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Abstract 

In this thesis we are going to tackle the problem of estimating a sparse graph signal 

with an unknown frequency support set of known size 𝐾 from a sampled noisy version. Not 

knowing the location of the non-zero Fourier coefficients and by taking a number 𝑀 of 

samples larger than 𝐾  will give us a compressed sensing problem. The Bayesian 

Approximate Message Passing (BAMP) algorithm is used to solve the compressed sensing 

problem and recover the original signal from few coefficients. 

 

Key words:  Graph Signal, Unknown Frequency Support Set, Compressed sensing, BAMP 

algorithm. 
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Chapter 1 

Introduction 
 

 

 

In the recent years, we are witnessing a huge increase in the amount of data being 

transferred and the networks are becoming bigger and more complex. Using the classical 

signal processing operations to process and represent this huge amount of data and complex 

signals is not efficient anymore. The goal is to find a feasible way to represent these complex 

signals and to be able compress the data as much as possible, so after transmission they can 

be perfectly reconstructed. 

Graph signals can represent complex structured signals and still have the ability to 

carry out all the classical signal processing techniques like sampling, Fourier transform and 

others. In this thesis we are going to tackle the problem of estimating a sparse graph signal 

with an unknown frequency support set from a sampled noisy version. Not knowing the 

location of the 𝐾 non-zero Fourier coefficients and by taking a number 𝑀 of samples larger 

than 𝐾 will give us a compressed sensing problem.  

 

 

1.1 Summary of the Results 

 

Compressed sensing gives the ability to reconstruct a signal from just few 

coefficients. The BAMP algorithm can be used to solve the compressed sensing problem 

and iteratively estimate the graph signal where the noise variance is unknown. The sensing 

matrix used is generated by the singular value decomposition of the weight matrix (SVD 

matrix). After many simulations of different scenarios we found out (as expected) that the 
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more samples 𝑀 used, the better the quality of reconstruction. The quality of reconstruction 

improved significantly starting from 𝑀 ≥ 2𝐾 and this is due to elementary null-space 

considerations of the compressed sensing problem which can also be proved algebraically. 

Also this is considered a practical advantage, where the graph signal dimension 𝑁  is 

relatively high, yet 𝑀 can remain the same as used for a lower dimension as long as it 

satisfies this condition. 

To check the loss in the reconstruction process produced using the SVD matrix, the 

Gaussian matrix which is considered the ideal case was used. Also the Coherence property 

of these two matrices was calculated and were almost the same. 

 

1.2 Thesis Overview 
 

The following thesis is divided to five chapters. Chapter 2 introduces graph signals 

and gives a brief overview on this topic. It starts by defining a main component of graph 

signals which is the weight matrix and the eigen system decomposition of it. Also in this 

chapter the sampling support set and the frequency support set are defined and how a graph 

signal can be sampled. Finally we state the theorem that shows the condition for perfect 

recovery of a sampled graph signal. 

Chapter 3 reviews compressed sensing; the chapter starts by setting the compressed 

sensing problem and mentioning every component in the problem. Then it focuses on one 

important component which is the sensing matrix and that by discussing three important 

properties of it. Last part of the chapter mentions how the sensing problem can be viewed as 

a ℓ0 minimization problem. In this thesis, we are interested in one type of recovery algorithm 

which is called probabilistic algorithms; it will be discussed more in Chapter 4. 

Chapter 4 starts by mentioning an example of a probabilistic recovery algorithm 

called Approximate Message Passing (AMP). Then description is given of the problem 

setting with derivations depending on probabilistic techniques.  Finally, a detailed 

description follows of one variant of AMP called BAMP. All the equations needed for this 

iterative algorithm are available in this chapter. The BAMP algorithm is used in our work 

for this thesis. 
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Chapter 5 gives a detailed description of the work done in this thesis using the 

theoretical background mentioned in the previous chapters. The chapter starts by introducing 

the main problem that we are tackling in this thesis and the settings configured to create a 

simulated scenario. A number of simulations were done to check the effect of using different 

matrix and graph signal dimensions, also under different signal to noise ratios. These results 

are presented and described in this chapter. The same simulations were repeated but for the 

Gaussian matrix as the sensing matrix and a comparison is given between the old and the 

new simulations. Finally, the Coherence property of the sensing matrices was calculated for 

different dimensions. 

All the theoretical knowledge that was used in this thesis, its sources are mentioned 

in the Bibliography section. In Appendix A, the equations used for rescaling the sensing 

matrix can be found, while in Appendix B there are more simulated results that are described 

in Chapter 5. 
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Chapter 2 

Fundamentals of Graph Signals and Graph Signal Recovery 
 

 

 

Signal processing on graphs is rooted in classical discrete signal processing of 

signals, where the simple classical signal processing operation, the delay shift, can be applied 

on graphs where it is called a graph shift. This chapter will start with an overview on graph 

signals and their Fourier transform. Then it is shown how the values of the graph frequencies 

are represented and how they play an important role in defining the bandwidth of the graph 

signal. Moreover an important operation on graph signals which is sampling is explained, 

and a sampling matrix is to be compressed. Finally, the recovery of the sampled signal will 

be discussed and how to achieve perfect recovery, which depends on the graph signal and 

the interpolation operation. All this fundamental knowledge on graph signals and operations 

carried with them will be used for the setup up of the simulations for this thesis. This chapter 

is based on [1] [2] [3]. 

 

 

 2.1 Graphs 
 

A graph is a structure that represents a set of objects showing the connections and 

relations between them. Irregular and complex signals can be represented by graphs by using 

discrete signal processing on graphs. 

In discrete signal processing a graph 𝐺 = (𝒱,𝐖), where 𝒱 = {𝑣0, … . , 𝑣𝑁−1}, is a set 

of nodes of the graph and 𝐖 the graph shift 𝑁 × 𝑁 matrix, for the real elements 𝑤𝑖𝑗 ∈ ℝ; the 

graph shift characterizes the connections between the nodes. The graph 𝐺 can be directed or 

undirected, and the relation between two nodes 𝑣𝑖  and 𝑣𝑗  does not have to be symmetric. 
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 2.2 Graph signals 
 

A graph signal represents the mapping of the signal coefficients, x𝑗 ,  where  𝑗 =

1,2, …𝑁, to the graph nodes 𝑣𝑗  as illustrated in Figure 2.1. The graph signal can be written 

as x = (x1, x2,….,xN)
𝑇which is an N-dimensional column vector with real or complex signal 

components.  

 

Figure 2.1 A Graph signal represented on a graph with 10 nodes (source: Antonio G. Marquesy, Santiago 

Segarraz, Alejandro Ribeiro, King Juan, Carlos University, Massachusetts Institute of Technology University 

of Pennsylvania, Graph Signal Processing: Fundamentals and Applications to Diffusion Processes, August 

2016). 

 

 
 

A graph filter can be seen as the generalization of time shift or as the basic filtering 

operation, like in classical signal processing, where the value at a node is replaced by the 

weighted sum of the values of its neighbor nodes: x′ = 𝐖 x. 

 

2.2.1 Graph Fourier transform 

The Fourier transform [2] is the decomposition of the signal into basis elements, this 

basis is the eigenbasis of the graph shift 𝐖 and is invariant to filtering. Let us assume that 

within the graph shift 𝐖, 𝑁 linearly independent eigenvectors exist i.e 𝐖 has a complete 

eigenbasis.  𝐖 can be decomposed according to: 

                                             𝐖 = 𝐕 𝚲 𝐕−𝟏                                                         (2.1) 
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The columns of matrix 𝐕 are the eigenvectors of the matrix 𝐖, and 𝚲 is a diagonal matrix 

composed of the eigenvalues of 𝐖.  

