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Kurzfassung

Datenstromverarbeitung (engl. “Stream Processing”) ist eine Methode zur Verarbeitung
und Aggregation von Datenströmen, um neue Informationen zu erschließen. Darauf
aufbauende Applikationen (engl. “Stream Processing Applications”; SPAs), die dazu
verwendet werden, Datenströme zu analysieren, sind in der Regel als verteilte Systeme
konzipiert. Treten in solchen Systemen Fehler oder Kommunikationsstörungen auf,
werden Ausfallsicherheitsmechanismen eingesetzt, um einen unterbrechungsfreien
Betrieb zu gewährleisten. Aufgrund der Nahezu-Echtzeit-Anforderungen von SPAs
müssen solche im Fehlerfall eine Balance zwischen Konsistenz (d. h. korrekte Ergebnisse
zu produzieren) und Verfügbarkeit (d. h. diese Ergebnisse schnell genug zu produzieren)
finden, da beides zusammen nicht gleichzeitig erreicht werden kann.

Redunanz ist das zentrale Element von Ausfallsicherheit. Bestehende Ansätze aus
der Literatur ermöglichen Redunanz, indem sie Operatoren (die Bausteine von SPAs)
replizieren. Dies greift zu kurz, weshalb wir ein neues Ausfallsicherheitsmodell präsen-
tieren, das auf einer höheren Abstraktionsebene angesiedelt ist und auf funktionaler
Redundanz auf der Ebene von Pfaden (Abfolgen von Operatoren) beruht.

Basierend auf einem konkreten Szenario aus der Praxis identifizieren wir Anforderun-
gen an Pathfinder, einem neuen Ausfallsicherheitsframework, und evaluieren es anhand
eines Beispiels aus der Praxis. Pathfinder verbessert die Schwächen bisheriger Ansätze,
indem SPA-Entwicklern ermöglicht wird, funktionale Redundanz zu spezifizieren. Zur
Laufzeit reagiert Pathfinder auf Defekte, indem auf einen fehlerfreien Alternativpfad
gewechselt wird, der eine ähnliche Funktionalität bietet. Ein Schutzschalter-ähnlicher
Mechanismus dient schließlich dazu, auf geordnete Weise wieder auf den Hauptpfad
zurückzukehren, sobald der Defekt behoben wurde.

Im direkten Vergleich mit einer vollständig redundanten Replizierung ist es mit unserer
Lösung möglich, etwa 30% der Betriebskosten zu sparen, während eine vergleichbare
Verfügbarkeit erzielt werden kann.

Abschließend wird durch einige Experimente verdeutlicht, dass die Mechanismen
zur Fehlerdetektion und Ausfallsicherheit wie erwartet funktionieren und nur einen
geringen Mehraufwand hinsichtlich der Performance verursachen.
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Abstract

Stream processing is a practice where continuous data streams are processed and
aggregated in near real-time, ultimately resulting in the discovery of new information.
Stream processing applications (SPAs) are used to analyse data streams and are often
deployed in a distributed manner for performance reasons. When faced with partial
failures or network communication outages, fault tolerance mechanisms must ensure a
continuous operation. Due to the near-real-time requirements, these mechanisms have
to balance the need for consistency (i.e., producing correct results) and availability (i.e.,
producing results fast enough) in case of failures since fulfilling both at the same time
is impossible.

The key concept of fault tolerance is redundancy. Existing fault tolerance approaches
for SPAs implement redundancy by replicating operators, the building blocks of an
SPA. We argue that this approach is not sufficient and present a novel fault tolerance
model which focuses on functional redundancy on the level of paths (sequences of
operators).

Based on a concrete motivational scenario, we identify requirements of Pathfinder, our
new fault tolerance framework, and evaluate it based on our motivational scenario.
Pathfinder addresses the shortcomings of existing approaches by allowing SPA de-
velopers to specify functional redundancy. At runtime, Pathfinder reacts to faults by
switching to a fault-free path with a similar functionality. To restore the main path once
the failed operator has recovered, Pathfinder uses the circuit breaker pattern which has
been proven in the domain of microservices.

By comparing our approach to a fully redundant replication, we show that 30% of total
operational costs can be saved while achieving a similar level of availability.

Finally, several experiments show that Pathfinder’s failure detection and fault tolerance
mechanisms are working as expected and only add a minimal performance overhead.
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CHAPTER 1
Introduction

The Internet of Things (IoT) — a paradigm where everyday objects are adapted to
communicate with each other and the outside world — is past its initial hype and
about to revolutionise the way humans interact with cities, transportation vehicles,
infrastructure, or commodity objects [1]. With the ever-growing number of connected
devices, the amount of generated data explodes as well, leading towards what is known
as big data: data sets too big for traditional solutions to handle [2]. In addition, vast
amounts of data on human individuals are collected by smartphones and wearable
devices such as smartwatches that are readily adopted by customers [3]. The rise of
these devices does not only increase the total data volume but in many cases also
provides a data series of updates, allowing, e.g., the constant monitoring of human
activities including their location, health status, communication patterns and more.

This work focuses on stream processing technologies that have been developed to
analyse, transform and process data from such sources and in particular some of their
associated technological challenges.

1.1 Problem Statement
We consider a concrete scenario from the advertisement domain where the analysis of
geographical user activity data is used to maximise the revenue of advertisement (ad)
campaigns (a more detailed description of the scenario is provided in Section 1.2.2).
Each participant of a social network continuously sends their location to a company’s
analytics system. By analysing a user’s location in combination with previously
acquired personal data, only the most relevant ad campaigns should be displayed to
the users.

Gathering and analysing such data series, i.e., streams from millions of users, is a
non-trivial task and poses significant technological hurdles (e.g., space and memory
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1. Introduction

limits, latency and bandwidth constraints, data heterogeneity and fault tolerance [4]).
While this scenario might as well be tackled using traditional software architectures,
the nature of continuously produced data flowing through several transformation
steps requires a more adequate solution. Stream processing refers to the paradigm
of processing such continuous data streams in near real-time and offers solutions to
the aforementioned hurdles (for details, see Section 2.2). Stream processing applications
(SPAs) are basically software systems where data items flow through several building
blocks named operators. A stream processing topology is a graph that describes how the
operators are connected. Multiple operators that are directly connected to each other
are called a path. The software that is used to execute an SPA is called a Stream Processing
Engine (SPE). It takes care of aspects such as guaranteed message delivery, scalability
and fault tolerance [4]. All definitions are discussed in more detail in Chapter 4.1.

Stream processing at big data scale is often implemented in a distributed manner where
multiple, often heterogeneous computing nodes are involved in order to distribute the
computational burden to multiple machines in a parallel way. Distributed SPEs (DSPEs)
such as VISP [5] or Apache Storm [6] have been developed to run such SPAs.

DSPEs depend on a potentially large number of operators that perform the actual
processing. Each of these operators can fail at any time or become unreachable due to
network problems. Since this could, in the worst case, cause the whole SPA to become
unavailable, employing fault tolerance mechanisms is one of the most important features
for DSPEs.

Any system composed of multiple components is said to be fault-tolerant (see Section 2.5)
if that system continues to deliver a correct service even in the presence of faults (such as
a malfunctioning hard drive) [7]. Fault tolerance for distributed systems in general and
specifically for DSPEs has already received a lot of attention [8, 9, 10, 11]. Nevertheless,
it is still an active research topic.

The key concept of fault tolerance is redundancy [12]. Physical redundancy (which
is considered in this work) basically translates to having multiple components that
provide the same functionality. If one of them fails, the other(s) can take over and
the system remains operable. This principle can be applied at many different levels.
In the motivational scenario, there could be multiple hosts that execute the same
program. In case one of them crashes (e.g., due to a hard disk error), the others can take
over. However, there are cases where this is not sufficient. For example, the program
could contain a bug causing it to crash when faced with some specific input or the
license period of a commercial software package could have ended. In such cases, all
hosts executing the same program would be unavailable at the same time, despite the
redundancy on the hardware level.

To overcome this problem, redundancy can be implemented on the software level
as well. One could develop multiple software components that provide the same
functionality with different implementations. These can be developed by different
teams in different programming languages. The idea here is that it is unlikely that both

2



1.2. Use Cases

Figure 1.1: At a glance: Relation of the different concepts connected to fault
tolerance in SPEs. The large number of IoT devices and similar data sources leads to an
increase in both quantity and velocity of data streams. SPEs that process such streams
therefore need to operate in a distributed way to handle such large computational burdens.
Fault tolerance is a bigger issue in distributed systems and must be properly handled by
DSPEs. This however conflicts with the goal of providing processing results in near-real-time.
This thesis focuses on resolving this conflict.

implementations would contain the same bugs and at least one of the implementations
would give correct results. This technique is known as n-version programming [13] and
has the obvious disadvantage of a very costly development as well as a significant
runtime overhead. Furthermore, if external APIs are used in the processing steps that
are billed per invocation, the continuous operation of redundant copies will also result
in high costs.

Example 1.1

As an example, consider an operator that internally invokes a third-party API. If that API
becomes unavailable, the operator becomes unavailable as well. This lack of availability
would not change even if the DSPE were to deploy a second redundant copy of that
operator since that copy would also need to invoke the same (unavailable) API.

In summary (as depicted in Figure 1.1), the requirements of near-real-time processing
combined with extensive amounts of data dictate the use of distributed systems in
stream processing due to the large computational burden that cannot be taken upon
one single machine. Established approaches towards fault tolerance in DSPEs are
unsatisfactory and there is the need for an easy and cost-efficient solution to cope with
operator faults in such contexts.

1.2 Use Cases
Many real-world use cases profit from the advancement of stream processing engines.
This section introduces some of them, before discussing a single use case in more detail
which serves as a motivational example throughout this thesis.

3



1. Introduction

1.2.1 Areas of Application
• eHealth: Health care processes can benefit from near-real-time monitoring of

health parameters. In nursing, correlating motion sensor data with a heart rate
monitor and a gyroscope embedded in wearable devices might help detecting
dangerous falls [14]. Diagnostic procedures can also include automatically col-
lected health data like sleep patterns, nutrition, environmental influences or
medication [15].

• Industry: In modern industry factories, machines are expected to constantly
communicate with each other. A wide array of sensors allows analytics processes
to support decision-making and improve the overall productivity [16]. Fault-
tolerant stream processing systems play a vital role in the success of such factories
since even a few minutes of unavailability could result in expensive downtimes.

• Military: Using wireless sensors in battlefields to track the movement of military
vehicles and soldiers can be crucial to avoid enemy attacks or ambushes. A high
mobility in combination with decentralised processing (and in this case, adding
heavy weaponry and explosions to the list of possible causes of hardware faults)
requires sophisticated fault tolerance mechanisms [17].

• Information security: Intrusion detection systems based on stream processing
may protect company networks from computer-related criminal activities by
analysing data streams from a wide array of sources such as network traffic, shell
commands and system calls to detect unauthorised activities [18].

• Financial industry: High-speed trading and stock analysis naturally requires
highly performing real-time systems in order to outperform competitors [19].
Stream processing systems can be useful to detect circumstances that may lead to
stock price changes in the near future (e.g., political events that may affect the
price of oil).

1.2.2 Motivational Scenario
This section introduces our motivational scenario. It serves multiples purposes. First,
the framework’s functional requirements are derived on the basis of this example (see
Section 4.2). Second, it motivates the development of a fault tolerance framework for
SPAs by highlighting the shortcomings of established fault tolerance solutions. The
scenario is based on a real-world scenario [20]. An overview of the scenario is presented
in Figure 1.2.

Description
Consider the following scenario from the advertisement domain. A fictional company
named Lifeinvader allows registered users to connect with friends, share content with
them and stay in contact via a text-based chat.

4



1.2. Use Cases

Figure 1.2: Targeted Ads SPA. This activity diagram presents an overview of the motiva-
tional scenario. After the user’s location data is collected, the SPA has to suggest nearby
friends and find suitable ads for that user. If an ad’s overall conversion rate is less than
0.5%, it is automatically reported. Finally, the appropriate updates to the dashboard and the
contributions to the hourly and weekly reports are computed.

One of Lifeinvader’s major sources of revenue is targeted ads that are shown to their
users on their mobile phones. Any company who wants to launch an ad campaign can
specify a particular focus group (e.g., “males aged 18–25 in Western Europe who are
interested in video games”) and Lifeinvader will show the ad to that group as well
as track the users’ interactions with the ad. Traditionally, users are tracked via their
browsing patterns [21].

In order to improve customer satisfaction1, Lifeinvader decides to start a new project. By
tracking each user’s location via their mobile phone’s GPS or with indoor positioning
systems (IPS), ads ought to become even more targeted. A user travelling to a hospital
to visit a relative in the oncology department might be shown ads from the local gift
shop or for over-the-counter drugs to quit smoking.

Furthermore, Lifeinvader wants their users to spend more time interacting with their
mobile phone app in order to make their platform more attractive for new ad campaigns.
A mechanism that suggests friends based on the time spent simultaneously at the same
location should be implemented to reach this goal.

1The customer being the party that is willing to pay for a service, i.e., the businesses launching ad
campaigns — in contrast to the social network user, whose data is the product.
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1. Introduction

In a board meeting discussing these ideas, the Lifeinvader CTO suggests to design
an SPA. Since Lifeinvader already has more than 500 million active users around the
world, no centralised system could bear the resulting load.

While user activities are expected to vary throughout the day (people sleeping at night
and being active during the day) and throughout the week (different peak times at
workdays and weekends), exceptional peak loads are expected to be caused by sport
events, holiday seasons or social conventions. Furthermore, the computational effort
of computing friend suggestions increases exponentially with the number of people
having a common location at the same time (since for each additional person to join a
location, relations to all the other users in proximity have to be checked).

A very critical aspect of the whole endeavour is the mapping of GPS locations to
different ad targets. Directly sending the GPS position to the businesses launching
ad campaigns would be a privacy violation. The cartography startup Atlas offers an
artificial intelligence based service that maps positions to a set of semantic annotations.
For example, it maps the location of a football stadium to the keywords “football”,
“sports”, “beer”, “hot dog” and “shoes”. Lifeinvader negotiates a contract that allows
them to use the API for the next 6 months in order to evaluate the service. As a
backup mechanism, they still have a database of cached data containing the locations
of important companies and public areas that is running on their infrastructure. Finally,
Lifeinvader has its own system of letting users assign tags to places they have visited. It
solely relies on user contributions and has therefore a rather low accuracy. Also, there
are many places that have not yet been tagged.

In order to detect ad campaigns that might disturb users, ads with a conversion rate of
less than 0.5% should automatically be reported.

Lifeinvader’s marketing department is instructed to analyse the revenue generated by
the new project. Therefore, it needs to be informed about each user conversion (i.e.,
users watching and/or clicking the ad) including information about the ad campaign,
the user profile, their location and the current time. It is settled that marketing will
receive a full statistics report once a week. To generate the weekly report, a junior
developer is assigned to develop an automated analysis script. From past experience,
it is known that such a task is quite error-prone, which is why they decide to use a
commercial statistics API in addition to the in-house approach. Considering all needed
functions, it is estimated that it would cost about 600 EUR to generate a full report
using that API. In both approaches, a correlation analysis is performed to determine the
factors that caused high conversion rates depending on the stored information about
the user.

For their customers, Lifeinvader provides a real-time dashboard where they can observe
the success of their current ad campaigns. To support this dashboard, each user inter-
action must be processed and visualised within one minute. By contract, Lifeinvader
guarantees a maximum downtime of one hour per month for the dashboard and agrees
to pay a penalty fee of 500 EUR for each additional hour of unavailability.

6



1.2. Use Cases

SPA Requirements
Based on the scenario description, one can derive a number of requirements the newly
developed SPA must fulfil.

R1 A DSPE forms the architectural basis of the project. Since the number of users
is easily imaginable to reach millions (not every social network user provides
position data), no centralised system can be used. Also, the need for a rapid soft-
ware development requires an environment that allows a fast and straightforward
way to implement the required functionality where developers do not have to
deal with low-level details.

R2 Availability is more important than consistency. Assuming users react to the
shown ads, it is crucial to deliver the right ads at the right point in time. Once
a user has left a particular location, showing them ads for that location will not
result in a successful conversion. In contrast, it is not considered harmful if
unrelated ads are shown once in a while2.

R3 Scalability is required. Since user activities vary throughout the day as well
as throughout the week, only a cloud-based solution is expected to deliver an
adequate performance at peak loads without having to overprovision resources
at low loads.

R4 Geographical effects are expected. Both user activity and ad campaigns are
expected to show geographical patterns. The SPA is required to recognise these
patterns and optimise the placement of operators such that latency and network
communication are minimised.

R5 Available redundancy must be exploited. The task of mapping GPS locations to
the distance to different ad targets can be accomplished in three different ways:
(1) using a commercial third-party API, (2) using a local database and (3) using
user-generated content. By incorporating all three methods into the system, a
high degree of redundancy can be achieved. A similar level of redundancy is also
available for the data analytics report. The SPA is required to make use of these
redundancies while also considering the different invocation costs and levels of
data quality in the different methods.

R6 Minimise downtimes. By contract, each hour of downtime requires Lifeinvader
to pay a penalty fee. Therefore, the company has a strong incentive to operate a
highly-available software.

R7 Suitable results must be produced. The basic functional requirement of the
SPA is that suitable ads are shown to the users since this generates revenue for
Lifeinvader.

2With the exception of adult content reaching underaged users which must be filtered in any case.
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1. Introduction

Requirements R1, R3 and R4 show the need for using a cloud-based DSPE in order
to provide the necessary elasticity. R2 and R6 demand sophisticated fault tolerance
mechanisms that minimise total application downtime and favour availability over
consistency. Finally, R5 is the main reason why established fault tolerance mechanisms
are not adequate for this scenario. In order to avoid downtime in the face of third-party
services like “Atlas” becoming unreachable, redundancy at the operator level is futile
because the fault is external to the controlled environment. Furthermore, the available
in-house services (such as the database of company locations) cannot be effectively
utilised by n-version programming of individual operators because the end result
depends on the consecutive data processing of multiple operators in a path (in addition
to the potentially high operational costs of pay-per-use APIs discussed earlier).

1.3 Research Questions
The following research questions should be addressed in this work:

RQ1: Which fault tolerance mechanisms for stream processing systems are known
and how can they be applied to the motivational scenario?

In order to answer this question, a thorough literature review is conducted.
Selected concepts and their applicability to the motivational scenario are then
discussed. Gaps arising with the respective solutions are pinpointed as well.
The research focuses on mechanisms with the following properties: a) acting
at runtime and not requiring a restart of the DSPE, b) supporting fallback
mechanisms to be defined at design-time, c) being able to determine from the
deployment context when to assume an operator is experiencing a fault and
d) working on the level of processing paths, thereby utilising redundancy.

RQ2: How can data streams be processed in a fault tolerant manner while still
guaranteeing a high availability?

Inspired by existing solutions, a new framework named Pathfinder is designed
and implemented that addresses the requirements of the motivational scenario
and surpasses existing solutions.

RQ3: How does the framework perform in terms of applicability and performance?

The Pathfinder system design developed for RQ2 is evaluated in a qualitative
and quantitative manner using simulations, case studies and different kinds of
performance measurements such as time-to-recover and runtime overhead. The
real-world usage is evaluated by integrating Pathfinder into the VISP ecosys-
tem [5]. VISP’s capability to dynamically change the processing topology at
runtime is crucial to developing a framework with the envisioned requirements.
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1.4. Methodology

1.4 Methodology
The methodological approach of this research consists of the following four phases.

1. Literature research. In order for this thesis to have a strong theoretical foundation,
a review of introductory and related work in the fields of distributed stream
processing and fault tolerance is conducted.

2. Design. Based on the initial concepts and insights gained during the literature
research, the design for the Pathfinder framework (as described in RQ2) is created
in this phase. Another outcome of this phase is a set of requirements that needs
to be fulfilled by the implementation.

3. Implementation. A prototypical implementation of Pathfinder is created in this
phase. The choice of the exact programming language, used tools, frameworks
and libraries is made according to the previous phases’ decisions.

4. Evaluation. The evaluation phase consists of two parts. First, Pathfinder is tested
in isolation by setting up an artificial testbed and running simulations. Second,
the VISP ecosystem is used to evaluate the performance of Pathfinder under
realistic conditions.

1.5 Structure
The remainder of this thesis is structured as follows:

• Chapter 2 provides background information about the fundamental concepts
this thesis is based on. The covered subjects include stream processing, service
composition, microservice architectures, fault tolerance and the circuit breaker
pattern.

• Chapter 3 focuses on state-of-the-art solutions to the problem of fault tolerance
in DSPEs and related areas. By comparing their features and shortcomings, the
need for the development of a new framework is motivated.

• Chapter 4 introduces a terminology based on mathematical concepts from graph
theory to provide proper definitions for the required stream processing concepts
as well as a set of requirements for the framework to be developed. The remaining
chapter is devoted to the architectural design of the Pathfinder framework and
introduces the paradigm of fault tolerance-oriented development.

• Chapter 5 discusses a prototypical implementation of Pathfinder and its integra-
tion with VISP.

9



1. Introduction

• Chapter 6 focuses on the evaluation of the framework both by quantitative mea-
surements as well as by a qualitative case study. It then discusses the evaluation
results and how well Pathfinder is able to fulfil the requirements derived in
Chapter 4.

• Chapter 7 finally concludes the outcomes of this thesis and outlines plans for
future research.
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CHAPTER 2
Background

This chapter provides an introduction on the fundamental concepts used in this thesis.
First, the need for stream processing technologies is motivated. The concept of stream
processing is then introduced from a historical perspective while also presenting
technological advances that have lead to today’s modern SPEs. Furthermore, an
analogy from the choreography of stream processing operators to a similar endeavour
in service composition and microservice architectures leads to the concept of fault
tolerance. This topic is discussed regarding centralised as well as distributed systems.
Then, two sections present fault tolerance in stream processing systems and the circuit
breaker pattern, the concepts that form the basis of this thesis. Finally, message-oriented
middlewares and VISP are discussed to familiarise the reader with the technical basis
for the implementation of our fault tolerance framework.

