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and Christoph Krofitsch. Both are extremely talented persons and their skills
greatly supported the technical implementation of this work. It is just a
matter of time until we hear one or both of their names in the context of a
startup company exiting with exceptionable success.

I am thankful to ACIN’s secretary Gabriele Grabensteiner and her always
friendly way in providing reliable support in any administrative matters by
combining efficiency with a nice smile.

I would like to express my sincere thanks to Dr. Gottfried Koppensteiner,
who involved me in his Sparkling Science projects, encouraged me towards
outreach work, and finally offered me the perfectly fitting job position upon
leaving ACIN, at which I am still very happily engaged.

This thesis would not have been possible if it weren’t for my colleague
and dear friend Dr. Munir Merdan, who was the major factor on how this
whole work could be achieved at all. He was the driving force behind the
grants that financed this work and the most valuable discussion partner in
composing and achieving this thesis. Working with him has always been a
pleasure and therefore I am happy that we still write grants, papers and
reports together in the frame of our joint projects. Let’s see where this takes
us...

I dedicate this thesis to my father Wilfried Lepuschitz senior, who has
always been proud of the steps of my career and who has been a continuous



iii

supporter of my deeds. My warm thanks go to my mother Margit Lepuschitz,
who has always been there to help and support, whatever is needed – “taking”
seems to be a foreign word for you. Words can hardly express my gratitude
to you both for providing the cards to my hands, which I can use in this
game of life!

Furthermore, I want to thank my aunt Sieghild Lepuschitz, my sister
Isabella Stiasny, and my brother Ehrenfried Lepuschitz for being family –
this will always count.

Finally, I have to say that I am unbelievably lucky for asking “And what
are you waiting for?” to a pretty girl in a bar in Prague a couple of years ago
– truly every action in life is a game changer and this question has ultimately
led to my own growing family. Thank you my love, Dóra Treznyák, for being
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Abstract

The dynamics of the 21st century market with continuously decreasing life
cycle spans of products require manufacturing systems, which are able to
support mass customization. However, current manufacturing systems are
not able to cope with this requirement due to their rigid and therefore inflex-
ible structure. On the contrary, reconfigurable manufacturing systems that
are composed of basic process modules allow the addition, removal or mod-
ification of these modules for providing specific functionality when needed.
According software concepts are necessary for controlling such a manufac-
turing system based on modular components.

Agent technology represents a suitable approach for realizing the control
software of a manufacturing system composed of modular components as each
agent constitutes an autonomous software component, which can be mapped
onto an according physical component. Applying this technology enables
intelligent control components and is expected to increase a manufacturing
system’s flexibility and reconfigurability as well as its robustness in the case
of failures.

This thesis introduces a hybrid architecture for the agents controlling the
physical components of a manufacturing system. According to hybrid agent
architectures, each agent is composed of two control layers. The higher level
control layer is responsible for an agent’s global behavior and makes use of
a flexible knowledge base in the form of an ontology for representing infor-
mation. The lower level control layer is real-time capable and has access
to the sensors and actuators of the controlled component. Each agent pos-
sesses diagnostic capabilities for detecting failures as well as a reconfiguration
infrastructure for modifying the provided functionality.

The approach is applied for automatically configuring the control soft-
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ware of a manufacturing system by making use of a resource ontology that
describes the concepts of the target system. Furthermore, the ontology com-
prises the software concepts for the control application to enable the agents
to perform this automatic software composition at system startup. Using
the reconfiguration infrastructure, the agents are also able to adapt their
functionality as a reaction on a global reconfiguration of the control system,
which can be required for instance in the case of a detected failure.

An implementation on a laboratory pallet transport system shows the
feasibility and benefits of the presented approach. The evaluation shows that
the system is able to keep its performance despite the failure of a component
at nearly the same level as in the failure free case.



Kurzfassung

Die Dynamik des heutigen Markts erfordert Produktionssysteme, die in der
Lage sind eine große Produktvielfalt mit geringem Aufwand zu erzeugen,
um rasch auf individuelle Kundenwünsche reagieren zu können. Jedoch bie-
ten die derzeit eingesetzten Produktionssysteme aufgrund ihres starren Auf-
baus nicht genügend Flexibilität. Im Gegensatz dazu sind rekonfigurierbare
Produktionssysteme aus modularen Komponenten aufgebaut, welche flexibel
modifiziert beziehungsweise je nach benötigter Funktionalität dem System
hinzugefügt oder aus dem System entfernt werden können. Entsprechende
Software-Konzepte sind daher für die Beherrschbarkeit und Steuerbarkeit
solch eines verteilten Systems notwendig.

Der Einsatz von Agententechnologie erweist sich als ein geeignetes Kon-
zept für die Steuerungssoftware von verteilten Produktionssystemen, da je-
der Agent eine autonome Softwarekomponente repräsentiert, welche für die
Steuerung einer entsprechenden physikalischen Komponente einsetzbar ist.
Dieser Ansatz ermöglicht intelligente Steuerungskomponenten und es ist zu
erwarten, dass damit die Flexibilität und Rekonfigurierbarkeit eines Pro-
duktionssystems sowie dessen Robustheit im Falle von auftretenden Fehlern
erhöht werden kann.

Diese Dissertation beschreibt eine aus zwei Ebenen bestehende Architek-
tur für jene Agenten, welche die phyischen Komponenten eines Produktions-
systems steuern. Bezogen auf einen Agenten ist die obere Steuerungsebene
ist für dessen globales Verhalten verantwortlich und verwendet dabei eine
flexible Wissensbasis in der Form einer Ontologie für die Repräsentation von
Information. Die untere Steuerungsebene ist echtzeitfähig und kann direkt
auf die Sensoren und Aktoren der zugehörigen physischen Komponente zu-
greifen. Jeder Agent verfügt weiters über Diagnosealgorithmen zur Fehlerer-
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kennung sowie über eine Rekonfigurationsinfrastruktur für die Modifikation
der eigenen Funktionalität.

Der präsentierte Ansatz wird für die automatische Konfiguration der
Steuerungssoftware eines Produktionssystems eingesetzt und verwendet ei-
ne Ressourcenontologie für die Beschreibung der Komponenten und Konzep-
te des Systems. Zudem enthält die Ontologie weiters eine Beschreibung der
Softwarekonzepte, um den Agenten die automatische Zusammenstellung der
Steuerungsapplikation bei Systemstart zu ermöglichen. Mit Hilfe der Rekon-
figurationsinfrastruktur sind die Agenten außerdem in der Lage, ihre Fun-
kionalität zu adaptieren um adequat auf eine globale Rekonfiguration des
Systems zu reagieren, welche beispielsweise aufgrund der Feststellung eines
Fehlers notwendig werden kann.

Eine Implementierung auf einem Laboraufbau eines Palettentransport-
systems zeigt die Machbarkeit sowie den Nutzen des vorgestellten Ansatzes.
Die Evaluierung zeigt, dass das System in der Lage ist, trotz eines Fehlers
den Durchsatz auf nahezu der gleichen Höhe zu halten wie im fehlerfreien
Fall.
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CHAPTER 1

Introduction

The world of industrial manufacturing faces serious challenges due to the
dynamics of the 21st century market. Even though the demand for mass
commodities remains constant or even rises as a result of growing demand
from emerging economies, the continuously decreasing life cycle span of prod-
ucts such as mobile phones combined with an increasing individualization
significantly boosts the product variety [1]. In this context, manufacturing
systems are required to support mass customization with the capability of
“made-to-order” instead of “made-to-stock” [2]. The concept incorporates
“the ability to provide individually designed products and services to every
customer through high process agility, flexibility and integration” [3]. The
principle of mass customization was anticipated by Alvin Toffler already in
1970 and detailed for the first time by Stan Davis in 1987 [4]. The automo-
tive industry, once prototypical for mass production, was among the earlier
adopters of mass customization around 1990 with Toyota offering a five-day
delivery for customers, who could decide from a range of modular options
concerning their desired car [5]. Even though the possibilities and concep-
tual aspects were already described before the turn of the millenium, the
importance of mass customization as a major manufacturing strategy in var-
ious domains ranging from the food industry to mobile phones emerged only
during the last decade, thereby introducing new technological demands and
challenges [6]. Put in a nutshell, production systems are forced to “produce
a number of different, high-quality products via short production runs, short
changeover times, and low work-in-process” [5].

1
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1.1 Evolution of Manufacturing Paradigms

Throughout history, mankind applied various technologies for automating
different production processes thereby reducing the manual workload. The
term automation itself descends from the Greek word automatos meaning
“self moving, self thinking”. In the context of manufacturing, automation
implies the use of artificial instruments in order to automatically run a pro-
cess. According to Polke, a process is by definition a set of consecutive
interacting activities within a system for transforming, storing or transport-
ing material, energy or information [7]. Concerning a technical installation,
automation refers to arranging certain machines and instruments on the in-
stallation for ensuring an automatic job execution [8]. The development and
application of new technologies is often also accompanied by a shift in the
prevalent manufacturing paradigm, which also includes organizational as-
pects. Both technical as well as organizational innovations aim at keeping or
creating competitive market advantages. Figure 1.1 depicts the evolution of
manufacturing during the modern industrial era after the second industrial
revolution around the mid-19th century [9], which encompasses the following
manufacturing paradigms [10]:

Mass production and dedicated manufacturing systems: The ba-
sis of mass production was set during the mid-19th century in American
armories with the introduction of interchangeable parts for produced guns.
Therefore, this principle became known also as “armory practice” but spread
into civil manufacturing sectors later during that century. The full poten-
tial of this paradigm was firstly exploited within the Ford Motor Company
for the production of the Ford Model T in the beginning of the 20th cen-
tury [11]. Dedicated manufacturing systems with fixed tooling and automa-
tion later paved the way for producing specific products and parts at high
volumes [10, 12].

Lean manufacturing: Requirements towards a higher product quality
and a further reduction of costs led to the paradigm of lean manufactur-
ing, which combines a wide range of practices. It includes the integration
of principles such as just-in-time delivery of raw goods and supplier man-
agement, as well as quality assurance cellular manufacturing. The aim is to
achieve an efficient manufacturing system for producing goods at high quality
with little or no waste [13].
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Figure 1.1: Evolution of manufacturing paradigms, based on [10].

Flexible manufacturing: Due to the occurrence of more dynamic market
conditions with a demand of a larger product variety, flexible manufactur-
ing systems were introduced. Such a system encompasses a fixed hardware
configuration with tooling for several product part types of the same part
family and programmable software for handling changes in the production
schedule. Thus, several types of parts can be manufactured using one system
with rather short changeover times [10, 12]. As flexible manufacturing sys-
tems are characterized by single-tool operations, their throughput is lower
than that of dedicated manufacturing systems. In combination with higher
equipment costs, the costs per produced part are significantly higher [14].

Reconfigurable manufacturing: To further increase the flexibility of a
production system and thereby also its responsivity to changing market de-
mands or technologies, reconfigurable manufacturing involves the usage of
basic process modules for both hardware and software. Reconfiguration in
this context encompasses the addition, removal or modification of these basic
process modules for providing specific functionality when it is needed [10].
As can be seen in Table 1.1, this paradigm partially possesses or combines
the properties of both dedicated as well as flexible manufacturing [14]. The
main goal is to achieve flexibility in the production while maintaining a rel-
atively high throughput. Thus, reconfigurable manufacturing is regarded as
the key paradigm for realizing mass customization [12].
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Property Dedicated Flexible Reconfigurable
System structure Fixed Adjustable Adjustable
Machine struc-
ture

Fixed Fixed Adjustable

Scalability No Yes Yes
Flexibility No Yes Yes
Productivity Very high Low High
Costs per part Low High Medium

Table 1.1: Properties of dedicated, flexible as well as reconfigurable manu-
facturing systems, based on [12, 14].

1.2 Background of Reconfigurable Manufac-

turing

Reconfigurability is defined as “the ability to add, remove and/or rearrange in
a timely and cost-effective manner the components and functions of a system
which can result in a desired set of alternate configurations” [15]. Changing
the system’s functionality, both with or without modifying its physical struc-
ture, is commonly accompanied by a modification of the according control
software [16].

1.2.1 Rationales for Reconfigurable Manufacturing

Reconfiguration for manufacturing systems is concerned with the following
challenges [14, 17]:

• Producing heterogeneous products in small lot sizes;

• Auto-configuration management; and

• Response to failures.

Producing heterogeneous products in small lot sizes: Reconfigurable
manufacturing plants can provide the aptitude for very small production lot
sizes but come along with the problem of an exploding number of possible
states due to the large variability of machines and products [18]. Depending
on the individual product attributes, specific product-related handling pro-
cedures (e.g. grasping the product) have to be performed. By providing a
production plan describing the product’s attributes and required procedures,
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the control system can determine how to handle the product. Required in-
formation could even be gathered at run-time by inspecting the product with
a vision system, which is especially vital for disassembly processes [19]. Ev-
idently, designing control policies for all possible manufacturing trajectories
will at least be very difficult or even impossible in the case of new product
specifications [20].

Mechanically reconfigurable machines with replaceable components and
tools are regarded as a promising approach for coping with heterogeneous
products [16]. This concept requires the definition and deployment of a con-
trol architecture and framework, which supports organizing the assembly of
different modules in a suitable configuration. Considering that the number of
machine parts can exponentially increase the number of possible system con-
figurations [14], the tight and accurate coordination between the hardware-
near control layer, which will handle the configuration, and a higher func-
tional layer, which will synchronize it with other parts of the manufacturing
system, is required [17]. Besides, changing such a system’s functionality often
requires a modification of the according control software [21]. Bi et al. iden-
tified the lack of effective technologies that can be used for reconfiguration as
a significant obstacle that limits the development of reconfigurable machines,
which are regarded as a backbone of future manufacturing systems [22].

Auto-configuration management: In the context of reconfigurable man-
ufacturing plants and reconfigurable machines, reliable auto-configuration
management is an important challenge that has to be solved for enabling
plug-and-play components, which autonomously embed themselves into the
system without any special initialization procedure or elaborate human in-
volvement. Extensive manual effort results in high costs and an associated
loss of production time decreasing thereby the benefits of reconfiguration [23].
This is especially of significance concerning the deployment and maintenance
of nodes in large networks of small devices, e.g. sensor networks, as their man-
ual configuration is rather impractical [24, 25]. As a large manufacturing sys-
tem involves the cooperation of a high number of components, programming
the relationships between the system components while considering the quan-
tity of interrelationships related to failures poses significant challenges [26].
In this context, automatic configuration is proposed as a reasonable means
for making a system scalable in the presence of changes and for supporting
dynamic adaptation [17].
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Response to failures: Reconfiguration mechanisms can be applied for
dynamically modifying a manufacturing system’s behavior, in order to effec-
tively deal with unusual conditions like equipment failures without stopping
the production [27]. Dynamically responding to such failures is critical es-
pecially for large-scale systems due to the number of possible combinations
of relevant exceptions, which grows exponentially with the system size [28].
While the emphasis during normal operation can for instance be put purely
on the system performance, the presence of a failure can shift the empha-
sis towards keeping the system at least in operation with an adequate, but
probably degraded, performance. This can be denoted as graceful degrada-
tion, which represents a trade-off between the reachable performance and the
available system capabilities [29].

In the case of a transportation system, a component failure may require
the system to change its topological configuration in order to provide the
reachability of all possible destinations, such as storages or work stations.
In certain cases this can be done by changing the direction of specific con-
veyors [30]. Such a reconfiguration on the system-level requires intersections
that can tackle changes of the conveyor configuration involving thereby local
reconfiguration tasks. Evidently, not only the hardware but also the control
software of the intersections has to cope with such a change of functionality.
An internal reconfiguration of this control software has to result in providing
the appropriate functionality depending on the intersection’s role (diverter
or junction).

1.2.2 Requirements for Reconfigurable Manufacturing
Systems

Christensen identified a set of requirements concerning the development of
future industry systems such as reconfigurable manufacturing systems [31].
Such a system needs to provide means for failure handling to react accord-
ingly in the case of machine malfunctions and unpredictable process yields,
but it also needs to provide a fast reaction on issued rush orders. In this
context, critical factors are the system’s availability despite its size and com-
plexity as well as the system’s robustness concerning its operability in the
case of component failures. Extensive flexibility with self-reconfiguration ca-
pabilities is required to respond adequately to continuously changing product
designs and small lot sizes. Even though identified in the last century, these
requirements remain to be up to date [32], as future production systems are
required to provide a high degree of reliability and fault tolerance as well as
capabilities for reconfiguration [2].
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According to Bi et al., the design requirements for achieving a reconfig-
urable manufacturing system, which is capable of answering to the challenges
of mass customization, are as follows [22]:

• The control system should be scalable and upgradeable for providing
the possibility of changing the manufacturing system’s functionality or
capability.

• For achieving scalability, especially in the case of geographical distri-
bution of the physical system components, the control system should
consist of modular components for both hardware and software.

• In order to have the manufacturing system achieve global system objec-
tives, the control system should decompose the global objectives into
local objectives that can be achieved by the modular components.

• For reacting on changed task specifications, the control system should
have the capability of self-reconfiguration.

The design requirements mentioned above are in line with the key charac-
teristics identified by Mehrabi et al. [10] as well as Koren and Shpitalni [14]:

• Modularity: The functionalilites, realized with either hardware, soft-
ware or both, need to be designed in the form of modular components.

• Integrability: The components have to be designed to facilitate an easy
integration in the system.

• Customization: The system needs to be flexible in order to match the
application, i.e. the production of heterogeneous products.

• Convertibility: Capabilities are required, which allow a quick transfor-
mation of functionality to suit new production requirements.

• Diagnosibility: Diagnostic mechanisms for an automatic detection and
identification of failures and problems need to be provided.

These key characteristics are of vital importance for keeping the efforts con-
cerning reconfiguration in acceptable boundaries while keeping the system in
operation [14].
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1.3 Control System Architectures

Likewise to the manufacturing paradigms, also the control system architec-
tures evolved gradually, and literature provides different views on this evo-
lution and differs also concerning the terminology used for the various archi-
tectures and their elements. In the presented context, control and the term
“controller” refers not to closed loop control theory but to the electronic de-
vices for controlling an industrial process. Such a device is connected to the
process via sensors as well as actuators and contains algorithms for affecting
the process, which can and likely does involve also closed loop control algo-
rithms [33]. These algorithms were manifested in logic relay circuits until
the introduction of the Programmable Logic Controller (PLC) for replacing
the relay-based control algorithms by programmable software [34].

1.3.1 Classification of Control System Architectures

One possibility is to classify the control architectures based on the relation
between the controllers and the manufacturing equipment.

Centralized architecture: Control systems with a central entity were in-
troduced during the 60s of the 20th century (see Figure 1.2a). The pure cen-
tralized control architecture was common at the introduction of computer
technology in automation replacing thereby analog controllers and panel-
board displays. Due to the limitations and high costs of computer hardware
at that time, all sensors and actuators were connected to a single central
process controller using a star topology [35]. However, the central entity
represents a single point of failure, which can result in a complete loss of
control, making this architecture obsolete in current industrial practice for
the automation of an entire production facility [1]. Thus, this type of archi-
tecture is found nowadays only on a small scale with single production cells
controlled by one PLC [36].

Hierarchical architecture: By decomposing a complex problem into par-
tial problems and distributing it over several layers, an arborescent hierar-
chical structure is achieved (see Figure 1.2b). Within this hierarchy, the
relations between the control levels are based on the principles of a mas-
ter/slave concept [37]. This control structure integrates the centralized cell
level structures based on PLCs with functions, such as order priority or re-
source allocation, as well as even business functions, such as cost accounting
on higher levels. It is commonly applied over the different layers of a manufac-
turing system in the industry [36]. As pointed out, the cell controllers, which
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Figure 1.2: Classification of control architectures based on the relation be-
tween controllers and the manufacturing equipment: centralized architecture
(a), hierarchical architecture (b), modified hierarchical architecture (c), and
heterarchical architecture (d), based on [36].

are commonly PLCs in manufacturing systems, act as slaves for the higher
control layers [36]. The resulting rigid hierarchical structure and communi-
cation brings the advantage of clarity and efficient scheduling of production
operations as long as the conditions are projectable and stable, so for this
environment the factory workload can be optimized [38]. These attributes
facilitate the success of hierarchical control architectures in mass produc-
tion domains [1]. While the implemented control mechanisms of hierarchical
architectures are developed for optimizing fixed processes, they are not de-
signed for coping with reconfigurable components and functionalities [39].
In this context, reconfiguration processes performed on a specific level have
most likely a significant impact on other control layers, requiring appropri-
ate adaptions also there due to the rigidity and strong linkages between the
layers of such a control architecture [40].

Modified hierarchical architecture: By loosening the pure and strict
vertical master-slave relationships between the control layers and adding hor-
izontal interaction between the modules of a distinct layer (see Figure 1.2c),
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Figure 1.3: Classification of control architectures based on the configuration
of hardware and software [8].

the modified hierarchical architecture improves the responsivity of a manu-
facturing system concerning disturbances [37]. Moreover, functions such as
job dispatching and coordination may be added to the controllers on the cell
level [36]. While this architecture is superior to the strict hierarchical archi-
tecture regarding the process responsivity, it still incorporates its drawbacks
regarding reconfigurability [40].

Heterarchical architecture: Based on the significantly increased perfor-
mance of industrial controllers, the heterarchical architecture was introduced,
which allocates more complex tasks to the controllers on the cell level with-
out a central supervising entity (see Figure 1.2d). Using extensive com-
munication, the cell controllers themselves are responsible for planning and
dispatching the production activities. A disadvantage hereby is the difficulty
of global production planning optimization with the planning and scheduling
algorithms carried out locally by the cell controllers [38]. However, as addi-
tional capabilities such as diagnostics and fault tolerance are also provided
by the cell controllers [36], a fast local response of the control system to
occurring events in the factory is possible, which encompasses the planning
and scheduling activities [38]. A clear advantage of such an architecture is
its modularity due to its inherent structure when composed of self-contained
components [41]. Regarding the engineering process the software complex-
ity is not increased when the number of components increase [36], but the
analysis of the global system behavior as well as deadlock detection is more
elaborate [41].
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Figure 1.3 presents an alternative classification, which distinguishes con-
trol system architectures based on the configuration of hardware and software
into the following control structures [8]:

• Centralized architecture: This architecture is compliant with the cen-
tralized architecture mentioned in the previous classification. Both
hardware and software are centralized, respectively monolithic regard-
ing their structure, which means that all sensors and actuators are
hardwired to a central process controller and all control software tasks
are merged in a single application executed within this single controller.
As mentioned before, this architecture is obsolete in industrial practice
regarding entire production facilities.

• Decentralized architecture: Based most likely on fieldbusses, the decen-
tralized architecture employs still a single process controller but with
decentralized Input/Output (I/O) modules. Hence, these hardware
modules are distributed in the field and the usage of fieldbusses brings
advantages such as more flexibility and a robust data transfer over long
distances between the I/O modules and the central entity. On the con-
trary, the software is still executed as a single monolithic application
within the central controller. Currently applied control systems based
on PLCs for the cell level with decentralized I/O modules correspond
to this type of architecture.

• Distributed architecture: The principles of the distributed architecture
correspond to the heterarchical architecture as mentioned above. In-
stead of a central controlling entity, multiple controllers in the field
including intelligent actuators incorporating embedded controllers are
responsible for governing the tasks of the manufacturing system. Thus,
the control software is no longer monolithic but instead distributed
among the hardware devices. Composing production system compo-
nents that incorporate both the hardware and their control software
allows the formation of self-contained entities. Evidently, this approach
implies challenges concerning the very different engineering and pro-
gramming processes compared with systems based on PLCs as well as
the communication efforts between the entities. Nevertheless, it signifi-
cantly increases the modularity of the system and thereby its flexibility
by employing exchangeable system components.

In the context of reconfigurable manufacturing systems, rigid hierar-
chical architectures are not suited for such a dynamic environment, as it
is nearly impossible to preprogram adequate top-down responses for any
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abrupt changes [42]. Moreover, the complexity of the control system signif-
icantly increases in the case of large manufacturing systems [43]. On the
contrary, a heterarchical/distributed architecture composed of modular and
self-contained components satisfies the requirements of modularity and cus-
tomization. Besides, this approach comes along with the benefit of code
compartmentalization, easing the decision on where to put certain function-
alities and providing therefore clear ownership boundaries among the software
developers [44]. However, the development and application of a distributed
architecture is connected with certain challenges to be met [45]:

• Communication: The distributed entities must be able to interact and
synchronize while meeting timing requirements, which requires accord-
ing (real-time) communication mechanisms.

• Modularity: In order to support adaptability for reconfigurable man-
ufacturing, the system components need to be developed in a modu-
lar and self-contained way. Self-contained in this context means that
the component contains all parts necessary for being complete, such
as internal algorithms and data structures as well as interfaces to the
component’s environment.

• Openness: For enabling upgrades or modifications of the system, which
can involve the integration of new components, the component inter-
faces should be implemented using non-proprietary specifications.

• Dependability: To be applied in industrial practice, the system must
provide a sufficient degree of reliance due to economic and safety rea-
sons for avoiding downtimes as well as danger to the environment re-
spectively.

1.3.2 Emerging Control Software Paradigms for Dis-
tributed Control Systems

As a distributed control architecture incorporates a complex software system,
structures and techniques are required for an easier handling of the inher-
ent complexity [46]. Some general software engineering principles have been
introduced for managing a control system’s complexity:

• Decomposition: Dividing a large problem or system into smaller parts
that can be addressed in relative isolation and managed easier supports
its handling due to the limit of each part’s complexity [47]. For applying
decomposition it is necessary to define the roles of the subsystems or
components respectively.
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• Abstraction: Emphasizing some details while suppressing others deliv-
ers simplified models of a software component. This eases the design
process of a complex system as not all the details of an artifact’s im-
plementation need to be considered for using it [48].

• Organization: Determining organizational relationships between com-
ponents allows the formation of component groups, which can act
as units providing more sophisticated functionalities [46]. Organiza-
tion also incorporates principles such as inheritance taken from object-
oriented systems as well as subroutines, as is common in procedural
programming languages.

In the context of distributed control systems, a lot of recently per-
formed as well as ongoing research concerning the employed control soft-
ware paradigms is focused on the topics Holonic Manufacturing Systems,
Service Oriented Architectures and Agent Technology [49]. Regarding man-
ufacturing systems, research in all three topics heavily influences each other
[2, 50]. Autonomous components are the basic building blocks for all three
approaches. Even though “autonomy is a somewhat tricky concept to tie
down precisely” [51], it actually means “that the system should be able to
act without the direct intervention of humans” [52]. Consequently, even a
simple thermostat represents an autonomous component.

Holonic Manufacturing Systems: The distributed architecture served
as the basis for the developments of the Holonic Manufacturing Systems
(HMS) Project [53], which was “an international industrially driven project
addressing systematization and standardization, research, pre-competitive
development, deployment and support of HMS architectures and technolo-
gies for open, distributed, intelligent, autonomous and co-operating systems
through a global partnership”. Based on the Greek word hólos meaning
“whole” and the suffix on for denoting a particle, Arthur Koestler defined
the word holon for entities, which behave “partly as wholes” and “wholly
as parts” depending on the point of view [54]. This paradigm was adopted
for the development of HMS, which are constituted by a highly distributed
component-based architecture [55]. In this context, an entire manufacturing
system is regarded as a holon incorporating other holons such as machines
and components as well as non-physical entities like customer orders or pro-
duction plans [45]. The research in the field of HMS has been coupled with
research in the field of agent technology for manufacturing (see below as
well as Section 2.1), as this technology is regarded as a suitable platform for
developing holonic systems [43].
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Service Oriented Architectures: Emerged from information technology,
the Service-Oriented Architecture (SOA) is a design framework for compos-
ing an information system by incorporating services, which are program units
that independently execute their function upon invocation [56]. For realizing
an SOA, certain properties have to be taken into account in the engineering
process [57]. Services encapsulate logic for a distinct context or task but
multiple services can also be combined to a collective service. In order to
minimize dependencies between services, they are designed as autonomous
components with only loose coupling to other entities. Encapsulation, au-
tonomy and loose coupling require according interfaces for ensuring inter-
operability between the software components [50]. An SOA is a suitable
framework for a distributed control system but the automatic composition
of services for reconfigurable manufacturing represents a current research
challenge [58]. While start-up procedures for an automatic orchestration of
services for production machines have been reported recently [59], the life-
cycle support of SOA-based systems, as it is required for reconfiguration, is
yet an open point [60]. As SOA systems and agent technology share substan-
tial similarities, the ongoing research in these fields is closely coupled [50].
Some even regard agents as the key realization technology for creating SOA
systems [61].