For undirected graphs 𝐖 has full rank, is real and symmetric and has complete 

orthonormal eigenbasis. In this case all the eigenvalues will have real values and for the 

decomposition of 𝐖  as in (2.1), 𝐕−𝟏 = 𝐕𝑻.  For directed graphs with existing complete 

eigenbasis, the columns of matrix 𝐕, which are linearly independent, can be used as a basis 

for the expansion of graph signal. 

Hence, the graph Fourier transform of graph signal x is defined as: 

                                                           x̂ = 𝐕−𝟏 x.                                                         (2.2) 

The vector x̂ represents the graph Fourier coefficients which describes the frequency content 

of x, which will be discussed further later. The inverse graph Fourier transform is 

                                                            x = 𝐕 x̂  .                                                         (2.3) 

 

 

2.3 Bandwidth of graph signal 
 

Generally in sampling theory, the bandwidth of the signal is an important parameter 

for efficient sampling. For graph signals the potential frequency content is determined by 

the eigenvalues of 𝐖 which represent the values of the graph frequencies.  

Every coefficient in x̂ is the strength of a graph frequency component, so in [1] the 

bandwidth of a graph signal is defined by the number of non-zero coefficients in x̂. By doing 

so, the sampling framework in [1] gives the opportunity to use simple tools from linear 

algebra for sampling of signal with complicated (graph) structure. 
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2.3.1 Band-limited graph signals 

For a perfect graph signal recovery, an important class of graph signals has to be 

stated and that is bandlimited graph signals. As in [2], the term frequency support set with 

size 𝐾 is defined as 

                                                  𝒦 = {𝒦1, 𝒦2, … . ,𝒦𝐾 }                                            (2.4) 

With |𝒦| = 𝐾 and  

                   𝒦𝑖 ∈  {1,2, … . , 𝑁}   and  𝒦𝑖  ≠  𝒦𝑗  when  𝑖 ≠ 𝑗, 

so that for the coefficients of  x̂ 𝑘, the Fourier-transform of the graph signal x, we have  

                             x̂ 𝑘 = 0  for all  𝑘 ∈   {1,2, … . , 𝑁} \ 𝒦                                          (2.5) 

A graph signal is bandlimited if it can be composed by number of eigenvectors fewer 

(𝐾 < 𝑁) than the number of the eigenvectors existing in the columns of matrix 𝐕, while a 

graph signal that is not bandlimited is called full-band graph signal. Such K is called the 

bandwidth of x.  

As we just mentioned that x̂ 𝑘 ≠ 0 only for 𝑘 ∈  𝒦, as stated in [2] the non-zero 

Fourier-coefficients can be computed according to 

                                 x̂ 𝒦 = (𝐕
−𝟏 x) 𝒦 = (𝐕

−𝟏 ) (𝒦,:)x,                                            (2.6) 

The notation (𝐂 ) (𝒦,:) means that the rows according to the subset 𝒦 are chosen and “:” for 

all the columns of matrix 𝐂. By inverting the Fourier transform we get 

                                  x̃ = 𝐕 (𝒦,:) x̂ 𝒦 = 𝐕 (𝒦,:) (𝐕
−𝟏 ) (𝒦,:)x,                                              (2.7) 

It can be observed that x̃ = x when x is bandlimited as shown in equation (2.7). 
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2.4 Sampling  
 

A graph signal x  can be sampled by taking 𝑀(𝑀 < 𝑁) nodes of x to produce a 

sampled signal xℳ  where ℳ = (ℳ0, … ,ℳ𝑀−1)  represent the sequence of the sampled 

indices, and the set ℳ named the sampling support set, so that ℳ𝑖  ∈  {0,1, … ,𝑁 − 1}. A 

sampling matrix (𝑀 × 𝑁) [2] can be defined as  

 

           𝐀𝒊𝒋 = {
 1      if  𝑗 = ℳ𝑖

  0    otherwise
    for          

𝑖 =1,2,…,𝑀 
𝑗 =1,2,…,𝑁

                                             (2.8) 

where |ℳ| = 𝑀,     ℳ𝑖 ≠ ℳ𝑙     for    𝑖 ≠ 𝑙. 

Thus the sampling matrix relates the sampled graph signal to the unsampled graph 

signal as follows, 

                                              xℳ = 𝐀x                                                                        (2.9) 

There are two strategies of sampling [1]: random sampling in which the sample nodes 

are randomly chosen; and experimentally designed sampling where the samples are chosen 

before the experiment is conducted. After defining the sampling support, it can be stated that 

perfect recovery of a graph signal is possible, when x̂ has K non-zero components and 𝐾 

must not be larger than number of samples taken for the graph signal 𝑀. 

 

 

2.5 Sampled graph signal recovery 
 

As we just mentioned how a graph signal x can be sampled by multiplying it by a 

sampling matrix 𝐀, this brings up to the opposite case of which is interpolation. As stated in 

[1], an interpolation operator 𝚽 can be defined such that  

           x′ = 𝚽 xℳ                                                                  (2.10) 

Where x′ ∈  ℝ𝑁 and it recovers x from xℳ. 
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The recovery of the graph signal depends on the graph signal itself and the sampling 

matrix used. For perfect recovery some conditions must be fulfilled and that will be shown 

in the following theorem: 

Theorem 1 [4.2]: 

Let the 𝑀 ×𝑁 sampling matrix 𝐀 satisfy the following: 

  𝑟𝑎𝑛𝑘(𝐀 𝐕(: ,𝒦)) = 𝐾,                                                                 (2.11) 

where 𝐕(: ,𝒦) is a 𝑁 × 𝐾 matrix with an index set 𝒦 to address 𝐾 linear independent 

vectors of dimension 𝑁 in the columns of  𝐕. For a graph signal x that is bandlimited to the 

frequency support set 𝒦 of size K, we have  

                                         x = x̃ = 𝚽 xℳ = 𝚽𝐀x                                                       (2.12) 

and perfect recovery is achieved by choosing  

                  𝚽 = 𝐕(: ,𝒦)𝐔                                                                    (2.13) 

with the 𝐾 ×𝑀 matrix U such that  

𝐔𝐀𝐕(: ,𝒦) = 𝐈                                                                  (2.14) 

with I the 𝐾 × 𝐾 identity matrix. 

 

By checking Theorem 1 for the case 𝑀 > 𝐾, the matrix 𝐀𝐕(: ,𝒦) will not be a square 

matrix. So the interpolation operator 𝚽 will be defined as the pseudoinverse of the 𝐀𝐕(: ,𝒦): 

                       𝐔 = ((𝐀𝐕(: ,𝒦))
𝑯
𝐀𝐕(: ,𝒦))

−𝟏

(𝐀𝐕(: ,𝒦))
𝑯

                                                 (2.15) 

For 𝑀 = 𝐾, the matrix 𝚽 will just be defined as the inversion of the square matrix 𝐀𝐕(: ,𝒦). 

𝐀𝐕(: ,𝒦)  can be simplified to 𝐕(ℳ ,𝒦),  as the sampling matrix, which is defined by the 

sampling support set ℳ,  only picks rows from  𝐕(: ,𝒦).  After this simplification the 

interpolation formula can be written as: 

                x̃ = 𝐕(: ,𝒦) ((𝐕(ℳ ,𝒦))
𝑯
𝐕(ℳ ,𝒦))

−𝟏

(𝐕(ℳ ,𝒦))
𝑯
xℳ.                                 (2.16) 

 

Graphs can represent irregular and complex signals while the graph shift represents 

the relation between the graphs nodes. By the end of this chapter it is now clear how graph 

signals represent the mapping of signal values to the graph nodes and how they are 

represented by appropriate vectors. Moreover the Fourier transform of the graph signal was 
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discussed. Important operations on graph signals like sampling and interpolation were 

explained, as they take an important role in the simulations in this thesis. Finally we have 

seen that for perfect recovery of a sampled graph signal using a sampling matrix with 𝑀 >

𝐾 is alone not sufficient the operator also has to fulfil the condition mentioned in (2.11). 
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Chapter 3 

Fundamentals of Compressed Sensing and Signal Recovery 
 

 

 

Nyquist’s and Shannon’s studies had a huge impact on the communication world. 

