0.4

0.6

0.8

1

1.2
L

a
m

b
d

a
 o

p
ti
m

u
m

 (
λ

o
p
t)

Bunny graph signal

BGS-recovery, σ=0

OPT-recovery, σ=0

BGS-recovery, σ=0.5

OPT-recovery, σ=0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 Noise standard deviation(σ)

0

1

2

3

4

5

6

7

L
a

m
b

d
a

 o
p

ti
m

u
m

 (
λ

o
p
t)

Minnesota graph signal

BGS-recovery, M/N= 0.2

OPT-recovery, M/N= 0.2

BGS-recovery, M/N= 0.4

OPT-recovery, M/N= 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0

0.5

1

1.5

2

2.5

3

3.5

L
a

m
b

d
a

 o
p

ti
m

u
m

 (
λ

o
p
t)

Minnesota graph signal

BGS-recovery, σ=0

OPT-recovery, σ=0

BGS-recovery, σ=0.5

OPT-recovery, σ=0.5

Figure 4.2. The optimum value of λ over varying noise standard deviations σ (left), and
varying sampling rates M/N (right) for both BGS- and OPT-recovery algorithms.

4.5 Numerical results 57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 Noise standard deviation(σ)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

L
a

m
b

d
a

 o
p

ti
m

u
m

 (
λ

o
p
t)

Amazon graph signal

BGS-recovery, M/N= 0.2

BGS-recovery, M/N= 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0.05

0.1

0.15

0.2

0.25

L
a

m
b

d
a

 o
p

ti
m

u
m

 (
λ

o
p
t)

Amazon graph signal

BGS-recovery, σ= 0

BGS-recovery, σ= 0.5

Figure 4.3. The optimum value of λ for Amazon product rating graph over varying noise
standard deviations σ (left), and varying sampling rates M/N (right).

deviations σ and various sampling rates M/N . Note that, for RIR, Bunny and Minnesota
graph signals we check the optimum value of λ for both BGS- and OPT-recovery algorithms.
However, due to the large value of N (graph signals dimension) and high complexity of matrix
inversion in Amazon product rating graph signal it is not feasible to use the OPT-recovery
algorithm to reconstruct the graph signal.

Figure 4.2 illustrates that the BGS- and OPT-recovery algorithms deliver exactly the same
values for the λopt . It also shows that the value of λopt increases for a growing value of noise
standard deviation σ. In a high noise standard deviation regime, the value of sampled signals
are unreliable and the recovery algorithms exhibit better performance by putting higher
emphasize on the smoothness term of (4.13). In a signal with σ = 0, the sampling is the
main cause of the observed signal imperfection. In such case, since the sampled signal values
are equal to the original signal values the fidelity term of (4.13) plays more on the recovery
of signal. In signal with σ = 0.5, the sampled signal values deviate from the original ones
due to the effect of the noise. In this case, the difference in the signal values of two adjacent
nodes is considered as the effect of noise and is removed by the smoothness term. Hence, in a
smooth graph signal by increasing the value of sampling rate the algorithms employ a higher
value for λopt to enforce the recovered signal to have similar values for neighbouring nodes.

Interestingly, the values of λopt in Figure 4.3 show a different trend for the Amazon
product rating graph signal compared to the other graph signals. The reason for such
trend is that compare to the other graph signals the Amazon dataset is less smooth, i.e.,
S′Amazon(x) = 0.54, while the smoothness factor of the the rest of the graph signals are
S′RIR(x) = 0.08, S′Bunny(x) = 0.18, and S′Minnesota(x) = 0.06. When we have a highly smooth
graph signal like RIR, Bunny or Minnesota graph signals, we expect that signal values do

58 Graph signal recovery via iterative solvers

not differ to much in the neighbouring nodes. Hence, in case σ = 0.5 by increasing the
sampling rate the value of λopt will increases as well. In a less smooth signal like Amazon by
increasing the sampling rate at first (when we have very low sampling rate), we observe an
increase in the value of λopt until a certain point which further increment of sampling rate
will decrease that. At this point, we have sufficient amount of samples in which recovery of
signal without considering the effect of smoothness term will cause a higher performance.
Hence, in the non-smooth graph in case σ = 0.5 and even for larger values of sampling rate it
makes sense to not put high emphasize on the smoothness term.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0

0.05

0.1

0.15

0.2

0.25

0.3

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

RIR graph signal

BGS-recovery, σ= 0

OPT-recovery, σ= 0

Tik-GSDAMP, σ= 0

BGS-recovery, σ= 0.5

OPT-recovery, σ= 0.5

Tik-GSDAMP, σ= 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0

0.05

0.1

0.15

0.2

0.25

N
o

rm
a

la
iz

e
d

 M
e

a
n

 S
q

u
a

re
 E

rr
o

r
(N

M
S

E
)

Bunny graph signal

BGS-recovery, σ= 0

OPT-recovery, σ= 0

Tik-GSDAMP, σ= 0

BGS-recovery, σ= 0.5

OPT-recovery, σ= 0.5

Tik-GSDAMP, σ= 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Minnesota graph signal

BGS-recovery, σ= 0

OPT-recovery, σ= 0

Tik-GSDAMP, σ= 0

BGS-recovery, σ= 0.5

OPT-recovery, σ= 0.5

Tik-GSDAMP, σ= 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Amazon graph signal

BGS-recovery, σ= 0

Tik-GSDAMP, σ= 0

BGS-recovery, σ= 0.5

Tik-GSDAMP, σ= 0.5

Figure 4.4. NMSE over varying sampling rates M/N .

Using the value of λopt , we analyze the effect of different noise standard deviationsσ along
with different sampling rates M/N on the NMSE of recovered signal. In order to validate

4.5 Numerical results 59

the performance of Algorithm 3, we compare the recovery performance of BGS-recovery
algorithm with the optimal recovery method (OPT-recovery) along with the Tik-GSDAMP
[12] graph signal recovery algorithm. In Figure 4.4, we plot the NMSE over sampling rate
M/N for Tik-GSDAMP, BGS- and if feasible for OPT-recovery. In this figure, the x-axis
is sampling rate M/N ∈ [0.05, 0.95] , and the y-axis is the NMSE. Intuitively, the value of
NMSE decreases for a growing value of sampling rate. Besides, for all of the graph signals
the NMSE of BGS-recovery algorithm is always smaller compared to Tik-GSDAMP, for
both noiseless and noisy graph signals.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 Noise standard deviation(σ)

0

0.05

0.1

0.15

0.2

0.25

0.3

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

RIR graph signal

BGS-recovery, M/N= 0.2

OPT-recovery, M/N= 0.2

Tik-GSDAMP, M/N= 0.2

BGS-recovery, M/N= 0.4

OPT-recovery, M/N= 0.4

Tik-GSDAMP, M/N= 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

N
o

rm
a

la
iz

e
d

 M
e

a
n

 S
q

u
a

re
 E

rr
o

r
(N

M
S

E
)

Bunny graph signal

BGS-recovery, M/N= 0.2

OPT-recovery, M/N= 0.2

Tik-GSDAMP, M/N= 0.2

BGS-recovery, M/N= 0.4

OPT-recovery, M/N= 0.4

Tik-GSDAMP, M/N= 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 Noise standard deviation(σ)

0

0.05

0.1

0.15

0.2

0.25

0.3

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Minnesota graph signal

BGS-recovery, M/N= 0.2

OPT-recovery, M/N= 0.2

Tik-GSDAMP, M/N= 0.2

BGS-recovery, M/N= 0.4

OPT-recovery, M/N= 0.4

Tik-GSDAMP, M/N= 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Amazon graph signal

BGS-recovery, M/N= 0.2

Tik-GSDAMP, M/N= 0.2

BGS-recovery, M/N= 0.4

Tik-GSDAMP, M/N= 0.4

Figure 4.5. NMSE over varying noise standard deviations (σ).

Apart from the impact of sampling rate on NMSE, we also investigate the dependence
of NMSE on the noise standard deviation σ for sampling rates of M/N ∈ {0.2, 0.4}. In
Figure 4.5, the x-axis is the noise standard deviation σ ∈ [0, 1] , and the y-axis is the NMSE.

60 Graph signal recovery via iterative solvers

Table 4.1. Comparision of the recovery algorithms in terms of the simulation run time.

Recovery algorithm Graph type Simulation run time (sec.)
RIR 0.0867
Minnesota 0.3104

BGS- recovery Bunny 0.2707
Amazon p=4 111.6195
Amazon p=40 19.1961
RIR 0.0826
Minnesota 0.5039

OPT- recovery Bunny 2.0205
Amazon -
RIR 0.0243
Minnesota 0.0851

Tik-GSDAMP Bunny 0.0924
Amazon 29.9726

As evident from Figure 4.5, for all scrutinized graph signals the proposed method outperforms
the Tik-GSDAMP recovery algorithm, particularly in higher noise standard deviation regime.

