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Kurzfassung 
Um den Studenten die Möglichkeit zu bieten, in der Praxis ihre erlangten Kenntnisse 

über Regelungstechnik, Programmierung und der Interaktion zwischen Computer und 

automatisierter Maschine oder Roboter umzusetzen, wird an der Universitat Politècnica 

de Catalunya ein unbemanntes Luftfahrzeug (UAV…unmanned aerial vehicle, oft: 

Drohne) eingesetzt. Es handelt sich dabei um das Modell „Hummingbird“ des 

Herstellers intel (früher Ascending Technologies), der sich auf die Herstellung von 

Drohnen für Forschungszwecke spezialisiert hat. 

 

Das Ziel der vorliegenden Arbeit ist es, eine Lageregelung für die Drohne zu entwerfen, 

die es ermöglicht die Position zu halten. Im Unterschied zu bereits entwickelten 

Algorithmen, die größtenteils auf dem Einsatz von GPS als Hilfsmittel zur 

Positionsregelung basieren, kann diese Technologie hier nicht genutzt werden, da die 

Aufgabe in den Laborräumlichkeiten der UPC zu erledigen ist. Zusätzlich zu den bereits 

vorhandenen Prozessoren, wird noch ein weiterer Computer montiert, auf dem das 

Betriebssystem Linux läuft. Weiters ist die Bewältigung der Aufgabe mittels ROS, einem 

in der Robotertechnik viel verbreiteten Betriebssystem, erfolgen. Das auszuführende 

Programm wird in der Programmiersprache C++ geschrieben und in ROS ausgeführt.  

Während des Fluges kann eine drahtlose Verbindung via WLAN zwischen dem 

ortsfesten Computer und der Drohne hergestellt werden, um Änderungen vorzunehmen. 

Der Algorithmus wurde zuerst mittels Simulink simuliert und anschließend als C++ Code 

am Prozessor der Drohne implementiert. Die Reglerparameter wurden mittels 

numerischer Optimierung des Simulink Modells ermittelt. Durchgeführte Experimente 

am realen Objekt bestätigten die aus der Simulation gewonnenen Parameter der 

Regelung. 

Diese Masterarbeit wurde im Rahmen eines ERASMUS+ Auslandssemesters an der 

Universitat Politècnica de Catalunya durchgeführt. Der Auslandsaufenthalt erstreckte 

sich von September 2017 bis Jänner 2018. 
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Abstract 
For research reasons, the Universitat Politècnica de Catalunya (UPC) uses an unmanned 

aerial vehicle(UAV) for the students to obtain knowledge about control algorithms, 

programming and the interaction between user interfaces, that is, a computer and a 

robot or an independent machine acting according to the implemented algorithm. The 

UAV is the model “Hummingbird”, manufactured by the Company intel (former 

Ascending Technologies), which developed an own series of UAVs especially designed 

for researching reasons. 

 

The target of the project described in this thesis is to implement an attitude control 

algorithm so that the UAV can maintain its position. Apart from existing control 

algorithms already implemented in commercial drones which use GPS to obtain data of 

the actual position, there has to be found another solution as the realization of this 

project is to be made in the laboratories of the UPC, i.e. indoors. A processor running the 

operating system Linux will be mounted on the UAV, in addition to the existing two. The 

whole system will also run ROS, a special operating system and base for operating 

robots and other autonomous vehicles. The program is written in the programming 

language C++ and executed in ROS. Through the computer on the vehicle, it can 

operate autonomously. Nevertheless, a connection between the stationary main 

computer and the flying device can be established via Wi-Fi to send correcting 

commands in case of failure. The control algorithm was developed using a simulation 

software called Simulink where the parameters of the model were obtained. The 

parameters of the controllers were then optimized using numerical optimization based 

on the Simulink model. Experiments with the code implemented on the processor of the 

vehicle proved the parameters found in the simulation were right. 

This work was developed during an ERASMUS+ semester abroad at the Universitat 

Politècnica de Catalunya. The stay lasted from September 2017 until January 2018. 
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1. Introduction 
1.1. Motivation 

In the past, automation was the determining term in various fields of mechanical 

engineering as people could be replaced by robots to complete dangerous tasks as well as 

reducing the risk of committing errors induced by monotony of a certain task. This motto 

has also reached the highly developed branch of aviation looking for solutions to add even 

more security to the most secure means of transportation by eliminating the possibility of 

human faults. Although technologies in this sector are already designed to minimize the 

real interaction of persons by adding intelligent systems to maneuver through difficult 

weather or avoid such dangerous zones or even fly in autopilot mode most of the time, 

there is still at least one human being on the plane. In case of any malfunction the 

possibility of a person losing a live is very high in aviation, although the number of 

accidents is very low. To remove the risk of a person get hurt, engineers aimed to eliminate 

the necessity of people on a flying object. Therefore, if it is necessary to fly in dangerous 

areas such as war zones, regions of difficult weather situations or low visibility the 

maximum damage that is possible will affect only the material and no person. Of course, 

there is also a chance that someone on the ground will be hurt by the plane crashing 

down, but that can sometimes neither be avoided by a human pilot nor by artificial 

intelligence. 

Using so-called Unmanned Aerial Vehicles (UAV) accomplishes this task perfectly as they 

have by definition no person on board. Their degree of automation can vary from a 

necessary ground control station to full autonomy by control on board. Many of these 

vehicles are using a positioning system like GPS or GLONASS to navigate to desired points 

and to obtain information about the current position. However, there are also regions 

where positioning systems are not available as they are not covered or zones where 

receiving is limited because the signal is blocked by buildings, e.g. in urban areas with 

narrow streets and high buildings. Yet the most popular area where other systems for 

positioning have to be used is indoors as there is almost always just a weak or no signal. As 

in various technological projects, the key to find a solution is to copy behavior from the 

nature because there are a lot of highly developed systems made very robust where failure 

may be deadly. Thus, for orientation systems the aim is to copy human senses as people 

orientate themselves mostly using tactile, audible or visual detection. Using sound systems 

may protect an autonomously flying drone from unwanted touching of objects but their 

system is more often used to keep a distance than to determine an absolute position.   
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In contrary, visual systems work like an “eye” of the drone, enabling it to determine its 

position or finding a certain goal which has to be searched in order to fulfill a task.  

Furthermore, rotorcrafts are in contrast to most fixed wing aircrafts not able to realize 

vertical starting or landing maneuvers (VTOL). These may be also very important because 

the field of application for UAVs are often areas with little space in the plane where only a 

vertical take-off is possible. Another difference to the fixed-wing aircrafts is the possibility of 

keep a position in the air in so-called hovering mode.  

This may be of interest if the vehicle has to deliver anything by slowly rappelling something 

or because something has to be supervised or any other thinkable duty where holding a 

defined position for a certain amount of time is necessary. Additionally, because flying 

objects unlike cars or trains have no preferred trajectory, a great number of obstacle can 

block the way as it may change each time. For the above-mentioned reasons, a very exact 

control of the UAV is indispensable to keep positions as precisely as possible and to avoid 

crashes when space is limited and through deviations in the attitude, the vehicle does not 

take-off vertically but with a slight drift in one direction.  

 

1.2. State of the art 
Research on UAVs is a relatively recent topic, as the problems occurring and therefore 

needed development increases steadily with the higher demand of domination of such 

vehicles because of the rising interest and demand both in military and civil applications. 

Nevertheless, the interest in autonomy and thus control of such vehicles has started very 

early, before the use of drones became commonly known. Altuğ et al. [1] were one of the 

first to tackle the problem of making quadrotor vehicles autonomous by control algorithms 

although the movement was limited to altitude and yaw angle control. They also 

implemented a visual system to determine the actual position of the helicopter by 

observing the vehicle with a ground camera. [2] used a camera mounted on the vehicle 

serving as base for position and orientation control. Although cameras were used to fly 

indoor substituting GPS systems for their poor performance, another task was to avoid 

obstacles as the flying environment may not be known formerly. In [3] there is a solution 

presented for avoiding obstacles by using optical flow. This shows the disadvantages of 

heavy computation, whereas other solutions, e.g. in [4] and [5] used radar systems to 

detect the environment. Bloesch et al. [6] combined the former mentioned tasks of path 

planning by avoiding collisions as well as the actual controlling task in unknown, GPS-

denied environments by using an onboard down looking camera which tracks the 

movement but also builds a map of the surrounding region.  
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Errors occurring in [6] were treated in [7] where the slow pose update of the onboard 

camera with respect to the high agility of the UAV was tackled by filtering the visual input 

with data from inertia sensors integrated on the vehicle. The drone used in [7] is very 

similar to the drone used in this thesis as it is the previous model of the same company. 

Furthermore, the implementation of the system via ROS is another connection and helpful 

for this work. 

For research purposes, systems for the position and orientation feedback change from 

onboard cameras to external cameras which track the UAV in its movement, as they were 

used in [1], [8] and [9]. Additionally, the environment in case of this project is known as it 

is well defined and covered by the cameras. Work on pre-defined regions is presented in 

[10] using two concentric circles as markers for the estimation of the position and a single 

camera on board. 
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1.3. Previous works 
Previous research projects on this topic were already conducted at the Department of 

Automatic Control. Cristian Martínez Céspedes developed in [11] for his master’s thesis the 

image recognition system in the laboratory. He uses four infrared cameras which observe 

the pre-defined space where the cameras are mounted. The task was to implement an 

algorithm so that the cameras can observe markers, e.g. mounted on a flying helicopter, 

which give information about the current position and attitude of the vehicle with respect 

to the fixed coordinate system of the laboratory. With so-called blobs, which are groups of 

pixels with same properties (such as the same value of color on a grey scale), the markers 

are detected and distinguished from the rest of the image. The markers are 3 balls and 1 

cube made of Styrofoam mounted onto a cross-shaped symmetrical structure (Figure 1-1). 

To recognize the different markers, it was necessary to vary properties of the markers so 

that the cameras know definitely which they are observing. The property of choice was the 

size of the balls as they give the blobs a distinguishable characteristic. Each camera is 

connected with a ground computer running the operating system Ubuntu and having ROS 

installed. One single node in ROS gathers the images of all cameras and calculates the 

current position and attitude from the obtained pictures. 

 
 
As successor to the above-mentioned project, Carlos Eduardo Barrionuevo Sánchez used in 

[12] the image recognition developed in [11] to implement the control of a coaxial 

helicopter. Various changes were made in the work for this thesis with respect to the 

former work of Cristian Martínez.  

  

Figure 1-1 Markers used for image recognition 
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The image recognition system was made more robust to changes in the environment which 

may be a different illumination that changes the distinguishability of the grey scale picture 

the cameras are observing. For better detection of the markers the cube marker was 

substituted by another ball with a different size compared to the others.  

Due to the lack of a processing unit on board the helicopter, the calculation of the control 

algorithm is made on a ground computer using Matlab software. The remote control for 

sending the control commands to the vehicle is connected via DAC cards to the ground 

computer and sends signals via this connection. 

 

1.4. Objective and range 
The goal of the present thesis is a step to autonomous flying of a quadcopter or commonly 

known as “drone” by implementing an attitude control algorithm. As the vehicle used in 

this project already has a processing unit, the goal is to make the control independent from 

a ground station as all of the calculation necessary for the control should be executed on 

board. The system of choice for communication with the drone is the so-called Robot 

Operating System (ROS) which is an open-source software often used to communicate with 

and control of robots. A difficulty for the implementation of autonomous control systems is 

the high agility of quadcopters which stands in contrast to the limitation of speed of control 

algorithms which may be immanent to the type of control or can as well be a result of 

expensive calculations and constrained hardware configuration. Furthermore, the task of 

controlling a UAV is typically executed outdoors as most of the tasks that should be done 

by these vehicles have to be executed in that environment. Thus, the system relies on 

information received from GPS data as it is an easy way to obtain the current position due 

to its high availability. Nevertheless, the control made in this project has to be done in an 

indoor environment, where GPS is either not available or only a weak signal can be 

received which makes it unreliable. However, this assumption is often used for research 

purposes and is also legit as tasks may be done in a region where GPS is not available or for 

situations when the GPS system fails. 

Based on the previous works presented in the section above, this work is combining the 

knowledge obtained by the predecessors as the image recognition system as well as the 

control of a helicopter is used. The substitution of a coaxial helicopter by a quadcopter 

and the adaption of the recognition system for this vehicle are the obvious tasks that have 

to be done. Nevertheless, the system of control changes radically as the behavior of a 

quadcopter is very different from a coaxial helicopter.   
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Another drastic change is, that the calculation is no longer done on a ground computer but 

should be done on board. For this reason, the executable programs must obey the 

limitations of computation power on small processors. The programs should also be robust 

and matching the agility of the UAV in its speed of reaction.  

