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V

Abstract

To enable a reliable application of semiconductor devices based on single crystal Gal-

lium Nitride (GaN), knowledge about their electrical and mechanical performance is

important. Numerical simulations within the framework of the finite element method

(FEM) can help to enhance or clarify results of common mechanical testing proce-

dures like nanoindentation experiments. To conduct such simulations, it is necessary

to understand the mechanical behavior of GaN and to use the appropriate modeling

approach.

The main goal of this thesis is to generate a reasonable elasto-plastic FEM simulation

of GaN nanoindentation experiments. In order to sufficiently reproduce the plasticity

in the GaN, the parameters of the Hill’s yield criterion are estimated according to

the orientation and the critical shear stresses of the various slip systems of GaN. In

combination with an appropriate set of transversely isotropic elastic parameters and

a constant tangent modulus, this modeling approach is applied to axisymmetric and

three-dimensional FEM models of nanoindentation experiments.

These models are used to evaluate the influence of material parameters and indenter

shapes. Furthermore, the resolved shear stresses of various slip systems are examined

with regard to the critical values. The results show a very good correlation to the

sought experimental load-penetration curve, and the assessment of the stress state

indicates slips in the expected slip systems. Overall, the approximation by Hill’s

potential works well for the studied GaN systems, circumventing complicated and

computational expensive classic crystal plasticity approaches.
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Kurzfassung

Um eine zuverlässige Anwendung von Halbleiterbauelementen auf der Basis von

einkristallinem Galliumnitrid (GaN) zu ermöglichen, ist sowohl Wissen über die elek-

tronische wie auch über die mechanische Leistungsfähigkeit derselben erforderlich.

Numerische Simulationen mit der Finite-Elemente-Methode (FEM) können dabei

unterstützend zu experimentellen Analysen verwendet werden. Um solche Simulatio-

nen durchzuführen zu können, ist Verständnis über das mechanische Verhalten von

GaN und die Wahl des passenden Modellierungsansatzes von essentieller Bedeutung.

Das Hauptziel dieser Arbeit ist es daher, einen passenden Ansatz für das elasto-

plastische Verhalten von GaN bei Nanoindentationsexperimenten zu erarbeiten. Um

den Fließbeginn in der GaN-Schicht hinreichend abbilden zu können, werden auf Basis

der Orientierungen und der kritischen Schubspannungen der einzelnen Gleitsysteme

die Parameter der Hill’schen Vergleichsspannungshypothese definiert. In Kombina-

tion mit einem geeigneten transversal isotropen elastischen Materialgesetz und einem

konstanten Tangentenmodul wird dieser Modellierungsansatz auf axialsymmetrische

und dreidimensionale FEM-Modelle von Nanoindentationsexperimenten angewandt.

Diese Modelle werden anschließend verwendet, um den Einfluss verschiedener Ma-

terialparameter und Indentertypen zu evaluieren. Weiters werden die Schubspan-

nungszustände der verschiedenen Gleitsysteme hinsichtlich ihrer kritischen Werte un-

tersucht. Die Ergebnisse zeigen eine sehr gute Korrelation zwischen der simulierten

und der angestrebten experimentellen Systemantwort. Auch treten kritische Schub-

spannungswerte in Gleitsystemen auf, in denen dies zu erwarteten ist. Somit ist

nachgewiesen, dass sich die Approximation mittels dem Hill’schen Potenzial für die

untersuchten GaN-Systeme eignet, wodurch eine Verwendung von komplizierten

Kristallplastizitäts-Modellen umgangen wird.
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Chapter 1

Introduction

Single crystal materials are commonly used in the semiconductor industry. Such

materials share the same crystal orientation over the whole solid, which means that

the elastic and plastic material properties are direction-dependent. It is difficult to

model such a material in an elastic-plastic Finite Element Method (FEM) analysis

because standard crystal plasticity models are complicated in the application and

computationally expensive and classic continuum approaches like J2 plasticity do

not take the anisotropy of the material into consideration.

In this thesis, an approach utilizing Hill’s plasticity theory to model the plastic behav-

ior of single crystals is presented. This approach is applied within FEM simulations

of nanoindentation experiments. The probe in the modeled experiment is a wafer

with a stack consisting predominantly of single crystal Gallium Nitride (GaN) on a

Silicon substrate.

Such a wafer structure is interesting, because recent developments in GaN based

technologies have shown that GaN-on-Silicon-based solutions possess extensive tech-

nological potential, utilized especially in high-power electronic devices [24]. This is

due to the fact that GaN technologies have a higher energy efficiency and power

density in a smaller footprint compared to similar Silicon-based products [14].
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The mechanical properties of such GaN-on-Silicon wafers are quite difficult to obtain,

however they are important to know for assessing their behavior during wafer pro-

cessing, where thermo-mechanical stresses occur due to process-related temperature

transients. A method of choice for mechanical thin film characterization is nanoin-

dentation, which is commonly applied at the Kompetenzzentrum Automobil- und

Industrieelektronik GmbH (KAI), Villach Austria.

1.1 Motivation

A sophisticated FEM analysis of such problems has the potential to save a lot of

money and time because it allows to study the influence of different stack designs on

the mechanical properties of the wafer, without having to explore all possible options

by expensive processing experiments in the first place. Moreover, it would enable an

in-depth analysis of the stress state and the plastic deformation.

1.1.1 Background Work

This thesis is the second one in a series of three. The first one, which is not yet

published, is carried out by Clemens Reichel and concentrates on the topic of fracture

mechanics. He has set up an FEM model to simulate crack propagation in brittle,

multilayered structures focusing also on GaN-on-Silicon wafers. The crack initiation

and propagation has been modeled utilizing cohesive zone elements and the material

behavior has been assumed to be linear elastic without plasticity.

Reichel has been able to obtain significant results regarding the crack development.

He has shown that residual stresses can have a very high influence on the crack-

propagation behavior in the way that even relatively small residual stresses may lead

to an unstable propagation of surface cracks. Without residual stresses, no similar

surface cracks appear, rather there is stable crack propagation downwards.
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Another finding has been that the predicted energy dissipation seen in the load-

penetration curve is insignificant compared to the experimental result. The higher

energy dissipation of the experiment has been attributed to material plasticity in the

GaN layer. Reichel has also noticed the occurrence of shear stresses larger than 10

GPa in the GaN layer which is another indication for the occurrence of plasticity.

1.1.2 Aims and Objectives

The aims and objectives of this thesis can be divided into three tasks connected to

each other. First, the plastic behavior of the GaN will be addressed by the introduc-

tion of Hill’s plasticity theory. In order to apply this theory correctly, the plasticity

mechanisms in GaN are identified and the resulting Hill plasticity behavior is verified

through simple single element tests.

Second, this material model has to be combined with the appropriate elastic prop-

erties and then applied to a FEM model of nanoindentation experiments. During

this step, different elastic material parameters and various other assumptions are

tested and calibrated. Amongst other things, the influence of hardening behavior,

isotropic and anisotropic elastic properties, residual stresses, indenter tip geometry,

and plasticity in Silicon on the simulation are studied.

Lastly, the simulation of one of the experiments conducted at the KAI is studied in

more detail. An analysis of the resolved shear stresses in the activated slip systems is

done and the plastic region is determined. Furthermore, several GaN nanoindentation

experiments published in various papers are simulated and briefly discussed.

1.2 Literature Overview

In this section, a brief overview of literature related to the topic of this thesis is given.

Some of the more important articles are described in more detail in later chapters.
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Background literature on crystal plasticity and the underlying mechanisms can be

found in several standard works. Kittel [17] and Hertzberg [7] are hereby the most

important reference books in the course of this work.

The mechanical properties of GaN are still subject of discussion, hence, several sources

are to be analyzed. In terms of the elastic moduli Nakamura et al. [20] have presented

a broad selection of experimental and calculated elastic coefficients alongside their

own results, which have been obtained by resonant ultrasound spectroscopy. The

Brillouin scattering investigation results by Polian et al. [23] are frequently cited and

are important references for this thesis. In the course of the analysis the results of

Schwarz et al. [26], which are likewise acquired through resonant ultrasound spec-

troscopy, have proven to be relevant.

The elastic behavior of Silicon has been studied in more detail compared to GaN and

the influence of the orientation of the single crystal structure is explained in detail

by Hopcroft et al. [10]. The elastic coefficients of 〈111〉 Silicon have been presented

by Kim et al. [16] which also state that 〈111〉 Silicon has preferable mechanical char-

acteristics for micro-electro-mechanical systems compared to the 〈100〉 orientation.

Exact information on the plasticity of GaN is fairly sparse. Relevant studies on this

topic have been conducted by Caldas et al. [2] and Wheeler et al. [30] and are discussed

later on more in-depth. Most of the necessary information on the crystallographic

properties of GaN, such as atomic spacing and slip systems are presented in these

papers.

Nanoindentation tests of GaN layers have been conducted by several groups. Results

on this topic have been presented by Yu et al. [31] as early as 1999. In this paper

Berkovich and spherical indenters are used to examine elastic properties and the

hardness of GaN on a sapphire layer. Likewise experiments of GaN on sapphire have

also been done by Tsai et al. [27]. Since the substrate inevitably effects the results

Nowak et al. [21] have used a bulk crystal to examine the elastic and plastic properties

of GaN. Atomic force microscopy images of the indentation are shown by Kucheyev
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et al. [18] which illustrate plastic deformation along certain slip planes. Another

observation has been the appearance of pop-in events, which indicate the onset of

plastic deformation by a sudden increase of indentation depth at constant load.

Such pop-in events have also been reported by Wei et al. [29]. In this study, the

differently orientated nonpolar GaN thick films have been examined with a Berkovich

indenter. An in-depth analysis of a conical indentation has been done by Huang et

al. [11]. Their findings support previously reported assumptions that the plastic

deformation of GaN is primarily due to slip in the basal and in pyramidal planes.

1.3 Nanoindentation

Nanoindentation is an important tool to obtain mechanical data of semiconductor

materials and it is the experiment modeled by means of FEM within this thesis.

Therefore this section is dedicated to explain the concept and the results of the

technique as it is demonstrated by Hay [6].

Instrumented indentation testing (IIT) is similar to conventional hardness tests, with

the difference that not only the residual deformation caused by an applied force is

measured, rather is the instrument able to record the force and the penetration for

the entire time that the indenter is in contact with the material.

This is the main advantage of IIT because it theoretically provides enough information

to calculate not only the hardness but also additional material parameters, the most

important of these is the Young’s modulus.

Figure 1.1 (a) shows a schematic representation of the nanoindentation. The indenter

is pressed into the probe and leaves a mark behind. The typical test chronology can

be split into five test segments. The first one is that the indenter approaches the

surface until contact is sensed. Then the indenter is pressed into the material until

the maximum force or penetration is reached. The indenter is held for a dwell time

at maximum force. In the next segment the indenter is withdrawn from the sample



CHAPTER 1. INTRODUCTION 6

at a rate similar to the indentation rate until the reaction force is zero. At last it is

removed completely from the sample.

For certain experiments, a dwell step during the release can be used to determine the

thermal drift of the test material and equipment. In the first evaluation step load-

penetration and load-time curves are generated from the obtained data similar to

the exemplary ones shown in Figure 1.1 (b) and (c). In the second stage of analysis,

material properties are calculated from the data of the load-penetration curve. The

calculation, which leads to the Young’s modulus, can be found in [6].