As illustrated in Figure 4.4 and Figure 4.5 in certain scenarios, the recovery performance
of BGS recovery algorithm is exactly the same as the recovery performance of OPT-recovery
method which outperforms the Tik-GSDAMP recovery algorithm. The OPT-recovery suffers
from the high complexity and it is not feasible to use it for high-dimensional graph signal
recoveries, while BGS-recovery has the same recovery performance as OPT-recovery and is
applicable for high-dimensional graph signal recoveries due to the lower complexity.

Table 4.1 shows the simulation time of compared recovery algorithms on a system with
the same settings. As it is obvious from the table the OPT-recovery algorithm shows the worst
run-time performance compared to the two other algorithms particularly for the graphs with
higher number of nodes and edges. We can also observe that the partitioning number has a
non-negligible impact on the time complexity of BGS-recovery algorithm. While the run time
of BGS-recovery algorithm with p = 4 on the Amazon graph is 111.6195 seconds, however,
when we set p = 40 its run time reduces to 19.1961 seconds. Finally, we observe that in the
case of large dimensional graph signals the BGS-recovery also outperforms Tik-GSDAMP
recovery algorithm not only in terms of recovery performance but also of time complexity.

4.6 Conclusion

We formulated the problem of recovering a smooth graph signal from an incomplete noise-
contaminated samples as a convex optimization problem. The optimization problem was

4.6 Conclusion 61

reduced to a system of linear equations involving the graph Laplacian. An efficient recovery
method for smooth graph signals was then obtained by applying the BGS method, in addition
to the optimum recovery solution. The effectiveness of the proposed recovery method was
verified by numerical experiments on different graph signals including a real-world dataset
containing product ratings of the Amazon Internet-based shop. According to the numerical
results, in several scenarios, the proposed algorithm shows the exact results like the optimum
solution and it outperforms a state-of-the-art recovery method, particularly for higher noise
standard deviations.

Chapter 5

Adaptive graph signal sampling

5.1 Introduction

The previous chapters are concerned with noisy and under-determined graph signal recovery
where the samples of graphs are chosen randomly with the uniform distribution. We shift
gears in this chapter to consider the state-of-the-art and more accurate sampling techniques
than a random sampling. Unlike classical signal processing, for even fundamental signal
operation like sampling, the irregular structure of generic graphs causes many complications.
The focus of this chapter is on the design of efficient sampling method which is necessary to
reach highly accurate graph signal recovery.

In this chapter, we extend the theory of graph signal sampling by developing a fast and
efficient algorithm for selecting the sampling set S of an arbitrary graph signal x. The
sampling theory deals with measuring a graph signal on a reduced set of nodes with conditions
under which the signal has a stable reconstruction. Our goal is to select the minimum number
of nodes in a way that it yields the reliable reconstruction of a signal.

The process of graph signal sampling is highly dependent on the structure of the graph
signal. The smoothness factor, which is defined generally in terms of the signal’s Fourier
transform, is one of the main players in selecting the efficient sampling set of a graph signal.
In a smooth graph signal, by sampling a node we are able to reconstruct its neighbours with
high probability. Hence sampling two adjacent nodes may not be efficient. In a non-smooth
graph signal, however, by sampling a node we cannot gain too much information about its
neighbours. Another factor which affects the performance of the sampling algorithm is the
degree of the nodes in the graph. When there is a high variation in the degree of different
nodes and graph is relatively smooth, distributing the samples through the graph is more
tricky. In one hand, sampling algorithm should be properly adjusted to avoid having a bulk of

64 Adaptive graph signal sampling

samples in a highly connected part of the graph and in the other hand sampling the nodes with
very small node degrees is not as useful as sampling the nodes with very large node degrees.

In order to reach the above mentioned goals considering the influence of smoothness
and node degree variance we propose – as an alternative to random sampling of the nodes –
a new AGSS algorithm to sample the nodes such that the recovery error is minimized. In
this mechanism, we apply a tuning factor for the neighbouring nodes of sampled node r.
The tuning factor should be adaptively adjusted based on the graph signal structure such as
smoothness and node degree variance. We confirm the performance of proposed sampling
algorithm by conducting illustrative numerical experiments on various random and real-world
graphs.

The rest of the chapter is organized as follows. Section 5.2 introduces the preliminaries, and
reviews the state-of-the-art sampling technique that we will compare our sampling algorithm
with. Section 5.3 presents and discusses the proposed sampling method. Section 5.4 provides
simulations on both real-world data-set and random graphs.

5.2 Preliminaries

To make it more accessible for the reader to follow, we again briefly review the concept
of graph and the foundations of the proposed work. We consider the loopless weighted
graph G = (V, E,W), where W ∈ RN×N is a weighted adjacency matrix demonstrating a
discrete version of the graph,V = {1, . . . , N} is the node set and E is the edge set consisting
of unordered node pairs (r, s) for which Wrs , 0. The edge weight Wrs between the two
neighbouring nodes r and s is a quantitative illustration of the underlying relation between
the nodes, i.e., a dependency or similarity. The support of the matrix W reflects the edge
structure of the graph G. A graph G is loopless if Wrr = 0, ∀r ∈ V; and it is connected if
there exists a path between any pair of the nodes. The degree matrix D is a diagonal matrix of
size N ×N , whose rth diagonal element Drr is equal to the sum of the weights of all the edges
connected to the node r, i.e., Drr =

∑
s∈VWrs. The weights are normalized if Drr = 1, ∀r.

In addition to the above matrices, another essential matrix associated with a graph G is the
graph Laplacian matrix L, i.e., L = D −W.

The δrs is the distance metric which shows the number of edges in a shortest path (also
called a graph geodesic) connecting node r and s. The k-step neighbourhood N k

r = {s ∈
V : δrs = k} of the node r is the set of all nodes which are at distance k from the node r . A
connected graph T without cycles, which has all the nodes and a subset of edges of G is a
spanning tree (ST) of a connected graph G. If the total edge weight of T is maximum over

5.2 Preliminaries 65

all possible STs of G then it is called a maximum spanning tree (MST) of the underlaying
graph G. In a case that the underlying graph is unweighted all of the possible STs are MST.

For a given graph G = (V, E,W), a graph signal x : V → RN is a mapping from the
node set into the reals1, i.e., each node r ∈ V is assigned a graph signal value xr ∈ R. We
will stack the graph signal values into a vector x ∈ RN , whose rth entry is the graph signal
value xr at node r ∈ V. It should be noted that the graph signal recovery problem arises,
when we assume that only a few components xr of the signal x are sampled. We consider
the problem of recovering a smooth graph signal x = {xr, r = 1, 2, ..., N} (true graph signal)
from its noisy samples

yl = xsl + nl, l ∈ {1, 2, ...,M}, (5.1)

where
sl ∈ {1, 2, ..., N} and sl , sl ′ for l , l′, (5.2)

and the set
S = {s1, s2, ..., sM}, (5.3)

is, for M << N , a subset of the node setV. We assume the number M of samples to be much
smaller than the graph signal size N . By placing the observations yl into the measurement
vector y = {yl, l = 1, 2, ...,M} ∈ RM , we obtain a linear measurement model

y = Ax + n, (5.4)

where n = {nl, l = 1, 2, ...,M}, is the noise vector modeled as component-wise independent
AWGN with zero-mean and variance σ2 i.e., nl ∼ N(0, σ

2). The noise vector is to encompass
the effects of measurement and modeling errors. The measurement matrix A ∈ {1, 0}M×N

represents the sampling matrix.

5.2.1 The MST-based sampling

In [115] the authors proposed a new sampling technique which approximates the underlying
graph G using a spanning tree. Since the spanning tree T should be as similar as possible to
the original graph G, the graph multi-resolution is provided by approximating the original
graph using a MST. The graph multi-resolution is defined by the structure of the tree T ,
which is a special bipartite graph G [116].

In the first step, the sampling algorithm finds the MST using Prime or Kruskal algorithm
[117]. Then through the MST of the graph, the sampling algorithm does the graph partition

1The extension to complex values is feasible but is not considered in this work.

66 Adaptive graph signal sampling

and reduction. In this sampling method, the sampling set S is constructed using all the
nodes with even distance from an arbitrary chosen root node r in the induced spanning tree
T . Finally, each node in S is connected to its grandparent nodes (which are also in S) to
make a connected tree. In order to clear out the procedure of the algorithm, an example of
MST-based sampling is provided in Figure 5.1. Figure 5.1-(a) shows the original grid graph.
The two independent subsets of MST-based sampling are labeled with red and green circles
in Figure 5.1-(b) and the sampled graph Figure 5.1-(c) is provided by applying the connecting
rules on the sampled nodes.