 

1.4.1. Assumptions 
For the above described reasons, following assumptions have been made before the work 

was started: 

 
§ A quadcopter is object to control 

§ Existing control should be replaced, but is a back-up for failure 

§ Modifications to the vehicle are possible 

§ Communication between the parts of the systems with middleware ROS 

§ Attitude control is in the focus  

§ Development of control algorithm is for indoor use 

§ Laboratory with pre-defined environment for flying 

§ GPS is not available to obtain information about state or position 

§ Image recognition system can be used as existing 

 

1.4.2. Range of work 
The range of the present work was defined by the following tasks to be completed: 
 

§ Mounting of the markers for image recognition on the quadcopter 

§ Learning about ROS 

§ Creation of a useful model of the system for control 

§ Creation of a control algorithm 

§ Simulation of the control on computer 

§ Implementation of control on the vehicle 

§ Combination of image recognition and control 

§ Tests of control in defined environment 

 
The image recognition system and its already developed markers as described above 

turned out to be difficult to mount on the existing vehicle as their system is built for a 

helicopter with a skid landing gear. The implementation of such a system may be a task for 

further research on this project. 
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2.  Description of the system 
2.1. General 

The term used in this context is Unmanned Aerial Vehicle (UAV), commonly also known 

as drones. The topic covers different levels of automation beginning with the use of a 

ground control station to a full autonomous vehicle. Generally, the name does not specify 

the configuration of the vehicle, thus, various types of aerial vehicles, so-called fixed-wing 

aircrafts as well as rotorcraft vehicles are included. However, the focus lies in the field of 

rotary wings due to their most distinctive features with respect to fixed wing aircrafts: their 

ability to take-off and land vertically and the possibility of hovering. These features are 

often asked for in applications because a task may have to be fulfilled at a certain position 

by staying there for a given time. Limited space for take-off and landing mostly make so-

called VTOL (Vertical Take-Off and Landing) operations obligatory. In contrast to typically 

used rotorcrafts used in manned aerial vehicles, the UAVs often are so-called multicopters, 

meaning that their thrust is not provided by one central rotor wing but distributed by four 

(Quadcopter), six (Hexacopter) or eight (Octocopter) rotors. However, [13]also states the 

possibility of using coaxial helicopter configurations to fulfill the demands of VTOL. The 

advantage of multicopters is that there is no need for the typical rear rotor of helicopters 

which is needed apply a torque against the helicopter body’s tendency to rotate around its 

own axis in reaction to the main rotor moment. For the case of a quadrotor, a pair of rotors 

is turned in another direction as the other one and therefore equals the urge to turn around 

its height axis. If it is intended to turn around this axis (yaw angle), the rotating speeds have 

to be modified in order to unbalance the quadcopter in this direction. The rotors are 

distributed in symmetrical order in one axis, but not necessarily in both axes of the 

horizontal plane as one can see in Figure 2-1 below, where the V-formed arrangement of 

the motors is due to the purpose of having a free view field for the mounted camera. [14] 

 Figure 2-1 Intel Falcon 8+ drone [14] 
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Due to a higher number of propulsion units, the rotors have smaller dimensions and 

each of the motors has to deliver less power, therefore serving the aims of lightweight 

and small construction.  

2.2. Hummingbird 
2.2.1. General configuration 

The UAV used in this project is called “Hummingbird” and was designed and 

assembled by the German company “intel Deutschland GmbH”, formerly known as 

“Ascending Technologies” (AscTec). It is a drone with 4 motors and therefore typically 

called Quadrotor or Quadcopter. These 4 motors are distributed in a symmetrical 

manner on the body of the vehicle, so that they form an angle of 90° to each other. The 

motors are electrical powered brushless motors manufactured by Hacker and have a 

Power of 80W each. Every motor is connected with its own control unit which has the 

duty to convert the input voltage into the desired motor speed. By default, the motors 

come with flexible plastic rotors mounted on the motors. 

 
 
As seen in Figure 2-2 above, the main body of this UAV has the shape of a cross with 4 arms 

with the same length to ensure the symmetry. It is made from carbon fiber reinforced 

plastic in order to stick to the premises of lightweight construction. Decreasing the weight 

of a flight vehicle always means to improve the flight time possible with the same amount 

of energy available. Figure 2-3 below shows a frame made of aluminum (1), that leads to 

the possibility of guarding a battery in the middle (2).   

Figure 2-2 Hummingbird quadrotor 
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Furthermore, as this frame is below the plane where the motors are mounted, it allows the 

vehicle a safe stand when starting or landing (3). Additionally, rubber rings were added for 

damping the landing as well as guarding the surface below from scratches by the metal. 

 

 
 
Above the battery compartment the main processing unit of the Hummingbird is located. It 

contains two CPUs which on one hand run the program that controls the drone by default 

and on the other hand can be modified by the user in order to realize its own control by 

programming it and flashing it to the so-called High Level Processor (HLP). Furthermore, 

the vehicle is equipped with an antenna to establish a connection with the radio control 

(by default the FUTABA F77 transmitter, seen in Figure 2-4) and a GPS module on top of the 

body to guarantee reachability.   

1 

3 

2 

Figure 2-3 Aluminum structure of the main body 
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The control of the Hummingbird uses a 5-channel control by default.  

These five channels are:  

§ thrust of the motors  

§ roll angle 

§ pitch angle 

§ yaw angle  

§ additional switch to activate automatic control  

 

Motors can be turned on by moving the left stick (1) to its right or left endpoint and holding 

it there for a few seconds, until the motors have started and are turning on idle speed, if the 

stick is in its lowest position. Thrust is controlled by the left stick by pushing it up or pulling 

it down to increase the rotational speed or decrease it, respectively. By default, the position 

of this stick is in the lowest position and it is internally equipped with a mechanism that 

keeps its vertical position wherever it is. Furthermore, the yaw angle can be changed by 

moving the same stick to its left or right for clockwise or counterclockwise turning around 

the height axis. The default position in this direction is the middle one, where the 

quadcopter would keep its actual state and stop rotating, the mechanism of the stick 

contains springs that force the stick to its neutral position when not touching it. 

The right stick (2) controls the pitch and roll angles when moving up- and downward or 

sideways, respectively.

Figure 2-4 Futaba F77 radio control 

1 

3 

2 
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The behavior of the stick is the same in each direction as it is for the yaw angle, so that the 

neutral position of the stick is in the middle of both axes, where the pitch as well as the roll 

command would be 0. 

The channel for regulation of the thrust regulates primarily all motors on the same level of 

thrust. In combination with an additional angle command, the rpm of rotors can change in 

order to achieve the desired attitude. By default, this is controlled via the built-in control 

algorithm. If the switch for manual or automatic control (3) is set to automatic by flipping it 

towards the user of the radio control, the control implemented on the HLP takes over the 

operation of the vehicle.  

However, by switching back to the manual mode, the Hummingbird could at any time be 

maneuvered by using the radio control. For this reason, it is necessary that each time when 

testing new programs on the vehicle, an experienced pilot is holding the radio control. This 

pilot should pay attention to the movements of the quadrotor and be able to steer the 

vehicle from any given position into a stable one and to land thereafter if the drone does 

not behave as expected before. 

 

2.2.2. Modifications 
In order to accomplish the goal of the project, some modifications have been made to the 

vehicle.  

As the task is the position control indoors where GPS is not available or very weak, the GPS 

sensor (Figure 2-5) was taken off the Hummingbird. With this modification, the quadcopter 

is left without information of its actual position as there is no additional system 

implemented by default. Nevertheless, all of the control algorithms, including the default 

on the LLP need position state data of the vehicle so that its control will work properly. 

 
 Figure 2-5 GPS Module on Hummingbird quadcopter [27] 
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To interact with the whole system via ROS, an additional computer was needed which runs 

this software. AscTec offers its own options to cover this task, called the AscTec 

Atomboard. However, another solution was chosen due to the limitations in memory and 

its lower speed compared to the chosen model “Odroid”(described in section 2.3).  

 

As can be seen in Figure 2-6 above, this computing unit was mounted on top of the drone 

with a single screw in the middle making it a simple and stable solution at a time.  

The data connection of odroid to the default installed processing unit was solved with a 

self-made connection similar to that offered by AscTec, converting from a USB 3.0 interface 

to a serial port.  

Due to all these changes, the weight and the inertia matrix of the vehicle are changing and 

these modifications have to be taken into consideration when developing the control 

algorithm.  

  

Figure 2-6 Odroid mounted on Hummingbird 
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2.3. Odroid XU4 
Odroid is a computing device manufactured by Hardkernel mounted onto the 

Hummingbird quadrotor. It is a so-called Single Board Computer (SBC) and differs from the 

typically known PCs such as OSX or Windows machines. It uses an ARM processor instead 

of an Intel processor where the latter has higher efficiency due to its architecture. The OS 

running on these SBCs are also highly optimized for running on these systems. Open source 

software makes it easy to adapt to needs for a special project. Furthermore, Solid State 

technology is used for storage which is another crucial factor regarding speed compared to 

hard disk devices. The low energy consumption of about 10 to 20 W (instead of up to 1000 

W for standard personal computers) allows to use this computing device to be powered by 

a solar panel or even a powerful battery and therefore it can fulfill tasks with high grades of 

autonomy. This makes it especially usable for this project, as it makes no sense to use a 

processing unit that must be connected to power line in a flying object.  

 

As seen in the picture above (Figure 2-7), the odroid platform has multiple connection 

options that all use standardized protocols and ports such as USB, Ethernet or HDMI.  

However, the connection with the network only with Ethernet interface does not serve in 

this project, as it is a cable connection and again limits the autonomy of the UAV. 

Therefore, a Wi-Fi antenna provided by Hardkernel (can be seen in Figure 2-6) is used and 

plugged into one of the USB ports. To establish connection with the processors of the 

Hummingbird, another USB port is used to connect with a converter cable that connects 

with the processing unit using a serial port. 

  

Figure 2-7 Main board ODROID [28] 
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The operating system (OS) that runs on odroid is a Linux-based version of Ubuntu 14.04.  

This open source OS is based on a Command Line Interface, although many distributions 

also offer Graphical User Interfaces (GUI). However, the main operation tasks in this 

project are made using the CLI, as there is no monitor available. To operate the odroid it is 

connected via Wi-Fi to another computer. On this other computer, the shell command ssh 

(secure shell) is used to take over control of the OS of odroid. ROS is also installed on the 

odroid, being the connection of the Hummingbird to the ROS system. 
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2.4. ROS 
2.4.1. General description 

To establish a standardized way of communication between the UAV and the base 

computer, the operating system ROS is used. ROS is an acronym for Robot Operating 

System which describes itself as a “flexible framework for writing robot software” [15].  

It was developed with the aim of delivering powerful tools that are suitable for various tasks 

in different types of robots. Because that is the crucial point in creating robot software: one 

might imagine that simple tasks for humans are nearly as straightforward when writing a 

program for a robot to do the same exercise. And one who has experience on 

programming software for a special type of robot should easily be able to develop the 

commands necessary for another type as well. However, due to the different evolution 

paths and development goals targeted by the creators there is no universal path to 

dominate all robots. Various types of robots have their own peculiarities which should be 

considered. Although they are known and it is possible to write a program for a special 

robot, stability is another topic. Developing robots more with possibilities also makes them 

more vulnerable to little errors that can cause malfunction in unexpected moments. 

Therefore, it is more than ever necessary to use a robust and multi-purpose software as it is 

provided by ROS. In order not to stop developing it is an open-source system that relies on 

input by its community which provides software elements as well as help with the so-called 

ROSWiki, an encyclopedia to inform about the use of the system itself or its parts. Thus, the 

knowledge, distributed all over the planet can be concentrated in one place, as different 

research teams are specialized in various topics and can share their developments with the 

community and receive help in subjects they are not as focused onto.  

 

ROS is characterized by following principles: 

 

§ Distribution of computation 

Through the above-mentioned topics, it is possible for an (theoretically) infinite 

number of computers to communicate with one another over the same topic. This 

means, that it is not only a communication path as usually, where data is sent from one 

point to another with the possibility of the second unit responding. In contrary, with 

ROS topics, data can be sent and received (in ROS terms: published and subscribed, 

respectively) from every element of the network without the necessity of any computer 

knowing where it is sending his data or where it is receiving it from.  
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This allows to distribute the calculation of the robot’s action and therefore adapts 

perfectly to the often-practiced distribution of tasks in the robot itself. And even if the 

system consists only of a single computer, it can be helpful to divide the functions into 

smaller parts, a method called “complexity via composition”. 

 

§ Teamwork via open-source 

A community developing the software and share it with others makes it possible that 

everyone can access the knowledge of specialists in their field by using their programs 

published and commented in the ROS-Wiki, the user community web page. Therefore, 

not everyone has to study in detail several parts of the problem he is facing, as others 

may already have done it and can share their expertise.  

 

§ Rapid testing 

One should implement the system correct with the two levels of control, i.e. the low-

level control which is in direct interaction with the hardware and the high-level 

stage which duty is to process programs and make decisions based on the data from 

the low-level processor or from an external computer. Then it is possible to replace 

the low-level operations with a simulation and therefore try the programs without 

physically applying it to the robot which may not be available all the time. 

 

To prevent others from making mistakes using ROS, it is also necessary to clarify doubts 

about the functionality and the range of usability of this system. 

 

§ ROS is no programming language 

Although ROS uses its own commands and is executed like a program, one should not 

make the mistake like a lot of people do when they first get in touch with ROS to treat it 

like a programming code. In fact, ROS is more like an operating system or like an 

extension to it as it cannot be used as a standalone solution. If you use it with Ubuntu, 

which is highly recommended (although there are some OSX versions, but they are 

more or less experimental), ROS is installed like an expansion pack to make it work. 

However, to fulfill the purpose of creating programs you will need additional software 

or at least an editor to write programs in the supported programming languages C++ or 

Python as ROS is also no IDE. The aim of ROS is to execute them via its nodes (see 

later). 
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§ ROS is not only a library 

Although the above described missing functionalities, one must not see the system only 

as a tool to organize your program structure, because it has its own   

command-line tools, graphical tools and an included building service. 

 

§ ROS does not have a Graphical User Interface 

It is not possible to use ROS via a so-called GUI which most computer users are used to. 

In fact, it can only be accessed via the terminal and there one can use its total 

functionality. But one should know the commands for every single step as there is no 

possibility to click on anything nor use a dropdown menu. However, it includes graphic 

solutions to display movements etc. which depends on the package. 

[16] 

 

2.4.2. Concept of ROS 
Technically, ROS is a Linux-based operating system that is an extension package to the 

operating system of the computer. As above mentioned the control and operation of the 

systems does not work with a graphical user interface, but via the terminal of the operating 

system. This means that the main tool for entering commands is the keyboard of the 

computer.  

 
 
Furthermore, the developing company Willow Garage organized ROS in a very structured 

way so that every action which happens in its environment can be distinguished by both 

the system and the user and easily assigned to an activity or whatever happens at a certain 

time. The basic principles and functions of ROS are explained in the following paragraphs.  