In [6], some Young’s moduli measured by IIT are shown, which have a quite good

agreement with the ones obtained by tensile test, ultrasound, or dynamic mechanical

analysis. However, all of the presented values are for polycrystalline or amorphous

materials which are more or less isotropic. Single crystal GaN is anisotropic, and,

a Young’s modulus of GaN calculated this way should be approached with caution.

More advanced evaluations for anisotropic materials are given by e.g. [28].

Indenter

Load

Penetration

F
or

ce

(a) (b)

Maximum force

M
ax

.
p

en
et

.

Permanent
Indentation

Time

F
or

ce

Dwell time

(c)

Figure 1.1: Schematic representation of a nanoindentation with a Berkovich inden-
ter (a) and the resulting load-penetration (b) and load-time curves (c).
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1.4 KAI Experimental Data

Most of the FEM analyses in this thesis are simulations of the experiments done

at the KAI. The structure of the wafer for these experiments is similar to the one

described in the work of Reisinger et al. [24] and shown in Figure 1.2 (a). The thin

film on the Silicon substrate does not consist of pure GaN. Instead, there are several

transition sublayers that reduce the lattice mismatch between GaN and Silicon. Even

with these transition layers, there are significant residual stresses in the wafer, which

have been characterized in [24] by using ion beam layer removal of a cantilever beam

in combination with the ensuing changes of the cantilever bending. The results are

shown in Figure 1.2 (b).

The nanoindentation experiments have been done with two different indenters, a

Berkovich indenter and a cono-spherical indenter with a tip radius of 2 µm. For both

indenters experiments with three different indentation depths have been carried out.

(a) (b)

Figure 1.2: The multilayered stack structure on top of the silicone substrate is pre-
sented in (a). The bi-axial residual stress distribution in the stack is
shown in (b). [24]
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Each experiment has been repeated 12 times. The results of four of the six different

test are shown in Figure 1.3.

In Figure 1.3 (a) the results of rather small indentations with a Berkovich indenter

are shown. At such small indentation depths, even the smallest impurities and crystal

defects lead to quite large variations in the load-penetration curves. Another possible

source of inaccuracies is the precision of the testing equipment. Nevertheless, a pop-

in event around 0.02 µm can be seen for all curves. The results of an indentation

with a higher maximum force can be seen in Figure 1.3 (b). The maximum force

hereby is 35 mN, which results in a displacement of 0.365 µm. Plot 1.3 (c) shows

a similar indentation depth as Figure 1.3 (a) but with a cono-spherical indenter.

Here noteworthy is that no plastic deformation takes place. In Figure 1.3 (d) an

indentation with the same maximum force as in (b) is shown but in contrast to (b)

the cono-spherical indenter is used. Because, the contact area is much bigger in this

case, the penetration is smaller at the maximum force. A pop-in event is visible

which occurs at around ten times the indentation force and six times the penetration
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Figure 1.3: Experimental nanoindentation results, a courtesy of KAI GmbH, Vil-
lach, done on the wafer described in [24].
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depth compared to the one in Figure 1.3 (a). The results of Figure 1.3 (b) are chosen

as the main objective for the FEM analysis, because the effects of a late and strong

pop-in event as in (d) can not be modeled with the means of this thesis and a smaller

indentation depth as in (a) also provides a less reliable result for a simulation.
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Chapter 2

Mechanical Properties of Gallium Ni-

tride

One important aspect of this thesis is to find and use elastic and plastic material

properties suitable to describe the material response of the tested GaN-on-Silicon

Wafer. The influence of the elastic properties of Silicon and GaN are important for

the analysis, but the main focus of the theoretical research lies in the modeling of

GaN’s plastic properties.

To avoid the modeling and computational effort connected with classic crystal plas-

ticity modeling, Hill’s plasticity theory is chosen to model the plastic behavior. To

be able to apply this criterion correctly, knowledge about the direction dependency

of the material properties is required. Therefore, it is necessary to take a closer look

at the structure of GaN in order to better understand the mechanical properties and

the underlying crystallographic mechanisms responsible for the plastic deformation,

and consequently the shape of the nanoindentation curve and the dissipated energy.
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2.1 Wurtzit Structure

The crystal structure can be defined as the infinite repetition of identical groups of

atoms in an ideal crystal. Such groups are called unit cells or primitive cells. They

are attached to further cells throughout a set of mathematical points called the lattice

[17]. Many common materials are polycrystalline, which means that the solid does

not have the same lattice orientation in the whole body, instead it consists of many

different grains of varying size and orientation. In contrast, GaN shares, to some

extend, the same lattice orientation over the wafer.

GaN has a Wurtzite crystal structure which belongs to the group of the hexagonal

crystal systems. The Wurtzite crystal structure always consists of two compounds,

in case of GaN theses are Gallium and Nitrogen. Each of the two compounds is

arranged in a separate hexagonal close-packed sublattice.

The lattice constants for the hexagonal structure of GaN are: a = 3.186 Å and

c = 5.186 Å (see Figure 2.1), which is very close to the ideal hexagonal close-packed

4 {1̄21̄2}
〈01̄01〉

1

2

3

4

1

2

3

(a) (b)a

a

c

a

a

c

Figure 2.1: Exemplary representation of the Miller-Bravis indices. A crystallo-
graphic directions vector is shown in (a) and a crystallographic plane
in (b).
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structure, that has the ratio c/a = 1.633, as stated in [17]. The subsequently used

notation to describe crystallographic directions and planes in the hexagonal structure

is the Miller-Bravais index. Planes are defined with braces {0001} and directions with

chevrons 〈0001〉 as shown in Figure 2.1.

Crystallographic directions start in the origin and the indices can be understood as di-

rection vectors as is shown in Figure 2.1(a). In the case of the crystallographic planes,

the Miller-Bravis indices describe the intersections with the axes of the coordinate

system as demonstrated in Figure 2.1(b).

2.2 Elastic Properties of GaN

Different elasticity values for GaN are examined. In Reichel’s thesis isotropic elastic

material behavior of GaN is assumed with a Young’s modulus of 280 GPa, which was

obtained through nanoindentation as described in Section 1.3. Such an isotropic ma-

terial model might be suitable for a first approximation but looking at the hexagonal

crystal structure and keeping in mind that the GaN layers of a wafer form almost a

single crystal structure, it follows that an anisotropic elastic formulation would be a

better approximation.

Many experimentally obtained or theoretically calculated elasticity values can be

found in the literature, which partially deviate strongly. Two experimentally obtained

sets of elastic constants reported in the literature will be discussed next.

Schwarz et al. [26] have used a resonance ultrasound spectroscopy method to measure

the elastic constants. Their test sample has been a d1 = 2.01 mm, d2 = 2.309 mm, and

d3 = 0.285 mm rectangular cuboid probe of bulk GaN. Resonance frequencies have

been measured and compared to calculated ones. The calculated frequencies depend

on the sample dimension, density, and the elastic constants. Therefore beginning

with a first set of approximated elastic constants a fitting procedure has been used to
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Table 2.1: Elastic parameters of GaN [GPa] as used for Voigt notation, see Equation
(2.1).

Source paper C11 C12 C13 C33 C44

Schwarz and Khachaturyan [26] 377 160 114 209 81.4

Polian et al. [23] 390 145 106 398 105

achieve a minimum difference between the calculated frequencies and the measured

ones by varying the elastic constants.

Polian et al. [23] used a Brillouin scattering investigation to measure the elastic con-

stants of GaN. In such an experiment the anisotropic elastic parameters are calculated

through the different sound velocities in the different directions. These are measured

by the frequency shift of scattered photons. The values obtained with this procedure

are shown in Table 2.1 together with the values from Schwarz et al. [26].

GaNs elastic behavior is transversely isotropic, which means that the elasticity matrix

in the 2-index Voigt notation reads

C =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 (C11 − C12)/2


. (2.1)

Inverting the elasticity matrix results in the compliance matrix
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C−1 = S =



1

Ex

−νxy
Ex

−νzx
Ez

0 0 0

−νxy
Ex

1

Ex

−νzx
Ez

0 0 0

−νxz
Ex

−νxz
Ex

1

Ez

0 0 0

0 0 0
1

Gzx

0 0

0 0 0 0
1

Gzx

0

0 0 0 0 0
1

Gxy


, (2.2)

here, given in terms of the Young’s moduli Ei, the Possion’s ratio νij and the shear

moduli Gij. Since the compliance matrix is symmetric the equivalence

− νxz
Ex

= −νzx
Ez

(2.3)

applies.

2.3 Plastic Properties of Single-Crystal GaN

2.3.1 Critical Shear Stress

The elastic properties are only the first part of the material model of Gallium Nitride.

Responsible for the typical differences between the loading and the release curve in a

nanoindentation experiment is not the elastic behavior, rather it is plasticity which

causes the energy dissipation.

A major contribution in the field of crystal plasticity has been the work of Schmid

and Boas [25], who have recognized that the yield stress of a single crystal depends

strongly on its lattice orientation in regard to the load case.

An isotropic yield criterion as well as an isotropic elastic behavior are therefore only

correct for many common materials, because the grain orientations are random. Even
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if the individual grains are anisotropic, the overall material behavior is isotropic

because the differences of the individual grains tend to average out. In case of a

single crystal structure, the crystal orientation cannot be disregarded.

This anisotropic behavior is explained by looking at the main mechanism behind crys-

tal plasticity, i.e. the dislocation motion or glide through the crystal lattice. This dis-

location motions occur on certain crystallographic planes in certain crystallographic

directions, the so-called slip systems. The glide initiates when the resolved shear

stress of the slip system reaches the critical shear stress as shown in Figure 2.2 (a)

and (b). The relation between the resolved shear stress τ rss and the corresponding

stress state is described by the so-called Schmid’s law [25],

τ rss = σ cos(λ) cos(φ) , (2.4)

n
σ

φ

λ

σ

xD

xD

n

φ

s

(a) (b) (c)

Figure 2.2: Schematic illustration of slip under uniaxial tension in a single crystal
(a)(b). Figure (c) shows the angles and directions necessary to calculate
the Schmid factor. [7]
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where σ is the applied uniaxial stress, λ is the angle between the stress direction and

the slip direction s, and φ is the angle between slip plane normal n and the uniaxial

stress direction (Figure 2.2 (c)). The factor

m = cos(λ) cos(φ) (2.5)

is known as the Schmid factor and ranges from 0 to 0.5. A slip system is activated

when the resolved shear stress τ rss reaches the critical value

τ crss = σY ·m , (2.6)

and the crystal starts yielding. The uniaxial stress σ is then equal the uniaxial yield

stress σY. The critical resolved shear stress is therefore a slip system property that

can be obtained through experiments, in which the crystal orientation as well as the

stress state is known and the activation of the first slip system is observed. Carrying

out such experiments is challenging since is difficult to achieve a reliable uniaxial

stress state and to take pictures of a slip initiation event.

For each slip system there are stress states where the Schmid factor m = 0 and

therefore the resolved shear stress is zero. This is the case if the stress state is

uniaxial one in slip direction or perpendicular to the slip plane.

Experiments are not the only approach to define the critical shear stresses of a crystal.