They showed that for a continuous-time signal of finite bandwidth perfect recovery is 

possible from sampling it at a frequency at least twice the highest frequency present in that 

signal. With the enormous increase in the amount of data used nowadays, it became very 

hard and complex to detect such a large amount of samples. This created the motivation of 

finding different representations for the signal in order to sample it using fewer samples. 

There is the sparse representation, i.e. the signal is defined by a much smaller number of 

non-zero coefficients than the length of the signal, and the compressible representation, i.e. 

signal approximated by a signal with much fewer non zero coefficients relative to its length. 

Compressed sensing gives the ability to represent many signals using a few non-zero 

coefficients which can be later recovered. It needs fewer measurements to sense the signal 

(i.e. sparse signals) compared to the Shannon sampling theorem. The measurements needed 

to be linear and must not depend on each other. Let’s define a compressed sensing system, 

i.e. an underdetermined system, which takes 𝑚  linear measurements for a signal vector x ∈

ℝ𝑛 (𝑚 ≪ 𝑛) where: 

                𝑦 = 𝐴x ,                                                                 (3.1) 

𝑦 ∈ ℝ𝑚 is the observed vector and 𝐴 is the 𝑚 × 𝑛 sensing matrix see illustration in 

Figure 3.1. This chapter will address two important points. The first one is the construction 

and properties of matrix 𝐴 and the second point is the reconstruction of the signal x. 
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Figure 3.1 Representation of the effect of the sensing matrix A on the signal x. (Source: 

https://www.quora.com/topic/Compressed-Sensing) 

 

 

3.1 Sensing matrix 
 

The sensing matrix 𝐴 is non-adaptive i.e. fixed and does not depend on the signal x. It 

can be perceived as a mapper that maps the signal from ℝ𝑛 to ℝ𝑚, thus it condenses the 

information in a signal into a small amount of data as illustrated in Figure 3.1. From equation 

(3.1) signal recovery can be modeled as an ℓ0 minimization problem [4] 

                                          minimize    ‖x‖0                                                            (3.2) 

                           subject to    Ax = y, 

where ‖x‖0 is the number of non-zero elements in vector x. The minimization of the ℓ0-

“norm” is a non-convex problem so it is simpler to solve the related problem that results 

from relaxing it to the convex ℓ1 minimization problem: 

                                                       minimize    ‖x‖1                                                        (3.3) 

                                                     subject to    Ax = y. 
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The optimal solution for the ℓ0  minimization is very close to the solution of the ℓ1 

minimization but the matrix A has to have certain conditions. These conditions should be 

taken into consideration when designing the matrix A.  

 

3.1.1 Null space conditions (NSC) 

A formal definition of null space of matrix 𝐴 [5]: 

             𝒩(𝐴) = {𝑧 ∶ 𝐴𝑧 = 0}                                                         (3.4) 

 

From the work of Gribonval and Nielsen they gave the following theorem: 

Theorem 2: [6]  

Given a matrix  𝐴 ∈  ℝ𝑛×𝑁 , every 𝑠-sparse vector x ∈  ℝ𝑁 is the unique solution of the 

ℓ1minimization with 𝑦 = 𝐴x if and only if 𝐴 satisfies the null space property of order 𝑠.  

 

In other words the matrix 𝐴 satisfies the NSC [4] for a positive integer k if: 

                                             ‖𝑧𝐾‖1 < ‖𝑧�̅�‖1,                                                                     (3.5) 

holds true for all 𝑧 ∈ {𝑧| 𝐴𝑧 = 0, 𝑧 ≠ 0} and for all subsets of 𝐾 ⊆ {1,2, … 𝑛} where 𝐾 is an 

index set, 𝑧𝐾 is the part of the vector z over the index set 𝐾and �̅� is the complement of 𝐾. In 

[7] it is shown that the NCS is related to a proportion diameter 𝛼𝑘 which is defined as: 

                                   𝛼𝑘 = max
{𝑧∶𝐴𝑧=0,𝑧≠0}

max
{𝐾:|𝐾|≤𝑘}

‖𝑧𝐾‖1

‖𝑧‖1
                                                  (3.6) 

𝛼𝑘  can be used to verify the NSC and there is some work on algorithms to calculate it. 

Calculating 𝛼𝑘 is complex, which renders NCS not used so much practically. Also it does 

not account for signals contaminated with noise, which makes us consider stronger 

conditions. 
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3.1.2 Restricted isometry property (RIP) 

Candes and Tao [8] introduced the RIP and showed how it is crucial for the optimal 

recovery of a signal using compressed sensing. For a sparse vector x, there is a sensing matrix 

A that satisfies the RIP of order 2𝑘 such that: 

                   (1 − 𝛿𝑘)‖𝐴x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + 𝛿𝑘)‖𝐴x‖2
2,                                           (3.7) 

where 𝛿𝑘  is the RIP constant (0 < 𝛿𝑘 < 1). This shows that, if matrix A satisfies such a 

criterion, the distance between any two 𝑘 sparse vectors is preserved such that they can be 

recovered as two different vectors (and not as one). In (3.7) the bounds are symmetric around 

1 which is not the case in practice. In practice (3.7) becomes: 

                                       𝛼‖x‖2
2 ≤ ‖Ax‖2

2 ≤ 𝛽‖x‖2
2                                                         (3.8) 

where 0 < 𝛼 ≤ 𝛽 < ∞  but it is always possible to scale A back so it can satisfy the 

boundaries in (3.7).  

For achieving the RIP there is a bound for the number of measurements needed, and 

according to a theorem from [5] this bound does not depend on the RIP constant 𝛿𝑘 and only 

depends on the dimensions of the problem. If we have matrix 𝐴 with dimension 𝑀 ×𝑁 and 

it satisfies the RIP of order 2𝑘, then we would have the following: 

                  𝑀 ≥ 𝐶𝑘 log (
𝑁

𝑘
),                                                                   (3.9) 

where 𝐶 = 1/2log (√24 + 1) ≈ 0.28 and 𝛿 <
1

2
 . 

Finally it is shown that according to a theorem from [4] that if a matrix satisfies the 

RIP, then it also satisfies the NSC, although the RIP is strictly stronger than the NSC. 

 

3.1.3 Mutual Incoherence Property (MIP) 

The MIP is easier to calculate compared to NSC and RIP, therefore it is considered 

in a lot of practical work. The coherence of matrix 𝐴, defined as 

                               𝜇(𝐴) = max
1≤𝑖<𝑗≤𝑁

|〈𝑎𝑖,𝑎𝑗〉|

 ‖𝑎𝑖‖2 ‖𝑎𝑗‖2

                                                         (3.10) 
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 where𝑎𝑖 represents column 𝑖 in matrix 𝐴 and the coherence has the following boundaries 

𝜇(𝐴) ∈ [√
𝑛−𝑚

𝑚(𝑛−1)
, 1] , where the lower bound is called the Welch bound [4]. So the 

coherence of a matrix can be interpreted as the largest inner-product (normalized) between 

any two different columns.   

For a matrix 𝐴 to obey the MIP [9] it must satisfy the following:  

                                              𝜇(𝐴) ≤ 𝐵0 ∙ (log𝑁)
−1,                                                           (3.11) 

where 𝐵0 is some positive numerical constant, while for the case of the Gaussian matrix (i.e. 

with i.i.d. entries) 𝜇(𝐴) = √(2 log𝑁)/𝑀. Also in [10] it is stated that for exact recovery of 

a 𝑘-sparse signal, the following condition has to be satisfied: 

                                                     (2𝑘 − 1)𝜇(𝐴) < 1                                                          (3.12) 

If the matrix 𝐴 satisfies (3.12), exact recovery is possible in the noiseless case and near 

optimal in the case of small noise that contaminates signal. 