2.1 Big Data and the Internet of Things
The Internet is constantly evolving and the amount of data produced per day is rapidly
increasing. With ubiquitous Internet access provided by wireless and cellular networks,
the number of connected devices increases massively as well. However, it is not only the
number of human participants but also the growth in connected machines that causes
this expansion [1]. The vision of direct machine-to-machine communication over the
Internet drives the development of the Internet of Things (IoT), a new paradigm where
the idea of a global system of interconnected devices that is the Internet is extended
to include all kinds of commodity objects [22]. By equipping things like cars, watches,
industrial machines or furniture objects with network interfaces, they can interact
with each other and of course with their human users. While machine-to-machine
communication is nothing new per se (after all, each router and server is a machine),
it is the inclusion of commodity machines that were not originally intended to be
connected to it that makes the IoT revolutionary [1].
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2. Background

Big data is the term frequently used to describe the kind of data that is generated by
IoT devices in an overwhelming velocity and amount. So called traditional methods of
data processing are no longer applicable to such volumes of data due to a lack of space,
computing power and time. There is no hard limit for when to consider a set of data
items as big data. Instead, the literature uses a set of characteristics for its definition [23]:

1. Volume. The quantity of generated data and its size.

Example 2.1

A CSV file of ten Terabyte poses great difficulties due to its sheer size alone.

2. Variety. The types and sources of the collected data. They may be structured
(each data item having the same set of attributes) or unstructured.

Example 2.2

A relational database is always structured since the number and type of a data
item’s attribute is fixed. A document-oriented database such as MongoDBa

however can contain data items with different attributes or even no obvious
internal structure at all.

ahttps://www.mongodb.com

3. Velocity. The speed of data generation.

Example 2.3

Network traffic analysis in a large company network has to deal with all packets
that are generated by all the company users combined. While the total data
volume might be manageable, the speed of data generation is challenging.

4. Veracity. The uncertainty due to a varying data quality.

Example 2.4

The results of big data analyses are only as good as the quality of the input data.
Data quality mainly depends on the data source: internal enterprise data that
is stored in a standardised way is expected to have a higher quality than data
extracted from social media sources.

5. Value. The presence of a (hidden) value in the data set that is to be discovered by
the analysis.

Example 2.5

A telecommunications provider analyses the interactions between their customers.
The purpose of this task is to get insights into otherwise hidden relationships
(namely, their behaviour).

12
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Data sets meeting the above criteria to varying extents can be considered as being big
data.

Example 2.6

According to prevailing opinion, examples for big data include: experimental data from
the Large Hadron Collider [24]; security camera footage [24]; or experimental genomics
data sets [25].

In many areas of applications related to big data, the importance and value of data
items decreases rapidly the longer it takes to process them [26].

Example 2.7

Sensor data indicating car movements that originate from several locations in a smart
city can be very useful to guide traffic lights. However, once a few minutes have passed,
the actual traffic situation may already look completely different and the analysis of
the sensor data has become obsolete. Analysing and reacting to the collected data is
therefore a very time-critical endeavour.

An important classification of big data can be made into two categories: batch and
real-time processing [27]. In batch processing, the whole data set is available at the
beginning and the analytics system can access it in any arbitrary way. In real-time
processing, the data is gathered piece by piece during the analysis. This work focuses
on the latter class of big data and especially on the software that is used to process
such real-time streams of data.

While the architecture of IoT applications tends to vary considerably, one common
pattern is the observe, orient, decide, act (OODA) loop as illustrated in Figure 2.1 [28]. This
model originates from the military but is nowadays used to describe many phenomena.
Its application to the IoT domain requires an IoT system to have various sensors that
observe something. The sensor data is then sent to an analytics system that aggregates
all input data (orientation) and comes up with a decision. Finally, the decision result is
realised by interacting with the real-world.

Example 2.8

A temperature sensor observes the room temperature and sends this information to an
analytics system. This system orients itself by aggregating the temperature data and
comparing the temperature to reference values. If certain thresholds are met, a decision is
made to increase the temperature in a certain room. It then acts and turns this decision
into reality by turning on a heater or switching it off.

While the IoT is certainly an important driving force, stream processing is not restricted
to it (see Section 1.2). However, with most IoT devices being able to transmit continuous
data streams and geographic considerations getting more important, the number of IoT
use cases that allow an integration into an SPA is abundant.

13
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Figure 2.1: The OODA loop.

2.2 Stream Processing
There is a wide array of data sources that produce continuous data streams (as moti-
vated in Section 2.1).

Example 2.9

Users adding content to social media platforms [29] and machine sensors [30] are
examples for the production of real-time data.

Properly defining stream processing and differentiating it from similar technologies
is not straightforward and is discussed in Section 2.2.4 in more detail. We initially
consider the following definition from Andrade et al. [4]:

“The fundamental goal of stream processing is to process live data in a fully
integrated fashion, providing real-time information and results to consumers and
end-users, while monitoring and aggregating new information for supporting
medium- and long-term decision-making.”

With this definition in mind and having discussed the motivation for such technologies,
the next section introduces stream processing from a historical context.

As an orientation, Figure 2.2 shows an overview of the most important entities in
stream processing and their relations to each other. The shown entities are successively
explained in this chapter.

2.2.1 Historical Development
Early stream processing systems were not as sophisticated as the systems in use
today. The original intent, the processing of large amounts of data in real time, was
implemented using the following systems as classified by Andrade et al. [4].

Traditional databases are filled with data by one application and used by others. It is easy
to imagine how one could implement an SPA by having several “operator” applications

14
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Figure 2.2: Entities in stream processing. Data streams consist of continuously produced
data items of the same type. Operators use one or more streams as an input and produce
one or more output streams. The set of all operators with their connections is known as the
topology. An SPE controls the operators and their deployment to the available computational
resources.

that continuously query a central database for new entries and process them. This
“store-then-process” model however does not scale very well and is not suitable for
high-throughput and low-latency applications [31].

Active databases (e.g., Snoop [32]) have been developed by adding features to conventional
database systems in order to make them more suitable for stream processing. The
basic idea is to manually define actions that are automatically triggered when a specific
condition occurs. Each change to the database would trigger this mechanism, allowing
a direct reaction to such changes. Certain active database systems (e.g., HiPac [33])
only allow database-internal changes to trigger actions (closed) whereas others (e.g.,
Snoop [32]) also allow external events (open). Since active databases still depend
on the underlying database architecture, they are not able to handle data sources
generating huge amounts of data with a high velocity due to the store then process nature
of databases. Also, the programming model is limited and software developers are
restricted in designing their application code [4, 32].

Continuous Query (CQ) systems (e.g., NiagaraCQ [34]) can be seen as a special type of
databases where persistent queries act on a continuously changing set of data [4, 35].
Users can specify a query and the CQ system will provide the results as a continuous
stream, thereby changing the traditional “pull” model of databases to a “push”-based
mechanism.

Publish-Subscribe systems allow data consumers to subscribe to topics of interest [4, 36].
Data producers then publish data to a broker network that decides which messages are
routed to which subscribers, thereby decoupling the sender and the receiver from each
other. The algorithms used by the broker network can be very sophisticated and allow
subscriptions to depend on the evaluation of rules on the published data.
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Example 2.10

A producer from a phone company may publish a data item for each phone conversation
occurring in its network. A consumer can specify a subscription for all publications with
a conversation duration of over 10 minutes where the participants are separated by at
least 10 km. It is then the responsibility of the broker network to forward only those
data items to the consumer that fulfil these conditions.

Modern stream processing systems share the use of messages to represent data items
(in contrast to databases for example, where data is represented as static tuples). How-
ever, publish-subscribe systems are typically deployed on high-performance computer
systems with high-speed connections where communication and fault tolerance is less
of an issue because tendentially, the infrastructure is more homogenic and the network
is more stable. Additionally, there is another difference between the two approaches:
In stream processing, the main “actors” are operators and the data items passively flow
through them. In publish-subscribe systems on the other hand, the messages are the
important part and the surrounding infrastructure is just the means to an end [4].

Finally, complex event processing systems such as Esper1 and Oracle CEP2 have been
developed specifically for the detection of complex events based on rules and patterns [4].
They natively support analysis of temporal aspects (e.g., event A was produced after
event B). In contrast to stream processing and the other techniques investigated so far,
these systems lack the ability to actively modify or transform the incoming data. Thus,
they are mainly used for the detection of events and patterns.

2.2.2 Towards Stream Processing
Having discussed the predecessors of modern stream processing, this section deals
with the evolution that finally resulted in today’s DSPEs. In general, the two areas these
newer frameworks excel at are performance (resulting from a distributed deployment)
and fault tolerance (the importance of which directly results from that distributed
deployment) [4].

Modern stream processing systems include for example Aurora [17], Borealis [37],
Apache Storm [6], Apache Spark [38] and VISP [39]. Instead of going into the details of
each of those systems, this section discusses their common features.

Modern SPEs allow sophisticated data models. Unlike database-inspired technologies
such as CQ-systems, data is explicitly modelled as streams. A stream is an infinite list
of data items of the same type (similar to object types in high-level languages such as
Java). Additionally to all items of a stream having the same type, they are also ordered
by having some kind of increasing index number (such as timestamps or sequence
numbers) [4].

1http://www.espertech.com/products/esper.php
2http://www.oracle.com/technetwork/middleware/complex-event-processing/

overview/index.html
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Once a data item has entered the SPE, it is processed by a sequence of operators.
Operators are the primary building blocks of an SPA and they can apply arbitrary
functions to data items (a more detailed definition follows in Chapter 4.1).

An important mechanism in DSPEs is data parallelism. This means that different data
items can be processed in parallel by different instances of the same operator. This
allows DSPEs to scale efficiently by partitioning the data items to different operator
instances.

Example 2.11

An operator is deployed to four virtual machines. Each incoming data item is first sent
to a queue that can be accessed by all four operators. The four operators take items from
the queue and process them. Each individual data item is processed only once by one of
the four operators.

Finally, in contrast to related technologies such as service composition, there are usually
stringent temporal requirements for the operators. In the long run, the rate of incoming
data must not be higher than the rate of data processing, otherwise the input queues
will overflow.

Example 2.12

A temperature sensor transmits a new data item once per second. The processing
operators take 10 seconds to analyse each incoming data item and will inevitably be too
slow in the long run which results in an overflow on the queue.

2.2.3 Distribution-Related Aspects
SPEs are inherently distributed since no centralised system can provide the computa-
tional power necessary to process today’s data streams [31].

Operator Deployment
Early publications in the field of stream processing already anticipated that it would
be beneficial if the way users interact with DSPEs was not very different compared
to non-distributed systems [4]. In other words, it is the responsibility of the DSPE
to transparently deploy operators and route data items depending on the available
infrastructure [30].

As a consequence, many DSPEs (e.g., VISP and Apache Storm) distinguish two views of
a topology [4]. The logical view (usually created manually by the SPA developer) shows
the connections between operators. The physical view maps operators to specific hosts.
A single operator in the logical view can consist of multiple operator instances on
different hosts in the physical view (if the operator is replicated). The data flow between
two operators in the logical view can either be shown between two different hosts or
on the same host in the physical view (depending on whether the two operators are
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Figure 2.3: Logical and physical view of an SPA. The upper part of the figure shows the
logical view, the lower part the physical view.

deployed on the same host or not). Figure 2.3 depicts both the logical and the physical
view of an SPA. The physical view contains the additional information that operator B3
is deployed in two instances and shows which operator is deployed on which host. The
logical view instead shows alternative fallback operators that could be used in case of
operator failure (see Section 4.1.5 for the split/join notation).

Both views are useful and deserve to coexist. An SPA developer who does not care
about the distributed deployment may favour the logical view, while a DevOps engineer
who needs to find a communication bottleneck will rather depend on the physical view.

The initial deployment of operators to a set of hosts is called placement [4]. A simple
placement algorithm might just randomly assign operators to hosts, while a more
sophisticated one can base this decision on host capacity, communication latency
or bandwidth. Dynamic placement can react to runtime changes in either the set of
available hosts, performance indicators of individual operators or the rate of input data
production in order to optimise the overall resource consumption or QoS aspects.

Scalability
One central requirement of distributed systems in general, but especially for DSPEs
is scalability [4]. Due to the increasing prevalence of cloud computing, it is easier to
make applications scale. The term elasticity refers to the ability of a software system
to adapt its utilisation of resources to changing requirements in a rapid manner. In
stream processing, elasticity most importantly translates to the dynamic adaptation
of computational resource usage [40]. Since operators can be replicated, scaling is
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straightforward and can be fully automated using a state-of-the-art cloud infrastructure
such as OpenStack [41] or Amazon’s Elastic Compute Cloud (Amazon EC2) [42].

Message Flow
A DSPE — by definition — runs on multiple hosts that communicate over a network. It
is the task of a DSPE to automatically take care of the deployment but also to set up
the communication infrastructure between those communicating hosts. For example,
VISP is based on a RabbitMQ messaging infrastructure (as discussed in Section 2.7).
Therefore, VISP needs to take care of that all the queues and exchanges are set up
appropriately.

Some SPLs (e.g., VTDL, see Section 2.2.5) allow the topology designer to place con-
straints on the placement of operators. This may be useful if two operators are to be
deployed on the same host (e.g., because they require large amounts of data exchange),
on a specific host (e.g., due to special purpose hardware only available at that host) or
because of legal reasons.

Runtime Migration
By using elastic computational resources, DSPEs have many degrees of freedom re-
garding the deployment of individual operators. Due to dynamic changes (e.g., in
user activity, traffic volume or resource availability), a DSPE can decide at runtime to
migrate operators between different (cloud) resources. Ottenwälder et al. [43] present a
placement and migration method for such use cases that also consider the migration
costs.

2.2.4 Related Technologies
There are many technologies related to stream processing in addition to the ones that
historically paved its way as depicted in Figure 2.4. Real-time systems include all
systems that have real-time constraints (not restricted to the processing of data streams).
In big data batch processing, there are no real-time requirements at all but instead, the
challenge is to handle huge amounts of data. Business process management systems are
also similar to SPAs because their application structure also consists of smaller modules
like operators [44]. While they in general do not tolerate the loss of data, they also
have less severe real-time restrictions. Figure 2.5 shows the same technologies on the
two axes amount of data and real-time requirements. Stream processing tends to share the
data volume of big data batch processing with real-time requirements that are between
those of real-time systems and service composition.

It is also important to realise that stream processing is not a direct competitor to the
mentioned technologies in this section but rather tries to complement their shortcom-
ings. A software system is most likely still having relational databases in addition to a
streaming part of their application [4].
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Figure 2.4: Stream processing — Related technologies.

2.2.5 Stream Processing Languages
Developing SPAs can be quite challenging using traditional programming languages.
Since it is very cumbersome to express fault tolerance, distributed communication
and parallel programming directly at the operator level, several languages have been
developed to make this task easier. Their ultimate goal is that the developer does not
have to worry about how and where their code is executed [4].

Most SPLs share common features that altogether separate them from other program-
ming languages [4]. Since SPAs are composed of operators, the first commonality is
composability [4]. This means it must be possible to separate an application into multiple
operators and connect them in a straightforward way because a distributed deployment
is not possible otherwise.

Example 2.13

Instead of developing a single Java application that would fetch data items, process and
analyse them and generate a report, in stream processing it is more common to have
individual operators for fetching, processing, analysis and report generation. Notice that
composability is not to be confused with the internal structure of an application (i.e., the
separation of code into different methods and classes) but rather focuses on the creation
of truly independent pieces of software that can be deployed individually.
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Figure 2.5: Stream processing — Real-time requirements and amount of data.
Stream processing is distinguished by the combination of strict real-time requirements and
large amounts of data to be processed. Similar technologies do not share both of these
aspects.

Operators should also be declarative, meaning that the operators’ interfaces are easy to
understand and parameterisable [4].

Example 2.14

A stateful operator that receives individual sentences as inputs and counts the number
of occurrences of a specific string should have a parameter specifying the search term to
allow operator reuse.

An expression language should be part of an SPL in order to easily modify the operators’
behaviour based on arbitrary conditions. This facilitates operator reuse and allows
their application in customised use cases. As most object-oriented programming
languages, SPLs often have a type system that guarantees only matching operators can
be connected to each other [4]. Such a type system guarantees compatibility and allows
the replacement of operators by other ones with the same types.
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Example 2.15

Consider an operator that receives temperature data from a number of machines and
computes whether any of them is above a certain threshold. The output type of this
operator would be boolean and the operator can be connected to any other operator
that accepts a boolean.

Windowing is also a very common feature among SPLs: it allows the execution of
functions on a specific subset of the incoming continuous data stream [4]. A time
window bases the subset selection on the time where the data items have been received,
but customised windowing policies can be created by the topology designer.

Example 2.16

An operator A continuously produces data items containing the current GPS position of
a monitored animal. Operator B that receives A’s data items as its input can use a time
window of, e.g., one minute in order to estimate the current speed of the animal.

Another important aspect of DSPEs is the mapping of an abstract topology to a concrete
system-level deployment. This process is named grounding and an SPL must also
provide means to affect for example the deployment location [45].

Example 2.17

A government law requires that confidential health data may not be transferred overseas.
By restricting the deployment to locations within the origin country of the data, the
DSPE is able to comply with this regulation.

The following paragraphs address stream processing languages from a historical
context.

SQL-based Languages
As already discussed in Section 2.2.1, the first stream processing systems have emerged
from traditional database systems. It is therefore consequential that the first stream
processing languages were also heavily inspired by the languages used to query those
databases.

The Continuous Query Language (CQL) was developed by researchers at Stanford
to serve as an SQL-based declarative language [46]. Instead of finite sets of data,
CQL uses continuous data streams and can therefore be considered as one of the first
stream processing languages [4]. Creating this language enabled many developers
to benefit from their experiences with SQL. The similarities between relation-based
and stream-based data processing are striking. The obvious problem is: How can
blocking operations (like GROUP BY) be performed on never-ending streams? In a
GROUP BY operation, all input data must be processed before a result can be returned.
This is of course not possible since a stream, by definition, is endless. The solution of

22



2.2. Stream Processing

SQL-based languages is to apply such operators on windows. A window is a subset of
data items that is selected based on the window’s type. Temporal windows for example
may consist of all data items of the last X seconds. While sufficient for most basic
applications, SQL-based languages lack many of modern SPE’s features such as fault
tolerance [4].

IBM SPL
IBM has specified the Stream Processing Language (IBM-SPL) as a programming language
for high-performance DSPEs [47]. This language is no longer based on database queries
but on data flow graphs where operators are represented by vertices connected by edges.
IBM-SPL is based on the SPADE language from IBM’s System S [4] but was developed
with a focus on large-scale processing [4]. It hands the control over most performance-
critical options with respect to deployment, threading model, data representation etc.
back to the user. For example, it provides compile-time customisation for the built-in
operators to allow high performance while still being flexible [47].

Despite the focus on performance, IBM-SPL also aims to make it easier for a user to
design applications. IBM-SPL is divided into a composition language (describing the large-
scale topology) and statement language (which is used to define new operators or change
existing ones). Having a separate composition language facilitates loose coupling
between operators and easily allows changing their connectivity. This separation is
relevant for this work as well because it is also implemented that way in VISP.

VISP Topology Description Language
DSPEs that take the burden of deploying operators and managing the underlying
infrastructure from the topology designer require more information than only the
topology itself. This meta-data may include geographical deployment restrictions, QoS-
guarantees, data format descriptions and — the core topic of this work — fault tolerance
measures. Therefore, it makes sense that a computer system needs such information to
make informed decisions about when to scale, redeploy or switch processing paths.

The VISP Topology Description Language (VTDL) has been introduced by Hochreiner
et al. [45] as a reaction to today’s requirements on DSPEs. It supports the following
next-generation features:

• Deployment preferences. This feature allows the SPA developer to define con-
straints for automated operator deployment mechanisms.

• QoS compliance. By defining QoS requirements on an operator level, a more
fine-grained scaling is possible where less resources are needed.

• Operator composability. By using semantic annotations, the compatibility of
operators can be checked and suitable operators can be found automatically.
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Listing 2.1: Exemplary VTDL File. This VTDL file specifies the topology used for
computing the distance of a user to a certain location and updating a dashboard afterwards.

1 $gpsPositionData = Source() {
2 concreteLocation = ":::::ffff:8083:c001/cpu",
3 type = "source",
4 outputFormat = "positiondata"
5 }
6 $transform = Operator($gpsPositionData) {
7 allowedLocations = ":::::ffff:8083:c001"
8 ":::::ffff:8083:c002",
9 concreteLocation = ":::::ffff:8083:c001/cpu",

10 inputFormat = "positiondata",
11 type = "transformData",
12 outputFormat = "machinereadablePositionData",
13 stateful = "false",
14 maxResponseTime = "0.5"
15 }
16 $computeDistance = Operator($transform) {
17 allowedLocations = ":::::ffff:8083:c001"
18 ":::::ffff:8083:c002",
19 inputFormat = "machinereadablePositionData",
20 type = "computeDistance",
21 outputFormat = "distanceMeasure",
22 }
23 $updateDashboard = Sink($computeDistance) {
24 concreteLocation = ":::::ffff:8083:c002/general",
25 inputFormat = "distanceMeasure",
26 type = "updateDashboard"
27 }

• Runtime modifications. This allows to change the structure of the SPA at runtime.

• Different data transfer modes. This allows to change between a one-at-a-time
streaming mode and microbatch processing where multiple data items are trans-
ferred through the Internet as a group.

Listing 2.1 shows an exemplary VTDL file. Basically, operators are defined one after
another. Each operator definition starts with a dollar sign ($) followed by the unique
operator ID. The type (e.g., source, operator or sink) is stated before naming all direct
input sources in brackets. In the operator definition’s body, additional attributes are
defined. For example, the concreteLocation attribute in the first operator’s entry is
defined as the location :::::ffff:8083:c001/cpu.

The most important attributes are type (operator class), concreteLocation (the location
the operator is deployed at), input and output format (the type of the input and output
streams, respectively) and stateful (whether the operator has an internal state).
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VTDL was chosen as the basis for the topology description efforts needed in this work
(as discussed in more detail in Chapter 4). It needs to be noted that the VTDL only
describes the topology of the SPA but does not directly specify the internal functionality
of the operators.