The so-called Peierls-Nabarro shear stress τ c
PN is not obtained empirically instead it

is a theoretical calculation of the shear stress required to move a dislocation through

a crystal lattice in a particular direction (Hertzberg [7]). It depends on material

properties such as the shear modulus and the spacing of atomic planes between which

dislocations can glide. Therefore the Peierls-Nabarro stress is a theoretical value

and studies (e.g. with copper, nickel, and iron [7]) have shown that it differs from

experimental values. Nevertheless, in lack of experimental data, this values can give

a first approximation of the critical shear stress of the individual slip systems.
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Slip Systems in GaN

In the hexagonal Wurtzite structure of GaN, there are in total eleven slip systems.

The six different slip planes in which slip occurs are shown in Figure 2.3. The first

one is the {0001} or basal plane, then there are the two prismatic planes {1̄21̄0} and

{11̄00}. The three remaining planes are the pyramidal ones {11̄01}, {112̄2}, and

{11̄02}.

All of this slip planes, except the basal one, occur six times in a single crystal cell

with a 60◦ angle around the 4-axis between each iteration. The basal plane is also

the only one, which has three equivalent slip directions (i.e. in the 〈1000〉, 〈0100〉 and

〈0010〉 direction) with the same critical shear stress. All other slip planes have two slip

directions, which have different critical shear stresses and are therefore, in contrast to

the three different slip directions of the basal plane, defined as individual slip systems.

In the case of four of the slip planes ({1̄21̄0}, {11̄00}, {112̄2}, and {11̄02}), the two

slip directions are orthogonal to each other. For example the {11̄00} plane has the

〈0001〉 and 〈1̄21̄0〉 slip directions. Only in case of the {11̄01}〈112̄3〉 slip system there

are two different possible orientations of the slip direction for each possible orientation

4

1

2

3

4

1

2

3

{11̄01}

{0001}

{1̄21̄0}

{11̄00}

{11̄02}

{1̄21̄2}

(a) (b)

Figure 2.3: The six different slip planes in GaN with the their corresponding Miller-
Bravis indices
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of the slip plane. They are offset by each other by 31.46◦ and are not orthogonal to

the slip direction of the second slip system of this slip plane. A complete list of all

of the slip systems can be found in Appendix A Table A.2

The more and the better information one can get about the critical shear stress of

these slip systems the better an elasto-plastic FEM simulation can be. The problem

with GaN is that there is not much information available about its plastic properties.

The main research focus is on the electrical properties of GaN, since the mechanical

properties play, except in the production process, only a minor role for its usage

as semiconductor. Moreover, due to its brittle nature, it is very difficult to obtain

information like the yield onset under certain load cases. In the following, two papers

are presented which have investigated this topic despite these difficulties.

2.3.2 Papers on the Topic of GaN Plasticity

The first important paper on the topic of GaN plasticity is by Wheeler et al. [30].

They have presented experimental plasticity parameters of GaN which have been

obtained by in situ micro-compression tests. They have been able to acquire the

yield stress of GaN in 〈0001〉 direction and detect the primary slip system {112̄2}

〈112̄3〉.

The test prisms have been grown on a sapphire substrate and have been doped with

silicon with a ratio of Ga:Si = 12050:1. The compressions have been performed with

a Zeiss DSM 962 SEM with an Alemnis in Situ Indenter, whereas a minimum of six

prisms have been tested in each test series.

A broad selection of different data has been collected, being the yield stress at room

temperature the most important information for this thesis. Furthermore, the tem-

perature dependency, as well as the strain rate sensitivity, have been studied.

The yield stress has been measured to be 7.85 GPa at 24.5 ◦C under uniaxial stress

in the 〈0001〉 direction. Figure 2.4 shows stress-strain data from a micro-compression
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strain rate jump test with different strain rates through the compression. The influ-

ence of the strain rate is also shown in the Figure. It is amibigous that the elastic

modulus in all of the tests has been around 100 GPa. This is much lower then the

values given in [26] and [23] or the isotropic values which have been used by Reichel.

An angle of 48◦ has been observed between the slip plane and the compression axis

and it has been therefore assumed, in consideration of the calculated Schmid factors

that the main slip system is the {112̄2} 〈112̄3〉 one.

It has to be mentioned that the Schmid factors and the direction angles presented in

[30] deviate from the ones stated in [2] and the ones calculated in the course of this

thesis. Therefore their assumption of the main slip system should be considered with

caution.

Caldas et al. [2] have studied nanoscale plasticity of GaN, through nanoindentation

with a very small cono-spherical indenter. A 4 µm thick GaN film grown on c-plane

sapphire substrate has been indented with a Hysitron TriboScope nanoindenter. The

indentations have been performed using a cono-spherical tip “with a radius of curva-

Figure 2.4: Strain stress curve from [30]. The picture on the right is also taken
from [30] and shows the deformation of a GaN pillar. The aspect ratio
of this probe is 1.88 (height to diameter).
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ture of ∼260 nm and ∼90 nm in height” [2]. Additionally to load-penetration curves,

transmission electron microscopy (TEM) and atomic force microscopy (AFM) pic-

tures of the indentation have been made, which give a good impression of the active

slip systems. Figure 2.5 (a) is taken with a two-beam diffraction condition g = 〈0002〉,

(b) with g = 〈11̄00〉. Especially in Figure 2.5 (b) the plastic deformation in direction

of the slip planes is well visible. Directly beneath the indentation dislocations on the

pyramidal planes are visible. To the side of the indentation slip on the basal planes

occurs. Moreover, the begin of plastic deformation has been observed to occur in

connection with a pop-in event. The pop-in event is a sudden increase in penetra-

tion depth with no variation of the applied force. These pop-in events appear at an

indentation depth of approximately 40nm, with no residual indentation remaining at

lower indentation depths.

The calculated Peierls-Nabarro stresses are another important information that can

be used to model GaN plasticity. The values taken from the paper [30] are presented

in Table 2.2. Supported by the TEM pictures and Peiers-Nabarro critical shear

stresses the authors claim that slip directly beneath the indentation tip occurs after

the first pop-in event preferentially along the {11̄01}〈112̄3〉 and {112̄2}〈112̄3〉 slip

systems. Additionally, the basal {0001}〈1̄21̄0〉 slip system gets activated at the edge

of the indent.

Figure 2.5: Bright-field TEM pictures of an indent in the GaN layer showing dislo-
cations in various slip systems. [2]
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Table 2.2: Slip systems, the Schmid factors m for a load perpendicular to the basal
plane, and the Peierls-Nabarro stresses τ c

PN [30].

Slip system m τ c
PN [GPa]

{0001} 〈1̄21̄0〉 0 2.34

{1̄21̄0} 〈0001〉 0 16.5

〈11̄00〉 0 19.7

{11̄00} 〈0001〉 0 10.4

〈1̄21̄0〉 0 1.21

{11̄01} 〈112̄3〉 0.40 54.7

〈1̄21̄0〉 0 11.3

{112̄2} 〈112̄3〉 0.45 29.8

〈11̄00〉 0 23.3

{11̄02} 〈11̄01〉 0.49 85.3

〈1̄21̄0〉 0 15.2

2.4 Hill’s Potential

To predict plastic deformations (e.g. in an FEM simulation) three rules have to be

provided [3]:

• Yield criterion

The yield criterion f defines whether a stress state leads to a pure elastic system

response (f < 0) or there is also plastic deformation (f = 0). The surface, which

is defined by this criterion in the stress space is called yield surface.

• Flow rule

The flow rule provides the connection between the stress state and the plastic

strain increment if the yield criterion is fulfilled.

• Hardening rule

In general the yield surface changes throughout the deformation, which is de-

fined by the hardening rule.
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The research presented so far has shown that in line with the anisotropic elastic be-

havior an anisotropic plastic behavior for single crystal GaN has to be assumed. The

greatly differing Peierls-Nabarro stresses and the different active slip planes shown

in the TEM pictures are further indications for the need of an anisotropic plasticity

material model. On the one hand, a classic crystal plasticity model is ruled out for

the present work because of the associated computation effort and the complexity of

the sought simulation. On the other hand, a J2 plasticity model would not be able

to account for the anisotropic single crystal structure of the material. Therefore, a

reasonable compromise is chosen which could comply with the anisotropy and also

would not increase the simulation effort too much. Hill’s Potential [13] (also called

Hill’s yield criterion) fulfills both conditions.

Hill’s Criterion was originally developed for rolled sheets but can be used for other

applications as long as three orthogonal planes of symmetry are preserved [8]. The

intersections of these orthogonal planes are called principal axes of orthotropy. The

different yield stress for these axes σY
xx, σY

yy, and σY
zz and their corresponding yield

shear stresses τY
xy, τ

Y
yz and τY

xz are set in relation to a reference yield stress σ0 to

calculate the yield stress ratios

Rxx =
σY
xx

σ0

Rxy =
√

3
τY
xy

σ0

Ryy =
σY
yy

σ0

Ryz =
√

3
τY
yz

σ0

Rzz =
σY
zz

σ0

Rxz =
√

3
τY
xz

σ0

, (2.7)
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which are subsequently used for the calculation of six Hill constants as,

F =
1

2

(
− 1

R2
xx

+
1

R2
yy

+
1

R2
zz

)
L =

3

2

(
1

R2
yz

)
G =

1

2

(
1

R2
xx

− 1

R2
yy

+
1

R2
zz

)
M =

3

2

(
1

R2
xz

)
H =

1

2

(
1

R2
xx

+
1

R2
yy

− 1

R2
zz

)
N =

3

2

(
1

R2
xy

) . (2.8)

These Hill constants are used in an extension of the von Mises criterion. Therefore

the equivalent stress is given as

σequ =
√
F (σyy − σzz)2 +G(σzz − σxx)2 +H(σxx − σyy)2 + 2Lτ 2

yz + 2Mτ 2
xz + 2Nτ 2

xy .

(2.9)

The yield function of the Hill’s criterion can than be written as

f = σequ − σ0 , (2.10)

whereas σ0 is the current reference yield stress, which increases if Equation (2.10) is

fulfilled and the material deforms plastically. The plastic strain-increment relations

written in the same 2-index Voigt notion of Equation (2.2) are then defined as



dεpl
xx

dεpl
yy

dεpl
zz

dγpl
yz

dγpl
xz

dγpl
xy


=

dλ

σequ



H(σxx − σyy)−G(σzz − σxx)

−H(σxx − σyy) + F (σyy − σzz)
−F (σyy − σzz)−G(σzz − σxx)

2Lτyz

2Mτxz

2Nτxy


, (2.11)

where λ is the plastic multiplier. The hardening law has to be defined separately.
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2.4.1 Transverse Isotropy in the Hill Yield Criterion

In the original publication of Hill’s plasticity theory [8], Hill has presented a way

to reduce the orthotropic yield criterion to a transversely isotropic one. Although

GaN has three symmetry planes perpendicular to the basal plane and is therefore

not transversely isotropic, this formulation of the yield criterion is interesting for

this study because it reduces the number of required yield stresses. Moreover, it is

not really possible to comply with GaNs radial direction dependency since the exact

material orientation of the experimentally tested wafers is not known and GaN has

other symmetry planes than an orthotropic material behavior.