(a) (b) (c)

Figure 5.1. MST-based sampling on grid graph, (a) is the original grid graph, (b) the MST of
the grid graph, and (c) is the sampled graph.

5.3 Adaptive graph signal sampling (AGSS)

The sampling process of a graph signal depends highly on the structure of the underlying
graph signal. Generally, the nodes with larger value in the diagonal degree matrix D have
more influence on the recovery of the graph signal compared to the nodes with smaller value
in the diagonal of matrix D, i.e., if Drr > Dss then the rth node participates more than sth

node in the recovery of the graph signal. A trivial way for the sampling of the graph signal is
to first select the nodes with larger value in the degree matrix D, i.e., to sample a node that the
sum of the weights of all the edges connected to that node is higher. Applying this approach
on a graph signal will lead to the aggregation of all samples in the certain areas with the
high node degrees. Hence, the nodes located in the dense part of the graph will have a good
recovery while the rest of the nodes will suffer from an unpleasing recovery performance.
This drawback is more sever in smooth graph signals where the signal value does not vary
too much among the neighbouring nodes. Hence, sampling the neighbouring nodes with
similar signal values is not beneficial for the recovery algorithm. The sampled nodes should

5.3 Adaptive graph signal sampling (AGSS) 67

be distributed over the underlying graph to attain a higher recovery performance. To achieve
this goal we introduce a new parameter called tuning factor q. When the graph is smooth and
there is a drastic difference between the values of the components of the degree matrix D,
by increasing the tuning factor at first we observe an increase in the recovery performance,
however, after a certain point further increment of tuning factor leads to a lower recovery
performance. In this situation, if we continue to increment the value of the tuning factor this
may lead to sample the nodes with very low node degrees which are not also much beneficial
in recovery performance of smooth signal. Therefore, in smooth graph signal with high node
degree variance the optimal value of tuning factor should be properly adjusted. Conversely,
in non-smooth graph signal sampling a node does not give us too much information about its
neighbours. Hence, in this case applying a lower tuning factor is a wiser option.

Considering the above mentioned justification and in order to have an efficient graph
signal sampling, we present a greedy heuristic sampling algorithm called AGSS. We provide
an adaptive sampling method for constructing the sampling set S and the corresponding
measurement matrix A. The proposed sampling scheme is stated in Algorithm 4.

Algorithm 4: Adaptive graph signal sampling (AGSS)
1 Input: node setV = {1, 2, ..., N}, K maximum walking step (MWS), W weighted

adjacency matrix and M number of samples
2 Initialization: sampling set S = ∅, the tuning vector q = [q1, q2, . . . , qK] and degree

vector d where dr = Drr =
∑

s∈VWrs
3 for m = 1 to M
4 find the highest-degree node dr ∈ d
5 set dr = 0
6 add r to sampling set S
7 create N × 1 zero-vector x = (0, 0, ..., 0)T
8 set vector component xr = 1

9 define mth row of sampling matrix: Am = xT

10 for k = 1 to K do
11 for all node s ∈ N k

r do
12 set ds =

ds
qk

where qk > 0

13 end for all
14 end for
15 end for
16 Output: sampling set S and measurement matrix AM×N .

Our goal is to sample as few components xr of the graph signal x as possible and still recover
the graph signal with the highest achievable quality, by exploiting the weighted adjacency
matrix W which describes the similarity of the values of the graph signal components. This

68 Adaptive graph signal sampling

information is used, e.g., by Tikhonov regularization in the recovery process for the original
graph signal from its under-sampled representation.

The AGSS algorithm starts by finding the node r in the node set V with maximum
value in vector d which is constructed from the diagonal elements of the degree matrix D.
Then it adds node r to the sampling set S and sets its degree to dr = 0. The tuning vector
q is defined to prevent from aggregation of samples in the highly connected subgraphs of
the original graph G. In other words, after sampling the node r the algorithm changes the
probability of sampling its neighbours in N k

r by factor qk . The tuning factor decreases/
increases the chance of sampling the neighbouring nodes in the next rounds of algorithm, i.e.,
∀s ∈ N k

r , ds = ds/qk . As an example in the smooth graph signal, the 1-step neighbouring
nodes of r have higher similarity with it than the 2-step neighbours, so we penalize them with
higher factor. Hence, the tuning vector q is chosen such that qi ≤ q j when i > j to penalize
the neighbouring node s with smaller distance from the selected node r (δrs) by higher factor.
The algorithm continues by adding the node with maximum degree in updated vector d to the
sample set S. Considering K > 2 leads to alteration in degree of the nodes that are far away
from the sampled node. This setting is just efficient for highly smooth graph signals. Hence,
in this chapter we use MWS K ≤ 2.

The proposed AGSS algorithm provides any given arbitrary sampling rate by setting the
number of the samples M . However, the MST-based sampling is able to just provide some
certain resolutions of the graph and is not able to sample the graph for the arbitrary sampling
rate (M/N).

5.3.1 Illustrative example

In order to facilitate the understanding of the algorithm, we follow its procedure on a small
unweighted toy example. Figure 5.2 (a) shows a graph with 15 nodes. Following the approach
of Algorithm 4, degree vector d is equal to d = [5 4 4 3 6 4 3 3 2 2 2 3 2 2 1]. Considering
K = 1, q1 = 2 and M = 6 the algorithm starts by sampling node 5 and updates the degree
vector to d = [2.5 2 4 1.5 0 2 1.5 3 2 2 2 1.5 2 2 1]. The algorithm continues by sampling
node 3 with maximum value in updated degree vector and updates once again the degree
vector to d = [1.25 2 0 1.5 0 2 1.5 1.5 1 1 2 1.5 2 2 1]. By following this approach to sample

5.3 Adaptive graph signal sampling (AGSS) 69

(a)

1

2 6

53

4
10

1114

9

7

13

8

12

15

1

2 6

53

4
10

1114

9

7

13

8

12

15

(b)

(c)

1

2 6

53

4
10

1114

9

7

13

8

12

15

1

2 6

53

410

1114

9

7

13

8

12

15

(d)

(e)

1

2 6

53

4
10

1114

9

7

13

8

12

15

(f)

1

2 6

53

4
10

1114

9

7

13

8

12

15

Figure 5.2. Toy example for AGSS algorithm

70 Adaptive graph signal sampling

M = 6 nodes the sampling set is equal to S = {5, 3, 2, 11, 13, 4} and sampling matrix is

A =

©«

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

ª®®®®®®®®®®¬
, (5.5)

The successive steps of sampling algorithm on investigate toy example is shown in Figure 5.2
(b) to Figure 5.2 (f), where the nodes sampled in the previous steps are in green and the
sampled node in the current step is in red.

5.4 Numerical results

In this section, we present the results of the numerical experiments comparing the performance
of the proposed sampling method with MST-based sampling of the graph. Using the GSPBox
software [96], we generate three distinct loopless graphs, i.e., the RIR graph with size
N =1000, E = 3362 edges and the node degree variance of Var(d) = 0.8, the Bunny graph
with size N =2503, E = 13726 edges and the node degree variance of Var(d) = 1.1, as well as
the Minnesota road graph with size N =2642, E = 3304 edges and the node degree variance
of Var(d) = 0.5. All the graph signals take their values from the set xr ∈ {−1, 1}.

We applied the proposed algorithm and the MST-based sampling technique to the
mentioned graph signals along with the Amazon product rating graph (see Section 3.4.1 for
more details) and compared their performance by employing the state-of-the-art recovery
algorithm BGS [13] on the outcome of each of the scrutinized sampling methods, i.e., on
every constructed sampling set S separately. For sufficient statistical significance of the
results we ran the BGS recovery method for 500 times and each time with different noise
realizations. The final result is averaged over the outcomes of the individual runs of the
recovery scheme. It should be noted that for all of the simulations, we set the value of MWS
K = 1.

In the first part of the numerical evaluations, we investigate the effect of the graph
smoothness factor S

′

(x) defined in (3.5) on adjusting the tuning factor qk . To do that, we
consider two different arbitrary graph smoothness factors S

′

(x) for RIR, Bunny and Minnesota
graphs.

5.4 Numerical results 71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

RIR graph signal with S
2

′ (x)=0.5

AGSS q
1
=0.5

AGSS q
1
=1

AGSS q
1
=8

AGSS q
1
=3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.9

0.92

0.94

0.96

0.98

1

1.02

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

RIR graph signal with S
2

′ (x)=3

AGSS q
1
=0.5

AGSS q
1
=1

AGSS q
1
=8

AGSS q
1
=3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Bunny graph signal with S
2

′ (x)=0.5

AGSS q
1
=0.5

AGSS q
1
=1

AGSS q
1
=8

AGSS q
1
=3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.75

0.8

0.85

0.9

0.95

1

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)
Bunny graph signal with S

2

′ (x)=3

AGSS q
1
=0.5

AGSS q
1
=1

AGSS q
1
=8

AGSS q
1
=3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Minnesota graph signal with S
2

′ (x)=0.5

AGSS q
1
=0.5

AGSS q
1
=1

AGSS q
1
=8

AGSS q
1
=3000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Minnesota graph signal with S
2

′ (x)=3

AGSS q
1
=0.5

AGSS q
1
=1

AGSS q
1
=8

AGSS q
1
=3000

Figure 5.3. The relation between the smoothness and tuning factor.