2.3 Service Composition
In the service-oriented computing (SOC) paradigm, complex applications are built by
connecting existing, independent services at runtime. A service in this context refers
to a “container of related capabilities consisting of [. . . ] a body of logic designed to carry out
these capabilities and a service contract that expresses which of its capabilities are made available
for public invocation” [48]. We discuss service composition due to its similarity to the
composition of operators in DSPEs and because many fault tolerance approaches for
SOC are also applicable to stream processing3.

There are multiple advantages of such a service composition. First, a large program can
be decomposed into a set of services that, when invoked in the right order, performs
that same functionality (i.e., there are no immediate benefits for the application). In
further consequence however, the same pieces can later be reused to create a completely
different application, thereby speeding up the overall development time. Second, the
smaller services of a composition can be replaced independently without affecting the
overall application as long as the service contracts (i.e., the interface(s) the service binds
itself to) stay the same. This allows multiple teams of developers to simultaneously
work on different services without interfering with each other [48].

2.3.1 Comparison to Stream Processing
SOC shares many similarities with stream processing. While services are the central
unit in SOC, operators have the same role in DSPEs: they are the independent building
blocks that are connected in order to realise a new functionality. The same way services
in SOC use contracts, operators also specify their interface via input and output types
to allow easy replaceability. Operators are reusable as well and can also be shared [5].

However, there is a fundamental difference between the two concepts. SOC is focused
on individual service invocations. Each invocation is guaranteed to be processed (or at
least any exceptions are handled properly) and a sophisticated SOC framework will
try to optimise various QoS requirements such that the request can be completed as
fast and accurately as possible (e.g., by selecting the services with the lowest latency
available). It may well be the case that two consecutive invocations of the same SOC
application may lead to two different sets of services being invoked (e.g., because the
latency of a service has changed between the two invocations).

3This section is partly based on unpublished work by Olena Skarlat, Stefan Schulte, Christian Inzinger,
Schahram Dustdar and Philipp Leitner.
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Stream processing is not just SOC with much more invocations per second, but there is a
fundamental difference in what the outcome of the whole endeavour should be: Stream
processing is focused on transforming, analysing and acting on the (passive) input data
(often by some means of aggregation). By definition, this means that individual items
are not too important since the aggregations are built from hundreds or thousands of
items. If a few of them may get dropped on their way, this will most probably not affect
the outcome of the process.

Figure 2.6 illustrates this example by considering data from a single temperature
sensor. Assume this sensor measures the temperature of some critical manufacturing
machine in an industrial facility. If it exceeds a certain threshold, safety measures must
be initiated. A DSPE is used to monitor the temperature and the sensor broadcasts
the current value every second. For temperature, historical data is largely irrelevant.
Therefore, it does not matter if some of the input data items go missing since the
succeeding items are sufficient to regain full knowledge about the state of interest. But
also variables where historical data items are useful are relatively unaffected by missing
data items as long as the total number of missing items is relatively small and the trend
can still be captured.

Example 2.18

Consider a smartphone that transmits its GPS location every 5 minutes. With an average
walking speed of 5 km/h, a pedestrian carrying that smartphone would move, on
average, 416 m in between two status updates. If two consecutive transmissions are
missing, one can still track the person to a region less than 1 km away from the previously
measured location. This error would linearly increase with the number of missing data
items. Once a new position update is transmitted successfully, the current position can
be determined with absolute accuracy while the user’s exact route to that location still
contains an error.

2.3.2 Fault Tolerance in SOC
As motivated in the previous section, fault tolerance measures have a different focus
in SOC than in stream processing. While in stream processing it is the ultimate
goal to achieve a high availability (accepting small errors since results are often an
approximation anyway), SOC strives for high accuracy. Basically, all fault tolerance
techniques discussed in Section 2.5 are also applicable to SOC systems except those that
would compromise on accuracy. For example, similar to the fault handling mechanisms
a DSPE would engage in when faced with operator failures, SOC frameworks apply
similar methods at the service composition level in case of service failure. Often however,
SOC goes one step further. With technologies such as WS-Transaction [49] for example, a
two-phase commit is used to enforce consistency throughout a service invocation. Such
sophisticated (and time-consuming) measures would not be appropriate in a real-time
stream processing scenario since it would cause a tremendous overhead.

26



2.3. Service Composition

Time [s]

38

40

42

44

46

Te
m

pe
ra

tu
re

 [°
C]

Missing Data in Stream Processing

0 2 4 6 8 10 12
Time [s]

38

40

42

44

46

Te
m

pe
ra

tu
re

 [°
C]

Figure 2.6: Missing Data in Stream Processing. Two plots visualise the potential effects
of a data loss caused by a fault. In the first case, a temperature sensor reliably transmits the
current temperature data every second. In the second case, no temperature data is available
around second 10.

Furthermore, QoS attributes (such as cost, execution time, reputation, availability and
reliability) [50] tend to play a higher role in SOC than in stream processing (however
with modern DSPEs such as VISP, this is no longer true in general). Often, such QoS
requirements are defined by legally binding service level agreements (SLAs). While
this is in theory also possible for stream processing systems, SOC frameworks tend to
put a greater emphasis on SLAs.

Leitner et al. [51] suggested to use machine learning approaches to predict QoS viola-
tions before they actually happen in order to initiate runtime adaptions. Such proactive
measurements are difficult in stream processing systems due to the runtime overhead
that would be introduced.
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2.4 Microservice Architectures
Microservice architectures have proven themselves to be a useful software architecture
strategy in the recent years. We mention them here because they share some similarities
with SPAs (as discused in the next paragraphs). Microservice architectures mainly offer
solutions for problems that often arise with monolithical software systems. Such systems
are characterised by a lack of modularisation which prevents parts of the monolith to
be easily replaceable [52]. Microservices tackle this by forcing developers to reduce the
dependencies between software modules (thereafter named microservices). Benefits of
such a microservice architecture do not only include increased maintainability but also
better scalability and a more agile engineering approach [53].

Wolff defines microservice architectures by a set of criteria [53]. Instead of a single
large software system, there are smaller modules (microservices), each of which can be
deployed independently. There are no restrictions regarding programming languages
or platforms that can be used for each microservice and no data storage is shared
between them. Microservices are completely self-contained and finally, communication
between microservices must be loosely coupled and most commonly uses REST.

It is apparent that microservice architectures share many similarities with SPAs.

1. Small modules. DSPEs are inherently composed of small operators that resemble
microservices.

2. Independent deployment. At least some DSPEs support the dynamic deploy-
ment of operators at runtime.

3. Platform independence. Like microservices, operators can be developed in any
programming language for some DSPEs (e.g., VISP).

4. No shared data storage. While operators can have state information, this state is
never shared directly between operators.

5. Loose coupling. The operators interact only via well-defined interfaces.

Due to these similarities, the opportunity arises to apply microservice-specific solutions
to SPAs as well. This work in particular focuses on the circuit breaker pattern — a
pattern commonly used in microservice architectures to deal with calls to failed services
— and investigates its applicability to SPAs.

2.5 Fault Tolerance
In order to properly discuss fault tolerance, a coherent terminology is first introduced
in Section 2.5.1. Afterwards, the characteristics of centralised and distributed systems
with respect to fault tolerance are addressed before focusing on its application in stream
processing systems.
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2.5.1 Terminology
Avizienis et al. [7] have published a fault tolerance taxonomy in 2004. This work uses
their vocabulary definitions unless stated otherwise. The most important ones are listed
in Definitions 1 to 10. All definitions are taken directly from Avizienis et al. [7].

Definition 1 (System)

A system is an entity that interacts with other entities, i.e., other systems including hard-
ware, software and humans.

Systems can be identified on different levels of abstraction. One can view a whole SPA
as a system that interacts with humans (e.g., by providing data to a dashboard), but one
can also view an individual operator as a system that interacts with other operators. In
this work, we focus on the SPA as the system.

Definition 2 (Service)

The service delivered by a system is its behaviour as it is perceived by its users.

Definition 3 (Correct service)

A software system is said to deliver a correct service if it implements the required system
function.

Definition 4 (Service failure)

A service failure (abbreviated to failure) is an event that occurs when the delivered service
deviates from correct service.

Definition 5 (Error)

An error is the deviation of at least one external state of a system from the correct service
state. An error is detected if its presence is indicated by an error message or error signal.
Errors that are present but not detected are latent errors.

Definition 6 (Fault)

A fault is the (hypothesised) cause of an error and can be internal or external of a system.
A fault is active when it produces an error; otherwise, it is dormant.

Definition 7 (Availability)

Availability is the readiness for correct service.

Definition 8 (Reliability)

Reliability is the continuity of correct service.
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The difference between availability and reliability is quite subtle. While availability can
be understood as an average over time as in “service X is available Y% of the time”, relia-
bility refers to a probability as in “what is the probability that service X will be continuously
available for the next Y hours”.

Example 2.19

One can see this difference more clearly when considering a system that is unavailable
for two minutes of maintenance each day at midnight. This corresponds to an availability

of 1− 2
24 · 60

= 99.8% but the system can only be considered reliable for less than one
day.

Definition 9 (Fault prevention)

Fault prevention means to prevent the occurrence or introduction of faults.

Fault prevention is the much more common way of dealing with faults in traditional
software engineering projects — it involves the use of highly reliable libraries, thorough
software testing and a sophisticated software architecture. However, as experience has
shown, software projects exceeding a certain scope and size are almost guaranteed to
contain bugs, so fault prevention is expected to miss some of them.

Definition 10 (Fault tolerance)

Fault tolerance means to avoid service failures in the presence of faults.

Since it is at the heart of this work, the following section takes a more detailed look at
fault tolerance and typical mechanisms used to achieve it.

2.5.2 Fault Tolerance Fundamentals
Avizienis et al. [7] classify faults by considering eight elementary attributes:

1. Phase of occurrence (development or operational),

2. System boundaries (internal or external),

3. Phenomenological cause (natural or human-made),

4. Dimension (hardware or software),

5. Objective (malicious or non-malicious),

6. Intent (deliberate or non-deliberate),

7. Capability (accidental or lack of competence), and

8. Persistence (permanent or transient).
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Based on those attributes, they come to the conclusion that there are three major fault
groupings: 1. Development faults that occur during development, 2. physical faults that
include all faults affecting hardware, and 3. interaction faults that include all external
faults [7].

Example 2.20

A developer accidentally failing to initialise a loop’s counter variable correctly is causing
a development fault (which is also internal, human-made, in the software dimension,
non-malicious, non-deliberate and permanent).

In distributed systems, failures in one part of the system can in turn cause faults in
other parts of a system. This causality relationship between faults, errors and failures is
illustrated by the following example.

Example 2.21

A software developer makes a (human) error and writes code that divides by zero for
some input cases. This error is initially undetected and results in a dormant fault in the
software. Once a certain input to the software is provided, the fault becomes active and
causes an error. Only if that error also affects the delivered service (e.g., by aborting a
computation), a failure occurs.

By this mechanism, a single fault can lead to multiple errors — this is called error
propagation. When multiple components are involved, failures in one component can of
course affect other components when the failing components provide (incorrect) inputs
to them.

Fault tolerance now tries to avoid failures of the system in the presence of faults by
using error detection and system recovery [7]. By using these two mechanisms, failures
are prevented from becoming failures. Error detection takes place either concurrently
or while the normal system service is suspended. Once the presence of an error is
detected, recovery consists of two steps. First, the error activated by the fault must be
dealt with. The goal here is to eliminate the error from the system state completely
by transforming the system state. Rollback, rollforward and compensation are three ways
to deal with the error. Rollback and rollforward try to reach an error-free state by
transformation to an earlier, error-free state and to a newly created, error-free state,
respectively.
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Figure 2.7: Relation between the terms fault, error and failure. Terminology from
Avizienis [7].

Example 2.22

An operator A assigns registration numbers to new students. Its internal state stores the
last registration number that has been assigned successfully. While assigning number
9965, the operator crashes and must be restarted.
Without any recovery strategy, its internal counter would resume at 0.
By using rollback recovery, the operator would recover the last internal state of 9965
and would next assign number 9966.
If rollforward recovery is used instead, the internal state can also be set to 10000
(skipping some registration numbers, thereby making sure that no number is assigned
twice). The crucial difference is that this state has never been reached in the past and
has newly been created during recovery.

Compensation is a different approach where the error is not removed but rather masked
by redundancy (for example by relying on fallback hardware). Second, the fault itself
is handled and should be prevented from becoming active again. This is called fault
handling and consists of four steps. Diagnosis tries to identify the likely cause of the
error, isolation aims to exclude the faulty components from further participation in
service delivery, reconfiguration tries to switch in spare components or reassigns tasks
and reinitialisation updates the new configuration and system tables [7]. Ultimately,
while fault handling prevents the same fault from causing another error, error handling
corrects the system state by undoing the effects of the error.

2.5.3 Fault Tolerance in Stream Processing
Stream processing systems have some unique characteristics that require special at-
tention regarding fault tolerance. On the one hand, due to their continuous nature
of operating, fault tolerance is even more crucial than in applications that run once
only [4]. On the other hand, individual data items tend to have less importance in SPAs
than for example in business process management systems (as seen in Figure 2.6).

A challenging aspect of fault tolerance in stream processing system is that there may be
different levels of fault tolerance required for different parts of the application.
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Example 2.23

An operator responsible for computing “recent trends” in a social network can easily
deal with being unavailable for a short time. In contrast, it may cost millions if an
algorithm that selects appropriate advertisement clips for social media users experiences
a downtime.

It is also important to distinguish between stateful and stateless operators. Stateful
operators have a local state that is potentially changed by incoming stream tuples (as
shown in Example 2.21) and fault tolerance mechanisms need to deal with this and
guarantee a reliable state even when faced with failures.

SPAs that tolerate at least a small amount of data and/or state loss are called loss
tolerant, whereas loss intolerant SPAs are unable to cope with losses [4].

Andrade et al. [4] list three basic mechanisms of fault tolerance in stream processing
systems: cold restart, checkpointing/restart and replication. Both cold restart and check-
pointing/restart assume that there is only a transient failure that can be corrected by
restarting the same software on a different host. This can happen either directly or
via a checkpointing mechanism. There, snapshots of the operator’s internal state are
stored periodically while operating correctly and are recovered on a restart. This type
of fault tolerance is not considered further in this work since we do not solely focus on
transient faults.

Replication is redundancy in its most apparent form. Andrade et al. [4] describe active
replication, where multiple copies of the same operator are running concurrently. Once
a copy of the operator fails, one of the others can become active and replace the failed
one.

Finally, it is also challenging to define what exactly constitutes a failure in SPAs. When
an operator stops working completely, this is definitely a failure. There is however
a grey area when QoS violations occur (“When is an operator too slow? What if an
operator gives inaccurate results?”). Deciding when an operator has failed is a context-
dependent decision and cannot be answered for all possible use cases. For the sake
of general applicability, this work treats operators as black boxes. Therefore, their
inner workings are ignored and failures are only detected by observing their input and
output behaviour as well as rudimentary statistics gained by monitoring their hardware
usage (see Section 4.3 for more details).

The Need for Sophisticated Fault Compensation
With the continuously rising importance of stream processing, more and more software
engineers will use DSPEs to tackle new projects. At the same time, SPAs are composed
of many operators. The more complex an SPA grows, the more operators are required.
An increasing number of operators goes hand in hand with a higher probability that
one of them becomes unavailable.
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Example 2.24

An SPA that is composed of seven operators, each of which has a 0.999 availability, will
have an average availability of 0.9997 = 0.993. One that is composed of 30 operators will
only reach 0.97. These scores are equivalent to a downtime of 5 and 21 hours per month.

Since it is infeasible to reach a 100% availability for each operator, it is crucial for the
DSPE to mitigate the effects of such faults.

2.6 The Circuit Breaker Pattern
Applications that are executed in a distributed way on multiple machines have to
communicate with each other. In each communication step, failures may arise. Even if
a failure for any given service is highly unlikely, a complex system might use dozens
or even hundreds of such services. If no fault tolerance method is applied, failure of
even a single service will inevitably mean failure for the whole system. Instead of
allowing such failures to cause unavailability, it has been common practice to retry
communication attempts. However, in large-scale applications, such retry mechanisms
can cause resource depletion (i.e., each connection requiring some amount of memory
that accumulates) and may unintendedly act as a denial-of-service attack towards the
non-responsive service (i.e., causing even more stress on the failing service by flooding it
with more input). Furthermore, if a service truly is unavailable, it is counterproductive
to even spend time trying to contact it [54].

2.6.1 Mechanism
Nygard et al. [55] have discussed this problem and proposed a solution in the form of
the circuit breaker pattern to deal with failing services. The concept of a circuit breaker
originally comes from electronics where it is used to stop current flow in case of a
malfunctioning electrical device. Analogously, a circuit breaker in a software system
would trip (i.e., stop the control/data flow to a service) when a failure is detected,
thereby preventing future calls to that service from being made at all. Instead, either a
fallback solution is used or the failure is immediately propagated to the caller as soon
as possible.

Using a circuit breaker has two benefits. First, the failing service itself will experience
less load which might be beneficial for a quick recovery (depending on the failure’s
cause). Second, the other services will not waste valuable time waiting for responses
from the failed service and can instead instantly provide a fallback solution or throw
an exception.

A circuit breaker can be viewed as an automaton with three states OPEN, HALF-OPEN
and CLOSED as depicted in Figure 2.8. Being closed by default, the circuit breaker
will act as a proxy and forward all requests to the appropriate service and in turn
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Figure 2.8: States of a circuit breaker. Figure adopted from [54].

forward the service’s reply to the caller. If a service failure is detected, the circuit for
the respective service is opened. In this state, no further calls are forwarded to the
external service. Instead, either the fallback is used or an error is returned. After a
certain time, the circuit breaker switches to the half-open state and forwards a small
fraction of the requests to the service to see whether it has recovered. If it has, it returns
to the closed state and the service is fully operable again.

2.6.2 Opening the Circuit
When designing a circuit breaker, one of the most important questions is when to open
it. In a very simple approach, one can open it once the first request times out or fails.
Such a strict policy would probably produce a large number of false positives since
network errors can indicate failure while the service is correctly functioning.

Fowler [54] discusses an elegant model for circuit breakers in asynchronous communi-
cation environments. Instead of monitoring each request individually, a queue is set up
where all outgoing requests are put into. The asynchronous service then consumes re-
quests from this queue and the circuit breaker monitors the queue’s status. This model
is suitable for distributed stream processing for two reasons. First, the communication
between operators is not only asynchronous but does not produce a response at all.
Second, having queues where incoming messages are stored is very natural and many
systems (e.g., VISP [5] using RabbitMQ) are already implemented this way.

When monitoring the queues, the circuit breaker must have some kind of policy about
when to open the circuit. This policy can depend on factors including the queue’s input
and consumption rate, as well as the current and past number of items.

2.6.3 Fallbacks
It has already been mentioned that with circuit breakers, services can immediately throw
an exception if they are about to call a failed service, thereby saving time. However,
software developers can also implement a fallback method that can still provide a valid
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result even in case of service failure. Using such a fallback method does not necessarily
have to be detrimental, it may just get the necessary answer from a different service
with the same quality. Another strategy would be to rely on cached values if the domain
context allows for that. This is not the same as calling another service since the cache is
created and updated locally by the caller.

Example 2.25

Service A offers users the capability to buy train tickets. Its responsibility is handling
the payment process. Since users are usually interested in knowing the exact departure
time, it relies on service B for that information. A uses a circuit breaker for calls to B. If
the circuit is open (indicating a failure in B), it invokes a fallback method that returns
cached data from the previous invocation. The user is therefore unaware of the service
failure. Additionally, A might make the user aware of the fact that its result is based on
historical data.

2.7 Message-Oriented Middlewares
Many stream processing systems (including VISP [5]) depend on an infrastructure called
message-oriented middleware (MOM) to send and receive messages. The advanced message
queuing protocol (AMQP) has been developed as an open standard for enterprise-scale
asynchronous messaging to replace proprietary protocols such as IBM Websphere MQ,
Microsoft Message Queuing (MSMQ) and the Java Message Service (JMS) [56]. Being
a binary protocol, it is much more space-efficient than a text-based format such as
JSON or XML. AMQP does not only reach a very high performance, it also includes
sophisticated mechanisms for reliability, message queuing and routing.

As its name suggest, the central object in MOMs is the message. It consists of the bare
message (the actual payload) and optional annotations (metadata) that can be added and
removed during processing. The AQMP specification also defines certain distribution
nodes [56] that are able to filter, distribute and reject certain messages (e.g., queues,
exchanges in RabbitMQ).

AMQP implementations include Apache ActiveMQ4, Apache Qpid5 and RabbitMQ6.
Since VISP is based on RabbitMQ, its features are discussed in more detail.

The basic actors in RabbitMQ are message producers, message consumers, queues and
exchanges7. A queue is a buffer that stores messages originating from a producer and
allows consumers to take and process them. An exchange sits between a producer and
one or more queues and decides the destination queue of a certain incoming message
as depicted in Figure 2.9. Exchanges are useful because the producer does not have to

4http://activemq.apache.org/
5https://qpid.apache.org/
6https://www.rabbitmq.com/
7https://www.rabbitmq.com/tutorials/tutorial-three-python.html
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Figure 2.9: Actors in RabbitMQ. A message producer (P) sends messages to an exchange
(X) that decides to which queue (Q1 and/or Q2) a message is forwarded to. This procedure
is completely transparent to the producer and the consumer (C), the latter of which then
receives messages from only the queue it is subscribed to (Q2).

be aware of the queues it sends its messages to. Instead, it just sends them to a queue
and the messaging infrastructure creates the routing from the exchange to one or more
queues. At runtime, this routing can be changed without the producer’s knowledge.

Since RabbitMQ clients are available for all major programming languages including
Java, C++, Ruby and C#, it is an excellent choice for a DSPE to base its communication
on since operators written in any of those languages can directly interact with the
MOM.

2.8 VISP
The VIenna ecosystem for elastic Stream Processing (VISP) has been proposed as a next-
generation DSPE by Hochreiner et al. [5]. As suggested by its name, one of VISP’s main
goals is to enable the usage of elastic resources (i.e., cloud computational resources) in
stream processing to adapt to changes in data volume at runtime. Such changes occur
in many important use cases (e.g., those involving the monitoring of human activities).

