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Kurzfassung

Diese Diplomarbeit präsentiert AutoFeature, einen neuen Algorithmus, der materi-
alspezifische spektroskopische Charakteristika aus annotierten Infrarotspektrosko-
pie-Daten völlig automatisch zu extrahieren vermag. Mithilfe dieser Charakter-
istika können anschließend die jeweiligen Materialien in hyperspektralen Bildern
identifiziert werden. Eine Expertise in spektroskopischen Eigenschaften der Mate-
rialien ist demnach für den Anwender nicht nötig.
Der AutoFeature Algorithmus generiert einerseits tausende Features mittels Tem-
plate Matching und wählt andererseits, basierend auf statistischen Methoden und
maschinellem Lernen, die vielversprechendsten Features aus. Für das Template
Matching wurden vier Arten von Templates konzipiert: Dreiecke, Gauß’sche Glock-
enkurven, allgemeine Gauß’sche Glockenkurven und Geraden. Das Template
Matching erfolgt an allen Positionen des Infrarotspektrums und beruht auf dem
Pearson Korrelationskoeffizienten. Die anschließende Auswahl der relevanten
Features erfolgt methodisch entweder durch Fast Function Extraction, Embedded
Random Forest Modelling oder durch eine der drei Filtermethoden ReliefF, Fisher
Score und HSIC Lasso.
Die Studie untersucht zunächst das Verhalten des AutoFeature Algorithmus hin-
sichtlich Datensatzgröße und Rauschen mithilfe künstlicher Daten. Anschließend
werden Features aus drei realen Datensätzen aus Mikroplastik- und Hautgewe-
beproben automatisch extrahiert. Diese werden für das Erstellen von Random
Forest Modellen verwendet, anhand derer im ersten Experiment fünf Polymere,
im zweiten Experiment Melanoma und Nicht-Melanoma und im dritten Experi-
ment Bindegewebe und Nicht-Bindegewebe klassifiziert werden.
Bei den künstlichen Datensätzen mit Samplegröße 16 konnte der Algorithmus die
korrekten Features bis zu einem Rauschniveau von 10% erkennen, bei Samplegröße
100 bis zu einem Rauschniveau von 25%. Für reale Daten wurden Features aller vier
Templates extrahiert, die sich ausschließlich in charakteristischen Absorptionsbän-
dern befinden. Die genauen Positionen und Breiten mancher Features fallen den-
noch unerwartet aus. Die Validierung der Random Forest Modelle mit Testdaten
resultierte in einer Klassifikationsgenauigkeit von mindestens 99.6% im Fall der
Polymere und in perfekten Klassifikationen bei den Melanoma- und Bindegewebs-
daten. Mittels unterschiedlicher Selektionsmethoden wurden Features mit vari-
ablen Dichteeigenschaften ausgewählt, die jedoch alle eine überzeugende Unter-
scheidbarkeit der Klassen aufweisen.
Insgesamt konnten mithilfe des AutoFeature Algorithmus sowohl bei künstlichen
als auch bei realen Daten Features automatisch extrahiert werden, die nicht nur
chemisch sinnvoll, sondern auch für Klassifikationen geeignet sind. Um das Poten-
tial des AutoFeature Algorithmus festzustellen, bedarf es weiterer Untersuchungen
mit vielfältigeren Datensätzen. Durch das Erstellen zusätzlicher Templates und
die Anpassung der Selektionsparameter ist eine algorithmische Weiterentwicklung
möglich.
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Abstract

This master’s thesis presents Autofeature, a novel algorithm that enables the auto-
matic extraction of material specific spectroscopic characteristics from an annotated
infrared spectroscopy dataset. With these characteristics the material can then be
identified in hyperspectral images. Accordingly, no expertise of the user in the
spectroscopic properties of the material is necessary.
On the one hand, the AutoFeature algorithm generates thousands of features based
on template matching and on the other hand, selects the most promising features
based on statistical and machine learning methods. Four types of templates are
designed: triangles, Gaussian bells, general Gaussian bells and straight lines. The
matching is performed at all possible infrared spectrum positions by employing
the Pearson correlation coefficient. The subsequent feature selection is carried out
with fast function extraction, embedded random forest modelling or with one of
the following three filter selection methods ReliefF, Fisher score and HSIC lasso.
The study first investigates the properties of the AutoFeature algorithm concerning
sample size and noise. Next, features are automatically extracted from three real-
world data sets containing microplastic and skin tissue specimens. These features
are then used to train random forest classification models for class predictions of
five polymers in the first experiment, melanoma and non-melanoma in the second
experiment, and connective tissue and non-connective tissue in the third experi-
ment.
For artificial data, the algorithm was able to extract correct features for noise levels
of 10% for a sample size of 16 respectively 25% for sample size 100. For real-
world data, features of all four types are extracted and the features are only located
at characteristic absorption bands of the substances being investigated. The exact
positions and widths of some features are unexpected though. The validation of
the random forest models with unseen test data yielded classification accuracies
of 99.6% or higher for the polymer predictions and a perfect classification for the
melanoma and connective tissue predictions. While the different selection methods
result in features with different probability density functions, they all yield features
with convincing class discrimination properties.
Overall, the AutoFeature algorithm was able to automatically extract features that
were chemically meaningful and suited for prediction tasks for both artificial and
real-world data. To evaluate further potential of the algorithm, examinations with
datasets of greater variety need to be performed. We believe, by designing addi-
tional templates and adapting parameters of the selection methods, further algo-
rithmic progress can be made.
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Chapter 1

Introduction

Spectroscopy is the science of the interaction between matter and any part of the
electromagnetic spectrum [1]. Acquired spectroscopic data is commonly presented
as a spectrum that shows the magnitude of the measured interaction as a function
of either frequency or wavelength. As different materials interact differently with
electromagnetic radiation, knowledge of a spectrum enables the identification of a
material being investigated [1], the task we are mainly interested in in this thesis.
Categorization of spectra is difficult not only because there are overlapping char-
acteristics for different materials but also because materials being investigated can
consist of an assortment of substances. The latter is especially true for biological
components.

If not only one spectrum but any number of spectra in a spatial context is analysed,
we speak of hyperspectral imaging. This can yield vast amounts of information that
can hardly be processed by humans. Hence, computational methods to analyse
hyperspectral images are beneficial in today’s world of big data. However, for
many computational material identification tools, one still needs to know about the
characteristics of the substances that are being investigated. These characteristics
are often unknown or only known to experts in this field. In this work we will
introduce a novel algorithm that is designed to automatically extract valuable char-
acteristics of different materials from a dataset of annotated spectra. We will call
these valuable characteristics features and they will facilitate the identification and
detection of materials in new, unseen hyperspectral images. With an automated
way of finding features, we believe in opening up the tools of spectroscopy to those
who are not experts in this field. Consequently, challenges where spectroscopy may
play a role in the solutions could be addressed by more people, potentially leading
to a faster pace of finding a greater variety of solutions.

Many researchers in the fields of chemistry, physics, signal processing, geoscience
and remote sensing have been working towards an automatic feature extraction
in the last decades. Different approaches including refined wavelength selections,
principal component analysis based data transformations, and linear and non-linear
feature extraction methods have been used [2] [3] [4] [5] [6]. We will combine a form
of template matching with statistical and machine learning-based methods. In par-
ticular, we will design four classes of generic templates. The various shapes of each
class are used to find matches and statistical information in the spectra. This will
typically result in thousands of feature candidates. To select the most promising
features of these thousands of candidates, five variants of linear and non-linear ma-
chine learning methods based on embedded random forest modelling, fast function
extraction, Fisher score, ReliefF algorithm and HSIC lasso are used. All steps can be
done without the assistance of a user and constitute an automatic feature extraction
and selection algorithm that we name AutoFeature.
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The spectroscopic and statistical methodologies used in the automatic feature en-
gineering will be discussed before introducing the AutoFeature algorithm. We will
conduct experiments with artificial data and real-world microplastic and skin tis-
sue data. In these experiments, we investigate on the one hand the properties of
the different AutoFeature variants, and on the other hand, we analyse the resulting,
automatically extracted features and examine if they are suitable for tasks such as
class prediction of different polymers, melanoma and non-melanoma, and connec-
tive tissue and non-connective tissue.
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Chapter 2

Infrared Spectroscopy

As a part of analytical chemistry, infrared (IR) spectroscopy is a method that enables
the identification of the chemical composition of substances. In particular, infrared
spectroscopy is a versatile tool for qualitative and quantitative determination of
molecular bonds.
The infrared part of the electromagnetic spectrum covers electromagnetic waves
with wavelengths λ ranging from 0.78 µm to 1000 µm. The measurement units of
spectra in this energy region are usually wavenumbers ν̂ instead of wavelengths. The
speed of light in vacuum c and the frequency ν link these two entities [1]:

ν̂(cm−1) =
1

λ(µm)
· 104(µm/cm) =

ν(Hz)
c(cm/s)

(2.1)

Due to application and instrumentation reasons, the infrared spectrum is com-
monly divided into near- (0.78 − 2.5 µm), mid- (2.5 − 15 µm) and far-infrared (15 −
1000 µm).
We will use the IR spectrum from approximately 3600 cm−1 = 2.8 µm to 1250 cm−1

= 8 µm for an investigation of chemical specimens.
Infrared spectroscopy measures the absorption, emission and reflection of infrared
light in its interaction with chemical specimens. We will work with absorption
spectroscopy, the underlying theory of it will be presented below and follows the
discussion in Skoog et al.’s Principles of Instrumental Analysis (7th edition, 2017, [1]).
The main underlying physical effects of infrared spectroscopy are different vibra-
tional and rotational states of molecules. These different states are separated by
only a small difference in energy that is within the bandwidth of infrared radiation.
To be able to absorb infrared radiation, molecules need to change their dipole mo-
ment. As a first consequence of this, mononuclear molecules such as O2, which do
not show any change in the dipole moment during vibrations and rotations, are
unsuited for infrared spectroscopy. Polar molecules’ dipole moments are character-
ized by the magnitude of the difference in the charges and the distance of the charge
centers. When a polar molecule vibrates, the dipole moment changes in a periodic
manner inducing an electric field. This electric field interacts with the electric field
of the infrared radiation. If the radiation frequency matches the molecule’s vibra-
tional frequency, energy is transmitted, changing the amplitude of the vibration —
the infrared radiation gets absorbed. Similarly, molecules’ rotational movements can
interact with radiation.
The molecule’s rotational state can be altered by relatively low energetic radiation
with wavelengths λ > 100µm. Vibrational states are changed by radiations with
wavelengths in the mid-infrared segment. Both rotational and vibrational energy
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states are quantized causing energy absorption lines for gas molecules. For liq-
uids and solids, due to intra- and inter-molecular interactions, absorption signals
broaden to a continuum.
Measurement of the absorption of infrared radiation can be done by three types of
instruments:

1. Dispersive devices consisting of wavelength-dependent spectral photometer
and a grid monochromator.

2. Fourier-transform spectral photometer with interferometer.

3. Non-dispersive photometers.

Today infrared spectroscopy is usually carried out with a Fourier-transform spec-
trometer [1] which is also used for this study.

2.1 Fourier Transform Spectroscopy

Contrary to other types of spectroscopy, the Fourier-transform spectroscopy mea-
sures the power of the signal (and its changes) in the time-domain. The obtained
time-domain signal is then transformed to the frequency-domain by the Fourier-
transform [1].
Fourier-transform spectroscopy has several advantages:

1. Because it has very few optical elements and no slits, a great portion of the
radiation’s energy reaches the detector. This leads to an increased signal-to-
noise ratio.

2. High resolution and reproducibility leads to the feasibility of analyzing com-
plex spectra.

3. All elements of radiation reach the detection sites at the same time. This
allows one to rapidly obtain a spectrum, i.e. in less than a second.

Infrared rays that impinge on a sample are scattered, transmitted, absorbed and
reflected. The intensity of the sum of these altered rays is equal to the intensity
of the incident ray. In Fourier-transform infrared (FTIR) spectroscopy any of the
altered rays can be measured. Favourably, the sample preparation procedures are
matched with the choice of radiation measurement [7].
We use thin slides of samples together with transmission spectroscopy that is ob-
served at a 90◦ angle of incidence.
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2.2 Spectroscopy of Polymers

A polymer is a macromolecule consisting of repeated subunits. Polymers, both
natural and synthetic, exhibit a broad range of characteristics [8] and have become
indispensable and ubiquitous parts of daily life [9]. Because of polymers’ manifold
appearances, there have been multiple spectroscopic investigations of these mate-
rials in the past decades. These investigations are usually carried out with FTIR
spectroscopy and can serve very different purposes such as the structural char-
acterization of (co-)polymers, the analysis of polymerization processes and much
more [10].
In this work, we are interested in the detection and identification of microplastic par-
ticles. This is an important issue in assessing the state of the environment and
especially aquatic ecosystems.
As the US agency National Oceanic and Atmospheric Administration points out, plastic
in its various sizes and shapes is the most prevalent waste in oceans and larger lakes
[11]. Particles that have a diameter of less than 5mm are referred to as microplastic.
These small plastic particles get into the aquatic environment because they pass the
filtration systems. They can either be formed from the debris of larger particles
or are products of industry, e.g. small polyethylene particles in health and beauty
goods. Neither volume and distribution nor the impact of microplastic is well un-
derstood today. However, standardized field methods for collecting and analyzing
microplastic have been specified over the last few years. This enables the possibil-
ity of a global assessment of the amount and effects of microplastic particles [11].
Because of growing scientific and social concerns regarding the amount and distri-
bution of microplastic in the environment, many studies covering this topic have
been conducted recently. For identification of different types of polymeres, FTIR is
commonly utilized [12].
Part of this work aims to detect and identify the polymers polyethylene, polypropy-
lene, polystyrol, polymethylmethacrylate and polyacrylonitrile. Therefore, these
polymers are introduced briefly in the next part.
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Polyethylene (PE)

Figure 2.1: Structural formula of polyethylene (C2H4)n, displaying
simple molecular composition. It is the most frequently used plastic.

Polyethylene, with an estimated production of approximately 100 million tons per
year (2018) is the most widely used plastic in today’s world. It is most commonly
used as a packaging material and for the manufacturing of pipes [13].
Polyethylene exists in different variants, predominantly having the chemical for-
mula (C2H4)n, see Figure 2.1. Its relatively simple chemical structure is reflected in
the infrared spectrum, see Figure 2.2. There are three strong absorption bands in
PE’s spectrum, resulting from CH2 asymmetric stretching (≈ 2915-2920 cm−1), CH2
symmetric stretching (≈ 2851-2843 cm−1) and bending deformation (≈ 1475-1450
cm−1) [14].

Figure 2.2: Infrared spectrum of polyethylene. The three absorption
bands from left to right correspond to CH2 asymmetric stretching (≈
2915-2920 cm−1), CH2 symmetric stretching (≈ 2851-2843 cm−1) and

bending deformation (≈ 1475-1450 cm−1) [14].
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Polypropylene (PP)

Figure 2.3: Structural formula of polypropylene (C3H6)n. It is the
second most frequently used plastic.

Polypropylene,(C3H6)n (Figure 2.3) is the world’s second most used plastic. Its
usages are versatile including flexible and rigid packaging, material for everyday
products, clothes and vehicles [15]. Polypropylene’s main absorption bands (Figure
2.4) in the infrared spectrum are due to [16]:

- symmetrical CH3 stretching vibration (≈2925 and 2868 cm−1)

- asymmetrical CH2 stretching vibrations (≈ 2915-2920 cm−1)

- symmetrical CH2 stretching (≈ 2851-2843 cm−1)

- CH stretching vibrations (≈ 2808 cm−1)

- C-H deformation vibrations (≈ 1475-1450 cm−1 and 1377 cm−1)

,

Figure 2.4: Infrared spectrum of polypropylene. The absorption
bands from left to right correspond to symmetrical CH3 stretching
vibration (≈2925 and 2868 cm−1), asymmetrical CH2 stretching vi-
brations (≈ 2915-2920 cm−1), symmetrical CH2 stretching (≈ 2851-
2843 cm−1), CH stretching vibrations (≈ 2808 cm−1) and C-H defor-

mation vibrations (≈ 1475-1450 cm−1 and 1377 cm−1) [16].
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Polystyrene (PS)

Figure 2.5: Structural formula of polystyrene, (C8H8)n.

Polystyrene, a polymer with molecular composition (C8H8)n, is used in differing
fields such as consumer products, food packaging, laboratory ware, electronics,
toys and much more [17]. Polystyrene’s infrared spectrum (Figure 2.6) reveals the
following strong bands:

- =C-H stretching vibration (between 3100 and 3000 cm−1)

- aromatic ring streching vibrations (1600-1430 cm−1)

- monosubstituted aromatic group vibrations (2000 and 1660 cm−1)

- C-H stretching vibration due to aliphatic group (3000-2800 cm−1)

Figure 2.6: Infrared spectrum of polystyrene. The absorption bands
from left to right correspond to =C-H stretching vibration (between
3100 and 3000 cm−1), aromatic ring streching vibrations (1600-1430
cm−1), monosubstituted aromatic group vibrations (2000 and 1660
cm−1) and C-H stretching vibration due to aliphatic group (3000-

2800 cm−1).
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Polymethylmethacrylate (PMMA)

Figure 2.7: Structural formula of polymethylmethacrylate, C5H8O2.