So it can be concluded for the matrix 𝐴 in our signal setting (3.1), that the smaller 

the coherence value the better the recovery of the signal will be. 

 

 

Figure 3.2 The overall process of solving a compressed sensing problem.  

Source: Stefani Thomas, Compressive Sensing Basics-Medical Imaging-MRI, 

www.slideshare.net/thomasstefani169/compressive-sensing-basics-medical-imaging-mri, 2014 
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 3.2 Signal recovery 
 

The overall picture of the compressed system is illustrated in Figure 3.2. In the last 

part we discussed the sensing part and how the properties of the sensing matrix should be. 

In this part we will give an introduction to recovery and in the next chapter we will mention 

in detail the recovery algorithm used in this thesis. 

As mentioned in the last part, the sensing problem can be viewed as a ℓ0 

minimization problem, and that was shown for the specific case of noiseless signals in (3.2).  

Given measurements y and a sparse signal x, a more generalized form of the optimization 

problem can be formulated as  

x̂ = argmin
𝑧
‖𝑧‖0                                                                 (3.13)    

Subject to     𝑧 ∈ 𝓑(y), 

where 𝓑(y) is the cost function that ensures the consistency between the recovered signal 

and the measurements made. For example as in [5], in the case where there is no noise we 

have 𝓑(y) = {𝑧 ∶  ‖𝐴z = 𝑦‖2},  while with the presence of bounded noise  𝓑(y) = {𝑧 ∶

 ‖𝐴z − 𝑦‖2 ≤ 𝜖}. 

There are different types of recovery algorithms, for example the convex 

optimization techniques like the ℓ1 minimization algorithm, in which the non-convex ℓ0 

minimization problem is relaxed to a convex ℓ1  minimization problem, or the 

greedy/iterative methods for solving these problems by iteratively getting an estimate of the 

signal till a convergence criterion is met. There is also the probabilistic approach, where the 

recovery is being handled as an estimation problem. Approximate Message Passing (AMP) 

or Bayesian Approximate Message Passing (BAMP) are examples of this approach. In this 

thesis BAMP was used and it will be discussed in more detail in the next chapter. 

Modern transform coders would acquire the full signal, encode some coefficients and 

then discard the rest, which results in a huge waste of resources and power. In compressed 

sensing there is no need to this. It makes it possible to acquire data that are already 

compressed (by compressed sampling via 𝐴). Compressed sensing helps to recover sparse 

signals from just a few coefficients (relative to the dimension of the signal).  
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In this chapter we stated the compressed sensing problem, the importance of the 

sensing matrix in this system and the properties they should have to achieve good recovery 

of the signal. 
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Chapter 4 

Bayesian Approximate Message Passing applied for 

Recovery of Sampled Graph Signals 

 

 

 

There have recently been many studies on CS signal reconstruction algorithms. Some 

of these algorithms were mentioned in the last chapter, but in this chapter we are interested 

in Approximate Message Passing (AMP) algorithms. Message passing for compressed 

sensing recovery was first introduced by Sarvotham et al in [11] and then, recently, the AMP 

algorithm was proposed in [13].  The AMP algorithm is interesting for its low complexity 

and fast convergence as an iterative algorithm. As being described in [12] “AMP algorithm 

applies the central limit theorem to sum-product belief propagation (BP) (or quadratic 

approximation to max-sum BP) followed by Taylor expansion to simplify the messages 

passing between nodes”. The Onsager Correction term is what distinguishes the AMP 

algorithm from other iterative thresholding algorithms; this term changes the statistical 

properties of the reconstruction and it gives the ability for analyzing the reconstruction by a 

technique called State Evolution. State Evolution allows to predict the performance of the 

AMP algorithms and tune them for the best performance possible [13]. 

A variation of the AMP algorithm is the Bayesian Approximate Message Passing 

(BAMP) algorithm. BAMP exploits the prior knowledge of the signal. Although BAMP 

gives an approximate estimate of the signal, it is considered a very accurate and efficient 

algorithm. In this thesis the BAMP algorithm was used for recovering the signal, so before 

taking a deeper look at the algorithm used, let’s set the problem on which the BAMP 

algorithm will be applied on. The problem setting is based on [14]. 
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 4.1 Problem Setting 
 

Linear measurements are taken for an 𝑛 -dimensional signal vector x = {𝑥𝑗 , 𝑗 =

1, … . , 𝑛} and with a sensing matrix A of dimensions 𝑚× 𝑛(𝑚 < 𝑛) producing observations 

arranged in vector y of dimension 𝑚, 

                                                 y = 𝐀x + w                                                                    (4.1) 

The matrix A is assumed to have its full possible rank m and its components are 

independently drawn realizations of a real random variable. The columns of A, which can 

be represented as vectors 𝐀𝑗 , 𝑗 = 1,… , 𝑛, are assumed to have zero mean and be normalized 

to unit 𝑙2-norm such that: 

                                                𝐀 = {𝐀𝟏, 𝐀𝟐, … , 𝐀𝒏 }                                                            (4.2) 

             with ‖𝐀𝑗‖2 = 1    ∀ 𝑗 

The signal vector y is contaminated by Gaussian noise which can be seen in (4.1) as an 𝑚-

dimensional vector w = {𝑤𝑗 , 𝑗 = 1,… ,𝑚} that is added. The components of vector w are 

assumed to independent and identically distributed Gaussian with variance 𝜎2 > 0. 

From (4.1) the measurements y and matrix A are given and the signal vector x is 

unknown. The number of measurements 𝑚 is smaller than the number of the unknown signal 

components 𝑛 making (4.1) an underdetermined problem.  

 

4.1.1 Prior Knowledge 

 One way to solve such problem is by getting a good estimate of x by the help of 

exploiting the prior knowledge of x. As we are mainly dealing with sparse signals that can 

be considered an extra information known about x before estimation, also x can be known 

to have a large number of components that take the values ±1. What we will take into 

consideration concerning the prior knowledge of x, is that the probability distribution 

𝑝X(x) is known. Assuming the 𝑛-dimensional signal is sparse with s non-zero coefficients 

where 𝑠 ≪ 𝑛, a probability density function can be defined as [14]: 

            𝑝𝑋𝑗(𝑥𝑗) = 𝜖𝛿(𝑥𝑗) + (1 − 𝜖)𝑓𝑋𝑗(𝑥𝑗)           ∀ 𝑗 = 1,… . , 𝑛                                           (4.3) 
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where 𝜖 is the probability of zero components (𝜖 = (𝑛 − 𝑠)/𝑛) and it is centered at x = 0 

by a delta function, also all components of x are assumed to be independent. Moreover, 

𝑓𝑋𝑗(𝑥𝑗) is the pdf of the non-zero signal samples which is also assumed to be known. 

 

 

 4.2 Estimation Problem 
 

As mentioned in the previous Chapter 3.2, a probabilistic (estimation) approach is 

one way for estimating sparse signals. An optimization criterion is defined such that the 

expectation of the mean squared error is minimized to give an estimation of the signal vector.  

                          x̂ = argmin
x̃
𝔼X,W{‖𝐗 − x̃‖2

2 | 𝐘 = y}                                                  (4.4) 

The estimation is taken over two random components which are the unknown signal 

vector 𝐗 and the noise vector W given the deterministically known measurement vector y. 