Agent Technology: The idea and notion of agents stems from the do-
main of Artificial Intelligence (AI), but it only makes up about one per-
cent of an agent [62]. Generally, an intelligent agent can be viewed as an
autonomous entity, which senses, decides and operates within its environ-
ment [63]. Thereby, the agent acts as an individual problem solver which
considers its own course of action [42]. Agent technology complies well to
the software engineering principles mentioned above for managing a complex
control system:

• Decomposition: Complex systems are composed of multiple subsys-
tems, which operate in conjunction for achieving the objectives of the
complete system. This viewpoint can be adopted likewise for compo-
nents realizing subsystems. Broken down, each component is responsi-
ble for achieving its own local objectives. Taking this objective-centric
decomposition as basis means that the individual components should
encapsulate their own control for achieving these local objectives [52].
This is a significant difference to a passive object and delivers truly
self-contained entities. Besides, a distributed architecture has no sin-
gle location of control as the control software is distributed among the
participating components meaning that each component encapsulates
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its own control software. Accordingly, applying multiple agents allows
representing the multiple locations of control as well as multiple per-
spectives or competing interests [64].

• Abstraction: The abstraction level of the agent-based approach is gen-
erally higher than the one of purely object oriented paradigms, as the
behavior of agents more closely resembles human behavior in a sim-
plified form [65], meaning that an agent represents a goal-driven, au-
tonomous and proactive entity.

• Organization: Agent-based systems incorporate explicit representa-
tions of the organizational relationships and structures, which allows
the development of a distinct agent (type) in relative isolation [46]. By
employing mechanisms for flexibly forming or disbanding these rela-
tionships and structures, agents can be added to or removed from the
system incrementally, which represents a significant asset for a recon-
figurable manufacturing system.

For implementing the control software of a reconfigurable manufacturing
system, agent technology offers modularity, decentralization, autonomy, scal-
ability as well as re-usability [42, 46]. In regard to mass customization, Da
Silveira et al. recommend the implementation of a multi-agent system com-
posed of autonomous components for increasing the manufacturing system’s
flexibility and fault tolerance [3].

In order to ensure the correct interaction of agents, they have to share
a common understanding of the syntax and semantics of the exchanged in-
formation [66]. The agents’ environment representation needs to incorporate
the environments’ structure and the characteristics of objects, such as other
agents [67]. Consequently, a knowledge base is required, which allows the
explicit specification of an application domain while incorporating semantics
into the data. This provides an explicitly understandable data format and
promotes the data exchange between system entities [68].

A further challenge to be met is the consideration of time constraints.
Controlling a manufacturing system in an industrial environment encom-
passes execution decisions involving real-time constraints. Hence, to be ap-
plicable in industrial environments, agent technology needs to be integrated
with a real-time capable control layer [69, 70]. As the behaviors based on
complex models require longer computation times, they have to be combined
with a real-time control subsystem offering simple reactive behaviors [71].
Consequently, modular control components are required that comprise both
a low level software entity with real-time capabilities and a high level software
entity in conjunction with an extensive environment representation [49].
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In regard to reconfigurable manufacturing, the development of according
control software with reconfiguration capabilities represents an area of signif-
icant concerns [72]. Semantic models provide knowledge in machine-readable
form but need to be combined with suitable reconfiguration mechanisms [49].
In this context, the reconfiguration of the hardware-near control layer is re-
garded as an important task for agent technology in manufacturing [71].

1.4 Contributions

The contribution of this thesis is the design and development of an agent
architecture, which can be employed for controlling the physical components
of a reconfigurable manufacturing system. An according knowledge base
for the agents is defined to capture the relevant details of the manufactur-
ing environment. Furthermore, a reconfiguration infrastructure is presented,
which allows an agent to configure and modify its hardware-near control
layer according to the required functionality of the controlled component.
For showing the feasibility and advantages of the presented approach, it is
implemented accordingly on a real system. Hence, the thesis encompasses
the following contributions:

1. Design of an agent architecture for controlling the physical components
of manufacturing systems: An agent has to encompass a high level soft-
ware entity being able to make use of declarative knowledge as well as a
hardware-near control entity with real-time capabilities. Consequently,
the agents should be designed in a manner for achieving self-contained
components. Thus, it is easier to modify the layout of a manufactur-
ing system as the components are not strongly coupled regarding their
control software. An agent also needs to involve mechanisms for de-
tecting failures. Besides, the agent architecture should be designed to
be usable for different kinds of manufacturing system components, e.g.
intersections, grippers, or valves. The following papers describe the
agent architecture in detail:

• W. Lepuschitz, A. Zoitl, M. Vallée, and M. Merdan. “Towards
Self-Reconfiguration of Manufacturing Systems using Automation
Agents”. In: IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C: Applications and Reviews 41.1 (2011), pp. 52-69. [73]

• W. Lepuschitz, M. Vallée, M. Merdan, P. Vrba, and J. Resch.
“Integration of a Heterogeneous Low Level Control in a Multi-
Agent System for the Manufacturing Domain”. In: Proceedings of
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the 14th IEEE International Conference on Emerging Technologies
and Factory Automation. 2009, pp. 1-8. [74]

• W. Lepuschitz, V. Jirkovsky, P. Kadera, and P. Vrba. “A Multi-
Layer Approach for Failure Detection in a Manufacturing System
based on Automation Agents”. In: Proceedings of the 9th Interna-
tional Conference on Information Technology: New Generations.
2012, pp. 1-6. [75]

2. Definition of a knowledge base that is suitable for the automated config-
uration and reconfiguration of the control software: Knowledge about
the system and its components should be described in a declarative
manner. Thus, an approach for automated configuration and recon-
figuration is easier to adopt for different kinds of target systems. The
following paper introduces the usage of an ontology as knowledge base
for the configuration process:

• W. Lepuschitz, A. Zoitl, and M. Merdan. “Ontology-Driven Au-
tomated Software Configuration for Manufacturing System Com-
ponents”. In: Proceedings of the IEEE International Conference
on Systems, Man, and Cybernetics. 2011, pp. 427-433. [76]

3. Development of reconfiguration mechanisms integrated in the agent ar-
chitecture: The agents should be able to reconfigure themselves for
adapting their functionality. Thus, they can react to changed require-
ments by their environment, e.g. in the case of a modified system layout.
The following papers present the reconfiguration mechanisms incorpo-
rated in the agent architecture:

• W. Lepuschitz, A. Zoitl, M. Vallée, and M. Merdan. “Towards
Self-Reconfiguration of Manufacturing Systems using Automation
Agents”. In: IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C: Applications and Reviews 41.1 (2011), pp. 52-69. [73]

• W. Lepuschitz, M. Vallée, A. Zoitl, and M. Merdan. “Online Re-
configuration of the Low Level Control for Automation Agents”.
In: Proceedings of the 36th Annual Conference of the IEEE Indus-
trial Electronics Society. 2010, pp. 1359-1364. [77]

4. Implementation and validation of the developed approach: The ap-
proach should be implemented on the “Test-bed for Distributed Holonic
Control”, which is introduced in Section 3.2. Test cases are to be de-
fined and evaluated regarding the benefits of the approach in the con-
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text of reconfiguration. The following papers describe the validation
and evaluation of the approach on the testbed:

• W. Lepuschitz, B. Groessing, M. Merdan, and G. Schitter.
“Evaluation of a Multi-Agent Approach for a Real Transportation
System”. In: Proceedings of the IEEE International Conference
on Industrial Technology. 2013, pp. 1273-1278. [78]

• W. Lepuschitz, B. Groessing, and M. Merdan. “Automation
Agents for Controlling the Physical Components of a Transporta-
tion System”. In: Industrial Agents: Emerging Applications of
Software Agents in Industry. Ed. by S. Karnouskos, P. Leitão.
Elsevier, 2015, pp. 323-339. ISBN: 978-0-12-800341-1. [79]

1.5 Thesis Outline

Following this introduction, Chapter 2 gives an overview about agent technol-
ogy and ontologies. Furthermore, possible technologies for the hardware-near
control layer are presented and compared regarding their reconfiguration ap-
titude. The chapter is concluded with the research questions concerning the
work presented in this thesis.

Chapter 3 introduces the architecture, which is applied for the agents
controlling the physical components of a manufacturing system. The two
control layers of this architecture are described including the required inter-
face for the intra-agent communication. Moreover, the diagnostic capabilities
of the two layers as well as the reconfiguration infrastructure are presented.

An approach for automatically configuring a control system composed of
automation agents is presented in Chapter 4. It is based on a generative pro-
gramming approach and uses a declarative knowledge base. This knowledge
base comprises information about the physical components in conjunction
with the software concepts of the control application. Thereby, the agents
are able to automatically compose their hardware-near control layer.

Chapter 5 is concerned with the local self-reconfiguration of the agents
for providing alternative functionality as a reaction on a detected failure.
The concepts of Chapter 4 are used and extended for enabling an agent to
reconfigure its hardware-near control layer according to changed conditions
of the agent’s environment. Moreover, experimental results are presented
which show the benefits of this approach.

Finally, Chapter 6 concludes this thesis by discussing the achievements
accomplished in this work and by giving answers to the research questions.
Moreover, further research possibilities are pointed out.



CHAPTER 2

State of the Art

In the following an overview of agent technology is given, which covers agent
architectures and the topic of knowledge representation. Examples of agent-
based applications in the industry are presented as well as approaches for
failure detection and reconfiguration. In regard to the hardware-near con-
trol layer, two industrial standards are introduced and analyzed concerning
their aptitude towards reconfiguration. Moreover, existing reconfiguration
approaches for this control layer are presented and analyzed.

2.1 Agent Technology

According to Wooldridge, there is no universally accepted definition of the
term agent [51]. He states that autonomy is essential for an agent but for
instance the capability of learning might be important for some applications
but undesired for others. Nevertheless, the idea of agents is used in various
domains ranging from economic theories [80] and sociology [81] to computer
science and artificial intelligence [82].

In regard to the usage of the term agent for denoting a software-based
computer system, the following general properties can be attributed to an
agent [82]:

• Autonomy: Agents operate autonomously without the direct interven-
tion of other entities and perform decisions according to their state.

• Reactivity: Agents are part of an environment such as the physical

19
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Figure 2.1: An agent interacting with its environment by making observations
with its sensors and by executing actions with its actuators according to
decisions based on the agent’s knowledge and goals, based on [42, 83].

world including other agents, which they are able to perceive and react
upon in the case of occurring changes.

• Proactiveness: Apart from reacting in response to the environment,
agents are able to perform goal-directed behaviors in a proactive man-
ner.

• Social ability: Even though agents can act autonomously, they do inter-
act or negotiate with other agents (including also humans) for achieving
goals in a cooperative or competitive manner using some kind of Agent
Communication Language (ACL).

Figure 2.1 depicts the interaction of an agent with its surrounding en-
vironment. After making observations using its sensors, the agent combines
this information with its knowledge about the environment. Depending on
the agent’s goals and preferences concerning the states of the environment, it
then initiates and executes actions to change those states accordingly using
its actuators [42]. Also agents without any physical embodiment obtain sen-
sory inputs by means of file contents or received messages and act likewise
upon their environment [83].

2.1.1 Agent Architectures

Depending on the agent’s design and tasks in a system, it can incorporate
various modules [84]:

• Communication interface: The communication interface is used for the
agent’s communication with other agents. Commonly used ACLs are
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the Knowledge Query and Manipulation Language (KQML) [85] and
the FIPA-ACL [86]. Both ACLs share a lot of commonalities [87] and
define message types and semantics for describing content.

• Perception and execution: The agent obtains data from its environment
by using sensors. This module can also include mechanisms for filtering
relevant information out of raw sensor input. Using actuators, the agent
can also act on its environment.

• Knowledge representation: The knowledge base of an agent incorpo-
rates a representation of the domain of application, which describes
details about products, tools and machines, as well as processes. Fur-
thermore, concepts about the agent itself regarding its state, location
and skills are contained in the knowledge base. Besides, it can encom-
pass social knowledge on how to interact with other agents, e.g. the
used ACL or the cooperation strategy.

• Reasoning: Performing reasoning represents a core ability for agents
as it enables an agent to make decisions according to its knowledge.
Reasoning can be implemented using simple rule heuristics, deductive
logic, inductive logic or self-organization [88], as well as mechanisms
such as constraint-, case- or schema-based reasoning, neural networks
and fuzzy logic.

• Learning: By employing learning mechanisms, the agent is able to
adapt its behavior to a changing environment due to modified system
functionalities or occurred failures. Various mechanisms used for the
agent’s reasoning are usable for its learning, such as the case-based
approach, neural networks or fuzzy logic [69].

• Coordination: This module defines how actions are performed when
other agents are involved, which can encompass cooperative but also
competitive strategies.

• Control, planning and scheduling: This module is responsible for map-
ping the agent’s goals into operational actions, thereby manifesting
its proactive behavior. This can be performed using either precom-
piled plans or the reasoning mechanisms for dynamically creating such
plans [63].

An agent does not necessarily need to incorporate all modules. Besides,
multiple modules can also be combined to one module, or a module can be
split into several sub-modules. The architecture of an agent defines how
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it actually combines the information from its environment with its internal
state for determining the actions to perform [89].

Reactive architecture: A reactive agent can be viewed as an intentional
system, which means that its goals are implicitly implemented in the agent’s
behavior but not explicitly represented in a model of the surrounding world.
Perceptions directly trigger specific actions and in the case that several ac-
tions are appropriate, they have to be performed in parallel or the most
suitable one is chosen based on priorities [90]. In this sense, the mechanisms
of a reactive agent resemble the execution of classic PLC control code.

Deliberative architecture: A deliberative agent relies on a far more ex-
tensive knowledge base incorporating an explicit representation of the sur-
rounding environment, i.e. a symbolic model of the world. Decisions are
performed by logical reasoning about the states within this world model.
The challenge for this type of agent lies in representing the real world in
an according symbolic description and enabling the agents to reason about
it [91]. Compared to a reactive agent with predefined strategies, the compu-
tational costs are higher, but this is justified by the generative potential of
the deliberative approach [90]. Regarding manufacturing systems, pure de-
liberative approaches tackle operations management or production planning
and scheduling [71] and are thereby used in the context of a Supervisory Con-
trol and Data Acquisition (SCADA) system or a Manufacturing Execution
System (MES).

Hybrid architecture: Even though the deliberative approach is signifi-
cantly more powerful than the reactive approach due to the possibility of
reasoning and learning to cope with new situations, its computation time
may impede a rapid response to important environmental events [90]. Hence,
combining the deliberative with the reactive approach, and thereby the best
of both worlds, delivers the architecture of a hybrid agent. Generally, the
two subsystems of a hybrid agent are structured according to a layered ar-
chitecture with the subjacent reactive layer having a precedence over the
deliberative layer, e.g. for ensuring the safety of the environment by guar-
anteeing a fast reaction on events [82]. Furthermore, the agent is capable
of combining information at a higher level of abstraction in its deliberative
layer for achieving its goals. In this context, the reactive layer provides its
functionality as services to the deliberative layer [55]. Using such a layered
architecture supports the modularization of an agent by clearly separating
the functionalities, which then requires only a restricted knowledge each layer
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Figure 2.2: General structure of a multi-agent system [42].

needs to possess and consider [92].

2.1.2 Multi-Agent Systems

A Multi-Agent System (MAS) is constituted by a network of agents, which
typically interact with each other (see Figure 2.2). Compared to a system
relying on a single entity or agent, which may be a bottleneck due to limited
resources or fail at a critical time, a MAS represents a society of autonomous
interacting components dedicated to provide solutions for larger-scale prob-
lems [93]. Even the interconnection of multiple existing legacy systems is
thereby possible by applying wrapper agents around each of these systems
for enabling their interoperation [94].

Within a MAS, data are decentralized and each agent possesses most
likely only a partial model of the surrounding environment, following indi-
vidual goals, which may differ from the other agents’ goals. Nevertheless, due
to the cooperation of the agents, the MAS can provide solutions that are be-
yond the individual capabilities of the participating agents [42]. Cooperation
is realized using different methods:

• Communication: Agents exchange information by communicating with
each other. This can be done either using direct communication via
messages or indirect communication via the environment using actua-
tors and sensors [42].
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• Specialization: Likewise to the physical components of a manufacturing
system with each providing one or a set of functionalities, also agents
are designed to provide specific services [84]. Two approaches can be
distinguished [95]: functional decomposition and physical decomposi-
tion. Functional decomposition means the assignment of functions such
as order planning or transportation management to specific agents. On
the contrary, physical decomposition uses agents for the representation
of physical entities such as machines, tools or products.

• Coordination: For ensuring a successful operation, coordination is cru-
cial as otherwise “a group of agents can quickly degenerate into a
chaotic collection of individuals” [84]. Coordination mechanisms are
either based on information exchange among coequal agents, which can
also involve agents acting as mediators, or on supervision with agents
having a degree of control over others.

• Collaboration: For achieving common goals, collaboration encompasses
techniques for assigning tasks to the agents [42]. For example, the
Contract Net Protocol (CNP) is an auction-based bidding mechanism
for allocating tasks to distributed nodes in a competitive manner by
awarding a task to the best provider [96].

• Organization: Agents act on a defined influence sphere, which can for
instance be a specific machine they control. Besides, the organiza-
tion of a MAS also determines the potential interaction partners of an
agent [42].

The collective behavior of the agents is denoted as emergent behavior as it
emerges from their interactions with each other [97]. While intended emer-
gent behavior is one of the main fundaments of agent technology, the possibil-
ity of unintended emergent behavior represents a significant obstacle regard-
ing the acceptance of this technology in the industry [71]. In this context,
simulation plays a valuable role for analyzing a system before its real de-
ployment, which can also be adopted for agent-based systems [70]. However,
Pěchouček and Mař́ık point out that more elaborate methods and tools are
yet required regarding the verficiation and testing of agent-based systems
[98].

Nevertheless, for designing and implementing the next generation of dis-
tributed and intelligent manufacturing systems, the application of agent tech-
nology has been widely recognized as an enabling approach [46, 99]. In the
context of manufacturing systems, agent technology is expected to provide
the following attributes:



2.1. Agent Technology 25

• Robustness and reliability [93, 100, 46, 98]: The system is able to tol-
erate uncertainties and can cope with failures of components, as agents
with redundant functionalities or appropriate interagent coordination
are found dynamically.

• Reconfigurability [98, 101]: Reconfiguration provides fault tolerance
and enables an agent-based manufacturing system to react on compo-
nent failures or changed manufacturing demands.

• Flexibility [93, 46]: Agents with different abilities are able to adaptively
organize themselves for problem solving.

• Re-planning and re-scheduling [46, 98]: The system is capable of re-
planning its activities in the case of component failures or changed
manufacturing demands thereby re-scheduling its job orders.

• Development and reusability [93, 98, 101]: The modularity of the agent
approach can also ease the design process, as subtasks can be identified
and assigned to specific agents instead of programming the complete
task of the system within a monolithic control software structure. The
functionality of specific agents can also be reused for solving different
problems.

• Maintainability and scalability [93, 100, 98, 102]: A system composed
of modular components, i.e. agents, is easier to maintain than a central-
ized system. Separating a system into its modules facilitates mainte-
nance processes as each module is simpler to maintain than a complete
system. Moreover, the number of agents can be modified due to this
modular structure.

• Plug-and-play [98]: A further development of scalability is a system’s
ability concerning “plug-and-play”, which is also referred to as “plug-
and-operate” or “plug-and-produce”. Given that this ability is sup-
ported, the modular components of a manufacturing system can be
added to or removed during operation for quickly changing the sys-
tem’s provided functionalities.

However, although regarded as a promising approach and deployed in
some applications throughout the last few years, the widespread adoption of
agent-based approaches by industry is still missing. The following weaknesses
are identified as reasons for that:

• Emergent behavior [103]: Emergence is integral in a distributed system
for achieving the global behavior of such a system. However, due to
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a lack of formal procedures or algorithms for verifying a large-scale
agent-based system, there is no guarantee that the emergent behavior
will lead to the desired function of the complete system.

• Missing trust and concerns regarding the stability [93, 104]: Missing
trust in the idea of delegating tasks to autonomous agents is existent
due to concerns regarding the stability and survivability especially in
unpredictable occurrences of system failures.

• Lack of performance evaluation [71]: Besides the missing guarantee on
the desired function of an agent-based system, there is also a lack of
algorithms and metrics for evaluating the operational performance.

• Absence of techniques and tools for deployment [49, 98]: Despite having
also been investigated by industrial companies, a missing lack of design
and development approaches mature enough for industrial deployment
is existent.

• Custom-developed applications and lack of standardization [49, 105]:
The applications reported in literature were developed in a custom-
based approach, which means that the development efforts can be
spread neither over multiple customers nor over time. This is due to a
lack of agreed standards regarding agent technology.

• Real-time capabilities [49, 69]: Pure agent-based infrastructures do not
meet real-time capabilities as required for directly controlling industrial
equipment. The linkage with a real-time capable control layer based
on other technology has therefore been always necessary.

2.1.3 Application of Agent Technology in the Industry

Agent technology has been applied in industry in various domains [49] rang-
ing from automotive industry to logistics for handling high level tasks such
as production planning and scheduling down to field level tasks in manufac-
turing control.

One of the first applications of agent technology in industry was realized
by Rockwell Automation in cooperation with BHP Billiton for increasing the
productivity of a steel milling process [106]. In this approach, autonomous
cooperative units, respectively agents, represent either a specific product or
some equipment for performing process operations. The main task of this
agent-based control system is to determine a suitable set of equipment for
producing a particular type of steel rod. Due to safety concerns, the agents
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did not control the process directly but provided recommendations to the
operator [107].

Another agent-based solution for the steel industry was developed by the
German Research Center for Artificial Intelligence in cooperation with the
Saarstahl AG [108]. The so-called AgentSteel system’s task encompass the
planning and scheduling of the production process in the steelwork factory
Völklingen. According to the orders of customers, the system calculates
solutions centrally based on graph theory and route finding for the daily
target schedules. Each of the aggregates producing the steel is represented
by a distinct agent, which monitors the data from its aggregate in regard
to the calculated schedule. In the case the agent detects that its schedule
leaves the determined time window, it tries to adapt its schedule, which can
affect also other aggregates. The system employs mechanisms such as the
CNP [96] for reassigning tasks to other aggregates.

Bussmann and Schild report the development of a flexible transporta-
tion system with an associated agent-based control within the frame of the
Production 2000+ project [39]. The overall goal of the system is to optimize
the throughput and routing of cylinder heads to designated work stations.
The system was evaluated in a series of simulations based on real manufac-
turing data (product types, processing times, failure characteristics, etc.),
which showed the agent-based control’s flexibility and tolerance towards fail-
ures of machines as well as of control units. Thus, a performance of 99.7%
of the theoretical optimum of the throughput was achieved, which is signifi-
cantly higher than the performance of the conventional manufacturing lines
of that time with their maximum of about 75% of the theoretical through-
put [109]. Moreover, the control system was installed as a bypass to an
existing manufacturing line for cylinder heads in the Daimler Chrysler plant
in Stuttgart-Untertürkheim for validating the results of the simulations un-
der real manufacturing conditions. Even though the prototype showed a
throughput increase of 20% during day-to-day operation for five years until
the end of the cylinder heads life cycle [49], the system was not installed an-
other time as the total costs for the system were considered to be too high.
Schild and Bussmann conclude that for the automotive industry the costs
for the higher flexibility are too high compared to the gained performance
increase, but it might provide a different economic impact for industries re-
quiring more flexibility [109].

The presented industrial applications mainly acted as demonstrators for
showing the deployment feasibility of agent technology in industry. With-
out specifying concrete performances measurements, the authors of the first
and second application mentioned above claim that the agent-based sys-
tem performed well regarding process scheduling. The third application of
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an agent-based system mentioned above showed a throughput increase dur-
ing day-to-day operation and measurements are presented by the authors.
Demonstrators with more detailed performance analyses are required for in-
vestigating possible benefits of the application of agent technology in indus-
try [98].

These solutions are usable for production planning and scheduling in
their designated target system but they are hard to modify or adopt to other
systems as the agents’ knowledge structures are “too static, cumbersome
and poor” [49]. Requirements such as flexibility and reconfiguration have
led to the introduction of semantics and ontologies for the agents’ knowledge
representation in manufacturing systems [110].

2.1.4 Knowledge Representation

In order to perform reactive or proactive actions autonomously, an agent
has to possess knowledge about its environment [42], but also about its own
state and skills [84]. Derived from the field of psychology, knowledge can be
separated into procedural knowledge and declarative knowledge [111].

Procedural and Implicit Knowledge: Procedural knowledge refers to a
skill that can be performed based on subconceptual processing [112]. Thus,
the knowledge is implicitly embedded in the performing entity and this in-
formation can therefore not be easily extracted [113] or modified [114]. Us-
ing the procedural knowledge does not necessarily involve declarative knowl-
edge [112]. In regard to agent technology, procedural knowledge is implicitly
manifested in an agent’s reactive behaviors. Besides, also a deliberate agent
needs to possess procedural knowledge to a certain extent for executing rules
even if they are described in a declarative form as it needs “knowledge of
how to do things” [111].

Declarative and Explicit Knowledge: Declarative knowledge involves
the description of facts and things [113]. It can be articulated using formal
language or mathematical expressions and therefore be constituted in an ex-
plicit form. Declarative knowledge is required for conceptual processing [112]
and can be altered according to new information about the environment [111].
A declarative knowledge base can be described using different representation
schemes:

• Logical representation: A knowledge base in this form is composed
of logical formulas involving concepts such as variables and functions.
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The formulas can be described using a specific logic as for instance first-
order logic [115] or fuzzy logic [116]. Logical formulas can be added or
removed for modifying the knowledge base, and inference rules can be
used for tasks such as constraint checking or information retrieval. As
pure logical representation schemes do not incorporate organizational
principles, large knowledge bases tend to be unmanageable, which is a
major drawback [114].

• Network representation: Such a form of representation scheme com-
prises objects for describing individuals of the world to be modelled
and associations for representing the relationships between those in-
dividuals. Such a knowledge base, denoted as a semantic network,
allows modifications by inserting or removing objects as well as by
altering the associations between them. By using association types
like instance-of for classification or part-of for aggregation, a net-
work representation allows the organization and efficient management
of even large knowledge bases. Deductions are for instance possible
by using path-based inference along the associations, node-based infer-
ence with additional pattern nodes, or the combination of these infer-
ence approaches [117]. Also neural networks fall in this representation
category, which are commonly used for machine learning [118] and pat-
tern recognition [119]. Compared to logical representation, network
representation incorporates organizational aspects and is easier to un-
derstand for humans. However, a drawback of a pure network represen-
tation is the lack of standard terminology and formal semantics [114],
which means that there is no standard interpretation for the expressed
knowledge [120].

• Frame-based representation: Derived from the semantic networks ap-
proach, the frame-based representation incorporates the concept of a
frame, which represents a data structure for capturing a stereotypical
situation [114], e.g. a type of machine. Thus, a frame contains gen-
eral knowledge about object classes, thereby meaning knowledge that
is true for most subclasses or individuals of this class. In a frame-based
representation scheme, knowledge is therefore expressed in an object-
oriented way [121]. The attributes of a frame are described in so-called
slots of which each can either contain a distinct value or an association
to another frame. The values are inherited of the superclass but they
can be overridden by the distinct subclass or individual [120]. Frame-
based representation enhances the network representation by allowing
slots to contain procedural knowledge for automatically reacting on
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knowledge updates [122], respectively for describing the usage of the
frame [121]. Besides, this type of knowledge representation shares the
drawback of missing standards.

Regarding agent technology, declarative knowledge empowers a deliberate
agent to apply logical reasoning in the form of inference rules [123]. More-
over, the declarative knowledge can even encompass the methods and proce-
dures themselves in a declarative form [113].