PMMA’s repetitive unit is C5H8O2, see Figure 2.7. PMMA is a transparent ther-
moplastic with favourable characteristics such as high impact strength, shatter-
resistant and lightweight. That is why it is commonly used as a substitute for
inorganic glass [18]. PMMA’s infrared spectrum (2.8) consists of the following im-
portant absorption bands [19]:

- C-O-C stretching vibration (1250 - 1150 cm−1)

- α-methyl group vibrations (≈ 1388 cm−1)

- absorption vibration (≈ 1062 cm−1, 987 cm−1, 843 cm−1)

- C-H bond stretching vibrations of -CH3 (≈ 2997 cm−1) and CH2 (≈ 2952cm−1)
groups

Figure 2.8: Infrared spectrum of polymethylmethacrylate. The ab-
sorption bands from left to right correspond to C-O-C stretching
vibration (1250 - 1150 cm−1), α-methyl group vibrations (≈ 1388
cm−1), absorption vibration (≈ 1062 cm−1, 987 cm−1, 843 cm−1),
C-H bond stretching vibrations of -CH3 (≈ 2997 cm−1) and CH2 ( ≈

2952cm−1) groups [19].
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Polyacrylonitrile (PAN)

Figure 2.9: Structural formula of polyacrylonitrile, C3H3N.

Polyacrylnitril (C3H3N, Figure 2.9) is mainly used for fibers, both in homo- and
copolymer forms. PAN-based copolymer fibers are primarily used in textiles.
PAN fiber’s infrared spectrum (Figure 2.2) exhibits the following absorption bands
[20]:

- -CH stretch (3000-2850 cm−1)

- C≡N stretch (2260-2240 cm−1)

- -CH2 stretch (1465 cm−1)

- C=O (part of copolymers) stretching (1740-1705 cm−1)

Figure 2.10: Infrared spectrum of polyacrylnitril. The absorption
bands from left to right correspond to -CH stretch (3000-2850 cm−1),
C≡N stretch (2260-2240 cm−1) and -CH2 stretch (1465 cm−1), C=O

(part of copolymers) stretching (1740-1705 cm−1) [20].
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2.3 Spectroscopy of Skin Tissues and Malignant Melanoma

The human skin is commonly divided into three primary layers: the epidermis, the
dermis and hypodermis.
The epidermis forms the outermost layer and serves as a protection barrier. The
most important and most prevalent cells in the epidermis are keratinocytes, Merkel
cells, melanocytes, and Langerhans cells.
The skin layer beneath the epidermis is the dermis. It primarily consists of connec-
tive tissue protecting the body from stress and strain. The dermis contains different
functional units such as blood vessels, lymphatic vessels, glands and hair follicles.
Figure 2.11 shows a cross section of the skin.

Figure 2.11: Cross section of the skin. 501 Structure of the skin
(c) OpenStax College, Rice University ( https://cnx.org/contents/
FPtK1zmh@6.27:RxywCGkA@5/Layers-of-the-Skin), CC BY 3.0.

Melanoma is a malignant tumor of melanocytes. Melanocytes are melanin-pro-
ducing cells present in several organs including the skin. In the skin they are called
cutaneous melanoma and are situated in the bottom layer of the epidermis. The dark
pigmented melanin is responsible for the skin colors.
While melanomas mostly occur in the skin, they have been found in other human
body sites such as the mouth, the intestines or the eye [21], [22]. The cancerous
expansion is caused by unrepaired DNA damage to skin cells (e.g. from ultravi-
olet radiation) that leads to mutations and skin cells that reproduce rapidly [23].
If diagnosed early, melanoma is usually curable. If not, the cancer is able to form
metastases in distant parts of the body where it is hard to medicate. Compared
to other types of skin cancer, melanoma is by far the most lethal one. Early di-
agnosis is therefore crucial for a cure and there are standardized practices to dis-
tinguish melignant melanoma from benign clusters of melanocytes (melanocytic
nevus, commonly called a mole). One of these practices is to assess the ABCDE
warning signs (Asymmetry, Border, Color, Diameter, Evolving) of atypical moles.
For further histopathologic diagnosis and microstaging, a biopsy is necessary. [21]

 https://cnx.org/contents/FPtK1zmh@6.27:RxywCGkA@5/Layers-of-the-Skin
 https://cnx.org/contents/FPtK1zmh@6.27:RxywCGkA@5/Layers-of-the-Skin
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Analysing and assessing the extracted tissues is challenging and studies have shown
considerable variability among the agreement between experienced dermatopathol-
ogists [24], [25]. To improve the quality of histopathologic diagnosis in modern
medicine, spectroscopic methods are investigated in ongoing research [26], [27],
[28], [29].

Spectral Characteristics of Biological Samples in Mid-IR

A critical challenge in the analysis of biological tissue with spectroscopy is the char-
acterisation of tissue-specific absorption bands.
Because biological samples often consist of an assembly of various biomolecules,
they yield spectra with overlapping absorption bands. Therefore, differences in the
magnitude of specific absorption bands may also indicate different classes. Bio-
logical units influencing the absorption bands are among others proteins, carbohy-
drates, lipids and DNA and RNA [27].
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Chapter 3

Statistics, Machine Learning and
Data Mining

This chapter introduces methods from the fields of statistics, machine learning and
data mining that are essential for this thesis and the automatic feature extraction
algorithm presented below. The focus is on presenting the underlying concepts of
those methods, so one can understand the problem definitions, aims and solution
processes. For details, the reader is referred to extensive literature in these fields
(see among others Bishop [30] and Hastie, Tibshirani, and Friedman [31]).

In section 3.1 a short summary of the broad topics of supervised and unsuper-
vised learning is given and the notions of regression, classification and clustering
are introduced. The challenge of building a model that fits available data but is
also general enough for new, unseen cases is described in part 3.2. Methods such
as linear regression and least squares are presented in more detail in section 3.3.
The need of the generalization of simple regression models will lead to part 3.4,
illustrating regularization. Section 3.5 will introduce a simple, yet very effective
optimization technique called coordinate descent. The field of symbolic regression
and one of its methods called fast function extraction is presented in 3.6. Section 3.7
presents a classification model building algorithm called random forest. As spectro-
scopic hyperspectral image analysis deals with a substantial number of variables,
we will discuss high dimensional data and modelling in high dimensional spaces.
3.8 will highlight the challenges that high dimensional spaces involve, referred to
as the curse of dimensionality. To overcome those challenges, we are curious about
ways to create features that carry important information (feature extraction, 3.9) and
how to choose the best subset of those features for model design (feature selection,
3.10).

3.1 Supervised and Unsupervised Learning

Learning methods can typically be divided into two classes: supervised and un-
supervised learning. Before expressing the differences of these two classes, the
similarities are considered.
In both cases, we assume that there is an unknown, latent function f which a ma-
chine shall learn. The function learned by the machine which best resembles f is
denoted by f̂. Furthermore, a learner has to learn from something. In machine
learning, this is data and often referred to as training set T . The training set T con-
sists of m training examples Xi. Every Xi ∈ T is a p-dimensional vector, meaning
that each training example consists of p different variables xj. These xj are also
called inputs, predictors or independent variables.



14 Chapter 3. Statistics, Machine Learning and Data Mining

In supervised learning, for each Xi there is a variable Yi in the training set called
the output, target, response or dependent variable. We are usually interested in
predicting the output variable Y on the basis of the input example X. We can do
this by inferring a suitable function f̂ from the training set (X, Y)i, i ∈ {1, . . .m}. The
function f̂ can then be used to predict new, unseen test data X for which the label Y
is not known. In our case Y will be a scalar and the nature of the variable can vary.
It can either be quantitative (i.e. Y ∈ [0, 1]) or qualitative (i.e. Y is an element of a
finite set of categories). In statistics, regression analysis is the method of estimating
the relationships among variables. In machine learning, the term regression is also
used for prediction tasks with a continuous output variable. Prediction tasks with
a discrete, qualitative output is termed classification.
In unsupervised learning there are no labeled output variables. Instead, the output
variables or labels of training examples shall be learned. Therefore, a function f̂ that
meaningfully labels the training examples (and therefore discovers some structure
in the data) should be derived. Clustering is a typical example of unsupervised
learning [31] [32].

3.2 Variance and Bias

The way that a machine infers a function f̂ from the data (X,Y) can differ. In gen-
eral, algorithms that yield accurate and stable models are favoured. Usually, there
is a trade-off between accuracy and stability during the learning phase. Figure 3.2
shows how the task of finding a function f̂ that separates two classes (orange circles
and blue diamonds are training data) was solved in three different ways: In Figure
3.2a, the separating function ˆfA is a straight line. Depending on which side of the
line an input example is, it gets classified either as a member of the orange or blue

Figure 3.1: Typical relationship between model complexity and pre-
diction errors on training and test set.
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class. All the training data of each class which is on the other class’ side of the func-
tion (e.g. orange circles in the blue classification side of function) are misclassified
using this function ˆfA. Figure 3.2d shows a more complex separating function ˆfD
that consists of many isolated parts. Here, no training data gets misclassified. On
the other hand, we have strong reasons to believe that this function is fitting the
training data too narrowly and does not yield stable predictions for new, unseen
data. In machine learning, ˆfA is said to have high bias and low variance while ˆfD
has low bias and high variance. Figure 3.2b and Figure 3.2c show separating func-
tions ˆfB and ˆfC that trade off bias and variance: While there are misclassifications
of the training data, it still separates the two classes quite well and yields stable
predictions for new data. Function ˆfB has higher bias and lower variance than ˆfC
— depending on the use case, one function may be preferred over the other.
Figure 3.1 gives another visual insight into the relationship between model com-
plexity and prediction errors on training and test samples. Increasing the model
complexity yields functions that can better fit the training samples. However, at
some point they overfit them, leading to an increasing prediction error in test sam-
ples.
In the following sections, we will outline the path to various algorithms that are
able to compute functions f̂ that have some trade-off between bias and variance,
depending on the parameters used in the algorithms.

(a) ˆfA: high bias, low vari-
ance

(b) ˆfB: trade-off bias and
variance

(c) ˆfC: trade-off bias and
variance

(d) ˆfD: low bias, high vari-
ance

Figure 3.2: Different separating functions for two classes. Usually, a
trade-off between bias and variance is preferred.
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3.3 Linear Regression Models and Least Squares

In a linear regression model, given the vector of inputs Xi = (x1, x2, ..xp), the pre-
diction of the output Y is done by the following model

Ŷ = β0 +

p∑
j=1

βjxj. (3.1)

The term β0 is called the bias or intercept while βj serve as weights for the coordi-
nates of input vector X. Considering the input-output space as (p+ 1)-dimensional,
equation 3.1 represents a hyperplane in this space. The model is called linear be-
cause it is linear in its parameters. The nature of the variables xj is not restrained.

Given a set of training data (X,Y), we are interested in a method that places the
hyperplane as close as possible to the data. One way of defining as close as possible is
the minimization of the sum of squared distances of the training target variables Yi
and the model’s predicted response variables Ŷi. This minimization of the residual
sum of squares is called least squares [31] :

RSS(β) =
m∑
i=1

(Yi −X
T
i β)

2 (3.2)

Equation 3.2 can be written in matrix form:

RSS(β) = (Y −Xβ)T (Y −Xβ) (3.3)

Since RSS(β) is a quadratic function of its parameters, there has to exist at least one
minimum. If XTX is nonsingular, then there is a unique solution [33] given by:

β̂ = (XTX)−1XTY (3.4)

Using the least squares algorithm for finding parameters βi in model 3.1 leads to
derivation of a predictive regression function f̂ for which two problems are probable
to occur:

- Since the aim is fitting the training data, the resulting models are prone to
have high variance and low bias. Specifically, one can observe parameters
getting large magnitudes if the model complexity is high or if the number
of training samples is low. These large positive and negative coefficients are
often the reason for high variance [30].

- The models can be complex, i.e. many variables xj, j ∈ {1, ...p} may be included
in the model (i.e. have a coefficient |βj| > 0) which limits interpretability.

Solving these two issues is regularly done with a simple extension of least squares
called regularization.
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3.4 Regularization

As mentioned above, high coefficients βi in a linear regression model can be an
indication of overfitting and high variance. One method to avoid these unpleasant
effects is to add a penalty term for large coefficients to the least squares equation
that is to be minimized, leading to the following equation:

β = arg min
β̂


m∑
i=1

Yi − β̂0 −

p∑
j=1

Xijβ̂j

2

+ λ

p∑
j=1

|β̂j|
q

 (3.5)

where λ ∈ R is the regularization coefficient and q ∈ R is the regularization expo-
nent. Depending on the choice of the regularization parameter and exponent, the
penalty term λ · |β|q influences the magnitude of the coefficients β.

Ridge regression

For q = 2, the regularization is called ridge regression, L2 regularization, Tikhonov
regularization or weight decay. The choice of q = 2 makes the regularization error
term quadratic and hence the minimization equation remains quadratic, ensuring
a unique solution.
In ridge regression, increasing the regularization parameter λ shrinks the coeffi-
cients towards zero but not to exactly zero [30] [34] [35]. If there are co-linear
variables in linear regression, they often increase variance and make the model
unstable. The shrinkage of coefficients lessens this phenomenon [31].

Lasso regression

The case q = 1 is called lasso (least absolute shrinkage and selection operator) or L1 reg-
ularization. The lasso constraint λ ·

∑p
j=1 |βj| is not differentiable at zero which can

be a limitation in certain cases. An interesting property however is that solutions of
lasso tend to be sparse, i.e. as the regularization parameter λ increases, coefficients
β become exactly zero. Thus, lasso can serve as a variable selection tool. However,
in the case p > n, at most n variables can be selected because of the nature of the
optimization problem [30] [36] [37] [38].

Figure 3.3a and 3.3d show the contours of the ridge and lasso regularization terms
respectively, as well as the circular contours of an unregularized error function in a
2-d example (with two parameters β1 and β2). While the ridge equation β2

1 +β
2
2 6 t

yields a circular constraint, the lasso equation β1 + β2 6 t manifests itself as an
equilateral parallelogram. Ordinary, unregularized least squares can lead to some
optimum (β1,β2) that is not within the regularization constraint. The point where
the error function contour first touches the regularization constraint is a solution
to the regularized minimization task. For the diamond-like shape of the lasso con-
straint, compared to the circular shape of the ridge constraint, there is a higher
chance that this point is at a position where one coefficient βi is zero [31].
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Elastic Net

As mentioned above, ridge and lasso regularization have different effects on the
resulting model coefficients. Elastic net is a penalty regularization that attempts to
unite beneficial properties of ridge and lasso. Rather than choosing a regularization
exponent 1 < q < 2, both L1 and L2 regularization terms get added to build the
penalty term:

λ ·
p∑
j=1

(
ρ|βj|+ (1 − ρ)β2

j

)
(3.6)

The second penalty term, like ridge, aims to shrink correlated predictors. At the
same time, the first term reinforces a sparse solution in the coefficients [31] [36].
Moreover, in a p > m setting, models with more than m variables can be con-
stituted. With the mixing parameter ρ, we can direct the elastic net to prioritize
particular properties while the regularization weight λ controls the degree of reg-
ularization. The contours of the elastic net for ρ = 0.5 and ρ = 0.9 are depicted in
Figures 3.3b and 3.3c respectively.
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(a) ρ = 0 (ridge)
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(b) ρ = 0.5
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(c) ρ = 0.9
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(d) ρ = 1 (lasso)

Figure 3.3: The red contour illustrates the elastic net constraint for
parameters β1 and β2 for different mixing parameters ρ. The blue,
circular contours represent isolines of residual sum of squares for an

unregularized minimization (with the minimum at β = (0.5, 2)).
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3.5 Coordinate Descent Optimization

While an analytical solution is possible for ridge regression because of the differ-
entiable, convex nature of the problem (quadratic function), this is not the case
for non-differentiable lasso. Hence, a numerical method that minimizes an L1-
regularized least squares equation is required.
A simple and fast algorithm that became popular for lasso in the past few years
is coordinate descent. To apply the algorithm for fixed regularization parameter λ,
the following procedure is conducted. In each step, coordinate descent optimizes
one βi, retaining all other βj (∀j ∈ {1, ...p} : j 6= i) at their present values. Accord-
ingly, the minimization problem gets solved by iteratively finding the minimum
along one coordinate. In consequence of efficiency considerations, there are differ-
ent ways to choose the next coordinate to be minimized. A simple approach that
we use is cyclic coordinate descent in which there is an arbitrary fixed order [39]
[40] [41].
In general, finding the minimum of a convex, non-differentiable function is not
guaranteed by coordinate descent as Figure 3.4a points out. In this example, the
minimum (blue dot) can not be found because coordinate descent is stuck at a
non-smooth part (red diamond). A move in any direction would increase the error
function.
However, coordinate descent is able to find the minimum in lasso problems. That
is because the non-differentiable part λ||β||1 =

∑p
i=1 λ|βi| is separable and each ad-

dend λ|βi| is convex. Figure 3.4b visualizes this condition, the non-smooth parts of
the error function lie along coordinates, enabling the coordinate descent algorithm
to move to the minimum when it is temporarily on a non-differentiable spot [42].
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Figure 3.4: Two error functions (with the blue circles as the mini-
mum) that both have discontinuities. Coordinate descent algorithm
is stuck on the left side (at the red diamond position) because mov-
ing along any coordinate increases the error. On the right side the
function is separable, enabling coordinate descent to move along an

axis.
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3.6 Fast Function Extraction

Fast function extraction (FFX) is a method to obtain a white box model for given
training data (X,Y) and was introduced by McConaghy in 2011 [43]. It is part of
the larger field of symbolic regression which intends to fit a model to given data.
Unlike traditional regression, symbolic regression also aims to find the symbolic
form of a function. As an introductory showcase, solutions for a given data set
(x1, x2,y) in symbolic regression could look like:

y = sin(x1) + 4 · x2

or
y = 2 · x1 + x2 + 5 · x1 · x2

(3.7)

The main aspect of equations 3.7 is the symbolic forms of the models which were
not fixed a priori but were derived in the symbolic regression process. The roots of
symbolic regression lie in genetic programming [44] whereas fast function extrac-
tion uses a non-evolutionary approach.