To solve (4.4) the partial derivatives of this equation are taken for the vector components �̂�𝑗 

and are set to zero giving the following result: 

                                           x̂ = 𝔼X,W{𝐗 | 𝐘 = y}                                                           (4.5) 

which will be solved to give: 

                                              x̂ = ∫ x 𝑝𝐗|𝐘ℝ𝑛
(x|y)𝑑x                                                  (4.6) 

And using Bayes rule i.e.  𝑝𝐗|𝐘(x|y) =  𝑝𝐘|𝐗(y|x)𝑝𝐗(x)/𝑝𝐘(y) :  

                                    x̂ =
1

𝑝𝐘(𝑦)
∫ x 𝑝𝐘|𝐗(y|x)𝑝𝐗(x)ℝ𝑛

𝑑x,                                              (4.7) 

𝑝𝐗(x) is the signal prior, and since components of signal x are assumed independent and 

each with pdf  𝑝X𝑗(𝑥𝑗), the prior pdf can be written as: 

            𝑝𝐗(x) =∏ 𝑝X𝑗(𝑥𝑗)
𝑛

𝑗=1
.                                                      (4.8) 

The pdf  𝑝𝐘|𝐗(y|x) describes the noisy measurement process, where from (4.1) we can get: 
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                                             𝑤𝑘 = 𝑦𝑘 − (𝐀x)𝑘,                                                                      (4.9) 

where 𝑤𝑘  represents the noise at the 𝑘 -th component. Assuming having independent 

Gaussian noise with variance 𝜎2, we obtain: 

                            𝑝𝐘|𝐗(y|x) =∏
1

√2𝜋𝜎

𝑚

𝑘=1
 𝑒−(𝑦𝑘−(𝐀x)𝑘)

2/(2 𝜎2)                                        (4.10) 

Inserting (4.8) and (4.10) in (4.7), we will get the following expression for the 

estimated signal x̂:          

            x̂ =
1

𝑝𝐘(𝑦)
∫ x
ℝ𝑛

∏
1

√2𝜋𝜎

𝑚

𝑘=1
 𝑒−(𝑦𝑘−(𝐀x)𝑘)

2/(2 𝜎2)∏ 𝑝X𝑗(𝑥𝑗)
𝑛

𝑗=1
                               (4.11) 

Solving (4.11) requires high dimensional integration, which makes it practically infeasible. 

BAMP introduces an efficient and accurate approach to approximately compute this 

equation also for large dimension 𝑛. 

 

 

4.3 Bayesian-Optimal Approximate Message Passing (BAMP) 
 

Mainly, BAMP is an iterative algorithm that decomposes  𝑝𝐘|𝐗(y|x) into marginals 

for the single signal components 𝑥𝑗 and to compute those marginals with believe propagation 

[14]. We will use the same problem setting we mentioned previously with the 𝑚  –

dimensional observation vector y, 𝑚 × 𝑛 sensing matrix A, variance of noise 𝜎2 and prior 

pdf 𝑝X𝑗(𝑥𝑗) are known.  

 

4.3.1 BAMP I Algorithm [14] 

Measurement noise variance 𝜎2 is known. It starts at 𝑡 = 0 with the following intializations: 

             �̂�𝟎 = 𝟎𝑛×1                       (signal vector; dimension 𝑛 > 𝑚)                                          (4.12) 

   𝐳𝟎 = 𝐲                             (dimension 𝑚× 1)                                                                            (4.13) 
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 𝑐0 = 𝜎2 +
1

𝑚
‖𝐳𝟎‖

2

2
      (scalar)                                                                         (4.14) 

Then for iterations 𝑡 = 1,2, …: 

   𝐮𝑡−1 = {𝑢1
𝑡−1, 𝑢1

𝑡−2 , … . . , 𝑢𝑛
𝑡−1}𝑇 = x̂𝑡−1 + 𝐀𝑇𝐳𝑡−1                                                (4.15) 

   �̂�𝑗
𝑡 = 𝐹(𝑢𝑗

𝑡−1;  𝑐𝑡−1),              𝑗 = 1,2, … . , 𝑛                                              (4.16) 

   𝑣𝑗𝑡 = 𝐺(𝑢𝑗𝑡−1;  𝑐𝑡−1),              𝑗 = 1,2, … . , 𝑛                                                (4.17) 

   𝑞𝑗𝑡−1 = 𝐹′(𝑢𝑗𝑡−1;  𝑐𝑡−1),        𝑗 = 1,2, … . , 𝑛                                                     (4.18) 

   �̂�𝑗
𝑡 = {�̂�1

𝑡 , �̂�2
𝑡 , … . , �̂�𝑛

𝑡 }𝑇                                                                               (4.19) 

   𝐳𝑡 = 𝐲 − 𝐀 �̂�𝑡 + 𝐳𝑡−1
1

𝑚
∑ 𝑞𝑗

𝑡−1
𝑛

𝑗=1
                                                      (4.20) 

   𝑐𝑡 = 𝜎2 +
1

𝑚
 ∑ 𝑣𝑗

𝑡−1
𝑛

𝑗=1
                                                                          (4.21) 

With scalar operators:  

           𝐹(𝑢𝑗;  𝑐) = 𝔼𝑋𝑗{𝑋𝑗|𝑈𝑗 = 𝑢𝑗}                                                             (4.22) 

           𝐺(𝑢𝑗;  𝑐) = Var𝑋𝑗{𝑋𝑗|𝑈𝑗 = 𝑢𝑗}                                                                        (4.23) 

 𝐹′(𝑢𝑗;  𝑐) =
𝑑

𝑑𝑢𝑗
𝐹(𝑢𝑗;  𝑐)                                                                              (4.24) 

The subscript 𝑡  represents the iteration index, while the variables 𝐮𝑡−1  are the auxiliary 

variables with the components 𝑢𝑗
𝑡−1. Also  𝐳𝑡, 𝑣𝑗

𝑡and 𝑞𝑗
𝑡−1 are auxiliary variables. 𝑐𝑡 is the 

current estimate of the noise variance and the computation of the scalar operations will be 

shown later in this chapter. 

 

4.3.2 BAMP II Algorithm 

This algorithm is for an unknown measurement noise variance. It starts at 𝑡 = 0 with the 

following initializations: 

�̂�𝟎 = 𝟎𝑛×1                     (signal vector; dimension 𝑛 > 𝑚)                                       (4.25) 
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  𝐳𝟎 = 𝐲                        (dimension 𝑚 × 1)                                                            (4.26) 

𝑐0 =
1

𝑚
‖𝐳𝟎‖

2

2
            (scalar)                                                                         (4.27) 

Then for iterations 𝑡 = 1,2, …: 

 𝐮𝑡−1 = x̂𝑡−1 + 𝐀𝑇𝐳𝑡−1                                                                             (4.28) 

�̂�𝑗
𝑡 = 𝐹(𝑢𝑗

𝑡−1;  𝑐𝑡−1),              𝑗 = 1,2, … . , 𝑛                                           (4.29) 

           𝐳𝑡 = 𝐲 − 𝐀 �̂�𝑡 + 𝐳𝑡−1
1

𝑚
∑ 𝐹′(𝑢𝑗

𝑡−1;  𝑐𝑡−1)
𝑛

𝑗=1
                                      (4.30) 

          𝑐𝑡 = 1

𝑚
 ‖𝐳𝑡‖2

2                                                                                           (4.31) 

with 𝐹(𝑢𝑗
𝑡−1;  𝑐𝑡−1) and 𝐹′(𝑢𝑗

𝑡−1;  𝑐𝑡−1) defined as in (4.22) and (4.24). 

The main difference between the two algorithms is how the noise variance 𝑐𝑡 is 

computed. In BAMP II there is no need to know the measurement noise variance 𝜎2, as it is 

approximated by the ℓ2-norm of the residual 𝐳𝑡. According to [14], although in BAMP II 𝜎2 

is not known, yet the performance of this algorithm is the same as that of BAMP I. The 

stopping criterion for this iterative algorithm is by done by checking, if the estimate �̂�𝑡 is not 

changing anymore. This is implemented by stopping the iterations if: 

                     ‖ �̂�𝑡 − �̂�𝑡−1‖2 < 휀‖ �̂�
𝑡‖2                                                  (4.32) 

where 휀 is chosen to be a small factor such as 휀 = 10−4… . 10−6. 