Consequently, a hybrid agent architecture incorporates procedural as well
as declarative knowledge. The development of both knowledge types can be
performed by applying principles from Model-Driven Engineering (MDE),
which involves the creation of abstractions for reducing the complexity of the
real world [124]. Thus, a model is created, which represents information of
distinct content for an entity to be used in a specific context [125]. Regarding
the reactive layer of an agent executed for instance in a PLC, MDE can be
used for developing control code based on a model defined in a modeling
language such as Unified Modeling Language (UML) [126]. In regard to the
deliberate layer of an agent, the declarative knowledge representation needs
to provide the following properties:

• Provision of a symbolic environment representation [91, 127];

• Interpretability for the agents [123, 128];

• Comprehensibility for the human operator in regard of engineering pro-
cesses [49, 128];

• Object orientation [123, 127, 128];

• Provision of common information among multiple entities to allow the
exchange of information between them [71, 68]; and

• Extensibility and adaptability of the comprised concepts [127, 128].

For enabling knowledge sharing and reuse, ontologies have become widely
used in the fields of AI and agent technology [129]. This might be explained
by the fact that the concept of ontologies combines characteristics of logi-
cal as well as network and frame-based representation schemes. According
to Gruber, an ontology is defined as an explicit specification of a concep-
tualization [130]. It incorporates classes (which are sometimes referred to
as concepts) with according properties (sometimes referred to as slots) for
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describing their attributes, such as the size of an object, as well as the rela-
tionships between the classes (see Figure 2.3). Hence, an ontology is struc-
tured according to a network in an object-oriented way likewise a frame-based
representation scheme, which makes it comprehensible for humans. A knowl-
edge base is then constituted by the ontology in conjunction with a set of
individual instances of the classes [131]. Ontologies can be described by us-
ing standardized formal languages like Extensible Markup Language (XML)
for ensuring shareability and interoperability [132]. The most common on-
tology language currently in use is Web Ontology Language (OWL) [133],
which incorporates description logics and thereby formal semantics, a main
characteristic of logic representation schemes.

Using an ontology, it is possible to provide a semantic description of an
agent’s domain of application (e.g. the manufacturing domain) by specifying
the meaning of entities and their relationships in the domain, as well as
defining parameters, constraints, and possible consequences of actions [134].
Given appropriate procedural knowledge, autonomous entities like agents
are able to access an ontology for retrieving information [135]. Moreover,
based on information obtained from the environment they can manipulate
the ontology’s contents.

A significant advantage of such an approach is the possibility of modifying
the knowledge base during runtime without the need for reprogramming.
Product plans for new products, but also additional process knowledge can be
added to be found and used by the entities of an agent-based manufacturing
system. Hence, the usage of semantics and ontologies provides extensive
capabilities of dynamic behavior for MAS [49].

Concerning the manufacturing domain, various ontologies have already
been developed for particular purposes. A taxonomy of manufacturing com-
ponents with physical resources (e.g. machines and tools) and concepts for
production orders, operations and disturbances is described in [37]. The
Manufacturing’s Semantics Ontology (MASON) [132] focuses on likewise as-
pects and is based on three top-level classes: resource, operation and entity
(see Figure 2.3). Machines and tools are regarded as resources, while raw
material and other common helper concepts are considered to be entities.
Operations are related to the process description and cover the performed
procedures. An equipment module ontology with the focus on the func-
tions and behaviors of equipment entities and their connections is presented
in [136]. Even though not stated explicitly as an ontology, an initiative for
establishing a framework for hardware as well as software interoperability at
all enterprise levels was started by the Open, Object-Oriented Knowledge
Economy for Intelligent Industrial Automation (O3neida) consortium [137].
The aim is to develop a searchable repository by collecting relevant product
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Figure 2.3: Overview of the MASON ontology’s classes (boxes) and their
relationships (arrows) [132].

data from manufacturers and integrators to encapsulate intellectual prop-
erty with appropriate semantic information [138]. A complementary work is
concerned with merging ontologies for mechatronic devices and automation
reference models also covering both hardware and software features [139].
An ontology comprising also the concept of controllers is described in [140].

2.1.5 Failure Detection based on Agent Technology

Manufacturing systems with a modicum of human involvement have to pos-
sess the capability of autonomously recognizing occuring problems to im-
pede production downtimes or even harm to their environment. If it is not
possible to prevent them, the system has to react appropriately besides per-
forming the scheduled regular operations. The early detection of a failure
using automated monitoring can help to prevent unscheduled shutdowns,
to reduce production losses, and to decrease the equipment maintenance
frequency [141]. However, the weak modularisation of existing failure diag-
nostic systems causes difficulties related to upgrades or maintenance. This
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emphasizes the vital importance of the integration of monitoring and diag-
nostic systems directly in the manufacturing components for enabling them
to detect and identify occuring failures [142]. A control architecture, which
supports advanced diagnostics and simplifies the development of monitoring
and diagnostic systems, will ease maintenance tasks and might increase such
a system’s acceptance by providing transparent insights concerning its func-
tionality. This highlights the growing need for monitoring and diagnostic
systems that are flexible, modular in their structure, cost effective and easy
to maintain [143]. Besides, in a frequently reconfigured system, the usage of a
static and pre-programmed diagnostic system seems rather impractical, due
to the high number of configurations and critical situations to be considered.
Hence, such a system requires components which are capable of self-diagnosis
as well as mechanisms for monitoring emerging behaviors resulting from the
cooperation of multiple components [144].

In this context, the multi-agent approach is regarded as a promising
way for establishing intelligent system architectures for fault diagnosis in
control systems [145]. Considerable research is reported on the development
of diagnostic systems based on agent technology.

Bae et al. describe an intelligent real-time fault diagnostic system based
on the application of a hierarchical artificial neural network [146]. Failures
can be detected by single components of the system as well as by the co-
operation of entities. Davidson et al. report the usage of MAS technology
for automating the management and analysis of data from SCADA systems
and digital fault recorders [147]. Tichy et al. introduce the Autonomous
Cooperative System (ACS) framework, which is concerned with distributed
industrial control applications [28]. It is applied for controlling a modelled
scaled-down chilled water system of a U.S. Navy ship. Thereby, failures such
as a water leakage are detected and alternative piping routes are determined.

Even though the presented approaches confirm the capability of agent
technology for diagnostic tasks, they share the drawback of hard-coded in-
formation processing and reasoning behaviors [148].

Regarding the application of ontologies for diagnosis purposes, Albert et
al. describe a concept for building a distributed architecture for the detection
of anomalies in an industrial application [149]. Ontologies are employed for
capturing details about the production plant and the agents’ behaviors, as
well as about the diagnostic algorithms. An implementation of the approach
is not reported. Bunch et al. report on the application of a MAS for monitor-
ing complex chemical processes [141]. They define notification ontologies for
classifying event characteristics and notification directives. The aim of the
approach is solely to provide extensive monitoring capabilities for the plant
personnel but not to control the process itself.
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2.1.6 Agent Technology for Reconfigurable Manufac-
turing

In regard to the paradigm of reconfigurable manufacturing, agent-based tech-
nologies meet the requirements needed to implement the corresponding con-
trol software [150]. Considerable research efforts have been done to improve
the system-wide reconfigurability of a manufacturing system.

Bruccoleri et al. demonstrate that an agent-based model for a manufac-
turing system, containing ten machines of which one is reconfigurable, im-
proves the performance in the case of a machine breakdown [151]. They pro-
pose an object-oriented high level control structure for error handling [152],
which enables the determination of an alternative production schedule after
the machine breakdown. Thus, product parts shall be routed to the recon-
figurable machine that has to adapt itself accordingly. Based on the results
of simulation, a performance increase of 17.4% is calculated in comparison
to a control system without such mechanisms. However, the actual machine
reconfiguration itself is not tackled in their approach.

Leitao and Restivo describe an adaptive holonic control architecture for
distributed manufacturing systems denoted as ADACOR, which addresses an
agile reaction to emergence and change, increasing the agility and flexibility
of an enterprise when it has to operate in volatile environments [153]. While
the production schedule is organized centrally during normal operation, the
holons reorganize their production schedule by a high degree of interaction
using a multiround CNP approach for task allocation in the case of an error.
Regarding a production system with three manufacturing cells with several
machines each, experimental results for two failure cases have shown that
the loss of productivity in the ADACOR system is significantly lower (by
59% and 72%) than in a hierarchical control system. Reconfiguration in this
approach is perceived as the reorganization of the services provided by the
holons, which control the machines of the manufacturing cells.

Zhang et al. define an agent-based control architecture regarding agile
manufacturing cells [154]. In their approach, each machine of a manufac-
turing cell is controlled by a distinct agent, which offers the machine’s func-
tionalities as services. The manufacturing cell is considered reconfigurable
as machines and their agents can be added or removed. Thus, reconfigu-
ration in this approach is considered like in the ADACOR approach as a
reorganization of the provided services.

Further approaches such as the one by Lim and Zhang [155] as well as the
one by Lima et al. [156] regard the reconfigurability of a production system in
terms of dynamic process planning and scheduling by means of coordination
mechanisms in a MAS.
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The mentioned research work indicates the applicability of agent tech-
nology for reconfigurable manufacturing especially from a high level perspec-
tive. However, the integration of this technology with a suitable hardware-
near control layer considering real-time information is considered as a further
challenge and important issue for its wider application in the industry [69].

2.2 Technologies for the Hardware-near Con-

trol Layer1

Most multi-agent architectures mentioned in the literature are concerned
with the high level structure, giving the hardware-near low level control layer
only marginal attention. However, an easy, fast and transparent integration
of physical automation components with agent technology is recommended
for applying the multi-agent concept in industrial applications [70]. This
can ensure real-time responsiveness of the agent-based control system and
provide self-contained components for achieving a higher modularity [49].

To leverage the advantage of reconfigurable systems, the hardware-near
control layer should be as flexible as the multi-agent driven higher level infras-
tructure. Currently the mainly used real-time control architecture in indus-
trial automation is based on the standard IEC 61131 (see Section 2.2.1). A
new emerging technology is the standard IEC 61499 (see Section 2.2.2), which
extends IEC 61131 with the goal of increased flexibility and improved control
software quality due to the incorporation of software engineering principles
such as portability, configurability and interoperability [157, 158]. Both are
candidate technologies for providing the hardware-near control layer of a con-
trol system based on a hybrid agent architecture. Regarding their aptitude
towards reconfiguration, both standards are analyzed based on the findings
of Zoitl [159].

2.2.1 IEC 61131—Programmable Controllers

The standard IEC 61131 was created by a workgroup of the International
Electrotechnical Commission (IEC) consisting of representatives of PLC soft-
ware developers, manufacturers and users [160]. It is divided into eight parts
covering various topics concerning PLC systems such as equipment require-
ments or communication via fieldbus.

Part IEC 61131-3 [161], specifying languages for PLC programming, is
widely accepted and spread in the manufacturing domain. According to

1Parts of the contents of this section were previously published in [73]
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Zoitl et al. [158], the development of this standard was necessary due to
the large number of different programming approaches and languages since
the invention of the PLC. It comprises the definition of two textual program-
ming languages (instruction list and structured text) and three graphical pro-
gramming languages (ladder diagram, function block diagram and sequential
function chart) for the development of control applications.

2.2.1.1 Applicability of IEC 61131 Control Software for Agent
Technology

Several MAS applying IEC 61131 for the hardware-near control layer are
reported in the literature.

Colombo et al. describe an agent-based control system called Factory
Broker for the realization of an HMS [162] based on the Production 2000+
project [39] mentioned in Section 2.1.3. Computer Numerical Control (CNC)
components as well as PLCs are employed for hosting the hardware-near con-
trol software of the machine agents controlling the production tools. Auction-
based interactions are performed for dispatching production tasks to the ma-
chine agents [163]. Likewise to already presented applications of agent tech-
nology, the Factory Broker system performs reconfiguration on a high level
scale concerning job scheduling. The agent-based system is able to reach an
increased availability and a 35% more balanced throughput compared to a
conventional system [162]. According to Schoop et al., this permits more
precision regarding the pre-planning of the production output [164].

A MAS for shop floor assembly with a small transport system controlled
by a single Beckhoff PLC is introduced by Cândido and Barata [165]. Soft-
ware wrappers are employed for encapsulating the PLC-based hardware-near
control layer into a set of agents. As the implementation details of this con-
trol layer are abstracted into services on the higher level agent layer, also the
integration of legacy systems into the MAS is possible with this approach.
Even though only emulated in the presented approach, the authors state that
a system with every component having its own controller would improve the
plug-and-play capabilities.

Developed by Rockwell Automation, the Manufacturing Agent Simula-
tion Tool (MAST) [166] is presented by Vrba et al. for controlling a conveyor
system in the manufacturing domain on top of a control layer programmed
in ladder logic. Communication and message parsing between the agents
and the subjacent control layer is realized by using the PLC data tables.
Cooperatively, the agents of MAST search for routing paths and try to find
alternative solutions in the occurence of a failure. MAST incorporates a
“demo” mode with the lower level control logic and data table provided in
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a Java-based emulation for the simulation and evaluation of MAS for large
scale transport systems.

Another multi-agent architecture reported by Rockwell Automation is
concerned with the automation of a shipboard system [167], which was al-
ready briefly mentioned in Section 2.1.5. The focus of this system is to pro-
vide cooling water to the different systems of a United States Navy vessel de-
pending on their momentary requirements. Moreover, diagnostic algorithms
are incorporated to detect failures or complete losses of system components.
In such cases, the system tries to reconfigure the distribution of cooling water
accordingly to maintain the functionality of the remaining components.

To simplify the proliferation of MAS into industrial practice it might
appear reasonable to base the hardware-near control layer on this standard.
However, unfortunately IEC 61131 possesses certain drawbacks concerning
its suitability for reconfiguration and none of the approaches with agent tech-
nology mentioned above tackles control code reconfiguration.

2.2.1.2 Reconfiguration Aptitude of IEC 61131

The applications presented in the previous section employ IEC 61131 for
the hardware-near control layer and introduce system reconfiguration means
purely on a higher level. Reconfigurability on the hardware-near control
layer and its modularity are generally limited due to the centralized nature
of PLCs based on the standard IEC 61131 [32, 168]. This section provides a
closer look on the aptitude of this standard concerning reconfiguration.

As mentioned before, the standard IEC 61131-3 was developed with the
main goal to unify the way of programming PLCs [158]. However, it was
also attempted to introduce at that time current concepts from the domain
of software engineering into the world of industrial control, with the aim of
improving the quality, modularity, and reusability of control applications.
The main concept towards this approach is the Function Block (FB), which
encapsulates specific functionality and provides it to different applications
in the same way. For developing applications, FBs are connected with each
other in a data driven approach. By applying this concept, a key requirement
for a reconfigurable architecture is fulfilled as the FBs represent modular
pieces of control software [169].

However, additional means are existent in the standard that break the
modularity and encapsulation of FBs, such as global variables. Global vari-
ables are often used in control applications as they simplify the data exchange
between FBs [159]. This comes with the drawback of linking FBs together
via a hidden interface even though they seem to be decoupled and completely
independent from each other. Hence, changing one FB can result in major
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consequences in other application parts, although the FB is apparently not
connected to these parts. At least the header of FBs comprises a declaration
of the used global variables. However, a second global variable mechanism
exists, which is called var access. By applying this mechanism, internal data
of an FB can be provided as publicly accessible for the whole application as
global data. For supporting dynamic reconfiguration, especially these hid-
den interfaces have to be considered and treated, which complicates dynamic
reconfiguration in IEC 61131-3 significantly [159].

Furthermore, another key point for dynamic reconfiguration is the con-
trol of the execution order of the application’s elements. IEC 61131-3 ap-
plies a cyclic execution model with typical cycle times in the order of 10 to
100 ms [170]. The execution order is not defined explicitly but by the data
connections between the FBs. This impedes a direct control of the execution
order by the user or reconfiguration coordinator [171]. Hence, as the execu-
tion of an FB is not explicitly triggered, it can be difficult to determine a
suitable time frame for a reconfiguration process in order to avoid an ongoing
algorithm execution of that FB [169]. Therefore, the practice for reconfigur-
ing IEC 61131 systems is to change an application at once on the whole [172]
and not gradually as it is required for modifying only functionality parts of
a distributed control system with modular components [159].

Finally, no unified (re-)configuration interface exists, which allows recon-
figuration coordinators (such as a software agent) to change the application.
In current practice, these interfaces are vendor-specific and not publicly avail-
able due to intellectual property protection [159]. However, an open interface
would be required in the case of a heterogeneous system with devices from
different vendors, as it can be existent in industrial automation [168].

2.2.2 IEC 61499—Function Blocks

The standard IEC 61499 [173] has been developed in order to incorporate
new demands of flexible and adaptive production systems into industrial
controls. It introduces a generic architecture and guidelines for the usage of
FBs in distributed industrial control systems. An IEC 61499 FB represents a
functional unit of software containing data and algorithms as well as internal
variables to constitute an internal state (distinguishing it therefore from a
pure function) [157, 174]. No global data access is available and the FBs
can be developed and tested independently from the control application.
Engineering a system with IEC 61499 FBs conforms to the paradigm of
object- and component-oriented design, as it is common in general software
engineering [175]. Consequently, the functionality provided by an FB behaves
the same, independently from the context it is used in and independently
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from other components connected to it [176]. Therefore, FBs require a well
defined interface, but they can likely have an interface comprising various
different event and data ports (inputs as well as outputs). This may result in
large interfaces (i.e. many ports) with numerous connections for connecting
different FBs, which is a drawback concerning the automated (re-)wiring of
FB networks in a (re-)configuration process for instantiating or changing an
application’s functionality. The adapter concept of IEC 61499 is dedicated
to reduce these issues by allowing the combination of a set of events and
data to form a functional interface [171]. As they can incorporate input and
output ports, adapter interfaces themselves are neither denoted as input or
output ports but as plugs and sockets.

2.2.2.1 Applicability of IEC 61499 Control Software for Agent
Technology

The design of IEC 61499 is strongly coupled with the HMS project [177] as
many developers have been active in both projects. The main idea is the
achievement of an agile and adaptive lower level control architecture as basis
for an HMS [31]. Therefore, adaptability and reconfigurability were main
requirements for developing the IEC 61499 architecture. In this context,
the linkage of agent technology to real-time information and its integration
with the FB-technology is seen as a promising solution for the integration of
manufacturing process planning, scheduling, and execution control [69].

In the domain of distributed control, Lopez and Lastra use the IEC 61499
standard as lower part of an agent architecture for controlling physical com-
ponents of a manufacturing system. The hardware-near control layer based
on IEC 61499 serves as a proxy for the superjacent agent layer concerning
its interaction with the process. Both layers are run on a Java-based em-
bedded controller with an interface for the intra-communication between the
two control layers using shared memory for accessing data [178]. The work
does not involve an extensive application, but shows that the integration of
both control layers on one embedded controller is in principle possible. Tests
regarding the inter-agent-communication on the agent layer reveal a message
time of approximately 2 seconds on the given controller infrastructure, which
is not sufficient for real-time collaboration between multiple agents. Thus,
such communication needs to be performed on the hardware-near control
layer with its real-time capabilities, making in this case use of the likewise
message-based communication protocols of IEC 61499 [179]. Reconfiguration
of the control code is not reported in this approach.

Vyatkin and Peniche intend the utilization of IEC 61499 for more than
realizing the actual process functionality (e.g. drilling a hole into a workpiece)
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as they suggest encapsulating higher level agent functions directly into FBs
as well [180]. This includes for instance the registration of an agent to a
separately implemented agent broker, which maintains a list of the provided
component functionalities. Applying such an approach renders the integra-
tion of both control layers into one controller significantly easier. However,
reconfiguration mechanisms are not presented and the approach does not in-
volve any declarative knowledge representation for the agents as a PLC-like
standard as IEC 61499 is used for implementing the higher level functions.
As previously mentioned, a modification of a knowledge base constituted in
procedural knowledge is elaborate and not easily adaptable.

Likewise to IEC 61131, also IEC 61499 is in principle suitable as a ba-
sis for the development of the hardware-near control layer. However, in
the context of reconfiguration IEC 61499 offers advantages as compared to
IEC 61131.

2.2.2.2 Reconfiguration Aptitude of IEC 61499

The architecture of IEC 61449 is based on IEC 61131-3 and extends it in
several points. Likewise, the FB represents the main element of function
encapsulation. However, in IEC 61499 no global data and indirect data access
is available [159]. Therefore, FBs can be developed and tested independently
from the control devices and from the application they are used in. This
greatly increases the reusability and furthermore eases the reconfiguration as
the impact of changing or replacing an FB can directly be derived from the
elements it is connected to.

As a second major change, the data-driven approach of IEC 61131-3 is
replaced by an event-driven approach. That means that additional event
connections control the execution order in an IEC 61499 application, mean-
ing that the order of execution in an application is explicitly specified. This
ability can also be utilized during the reconfiguration process. Commonly
a reconfiguration process is triggered when for instance a process variable
reaches a specific value or a specific point in time is met. This makes an
event-driven approach an appropriate choice for the control software, as a re-
configuration could be triggered directly by control application events [181].
Furthermore, the event-driven approach allows an increased flexibility in con-
trolling the execution behavior of the application during the reconfiguration
process [159].

For supporting the requirements derived from the HMS project, a basic
(re-)configuration interface is defined in IEC 61499, which encompasses a
standardized command syntax for downloading, modifying or uploading ap-
plications. However, this basic interface allows only conducting simple re-
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configuration tasks, as a full support for dynamic reconfiguration is beyond
the scope of the standard [182]. For dynamic and real-time constrained re-
configuration this interface is not sufficient and an improved infrastructure
is needed.

2.2.3 Reconfiguration Aptitude Comparison

A control paradigm that supports logical as well as spatial software distri-
bution and reconfiguration is recommended for highly flexible systems in the
manufacturing domain [157, 183].

This perception goes along with two key issues concerning the devel-
opment of the hardware-near control layer: an increased element reuse as
well as the dynamic control software configuration and reconfiguration, in
order to adapt quickly to changed production requirements. In this context,
a modular and strongly component-oriented architecture with control soft-
ware components, interacting via defined interfaces, is considered to be the
enabling technology [159].

Based on the analyses presented in Section 2.2.1.2 and 2.2.2.2, Table 2.1
shows a comparison between the standards IEC 61131 and IEC 61499 regard-
ing their general suitability for reconfiguration processes. Fulfilled criteria are
represented by cells in green color while those not met are marked in red.
Yellow cells indicate partially fulfilled criteria.

Criterion IEC 61131 IEC 61499
Control system archi-
tecture

centralized/ decen-
tralized

distributed

Execution model cycle-based event-driven
Functionality encap-
sulation

in FBs, but hidden in-
terfaces possible

in FBs, no hidden in-
terfaces

Global variables yes no
Unified reconfigura-
tion interface

not provided limited basic interface
provided

Table 2.1: Comparison between IEC 61131 and IEC 61499 concerning their
aptitude towards reconfiguration.

Evidently, compared to IEC 61131, the standard IEC 61499 fulfills most
of the criteria and represents a suitable base architecture for a dynamically
reconfigurable control layer. While IEC 61499 encompasses a syntax for re-
configuration commands that have to be implemented in a runtime environ-
ment for being compliant with the standard, IEC 61131 does not incorporate
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such a definition. Reconfiguration in the latter standard is thus rather a
matter of provided distinct tools than standardization [158]. In this context,
control software is committed as a whole onto the controller [32]. The lack
of general suitability and available open tools might be the reasons why the
approaches of online reconfiguration reported in the literature are based on
IEC 61499.

2.2.4 Existing Reconfiguration Approaches

Zhang et al. present a system architecture for dynamic reconfiguration with
the introduction of an orthogonal adaptation framework [184]. Their frame-
work consists of additional data and event flows arranged orthogonally to
the FBs, monitoring and controlling the configuration of the control pro-
gram. The additional control flow is used by configuration control elements
in each of the FBs [182]. A working implementation is presented, which
shows that the FB network of a running application can be modified using
a manual FB manager interface. As each FB has to bring its configuration
control elements preprogrammed with it, the usage of existing standard FBs
is impeded. Not complying to the standard represents a significant drawback
of this approach regarding the portability of the developed FBs counteracting
therefore the genuine openness of IEC 61499 [158]. However, without this
configuration control element no reconfiguration is possible in this approach.
Higher level entities such as software agents are intended to utilize this ap-
proach for automatically reconfiguring control applications, but details about
such mechanisms are not presented.

Brennan et al. introduce the contingencies approach, which is based on
preprogrammed configurations suitable for reacting on anticipated system
states [185, 186]. It requires the determination of possible failure states as
well as suitable recovery means before taking the system into operation. Pre-
defined reconfiguration tables comprise the alternate configurations that can
be chosen by a higher level entity such as an agent, for instance in the case of
a device failure. However, the reconfiguration tables have to be maintained
in an actual condition, requiring therefore an update each time even a minor
change is made to the system. Olsen et al. reveal more details about an
actual implementation of the contingencies approach [187]. An IEC 61499
based reconfiguration manager provides an interface for agents to reconfigure
the subjacent control application. The implementation employs configura-
tion agents that utilize this interface for loading or unloading control appli-
cations on the controller hardware. The reconfiguration process consists of
three main steps: killing the running application on the controller, transmit-
ting the alternate configuration to the controller, and finally starting the new
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control application on the controller. Due to limited resources of the avail-
able controller hardware, the entire demonstration implementation runs on a
Personal Computer (PC). The contingencies approach is merely an adaption
of state-of-the-art technology as current industrial control systems based on
IEC 61131 provide likewise functionality [159]. Reconfiguration cannot be
performed while the system is in actual operation and the need to effectively
stop the running application is a drawback that results in downtime.

Brennan et al. also describe the soft-wiring approach, which shall en-
sure more flexibility for the hardware-near control layer as it is not based on
preprogrammed configurations [185, 186]. By using services of the Function
Block Operating System (FBOS), a higher level composed of configuration
agents is able to replace existing FBs and to modify event and data connec-
tions between FBs. These agents possess information of the FB interfaces,
which describes how an FB is to be connected with an existing FB in an
application. These mechanisms shall allow the realization of dynamic recon-
figuration. However, details about this interface information and how it is
used are not provided. Concerning an actual implementation, only a rough
version of the FBOS has been developed and no further research has been
reported [159]. Thus, it cannot be concluded if the approach would be indeed
applicable for dynamic reconfiguration.

Gouyon et al. present a reconfiguration framework for the development
of a product-driven shop floor control system and its integration with a con-
trol system based on IEC 61499 [18]. The approach incorporates models for
describing the manufacturing system capabilities as well as the production
plans in the form of states and transitions. Product routes are determined
using synthesis of the models of the production cell and the required assem-
bly operations. A global configuration management agent is employed, which
transforms the resulting desired system states and transitions into structured
text or ladder diagrams within IEC 61499 FBs. This means that in principle
a monolithic control application is generated. Thus, the approach seems to
be promising in regard of dynamically instantiating a centralized architecture
but it is not usable for being applied in a system composed of self-contained
and autonomous entities with reconfiguration capabilities. Besides, an im-
plementation on industrial controllers is not reported and only mentioned as
future work by the authors, which hinders further analysis efforts about the
applicability of the approach.

A further reconfiguration support based on IEC 61499 and implemented
in Real-Time Java for the Archimedes Execution Environment is reported
by Thramboulidis et al. [188, 189]. In their approach the reconfiguration
process is split into two phases. During the first phase the preparation is
performed with low priority. In this phase the definitions of FBs are down-
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loaded to the device, FB instances are created, and data connections are
established. This phase may be interrupted at any time by higher priority
control elements. During the second phase the time-critical reconfiguration
tasks are performed, such as rewiring event connections or stopping FBs. As
it is shown by Zoitl, this is not valid as the creation of a data connection can
disturb the existing application and change its execution behavior [159]. The
consistency in the reconfiguration process is not considered, so this approach
provides only a basic support for structural reconfiguration. However, first
measurements on the timing behavior of the basic structural reconfiguration
are provided. A reconfiguration process encompassing the addition of two
FBs to an existing application including their wiring takes about 32 ms.
This means that such a reconfiguration process requires only roughly the
time of one cycle in a typical PLC application, which may seem sufficiently
fast for a range of applications. However, the approach does not tackle dis-
tribution and the issue of determining which FBs or connections should be
modified.