Another key feature of VISP is the ability to change the topology at runtime. Since this
ability is important for fault tolerance mechanisms, VISP has been chosen as the basis
for the prototypical implementation of the fault tolerance framework developed in this
work.

2.8.1 Architecture
Figure 2.10 shows VISP’s software architecture as presented by Hochreiner et al. [45].
The main component is the VISP Runtime that is based on a RabbitMQ messaging
infrastructure. It receives data from various data sources and other VISP runtime
instances and uses operators that are run on computational resources (e.g., virtual
machines on a private or public cloud) to process them. An operator repository can be
used to obtain the images for the operators (e.g., Docker images) that are then deployed
by VISP. Another important part of VISP is the parsing of topologies in the VTDL
format (see Section 2.2.5). This is not only necessary during initialisation but also when
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Figure 2.10: VISP Stream Architecture. Figure from [45].

the topology is changed at runtime. Since topology changes at runtime are excessively
used for this work, this mechanism is discussed in more detail.

2.8.2 Topology Updates
Each topology change is triggered by the upload of a VTDL file to the VISP runtime
(for simplicity, we do not consider the case where multiple VISP runtimes are involved
— for details see [45]). The next steps are the same regardless whether another topology
has already been deployed before or not. The VTDL file is parsed and all operators
are assigned to a concrete location to be deployed (this may be already defined by
the concreteLocation attribute in the VTDL file or determined automatically using
the allowedLocations attribute). Then, the RabbitMQ infrastructure is updated to
match the new topology (see the next section for details). This leads to a situation
where a subset of the operators are still working while newly added operators are not
yet deployed. This is not detrimental since RabbitMQ queues can store the produced
messages until the new operators are ready as well. Finally, the new operators are
deployed and start processing messages that are already waiting for them on their
respective queues.
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Figure 2.11: VISP’s RabbitMQ architecture. Each VISP operator simultaneously acts as
a consumer and a producer of messages. Messages are consumed from the queue populated
by the input operator (in this case, QA,B) and are then processed. The resulting data items
are then pushed to the operator’s exchange (here, XB) and are then distributed to the
downstream operators’ queues (here, QB,C). Using exchanges has the advantage that is is
very easy to add another downstream operator simply by reconfiguring the exchange’s queue
bindings which can be done at runtime.

2.8.3 Messaging Infrastructure
In VISP, operators are deployed as Docker8 containers in the programming language
of the developers choice. To facilitate a reliable messaging infrastructure, VISP uses
RabbitMQ. Deployed operators interact directly with RabbitMQ which guarantees a
high performance.

A VISP operator B receiving input data from an operator A would simply subscribe
to the queue named after those two operators (in this case, QA,B), process them and
then push the resulting messages to the exchange XB. The operator B itself is not
aware of what happens at exchange XB and which subsequent operator is involved in
the processing flow. VISP configures each exchange such that it forwards incoming
messages to the right subsequent operator’s queue. In this case, an operator C can be
downstream (an operator A is downstream of an operator B if there is a transitive data
flow from A to B) of B and therefore, XB is configured to forward incoming messages
to the queue QB,C where the messages are fetched by C. This scenario is depicted in
Figure 2.11.

8https://www.docker.com/
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CHAPTER 3
State of the Art

One of the goals of this thesis is to provide an overview of fault tolerance mecha-
nisms for stream processing systems (see RQ1 in Section 1.3). This chapter identifies
mechanisms that were specifically developed for stream processing systems (Section 3.1)
but also for related areas such as service composition (Section 3.2) and microservice
architectures (Section 3.3). Finally, this chapter is concluded by a summary of different
approaches which form the foundation for our approach.

3.1 Fault Tolerance in Stream Processing
Fault tolerance in stream processing can be classified into two classes based on the
kind of fault they address [31]. Communication faults are caused by lost packages due
to the underlying network infrastructure. Especially when computational resources
are distributed over a large geographical area, network communication failures are
common [57]. Fault tolerance on the operator level deals with the failure of whole
operators that may be caused e.g., by underlying hardware problems or software bugs.

3.1.1 Communication Faults
Network problems are a very common cause of faults in all distributed systems
and DSPEs are no exception. DSPEs secure their communication in different ways
depending on their underlying communication model.

As a concrete example, we consider the handling of network errors in RabbitMQ1 that
forms the basic communication infrastructure of the VISP DSPE [39] (as discussed in
Section 2.7). The connections between the server and any clients can be interrupted
by network errors at any time, potentially compromising the integrity of the messages

1https://www.rabbitmq.com/reliability.html
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that are being sent at that time. RabbitMQ uses acknowledgements to confirm that a
message has been received. While RabbitMQ is based on the Transmission Control
Protocol (TCP) [58] which already guarantees reliable transfers, these additional
acknowledgements are necessary because RabbitMQ wants to also ensure that the
receiver has actually processed the message. If no acknowledgement message is
received, the sender will attempt a retransmission. The receiver must be able to identify
such retransmitted messages to avoid duplicates when an acknowledgement message
is lost.

Example 3.1

Figure 3.1: Message acknowledgement.

A sends a message to B and waits for an acknowledgement. B receives the message
and sends the acknowledgement message to B. The acknowledgement message is
lost. A cannot distinguish whether the original message to B was lost or just B’s
acknowledgement message. Therefore, A retransmits the original message. From B’s
perspective, this second message from A is a new message. However, by using unique
identifiers in the messages themselves, B can identify the second message from being a
duplicate of the first one.

Finally, in order for the queues and exchanges to avoid losing messages, they are
regularly persisted on disk.

For some requirements of SPAs (e.g., real-time processing), this messaging model may
cause a too high latency, especially due to the disk persistence of data items [4]. Other
approaches are conceivable where no such persistence is necessary in exchange for less
consistent results (see, e.g., approximate fault tolerance in Section 3.1.2).
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3.1.2 The Operator Level
The long running nature of SPAs requires proper fault handling mechanisms on the
operator level. Specifically, both the operator’s internal state (if present) and the stream
data items themselves need to be considered when discussing such mechanisms [4].

Failed operators themselves can be recovered quickly by spawning a new instance of
the operator.

Example 3.2

In VISP, each operator type is provided as a Docker image and each instance is run
as a Docker container. Therefore, spawning a new operator instance corresponds to
spawning a new Docker container from the same Docker image.

The more challenging problem is then to restore the operator’s internal state that has
accumulated until its crash.

Example 3.3

A topology may consist of two operators. The first one outputs a data item for each car
that passes by a sensor. The second one counts the number of passed cars in the last 60
minutes.
If the first operator crashes and recovers, it can immediately continue emitting data
items without any complications. A crash affecting the second operator however would
also lead to losing its internal state, i.e., the total number of passed cars.

A common solution to this problem is (state) checkpointing [4]. An external data store
is used to backup a snapshot of the internal state in a regular time interval. During a
recovery, the state can then be recovered from that store. What exactly triggers a backup
and how to incorporate the data store into the DSPE differs between implementations.
The use of checkpointing in DSPEs is important since they are often long-running
applications and recreating a consistent state from the beginning is not straightforward.

As postulated by the CAP-theorem, it is not possible to simultaneously achieve availabil-
ity, consistency and partition (fault) tolerance in a distributed system [59]. Therefore,
there is always a trade-off between consistency and availability for fault-tolerant dis-
tributed systems. The following section discusses mechanisms that handle this trade-off
in different ways.

There are two extreme cases of this trade-off [11]. First, there is the strategy where
the DSPE waits for a potentially indefinite amount of time for operators to recover
from an error. This approach also uses strict backup policies for the internal states of
the operators. This “error-free” mechanism provides a high level of consistency, but
due to the lack of an upper bound on the recovery time and the large overhead of the
backups, the availability of an SPA is low. Second, the DSPE can just discard all data
items that are affected by a failed operator. This “best-effort” strategy would lead to a
high availability but also to a low consistency due to the lack of backup mechanisms.
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Balazinska et al.
Balazinska et al. [31] introduce a fault tolerance approach implemented for Borealis. It
allows the SPA developer to change the tradeoff between availability and consistency
by specifying a maximum waiting time. The DSPE will wait as long as the predefined
amount of time for operators to recover. If they do not recover in time, tentative results
are produced. Tentative results serve as approximations for the missing results for
subsequent operators and allow a continuous output of data items even in the case of
operator failures. Once the failed operators are successfully recovered, the tentative
results are corrected and all computations based on the tentative results are repeated
with the corrected ones. This process of correction is named stabilisation. It starts when
the previously failed operator has recovered. Then, the downstream operator that
produced tentative results (because of the failing upstream operator) recovers its state
to a pre-failure checkpoint. It then reprocesses all data items since then (this time with
the data items from the failed operator), allowing it to emit data items that are no longer
tentative. Finally, it sends special undo data items to the downstream operators that
received tentative results previously (to signal them that the previous results should be
removed) and sends them the corrected data items.

For this mechanism to work, operator failures must be detected quickly. Heartbeat
messages are therefore regularly sent to all operators. If an operator fails to reply to
such a heartbeat, it is considered as failed.

Balazinska et al.’s approach promises eventual consistency. This means that results may
be tentative at first in order to meet the availability demands, but ultimately, all results
are correct as long as no external services are invoked during the processing of tentative
results. The idea is that it is more important to have at least some results in time than
to have 100% correct results that are delayed.

Example 3.4

The operators A and B are both needed for C to produce its results. If both A and B are
operational, correct results are sent to D.

Figure 3.2: Production of tentative results.

Now consider the case where operator B crashes and is no longer able to provide input
to operator C. If C was waiting for B to recover, it may violate the maximum waiting
time. Instead, tentative results (shown in blue) are produced that are not fully correct
(because B’s input is missing) and sent to D.
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Once B recovers, the missing data items are sent to C. Furthermore, C sends corrected
versions of the already sent data items to D, guaranteeing eventual consistency.

A restriction of Balazinska et al.’s approach is the need for customised code to imple-
ment the generation of tentative results. The SPA developer needs to specify exactly
how an operator should generate tentative results based on some operators’ results
missing. In some cases, such a generation may even be impossible. Another restriction
is the need for large buffers for data items since they might need to be resent.

Example 3.5

Generating tentative results for an operator that just transforms data items into a different
format is impossible if the one and only input operator stops producing data items.
Conversely, an operator that only depends on the current weather condition as an input
may be able to produce tentative results by just assuming an “average” default weather.

Another disadvantage of this method is the large computational overhead that is
required to cope with failures. In effect, all computations are then performed two times,
first with tentative and then with the real data items.

MillWheel
Akidau et al. [60] describe MillWheel, a DSPE developed at Google, along with its
fault tolerance model. MillWheel provides very strong consistency guarantees by
supporting exactly-once delivery and error-free state checkpointing. A unique feature
is its low watermarks mechanism where time of data arrival and data generation can
be distinguished for each data item. The low watermark is basically a timestamp that
signals the SPA that all data up to that timestamp has been successfully received. It
allows the SPA developer to make sure that they have a complete picture of the data up
to that time [60].

MillWheel promises consistency even if faced with arbitrarily many hosts crashing
and an infinite amount of data item loss. These guarantees are implemented using an
acknowledgment mechanism to prevent message loss and a fine-grained checkpointing
mechanism that periodically saves each operator’s state to an external BigTable [61]
data store.

The exactly-once delivery is ensured by combining mechanisms for at-least-once deliv-
ery (the acknowledgment of successfully received messages) and at-most-once delivery
(unique identifiers for each outgoing data item).

There is a restriction in MillWheel regarding the invocation of external services: Since
exactly-once delivery is based on the acknowledgement of received data items, a data
item can be processed multiple times if acknowledgement messages are lost. This is
harmless in general since the duplicate results can be detected by having the same
identifier. However, if the external service itself is stateful, it may receive the same data
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item multiple times. Therefore, no external services may be invoked by the operators
in order to avoid such side effects. This restriction can be evaded by making the
external service idempotent, i.e., guaranteeing that multiple invocations with the same
parameters have no additional effects.

Approximate Fault Tolerance
Huang and Lee [11] present an approach on approximate fault tolerance. They argue that
providing perfect fault tolerance is not only very expensive but also not needed in
general. Especially for scenarios where streaming data is only processed to identify
trends, it is tolerable to lose some of the data items to improve availability (as argued in
Section 2.5.3). Again, the trade-off between consistency and availability is configurable.
Three user-specifiable parameters, θ, l and γ, can be tuned in order to specify how
many errors are tolerated.

Their approach uses a state backup that is only triggered once the deviation from the
current state and the most recent backup is greater than a maximum of θ. Unlike
MillWheel and Balazinska et al.’s approach, this mechanism tolerates a small amount
of errors that can remain uncorrected. By changing θ, the SPA developer can specify
how much state deviation is acceptable.

Example 3.6

An operator X counts occurrences of temperature measurements above 35◦ C. Its state
divergence function is defined in such a way that it returns the difference between
the current counter value and the most recent backed up one. The user defines the
maximum state divergence to be 10.
Each time the counter is changed, the state divergence function is used to compute
whether it returns a number greater than 10. Once it does, a new backup is issued.

Similar to the state backup, there is also a backup mechanism for the yet unprocessed
data items. The variable l defines the maximum number of such unprocessed items.
Once it exceeds l, a backup of the data items is issued. Finally, γ is used to denote the
maximum number of unacknowledged items in the queue of an operator. If the queue
length reaches γ, no more items can be forwarded by that operator until previously
sent items are acknowledged.

The authors admit that the manual fine-tuning of these variables is difficult for SPA
developers. It is also questionable if defining them globally for the whole SPA is
appropriate, because some operators are likely to be more tolerant in terms of state
divergence than others. Furthermore, the authors provide theoretical guarantees about
the error bounds depending on the user-specified parameters [11].
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Table 3.1: Comparison of the three introduced fault tolerance mechanisms on the
operator-level. Table adapted from [62].
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Fault tolerance for state 3 3 3

Fault tolerance for data items 3 3 3

Tradeoff availability & consistency 3 3 3

Tradeoff configurable 3 3

Maximum inconsistency 3

Theoretical error bounds 3

Tentative results 3

User has to tune parameters 3

3.1.3 Comparison
Table 3.1 shows an overview of the three discussed fault tolerance mechanisms on the
operator-level. All three mechanisms provide fault tolerance for state and data items
with a tradeoff between availability and consistency. As discussed, such a tradeoff is
necessary due to the CAP theorem [59]. This tradeoff is configurable for the approaches
by Balazinska et al. and Huang and Lee by specifying a maximum waiting time and
a maximum backup divergence, respectively. This makes those two solutions more
flexible and applicable to a wider array of use cases.

All three approaches focus on fault tolerance on the level of individual operators. This
is not feasible since in reality, a functionality is often implemented by a composition
of multiple operators [4]. This limitation is especially apparent for the approach of
Balazinska et al. [31]. Here, tentative results are generated at the level of processing
operators. This leads to the already discussed case where multiple operators depending
on only one input stream are unable to create meaningful tentative results if that stream
becomes unavailable. In reality, those two operators would have to be considered as
a single functional unit where either both of them are available or an (approximate)
replacement is installed for both of them. The idea of such a path-level mechanism is
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further discussed in Chapter 4 and forms the basis of the approach created in this
thesis.

Tolerating a maximum level of inconsistency (i.e., not requiring 100% consistency) is
unique in the approach of Huang and Lee [11] and allows flexibility for SPAs where
data is only mined to identify trends. These inconsistencies are however theoretically
bounded depending on the values of user-defined parameters.

Tentative results (as introduced by Balazinska et al. [31]) allow a high availability
when faced with failing operators while still guaranteeing eventual consistency of the
final results. However, this mechanism requires the user to implement functions for
generating such tentative results and needs to spend a considerable amount of time for
reprocessing data items once operators become available again.

Conclusion. All three discussed fault tolerance approaches have the common goal
of providing a suitable balance of availability and consistency. However, they reach
this goal with very different mechanisms. Comparing their features tells only part
of the truth since no benchmark exists that directly compares their performance in
different use cases. The benchmarks provided by the respective authors differ in their
methodology and lack the applicability to a real-world scenario.

3.2 Fault Tolerance in Service-Oriented Computing
SOC has already been introduced in Section 2.3. There is a large body of literature
on fault tolerance in SOC. As discussed, fault tolerance is even more important in
SOC since, for these systems, perfect consistency is usually expected and every single
service invocation must succeed [63]. It is therefore already clear at this point that one
cannot just copy the SOC mechanisms and directly apply them to stream processing
since SPAs usually do not have such strong demands for consistency [4]. It is however
possible to apply some methods in the same way.

WS-ReliableMessaging has been introduced to reliably communicate over an unreliable
network in SOC [64]. Different communication modes are available where data items
are transmitted at least once, at most once or exactly once. Similar messaging mechanisms
are used for DSPEs (e.g., MillWheel [60]) and MOM (e.g., RabbitMQ2).

WS-Replication is used to forward service calls to different replicas, guaranteeing fault
tolerance when one of them becomes unavailable [65]. This approach also enables
n-version programming when different operator implementations are used as replicas.
Again, similar mechanisms can be applied for DSPEs where multiple operator instances
are used as replicas for a single operator type.

With WS-Transaction, a coordination between services is possible [49]. It can be guaran-
teed that an invocation involving multiple operators is carried out atomically or not at

2https://www.rabbitmq.com/
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all. This mechanism’s application to SPAs is not advisable in general since the resulting
computational overhead is not justifiable by the marginal gains in consistency.

Another interesting approach in SOC fault tolerance is the treatment of non-functional
faults. Here, quality of service expectations (e.g., a certain throughput) are considered.
Their violation is then treated as a fault that can be corrected [66]. Handling QoS faults
is also an interesting challenge in SPAs. It is however out of scope of this work.

3.3 Hystrix
In 2011, Netflix has introduced Hystrix, a fault tolerance library for distributed systems
based on the circuit breaker pattern (see Section 2.6) [67]. Since the major revenue
source of Netflix is streaming video content, it has considerable interests in a high
availability of their Web services.

For each incoming user request, multiple calls to subsystems are realised. With both a
huge number of user requests and subsystems, a single failure in one of them would
lead to downtimes.

Hystrix solves this problem by applying three basic mechanisms:

1. Custom fallback. If possible, the service developer should specify a fallback
mechanism in case of a service failure. Fallbacks may include the use of cached
values, reasonable defaults or alternative ways of providing meaningful results.
Importantly, fallbacks must not depend on external services themselves since
their invocation may not itself fail.

2. Fail silently. In case no fallback is available, it is still acceptable to return null or
a proper exception. If the failed service is not essential to the overall outcome,
this failure can be hidden from the user.

3. Fail fast. Instead of wasting time waiting for a server response, services should
either return an answer or an exception quickly.

Hystrix is implemented as a Java library. Each callable service is wrapped in a
HystrixCommand object and must implement a run() as well as a getFallback()
method as shown in Listing 3.1. The run() method is invoked when the circuit is
closed and the service is expected to be available.

Hystrix continuously monitors the amount of failed service calls in relation to the total
number of calls. Once a certain threshold is reached, it transitions the circuit breaker to
the open state (as discussed in Section 2.6.2) and the getFallback() method is used
instead. After some time, the circuit breaker is switched to the half-open state and the
availability of the service is checked. Once the service has recovered, the state is set to
closed again and the run() method is executed again.
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Listing 3.1: Basic HystrixCommand implementation. Source: https://github.
com/Netflix/Hystrix/wiki/How-To-Use.

1 public class CommandHelloWorld extends HystrixCommand<String> {
2 private final String name;
3

4 public CommandHelloWorld(String name) {
5 super(HystrixCommandGroupKey.Factory.asKey("ExampleGroup"));
6 this.name = name;
7 }
8

9 @Override
10 protected String run() {
11 return "Hello " + name + "!";
12 }
13

14 @Override
15 protected String getFallback() {
16 return "Hello Failure " + name + "!";
17 }
18 }

Hystrix is successfully used for microservice architectures (see Section 2.4). Its appli-
cation to stream processing is not straightforward since the operator calls are made
by the DSPE. In other words, the developer of the individual operators would only be
able to use Hystrix for the invocation of external services it uses, but the invocation of
operators itself cannot be influenced on that level. To the best of our knowledge, there
is no DSPE that actively uses Hystrix or the circuit breaker pattern in general directly.

3.4 Inspirations
This work aims not only to create a mechanism that unifies features of existing ap-
proaches. The unique feature to provide redundancy at the level of processing paths is
not considered in the literature to the best of our knowledge. Compared to the related
work investigated in this chapter, we can conclude the following inspirations:

• Circuit breaker. The usage of the circuit breaker pattern to dynamically switch
between a main function and fallbacks is inspired by Hystrix from the context of
microservices.

• Tradeoff between consistency and availability. The publications of Balazinska
et al. [31], Akidau et al. [60]. and Huang and Lee. [11] motivate the use of a
compromise between availability and consistency to deal with faults in distributed
stream processing systems.
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• Operator-level fault tolerance. The established mechanisms to guarantee fault
tolerance at the operator level (such as checkpointing and recovery and active
replication) have been kept in mind when designing our new approach. Although
this work does not implement them, such mechanisms can be added to our
framework to further enhance fault tolerance.
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CHAPTER 4
Design of a Fault Tolerance

Framework for Stream Processing

This chapter presents the Pathfinder framework for fault tolerance in distributed stream
processing systems. First, terminological definitions are introduced in Section 4.1. Then,
the requirements for Pathfinder are discussed in Section 4.2. Based on those require-
ments, Pathfinder’s fault tolerance model is discussed in Section 4.3. Section 4.4 then
introduces Pathfinder together with its system design. Finally, Section 4.5 concludes
this chapter by introducing fault-oriented development, a set of software development
guidelines for SPAs to fully utilise the capabilities of Pathfinder.

4.1 Terminology
An overview about stream processing terminology has already been given in Section 1.1.
In this section, we replace those definitions in a more formal way. Since, to our
knowledge, there exists no literature dealing with fault tolerance in stream processing
on a language level, we need to derive a new nomenclature. This is especially true for
those constructs that have been newly introduced by this work. Where possible, this
nomenclature is inspired by informally used concepts (such as [4]).