72 Adaptive graph signal sampling

0 5 10 15

Tuning factor

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Various graph signals with S
2

′ (x)=0.5

RIR graph signal

Minnesota graph signal

Bunny graph signal

0 5 10 15

Tuning factor

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

 Blog graph signal with S
2

′ (x)=0.5

Blog graph signal

Figure 5.4. The relation between the node degree variance and tuning factor.

It should be noted that, the Amazon product rating data-set is a real-world data and it has
a fix graph smoothness factor S

′

(x) = 0.54.
We consider a relatively smooth signal with S

′

(x) = 0.5 and a non-smooth signal with
S
′

(x) = 3 over RIR, Bunny and Minnesota graphs. The simulation results presented in
Figure 5.3 illustrate the relation between the smoothness and the tuning factor, in terms
of the NMSE of recovered signals with sampling rate M/N = 0.25. As we discussed in
Section 5.3, it can be seen from Figure 5.3 (left) that applying a larger tuning factor qk over
the smooth graph signal leads to a higher recovery performance. In this case, the signal values
of the neighbouring nodes are almost the same and the recovery algorithm does not benefit
from sampling of the adjacent nodes. Hence, after sampling a node we should penalize its
neighbours with a high tuning factor to prevent the algorithm to resample from one particular
highly connected area of the graph, i.e., the high tuning factor aids the algorithm to avoid
having a bulk of similar (uninformative) samples from the same area. In this case, sampling
of the signal with tuning factor of q1 = 0.5 leads to lowest recovery performance. On the
contrary, in the non-smooth graph signal, the value of graph signals vary drastically among
the adjacent nodes and it is more efficient and reasonable to sample all the nodes with higher
degree. Hence, in the non-smooth graph signal running the AGSS algorithm with q1 = 0.5

leads to a highest recovery performance, (see, Figure 5.3 (right)). This results confirm our
arguments regarding to the influence of smoothness on the sampling of the graph signal.

In order to see the effect of the node degree variance on the optimal setting of tuning
factor, we evaluate the effect of varying tuning factor over a real-world political blogs data-set
[118] which has very high node degree variance. This data-set consists information about
left-leaning and right-leaning political blogs. Blogs are represented by the nodes of the graph
and nodes are connected by an edge when one blog refers to another one. The graph of the

5.4 Numerical results 73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

RIR graph signal with S
2

′ (x)=0.17

AGSS, M/N = 0.12

MST-based sampling, M/N = 0.12

AGSS, M/N = 0.25

MST-based sampling, M/N = 0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Bunny graph signal with S
2

′ (x)=0.17

AGSS, M/N = 0.12

MST-based sampling, M/N = 0.12

AGSS, M/N = 0.25

MST-based sampling, M/N = 0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Minnesota graph signal with S
2

′ (x)=0.17

AGSS, M/N = 0.12

MST-based sampling, M/N = 0.12

AGSS, M/N = 0.25

MST-based sampling, M/N = 0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

N
o

rm
a

liz
e

d
 m

e
a

n
 s

q
u

a
re

 e
rr

o
r

(N
M

S
E

)

Amazon graph signal with S
2

′ (x)=0.54

AGSS, M/N = 0.12

MST-based sampling, M/N = 0.12

AGSS, M/N = 0.25

MST-based sampling, M/N = 0.25

Figure 5.5. NMSE over the noise standard deviation σ, where the sampling rate M/N ∈
{0.12, 0.25}.

raw data contained 266 isolated nodes. We selected the largest connected subgraph G for our
numerical experiments. In this graph there are N = 1222 nodes, |E | = 16660 edges and the
node degree variance is Var(d) = 14682. As it is shown in Figure 5.4, in RIR, Minnesota,
and Bunny graphs with low node degree variance the incrementation of the tuning factor
after certain point does not influence the NMSE of recovered signal. However in Blog graph
signal with high node degree variance, increasing the tuning factor until it reaches to the
optimal point decreases NMSE, where after that point the further increment of tuning factor
increases the NMSE of recovered signal. This results confirm our arguments regarding to the
influence of node degree variance on the sampling of graph signal.

In order to validate the effect of the proposed algorithm on the performance of the recovery
algorithms, first by exploiting the compared sampling techniques we sample the nodes of
each of the mentioned graphs to have an under-determined graph signal with the sampling
rate M/N ∈ {0.12, 0.25}. Then, we use the BGS recovery algorithm to analyze the NMSE

74 Adaptive graph signal sampling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o

 (
L

R
R

)

RIR graph signal with S
2

′ (x)=0.17

AGSS, M/N = 0.12

MST-based sampling, M/N = 0.12

AGSS, M/N = 0.25

MST-based sampling, M/N = 0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.945

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o

 (
L

R
R

)

Bunny graph signal with S
2

′ (x)=0.17

AGSS, M/N = 0.12

MST-based sampling, M/N = 0.12

AGSS, M/N = 0.25

MST-based sampling, M/N = 0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o

 (
L

R
R

)

Minnesota graph signal with S
2

′ (x)=0.17

AGSS, M/N = 0.12

MST-based sampling, M/N = 0.12

AGSS, M/N = 0.25

MST-based sampling, M/N = 0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation (σ)

0.2

0.25

0.3

0.35

0.4

0.45

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o

 (
L

R
R

)

Amazon graph signal with S
2

′ (x)=0.54

AGSS, M/N = 0.12

MST-based sampling, M/N = 0.12

AGSS, M/N = 0.25

MST-based sampling, M/N = 0.25

Figure 5.6. LRR over the noise standard deviation σ, where the sampling rate M/N ∈
{0.12, 0.25}.

and LRR over varying noise standard deviation (σ). The LRR a defined as the fraction of
nodes r ∈ V, for which the recovery error is |xr − x̂r | = 0, i.e.,

a =| {r ∈ V, xr = x̂r} | /N, (5.6)

where, xr is the original signal value at node r , and x̂r is the recovered signal value. To obtain
the value of a, first we round the recovered signal value to the nearest signal value in the
signal value set. Here, LRR exhibits the ratio of signal values which are perfectly recovered
by the BGS recovery algorithm exploiting AGSS and MST-based sampling techniques.

For the rest of the simulations, we set the value q1 = 4 to compare the performance of
AGSS algorithm with the MST-based algorithm. Figures 5.5 and 5.6 compare the performance
of AGSS sampling with MST-based sampling over varying noise standard deviation (σ) in
the RIR, Bunny and Minnesota smooth graph signals with smoothness factor S

′

(x) = 0.17

5.5 Conclusion 75

and in rather smooth Amazon product rating graph with S
′

(x) = 0.54. The simulation results
show the performance of different sampling schemes in terms of NMSE (Figure 5.5) and LRR
(Figure 5.6), where the sampling rate M/N ∈ {0.12, 0.25}. Simulation results confirm the
superiority of AGSS sampling over the compared MST-based sampling algorithm particularly
in low sampling rate regime, i.e., M/N = 0.12.

5.5 Conclusion

In this chapter, we have proposed a novel adaptive sampling algorithm for signals living
on the arbitrary weighted graphs. The proposed scheme selects a sampling set based on
the degree of the nodes. After sampling a node, depend on the graph structure and signal
model, the probability of sampling its neighbours change. The value of tuning factor is
adaptively adjustable based on the smoothness and structure of the graph, e.g., in the smooth
graph signals high value of tuning factor prevents from aggregation of samples in the highly
connected subgraphs. Simulation results show the superiority of proposed scheme over the
existing state-of-the-art sampling method.

Chapter 6

Conclusion

A recent approach to deal with large-scale datasets occurring in big data applications such
as genetics, image processing and social network analysis is the theory of graph signal
processing. GSP can be viewed as a generalization of classical signal processing; the latter is
obtained from GSP for the special case of a chain graph (representing the sequence of time
instants). The usage of graph models within GSP entails efficient regularization algorithms
that are well suited to deal with large volumes of high-speed data. Moreover, graphs allow to
organize heterogeneous data by exploiting application specific notions of similarity, thereby
addressing the variety of big data.