Khalgui et al. report a reconfiguration agent for modifying control soft-
ware based on the standard IEC 61499 for embedded control devices [190].
The agents for controlling the production process sequences are at first
modeled using state machines [191] based on the formalism of Net Condi-
tion/Event Systems [192], which represent an extension of Petri nets. A
reconfiguration engine receives notifications from an interpreter realized by
a small network of IEC 61499 FBs in the case of failures detected by sen-
sors. The reconfiguration agent employs a converter, which incorporates a
conversion table that defines an IEC 61499 configuration for each supported
scenario, and sends according XML code blocks for performing reconfigura-
tions [193] such as the creation, wiring or deletion of FBs. As the conversion
table is defined before the system is taken into operation, this approach is
comparable to the contingencies approach mentioned before. Hence, it does
not support the tailoring of reconfiguration processes during runtime and is
therefore not suitable for dynamic reconfiguration.

Alsafi and Vyatkin introduce an ontology-based reconfiguration agent,
which creates a new system configuration due to changes in the manufac-
turing requirements or environment. In their approach, an ontology is used
for modeling the manufacturing system components as well as the process
operations [194]. Based on the given requirements, the reconfiguration agent
infers the required process operations from the ontology model [195] and is-
sues the creation of IEC 61499 applications within the distributed controllers
of the system [140]. Likewise to a previously mentioned approach, also this
approach is based on a single reconfiguration agent, which makes it therefore
a suitable candidate for dynamically setting up a centralized architecture.
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However, as an implementation on industrial controllers is not reported and
only mentioned as future work by the authors, a further conclusion about
the applicability of the approach cannot be given.

Zoitl presents a reconfiguration infrastructure with a unified reconfig-
uration interface for modifying IEC 61499 control software in distributed
controllers. Reconfiguration services are identified for changing the structure
as well as the execution state of the application and the comprised FBs. By
composing a reconfiguration application with the according reconfiguration
services encapsulated within additionally instantiated FBs, control applica-
tions can be reconfigured even regarding hard real-time constraints [159]. An
implementation is reported encompassing the successful reconfiguration of a
closed-loop control strategy while keeping an inverted pendulum in balance.
In the given case, a specific FB is substituted by three other FBs, which
constitute a different control strategy. However, planning and implementing
such a reconfiguration application by hand is considered to be an elaborate
process, so this infrastructure needs to be incorporated into an architecture
for conducting reconfiguration processes autonomously [196].

Table 2.2 gives an overview of the mentioned approaches concerning the
following attributes:

• Support of dynamic reconfiguration during runtime (A): Reconfiguring
an application during operation allows the avoidance of downtimes.

• Support of distributed reconfiguration of the components (B): Dis-
tributed reconfiguration represents a prerequisite for the composition
of self-contained components with self-reconfiguration capabilities.

• Conjunction with agent technology (C): A reconfiguration process needs
to be planned and executed. Agent technology can be used for automat-
ing such a process.

• Existence of an implementation (D): An implementation shows that a
conceptual approach is in principle feasible.

Fulfilling all mentioned criteria would deliver an implemented approach,
which incorporates dynamic reconfiguration mechanisms that can be planned
and executed by distributed self-contained components. Thus, the key re-
quirements as defined in Section 1.2.2 could be met.

As can be seen in Table 2.2, none of the reported approaches fulfill all
mentioned criteria. Zhang et al. do not report but intend the usage of agent
technology for planning the reconfiguration processes. However, this ap-
proach can only be used with particular FBs incorporating specific configu-
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Table 2.2: Comparison of existing reconfiguration approaches.
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ration control elements. The soft-wiring approach by Brennan et al. is suit-
able for the usage of standard FBs, but details about the planning process
and a working implementation are not reported. The approach presented
by Zoitl is also suitable for using standard FBs and a working implementa-
tion is shown. However, the according reconfiguration application has to be
generated manually. Most other discussed approaches either do not support
dynamic reconfiguration or are unsuitable for self-reconfigurable distributed
entities.

2.2.5 Recent Developments for the Reconfiguration of
Control Code

Within a concept of bridging SOAs with IEC 61499, Dai et al. describe
services that shall allow the modification of FB types (e.g. inserting a state
into a basic FB) during runtime [197]. While these services for modifying
the internal architecture of FB types are presented only theoretically, an
emulation on the basis of an airport baggage handling system is shown that
involves the insertion of an additional FB type into an operating system.
An IEC 61499 runtime denoted as function block service runtime is used for
hosting the FB application. The presented use-case shows the commands
required for inserting a new FB type. Afterwards an existing FB instance is
replaced with an instance of this new FB type. However, it is not clarified
how the decision on adding the new functionality is performed.

Sorouri et al. introduce an agent architecture denoted as MIRAs (Modu-
lar, Intelligent and Real-time Agent), which involves a hardware-near control
layer based on IEC 61499 [198]. In this architecture, each agent represents
either a mechatronic component or a product. Using this architecture, pro-
duction steps are created dynamically based on customer orders and the
agents shall be able to generate their own control code [199]. However, de-
tails on how an agent actually generates the IEC 61499 FBs are not presented.
A previous approach by the authors incorporates the definition of rules for
describing mechatronic components and their properties on the basis of one
robot as use-case [200]. Solutions for the robot configuration can then be
found by using these rules in conjunction with given goal positions and con-
ditions to consider. As further work the authors envisage the extension of
this approach for generating software components based on IEC 61499.

Priego et al. present an architecture that allows the automatic generation
and update of IEC 61131 control code [201]. It comprises several models for
describing the components and operations of a plant as well as the work
pieces and hardware components of PLCs. Plant and product model are
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parsed into a so-called hierarchical interconnected state space model with
the implementation of ontological semantics. An algorithm is employed that
determines executable operations based on preconditions of the system state
and takes operation durations into account [202]. This delivers an operation
strategy, which is then transformed into IEC 61131 control code. Finally a
complete automation project is generated, which is loaded into the PLC when
its execution has stopped in a safe state. Consequently, the main drawback
is the necessity to stop the PLC during the code generation process, which
is typical for approaches that are based on the standard IEC 61131.

Besides of modifying the functionality of a system, automatic reconfig-
uration can also be used for relocating control code from one controller to
another. Yan et al. report on an approach for relocating IEC 61499 FBs
between devices in order to provide dynamic resource allocation mechanisms
for distributed industrial automation systems [203]. Consequently, this ap-
proach does not focus on choosing FBs to compose an application but on
choosing devices as targets to download FBs. Load balancing between de-
vices is done by analyzing workload information offered by the employed
NxtStudio IEC 61499 platform [204] in regard to a device’s computational
power. Streit et al. describe a further concept, which is concerned with the
relocation of control software in the case of a component failure [205]. Sev-
eral conceptual scenarios are presented as rationales for such an approach,
but implementation details are yet missing. The authors state that in future
work a deployment algorithm will be chosen, which ensures that a controller
possesses the required computing resources to run allocated control software.

Most approaches mentioned in this section are concerned with the topic
of control software reconfiguration in regard of functionality likewise to this
work and were reported during its composition. Those presented by Dai
et al. and Sorouri et al. sound promising, but certain details on how to
generate IEC 61499 software are missing or envisaged as future work. On
the contrary, Priego et al. provide details about their approach but it is
designated for control code based on IEC 61131. Finally, the approaches
described by Yan et al. and Streit et al. focus on software reconfiguration
with a different purpose, which is the relocation of control code from one
controller to another.

2.3 Summary and Research Questions

As pointed out in Chapter 1, the paradigm of reconfigurable manufacturing
is essential for realizing mass customization by providing manufacturing sys-
tems with changeable components and thereby with modifiable functionality.
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As rigid hierarchical control architectures are not suitable for such a dynamic
environment, a distributed control architecture composed of modular com-
ponents is required.

For implementing such an architecture, agent technology is regarded as
an enabling approach. Even though its application in the industry is yet
limited, agent technology has been successfully used concerning diagnostics
and reconfiguration as shown in Section 2.1. In this context, a knowledge
representation based on ontologies allows the explicit specification of the
agents’ domain of application.

In order to be applicable in an industrial environment, MAS have to in-
corporate an appropriate hardware-near control layer for accessing the field
level with its sensors and actuators. Even though the standard IEC 61131
is widely accepted in the industry, its reconfiguration aptitude is limited
as shown in Section 2.2.1.2. Besides, Zoitl et al. report a lack of tools for
dynamic reconfiguration processes in IEC 61131 [158]. On the contrary,
IEC 61499 has been designed in regard of adaptability and reconfigurabil-
ity. Moreover, several reconfiguration approaches are already reported in the
literature as presented in Sections 2.2.4 and 2.2.5.

However, according to the analyzed state-of-the-art, a reconfiguration ap-
proach and implementation, which enables an agent controlling a component
of a manufacturing system to reconfigure its hardware-near control software
based on standard FBs, is yet missing. Nevertheless, concepts covering var-
ious aspects of such an approach are described in the literature that can be
taken as a basis for its design and development. An overview of the aspects
identified for achieving the objectives defined in Section 1.4 is given below.
Moreover, the research questions for this thesis are presented on the basis of
these identified aspects.

A suitable agent architecture for controlling the manufacturing system
components needs to be developed. On the one hand an agent has to en-
compass a high level software entity for making use of declarative knowledge.
On the other hand it has to incorporate a control layer with real-time capa-
bilities for accessing the hardware. If the agents are designed in a manner
for achieving self-contained components, it is easier to modify the layout of
a manufacturing system. Achieving a hybrid agent architecture is therefore
identified aspect 1.

Diagnostic mechanisms have to be incorporated in the agent architecture,
which enable the monitoring of the controlled component. Failures should
be detected using a component’s sensors or by combining local information
with data gathered from other entities of the system. The integration of
diagnostic mechanisms represents identified aspect 2.

Taking both aspects 1 and 2 into account leads to research question 1.
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Research Question 1: Is it possible to realize self-contained compo-
nents of a manufacturing system and incorporate diagnostic mech-
anisms by using agent technology?

A knowledge base is required, which is suitable for the automated config-
uration and reconfiguration of the control software. If the knowledge about
the system and its components is described in a declarative manner, an ap-
proach for automated configuration and reconfiguration is easier to adopt
for different kinds of target systems. An according ontology needs to be
defined, which provides the knowledge for autonomously configuring and re-
configuring the hardware-near control layer. Defining an ontology as agent
knowledge base is therefore identified aspect 3. Hence, the second research
question arises.

Research Question 2: Is an ontology apt for representing the con-
cepts about the physical system and the control software, so that
an agent is able to automatically configure its hardware-near con-
trol layer?

The development of reconfiguration mechanisms that can be integrated
in the agent architecture is required, so that agents are able to reconfigure
themselves for adapting their functionality. Consequently, they can react to
changed requirements by their environment, e.g. in the case of a modified
system layout. Using the dynamic reconfiguration mechanisms, an agent
should be able to reconfigure its hardware-near control layer. The integration
of dynamic reconfiguration mechanisms represents identified aspect 4. The
third research question is derived from this aspect.

Research Question 3: Is it possible to integrate reconfiguration
mechanisms in both layers of a hybrid agent architecture for achiev-
ing self-reconfiguration?

In order to validate the developed approach, an implementation is re-
quired. The approach should be implemented on a real system, i.e. the
“Test-bed for Distributed Holonic Control”. Test cases have to be defined
and evaluated regarding the benefits of the approach in the context of recon-
figuration. The implementation and validation of the developed approach is
therefore identified aspect 5. This leads to the fourth research question.

Research Question 4: Is the developed approach feasible and ben-
eficial on a real (laboratory) system?



CHAPTER 3

Automation Agent Architecture1

This chapter covers the core entity of the work presented in this thesis: the
Automation Agent. The term itself is derived from the term automation
component, which is used for instance by Sünder et al. for denoting an au-
tonomous device in a distributed control system [206, 207]. Automation
agents shall serve as the basic building blocks of the control system and
are responsible for directly controlling the physical components. Embedded
within a MAS, they represent the lowest layer of agents but thereby provide
access to the actual functionality of the manufacturing system.

3.1 Agent Layers

Generally, agents are used either for representing physical entities or for en-
capsulating functions [208]. In this context, a distributed intelligent control
systems based on agent technology can be divided into two layers: the physi-
cal layer (i.e. represented by the automation agents) and the functional layer.

3.1.1 Functional Layer

Agents of the functional layer are those, which do not incorporate a physical
representation. They are employed for carrying out higher level functions
such as the scheduling of jobs or the distribution of tasks. For example, the

1Most contents of this chapter were previously published in [73, 74, 75, 77, 148].
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Knowledge-based Multi-Agent System Architecture (KASA) introduced by
Merdan encompasses the following agents on the functional layer [101]:

• Contact Agent: Created at the initialization of the system, this agent
type is employed for managing the MAS. It creates other agents of the
MAS and performs organizational and supervisory functions.

• Order Agent: When a product order is submitted to the MAS, an agent
of this type is created, which is responsible for determining the suitable
manufacturing equipment and for localizing the required materials for
the production process. Furthermore, it decomposes the product order
into work orders, which it delegates to a supply agent.

• Supply Agent: Agents of this type receive work orders, from which
they extract specific manufacturing tasks. Based on these tasks, they
coordinate the execution of the production process by negotiating with
the agents controlling the manufacturing equipment.

Depending on the system architecture, the functional agents may exist in
redundant forms for avoiding bottlenecks. The well-disposed reader may
find more information concerning the provided functionality of these higher
level agents in [101, 209].

3.1.2 Physical Layer

The physical layer encompasses the mechatronic components consisting of
actuators and sensors. Each automation agent incorporates the controlled
physical parts, which can be regarded as the agent’s embodiment. The soft-
ware part of the automation agent serves as its intelligence and controls the
physical parts for achieving the agent’s goals. This includes the operation
of the mechatronic component at its own level as well as the collaboration
with other entities of the system. In order to do so, the automation agent
is equipped with rules and behaviors about collaboration as well as the con-
trolled mechatronic component’s usage, which involves also diagnostic tasks.

When connected to the functional layer, the automation agents register
themselves at a functional agent (such as the directory facilitator in the Java
Agent Development Framework (JADE) [210]), which maintains a list of
active agents, in order to make their services available to the other agents.
Figure 3.1 depicts a possible conjunction of the automation agents with the
functional layer of KASA. Communication between the physical and the
functional layer is based on messages using a communication infrastructure
(e.g. ethernet) and a protocol for ensuring the common understanding of
content between the communication partners (e.g. FIPA ACL [86]).
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Figure 3.1: Possible conjunction of the automation agents with the functional
layer of KASA, based on [78].

3.2 Target System for Implementation

In order to facilitate an easier understanding, the presented concepts are
explained on the basis of the system used for the exemplary implementa-
tion (Objective 5 in Section 1.4): a pallet transport system with components
mainly by Festo Didactic [211] that consists of 45 conveyor belts with 32
intersections as well as 6 indexstations with grippers for holding pallets (see
Figure 3.2). Each component of this transport system (i.e. intersection, in-
dexstation and conveyor) is incorporated within one automation agent. This
constitutes a distributed control system with interconnected components.

A set of 38 embedded controllers of the type CPX-CEC-C1 by Festo
(described in Section 3.8.3) is employed to control the indexstations and in-
tersections as well as the conveyors. The indexstations and intersections in-
corporate Radio-Frequency Identification (RFID) readers as subcomponents
for identifying pallets. Each of the RFID readers is connected via a serial in-
terface with a small embedded controller of the type Digi Connect ME [212].
In total, 118 controllers are employed in the pallet transport system.
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Figure 3.2: Picture of the pallet transport system used for the exemplary
implementation of the agent-based control system. It consists of 45 conveyor
belts with 32 intersections as well as 6 indexstations with grippers for holding
pallets. 80 RFID readers are employed for identifying pallets. The complete
system is controlled by 118 embedded control devices.
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Figure 3.3: Example intersection i1, which acts as a diverter in the pallet
transport system [73].

3.2.1 Intersection as Running Example

The details of the automation agent architecture are described using the
example of an automation agent controlling an intersection in the pallet
transport system. The example intersection is named i1 and is located at
the crossing point of two conveyors (see Figure 3.3). Within the agent, this
crossing of the two physical conveyors is handled as a crossing of three logical
conveyors denoted as c12, c25 and c33. While the conveyors are controlled
by their own agents, the automation agent responsible for the intersection has
control over a set of subcomponents: three sensors for detecting pallets, three
blockers for stopping them, and one switch for routing them. Moreover, RFID
readers are employed on each adjacent conveyor for identifying the pallets’
Identifier (ID) and designated destination. Depending on the direction of
conveyor c25, the intersection either works as a junction with two incoming
and one outgoing logical conveyor or as a diverter with one incoming and
two outgoing logical conveyors. As the physical conveyor composed of c12

and c33 can be operated in two directions, the intersection incorporates in
total four operational modes. The required routing flexibility is provided
by the switch, which can be positioned in three positions and is therefore
referred to as a three-way-switch. For the running example in this chapter,
the intersection operates as a diverter with c12 as its incoming conveyor. In
the remainder of this work, the term “conveyor” refers to a logical conveyor
if not otherwise noted, as only the logical conveyors are of actual importance
for the operational principles of the automation agents.
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Figure 3.4: Dijkstra’s algorithm is used to determine the shortest path from
intersection i5 to destination D1. The small number next to each conveyor
represents that conveyor’s cost (i.e. time required for passing this conveyor).
The small number in brackets next to each intersection’s name indicates
the cumulative costs to reach that intersection from intersection i5. The
calculated shortest path in this example is composed of the conveyors marked
with green arrows.

3.2.2 Routing in the Transport System

Routing represents a core functionality of a transport system. A routing
algorithm is used by a contact agent for calculating routing tables during
system startup. It is based on Dijkstra’s algorithm [213] and creates a tree
of paths from each distinct location (i.e. intersections) to all designated des-
tinations (i.e. indexstations) in the system. Dijkstra’s algorithm is a simple
but effective algorithm for finding shortest paths. This is exemplified by find-
ing the shortest path from intersection i5 to destination D1 (see Figure 3.4).
Starting from intersection i5, the algorithm determines at first the costs to
the nearest locations, which are intersection i9 at the cost of 3 and intersec-
tion i6 at the cost of 4. The algorithm then continues its search along the
“cheapest” location, which is currently i9. After finding i13 at a total cost
of 6.5 and i15 at a cost of 7, the next “cheapest” location for continuing the
search is i6. While the some paths will end up too expensive or lead back to
the origin (marked with red arrows in Figure 3.4), eventually one path will
end at the designated destination D1 (marked with green arrows) if such a
solution exists. This path is the shortest path according to the calculated
costs. Consequently, i5 routes pallets straight to i6 if they need to go to D1,
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which is saved in the local routing table of i5. Such calculations are carried
out for every combination of intersection and destination to determine the
routing tables of all intersections.

If all conveyors and intersections are operational, this system layout al-
lows the algorithm to always find solutions from every intersection to all
destinations, but of course a different layout or broken components can pre-
vent that.

More details regarding the implementation of the routing algorithm,
which was developed in the frame of a previous research project, are pre-
sented in [214].

3.3 Automation Agent Architecture

An architecture for the automation agents needs to be chosen in regard to
the requirements such an agent has to fulfill when controlling a physical
component.

3.3.1 Architectural Requirements

The requirements regarding the architecture of the automation agents con-
trolling physical components are identified as follows:

• Safe operation [82]: The agent needs to ensure a proper working state
of its controlled component and should not execute commands that
would endanger the proper operation of the component or the system.

• Response time [55]: When interacting with the process, i.e. acting on
the hardware-near level, response times between 10 µs and 100 ms are
required. On the contrary, interactions with human operators may be
performed in response times between 100 ms and 10 s.

• Diagnosis [98, 215]: Sensor information can be used for directly de-
tecting local failures in the mechatronic component. In regard of the
previous two requirements, such failures should be detected in a short
time frame to quickly react appropriately. “Bigger scale” failures or un-
desired conditions might only be detectable by combining information
from different sources, i.e. other components of the system.

• Coordination [55, 99, 179]: For achieving aims, which are beyond the in-
dividual capabilities of an individual agent, and for ensuring the proper
functionality of the component in the manufacturing environment, the
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agents need to coordinate their activities. On the one hand, communi-
cation means are required to ensure that automation agents are able to
communicate with the agents on the superjacent functional layer. On
the other hand, real-time constraints might need to be met regarding
specific process-relevant information flows, as it is for instance in the
case of a closed-loop control spanning over two or more automation
agents.

3.3.2 Type of Architecture

Section 2.1.1 introduces the general types of agent architectures. The pre-
sented architectures are analyzed in regard to the requirements mentioned in
the previous section:

• Reactive architecture: The reactive architecture answers well to the
requirement regarding response time. The lack of complex represen-
tations allows an entity based on a reactive architecture to respond
quickly to changes in the environment [90]. Thus, this architecture is
suitable for reacting in a short time frame on detected local failures and
for ensuring a safe operation, if according mechanisms are implemented,
e.g. using standard PLC control code. However, this architecture is not
designed for merging information from multiple sources due to its im-
plicitly implemented information structures. Despite the ability for
real-time communication between entities, the common message sizes
between 1 bit and 100 bytes, which result from the applied software
technologies and their data types, are not sufficient for communication
with agents on the functional layer [55].

• Deliberate architecture: A deliberate architecture encompasses an ex-
plicit representation of the surrounding environment. Such a knowledge
base is suitable for merging information from multiple sources but can
lead to higher computational costs due to its complex structure [90]. A
longer response time on occurring events is therefore the consequence.
Nevertheless, such a representation structure is easier comprehensible
for human operators when interacting with the system. The common
means and protocols for communication with message sizes between
100 bytes and 4 kilobytes [55] are sufficient for communicating with
the other agents in the system.

• Hybrid architecture: Combining the reactive with the deliberative ap-
proach delivers a layered, hybrid architectures [216, 217]. This allows a



3.3. Automation Agent Architecture 59

High Level Control (HLC)

Low Level Control (LLC)
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Figure 3.5: Architecture of an automation agent composed of the physical
component as well as of a software component, which is further separated
into HLC and LLC, based on [73].

separation of concerns as different requirements and scopes of consid-
eration can be taken into account. Evidently, an interface is required
between the two layers to ensure information exchange within the agent.

Consequently, a hybrid architectures is chosen for the automation agents
to meet the identified requirements. In this context, the deliberate layer is
represented by the High Level Control (HLC) while the Low Level Control
(LLC) acts as the reactive layer. These two control levels are organized with
the HLC being superjacent to the LLC (see Figure 3.5) [55]. The HLC layer is
responsible for the control in regard to both the achievement of its own goals
and the coordination with other entities of the system for achieving global
goals. The LLC layer is responsible for directly controlling the mechatronic
component using a set of reactive behaviors. Thereby it is linked to the
sensors and actuators for supervising their actions and informs the HLC
about the actual state of the component.

In the following sections, both control layers of the automation agent
architecture are described in more detail. Besides, the interface for the com-
munication between the two layers is introduced and the diagnostic capa-
bilities of the automation agents are presented. Moreover, a reconfiguration
infrastructure is introduced, which serves as the basis for the configuration
and reconfiguration abilities of the automation agent.
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3.4 High Level Control

The HLC is responsible for controlling a range of behaviors of the automation
agent using information from its subjacent LLC as well as from other agents.
Its decisions are influenced by the present and past observed states in the
manufacturing environment. Figure 3.6 depicts the inner architecture of an
automation agent’s control software. The HLC is composed of four modules:

• The world model repository contains a World Model, i.e. a symbolic
representation of the world of the agent, which includes its inner states
as well as the surrounding environment. The world model constitutes
the declarative knowledge of an automation agent and can be queried
for reasoning about the actual states of the world before initiating ac-
tions. Generally, the world model is updated after recognizing changed
world conditions or after performing actions. In regard of the run-
ning example, the world model of the agent controlling the intersection
ranges just to its neighboring components apart from knowledge about
its parts and inner states (see Section 3.4.1).

• The decision-making component is closely connected to the world model
repository for reasoning about the states of the environment. Event no-
tifications generated by the LLC, by communicating with other agents
or by the world model trigger the decision-making procedures. These
procedures then update the world model, request operations from the
LLC, and communicate with other agents or issue a notification to a
human operator (see Section 3.4.2).

• The communication manager provides facilities for managing the com-
munication with other agents. In the presented work, it is provided by
the agent framework JADE.

• The generic interface enables the HLC to communicate with the LLC.
It provides facilities for receiving event notifications about the current
operations of the LLC and for requesting the execution of particu-
lar operations from the LLC. An approach for the generic interface,
which enables the HLC to communicate with various types of LLCs,
is described in Section 3.6. However, this generic interface is yet on
a conceptual level and consequently the final interface implementation
used in the presented work only encompasses the message-based com-
munication with LLCs of the standard IEC 61499.
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Figure 3.6: Inner architecture of an automation agent’s control software with
the HLC being separated into the modules: communication management,
decision-making, world model repository, and generic interface [73].

3.4.1 World Model

The world model repository consists of two parts: the situation model and
the activity model. The situation model holds knowledge about the automa-
tion agent’s situation, which consists both of the agent’s own characteristics
and its relations to other entities in the system. The activity model holds
knowledge about the activities of the agent, which provide an abstract repre-
sentation for the actions, tasks and goals of the agents, either being observed
in the system or expected to take place. Figure 3.7 illustrates the world
model of the automation agent controlling intersection i1, which acts as a
diverter. The situation model is composed of an ontology and a set of facts:

• The ontology contains knowledge about the agent’s own characteris-
tics and its relations to other entities in the system. This encompasses
knowledge about the automation agent’s environment and defines the
relevant classes of the entities as well as the relations between them. It
also serves as a vocabulary for referencing these classes and relations,
thus ensuring the interoperability between different agents. In the case
of an intersection, the ontology defines for example its relation to the
adjacent components, which are the conveyors that can be the intersec-
tion’s inputs or outputs. Such concepts and relations can be extracted
from existing ontologies, such as [214].

• The facts express the knowledge about the current state of the world
using the vocabulary defined by the ontology. In the case of the ex-
ample intersection, the facts express that i1 is an intersection, which
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Figure 3.7: World model of an intersection agent acting as a diverter, which
is separated into the situation model and the activity model [73].

has one input conveyor (c12) and two output conveyors (c25 and c33).
It is important to note that facts expressed in the situation model do
not intend to represent the complete world of the agent. The facts are
created during the instantiation process of an agent and represent the
knowledge the agent uses during its high level control tasks. Updates of
the facts can take place upon completion of control tasks. The knowl-
edge represented in the facts can also be updated with information
obtained from the agent’s LLC or other entities of the system.

The activity model is composed of a classification of activity types and a
model of expectations and observations:

• The classification of activity types incorporates the types of activities
the agent can be involved. These types are organized hierarchically
based on the subsumption relationship [218]. The primitive types are
defined as direct subclasses of “Activity”, while the derived types are
defined by restrictions, which take the actual world of the agent into
account. For instance, the generic type “Routing Pallet” is refined
to the more specific type “Routing Pallet from (c12 or c25) to

(c25 or c33)” and furthermore to the type “Routing Pallet from
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c12 to (c25 or c33)”, corresponding to the considered intersection
acting as a diverter. The further refined type “Routing palletToDS1

from c12 to c25” denotes the precise action of routing a particular
pallet with a particular destination DS1 from a particular input con-
veyor c12 to a particular output conveyor c25.

• The expectations and observations form a model of the activities that
are expected and observed by the agent. Expectations and observa-
tions are defined by the specification of a type (based on the classi-
fication of activity types) and timing, which is expressed using time
intervals [219]. While observations can express a precise timing, the
expectations rather express constraints on their timing. Expectations
are linked by dependencies, indicating how observations on one expec-
tation can have consequences on other expectations. Figure 3.7 depicts
that for instance the expectation “Routing palletToDS1 from c12

to c25” should occur starting at time t0 and ending at time t1=t0+d,
with d being the time for the pallet to pass through the intersec-
tion. This implies that the activity “Observing palletToDS1 from

c12” should occur at t0, the activity “Switching between c12 and

c25” should occur between t0 and t1, and the activity “Observing
palletToDS1 to c25” should occur at t1.