  

Figure 2-8 Terminal window 
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Nevertheless, it is always recommended to visit ROS’s own Wiki page at wiki.ros.org to gain 

further information or at least for informing about the latest changes or new distributions as 

developing of programs never stops at a certain point, but rather will be developed even 

further. 

ROS is organized in a three-level structure, based on the tasks fulfilled by the parts in each 

level. 

 

1. Filesystem Level 

This is the organization of ROS on the machine itself. The following list does just 

mention the main parts of this level. 

 

Workspace 

The ROS workspace is the environment where all the actions have their root. If one 

wants the system to work well, it is inevitable to create a workspace and define the path 

where it is located in the local data system. Otherwise ROS won’t find its data and 

therefore not work properly. 

 
Packages 

Packages are the core part of the ROS environment and must be built in order to get the 

system working. As mentioned above, ROS includes its own building abilities, so that a 

package can be built via the corresponding ROS command. Packages contain different 

things depending on their functionality. But among them can be so-called node, which 

are the executable program files, as well as a ROS-independent library or any further 

software that should be coupled to the function of the package. With the organization 

in packages it is easier to provide the whole software needed for a special task. 

Furthermore, it allows to work with different packages at the same time without them 

disturbing each other. The goal in building packages is to not put too much information 

or data in one package, but just as much as is needed for it to work appropriately. 

Therefore, each package is different but everyone contains the two manifests 

package.xml, an explanation what the package is for and who maintains it, i.e. who 

should be contacted in case of malfunction, and CMakeLists.txt, describing how to 

build the code and where to install it to. 
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2. Computation Graph Level 

In this stage, computing and executing of programs is done. Basic elements of this level 

are shown below. 

 

Nodes 

Nodes are the running instances of ROS program. Every node is supposed to 

accomplish a different task for the robot, however the real mechanical system may be 

distributed. As mentioned above, this is a typical strategy in programming robots. A 

package can contain many nodes to realize a certain task of the system. 

 

Topics 

ROS Nodes do not communicate directly, but via Messages. These messages are sent 

from one node by publishing it. This task is also done by above mentioned nodes. At 

the point of publishing, the Publisher does not know which node will be receiving the 

message it sent. Therefore, to identify the message it is publishing and to find the 

correct receiver, the publisher gives its message a unique identification by publishing it 

to a certain Topic. Another node which wants to receive the message, must subscribe to 

a topic. Then it only receives the messages published on this topic, while others, which 

refer to another topic may be unseen. With this system of communication, it is 

unnecessary to know who sends commands and who reads them. Thus, different nodes 

can publish messages at the same time without the possibility of a communication way 

being blocked. Also, there can be more receivers, as it could be possible, that more 

tasks depend on a certain message. The message is the structure of the data, with many 

standard types like integer, floating point and Boolean predefined.  

 

Services 

It is also possible to create messages in the style of request and response. With these so-

called Services, a Client can send a request to the service and wait for its response. 

 

Master 

To facilitate the all the communication on topics via messages, the ROS system needs a 

so-called Master. Every system can only have one master which should be started 

before all the work can be done.  
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This is just an initial step with makes no changes, but allows the system to work. 

Therefore, the Master should not be stopped until the whole task is finished and the 

system can be shut down. 

 

Launch 

It is often necessary to start the master as well as a lot of nodes by typing in many 

different commands in the Terminal. Fortunately, ROS makes this process easier by 

providing a tool call Launch, which allows to a defined sequence of commands all with 

one single launch command. Furthermore, it can also establish parameters on the ROS 

parameter server. 

 

3. Community Level 

In this level are included all of the ROS distributions that are available for free as an 

open source software and can be downloaded on the ROS homepage www.ros.org. 

Furthermore, a ROS wiki (wiki.ros.org) is established to explain all the details of the 

different packages that can be downloaded. For beginners, it is also a useful first 

approach to get familiar with this system as it includes descriptions as well as tutorials 

to extend from only theoretical explanation into practical application. This makes the 

first contact easier as it may seem very abstract when first getting in touch with it. As 

above-mentioned ROS is open-source and therefore reliable on its community which 

includes users as well as developers who help extend the usability in various regions. 

With their own projects uploaded, developers help others so that they can use made 

packages for their tasks thus saving time. Furthermore, there are researchers who are 

specified in different branches and have an extended knowledge which others may not 

have. By providing their software, they may help others and get in turn help in branches 

there are no experts. There is also the possibility to exchange knowledge in the forum 

established on answers.ros.org.  

[17] [18] 
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3. Modeling 
3.1. General 

In controlling, the base model of the control system always consists of the controller itself 

and the system to be controlled as well as a feedback loop as indicated in Figure 3-1. 

Figure 3-1 Unity feedback system [19] 

The plant block P represents the system to be controlled by the controller C, where the 

controller is reacting to the feedback from the plant. Therefore, control systems are very 

complex because the whole system has to be considered and the controller and the plant 

are highly dependent on each other, e.g. the choice of the controller depends on the 

properties of the plant. And before the design of the controller, often only physical 

properties of the system to control are known whereas the dynamic response of the system 

is of interest.  

To obtain this knowledge, it is necessary to depict the real mechanical system in a very 

accurate way so that the behavior is nearly the same. There will always be a difference 

between the systems as simplifying the mathematical equations is always useful to make 

the terms tractable. Since the result of the modeling process for mechanical systems will be 

a set of differential equations it is recommendable to look for assumptions that can be 

made to reduce the complexity of the system without changing the comportment of the 

system radically. In many cases, linearization around a work point will help to handle 

highly non-linear equations. After the modeling process, it is important to validate the new 

created model by showing that its behavior is as expected and especially comparable to 

the real physical system. The system will be translated to a form called state- variable form 

which means that the dependencies on the state variables are perceivable. [20] 
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3.2. Quadcopter model 
Modelling of quadcopters is a complex task as the resulting equations are highly non-linear 

and the system quadcopter is also a underactuated system as it has 6 degrees of 

freedom(DOF) and only 4 actuators represented by the speed of each motor. [21] [22] 

Furthermore, a quadcopter is a so-called Multi Input Multi Output system (MIMO). [20] [22] 

To create the model, some assumptions were made [22] : 

 

§ The body of the quadcopter is a rigid body 

§ Model for quasi-stationary hover condition 

§ Cross configuration of the quadcopter 

§ Center of the body coincides with the center of gravity 

§ Aerodynamic effects are neglected 

To define a model and write its equations correctly, a coordinate system is obligatory. For 

the model in this project we use two different coordinate systems in order to describe the 

motion of the vehicle.  

First, there is the inertial coordinate system of the earth denominated with the index I with 

its axes:  

 

 [𝑥#, 𝑦# , 𝑧#]( (3.1) 
 
where the zI axis points upwards. 

 

The second coordinate system is attached to the body frame (index B) in the above-

mentioned cross configuration, which means, that the axes xB  and yB are connected with 

two perpendicular bars of the cross-like structure of the main body. The zB axis is again 

pointing upwards in the direction of the vehicle taking off. The vector of the body systems 

follows: 

 

 [𝑥), 𝑦), 𝑧)]( (3.2) 

 

To transform vectors from one coordinate system to another, Euler angles are used to 

perform a rotation. The order of the rotation follows the scheme Z-Y-X, which means, that 

the system is rotated first about the zI-axis by the yaw angle y, later rotated around the  

yI-axis by the pitch angle q and finally rotated around the xI-axis by the roll angle f.  
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This rotation describes the transformation from the inertial system to the body frame, but 

the reverse transformation matrix is obtained by simply forming the transposed matrix. The 

result is obtained by multiplying the three elemental rotations described above. 

 

 
 

𝑹)# = 𝑹, ∗ 𝑹. ∗ 𝑹/ = 0
1 0 0
0 𝑐𝜙 𝑠𝜙
0 −𝑠𝜙 𝑐𝜙

7 ∗ 0
𝑐𝜃 0 −𝑠𝜃
0 1 0
𝑠𝜃 0 𝑐𝜃

7 ∗ 0
𝑐𝜓 𝑠𝜓 0
−𝑠𝜓 𝑐𝜓 0
0 0 1

7 (3.3) 

 
where 
s…sin 
c…cos 
 

The final result of the rotation matrix can be seen below: 

 
 

𝑹)# = 0
𝑐𝜃𝑐𝜓 𝑐𝜃𝑠𝜓 −𝑠𝜃

𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜃𝑠𝜓 𝑠𝜙𝑐𝜃
𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑠𝜃𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓 𝑐𝜙𝑐𝜃

7 (3.4) 

 
The forces acting on the quadcopter are the gravity in the negative z-axis of the earth 

coordinate system –zI and the four forces of each of the rotors being assumed positive in 

the zB direction upwards as they create a thrust lifting the device.  

Naming a vector r that denotes the position of the center of mass of the quadcopter in the 

world frame, the second law of Newton can be written as follows: 

 
 

𝑚𝒓̈ = 0
0
0

−𝑚𝑔
7 + 𝑹)# 0

0
0
Σ𝐹A

7 (3.5) 

 
where 
g…gravity 
m…mass of the vehicle 
Fi…forces of each rotor 
 

The angular velocities of the vehicle in the body coordinate system are: 

 
 

𝝎)# = C
𝑝
𝑞
𝑟
G (3.6) 

 
As the goal is to control the attitude and therefore we are using the roll, pitch and yaw 

angles, it is useful to describe the angular velocities in terms of the derivatives of the three 

angles.   



Florian Schebesta attitude control algorithm for a Quadcopter page 33 of 98 

As each of the angular velocities [𝜙̇	𝜃̇	𝜓]̇ 	are described in different stages of the rotation 

they have to be transformed correctly to the body coordinate system. Each stage of the 

three rotations is described by the following turning scheme and its intermediate systems 

are named in the following manner: I®1®2®B.  

Therefore, the angular velocity can be described by: 

 
 

𝝎)# = 𝑹)J ∗ 0
0
0
𝜓̇
7 + 𝑹)K ∗ 0

0
𝜃̇
0
7 + 0

𝜙̇
0
0
7 (3.7) 

 
The resulting description after some simple mathematical remodeling is: 
 
 

C
𝑝
𝑞
𝑟
G = L

𝜙̇ − 𝜓̇𝑠𝜃
𝜓̇𝑠𝜙𝑐𝜃 + 𝜃̇𝑐𝜙
𝜓̇𝑐𝜙𝑐𝜃 − 𝜃̇𝑠𝜙

M (3.8) 

 
Every rotor produces an additional moment to the thrust force it is creating, whereas there 

can be distinguished two pairs of rotors. One of them (1,3) rotates in negative sense 

according to the right-hand rule applied on the zB-axis or counter-clockwise when 

observing the vehicle from above, while the other pair of rotors (2,4) rotates in the other 

direction. Therefore, they are creating positive and negative contributions to the equation 

of moments, respectively. Letting l be the length of each of the arms of the cross-like body 

structure of the quadrotor and the inertia tensor as follows: 

 
 

𝑰 = L
𝐼P −𝐽PR −𝐽PS
−𝐽RP 𝐼R −𝐽RS
−𝐽SP −𝐽SR 𝐼S

M (3.9) 

 
where 
I…moments of inertia  
J…deviation moments 
 
The values of the inertia tensor can be found on [23]. 

 

The Euler equations can be written as follows: 

 
 

L
(𝐹K − 𝐹U)𝑙
(𝐹X − 𝐹J)𝑙

𝑀K − 𝑀J +𝑀U −𝑀X

M = 𝑰 ∗ 0
𝑝̇
𝑞̇
𝑟̇
7 + C

𝑝
𝑞
𝑟
G × 	𝑰 ∗ C

𝑝
𝑞
𝑟
G (3.10) 
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The forces and moments created by the rotors are dependent on their rotational speed and 

can be modeled like in [24] with a quadratic dependency and some proportional factors 

as seen below: 

 
 𝐹A = 𝑘\𝜔AK (3.11) 

 
 𝑀A = 𝑘^𝜔AK (3.12) 

 
where the factors obtained in experiments in [24]are the following: 

 
 𝑘\ ≈ 6.11 ∗ 10bc 	

𝑁
𝑟𝑝𝑚K (3.13) 

 
 𝑘^ ≈ 1.5 ∗ 10bf 	

𝑁𝑚
𝑟𝑝𝑚K (3.14) 

 
Similar to Figure 3-1, the control whole control system for this thesis could also be 

described in a block diagram. Figure 3-2 below shows the corresponding diagram for the 

attitude control loop of the Hummingbird. 

 

The figure above is concentrated on the attitude control and therefore just a part of the 

whole control system of the Hummingbird which is important for this thesis.  

As already mentioned, the control of attitude does not work well as a stand-alone solution 

without a position control, as little deviations will lead to a drift of the vehicle away from its 

original point if position is not controlled. For this reason, the primary input of the system 

are the errors in each direction of the position e_x, e_y and e_z. How these errors are 

obtained is described later in chapter 4.3. The output of this block are then the set points 

needed for the attitude control. 

  

Figure 3-2 Block diagram of the control loop 
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These set points are like in every control loop used to compute the current error of the 

system by subtracting the current value of the controlled variable. This controlled variable 

is obtained by measurements on the plant, i.e. the quadcopter. Furthermore, the structure 

of the following PID controllers uses the advantage that derivatives of the controlled 

variable are already available as the measurement unit on the Hummingbird also delivers 

the actual values of the angular velocities in each of the three axes. Therefore, they are also 

looped back from the Hummingbird to the PID controllers, except for the altitude 

controller, which derives directly in the controller. For the above-mentioned reason, the 

three attitude controllers are strictly speaking no real PID controllers but rather PI+D 

controllers as they are in fact performing derivative action but the derivation itself is not 

done from the controlled variable. The inner structure and work principle of the controllers 

is described in chapter 4 and can be seen in Figure 4-7,e.g. Result of the calculations in the 

controllers are the command variables for each angle roll, pitch and yaw and for the 

altitude z. The following block performs the so-called motor mapping of the rotors of the 

quadcopter. This process converts the commanded angles and the commanded altitude 

automatically into rotational speed rates for the 4 motors. This mapping is pre-defined and 

was never changed during the project. Result are the RPM for the 4 motors as manipulated 

variable of the system. They enter the controlled plant, namely the Hummingbird and 

change its behavior. Sensors like the IMU already described in this thesis then deliver the 

current values of the controlled variable as well as other values. Of course the 

Hummingbird measures more than the seven values depicted in the scheme in Figure 3-2 

but they are not represented for better clarity of the picture. 
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4. Simulation 
4.1. General 

When designing a new control algorithm for a system, there are always doubts about the 

success of the new implemented controller as many factors have to be taken into account. 