4.1.1 Operators and Data Flow
An operator is the most basic building block of an SPA [4]. Its input are zero or more
input streams. It applies processing logic for each incoming data item and outputs zero
or more output streams. We subdivide operators into three classes: Operators with
zero input streams are called source, those with zero output streams sink and all others
processing operator. Data items enter the SPA through sources and leave it through sinks
(e.g., by persisting them into a database or updating a dashboard).
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In the literature, the data flow representation has been used model the flow of data
items between operators [4]. In this representation, operators are modelled as boxes
and the data flow between them as a directed edge. It is therefore easy to comprehend
how a data item is passed through individual operators in the SPA.

4.1.2 Topology
We define the topology of an SPA as a directed acyclic graph T(O, E) that consists of
a set of vertices representing operators O and a set of edges that denote a data flow
E [39]. The topology therefore defines which operators exist in an SPA and how they
are connected to each other. The topology is not only a formal way to view an SPA but
also exists as a file that is created by the SPA developer (e.g., in the VTDL format).

When considering an SPA, we can differentiate between a logical and a physical
topology view. Both views use a similar notation, i.e., edges to denote the data flow.
However, only in the physical view, the edges correspond directly to the physical flow
of data in the SPA. In the logical view, edges only indicate the possibility of a data flow
(e.g., the data flow from a join operator to alternative paths depends on which of them
is currently active).

A data flow in general refers to data moving from one processing stage to another [4].
We concretise this definition the following way:

A logical data flow from operator A to another operator B (A 6= B) exists if the logical
topology view has an edge from A to B. We denote such a data flow with: dfl(A, B).

A physical data flow from operator A to another operator B (A 6= B) exists if the physical
topology view has an edge from A to B. We denote such a data flow with: dfp(A, B).

Since the logical data flow is a prerequisite of the physical data flow, the following
condition must hold:

¬dfl(A, B)⇒ ¬dfp(A, B)

The logical topology view only considers the logical data flow while the physical topology
view only considers the physical data flow.

4.1.3 Operator Connections
We now put our attention to the way operators are connected to each other. We define
the set of upstream operators of an operator A as the set of operators that have a direct
or indirect logical data flow to A. Similarly, the set of downstream operators of A is the
set of operators that have a direct or indirect logical data flow from A.

We say an operator A has an input (operator) B if there is a logical data flow from B to
A. Similarly, A has an output (operator) C if there is a logical data flow from A to C.
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The indegree of an operator A is denoted as deg+(A) and represents the number of
input streams of A. Similarly, the outdegree represents the number of output streams
of A and is denoted as deg−(A).

As already stated above, we define a source to be an operator A where deg+(A) = 0
and a sink to be an operator B where deg−(A) = 0.

Example 4.1

The figure below shows the physical view of a topology. It consists in total of four
operators. A is a source (since it has no input streams), C and D are sinks (since they
have no output streams) and B is a processing operator (since it has both input and
output streams). B has exactly one input (A) and two outputs (C and D). Therefore,
deg+(B) = 1 and deg−(B) = 2.

Figure 4.1: Physical topology view.

4.1.4 Paths
Operator paths are a crucial concept in SPAs. Similar to service composition in SOC,
operator paths provide functionality by combining individual operators in the right
order [4].

We consider a topology T(O, E) that consists of a set of operators O and a set of edges
that denote data flow E. A path π in the topology T is defined as an ordered sequence
of operators such that there is always a logical data flow between consecutive operators
in that sequence. More formally, a path is a sequence of operators (A1, A2, . . . An) such
that:

n−1∧
i=1

dfl(Ai, Ai+1)

We define an index-based access to the elements of a path π by referring to the i-th
operator in π using the notation πi (starting at index 0).

We denote that an operator A is part of the path π with A ∈ π.
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Example 4.2

There are multiple paths in the topology below. Let us define the path π as the operator
sequence A, B, C. π is a path because there is a logical data flow between each two
consecutive operators of π. The first operator in that path, denoted as π0, is A.
We define another path ρ as the sequence A, B, D. In this particular example, it holds
that π0 = ρ0, i.e., π and ρ share a common operator at the first position. In other words:
A ∈ π ∧ A ∈ ρ.

Figure 4.2: Physical topology view.

A path π is said to be active if there exists an operator A 6∈ π where dfp(A, π0) (there
is a physical data flow from A to the first operator of π). A path is inactive if there does
not exist an operator A 6∈ π where dfp(A, π0) (there is no operator with a physical data
flow to the first operator of π).

Example 4.3

In the following physical topology view, we define the path πx to consist of the operators
B, C and D. Since ∃n ∈ (N − πx) : dfp(n, π0

x), πx is an active path.

Figure 4.3: Physical view of a path composed of four operators.

A path is said to contain a failure if one or more of its operators contain a failure.

4.1.5 Split/Join Operators
For the sake of completeness, we present split and join operators in this section although
their use becomes apparent only after reading Section 4.4.

A split operator S is an operator with deg−(S) > 1. Semantically, a split operator
defines several alternative paths: a main path and one or more fallback paths. The main
path is the alternative path that is active by default if all alternative paths are available.
We name an alternative path π by its first operator (π0) since their beginning and
end are unambiguously defined by the split and join operators, respectively. For split
operators, there is a discrepancy between the physical and the logical topology view:
although a logical data flow is set up from the split operator to multiple operators,
there is always only one physical data flow.
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The path order ρ defines the order in which Pathfinder falls back on the alternative paths
in case of operator failures. The main path has a path order of ρ = 1, i.e., it is used with
the highest priority. There must exist at least one other alternative path with ρ > 1. No
two alternative paths of a split operator can have the same path order (i.e., for a split
operator S, dfl(S, A) ∧ dfl(S, B)⇒ ρA 6= ρB).

The counterpart to the split operator is the join operator. It indicates the place where the
alternative paths come together again. In other words, the operator directly downstream
of the join will receive input data items either from the main path or from any of the
fallback paths.

Example 4.4

In the below logical topology view, operator C has failed. It is part of the main path
(as denoted by the path order “1” assigned to that path next to the split operator).
Since operator C has failed, the whole path (consisting of B and C) is considered failed.
Therefore, fallback path D will be used instead.

Figure 4.4: Path failures.

4.2 Requirements
Section 1.2.2 introduces our motivational scenario and presents the requirements for
this scenario. Chapter 3 concludes that current fault tolerance methods for stream
processing lack certain features and are therefore not applicable for our motivational
scenario. This section will discuss the framework requirements (FR) needed to support
the fault tolerance of the motivational scenario.

FR1 Scalability. Scalability is usually implemented at the DSPE level (e.g., by replicat-
ing operators). While it is not the fault tolerance framework itself that needs to
handle scalability, it must at least be compatible with the scaling measures of the
DSPE.

FR2 Exploit functional redundancy. This is the central requirement that cannot be
fulfilled by any other mechanism presented in Chapter 3. Having redundancies
at the functionality level (i.e., being able to use different functions to achieve the
same or a similar result) that must be exploited by the fault tolerance framework
necessarily requires input from the user. Specifically, the SPA developer must
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specify which functionalities are redundant and how the redundant resources can
be accessed. Furthermore, the user must provide an order in which the redundant
functionalities should be accessed if more than one is available at the same time.

FR3 Minimise downtimes. While already hinted in R2, this requirement explicitly
states that the total SPA downtime should be minimised. Specifically, redundant
resources should be utilised whenever failures occur to keep the SPA’s period of
unavailability as short as possible.

FR4 Reliability of results. This requirement states that the absolute limit of the down-
time minimisation is the production of results with a low quality that are still
usable — the fault tolerance framework must not go further than that. Produc-
ing results that are completely unsuitable for the SPA while still guaranteeing
availability would violate this requirement.

The framework requirements above are mainly caused by the SPA requirements R3,
R5, R6 and R7 from Section 1.2.2. The remaining SPA requirements do not directly
affect the fault tolerance framework but rather the DSPE itself (we refer to this DSPE as
the slave DSPE since it will be controlled by the fault tolerance framework). R1 states
that indeed a distributed SPE must be used to cope with the expected data volume. R3
concretises this requirement and states that the DSPE must also be able to scale using
cloud resources. Furthermore, R4 requires the DSPE to optimise operator placement
with respect to geographical patterns. All DSPE requirements (R1, R3, R4) are fulfilled
by VISP which is therefore used primarily in this work.

4.3 Fault Tolerance Model
Based on the requirements from the previous section as well as existing concepts from
the related work (discussed in Section 3.4), a new fault tolerance model for distributed
stream processing is presented in this section.

4.3.1 Language-Level Fault Tolerance
Initially, the most important design decision is: On what level should fault tolerance
be dealt with? While this framework addresses fault tolerance at the language-level
(i.e., by explicitly defining fault tolerance fallback actions via the topology description
language), there are several other choices.

1. Operator level. For the first approach, the operators are responsible for their own
fault tolerance mechanisms. While this looks promising, it is too short-sighted.
First, it is not possible to address inter-operator communication problems at this
level. Second, such an approach faces restrictions since fallback mechanisms must
be created for each operator in isolation, i.e., it would be very cumbersome to
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replace the functionality of a whole processing path by a different one. The lack
of reusability of fault tolerance mechanisms is another disadvantage.

2. DSPE level. Here, a mechanism integrated directly into the DSPE performs
a similar failure detection mechanism as our approach and redeploys failed
operators once a failure has been detected. While this does not require user-
intervention, it would not work for failures caused by long-term errors (e.g.,
network problems of a third-party service, revoked software licenses, bugs for
certain input data).

3. Infrastructure level. Fault tolerance at the level of the computing infrastructure
can for example include automatic restarts of failed virtual machines in a cloud
environment. However, since these approaches do not consider the application
logic, the same problems as on the DSPE level are to be expected.

Considering the requirements from the previous section, it is, to the best of our
knowledge, not feasible to deal with fault tolerance for SPAs anywhere else than on the
topology description language level without facing significant limitations.

Furthermore, language-level fault tolerance has the advantage of being both easy to
change (i.e., simply by changing the topology file) and allowing customisations via
configurational parameters (e.g., lazy deployment as introduced in Section 5.5.1).

4.3.2 Path Redundancy
As stated by Gärtner et al. [12], there can be no fault tolerance without redundancy.
Redundancy in SPAs does not necessarily imply the use of multiple instances of the
same operator in case one of them crashes. In our fault tolerance model, we rather
consider paths as the fundamental unit of fault tolerance. Instead of having multiple
instances of the same path, our model allows the SPA developer to design different
alternative paths that provide the same (or a similar) functionality and can replace each
other.

Compared to redundancy at the operator level, this approach has several advantages.

• Flexibility. Since paths can consist of arbitrarily many operators, SPA developers
can define fault tolerance actions for specific sets of operators. Furthermore, also
the length and number of alternative paths can be chosen by the SPA developer
to reflect the level of availability needed for specific functionalities. All but
the simplest SPAs are likely to exhibit some functionality where failures can be
tolerated more easily and others where faults are intolerable.
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Example 4.5

An SPA is used to analyse network traffic and includes two functionalities. First, it
informs the responsible person about intrusion events that need to be investigated.
Second, it changes the scheduling of several maintenance tasks based on the
current and predicted amount of traffic. However, if no scheduling suggestions
are made by the SPA, all maintenance tasks are still completed with a minimal
loss of efficiency.
Since network intrusions can be an existential threat to a company whereas
scheduling optimisation is dispensable, failures in the latter are more tolerable
than those in the former. Therefore, a responsible SPA developer would create
more alternative paths covering the intrusion detection functionality than for the
scheduling optimisation.

By giving the topology designer this powerful tool, they can create fault tolerance
mechanism that are tailored to their specific needs and can be as fine-grained as
desired.

• Operator composability. Operator reusability dictates to decompose a function-
ality into a set of operators that are then connected by data flow (thus allowing
reuse of the operators in later projects). A path is exactly such a composition
of operators. If no path-level redundancy was available, SPA developers would
hesitate to decompose functionality into multiple operators since fault tolerance
mechanisms for all operators would have to be created.

• Simplicity. SPA developers do not need a thorough knowledge on fault tolerance
or distributed systems to implement alternative paths. From their perspective,
adding fault tolerance measures is as simple as writing more application code —
the fault tolerance framework is then responsible for deployment and activation.
Furthermore, the code of existing operators does not need to be modified in order
to add fault tolerance which makes it less likely to introduce any new bugs.

4.3.3 Error and Fault Handling Approach
Avizienis et al. [7] divide recovery from faults into the two stages error handling and fault
handling. Our model makes the same distinction and performs a two-stage recovery
from faults (as depicted in Figure 4.5). Applying the terminology introduced in Sec-
tion 2.5.1, we consider the failure of an operator (i.e., it stopping working correctly). The
same event can also be seen as a fault from the view of the DSPE. If no countermeasures
were taken, this fault could cause the failure of the SPA. Therefore, fault tolerance is
used to recover from the fault and prevent a failure.

First, the faulting operator itself is handled. In the diagnosis step it is detected which
operator causes the error The whole path containing the faulty operator is then isolated
(i.e., by blocking the physical data flow to that path), to mask the fault. In a subsequent
reconfiguration step, an alternative path with similar functionality is activated. Finally,
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Figure 4.5: Pathfinder’s fault tolerance model.

reinitialisation of the system takes place and the data item routing is updated such that
the newly activated processing path is used instead of the faulty one.

In contrast to the model of Avizienis et al. [7], our model’s fault handling does not
stop after the faulty processing path has been deactivated. While it is acceptable to
use a fallback path while the main path is unavailable, there is also a need for some
kind of mechanism to get back to the main path once it is available again. A probing
mechanism is used to continuously check whether a previously failed path could
recover (see Section 4.4.4).

Recovery is the process of creating an error-free state. While recovery is essential in
many software systems, DSPEs often have specific requirements. As discussed in
Section 2.5.3, streaming data is often valuable only immediately after its production.
For example, in the introduced motivational scenario, there is no use in dealing with
past location data since the user has probably moved somewhere else in the meantime.

Therefore, our model does not include a dedicated recovery mechanism. It would
however be possible to add a checkpointing mechanism for stateful operators (for
example similar to the one of MillWheel [60]). However, this is out of the scope of this
work.

Furthermore, no attempts are made to reprocess data items by the main path after they
have already been processed by a fallback path. This is because it is assumed that the
fallback path produces results of a similar quality and the benefits of reprocessing by
the main path are small compared to the computational overhead of reprocessing.

4.4 Pathfinder — A Fault Tolerance Framework for
Stream Processing

We now present Pathfinder, a fault tolerance framework for distributed stream process-
ing. Before going into the details of the framework, this section will give a simplified
overview of how Pathfinder works.
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4.4.1 Basic Functionality
While fault tolerance mechanisms could be directly included into the DSPE, Pathfinder
is an independent system that closely interacts with an associated DSPE. Thereby,
Pathfinder is not restricted to a specific DSPE. Instead, it can be used to support any
DSPE that is able to provide the needed information and obeys the commands by
Pathfinder. Pathfinder controls the slave DSPE’s data flow and operator deployment
based on the monitoring of operational statistics.

Basically, Pathfinder

• monitors the slave DSPE and continuously analyses operational statistics,

• classifies each operator into being free from failures or not based on those statistics,
and

• commands the use of fallback paths if failures are detected.

Monitoring and classifying are necessary to detect faults. This step is essential since fault
tolerance mechanisms can only be initiated when the framework knows about the faults.
Commanding the DSPE is realised because Pathfinder is not able to directly influence
the DSPE’s operators or its data flow. For this step, Pathfinder needs to know about
all available fallback paths. This knowledge needs to be added by the SPA developer
via an extension to the VTDL that includes special operators for fault tolerance. These
special operators are named split and join (see Section 4.1.5). Downstream of a split
and upstream of a join operator are at least two alternative paths that provide a
similar functionality with different implementations. Pathfinder decides which of the
alternative paths is active (i.e., receives the physical data flow from the operator that is
directly upstream of the split operator).

Similar functionality means that the SPA developer is free to specify an arbitrary path
as an alternative path as long as it has the same input and output stream types as the
main path.

Figure 4.6 shows a simple topology on top. Below is a different version of the topology
where split and join operators are added. Primarily, the main path (i.e., B2, B3) is used
(identifiable by the path order “1” shown next to the split operator) and a physical data
flow only exists to and from the main path. If Pathfinder detects a failure in the main
path, it switches to the fallback path (for details see Section 4.4.4).

4.4.2 System Design
Pathfinder consists of three core modules: the Circuit Breaker, the Nexus and the
Communicator module. Figure 4.7 shows an overview of the system design that is
explained in detail in the next paragraphs.

62



4.4. Pathfinder — A Fault Tolerance Framework for Stream Processing

Figure 4.6: Top: A simple SPA for fetching advertisement campaigns for a given GPS
position. It consists of three operators. First, a GPS position item enters the system (A1).
An intermediate step is then used to map that GPS position to a list of keywords that seem
relevant to that location (A2). Finally, all currently available campaigns that are relevant to
the set of keywords are fetched (A3). Bottom: The same topology with a fault tolerance
mechanism. Under normal circumstances, the main path will be used and data processing
will take place using the same operators as above (B1, B4, B5). If step B4 fails, the fallback
path is activated and an external service (B3) with a prior transformation step (B2) will be
used for the same task instead.

• Communicator. Pathfinder needs to communicate with other Pathfinder instances
and instances of the slave DSPE. Bundling all communication aspects in a single
module enables loose coupling since this module can be easily exchanged when a
different DSPE should be controlled.

• Circuit Breaker. The circuit breaker module (CBM) is aware of the topology that
is currently active in the slave DSPE. Internally, Pathfinder, and in particular
this module, always uses the VTDL to describe a topology. If a different DSPE
needs to be addressed, a conversion step from and to VTDL can be added to the
communicator module.

A circuit breaker object is created and maintained for each path where at least
one alternative is available. By querying the Nexus component, operator failures
are detected that are then translated into state transitions of the circuit breaker
objects.

In case of topology changes initiated by the slave DSPE, the local topology
representation of the CBM is discarded and new circuit breaker objects are
created for all paths of the updated topology of the SPA.

• Nexus. The Nexus component is responsible for analysing statistical data and clas-
sifying operators into working and failed. Each operator is classified individually
only based on current and historical statistics collected from the slave DSPE.
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Figure 4.7: Pathfinder’s system design.

The concrete Nexus implementation can make use of different technologies such
as manually created rules (e.g., considering operators as failed if their CPU
usage is less than 1% for more than 30 seconds) or machine learning-based
identifications.

4.4.3 Distributed Deployment
It is desirable for many reasons not to have a central component that is responsible for
fault tolerance. First of all, what if the host crashes where that central component is
deployed? In many cases this would also mean a crash of the whole DSA or at least
heavy limitations in terms of fault tolerance if the component is not properly recovered.
Introducing such a single point of failure into a DSPE is just not an option.

To solve these issues, Pathfinder is deployed in a distributed manner itself. Individual
Pathfinder instances communicate with each other via the communicator module. This
architecture not only enhances availability but is also expected to have a beneficial effect
on overall performance. Since every Pathfinder instance can be restricted to query only
a subset of the DSPE’s operators, distributed deployment allows easy scaling.

In a simple yet effective scenario shown in Figure 4.8 where each DSPE instance is
queried by exactly one Pathfinder instance that resides on the same host, a very high
performance is expected since the frequent statistic requests are performed on the same
host and do not require communication over the Internet.

The only exchange via the Internet happens horizontally (i.e., between Pathfinder
instances). Horizontal communication is mainly necessary when an operator fails
or recovers, which is assumed to be a relatively rare event. The main portion of the
communication however does not leave the respective hosts and is therefore very
efficient.
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Figure 4.8: Possible distributed deployment of Pathfinder. Three VISP instances (1 to 3)
are deployed on the three hosts A, B and C. By deploying a Pathfinder instance on each host,
the communication overhead to the VISP instances is minimised.

Example 4.6

There are three DSPE instances on hosts A, B and C, located in three different countries.
In scenario 1, a single Pathfinder instance queries all of the instances for operational
statistics. Since these queries are very frequent and there is a considerable delay per
query due to the large geographic distance, a low performance is expected. In scenario 2,
there is a single Pathfinder instance for each DSPE instance that is deployed close to
the respective instance. Each Pathfinder instance now only queries the DSPE instance
that is closest to it and therefore achieves a very high performance. The occasional
communication between different Pathfinder instances happens less frequently and does
not impact the overall performance.

4.4.4 Circuit Breakers in Pathfinder
Pathfinder’s fault tolerance mechanism is influenced by the circuit breaker pattern (see
Section 2.6). The pattern suggests to fail fast — namely, not to unnecessarily wait for
responses to services that have already failed.

For each topology where all operators are working properly, there is a constant data
flow. If one of the operators fails for any reason, this data flow is interrupted. Moreover,
the failing operator’s queue would fill up since the data sources would continue to send
new data items. This is problematic for two reasons. First, the queue might eventually
reach its maximum capacity and overflow. Second, it may take an infinite amount of
time until the operator can recover from the failure and the messages may thus suffer
an infinitely long delay. Both consequences are harmful to the SPA and need to be dealt
with.
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The basic idea of the circuit breaker pattern (as discussed in Section 2.6) is to avoid
invoking a failed operator’s service. Instead, a fallback solution is used to replace the
operator as soon as that failure is detected.

One approach would be the implementation of the circuit breaker pattern on the level
of individual operators. This would mean that topology designers would have to
implement a fallback solution for each operator, resulting in a very inflexible and
work-intensive programming model that results in n-version programming. Instead,
Pathfinder implements circuit breakers on the level of paths that can consist of arbitrarily
many operators.

The huge advantage of this approach is that the topology designer can construct
redundancy at a high level and is not restricted by the subdivision of functionality into
multiple operators. However, redundancy can still be implemented at the operator
level simply by considering paths of length one.

Example 4.7

A complex path (consisting of dozens of operators) with the purpose of creating some
statistical analysis can be backed up by a redundant path consisting of only one simple
operator that creates a very superficial analysis only.
If fault tolerance was implemented at the operator level, this would not be possible
and each operator would need a fallback action, making the overall procedure much
more complicated since it is highly unlikely that there are replacement services covering
exactly the same functionality as a single operator).