The world model enables the HLC to maintain a representation of rel-
evant aspects of the automation agent and its surrounding environment. It
allows the automation agent to reason about the fulfillment of expectations
or inconsistencies between the representation and the information it receives
from its environment by sensors or other agents.

3.4.2 Decision-Making Component

The agent relies on procedural as well as declarative knowledge (see Sec-
tion 2.1.4) for performing decisions. While the declarative knowledge is pro-
vided in the world model, the procedural knowledge is incorporated in the
decision-making component. It consists of two parts:

• Agent behaviors: The behavior of an automation agent is constituted
by a set of rules. Each rule comprises a condition and an action, which
is executed if the condition is satisfied. In contrast to purely reactive
behaviors, some rules are designed to also involve knowledge from the
world model. For instance the generic rule for handling expectations
is designed for the comparison of observations from the activity model
with the according expectations. In case the comparison delivers a
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Figure 3.8: Example of decision making: An update of information in the
world model triggers the service function for expectation matching. This
function invokes the rule for handling expectations multiple times comparing
each time an expectation with the observations made.

positive result, the action of the rule is executed, which can encompass
an update of facts and observations as well as notifying the agent’s
LLC or another agent.

• Service functions: The service functions support the agent in being
able to act. For instance one service function is responsible for adding
the information of status updates from the LLC to the facts in the
world model. Another service function for expectation matching is
responsible for invoking the rule for handling expectations upon new
or updated information in the world model. By invoking this rule
for each expectation existent in the activity model, the fulfillment of
an expectation based on the provided information can be recognized
and the according action of updating the world model is triggered (see
Figure 3.8).

Rules and service functions of the automation agents are realized as Java
methods in the presented work.
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3.5 Low Level Control

The LLC is reponsible for directly controlling the mechatronic component
by employing a set of reactive behaviors, which are constituted using an
industrial standard for being executed in an industrial controller. The in-
vestigation in Section 2.2 shows that the execution semantics of the widely
applied standard IEC 61131 do not answer well to the requirements for dis-
tributed, reconfigurable manufacturing systems. The system’s flexibility is
limited due to the centralized nature of IEC 61131 and difficulty to man-
age changes dynamically [32]. Moreover, the cyclically scan-based execution
nature of the PLC programs is sensitive to the order in which functional ele-
ments are placed in the program and specific complex synchronization prob-
lems in distributed environments could occur. Especially timing software
switches as well as synchronizing internal states during the reconfiguration
process is complicated [220]. Furthermore, tools are missing for dynamically
reconfiguring individual parts of applications such as a single FB [158]. On
the contrary, the standard IEC 61499 incorporates an event-based execution
model thereby improving its suitability for dynamic reconfiguration. Besides,
IEC 61499 runtime implementations exist that provide the basic mechanisms
for dynamic reconfiguration.

The LLC, realized with a network of IEC 61499 FBs, provides the basic
functionality of a component and possesses access to the component’s sensors
and actuators. Following a component-oriented design, a typical LLC appli-
cation for a component contains only a small number of FBs. In the case
of a diverter, the LLC encompasses eleven FBs. Figure 3.9 shows the FB
network of the previously mentioned example diverter, which is connected
to the incoming conveyor on its left side oriented from its three-way-switch.
Its basic functionality is to route an incoming pallet onto one of the two
outgoing conveyors and to block other pallets in the meanwhile.

To allow an easy reuse, the control software for each type of subcompo-
nent is encapsulated in a specific composite FB type. All these FB types
offer access to the corresponding controller I/Os that are connected with the
distinct physical subcomponents. In the case of blockers and switches, this
includes also the sensors for verifying the subcomponent’s position after an
induced actuator movement. Ten such FBs are responsible for controlling
the subcomponents of an intersection acting as a diverter:

• Three FBs FB SensorDevice handle the functionality of the three pal-
let sensors for detecting the arrival of pallets at the incoming conveyor
as well as verifying that a pallet leaves the intersection on the desig-
nated outgoing conveyor.
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Figure 3.9: Low level control of a diverter realized with a network of
IEC 61499 FBs, based on [73]. The central FB FB Diverter is used for
providing functionalities such as pallet routing while the other FBs control
the subcomponents. Adapter connections encapsulate the event and data
connections between the FBs. As can be seen, not all FBs are connected as
this depends on the actual configuration of the intersection. For instance,
the RFID readers at the outgoing conveyors are not used, therefore they are
not connected with the central FB.

• Three FBs FB BlockerDevice are reponsible for the three blockers at
the adjacent conveyors for stopping pallets in the case a pallet is already
located within the intersection. FBs of this type also access the sensors
for verifying the blocker positions after induced actuator movements.

• FB Switch3wayDevice controls the three-way-switch and is substituted
by the FB FB SwitchStandardDevice in the case of intersections in-
corporating another type of switch with only two positions. Likewise to
FB BlockerDevice, also this FB accesses position sensors for observing
the state of the switch after an induced actuator movement.

• Three FBs FB RFID Device are used for receiving data from the three
RFID readers at the adjacent conveyors. As each of the RFID read-
ers is in fact controlled separately by one small embedded controller,
FB RFID Device contains an FB for realizing an internal LLC-LLC
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communication between the main controller of the intersection and the
controller of the RFID reader.

In contrast to the FBs that control the subcomponents, functionalities
such as the communication with the HLC and the routing of pallets are
provided by the FB FB Diverter. A local routing table, which is received
from a contact agent via the automation agent’s HLC, is stored within an
FB inside FB Diverter and used to determine the outgoing conveyor for
a passing pallet. For each designated destination in the system (i.e. the
indexstations), a number is stored that represents the outgoing conveyor to
which the pallet has to be routed. A “0” represents the conveyor on the
left when the intersection is viewed from above like shown in Figure 3.3. A
“1” indicates the middle conveyor and a “2” represents the conveyor on the
right side. The main operational sequence of a component’s functionality is
realized using the concept of finite state machines, as it represents a simple
and elegant solution suitable for control software, which has to deal with
timings and decisions [221]. Moreover, a state machine is straightforward to
implement in the execution control chart of a basic FB, making this concept
therefore easy to adopt for the LLC sequences. Two finite state machines
within two distinct basic FBs are applied inside of FB Diverter for handling
on the one hand approaching pallets on the input conveyor and on the other
hand leaving pallets on the output conveyors. In the case of a junction, two
distinct state machines are responsible for handling the approaching pallets
on the two input conveyors and a third state machine handles the leaving
pallets on the output conveyor. State changes trigger an update message to
the HLC, which can then use this status update for diagnostic tasks.

For carrying out its algorithms, FB Diverter requires access to the pal-
let sensor, the blocker device and the RFID device that are located at the
incoming conveyor, as well as to the pallet sensors that are located at the two
outgoing conveyors. By using the adapter concept (see Section 2.2.2) for the
connections between the FBs, only six connections between them are neces-
sary. In the case of a junction, seven connections to the subcomponent FBs
are required as a junction utilizes the RFID readers on two conveyors instead
of only one. Connections to the FBs controlling the remaining subcompo-
nents are not required. As adapters represent self-contained interfaces [222],
the application of this concept leads to a very decoupled application de-
sign [223]. By clearly separating the two connected FBs, the employment of
adapters facilitates the exchange of one or both of these FBs [224].

Apart from the reconfiguration aptitude of the LLC, its memory usage
can be an important criterion regarding small embedded controllers that
have limited memory capacities. An evaluation of different IEC 61499 imple-
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mentation paradigms concerning their object code size is presented in [225].
A generated monolithic C program is identified as the most efficient paradigm
concerning code size, while any flexible runtime environment shows a larger
consumption of memory. However, compared to the pure compiled C code,
only a flexible runtime environment can provide the capability of dynamic
reconfiguration. Nevertheless, reducing the amount of consumed memory
is regarded of value concerning embedded controllers. In this context, the
component-oriented design of the LLC is evaluated in comparison with a less
decoupled application design not based on adapter connections between the
FBs, which has previously been developed by the author and used in an ap-
proach for controlling the physical components such as the example diverter.
A control module for a CPX valve terminal of the type CPX-CEC-C1 by
FESTO [226] is used as target system. It hosts an Xscale-PXA255 agile Intel
microprocessor with 400 MHz, 28 MB Flash and 24 MB RAM. A Linux op-
erating system is employed on this type of controller and the FORTE [227]
is applied as the IEC 61499 runtime environment for executing the FB net-
work. While the previously employed design consumes 1032 kB of memory,
the component-oriented design for the LLC requires only 392 kB of memory
usage, which represents a significant reduction of the memory usage in the
controller by 62%. In the given case, with several MB of memory available
on the FESTO controllers, the reduction of memory usage might not seem
of importance. However, further software components could be deployed on
such a controller. For instance, the integration of a framework for running the
HLC directly on the controller poses a severe challenge in contrast to hosting
such a framework on a regular PC due to the available memory [228]. Further
challenges regarding memory and its usage exist in regard of wireless sensor
networks [229] or applications in the domain of Internet of Things. Even
though devices with only very basic computing capabilities are existent in
these domains, they have to provide various functionalities such as commu-
nication services [230]. Consequently, the limited resources of these control
devices needs to be taken into account regarding the employed software [231].

3.6 Communication Interface between the

Control Layers

As an automation agent encompasses two control layers, which are further-
more based on different technologies, an interface is required to link these
layers. IEC 61499 is chosen as technology for the hardware-near control
layer of the approach presented in this work. Nevertheless, PLCs based on
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Figure 3.10: Concept for integrating automation agents with different LLC
types [74].

IEC 61131 remain common practice in the industry. To allow the applica-
tion of automation agents also on control systems based on this standard,
the concept of an interface between the control layers is presented, which
represents a possible migration path for involving different types of LLCs.
This concept has been developed in collaboration with industrial partners.

Figure 3.10 shows the concept of automation agents with different types
of LLCs connectable to their HLC. In order to achieve this architecture, an
interface is required that supports the communication between the HLC and
different LLC types. In this context, the notion of a generic communication
interface is used because vital parts of this interface shall follow the principle
of generality in order to easily extend the range of supported LLC types. The
lower level elements of such an interface that are in direct contact with the
LLC need to be customized corresponding to the supported type likewise to a
software driver. The interface is therefore required to connect the two layers,
HLC and LLC, taking into account the different software paradigms that
are applied on these layers. As this interface shall be usable for integrating
various types of LLCs, corresponding extensions shall be achievable without
extensive efforts.

Such an approach is not only applicable for real systems but also for
simulation, as this is an effective way for testing scenarios and improving the
quality of the solutions. Besides, the number of implemented multi-agent
control systems is yet small and, therefore, simulation represents a valuable
method for demonstrating their potential [232].

Commands and requests need to be sent from the HLC to the LLC,
and reports and failure notifications from the LLC to the HLC. Hence, the
purpose of the generic HLC-LLC interface is to make the functionalities from
the LLC accessible to the HLC in a uniform way. This raises challenges as
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follows:

• The different types of LLC use different communication protocols (e.g.
data table tags, channels), which have distinct properties (synchronous
vs. asynchronous interaction, messages vs. tags, event-driven vs. cycle-
based, etc.). Hence, a generic interface needs to support communication
protocols with different properties.

• The different LLC types use distinct definitions of commands. There-
fore, physical components of the same type are addressed differently
depending on the way a command is defined in the applied LLC type.

To address these challenges, the approach for the generic interface incor-
porates:

• A high level language for expressing semantic descriptions of commands
to the LLC, which enables the HLC to express commands using the
essential concepts of the domain without having to know precisely how
the invocation of the LLC is performed.

• An architecture for interpreting the commands expressed using the high
level language and translating it into low level commands that are spe-
cific for each type of LLC, interacting with various kinds of LLC types
in an asynchronous, event-driven way.

Figure 3.11 illustrates the principles of the generic interface. An example
of commands for controlling a blocker is presented as it shows clearly the
differences of LLCs based on IEC 61131 and on IEC 61499. In the following,
a blocker named blocker 01 operating at the place P1 controlled by an
IEC 61131 LLC, and a blocker named blocker 02 operating at place P2

controlled by an IEC 61499 LLC are considered for this example.
The upper part of Figure 3.11 illustrates a command sent by the HLC

to the LLC, which is expressed using the high level description language.
The lower part illustrates how the command is finally transmitted to the
LLC, i.e. by writing a tag named “bl 01” with the value “0” in the case of
an IEC 61131 LLC, or by sending a message with the content “0” to the
channel “239.191.0.14:61100” in the case of an IEC 61499 LLC. The center
of the figure illustrates the generic interface, which is composed of two parts:
a generic interpreter and a set of specific adapters. The generic interpreter
receives the command from the HLC and transfers it to a relevant adapter.
This adapter then translates the command into a form specific for the ap-
plied type of LLC. The lower part of Figure 3.11 shows the involvement of
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Figure 3.11: Principles of the generic HLC-LLC interface for supporting
LLCs based on IEC 61131 and IEC 61499 [74].

a specific adapter for LLCs realized with IEC 61131 (tag-based) and a spe-
cific adapter for those realized with IEC 61499 (channel-based). Generally
such adapters need to be developed specifically for each type of distinct LLC,
respectively the LLCs host controller device (e.g. a specific PLC). Develop-
ing such adapters, often denoted also as drivers, represents a core activity
of companies that link their software (e.g. SCADA software) with various
controller devices (e.g. [233]).

The semantic description of the LLC functionality plays an essential role
in the generic interface. It provides the necessary information for translating
the high level command into a low level command. Listing 3.1 illustrates a
description of the functionality of blocker 01 for the standard IEC 61131.
Listing 3.2 gives a similar illustration for the functionality of blocker 02 for
the standard IEC 61499. In this description, the functionality provided by a
blocker is composed of two services. The first one, named “activate” enables
the HLC to activate the blocker, thus blocking all incoming pallets. The
second one, named “deactivate” enables the HLC to deactivate the blocker,
thus releasing any incoming pallet. Each service is described using three ele-
ments: id gives an identifier for the service, type defines the type of service
and grounding defines how to invoke the LLC for providing the service.
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1 Service

2 id = activate

3 type = #BlockWorkpieceAtP1

4 grounding = LogixTagGrounding(write , st_01 , 0)

5

6 Service

7 id = deactivate

8 type = #ReleaseWorkpieceAtP1

9 grounding = LogixTagGrounding(write , st_01 , 1)

Listing 3.1: Description of blocker 01 functionality for an LLC based on
IEC 61131 [191].

1 Service

2 id = activate

3 type = #BlockWorkpieceAtP2

4 grounding = ChannelTagGrounding(send ,

239.191.0.14:61100 , 0)

5

6 Service

7 id = deactivate

8 type = #ReleaseWorkpieceAtP2

9 grounding = ChannelTagGrounding(send ,

239.191.0.14:61100 , 1)

Listing 3.2: Description of blocker 02 functionality for an LLC based on
IEC 61499 [191].

Using the type description, the generic interpreter matches the command
requested by the HLC with the actual services provided by the LLC function-
ality. Based on the component description, it decides which adapter to use
for sending the command to the LLC. In the case of a request to activate the
blocker 01, it uses the “activate” service with a LogixTagGrounding in or-
der to use the IEC 61131 adapter. In the case of blocker 02, the IEC 61499
adapter with ChannelGrounding has to be used. When an adapter receives
the command expressed in the high level language, it performs two steps:

1. The adapter translates the command into a direct LLC command. To
do so, it uses the information contained in the description of the func-
tionality. In the given example, the translation is direct, as the com-
mand for activating the blocker does not require any parameter. In
more complex cases, also parameters of a command might need to be
handled, which requires according interpretation mechanisms to con-
struct the correct LLC command.
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2. The adapter sends the command to the LLC, using the relevant commu-
nication protocol. For blocking a pallet with blocker 01, this means
that the adapter writes the value “0” into the tag named “bl 01”. In the
case of blocker 02, the IEC 61499 adapter is used to send a message
with the content “0” to the channel “239.191.0.14:61100”.

In addition to the simple case of commanding an action, illustrated by
the example, the generic HLC-LLC interface also allows the HLC to sub-
scribe and be notified of changes at the LLC level. In that case, the HLC
sends a subscription command, which is translated by a relevant adapter in
a similar manner. Whenever a relevant change happens at the LLC level,
the adapter informs the HLC by sending a message expressed using the high
level language.

Integrating a new type of LLC with the generic HLC-LLC interface is
achieved in two steps:

1. Definition of the grounding language for the considered LLC.

2. Implementation of the adapter for accessing the LLC.

For an LLC based on IEC 61131, the grounding language enables the de-
scription of read and write operations of a particular tag value. Additionally,
the notification of changes requires the adapter to monitor changes of tag
values. This is done using existing subscribe-notify mechanisms provided by
the tag-based interface as used for instance in MAST [166], which serves as
a bridge between the adapter and an LLC based on IEC 61131.

For an LLC based on IEC 61499, the grounding language enables the
expression of operations for sending and receiving messages with a given
content on a given channel. For the notification of changes, the adapter only
needs to listen for messages on the relevant channel, since IEC 61499 provides
the appropriate notification mechanisms.

3.7 Using Automation Agents for Diagnostic

Tasks

The occurrence of failures can reduce a system’s performance significantly.
For avoiding such a decrease, failures have to be detected and properly
treated if procurable. Different types of failures and anomalies can be dis-
tinguished [234]:

• Physical component failures involve the breakdown of a specific com-
ponent as well as a temporary nonfunctional state (e.g. a pallet is stuck
in an intersection).
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• Software entity failures refer to a limited functionality of an agent or
its complete inability for performing its tasks, which can be due to a
breakdown of the controller or the PC hosting the software or due to
a loss of communication.

• Anomalies encompass situations such as missing pallets or incorrect
deliveries.

By employing diagnostic algorithms, the detection of failures and anoma-
lies lies in the responsibility of the automation agents. Two forms of dis-
tributed diagnosis can be distinguished: semantically distributed diagnosis
and spatially distributed diagnosis [235]. Semantically distributed diagno-
sis is performed by a heterogeneous group of agents with each having its
own view of the system, modeling a different aspect. Spatially distributed
diagnosis involves a group of agents, which jointly monitor and diagnose
a distributed system by making use of each agent’s detailed knowledge of
a small part of the system in conjunction with the information exchanged
between them.

A MAS can combine both types of diagnosis. Functional higher level
agents model different functional aspects of the system and represent a het-
erogeneous group of agents. As such, they may rely on the semantically
distributed diagnosis approach due to their heterogeneity [236]. On the con-
trary, the diagnosis concept of the automation agents is derived from the
spatially distributed diagnosis approach. In such an approach each agent
is responsible for a certain area of the system [237]. This is the case for
automation agents, with each of them controlling a specific component of
a spatially distributed system, such as an intersection in a pallet transport
system. The automation agents are able to perform diagnostic tasks on both
of their control layers by comparing their current state with the intended
state. By recognizing differences between the current state and the intended
one, failures can be detected. The diagnostic mechanisms of the LLC are
purely related to failure detection within the mechatronic component using
its sensor data. However, the HLC can obtain information also from other
entities of the system to possibly determine both local failures and also those,
which stretch across multiple components [238]. Moreover, by applying a so-
called heartbeat mechanism also the liveliness of the controllers hosting the
software parts can be monitored for detecting software entity failures.

3.7.1 Diagnostic Mechanisms at the Low Level Control

The FBs of the LLC for accessing the subcomponents (blockers, etc.) incorpo-
rate preprogrammed diagnostic algorithms for detecting invalid positions of
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subcomponents using information from the according sensors. Using timers
is a common method in industrial practice for PLC programming for moni-
toring components in regard to error detection [239]. A timer is triggered as
soon as a subcomponent is required to change its position. If the changed
position is verified by the corresponding position sensor within the given time
frame, the subcomponent’s FB triggers a confirmation event to the central
FB of the LLC (e.g. FB Diverter). However, if the desired position is not
confirmed within that time frame, an error event is issued to the central FB
instead. Consequently, the LLC informs the HLC about this event which
indicates a broken component. Depending on which subcomponent is ap-
parently broken as well as on its position, the HLC can determine either a
reduced or completely lost functionality of the component and informs its
neighboring automation agents.

For example an error number, which is sent with the error event from
FB Switch3wayDevice to FB Diverter and further on to the HLC, indicates
the position of the switch based on the sensor data. Likewise to the numbers
representing the conveyors in the routing tables (see Section 3.5), the “0”
means that the three-way-switch is located on the left when the intersection
is viewed from above like shown in Figure 3.3. A “1” indicates that the three-
way-switch is located in its home position and a “2” represents the switch
being on the right position. The number “3”, which does not represent a
position of the switch, is sent if the sensor data does not indicate a certain
position. Based on the number, the HLC updates its world model, which is
described in Section 3.7.2.

Apart from detecting an invalid position of a subcomponent, the LLC
represents a necessary link for the diagnostic mechanisms of the HLC. In this
context, it transmits status information to the HLC based on the gathered
data from the sensors.

Moreover, predefined fault-recovery mechanisms can be incorporated in
the LLC such as trying to free a stuck pallet by moving the switch. This
task may be requested by the HLC in order to react on a detected failure.

3.7.2 Diagnostic Mechanisms at the High Level Con-
trol

In contrast to the LLC, which is able to detect only local failures, the HLC
has the ability to also determine failures and anomalies, which encompass
several components. Anomalies are detected by using the world model for
finding differences between the expected and the observed activities. Status
updates transmitted by the LLC are essential for carrying out the diagnostic
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5. Notify of relevant 
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Figure 3.12: Diagnostic sequence using the world model of the HLC for
detecting changes and anomalies [148].

mechanisms at the HLC. The diagnostic sequence incorporates five steps (see
Figure 3.12):

1. After the notification of an event, the world model is updated accord-
ingly.

2. The current situation is analyzed regarding a potential observation of
an activity.

3. In the case of a new observation, it is compared to existing expectations,
in order to verify the fulfillment of one or several expectations.

4. Based on dependencies between the expectations, a new observation
may also result in the creation of new expectations.

5. In the case of relevant changes or detected anomalies in the activity
model, the decision-making component is notified for initiating appro-
priate actions.

The following example elaborates the usage of the diagnostic sequence on the
basis of a pallet, which should leave an intersection.

A variety of causes can lead to the example case with the pallet not
being detected by the output sensor. The situation is analyzed by using
status updates from the LLC in conjunction with timing information in the
world model. In the given example, the activity “Routing p123 from c12

to c25” is not completely observed as expected. Based on the available
sensor information of the target system, one of the following conditions can
be responsible for this anomaly (see Figure 3.13):

1. a switch failure occurs;
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type: "Routing p123 from
          c12 to c25"
timing: (15, 17)

type: "Observing p123
          entering from c12"
timing: (15, 15)

type: "Observing p123 
          leaving to c25"
timing: (17, 17)

dependency: requires dependency: requires

type: "Switching between
          c12 and c25"
timing: (15, 17)

dependency: requires

type: "Detecting switch
          failure"
timing: (15, 17)

type: "Observing p123
          stuck"
timing: (15, 17)

type: "Observing sensor
          sOut1 defect"
timing: (15, 17)

type: "Observing c25
          defect"
timing: (15, 17)

dependency: preventedBy dependency: preventedBy dependency: preventedBy dependency: preventedBy

Figure 3.13: Expectations of possible activities responsible for the anomaly,
based on [148].

2. the output sensor is defect;

3. the outgoing conveyor is defect; or

4. the pallet is stuck inside the intersection (without a switch failure).

A switch failure can be detected by the LLC using sensor information
(see Section 3.7.1). In this case the HLC is notified by the LLC and updates
its facts in the world model according to the error number as follows:

• Error number “0”: The left conveyor c12 is not accessible and the fact
“i1 hasInput c12” is removed. As this is the only incoming conveyor,
the intersection cannot be used in the current configuration.

• Error number “1”: The middle conveyor c25 is not accessible and the
fact “i1 hasOutput c25” is removed. As a consequence, the according
activity “Routing palletToDS1 from c12 to c25” is removed and
the intersection can now only move pallets from c12 straight on to
c33.

• Error number “2”: The right conveyor c33 is not accessible and the
fact “i1 hasOutput c33” is removed. Consequently, the according ac-
tivity “Routing palletToDS2 from c12 to c33” is removed and the
intersection can only act as a curve that can transfer pallets from c12

to c25.

• Error number “3”: The location of the switch is unclear and as a conse-
quence, the fact “i1 isFailed false” is replaced with “i1 isFailed

true”.
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In the given example, only errors “0”, “1” and “3” can occur because po-
sition “2” is the desired position. According to the dependencies, it can be
concluded that the activity “Routing p123 from c12 to c25” cannot be
performed completely if one of these errors occurs. Consequently, the HLC
sends a message to the contact agent with the request to update the system
representation by removing the connections, which are no longer passable.
Error “3” means that this intersection has to be bypassed completely by its
neighboring components.

In order to confirm a defect output sensor, the automation agent relies on
information from another agent. Using the situation model, the correspond-
ing following agent in the transport system can be identified and queried
about the leaving pallet. In the case this agent detects the pallet after a
given timeframe, it can be concluded that the output sensor is defect and
that the pallet indeed has left the intersection.

A defect outgoing conveyor is indicated if the output sensor does not
confirm the leaving pallet and the corresponding following agent does not
confirm its arrival. According to the physical layout of the target system
with the left and right conveyor of a switch being one physical component,
this is only possible in the case of the middle conveyor. The consequences
are likewise to error “1” of the switch failure. The fact “i1 has output

conveyor c25” is removed from the world model and a message is sent to
the contact agent requesting the removal of the according connection in the
system representation. The switch is set to its home position and the pallet
should leave the diverter on the outgoing conveyor c33.

If the first three expectations are not observed and there are no signals
from the output sensors or the possible following that would indicate the
location of the pallet, it is assumed stuck in the intersection. A stuck pallet
renders the intersection impassable, which leads to an according update of
facts in the world model and a notification of the contact agent.

On the basis of the defined expectations and the available information,
the automation agent is able to deduce the cause of a detected anomaly. After
gaining according information from either its LLC or from other entities of
the system, observations may be added to the world model. As soon as an
observation confirms one of the expectations, the cause of the anomaly is
found and further actions can be initiated.

The presented failure cases should not be considered to be an exhaus-
tive list of possible failures in such a target system. They only represent a
sample of failure cases that can be identified based on the available sensor
information for explaining the principles of the diagnostic mechanisms. More
information regarding diagnostics using the HLC can be found in [148, 238].



3.7. Using Automation Agents for Diagnostic Tasks 79

HLC

LLC

tR

tHB

OK

OK

Failure 
detected

THB

THBTHB

THB

OK

THB … heartbeat period
tHB …. total time of heartbeat cycle
tR …. reaction time 

Figure 3.14: Heartbeat mechanism between the control layers of an automa-
tion agent [234].

3.7.3 Heartbeat Mechanism for Detecting Controller
Breakdowns

Apart from failures and anomalies affecting the controlled components in
the system and the moving pallets, also the components hosting the software
parts can be affected by a breakdown, i.e. a PC hosting the HLC of one or
several automation agents and the Festo CPX controllers each hosting one
automation agent’s LLC. This is a typical scenario for failure detection by
exchanging “I am alive” messages periodically between the hosts [240].

Detecting a missing software part is possible by applying an approach
based on a heartbeat mechanism, which means an exchange of request and
answer messages between two entities [234]. Automation agents use an in-
ternal heartbeat between their HLC and LLC, which enables the two layers
to monitor each other for verifying their operational status (see Figure 3.14).
The heartbeat period has to be chosen sufficiently long as messages have to be
transmitted over the network and then processed by the receiving entity. If an
answer message is not received and processed within the specified time frame,
the remaining layer notifies the system’s agent management service, which
has to react accordingly to this failure case. In case of a non-operational
LLC, the controller can be rebooted, which is followed by the configuration
of the LLC (Chapter 4 introduces the LLC configuration process). In case a
restart of the non-operational layer is not successful, the component has to
be bypassed by the system.