The goal of FFX is to find pareto-optimal models in terms of model error and model
complexity for given data (X,Y). The models are generalized linear, meaning they
consist of a linear combination of NB basis functions Bi, i ∈ {1, ...,NB} :

ŷ = m(x) = a0 +

NB∑
i=1

ai ·Bi(x) (3.8)

The mean squared error y−m(x) is used to assess the model’s error and the num-
ber of basis functions NB serves as a measure of complexity.
To derive models from the training set, FFX employs pathwise regularized learning
[36] based on elastic net, which was demonstrated in 3.3. The elastic net minimiza-
tion formulation is posed in the following way:

β̂ = min
β

||Y −X ·β||2 + (1 − ρ) · λ · ||β||2 + ρ · λ · ||β||1 (3.9)

By varying λ from 0 to 1, the regularization penalty is altered, facilitating the for-
mulation of different models. Usually along the path of decreasing λ, models with
a larger number of basis functions will emerge.

Fast function extraction comes in different flavours. In the following, a selected
algorithm that will be used later is illustrated. By no means are all the features of
FFX needed for this work, therefore the reader is referred to the original publication
for the full FFX algorithm [43].
The FFX design which we use is depicted subsequently:

1. Generate univariate bases. The design matrix X ∈ Rm,p is read in.

2. Pathwise regularized learning. For a user defined range of λ, models for the
univariate bases are computed.

3. Generate bivariate bases. By assessing the coefficients of the models in step
2, k most important basis functions are used to create interacting, bivariate
bases xi · xj ∀i, j ∈ {1, ...k}. Add these bivariate bases to the univariate ones.

4. Pathwise regularized learning. For a user-defined range of λ, models for the
uni- and bivariate bases are computed.
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5. Non-dominating filtering. Pareto-optimal models concerning error and com-
plexity are selected. Therefore, a model mi with Ni basis functions and error
ei is selected if it is not dominated by another model, i.e. if there is no model
mj with less complexity (Nj < Ni basis functions) and smaller error (ej < ei).

The limitation of using k instead of all univariate bases for building bivariate bases
is made because of algorithm complexity reasons. While the complexity without
limitation is O(m · p4), it is reduced to O(m · p2) with limitation [43].

3.7 Random Forest

Random forest, first published by Breiman in 2001 [45], is one of the most success-
ful learning algorithms today. It is suited to handle large data sets and scales with
the volume of information. Random forest is a supervised learning method that
can be used for classification and regression. It is popular because it can be applied
to a wide range of prediction problems, it has few parameters to tune and it can
successfully handle cases in which the number of variables is much larger than the
number of observations.
A random forest is an ensemble of individual decision trees, commonly called
CART [46]. Every decision tree is trained in its own way based on some randomly
selected variables and casts a unit vote in a prediction task. Hence, the random
forest prediction result is the average of the decision tree predictions. Random for-
est utilizes a divide-and-conquer approach meaning it is recursively breaks down a
problem into sub-problems until the sub-problems are simple enough to solve. This
is done by two essential components: Bagging [47] and CART-split criterion [46].
Bagging is a procedure that generates bootstrap samples from the original data set,
trains a predictor from each sample and uses the average of those predictors as the
overall prediction for an example. The CART-split criterion is used to construct
individual decision trees. Based on this criterion, at each node of the tree suitable
splits can be performed. The criterion is mostly based on residual sum of squares
for regression and Gini criterion for classification [45] [48].
In the following, an excerpt of the random forest algorithm, which follows
Breiman’s original publication [45], is presented:
First, Mtrees bootstrapped samples X∗iM, iM ∈ {1, ...,Mtrees} are drawn (with or
without replacement) from the original dataset (Xorig, Yorig) so that the proba-
bility of drawing an example from the dataset is uniform. The size of each boot-
strapped sample is a fraction of the number of the original dataset.
For each bootstrapped sample X∗iM, a decision tree is built in the following way:

1. Select an unprocessed node and uniformly choose a subset Fsub with cardi-
nality Psub from all features fi.

2. Perform a split at the selected node in one of the features fi ∈ Fsub maximiz-
ing the CART-criterion.

3. Recursively repeat step 2 until there are leafsize or less observations at a
node.
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Consequently, user adjustable parameters are [45] [48]:

- r = Nbootstrap sample
Noriginal dataset

: The size of each bootstrapped sample as a fraction of the
number of the total training sample. For larger r, the individual trees tend to
be more robust but also more similar to each other.

- The number of trees Mtrees. Every tree has relatively low bias but can have
substantial variance. By growing more decision trees, random forest’s vari-
ance decreases and predictive performance advances up to a certain num-
ber of trees at which performance stabilizes. For real world problems, this
number of trees is often around 50. Because of computational costs, one is
interested in not choosing unnecessarily many trees.

- leafsize: The maximum number of observations in each terminal node, also
called leaf. Default values are often 5 for regression and 1 for classification
[49].

- The number of features Psub being used to find an optimal split at each node.
With little Psub, individual trees tend to become more different which does
not necessarily imply an increase in performance.

Even though random forests are relatively simple to utilize, it is important to note
that mathematical analysis of the algorithm is not. Therefore, the properties of
the random forest algorithm and the impacts of its parameters are still an active
research topic [48][50].
A very useful and beneficial by-product when creating a random forest model is the
possibility to estimate variable importances. This can be done in two variants. Mean
decrease impurity measures the reduction of impurity of nodes for splits using one
variable, averaged over all trees. The second variable importance estimate utilizes
the out-of-bag-error, which is the average error for every (Xi, Yi) calculated using
the prediction trees that did not contain the individual (Xi, Yi) in the bootstrapped
training set. To estimate the importance of a variable fi, we calculate the out-of-bag-
error twice. Once with the true data and once for data in which the values of the
variable fi get randomly permuted. The difference in the two error measurements
is called mean decrease accuracy (MDA) and reflects the importance of the variable
for the prediction task [45] [48].

3.8 The Curse of Dimensionality

In many of today’s pattern recognition and machine learning tasks, we are con-
fronted with datasets with an immense number of examples (samples) and vari-
ables (dimensions). Considerations about the interaction of these two elements are
critical for solving such tasks.
For example, based on Hastie et al’s considerations [31] let us consider uniformly
distributed observations on a line segment with length 1. After placing a new ob-
servation on the line segment, we are interested in the length of the sub-segment
containing the new observation and 10% of the data. Since the observations are dis-
tributed uniformly, the expected length of the sub-segment is 0.1. Expanding the
example to two dimensions yields a square with edge length 1 with uniformly dis-
tributed observations. We are now interested in the edge length of the sub-square
that contains the new observation and 10% of the data. Since the observations are
uniformly distributed, the expected area of the sub-square is 0.1, which means the
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edge length is
√

10 ≈ 0.316.
To capture the closest 10% of the data, we need a fraction of 0.1 of the only vari-
able in the 1-dimensional case but a fraction of 0.316 of both variables in the 2-
dimensional case. If we do this experiment with ten dimensions, we need a fraction
of 10
√

0.1 ≈ 0.794 of each variable. Therefore, in high dimensions, we have to be
careful about relying on methods that use close data points to predict new observa-
tions. The phenomenon of sparseness in high dimensions is often referred to as the
curse of dimensionality, introduced by Bellman in 1961 [51] and 1964 [52].
A result of the sparseness in high dimensions is that all sample points are close to
a boundary of the sample space. This is problematic because predictions are more
difficult in such regions — rather than just interpolation between training samples,
the prediction method needs to extrapolate from neighboring training data [31].
Breaking the curse of dimensionality can be done with an alignment of the number
of data samples and dimensions. The sampling density is proportional to m1/p.
Therefore, a 1-dimensional problem with m1 = 100 samples is as dense as a 10-
dimensional problem with m10 = 10010 samples. Reducing the number of dimen-
sions and increasing data samples naturally densifies the problem space [31].

While the number of data samples will be treated as fixed in our experiments,
the idea of dimensionality reduction will be examined thoroughly. Dimensionality
reduction can be accomplished by feature extraction and feature selection. Both
concepts will be covered in the succeeding sections.

3.9 Feature Extraction

As mentioned above, because of the curse of dimensionality, we are often interested
in reducing the dimensions of a high dimensional variable space. However, we
would like to retain as much information which is valuable for the prediction task
as possible. An approach to achieve this goal is feature extraction, which transforms
the variable space by some functional mapping [53]. By using a linear or non-linear
functionMi, the originalm variables can be mapped to k < m new variables, called
features fi, i ∈ {1, ..k}:

f1 =M1 (v1, v2, ..., vm)

· · ·
fk =Mk (v1, v2, ..., vm)

(3.10)

Obviously, the selection of suited mapping functions is crucial for the desired goal
of extracting the maximum valuable information from the variables vi. There are
many methods that are commonly used today for computing those mapping func-
tions. One of the most popular methods is principal component analysis, invented by
Karl Pearson in 1901 [54] .
We will use mapping functions based on Pearson’s correlation coefficient described
in chapter 3.11. However, we will use lots of mapping functions as a first step, vi-
olating the k < m premise1. In a subsequent step, the number of features will be
limited to get k < m.

1For the case k > m, the term feature construction is also used in the literature.
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3.10 Feature Selection

Feature selection is the task of choosing an optimal subset of k < m features from
an initial set of m features. This task is essential when many features are either
redundant or irrelevant features but is non-trivial since the number of subsets is 2m

[55]. The optimality criterion is defined by an evaluation function. Feature selection
methods are divided into three categories according to Guyon and Elisseeff [56]:

• Wrappers use the concurrent classifier’s prediction as an evaluation metric.
While they certainly are able to select a subset that is optimal for a given pre-
diction task, the need to train a classifier for each investigated subset makes
this variant highly time expensive.

• Filters are general and classifier-independent methods. They solely use the
structure of the data and the class labels to come up with subsets. They are
usually less time consuming. Yet commonly used evaluation metrics such as
mutual information are not necessarily optimal for a given prediction task.

• Embedded methods perform variable selection or ranking in the training
stage of a classifier. Like wrapping methods, these methods are specific to
a given classifier and prediction task.

Earlier in chapter 3.3, we saw that lasso inherently performs feature selection.
Chapter 3.7 introduced random forest’s variable importance measure that can be
used to (iteratively) select features. Both are examples of embedded feature selec-
tion methods.
In the following, selected filter feature selection methods are introduced that will
be used later.

ReliefF

Relief algorithms were introduced by Kira and Rendell in 1992 [57] and have been
steadily improved since. The first algorithm of the Relief family used the Euclidean
distance as a distance metric and a quadratic error. Further advancements by
Kononenko et al. in 1997 [10] introduced the Manhattan distance and the abso-
lute error term (ReliefF). We use a publically available implementation [58] that is
based on the version of Kononenko et al.
For a dataset with m instances, p variables and ncl class labels, the algorithm starts
with initializing a 1×p zero weight vector. Then, for r < m iterations, the following
three steps with the goal of weight updates are performed [59]:

1. Select a random instance Rj , j ∈ {1, ...m}.

2. From each class, select the k instances that are closest (by some distance met-
ric) to instance Rj. The k instances from the same class as Rj are labeled Hl,
the ones from every other class c as Ml(c).
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3. For all features xi, i ∈ {1, ...p} do:

w(xi) = w(xi) −

k∑
j=1

diff(xi,Rj,Hl)/(m · k)+

∑
c6=class(Rj)

 P(c)

1 − P(class(Rj))

k∑
j=1

diff(xi,Rj,Ml(c))

 /(m · k)
with:

diff(xi,Rj, Il) =
|Rj(xi) − Il(xi)|

max(xi) − min(xi)
.

Fisher Score

Fisher score is based on the idea that the distance of data, when using an optimal
subset of features, is minimal within each class and maximal between each class
compared to distances when using non-optimal feature subsets. Because of the
great complexity, the algorithm is usually limited by considering each feature sep-
arately.
While more detailed descriptions can be found in the literature [60], the main part
of the algorithm is presented as follows:

1. Select feature fj, j ∈ {1, ...p}.

2. Compute the mean µjk and standard deviation σjk for feature j and class k.

3. Compute the mean µj for feature j for all classes.

4. Compute fisher score for feature j: F(xj) =
∑c
k=1nk(µ

j
k−µ

j)
2∑c

k=1(σ
j
k)

2 with nk as the

number of data points in class k.

For this work, a Python implementation of the scikit-feature selection repository
[61] was used.

HSIC Lasso

In 2014, Yamada et al. proposed a method [62] inspired by lasso feature selection
but designed to be able to detect non-linear input-output dependencies. This is
done by using the Hilbert-Schmidt independence criterion (HSIC) which is based
on kernel methods. Optimal features using this method are found by solving the
following minimization problem, as shown in the original publication [62]:

min
α∈Rp

1
2
||L̄−

p∑
k=1

αkK̄
(k)||2Frob + λ||α||1,

so that α1, · · ·αp > 0

(3.11)

where ||.||Frob is the Frobenius norm, K̄(k) = ΓK(k)|Γ and L̂ = ΓLΓ are centered
Gram matrices, K(k)

i,j = K(xk,i, xk,j) and Li,j = L(yi,yj) are Gram matrices, K(x, x ′)
and L(y,y ′) are kernel functions, Γ = In − 1

p 1p 1Tp is the centering matrix, Ip is the
p-dimensional identity matrix and 1p is the p-dimensional vector with all ones.
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3.11 Pearson Correlation Coefficient

Features used in this work are based on the Pearson correlation coefficient. For two
continuous variables X and Y, the Pearson correlation coefficient ρ is defined as:

ρX,Y =
cov(X, Y)
σXσY

(3.12)

where:

- cov is the covariance

- σX is the standard deviation of X

- σY is the standard deviation of Y

While ρ is commonly used for the population correlation coefficient, r denotes the
sample correlation coefficient. For two continuous samples with size n, (xi), (yi)
i ∈ {1, ...n} denote the single samples and x̄ and ȳ stand for the sample means. The
sample correlation coefficient r can then be computed by:

r =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)
2 ∑n

i=1 (yi − ȳ)
2

. (3.13)

The correlation coefficient is a measure of linear relationship of the two samples.
The sampling correlation coefficient r is commonly used as an estimate for the
population coefficient ρ. It’s important to note that r follows a sampling distribution
that depends on ρ and the sample size n. For a bivariate normal distribution, an
analytical solution for the sampling density distribution was developed by Fisher
[63].
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Figure 3.5: The density function P(r) of the sample correlation coef-
ficient r for a normal bivariate distribution and a population correla-

tion coefficient ρ = 0 depends on the sample size n.

Figure 3.5 shows the density distribution for samples with different sample sizes,
drawn from two variables that are uncorrelated (which means ρ = 0) and both
normally distributed. One can see for a very small sample size (n = 3), how the
probability of r = 0 is the minimum of the density function. For n = 4, all values of
r are equally likely. For increasing n, the probability that r is the true value ρ = 0
increases.
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For non-normally distributed samples, one has to be aware of unpleasant effects
when working with the Pearson correlation coefficient. Firstly, the distribution of
r is different than it is for the normality assumption. Secondly, the choice of the
correlation coefficient can be inappropriate to determine the linear relationship for
particularly non-normal data [64].
Section 4.2 will introduce the features used for the experiments in detail. They
all depend on the Pearson correlation coefficient although normality can not be
guaranteed for all feasible subsets of the real-world data we use. As a consequence
of the density distribution of r, the minimum sample size is set to 5.