Since circuit breaker states and transitions have already been examined in Section 2.6,
only the application of the circuit breaker pattern to Pathfinder is left to be discussed at
this point.

The open state does not allow any physical data flow through the circuit breaker. In
the closed state, physical data flow is not interrupted. A probing mechanism is invoked
in the half-open state where only a small fraction of data items is allowed to pass the
circuit breaker. Additionally, there must exist state transitions in such a way that the
circuit breaker can change its state based on whether its path is operational or not.

To implement this pattern in Pathfinder, a circuit breaker object is created for every
alternative path of every split operator. Pathfinder’s Nexus component (see Section 4.4.2)
provides information about the current health of each operator. Using that information,
the circuit breakers are updated accordingly (i.e., it is opened if at least one operator
failure in that path is detected). On each circuit breaker transition, the DSPE is contacted
and advised to update the physical data flow (i.e., stop it when the circuit breaker is
opened and resume it once it is closed).
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Example 4.8

The following figure depicts the data flow through a split operator Split. Each of the
outgoing paths (P1, P2 and P3) is assigned its own circuit breaker and the state of each
circuit breaker is indicated by a traffic light symbol.

Figure 4.9: Representation of circuit breakers in Pathfinder.

Since P1’s circuit breaker is in the open state, there is no physical data flow from A to P1.
By means of the probing mechanism, a small fraction of data items is forwarded to P2
due to its circuit breaker being half-open. P3 is the active path because it is has the lowest
path order (as indicated by the numbers next to the edges) of all available paths (due to
its circuit breaker being closed).

The following circuit breaker transitions are used in Pathfinder (as depicted in the state
diagram in Figure 2.8):

• Closed to open. The most important transition is arguably the opening of the
circuit breaker (which corresponds to blocking the physical data flow). An
implementation is conceivable where there are no other transitions and once
opened, the circuit breaker would stay open. This would imply that the main
path would no longer be usable and all subsequent data items are sent to the
fallback path.

While being in the closed state, the data flow is uninterrupted. The transition to
the open state causes the flow to stop immediately. More precisely, Pathfinder
advises the DSPE to stop the data flow by invoking an exposed REST endpoint.
This transition is caused by the Nexus component providing information about
an operator failure.

• Open to half-open. After a configurable time period, the circuit breaker au-
tomatically transitions from the open to the half-open state. In this state, the
probing mechanism takes place. Probing is the procedure to determine whether a
previously failed operator has already recovered.

• Half-open to open. If the probing has indicated that the path still contains failed
operators, the circuit breaker transitions back to the open state until another
probing attempt is started.
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• Half-open to closed. If the probing attempt succeeds and all operators of the
paths are fully operational again, the circuit breaker transitions to the closed state
and the normal data flow is restored.

4.5 Fault Tolerance-Oriented Development
Pathfinder is only moderately useful if it is solely used as a tool for supporting already
existing SPAs. This is comparable to introducing object-oriented programming into a
project after it has been implemented using imperative paradigms. Although there may
be some places in the code where it is beneficial to upgrade, it is too late in general.
Likewise, Pathfinder is most useful when new SPAs are developed.

Yang et al. [68] have coined the term “fault tolerance-oriented programming” where
they advocate the integration of fault tolerance into CPU multi-core architectures. In a
similar way, this work introduces fault tolerance-oriented development as a set of design
principles that help dealing with potentially failing software systems in a distributed
stream processing context.

4.5.1 Development Guidelines
There are several design and implementation guidelines one should follow in order to
maximise the benefits of an SPA supported by Pathfinder.

G1 Each operator can fail at any time. There are many reasons why operators might
fail, including hardware failures, operating system crashes, meteor strikes and –
last but not least – software bugs in the operators themselves. By accepting that
failures will eventually happen (since most SPAs run continuously for very long
periods of time), they become less frightening. This can be compared to exception
handling in ordinary programming languages. It is therefore recommended to
treat each operator as if it could fail at any time. In particular, one should not
rely on all computations to complete uninterruptedly.

G2 Availability first. More than anything else it is Pathfinder’s goal to maximise an
SPA’s availability. This will inevitably conflict with the goal of high consistency
in the cases of failure. One cannot argue that this design decision is suitable
for all kinds of applications, but there are already approaches available focusing
on consistency (see Section 3.1.2). There are many scenarios where the focus on
availability is suitable that can substantially profit from our approach. To utilise
this behaviour, SPA developers need to design their applications in such a way
that a few missing results will not disturb aggregated end results. In return, high
availability can be expected.

G3 Utilise functional redundancy. From the first two recommendations, it also
follows that the application designer must come up with a plan B in case of
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operator failures, because otherwise the high availability cannot be guaranteed.
As a rule of thumb, each operator should be at least replaceable by a single fallback
path. Availability in general increases with decreasing fallback path length and
with an increasing number of fallback paths per operator (see Section 4.5.3).

Example 4.9

We consider the following topology:

Figure 4.10: A topology of 10 processing operators that also contains a split and a join operator.

By adding a single fallback path (F, G, H, I) that provides a similar functionality as the
main path (B, C, D, E), failures in those operators can be compensated. However, the
fallback path itself may also suffer from faults. Having multiple fallback paths would
guarantee availability even in the unlikely event of multiple failures.
Now we consider an alternative topology that uses two smaller fallback paths instead of
one to cover the same path as before:

Figure 4.11: A topology of 10 processing operators with two split and two join operators.

This approach is much safer. We consider the case of one single failing operator in the
original main path. This will either activate the fallback path (F, G) or (H, I). However,
the availability of the whole application then only depends on the active fallback path
consisting of two operators rather than on four as in the previous example.
While designing smaller fallback paths is safer, it may also be more difficult and can
converge to n-version programming for paths of length one.

4.5.2 Allocation of Labour
There is another interesting advantage of a fault tolerance-oriented development. We
consider the case where a team of ten software developers is given the task to design and
implement a mission-critical SPA. We further assume that their SPA consists of twenty
operators and Pathfinder is not used. Since there is no redundancy, extreme care must
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be taken to identify and fix all bugs in the software by exhaustive testing techniques.
Nevertheless, if one of the operators fails, the whole SPA becomes unavailable.

Now we consider the same scenario with the same team of developers but this time,
they are using the Pathfinder framework to support path-level redundancy. By initially
defining fallback paths for distinct tasks, the development can be better split into
independent tasks and less care must be taken to identify bugs since in the case of
crashes or exceptions, the fallback path can be used.

4.5.3 Estimating Topology Resilience
To give developers concrete advice for their SPA, it is possible to analyse topologies
with respect to their level of resilience.

Laprie [69] defines resilience as “the persistence of service delivery that can justifiably
be trusted, when facing changes”. This definition is also applicable to SPAs that are
controlled by Pathfinder. Service delivery is present if at least one alternative path of a
split operator does not contain any failing operators. Whether service delivery continues
in the future facing changes (i.e., failing operators) is dependent on the number and
availability of alternative paths: service delivery in the future is more likely if faults
can be tolerated.

One can try to quantify resilience of a particular SPA topology by considering

• the number of operators for which no alternative paths are available at all,

• the average length of all alternative paths, and

• the average number of alternative paths.

For each operator where no alternative path is available, the whole SPA fails if a single
operator fails. Conversely, an SPA’s overall availability increases with the number of
alternative paths and their shortness.

We consider a theoretical scenario where the probability of failure in the next 24 hours
is p for each operator.

First, we assume an extreme case where no alternative paths are available at all and n
operators are connected linearly (that is, there is a single path of length n that contains
all operators). The probability of failure is then 1− (1− p)n.

Next, we consider a case where each of those n operators has one alternative path
of length one (therefore, having a total of 2n operators in the topology now). The
probability of failure for each pair of operators is then p2. The probability of failure for
the whole topology is then 1− (1− p2)n.
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Figure 4.12: Topologies for computing probability of failure with fallback paths..

Example 4.10

For example, we consider a topology of n = 12 operators (shown in Figure 4.12 topol-
ogy A) and a probability of failure of p = 0.05 (i.e., if the operator is run for a hundred
days, it will be free of failures in 95 of those days). Without alternative paths, its
probability of failure is 1 − (1 − 0.05)12 = 0.4596. In contrast, with the alternative
paths of length one (shown in Figure 4.12 topology B), the probability of failure is just
1− (1− 0.052)12 = 0.0296.

As an alternative, we consider a topology with four alternative paths that each cover
25% of the operators (i.e., the first 25% of the operators have a single fallback path of
length two, the second 25% have one, and so on). For each of the four main paths, the
probability of failure is 1− (1− p)n/4. Since each main path has a fallback path with
the probability of failure 1− (1− p)2, the overall probability of each 25% segment is
(1− (1− p)n/4)(1− (1− p)2). The whole SPA then consists of four such blocks one after
another. The overall probability of failure is therefore 1− (1− (1− p)n/4)(1− (1− p)2)4.

Example 4.11

For a topology with four segments of alternative paths (Figure 4.12 topology C) where
n = 12 and p = 0.05, the probability of failure is 1− (1− (1− 0.953)(1− 0.952))4 =
0.0545.

The lesson here is that the design of shorter alternative paths enhances overall availabil-
ity while having a comparable development effort. This of course restricts the structure
of alternative paths since they need to produce intermediary results that are compatible
for all succeeding alternative paths.

Figure 4.13 shows a topology and uses colour codes to represent resilience. Sources (A
and K) and sinks (Ω) are shown in grey. The operators in the first split/join segment
(B to I) are shown in green since they are very resilient due to a large number (three)
of short (average length 2.67) alternative paths. Operators J, L and M show very little
resilience since a failure of one of those operators would lead to a failure for the whole

71



4. Design of a Fault Tolerance Framework for Stream Processing

Figure 4.13: Colour coded resilience. Green, yellow and red depict a high, medium and
low level of resilience, respectively.

SPA. The operators of the next split/join segment show a comparatively low resilience
due to the length of the two alternative paths (6.0 on average). Long alternative paths
are unfavourable since the failure probabilities in one alternative path accumulate.
Finally, operator Z shows again little resilience due to a lack of alternative paths.

Colour coding the topology this way can be a very useful tool for SPA developers since
it allows them to directly identify weak portions of the topology that need attention.
With this figure in mind, it is straightforward to prioritise the development of alternative
paths for the operators J, L, M and Z.
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CHAPTER 5
Implementation

This chapter discusses the implementation of the Pathfinder fault tolerance framework.
It is based on the software architecture presented in Chapter 4.

Following a quick overview of the technology stack in Section 5.1, the implementa-
tion details of the three Pathfinder modules — the Communicator (Section 5.2), Nexus
(Section 5.3) and Circuit Breaker (Section 5.4) — are discussed. Then, Section 5.5 ad-
dresses the changes that were made to VISP in order to enable its interoperability with
Pathfinder. Finally, Section 5.6 introduces Pathfinder’s Web front-end.

5.1 Technology Stack
Pathfinder is developed as a standalone application that communicates with VISP
via REST calls. Figure 5.1 shows an overview of Pathfinder’s technology stack. The
implementation uses Java 81 based on the Spring Boot framework2. It uses Apache Maven3

as a build automation tool (thereby enabling reuse of VISP data structures from the
VISP Common module4). For object persistence, the Hibernate5 library is used on top
of a MySQL database6.

Persistence is used mainly for storing and retrieving operational statistics gathered from
VISP. To make Pathfinder accessible, a Web-based front-end has been developed using
the jQuery7 JavaScript library for making asynchronous REST calls to the back-end

1https://www.java.com/
2https://projects.spring.io/spring-boot/
3https://maven.apache.org/
4https://github.com/visp-streaming/common
5http://hibernate.org/
6https://www.mysql.com/
7https://jquery.com/

73

https://www.java.com/
https://projects.spring.io/spring-boot/
https://maven.apache.org/
https://github.com/visp-streaming/common
http://hibernate.org/
https://www.mysql.com/
https://jquery.com/


5. Implementation

Figure 5.1: Pathfinder’s technology stack.

server. Asynchronous JavaScript enables the inclusion of a dashboard into the front-end
that automatically refreshes and shows topology performance indicators for human
operators.

Pathfinder is provided as a Docker8 image which allows the easy deployment on any
host supporting Docker. Such a deployment has the advantage that no dependencies
need to be installed manually.

Although Pathfinder can be used with any DSPE that provides suitable interfaces, this
implementation is tailored specifically to work with VISP [5]. VISP is also based on
Spring Boot, Hibernate and MySQL. Additionally, it uses RabbitMQ9 as a commu-
nication infrastructure and Redis10 as a data structure store. Figure 5.2 shows the
full deployment of Pathfinder with VISP. Pathfinder is executed on its own host and
communicates with VISP by means of REST calls via the Communicator which in turn
manages the operators on its resource pools.

5.2 Communicator
Pathfinder needs to connect to VISP in order to query it for operational statistics and to
enable or disable alternative paths. Furthermore, communication to other Pathfinder
instances must be handled (e.g., to share DSPE statistics and to reach consensus about
operator availability).

8http://docker.com/
9https://www.rabbitmq.com/

10https://redis.io/
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Figure 5.2: Deployment diagram of Pathfinder and VISP.

5.2.1 Scheduler
Pathfinder uses a pull-based information gathering mechanism, i.e., it needs to ac-
tively request statistical data from VISP. Therefore, the Scheduler service regularly
invokes the getStatisticsFromAllRuntimes() method to trigger a topology re-
trieval (if it has changed; see Section 5.2.2) and to fetch operational statistics. Using
the @Scheduled(fixedDelay = 10000) annotation provided by Spring Boot, it is
specified that such retrievals happen with pauses of 10 seconds between two invoca-
tions.

Example 5.1

The first invocation of getStatisticsFromAllRuntimes() occurs at t = 0 and takes
8 seconds. At t = 8, the 10 second waiting interval starts. The next method invocation
occurs at t = 18.

There are also two other scheduled methods: updateTopologyStability() recom-
putes the topology stability (an indicator describing the topology’s stability displayed
in the dashboard) every 15 seconds and updateCircuits() computes the new circuit
breaker states every second. The latter function is called more frequently than new
statistical data is retrieved. The reason for this difference in frequency is that circuits
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Figure 5.3: Retreiving VISP’s topology.

in the half open state have a cooldown period and the updateCircuits() must
regularly check whether that period is already over.

5.2.2 Topology Retrieval
The DSPECommunicationController interface is provided by Pathfinder to com-
municate with VISP. Specifically, the VispCommunicationController implements
this interface to coordinate the communication to VISP. Once the /addDspeInstance
API is invoked with the appropriate IP and port of the VISP Runtime, the Visp-
Communicator service queries the VISP runtime for its current topology. Figure 5.3
shows a sequence diagram depicting this procedure. First, the Pathfinder user ac-
cesses the Web front-end and inputs the IP and port of the VISP runtime. The Visp-
CommunicationController then persists this runtime identifier to the local reposi-
tory that is then automatically queried by the Scheduler service. By accessing VISP’s
/getTopology REST endpoint, the VispCommunicator finally fetches the topology
in the VTDL format and stores it locally for later use by the Nexus and Circuit Breaker
modules.

If the newly fetched topology differs from the locally stored one, a topology update
took place. This indicates that at least some operators have been changed by VISP. As a
reaction, Pathfinder resets all circuit breakers and creates new ones if necessary if new
alternative paths have been added.

5.2.3 Fetching Operational Statistics
The Nexus module detects faults based on statistical data about operators. It is therefore
the responsibility of the Communicator to regularly fetch these statistics provided by
VISP.

In VISP, statistical data is available at the /pathfinder/getAllStatistics end-
point. The Scheduler service invokes this endpoint automatically every 15 seconds.
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Listing 5.1: Operational statistics as returned by VISP’s /pathfinder/getAll-
Statistics endpoint.

1 [
2 "position_to_keywords_user_tags": {
3 "network_out": 1932,
4 "network_in": 2430,
5 "delivery_rate": 1,
6 "cpu_now": 0.3019249969849246232,
7 "ram_now": 303,
8 "items_waiting": 0
9 },

10 "position_to_companies": {
11 "network_out": 0,
12 "network_in": 0,
13 "delivery_rate": 0,
14 "cpu_now": 0.0006677819095477388,
15 "ram_now": 303,
16 "items_waiting": 24
17 },
18 //...
19 ]

Internally, VISP stores operational statistics from Docker for each operator instance in
a local MySQL database. The statistics include CPU usage, memory usage, network
utilisation, as well as information about the RabbitMQ infrastructure such as queue size
and data item throughput. VISP’s statistics response consists of a JSON-encoded map
where the current values of those statistics are provided for each operator. Listing 5.1
shows an exemplary response for two operators position_to_keywords_user_-
tags and position_to_companies. While the former one is operating normally,
the second operator is experiencing a failure as can be seen by the low CPU utilisation
and the high number of items waiting in the queue. The Communicator persists this
information with the request’s timestamp. This way, historical data about the operators
is available that can be used by the Nexus component for classification purposes.

5.2.4 Path Commands
VISP needs to provide interfaces for Pathfinder to allow the execution of several
path-related commands:

• Add data flow to an alternative path. This command is needed whenever an
alternative path is activated (either because it is a fallback path and the main path
has failed or due to probing attempts). VISP offers the /pathfinder/switch-
Alternative endpoint where the data flow of a specific split operator can be
set to one of its alternative paths.
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• Deploy alternative paths’ operators. For VISP, no specific command is needed
to deploy the operators of an alternative path since this is also handled by the
/pathfinder/switchAlternative invocation.

• Probing. By invoking VISP’s /pathfinder/probe endpoint, a data flow to a
specific alternative path is initiated for a short window of time in order to find
out whether previously failed operators have recovered (see Section 5.4.2).

5.3 Nexus
The Nexus component is responsible for classifying operators. The INexus inter-
face specifies the predict() method that takes a SingleOperatorStatistics
object as its argument and returns an OperatorClassification enum (WORKING
or FAILED).

5.3.1 Operational Statistics
The SingleOperatorStatistics object contains statistics about an operator in-
stance. The data is collected by VISP and is persisted as a JSON object when the
Communicator module queries VISP. However, not all attributes are necessarily used in
the classification process.

5.3.2 Rule-Based Classification
The RuleBasedNexus class implements the INexus interface and classifies operators
based on their CPU and memory usage as well as the number of items in the RabbitMQ
queue. In particular, an operator is considered as failed if either

1. more than MAX_QUEUE data items are in the operator’s queue and the CPU usage
is below MIN_CPU,

2. the memory usage is below MIN_MEMORY MB and the CPU usage is below MIN_-
CPU,

3. the memory usage is above MAX_MEMORY MB, or

4. the rate of data item processing is lower than the rate of incoming data items.

Cases 1 and 2 strongly indicate that a failure occurred in the operator (in the first case
because the operator is not processing data while items are available to fetch and in
the second case because the low memory and CPU usages are uncharacteristic for
Java-based operators). In case 3, an unusually high amount of memory is used by
the operator which also suggests a malfunction. Finally, case 4 does not identify a
functional failure but rather the inability to process data items fast enough. This is
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a problem as well since it leads to an overflow in the operator’s queue in the long
run. The concrete values for the variables MAX_QUEUE, MIN_CPU, MIN_MEMORY and
MAX_MEMORY can be set by the user according to the particular topology.

These rules are in no way universally valid and need to be adapted to the specific oper-
ators that are used. Creating a customised Nexus can be accomplished by implementing
the INexus interface (e.g., for environments where less memory usage or a higher
incoming data item rate is expected). Future work in Chapter 7 contains suggestions
for more sophisticated ways to implement this module.

5.4 Circuit Breaker
A basic CircuitBreaker class has been implemented that stores the active state
(closed, open or half open) as well as the last time a probing attempt has been made,
and that allows transitions between states. The SplitDecisionService creates
and manages a map that assigns a circuit breaker object to each alternative path (see
Figure 4.9). After the operator classification took place, the circuit breakers’ states are
changed according to the availability of the operators.

5.4.1 Circuit Breaker Management
Once a new topology is fetched from VISP, new circuit breaker objects are created
for each alternative path by the SplitDecisionService. The identifiers of the
alternative paths are derived directly from the VTDL file by the VISP TopologyParser11.
Each circuit breaker starts in the closed state since initially, it is assumed that all
operators are operating correctly.

Each time the operator availability changes, the ProcessingOperatorHealth ser-
vice reassesses whether this change affects any of the alternative paths. If an operator
recovery is detected, the circuit breaker is changed to the closed state and the path
is available again. However, if an operator of an active path becomes unavailable, it
transitions that path’s circuit breaker into the open state and activates an alternative
path. To find a suitable alternative path, Pathfinder first considers all alternative paths
of the split operator the failing path was part of. From those alternative paths, it further
considers only those paths with a closed circuit breaker. If more than one path with a
closed circuit breaker is available, Pathfinder uses the one with the lowest path order.
It then advises VISP to change the physical data flow of all operators directly upstream
of the split operator to that alternative path. However, if no such path is available,
Pathfinder is not able to correct the operator failure at that point in time and waits for
the next scheduled retrieval of new operational statistics.

11https://github.com/visp-streaming/topologyParser
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Example 5.2

Figure 5.4: Selection of the alternative path.

In the logical topology view above, the main path contains a failing operator. Therefore,
Pathfinder tries to find a suitable alternative path. There are two such paths, both of
which are available. Pathfinder therefore picks path D since it has the lowest path order.

In any case, Pathfinder then transitions the circuit breaker of the failed path into the
open state to signal that it is no longer available. In this state, probing attempts are
initiated.

5.4.2 Probing
Figure 5.5 shows a sequence diagram of the probing mechanism. First, the Circuit
Breaker module determines that an alternative path with a circuit breaker in the open
state is to be probed again. Then, the circuit breaker’s state is transitioned to the
half open state and VISP’s /pathfinder/probe endpoint is invoked to start the
probing procedure. Next, VISP adapts the RabbitMQ infrastructure by creating a queue-
exchange binding that causes physical data flow to the alternative path (while leaving
the data flow to the main path intact). After a short amount of time, this data flow is
removed again. All the data items that have been produced between the activation and
the deactivation are processed by the probed path (unless it is still failing to do so). In
the meantime, Pathfinder continues gathering operational statistics from the operators
and detects whether the probed path has recovered in which case its circuit breaker is
transitioned to the closed state.