6.1 Summary of contributions

The first part of this dissertation is devoted to a new AMP-based method for recovering
smooth graph signals based on a small number of noisy signal samples. The proposed schema
in Chapter 3 can be regarded as an instance of DAMP framework for the special case of graph
signals with small total variation. The presented GSDAMP recovery algorithm combines
graph signal denoisers with the AMP framework. We proposed a novel method to adjust the
regularization parameter based on the estimated noise variance in each iteration of GSDAMP
framework. The effectiveness of the proposed recovery method is verified by numerical
experiments via several sample graphs including a real-world data-set containing product
ratings of a large Internet-based retail shop.

In Chapter 4 in this dissertation, we formulate the problem of recovering a smooth graph
signal from under-determined noisy samples as a convex optimization problem which, in turn,
amounts to solving a system of linear equations involving the graph Laplacian. An efficient
recovery method for smooth graph signals is then obtained by applying a BGS method to
this Laplacian system. Through extensive simulation experiment we show that, the proposed

78 Conclusion

iterative BGS recovery algorithm provides a tight approximation of optimal solution while it
is highly efficient in terms of time complexity.

The final part of the dissertation complements the whole process by proposing a novel
adaptive sampling algorithm for signals living on the arbitrary weighted graphs. The proposed
scheme selects a sampling set based on the sum of the nodes edge weights. After sampling
each node, the algorithm changes the degree value of its neighbours based on a predefined
tuning factor. The value of tuning factor is adaptively adjustable based on the smoothness
and structure of the graph. Simulation results show the superiority of proposed scheme over
the existing state-of-the-art sampling method.

6.2 Open issues and outlook

Notwithstanding the precise modeling and analyze of the graph signal sampling and recovery
in this dissertation, there are still some promising directions for future research and exploration
which are listed below:

• This dissertation is based on the static graphs. Hence, our schemes are designed
for such graphs. What about he non-static graphs such as time-variant or multilayer
graphs? The possibility of extending the existing tools for the non-static graph signals
could be considered in future.

• Throughout this dissertation we have assumed implicitly that the topology of the
underlying graph is known. In many applications, however, the graph topology is not
known a priori. Learning the graph topology from the signals themselves could be
another research direction over this dissertation.

• As we mentioned during this dissertation, most works in graph signal processing
consider smoothness in a way that it reflects small variations (low frequency) in the
graph signal values. What about the mirror opposite of this definition? This definition
is called heterophily and it is defined as the degree to which pairs of the nodes with
connecting edge are different in certain attributes. Heterophily has also become an area
of social network analysis. Hence, the question here is that does heterophily reflect
the high variations (high-frequency) signal values? If so how can we use this prior
information to our benefit?

• An important extension of this work in Chapter 6 is to formalize in a rigorous
mathematical manner the relation between the chosen tuning vector and the underlying
graph structure. This will be addressed in forthcoming works.

Appendix A

A.1 Estimators

MSE estimator:
The mean squared error (MSE) between a vector a ∈ CN and a vector b ∈ CN is

MSE(a, b) = 1

N
∥a − b∥22 =

1

N

N∑
n=1

|an − bn |
2.

The MSE between two matrices A ∈ CM×N and B ∈ CM×N is defined as

MSE(A,B) = 1

MN
∥A − B∥2F .

NMSE estimator:
The NMSE between two vectors is defined as

N MSE(a, b) =
∥a − b∥22
∥a∥22

,

the NMSE between two matrices as

N MSE(A,B) =
∥A − B∥2F
∥A∥2F

.

80

A.2 Norms

lp-norm:
The lp-norm of a vector x ∈ CN is defined as

∥x∥p =
(

N∑
n=1

|xn |
p

) 1
p

.

l2-norm:
The l2-norm of a vector x ∈ CN is defined as

∥x∥2 =

√√√ N∑
n=1

|xn |
2.

Frobenius norm:
The Frobenius norm of a matrix A ∈ CM×N is defined as

∥A∥F =
√

trace(AH A) =

√√√ M∑
m=1

N∑
n=1

|Amn |
2.

A.3 Distributions 81

A.3 Distributions

Gaussian distribution:
With mean µ and variance σ2 Gaussian distribution evaluated at x is defined as

N

(
x; µ, σ2

)
=

1
√
2πσ2

exp

(
−

1

2σ2
(x − µ)2

)
.

Uniform distribution:
For a finite set S = {s1, ..., sN } uniform distributionU[s1, ..., sN] is defined by the (general-
ized) probability density function

fs(s) =
N∑

n=1

1

N
δ (s − sn) ,

or
P{s = sn} =

1

N
∀n.

Laplace distribution:
With mean µ and variance 2k2 Laplace distribution evaluated at x is defined as

L (x; µ, k) =
1

2k
exp

(
−
|x − µ|

k

)
.

Appendix B

B.1 Recovery performance with respect to LRR

As we mentioned in Section 3.4, incrementing the noise level harms the recovery performance.
As shown in Figure B.1, for noise standard deviation σ = 0.5, the recovery performance

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o

 (
L

R
R

)

RIR graph signal with = 0.5

TVGSDAMP

TikGSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o

 (
L

R
R

)

Bunny graph signal with = 0.5

TVGSDAMP

TikGSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o

 (
L

R
R

)

Minnesota graph signal with = 0.5

TVGSDAMP

TikGSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sampling rate (M/N)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o

 (
L

R
R

)

Amazon graph signal with = 0.5

TV-GSDAMP

Tik-GSDAMP

EFLA

GrAMPA

Figure B.1. LRR vs sampling rate M/N, where the noise standard deviation σ is set to 0.5.

84

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation ()

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o

 (
L

R
R

)

RIR graph signal with M/N = 0.4

TVGSDAMP

TikGSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation ()

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o

 (
L

R
R

)

Bunny graph signal with M/N = 0.4

TVGSDAMP

TikGSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation ()

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o

 (
L

R
R

)

Minnesota graph signal with M/N = 0.4

TVGSDAMP

TikGSDAMP

EFLA

GrAMPA

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Noise standard deviation ()

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

L
a

b
e

l
re

c
o

v
e

ry
 r

a
ti
o

 (
L

R
R

)

Amazon graph signal with M/N = 0.4

TVGSDAMP

TikGSDAMP

EFLA

GrAMPA

Figure B.2. LRR vs noise standard deviation σ, where the sampling rate M/N is set to 0.4.

decreases for all of the mentioned algorithms compared to the noiseless case, i.e., σ = 0.
By increasing the noise standard deviation Figure B.2, the recovery slopes show that the
TV-GSDAMP and Tik-GSDAMP algorithms are more robust to the noise compared to EFLA
and GrAMPA algorithms.

Appendix C

C.1 List of Notations

Scalars, vectors and matrices
Symbol Description

a Random scalar
a Random vector
A Random matrix
an nth component of vector

A = (a1, . . . , aN) columns of matrix
(A)mn = Amn (m, n)th entry of a matrix

Am mth row of a matrix
aT,AT vector and matrix transpose
A−1 Inverse of matrix
|A| Determinant of a matrix
IN N × N identity matrix

0M×N M × N all-zero matrix
1M×N M × N all-one matrix

A = diag(a) Diagonal matrix A with vector a entries
trace(A) =

∑n=N
n=1 Ann Sum of diagonal entries of N × N matrix

∥a∥p Vector p-norm (p ≥ 1)

∥A∥F Matrix Frobenius norm

86

Sets, probabilities and distributions
Variable Description

S Set (in calligraphic font)
|S| Cardinality of a set (number of elements)
aS Vector with components indexed by set
AS Matrix with columns indexed by set
(·)(t) Iteration index
P{·} Probability of an event
E{·} Expectation of a random quantity

Var{·} Variance of a random quantity
Var(·) Sample variance of a quantity
Cov{·} Covariance of a random vector
Cov(·) Sample covariance of a vector
U[·] Uniform distribution
N(µ, Σ) Multivariate Gaussian distribution with mean µ and (co-)variance Σ

x ∼ N(µ, σ2) x is Gaussian distributed with mean µ and variance σ2

x ∼ L(µ, k) x is Laplace distributed with mean µ and scale parameter k

C.2 List of Abbreviations 87

C.2 List of Abbreviations

AGSS adaptive graph signal sampling
AMP approximate message passing
AWGN additive white Gaussian noise
BGS block Gauss-Seidel
BM3D block matching 3D
BP basis pursuit
BPDN basis pursuit denoising
CLT central limit theorem
CS compressed sensing
DAMP denoising-based approximate message passing
DCT discrete cosine transform
DFT discrete Fourier transform
DSPG discrete signal processing on graphs
DWT discrete wavelet transform
EFLA efficient fused lasso algorithm
GAMP generalized approximate message passing
GFT graph Fourier transform
GrAMPA GAMP for cosparse analysis
GS Gauss-Seidel
GSDAMP graph signal DAMP
GSP graph signal processing
IHT iterative hard thresholding
i.i.d. independent and identically distributed
IoT Internet of things
IST iterative soft thresholding
LASSO least absolute shrinkage and selection operator
LRR label recovery ratio
MAP maximum a-posteriori probability
MMSE minimum mean squared error
MRI magnetic resonance imaging
MSE mean squared error
MST maximum spanning tree
MWS maximum walking step
NLM non-local means
NMSE normalized mean squared error