3.12 Model Validation

Model validation is the process of evaluating the predictive power of a model. It
is necessary to better understand and assess future predictions. Section 3.2 already
revealed that model validation is often non trivial. There are different techniques for
performance estimation including a popular method called k-fold cross validation
[65].
We will focus on a training and test set paradigm (3.2), i.e. we use training data for
building a model and a separate, independent test set for validating the model. For
validation, every sample Xi ∈ Xtest i ∈ {1, ...mtest} is passed to the random forest
model and its class Ypredict is predicted.

Binary classification

For a binary classification task comparing the predicted class Ypredict with the true
class Ytrue can lead to one of the following outcomes:

- True positive (TP): The classifier’s prediction Ypredict = 1 is correct (Ytrue = 1).

- False positive (FP): The classifier’s prediction Ypredict = 1 is false (Ytrue = 0).

- True negative (TN): The classifier’s prediction Ypredict = 0 is correct
(Ytrue = 0).

- False negative (FN): The classifier’s prediction Ypredict = 0 is false (Ytrue = 1).

Common metrics in machine learning are:

Recall or sensitivity =

∑
TP∑

TP +
∑

FN

Specificity =

∑
TN∑

TN +
∑

FP

Accuracy =

∑
TP +

∑
TN

mtest

Usually, there is a trade-off between sensitivity and specificity: the more positive
class instances that are correctly classified, the more negative class instances that
are falsely classified as positives. Accuracy is a simple measure that computes the
ratio of how many of all instances are classified correctly, independent of its class.



28 Chapter 3. Statistics, Machine Learning and Data Mining

Multi-class classification

The methods of binary classification can be extended to meet multi-class classifi-
cation requirements. Designating a correctly classified sample from class i as TPi,
accuracy for multi-class problem is simply defined as:

Accuracy =

∑
i

∑
TPi

mtest

While accuracy is not a reliable metric in all classification tasks (class skewness,
different importance of classes) [30], it is suitable for the prediction tasks we are
aiming at in this thesis.
More details about the model performance can be derived from a confusion matrix,
a table that provides a quantitative overview of the predictions for each class. In
such a matrix, index (i, j) displays how many samples of class i (true class) were
classified as class j. Therefore, the diagonal of the tables shows how many instances
from each class are correctly classified.
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Chapter 4

Methods

In this work, we would like to find out if automatically extracted features are a use-
ful foundation for predictive classification tasks in the spectroscopic domain. As a
starting point of automated feature extraction, we always use a labeled dataset, i.e.
m infrared spectra Sj, j ∈ {1, ...m} of k different classes ci, i ∈ {1, ...k} as well as
information about which spectrum belongs to which class (ground truth).
Chapter 3 presented different concepts tightly and loosely connected to feature ex-
traction and prediction tasks. In this chapter, we are keen to find out which of these
concepts are beneficial for the aim of automated feature extraction in spectroscopy.
In particular, we will present three different approaches we designed and analysed:
FFX approach, filter approach and embedded random forest approach. The overall design
of the algorithm is similar for all three of them and consists of the following steps:

1. Generation of a large number of features and creation of a design matrix.

2. Data split into training and test set.

3. Feature selection by three different approaches. Only the training set is used.

4. Build a random forest model with selected features. Only the training set is
used.

5. Validation of the random forest model by applying it to a test set.

We call the overall algorithm AutoFeature, section 4.3 introduces the algorithm as
well as its three versions of feature selection approaches.

4.1 FTIR Data Preprocessing

Processing and analysis of the hyperspectral data is done in the multisensor imag-
ing tool ImageLab [66]. In ImageLab, a hyperspectral image is stored as a hyper-
cube. We use three-dimensional hypercubes that consist of spatial coordinates (two
dimensions) and wave numbers (third dimension). A pixel of the hyperspectral
image refers to a spatial location of the hypercube (with x and y coordinates) and
consists of a spectrum.
In ImageLab, pixels of hyperspectral images are selected that belong to a substance
that we are interested in and the ground truth of these samples is assigned (see
sections 5.2 and 5.3 for detailed selection procedures and label annotation for the
different datasets used).
After having exported the spectral data of the selected samples as a .csv file, further
operations and experiments are performed in Python [67].
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4.2 Generic Features

As the discussion of the curse of dimensionality (chapter 3.8) has shown, an impor-
tant issue in building prediction models is the potential sparseness of high dimen-
sional spaces. We are therefore interested in a non-excessive number of features
that carry a significant amount of information helpful for the prediction task.
In this work, we build generic features that are likely valuable in any modelling
task with continuous spectra. Although these features are able to carry meaningful
information, they still represent only a small fraction of possible feature designs.
The generic features that will be presented below are part of a proof-of-concept
approach that may be augmented by additional features in the future.
As discussed in chapter 2, different atoms and bonds that form molecules absorb
infrared radiation of different energy. The resulting molecule-specific absorption
bands have certain shapes and peaks. We want to build features that are able to
capture the information about these specific shapes at different locations. We do
this by creating generic shapes (see below) and computing the Pearson correlation
coefficient of these template shapes and parts of the spectrum. With this approach,
we aim to achieve dimensionality reduction since information about a part of the
spectrum can be summed up with just the correlation coefficient, which is a single
scalar.
Features based on the correlation coefficient have some interesting properties (see
section 3.11 for a review of the Pearson correlation coefficient). Firstly, they only
capture the information about the linear similarity of template and spectrum data.
They are not influenced by linear transformations of the type X → a + bX,
a,b ∈ R. This for example means that the features carry information about the
shape of the spectrum independent of a linear baseline shift. Also, the features are
independent of the magnitude of a linear slope of the spectrum. This property can
be advantageous since absorption bands in spectra can be linearly scaled due to re-
flectance effects. However, a possible disadvantage is that some low-amplitude
noise in the spectrum by chance takes on some shape that resembles a certain
molecule’s absorption band.

We designed 4 groups of template shapes that are presented subsequently.

Triangle-shaped Peaks

The first group of templates are triangle-shaped peaks. We define the width of a
peak as the number of sample points (layers) at the triangle’s base edge. This easy
solution is good enough as a proof-of-concept that we are aiming for but would
need to be improved in order to gain widths independent of spectral resolution.
The width of these shapes is defined to be uneven (in order for the center of the
peak to be an integer) and varies from length 5 to 59, see Figure 4.1 for triangle
shapes with minimum and maximum width. We will denote a triangle-shaped
peak with its center at position xcenter and width w as T(xcenter, w).



4.2. Generic Features 31

Figure 4.1: Selected features and a sample PMMA spectrum are
depicted. For triangle- (red), Gaussian bell- (orange) and straight
line features (green) the minimum and maximum width for each
feature class is shown. For the general Gaussian bell feature class

(blue), four shapes are selected for illustration.

Gaussian Bell

The second type of feature is Gaussian bell shaped. The Gaussian bell is defined
by two parameters, the center position xcenter of the symmetrical shape and the
standard deviation σ. The shape is computed in two steps. Firstly, a preliminary
version is computed with:

G(σ) = e−
1
2(
n
σ )

2

. (4.1)

where n is the number of points desired for the preliminary version. This, by
default, is set to 151 data points, limiting the size of the preliminary version to
some large enough length. The preliminary version is normalized in a way that its
maximum value is 1. The final version of the Gaussian bell shape is defined by
using the subset of w(n) where w(n) > 0.01.
Center position xcenter and σ (influencing the shape’s width) are alterable param-
eters, setting the notion G(xcenter, σ) for a specific Gaussian bell feature. Figure
4.1 depicts Gaussian bell features with minimum and maximum width.

General Gaussian Bell

The next feature type is a generalization of the Gaussian bell. It is able to extend the
ordinary Gaussian bell feature so that the bell curve can have broader or sharper
peaks, steeper or flatter slopes and longer tails. The feature takes three input pa-
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rameters:

- n ... number of data points of the feature.

- p ... shape parameter

- σ ... standard deviation

The general Gaussian bell feature, denoted by G(n,p,σ), is computed by:

G(n,p,σ) = e−
1
2 |
n
σ |

2p
. (4.2)

In Figure 4.1, four types of the general Gaussian bell feature are illustrated.

Straight Line

The fourth kind of template is a straight line. The feature’s single input parameter
is the number of output data points n. The parameter n is odd and 5 6 n 6 25, see
Figure 4.1 for the straight line features with minimum and maximum length.
The line is computed so that the straight line’s first value is 0 and the last value is 1.
Lines of different length have therefore different slope which is irrelevant since the
correlation coefficient is independent for such kind of linear transformations. The
underlying reason for using this feature is that we sense there might be statistical
differences of the correlation with a straight line in parts of the spectrum with
lateral peaks and in other parts without them.

4.3 AutoFeature Algorithm

This section presents AutoFeature, the algorithm designed in this thesis for auto-
mated feature generation and selection. Figure 4.2 illustrates the workflow of the
algorithm.

Feature Generation and Creation of Design Matrix

Firstly, features are generated which, as presented above, are based on the cor-
relation of parts of the spectrum and templates. Four different types of shapes
and different forms and widths of each type constitute a total of 84 templates.
These templates can be used at any position of the spectrum, yielding thousands of
features for a typical infrared spectrum. Applying all nf features to all m spectra
samples yields the design matrix X ∈ Rm×nf . Class information is saved in ground
truth vector Y ∈ Rm×1.
The design matrix together with the ground truth vector (X, Y) is split into the train-
ing and test set. The split is done in a way so that 80% of each class’ data is contained
in the training set, the remaining 20% in the test set. Hence, the proportions of the
number of samples of each class are the same in full data, training data and test
data.
The training data is used for all of the following steps until building a (final)
random forest model. The test set is not used in any step of model creation but
for validating the random forest model ultimately.
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Figure 4.2: Illustration of the AutoFeature algorithm. The algo-
rithm starts with the generic feature generation. After employing the
generic features on spectroscopic data, a design matrix is obtained
that is split into a training and a test set. One out of three feature se-
lection approaches can be selected by the user. The resulting features
from the feature selection process are used to form sub-design ma-
trices, both for the training and the test set. A random forest model
is trained with the training sub-design matrix and is then evaluated

with the test samples.
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Feature Selection

In the next step, the training data is used to determine the most promising features
for prediction out of the thousands features generated in step 1. This can be done
in three different ways:

FFX approach

User adjustable parameters are:

- nfeatures: maximum number of features that are selected.

- ρ: elastic net regularization mixing parameter.

- nunivariate: maximum number of univariate basis functions for pathwise regu-
larized learning (FFX step 2).

- nmain univariate: number of univariate basis functions that is used to compute
the bivariate basis functions (FFX step 3).

- nbivariate: maximum number of bivariate basis functions for pathwise regular-
ized learning (FFX step 4).

Fast function extraction (see section 3.6) is utilized for feature selection. This is
done by FFX’s modelling method so that generalized linear models are computed
with elastic net regularization. Features are selected by choosing appropriate basis
functions of these models.
Firstly, the design matrix computed in the previous step is used to perform path-
wise regularized learning with fixed elastic net regularization parameter ρ.
During pathwise regularized learning, the regularization parameter λ is decreased
stepwise until a resulting model consists of nunivariate univariate basis functions.
nmain univariate most important basis functions are used to generate bivariate basis
functions of the form xi · xj ∀i, j ∈ {1, ...nmain univariate}. After merging the univari-
ate and bivariate basis functions, pathwise regularized learning is performed again
until a model results with maximum nbivariate basis function.
Subsequently, a non-dominating filtering of the resulting models yields a subset of
models that are pareto-optimal concerning error and complexity. Eventually, the
basis functions of the model with complexity nfeatures are selected as features. If
there is no model with the chosen complexity level nfeatures in the non-dominated
subset, the complexity level is decreased to the next possible (part of non-dominated
subset) model complexity.
The FFX feature selection approach is carried out in a binary one-vs-all fashion. This
means, for k different classes, k runs have to be performed. In each run, one class
ci is selected as the positive class (Ybinary = 1) and all other classes cj, j 6= i

are selected as negative classes (Ybinary = 0). Then, with the temporary Ybinary
labels, the feature selection procedure is carried out. In each run, we therefore ob-
tain the most important features for distinguishing class ci from the other classes.
After all runs, the most important features are merged. If a maximum number of
nfeatures features is desired for a multi-class problem, in each run nfeatures

k features
have to be selected.
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Filter approach

User adjustable parameters:

- nfeatures: number of features selected.

- ykernel [HSIC lasso]: type of kernel method.

- nneighbors [ReliefF]: number of neighbors for weight updates.

In the filter approach, features get selected by three filter methods HSIC lasso, ReliefF
and FisherScore, see section 3.10. The outcome is three sets of features.
For each of the filter algorithms, the training design matrix Xtrain and ground
truth vector Ytrain are used as input. Every filter method computes a ranking of
all input features and nfeatures most important features are selected.
Like the FFX approach, all filter approaches are carried out in a binary one-vs-all
fashion.

Embedded random forest approach

User adjustable parameters:

- nfeatures: number of features selected.

- qdiscard ∈ [0, 1] : fraction of features that is discarded after each run.

- random forest parameters, see section 3.7

In the embedded random forest approach, the random forest’s variable importance
measure is used, see section 3.7. Features selection is done by the following iterative
scheme:

1. Use training set (Xtrain,Ytrain) to build a random forest model.

2. Select a fraction of 1 − qdiscard features that have the largest variable impor-
tance measured by the random forest’s mean decrease impurity. Discard the
rest.

3. Repeat step 1 (with remaining features) and 2 until the number of remaining
features is less than or equal to nfeatures.

Feature Sub-Design Matrix and Random Forest Model Creation

User adjustable parameters:

- random forest parameters, see section 3.7

The resulting nfeatures selected features in the previous step are used to create sub-
design matrices. A sub-design matrix Xsub ∈ Rm×nfeatures is a submatrix of the full
design matrix X ∈ Rm×p so that all samples but the selected features are used.
In this way, a training sub-design matrix and a test sub-design matrix can be con-
structed from the full training design matrix and full test design matrix respectively.
The sub-design matrix is used to create a random forest model aiming to build
a valid predictive statistical model. Depending on the feature selection method
used, the random forest model is labeled as RFFFX, RFHSIC, RFFisher, RFReliefF or
RFembedded.
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Validation of Random Forest Model

To validate the built random forest models, the prediction performance is assessed
on the test sub-design matrix. In particular, the accuracy and confusion matrices
(see section 3.12) are computed and presented. By assessing these metrics of the dif-
ferent models RFselection method, we can analyse which of the approaches might
be more suitable for the spectroscopic domain than others.
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Chapter 5

Experiments

In this chapter, the set-up of the conducted experiments is presented. First, we will
investigate how the AutoFeature FFX-approach is affected by noise and the sample
size of the dataset. Therefore, we will create artificial hyperspectral data.
In the next experiment, we will use a real-world microplastic dataset that contains
different types of polymers. All AutoFeature variants will be carried out — the
resulting features will be discussed as well as model performances evaluated and
compared.
Finally, we will attempt to solve two skin tissue classification tasks with the Aut-
oFeature embedded random forest approach. While in the first task a discrimi-
nation of tumorous melanoma and non-tumorous epidermis cells is desired, the
second task is about differentiating connective tissue and non-connective tissue in
the dermis.

5.1 AutoFeature Investigation with Artificial Data

To investigate the functionality of FFX in the feature selection domain, we create
artificial data. The data is designed to emulate real-world spectra. Each artificial
spectrum consists of 609 data points, equivalent to the microplastic spectra used in
section 5.2.
We are particularly interested in the question of how well FFX works with noisy
data. Therefore, we add different levels of noise to the artificial spectra and observe
the results of FFX.
The artificial data emulates three different substances. Each substance has just one,
triangle-shaped absorption band. Moreover, the width of the triangles is set to 15
datapoints for all three classes and every spectra’s baselines are arbitrarily shifted
vertically by 0.5. The center positions of the classes are placed on three consecutive
data points. The spectra with center locations on the outside are labeled as class 0
while the ones in the middle are labeled as class 1, as shown in Figure 5.1.
Two artificial datasets with different sample sizes are created. Dataset D1 contains
8 class 1 samples and 4 samples from each type of class 0 while dataset D2 contains
50 class 1 samples and 25 samples for each class 0 type. Table 5.1 summarizes the
noise-free specifications of the spectra.
As a next step, we add normally distributed homoscedastic noise to the samples of
each dataset. The mean of the noise is set to zero while the standard deviation is
increased stepwise, taking one of the values stdset = {0.01, 0.05, 0.1, 0.15, 0.2, 0.25}.
After adding noise with a chosen standard deviation s ∈ stdset to all samples,
the FFX approach is followed. The elastic net mixing parameter is set to ρ = 0.9
and nfeatures = 10 features are selected (see Table 5.2). For each dataset and
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Figure 5.1: Segment of artificial data. Three classes are designed;
two of them are treated as negative class (class 0), one as positive
class (class 1). All spectra consist of 609 data points which are all
constant except for the segment shown in this figure. The width of
the triangle shaped absorption bands is 15 for all classes, the central
positions are 99 and 101 for the two types of class 0 and 100 for class

1.