One has to depict the real object in a way that it reflects its actual physical behavior and at 

the same time isn’t too complex to be controlled automatically. Furthermore, the 

mathematical equations have to be set up and there is a lot of potential failure by simply 

confusing signs or other minor details with tragic effects. Additionally, the control should 

not only work, but also operate in an appropriate time range that the control reaches its 

goal according to the physical possibilities.  

All these peculiarities are of course also applicable and as those systems are flying, which 

is per se a very unstable state, they are even more exposed to the danger of malfunction. 

Those failures can often cause major destruction of the vehicle and therefore must be 

evited by all means. A useful tool in this context is the use of simulation systems which are 

basically programs working on a computer which are configured to depict the real system 

and its controller in the most accurate manner. These systems allow to simulate the process 

taking place with the new implemented algorithm in a very safe manner as there is no 

physical movement but only a calculation of what would happen if the control was applied 

on the real system. Optionally, the output can be in a graphical manner, which often helps 

the user to see at a glance if the system is working properly or in the other case, what may 

be going wrong. Another possibility is to just record data during the virtual experiment and 

analyze this data later by comparing inputs and outputs of the system checking if the 

comportment is the expected or not and again draw conclusions. 
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4.2. Simulink 
The software used for these simulation tasks is Simulink which is a software package 

distributed with the program Matlab. Simulink features a so-called block diagram 

environment which makes it possible to create different blocks with each one representing 

a part of the system. Each of the blocks can contain a second (or third, …) level of 

structure consisting of blocks (Figure 4-1).  

 
 

These second level blocks are used to represent the function of the outer block by using 

pre-defined or self-created functions to calculate the output of the first level block with 

respect to the corresponding input (Figure 4-2). 

 

 
  

Figure 4-1 Simulink system consisting of different connected blocks 

Figure 4-2 Calculation part of a block 
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To simulate a real system, it has to be depicted in the best possible way in these block 

diagrams by introducing all necessary variables as well as the calculations that link input 

and output of each stage. It is also possible to write programs using the programming 

language of Matlab and introduce that function into a block, e.g. if it is necessary to 

implement loops or if using pre-defined blocks would be more complicated.  

Testing if the behavior of the simulation is similar to that of the real system is often hard, 

because as the system is as well translated to a simplified model while implying a new 

control at the same time may lead to a lot of errors. Therefore, it may be of interest to 

design a test procedure which ensures that the comportment is equal or at least with a high 

degree of similarity. 

 

4.3. Quad-Sim 
To simulate the system in this project, an open-source quadcopter simulator named “Quad-

Sim” was used, which was developed in 2014 and can be downloaded via [25]. 

 shows the block diagram of the simulator created with Simulink. It consists of various 

blocks that describe the system and its properties as well as the control of the quadcopter. 

In this simulator, the control consists of three stages: 

§ Position Control 

§ Velocity Control 

§ Attitude Control 

which are implemented as follows.  

Figure 4-3 Quad-Sim simulator opened in Simulink 
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Figure 4-4 Position control block 

 
Figure 4-4 above shows the block implemented for the position control of the vehicle. The 

input of this block is a bus called state that includes all the variables of the actual state of 

the drone that it receives from the last block as can be seen with the loop in . Then the 

needed values that are included in the bus are selected in the black bar, which is a so-

called Bus Selector. The variables written in between “< >” under each line represent the 

value which is obtained by every single line leaving the selector. In this example, the 

current positions in X, Y and Z are obtained as well as the velocity in x-direction (the vector 

of the velocity being V= [U, V, W]T as velocities in x, y and z, respectively) and the yaw 

angle Psi. Right next to the bus selection, some initial conditions are obtained by blocks 

which read variables that can be loaded via the “LOAD” button on the top left in . 

Functions programmed in Matlab then calculate the output values, in this case for a loiter 

and line condition. The output of this block are the set points for the velocities in North 

East Down (NED) coordinate system and a yaw angle. 

 

For the velocity control level, the calculation works as indicated in Figure 4-5. It receives 

the velocities coming from the position control block which are then conditioned with a 

gain factor and a factor added.   

Figure 4-5 Velocity control block 
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The velocities from the current state are then obtained via a bus selector and both the 

velocities in x and y are then forwarded into a block that contains a PID controller, where 

the corresponding factors KP, KI and KD can be chosen in the properties of the block very 

easily. The variables that are controlled with each of these controllers are the pitch and roll 

angle (Phi and Theta). Furthermore, the yaw angle Psi is forwarded from the former block 

and the altitude command from the initial conditions. The output of this block is then 

forwarded to the attitude command unit. 

 

Figure 4-6 Attitude command block 

Figure 4-6 shows, that this block contains 4 sublevel blocks with each of them being a 

controller for the Roll (Phi), Pitch (Theta) and Yaw (Psi) angles as well as for the altitude of 

the quadcopter. The constants for each term of the PID controller can be edited from this 

view but the blocks themselves have a different logical structure (Figure 4-7), meaning that 

there were no pre-defined PID blocks from Simulink used.  
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Because the task of this project is to implement an attitude controller and the system itself 

is very complex as there are many dependencies, it was decided to omit the velocity 

control part and the position control part to just focus on the attitude control. However, as 

in [9] already concluded, if only IMU measurements are used, the vehicle will start to drift 

away over time caused by little errors. Therefore, it is necessary to also control the position 

of the vehicle to keep it exactly in the desired attitude as well as position for example when 

hovering. 

As the simulation should represent the system in a very realistic way, the model had to be 

changed in Simulink as well. Thus, only the velocity control part was omitted by simply 

deleting the whole green “Speed Control” block from . The resulting block structure can be 

seen in Figure 4-8 below. 

 

  

Figure 4-7 Structure of PID block in attitude control block 

Figure 4-8 Changed Simulink structure 
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With the velocity control missing, the position control and its internal algorithm had to be 

changed as the wanted output leaving the position control block has to carry the signal 

entering the attitude control block and is therefore different from the above described 

version. Because the focus lies on the attitude control, the intention was to keep the 

position control algorithm as simple as possible. Nevertheless, as the controllers of the 

velocity part is absent, the behavior of the whole system changes significantly as the 

integrated PID blocks have disappeared.  

Thus, the “effect” of those blocks on the control has to be compensated.  

Figure 4-9 above shows the adapted position control block. The state enters the block as 

unique input and is then distributed via a bus selector to its different variables. The 

variables of position are compared to the desired variables by being subtracted which 

results in the current error. The errors in x, y and z coordinates, respectively, are then 

multiplexed into one signal input signal for a Matlab function block. The function which is 

executed in this block is shown in Figure 4-10 below. 

  

Figure 4-9 Position control block 
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The input of the function are the position errors calculated in the position control block as 

described above. They are called North, East and Down (NED) and are noted in the world 

reference system. The definition of errors in the NED direction can be seen in Figure 4-11 

below. In this figure, the coordinate system marked with NED represents the desired 

position whereas the coordinate system with unmarked axes symbolizes the current 

position of the vehicle.   

Figure 4-10 Matlab function for velocity calculation 

Figure 4-11 Calculation of velocity based on errors 
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The vector R connects the two systems’  origins, being therefore the square root of the three 

errors squared. The angles pitch (q) and yaw (y) are calculated as indicated in the 

drawing. 

 
As can be seen in the code above, the outputs of the function are denoted as velocities as 

they are needed for further working of the model since the velocity control block has been 

omitted. However, the function shows a behavior similar to a PD-controller which is 

needed so that the system acts like before even without a “real” PD-controller implemented 

in a velocity control block.  

The magnitude of the velocity is limited by using the minimum function of Matlab in the 

definition of the variable vel above which either multiplies the vector R by a constant 

factor 0.1 or in case this value is bigger than 0.5, uses 0.5 directly. The multiplication by a 

constant depending on the magnitude of the vector can be seen as proportional part as the 

velocity will be the higher the larger the distance between the desired position and the 

actual position is. The velocities are then projected in the axes N and E by simply 

multiplying them with the corresponding trigonometric functions. 

The output only contains the velocities in North and East direction as the vertical velocity is 

calculated separately. 

 

In the lower part of the diagram that can be seen in Figure 4-9 , there is another Matlab 

function used to transform the velocities from the current state of the vehicle which are 

noted in body reference system to the world frame by using a matrix and the angles roll, 

pitch and yaw like the transformation explained in chapter 3.2. The outputs of the function 

are the velocities U, V and W noted in the world coordinate system. They are then 

conditioned by a gain factor obtained in an empirical way. Adding the negative values to 

the desired velocities obtained from the above described function leads to the set values 

for the velocities. Because the focus is set on roll and pitch angle, the velocity for the z 

component is not calculated. 

The set point values are then unified in a bus and forwarded to the next block in the 

diagram. 
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The following block for transformation contains the elements which can be seen in Figure 

4-12. 

 

The input V_world_cmd comes directly from the position control block whereas the input 

RPY is a measurement of the vehicle and therefore contains the actual values of the state. 

All of the inputs are selected from a bus and then united with a multiplexer to simplify the 

input of the Matlab function. Thereafter, the function transforms the values to the body 

reference system using another time the rotational matrix presented in chapter 3.2. The 

outputs are the set points for the roll, pitch and yaw angles. Because of a different 

coordinate system used in the following control mixing block, the angle f is defined in the 

wrong direction and therefore has to be multiplied by -1 to turn in the correct way. 

  

Figure 4-12 Transformation block 
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5. Experiments  
5.1. Experiments on the Simulator 

Working with control systems always includes empirical methods which lead to full 

understanding of the system and its reaction to certain input. Therefore, there is no “golden 

rule” for tuning the controllers as they are highly dependent on the system and vice versa. 

As using the real physical model for first testing of a new control algorithm is mostly no 

option because the possibility of failure is high and the often expensive systems may get 

damaged. Thus, as already explained in chapter 4, simulators are a proper alternative for 

the first trial-and-error experiments as there will be no danger to objects.  

Nevertheless, tuning of controllers can only be optimized to a certain level and the final 

refinements have to be done on the real model. This depends on the quality and accuracy 

of the model as its behavior may be a little different from the actual performance although 

the model should depict the reality as exact as possible with the above-mentioned 

limitations regarding the size of the model and its equations.  

 

Due to changes in the simulator Quad-Sim made for this project, the PID controllers had to 

be configured differently to the downloaded version. Furthermore, the UAV model 

simulated is distinct as its mass and its inertia are unlike the model used in Quad-Sim. 

Thus, the first step was to configure the model so that it matches the Hummingbird. To do 

this, the developers implemented a function that can be opened by clicking the button 

OPEN GUI: Build New Model above the main block diagram, marked with a green square 

in Figure 5-1. 

  

Figure 5-1 Button to open the GUI for building a new model 
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When clicking, the following GUI (Figure 5-2) opens where a whole new model of a 

quadcopter can be configured by entering all its mass and geometrical properties as well 

as data related to the motors.  

All of the data was obtained from the AscTec website and its documentation about the 

Hummingbird. [23] [26]  

However, the gained data from the before-mentioned sources are not sufficient to generate 

a model with this tool as even more data are needed. For example, the used motors of the 

type X-BL-52S manufactured by the German company Hacker are especially designed for 

this UAV and therefore there is no datasheet publicly available.  

Additionally, the modifications made to the vehicle by mounting odroid on top of it, 

removing the GPS module etc. have influence on the behavior and thus the real model of 

this project cannot be depicted by the data from Hummingbird in its default configuration 

anyhow as the modifications change, although maybe only minimally all the mass and 

geometrical properties. 

For the above-mentioned reasons it was decided to use an existing model which was 

included in the used Quad-Sim package. The model quadModel_+  is a model that is 

designed in the so-called “+” configuration as is the Hummingbird. Therefore their behavior 

will be similar.  

Figure 5-2 GUI to define a new quadcopter model in Quad-Sim 
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The configurations of a UAV quadrotor can be in the so called “+“ or in the “x” 

configuration. The symbols describe the orientation of the coordinate system in the x-y 

plane of the body coordinate system with respect to the arms of the vehicle. For the 

“+”(“plus”) configuration, the axes are congruent with the arms. In contrast, in the “x” 

(“cross”) configuration the axes are 45° rotated to the arms being in the middle between 

two. Figure 5-3 below shows the difference between the two systems, where the green 

coordinate system is in the + configuration and the blue one in x configuration.  

 

Both of these configurations have their advantages and drawbacks which one has to take 

into account when designing a control for a quadcopter vehicle. 

The cross configuration has more maneuverability as the turning around the x and y axes 

for generating roll and pitch, respectively are generated by operation of all 4 rotors and not 

only two in the case of plus configuration as the vehicle is in the latter case only turning 

around the arms and therefore the two other motors can maintain their speed if only one 

angle has to be changed. On the other hand, this is one of the great advantages of the plus 

configuration as it is easier to realize control algorithms because the acting of the motors is 

more intuitive without thinking about trigonometrical functions.  

From a physical point of view, the distance from the rotation axis to the force which is in 

this case the motor is the whole arm length in plus configuration whereas it is the arm 

length multiplied by sin(45°) and therefore nearly 30% shorter for cross configuration. This 

leads to higher possible angular acceleration. 