88

RIR random irregular
SDD symmetric and diagonally dominant
SNIPE sparse non-informative parameter estimator
ST spanning tree
Tik-GSDAMP Tikhonov GSDAMP
TV-AMP total variation AMP
TV-GSDAMP total variation GSDAMP

C.3 List of Figures 89

C.3 List of Figures

2.1 Generic graph signal with vertex setV and edge set E. 8
2.2 Main concept of CS. 11
2.3 Factor graph for (2.21). 15

3.1 Chain graph underlying discrete time signal processing (a) and generic graph
signal (b). 22

3.2 The sample undirected weighted graph, and its weighted adjacency matrix,
where the signal values are 1 (red) and −1 (blue). 23

3.3 The original RIR graph G and its recovery with four different recovery
algorithms for a sampling rate M/N = 0.3 and a noise standard deviation
σ = 0.3. 30

3.4 The original Bunny graph G and its recovery with four different recovery
algorithms for a sampling rate M/N = 0.3 and noise standard deviation
σ = 0.3. 31

3.5 The original Minnesota road graph G and its recovery with four different
recovery algorithms for a sampling rate M/N = 0.3 and a noise standard
deviation σ = 0.3. 32

3.6 NMSE vs sampling rate M/N for RIR and Bunny graphs, where the noise
standard deviation σ is set to 0 and 0.5. 33

3.7 NMSE vs sampling rate M/N for Minnesota and Amazon graphs, where the
noise standard deviation σ is set to 0 and 0.5. 34

3.8 NMSE vs noise standard deviation σ for RIR and Bunny graphs, where the
sampling rate M/N is set to 0.2 and 0.4. 35

3.9 NMSE vs noise standard deviation σ for Minnesota and Amazon graphs,
where the sampling rate M/N is set to 0.2 and 0.4. 36

3.10 LRR vs noise standard deviation σ, where the sampling rate M/N is set to 0.2. 37
3.11 LRR vs sampling rate M/N, where the noise standard deviation σ is set to 0. 38

4.1 Undirected graph with signal components xi and weights {wℓ j = w jℓ, ℓ, j =
1, 2, ..., N}. 43

4.2 The optimum value of λ over varying noise standard deviations σ (left),
and varying sampling rates M/N (right) for both BGS- and OPT-recovery
algorithms. 56

4.3 The optimum value of λ for Amazon product rating graph over varying noise
standard deviations σ (left), and varying sampling rates M/N (right). . . . 57

90 List of Figures

4.4 NMSE over varying sampling rates M/N 58
4.5 NMSE over varying noise standard deviations (σ). 59

5.1 MST-based sampling on grid graph, (a) is the original grid graph, (b) the
MST of the grid graph, and (c) is the sampled graph. 66

5.2 Toy example for AGSS algorithm . 69
5.3 The relation between the smoothness and tuning factor. 71
5.4 The relation between the node degree variance and tuning factor. 72
5.5 NMSE over the noise standard deviation σ, where the sampling rate M/N ∈

{0.12, 0.25}. 73
5.6 LRR over the noise standard deviation σ, where the sampling rate M/N ∈

{0.12, 0.25}. 74

B.1 LRR vs sampling rate M/N, where the noise standard deviation σ is set to 0.5. 83
B.2 LRR vs noise standard deviation σ, where the sampling rate M/N is set to 0.4. 84

C.4 List of Tables 91

C.4 List of Tables

4.1 Comparision of the recovery algorithms in terms of the simulation run time. 60

Bibliography

[1] A. Sandryhaila and J. M. Moura, “Big data analysis with signal processing on graphs:
Representation and processing of massive data sets with irregular structure,” IEEE
Signal Processing Magazine, vol. 31, pp. 80–90, sep 2014.

[2] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal processing on
graphs: Sampling theory,” arXiv preprint arXiv:1503.05432, 2015.

[3] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,” in COLT, vol. 2777,
pp. 144–158, 2003.

[4] D. Zhou and B. Schölkopf, “A regularization framework for learning from graph data,”
in ICML workshop on statistical relational learning and Its connections to other fields,
vol. 15, pp. 67–68, 2004.

[5] J. Kovacevic and M. Puschel, “Algebraic signal processing theory: Sampling for
infinite and finite 1-D space,” IEEE Transactions on Signal Processing, vol. 58, no. 1,
pp. 242–257, 2010.

[6] S. J. Orfanidis, Introduction to signal processing. Prentice-Hall, Inc., 1995.

[7] S. Chen, R. Varma, A. Singh, and J. Kovacevic, “Signal recovery on graphs: Random
versus experimentally designed sampling,” in International Conference on Sampling
Theory and Applications (SampTA), pp. 337–341, 2015.

[8] X.-G. Xia, “On bandlimited signals with fractional fourier transform,” IEEE Signal
Processing Letters, vol. 3, no. 3, pp. 72–74, 1996.

[9] X. Zhu and M. Rabbat, “Graph spectral compressed sensing for sensor networks,”
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 2865–2868, 2012.

[10] J. Kang, H. Jung, H.-N. Lee, and K. Kim, “Bernoulli-Gaussian approximate message-
passing algorithm for compressed sensing with 1D-finite-difference sparsity,” arXiv
preprint arXiv:1408.3930, 2014.

[11] C. A. Metzler, A. Maleki, and R. G. Baraniuk, “From denoising to compressed sensing,”
IEEE Transactions on Information Theory, vol. 62, no. 9, pp. 5117–5144, 2016.

[12] G. B. Eslamlou, A. Jung, N. Goertz, and M. Fereydooni, “Graph signal recovery
from incomplete and noisy information using approximate message passing,” in IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 6170–6174, 2016.

94 Bibliography

[13] G. B. Eslamlou, A. Jung, and N. Goertz, “Smooth graph signal recovery via efficient
Laplacian solvers,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5915–5919, 2017.

[14] G. B. Eslamlou and N. Goertz, “Binary graph-signal recovery from noisy samples,”
in The Signal Processing with Adaptive Sparse Structured Representations (SPARS),
2017.

[15] G. B. Eslamlou, M. Fereydooni, and N. Goertz, “Adaptive sampling of arbitrary graph
signals,” submitted to IEEE Signal Processing Letters, 2018.

[16] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,” IEEE
Transactions on Signal Processing, vol. 61, pp. 1644–1656, apr 2013.

[17] C. Zhang, D. Florêncio, and P. A. Chou, “Graph signal processing–a probabilistic
framework,” Microsoft Res., Redmond, WA, USA, Tech. Rep. MSR-TR-2015-31, 2015.

[18] X. Zhu and M. Rabbat, “Approximating signals supported on graphs,” in IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 3921–3924, 2012.

[19] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The
emerging field of signal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains,” IEEE Signal Processing Magazine,
vol. 30, no. 3, pp. 83–98, 2013.

[20] D. I. Shuman, M. J. Faraji, and P. Vandergheynst, “A multiscale pyramid transform for
graph signals,” IEEE Transactions on Signal Processing, vol. 64, no. 8, pp. 2119–2134,
2016.

[21] D. I. Shuman, P. Vandergheynst, and P. Frossard, “Chebyshev polynomial approxi-
mation for distributed signal processing,” in International Conference on Distributed
Computing in Sensor Systems and Workshops (DCOSS), pp. 1–8, 2011.

[22] A. Gadde, A. Anis, and A. Ortega, “Active semi-supervised learning using sampling
theory for graph signals,” in Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 492–501, ACM, 2014.

[23] A. Anis, A. Gadde, and A. Ortega, “Towards a sampling theorem for signals on
arbitrary graphs,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3864–3868, May 2014.

[24] G. Camps-Valls, T. V. B. Marsheva, and D. Zhou, “Semi-supervised graph-based
hyperspectral image classification,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 45, no. 10, pp. 3044–3054, 2007.

[25] S. Chen, A. Sandryhaila, and J. Kovačević, “Distributed algorithm for graph signal
inpainting,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3731–3735, 2015.

[26] N. Tremblay and P. Borgnat, “Graph wavelets for multiscale community mining,” IEEE
Transactions on Signal Processing, vol. 62, no. 20, pp. 5227–5239, 2014.

Bibliography 95

[27] F. R. Chung, Spectral graph theory. No. 92, American Mathematical Soc., 1997.