Table 5.1: Specifications of artificial data that is used to investigate
properties of fast function extraction in feature selection. Three types
of spectra are created, one of them is treated as positive class (class

1), the others as negative class (class 0).

Class 1 Class 0, type 1 Class 0, type 2
Position 100 99 101
Width 15 15 15
Amplitude 1 1 1
Baseline shift 0.5 0.5 0.5
samples (D1) 8 4 4
samples (D2) 50 25 25

for each level of noise the resulting FFX model is observed with ten features. We
further visualize which features are selected by plotting the width of the features
against their central positions. For different datasets and different levels of noise,
we observe the patterns and distinctions of these 2D distributions of the selected
features. Convincing FFX models should consist of features that at least partly
cover the spectral region of interest, i.e. [92, 108], preferably being close to the
specification of the positive class T(100, 15). We suspect that increased noise will
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result in random-based, meaningless features and want to check how strongly this
aspect is influenced by the standard deviation of the noise and the size of the
dataset.
To keep the analysis simple, only triangle-shaped features with a width between 5
and 80 are permitted in the FFX runs.

Table 5.2: FFX parameters used for experiments with artificial data.

Parameter Value
Regularization ratio ρ 0.9
nfeatures 10
nunivariate 20
nmain univariate 20
nbivariate no limit

5.2 AutoFeature Experiment with Microplastic Data

Microplastic Data Collection

Figure 5.2: Aluminium oxide filter containing the microplastic pho-
tographed in visible light. The area within the red rectangle is se-

lected for all further analysis.

The microplastic dataset was collected by a research group at the Faculty for
Biology, Chemistry and Earth Sciences at the University of Bayreuth. The dataset
was acquired by first taking water from natural, running water with all contained
organic substances. Then, microplastic particles of different polymers were mixed
into the water. The water, containing organic and polymer substances was filtered
through an aluminium oxide filter with a meshsize of 100 nm.
By using a FPA-based micro-FTIR spectroscopic microscope [68], the filter and the
microplastic-containing specimens were measured in transmission mode. Further
properties of the measurement are a wave number range of 3600 - 1250 cm−1, a
resolution of 8 cm−1 and a coaddition of six scans.

We select an arbitrary subregion of the full data sample that we use for all further
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Figure 5.3: The left side of the figure displays a hyperspectral image
of the microplastic sample. The absorbance at wavenumber 1901
cm−1 is shown. For each pixel of the hyperspectral image, there is
a spectrum. The spectrum at the cursor’s position is shown on the

right side of the figure.

analysis, see Figure 5.2. This subregion is depicted in Figure 5.3 in the hyper-
spectral domain. In particular, the figure shows the absorbance at wavenumber
1901 cm−1 (arbitrary choice) for each pixel.

Microplastic Dataset for AutoFeature Experiments

We make a selection of datapoints for further analysis and for automatic feature
generation experiments that is described in the following paragraph.
The aim of the selection is to obtain a dataset with real-world spectra for different
polymers present in the specimen. Having many examples of real-world spectra
increases the chance that the dataset will contain important variations of spectra
for the same chemical substance. These variations occur due to different physical
effects in spectroscopy.
In previous inquiries, spectral features for polymer detection and classification were
manually designed using ImageLab. The features contain important information
about intensities, integrals, intensity ratios, peak positions and shapes. Also, a clas-
sification model based on random forest was built in this study. These features
together with the classification model are used to classify each pixel in the selected
region of the microplastic data. All pixels classified as any kind of polymer are
visually inspected. The spectra are compared to a reference spectrum and classifi-
cation decisions are manually changed if they do not seem plausible. One special
case is pixels that contain two or more different spectra. Those are annotated as
’mixed spectra’ but are not used any further in the experiments.
Moreover, we used some features together with principal component analysis to
detect different classes in the dataset. The scores for different principal compo-
nents are used to identify candidates for the final polymer dataset. After visual
inspection of the spectra of the candidates, pixels are annotated.
Merging the annotated pixels from the feature-classification and feature-PCA
method gives the final database used for feature generation experiments.
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Microplastic AutoFeature Experiment

The microplastic dataset, collected and selected as described above, is used for an
AutoFeature (see section 4.3) experiment. Settings and parameters used for all steps
in the AutoFeature workflow are presented in this section.

Feature Generation

All four feature shapes including triangle, Gaussian bell, general Gaussian bell and
straight line, presented in section 4.2, are used at all possible spectral positions.

Training and Test Set

Standard settings of the AutoFeature algorithm are used, i.e. 80% of the data is
used for training and the remaining 20% is used for testing.

Feature Selection

For feature selection, for each class ci we randomly select min(mci , 100) spectra
from the training set, where mci is the number of spectra for class ci. These spectra
are used for all feature selection approaches.
Tables 5.3 (FFX approach), 5.4 (embedded approach) and 5.5 (filter approach) list
the parameters used for the different feature selection approaches.

Table 5.3: FFX feature selection approach parameters used for ex-
periments with microplastic data.

Parameter Value
Regularization ratio ρ 0.9
nfeatures 50
nunivariate 400
nmain univariate 400
nbivariate no limit

Table 5.4: Embedded feature selection approach parameters used
for AutoFeature experiments with microplastic data.

Parameter Value
nfeatures 50
qdiscard 0.995
sample fraction r 1
number of trees Mtrees 50
leafsize 1
features at split Psub

√
nfeatures in design matrix

Feature Sub-Design Matrix and Random Forest Model Creation

For creating the training and test sub-design matrices, we use all available spectra
in the training and test sets.
The parameters used for the final random forest model in this experiment are
shown in Table 5.6.
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Table 5.5: Filter feature selection approach parameters used for
AutoFeature experiments with microplastic data.

Parameter Value
nfeatures 50
ykernel [HSIC lasso] ’Delta’
nneighbors [ReliefF] 0.8

Table 5.6: Random forest model building parameters used for Auto-
Feature experiments with microplastic data.

Parameter Value
sample fraction r 1

number of trees Mtrees 50
leafsize 1

features at split Psub
√
nfeatures in design matrix

Firstly, we are interested in the resulting features from the FFX approach and will
have a closer look at them. For each of the five binary one-vs-all FFX runs, we select
the model with complexity nfeatures = 10. We manually select some features of these
models that we consider distinct (i.e. we would rather consider features T(234, 14)
and T(511, 13) to be distinct than features T(234, 14) and T(236, 12)). These distinct
features are illustrated together with microplastic spectra. So, a visual evaluation
of the reasonability and meaning of the automatically selected features is possible.
To better understand why some features are selected by the FFX approach, we look
at the histograms of these features. These histograms show the feature value distri-
butions for the positive and the negative class samples. We expect some differences
in the two distributions to occur since we expect the algorithm to select features that
are different for the positive and the negative class. By inspecting the histograms,
the question of how those distributions differ can be answered. Moreover, we man-
ually choose a feature that an expert in this field would find appropriate and that
is not among the selected features by FFX. For this feature, the histograms for the
positive and the negative classes are illustrated again. Distribution differences for
the positive and negative class of the manually selected feature are compared to the
distribution differences of the FFX selected features.
Similarly, we will examine four features selected by the embedded random for-
est approach together with a manually chosen feature that an expert in this field
would find interesting. Since random forest can handle multiclass problems, the
histograms for every class is displayed.
To compare the results of all five feature selection methods, the widths of the
selected features are plotted against the positions of the features for each method.
While the information about the shape of the features is not included in this
approach, differences and similarities in which features are selected by different
methods are easily perceived.
Eventually, random forest models are built with the automatically extracted
features and validated on the test set that has not been used in any step before.
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FFX Stability Examination

We regard an automatic feature generation and selection algorithm as stable if sim-
ilar features are selected for similar real-world data. If similar data results in very
different features, we call the algorithm unstable. In the latter case, we would con-
sider the underlying models to have low bias and high variance which would make
the resulting features unconvincing.
We consider the spectra within each polymer class in the microplastic dataset to be
relatively similar. To assess the stability of FFX when dealing with real-world data,
we design the following experiments. Firstly, four samples (named A, B, C and D)
with an equal number of spectra and equal class distributions are drawn from the
microplastic dataset in the following way:

1. Set a number of spectra per class nspectra per class that is to be included in every
sample.

2. For all five polymer classes ci do the following:

- if the number of spectra of class ci is larger than 5 · nspectra per class: Ran-
domly draw nspectra per class spectra for each sample without replacement.

- if the number of spectra of class ci is smaller than 5 · nspectra per class
but larger than nspectra per class: Randomly draw nspectra per class spectra for
each sample with replacement.

- if the number of spectra of class ci is smaller than nspectra per class: Add all
available samples of class ci to all samples. If this condition is fulfilled,
the class distribution in the samples will be imbalanced.

3. For each of these samples, a full FFX AutoFeature algorithm is followed.

Three sets of four samples with nspectra per class ∈ {32, 64, 200} are created.
To examine the similarities and differences in the resulting features for the four dif-
ferent samples, we plot the feature-width against the feature-position as described
above. We do this for all three chosen nspectra per class cases and observe the effect of
the sample size on the results.

5.3 AutoFeature Experiment with Skin Tissue Data

In the experiments described below, real-world skin tissue data is used for two
important classification tasks in medicine. We will use the AutoFeature algorithm
to automatically find features for the following tasks:

• Classification of tumorous (melanoma) and non-tumourous (not melanoma)
cells in the epidermis.

• Classification of connective tissue and non-connective tissues in the dermis.

Melanoma and Connective Tissue Dataset

The skin tissue specimens used in this thesis stem from the Department of Patho-
physiology and Allergy Research at the Medical University of Vienna [69]. The
specimens are formalin fixed and paraffin embedded (FFPE), a common method for
conservation and stabilisation of biological tissue before microsections and
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examinations with a microscope. CaFl2 is used as sample carriers.
For each tissue section that is extracted for spectroscopic analysis, neighboring tis-
sue sections are extracted as well, FFPE processed and H&E stained. The H&E
stained samples enable a conventional analysis of the tissues and a ground truth
annotation by an expert in histopathology.

We expect to obtain spectra with some characteristic properties for each type of
tissue that occurs in the epidermis and dermis because of the following reasons:

Epidermis: The most prevalent cell type in the epidermis is keratinocyte, consist-
ing of a number of structural proteins, enzymes, lipids and antimicrobial pep-
tides. One of these structural proteins, keratin is expected to change absorp-
tion bands.

Melanoma: Because tumorous cells have abnormal and rapid reproduction cycles,
more DNA and RNA is present in these cells than in non-tumorous cells,
altering the spectrum.

Connective tissue: Structural proteins collagen and elastin, among others, influ-
ence the spectrum.

Figure 5.4: Picture in visible light taken from the dermis specimen
containing the connective tissue.

Hyperspectral Image Acquisition

Hyperspectral images are recorded in transmission mode on an FTIR-microscope
Bruker Hyperion 3000 with a liquid nitrogen cooled 64 × 64 pixel FPA detector and
a sample area of 175 × 175 µm. Using a 15-fold objective with a pixel resolution of
2.7 µm together with a 4 × 4 binning produce a final resolution of 2.7 · 4 = 10.8 µm.
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To increase the signal to noise ratio, four scans for each pixel are accumulated. The
spectra of the tissues are obtained between ν̂ = 3845 and 879 cm−1 with a spectral
resolution of 2 cm−1. The spectra of the datasets are then resampled by a factor of
2.

Melanoma Dataset for AutoFeature Experiments

Pixel areas of the hyperspectral image are labeled as melanoma or non-melanoma if
the H&E stains provide enough information about their ground truth, i.e. if areas
that belong to melanoma cells or to usual epidermis cells can be recognized. Out-
side of these pixel areas, 40 pixels are randomly selected for each class. These over-
all 80 pixels with their corresponding tumorous or non-tumorous spectra form the
dataset for the following automatic feature generation and selection experiments.

Figure 5.5: Image of epidermis containing melanoma cells showing
the absorbance for wavenumber 1307 cm−1.

Connective Dataset for AutoFeature Experiments

The selection of the connective tissue dataset for the AutoFeature experiments is
done analogously to the melanoma dataset. 40 pixels for both classes connective
tissue and non-connective tissue are chosen to be included in the dataset. Figure 5.4
shows an image of the specimen in visual light, Figure 5.6 displays it at a single
wavenumber in the infrared spectrum.
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Figure 5.6: Image of dermis containing connective tissue showing
the absorbance for wavenumber 1664 cm−1.

AutoFeature Algorithm Settings for Skin Tissue Experiments

For melanoma and connective tissue classification tasks, the same settings are used
in the AutoFeature algorithm and are described in the following.

Feature Generation

All four feature shapes (see section 4.2) are used with standard settings.

Training and Test Set

Standard settings as described in section 4.3 are used, i.e. 80% of the data is used
for training and the remaining 20% is used for testing.

Feature Selection

For feature selection, the full training dataset together with the embedded random
forest approach is used. Table 5.7 lists the parameters used for the chosen AutoFea-
ture version.
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Table 5.7: Embedded feature selection approach parameters used
for experiments with skin tissue data.

Parameter Value
nfeatures 25
qdiscard 0.995
sample fraction r 1
number of trees Mtrees 50
leafsize 1
features at split Psub

√
nfeatures in design matrix

Feature Sub-Design Matrix and Random Forest Model Creation

The full training and test sets are used to create the sub-design matrices for the
random forest modelling and validation.
The random forest parameters used for the final random forest model in this ex-
periment are listed in Table 5.8.

Table 5.8: Random forest model building parameters used for ex-
periments with skin tissue data.

Parameter Value
sample fraction r 1

number of trees Mtrees 50
leafsize 1

features at split Psub
√
nfeatures in design matrix

After building a random forest model with 25 selected features, we validate it on
the test set that consists of 40 · 0.2 = 8 samples per class.
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Chapter 6

Results

6.1 Results of AutoFeature Investigation with Artificial Data

As described in section 5.1, we increase stepwise the standard deviation of noise
added to artificially generated spectra. Figure 6.1 shows segments of randomly
chosen spectra for each class after adding noise with standard deviations σnoise =
0.05 and σnoise = 0.2. For noise σnoise = 0.05, a clear distinction between the
peaks and the baseline can be made by visual inspection. One can also anticipate
the underlying denoised spectra for the different classes. For σnoise = 0.2, both the
distinction of the triangles from the baseline and the class discrimination is much
harder to make.

(a) σnoise = 0.05. (b) σnoise = 0.2.

Figure 6.1: Randomly chosen spectra for each class after adding
noise with standard deviation σnoise = 0.05 (A) and σnoise = 0.2
(B). (A) Clear distinctions between classes and between peaks and
baseline can be made by visual inspection. (B) Distinctions between
different classes and between baseline and triangle shaped absorp-

tion bands are difficult to make by visual inspection.

The resulting FFX models for the different noise levels are depicted in Table 6.1
for dataset D1 and in Table 6.2 for dataset D2. Figure 6.2 (D1) and Figure 6.3 (D2)
provide a visual presentation of the features’ position and width.



50 Chapter 6. Results

Table 6.1: Results of fast function extraction model building for ar-
tificial data (dataset D1) with sample size m = 16. The central po-
sition of the noise free class 1 spectrum is at layer 100, the width is
15 layers. FFX is able to extract features located at layer 100 for low
amplitude noise σnoise 6 0.1 and extracts features based solely on

random effects for noise σnoise > 0.15.