The heartbeat mechanism can also be used for monitoring functional
agents with no physical representation. In this case, heartbeat messages are
exchanged between different agents to verify their operational status.
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3.8 Reconfiguration Infrastructure

While the internal structure of the HLC is flexible due to the modifiable
knowledge structure in the form of the world model, the LLC relies on a re-
configuration infrastructure, which allows the modification of the IEC 61499
FB network. According to Wang and Shin, a reconfiguration process of the
control software can encompass modifications as follows [16]:

• Modification of parameters: e.g. for adapting parameters of a closed-
loop controller without changing its type;

• Modification of the execution sequence: The sequence of activities at
a machine needs to be modified when the operation procedure changes
(e.g. using the same machine to manufacture parts of another product).

• Modification of the information flow: In case the system is extended
or reduced by physical components, their communication paths to the
other components of the system need to be created or removed. More-
over, if relationships among components change (e.g. a subcomponent
is allocated to a different higher-level component than before), the cor-
responding communication port linkages need to be adjusted.

• Modification of a component’s provided functionality by changing or
substituting parts of its control software elements: The addition, re-
placement or removal of software elements may be needed if new de-
vices, control functions, and control algorithms are introduced (e.g. an
intersection’s role is changed from diverter to junction). The replace-
ment of a software element can be viewed as a removal followed by an
addition of such a part.

A reconfigurable control infrastructure has to ensure that the controlled
process is not disturbed by the reconfiguration process. This encompasses is-
suing no wrong stimuli to the process and handling the resulting state changes
correctly. Kramer and Magee have been one of the first who investigated
reconfiguration processes for real-time systems and discussed the necessary
infrastructure [241]. They suggest a configuration manager being responsible
for conducting the reconfiguration process. The basis for the reconfiguration
process is a so-called change specification. It is used for specifying desired
changes to the system such as the introduction of new components or the
modification of existing ones. For the execution of the transformation, the
configuration manager needs knowledge about the existing system configu-
ration, the system’s state, and key properties of the software components
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involved. Based on this information it determines a sequence for applying
the changes and also the prerequisites for each change.

In regard of the analysis of existing reconfiguration approaches based on
IEC 61499 as presented in Section 2.2.4, the approach presented by Zoitl [159]
is chosen as the basic infrastructure for enabling the automation agents to re-
configure their LLC. A working implementation is reported and the approach
is suitable for the distributed dynamic reconfiguration of control components.
Connecting this infrastructure with a suitable approach that automates the
reconfiguration process would render the manual creation of reconfiguration
applications (as proposed in Zoitl’s approach) obsolete.

Zoitl proposes a programmable reconfiguration management, which pro-
vides the infrastructure for the reconfiguration of an application. Using the
reconfiguration management, a so-called Reconfiguration Application (RCA)
can be developed for conducting a reconfiguration process. While the RCA
interacts with the target application during the reconfiguration, it has to
gather the target application’s current state and perform the modifications.
The reconfiguration infrastructure provides dedicated interfaces for perform-
ing these tasks.

As the LLC of an automation agent is a real-time constrained control
application, it has to react within certain time limits to state changes of the
controlled process. These timing constraints need to be taken in to account
regarding reconfiguration. In order to avoid stability problems during recon-
figuration, Wang and Shin recommend that reconfiguration tasks are only
performed at specific times during an application’s execution at which it is
not subject to timing constraints [16].

3.8.1 Basic Reconfiguration Services

Zoitl describes a set of so-called basic reconfiguration services that can be
used for reconfiguring IEC 61499 applications on control devices [159]. These
services are denoted as basic as they represent the minimal set of reconfigura-
tion services that are required for performing control software reconfiguration
tasks by executing an according sequence. The basic reconfiguration services
are provided in the form of an internal as well as an external reconfiguration
interface and can be grouped into the following classes:

• Structural Services are used for changing the structure of the control
application. These services include the creation and deletion of FBs
and connections as well as the modification of parameters.

• Library Services allow the addition or removal of type definitions (e.g.
FBs or data types) in the control device.
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Figure 3.15: (a) An RCA realized with FBs of the internal reconfiguration
interface interacts with the application that is reconfigured. All FBs run on
the same control device. (b) The HLC of an automation agent acts as an
RCA. It executes a sequence of commands that use the external reconfigu-
ration interface for reconfiguring the LLC application. The figure is based
on [73, 77].

• Execution Control Services are used for changing the execution state
of FBs. This is needed for controlling if an FB shall respond to events
or not.

• State Interaction Services enable the acquisition or modification of an
FB’s state, which is represented by the input and output data as well
as by the FB’s current internal data. Theses services are required for
performing transition management algorithms.

• Query Services allow the retrieval of the target application’s current
structure. These services include the identification of the instantiated
FBs and their connections as well as their types.

The internal reconfiguration interface is realized with a set of IEC 61499
service interface FBs. In this case, the RCA is tailored as an FB network,
which results in the usage of one language for both applications. This has
the advantage that the interaction interface between the RCA and the target
application under reconfiguration is rather simple. Monitoring the event
and data flow, setting data values, as well as issuing events are achieved
directly by using specific FBs in the RCA (see Figure 3.15a). As mentioned
in Section 2.2.4, the internal reconfiguration interface was used by Zoitl for
reconfiguring the closed-loop control of an inverted pendulum [159].

On the contrary, the reconfiguration infrastructure allows performing a
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reconfiguration process remotely without an RCA composed of FBs. This
approach is applicable for small control devices with not enough spare ca-
pacity for hosting an RCA or for reconfiguration processes, which do not
need to fulfill tight real-time constraints. For such cases the basic recon-
figuration services are provided by the infrastructure also as an external
interface, which can be accessed via communication from external tools.
Using Transmission Control Protocol (TCP) communication on Ethernet,
a reconfiguration entity is able to access the external reconfiguration in-
terface for requesting the execution of reconfiguration services. The re-
configuration request and its data is encapsulated in an XML string as
defined in the standard IEC 61499. An example of a request for creat-
ing a connection between two FBs using the external reconfiguration in-
terface is shown in Listing 3.3. Chapter 4 describes how the HLC is able
to act as a reconfiguration application (see Figure 3.15b). Consequently,
it uses the provided reconfiguration infrastructure for configuring the LLC.

1 <Request ID="#" Action="CREATE" >

2 <Connection Source="FB1.Output" Destination="FB2.

Input" />

3 </Request >

Listing 3.3: Example basic reconfiguration service “create connection” as
an external reconfiguration command.

3.8.2 Suitability of the Reconfiguration Infrastructure

At the beginning of Section 3.8, several reconfiguration tasks are identified
that have to be provided by a reconfiguration infrastructure. They can
be summarized to changing parameters, changing the execution sequence,
changing the information flow and changing a component’s functionality.
With the provided basic reconfiguration services described in the previous
section, these tasks can be solved as follows:

• Changing parameters can be achieved with the structural services by
removing and then setting the parameter (see Figure 3.16).

• Changing the execution sequence can be achieved with the structural
services, i.e. with the services for creating and deleting connections (see
Figure 3.17).

• Changing the information flow can be achieved with the the structural
services, i.e. by changing communication IDs of FBs (likewise to Fig-
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Figure 3.17: (a) Initial FB network. (b) Removal of connections using the
structural service “delete connection”. (c) Wiring of new connections using
the structural service “create connection”.

ure 3.16) or by changing connections that provide those IDs (likewise
to Figure 3.17).

• Changing a component’s functionality can be achieved mainly with the
structural services, which allow to change the FBs and the connections
between them, as well as with the state interaction services for adjusting
new functionality (see Figure 3.18).

Apart from that, the execution control services can be used for activating or
deactivating parts of the FB network.

By making use of this reconfiguration infrastructure, the automation
agent is able to modify its LLC at runtime. Consequently, the FORTE
is used as the runtime environment for the LLC and its FBs are developed
using the corresponding engineering environment 4DIAC-IDE [242]. Thus,
the HLC gains the ability of acting as an RCA using the external recon-
figuration interface for transmitting according reconfiguration requests (see
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Figure 3.18: (a) Initial FB network. (b) Removal of connections and an
FB using the structural services “delete connection” and “delete FB”. (c)
Instantiation of a new FB and wiring of new connections using the structural
service “create connection” as well as starting the FB using the execution
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Figure 3.15b). The following section presents a test of the reconfiguration
infrastructure in conjunction with an automation agent having to perform a
predefined, simple reconfiguration process.

3.8.3 Test of the Reconfiguration Infrastructure

With the HLC and LLC not located on the same entity, the reconfigura-
tion infrastructure of the LLC is accessed by the HLC using communication
via network. Despite the improvements in computer technology in the last
decades, the latency of network communication is still a factor to take into
account regarding distributed applications [243]. This test investigates the
time required for conducting a reconfiguration process via network.

The component-oriented application design that is used for the LLC al-
lows the alteration of a component’s functionality by replacing its central FB
(see Section 3.5). This test emulates such a reconfiguration by adding one
FB into an application. A control module for a CPX valve terminal of the
type CPX-CEC-C1 by FESTO [226] is used as target system for this test ex-
ample. It hosts an Xscale-PXA255 agile Intel microprocessor with 400 MHz,
28 MB Flash and 24 MB RAM, and an output module with 4 digital output
ports is attached to it. A Linux operating system is employed on this type of
controller and the FORTE is applied as the IEC 61499 runtime environment
for executing an application.

Figure 3.19a shows a screenshot of the original IEC 61499 application,
which was created using the 4DIAC-IDE and consists of a network of three
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Figure 3.19: Screenshot of the development environment showing the original
configuration (a) and diagram of the target configuration (b) [77].

FBs. The obligatory FB START of the type E RESTART is responsible for
sending the initial event. SERVER 1 is used for communication to receive a
boolean value which shall be written onto one of the digital output ports
using the FB DO. After the HLC has performed the reconfiguration, the LLC
application shall invert the received boolean value before writing it onto the
digital output port. This requires the functionality of inverting a boolean
value which is provided by the FB type FB NOT. After the reconfiguration,
the application shall have a structure according to Figure 3.19b—a screenshot
is not possible as the reconfigured application only runs in the controller.

The RCA of this test example within the HLC consists of a sequence
of Java commands, which send the reconfiguration requests in XML format
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to the device management in the FORTE hosting the LLC. Table 3.1 shows
the sequence consisting of 8 requests in order to perform the reconfiguration.
Before being able to connect the newly instantiated FB NOT of the type
FB NOT, the corresponding connections between SERVER 1 and DO have to
be deleted. New connections can then be created to achieve the desired
application. Finally, the instantiated FB NOT has to be started to change
its operational state from “idle” to “running”. Each time after receiving
and executing a request, the LLC sends a response to the HLC. Only after
receiving the corresponding response, the HLC issues the next request.

No Type of ac-
tion

XML Command

1 Creating new
FB

<Request ID="1" Action="CREATE"> <FB
Name="NOT" Type="FB NOT"/> </Request>

2 Deleting con-
nection

<Request ID="2" Action="DELETE"> <Connection
Source="SERVER 1.IND" Destination="DO.REQ"/>
</Request>

3 Deleting con-
nection

<Request ID="3" Action="DELETE"> <Connection
Source="SERVER 1.RD 1" Destination="DO.Q"/>
</Request>

4 Creating new
connection

<Request ID="4" Action="CREATE"> <Connection
Source="SERVER 1.IND" Destination="NOT.REQ"/>
</Request>

5 Creating new
connection

<Request ID="5" Action="CREATE"> <Connection
Source="NOT.CNF" Destination="DO.REQ"/>
</Request>

6 Creating new
connection

<Request ID="6" Action="CREATE"> <Connection
Source="SERVER 1.RD 1" Destination="NOT.IN"/>
</Request>

7 Creating new
connection

<Request ID="7" Action="CREATE"> <Connection
Source="NOT.OUT" Destination="DO.Q"/>
</Request>

8 Starting the
new FB

<Request ID="8" Action="START"> <FB
Name="NOT" Type=""/> </Request>

Table 3.1: Issued commands for inserting an FB of the type FB NOT into an
application [77].

To measure the time of each reconfiguration step, as well as of the com-
plete reconfiguration, the program Wireshark [244] is used to get the exact
time stamp of each request and according response. The time difference indi-
cates the required time for carrying out a request. For gaining representative
data, a second reconfiguration sequence for returning the application to its
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original state is added to run the reconfiguration 100 times in a loop. The
average duration and standard deviation of the issued commands are shown
in Table 3.2. The average time of a complete reconfiguration sequence with
the 8 management commands for adding FB NOT to the application is calcu-
lated to 75 ms with a mean deviation of 9 ms. Consequently, approximately
95% of the reconfiguration processes for this example will require between
57 and 93 ms. This is confirmed by the fact that the sample showed only 2
outliers making it therefore a representative sample.

No Type of action Arithmetic
mean (ms)

Standard de-
viation (ms)

1 Creating new FB 4,49 1,05

2 Deleting connection 7,12 2,49

3 Deleting connection 10,56 3,75

4 Creating new connection 10,43 2,45

5 Creating new connection 10,03 2,81

6 Creating new connection 11,99 2,33

7 Creating new connection 10,94 2,55

8 Starting the new FB 9,49 2,96

Table 3.2: Average duration and standard deviation of the issued commands
for inserting an FB of the type FB NOT into an application.

The amount of time required to conduct a simple reconfiguration process
as shown in this test example is sufficiently small enough for industrial pro-
cesses in operation, which do not need to be performed under hard real-time
constraints. Evidently, as each command requires a certain amount of time,
a reconfiguration process with more commands has a longer duration. For
instance, when an FB with a larger interface is inserted, more commands for
setting up the connections to the other FBs might be required which leads
to a longer reconfiguration process. Consequently, applications and FBs de-
signed for supporting reconfiguration processes should employ adapters that
integrate such larger interfaces [224]. A linear increase of required time in
the case of more issued commands is shown by the timing measurements
for configuring two differently sized applications presented in Section 4.5.1.
Therefore, when considering the reconfiguration of an application, this linear
increase of required time due to more elements in the application should be
taken into account.

The IEC 61499 runtime maintains a list of all instantiated FBs and a list
of all established connections with their end points [173]. When requiring
information from the lists, the FORTE employs a linear search algorithm by
going through the entries one by one. This means that the required time
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to gather information grows linear with the amount of entries in the lists.
Commands that require information from one of those lists will therefore
take a longer time the more entries a list has. While deleting an FB requires
finding the particular FB in the list of instantiated FBs, the creation of an FB
requires no such information as just one entry is added to that list. Therefore,
the time for executing the command “delete FB” increases with every entry
while the time for executing the command “create FB” does not increase.
However, the timing measurements in Section 4.5.1 are not sufficient for
investigations on this effect as the network latency is the dominating factor
in the performed experiments.

3.9 Summary

This chapter introduces a hybrid architecture for agents controlling physical
entities. This agent type is denoted as automation agent and its architecture
comprises two software layers.

The HLC, which represents the deliberate layer of the automation agent,
relies on a world model, i.e. a symbolic representation of the agent’s environ-
ment. The world model is based on ontologies and incorporates two parts:
the situation model and the activity model. The agent’s own characteristics
as well as its relations to other entities of the system are incorporated in the
situation model, which is updated when these relations change. The activ-
ity model is employed for detecting inconsistencies (and thereby anomalies
and failures) between the expected and the actual state of the agent and its
environment, which is shown in a use-case in Chapter 5.

The LLC represents the reactive layer of the automation agent and pos-
sesses direct access to the physical world by its interface to the sensors and
actuators of the controlled component. It is realized with a network of FBs
based on the standard IEC 61499. By applying a component-oriented design
according to the subcomponents of the controlled physical entity, the FB
network incorporates only a small number of FBs. Furthermore, the design
allows an easy reuse of each subcomponent’s according FB as will be shown
in Chapter 4. Likewise to the superjacent layer, diagnostic mechanisms are
also incorporated in this layer.

Even though the LLC for this work is realized solely on the basis of
IEC 61499, the concept of a generic interface is introduced, which is des-
ignated for the connection of automation agents to other LLC types. This
emphasizes the flexibility of the hybrid agent architecture and might repre-
sent a migration path for the application of agent technology in the industry.

Finally, a reconfiguration infrastructure is presented, which provides the
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basis for allowing an automation agent to modify its LLC. A test example is
presented that shows that it is viable to use this reconfiguration infrastructure
for a dynamic reconfiguration process despite the need of communicating
via network. Chapters 4 and 5 present details on how the reconfiguration
infrastructure is used by the agents.

Employing automation agents constitutes a control system with dis-
tributed and modular components incorporating the capabilities of diagnosis
and self-reconfiguration, of which the latter is elaborated in the following
chapters. With its properties and capabilities, the introduced agent archi-
tecture complies to the requirements for reconfigurable manufacturing as
identified in Section 1.2.2.



CHAPTER 4

Automated System Configuration1

Auto-configuration management is essential for reconfigurable manufacturing
systems in order to prevent extensive manual efforts, which would decrease
the benefits of reconfiguration [23]. Thus, a system can provide support
for the dynamic adaptation of its functionality and is made scalable in the
presence of changes [17].

Ontologies are suitable for representing the knowledge of agents and the
integration of both technologies brings advantages in the context of exten-
sibility and communication [245]. Combining the concept of ontologies and
explicit semantics with machine-based reasoning and inference can enable
the execution of automated configuration processes [66].

This chapter introduces an approach for automatically configuring the
control software of a distributed control system based on automation agents.
The approach relies on an ontology for expressing details of the system
components combined with the MAS, which is composed of the automa-
tion agents each controlling one component. The developed ontology covers
the environment structure, characteristics, and component interrelationships
enabling the agents to reason about these facts and perform decisions. Based
on this knowledge, the agents use the configuration infrastructure presented
in Section 3.8 for automatically configuring the hardware-near control layer.
Thereby, an executable LLC implementation is generated for each system
component within the corresponding controller.

1Parts of the contents of this chapter were previously published in [76].
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Problem Space Solution Space
Configuration 
Knowledge

Generator

Implementation

Generative Domain Model

Figure 4.1: Paradigm of generative programming for automatically generat-
ing an executable implementation.

4.1 Automated Configuration based on

Generative Programming

Generative programming is a paradigm of software engineering, which em-
ploys a generator for transforming information that is stored in a higher-level
specification into an executable implementation. This means bridging a wide
gap as there is commonly an essential difference between the structure of the
specification and the structure of the implementation.

The paradigm of generative programming requires a generative domain
model which incorporates the following concepts [246]:

• Problem space: contains application-oriented concepts and features
which are mapped to the components of the solution space;

• Solution space: contains the implementation components which should
be flexibly combinable and reusable with a minimum of code redun-
dancies;

• Configuration knowledge: specifies the rules, dependencies, as well as
illegal feature combinations for correctly mapping the features of the
problem space to the components of the solution space.

Consequently, the generator utilizes the generative domain model to create
the implementation (see Figure 4.1). To ensure a valid generation process,
a specification check is performed using the constraints of the configuration
knowledge. Finally, the executable implementation is a specific configuration
of the implementation components of the solution space.
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According to the paradigm of generative programming, the following
tasks need to be done for achieving the automated configuration of the control
software in a manufacturing system [247]:

1. Definition of the problem space in a format that is understandable and
usable for the generator.

2. Definition of the solution space in the form of reusable software com-
ponents that can be aggregated to form an application.

3. Definition of the configuration knowledge, which includes rules for the
specification check ensuring consistency as well as for the actual gen-
eration of the application.

The components of the targeted manufacturing system need to be repre-
sented in the problem space as PC = {pc0, ..., pcn} to enable their mapping
onto the according software components SC = {sc0, ..., scn} of the solution
space. Section 4.2 introduces the ontology and its concepts that represent
the contents of the problem space. The solution space is constituted by the
building bricks of the LLC, i.e. in this work the IEC 61499 FBs as presented
in Section 3.5.

For defining the configuration knowledge, a rule base R = {r1, ..., rn} has
to be defined. Each of the rules ri : φi(xi) → ψi(yi), i ∈ {1, ..., k}, k ≤ n,
which are part of the sub-base Rc for generating control code, consists of a
condition function φ(·) and an action function ψ(·) [248]. On the contrary,
each rule rj : φj(xj) → ξj(yj), j ∈ {1, ..., l}, l ≤ n, k + l = n for the specifi-
cation check in the sub-base Rs incorporates a constraint ξ(·) instead of an
action function. The rule base is presented in Section 4.4.

Figure 4.2 depicts the workflow of the configuration process, which is de-
rived from the generative programming paradigm. Using the provided prob-
lem space representation in the ontology and the FBs of the solution space,
the agent shall act as generator that applies the rules of the configuration
knowledge for generating the executable LLC implementation.

4.2 Ontology of the Control System

For the automated configuration of the control software, a type of a model is
required, which contains information concerning the structure of the target
system. As described in Section 3.4, an automation agent relies on an on-
tological world model as knowledge base. Consequently, the problem space
is represented in the form of an ontology for the automated configuration of
control software.
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Figure 4.2: Workflow of the configuration process to achieve an executable
implementation in the LLC of an automation agent.
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In order to be usable for different target systems, the system ontology
needs to be structured according to a domain ontology, which defines concepts
specific to a domain [249]. In this context, standards represent a consensus on
the semantics of terms and definitions in a domain, which means that being
compliant with them results in an increased reusability and applicability in
industrial practice [250]. Besides, the issue of standardization is considered
to be a major challenge concerning the industrial acceptance of semantic and
agent technologies [49].

The standard ANSI/ISA-S95 Enterprise-Control System Integration pro-
vides a hierarchically structured equipment model in its Part 1: Models and
Terminology [251], which is applicable for the manufacturing domain. How-
ever, the provided model does not consider entities below the level of work
cells. The complete target system of this work represents a work cell by it-
self and therefore more granularity is required. Consequently, the standard
ANSI/ISA-S95 is too abstract for being used in the domain ontology of this
work.

Regarding the batch process domain, the standard IEC 61512 Batch Con-
trol, Part 1: Models and Terminology [252], respectively ANSI/ISA-88 Batch
Control, provides reference models and structures as well as definitions con-
cerning the physical equipment on the field level apart from various other
models. Even though designed for batch control, the guidelines of this stan-
dard have been adopted to other domains such as discrete manufacturing to
apply likewise structural concepts and guidelines in these domains [253].

As mentioned in Section 2.1.4, Lohse et al. report an equipment module
ontology with the focus on the functions and behaviors of equipment entities
and their connections [136]. In their ontology, the physical object classes of
various hierarchical levels are subclasses of a generic class called Equipment.
This is meaningful, as attributes that all physical objects possess can be
inherited from this generic class. However, the compliance with any industrial
standard is not reported in this approach.

Following the idea of a generic class for physical objects but combining
it with the compliance with the standard IEC 61512 delivers the following
classes as core concepts of the hardware-related ontology part (see Figure 4.3,
Hardware) for representing the physical components of the target system:

• Module: This class represents the abstract class for any actuator, sen-
sor, or aggregation of these components.

• ControlModule: This is a subclass of the class Module. According
to the standard IEC 61512, basic components of a manufacturing sys-
tem such as blockers and switches, which act as the smallest entities,
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...
...EquipmentModule

ControlModule

hasModule

IndexStation

Intersection

subClassOf

subClassOf

BlockerDevice

Switch3wayDevice

subClassOf

subClassOf

subClassOf

subClassOf

Module

subClassOf

subClassOf

ParameterProvider

RequirementFunctionBlock

hasFB

hasParameter

subClassOf

hasNode

RestrictionrefersTo

refersTo

FestoCPX

DigiConnectME

Controller

Hardware
Software

Node

subClassOf

controls

Figure 4.3: Reduced overview of the classes and their relations of the re-
source ontology describing the components of the target system as well as
the software concepts, based on [76].

are referred to as control modules. All types of basic components are
therefore subclasses of the class ControlModule.

• EquipmentModule: This is a subclass of the class Module. According
to the standard IEC 61512, equipment modules are aggregations of
control modules, which is manifested in the ontology with the relation
hasModule between the classes EquipmentModule and ControlModule.
In the testbed, all types of aggregated components such as intersections,
which are composed of sensors, blockers, RFID modules and usually a
switch, are subclasses of the class EquipmentModule.

Neither the ontology by Lohse et al. nor the standard IEC 61512 takes
the controller devices into account. But controllers such as PLCs need to
be included for facilitating such an integration process [66]. Regarding the
ontologies mentioned in Section 2.1.4, only the work by Alsafi and Vyatkin
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involves the representation of control devices [140]. Taking this approach
into account extends the resource ontology by the class Controller, which
represents the abstract class for any type of controller. The control of the
physical components is represented by the relation controls between the
classes Controller and Module. The employed types of controllers are de-
rived as subclasses from the class Controller.

For the automated configuration of the LLC, the basic concept of FBs
needs to be represented in the ontology. Designating the automatic compo-
sition of automation objects as future work, Orozco and Lastra report an
ontology that involves the concept of FBs of the standard IEC 61499 [254].
Consequently, further semantic extensions in the form of a software-related
part are incorporated for the wiring of the LLC application (see Figure 4.3,
Software):

• FunctionBlock: This class refers in principle to software components
of any type of component-oriented control software and does not neces-
sarily refer to an IEC 61499 FB. This general concept is of importance
in the case this approach is adopted for configuring a different type
of LLC. Each module type is represented in the control software by a
specific type of FB, which is represented by the relation hasFB.

• Node: The nodes of a software component represent the connection
points to the software components of other modules within the same
LLC application. The link with the class FunctionBlock is represented
with the relation hasNode. In the case of IEC 61499 FBs, the nodes can
represent event and data connection points as well as adapter ports.

The ontology has to include furthermore concepts that enable the au-
tomatic matchmaking of the FBs’ nodes. In this context, the principle of
SOAs involves the matchmaking of entities: service requestors are connected
with service providers that can fulfill their request [57]. Valid connections are
found in such systems based on descriptions and conditions. Even though
not being denoted as SOA, an approach for the matching of equipment mod-
ules incorporates the approach of connectivity constraints for linking fit-
ting equipment interfaces with each other [136]. In regard of the standard
IEC 61499, the discovery and automatic association of these FBs is rather
an open point [255]. Consequently, the additional concepts are represented
in the ontology that allow the linking of FBs and their nodes:

• Provider: This class categorizes nodes that are offered by a software
component. Therefore, the possible link between the classes Provider
and Node is provided with the relation isA.
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• Requirement: This class categorizes nodes of a software component,
which require a connection or a value. The possible link to the class
Node is provided with the relation isA.

• Parameter: This class refers to the parameters of the software com-
ponents. On the one hand, values can be required by nodes of a soft-
ware component. On the other hand, providers are linked with spe-
cific parameter values in order to be checked in regard to restrictions.
Consequently, both classes Provider and Requirement can link to a
parameter with the relation refersTo. For example, the specific pin
number at the controller, to which a control module is connected to,
is a required parameter for the software component representing that
module in the LLC application.

• Restriction: This class represents restrictions given by the nodes that
require a connection. Therefore, the class Requirement is linked to this
class with the relation refersTo. In order to achieve a valid executable
LLC, all required nodes of the LLC’s software components need to have
connections to provided nodes, which fulfill the given restrictions.

Generally, the providers are linked with their FB’s parameters and specific
values are expected by the requirements of other FBs, which are described
in the requirement’s restrictions.

Figure 4.4 depicts selected instances of the example intersection i1 in-
troduced in Section 3.2.1. The intersection incorporates instances of dif-
ferent control module types (such as i1 Sensor L, i1 Blocker L) that are
each represented by distinct FBs. Each FB possesses nodes of either the
class Requirement or Provider. While nodes of the class Provider (e.g.
Adapter Sensor of the FB Sensor Device) refer to parameters, nodes of
the class Requirement refer to restrictions. These restrictions are defined as
constraints that can be interpreted during the configuration process of the
LLC. Besides, intersection i1 is also linked with the instances of the adja-
cent conveyors. Such information is used for determining the intersection’s
operational mode (i.e. diverter in the case of i1) as well as for calculating
the routing tables (see Section 3.2.2).