If one presumes that there is a rotational symmetry about the z-axis, rewrites equa-

tion (2.9) as

σ2
equ = [(G+H)σ2

xx −Hσxxσyy + (F +G)σ2
yy + 2Nτ 2

xy]−

−2(Gσxx + Fσyy)σzz + 2(Lτ 2
yz +Mτ 2

xz) + (F +G)σ2
zz ,

(2.12)

and performs a coordinate rotation with angle θ around the z-axes, one can draw some

insights about the transversely isotropic Hill parameters. Utilizing the equations

of transformation and some mathematical connections (for details refer to [8]) the

parameters of the Hill yield criterion simplify to

N = F + 2H = G+ 2H, L = M . (2.13)

This means that the yield stresses σY
zz, σ

Y
xx = σY

yy and τY
xz = τY

yz have to be defined

and that the shear yield stress τY
xy can be calculated through Equation (2.13).
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Chapter 3

Modeling Approach for Single Crys-

tal Plasticity

The first part of this chapter is dedicated to explaining how Hill’s plasticity theory

can be used to model anisotropic single crystal plasticity under consideration of the

active slip systems and their critical slip stresses. This is done on the example of

Gallium Nitride but this approach can also be applied to other anisotropic single

crystal materials. The theoretical background on the plastic behavior of GaN and

the transversely isotropic Hill yield criterion is presented in Chapter 2.

In the second part of this chapter, the single element FEM simulations, used to verify

the behavior of the modeling approach, are discussed briefly. ANSYS APDL v18.1

(ANSYS Inc., Canonsburg, PA, USA) is employed for the FEM simulations.

3.1 GaN Plasticity

In order to use the Hill yield criterion for GaN, some consideration have to be made.

Appropriate values for the three needed yield stresses must be chosen in connection

with the values presented in the literature [2, 30].
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As described in Section 2.3.2 the uniaxial compression yield stress in 〈0001〉 direction

is 7.85 GPa. From here on the 〈0001〉 direction will be identical with the z-axis of

the simulation. σY
zz is defined to be equal to the reference yield stress σ0, hence the

Hill parameter Rzz = 1.

Since there is no available experimental data for σY
xx = σY

yy and τY
xz = τY

yz the calcu-

lated Peierls-Nabarro stresses presented in Section 2.3.2 are the only available data

concerning yielding in these directions. For a uniaxial load perpendicular to the

z-axis, slip can occur theoretically in all slip systems, except in the basal plane.

To know the first slip system to become active under such a load, it is necessary to

determine the Schmid factors of all of the systems. A straight forward way to do this

is to transform the stress state in question to the local coordinate system with the

same orientation as the slip system. To be able to conduct such calculations a fixed

orientation of the crystal is chosen. The selected orientation is shown in Figure 3.1

(a). This allows the angles between the slip plane and the global coordinate system

to be calculated. In the special case of the hexagonal crystal structure, the two slip

σxx

z

y = y′

x

x′

n, z′

φ

slip directions

slip plane

(b)a

a

c

(a)

z

x

y

orthogonal

λ

β

Figure 3.1: Figure (a) shows the chosen global coordinate system definition. Figure
(b) shows the local coordinate system of a slip system.
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directions of each individual slip systems, with the exception of the basal and the

{11̄01} planes, are orthogonal to each other. For these slip systems one can define a

local coordinate systems with the x′ and the y′-axises orientated in the slip directions.

The resolved shear stresses of the two slip directions of this slip plane are then equal

to τz′x′ and τz′y′ . To calculate the Schmid factor of one slip system one can use a

uniaxial stress state equal to 1 defined in the global coordinate system in the direction

in question and use the suitable transformation

RσRT =

σx′x′ τx′y′ τx′z′

σy′y′ τy′z′

sym. σz′z′

 , (3.1)

to the local coordinate system. The rotation matrix R is defined for the z-ỹ-˜̃z Euler

angle sequence (refer Appendix A) and must be calculated for each slip system ac-

cording to the considered orientation. The Schmid factors of the two slip directions

are, in the case of the four slip systems with orthogonal slip directions, equal to τz′y′

and τz′x′ .

In order to facilitate fundamental understanding of this process, the basic concept is

explained here using the simple schematic example shown in Figure 3.1 (b). With

just one rotation around the y-axis and a uniaxial stress state σxx = 1, the calculation

takes the form

cos β 0 − sin β

0 1 0

sin β 0 cos β


1 0 0

0 0 0

0 0 0


cos β 0 − sin β

0 1 0

sin β 0 cos β


T

=

=

cos β cos β 0 sin β cos β

0 0 0

sin β cos β 0 cos β cos β

 ,

(3.2)

with

τz′x′ = sin β cos β = cos(90◦ − β) cos β (3.3)
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and with regard to Figure 3.1, and

β = λ

90◦ − β = φ
(3.4)

one can see that τz′x′ = cosφ cosλ = m (see Equation (2.4)). For the Schmid factor

of the second slip direction applies τz′y′ = m = 0, which is as to be expected since

this slip direction is perpendicular to the uniaxial load.

In general six different slip plane orientations around the z-axis have to be considered.

For the {11̄01} slip plane the process is even more complicated because the two

slip directions are not orthogonal to each other and their Schmid factors have to be

considered for each possible slip plane orientation separately. The general calculations

for GaN are done in Matlab R2017b (The MathWorks Inc., Natick, MA, USA) and

can be comprehend with the in Appendix A displayed information. Also included in

Appendix A are the calculated Schmid factors (see Table A.2).

The lowest yield stress for σY
xx = σY

yy calculated this way is due to slip in the prismatic

{11̄00}〈1̄21̄0〉 system. It is noteworthy that these yield stresses are depended on

the coordinate system used for the calculation (see Figure 3.1 (a)). However, this

influence is rather small. The yield stress varies for example rotationally around the

z-axis between 2.69-2.79 GPa. In this work the higher value of 2.79 GPa is used for

the transversely isotropic formulation.

A similar procedure is used to examine the critical value for shear stress τxz, which is,

as to be expected, the shear stress in the basal plane. Together with equation (2.13)

all of the needed yield stresses are defined to be
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σY
zz = σ0 = 7.85 GPa

σY
xx = σY

yy = 2.79 GPa

τY
xz = τY

yz = 2.34 GPa

τY
xy =

√
σ2
zzσ

2
xx

4σ2
zz − σ2

xx

= 1.42 GPa .

(3.5)

This allows the calculation of the Hill input parameter as

Rzz = 1

Rxx = Ryy = 0.3554

Rxz = Ryz = 0.5163

Rxy = 0.3128 .

(3.6)

A constant tangent modulus is used to describe isotropic hardening behavior. It is

difficult to make assumptions on the tangent modulus of the GaN since the only

information has been the findings of [30]. Therefore tangent moduli of 0, 50, and 100

GPa are evaluated.

3.2 Single Element Simulations

Single element simulations are a crucial tool to evaluate whether or not Hill’s yield cri-

terion performs as one expects. Single element simulations use the simplest geometric

model that can be created, nevertheless, they are an important tool to understand

if nonlinear material models are applied correctly. The main advantage is their sim-

plicity and that their results can, therefore, be comprehended analytically.
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To create a single element simulation in ANSYS a linear, fully integrated, 8-node ele-

ment has to be constrained with the boundary displacement conditions corresponding

to the desired load case. The load cases have to be as simple as possible to allow the

user to draw conclusions on the plasticity formulation. Therefore uniaxial stress as

shown Figure 3.2 (a) and simple shear stress states illustrated in Figure 3.2 (b) are

introduced with displacement boundary conditions. Hill’s yield criterion is combined

with an isotropic elastic material model (E = 100 GPa and ν = 0.26) and a constant

tangent modulus of 12 GPa. Stress and strain data are then transferred to a Matlab

post processing script. To test the Hill yield criterion under certain circumstances a

local coordinate system can be used to define the material orientation.

In the beginning, such tests are made to test extreme cases of the Hill parameters

and to analyze the resulting stress states and elasto-plastic deformations. After the

introduction of the GaN plasticity model, these tests are extended to assess the shear

stresses in the slip systems under certain load cases.

The results of one of these single element tests are shown in Figure 3.3, in which

(a) illustrates the considered {11̄00} 〈1̄21̄0〉 slip system and Figure 3.3 (b) shows

the stress-strain data for the local shear stress in the slip system and for the global

uniaxial stress state in x-direction.

z

x

y
z

x

y

(a) (b)

Figure 3.2: Schematic of single element tests. Figure (a) results in a uniaxial σxx
stress state and (b) shows an τxz stress state.
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It is verified that the shear stress in the prismatic system is reached at the yield

begin. The critical shear stress of this slip system is 1.21 GPa (Appendix A, Table

A.2) and the yield stress in the x-direction is, as explained in Section 3.1, defined to

be 2.79 GPa. As to be expected, both values are reached at the same time. A similar

result is achieved for the other directions. For instance the yield onset for a simple

shear stress τxz = 2.34 GPa is the same as the critical shear stress of the basal plane.

The single element test also reveals the shortcomings of the material modeling ap-

proach. The usage of transverse isotropy has the consequence that a rotation of the

material orientation around the z-axis of the coordinate system has no influence on

the outcome. In reality there should be small differences in line with the six-folded

symmetry of the GaN crystal.

In a theoretical perfect material model plastic behavior should only be initiated if

the critical shear stress of a slip system is reached. In case of the presented modeling

approach plastic behavior can be initiated even if the critical value has not yet been

reached in any slip system. This is due to smeared nature of the approach in which

only one overall plasticity criterion is responsible for the yield begin. Furthermore, the
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Figure 3.3: Figure (a) illustrates the active slip system. The global strain-stress
response due to a uniaxial stress state σxx is shown as the dashed line
in Figure (b) and the shear stress in the local coordinate system of the
active slip system is depicted as the solid line.
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chosen hardening rule is rather rudimentary and an in-depth analysis and modeling

of GaN single crystal plastic deformations by Hill is out of the scope of this thesis,

especially considering that not much experimental data on this topic is available.

In summary, it can be said that the approach works well, given the circumstances

and boundaries resulting from the usage of the transversely isotropic Hill yield cri-

terion. In the end, the main goal of this approach is to model the overall plasticity,

with taking the slip system into account, and without too much computational and

handling effort.
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Chapter 4

Finite Element Model

The next step after defining and verifying the plasticity approach for GaN is to use

it in the simulation of the nanoindentation experiment. Hereby, the used simulation

software is again ANSYS. The input scripts for the simulations are written in the

ANSYS Parametric Design Language (APDL), which is convenient for testing dif-

ferent model parameters. Two different modeling approaches are used in course of

this thesis. To get a basic understanding of the structural response an axisymmet-

ric model is created. For most of the in-depth analysis, a 3D continuum model is

used. The significant drawback of the axisymmetric model is that the exact stress

state beneath the Berkovich indenter cannot be pictured correctly. Nevertheless, the

axisymmetric model is an important step in the development of this project and it

can be used for first approximations of the problem.