σnoise FFX model

0.01
-1.80 + 0.511·T(100,21) + 0.504·T(100,17) + 0.390·T(100,19)
+ 0.298·T(100,15) + 0.296·T(100,23) + 0.208·T(100,13) + 0.136·T(100,11)
+ 0.0914·T(100,9) + 0.0399·T(100,7) + 0.0157·T(100,5)

0.05
-4.93 + 2.93·T(100,15) + 1.73·T(100,13) + 1.06·T(100,11) + 0.146·T(100,7)
+ 0.0834·T(261,61) - 0.0662·T(240,57) + 0.0407·T(43,67) + 0.0222·T(359,9)
- 0.000890·T(237,49)

0.1

-0.786 - 2.04·T(100,9) · T(87,27) - 0.682·T(100,11) · T(87,27) -
0.185·T(407,35) + 0.183·T(100,9) · T(100,17) + 0.0795·T(281,7) -
0.0737·T(547,9) + 0.0687·T(523,7) - 0.0277·T(296,9) -
0.0233·T(254,5) - 0.0204·T(207,5)

0.15

0.527 + 0.327·T(485,45) + 0.280·T(454,31) + 0.280·T(565,21) -
0.148·T(391,7) + 0.123·T(488,7) + 0.0830·T(167,27) -
0.0792·T(126,9) + 0.0477·T(166,25) + 0.0437·T(168,27) +
0.0322·T(347,9)

0.2
0.506 - 0.739·T(406,19) + 0.368·T(179,77) - 0.167·T(33,5) +
0.123·T(458,13) + 0.0937·T(288,9) + 0.0571·T(200,11) + 0.0416·T(397,5) +
0.0355·T(346,59) + 0.0305·T(346,51) - 0.0118·T(490,5)

0.25
0.370 + 0.880·T(114,71) - 0.348·T(339,11) - 0.319·T(402,9) - 0.305·T(36,21)
- 0.178·T(509,17) + 0.103·T(502,13) - 0.0405·T(456,47) + 0.0194·T(311,15) -
0.0191·T(339,9) + 0.0190·T(34,5)

AutoFeature-FFX results for the D1 (m = 16) dataset

For m = 16 and σnoise = 0.01, all central positions of the features are at the true
layer = 100. The set of widths of the ten different features is the closest possible
to the true width of 15. For noise σnoise = 0.05, four features are positioned at
layer 100 and have the largest coefficients in the FFX model. Because of random
patterns generated by noise, four features far off from layer 100 and with very
different widths (from 9 to 61) are part of the model. The FFX approach is still able
to detect features with noise = σnoise = 0.1, although they are partly combined
with random-based features in bivariate basis functions. By adding noise with a
standard deviation of 0.15 or more, no features at layer 100 are found in this setting.

AutoFeature-FFX results for the D2 (m = 100) dataset

For a larger sample size m = 100, the outcome for σnoise = 0.01 is similar to the
m = 16 case. Interestingly however, two random-based features (with very small co-
efficients in the model) do appear. With only one exception for noise σnoise = 0.05,
all features’ central positions are located at layer = 100. Hence, the amount of
noise-based features is reduced compared to the smaller sample size.
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Table 6.2: Results of fast function extraction model building for ar-
tificial data (dataset D2) with sample size m = 100. The central
position of the denoised class 1 spectrum is at layer 100, the width
is 15 layers. FFX is able to extract features located at layer 100 for all
noise levels 0.01 6 σnoise 6 0.25. For noise level σnoise = 0.25, the
layer 100 feature only has the third largest coefficient. The improved
FFX results compared to the m = 16 case stem from the law of large

numbers.

σnoise FFX model

0.01
-5.17 + 1.95 ·T(100,15) + 1.65 ·T(100,13) + 1.12 ·T(100,11) +
0.608 ·T(100,17) + 0.414 ·T(100,7) + 0.250 ·T(100,5) +
0.176 ·T(100,9) - 0.000983 ·T(135,13) - 0.000478 ·T(136,15)

0.05

-2.21 + 0.778 ·T(100,13)2 + 0.732 ·T(100,15) · T(100,13) +
0.573 ·T(100,15)2 + 0.452 ·T(100,19) · T(100,13) +
0.277 ·T(100,5)2 + 0.237 ·T(100,19) · T(100,15) + 0.152 ·T(100,7)2 +
0.0518 ·T(100,5) · T(100,7) + 0.0240 ·T(100,7) · T(100,13)
- 0.000938 ·T(252,41) · T(100,19)

0.1

-4.51 + 2.17 ·T(100,17) + 1.33 ·T(100,15) +
1.29 ·T(100,13) + 0.327 ·T(100,19) + 0.294 ·T(100,11) -
0.165 ·T(123,57) - 0.115 ·T(124,55) - 0.0390 ·T(193,13) +
0.0267 ·T(265,13) - 0.00649 ·T(244,5)

0.15

-1.06 + 1.40 ·T(100,15)2 + 0.457 ·T(100,11) · T(100,15) +
0.257 ·T(100,19) · T(100,15) + 0.104 ·T(182,35) · T(100,19) -
0.0376 ·T(341,9) - 0.0342 ·T(502,27) · T(100,15) -
0.0264 ·T(413,15) · T(100,15) + 0.0181 ·T(528,9) · T(100,15) -
0.0180 ·T(247,9) + 0.00656 ·T(565,9)

0.2

-0.212 + 1.09 ·T(100,15)2 - 0.207 ·T(20,35) · T(100,15) -
0.0802 ·T(20,23) · T(100,15) - 0.0507 ·T(465,27) · T(100,15) +
0.0316 ·T(47,7) - 0.0270 ·T(25,9) - 0.0153 ·T(262,5) +
0.00781 ·T(48,9) - 0.00568 ·T(482,11) + 0.00129 ·T(172,7)

0.25

0.483 + 0.152 ·T(436,35) - 0.106 ·T(330,19) +0.0812 ·T(100,5)
- 0.0538 ·T(536,49) + 0.0461 ·T(554,45) - 0.0450 ·T(465,7)
+ 0.0363 ·T(169,13) - 0.0206 ·T(244,9) - 0.0107 ·T(83,7) +
0.000406 ·T(559,7)

For m = 100, even for noise = 0.2, a feature located at layer 100 is detected by the
FFX approach.
The tendency of detecting better features with an increased sample size is not sur-
prising. According to the law of large numbers, the average of results obtained by a
random experiment, converge to the expected value as the number of experiments
increases. Therefore, in this case, the FFX approach is more likely to find the true
discrimination features with larger sample sizes.
For noise level σnoise = 0.25, only one feature at layer 100 (with width 5) is de-
tected. Hence, when dealing with real-world datasets that do contain such high
levels of noise, a sample size of approximately 100 is necessary to be able to extract
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Figure 6.2: Visualization of the results of AutoFeature-FFX for ar-
tificial data (dataset D2) with sample size m = 16. For each noise
level, the positions and widths of features from FFX models with
complexity nfeatures = 10 are depicted. The central position of the
noise free class 1 spectrum is at layer 100, the width is 15 layers. FFX
is able to extract features located at layer 100 for low amplitude noise
σnoise 6 0.1 and finds features based solely on random effects for

noise σnoise > 0.15.

a meaningful feature. The interpretation of an AutoFeature-FFX result without hav-
ing a ground truth would still be difficult in such a setting, since the result shows
that the correct layer 100 feature only has the third largest coefficient after two
random based features.
As the extraction of the underlying T(100,15) feature demonstrates for many noise
levels for both datasets D1 and D2, FFX can be a suitable choice for automatic
feature generation. Interestingly, in all dataset noise combinations, FFX either ex-
tracted a layer 100 feature or a completely random based feature. Other features
with center locations close to 100 that carry information about all three classes were
never extracted.
As expected, increasing noise results in a declining number of meaningful features.
Also as anticipated, a dataset with a larger number of samples enabled FFX to ex-
tract better features for a fixed level of noise. The ratio of noise and samples in real
world data sets is therefore an important parameter in assessing the possibility of
automatic feature generation with FFX.
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Figure 6.3: Visualization of the results of AutoFeature-FFX for arti-
ficial data (dataset D2) with sample size m = 100. For each noise
level, the positions and widths of features from FFX models with
complexity nfeatures = 10 are depicted. The central position of the
noise free class 1 spectrum is at layer 100, the width is 15 layers.
FFX is able to extract features located at layer 100 for all noise levels
0.01 6 σnoise 6 0.25. For noise level σnoise = 0.25, the layer 100 fea-
ture only has the third largest coefficient. The improved FFX results
compared to the m = 16 case stem from the law of large numbers.

6.2 Results of AutoFeature Experiment with Microplastic
Data

Dataset for Feature Generation Experiments

The data selection and annotation procedure described in section 5.2 resulted in a
dataset with the following number of samples per polymer class:

Table 6.3: Number of samples for each class in the microplastic
dataset used for automatic feature generation.

Class number of samples
PE 64
PP 39
PS 364
PAN 639
PMMA 1545

The polymer classes in the dataset are rather imbalanced, as the class with the most
samples (PMMA, 1545) and fewest samples (PP, 39) point out.
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Figure 6.4: Selected region of interest of microplastic data. For each
pixel, an infrared spectrum is available. The absorbance at wavenum-
ber 1901 cm−1 is shown. With manually designed features, polymers
are detected in the data (see text). The detected polymers are shown
as colored squares in the figure with the following color code: green
= polypropylene, black = polystyrene, blue = polyacrylonitrile, red =
polymethylmethacrylate, grey = polyethylene, yellow = mixed spec-

tra (not used for further analysis).

Figure 6.4 displays the spatial location and class information of the annotated
pixels. One can observe the PAN fiber structure and, for example, that there is
only a single polypropylene particle (with an area of 39 pixels).

Results of AutoFeature Experiment with Microplastic Data

Figures 6.5 to 6.9 depict the main resulting features for the five binary FFX ap-
proaches for the microplastic dataset. As the vertical position does not matter for
the features, a baseline shift is freely chosen for the plots. Besides the features, for
each polymer class a selected spectrum is plotted. The positive class polymer in a
binary one-vs-all run, is plotted in orange, all negative classes are in black.
The full FFX models are presented in equations 6.1 (PE) , 6.2 (PP), 6.3 (PS), 6.4
(PMMA) and 6.5 (PAN).
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Figure 6.5: Part of the resulting features for FFX AutoFeature al-
gorithm with microplastic dataset, positive class: polyethylene (PE),
negative classes: polypropylene (PP), polystyrol (PS), polymethyl-
methacrylate (PMMA) and polyacrylonitrile (PAN). A maximum of
100 samples for each class is used for feature selection and the result-
ing features of the FFX model with ten basis functions are illustrated
in magenta. Vertical positions of features are freely shifted from the
baseline to improve readability. Most features cover the range from
1500 to 1300 cm−1, capturing information about the PE characteris-
tic absorption band and additional information from other classes’

absorption bands. See equation 6.1 for the full FFX model.

In all five cases, features selected by FFX are solely in the region where charac-
teristic absorption bands occur. However, the central position of the features does
often not coincide with the central position of an absorption band. In many cases
the features width is also not equal to the width of the absorption bands. The fact
that the features occur only in absorption band regions support the conclusion that
the features are extracted because of some real differences among the classes and
not because of random noise. Otherwise, features would appear at all possible po-
sitions, which is not the case. This result is a first indication that the automatic
feature engineering is feasible for real-world spectra.
In the following discussion, we will loosely denote the spectral region from 3200 to
2700 cm−1 (layers 103 to 233) as left side and the spectral region from 1800 to 1250
cm−1 (layers 466 to 609) as right side of the spectrum.
In the PE case (short for ’In the binary run where PE is the positive class’), there is
a single feature, P(183,21,6,8.5), selected on the left side of the spectrum while all
others are selected on the right side. Except one feature, S(551,556), that is located
entirely at the PE characteristic absorption band, all other features at the right hand
side cover more than the characteristic absorption band. A possible explanation is
the need for distinction between the PE and PP spectra. As they are quite similar
but PP has another absorption band right of the absorption band of PE, the spectral
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information in this range is of great value for classification.

ŷPE = 0.207 − 0.972 ∗ P(561, 29, 5.7, 12.5) ∗ P(568, 31, 8, 13.5) + 0.896∗
P(565, 31, 8, 13.5) ∗ P(568, 31, 8, 13.5) + 0.385 ∗ P(183, 21, 6, 8.5)∗
P(568, 31, 8, 13.5) + 0.169 ∗ P(568, 31, 8, 13.5)2 + 0.151 ∗ P(568, 31, 8, 13.5)∗
S(551, 556) − 0.149 ∗ S(551, 556) + 0.128 ∗ S(556, 575)∗
P(568, 31, 8, 13.5) + 0.0817 ∗ S(576, 582) ∗ S(551, 556)+

0.0408 ∗ S(551, 556)2 + 0.0261 ∗ S(576, 583) ∗ S(551, 556)
(6.1)

Interestingly, the result for the PP case looks quite different. Here, all selected
features are on the left side of the spectrum. All four categories of feature shapes
with different positions and widths are selected.

Figure 6.6: Part of the resulting features for FFX AutoFeature algo-
rithm with microplastic dataset, positive class: polypropylene (PP),
negative classes: polyethylene (PE), polystyrol (PS), polymethyl-
methacrylate (PMMA) and polyacrylonitrile (PAN). A maximum of
100 samples for each class is used for feature selection and the result-
ing features of the FFX model with ten basis functions are illustrated
in magenta. Vertical positions of features are freely shifted from the
baseline to improve readability. All features are positioned in the
range from 3100 to 2700 cm−1, containing information about charac-
teristic absorption bands of the polymers. See equation 6.2 for the

full FFX model.
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ŷPP = 0.569 + 0.278 ∗ P(182, 23, 6, 9.5) + 0.258 ∗ S(171, 188)+
0.166 ∗ S(192, 199) + 0.149 ∗ P(176, 33, 8.5, 14.5)+
0.104 ∗ P(175, 33, 8.5, 14.5) + 0.0835 ∗ P(163, 15, 3, 3)+
0.0637 ∗ S(192, 198) − 0.0591 ∗ S(164, 168)+
0.0344 ∗ S(193, 198) + 0.000101 ∗ T(163, 15)

(6.2)

The resulting features in the PS case consist only of S features. These features can
be clearly categorized into two positions. Seven of the ten straight line features all
have nearly the same width and range from layer 142 to 168. The remaining three
features that are all based on the right side have larger coefficients than on the
left side, compensating the smaller quantity. These straight lines differ minimally,
ranging from layers 543-544 to 553-554.

ŷPS = 0.334 − 0.0205 ∗ S(544, 554) − 0.0176 ∗ S(543, 554)−
0.0158 ∗ S(544, 553) − 0.0144 ∗ S(144, 167)−
0.0131 ∗ S(143, 166) − 0.00748 ∗ S(142, 165)−
0.00688 ∗ S(145, 168) − 0.00436 ∗ S(144, 166)−
0.00277 ∗ S(143, 165) − 0.000510 ∗ S(145, 167)

(6.3)

Figure 6.7: Part of the resulting features for FFX AutoFeature al-
gorithm with microplastic dataset, positive class: polystyrol (PS),
negative classes: polyethylene (PE),polypropylene (PP), polymethyl-
methacrylate (PMMA) and polyacrylonitrile (PAN). A maximum of
100 samples for each class is used for feature selection and the result-
ing features of the FFX model with ten basis functions are illustrated
in magenta. Vertical positions of features are freely shifted from the
baseline to improve readability. For the PS model, only straight line
features located in the polymer absorption bands are selected. The
features are very similar, covering either the range from 3040 cm−1

to 2950 cm−1 or 1500 cm−1 to 1465 cm−1. See equation 6.3 for the
full FFX model.
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In the PMMA case there is a single feature, P(554,27,7,11.5), having the largest
coefficient on the right side though. Most of the left side features are again quite
alike as triangle and Gaussian shape features have their center at 153 and 154 and
as straight line features ranging from 153-155 to 176-177.

ŷPMMA = 0.312 + 0.0745 ∗ P(554, 27, 7, 11.5) − 0.0287 ∗ S(154, 177)−
0.0248 ∗ S(154, 176) − 0.0187 ∗ S(153, 176)−
0.0133 ∗ S(155, 176) + 0.0132 ∗ T(154, 39)+
0.0129 ∗ T(154, 37) + 0.00964 ∗ T(153, 43)+
0.00351 ∗G(154, 7) + 0.00328 ∗G(154, 6)

(6.4)

Figure 6.8: Part of the resulting features for FFX AutoFeature algo-
rithm with microplastic dataset, positive class: polymethylmethacry-
late (PMMA) , negative classes: polyethylene (PE), polypropylene
(PP), polystyrol (PS) and polyacrylonitrile (PAN). A maximum of 100
samples for each class is used for feature selection and the resulting
features of the FFX model with ten basis functions are illustrated in
magenta. Vertical positions of features are freely shifted from the
baseline to improve readability. For the PMMA model, one feature is
selected from the absorption band range on the right side while the
remaining feature cover the absorption bands on the left side. See

equation 6.4 for the full FFX model.

Interestingly, only P features are selected in the PAN case. While some features
are alike, there is still a large variety as four distinct spectral positions are covered
by features. All of these features at least partly cover the PAN specific absorption
bands. In the PAN case, many product bases are formed in the FFX procedure,
some of them consisting of features from the left and right side of the spectrum.