The developed ontology represents the problem space of the automated
configuration and its contents are stored in an according XML format. Us-
ing XML for the design artifacts of the ontology goes along with advantages
such as its platform independence as well as a self-explanatory representa-
tion [157]. The classes of the resource ontology with their relations are stored
in a module specification file. The instances are stored in a corresponding
instance specification file.
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Figure 4.4: Reduced overview of the instances of an intersection representing
the physical modules as well as the software components and their nodes.
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4.3 Configuration Process of the High Level

Control

At system startup, the HLC for each equipment module is created automat-
ically by the agent system based on the target physical system’s topology
and components. This is done in a few steps and shall be elaborated on the
basis of intersection i1, which was already used as example in Chapter 3:

1. An automation agent in JADE is instantiated for each equipment mod-
ule instance in the resource ontology. A local ontology is created for
this agent’s situation model and the generic activity types, such as
“Routing Pallet” for an intersection, are added to its activity model.

2. The instance specifications in the ontology deliver information about
this agent’s own configuration and the neighboring entities in order
to setup the facts in the situation model. In this example, it is pro-
vided with the information that conveyor c12 serves as input and the
conveyors c25 and c33 as outputs.

3. Based on the knowledge in the situation model, more concrete activity
definitions in the activity model are derived. For instance the activity
“Routing Pallet from (c12 or c25) to (c25 or c33)” is created
as a specialization of the generic activity “Routing Pallet”. Based
on the fact that conveyor c12 is the sole input conveyor, the activity
“Routing Pallet from c12 to (c25 or c33)” is added.

4. After receiving its routing table from the contact agent, the activity
“Routing palletToDS1 from c12 to c25” is derived, which means
that a pallet is routed to output conveyor c25 in case it needs to reach
the target indexstation DS1.

The steps were described only briefly as the configuration process of the HLC
is beyond the scope of this thesis. More details regarding this process are
presented in [207, 238].

4.4 Configuration Process of the Low Level

Control

Each automation agent’s HLC acts as a generator which has to configure its
LLC accordingly. For this purpose the HLC relies on the module and in-
stance specification files to determine the automation agent’s physical parts
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(sensors, blockers, etc.) and how they are connected with the correspond-
ing controller (i.e. specific pin of an I/O module at a Festo CPX). Fur-
thermore, the FB types, which have been developed using the 4DIAC-IDE,
are provided in XML format as the components of the solution space. Ac-
cording to the component-oriented design of the LLC (see Section 3.5) each
FB incorporates either the functionality of one specific subcomponent (e.g.
FB BlockerDevice) or the higher LLC functionalities of a component, which
includes the communication with the HLC or the routing of pallets (e.g.
FB Diverter). Finally, a set of constraints forming the integrity rules for the
specification check (see Section 4.4.1) and generation rules (see Section 4.4.2)
for the actual LLC configuration are embedded in a set of Java methods that
can be used by the automation agents. The HLC then sends a sequence of
commands to the controller, which will host its according LLC, for generating
the executable implementation.

For the formalization of the constraints and generation rules, the mod-
ules (equipment modules such as intersections as well as control modules
such as blocker devices) in the module specification file are denoted as M =
{m0, ...,mn}. The designation modreqm encompasses the FB nodes of a mod-
ule m that either require connections or values, and modprovm encompasses
the nodes that provide connections for other modules. In the following each
of these nodes is denoted either as a Requirement or a Provider. Both
types of nodes can have parameters of modparam linked, which is used for
the creation of connections between the FBs in the LLC. Furthermore, for
the constraint definition of the specification check the set ModReq represents
the Requirements of all specified modules and the set ModProv represents
their Providers.

The instance specification file contains the instances of the ontology I =
{i0, ..., in}. The class of an instance is denoted by classi while the set of its
parameters and their values are contained in instparai. The set InstPara
represents the parameters of all instances.

Finally, each FB type provided in the solution space is defined as FBj =
(FBnamej, FBIOj). In this context, FBnamej denotes the name and
FBIOj contains all input and output nodes.

4.4.1 Specification Check

Before issuing the commands for creating the LLC, the HLC performs a
specification check by analyzing the XML specification files. This ensures a
valid specification, which is especially of importance in the case of a manually
created specification. To perform the check, the HLC proofs the validity of
the XML specification against a set of constraints.
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Firstly, the content of the module file is validated. Several constraints
refer to information of the FB type files of the solution space. It needs
to be ensured that the software components represented in the ontology of
the problem space can be mapped onto the FBs of the solution space. In
this context, the fulfillment of Constraint 4.1 assures that all required and
provided nodes of a specific software component m of the problem space
have a corresponding counterpart in the according FB type definition of
the solution space. In the implementation this is done by finding exactly
one equivalent among the nodes of an FB type definition for each software
component node.

∀x ∈ (modreqm ∪modprovm)

→ ∃!y ∈ FBIOm|Name(x) = Name(y) (4.1)

The usage of the adapter concept for the nodes of the FBs (see Section 3.5) in
the solution space delivers point-to-point connections [173]. Therefore, each
node of a software component m can either be a Requirement or a Provider
but not both (Constraint 4.2).

∀x ∈ modreqm → x /∈ modprovm (4.2)

Having nodes with one name but differing types leads to an invalid connec-
tion attempt. To ensure consistency between the software component types,
Providers that share the name but are of different software components have
to be of the same type (Constraint 4.3).

∀x, y ∈ModProv|(x 6= y) ∧ (Name(x) = Name(y))

→ Type(x) = Type(y) (4.3)

The property of being a plug/socket in the case of an adapter interface or an
input/output in the case of a standard port is denoted as a node’s direction.
Likewise to the type, if multiple Providers of the same name are existent,
then they have to be of the same direction (Constraint 4.4).

∀x, y ∈ModProv|(x 6= y) ∧ (Name(x) = Name(y))

→ Dir(x) = Dir(y) (4.4)

To ensure that a software component has access to the necessary informa-
tion for its operation, its required node connections need to have a provided
counterpart. While the restrictions are taken into account during the actual
wiring of the FBs (see Section 4.4.2), the specification check ensures that at
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least one Provider y exists that shares the name with each Requirement x
(Constraint 4.5).

∀x ∈ModReq → ∃y ∈ModProv|Name(x) = Name(y) (4.5)

Having nodes with one name but differing types leads to an invalid connection
attempt in case a Requirement and a Provider share the name but not the
type. In order to be compatible, any found Providers sharing the name with
Requirement x has to also share its type (Constraint 4.6).

∀(x ∈ModReq, y ∈ModProv)|Name(x) = Name(y)

→ Type(x) = Type(y) (4.6)

In the case of adapter nodes, Providers and Requirements cannot be both
plugs or sockets. An adapter connection requires one plug and one socket.
Also standard connections require both an input and an output node. Con-
sequently, any found Providers that shares the name with Requirement x
has to be of the opposite direction (Constraint 4.7).

∀(x ∈ModReq, y ∈ModProv)|Name(x) = Name(y)

→ Dir(x) 6= Dir(y) (4.7)

Then, the content of the instance file is validated with a further set of
constraints. For each instance defined in the problem space, an FB type
has to exist in the solution space (Constraint 4.8). To avoid ambiguousness
during instantiation of the FBs, there cannot be multiple FB types that share
the name with one instance. But of course there can be multiple instances
created from one FB type.

∀i ∈ I → ∃!m ∈M |classi = modnamem (4.8)

Each definition of an instance has to encompass values for the parameters
of a software component. The completeness of this set of values is verified
with Constraint 4.9, which is used to check if a value exists for all required
parameters of a software component m.

∀x ∈ModParam|∃(i ∈ I|classi = modnamem)

→ ∃!y ∈ instparai|(Name(x) = Name(y)) ∧ (V alue(y) 6= ∅) (4.9)

For each Requirement x of the instances a corresponding Provider y of
the same type has to exist among the nodes of the other instances (Con-
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straint 4.10). Specific restrictions based on the instances’ parameter values
have to be met to assure a valid connection between two instances that are
to be connected.

∀x ∈ InstOf(ModReq)→ ∃y ∈ InstOf(ModProv)

|(Type(x) = Type(y)) ∧Restrictions (4.10)

To reveal more details about how the constraints are implemented, List-
ing 4.1 shows an example in pseudocode of the Constraints 4.3 and 4.4. If
the specification check is performed with a valid result, the LLC is created
by using the configuration services.

1 Create list(name , type , direction);

2 For i := 1 to number of software_components do
3 For j := 1 to number of providers of

software_components(i) do
4 If list contains name of provider(j) of

software_components(i) then

5 If type of provider(j) of software_components(i)

is not equal to type of named provider in

list then

6 Throw exception;

7 If direction of provider(j) of

software_components(i) is not equal to

direction of named provider in list then

8 Throw exception;

9 Else i f
10 Add name and type of provider(j) of

software_components(i) to list;

Listing 4.1: Example in pseudocode combining Constraints 4.3 and 4.4 in
one routine.

4.4.2 Configuration Services

After successful completion of the specification check, the configuration ser-
vices are used for creating the control application. Both IEC 61131 and
IEC 61499 encompass the concept of the “resource” as functional unit and
container to host a network of software components. Such a resource is re-
quired in the control device before creating the actual control application.
Consequently, a resource is created if there is at least one instance defined in
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the instance specification (Rule 4.11).

I 6= ∅ → CreateResource (4.11)

Upon creation of the resource, the instances of the software components can
be created. For all instances, which are defined in the instance specification,
a corresponding FB is created (Rule 4.12).

∀i ∈ I → CreateFB(FBnamei) (4.12)

As next step, the according parameters of the created FBs are written as
described in the instance specification (Rule 4.13).

∀x ∈ InstPara→ CreateConnection(x, Value(x)) (4.13)

Each Requirement x is then connected with a corresponding Provider y of
the same type, which meets the Restrictions that are defined in the module
specification (Rule 4.14).

∀(x ∈ InstOf(ModReq), y ∈ InstOf(ModProv))

|(Type(x) = Type(y)) ∧Restrictions→ CreateConnection(x, y) (4.14)

Finally, the FB network is initialized by issuing a start command.
Configuring the LLC requires a sequence of the structural reconfiguration

services (see Section 3.8.1) for creating the required FBs and connections as
well as for setting the according parameters. Moreover, the execution control
services are utilized for changing the operational state of the created FBs from
“idle” to “running” (for an overview about the operational states see [173]).

Table 4.1 shows a part of the command sequence starting with the re-
source creation (command 0 in the figure) and ending with the start of the
resource for configuring the LLC of a diverter in the pallet transport system.
The shown commands between the resource creation and its start, for cre-
ating FBs, writing their parameters and creating the connections, are just a
selection as the other commands for the configuration process are structured
likewise.

Regarding the complete target system (see Section 3.2), the configuration
of each agent’s LLC is performed individually by its HLC on the basis of
the instance definitions in the resource ontology. Thus, the distinct agents’
configuration processes are logically independent from each other, which is
an advantage regarding scalability of the approach.
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No Type of ac-
tion

XML Command

0 Creating re-
source

<Request ID="0" Action="CREATE"> <FB
Name="EMB RES" Type="EMB RES"/> </Request>

1 Creating new
FB

<Request ID="1" Action="CREATE"> <FB
Name="Sensor L" Type="FB SensorDevice"/>
</Request>

... ... ...

31 Setting pa-
rameter

<Request ID="31" Action="WRITE"> <Connection
Destination="Sensor L.SlotNrS" Source="1"/>
</Request>

32 Setting pa-
rameter

<Request ID="32" Action="WRITE"> <Connection
Destination="Sensor L.BitNrS" Source="1"/>
</Request>

... ... ...

71 Creating new
connection

<Request ID="71" Action="CREATE"> <Connection
Destination="Diverter.Sensor In LR"

Source="Sensor L.Adapter Sensor" />
</Request>

... ... ...

76 Starting LLC <Request ID="76" Action="START">

Table 4.1: Issued commands for configuring an automation agent’s LLC,
which encompasses creating and wiring of FBs as well as starting the resource.

4.5 Performance Results

As already mentioned, the dynamic configuration of an industrial control
system is a key technology for achieving flexible production systems. De-
pending on the timing constraints of the manufacturing environment and to
avoid an extensive down-time of the system components, such a process has
to be carried out in a specific time frame.

In the target system, each agent’s LLC is hosted in a distinct distributed
industrial controller of the type CPX-CEC-C1 by FESTO. On the contrary,
all HLCs are located in a PC due to the missing integration of the agent
framework JADE on the employed controllers. However despite being not
physically distributed, the HLCs are still logically distributed acting as dis-
tinct entities. Consequently, the reconfiguration infrastructure of the LLC is
accessed by the HLC using communication via network.

Consequently, the following experiment investigates on the required time
for carrying out the LLC configuration process. Likewise to the experiment
presented in Section 3.8.3, the program Wireshark [244] is used to measure
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the time of each reconfiguration step and thus of the complete reconfigura-
tion process. While the previous experiment was carried out using a prede-
termined reconfiguration sequence, the present experiment involves the dy-
namic configuration introduced in this chapter for automatically generating
intersection LLCs.

4.5.1 Timing Measurements

The timing measurements show that the execution of each command takes
place in average within 13 ms. Compared to the infrastructure test pre-
sented in Section 3.8.3, this is slightly longer due to the calculation time for
determining the next configuration command. Configuring the LLC of an au-
tomation agent acting as a diverter in the pallet transport system requires its
HLC to send a sequence of 77 commands over the network to the correspond-
ing Festo CPX controller. Consequently, the complete configuration process
for one automation agent requires approximately 1 second (see Figure 4.5a).
This duration meets the requirement of achieving a reconfiguration during
operation within a maximum of about 1 second as stated in [256]. Evidently,
it would not be sufficiently fast for industrial processes, which are performed
under hard real-time constraints.

Even though most runs require almost exactly 1 second, run #3 required
about 300 ms more while run #4 required about 300 ms less. These signif-
icant differences might be caused by network traffic, which indicates that a
configuration process could be faster if the HLC resides directly within the
same controller as the LLC. However, deploying software agents with their
required framework directly onto industrial controllers represents a severe
challenge due to their limited computational power and resources compared
to a regular PC [228].

Due to the distributed nature of the target system and the logically dis-
tributed HLCs, the configuration of the agents’ LLC can be performed in
parallel. Correspondingly, using parallel threads for configuring several con-
trollers with the presented approach keeps the configuration time at roughly
1 second as measurements show when 5 automation agents configure their
LLCs in parallel (see Figure 4.5b). Also here, one configuration run is sig-
nificantly shorter, which shows the potential of developing a solution that
renders the network communication between HLC and LLC obsolete. Never-
theless, further timing measurements with 10 or 15 controllers reveal a total
configuration time of approximately 1 second as well (diagrams are omitted
as they are likewise to the ones shown in Figure 4.5). Regardless of the num-
ber of configured LLCs and thereby configured controllers, the configuration
time does not change significantly.
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Figure 4.5: Execution time of 10 LLC configuration runs in (a) 1 controller
with 77 commands and (b) 5 controllers using parallel threads each with 77
commands.

Likewise to compiling a program for a PLC, the configuration time in-
creases with the number of required commands for each distinct controller.
In this context, the component-oriented design of the LLC used for the au-
tomation agents brings significant performance advantages compared to a
less decoupled application design that is not based on adapter connections
between the FBs. In that case, the instance creation would be significantly
more complex due to the higher number of FBs and connections between
them. This is confirmed when the configuration time of the presented ap-
proach is compared with a monolithic LLC approach that was previously
used for the pallet transport system before employing the component-based
LLC approach that is introduced in this work.

This previous approach involved pre-defined XML files for configuring
the agent LLCs in the Festo CPX controllers. Those files incorporated a
complete description of the FB network including a list of all connections
between the FBs. Even though being distributed on several controllers, the
rather monolithic design of the used LLC applications impeded an easy ex-
change of FBs and thereby the dynamic reconfiguration of the control soft-
ware. Therefore, an automation agent’s LLC incorporated the functionality
for all expected system states following thereby a contingencies approach of
reconfiguration [186]. For instance an automation agent controlling an inter-
section incorporated functionality for acting as a diverter as well as a junction
already at system startup. Thus, if this intersection started as a diverter, it
could switch to the junction functionality as reaction on a direction change
of an adjacent conveyor.
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Figure 4.6: Average execution time of the configuration process on the Festo
CPX (a) as well as on the Digi Connect ME controllers (b), and memory
usage in the Festo CPX (c) of the monolithic LLC design (M) as well as of
the component-oriented LLC design (C).

Configuring the FBs of the monolithic design and the connections be-
tween them required 500 commands, which is significantly more than the
77 commands required for configuring the component-oriented LLC as men-
tioned before. The duration of the configuration was measured to be around
7.5 seconds (see Figure 4.6a). Hence, the comparison with the previously used
monolithic design of the LLC shows that using the component-oriented design
reduces the configuration time by 87%. This amount of reduction confirms
the linear correlation between the amount of commands and configuration
time as mentioned in Section 3.8.3. Likewise measurements concerning the
configuration of the small FB network in the Digi Connect ME controllers,
providing access to the RFID modules, also show a reduction of the configu-
ration time by 88% due to the component-oriented design (see Figure 4.6b).
Apart from reducing the required configuration time, the component-oriented
design of the LLC also brings a significant reduction of the memory usage
by 62% in the controllers as can be seen in Figure 4.6c.
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Figure 4.7: Picture highlighting the components of a laboratory batch process
plant that are used for validating the configuration approach. Pump and
analog flow sensor (both marked in red) compose a flow control equipment
module.

4.5.2 Validation of the Approach

In order to show the feasibility of the automated configuration process for
another target system, it is also applied for components of a laboratory batch
process plant. A pump combined with a flow sensor (see Figure 4.7) delivers
the functionality of a flow control entity, which represents a common module
in the batch process domain. This flow control entity is represented as an
equipment module in the hierarchical structure of the standard IEC 61512.
The whole plant is controlled by one industrial controller of the type CX5010
by Beckhoff [257], which comprises a Dual-Core processor with 2 GHz and
2 GB RAM. It is employed for hosting the FORTE as LLC runtime environ-
ment.

In order to apply the approach for configuring the LLC of the flow con-
trol entity, the resource ontology (see Section 4.2) is extended with the class
FlowControl, which is a subclass of EquipmentModule (see Figure 4.8).
A further class is added for the pump, which is derived from the class
ControlModule. The flow sensor is represented by the class AnalogSensor,
which is also a subclass of ControlModule. This class can also be used
for representing other typical analog sensors employed in the batch domain,
such as temperature or pressure sensors, that deliver a single analog value.
Besides, a representation of the Beckhoff controller is added as subclass of
Controller.

The ontology is derived into the corresponding module specification file



4.5. Performance Results 111

EquipmentModule

ControlModule

hasModule

FlowControlsubClassOf

Pump

AnalogSensor

subClassOf

subClassOf

subClassOf

Module

subClassOf

subClassOf

Beckhoff CX5010

Controller

controls

Figure 4.8: Reduced overview of the hardware-related part of the ontology
describing the target components of the laboratory batch process plant.

and the instances are defined. Evidently, according IEC 61499 FBs are pro-
vided for realizing the functionality of the control modules and the flow
control. Using this information, the configuration process is carried out us-
ing the rule base as described in Section 4.4. The resulting configuration
commands that are sent to the Beckhoff controller are shown in Table 4.2.

Compared to the configuration runs on the Festo CPX controllers, the
LLC configuration requires more time for each configuration command. As it
turns out, the execution of each configuration command needs about 37 ms
in average. This might be due to the much larger overhead in the Beckhoff
controller as it employs a Windows environment for more operator conve-
nience and not a small Linux system like the Festo CPX. A total time of
0.7 seconds is therefore measured for the 19 commands, which are required
for configuring the complete flow control LLC.

This additional use-case shows that the approach is adoptable for dif-
ferent target systems. Evidently, the corresponding FBs need to follow the
design as described in Section 3.5 and have to be provided for the compo-
nents that shall be configured automatically. Given this prerequisite, the
according components can be represented in the ontology for enabling an
agent to automatically configure the LLC.

In the case of an LLC that is based on a different paradigm than the
standard IEC 61499, the implementation components of the solution space
need to be replaced by other corresponding software components, e.g. FBs
of the standard IEC 61131. However, in this case also the configuration
method of the agents has to be adapted accordingly by providing methods for
creating and wiring these software components with another reconfiguration
infrastructure than the FORTE.
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No Type of ac-
tion

XML Command

0 Creating re-
source

<Request ID="0" Action="CREATE"> <FB
Name="EMB RES" Type="EMB RES"/> </Request>

1 Creating new
FB

<Request ID="1" Action="CREATE"> <FB
Name="FlowSensor" Type="FB AnalogSensor"/>
</Request>

... ... ...

7 Setting pa-
rameter

<Request ID="7" Action="WRITE"> <Connection
Destination="FlowSensor_SlotNrS" Source="1"/>
</Request>

... ... ...

13 Creating new
connection

<Request ID="13" Action="CREATE"> <Connection
Destination="FlowControl.Sensor In"

Source="FlowSensor.Adapter Sensor" />
</Request>

... ... ...

18 Starting LLC <Request ID="18" Action="START">

Table 4.2: Issued commands for configuring the flow control LLC.

4.6 Summary

The work presented in this chapter combines the automation agent concept
with a generative programming approach for automatically configuring the
agents’ LLC. Thereby, the components of the manufacturing system and their
relations are specified in a resource ontology, which represents the problem
space of the domain model. Based on this representation, each agent’s HLC
utilizes configuration knowledge for performing a specification check and for
carrying out the actual configuration by creating and wiring the software
components (i.e. the IEC 61499 FBs) of the solution space. Thereby, an
executable LLC implementation is generated for each manufacturing system
component within the corresponding controller.

Performance measurements show that the automated configuration pro-
cess is performed within approximately 1 second for the presented LLC ap-
plications, which is sufficient for industrial processes without hard real-time
constraints [256]. The configuration time remains roughly constant even
in the case of several LLC applications being configured in parallel by the
automation agents with their HLC residing within one PC. However, the
component-oriented design of the LLC is a prerequisite to keep the configura-
tion time within acceptable boundaries as has been shown in the comparison
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with the configuration time of a monolithic LLC design.
The presented configuration concept can be adopted for different target

systems by changing the contents of the ontology, respectively the problem
space. Such modifications may encompass not only the physical components
of the manufacturing system but also the requirements and restrictions of the
software components concerning their wiring to achieve an executable LLC
application. This is shown by presenting performance results of configuring
the control software of not only one target system, i.e. the pallet transport
system, but also of a flow controller for a laboratory batch process system.



CHAPTER 5

Reconfiguration of the Control System1

Reconfiguration is regarded as an important capability of a control system
to dynamically adapt its behavior and functionality in the case of conditions
like a changed manufacturing requirement or the occurrence of a failure [27].
Reported research in literature especially addresses reconfiguration in the
context of modifying production plans and schedules as well as the resource
allocation [69]. Thus, the reported approaches are mainly concerned with
system-level reconfiguration but local self-reconfiguration at agent-level rep-
resents a key asset for adaptable functionality in the context of reconfigurable
manufacturing [98].

The work presented in this chapter is concerned with the local self-
reconfiguration of automation agents on the basis of the configuration ap-
proach described in Chapter 4. Reconfiguring the control software of an
automation agent relies on the knowledge stored in its world model in con-
junction with the ontology describing the system components. Such a recon-
figuration process encompasses updating the world model in the HLC as well
as a modification of the LLC application.

Likewise to the previous chapters, the reconfiguration of the control sys-
tem is exemplified with a case study involving the already introduced pallet
transport system (see Figure 3.2). Its main objective is to transport pallets
between indexstations in a minimum amount of time, usually following the
shortest path while avoiding broken components. 15 intersections in the cen-
ter of the pallet transport system employ three-way switches (see Figure 3.3)

1Most contents of this chapter were previously published in [73, 78, 79].
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as described in Section 3.2.1. Those offer the flexibility of four operational
modes for reacting on changed conveyor directions due to modified routing
paths. Section 3.5 desribes the LLC of an automation agent acting as a di-
verter in one specific direction, which represents one operational mode. This
LLC has to be adapted in the case the intersection needs to provide a differ-
ent operational mode. Consequently, a global topology reconfiguration with
changed conveyor directions requires certain automation agents controlling
intersections to adapt their functionality accordingly.

5.1 Reconfiguration Process

The following sections are concerned with a reconfiguration process, which is
triggered due to a detected component breakdown. In the given case, a defect
outgoing conveyor is detected by an automation agent of an intersection using
its diagnostic mechanisms in the HLC (see Section 3.7.2). Consequently, this
agent notifies a contact agent about the detected failure.

5.1.1 Determination of Reachability

After receiving the notification from the affected automation agent, the con-
tact agent updates its representation of the system topology with the fact of
the unusable route. For calculating routing paths and verifying the reachabil-
ity of all destinations in the system, the contact agent relies on a shortest path
algorithm, which is based on Dijkstra’s algorithm [213] and was developed
in the frame of a previous research project [214]. If routes are found from
and to each destination, the automation agents controlling the intersections
update their routing tables and store them in the LLC.

In the case of one or several unreachable destinations, the contact agent
employs a change direction algorithm for determining necessary direction
changes of conveyors. This algorithm uses the system representation from
the ontology and derives the structure of intersections and conveyors into a
matrix, but omitting the failed conveyor as a valid path. Only conveyors
that are located between two intersections with three-way switches represent
possible candidates for direction changes as these intersections are able to
change their operational modes. As such a conveyor direction change might
require additional direction changes of other conveyors, the algorithm is pro-
grammed recursively. If a solution is found, the contact agent requests from
the identified conveyors to change their directions for enabling the reachabil-
ity of the unreachable destinations. If no solution is found, the destinations
affected by the failure remain unreachable. More details regarding the change
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(i1 isA IntersectionSwitch3way)
(i1 hasInput c12)
(i1 hasOutput c25)
(i1 hasOutput c35)
(i1 hasCurrentPallet p123)
(i1 isFailed false)
(i1 hasRoutingTable rt134)

Facts
(i1 isA IntersectionSwitch3way)
(i1 hasInput c12)
(i1 hasInput c25)
(i1 hasOutput c35)
(i1 hasCurrentPallet p123)
(i1 isFailed false)
(i1 hasRoutingTable rt134)

Facts

Figure 5.1: Update of facts in the situation model, based on [73].

direction algorithm, which was developed in the frame of a previous research
project, are presented in [30].

Hence, the automation agent of the conveyor changes its direction and
informs the automation agents controlling the adjacent components (i.e. the
adjacent intersections) about the direction change.

5.1.2 Updating the World Model in the High Level
Control

Based on the information an automation agent controlling the intersection
receives from its neighboring conveyors, it updates its world model. The
resulting world model reflects the current knowledge about the state of the
world. During the update, the HLC can detect inconsistencies between the
world model and the new knowledge about the environment. Reconfiguring
the automation agent’s functionality involves several steps:

• The first step encompasses updating the facts in the situation model
according to the received information. This ensures that the received
knowledge is expressed correctly in its situation model. Figure 5.1 illus-
trates the modification of the facts in the situation model. In this case,
the fact (i1 hasOutput c25) is replaced by the fact (i1 hasInput

c25).

• The second step handles the update of the activity types in the activ-
ity model (see Figure 5.2). As the fact (i1 hasOutput c25) no longer
exists, the activity “Routing a Pallet from c12 to (c25 or c33)”
and its derived activity types can no longer be carried out and are re-
moved from the activity model. However, as the fact (i1 hasInput

c25) is now existent, the automation agent is now able to perform
the activity “Routing a Pallet from (c12 or c25) to c33”. This
procedure follows the HLC configuration process as described in Sec-
tion 4.3 and in more detail in [207, 238].
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subClassOf subClassOf

Figure 5.2: Update of the activity types in the activity model encompassing
the removal of nonexecutable activities and the addition of henceforward
executable activities [73].

• The third step is concerned with the currently expected and observed
activities. Kramer and Magee note that the affected part of a system
needs to be in a consistent application state before the reconfiguration
and that the change causes a minimum of disruption [258]. In this
context, this step ensures that the reconfiguration of the LLC does not
interfere with an ongoing process and therefore is not performed dur-
ing an ongoing observation, of which the corresponding activity type is
removed during the previous step. Figure 5.3 gives an example regard-
ing this issue based on the activity update of the previous step, which
happens at time T. The upper part of the figure shows the change of ac-
tivities at time T. The lower part of the figure shows the observed activ-
ity o1 1 of the type “Routing p123 from c12 to c25”, which started
at time Ts(o1 1) and is expected to finish at time Te(o1 1). At the
current time T the observed activity o1 is ongoing, which means that
the expected activity e1 1 needs to exist until the completion of o1.
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o1_1

e2  Routing Pallet from (c12 or c25) to c33
Expected 
activities

Observed 
activitiesRouting p123 from c12 to c25

Ts(o1_1) Te(o1_1)T time

Routing palletToDS1 from c12 to c25e1_1

Routing palletToDS2 from c12 to c33

a2  Routing Pallet from (c12 or c25) to c33

Activity 
typesa1_2

Routing palletToDS1 from c12 to c25a1_1

Figure 5.3: Determining the timing constraints for expected and observed
activities, based on [73].