  

Figure 5-3 + and x configuration 
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When using a camera mounted on the vehicle, the field of view of the camera is free when 

flying “forward” along the x- or y-axis. Of course the last point mentioned applies only to 

UAVs flown by persons because automatic control can realize the mixing for the motors 

easier than a person with a control channel in each direction. 

 

After identifying the model, the parameters for the PID controllers had to be changed in 

order to get a behavior that fulfills the expectations. It has to be stated that the controllers 

used in this simulator are no typical PID controllers as can be seen through their 

implementation in Figure 5-4 as there were no pre-defined PID blocks used but rather self-

defined blocks created. 

 

 

The figure above shows what the attitude control block contains. 

Each of the three angle controllers use the following scheme of calculation as indicated in 

Figure 5-5 below. 

  

Figure 5-4 Self-created PID blocks 

Figure 5-5 Structure of PID controllers 
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The inputs to this block are the desired angle, the actual angle as well as the actual angular 

velocity with the former mentioned obtained from the transformation block and both the 

latter mentioned received from the measurements of the vehicle.  

The controller then calculates the error and forwards it to an integrator as well as a 

proportional part with their respective constants Kpp and Kip as factors. As the D part of a 

PID controller needs the control variable to be derived, another way is chosen as the 

derivation is already measured as the angular velocity P. Therefore, it can be used directly 

with the corresponding constant Kdp. The parts are then added and forwarded to the 

output. The behavior of this controller could be described as PI + D controller. 

 

All of the controllers for the three angles roll, pitch and yaw have the same structure. 

Nevertheless, the values for optimal behavior may be different from one controller to 

another. 

In contrast, the altitude controller differs in its structure. On the one hand it uses a derivator 

for the state of the z variable. On the other hand there is some difference in the reaction of 

the system to controlling whether the vehicle has to climb or descend as in descent the 

gravity has to be considered so that the decline may not be too rapid to lead to an unstable 

flying condition. These two changes can be seen in Figure 5-6 . 

 

 

  

Figure 5-6 Altitude controller 
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The Quad-Sim simulator also uses some initial conditions to describe the state of the 

vehicle when the simulation started. Thus, all state variables of the UAV can be set to an 

initial value.  

 

Figure 5-7 above shows the corresponding struct in MATLAB which contains all the initial 

conditions used for this simulation. All values are set to zero, except the z value to a height 

if 3 meters and the rotor angular velocity for every rotor (w1…w4) to 4000 rpm. This creates 

a hovering condition for the vehicle when starting the simulation. 

  

Figure 5-7 MATLAB struct with all 
the initial conditions 
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Simulink offers different solvers for its simulation which can be configured in detail. 

Following solving method and affiliated properties are chosen and can be seen in Figure 

5-8. 

 

The simulation duration of 50 seconds was chosen in order to see if any instabilities can be 

found in the solution later on which may be not seen in the first 10 or 20 seconds although 

the vehicle has reached its set points before. 

The set points are chosen in the position control block as can be seen in Figure 4-9 above. 

First only one of the position variables x, y and z is changed and the other two remain the 

same as the it is easier to see the effects of changing parameters. As there are already 3 

parameters for each PID controller to adapt and the system is highly dependent on each of 

the other states, changes and their result will not be easy to understand. 

First tests were made by keeping the z value constant at 3 meters, the y value at 0 and using 

a ramp with slope 1 as input to the x value.  

The simulator offers the possibility to watch graphs of the three axes with their 

corresponding position, velocity as well as angle and angular velocity around the matching 

axis by clicking the button “OPEN PLOT: State Data” in the main panel which can be seen 

in Figure 4-8. Furthermore this button opens another figure displaying the 4 rotor speeds.  

Figure 5-8 Solver properties for Simulink model 
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In addition to the graphical representation for the PID controller as can be seen in Figure 

5-5, it can also be described by its equation. However, it has to be taken into account, that 

the controllers used in this project are, with the exception of the altitude controller, no 

pure PID controllers but rather PI+D controllers. This is due to the fact, that the derivative 

part of the controller is not computed but the derivative of the variable, which is already 

available as measurement, is used. 

The equation of a PID controller would look as can be seen in equation 7.3 in [27] 

 

 
𝑢(𝑡) = 𝐾j C𝑒(𝑡) +

1
𝑇#
m 𝑒(𝜏)𝑑𝜏
p

q
+ 𝑇r

𝑑
𝑑𝑡 𝑒

(𝑡)G (5.1) 

 
where 
u(t)…manipulated variable 
KP…proportional amplification factor 
TI…reset time (German-speaking area: TN) 
TD…derivative action time (TV) 
 
Because of the above-mentioned changes to a pure PID controller, this equation can be 

written as 

 

 
𝑢(𝑡) = 𝐾j C𝑒(𝑡) +

1
𝑇#
m 𝑒(𝜏)𝑑𝜏
p

q
+ 𝑇r𝑦̇(𝑡)G (5.2) 

 
with 
𝑦̇(𝑡)…derivative of the controlled variable 
 
Because the blocks in the simulation use K-factors instead of time, the former equation 

(5.2) could also be written using the following relations 

 

 𝐾# =
𝐾j
𝑇#

 (5.3) 

 
 𝐾r = 𝐾j𝑇r (5.4) 

 
as 
 
 

𝑢(𝑡) = 𝐾j𝑒(𝑡) + 𝐾# m 𝑒(𝜏)𝑑𝜏
p

q
+ 𝐾r𝑦̇(𝑡) (5.5) 

 
with the Laplace transformation, the transfer function is written as 
 
 𝐺t(𝑠) = 𝐾j +

𝐾#
𝑠 + 𝐾r𝑠 (5.6) 
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5.2. Empirical controller tuning 
As no earlier experience was made with this model regarding the tuning of parameters, a 

first approach to get the parameters was to use a trial-and-error method based on 

knowledge about the general behavior of PID controllers and its different parts P, I and D. 

The values chosen for the first test were the ones used in Quad-Sim (Table 5.1) because of 

the lack of experience about which values to pick. The names are according to the 

representation of each factor using following scheme: 

 
Kxy 
 
with  
x representing the part of the PID controller (p, i or d) 
y representing the controlled variable (p=f, t=q, s=y and z) 

 
Table 5.1 First set of PID factors 

The following results shown in  below are obtained from this first test. 
 

The grey dashed line in every plot represents the value of the set point whereas the blue, 

red and green lines are displaying the actual values obtained from the model. Although the 

x plot follows the slope, it can be seen that the system becomes unstable and is oscillating 

with angles of f up to 50° which would lead to a crash when applied to the real system.  

Kpp Kip Kdp Kpt Kit Kdt Kps Kis Kds Kpz Kiz Kdz 
2.8 3 1.1 1.3 1 1.1 20 6 13 5 1 2.8 

Figure 5-9 MATLAB plots of all state values with ramp slope 1 in x 
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Furthermore, the graphs of y and z show, that the change in x also affects the other two 

variables and they fluctuate around their initial values. The z value later on oscillates more 

and the y value is then quite stable. 

By slightly increasing the D-part to Kdp = 2, the oscillations can be regulated to a level that is 

acceptable. Then the ramp was changed for a step signal from 0 to 1 acting with a delay of 

10 seconds to test the behavior with this more challenging input to demonstrate the 

stability of controlling. The result can be seen in Figure 5-10 below. 

 

The x graph shows that the signal follows the input pretty good and reaches the desired 

value after about 5 seconds but then tends to overshoot. Slight oscillations as for p are 

acceptable as the peak is at about 1/10 °/sec and therefore very small. 

 

Thereafter, the step signal was set as input for the y set point and the factors for the q 

controller were set to the exact same values as the factors for the f controller as the 

behavior should be the same which was confirmed by the same experiment as above 

obtaining the same results but this time with the graphs of the first and second column 

exchanged. 

For the z component, the behavior is different because of the gravitational forces as 

explained above. When applying a step signal to the z set point, the output showed 

oscillation that could be reduced by increasing as above the D-factor to Kdz = 4. 

Figure 5-10 Output graphs with step input signal 
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 In summary, the following values seen in Table 5.2 were obtained by optimizing for a step 

signal at only one of the inputs not taking into account possible interactions. 

 

Table 5.2 First optimization results 

Figure 5-11 above shows the graphs for the z-axis only where the input signal was a step 

signal from 3m to 2m starting at 10 seconds with the results in the left column whereas the 

plots in the right column show the effect of a step signal from 3m to 4m also starting at 10 

seconds. Because of the different controller and the compensation of gravity it was 

necessary to find out how the vehicle reacts to such an input in both ascending and 

descending direction. It can be stated that the behavior is very similar and also satisfactory 

with only slight overshooting in both directions. Figure 5-11 Results optimization of z axis 

PID controller 

  

Kpp Kip Kdp Kpt Kit Kdt Kps Kis Kds Kpz Kiz Kdz 
2 1.5 2 2 1.5 2 20 6 13 5 1 4 

Figure 5-11 Results optimization of z axis PID controller 
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After optimizing every single controller for step signals just on one channel, the task was to 

test the performance of the vehicle when input signals requiring changes on every of the 

axes enter the system. Due to the complexity of the system UAV, the interaction between 

the different controllers had to be found. This was easier after optimizing every single 

controller as dominating many variables and seeing the effects on such a system is very 

difficult. Furthermore, finding satisfying properties is always a procedure of trial-and-error 

although there are helpful thumb-rules for changing the factors according to a certain 

behavior: Nevertheless, every system is special in its reactions to particular changes. 

 

The first test was made by altering the position in every three axes with respect to the initial 

conditions of [0, 0, 3]. A step signal required the vehicle to move 1m in the x direction 

where the input acts with a delay of 10 seconds. The y set point was directly set to 1m with 

a constant as well as the z set point which commanded the quadcopter to descend to 2.9m. 

With the above obtained values for the factors of the PID controller remaining the same, 

the following result was found (Figure 5-12). 

 

  

Figure 5-12 Simulink result for inputs to every axis 
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The plots show that the set points in every direction are reached without oscillating and 

without remaining error. Furthermore, the desired values are reached in nearly 5 seconds 

after the input in the plane axes x and y and in about 2 seconds in the height axis z. But it 

can also be stated that there is overshoot in every axis with peak values which deviate up 

to 10% from the desired distance to be traveled. The required velocities and angular 

velocities are in an acceptable range for such deviations as they barely reach 0.3 m/s or 

0.04 °/s, respectively. 

5.3. Numerical optimization for tuning 
The above determined values can be taken used as good starting values for first testing 

operations on the vehicle, as it would behave in a predictable way and no major 

dysfunction because of wrong parameters should happen. However, due to the complex 

system and its interactions one can never find the optimal parameters of the controllers in 

an empirical way as there impacts on the behavior because of the coupled system where 

they might not be expected or the changes made to the values may be too little or to big as 

to find the optimal position. Furthermore, experimenting would in any case take a lot of 

time and an optimal result is not guaranteed by no means.  

For this reasons, it was decided to improve the parameters obtained using numerical 

methods. As the model was generated in Simulink, a tool from the calculating software 

Matlab, the easiest way to get optimization was to use an already implemented algorithm of 

Matlab because it can be connected with the simulator and optimize the values right in the 

model. As a result, the effects can be seen immediately on the graphs of the simulator as 

seen above. 

Before starting the optimizing procedure it was necessary to define a criteria for which an 

extremum can be found in order to get optimal values for the controller parameters. 

As it is a control loop, the control error was the value of choice for this problem, albeit 

squared and summed up over the whole time period of the simulation as a quality function 

for the difference between command variable and controlled variable. 

To find the optimal value of this quality function, an optimizer already implemented in 

Matlab was chosen. The solver fmincon is designed to find a minimum in an iterative 

process and gives the possibility to introduce constraints to the parameters to be optimized. 

Furthermore, there are a lot of properties to define as well as options to choose when using 

this optimizer which can all be found in the Matlab documentation. 
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The implementation of the optimization in Matlab can be seen in Figure 5-13 below. 
 

  

Figure 5-13 Optimize function 
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The function Optimizer is the main function where the simulator is started with the 

command startSimulator  which executes another program starting Simulink and loading 

the model and initial conditions. Thereafter the values for executing fmincon are 

implemented, namely the start value and upper and lower boundaries as maximum values 

the modulated parameters can take on. Starting values for the first run of the program were 

the controller parameters obtained in the empirical process. The lower boundary is set to 0 

for every value because PID controller gains cannot take on negative values. The upper 

boundaries were set to 5 for every value as the highest value was 5 before. In case that one 

value would be optimized near 5, these upper boundaries should be raised. The options for 

the optimizer may be chosen to specify certain properties for fmincon. In this case it was 

necessary to set the value DiffMinChange to 0.01 because before this, the optimizer kept the 

original parameters and did not work. The MaxIter option limits the maximum number of 

iterations done by the optimizer and MaxFunEval does the same for the number of function 

evaluations during each iteration. Display shows the result after each iteration in the 

command window. After that, the function to be optimized has to be defined. It is the 

anonymous function func which is dependent on the function fun.  

The latter mentioned function is evaluated during each iteration. It creates a 

SimulationTest object which is run by the command sim. All outputs of this simulation is 

logged in the struct sim_out. As the simulation is logging in timeseries data format, the data 

has to be converted into matrices of type double. Thereafter, the squared error is 

calculated and summed up in the quality function J which is the output of the function fun. 

The output of this function is the value that fmincon tries to minimize and the input of the 

function will be varied (Param_Value in this case).  

The third function is just called for plotting the controlled variable and the command 

variable for the optimized parameters. 
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The first run of the program led to the parameters which can be seen in Table 5.3. The 

parameters of the controller for the yaw angle are not considered in this optimization as the 

controllers for pitch, roll and z are much more important for the stabilization of the vehicle. 

 
 
 

Table 5.3 First numerical optimization result 

The corresponding graphs are shown in Figure 5-14, Figure 5-15 and Figure 5-16 below. 