6.2. Results of AutoFeature Experiment with Microplastic Data 59

ŷPAN = 0.189 − 0.224 ∗ P(171, 15, 4, 6) ∗ P(547, 15, 4, 6)−
0.132 ∗ P(171, 11, 3, 3.5) ∗ P(497, 29, 5.7, 12.5)+
0.0881 ∗ P(171, 15, 4, 6) ∗ P(171, 11, 3, 3.5)+
0.0557 ∗ P(171, 17, 5, 6.5) ∗ P(168, 31, 8, 13.5)−
0.0487 ∗ P(171, 9, 3, 3) ∗ P(497, 29, 5.7, 12.5)−
0.0345 ∗ P(171, 11, 3, 3.5) ∗ P(594, 23, 6, 9.5)+
0.0265 ∗ P(497, 29, 5.7, 12.5) ∗ P(547, 15, 4, 6)−
0.0198 ∗ P(171, 15, 4, 6) ∗ P(538, 33, 8.5, 14.5)+
0.0197 ∗ P(538, 33, 8.5, 14.5) ∗ P(497, 29, 5.7, 12.5)−
0.00300 ∗ P(594, 23, 6, 9.5) ∗ P(171, 9, 3, 3)

(6.5)

Figure 6.9: Part of the resulting features for FFX AutoFeature al-
gorithm with microplastic dataset, positive class: polyacrylonitrile
(PAN), negative classes: polyethylene (PE), polypropylene (PP),
polystyrol (PS) and polymethylmethacrylate (PMMA). A maximum
of 100 samples for each class is used for feature selection and the
resulting features of the FFX model with ten basis functions are illus-
trated in magenta. See equation 6.5 for the full FFX model. Vertical
positions of features are freely shifted from the baseline to improve
readability. For the PMMA model, only general Gaussian shape fea-
tures are selected. The features cover most of PAN’s characteristic
absorption bands but not the absorption band at 2250 cm−1 that has
no overlapping absorption bands from other polymer classes. Why
FFX might not select this feature is discussed in the text and further

illustrated in Figure 6.10.

In the five binary FFX runs with microplastic data, features with all four designed
shapes are used. Features are only selected in the absorption band regions of the
polymers. However, in many binary runs, only a few polymer characteristic ab-
sorption bands are covered by features. Some characteristic absorption bands are
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not covered by any feature in any run. For example, the PAN absorption band
around layer 350 was not used in any of the extracted models.
Often, position and width of features tightly overlap with absorption bands while
in other cases they do not. The center location of many features does not match the
peak location of an absorption band but is shifted by several layers. Mostly, these
features still cover a wide range of an absorption band but have additional informa-
tion contained as well, e.g. from another absorption band of another class. These
results may be surprising at first glance but in fact are an expected and beneficial
outcome of the approach that is conducted. The goal of automatic feature gener-
ation is to find features that carry information about classes and their distinctions
that are statistically stable and predictive. While there are cases for which features
tightly overlapping with an absorption peak may be valuable predictors with the
aforementioned properties, there are cases for which they may not. Moreover, there
are certainly cases for which they are not the best discriminators between classes.
For building features that just perfectly match some absorption bands that humans
are able to spot easily, certainly no automatic approach is needed. However, situa-
tions are harder to handle for humans when there are overlapping absorption bands
for different classes and when features that tightly mirror a specific absorption band
do not provide the best class discrimination. Then, automatic approaches can help
to find features that are statistically reliable and do carry valuable information for
class distinction.
Still, there are results that are unexpected. One of these unexpected results is that
the PAN absorption band around layer 350 is not selected by the FFX approach.
The absorption peak is solely present in PAN and no absorption band from an-
other class is overlapping with this peak. Hence, we would expect a feature that
depicts the information about the presence of this peak to be helpful for class dis-
crimination. As there is no abnormal variation of this peak among the different
PAN spectra, we would also assume such a feature to be statistically stable. To
better understand why FFX does not select the absorption band, three feature value
distributions for PAN and non-PAN classes are plotted as histograms in Figure
6.10. In the upper and middle plot, the histograms show features P(171,15,4,6) and
P(547,15,4,6). These features are selected by FFX and together form a product base
with the largest coefficient in the PAN model. In the lower plot, feature T(350,11) is
depicted. This feature is chosen because it overlaps well with the PAN absorption
band.
For both FFX-selected features, the histograms for the PAN and non-PAN feature
values are easy to differentiate and certainly provide a good distinction between the
classes. Additionally, no histogram is flat but they have clear mounds and are uni-
modal. For both features, there is a slight overlap in the class histograms. For the
manually selected feature, there is very slight overlap between the class histograms
as well, enabling class separability. However, the histograms look very different
compared to the previous two cases. The feature has a value of around 0.95 for all
PAN spectra, confirming statistical relevance and stability. For the non-PAN class,
the distribution is very flat along nearly all possible correlation coefficient values
and exhibits several mounds.
The reason why FFX results in models that contain features with mound-like dis-
tributions rather than flat distributions is the minimization task in regularized least
squares. Rather than optimizing class separability, least squares’ aim is the mini-
mization of the sum of squared residuals. Because features with flat class distribu-
tions have larger variances than features with mound-like distributions, they will
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Figure 6.10: In the upper and middle plot, the histograms show
features P(171,15,4,6) and P(547,15,4,6). These two feature are se-
lected by FFX AutoFeature algorithm with 10 basis functions. Fur-
thermore, they together form a product base with the largest coeffi-
cient in the PAN model (see equation 6.5 for the full FFX model).
In the lower plot, the feature T(350,11) is depicted. This feature
is manually chosen because it overlaps well with the PAN absorp-
tion band at 2250 cm−1. Distributions of both PAN and non-PAN
classes differ between the AutoFeature-selected features and the one
manually selected. AutoFeature-FFX results in models that contain
features with mound-like distributions rather than flat distributions
because of the minimization task in regularized least squares. Be-
cause features with flat class distributions have larger variances than
features with mound-like distributions, they will result in models
with a larger error if the target variables are binary. Even though
nearly all values for the PAN class are equal, the feature does not get
selected in the elastic net model because of the high variance of the

class 0 values.

result in models with a larger error if the target variables are binary. Even though
nearly all values for the PAN class are around 0.95 and the class 1 distribution has
small variance, the feature does not get selected in the elastic net model because of
the high variance of the class 0 values.

Figures 6.11 (left side of the spectrum) and 6.12 (right side of the spectrum) display
the widths and positions of the resulting features from the AutoFeature experi-
ments done with five different feature selection methods, see section 5.2. Besides
these two ranges no feature is selected by any selection method. This fact is an in-
dication that, in principle, all methods are suitable for automatic feature generation
since they at least select features in ranges that contain relevant chemical informa-
tion.
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Figure 6.11: Parts of the resulting features from the five AutoFeature
selection methods FFX, FisherScore, HSIC lasso, ReliefF and embed-
ded random forest. While the embedded random forest uses a mul-
ticlass approach, the other methods are carried out in a one-vs-all
fashion. All selected features cover one or more polymer absorption
bands. FisherScore and ReliefF result in features that show less vari-
ability than FFX and HSIC lasso. Embedded RF’s features have the

greatest variability in this part of the spectrum.

While the features selected by the different methods are roughly in the same spec-
tral range, the results still show some clear differences.
Firstly, it seems that both FisherScore and ReliefF select many similar features. In
the width-position plots, distinct and tight clusters can be observed. This prop-
erty does not seem advantageous as features containing similar information as an
already existing feature usually do not improve models. FisherScore and ReliefF
show similar results concerning feature widths as well as they select features that
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Figure 6.12: Parts of the resulting features from the five AutoFeature
selection methods FFX, FisherScore, HSIC lasso, ReliefF and embed-
ded random forest. While embedded random forest uses a multiclass
approach, the other methods are carried out in a one-vs-all fashion.
All selected features cover one or more polymer absorption bands.
FisherScore and ReliefF result in features that show fewer variability
than FFX, HSIC lasso and embedded forest. FFX and HSIC lasso’s

features have the greatest variability in this part of the spectrum.

are, on average, more narrow than features from other methods.
Variability among FFX’s and HSIC lasso’s features is larger. Although there are
clusters of features as well, they are more spread out. HSIC lasso also selects some
features at positions where no other method selected any feature.
The embedded random forest approach extracts a variety of features on the left
side of the spectrum. A possible explanation is that random forest is the only fea-
ture selection method used that is carried out in a multiclass fashion in contrast
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to the one-vs-all fashion for the other methods. However, on the right side of the
spectrum, the variability of FFX and HSIC lasso features seem to be larger than the
variability of the embedded random forest features.

Interestingly, no feature covers the range around 2250 cm−1 in which PAN ex-
hibits a characteristic absorption band that is also discussed above. Before, we
have discussed reasons for FFX with its elastic net model to not select features in
this range. These reasons do not hold for embedded random forest since ran-
dom forest is a tree-based non-linear method that is also often used solely for
class discrimination. Apparently, other features are viewed to be more valuable for
classification during random forest modelling. The ten most important features,
ranked by random forest’s internal variable importance (mean decrease impurity)
are T(166,53), T(161,43), T(158,49), G(165,7), T(163,51), T(551,51), P(152,21,6,8.5),
G(552,5), T(157,53) and G(166,11). The empirical distributions of four of these fea-
tures for the five polymer classes are shown in Figure 6.13. Moreover, the same
information is plotted for feature T(350,11) that tightly matches the PAN absorp-
tion peak at 2250 cm−1. All four features selected by the embedded random forest
show distinctions among all or almost all classes. These features are certainly valu-
able for a future prediction (if the model validation does not show otherwise). For
the T(350,11) feature we have already seen above that the distribution for the PAN
class is very narrow and nearly all PAN spectra show a value around 0.95 for this
feature. However, the feature values for all other classes are distributed along a
wide range from -1 to 1, making a class differentiation among the non-PAN classes
impossible.
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Figure 6.13: Empirical feature value distributions are shown for the
five polymer classes. Features T(166,53), T(161,43), G(165,7) and
T(551,51) are among the ten most important features of embedded
random forest feature selection, ranked by random forest’s mean de-
crease impurity measure. T(350,11) is not selected by random forest
but manually selected since it overlaps tightly with the PAN absorp-
tion band at 2250 cm−1. All four features selected by embedded
random forest show remarkable distinctions among all or almost all
classes. The T(350,11) feature shows excellent distinction between
PAN and non-PAN classes but poor distinction within the non-PAN

classes.

FFX stability experiment

Figure 6.14 shows the results of the FFX stability experiments described in 5.2. For
a class sample size = 32, some features are found for only a single sample. For
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Figure 6.14: After drawing four sub-samples from the microplastic
dataset for three different sample sizes (per class), the FFX feature
generation and selection algorithm is performed for all sub-samples.
When sample size for each class is 32, some features are found for
only a single sample. In terms of the sample sizes of 64 and 200,
there are similar features from another sample for most features from
any sample. These results indicate good stability of the FFX feature
selection approach, making it feasible for real-world spectroscopic

data. Table 7.1 (Appendix) lists the features shown in this figure.



6.2. Results of AutoFeature Experiment with Microplastic Data 67

example, in the right side of the spectrum there are unique features for samples
A,C and D. This effects are hardly visible in the sample size = 64 case. Here, for
most features from any sample there are similar features from another sample. This
observation is also true for the sample size = 200 case. For the sample size = 200
case, features with positions of around 160 and widths of around 107 appear for
three out of the four samples. These features have not been selected in any sample
for the sample size 32 and 64 case.
This result is a strong indicator that FFX feature selection is robust enough to han-
dle natural variability among real-world spectroscopic datasets, at least for a fair
dataset size.

Validation

In the section above we analysed histograms of feature value distributions for dif-
ferent classes. For the features that are selected by any of the five approaches tested,
different classes show distinct, mostly non-overlapping feature value distributions.
Such situations are generally preferred in classification tasks. However, it’s possible
that the automatic feature generation processes yield features that do provide such
favourable class distinction properties but only by chance. If this was the case, the
features would not provide any class distinction properties for unseen data (i.e. not
included in the training phase) of the same classes.
After creating a random forest model for each set of features that was selected by
the five feature selection methods, these models are evaluated with the test data
that has not been used in any step in feature extraction or model creation before.
Figure 6.15 shows the resulting confusion matrices for the five different approaches.
The following errors occur when classifying the test data:

• Embedded RF approach: two PMMA spectra are classified as PAN.

• FFX: one PMMA and one PS spectrum are classified as PAN.

• Fisher Score: one PAN spectrum is classified as PP.

• ReliefF: one PE spectrum is classified as PMMA.

Apart from these few misclassifications, all samples are classified correctly. This is
a strong validation of the final models. Hence, it is a strong validation for all steps
done before - implying that the AutoFeature algorithm works well for this data.
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(a) FFX (b) Fisher Score

(c) HSIC lasso (d) ReliefF

(e) Embedded RF

Figure 6.15: Validation of five random forest models that are created with 50 features
each. The features are created automatically by the AutoFeature algorithm presented
in this work using five different feature selection approaches. Test data used for val-
idation stems from the same data collection origin as training data but is not used
in any stage of AutoFeature or random forest modelling before. Apart from a few

misclassifications, all new, unseen spectra are classified correctly.
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6.3 Results of AutoFeature Experiment with Melanoma Data

Figure 6.16: Image of epidermis showing the absorbance for
wavenumber 1307 cm−1. Full spectra of marked locations are used
for AutoFeature experiments, red indicating the melanoma and blue

the non-melanoma class.

Figure 6.16 shows a chemical picture (the absorbance for wavenumber 1307 cm−1)
of the melanoma sample. It also illustrates the spatial locations of pixels selected
for the melanoma dataset for the AutoFeature algorithm.
Resulting features from the embedded random forest AutoFeature approach are
listed in Table 6.4 and sorted by their variable importance in descending order. The
variable importance of feature S(714,719) is largest with a value of 0.1 while four
features show an importance of 0, indicating that further dimensionality reduction
is possible.
Representative melanoma and non-melanoma spectra are depicted together with
the ten features showing the largest variable importances in Figure 6.17. The spec-
tra of the two classes are very similar. Differences can be perceived in small shifts
of some absorption bands as well as intensity differences at certain wave numbers.
Even though the automatically selected features are based on the correlation co-
efficient and are not designed to capture information about intensity differences
directly, they are located both at locations where primarily band shifts as well as
intensity differences are perceived. This is because different intensity changes also
have to cause different shapes. Considering the small differences in the spectra, the
results of the feature selection is satisfying.
The validation of the random forest model that is built with the 25 automatically
selected features resulted in a perfect classification of the test set. All eight samples
from the tumor and non-tumor classes are classified correctly, also shown in the
normalized confusion matrix in Figure 6.15. Despite the small size of the test set
and the fact that the training and test spectra stem from the same biological speci-
men, this result proves the ability of the AutoFeature algorithm to pick up features
suitable for classifications of hyperspectral images of biological samples.
Boxplots of features S(714,719) (largest importance), P(173,17,4,5) (second largest
importance) and T(163,17) (rank 11) for non-tumor and tumor as well as training
and test sets are shown in Figure 6.19. Feature S(714,719) shows excellent statistical
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Figure 6.17: The tumor (melanoma) and non-tumor (not melanoma)
spectra are selected from the full specimen dataset. The two classes
are very similar, differences can be perceived in small shifts of some
absorption bands as well as intensity differences at certain wave
number ranges. The ten features illustrated in magenta resulted
from the embedded random forest AutoFeature algorithm and ob-

tain largest variable importances.

properties for classification. Considering the small size of the test set, the distribu-
tions of the two classes are similar for the training and the test set. Also, a clear
distinction between the feature value distribution of the two classes can be made,
manifesting medians of around 0 for non-tumour and -0.9 for tumour. Feature
P(173,17,4,5) shows the same tendency of positive properties but to a smaller de-
gree. As the medians 0.05 and 0.35 of the two different classes indicate, the class
distributions are less distinct. Although feature T(163,17) provides perfect class
separability for our data, its usefulness should be questioned. The differences in
the medians of the two different classes is less than 0.1, resulting in the need for
small variance within each class. This is apparently true for our dataset but is likely
not to be fulfilled if samples from different biological sites or patients are taken or
if steps in the data acquisition process are handled differently.
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Table 6.4: Resulting features and their random forest variable impor-
tance from the embedded random forest AutoFeature approach (see
text) for the melanoma dataset. Four features with an importance of

0 indicate the possibility of further dimensionality reduction.

Importance Feature
0.1 S(714,719)
0.08 P(173,17,4,5)
0.08 T(665,7)
0.08 P(593,19,1,2)
0.06 S(654,665)
0.06 T(164,21)
0.06 T(122,37)
0.06 T(722,23)
0.06 S(182,204)
0.06 G(660,9)
0.04 T(163,17)
0.04 T(178,49)
0.04 T(703,13)

Importance Feature
0.04 T(113,57)
0.02 T(744,13)
0.02 S(242,262)
0.02 T(350,41)
0.02 G(665,4)
0.02 T(115,45)
0.02 S(763,772)
0.02 T(772,39)
0.0 T(781,43)
0.0 T(775,9)
0.0 T(730,51)
0.0 S(739,751)

Figure 6.18: Validation of random forest model for melanoma clas-
sification, created with automatically selected features, on an unseen
test set. All eight test samples for each class are classified correctly.
Despite the small size of the test set and the fact that the training
and test spectra stem from the same biological specimen, this result
proves the ability of the AutoFeature algorithm to generate and se-
lect features suitable for classifications of hyperspectral images of

biological samples.
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(a) Feature S(714,719), import. rank 1. (b) Feature P(173,17,4,5), import. rank 2.