Consequently, the expected activity e2, which is derived from the ac-
tivity type “Routing Pallet from (c12 or c25) to c33”, can only
start after Te(o1 1). Thereby, the HLC ensures that the LLC recon-
figuration from diverter to junction is performed only after the pallet
currently inside the intersection has left.

• The fourth and final step is to infer the goal configuration to be at-
tained on the basis of the facts in the situation model. Regarding an
intersection, two types of configurations exist:

(i) routingAsDiverter(inCon,outCon1,outCon2): This configura-
tion represents a diverter having one input conveyor (inCon) and
two output conveyors (outCon1 and outCon2). It requires an FB
of the type FB Diverter as pivotal functionality in the LLC. This
is represented by Constraint 5.1, which sets the cardinality of in-
put and output conveyors in relation to the required pivotal FB.

(#inCon = 1) ∧ (#outCon = 2)→ FBtypereq = “FB Diverter”
(5.1)

(ii) routingAsJunction(inCon1,inCon2,outCon): This configura-
tion represents a junction with two input conveyors (inCon1 and
inCon2) and one output conveyor (outCon). It requires an FB of
the type FB Junction as pivotal functionality in the LLC, which
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is represented in Constraint 5.2.

(#inCon = 2) ∧ (#outCon = 1)→ FBtypereq = “FB Junction”
(5.2)

In the considered example, the automation agent has to achieve the
goal configuration routingAsJunction(c12,c25,c33).

After updating the world model, the agent determines the operations
to perform in order to constitute this configuration in its LLC, which is
explained in the following section.

5.1.3 Reconfiguration of the Low Level Control

Figure 5.4 depicts the workflow of the LLC reconfiguration process, which is
related to the configuration process as described in Chapter 4. The current
LLC application is provided as knowledge in the ontology representing the
problem space. Likewise to the configuration process, the solution space
provides the software components, i.e. the IEC 61499 FBs. The configuration
knowledge differs as it incorporates constraints related to the components of
the solution space as well as an additional set of rules, which are based on
the principles as explained in Section 4.4. Both the constraints as well as the
additional rules are explained in the following.

As first step the agent infers if its pivotal FB corresponds to the require-
ment of the goal configuration. This is done by comparing the configuration’s
FB requirement, expressed on the left side in Constraint 5.3 (obtained from
Constraint 5.1 or 5.2), with the pivotal FB i currently represented in the on-
tology. FB i can be identified as it is the only FB representing an equipment
module (right side of Constraint 5.3).

FBtypereq → FBtypei|∃i ∈ I|i = InstOf(EquipmentModule) (5.3)

In the considered example, the required FB is of the type “FB Junction”
(Equation 5.4).

FBtypereq = “FB Junction” (5.4)

However, the current pivotal FB, as represented in the ontology, is of the
type “FB Diverter” (Equation 5.5).

FBtypei = “FB Diverter” (5.5)

Consequently, Constraint 5.3 is not satisfied and the pivotal FB needs to be
replaced.
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Figure 5.4: Workflow of the reconfiguration process to achieve an LLC ap-
plication according to the goal configuration.
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The further steps for deleting the current pivotal FB are determined using
constraints for the configuration knowledge that are specific for the solution
space. The LLC is based on the standard IEC 61499 and consequently the
configuration knowledge encompasses Constraint 5.6, which is derived from
the operational state machine of an FB [173]. There it is specified that for
the deletion of an FB, it needs to be in the operational status “stopped”.

DeleteFB(FBnamei)→ Statusi = “stopped” (5.6)

Apart from the standard, also the implementation of the LLC runtime envi-
ronment, i.e. the FORTE, has a constraint regarding the deletion of an FB.
As the FORTE does not remove connections of a deleted FB automatically,
they need to be removed prior to the FBs deletion to ensure system consis-
tency. Having no connections of its nodes to any other FBs’ nodes prior to
its deletion is expressed by Constraint 5.7.

DeleteFB(FBnamei)→ ∀x ∈ FBIOi|@Connection(x, FBIOn) (5.7)

Constraints 5.6 and 5.7 represent configuration knowledge specific for the
solution space in order to define the logical order of operations for deleting
an FB.

The pivotal FB i can be identified as it is the only FB representing an
equipment module (see left side of Rule 5.8). To make this FB deletable
according to Constraint 5.6, its operational state needs to be changed from
“running” to “stopped” (see right side of Rule 5.8).

∃i ∈ I|i = InstOf(EquipmentModule)→ StopFB(FBnamei) (5.8)

Any previously set up parameters do not require to be removed before the
deletion of an FB. As stated above in Constraint 5.7, its connections to the
other FBs need to be removed before it can be deleted. In order to do so,
the connections, which have been previously set up with this FB, need to be
determined and removed using Rule 5.9 on the basis of the agent’s ontology.

(∃i ∈ I|i = InstOf(EquipmentModule)) ∧ (∀((x ∈ InstOf(modreqi),

y ∈ InstOf(ModProv)) ∪ (x ∈ InstOf(modprovi), y ∈ InstOf(ModReq)))

|(Name(x) = Name(y)) ∧Restrictions)→ DeleteConnection(x, y) (5.9)

Consequently, after the deletion of the connections the FB itself can be re-
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moved from the LLC (Rule 5.10).

∃i ∈ I|i = InstOf(EquipmentModule)→ DeleteFB(FBnamei) (5.10)

As soon as the deletion of the no longer required FB i is finished, its repre-
sentation is removed from the agent’s ontology. Afterwards, a representation
of the required pivotal FB j is added. Its instance in the LLC is created,
parameterized and wired to the other FBs using derivatives of the Rules 4.12-
4.14 of the configuration services as described in Section 4.4.2. Finally, the
newly created FB j is started by issuing a start command (Rule 5.11).

∃j ∈ I|j = InstOf(EquipmentModule)→ StartFB(FBnamej) (5.11)

The resulting reconfiguration sequence for the given case is presented
in Table 5.1. It consists of the following steps: stopping the diverter FB,
disconnecting all sensor and actuator FBs, deleting the diverter FB, creating
the junction FB, connecting the relevant sensors and actuators, and finally
starting the junction FB.

5.1.4 Result of the Reconfiguration

Figure 5.5 shows the resulting LLC of the automation agent, which provides
the functionality of a junction. FB Diverter is substituted by FB Junction,
which incorporates the basic junction functionality and the communication
interface to the HLC. Accordingly, the sensor and blocker FBs as well as
the three-way-switch FB are wired with adapter connections to the pivotal
FB, which is now represented by FB Junction. An intersection acting as a
junction has two input conveyors and therefore the RFID readers of the two
incoming conveyors need to be accessed for identifying the incoming pallets.
Hence, two RFID communication blocks are connected with FB Junction

in contrast to the case of a diverter, which only relies on one RFID reader.
Likewise, the two FBs accessing the blockers at the input conveyors are wired
to the pivotal FB.

For the presented reconfiguration process of the intersection, the follow-
ing basic reconfiguration services, as presented in Section 3.8.1, are used:
structural services and execution control services. The modifications of the
adapter connections in the FB network as well as the actual substitution
of FB Diverter by FB Junction are performed by using the corresponding
structural services. In order to stop the functionality of the diverter and to
initialize and start the functionality of the junction, the according execution
control services are utilized.
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Figure 5.5: Original LLC providing the functionality of a diverter (a) and
reconfigured LLC realizing the functionality of a junction (b), based on [73].
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No Type of action XML Command

0 Stop diverter FB <Request ID="1" Action="STOP">
<FB Name="Diverter" Type=""/>
</Request>

1 Delete adapter connec-
tion from left sensor FB
to diverter FB

<Request ID="2" Action="DELETE">
<Connection Source="Sensor L.data"

Destination="Diverter.Sensor in"/>
</Request>

2-6 Deletion of further
adapter connections to
diverter FB

...

7 Delete diverter FB <Request ID="8" Action="DELETE">
<FB Name="Diverter"/> </Request>

8 Create junction FB <Request ID="9" Action="CREATE">
<FB Name="Junction"

Type="FB Junction"/> </Request>

9 Create adapter connec-
tion from left sensor FB
to junction FB

<Request ID="10" Action="CREATE">
<Connection Source="Sensor L.data"

Destination="Junction.Sensor in1"/>
</Request>

10-16 Creation of further
adapter connections to
junction FB

...

17 Start junction <Request ID="18" Action="START">
<FB Name="Junction" Type=""/>
</Request>

Table 5.1: Reconfiguration sequence for switching from diverter to junction,
based on [73].

5.2 Evaluation of the Approach

Simulation experiments have shown that the application of reconfiguration
mechanisms are beneficial for the pallet transport system’s performance in
case of component failures and resulting unavailable destinations and work-
stations [209, 259]. As these were pure simulation experiments, they did
not rely on actually implemented local reconfiguration mechanisms. On the
contrary, this section presents experiments carried out on the real pallet
transport system. In order to investigate the advantages of the system re-
configuration using the local reconfiguration of the control software in the
case of a detected failure, a set of test cases is evaluated. Thus, this involves
the usage of the reconfiguration process as described in Section 5.1.
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5.2.1 Test Cases

The target system (see Section 3.2) encompasses indexstations, which are
located in the 3 outer loops of the system. The indexstations represent the
locations at which pallets or their load can be manipulated by workstations.
Consequently, one indexstation of each outer loop is used in this evaluation
as possible target destination.

Due to their role to connect different parts of a production system and
to carry and route goods and materials, a transportation system represent a
production system’s backbone. Two factors influence the efficiency (i.e. the
throughput) of such a system [260]:

• Transport time: The time to transport material is a significant factor,
especially when the transportation times between machines are consid-
erably longer than the machine processing times. In this context, delay
times due to queues have a large impact on the transport duration.

• Machine workload: Balancing machine workload is of importance for
avoiding bottlenecks and thus queues and delay times.

The process flow for the performed tests consists of two process steps that
involve transportation between indexstations. At first the pallets start at a
workstation at indexstation D1 where they have to be processed for a period
of 10 seconds. As a second step they need to be processed at another work-
station at a different indexstation D2 for a longer period than at D1, which
is 20 seconds. In order to avoid a bottleneck at this second workstation, a
redundant workstation is used at indexstation D3 within the testbed. Hence,
each of the redundant two workstations only needs to process half of the
pallets in the system. After the second step, each pallet shall return to the
workstation at D1 to go through another process cycle. The processing times
were defined in order to balance the factors of transport times and balanced
machine workload. For instance previous tests with halved processing times
showed no necessity for employing a redundant workstation for the second
process step, which therefore limited the significance of the machine workload
factor for the throughput in relation to the transport time. Consequently,
this process flow encompasses the factors transport time as well as balanced
machine workload. Figure 5.6a depicts the initial paths calculated by the
contact agent for routing the pallets from D1 to D2 (marked green) and from
D1 to D3 (marked red) as well as back to D1 (marked shaded green and red).

For 10 pallets, the size of the testbed is large enough so that the pallets
are evenly distributed on the paths between the indexstations for ensuring
a high throughput with the given processing times. The performance of the
system is evaluated using the following three test cases:
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CC3

CC3

CC3

CC3
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Figure 5.6: Paths through the pallet transport system in the failure free case
(a) as well as in the cases of a conveyor failure without (b) and with (c)
reconfiguration mechanisms available [78].
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(a) Test case without conveyor failures: The transport system is in normal
operation and all destinations are reachable.

(b) Test case, when one critical conveyor fails: A specific conveyor fails that
is required for reaching indexstation D2. For this test case, the recon-
figuration mechanisms are turned off in the control software. Hence, all
pallets need to be sent to D3 after being processed at D1 in order to
achieve a complete process cycle.

(c) Test case, when one critical conveyor fails but a resolving solution can
be achieved by the system: The same conveyor as in test case (b) fails.
However, the system can react on this failure by changing the direction
of one conveyor and reconfiguring the control software of the adjacent
intersections. Therefore, indexstation D2 is accessible again.

According to test case (c), the following assumption is defined in the context
of the performance tests: Applying the reconfiguration mechanisms enhances
fault tolerance. Thus, in the case of a failure of a critical component, a
throughput is achievable that is comparable to the case without failures.

In order to gain measurement data, all indexstations log the processed
pallets using their ID and a time stamp. This allows the calculation of the
following characteristic numbers that relate to the defined assumption:

• Average travel duration along a path from one indexstation to a par-
ticular other indexstation, which includes also waiting times at inter-
sections and indexstations due to other pallets as well as wrongly taken
routes due to false RFID readings;

• Average duration of a complete process cycle starting at indexstation
D1 until a pallet returns to D1 for beginning the next process cycle; and

• Average throughput per hour, which represents the number of produced
products per hour in the manufacturing system.

Shorter travel durations result in a shorter duration of a complete process cy-
cle. Consequently, a shorter process cycle duration leads to a higher through-
put per hour and thus a higher performance of the system. Hence, for proving
the assumption made, the average duration of a complete process cycle in
test case (c) should be likewise to the one in test case (a).

5.2.2 Discussion of Results

Executing the test cases delivers the following paths for the pallets calculated
by the contact agent:
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(a) Test case without conveyor failures: As mentioned before, Figure 5.6a
shows the calculated shortest paths the pallets take. At D1, one half of
the pallets receives D2 as next destination while the other half is sent to
D3. Therefore, those pallets with D2 as next destination follow the green
path and afterwards return to D1 along the shaded green path. On the
other hand, those pallets with D3 as next destination follow along the
red path to D3 to return afterwards along the shaded red path to D1.

(b) Test case, when one critical conveyor fails: Due to the unusable conveyor,
D2 is not reachable. Hence, all pallets are sent to D3 after being processed
at D1. It can be seen in Figure 5.6b that both the green and red path
are similar as all pallets have to move from D1 to D3 and back.

(c) Test case, when one critical conveyor fails but a resolving solution is
achieved by the system: Using the reconfiguration mechanisms, a con-
veyor’s direction is switched and its adjacent intersections adapt their
functionality. Thus, new routing paths are calculated and indexstation
D2 is accessible again. Figure 5.6c shows that the red path for one half
of the pallets to indexstation D3 and back is unchanged, but the green
path to indexstation D2 and back to D1 for the other half of the pallets
is different and a bit longer compared to the one in test case (a).

Figure 5.7 depicts the travel time of the pallets between the indexstations
representing therefore the duration of the paths for all test cases. It can be
seen that in test case (a) the returning path from D2 and D3 to D1 takes
in average a longer time of about 20 seconds. This can be explained with
occurring traffic jams at D1 when pallets return from D2 and D3 at the same
time.

As indexstation D2 is not reachable in test case (b), there is no data
concerning paths to and from D2. The duration for the path from D1 to D3

is obviously significantly longer than in the other test cases. This is evident,
as D3 represents a bottleneck in this test case due to the longer processing
time leading therefore to serious traffic jams. On the other hand, the return
path to D1 takes in average a slightly shorter time than in test case (a) as
the pallets return from D3 with enough time difference leading therefore to
no traffic jams at D1.

As the path in test case (c) from D1 to D2 is longer, so is the travel time,
which can be clearly seen in the diagram. The path from D1 to D3 takes
roughly the same time as in test case (a). However, the returning paths from
D2 and D3 to D1 are slightly shorter, which might be explained by less traffic
jams at D1 due to a longer path to D2 resulting in a better distribution of
the pallets on the testbed.
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Figure 5.7: Average durations for all test cases of each path shown as grey
bars (dashed lines represent reference values from the failure free test case)
with the vertical black strokes depicting the spread from the minimum to
the maximum value and the small horizontal black strokes representing the
median value, based on [78].

Figure 5.8a shows the average duration of one process cycle for 10 pallets
which encompasses travel times and processing times. While in test case
(a) the processing time is in average 260.7 seconds, test case (b) reveals a
processing time of 308.7 seconds resulting therefore in an increase of 18.4%.
Due to this, the average throughput per hour with 10 pallets drops from
138.1 pieces to 116.6 pieces as can be seen in Figure 5.8b, which is a loss of
15.6%.

On the contrary, when the system is reconfigured by the agents to restore
the reachability of D2, one process cycle takes in average 264.4 seconds, which
is an increase of only 1.4% compared to the failure free test case (a). With
136 pieces per hour the throughput is correspondingly a bit lower compared
to test case (a), but only by 1.4%. Thus, the application of the described
approach significantly improves the system efficiency compared to a system
without reconfiguration capabilities.
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Figure 5.8: Average duration of a process cycle (a) and throughput per hour
(b) for all test cases [78].

5.3 Summary

While Chapter 4 is concerned with the automated configuration process dur-
ing system startup, this chapter extends this work for achieving the local
self-reconfiguration of each automation agent as an autonomous process.
By combining this local reconfiguration ability with global observations and
modifications, the performance of the system in the context of failure toler-
ance is significantly improved.

Upon the acquisition of information from the component’s environment
(i.e. the adjacent components and their automation agents), the HLC deter-
mines the necessity of a reconfiguration process. After updating the facts in
the world model of the HLC and detecting that the current control software
configuration is no longer in compliance with the requirements set by the en-
vironment, the HLC initiates the reconfiguration activities. On the one hand,
the activity model is updated in the HLC, which allows the automation agent
to perform the according diagnostic tasks in the new configuration. On the
other hand, based on the knowledge provided by the resource ontology and
using the reconfiguration services, the HLC is able to modify the LLC. Once
the reconfiguration process is finished, the newly configured functionalities
of the LLC are initialized and can be executed.
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The results of the experiments show the benefits of the MAS in the case
of a conveyor breakdown of a pallet transport system. Identifying an al-
ternative route and reconfiguring the system accordingly results in a better
performance for most cases. However, if the processing times are too short
and the number of pallets in the system is rather small, jams will not occur
even though certain destinations of the system are unreachable making there-
fore such a reaction obsolete. On the contrary, in the case of an unreachable
system part and longer processing times or a higher number of pallets, a di-
rection change of a conveyor can significantly increase the performance back
to the failure free case due to the regained reachability of those destinations.



CHAPTER 6

Conclusion and Outlook

6.1 Conclusion

The analysis in Chapter 1 shows that a distributed control architecture
answers well to the requirements of reconfigurable manufacturing. In this
context, agent technology represents a suitable approach for controlling the
entities of such a distributed control system. By integrating a knowledge
representation based on ontologies, the agents’ domain of application can be
specified explicitly, which increases the flexibility of such an approach. The
comparison of the common hardware-near control software standards in Sec-
tion 2 reveals that the standard IEC 61499 is well suited for reconfiguration
as it supports distribution and comes with a basic reconfiguration interface.

Consequently, the aim of this thesis is the introduction and implementa-
tion of an agent architecture with reconfiguration capabilities for controlling
the physical components of a manufacturing system. In regard to the con-
tributions presented in Section 1.4, the following work is presented in this
thesis:

1. A hybrid agent architecture is introduced, which is suitable for control-
ling the physical components of manufacturing systems—see Chapter 3.

2. A resource ontology is presented, which is suitable for the automated
configuration and reconfiguration of the control software—see Chap-
ter 4.

132
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3. Reconfiguration mechanisms are integrated in the agent architecture,
which allows an agent to adapt its functionality in regard to changes
in its environment—see Chapter 5.

4. An implementation and evaluation of the approach on the “Test-bed
for Distributed Holonic Control” is presented to show the feasibility
and benefits of the described work—see Chapter 5.

Based on the results of this work the research questions can be answered
as follows:

Research Question 1: Is it possible to realize self-contained compo-
nents of a manufacturing system and incorporate diagnostic mech-
anisms by using agent technology?

Chapter 3 introduces the concept of the automation agent, which is struc-
tured according to a hybrid architecture composed of two software layers.
The HLC layer is responsible for the control in regard to the achievement of
the agent’s own goals as well as for those in regard of the complete system,
which encompasses the coordination with other entities. For processing in-
formation, the HLC relies on a symbolic representation of the environment
in the form of a world model based on an ontology. It incorporates two parts:
a situation model for storing the agent’s characteristics and its relation to
the environment as well as an activity model for the detection of anomalies.
Both world model parts can be modified during runtime for aligning the rep-
resentation of the environment with its actual state. For providing the basic
functionality and accessing the sensors and actuators, the automation agent
incorporates the LLC, which is realized in a component-oriented design with
a network of function blocks. The LLC is based on the standard IEC 61499
and encompasses a reconfiguration infrastructure, which allows the modifi-
cation of the provided functionality during runtime. Both HLC and LLC
incorporate diagnostic mechanisms for detecting failures. The hybrid archi-
tecture of an automation agent with its flexible HLC knowledge base and
the reconfigurable LLC constitutes a logically self-contained component for
a manufacturing system.

Research Question 2: Is an ontology apt for representing the con-
cepts about the physical system and the control software, so that
an agent is able to automatically configure its hardware-near con-
trol layer?

Chapter 4 presents an approach for the automated configuration of the
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control software. The approach relies on a system ontology, which contains
sufficient information for automatically generating an FB network in the
hardware-near LLC. In order to represent the topology of the system, con-
cepts about the employed physical components are included in the ontology,
which determine their interrelations. This includes also the used controllers
for hosting the control software. For the instantiation of the correct FBs
representing the physical components in the LLC, corresponding linkage in-
formation is provided, which maps each physical component onto an FB
type. Each FB instantiation is accompanied by the setting of parameters,
which relies on provided data such as the connection point of a physical
component with its controlling entity. Furthermore, for wiring the FBs to
form an operating network, concepts based on requirements and restrictions
are included, which determine the nodes of the FBs that need to be con-
nected. In the presented work, only control software based on FBs can be
represented in the ontology but it can be of any programming language or
standard that supports such a concept. For increasing the generality and to
encompass other control software programming paradigms (e.g. ladder logic
or textual languages), the ontology needs to be extended with corresponding
concepts. Nonetheless, a hardware-near control layer based on FBs can be
automatically configured using this ontology.

Research Question 3: Is it possible to integrate reconfiguration
mechanisms in both layers of a hybrid agent architecture for achiev-
ing self-reconfiguration?

Section 5.1 describes the reconfiguration process of an automation agent,
which has to modify its functionality. After updating the facts in its world
model according to the received information about its environment, the agent
adapts its performable activities and determines a suitable LLC configura-
tion. The reconfiguration process is based on a set of rules for removing
FBs from and for adding FBs to the LLC application. Executing these rules
is based on the information provided in the system ontology as well as on
a set of Java methods embedded in the HLC, which are used for sending
commands in XML format to the according controller. These commands are
received by the external reconfiguration interface of the LLC runtime, which
modifies the application accordingly. Thus, reconfiguration mechanisms are
integrated in both layers of the automation agent, which is therefore capable
of reconfiguring itself. Likewise to the ontology, the implemented reconfigura-
tion mechanisms are designated only for reconfiguring control software based
on FBs. Integrating additional rules for other control software programming
paradigms would therefore be a meaningful extension.
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Research Question 4: Is the developed approach feasible and ben-
eficial on a real (laboratory) system?

The performance measurements presented in Section 4.5 show that the
automated configuration process is performed sufficiently fast for industrial
processes without hard real-time constraints. For the given implementation,
experiments indicate a linear correlation between the amount of commands
and configuration time with the network latency being the dominating factor
(see Section 3.8.3). Consequently, a component-oriented design of the LLC is
a prerequisite to keep the configuration time within acceptable boundaries.
Besides, Section 5.2 presents an evaluation of the approach on a laboratory
pallet transport system. The evaluation is based on a performance compar-
ison of three test cases: (i) test case without any conveyor failure, (ii) test
case with a broken critical conveyor with no resolving means, and (iii) test
case with a broken critical conveyor with the application of the presented ap-
proach. The experiment shows that the throughput of the system evidently
decreases in the case of a broken critical conveyor (ii) compared to the failure
free case (i). However, if the developed reconfiguration mechanisms are avail-
able when the failure is detected (iii), the system is able to adapt itself and
its throughput is almost as high as in case (i). Thus, the system’s tolerance
to failures is increased by the developed approach.

6.2 Outlook

In order to apply the presented control software reconfiguration approach
in a system with hard real-time constraints, the reconfiguration services of
the agents need to be extended for being able to create an RCA within
the agent’s LLC. Thus, it can create an RCA without interfering with the
process under control and consequently the LLC application can then be
reconfigured sufficiently fast. Finally the RCA can be removed from the
LLC again with no interference of the process. In this context, also the topic
of transition management, which represents a research domain of its own,
needs to be considered more closely to ensure a smooth transition during the
reconfiguration process [159].

Furthermore, in the case of an LLC that is based on a different paradigm
than IEC 61499, the implementation components of the solution space can
also be replaced by other software components, such as FBs of the standard
IEC 61131. However, in this case also the configuration method of the agents
needs to be adapted accordingly by providing methods for creating and wiring
these software components with another reconfiguration infrastructure than
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the FORTE. For improving the generality of the configuration approach, the
concepts of the solution space and their relations could also be provided
in the form of an ontology, as the one presented in [254] for representing
FBs of the standard IEC 61499. As the concept of adapter connections
is missing within this ontology, it would have to be extended accordingly.
Thus, the solution space concepts would be described in a more declarative
manner, which could ease the adoption of this configuration approach to
other reconfiguration infrastructures.

In the context of diagnosis, the presented agent architecture provides
the basis for diagnostic algorithms which combine information from multiple
entities to deduce the cause of an anomaly. One possible case is briefly men-
tioned in Section 3.7.2 but this approach still needs to be validated regarding
further and more complex failure cases on various manufacturing systems.
Another possibility for diagnostic mechanisms is the integration of learning
capabilities in the agents, e.g. by extending the agent approach with evolving
data models based on the behavior of the monitored system [261].

Regarding the implementation on the pallet transport system, the pre-
sented MAS application calculates new routing tables only in the case of a
detected failure, which forces the system to provide alternative paths. How-
ever, such a system’s throughput performance could be enhanced also in the
failure free case by applying a routing algorithm for the determination of
conveyor direction changes based on the momentary location of pallets and
the destinations they are heading to.

Generally, agent technology is not yet widely spread in the industry de-
spite its potential. Apart from the commercially important factor regarding
the return on investment, doubts regarding the reliability of an agent-based
system cannot be ignored especially in the case of agents, which might not
be under direct human supervision [262]. Reported research on the stability
of MAS is mainly concerned with rather homogeneous entities and swarm
theory (e.g. [263, 264]) and therefore more advanced models and means for
a stability analysis might be required, which take the individual complex
behaviors of agents in a heterogeneous MAS into account.

Apart from the radical paradigm shift from a controller-centric view to
modularization and service orientation, which requires an appropriate edu-
cation of the engineering staff [49], another factor hindering the wide appli-
cation of agent technology might be that generally the integration of new
technologies in the industry requires according design tools for supporting
their applicability [265]. For instance the agent’s HLC models in the pre-
sented work are designed and implemented manually in the Java classes but
they could be created with tools such as Protégé [266] with a suitable code
parser. Also the XML files incorporating the resource ontology could be
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exported from a commercial tool such as EPLAN Electric P8 [267] if an
according XML export would be provided. Consequently, agent-based solu-
tions realized as easily configurable black boxes with transparent interfaces
are advisable [49]. This includes the deployment of the complete automa-
tion agents onto the controllers located in the field level, including also the
resource intensive HLC of each agent, which should become more feasible
due to the recent advances in the controller technology and the increasing
computational power.

6.3 Epilogue

In regard of the sheer endless amount of available publications, it is a proven
fact that new knowledge is likely based on existing approaches—evidently,
there are some references included in this thesis. Hence, likewise to the
diploma thesis finished by the author a few years ago, also this work shall be
concluded with an appropriate quotation:

“The dwarf sees farther than the giant,
when he has the giant’s shoulder to mount on.” [268]
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