Kpp Kip Kdp Kpt Kit Kdt Kpz Kiz Kdz 
2.3015 2.1527 0.9715 1.6895 1.1582 2.5027 4.1886 0.8031 3.1032 

Figure 5-14 x-axis first optimization 

Figure 5-15 y-axis first optimization 
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It can be seen, that the controller for the y-axis is already stable. But the two others show 

unwanted behavior. The x-axis controller oscillates with an increasing amplitude, whereas 

the z-axis controller deviates from the command variable over time.  

A first approach to tackle this problems was to simulate for a longer period of time, as the 

deviations would then be even higher causing the optimizer to react differently because 

the quality function J would also increase in its value. The simulation time was raised to 

200 seconds in a second attempt. Furthermore, the result of the first optimization was 

chosen as start parameter for the second optimization. 

The resulting parameters for the second optimization are shown in Table 5.4. 

 

 

Table 5.4 Second numerical optimization result 

As can be seen easily, the values for the parameters of controller 2 and 3 (pitch and z) did 

not change much compared with the first result. But there are noticeable changes in Kip 

and Kdp. This is can also be seen in the graphs in Figure 5-18, Figure 5-17 and Figure 5-19, 

where the controller 3 is already stable and does not deviate any more, whereas the 

controller 1 is still oscillating, albeit decreasing over time. 

  

Kpp Kip Kdp Kpt Kit Kdt Kpz Kiz Kdz 
2.1866 3.6072 1.1188 1.6739 1.1403 2.5284 4.1918 0.7995 3.1107 

Figure 5-16 z-axis first optimization 
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Figure 5-18 x-axis second optimization 

Figure 5-17 y-axis second optimization 
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As can be seen in the plots above, all of the controllers are stable with controller 1 

controlling the low-frequent oscillation well with only slight overshoot but struggling to 

damp a system part oscillating at a high frequency. However, stability is given, as the error 

tends to 0 over time. 

To tackle this problem, another optimization round was run, although for only 50 seconds 

as in the first round because there are no significant changes between 50 and 200 seconds 

and computation is significantly more expensive. As the parameters of controller 2 and 3 

are already optimized, they were not changed any more in the last experiment which also 

saves computation time. The optimization process can also be improved by adding a term 

to the quality function. The first derivative of the error is calculated, squared and summed 

up as can be seen in the additional code lines in Figure 5-20. 

  

Figure 5-19 z-axis second optimization 

Figure 5-20 Additional code lines to calculate first derivative of error 
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Nevertheless, this brings only minor improvements in the result concerning the first 

controller. In another attempt for enhancing the performance of the roll controller, the 

boundaries were set near the value which was the result of the empirical trial-and-error 

method since there hasn’t been any such oscillation. The result can be seen in Figure 5-21 

below. The plot called X1 represents the solution found with boundaries set to: 

𝑙𝑏J = [0; 0; 0; 1.6739;1.1403; 2.5284; 4.1918; 0.7995;3.1107] 

𝑢𝑏J = [5; 5; 5; 1.6739; 1.1403; 2.5284;4.1918;0.7995;3.1107] 

Whereas the boundaries for the result X2 were as follows: 

𝑙𝑏K = [0;1.2; 1.3; 1.6739; 1.1403;2.5284;4.1918; 0.7995; 3.1107] 

𝑢𝑏K = [5; 1.8; 2.2; 1.6739;1.1403;2.5284; 4.1918; 0.7995; 3.1107] 

The values for the boundaries were set from the empirical obtained parameters restraining 

the range of possible outcome around their values. 

 
This setting of the boundaries may lead the optimizer to other values as they might be 

closer to a local minimum or eventually the global minimum. In the other case, when the 

boundaries are set in a wide range, the optimizer might find another local minimum and 

this minimum results in the oscillations as seen above.  

Although the oscillations do not have high amplitudes and disappear over time (Figure 

5-18) , they could be problematic when applying the parameters to the real systems as the 

model is not totally identical and small oscillations in the model could lead to an unstable 

behavior of the vehicle. Therefore, it is desirable that there are no oscillations at all in the 

model.   

Figure 5-21 Comparison of optimization results 
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5.4. Programming 
The system of control generated for the simulator had then to be applied on the real system 

to establish the desired control of the UAV. Of course, the representation in Simulink is 

somewhat abstract with its block diagram. For example, there are different blocks for the 

stages of control like position and attitude control block are separated. However, in the 

real system there are only two systems of a control: the controller itself and the controlled 

system, which is in this case the Hummingbird quadrotor. Therefore, the whole controlling 

part in the simulator had to be converted into the control program and therefore written in 

executable code, whereas the system with its properties weren’t touched. ROS nodes allow 

executables written in two different programming languages to be run: C++ and Python. In 

this work it was decided to write the code in C++.  

Like in the simulator, the following tasks had to be realized in the program: 

 

§ Obtaining current orientation and position from the quadcopter LLP 

§ Implementing PID controllers for each axis 

§ Sending commands to control the quadcopter 

 

Sending and receiving of data with ROS works with so-called publishers and subscribers. As 

mentioned above, the former publishes data on a certain topic without knowing whether 

or not other node(s) is(are) listening. This behavior is therefore distinguishable from many 

other communication in computers as typically sender are receiver are known and directly 

coupled. But with ROS any part in the system could be a subscriber and thus receive the 

sent information. Therefore, the desired program needs a subscriber to the topic on which 

the Quadcopter node publishes the current position and orientation data as well as a 

publisher that sends the commands to the vehicle at the end of the program to move or 

turn the quadcopter to the set point.  

The software package delivers a program to test if the control of the Hummingbird via ROS 

works. The program ctrl_test is designed to call the service to turn the motors on and off as 

well as to send commands to move the quadcopter to a desired point. One has to take into 

account that by default the commands are only sent for 1 second and thereafter the vehicle 

will no longer receive commands so it returns to its initial state determined by the positions 

of the sticks of the radio control before the execution of the program. Therefore it is 

recommended to do these tests with the vehicle in a fixed position, e.g. on a workbench.  

If the request to turn the motors on is sent, they run in idle mode unless the left stick on the 

radio control is not in the lowest position.  
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Thereafter, it is possible to send commands to navigate the Hummingbird by entering the 

corresponding coordinates in the command line in the terminal of Linux. 

It was decided to take the program ctrl_test (Annex II)as template as it already consists of 

two of the main parts, namely the subscription and publishing of data. 

 

5.4.1. Data acquisition 
The Hummingbird publishes and subscribes to different topics and also offers the above-

mentioned service to start the motors. Figure 5-22 shows all the topics with a short 

description. All these are included in the asctec_hl_interface package that communicates 

with the HLP of the Asctec Autopilot mounted on the Hummingbird quadrotor. [28] 
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Of the above possible topics that the Hummingbird publishes, the topic fcu/imu  was 

chosen. This topic delivers measurements from the Inertial Measurement Unit (IMU) where 

the type of the message is sensor_msgs, a self-defined data format. The definition can be 

seen in Figure 5-23. 

 

This file defines the messages that are sent on the topic. The message Imu.msg consists of 6 

different measurements, namely the orientation, the angular velocity and the linear 

acceleration with their corresponding covariance. The data types can be seen before the 

variable names. For example, the second line after the header shows the definition of 

orientation_covariance which is the variable name with the data type float64[9]. The other 

variables are defined with data types typically used in ROS. The package geometry_msgs 

provides different message types to describe common geometric primitives as points, 

vectors or poses. This package also includes the message types Vector3 and Quaternion 

which are used in Imu.msg. The Vector3 format is a simple column vector with the three 

values of x, y and z. Whereas the Quaternion message offers the four values x, y, z and w 

which are described as follows. [29] The definition and explanation of quaternions can be 

found in Annex I. 

With the formula for quaternions in mind, the four values a, b, c and d can be obtained 

and these are transmitted as a message via the topic fcu/imu.  

However, for further computations and the PID controllers, it is easier to use the values of 

the angles of attitude, namely roll, pitch and yaw in the program. Therefore, a function was 

created to convert the values x, y, z and w to the angles f, q and y. The formulas that can 

be seen in Figure 5-24 were developed using the template given in [30].  

Figure 5-22 Published topics, subscribed topics and services of asctec_hl_interface [27] 

Figure 5-23 Message definition of the topic fcu/imu [28] 
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The values q_w, q_x , q_y and q_z represent the quaternions’ four values and are obtained 

using a ROS subscriber with the corresponding callback function where the conversion is 

also integrated. The necessary code lines used to implement a subscriber are shown in 

Figure 5-25. 

 

The first line initializes ROS and allows it also to do name remapping through the 

command line. In this line, the name of the node is also specified (attitude_control in this 

case) and must be unique in the system. The NodeHandle creates a handle to the node of 

this process and actually initializes it. The third line is the initialization of the subscriber 

and it receives messages on the topic fcu/imu as indicated in the first argument in the 

brackets. The second argument defines the queue size and therefore the maximum size of 

messages stored before the last one will be deleted. The third argument is the callback 

function with the name ImuCallback which will be called by ROS every time a new 

message arrives. This line returns a so-called subscriber object and must be hold on until 

one wants to unsubscribe from a topic. This can be done by a destructor. The last line 

forces the program call message callbacks as fast as possible. The same procedure is also 

executed for the topic fcu/current_pose, which delivers the current position of the vehicle 

[31]  

Figure 5-24 Conversion from quaternions to Euler angles in C++ 

Figure 5-25 ROS subscriber written in C++ 
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The ImuCallback function is used to obtain the needed values from the messages 

published on the fcu/Imu topic. The above explained conversion to Euler angles is also 

integrated in this function which is shown in Figure 5-26.  

 

The message that is published enters the function and contains the values as specified in 

Figure 5-23 . The values of orientation and angular velocity are obtained and assigned to 

the corresponding variables. 

 

5.4.2. Control computation 
After the data is obtained from the vehicle, the inputs of the control system are known. 

Thus, the outputs can be computed according to the implemented control scheme shown 

and described in the simulation part above: Therefore, the task in this section is to write all 

the functions executed by the blocks above in programming language C++.  

 

As can be seen above, some transformations between coordinate systems have to be made 

in order that the physical equations are applicable when using the same coordinate system 

or when an inertial system is needed so that the equation is valid.  

Figure 5-26 ImuCallback function 
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For this reason, a transformation function was created that uses a transformation matrix 

and elements of a vector as input and delivers a transformed vector as output. Figure 5-27 

shows the implemented function for a transformation from system 1 to 2 where the matrix 

is defined as a two-dimensional double array. 

 

In addition, the function used in the position control block described in chapter 4.3 had to 

be implemented.  

 

 
Figure 5-28 above shows the errors denoted in system NED as inputs and the calculated 

velocities in North and East as output of this function. 

 

The most difficult part in creating an executable code from the existing control scheme 

was the PID controller itself. However, Åström and Hägglund proposed a computer code to 

tackle this problem on pages 107 to 108 in [32]. Nevertheless, the code is written in the 

programming language Pascal and had to be adapted to the syntax of C++. Furthermore, 

bumpless parameter changes as feature included in the offered code was omitted. The 

resulting code can be seen in Figure 5-29. 

  

Figure 5-27 Transformation function 

Figure 5-28 Function from the position control block 
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The inputs to the function are the factors 𝐾j, 𝐾#	and 𝐾r as well as the accumulated integral 

error 𝐼}~, the sampling rate ℎ, the tracking time constant 𝑇p, the derivative of the input 

variable with respect to the time 𝑦̇ and the error 𝑒. 

The factors of the PID controllers for each controllers are as determined above. The 

accumulated error is added up over time. The sample rate is chosen at 60 Hz to be fast 

enough to control the system with highly dynamic behavior. [32] proposes a thumb rule to 

choose the tracking time as  

 
 𝑇p = �𝑇A𝑇� (5.7) 

 
with 

reset time 𝑇A =
��
��

 

derivative action time 𝑇� =
��
��

 

 

Taking the values for the parameters of the PID controller into account, this would lead to a 

factor Tt of about 1,15 for pitch and roll controller. 

The output of the controller function is the manipulated variable. 

 

All of the above-mentioned function definitions are arranged above the main function 

block of the program.  

In the main block, first the initialization of ROS is executed and the NodeHandle function is 

called. Thereafter, the service for starting and stopping the motors, which is already 

implemented in the topic fcu/motor_control is used to start the motors. First, variables of 

the type Request and Response , both defined by the asctec_hl_comm communication 

package that comes with the asctec_mav_framework package, are created.   

Figure 5-29 PID controller as function in C++ 
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The function to start the motors is called by set req.startMotors  to 1. If one sets this value to 

0, the motors will be turned off as is the case at the end of the program.  

Then, the call of a ROS service works very similar to a subscriber with the arguments of the 

topic on which the message has to be sent as well as the message itself. In this case the 

message is to send the value 1 to start the motors. 

 

 
As can be seen in Figure 5-30 above, after the before-mentioned steps, the subscribers for 

the IMU data and position data are called. 

 

In the next block, the two transformation matrices to convert from the body to the world 

frame and vice versa are generated. The calculation uses the angles calculated from the 

received data of the IMU.  

 

Thereafter follows the position control block, where all the calculations made in the 

position control block of the Simulink model are made. Set points for the position are set to 

[0,0,0] as the data sent from the current pose signal also sends [0,0,0] due to the missing 

signal of the GPS and no other input signal about the current position. Therefore, the set 

points urge the vehicle to stay in its actual position.  

In the attitude control part, the parameters of the PID controllers are defined. 

  

Figure 5-30 First part of  main  program block 
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5.4.3. Command publication 
Publication of messages works similar to the subscription to a topic. First, a publisher 

object has to be created and thereafter the message type is defined. In this case, the 

message type directMotorControl  is chosen as this activates a control mode where the 

default attitude control implemented on the LLP is ignored and the self-designed program 

is used instead. With the same Nodehandle as above, a publisher sends messages on the 

topic fcu/control . These commands can be seen in Figure 5-31. 