The first and largest part of this chapter is dedicated to explaining the 3D nanoin-

dentation model. The used material models are summarized and displayed in the

following section. How the residual stress states are applied, the features of the

axisymmetric model, and a brief verification of the 3D model complete the chapter.
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4.1 3D Nanoindentation Model

4.1.1 Geometry

The first step in the creation of a finite element model is to reduce the real problem

to an abstract one, which is simple enough to be simulated but at the same time

reflects the essential characteristics of the problem. In the case of the nanoindentation

experiment, the complex experimental setup is narrowed down to the indenter tip and

the required part of the wafer. The geometric shapes of these two parts are defined

and then the appropriate boundary conditions, mesh size, element types, and material

properties are provided for the simulation.

Geometry of the wafer

The 3D model should be able to represent the real experimental setup without being

unnecessarily large. The contact surface of the Berkovich tip is a three-sided pyramid,

which has three planes of symmetry. The direction of the load is the same as the

main axes of the indenter, therefore the load symmetry is the same as the geometric

symmetry of the indenter [19]. According to this considerations, only a sixth of the

entire system has to be modeled as shown in Figure 4.1 (a) and (b).

x

y
z

(a) (b)

Figure 4.1: Schematic drawing of the experimental setup (a) and the 3D model
used for the simulation (b).
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The overall size has to be chosen large enough so that the boundary conditions have

no influence on the outcome of the indentation regarding stress distribution and load-

penetration curve. For the indentation depth of 0.365 µm, a cross-section with the

same height and width equal to 32 µm proves to be large enough, so that the boundary

condition have no influence on the system response. This quadratic shape is used to

create a 60◦ section of a cylinder.

The division in the subparts ensues according to two different characteristics. The

distinction between GaN stack and Si substrate is due to the different materials and

the different residual stresses. The APDL input script is designed to allow a more

in detail analysis of the stack by adding more partitions in the vertical direction.

The two subregions, which are visible in Figure 4.1 (b), are added for a better mesh

generation and for defining the contact region. The size of these regions is governed

by the maximum indentation depth.

In the case of the experiments presented in Section 1.4, Figure 1.3, the stack design is

simplified to a homogeneous stack, which has the material model of pure GaN. This

is justified because AlN has been reported to behave similarly to GaN.

Shape of the indenter

Since the material of the indenter is much stiffer then the probed GaN, it is assumed

that the indenter is rigid. Therefore, only the indenter surface is modeled. The shape

of this surface is important because it has a direct and significant influence on the

shape of the load-penetration curve and the resulting stress state.

Most of the experiments done by the KAI use a Berkovich tip, which is very commonly

used for testing the indentation hardness of a material. A schematic representation

is shown in Figure 4.2 (a). The geometry is defined with the so-called half angle

αb = 65.3◦. All other angles are based on this half angle and the three-fold symmetry

of the indenter. A Berkovich tip is in reality imperfect and has a rounding at the
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apex of the indenter [6]. This is not modeled in the simulation due to the unknown

shape of this imperfection and the expected small influence of it on the solution.

As it is mentioned in the previous section the three-fold symmetry of the indenter

determines how big the section of the wafer and the indenter has to be for the 3D

model. In line with the geometry model of the wafer, only one sixth of the Berkovich

indenter has to be modeled. The cut-out piece of the Berkovich tip in Figure 4.2 (a)

matches the geometry modeled in the simulation.

A conical tip as shown in Figure 4.2 (b) is interesting because it can be used as

an approximation of a Berkovich indenter in an axisymmetric simulation. Although

the exact shape of the Berkovich indenter cannot be considered in an axisymmetric

simulation, the same result of the area function can be achieved with the right half

angle αc. The area function describes the contact surface A of the indenter during

an experiment [6]. For an ideal Berkovich indenter, the area function is

αb
βb

60◦

βb = 77.05◦
αb = 63.3◦

Berkovich Tip

Conical Tip

Cono-spherical Tip

αc

αc = 63.3◦

αs
rs

(a)

(b)

(c)

Figure 4.2: Geometric illustration of the three indenter types modeled in this thesis.
Figure (a) shows a Berkovich tip, Figure (b) an conical tip which is used
to represent a Berkovich tip in an axisymmetric simulation, and Figure
(c) shows a cono-spherical tip.
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Ab = 24.56h2
c (4.1)

with hc being the so-called contact depth, which is depended on penetration, the

contact stiffness, and contact force. Together with the area function of the conical

indenter

Ac = π tan2(αc)h
2
c (4.2)

one can calculated the equivalent half angle as

αc = tan−1
√

24.56/π = 70.3◦. (4.3)

The cono-spherical tip Figure 4.2 (c) is also added to the simulation since results

with such an indenter are provided in the literature. It differs from the conical tip

by a radius at the apex. This radius can be quite large compared to the indentation

depth. In case of cono-spherical indenter experiments conducted at the KAI, it has

been 2 µm compared to an indentation depth of 0.250 µm.

4.1.2 Elements and Mesh

The general 3D structure of the wafer consists of 3D continuum elements (SOLID185).

These are used in their linear tetrahedral formulation in which case they are defined by

four nodes having three degrees of freedom at each node. They are fully integrated

and use a pure displacement formulation. For certain analyses, quadratic 10-node

tetrahedral continuum elements (SOLID186) are used, which significantly increases

the calculation time but also the resolution of the result.

Linear 3-node shell elements (SHELL181) are used for governing the element size

in the shared partition between the different mesh regions, shown in Figure 4.3. It

is necessary to create them before the volume is meshed, using the smallest desired

mesh size of the adjacent volumes. With this procedure it is unimportant in which

order the individual volumes are meshed. After the final mesh is generated these
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SHELL181 elements are deleted. The mesh generation itself is done by an automatic

mesh algorithm.

The finest mesh is in the “contact mesh” region depicted in Figure 4.3. The default

element edge length in this region is depended on the analysis type. It does not vary

within the region itself but for different simulations values between 10 and 100 nm

are utilized. The “fine mesh region” is added to achieve a smoother transition to the

coarse mesh of the rest of model and to allow a meaningful analysis of the stress in

this region. In this region the default element edges are between 100 and 800 nm.

The rest of the wafer is meshed coarsely with 1 µm edge length.

On top of the contact region facing in the z-direction are the contact elements

CONTA173. Together with their counterpart, the TARGE170 elements, they de-

fine the contact behavior. The whole indenter surface is meshed solely with the

TARGE170 elements.

4.1.3 Contact Behavior

For the definition of a pair-based contact in ANSYS, as is shown in Figure 4.4, the

two element sets of CONTA173 and TARGE170 have to share the same real constants

in ANSYS. The contact algorithm is an augmented Lagrangian one and the contact

x

z

(a)

Substrate

Stack

Fine mesh region

Contact mesh region

x

z
y

60◦

(b)

Figure 4.3: The different mesh regions in the xz-plane (a) and in an isometric view
(b).
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detection points are the nodal points. The force Fc at the contact detection point(s)

is calculated by

Fc = kcdp + λ (4.4)

whereas kc is the contact stiffness, dp is the penetration depth, and λ is an internally

calculated term, which enhances the classic penalty-based force calculation. With

this term, the solution is more stable and produces less penetration but it also takes

more iterations to converge.

The two parameters that are modified to obtain a more accurate solution are the

normal penalty stiffness factor (FKN) and the penetration tolerance (FTOLN) as

it is explained in the contact technology guide of the mechanical APDL reference

[1]. An increased penalty stiffness factor FKN = 5000 is used in the simulations.

Such an increased value will lead to less penetration but also needs more iterations

to solve and a too high value might not lead to convergence at all. FTOLN is

used in connection with the augmented Lagrangian method and defines the absolute

allowable penetration, which is for most of the conducted calculations very small,

being just 0.1% of the contact element size. If a larger penetration is reached, the

convergence criterion for the global solution is never satisfied, even if the residual

forces and displacement increments have met convergence criteria [1].

TARGE170

CONTA173

dp

Figure 4.4: Sketch of the used contact model. The TARGE170 model the indenter
and the CONTA173 elements the surface of the wafer.
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The contact behavior is assumed to be frictionless for the course of this thesis. This

is a common assumption for FEM simulations of Nanoindentation problems [12, 19].

4.1.4 Boundary condition

The boundary conditions of the 3D model are defined in regard to the symmetry

of the problem. The displacement in y-direction is constrained for all nodes in the

xz-plane. To define the boundary conditions of the second symmetry plane a local

coordinate system is created, which is rotated 60◦ around the z-axis. In this new

x′z-plane the boundary condition is then again defined to constrain displacement in

y′-direction. For the bottom plane and the outer border of the model all degrees

of freedom are constrained. A schematic of these boundary conditions is shown in

Figure 4.5.

The boundary conditions of the indenter are used to define the four steps of the in-

dentation procedure. Its initial position is directly above the wafer with one node

already being in contact. In the first step, a displacement boundary condition in

z-direction equal the maximum indentation depth is defined for the indenter. Dis-

placement in the other two directions is restricted. In line with the steps defined

x

z

(a)

Substrate

Stack

y

(b)

x

x’y’

Figure 4.5: The boundary conditions of the wafer and the associated coordinate
systems.
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Table 4.1: Direction dependend Young’s moduli, Poisson’s ratio, and shear moduli
of GaN. Young’s and shear moduli are given in GPa

Source paper Ex = Ey Ez νxz = νyz νxy Gxz = Gyz Gxy

Schwarz et al. [26] 284.4 160 0.21 0.31 81.4 108.5

Polian et al. [23] 324.1 355 0.2 0.32 105 122.5

in Section 1.3 the indenter is subsequently hold for the next load step at the final

indentation depth. In the last two steps, displacement boundary conditions are used

to withdraw the indenter and hold it at its original position. The two hold steps

are not necessary and are just added to model the full experimental procedure. The

additional computational effort caused by the hold steps is marginal.

4.2 Material Parameters

The theoretical information necessary to describe the material behavior is already

stated in the previous chapters. A summary of this information and how it is used

for an appropriate material behavior in ANSYS is presented in this section.

4.2.1 Gallium Nitride Material Parameters

In Section 2.2 the transversely isotropic elastic material parameters given by Schwarz

[26] and Polian [23] are explained briefly. To use these material parameters in ANSYS

an orthotropic elastic model is defined and set to behave transversely isotropic. The

direction-dependent elastic material parameters are given in Table 4.1. The plasticity

approach for GaN has already been explained in detail in the previous chapters. The

plastic material parameters is shown in Table 4.2.
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Table 4.2: Summary of the transversely isotropic plasticity parameters for the GaN
layer.

Yield stresses

σY
xx = σY

yy σY
zz τY

xz = τY
yz τY

xy

2.79 GPa 7.85 GPa 2.34 GPa 1.41 GPa

Hill Parameter

Rxx = Ryy Rzz Rxz = Ryz Rxy

0.355 1 0.516 0.312

Tangent modulus ET = 0, 50, 100 GPa (dependent on analysis)

Table 4.3: Approximated transversely isotropic material parameters given for 〈111〉
Silicon [10, 16] and the tensile yield stress obtained by [22].