 

4.3.3 Computation of Scalar Operators 

It has been shown by the central limit theorem that the noise model that applies to 

the signal components in the BAMP iterations is Gaussian for large n. In this part the final 

equations for the scalar operators 𝐹(𝑢𝑗;  𝑐), 𝐹′(𝑢𝑗;  𝑐) and 𝐺(𝑢𝑗;  𝑐) will be given without 

derivations. All the equations are from [4.4] and this is also where their derivations can be 

found.  
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As mentioned in part 4.1.1 the prior knowledge is being exploited to give a good 

estimate for the signal, also it is being assumed we are dealing with sparse signals. We are 

interested in the case with sparse Gaussian prior (zero mean).  

The pdf of the sparse Gaussian prior is: 

                𝑝𝑋(𝑥; 𝛾, 𝜎) = 𝛾𝛿(𝑥) + (1 − 𝛾)
1

√2𝜋𝜎
𝑒
−

1

2𝜎2
𝑥2

                    (4.33) 

with 𝛾 is the probability of zero value (0 ≤ 𝛾 ≤ 1) and 𝜎 is the variance of the Gaussian 

distribution if no discrete zero-component is generated by the source. The component indices 

j will be dropped from x and from u for compact notation.  

For the optimal MMSE estimator with a sparse Gaussian prior: 

                                  𝐹(𝑢; 𝑐) = 𝑢
𝑞

𝑞+1
  

1

1+𝑁(𝑢,𝛾,𝑐,𝑞)
                                              (4.33) 

Where 𝑞 = 𝜎2/𝑐 and 𝑁(𝑢, 𝛾, 𝑐, 𝑞): 

                              𝑁(𝑢, 𝛾, 𝑐, 𝑞) =
𝛾

1−𝛾
√𝑞 + 1𝑒

− 
𝑢2

2𝑐
  
𝑞

𝑞+1                                       (4.34) 

Thus from (4.33) and (4.34), as the noise variance increases (𝑐 → ∞), the output is muted 

(𝐹(𝑢; 𝑐) → 0) and as 𝑐 → 0 the measurement will represent the true value of x (𝐹(𝑢; 𝑐) →

𝑢). 

Finally the variance of the optimal MMSE estimator in (4.33) is: 

               𝐺(𝑢; 𝑐) = 𝑐
𝑑

𝑑𝑢
𝐹(𝑢; 𝑐) = 𝑐 𝑀(𝑢, 𝛾, 𝑞) + 𝑚(𝑢, 𝛾, 𝑞)𝐹2(𝑢; 𝑐)              (4.35) 

with 

                                 𝑀(𝑢, 𝛾, 𝑞) =
𝑞

𝑞+1
  

1

1+𝑚(𝑢,𝛾,𝑞)
                                      (4.36) 

and 

                              𝑚(𝑢, 𝛾, 𝑞) =
𝛾

1−𝛾
√𝑞 + 1𝑒

− 
𝑢2

2𝑐
  
𝑞

𝑞+1                                      (4.37) 

with 𝑞 = 𝜎2/𝑐. 

 

 Approximate Message passing algorithms with their low complexity relative to other 

algorithms, solve the problem of recovering the signals from compressed sensing 
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measurements. After several studies, simulations and analysis on AMP algorithms, it was 

shown that these algorithms exhibit fast convergence rate. BAMP, being a version of AMP 

where it exploits the prior knowledge of the signal, has shown very good performance in 

recovering the signals efficiently and accurately. This is why BAMP is used in our work for 

this thesis to recover the signals. 

 This chapter introduced the theoretical background concerning BAMP, which will 

be used in our work and simulations and this will be discussed in the following chapter.  
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Chapter 5 

Simulations 
 

 

 

In Chapter 2 the concept of graph signals was discussed, how they are sampled and 

the conditions required for reconstructing the signal from the samples. The theoretical 

background for graph signals that was discussed in Chapter 2 was mainly taken from [4.2]. 

It was shown that for perfect recovery of a sampled graph signal x, two conditions must be 

fulfilled. 

 The first condition is that the graph signal should be bandlimited, meaning that the 

number of non-zero components 𝐾 in the frequency support must not be larger than the 

number of sampled components 𝑀 in the sampling support. The second condition, which is 

concerned with the sampling matrix, is to fulfil the rank criterion stated in Theorem 1 (2.11). 

If these conditions are fulfilled, there are some already known methods to perfectly recover 

the signal, one of them discussed in [4.2]. All these methods rely on the fact that the sampling 

and the frequency support sets are known.  

The main problem we are tackling in this thesis is, what if the frequency support set 

is unknown and how can we still perfectly recover the signal. In this chapter we will 

introduce how this problem is solved, how it becomes a compressed sensing problem, for 

which the BAMP algorithm can be used to recover the graph signal, and we will introduce 

some simulations that were done to see the effect of different parameters on the recovery 

process. But first let’s define our problem according to the theoretical knowledge that was 

presented in the previous chapters. 
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5.1 Problem Setting 
 

Following what was introduced in Chapter 2, we are given a sampled graph signal 

as: 

                                                     xℳ = 𝐀 x,                                                                       (5.1) 

where xℳ  is the observed sampled signal and x is a 𝑁-dimensional graph signal that is being 

sampled by 𝐀 (𝑀 × 𝑁), the sampling matrix. From (2.3) we get: 

     xℳ = 𝐀 𝐕 x̂                                                  (5.2) 

𝐕 (𝑁 × 𝑁) is the matrix which has in its columns the eigen vectors of the graph shift and x̂  

contains the graph Fourier coefficients ordered in a 𝑁 × 1 vector as shown in (2.2).  This 

would make the observed graph signal the following: 

                                                      y = xℳ + 𝑤,                                            (5.3) 

where the sampled graph signal is contaminated with random Gaussian noise. First, each 

parameter in (5.3) has to be defined according to the settings introduced in the following 

sections. 

 

5.1.1 Weight Matrix 

As mentioned in Chapter 2, the matrix 𝐕 represents the eigen vectors of the weight 

matrix defined in (2.1). The weight matrix W is a (𝑁 × 𝑁) matrix. The entries of the W 

were chosen to be uniformly distributed pseudorandom numbers. Also W has a high sparsity 

level, as we are mainly dealing with sparse graph signals. In Figure 5.1 (a), we can get an 

idea of how the weight matrix was being represented and check the sparsity level from the 

percentage of the zero coefficients in the matrix. The nodes of the graph signal were 

implicitly renumbered such that the weight matrix would be as far as possible a diagonal 

matrix and that was realized by a standard Matlab function (symrcm()). Also it is being 

compared to another simulated matrix with low sparsity level as shown in Figure 5.1 (b). 
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(a) 

 

 

(b) 

 

Figure 5.1 (a) Weight matrix which will be used in the simulations with more than 90% of 

the entries are zeros (sparse matrix). (b) Weight matrix with almost 32% of the entries are 

zeros (for comparison). 
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5.1.2 Graph Fourier Vector 

The vector x̂ represents the graph Fourier coefficients which describe the frequency 

content of x. In our work we assumed that the prior knowledge of the signal is known, where 

the prior is sparse Gaussian with zero mean as given in (4.33). x̂ will have K non-zero 

components, these components will be the Fourier transform of a Gaussian function. We will 

assume that the number of non-zero Fourier coefficients is known, but not the frequency 

support set. 