[28] T. Bıyıkoglu, J. Leydold, and P. F. Stadler, “Laplacian eigenvectors of graphs,” Lecture
notes in mathematics, vol. 1915, 2007.

[29] R. K. Ando and T. Zhang, “Learning on graph with Laplacian regularization,” Advances
in neural information processing systems, vol. 19, p. 25, 2007.

[30] O. E. Livne and A. Brandt, “Lean algebraic multigrid (LAMG): Fast graph Laplacian
linear solver,” SIAM Journal on Scientific Computing, vol. 34, pp. B499–B522, jan
2012.

[31] F. Chung, “Laplacians and the cheeger inequality for directed graphs,” Annals of
Combinatorics.

[32] A. Sandryhaila and J. Moura, “Discrete signal processing on graphs: Frequency
analysis,” Signal Processing, IEEE Transactions on, vol. 62, pp. 3042–3054, June
2014.

[33] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs: Graph
filters,” in IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6163–6166, 2013.

[34] D. I. Shuman, B. Ricaud, and P. Vandergheynst, “Vertex-frequency analysis on graphs,”
Applied and Computational Harmonic Analysis, vol. 40, no. 2, pp. 260–291, 2016.

[35] S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovacevic, “Signal denoising on graphs
via graph filtering,” IEEE Global Conference on Signal and Information Processing
(GlobalSIP), pp. 872–876, dec 2014.

[36] X. Zhu and M. Rabbat, “Graph spectral compressed sensing for sensor networks,” in
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 2865–2868, March 2012.

[37] D. L. Donoho, “Compressed sensing,” IEEE Transactions on information theory,
vol. 52, no. 4, pp. 1289–1306, 2006.

[38] E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete
and inaccurate measurements,” Communications on pure and applied mathematics,
vol. 59, no. 8, pp. 1207–1223, 2006.

[39] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information,” IEEE Transactions on
information theory, vol. 52, no. 2, pp. 489–509, 2006.

[40] Q. Li, Y. Han, and J. Dang, “Image decomposing for inpainting using compressed
sensing in DCT domain,” Frontiers of Computer Science, vol. 8, no. 6, pp. 905–915,
2014.

[41] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed
sensing for rapid MR imaging,” Magnetic resonance in medicine, vol. 58, no. 6,
pp. 1182–1195, 2007.

96 Bibliography

[42] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,”
IEEE signal processing magazine, vol. 25, no. 2, pp. 72–82, 2008.

[43] Y. Zhang, B. S. Peterson, G. Ji, and Z. Dong, “Energy preserved sampling for
compressed sensing MRI,” Computational and mathematical methods in medicine,
vol. 2014, 2014.

[44] R. Fergus, A. Torralba, and W. T. Freeman, “Random lens imaging,” Technical report,
MIT, 2006.

[45] M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly, and R. G.
Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE signal processing
magazine, vol. 25, no. 2, pp. 83–91, 2008.

[46] D. Panknin, Compressed Sensing and Machine Learning. PhD thesis, TU Berlin, 2012.

[47] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[48] J. Bobin, J.-L. Starck, and R. Ottensamer, “Compressed sensing in astronomy,” IEEE
Journal of Selected Topics in Signal Processing, vol. 2, no. 5, pp. 718–726, 2008.

[49] F. Li, T. J. Cornwell, and F. de Hoog, “The application of compressive sampling to
radio astronomy i: Deconvolution,” arXiv preprint arXiv:1106.1711, 2011.

[50] A. Massa, P. Rocca, and G. Oliveri, “Compressive sensing in electromagnetics-a
review,” IEEE Antennas and Propagation Magazine, vol. 57, no. 1, pp. 224–238, 2015.

[51] W. Dai, M. A. Sheikh, O. Milenkovic, and R. G. Baraniuk, “Compressive sensing DNA
microarrays,” EURASIP journal on bioinformatics and systems biology, vol. 2009,
no. 1, p. 162824, 2008.

[52] R. Dorfman, “The detection of defective members of large populations,” The Annals
of Mathematical Statistics, vol. 14, no. 4, pp. 436–440, 1943.

[53] H. F. Schepker and A. Dekorsy, “Sparse multi-user detection for CDMA transmission
using greedy algorithms,” in 8th International Symposium on Wireless Communication
Systems (ISWCS), pp. 291–295, 2011.

[54] H. F. Schepker, C. Bockelmann, and A. Dekorsy, “Coping with CDMA asynchronicity
in compressive sensing multi-user detection,” in IEEE 77th Vehicular Technology
Conference (VTC Spring), pp. 1–5, 2013.

[55] B. Shim and B. Song, “Multiuser detection via compressive sensing,” IEEE Communi-
cations Letters, vol. 16, no. 7, pp. 972–974, 2012.

[56] C. Bockelmann, H. F. Schepker, and A. Dekorsy, “Compressive sensing based multi-
user detection for machine-to-machine communication,” Transactions on Emerging
Telecommunications Technologies, vol. 24, no. 4, pp. 389–400, 2013.

[57] L. Anitori, M. Otten, W. Van Rossum, A. Maleki, and R. Baraniuk, “Compressive
CFAR radar detection,” in IEEE Radar Conference (RADAR), pp. 0320–0325, 2012.

Bibliography 97

[58] M. A. Herman and T. Strohmer, “High-resolution radar via compressed sensing,” IEEE
transactions on signal processing, vol. 57, no. 6, pp. 2275–2284, 2009.

[59] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations
over learned dictionaries,” IEEE Transactions on Image processing, vol. 15, no. 12,
pp. 3736–3745, 2006.

[60] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal
Statistical Society. Series B (Methodological), pp. 267–288, 1996.

[61] T. Blumensath and M. E. Davies, “Iterative hard thresholding for compressed sensing,”
Applied and computational harmonic analysis, vol. 27, no. 3, pp. 265–274, 2009.

[62] K. Bredies and D. A. Lorenz, “Linear convergence of iterative soft-thresholding,”
Journal of Fourier Analysis and Applications, vol. 14, no. 5, pp. 813–837, 2008.

[63] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint,” Communications on pure and
applied mathematics, vol. 57, no. 11, pp. 1413–1457, 2004.

[64] T. Blumensath and M. E. Davies, “Normalized iterative hard thresholding: Guaranteed
stability and performance,” IEEE Journal of selected topics in signal processing, vol. 4,
no. 2, pp. 298–309, 2010.

[65] T. Blumensath, “Accelerated iterative hard thresholding,” Signal Processing, vol. 92,
no. 3, pp. 752–756, 2012.

[66] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear
inverse problems,” SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183–202,
2009.

[67] D. L. Donoho, “De-noising by soft-thresholding,” IEEE transactions on information
theory, vol. 41, no. 3, pp. 613–627, 1995.

[68] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and smoothness
via the fused lasso,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 67, no. 1, pp. 91–108, 2005.

[69] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for
compressed sensing,” Proceedings of the National Academy of Sciences, vol. 106,
no. 45, pp. 18914–18919, 2009.

[70] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algorithms for
compressed sensing: I. motivation and construction,” in IEEE Information Theory
Workshop (ITW), pp. 1–5, 2010.

[71] M. A. Maleki, Approximate message passing algorithms for compressed sensing. PhD
thesis, Stanford University, 2011.

[72] M. R. Andersen, Sparse inference using approximate message passing. PhD thesis,
Copenhagen: Technical University of Denmark, 2014.

98 Bibliography

[73] S. Rangan, “Generalized approximate message passing for estimation with random
linear mixing,” in IEEE International Symposium on Information Theory Proceedings
(ISIT), pp. 2168–2172, 2011.

[74] S. Rangan, A. K. Fletcher, V. K. Goyal, and P. Schniter, “Hybrid generalized approxi-
mate message passing with applications to structured sparsity,” in IEEE International
Symposium on Information Theory Proceedings (ISIT), pp. 1236–1240, 2012.

[75] M. Borgerding, P. Schniter, J. Vila, and S. Rangan, “Generalized approximate message
passing for cosparse analysis compressive sensing,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 3756–3760, apr 2015.

[76] J. Liu, L. Yuan, and J. Ye, “An efficient algorithm for a class of fused lasso problems,”
in Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 323–332, ACM, 2010.

[77] M. Fornasier and H. Rauhut, “Iterative thresholding algorithms,” Applied and Compu-
tational Harmonic Analysis, vol. 25, no. 2, pp. 187–208, 2008.

[78] K. K. Herrity, A. C. Gilbert, and J. A. Tropp, “Sparse approximation via iterative
thresholding,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 624–627, 2006.

[79] J. S. Yedidia, “Message-passing algorithms for inference and optimization,” Journal
of Statistical Physics, vol. 145, no. 4, pp. 860–890, 2011.

[80] E. Van Den Berg and M. P. Friedlander, “Probing the pareto frontier for basis pursuit
solutions,” SIAM Journal on Scientific Computing, vol. 31, no. 2, pp. 890–912, 2008.