Ex = Ey Ez νxz = νyz νxy Gxz = Gyz Gxy σY

169 GPa 188 GPa 0.182 0.262 66.9 GPa 57.8 GPa 6.9 GPa

4.2.2 Silicon Material Parameters

The face-centered cubic structure of Silicon leads to cubic material behavior. The

silicon substrate in the modeled wafer has a 〈111〉 orientation in the z-direction of

the geometric model. The interesting aspect of this material orientation is that it is

seemingly transversely isotropic, since the Young’s moduli, the Poisson’s ratio, and

the shear moduli are the same for each direction perpendicular to the 〈111〉 axis as

is explained by Kim et al. [16]. Calculating the full elasticity matrix shows that

coupling terms appear, which are not considered in a transversely isotropic material

model. But since the material behavior of the silicon substrate has only a minor role

for this thesis the influence of these coupling terms is neglected and a transversely

isotropic material model is used as presented in Table 4.3.
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One topic which is briefly addressed in this thesis is the plasticity in the silicon

substrate. Since silicon is a very brittle material information on its yield onset is

sparse. Most commonly the tensile yield strength of 6.9 GPa obtained by Peterson

[22] is referenced and it is therefore used in this thesis as an indication if plasticity

in the Silicon substrate occurs by assumption of a J2 yield criterion.

4.3 Residual Stress State

In the course of his diploma thesis, Reichel has shown that residual stresses have

a large impact on the development of cracks. In the present thesis the influence

of these residual stresses on the plasticity in the material and the overall structural

response visible in the load-penetration curve is studied. Two different residual stress

distributions are examined. The simplified uniform biaxial tensile stress state used

by Reichel of 400 MPa in the xy-plane over the whole 1.8 µm stack as it is shown

in Figure 4.6 (a) and the more complicated biaxial stress state from [24] shown in

Figure 4.6 (b).

As explained in Section 1.4 the results of [24] have been obtained by an ion beam

layer removal method in steps of 100nm. For the sake of simplicity not all of the small

steps are modeled in the simulation. The used residual stress distribution featuring

a reduced number of different stresses is shown in Figure 4.6 (b) as the black line.

The stress in in the xy-plane alternates between compression and tension over the

stack. For usage in ANSYS initial stresses can be applied to each individual layer.

The local self equilibrated stress state corresponds to a global stress free state solved

in an initial load step.
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4.4 Axisymmetric Nanoindentation Model

Although most of the results shown in the following chapter are obtained using a 3D

model, the axisymmetric model represents an important step in the creation of the

final model and will, therefore, be explained briefly in this section. In addition, it

can be used for simulations of nanoindentations with cono-spherical indenters and for

preliminary studies of Berkovich indentation tests.

The meridional section of the axisymmetric model, illustrated in Figure 4.7, has the

same width and height equal 32 µm as the 3D model. This geometry is then divided

into the required number of stack layers and a fine mesh region is added for the

contact and the area of high deformations. The height of the different layers and the

size of the contact region is chosen accordingly to the modeled experiment explained

in Section 1.4. The geometry of the wafer is meshed with axisymmetric elements
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Figure 4.6: Residual stress distribution in the cross-section of the stack. In (a) a
homogeneous biaxial tensile stress state of 400 GPa is assumed. Figure
(b) shows the results of [24] in red in combination with the biaxial
residual stress state used in the simulation in black.
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(PLANE183) in a 6-node triangle shape. The usage of this elements define that the

y-axis must be the axis of symmetry for the axisymmetric analyses. Therefore, the

z-axis in the 3D model corresponds to the y-axis in the axisymmetric model. The

mesh size is homogeneous over the largest part of the wafer with a characteristic

element length of 0.7 µm. The only exception is the fine mesh region, which has a

standard characteristic element length of 0.08 µm and an even finer discretization of

0.02 µm at the contact.

The geometry of the nanoindenter is reduced to a line resembling the shape of the

indenter. In the case of a conical indenter it is just a straight line which is defined

by the included half conical angle. For the cono-spherical tipped indenter its shape

is characterized by the radius of the sphere and the angle of the tip. The contact

behavior between the wafer an the indenter is realized using a surface-to-surface

contact description with TARGE169 elements describing the rigid indenter, which are

opposed by CONTA172 elements on top of the wafer. Their properties are equivalent

to the one of the 3D model (cf. Chapter 4.1.3).

The boundary conditions are defined as shown in Figure 4.7 to constrain displacement

in the x-direction along the y-axis and in the y-direction along the bottom perimeter

Substrat

Stack

Fine mesh region
Indentery

x

Figure 4.7: Illustration of the axisymmetric nanoindentation model with the differ-
ent mesh and material regions.
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of the model. The indenter is provided with displacement boundary conditions which

reflect the indentation procedure explained in Chapter 1.3.

4.5 Verification

To verify that the geometric models and the boundary conditions are applied cor-

rectly, they are tested with the material data and the load condition presented in

[19]. The model in this paper shares the same load and geometric conditions but has

completely different material properties. The load-penetration curves of the axisym-

metric and the 3D model of this thesis are hereby very similar to the ones presented

in the paper.

Since an important aspect of this thesis is to examine the influence of different pa-

rameters on the load-penetration curve numerous simulations are done. The stress

distribution in the wafer is not so important for these initial studies, but it is nec-

essary that the computational effort is not too big. Therefore, these simulations are

carried out using a linear element formulation and a fairly coarse mesh size.

For the more in-depth stress state evaluation, a computational expensive model

featuring quadratic element formulation and a fine mesh size is used. The load-

penetration curve obtained with this model shows little to no difference to the one

received by the fast calculating model with linear elements.
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Chapter 5

Computational Results

In this chapter, the results obtained utilizing the presented FEM models are shown

and evaluated. The influence of different material aspects on the shape of the load-

penetration curve is examined and the results are compared to the experimental data

presented in Section 1.4. A detailed assessment of the simulated Berkovich indenter

experiment with an indentation depth of 0.365 µm is done, focusing on the contour

plots of the resolved shear stresses of various slip systems. The regions where the

critical shear stress value is exceeded are located and compared to the region where

Hill’s yield criterion is fulfilled.

Furthermore, the cono-spherical indenter experiment with the highest indentation

depth (cf. Section 1.4) is simulated and the results and the possible applications

of the axisymmetric model are evaluated. At the end of this chapter, the question

is addressed whether the simulation is capable of predicting the results of further

experiments found in the literature.

During the post-processing procedure, the load-penetration data is extracted from

ANSYS and visualized via Matlab, whereas the contour plots are created directly in

ANSYS APDL.
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5.1 Structural Response of the 3D Nanoindenta-

tion Model

As explained in Section 1.4, the focus of the simulations is on the experiment, which

leads to the load-penetration curves shown in Figure 1.3 (b). This experiment has

been carried out with a Berkovich indenter and a maximum indentation depth of

0.365 µm. To illustrate the global structural response of the 3D model, the reaction

force in the z-direction is plotted against the corresponding penetration. It has to

be considered that only one-sixth of the structure is modeled, which means that the

reaction force has to be multiplied by six.

The load-penetration curve presented in Figure 5.1 is obtained using the elastic pa-

rameters by Schwarz [26] (cf. Table 4.1), the presented constants for Hill’s plasticity

theory (cf. Table 4.2), and a constant tangent modulus of 50 GPa. No residual stresses

are used for this simulation. In Figure 5.1 all of the experimental indentations are

included, hence 12 partly overlapping curves are printed. The energy dissipation,

corresponding to the area under the curve, is a bit smaller for the simulated result

but the overall shape of the curve shows an extremely good correlation to the experi-

mental results. Only the small plateau, which is visible at the maximum indentation

depth of the experimental results, cannot be simulated by means of this work.

Overall, it is a very satisfactory result considering that the load-penetration curve

just describes the overall structural response. A more in detail stress state analysis

of this solution will follow later on in this chapter.

5.1.1 Evaluation of Different Elastic Parameters for GaN

Preceding evaluations had to be made to obtain the result, which is shown in the

previous section. In the present section, the simulations and considerations are
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showcased, which lead subsequently to the conclusion that the elastic parameters

by Schwarz [26] are appropriate for this thesis.

Reichel has assumed isotropic elasticity (E = 290 GPa and ν = 0.26) for his simu-

lations. As explained in Section 2.2, various transversely isotropic sets of elasticity

parameters can be found in the literature, which vary quite significantly. For example,

the Young’s modulus for the crystallographic {0001} direction, which is equal to the

z-direction in the FEM model, ranges between 100 GPa in [30], 160 GPa in [26], and

355 GPa in [23]. From the literature results, Polian’s elastic parameters are the most

widely used, being cited four times as often as those presented by Schwarz. A strong

indication that the chosen elastic behavior is appropriate for the given simulation, is

a well-fitting release curve, since, in contrast to the load curve and maximum force,

it is determined almost exclusively by the elastic properties.

Figure 5.2 shows one experimental and various simulated load-penetration curves of a

Berkovich indentation with a maximum depth of 0.365 µm. The proposed parameters
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Figure 5.1: Experimental (courtesy of KAI GmbH, Villach, cf. Section 1.4) and
simulated load-penetration curves of a Berkovich indentation test with
an maximum indentation depth of 0.365 µm. For further details on the
simulation please refer to the text (Section 5.1).
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for Hill’s plasticity theory (cf. Table 4.2) and a constant tangent modulus of 50

GPa are utilized in combination with three different elastic material descriptions.

It can be seen that the transversely isotropic elastic parameters by Schwarz depict

the experimental load-penetration curve better as Polian’s. The isotropic Young’s

modulus of 290 GPa shows a similar result as Polian’s transversely isotropic set of

parameters. Both curves exceed the maximum force of the experiment and feature a

much steeper release curve.

It needs to be emphasized that all of the literature experiments which have been done

to determine the elastic properties have been conducted on bulk material probes,

whereas GaN in form of a thin film might feature a different elastic behavior. In

addition, the sample stack is in reality not just a single GaN layer instead it has the

complex stack design explained in Section 1.4.
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Figure 5.2: Experimental (courtesy of KAI GmbH, Villach, cf. Section 1.4) and
simulated load-penetration curves of a Berkovich indentation test. A
comparison is made between the transversely isotropic elastic parameter
sets, proposed by Polian [23] and Schwarz [26], and an isotropic elastic
material behavior (E = 290 GPa, ν = 0.26). For further details on the
simulation please refer to the text (Section 5.1.1).
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In summary, it can be noted that Schwarz’s transversely isotropic set of elasticity

parameters is well suited for the homogenized stack design and that the elastic prop-

erties have to be chosen very carefully for similar simulations.

5.1.2 Influence of the Hardening Behavior

The only information available on the hardening behavior of GaN is found in the

compression tests in [30]. However, the statements in this paper are very vague.

Therefore, the influence of the hardening behavior is studied. Figure 5.2 shows one

experimental and various simulated load-penetration curves. The proposed input

for Hill’s plasticity theory (cf. Table 4.2) and the transversely elastic parameters by

Schwarz [26] (cf. Table 4.1) are combined with different tangent moduli of 0 GPa, 50

GPa, and 100 GPa, to illustrate the influence of the hardening behavior. Figure 5.3

reveals that the tangent modulus of 50 GPa provides the best prediction and that
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Figure 5.3: Experimental (courtesy of KAI GmbH, Villach, cf. Section 1.4) and
simulated load-penetration curves of a Berkovich indentation test. A
comparison is made between three different tangent moduli (0 GPa, 50
GPa, and 100 GPa). For further details on the simulation please refer
to the text (Section 5.1.2).
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the loading step is much more influenced by the plastic properties than the unloading

step. As expected, the maximum indentation force of the simulation featuring the

tangent modulus of 100 GPa is too high and the one of the ideal plastic simulation

is too low.