 

Figure 5-31 Control loop in the program 
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The following command line is to define the execution rate of the program and it is chosen 

the same rate as used in the PID controller function. 

Afterwards, the control loop is implemented with a duration of 1200 spins. 

 
The errors in the NED system are calculated from the set points of x, y and z and their 

actual values.  

Thereafter the program works in its steps as described above for the simulator. 

Omitting the velocity control part, the set points for the angles are derived from the 

transformed velocities calculated in the position control function control_posicion. 

The errors for the angles of attitude are then used as inputs when the PID controller 

functions for each angle roll, pitch and yaw is called. 

 

Because of the needed input signal for the roll and pitch command, the output signals have 

to be scaled. The input range between -100% and +100% for these angles is scaled from 0 to 

200. This means, if the maximum inclination in the negative direction of the axis shoud be 

reached, the signal must be 0 and in the positive direction of the axis, it must be 200. Also, 

the maximum angles are limited to +/-52°. This leads to the following two equations derived 

from the equation for a straight line. 

 

 𝑦 = 𝑘 ∗ 𝑥 + 𝑑 (5.8) 
 

 
0 = 𝑘 ∗

−52 ∗ 𝜋
180 + 𝑑 (5.9) 

 

 200 = 𝑘 ∗
52 ∗ 𝜋
180 + 𝑑 (5.10) 

 

When solving this system of equations 5.9 and 5.10, the following constants arise: 

 

𝑘 = 110,184191 

𝑑 = 100 
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Figure 5-32 above shows, that the calculated values are used to correct the command 

output of each angle. 

For testing reasons, all of the output signals are then displayed to the terminal window in 

order to check, if they are in a valid range and if the control works properly as can be seen 

in . In addition, the correction for the scale can also be checked by printing the signal 

without the above-mentioned computations. Furthermore the angular velocities as well as 

the current position and are also displayed as well as the accumulated error in order to 

check its functionality. 

Figure 5-32 Correction of command values and printing of outputs 
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In Figure 5-33 can be seen, that the messages values are assigned according to the type of 

the message of fcu/control  which sends the 6 values x, y, z, yaw, v_max_xy and v_max_z  

with the latter two being the maximum velocities in the direction of the x-axis and y-axis as 

well as in the direction of the z-axis, respectively. The x value is the roll angle, the y value 

for the pitch angle and the z value for the thrust. 

The commands are then published by simply using the function publish with the message 

msg as argument. 

The method ros::ok is used for shutting down the node and therefore destructing all 

subscribers and publishers. 

Thereafter, the motors are shut down similar to the process of starting them as described 

above. 

  

Figure 5-33 Creation of messages an d publication 
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5.5. Experiments on the drone 
After test runs on the simulation were completed successfully and the program 

representing the control process was written, first tests on the drone could be made. The 

control was still in a testing phase and the results from the simulation should always be 

considered with caution because of all the effects that exist on the real system and could 

not be depicted in the simulator to keep the model relatively simple and computation fast. 

For this reason, it was considered too dangerous to implement the algorithm directly on the 

drone and let it fly autonomously but rather put it in a test rig and run some tests first. On 

one hand, the task was to fix the drone so that it could not crash down on the ground or 

ascend to the ceiling. On the other hand, the vehicle must be able to move in order to 

check the functionality of the newly designed attitude controller. As the system already has 

a high degree of complexity and the model shows that all the angles have mathematical 

connections to each other, it is not as trivial to see the reaction of the quadcopter to the 

input made to it. Therefore, giving the vehicle only 1 degree of freedom, namely the 

rotation around one axis, makes it easier for humans to draw at least qualitative 

conclusions about the correctness of the behavior and if it was expected or not.  

As the Hummingbird for this project has +-configuration as mentioned and explained 

above, the easiest way is to fix the two arms of one axis, letting it rotate around this axis 

and therefore judge about the roll or pitch control.  

 

 

Figure 5-34 Hummingbird test rig 
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Figure 5-34 above shows the test rig used for conducting first experiments testing the 

attitude control algorithm. As can be seen, odroid was fixed on the test rig itself and not on 

Hummingbird. Furthermore, a bearing on each side in the tubes connecting the white rods 

and the tubes was integrated to minimize friction when the vehicle rotates. 

 
To create an executable file in ROS, the package asctec_hl_comm  had to be built new. 

First, the new C++ file had to be added in the sources folder src in the corresponding 

package. Thereafter, a new build process had to be started by using the command 

catkin_make. This command will build any packages located in the source folder of the 

current workspace. After the package is successfully built, it will be possible to execute the 

program via the terminal using the command rosrun asctec_hl_comm ctrl_test_Florian. 

The command rosrun is used for running programs via ROS using the terminal. The second 

term shows the actual package where the executable file is located and the last term is the 

name of the file with no ending necessary. Also, the file location does not have to be 

written like a usual path due to the ROS filesystem level mentioned in chapter 2.4.2. In 

contrast to the original ctrl_test program used as template for the newly created file, no 

more arguments are needed to start the process.  

As already mentioned, before starting the experiment, one person has to be in charge of 

the radio control during the whole test in case anything unexpected happens. The switch 

for manual mode has to be put in the correct position, otherwise the default control 

algorithms from the LLP will take control of the vehicle and the new algorithm could not be 

tested. 
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6. Conclusion 
6.1. Findings 

The objective of the present master thesis was to create an attitude control algorithm for a 

quadcopter using the middleware ROS. The drone used in this project is a vehicle called 

Hummingbird and already existed in the laboratories of the UPC for experiments on 

control of an under actuated and highly agile system. The drone is controlled only by the 

angular velocities of its four rotors thus having four controllable variables in a three-

dimensional system with 6 degrees of freedom. As the angular velocities of each rotor are 

hard to judge qualitatively about the behavior and the control of the vehicle it is easier to 

work with the three angles of attitude, namely roll pitch and yaw and with the altitude z. 

The creation of a model of the system shows the relations between the angles and the 

forces and moments the rotors generate which can be linked with the rotational speed 

using empirical determined factors.  

To minimize the risk of failure and therefore demolition of the vehicle, the development 

and improvement of the algorithm was made using the simulation software Simulink. An 

existing model named Quad-Sim was used and modified to match the specifications of this 

thesis. The system consisted of three steps of control, namely position, velocity and attitude 

control. The velocity control block was eliminated but the position control block was 

retained and modified. Attitude control does not work without at least rudimentary 

position control as little deviations or permanent errors controlling the angles roll or pitch 

or the altitude z will lead to a drift of the vehicle over time. Position control is only possible 

if the current position is known. Many quadcopter research projects rely on position data 

delivered by a sensor connecting to a GPS/GLONASS system. As this project had to be 

developed indoors where the signal is either very weak or not available, other options of 

obtaining the current position had to be considered. A system implemented for a former 

thesis developed in the same laboratory using image recognition of four markers detected 

by four stationary cameras was taken into account. However, it turned out to be very 

difficult to mount the markers which were designed to be mounted on a model helicopter 

skid landing gear onto the quadcopter.  

Therefore the project was focused on the development of the control algorithm assuming 

getting position data without specifying how to tackle this problem.  

The simulation helped to obtain the parameters of the PID controllers by optimizing to a 

fast reaction of the agile system allowing 10% of overshoot in the controlled variables.  

  



Florian Schebesta attitude control algorithm for a Quadcopter page 81 of 98 

Due to their importance for attitude of the flying object, the work was concentrated on the 

angles roll and pitch because deviations in these angles would cause the quadcopter to 

drift.  

The resulting control scheme was then written in the programming language C++ to create 

an executable file for ROS. This middleware which runs on Linux is used to communicate 

between parts of an automated system like the quadcopter and a ground computer can do. 

The code was implemented on the processor to run autonomously and can be started from 

the before-mentioned ground station via a command entered in a terminal window of 

Linux. Through a Wi-Fi connection, changes are possible whenever needed, also during 

flight. 

Experiments on a test rig showed that the implemented algorithm works and that the 

parameters of the simulation were obtained in the correct range. 

 

6.2. Outlook 
The further optimization of the PID controller parameters is a duty on which further 

researchers could concentrate. The parameters obtained by the simulation are leading to a 

working system, nevertheless some influences on the system could not be depicted on the 

model because they are either not representable or would increase the complexity of the 

model by an unreasonable amount. 

Possible successors may focus their work on implementing the mentioned image 

recognition system by designing markers adequate for the existing system and using the 

stationary cameras to fly in the defined space. Furthermore, one can think of mounting 

cameras onto the vehicle and recognizing the environment creating a map where it flies to 

obtain position data. This would make the quadcopter more flexible and it could not only 

be used in the limited space covered by the cameras. 
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Annex I 
Quaternions  

Quaternions are an extension of the complex numbers often used in mechanics and in 

three-dimensional space. They were first defined by Irish mathematician William Rowan 

Hamilton as the quotient of two directed lines in a three-dimensional space or as the 

quotient of two vectors. Quaternions can be represented as follows:  

 

𝑎 + 𝑏𝒊 + 𝑐𝒋 + 𝑑𝒌 

with 𝑎, 𝑏, 𝑐, 𝑑	 ∈ 	ℝ 
i,j and k are the so-called fundamental quaternion units, where: 
 

𝒊K = 𝒋K = 𝒌K = 𝒊𝒋𝒌 = −1 
 
One has to be careful with the application of mathematical laws on quaternions as the 
commutative law is not valid, for example. 
 
In analogy to complex numbers, given a quaternion 
 

𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 
 
a is called the real part, whereas bi + cj + dk is the imaginary part. 

Another definition calls a the scalar and bi + cj + dk the vector part, but this vector must not 

be confused with a polar vector in three-dimensional space and is therefore often called an 

“axial” vector or a “pseudo vector”. 

In many applications such as three-dimensional rotations, quaternions are used either 

alongside Euler angles or as an alternative to them. 

The definition of quaternions can be used in the definition of rotations of rigid bodies 

according to Euler’s rotation theorem. The theorem states that every rotation or sequence 

of rotations about a fixed point is equivalent to a single rotation by a given angle q about a 

fixed Euler axis that runs through the fixed point. This axis is typically represented by a unit 

vector 𝑢�⃗ . So it is possible to denote any rotation as a combination of a vector 𝑢�⃗  and a scalar 

q. This representation can easily be realized by quaternions as they consist of a scalar and a 

vector part. 
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With a vector  

 

𝑢�⃗ = {𝑢P, 𝑢R, 𝑢S} 

 

in mind, an extension of Euler’s formula can be written as 

 

𝒒 = 𝑒
.
K���𝒊���𝒋���𝒌� = 𝑐𝑜𝑠

𝜃
2 +

�𝑢P𝒊 + 𝑢R𝒋 + 𝑢S𝒌�	𝑠𝑖𝑛
𝜃
2 

[33] 
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Annex II 
/* 
 
Copyright (c) 2011, Markus Achtelik, ASL, ETH Zurich, Switzerland 
You can contact the author at <markus dot achtelik at mavt dot ethz 
dot ch> 
 
All rights reserved. 
 
Redistribution and use in source and binary forms, with or without 
modification, are permitted provided that the following conditions are 
met: 
* Redistributions of source code must retain the above copyright 
notice, this list of conditions and the following disclaimer. 
* Redistributions in binary form must reproduce the above copyright 
notice, this list of conditions and the following disclaimer in the 
documentation and/or other materials provided with the distribution. 
* Neither the name of ETHZ-ASL nor the 
names of its contributors may be used to endorse or promote products 
derived from this software without specific prior written permission. 
 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 
"AS IS" AND 
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 
IMPLIED 
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
DISCLAIMED. IN NO EVENT SHALL ETHZ-ASL BE LIABLE FOR ANY 
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
DAMAGES 
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 
SERVICES; 
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
CAUSED AND 
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 
TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 
OF THIS 
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 
*/ 
 
#include <string.h> 
#include <stdio.h> 
#include <math.h> 
 
#include <ros/ros.h> 
#include <asctec_hl_comm/mav_ctrl.h> 
#include <asctec_hl_comm/mav_ctrl_motors.h> 
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void usage() 
{ 
  std::string text("usage: \n\n"); 
  text = "ctrl_test motors [0 | 1]\n"; 
  text += "ctrl_test ctrl [acc | vel | pos | vel_b | pos_b] x y z 
yaw\n"; 
  text += "position / velocity in [m] / [m/s] and yaw in [deg] / 
[deg/s] (-180 ... 180)\n"; 
  std::cout << text << std::endl; 
} 
 
int main(int argc, char ** argv) 
{ 
 
  ros::init(argc, argv, "interfacetest"); 
  ros::NodeHandle nh; 
 
  ros::Publisher pub; 
 
  if (argc == 1) 
  { 
    ROS_ERROR("Wrong number of arguments!!!"); 
    usage(); 
    return -1; 
  } 
 
  std::string command = std::string(argv[1]); 
 
  if (command == "motors") 
  { 
    if (argc != 3) 
    { 
      ROS_ERROR("Wrong number of arguments!!!"); 
      usage(); 
      return -1; 
    } 
 
    asctec_hl_comm::mav_ctrl_motors::Request req; 
    asctec_hl_comm::mav_ctrl_motors::Response res; 
    req.startMotors = atoi(argv[2]); 
    ros::service::call("fcu/motor_control", req, res); 
    std::cout << "motors running: " << (int)res.motorsRunning << 
std::endl; 
  } 
  else if (command == "ctrl") 
  { 
    if (argc != 7) 
    { 
      ROS_ERROR("Wrong number of arguments!"); 
      usage(); 
      return -1; 
    } 
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    asctec_hl_comm::mav_ctrl msg; 
    msg.x = atof(argv[3]); 
    msg.y = atof(argv[4]); 
    msg.z = atof(argv[5]); 
    msg.yaw = atof(argv[6]) * M_PI / 180.0; 
    msg.v_max_xy = -1; // use max velocity from config 
    msg.v_max_z = -1; 
 
    std::string type(argv[2]); 
    if (type == "acc") 
      msg.type = asctec_hl_comm::mav_ctrl::acceleration; 
    else if (type == "vel") 
      msg.type = asctec_hl_comm::mav_ctrl::velocity; 
    else if (type == "pos") 
      msg.type = asctec_hl_comm::mav_ctrl::position; 
    else if (type == "vel_b") 
      msg.type = asctec_hl_comm::mav_ctrl::velocity_body; 
    else if (type == "pos_b") 
      msg.type = asctec_hl_comm::mav_ctrl::position_body; 
    else 
    { 
      ROS_ERROR("Command type not recognized"); 
      usage(); 
      return -1; 
    } 
 
    pub = nh.advertise<asctec_hl_comm::mav_ctrl> ("fcu/control", 1); 
    ros::Rate r(15); // ~15 Hz 
 
    for (int i = 0; i < 15; i++) 
    { 
      pub.publish(msg); 
      if (!ros::ok()) 
        return 0; 
      r.sleep(); 
    } 
 