However, if no recovery took place, no further probing attempts are made until a certain
amount of time (cooldown) has passed. This mechanism ensures that no resources
are wasted for an inactive path (especially in long paths containing many operators).
The data items that have been produced during the probing attempt are automatically
removed from the operator’s queue after 10 minutes (see Section 5.5.1).

5.5 VISP Contributions
The fact that VISP is used as the slave DSPE of Pathfinder is reflected in several ways:
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Figure 5.5: Probing mechanism.

1. Receiving the current topology. In order to fetch the currently active topology,
Pathfinder calls VISP’s REST API which returns the topology in the VTDL format.
It then uses the VISP TopologyParser to convert the VTDL file into a machine-
readable format that is then stored locally. Since the topology can be changed at
runtime by the slave DSPE, Pathfinder periodically checks for updates.

2. Checking operator health. In order to determine whether an operator is working
correctly or has failed, Pathfinder queries VISP for operational statistics.

3. Switching paths. Once Pathfinder has made the decision to change the currently
active path of a split operator, it must communicate this change to VISP. For this
purpose, it makes a REST call specifying the split operator’s ID and the new
active path. This invocation is idempotent, i.e., Pathfinder does not need to wait
for an acknowledgement of the message but can rather re-transmit it in the next
scheduling interval if it has not detected an according topology change in the
meantime.
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4. Probing. When in the half open state, the circuit breaker of an alternative path
must enable data flow from time to time to see whether the operators have
recovered (see Section 4.4.4). With VISP, this mechanism is implemented by
changing the binding of queues to exchanges (see Section 5.4.2).

Again, making these decisions is DSPE-specific and is not to be seen as a restriction to
Pathfinder in general.

Example 5.3

To operate Pathfinder with another DSPE that does not support the VTDL format, one
needs to add customised code to Pathfinder that translates the topology. Similarly, if a
DSPE does not directly allow the switching of alternative paths, one needs to perform
this action indirectly using the topology modification mechanisms that are available.

5.5.1 Lazy Deployment
When an alternative path is activated by Pathfinder, VISP must ensure that all of its
operators are deployed. One possible approach for VISP is to deploy every operator of
the topology at initialisation regardless of its membership in fallback paths. This way,
operators are continuously ready for service and the path switching process happens
very quickly. However, this comes with the caveat that resources must be reserved for
operators that are not used until faults occur. If this strategy is chosen, it is questionable
why not to simply run a replica of the first system on different resources and use that
system as an active-standby backup (although this would ignore the benefit of having
different implementations that can fill in for each other).

Therefore, another approach is to delay operator deployment until it is necessary. This
lazy deployment approach requires less computational resources at initialisation time
but also during runtime since it is highly unlikely that all fallback paths are activated
at the same time. Obviously, the caveat of this approach is the time it takes until an
alternative path is ready for processing. During this time, the SPA does not produce
results and would therefore possibly violate availability constraints.
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Listing 5.2: VTDL file showing the usage of the lazyDeployment parameter.

1 $split = Split($step1) {
2 lazyDeployment = true,
3 pathOrder = $step2 $step3
4 }

Example 5.4

If lazy deployment is used with the topology below, only operators A, B, C and E are
deployed at initialisation while operator D is not. Only when the failure of operator C is
detected, Pathfinder commands VISP to deploy D in order to use it as a fallback. While
this saves resources, it causes an additional delay since no results are produced between
the failure of C and the complete deployment of D.

Figure 5.6: Lazy deployment.

To find a tradeoff between availability and resource consumption, Pathfinder allows the
user to adjust its behaviour by using configuration parameters in the VTDL file. Speci-
fying such parameters directly by language-level annotations comes natural for the SPA
developer and is already best practise in other fault tolerance approaches [70]. Using
the lazyDeployment parameter, one can specify for each split operator whether the
alternative path’s operators’ deployment must already happen at topology initialisation
(false; default) or not until the activation of the fallback path (true). Listing 5.2 shows
an excerpt of a VTDL file that shows the usage of the lazyDeployment parameter.
There, the split operator split has two alternative paths. Only the operators of the
main path are deployed at runtime while the operators of the fallback path step3 are
deployed only when a fault in step2 is detected.

When lazy deployment is used, several additional steps occur after the activation of an
alternative path. At first, the messaging infrastructure is set up by creating queues and
exchanges. As soon as the first queue for the new alternative path has been created, the
data flow is redirected from the failing main path to the fallback path. Data items pile
up in the operator’s queue until the operator deployment has been finished and the
newly started operator is able to process them. By automatically discarding data items
older than a certain time interval (e.g., 10 minutes), it is assured that the alternative
path does not waste time processing obsolete data. Listing 5.3 shows how such a
mechanism is implemented using RabbitMQ’s time-to-live feature. By specifying the
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Listing 5.3: Using RabbitMQ’s TTL feature to automatically discard old data items.

1 Connection connection = createConnection();
2 Channel channel = connection.createChannel();
3

4 //declare the exchange:
5 channel.exchangeDeclare("exchange-name", "fanout", true);
6 Map<String, Object> args = new HashMap<String, Object>();
7 int maxTtl = 10 * 60 * 1000;
8 args.put("x-message-ttl", maxTtl);
9

10 //declare the queue:
11 channel.queueDeclare("queue-name", true, false, false, args);
12

13 //bind queue to exchange
14 channel.queueBind("queue-name", "exchange-name", "");

x-message-ttl argument (line 8) when declaring a queue, RabbitMQ automatically
discards data items that have been on that queue for a longer time than the value of
that parameter.

While a fallback path is in use, attempts are made to recover the failed main path (see
Section 5.2.4). Once Pathfinder reports that the main path is fully operational, the
physical data flow is redirected to the main path again and the operators of the fallback
path are removed if lazy deployment is used.

5.5.2 Path Switching
In order for Pathfinder to be able to switch between different alternative paths, the Rab-
bitMQ message distribution mechanisms must be adapted. There are two requirements
that must be fulfilled:

1. Switching paths must be quick. The probing mechanism used by Pathfinder (see
Section 4.4.4) determines whether a path is able to correctly process data items. A
probing attempt forwards data items only for a small time window in order to
avoid putting additional load on an already overloaded system and save costs
(e.g., in cases where an external API is invoked). The creation and removal of
physical data flows is very time-efficient in VISP due to the underlying RabbitMQ
infrastructure (as demonstrated in the evaluation experiment in Section 6.2.2).

2. Data items must be duplicated. During a probing attempt, the data flow to the
currently active path must not be interrupted. Otherwise, data item loss may
occur. The rare case where both paths successfully process the same data items
is tolerated since Pathfinder only guarantees at-least-once and not exactly-once
delivery.
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5.5.3 Split and Join Operators
In contrast to other operators, split and join operators are not deployed by VISP on
computational resources. Instead, they are just a semantic entity that allows a simple
notation of fallback paths for SPA developers. Whenever a split/join pair is identified
during the VTDL parsing process, the following rules are applied:

• a data flow from an operator A to a split operator S is replaced by a data flow
from A to all operators directly downstream of S,

• a data flow from an operator B to a join operator J is replaced by a data flow from
J to all operators directly downstream of J,

• a queue-exchange binding from the exchange of A is only created for the queue
of the main path’s first operator.

Example 5.5

Below the physical and logical views of a topology consisting of four processing operators
A, B, C, D that are mapped to the messaging infrastructure are shown. While the Split
operator is no longer existing as a separate entity at the infrastructure level, its semantic
information is captured in operator A, i.e., there is a queue for each alternative path in
A that can be bound to A’s exchange. Therefore, there are two separate queues (QC and
QB) for A.
In the default state, there is only a physical data flow between the exchange (X) of A to
queue QB since B is the alternative path with the lowest path order (1). If B fails, the
physical data flow from X to QC is established while the one to QB is removed and all
further data items are sent only to QC. Once in a while, the probing mechanism briefly
activates the data flow to QB again in order to check whether B has recovered.

Figure 5.7: Left: Logical view of a topology consisting of four operators. Right: Physical view of the
same topology showing the data flow as well as the created exchanges and queues. Since operator C
is only part of a fallback path, there is no physical data flow from A to C unless operator B fails.

While initially only the main path is active, the sequence diagram in Figure 5.8 shows
how Pathfinder can change which alternative path is active. Once the SplitDecision-
Service opens an active path’s circuit breaker, it invokes VispCommunicator’s
switchSplitToPath method which contacts the VISP Runtime via a REST endpoint
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Figure 5.8: Setting the active alternative path.

invocation (message 1.1 depicted in blue) and instructs it to change the active alternative
path by changing the queue-exchange bindings appropriately using the Topology-
Management service as shown in Figure 5.7.

5.6 Front-End
A Web-based front-end has been created to allow the monitoring of the topology’s
stability and to add or remove VISP Runtime instances. Figure 5.9 shows a screenshot
of the front-end. On top, key figures (IP, port, the number of connected instances, the
number of accumulated database entries, uptime and software version) are shown. A
text input form can be used to enter the IP and port of a new VISP Runtime instance
Pathfinder connects to. The front-end also allows the removal of VISP Runtimes.

In the left part of the first row, a continuously refreshed diagram shows the current
topology stability. Topology stability is a number between 0 (low stability) and 1 (high
stability) and is computed as an average over the fraction of active alternative paths
over all split operators.

Below the topology stability, an overview over all operators with their locations and
types are shown. Additionally, the operators’ health status are indicated. On the very
bottom of the Web page, the topology is depicted using colour codes (green and red
for working and failed operators, respectively).
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Figure 5.9: Pathfinder’s Web front-end.
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CHAPTER 6
Evaluation

In order to investigate how well Pathfinder performs, we have conducted several
experiments. First, this chapter introduces the experimental methodology and setup in
Section 6.1. Then Section 6.2 describes three preliminary experiments that are conducted
to investigate different aspects of Pathfinder’s fault tolerance mechanism in isolation.
Section 6.3 evaluates Pathfinder itself by applying it to the motivational scenario
introduced in Section 1.2.2. The evaluation results are presented and interpreted in
Section 6.4. Furthermore, we discuss the general applicability of Pathfinder to the
motivational scenario as well as its limitations in Section 6.5. Finally, the fulfilment of
Pathfinder’s initially defined requirements is evaluated in Section 6.6.

6.1 Evaluation Setup
All of the experiments are conducted using the following experimental setup:

• Test infrastructure: Experiments are performed on a private OpenStack1-based
cloud. An m1.large instance (7 GB memory, 4 VCPUs) and an m1.medium
instance (3 GB memory, 2 VCPUs) are used for the deployment of the VISP Run-
time and Pathfinder, respectively. Additionally, there are four more m1.large
instances serving as a computational resource pool for spawning the operator
instances used for data processing.

• Evaluation topology: An evaluation topology has been created based on the
motivational scenario introduced in Section 1.2.2. It is used in all experiments
and its implementation is described in detail in Section 6.1.1.

1https://www.openstack.org/
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• Data generation: We use the VISP DataProvider2 to generate data items in a
reproducible way. We use the constant pattern, i.e., the production of new data
items at a constant rate. We furthermore specify that a new data item is generated
every two seconds. The DataProvider is deployed on the same virtual machine as
the VISP Runtime to minimise network communication overhead and thereby to
allow more accurate measurements of the troughput.

• Introduction of faults: Since naturally occurring faults (e.g., a failing hard drive)
are rare, the behaviour of Pathfinder in case of faults is analysed by causing them
artificially. We introduce three different kinds of failures to show how Pathfinder
detects them and whether it reacts accordingly.

6.1.1 Evaluation Topology
A topology has been developed based on the motivational scenario. The VTDL file
defining the topology is included in the Appendix (Listing A.1) and Figure 6.1 shows
its logical topology view.

Every sink in the topology only consumes the data without any further action. For the
remaining operators, Table 6.1 lists how much work they need to perform for each data
item for the following tasks:

• S1_GPS_Data: User positions derived from the GPS module of mobile devices
enter the SPA via this source.

• S2_IPS_Data: User positions derived from indoor position systems enter the
SPA via this source.

• S3_Ad_interaction: Each time a social network user interacts with an ad
campaign (e.g., by clicking on a banner), an ad interaction data item is produced.

• P1_Transform_location_data: This operator transforms data items from
the sources S1 and S2 into a common format for further processing.

• P2_Suggest_nearby_friends: Based on the current position of the social
network participants, this operator suggests connections with other users based
on geographical proximity and other matching criteria (e.g., common friends,
workplaces or interests).

• P3_Get_keywords_near_distance_to_location_external: The external
Atlas service is used to retrieve a set of keywords for a specific location.

• P4_Find_companies_near_distance_to_location: Based on a location,
a set of companies located in proximity is fetched from a database.

2https://github.com/visp-streaming/dataProvider
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Listing 6.1: Computing Fibonacci numbers to simulate load.

1 public long _fibonacci(int n) {
2 if (n <= 1) return n;
3 else return _fibonacci(n-2) + _fibonacci(n-1);
4 }

• P5_Get_keywords_by_company: A company is transformed into a set of key-
words based on what they sell.

• P6_Get_keywords_near_distance_to_location_by_user_tags: Key-
words for a specific location are fetched from a database containing user annota-
tions.

• P7_Find_ads_by_keywords: Filters the set of all ad campaigns by restricting
them to certain keywords.

• P8_Analyse_interaction_data_locally: Uses statistical methods to find
ad campaigns with a low number of user interactions.

• P9_Generate_hourly_summary: Based on the analysis outcomes, a report
is sent to a human operator every hour to inform them about ads with low
conversion rates.

• P10_Analyse_full_statistics_for_weekly_report: A local system per-
forms a correlation analysis to identify factors causing a high conversion rate
depending on the stored information about the customers.

• P11_Get_full_statistics_from_3rd_party_API: An external third-party
service is used to generate the raw data for the weekly report.

• P12_Transform_statistics_response: The response from the third-party
service is transformed into a suitable format and annotated with data from the
local customer database.

• P13_Generate_PDF_report: The weekly PDF report for the marketing depart-
ment is created.

• P14_Count_interactions_by_campaign: Interaction numbers for each ad
campaign are generated in order to display them in a customer dashboard.

Since fully implementing the motivational scenario is out of scope of this thesis,
we used individual operators that just simulate a predefined load. In particular,
the SimulatedLoadController class in VISP’s ProcessingNodes module has been
created. For each data item arriving at an operator’s queue, the processing of that
item is simulated by computing the Fibonacci sequence (as shown in Listing 6.1) until
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Operator n Avg. proc. time [s]

P1_Transform_location_data 37 0.199
P2_Suggest_nearby_friends 43 2.115
P3_Get_keywords_near_distance_to_location_external 40 0.841
P4_Find_companies_near_distance_to_location 40 0.841
P5_Get_keywords_by_company 40 0.841
P6_Get_keywords_near_distance_to_location_by_user_tags 40 0.841
P7_Find_ads_by_keyword 40 0.841
P8_Analyse_interaction_data_locally 48 18.188
P9_Generate_hourly_summary 40 0.841
P10_Analyse_full_statistics_for_weekly_report 49 38.880
P11_Get_full_statistics_from_3rd_party_API 43 2.115
P12_Transform_statistics_response 37 0.199
P13_Generate_PDF_report 37 0.199
P14_Count_interactions_by_campaign 43 2.115

Table 6.1: Load simulation. This table shows how the different operators were assigned
different simulated loads in order to reproduce a real-world scenario.

n where n is configured according to the operator type (the higher n, the longer the
process takes and the less data items per second can be processed by the operator). The
values of n for the different operators are shown in Table 6.1 and have been chosen to
approximate the expected work done by each operator. The average time it takes an
operator to process a single data item for a specific n is shown in the last column.

6.2 Preliminary Experiments
In this section, we demonstrate Pathfinder’s capabilities in isolation. First, we show
that Pathfinder is in fact able to detect whether an operator is experiencing a failure by
evaluating operational statistics provided by VISP. Then, the path switching mechanism
introduced in Section 5.5.2 is evaluated. Finally, a theoretical experiment compares
Pathfinder to a full replica setup regarding their operational cost.

6.2.1 Fault Detection
Pathfinder delegates the task of detecting faults to the Nexus component. The
RuleBasedNexus class is the default Nexus implementation and works by comparing
several operator statistics to predefined thresholds.
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Figure 6.1: Topology for the motivational scenario.

While the thresholds can be manually adjusted to the actual operators, this experiment
shows that our general approach is valid. For the sake of clarity, we assume that there
is exactly one operator instance per operator type (i.e., there is no scaling).
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Listing 6.2: Obtaining CPU statistics from Docker. This bash script continuously queries
the docker stats API to obtain the current CPU load of a specific container.

1 while true
2 do
3 a=`date +%s`
4 b=`docker stats $1 --no-stream | awk '{print $2}'`
5 a+="\t"
6 a+=$b
7 echo -e $a
8 done

The goal of this experiment is to show that the CPU usage can be properly detected
by Pathfinder using the statistics obtained by Docker. Listing 6.2 shows the code that
is used to obtain the statistics (executed on the Docker host). It relies on the docker
stats command to retrieve the CPU usage each second.

Figure 6.2 shows the CPU usage of a single Docker container that runs a processing
operator. There are two phases that can be distinguished. From time t = 0 to t = 205,
the CPU activity is constantly low. This corresponds to an inactive operator. At t = 205,
the data flow is activated and the CPU activity fluctuates between 40% and 100%. This
clearly indicates that an inactive operator can be detected using this mechanism.

Figure 6.2: Docker container CPU usage over time.
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6.2.2 Switching Alternative Paths
When Pathfinder detects a failing operator and an alternative path is available, it
attempts switching the data flow from the failing path to the available path. This
experiment evaluates a) how long it takes to switch to another path and b) whether a
constant data flow can be accomplished throughout this process.

In this experiment, three operators named operator 0, 1 and 2 are set up as alternative
paths in a split/join segment. In order to measure operator usage, each operator
instance transmits its operator ID to a REST endpoint as soon as a data item has been
processed successfully. A Python application is used to collect these requests and log
the cumulative invocations over time. Based on those logs, a detailed time series can be
created to deduce the operator usage.

The experiment is fully automated and repeated 16 times to exclude indeterministic
effects due to the cloud usage of other applications.

6.2.3 Comparison to Active Replication
In the following theoretical experiment, we want to show how Pathfinder compares to
setting up an active replication where each operator instance in a split/join segment is
assigned a replica that takes over once a failure occurs.

We consider the topology in Figure 6.1 where two split/join segments are included.
For each segment, we assume there is only one path (i.e., we ignore the functional
redundancy in the form of alternative paths) in setup A. In setup B, we assume all
alternative paths are active at all times.

Setup A
In setup A, each operator instance is deployed twice and both instances (replicas)
process incoming data items in parallel and emit results. Directly after each pair of
replicas, a duplication detection operator must be installed that decides which of the
results is forwarded to the next operator according to the topology. If both replicas
are working correctly, both of them will produce the same results and the duplicate
detection operator only needs to make sure that no duplicate results are forwarded. If
one of the replicas fails, the duplicate detection operator either must be able to discern
this based on the emitted data items (e.g., if the failed operators sends a specific error
code for each data item) or the failing operator ceases to produce any data items at all.

For the topology in Figure 6.1, this means

• two additional operator instances must be deployed as active replicas (P3 and
P10),

• there must be two additional duplicate detection operators,
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• operators P4, P5, P6, P11 and P12 are no longer used.

While this might look like superior from an arithmetic point of view (adding four
operators while removing five), the reality is more complicated. First, Pathfinder would
use the operator instances in the fallback paths (P4, P5, P6, P11 and P12) only in case
there are failing operators in the main path. Most of the time, they are not deployed
and therefore do not take up any resources.

Second, the functional redundancy in Pathfinder does not only protect from failures
that can be corrected by spawning a new operator instance. For example, a bug in the
operator itself that is caused by specific input data can persist even after a redeployment.
Using Pathfinder, it is highly unlikely that all fallback paths show the same flaws.

However, active replicas have the advantage of a very fast adaptation rate, i.e., no
time is wasted between the occurrence of a failure and further data item processing
(provided the other replica is still available).

Setup B
In setup B, only one instance per operator is deployed. However, if there is functional
redundancy, all alternative paths are deployed at all times. There is also a need for
duplicate detection operators to make sure that different alternative paths do not
produce duplicate results.

For the topology in Figure 6.1, this means

• there must be two additional duplicate detection operators,

• operators P4, P5, P6, P11 and P12 are deployed at all times.

Compared to setup A, this setup does not need the replicas of individual operators
while having the same number of duplicate detection operators. However, it actually
takes more operator instances in total since (1) there is more than one alternative path
for P3 and (2) the length of the alternative paths exceeds the length of their respective
main paths in both split/join segments.

Since the redundant instances have different implementations in this setup, it provides
the same level of protection against faults as the one where Pathfinder is used. However,
compared to Pathfinder, the resource usage of this setup is higher because the alternative
paths are permanently in use (regardless of the presence of an operator failure).

Comparison
To conclude this theoretical experiment, we estimate the total cost for all three deploy-
ment scenarios. We assume that each operator is deployed on a public cloud using
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a virtual machine with 2 virtual CPUs and 8 GiB memory. Furthermore, we assume
each instance cost amount to 0.093 EUR per hour and is billed every 60 minutes. This
corresponds to a t2.large instance at Amazon AWS3.

We compute the cost for four weeks of operation where in each week, both operators
fail two times each (once for 10 minutes and once for 2.5 hours).

• Setup A. In this case, there are 14 processing operators minus the five ones that
are only part of fallback paths, plus two extra instances being active replicas and
two duplicate detection operators. This sums up to a total of 13 operators that
must be deployed.

13 operators · 0.093 EUR/hour · 24 hours/day · 28 days = 812.45 EUR

• Setup B. Since all operators are active at all times, there are 14 processing opera-
tors plus two duplicate detection operators. This sums up to a total of 15 operators
that must be deployed.

15 operators · 0.093 EUR/hour · 24 hours/day · 28 days = 937.44 EUR

• Pathfinder. Here, we have to consider all 14 operators. However, five of those
are only part of fallback paths, so their deployment cost is only considered when
failures occur.