(c) Feature T(163,17), import. rank 11.

Figure 6.19: Features S(714,719), P(173,17,4,5) and T(163,17) are automatically gen-
erated and selected by the embedded random forest AutoFeature algorithm pre-
sented. Feature S(714,719) shows excellent statistical properties for classification of
tumorous and non-tumurous spectra. The distributions of the two classes are simi-
lar for the training and the test set and a clear distinction between the feature value
distribution of the two classes can be made. Feature P(173,17,4,5) shows the same
tendency of positive properties but to a smaller degree. Feature T(163,17) provides
perfect class separability for our data, while absolute value of median difference
is small. The latter finding might cause less predictive power when dealing with

greater variabilities in biological samples and specimen preparations.
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6.4 Results of AutoFeature Experiment with Connective Tis-
sue Data

Connective Tissue Data Set

Figure 6.21a shows the absorbance for wavenumber 1664 cm−1 of a section of the
dermis that contains connective tissues. It also illustrates the spatial locations of
pixels selected for AutoFeature experiments.
Representative connective tissue and non-connective tissue spectra are depicted to-
gether with the ten features with largest variable importances in Figure 6.20. Similar
to the melanoma case, the spectra of the two classes are very similar. Still, the fea-
tures do seem to be located at locations with some sort of difference.

The random forest model built with the 25 automatically selected features results
in a correct classification of all eight test samples for both classes. The feature value
distribution for features with variable importance ranks 1, 2 and 5 are illustrated as
boxplots in Figure 6.22. These distributions show the same trends as the analysed
features in the melanoma case.
Because the results of the AutoFeature algorithm for the connective tissue dataset
are analogous to the melanoma case, all analysis and interpretations are equivalent
to the ones presented in the previous section 6.3.

Figure 6.20: The connective tissue and non-connective tissue spectra
are selected from the full specimen dataset. The two classes are very
similar, differences can be perceived in small shifts of some absorp-
tion bands as well as intensity differences at certain wave number
ranges. The ten features illustrated in magenta resulted from the

embedded random forest AutoFeature algorithm.
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Table 6.5: Resulting features and their random forest variable im-
portance from the embedded random forest AutoFeature approach
(see text) for the connective tissue dataset. Three features with an
importance of 0 indicate the possibility of further dimensionality re-

duction.

Importance Feature
0.12 T(601,33)
0.1 G(622,20)
0.1 P(615,29,5.7,12.5)
0.08 S(597,617)
0.06 G(197,13)
0.06 G(579,16)
0.06 G(602,6)
0.06 S(606,616)
0.04 G(596,11)
0.04 G(625,14)
0.04 G(629,23)
0.04 G(641,16)
0.02 G(591,18)

Importance Feature
0.02 G(603,4)
0.02 G(622,12)
0.02 G(623,20)
0.02 G(626,16)
0.02 G(626,21)
0.02 G(628,24)
0.02 P(613,29,5.7,12.5)
0.02 S(595,615)
0.02 S(635,644)
0.0 P(612,29,5.7,12.5)
0.0 S(619,628)
0.0 T(599,45)

(a) (b)

Figure 6.21: A) The absorbance for wavenumber 1664 cm−1 is shown
of a section of the dermis that contains the connective tissues. The
markers indicate the pixels selected for AutoFeature experiments,
red is the connective tissue class while blue is the non-connective

tissue class.
B) Validation of random forest model for connective tissue classi-
fication, created with automatically selected features on an unseen
test set. All eight test samples for each class are classified correctly.
Despite the small size of the test set and the fact that the training
and test spectra stem from the same biological specimen, this result
proves the ability of the AutoFeature algorithm to generate and se-
lect features suitable for classifications of hyperspectral images of

biological samples.
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(a) T(601,33), import. rank 1. (b) G(622,20), import. rank 2.

(c) Feature G(197,13), import. rank 5

Figure 6.22: Features T(601,33) and G(622,20) are automatically generated and
selected by the embedded random forest AutoFeature algorithm presented. Fea-
ture T(601,33) shows excellent statistical properties for classification of connective
tissue and non-connective tissue spectra. The distributions of the two classes are
similar for the training and the test set and a clear distinction between the feature
value distribution of the two classes can be made. Feature G(622,20) shows the
same tendency of positive properties but to a smaller degree. Feature G(197,13)
nearly provides perfect class separability for the available data, while absolute
value of median difference is small. The latter finding might cause less predictive
power when dealing with greater variabilities in biological samples and specimen

preparations.
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Chapter 7

Conclusion

We have presented AutoFeature, an algorithm that is able to automatically generate
and select valuable features for spectroscopic class prediction tasks. While we have
investigated different methods for certain steps in the algorithm, the overall scheme
has been unvarying. Firstly, thousands of feature candidates are generated with
the help of generic templates. Secondly, the most promising features out of these
candidates are selected by different statistical and machine learning methods.

We believe that the AutoFeature algorithm can be advantageous for any analysis
of hyperspectral images or datasets consisting of continuous spectra. It has been
demonstrated that the algorithm is able to extract meaningful features from anno-
tated real-world polymer and skin tissue datasets. Notably, the algorithm has been
shown to be suitable for datasets with small sample size.

In addition, AutoFeature is not only able to give experts in the field new insights
but it may also open up the powerful tool of spectroscopy for non-experts. As we
have shown for polymers, with the foundation of an annotated dataset, all further
classification can then be done automatically. The challenge of detecting and iden-
tifying microplastic particles in aquatic environments can then be addressed with
spectroscopy by many more people, which can lead to progress at a faster pace.
For biological specimens, the algorithm may help to select robust features among
the typically heterogeneous samples. The results in the class prediction tasks of
melanoma and non-melanoma and connective tissue and non-connective tissue are
promising. Certainly, assessments on larger datasets, originating from a variety of
patients, have to be done in the future to evaluate the algorithm’s full capabilities
in this field.

Further, both steps of the algorithm, feature generation and selection, can clearly
be improved in the future. Because of the insights we got from these conducted
experiments, the generic template shapes may be altered and new templates may
be designed. Also, refinement of feature selection methods and parameter studies
may further enhance the algorithm’s potential of automatic feature generation and
selection in spectroscopy.
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Appendix

Table 7.1: List of features extracted for FFX stability experiments,
see Figure 6.14.

1 Features Datasets
2 A 200 A 32 A 64 B 200 B 32 B 64 C 200 C 32 C 64 D 200 D 32 D 64
3 G(144|8) 0 0 0 0 0 0 0 0 0 0 1 0
4 G(145|7) 0 0 0 0 0 0 0 0 0 0 1 0
5 G(146|7) 0 0 0 0 0 0 0 0 0 0 1 1
6 G(147|7) 0 0 0 0 0 0 1 0 0 0 0 0
7 G(161|18) 1 0 0 0 0 0 0 0 0 0 0 0
8 G(164|17) 0 0 0 0 0 0 1 0 0 0 0 0
9 G(165|18) 0 0 0 0 0 0 0 0 0 1 0 0

10 G(170|7) 0 0 1 0 0 0 1 0 0 0 0 0
11 G(172|9) 0 0 0 0 0 1 0 0 0 0 0 0
12 G(189|4) 0 0 0 0 1 0 0 0 0 0 0 0
13 G(557|13) 0 0 0 0 0 0 1 0 0 0 0 0
14 G(558|13) 0 0 0 0 0 0 0 0 0 1 0 0
15 G(558|8) 0 0 0 0 0 1 0 0 0 0 0 0
16 G(577|6) 0 0 0 1 0 0 0 0 0 0 0 0
17 G(579|9) 0 0 0 0 0 0 0 1 0 0 0 0
18 P(133|31|8|13.5) 0 0 0 0 0 0 0 0 1 0 0 0
19 P(147|19|1|2) 0 0 0 0 0 1 0 0 0 0 0 0
20 P(156|15|3|3) 0 0 0 0 0 0 0 0 0 0 0 1
21 P(159|21|6|8.5) 1 0 0 0 0 0 0 0 0 0 0 0
22 P(160|21|6|8.5) 0 0 0 0 0 0 0 1 0 0 0 0
23 P(162|15|1|1) 0 0 0 0 0 0 0 0 0 0 1 0
24 P(166|19|1|2) 0 0 0 1 0 0 0 0 0 0 0 0
25 P(167|17|4|5) 0 0 0 0 0 0 0 1 0 0 0 0
26 P(167|19|1|2) 0 0 0 0 1 1 0 0 1 0 0 0
27 P(168|11|3|3.5) 0 0 0 0 0 0 0 0 0 0 1 1
28 P(168|15|3|4) 0 0 0 0 1 0 0 0 0 0 0 0
29 P(171|11|3|3) 0 0 0 0 0 0 0 0 0 1 0 0
30 P(171|11|3|3.5) 0 0 0 0 1 1 0 0 0 0 0 0
31 P(171|15|4|6) 0 0 1 0 0 0 0 0 0 0 0 0
32 P(171|23|1|3) 0 1 0 1 0 0 1 0 1 0 0 0
33 P(171|9|3|3) 0 0 0 0 0 0 1 0 1 0 0 0
34 P(172|17|5|6.5) 0 1 0 0 0 0 0 0 0 0 0 0
35 P(175|33|8.5|14.5) 0 0 0 1 0 0 1 0 0 1 0 1
36 P(182|17|5|6.5) 0 0 0 0 1 0 0 0 0 0 0 0
37 P(190|11|3|3.5) 0 0 0 0 0 0 0 0 0 0 1 0
38 P(193|15|1|1) 0 1 0 0 0 0 0 0 0 0 0 0
39 P(195|15|1|1) 0 1 0 0 0 0 0 0 0 0 0 0
40 P(195|19|1|2) 0 0 0 0 0 0 0 0 1 0 0 0
41 P(197|17|5|6.5) 0 0 0 0 0 1 0 0 0 0 0 0
42 P(198|33|8.5|14.5) 0 0 0 1 0 0 0 0 0 0 0 0
43 P(199|33|8.5|14.5) 1 0 0 0 0 0 0 0 0 0 0 0
44 P(200|23|6|9.5) 0 0 0 0 0 0 0 1 0 0 0 0
45 P(201|23|6|9.5) 0 0 0 0 0 0 0 1 0 0 0 0
46 P(201|25|6.5|10.5) 0 0 0 0 1 0 0 0 0 0 0 0
47 P(332|33|8.5|14.5) 0 0 0 1 0 0 0 0 0 0 0 0
48 P(496|19|5.5|7.5) 0 0 0 0 0 0 0 1 0 0 0 0
49 P(498|23|6|9.5) 0 0 0 0 0 1 0 0 0 0 0 0
50 P(498|25|6.5|10.5) 1 0 0 0 0 0 1 0 0 1 0 0
51 P(498|27|7|11.5) 0 1 0 0 0 0 0 0 0 0 0 1
52 P(504|33|8.5|14.5) 0 0 1 0 0 0 0 0 0 0 0 0
53 P(537|33|8.5|14.5) 0 0 0 1 0 0 0 0 0 0 0 0
54 P(538|33|8.5|14.5) 0 0 0 0 0 0 1 0 0 0 1 0
55 P(542|27|7|11.5) 1 0 0 0 0 0 0 0 0 0 0 0
56 P(545|15|1|1) 1 1 0 0 1 0 1 1 0 0 0 0
57 P(548|9|3|3) 0 1 0 0 0 0 0 0 0 0 0 0
58 P(557|13|3|3.5) 0 0 0 0 1 0 0 0 0 0 0 0
59 P(557|15|3|4) 0 0 1 1 0 1 1 1 0 0 0 1



Continuation of Table 7.1.

1 Features Datasets
2 A 200 A 32 A 64 B 200 B 32 B 64 C 200 C 32 C 64 D 200 D 32 D 64
3 P(557|15|4|6) 0 0 0 0 0 0 0 1 1 0 0 0
4 P(557|17|4|5) 1 0 0 1 0 0 1 0 1 1 0 1
5 P(557|25|6.5|10.5) 0 0 1 0 0 0 0 0 0 0 0 0
6 P(558|15|3|4) 1 0 0 0 0 0 0 0 0 0 0 0
7 P(558|17|4|5) 1 0 0 1 0 1 1 1 1 1 1 1
8 P(558|17|5|6.5) 0 0 0 0 0 0 0 0 0 1 1 0
9 P(558|19|5|6) 0 0 0 0 0 0 0 0 0 0 1 0

10 P(561|31|8|13.5) 0 0 1 0 0 0 0 0 0 0 0 0
11 P(565|27|7|11.5) 0 1 0 0 0 0 0 0 0 0 0 0
12 P(566|29|5.7|12.5) 0 1 1 0 0 0 0 0 0 0 0 0
13 P(571|11|3|3.5) 0 0 1 0 0 0 0 0 0 0 0 0
14 P(572|15|1|1) 1 0 0 1 0 1 0 0 0 1 0 0
15 P(572|15|3|3) 0 0 0 0 0 0 1 0 0 0 0 1
16 P(572|33|8.5|14.5) 0 0 0 0 0 1 1 0 0 0 0 1
17 P(573|33|8.5|14.5) 0 0 0 0 0 0 0 0 0 0 1 0
18 P(578|15|1|1) 1 0 0 0 0 0 0 0 0 0 0 1
19 P(579|15|1|1) 0 0 0 0 0 0 0 0 0 0 1 0
20 P(585|33|8.5|14.5) 1 0 0 1 0 0 0 0 0 0 0 0
21 P(586|31|8|13.5) 0 0 0 0 0 0 1 0 1 0 0 0
22 P(587|31|8|13.5) 0 0 0 0 0 0 0 1 0 0 0 0
23 P(593|15|4|6) 0 0 0 0 1 0 0 0 0 0 0 0
24 P(593|21|6|8.5) 1 0 1 0 0 0 0 0 0 1 1 1
25 P(594|17|5|6.5) 0 0 0 0 0 0 0 0 0 0 1 0
26 P(594|19|5.5|7.5) 0 0 0 0 0 0 0 0 1 0 0 0
27 P(594|21|6|8.5) 0 0 0 0 0 0 0 1 0 0 0 0
28 P(596|15|4|6) 0 0 0 0 0 1 0 0 0 0 0 0
29 S(192|198) 1 0 0 0 0 0 0 0 0 1 0 0
30 S(192|199) 1 0 0 0 0 1 1 0 1 0 1 0
31 S(192|200) 0 1 1 0 1 0 0 0 0 0 1 0
32 S(193|198) 1 1 1 1 1 1 1 1 1 1 1 1
33 S(193|199) 0 1 1 1 1 0 0 0 0 0 0 0
34 S(194|198) 0 0 0 0 0 0 0 1 0 0 0 0
35 S(543|553) 0 0 0 0 0 0 0 0 0 0 0 1
36 S(543|554) 0 0 0 1 0 0 0 0 1 1 0 0
37 S(544|553) 0 0 0 1 1 1 1 0 1 1 0 1
38 S(544|554) 0 0 0 1 0 1 0 0 1 1 0 0
39 S(545|553) 1 1 0 0 0 0 0 0 0 0 0 0
40 S(545|554) 0 1 1 0 0 0 0 0 0 0 0 0
41 S(550|557) 0 0 0 0 1 0 0 0 0 0 0 0
42 S(551|556) 0 1 0 0 1 0 0 0 0 0 0 0
43 S(552|572) 0 0 0 0 0 0 0 0 0 0 0 1
44 S(575|587) 0 0 0 0 0 0 0 0 1 0 0 0
45 S(576|586) 0 0 0 0 0 1 0 0 0 0 0 0
46 S(577|588) 0 0 1 0 0 0 0 0 0 0 0 0
47 T(126|53) 0 0 0 0 0 0 0 1 0 0 0 0
48 T(167|5) 0 1 0 0 0 0 0 0 0 0 0 0
49 T(170|41) 0 1 0 0 0 0 0 0 1 0 0 0
50 T(170|7) 0 0 0 0 0 0 0 0 0 0 1 0
51 T(171|41) 0 0 0 1 0 0 0 0 0 0 0 0
52 T(194|7) 0 0 0 1 0 0 0 0 0 0 0 0
53 T(196|21) 0 0 1 0 0 0 0 0 0 0 0 0
54 T(548|9) 0 0 1 0 1 0 0 0 0 0 0 0
55 T(555|41) 0 1 0 0 0 0 0 0 0 0 0 0
56 T(556|41) 0 1 0 0 0 0 0 0 0 0 0 0
57 T(557|15) 0 0 1 0 0 1 0 0 0 0 0 0
58 T(578|47) 0 0 1 0 0 0 0 0 0 0 0 0
59 T(579|49) 0 0 0 0 0 0 0 0 1 0 0 0
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