[81] A. Maleki and A. Montanari, “Analysis of approximate message passing algorithm,” in
44th Annual Conference on Information Sciences and Systems (CISS), pp. 1–7, 2010.

[82] D. L. Donoho, A. Maleki, and A. Montanari, “How to design message passing
algorithms for compressed sensing,” preprint, 2011.

[83] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal Processing Magazine,
vol. 21, no. 1, pp. 28–41, 2004.

[84] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschischang, “The factor
graph approach to model-based signal processing,” Proceedings of the IEEE, vol. 95,
no. 6, pp. 1295–1322, 2007.

[85] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,”
in IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 2, pp. 60–65 vol. 2, June 2005.

[86] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-D
transform-domain collaborative filtering,” IEEE Transactions on Image Processing,
vol. 16, pp. 2080–2095, Aug 2007.

[87] M. Bayati and A. Montanari, “The dynamics of message passing on dense graphs,
with applications to compressed sensing,” IEEE Transactions on Information Theory,
vol. 57, no. 2, pp. 764–785, 2011.

Bibliography 99

[88] D. Guo and C.-C. Wang, “Random sparse linear systems observed via arbitrary
channels: A decoupling principle,” in IEEE International Symposium on Information
Theory (ISIT), pp. 946–950, 2007.

[89] D. Guo and C.-C. Wang, “Asymptotic mean-square optimality of belief propagation
for sparse linear systems,” in IEEE Information Theory Workshop (ITW), pp. 194–198,
2006.

[90] H. Ishwaran and J. S. Rao, “Spike and slab variable selection: Frequentist and Bayesian
strategies,” Annals of statistics, pp. 730–773, 2005.

[91] J. Ziniel, P. Schniter, and P. Sederberg, “Binary linear classification and feature
selection via generalized approximate message passing,” in 48th Annual Conference
on Information Sciences and Systems (CISS), pp. 1–6, 2014.

[92] Y. Nesterov, Introductory lectures on convex optimization: A basic course, vol. 87.
Springer Science & Business Media, 2013.

[93] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization
method for total variation-based image restoration,” Multiscale Modeling & Simulation,
vol. 4, no. 2, pp. 460–489, 2005.

[94] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.

[95] P. Getreuer, “Rudin-Osher-Fatemi total variation denoising using split Bregman,”
Image Processing On Line, vol. 2, pp. 74–95, 2012.

[96] N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst, and D. K.
Hammond, “GSPBOX: A toolbox for signal processing on graphs,” arXiv preprint
arXiv:1408.5781, 2014.

[97] S. Ramani, T. Blu, and M. Unser, “Monte-Carlo Sure: A black-box optimization of
regularization parameters for general denoising algorithms,” IEEE Transactions on
Image Processing, vol. 17, pp. 1540–1554, sep 2008.

[98] D. Gleich, “MatlabBGL. A Matlab graph library,” Institute for Computational and
Mathematical Engineering, Stanford University, 2008.

[99] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The dynamics of viral marketing,”
ACM Transactions on the Web, vol. 1, p. 5, may 2007.

[100] G. H. Golub, P. C. Hansen, and D. P. O’Leary, “Tikhonov regularization and total least
squares,” SIAM Journal on Matrix Analysis and Applications, vol. 21, pp. 185–194,
jan 1999.

[101] J. Liu, S. Ji, J. Ye, et al., “SLEP: Sparse learning with efficient projections,” Arizona
State University, vol. 6, no. 491, p. 7, 2009.

[102] M. Borgerding and P. Schniter, Generalized approximate message
passing for analysis compressive sensing. http://www2.ece.ohio-
state.edu/ schniter/GrAMPA/download.html.

100 Bibliography

[103] D. L. Donoho, I. Johnstone, and A. Montanari, “Accurate prediction of phase transitions
in compressed sensing via a connection to minimax denoising,” IEEE transactions on
information theory, vol. 59, no. 6, pp. 3396–3433, 2013.

[104] P. L. Combettes and J.-C. Pesquet, “A douglas–rachford splitting approach to nonsmooth
convex variational signal recovery,” IEEE Journal of Selected Topics in Signal
Processing, vol. 1, no. 4, pp. 564–574, 2007.

[105] S. Becker, J. Bobin, and E. J. Candès, “Nesta: A fast and accurate first-order method
for sparse recovery,” SIAM Journal on Imaging Sciences, vol. 4, no. 1, pp. 1–39, 2011.

[106] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma, “Robust principal component
analysis: Exact recovery of corrupted low-rank matrices via convex optimization,” in
Advances in neural information processing systems, pp. 2080–2088, 2009.

[107] Y. Saad, Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics, 2 ed., 2003.

[108] W. J. Stewart, Probability, Markov chains, queues, and simulation: The mathematical
basis of performance modeling. Princeton University Press, 2009.

[109] R. Varga, Matrix iterative analysis. Englewood Cliffs, New Jersey: Prentice Hall, 1 ed.,
1962.

[110] N. K. Vishnoi, “Lx = b Laplacian solvers and their algorithmic applications,” Foun-
dations and Trends in Theoretical Computer Science, vol. 8, no. 1–2, pp. 1–141,
2012.

[111] K. Gremban, Combinatorial preconditioners for sparse, symmetric, diagonally domi-
nant linear systems. PhD thesis, Carnegie Mellon University, Pittsburgh, Oct. 1996.

[112] K. D. Gremban, G. L. Miller, and M. Zagha, “Performance evaluation of a new parallel
preconditioner,” in Proceedings of 9th International Parallel Processing Symposium,
pp. 65–69, Apr. 1995.

[113] G. T. Gilbert, “Positive definite matrices and Sylvester’s criterion,” The American
Mathematical Monthly, vol. 98, no. 1, pp. 44–46, 1991.

[114] G. H. Golub and C. F. Van Loan, Matrix computations. Johns Hopkins University
Press, 3rd edition ed., 1996.

[115] H. Q. Nguyen and M. N. Do, “Downsampling of signals on graphs via maximum
spanning trees.,” IEEE Trans. Signal Processing, vol. 63, no. 1, pp. 182–191, 2015.

[116] D. B. West et al., Introduction to graph theory, vol. 2. Prentice hall Upper Saddle
River, 2001.

[117] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
Third Edition. The MIT Press, 3rd ed., 2009.

[118] L. A. Adamic and N. Glance, “The political blogosphere and the 2004 US election:
divided they blog,” in Proceedings of the 3rd international workshop on Link discovery,
pp. 36–43, ACM, 2005.

	Table of Contents
	1 Introduction
	1.1 Outline

	2 Background
	2.1 Introduction
	2.2 Signal processing on graphs
	2.2.1 Graph signals fundamental definitions
	2.2.2 Signal representation on graphs

	2.3 Compressed sensing
	2.3.1 Approximate message passing (AMP)
	2.3.2 Denoising-based approximate message passing (DAMP)
	2.3.3 Generalized approximate message passing (GAMP)
	2.3.4 GAMP for cosparse analysis (GrAMPA)
	2.3.5 Efficient fused lasso algorithm (EFLA)
	2.3.6 Final remarks

	3 Graph signal recovery using approximate message passing
	3.1 Introduction
	3.2 Problem setup
	3.2.1 Elements of graph signal processing
	3.2.2 The recovery problem

	3.3 Graph signal denoising via DAMP
	3.3.1 Review of DAMP
	3.3.2 Graph signal DAMP (GSDAMP)

	3.4 Numerical results
	3.4.1 Undirected smooth graph signals
	3.4.2 Recovery performance regarding to NMSE
	3.4.3 Recovery performance regarding to LRR

	3.5 Conclusion

	4 Graph signal recovery via iterative solvers
	4.1 Introduction
	4.2 System setup
	4.3 Recovery problem
	4.3.1 Graph signal sampling
	4.3.2 Graph signal recovery

	4.4 Iterative graph signal recovery
	4.4.1 Gauss-Seidel iterative solver
	4.4.2 Block Gauss-Seidel iterative solver
	4.4.3 Convergence criteria

	4.5 Numerical results
	4.6 Conclusion

	5 Adaptive graph signal sampling
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 The MST-based sampling

	5.3 Adaptive graph signal sampling (AGSS)
	5.3.1 Illustrative example

	5.4 Numerical results
	5.5 Conclusion

	6 Conclusion
	6.1 Summary of contributions
	6.2 Open issues and outlook

	Appendix A
	A.1 Estimators
	A.2 Norms
	A.3 Distributions

	Appendix B
	B.1 Recovery performance with respect to LRR

	Appendix C
	C.1 List of Notations
	C.2 List of Abbreviations
	C.3 List of Figures
	C.4 List of Tables

	Bibliography