    // reset 
    if (type != "pos" && type != "pos_b") 
    { 
      msg.x = 0; 
      msg.y = 0; 
      msg.z = 0; 
      msg.yaw = 0; 
    } 
 
    for(int i=0; i<5; i++){ 
      pub.publish(msg); 
      r.sleep(); 
    } 
    ros::spinOnce(); 
  } 
  return 0; 
}  



Florian Schebesta attitude control algorithm for a Quadcopter page 92 of 98 

Annex III 
/* 
  
 Developed by Florian Schebesta 
 Master thesis "Attitude control algorithm for Quadcopter" 
 derived at Universitat Politècnica de Catalunya 
 submitted at Vienna Technical University 
  
 Latest Version 26-01-2018 
  
 */ 
 
#include <iostream> 
using namespace std; 
#include <string.h> 
#include <stdio.h> 
#include <math.h> 
 
#include <ros/ros.h> 
#include <asctec_hl_comm/mav_ctrl.h> 
#include <asctec_hl_comm/mav_ctrl_motors.h> 
#include "geometry_msgs/Quaternion.h" 
#include "geometry_msgs/PoseStamped.h" 
#include "sensor_msgs/Imu.h" 
 
double q_x; 
double q_y; 
double q_z; 
double q_w; 
 
double p; 
double q; 
double r; 
 
double roll; 
double pitch; 
double yaw; 
 
double x=0; 
double y=0; 
double z=0; 
 
double U_b; 
double V_b; 
double W_b; 
 
double U_w; 
double V_w; 
double W_w; 
 
double VN_sp; 
double VE_sp; 
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double A_w_b[3][3]; 
 
double A_b_w[3][3]; 
 
double A_1_2[3][3]; 
 
     
//accumulated integral parts 
    double I_acr; 
    double I_acp; 
    double I_acy; 
 
 
void PoseCallback(const geometry_msgs::PoseStamped::ConstPtr& msg) 
{ x = (msg->pose).position.x; 
  y = (msg->pose).position.y; 
  z = (msg->pose).position.z; 
} 
 
void ImuCallback(const sensor_msgs::Imu::ConstPtr& msg) 
{ 
     
    q_x = (msg->orientation).x; 
    q_y = (msg->orientation).y; 
    q_z = (msg->orientation).z; 
    q_w = (msg->orientation).w; 
     
    p = (msg->angular_velocity).x; 
    q = (msg->angular_velocity).y; 
    r = (msg->angular_velocity).z; 
    
// roll (x-axis rotation) 
    double sinr = +2.0 * (q_w * q_x + q_y * q_z); 
    double cosr = +1.0 - 2.0 * (q_x * q_x + q_y * q_y); 
    roll = atan2(sinr, cosr); 
     
    // pitch (y-axis rotation) 
    double sinp = +2.0 * (q_w * q_y - q_z * q_x); 
    if (fabs(sinp) >= 1) 
        pitch = copysign(M_PI / 2, sinp); // use 90 degrees if out of 
range 
    else 
        pitch = asin(sinp); 
     
    // yaw (z-axis rotation) 
    double siny = +2.0 * (q_w * q_z + q_x * q_y); 
    double cosy = +1.0 - 2.0 * (q_y * q_y + q_z * q_z); 
    yaw = atan2(siny, cosy);  
} 
//quaternion to euler angles conversion (from 
https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler
_angles ) 
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void transformation_1_2(double A_1_2[3][3],double U_1, double V_1, 
double W_1,double &U_2, double &V_2, double &W_2) 
{ 
    U_2 = A_1_2[0][0]*U_1+A_1_2[0][1]*V_1+A_1_2[0][2]*W_1; 
    V_2 = A_1_2[1][0]*U_1+A_1_2[1][1]*V_1+A_1_2[1][2]*W_1; 
    V_2 = A_1_2[2][0]*U_1+A_1_2[2][1]*V_1+A_1_2[2][2]*W_1; 
} 
 
void control_posicion(double eN, double eE, double eD, double &VN_sp, 
double &VE_sp) 
{ 
    double theta = atan2(eD,sqrt((eN*eN)+(eE*eE))); 
    double psi = atan2(eN,eE); 
     
    double R = sqrt((eN*eN)+(eE*eE)+(eD*eD)); 
     
    double vel = min((R*0.1),0.5); 
     
    VN_sp = vel*cos(theta)*sin(psi); 
     
    VE_sp = vel*cos(theta)*cos(psi); 
     
} 
 
//controller implementation according to astroem p107-108 
double PID(float K_p, float K_i, float K_d, double I_ac,double h,float 
T_t,double y_dot,double e) 
{ 
     
    double b_i = K_i*h; //integral gain 
    double a_d = K_d; //derivative gain 
    double a_0 = h/T_t; 
     
    double I=I_ac; 
    double P = K_p*e; //proportional part 
    double D=a_d*y_dot;//derivative part 
    double v = P+I+D; //temporary output 
    double u = min(max(v,-1.5),1.5); //saturation 
    I += b_i*e+a_0*(u-v); 
    double y = P+I+D; 
    //I_ac = e; 
    return y; 
} 
 
 
 
 
int main(int argc, char **argv) 
{ 
    ros::init(argc,argv,"attitude_control"); 
     
    ros::NodeHandle n; 
    //block for starting motors 
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    asctec_hl_comm::mav_ctrl_motors::Request req; 
    asctec_hl_comm::mav_ctrl_motors::Response res; 
    req.startMotors = 1; 
    ros::service::call("fcu/motor_control", req, res); 
    std::cout << "motors running: " << (int)res.motorsRunning << 
std::endl; 
     
    //subscriber to get quaternion and angular velocities 
    ros::Subscriber sub = n.subscribe("fcu/imu", 1, ImuCallback); 
    //subscriber to get current pose 
    ros::Subscriber subPose = 
n.subscribe("fcu/current_pose",1,PoseCallback); 
 
    A_w_b[0][0] = cos(yaw)*cos(pitch); 
    A_w_b[0][1] = cos(yaw)*sin(pitch)*sin(roll)-sin(yaw)*cos(roll); 
    A_w_b[0][2] = cos(yaw)*sin(pitch)*cos(roll)+sin(yaw)*sin(roll); 
    A_w_b[1][0] = sin(yaw)*cos(pitch); 
    A_w_b[1][1] = sin(yaw)*sin(pitch)*sin(roll)+cos(yaw)*cos(roll); 
    A_w_b[1][2] = sin(yaw)*sin(pitch)*cos(roll)-cos(yaw)*sin(roll); 
    A_w_b[2][0] = -sin(pitch); 
    A_w_b[2][1] = cos(pitch)*sin(roll); 
    A_w_b[2][2] = cos(pitch)*cos(roll); 
     
    A_b_w[0][0] = cos(yaw)*cos(pitch); 
    A_b_w[1][0] = cos(yaw)*sin(pitch)*sin(roll)-sin(yaw)*cos(roll); 
    A_b_w[2][0] = cos(yaw)*sin(pitch)*cos(roll)+sin(yaw)*sin(roll); 
    A_b_w[0][1] = sin(yaw)*cos(pitch); 
    A_b_w[1][1] = sin(yaw)*sin(pitch)*sin(roll)+cos(yaw)*cos(roll); 
    A_b_w[2][1] = sin(yaw)*sin(pitch)*cos(roll)-cos(yaw)*sin(roll); 
    A_b_w[0][2] = -sin(pitch); 
    A_b_w[1][2] = cos(pitch)*sin(roll); 
    A_b_w[2][2] = cos(pitch)*cos(roll); 
     
     
    
     
    /* Position control */ 
     
    //setpoint values position 
    double x_sp=0; 
    double y_sp=0; 
    double z_sp=0; 
     
    double e_N; 
    double e_E; 
    double e_D; 
     
     
    control_posicion(e_N,e_E,e_D,VN_sp,VE_sp); 
     
    transformation_1_2(A_w_b,U_b,V_b,W_b,U_w,V_w,W_w); 
     
    float gain_V; 
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    double VN_ref; 
    double VE_ref; 
    double VD_ref; 
     
    /*Tranformation w_b */ 
     
    transformation_1_2(A_b_w,VN_ref,VE_ref,VD_ref,U_w,V_w,W_w); 
     
    double roll_sp; 
    double pitch_sp; 
    double yaw_sp; 
     
     
    /* Attitude control */ 
     
    
     
    //gain values pr...p-value for roll (p...pitch, y...yaw) 
     
    float Kpr = 3; 
    float Kir = 2; 
    float Kdr = 3; 
     
    float Kpp = 5;//2 
    float Kip = 3;//1.5 
    float Kdp = 2.8;//1.8 
     
    float Kpy = 20; 
    float Kiy = 6; 
    float Kdy = 13; 
     
 
    //according to astroem between 8 and 20 
    double T_tr = 1.15; 
    double T_tp = 1.15; 
    double T_ty = 1.15; 
     
    int h=60; 
  
    ros::Publisher pub; 
     
 
 
    asctec_hl_comm::mav_ctrl msg; 
    msg.type = asctec_hl_comm::mav_ctrl::directMotorControl; 
     
    pub = n.advertise<asctec_hl_comm::mav_ctrl> ("fcu/control",1); 
     
    ros::Rate f(h); 
     for (int i = 0; i < 1200; i++) 
    { 
    ros::spinOnce(); 
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    e_N = x_sp-x; 
    e_E = y_sp-y; 
    e_D = z_sp-z; 
     
     
    control_posicion(e_N,e_E,e_D,VN_sp,VE_sp); 
     
    transformation_1_2(A_w_b,U_b,V_b,W_b,U_w,V_w,W_w); 
     
    float gain_V = 0.2; 
     
    VN_ref = VN_sp - gain_V*U_w; 
    VE_ref = VE_sp - gain_V*V_w; 
    VD_ref = z_sp; 
     
    /*Tranformation w_b */ 
     
    transformation_1_2(A_b_w,VN_ref,VE_ref,VD_ref,U_w,V_w,W_w); 
     
    roll_sp = -V_w; 
    pitch_sp = U_w; 
    yaw_sp = -M_PI/2; 
     
    //error calculation 
    double e_r = roll_sp-roll; 
    double e_p = pitch_sp-pitch; 
    double e_y = yaw_sp-yaw; 
 
    /* PID Controller */ 
    double roll_cmd = PID(Kpr,Kir,Kdr,I_acr,h,T_tr,p,e_r); 
    double pitch_cmd = PID(Kpp,Kip,Kdp,I_acp,h,T_tp,q,e_p); 
    double yaw_cmd = PID(Kpy,Kiy,Kdy,I_acy,h,T_ty,p,e_y); 
 
 
 
    //saturation 
    //according to maximum angles AscTec homepage 
    //roll_cmd = min(max((-52*M_PI/180),roll_cmd),(52*M_PI*180)); 
    //pitch_cmd = min(max((-52*M_PI/180),pitch_cmd),(52*M_PI*180)); 
 
    //scaling for correct output : -100% to 100% ==> 0...200 
    double roll_cmd_corr=0.907571211*roll_cmd+100; 
    double pitch_cmd_corr=0.907571211*pitch_cmd+100; 
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    std::cout <<"PHI:" << roll << ", SP:"<< roll_sp<<std::endl; 
    std::cout <<"THETA:" << pitch  << ", SP:"<< pitch_sp<<std::endl; 
    std::cout <<"PSI:" << yaw <<std::endl; 
    std::cout << std::endl; 
    std::cout <<"PHI_CMD:" << roll_cmd_corr <<" 
original:"<<roll_cmd<<std::endl; 
    std::cout <<"THETA_CMD:" << pitch_cmd_corr <<" 
original:"<<pitch_cmd<<std::endl; 
    std::cout <<"PSI_CMD:" << yaw_cmd <<std::endl; 
    std::cout << std::endl; 
    std::cout <<"p:" << p <<std::endl; 
    std::cout <<"q:" << q <<std::endl; 
    std::cout <<"r:" << r <<std::endl; 
    std::cout << std::endl; 
    std::cout <<"x:" << x <<std::endl; 
    std::cout <<"y:" << y <<std::endl; 
    std::cout <<"z:" << z <<std::endl; 
    std::cout << std::endl; 
    std::cout <<"I_acp:" << I_acp << std::endl; 
    std::cout << std::endl; 
  
    msg.x = pitch_cmd_corr; 
    msg.y = roll_cmd_corr; 
    msg.z = 0; 
    msg.yaw = 98; 
    msg.v_max_xy = -1; 
    msg.v_max_z = -1;    
    pub.publish(msg); 
    
       if (!ros::ok()) 
         return 0; 
        f.sleep(); 
 
    } 
    //turn off motors 
    req.startMotors = 0; 
    ros::service::call("fcu/motor_control", req, res); 
    std::cout << "motors running: " << (int)res.motorsRunning << 
std::endl; 
 
 
    return 0; 
     
} 
 