9 operators · 0.093 EUR/hour · 24 hours/day · 28 days = 562.46 EUR

is the cost for deploying all the main paths. We then need to add that cost that is
caused by deploying fallback path operators in case of failures. Since we know
that there are four failures of 10 minutes (however, we have to bill a full hour)
and four failures of 2.5 hours (billed for three hours) for each of the two split/join
segments, we have to add

2 operators · 4 failures · 0.093 EUR/hour · 1 hour+
2 operators · 4 failures · 0.093 EUR/hour · 3 hour = 2.98 EUR

In total, the cost for the Pathfinder case accumulates to 565.44 EUR.

In summary, setup B has the highest cost of the investigated scenarios. The cost
of setup A is about 15% lower since only 13 instead of 15 operators are deployed.
This decrease in cost comes with the price of less redundancy since the alternative
implementations are not used at all. Pathfinder comes with the lowest cost (about
40% less than setup B and 30% less than setup A) while achieving a similar level of
redundancy as setup A. Figure 6.3 visually depicts its cost.

3https://aws.amazon.com/ec2/instance-types/
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Figure 6.3: Deployment cost for active replicas and Pathfinder.

6.3 Motivational Scenario
Evaluating Pathfinder in the context of a real-world scenario is necessary to emphasise
the benefits for the SPA users. This experiment investigates how much time it takes
Pathfinder to activate a fallback path once an operator fails.

Figure 6.1 shows an SPA topology that implements the motivational scenario. It consists
of three sources: S1 and S2 provide the positions of social network users and S3 creates
data items whenever a user interacts with an ad. The processing operators P1 to P14
implement the functionality described in the introduction of the motivational scenario.
The focus of the evaluation is on operators P1, P3, P4, P5, P6 and P7 due to the three
alternative paths that lead from P1 to P7. Primarily, P3 is used to get a list of keywords
for a certain GPS location by invoking the external Atlas API. In case of failure, P6 is
used as a fallback. Finally, if both P3 and P6 are unavailable, a third alternative path
consisting of P4 and P5 can be used. Finally, the keywords arrive at P7 and are used to
find suitable ads.

6.3.1 Operator Failures
We simulate operator failures in three different ways: (1) exhaustive memory consump-
tion, (2) total suspension of execution and (3) low processing throughput. Each failure
is triggered manually or automatically based on a scripted scenario after a certain
number of data items have been successfully processed.
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Total Suspension of Execution (SLP)
There are multiple reasons why an operator can completely suspend its execution
in real-world use cases. Examples include application code exceptions, hardware
failures, host operating system failures and unavailability of external services. All those
examples have in common that the operator is no longer emitting results. Pathfinder’s
Nexus component detects these faults by observing the rate of the item output and
classifies an operator as failed if it is zero despite data items are waiting on the input
queue(s).

This experiment simulates such cases by invoking the Thread.sleep() method to
suspend further execution in the operator implementation after a certain number of
data items has been produced.

Exhaustive Memory Consumption (MEM)
Under normal operating conditions, each operator uses a certain amount of system
memory. The exact amount may fluctuate, but one would not expect sudden spikes.
This observation is used to classify an operator as failed if its memory usage is above
or below predefined thresholds. In this experiment, an operator is programmed to
suddenly use more memory than usual.

Again, Pathfinder’s Nexus component is programmed to detect this increase and
classifies the operator as failed once the predefined threshold of 1024 MB is reached.

Low Processing Throughput (THR)
An operator does not necessarily have to fail completely to be classified as failed from
the DSPE perspective. On the contrary, it is sufficient that the operator is not able to
cope with the velocity of its input data streams. In this experiment, an operator is
slowed down artificially.

Pathfinder’s Nexus component compares the rate of incoming data items to the rate of
their consumption and classifies an operator as failed if the incoming rate is larger. If
no fallback were to be initiated, the operator’s queue would eventually overflow.

6.3.2 Experimental Procedure
Each experiment starts by uploading the VTDL file to the VISP Runtime. As a result,
the operators are deployed and the main path is activated once the setup is complete.
Then, the VISP data provider is configured to continuously produce data items at the
gps_source source. The split operator split_transformed_data describes three
alternative paths P3_Get_keywords_near_distance_to_location_external
(P3), P4_Find_companies_near_distance_to_location (P4) and P6_Get_key-
words_near_distance_to_location_by_user_tags (P6). Initially, P3 is active
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Figure 6.4: Time to response. The time it takes between an operator failing and the
appropriate replacement being deployed consists of six phases.

and receives data items from P1. After about 300 seconds, an artificial fault is deliber-
ately introduced into P3 based on the symptoms discussed in the previous section.

In the meantime, Pathfinder continuously queries VISP for operator statistics. Initially,
all statistics are expected to show normally working operators. Once the artificial
failure has been introduced, Pathfinder is expected to detect the failure of P3 and react
by switching to the next alternative path (P6). The time between the beginning of
the failure and the activation of P6 is named time to adapt. It consists of six parts (as
depicted in Figure 6.4): the time between two scheduling intervals, the time it takes
to receive the statistics from VISP, the time it takes for the Nexus component to make
a prediction for an operator, the time it takes until Pathfinder can communicate its
decision to VISP, the time it takes VISP to switch paths and the time it takes until a
newly activated operator is deployed (only when lazy deployment is activated).

Once the artificial failure is removed and P3 recovers, Pathfinder is expected to detect
this recovery and switch back to P3. Regular probing events are used to verify whether
P3 has already recovered.

6.4 Evaluation Results
6.4.1 Fault Detection
The preliminary experiment regarding fault detection (Section 6.2.1) aims to show that
statistics from Docker containers can be used to detect operator failures. As shown by
the data in Figure 6.2, there is a clear distinction between phases of activity where the
CPU usage fluctuates between 40% and 90%, and phases of inactivity with a CPU usage
near zero. Docker limits queries for container statistics using the stats command to
once per second. This is not an issue for the use cases addressed by Pathfinder where
unavailability even for a few minutes is acceptable.

Fault detection using Docker statistics is of course limited to those cases where the
operator’s failure results in abnormal CPU or memory usage.
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Example 6.1

Examples for operator failures that affect CPU and memory usage include: (1) a crashing
JVM (e.g., due to an exception), (2) hardware failures, (3) operating system crashes, and
(4) memory leaks.

For those cases, this experiment shows that the general detection approach is working.

6.4.2 Path Switching
Section 6.2.2 introduced an experiment to measure how long it takes to switch between
alternative paths and whether the downstream data flow is interrupted during this
process.

Figure 6.5 depicts the experimental results. The plot shows the cumulative number
of operator invocations over time for operators A, B and C in blue, orange and green,
respectively. Red lines indicate the times when the message flow has been changed
(at 120, 240, 360, 480 and 600 seconds). The plot shows the median over 16 individual
measurements and their standard deviation in lighter colours by averaging the cumu-
lative number of invocations for each second. This high number of experiments was
conducted to exclude potential indeterministic effects due to the cloud usage of other
applications.

Initially, only operator A is invoked since it is the main path. At t = 120 seconds,
the active path is switched to operator B (as shown by the red vertical line). Almost
instantly, no more invocations occur for operator A but for operator B instead. After
another 120 seconds, the data flow is redirected to operator C, which shows the same
instant rise in activity as operator B before. The whole procedure is then repeated for a
second time with another three 120 second cycles.

As shown by the standard deviation, there is a certain degree of random fluctuation in
the data flow throughput. First, this can be attributed to the usage of cloud resources.
Since other applications are also running on the same infrastructure, their resource us-
age (e.g., network and hard disk usage) can influence the actual processing capabilities.
Second, the measurement of the invocations itself can affect the overall performance
since for each processed data item, an HTTP request is sent to a central monitoring
component. This puts additional load on the network infrastructure and might also be
the reason for the high fluctuations.

Nevertheless, the experimental results clearly show that the path switching mechanism
itself is operating quickly and is therefore suited for the use in Pathfinder.
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Figure 6.5: Activating different fallback paths (n = 16).

6.4.3 Motivational Scenario
In Section 6.3, Pathfinder was applied for a topology derived from the motivational
scenario. The time to adapt was measured for three different failure types in order to
evaluate how well Pathfinder performs with respect to availability and resource usage.

Discussion of Results
Figure 6.6 shows a plot that visualises the temporal connection between the different
experimental phases. Different phases are depicted by horizontal bars in different
colours. The width of each bar corresponds to its duration and the position along the
x-coordinate shows its beginning and end.

Starting at time t = 0, the initial topology setup takes about 57 seconds. This phase
includes (1) uploading the VTDL file to VISP (and all subsequent initialisation steps
performed by VISP), (2) adding the IP of the VISP Runtime instance to Pathfinder and
(3) starting the VISP DataProvider.
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Figure 6.6: Plot showing Pathfinder’s actions in case of failure.

The second phase starts when the first data item from the VISP DataProvider was
successfully processed by the P1 operator (approximately at t = 58). In this phase, the
main path (P3) is active and is successfully processing incoming data items. While it
is not explicitly shown in the plot, Pathfinder continuously queries the VISP Runtime
instance for operational statistics to detect potential failures but does not detect anything
yet.

At t = 159, an artificially generated operator failure of P3 is triggered. Specifically, this
plot shows the data for the total suspension of execution (SLP), but it looks similar for
all failure types. The total length of the failure is 300 seconds. During this time, the
main path is not available.

Since Pathfinder queries VISP in intervals of 15 seconds, some time passes where no
path is active. This phase takes about 27 seconds and ends when Pathfinder commands
VISP to switch to P6. As discussed in the previous section, switching paths is very
time-efficient and after 0.39 seconds, P6 is active.

While P6 is active, probing attempts are made where the data flow to P3 is restored for
a few seconds to see whether the operator has recovered. In this implementation, the
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time between two probing attempts is always the same. In a production environment,
one can increase this time after each failed attempt to generate less resource usage.

Once P3’s failure stops after 300 seconds, Pathfinder switches back to P3 after a few
probing attempts and the period of P6 activity ends after a total of 340 seconds. Without
Pathfinder, this period would have equalled to unavailability of the whole SPA.

In summary, the experiment has successfully shown that Pathfinder is able to max-
imise the SPA’s availability in the presence of operator failures by utilising functional
redundancy at the path level.

Shortcomings
There are a few more things to discuss at this point. First, the time it takes to detect
the failure is quite high (27 seconds). This is the price to pay for the very generalised
approach where absolutely no implementation details of the operators are shared
with Pathfinder and the detection relies solely on statistics provided by Docker and
the performance indicators of the messaging infrastructure. To reduce this time, one
can query statistics from VISP more frequently at the price of a higher performance
overhead.

Second, the time it takes to detect the recovery. As can be seen in the plot, there are
three probing events between the end of P3’s failure and the activation of the main
path. One would assume that a single probing event should suffice, but it is more
complicated. Each probing event consists of three stages: (1) the activation of data
flow, (2) a short pause, and (3) the inactivation of data flow. Due to the fluctuations in
produced data items, it can happen that the pause is too short and no data items are
produced during this time span. This can again be fine-tuned by elongating the pause
at the cost of increased resource usage. Also, the post-probing operator classification
uses the same mechanism as the normal operator classification and therefore also relies
on VISP’s statistics. If the probing window opens immediately before the last statistics
has been fetched, it takes another 15 seconds until the probing results show up in the
next request.

Different Failure Types
Figure 6.7 shows the time to adapt for the three different operator failure types discussed
in Section 6.3.1. The y-axis shows the average time to adapt as measured in four
experiments (as those shown in Figure 6.6) for each failure type. The total suspension
of execution (SLP) is detected on average after 30 seconds. It is the quickest to be
detected since its effects are reflected immediately by the lack of new data items. The
first rule of the RuleBasedNexus implementation (see Section 5.3.2) interprets both a
low CPU utilisation and a high number of enqueued data items as a sign for a failure
and therefore classifies this operator as failed.
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Figure 6.7: Time to adapt.

The exhaustive memory consumption (MEM) takes between 45 and 50 seconds to be
detected. Once the failure starts, more and more memory is used, but it takes some
time until the threshold in rule 3 is reached and the operator is classified as failed.

The low processing throughput (THR) failure’s detection time varies much more than
that of the others. This is due to its dynamic nature. Since the failure only causes a
processing delay, the failure classification (rule 4) is only triggered when the incoming
data item rate is large enough. As discussed in Section 6.4.2, this depends on multiple
factors including the current utilisation of the cloud infrastructure.

6.5 Limitations of Applicability
Based on the discussion of the evaluation results, this section focuses on the limitations
of Pathfinder’s applicability.

First and most important, there is the time to react to failures. The experiments in
the previous section have already shown how much time it takes to detect failures
and recoveries and switch between different paths. Another factor that was not even
considered here is the time it takes to deploy new operator instances if lazy deployment
is used (which however heavily depends on the underlying DSPE and is therefore not
evaluated in this thesis).

While this implementation is production ready, one can think of improvements to
reduce the time to adapt. However, it cannot be expected to reduce it to the millisecond
range, for example. Use cases where such a level of availability is needed (e.g., in
critical software of self-driving vehicles) can therefore not be covered by Pathfinder.

105



6. Evaluation

Second, there is a limitation regarding the use of external services. Since Pathfinder
uses probing to temporarily activate the data flow to another path, there can be the
situation where two or more alternative paths are active simultaneously. This can be
problematic due to side-effects (i.e., outside state modifications) if the SPA developer
does not anticipate this behaviour and there is communication to external services in
those paths.

Example 6.2

An operator of type counter counts how many of its input data items match a certain
criterion. Once its internal counter reaches 10, it sends a notification to a customer.
We consider a split/join segment consisting of two alternative paths, both of which
contain a (unique) instance of type counter. During a probing event, both of those
instances count the same data items which will ultimately result in inaccurate notifications
because items are counted twice.

Another limitation is Pathfinder’s own resource usage. It needs to be deployed as a
standalone service and requires a certain amount of resources. In cases where such
resources are scarce (e.g., in IoT environments), the usage of Pathfinder might not be
feasible.

6.6 Requirements
In this section we finally discuss whether Pathfinder’s initially defined requirements
(see Section 4.2) are fulfilled.

FR1 Scalability. Pathfinder is based on VISP which supports scalability by relying
on cloud resources for the deployment of operators and contains automatised
mechanisms to utilise them when faced with varying system load. Pathfinder itself
is also scalable by allowing a distributed deployment across multiple locations as
discussed in Section 4.4.3. This requirement is therefore fulfilled.

FR2 Exploit functional redundancy. Functional redundancy can be defined by split/-
join segments in the form of alternative paths with a similar functionality.
Pathfinder then exploits this redundancy in case of operator failures by switching
the data flow to an alternative path that does not contain any failures. Pathfinder
furthermore uses the circuit breaker pattern to store a path’s state and to initiate
recovery detection attempts (probing) in a controlled way. This requirement is
fulfilled, which has also been demonstrated by the experiments in Section 6.3.

FR3 Minimise downtimes. Pathfinder’s fault tolerance model minimises downtimes
by switching to alternative paths. The conducted experiments have shown that the
time to adapt for different failures is in the range of 30 to 50 seconds (Section 6.4.3).
We therefore consider this requirement as fulfilled as well and refer to Section 6.5
for the limits of applicability.
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FR4 Reliability of results. Pathfinder only produces results via the alternative paths
specified by the user. If all alternative paths are unavailable due to operator
failures, no more results are produced. Pathfinder instead continues its recovery
detection attempts until one of the paths becomes available again. This final
requirement is therefore fulfilled as well.

In summary, all the framework requirements have been fulfilled by Pathfinder. Fur-
thermore, Pathfinder can be used to solve the challenges posed by the motivational
scenario as shown in the experiments.
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CHAPTER 7
Conclusion

This last chapter concludes the contributions of this work in Section 7.1, puts the
initially defined RQs into context in Section 7.2 and provides an outlook on future work
in Section 7.3.

7.1 General Conclusion
Fault tolerance is a key aspect for DSPEs due to their near-real-time requirements, their
long-running nature and the resulting high probability of faults to occur. Based on the
shortcomings of established solutions and on the requirements raised by a motivational
scenario, a new fault tolerance framework for DSPEs named Pathfinder has been
designed that uses a novel approach based on functional redundancy. By allowing
users to define concrete fallback functionalities for faults at design-time, Pathfinder can
react to those faults at runtime and thereby maximise the availability of the SPA.

A prototypical implementation of Pathfinder was then developed and evaluated using
the VISP DSPE. Several experiments were conducted to show that Pathfinder’s failure
detection and fault tolerance mechanisms are working and only add a negligible
performance overhead.

7.2 Research Questions
Section 1.3 introduced three RQs that remain to be answered:

RQ1: Which fault tolerance mechanisms for stream processing systems are known
and how can they be applied to the motivational scenario?
During the literature review, several fault tolerance mechanisms for DSPEs have
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been identified. As summarised in Chapter 3, none of them can be used for
the motivational scenario due to a lack of support for functional redundancy at
the level of paths. Also, none of the approaches from the literature are able to
detect failing operators based solely on information from the deployment and
messaging infrastructure (e.g., Docker and RabbitMQ in the case of VISP).

RQ2: How can data streams be processed in a fault tolerant manner while still guar-
anteeing a high availability?
Since RQ1 showed that none of the existing approaches fulfils the requirements of
the motivational scenario, a new fault tolerance framework has been designed. It
addresses the exact shortcomings identified in RQ1 and solves them by allowing
SPA developers to define functional redundancy at the level of paths to achieve
a high availability at runtime by dynamically switching between functionally
redundant paths when faults are detected.

RQ3: How does the framework perform in terms of applicability and performance?
Pathfinder’s performance has been evaluated both in isolation (focusing on its
failure detection and path switching capabilities) and by integration into VISP. All
experiments show satisfying results both in terms of performance and applicability
to the motivational scenario with respect to the initially derived requirements.

7.3 Future Work
Although the implementation of Pathfinder is already fully functional, there are several
future research possibilities.

1. Failure detection. Detecting whether an operator is still functioning correctly
challenging, particularly since it is (by reduction from the Halting problem) prov-
ably undecidable in general [71]. Since operators can be implemented using any
programming language, platform and framework, defining universal thresholds
for metrics like CPU and memory usage is next to impossible. A better idea would
be to use data collected during normal (failure-free) operation and compare that
to the current operator metrics using statistical and machine learning methods.
Such methods may also be enhanced by language-level annotations about the
expected behaviour (e.g., RAM usage) provided by the SPA developer [70].

2. Compatibility to other DSPEs. As described in Section 2.2.2, the DSPE market
provides many different frameworks from several vendors. While compatibility
with VISP was the primary goal of this work, Pathfinder’s architecture is not
restricted to VISP. Instead, compatibility with other DSPEs should be prioritised
in future work to reach a larger target audience.

3. Lazy deployment. The prototypical Pathfinder implementation allows the SPA
developer to choose between lazy and eager deployment of fallback path operators.
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Neither solution is optimal since one either has to waste resources on deploying
operators that are not actually needed or waste time waiting for the spawning
of needed operators. Future work may focus on this dilemma by investigating
other approaches in addition to the lazy deployment. One idea is to predict faults
using statistical and machine learning methods and proactively deploy fallback
operators when faults seem likely.

4. Human feedback. Failure detection can rely on human users for parts of the
DSPE where user interaction is required (e.g., considering a whole path as failed
if at least five end-users report that some functionality is not working correctly).
Such reporting could also happen implicitly (e.g., by observing that many users
cancel their activities once they reach a certain task like submitting a form that
seems to be failing).
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APPENDIX A
Evaluation Topology

Listing A.1: Evaluation topology. This topology in the VTDL format is used to evaluate
Pathfinder’s performance. It is based on the motivational scenario introduced in Section 1.2.2.

1 $gps_source = Source() {
2 concreteLocation = 128.130.172.220/openstack,
3 type = gps_source,
4 outputFormat = "Position data",
5 }
6

7 $ips_source = Source() {
8 concreteLocation = 128.130.172.220/openstack,
9 type = ips_source,

10 outputFormat = "Position data",
11 }
12

13 $transform_position_data = Operator($gps_source, $ips_source) {
14 allowedLocations = 128.130.172.220/openstack,
15 concreteLocation = 128.130.172.220/openstack,
16 inputFormat = "Position data",
17 type = transform_position_data,
18 outputFormat = "Standardized position data",
19 size = small,
20 stateful = false
21 }
22

23 $suggest_nearby_friends = Operator($transform_position_data) {
24 allowedLocations = 128.130.172.220/openstack,
25 concreteLocation = 128.130.172.220/openstack,
26 inputFormat = "Standardized position data",
27 type = suggest_nearby_friends,
28 outputFormat = "user",
29 size = small,
30 stateful = false
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31 }
32

33 $send_friend_suggestions = Sink($suggest_nearby_friends) {
34 concreteLocation = 128.130.172.220/openstack,
35 inputFormat = "user",
36 type = "send_friend_suggestions",
37 }
38

39 $split_transformed_data = Split($transform_position_data) {
40 pathOrder = $position_to_keywords_external $position_to_keywords_user_tags
41 }
42

43 $position_to_keywords_external = Operator($split_transformed_data) {
44 allowedLocations = 128.130.172.220/openstack,
45 inputFormat = "Standardized position data",
46 type = "position_to_keywords_external",
47 outputFormat = "keyword",
48 size = small,
49 stateful = false,
50 }
51

52 $position_to_keywords_user_tags = Operator($split_transformed_data) {
53 allowedLocations = 128.130.172.220/openstack,
54 inputFormat = "Standardized position data",
55 type = "position_to_keywords_user_tags",
56 outputFormat = "keyword",
57 size = small,
58 stateful = false,
59 }
60

61 $join_transformed_data = Join($position_to_keywords_external,
$position_to_keywords_user_tags) {}↪→

62

63 $find_ads_by_keyword = Operator($join_transformed_data) {
64 allowedLocations = 128.130.172.220/openstack,
65 concreteLocation = 128.130.172.220/openstack,
66 inputFormat = keyword,
67 type = "find_ads_by_keyword",
68 outputFormat = "ad",
69 size = small,
70 stateful = false
71 }
72

73 $send_ads = Sink($find_ads_by_keyword) {
74 concreteLocation = 128.130.172.220/openstack,
75 inputFormat = "ad",
76 type = "send_ads",
77 }
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