 

5.1.3 Sampling Matrix 

The sampling matrix A in (5.1) and (5.2) was designed to have the same properties 

as (2.8). By multiplication of the matrix A and V, (5.2) can be written as: 

                                               xℳ = 𝐁 x̂,                                          (5.4) 

where B is an  𝑁 × 𝑁 matrix representing the sensing matrix, making (5.3) a compressed 

sensing problem. In order to recover the signal, the same steps were followed as discussed 

in Chapter 4, where we start with (5.3) which is the same as (4.1). The only difference is that 

the matrix B has to be normalized to unit 𝑙2-norm as in (4.2). This normalization will lead to 

some scaling of the signal prior (see Appendix A) which will directly affect the BAMP 

algorithm through the prior variance. The normalization is done using the equations from 

Appendix A.  

  

5.1.4 Signal Recovery 

The BAMP II algorithm [4.4] mentioned in Chapter 4 was used for signal recovery. 

The first simulation done in this thesis was to check the ability of the BAMP algorithm to 

recover the original signal in the graph signal recovery setting. Given the observation signal, 

the number of sampled indices M, the number of non-zero Fourier coefficients K and the 

sensing matrix 𝐁, an original graph signal was recovered as shown in Figure 5.2. 
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Figure 5.2 Comparison between Fourier Coefficients of a graph signal (symmetric weight 

matrix) recovered by the BAMP algorithm and the original coefficients. (Upper plot: real 

components, Lower plot: imaginary components). 

 

 

 

Figure 5.3 Comparison between a graph signal (symmetric weight matrix) recovered by 

BAMP and the original one (Upper plot: real components, Lower plot: imaginary 

components). The graph signal is constructed from the Fourier coefficients from Figure 5.2 
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A symmetric weight matrix was used, which means that after performing singular-

value decomposition on this matrix, there will be only real eigen values. This can be seen in 

the results of the simulations shown in Figure 5.2. If an unsymmetrical weight matrix is used, 

we will get imaginary eigen values. This will be more complex to reconstruct the original 

signal using the given BAMP algorithm. 

 

 

 5.2 Quality of reconstruction 
 

 In the previous simulation, the ratio between 𝑀 and 𝑁 used was 1:2 or  
𝑀

𝑁
= 0.5 and 

𝐾 was much smaller than 𝑀. The questions now are what happens if different dimensions 

were used and what parameter setting are needed to give us a good measure of the signal 

reconstruction. 

In this thesis, the performance of reconstruction is defined as the logarithmic ratio 

between the energies of the original signal and the difference between the original signal and 

the estimated one  

                𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑖𝑡𝑜𝑛|𝑑𝐵 =
∑ 𝑥2𝑗

𝑁

𝑗=1

∑ (𝑥2𝑗−�̂�
2
𝑗)
2𝑁

𝑗=1

                                (5.5)     

where 𝑥𝑗 is the 𝑗 component of the N-dimensional graph signal x while �̂�𝑗 is the 𝑗 

component of the reconstructed graph signal.  

 

5.2.1 Varying Number of samples (M) 

Two different sensing matrices were used for these simulations. 

5.2.1.1 Singular-value Decomposition (SVD) Matrix  

In the following simulation, we will check the effect of varying the number of 

samples (𝑀) taken from the original signal on the quality of reconstruction. The 

simulation is repeated 300 times and the average of the quality measure in (5.5) from these 

simulations is used as a figure of merit. In Figure 5.4, the total number of signal 
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components N is fixed at 800 and for convenient representation of the results, it is stated 

as the ratio between M and N. The sensing matrix is produced using a singular-value 

decomposition of the weight matrix as mentioned earlier. Gaussian noise was added to all 

graph signals to investigate different signal to noise ratio (SNR) scenarios. 

 

 

(a) 

 

 

(b) 
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(c) 

Figure 5.4 The effect varying 
𝑀

𝑁
 versus the quality of reconstruction for different SNRs 

where N = 800 and in (a) K = 200, (b) K = 100 and in (c) K = 200. 

 

As shown is Figure 5.4, as we increase the number of samples 𝑀,  the quality of 

reconstruction gets better. After a certain point (transition point), it is observed that there is 

a significant improvement of the reconstruction quality. For example at (a) this transition 

point is when the 
𝑀

𝑁
 equals 0.4, which means that 𝑀 is almost twice the number of non-zero 

coefficients of the Fourier transform vector 𝐾 and that is because 𝑀 ≥ 2𝐾 is a necessary 

condition due to elementary null-space considerations of the compressed sensing problem. 

The same thing is seen in (b) and (c). Theorem 1 in Chapter 2, that 𝑀 has to be greater than 𝐾 

does not apply here, as the locations of the 𝐾 coefficients are unknown so the condition 𝑀 =

𝐾 is not applied and the problem rather considered a compressed sensing problem for a band 

limited graph signal. For we have 𝑀 > 2𝐾 form basic null-space considerations as discussed 

in Chapter 2. 

The quality of reconstruction will stop increasing and saturate after a certain point 

even if 𝑀  is increased. Also if we compare (a), (b) and (c), the smaller 𝐾 is the smaller 𝑀 

needs to be to achieve better quality of reconstruction. Finally, as the noise increases it is 

observed a strong deterioration of the quality of reconstruction, and with very high noise i.e. 

low SNR, there will not be a real transition point and the quality of reconstruction will 

experience a minimal improvement with increasing 𝑀. 
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 This analysis can make us divide the plots into three regions, as shown in Figure 5.5. 

Region (1), which is before the transition point, where the samples are not enough to give us 

a very good quality of reconstruction. Region (2) is where the strongest increase in 

performance of the reconstruction is achieved when increasing 𝑀 and then in Region (3) the 

performance saturates, as the SNR of the measurement noise becomes the limiting factor. 

 

 

Figure 5.5 The effect varying 
𝑀

𝑁
 versus the quality of reconstruction for different SNRs 

where N = 800 and the plot is divided to three regions for analysis. 

 

The same simulations were repeated but using a signal with a smaller dimension 

 𝑁 (See Appendix B). This new simulation gave different results than the ones shown in 

Figure 5.6 and that is: with smaller signal dimension 𝑁, a higher 𝑀:𝑁 ratio is required for 

better quality of reconstruction. If we compare Figure 5.4 (b) and Figure B.1 (b) where both 

of them have the same 𝐾 = 100, we will find out that the transition point of the second one 

is at 0.50 while the first one at 0.2.  

 

5.2.1.2 Gaussian Matrix 

The sensing matrix plays an important role in the compressed sensing process, as 

mentioned in Chapter 3. This is why the previously done simulations were repeated, using a 

different sensing matrix. The components of the new sensing matrix are Gaussian random 

variables with zero mean. The Gaussian matrix would represent an ideal case from a 

(1) 

 

(2) 

 

(3) 
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compressed-sensing perspective, so it would give us a good assessment to understand if the 

systematic construction of our graph sampling matrix from the eigen system of the weight 

matrix produces a loss relative to the ideal of a Gaussian random construction. 

 

 

   (a) 

 

 

  (b) 

 



41 

 

 

(c) 

Figure 5.6 The effect varying 
𝑀

𝑁
 versus the quality of reconstruction for different SNRs 

where N = 120 using the Gaussian matrix as the sensing matrix. 

 

Comparing the results shown in Figure 5.6 to the results obtained previously in Figure 5.4 

we will notice that they are very similar, which means that there was no loss in performance 

of signal recovery using the SVD matrix. 

 

5.2.2 Varying the SNR 

To get an overview of the performance of reconstruction over a wide range of SNR’s, 

a simulation was made. A value for 𝑀 was chosen from each region defined in Figure 5.5 

and the same problem setup mentioned previously was used. As shown in Figure 5.7, the 𝑀 

chosen from region (1) didn’t show a good performance even if the SNR was increased. The 

𝑀 from region (2) and (3) showed a significant increase in the performance after 12 dB SNR. 