5.1.3 Plasticity in Silicon

Another aspect which is briefly studied in this thesis is plasticity in the silicon sub-

strate. Whereas the elastic properties of silicon are well-researched (cf. Section 4.2),

the information about the plastic behavior is sparse. For this thesis, the tensile yield

stress of 6.9 GPa [22] is used as an approximated yield stress for J2 plasticity.

This yield criterion is met in a small area for the simulation presented in Section 5.1.

However, simulations combining this approximated J2 yield stress, with an isotropic

ideal plastic hardening behavior, show that the effect on the overall structural re-

sponse of the load-penetration curve and on the stress distribution in the stack is

insignificant.

Plasticity in the silicon can, therefore, be disregarded in the simulation for the follow-

ing detailed stress analyses. Nonetheless, these findings must be taken into account

when investigating higher penetration depths. In such a case the plasticity of the

substrate might play a significant role in the overall results.
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5.2 Stress State Evaluation

To get a better understanding how the plastic deformations are initiated, the previ-

ously used load-penetration curves are not sufficient and a more in-depth assessment

of the stress state with regard to the different slip planes of GaN is carried out. For

this purpose, a post-processing APDL script in ANSYS is used, which automatically

creates contour plots of the resolved shear stress in the individual slip systems.

These contour plots allow a fast depiction of the regions in which the critical shear

stress values are reached and the dislocation motion has been theoretically initiated.

This is realized by using local coordinate systems defined for each slip system. For

all of this local coordinate systems, the z′-axis is orientated to be perpendicular to

the slip plane in question and the x′-axis is aligned with the considered slip direction.

Thereby the local shear stresses τx′z′ represents the respective resolved shear stress

of the corresponding slip systems.

As mentioned previously, there are eleven slip systems which can all occur in multiple

orientations, therefore only individual slip directions of selected slip systems are pre-

sented in the following sections. A complete presentation of a slip system would have

to include all possible orientations (around the z-axis) and a far more complicated

post-processing script would be needed to illustrate all of the resulting slip directions

in one contour plot.

The considered simulation is the one described in Section 5.1 with Schwarz’s [26]

elastic parameters (cf. Table 4.1), the proposed parameters for Hill’s plasticity theory

(cf. Table 4.2), a tangent modulus of 50 GPa, and a maximum indentation depth of

0.365 µm. For this simulation no residual stress state and no Silicon plasticity is used.

The critical resolved shear stresses of the slip systems can be found in Appendix A

Table A.2.
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5.2.1 Resolved Shear Stress in the Basal Plane

Holt and Yacobi [9] state that the predominant slip system to get activated in a

Wurtzite crystal structure is the basal plane slip system, since it has the shortest

translation vectors. However, there is only one possible orientation for the basal

plane in a single crystal, which means that by far not every deformation can be

accommodated. Most importantly, normal stress perpendicular to the basal plane

cannot cause dislocation motion in the basal plane. Although the translational pen-

etration direction of the indenter is perpendicular to the basal plane, the pyramidal

shape of the indenter causes a complex stress state which leads to significant shear

stresses in of the basal plane.

Figure 5.4 shows the region in which the critical shear stress in the basal plane

(τ c
PN = 2.34 GPa) is exceeded for three different loading states. The region in which

the resolved shear stress reaches a higher value than the critical one is marked by

the gray area. No local coordinate system is used for this slip direction of the basal

plane. The resolved shear stress for the 〈1̄21̄0〉 direction is the global τxz shear stress.

Contour plot (a) shows the resolved shear stress at an indentation depth u = 0.132 µm

(indenter force F = 0.004 N) and contour plot (b) at an indentation depth u =

0.201 µm (F = 0.011 N). The Figure (c) is taken at the final indentation depth

(F = 0.035 N, u = 0.365 µm). The small sketch of the single crystal shows the

orientation of the slip system, the slip direction and the cross-section shown in the

contour plots. This plane is chosen because it has the largest cross-sectional area of

the indenter and cracks are supposed to originate in it.

One can see that the critical resolved shear stress is reached in two different regions

during the indentation process. The first region is directly beneath the indenter where

the contact leads to a generally high stress state. The second area reaches downward

from the perimeter of the contact zone. With increasing indentation depth, the area

grows slightly downwards and moves in x-direction.
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A careful look at Figure 5.4 (c) raises the question if the region of exceeded critical

resolved shear stress has a toroidal shape around the center of the indentation. To

answer this question it is necessary to consider the second symmetry plane of the

geometric model. Examining the previously assumed slip direction in the second

symmetry plane, no region of critical resolved shear stresses can be seen. However,

as is presented in Figure 5.5 (a) the second slip direction, rotated by 60◦, reaches

the critical value in a relatively large region. Figure 5.5 (a) and (b) both show the

GaN

Silicon

(a)

(c)

(b)

-2.34 -1.82 -1.3 -0.78 -0.26 2.341.821.30.780.26

slip plane shown

slip direction

in [GPa]

cross-section

Figure 5.4: Contour plots of the resolved shear stress in the basal plane. The gray
color marks the area in which the critical resolved shear stress of 2.34
GPa is exceeded. Pictures (a), (b), and (c) show the Berkovich in-
dentation at a penetration depth of u = 0.132 µm, u = 0.201 µm, and
u = 0.365 µm, respectively (cf. Figure 5.1).



CHAPTER 5. COMPUTATIONAL RESULTS 56

same simulation at the same maximum penetration depth of u = 0.132 µm. The

visible cross-section and slip direction is indicated by the sketches above the contour

plots. The stress distribution of the second slip direction, shown in Figure 5.5 (a),

corresponds to the τx′z′ of a local coordinate system rotated by 60◦ around the z-axis.

The critical resolved shear stress region in Figure (a) is larger and extends further

in z-direction as the one shown in Figure (b). It is likely, that both regions overlap

inside of the 60◦ segment.
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Figure 5.5: Contour plots of the resolved shear stress in the basal plane for the
two geometric symmetry planes at the highest indentation depth (u =
0.365 µm). The resolved shear stress of two different slip direction ori-
entations is shown in (a) and (b).
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5.2.2 Resolved Shear Stress in the Pyramidal {11̄01} Plane

The second slip system to be discussed is the pyramidal {11̄01}〈112̄3〉 system. In

contrast to the basal plane, this slip system has a Schmidt factor unequal zero for

stress in the z-direction. As explained in Section 2.1 this applies to all three pyramidal

slip planes. An interesting aspect of these three slip planes is that their Peierls-

Nabarro stresses are really high compared to the basal or the prismatic {11̄00} plane

(cf. Table A.2). This is the reason why the experimental values taken from [30] are

used in Section 3.1 to define the yield begin in the z-direction and not the Peierls-

Nabarro stresses. It is therefore necessary to extract information about the primary

active pyramidal slip system from the literature. Caldas et al. [2] and Huang et al. [11]

have stated, based on transmission electron microscope and cathodoluminescence

microscope pictures, that the {11̄01}〈112̄3〉 slip system is the primary pyramidal slip

system, which is activated below the indentation tip.

A local coordinate system has to be used to obtain the contour plots. Therefore the

local shear stress τx′z′ is shown in the following pictures. The local coordinate system

is rotated 210◦ around the z-axis and then 62◦ around the ỹ-axis to align the z′-axis

orthogonal to the slip plane (cf. Appendix A). This slip plane orientation is just one

of the six possible orientations in the Wurtzite structure. However, the shape and the

size of the critical resolved shear stress region is fairly similar for all six orientations.

For the contour plots, a simplification is used regarding the third rotation, which

determines the precise orientation of the 〈112̄3〉 slip direction. Instead of displaying

both possible orientations individually an approximate slip direction which lies be-

tween the two orientations is used, which is orthogonal to the second slip direction

〈1̄21̄0〉 of this slip plane. With the two mentioned rotations, the resolved shear stress

of the approximated slip direction is equal to τx′z′ . The main reason for this simpli-

fication is the rotation convention of ANSYS (z-x̃-˜̃y Euler convention), which makes

it very difficult to orientate the local coordinate system according to the 〈112̄3〉 slip

direction. The critical resolved shear stress τ crss = 3.25 GPa, corresponding to the
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approximate slip direction, is used as an indication for slip initiation in the contour

plots.

The resolved shear stress of the simplified slip system is shown in Figure 5.6. The

contour plots depict the same simulation and the same load steps as those presented

in Figure 5.4. The gray area marks again the region in which the resolved shear

stress is higher than the critical one. For this system the region does not expand too
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Figure 5.6: Contour plots of the approximated resolved shear stress in the
{11̄01}〈112̄3〉 slip system. The gray color marks the area in which
the critical resolved shear stress (τ crss = 3.25 GPa) is exceeded. Pic-
tures (a), (b), and (c) show the Berkovich indentation at a penetration
depth of u = 0.132 µm, u = 0.201 µm, and u = 0.365 µm, respectively
(cf. Figure 5.1).
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far in the x-direction, instead, it expands downwards in the direction of the silicon

substrate. Compared to critical resolved shear stress region of the basal slip system

in Figure 5.4, it can be noted that this area is larger and expands in a different

direction.

In Figure 5.6, only one of the two symmetry planes of the FEM model is considered

for the stress state analysis of the {11̄01}〈112̄3〉 slip system. Therefore, similar to

Figure 5.5, the two planes of symmetry are compared with each other in Figure 5.7.

In contrast to the previously shown image, the resolved shear stress of the same slip

direction is shown in both planes. One can see that the gray area in which the critical
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Figure 5.7: Contour plots of the approximated resolved shear stress in the
{11̄01}〈112̄3〉 slip system for the two geometric symmetry planes at the
highest indentation depth (u = 0.365 µm). The resolved shear stress of
the same approximated slip direction orientations is shown in (a) and
(b).
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shear stress of the slip system is exceeded is much smaller in the second symmetry

plane depicted in Figure 5.7 (a). Even directly beneath the indenter, the critical value

is only exceeded in a smaller area compared to the symmetry plane of the indenter

edge shown in Figure 5.7 (b). Examining the critical shear stress regions for the other

six slip system orientations reveals that the one presented in Figure 5.7 shows the

greatest propagation for both symmetry planes.

5.2.3 Resolved Shear Stress in the Prismatic Plane

The resolved shear stress in the prismatic {11̄00}〈1̄21̄0〉 slip system shows a different

aspect of the indentation process as the previously discussed pyramidal {11̄01}〈112̄3〉

system. This prismatic system has similar to the basal plane a Schmid factor of zero

for a uniaxial stress state in the z-direction, which means that the quite high stress

components σzz in the global coordinate system have no influence on the resolved

shear stresses of this system. This slip system is the one responsible for the yield begin

due to normal stress in x and y-direction. However, the normal stress components

in the global coordinate system in these directions are relatively small for this load

application.