𝑀 from region (3) has slightly better performance than the one from region (2) as the number 

of samples used is greater, making the estimation problem easier. Same simulations were 

carried out for different 𝑁’s and these results are found in Appendix B.  
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Figure 5.7 The effect varying SNR versus the quality of reconstruction for different M’s. 

 

 Also a simulation was done to compare the quality of reconstruction using the SVD 

matrix and the Gaussian matrix as the sensing matrix. We can see from Figure 5.8 that both 

gave almost the same performance and no noticeable differences could be detected from this 

simulation. 

 

 

Figure 5.8 The effect varying SNR versus the quality of reconstruction for different M’s and 

different sensing matrices. 
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5.3 Coherence of sensing Matrix 
 

It was also important to get some analysis on the properties of the sensing matrices used 

in the previous simulations. As mentioned in Chapter 3, the RIP property is unfeasible to 

calculate in practice, so we checked the Coherence of the matrix. According to (3.10) the 

coherence of the matrix was calculated, also the lower bound (Walsh bound) was calculated. 

 

5.3.1 SVD Matrix 

The SVD sensing matrix is obtained as mentioned in Section 5.1. 300 simulations 

were done, and from these simulations the maximum, minimum and the average coherence 

was calculated as shown in Figure 5.9. Doing so, shows if the matrix has large variation in 

its coherence value or not, thus can be used conveniently. 

 

 

Figure 5.9 Coherence values of a SVD matrix for different dimensions. 

 

5.3.2 Gaussian Matrix 

The same procedure was repeated but using a Gaussian matrix. Based on (3.11) and 

(3.12) the lower the coherence the better the quality of reconstruction. In Figure 5.9 and 5.10, 

it is noticed that, as the number of samples taken (M) increases, the coherence value of the 
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matrix decreases, thus better quality of reconstruction and that matches what was concluded 

from (3.11) and (3.12).  

 

 

Figure 5.10 Coherence values of a SVD matrix for different dimensions. 

 

5.3.3 Comparison between matrices 

As shown in Figure 5.11, a comparison is made between the average coherence value 

of the SVD and Gaussian matrices. Although the performance of both matrices in signal 

reconstruction was almost the same, as shown previously, the coherence value of the 

Gaussian matrix is slightly higher than that of the SVD matrix. This is considered an 

interesting result that should be furtherly researched in future works. 
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Figure 5.11 Comparison between the coherence values of a SVD and Gaussian matrix for 

different dimensions. 
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Chapter 6 

Conclusion and Outlook 
 

 

 

Graph signals gives us the ability to represent complex structured signals and carry 

out all the classical signal processing techniques like sampling, Fourier transform and others 

also for graph signals. In this thesis we tackled the problem of estimating a sparse graph 

signal with an unknown frequency support set, yet still we were able to reconstruct the 

original signal from a sampled noisy version. Not knowing the location of the non-zero 

Fourier coefficients and taking a number of samples more than 2𝐾 resulted in having a 

compressed sensing problem. 

 

6.1 Conclusion 
 

The BAMP algorithm was used to solve the compressed sensing problem and 

iteratively estimate the graph signal where the noise variance is unknown. The sensing 

matrix used was generated using a singular value decomposition of the weight matrix. After 

many simulations of different scenarios we found out that the more samples 𝑀 used, the 

better the quality of reconstruction. The quality of reconstruction improved significantly 

starting from 𝑀 ≥ 2𝐾 and this is due to elementary null-space considerations of the 

compressed sensing problem which can also be proved algebraically. Also this is considered 

a practical advantage, where the graph signal dimension 𝑁 is relatively high, yet 𝑀 can 

remain the same as used for a lower dimension as long as it satisfies this condition. 

To check the potential loss in the reconstruction process produced due to using the 

SVD matrix, we used the Gaussian matrix which is considered the ideal case. The SVD 



47 

 

showed a similar performance to the Gaussian matrix. Also the Coherence property of these 

two matrices was calculated and turned out to be almost the same. 

 

6.2 Future Work 
 

The coherence of the Gaussian matrix was a bit larger than the coherence of the SVD 

matrix which would be interesting to analyze more in future works. It was mentioned in 

Chapter 3 that calculating the RIP of the sensing matrix is infeasible practically but there are 

certain random constructions of the matrix that can guarantee RIP with high probability, so 

it would be interesting to work more on this aspect. Also the case in which the sampling 

support set is unknown, would be an interesting topic to work on in future works, as the 

problem will be no more a compressed sensing problem. 
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Appendix A 
BAMP with General Full-Rank Measurement Matrices [4.4] 

 

 

Given the measurement equation: 

                                                       𝐲 = 𝚽s + 𝐰                                                          (A.1) 

with the vector 𝑦 of dimension 𝑚 × 1 representing the observations taken and s (𝑛 × 1) the 

signal vector  = {s𝑗 , 𝑗 = 1,… , 𝑛}. The sensing matrix is: 

𝚽 = {𝚽1, 𝚽2 , … . ,𝚽𝒏}                                              (A.2) 

of dimension 𝑚 × 𝑛 with 𝑚 < 𝑛. 𝚽 is assumed to have a rank m but the columns are not 

normalized. 𝐰 is the measurement noise and its components are independent and identically 

distributed Gaussian with variance 𝜎2 > 0. 

The ℓ2-norms of the columns of the measurement matrix are defined as: 

           𝜑𝑗 = ‖𝚽𝒋‖2
        𝑗 = 1,2, … . . , 𝑛                                  (A.3) 

So it makes (A.1) to be: 

            𝐲 = {
𝚽1

𝜑1
,
𝚽2

𝜑2
, … ,

𝚽𝑛

𝜑𝑛
}

⏟        
=𝐀

{
 
 

 
 
𝜑1𝑠1
𝜑2𝑠2..
.

𝜑𝑛𝑠𝑛}
 
 

 
 

⏟    
=𝐗

+𝐰                              (A.4) 

where A is the new measurement matrix with columns 𝐀𝑗 =
𝚽𝑗

𝜑𝑗
  that are normalized 

according to ‖𝐀𝑗‖2 = 1. Now the measurement matrix fulfils the condition to be used for 

the BAMP algorithm, but still the signal prior has to be rescaled. 

With the given signal prior 𝑝𝑆𝑗(𝑠𝑗), the pdf of the random variable 𝑋𝑗 = 𝜑𝑗𝑆𝑗 is: 
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𝑝𝑋𝑗(𝑥𝑗) =
1

|𝜑𝑗|
𝑝𝑆𝑗 (

𝑥𝑗

𝜑𝑗
)                                               (A.5) 

For the Gaussian prior 

𝑝𝑆𝑗(𝑠𝑗) =
1

√2𝜋𝜎𝑆𝑗
𝑒
−

1

2𝜎2𝑆𝑗

𝑠𝑗
2

                                           (A.6) 

we obtain 

             𝑝𝑋𝑗(𝑋𝑗) =
1

𝜑𝑗

1

√2𝜋𝜎𝑆𝑗
𝑒
−

1

 2𝜎2𝑆𝑗
  𝜑2

𝑗

  𝑠2𝑗

                                

(A.7) 

 

with scaled variance 𝜎2𝑋𝑗 = 𝜑
2
𝑗
 𝜎2𝑆𝑗 . 
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Appendix B 
More Simulation results 

 

 

  (a) 

 

 

 (b) 
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   (c) 

 

Figure B.1 The effect varying 
𝑀

𝑁
 versus the quality of reconstruction for different SNRs where N = 

300. 

 

 

    (a) 
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   (b) 

 

 

   (c) 

 

Figure B.2 The effect varying 
𝑀

𝑁
 versus the quality of reconstruction for different SNRs where N = 

120. 
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         (a) 

 

 

           (b) 

Figure B.3 The effect varying SNR versus the quality of reconstruction for different M’s. 

 

 

 