Figure 5.8 illustrates this point quite well. It depicts the shear stress of the

{11̄00}〈1̄21̄0〉 slip system in the same simulation then the previously discussed con-

tour plots of the basal and the pyramidal plane. Although the critical shear stress

value of this slip plane is just 1.21 GPa and therefore the lowest Peierls-Nabarro shear

stress of all systems, the only region in which this value is reached is directly beneath

the indenter. It is interesting that the magnitude of the resolved shear stress seems to

be similar for both cross-sections. Directly beneath the indentation, there is an even

higher resolved shear stress in the cross-section, which is not beneath the indenter

edge as can be seen in Figure 5.8 (a). In case of this slip system, no big difference can

be seen for the other six orientations of this slip plane. The critical resolved shear

stress is not reached for any of the orientations, except directly beneath the indenter.
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5.2.4 Comparison to Hill’s Yield Criterion

The direct comparison of the critical resolved shear stresses of the activated slip

systems and the plastic region of Hill’s yield criterion at the highest indentation

depth is shown in Figure 5.9. A combination of the previously presented largest

critical resolved shear stress regions of the basal and the {11̄01} plane in the xz-

plane is depicted in Figure 5.9 (a). The prismatic {11̄00}〈1̄21̄0〉 slip system is not

included in Figure 5.9 (a), since the critical resolved shear stress value is only reached

directly beneath the indenter. Figure 5.9 (b) illustrates the current reference yield

stress σ0. It is undefined for the silicon substrate, 7.85 GPa for the dark blue region

slip plane

visible
plane

Indentation

(a) (b)

-1.21 -0.94 -0.67 -0.40 -0.13 1.210.940.670.400.13

in [GPa]

slip direction

Figure 5.8: Contour plots of the resolved shear stress in the {11̄00}〈1̄21̄0〉 slip sys-
tem showing the two geometric symmetry planes of the FEM model.
Except of a very small region beneath the indenter, the critical shear
stress value τ c

PN = 1.21 GPa is not reached at an indentation depth of
0.365 µm.
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in which the GaN layer has not been deformed plastically and higher than 7.85 GPa

wherever Hill’s yield criterion has been fulfilled and hardening has taken place. This

region is larger than the combined residual stress regions seen in Figure 5.9 (a). This

is to be expected since Hill’s yield criterion is used in a way that it represents all of

the slip systems at the same time and not each system separately as does the critical

resolved shear stress analyses.

Summarizing the results of this section, it can be said that these evaluations provide

important information on the initiation of single crystal plasticity for the presented

simulation of the Berkovich nanoindentation model. It indicates that slip occurs in

more than one slip system, definitely in the basal plane and in the {11̄01}〈11̄23〉

system. The prismatic {11̄00}〈1̄21̄0〉 slip system has seemingly no large influence on

the plastic deformation since critical shear stresses are not reached in this slip system.

Silicon substrate

basal plane

{11̄01} plane

Hill’s criterion

z
x

(a) (b)

7.85 21.9 σ0 in [GPa]36.0 50.10

Figure 5.9: A combination of the areas with exceeded critical resolved shear stress
of the basal and the {11̄01} plane at the highest indentation depth is
shown in (a). In (a), the size of the plastic region of the Hill’s yield
criterion is also included, which can be comprehended with the current
reference yield stress shown in (b).
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5.3 Influence of Residual Stresses

The occurrence of production-related residual stresses states in the stack has to be

expected, as is explained in Section 1.4 and 4.3. Reichel has shown in his ongoing

thesis that these residual stresses have a high impact on the crack initiation and

propagation. In this section, the question is addressed whether these residual stresses

influence the load-penetration curve and the plastic behavior in general. The following

results are therefore obtained with the elasto-plastic model without crack modeling

presented in this thesis.

Both residual stress states, presented in Section 4.3, are compared to the simulation

without residual stresses. For all three simulations the same elastic parameters by

Schwarz [26] (cf. Table 4.1), the same parameters for Hill’s plasticity theory (cf. Table

4.2), and the same constant tangent modulus of 50 GPa are used to model the

previously discussed Berkovich indentation of 0.365 µm. The load-penetration curves
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Figure 5.10: Experimental (courtesy of KAI GmbH, Villach, cf. Section 1.4) and
simulated load-penetration curves of a Berkovich indentation test. A
comparison is made between three different residual stress states. For
further details on the simulation please refer to the text (Section 5.3).
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are presented in Figure 5.10 and it can be seen that the difference between the three

simulations is insignificant.

Neither the uniform stress state with 400 MPa nor the complex stress state (cf. Figure

4.6) have a noteworthy impact on the load-penetration curve. These findings are

explained by reconsidering the previously presented results of the {11̄00}〈1̄21̄0〉 slip

system. This slip system is important in regard to the biaxial residual stress states

because it is responsible for the initiation of plastic deformation due to normal stresses

in x and y-direction. The critical resolved shear stress in the {11̄00}〈1̄21̄0〉 slip system

(τ c
PN = 1.21 GPa) is not reached with or without either one of the two residual

stress cases as it is presented in Figure 5.11. The differences between the different

simulations are marginal. The uniform residual stress (Figure 5.11(a)) state shows

slightly higher resolved shear stresses compared to the one without residual stresses

(Figure 5.11(c)) and for the complex stress state (Figure 5.11(b)) some differences to

can be seen at the border to the silicon substrate.

(a) (b) (c)
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Figure 5.11: Influence of the residual stresses on the resolved shear stresses in the
prismatic {11̄00}〈1̄21̄0〉 system. Figure (a) is obtained with the uni-
form stress state of 400 MPa, Figure (b) shows the result utilizing the
complex stress state of Reisinger et al. [24], and Figure (c) depicts the
result without a residual stress state.
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The influence of the complex residual stresses state on an already activated slip

system is depicted in Figure 5.12 using the {11̄01}〈112̄3〉 slip system as an example.

Figure 5.12 (a) shows the simulation without residual stresses and Figure 5.12 (b) the

simulation with the complex residual stress state. Again, the gray region represents

an exceeded critical resolved shear stress. The difference between residual tension

and compression stress states is hereby visible. In the area of the compression stress

state the resolved shear stress is smaller and vice versa it is bigger at the tension

stress state.

5.4 Cono-spherical Indenter

As explained in Section 1.4, experiments using a cono-spherical indentation tip with

a radius of 2 µm have been conducted in addition to the Berkovich indentation ex-

periments. In line with the Berkovich simulation, the experiment with the highest

indentation depth is simulated.

(a) (b)

-3.25 -2.53 -1.81 -1.08 -0.36 3.252.531.811.080.36
in [GPa]

Figure 5.12: Contour plots of the resolved shear stress in the {11̄01}〈112̄3〉 slip sys-
tem at the highest indentation depth. The simulation with residual
stresses is shown in Figure (a) whereas Figure (b) depicts the simula-
tion with the complex stress state of Reisinger et al. [24].
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In Figure 5.13, it can be seen that during the loading process the experimental and the

simulated load-penetration curves differ from each other. Nevertheless, the simulation

achieves a similar maximum force as measured in the experiment and the release curve

fits quite well. For the simulation, the usual parameters for Hill’s plasticity theory

(Table 4.2), a tangent modulus of 50 GPa, Schwarz’s elastic parameters (Table 4.1),

and no residual stresses are used.

The pop-in event occurs much later in the indentation procedure of the cono-spherical

indentations and significantly stronger, as for Berkovich indentations. The late oc-

currence of the pop-in event cannot be reproduced with the means and the scope of

this thesis.
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Figure 5.13: Experimental (courtesy of KAI GmbH, Villach, cf. Section 1.4) and
simulated load-penetration curves of an indentations using a cono-
spherical indenter with a radius of 2 µm. The maximum indentation
depth is 0.265 µm. For further details on the simulation please refer
to the text (Section 5.4).



CHAPTER 5. COMPUTATIONAL RESULTS 67

5.5 Axisymmetric Model

Although all of the previously presented results are obtained utilizing the 3D model,

the axisymmetric model presented in Section 4.4 has an important benefit for the

simulation procedure, i.e. the shorter calculation time. It is therefore used in this

thesis to make preliminary calculations allowing to estimate the result for the 3D

model and to perform less precise but faster studies of experiments presented in

papers.

The interesting aspect hereby is how different the results of the axisymmetric model

and the 3D model are. Figure 5.14 shows the result of a direct comparison of the two

models. The indentation utilizing a cono-spherical indenter is shown in Figure 5.14

(a) and the one with a Berkovich indenter in Figure 5.14 (b).

The comparison of the two modeling approaches shows a quite good correlation. For

the cono-spherical indenter, the difference between the axisymmetric simulation and

3D simulation is negligible. For the indentation with a Berkovich indenter, a small

but notable difference can be seen. The 3D model has a stiffer indentation curve and
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Figure 5.14: Comparison of load-penetration predictions of the 3D model and the
axisymmetric model with two different indenter types. Figure (a)
shows an indentation with a cono-spherical indenter whereas (b) com-
pares the two models with a Berkovich indenter.
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a higher maximum force as the one of the approximated axisymmetric indenter. The

differences can hereby be attributed to the approximated indenter geometry of the

axisymmetric model as explained in Section 4.1.1. This can also be seen clearly in

Figure 5.15 which show the critical resolved shear stress region of the basal plane at

the highest indentation depth (u = 0.365 µm). Figure 5.15 (a) and (b) shows the

previously discussed comparison of resolved shear stress in the two symmetry planes

of the 3D model (cf. Figure 5.5). The result of the axisymmetric model is depicted

in Figure 5.15 (c). The material properties are the same for both simulations with

the usual parameters for Hill’s plasticity theory (Table 4.2), a tangent modulus of 50

GPa, Schwarz’s elastic parameters (Table 4.1) and no residual stresses. The region

of critical resolved shear stresses has for the axisymmetric model approximately the

same size as for the symmetry plane of the 3D model depicted in Figure 5.15 (a),

whereas the second symmetry plane (Figure 5.15 (b)) has a smaller region of exceeded

shear stress.

Overall, it can be said that the usage of the axisymmetric model as a first approxima-

tion is viable for a Berkovich indentation as long as the main interest is the structural

(a) (b)

-2.34 -1.82 -1.3 -0.78 -0.26 2.341.821.30.780.26
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(c)

Figure 5.15: Resolved shear stress distribution in the basal plane for two symmetry
planes of the 3D Berkovich model (a) and (b) and the approximated
axisymmetric model (c) which has a conical indenter with the same
contact area. For further details on the simulation please refer to the
text (Section 5.5).
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response in form of the load-penetration curve. To evaluate the stress distribution of

an indentation with a Berkovich indenter, the 3D model should be used. In the case

of the cono-spherical indenter, the solution is as good as the 3D model.

5.6 Comparison to Literature Results

So far, the results of the indentation experiments conducted at the KAI GmbH are

examined and discussed. To understand how good this simulation approach works for

different nanoindentation experiments, the model is used to simulate results found in

the literature.

It has to be mentioned beforehand that a comparison between the results of various

papers shows that the mechanical properties of GaN depend on the production pro-

cess. For example, trace impurity elements are commonly and intentionally inserted

into GaN wafers during a procedure process called doping, to modify the electrical

properties and to influence the crystal growing procedure [30]. It is reported that

this process affects the mechanical properties [5, 15].

5.6.1 Comparison to the Results of Huang [11]

The first experiment chosen to be simulated is the one published by Huang et al.

[11]. This paper contains cathodoluminescence microscope pictures of the activated

slip systems, which are interesting with regard to the critical resolved shear stresses

visualized in the contour plots. For this experiment, a cono-spherical indenter with

a radius of 5 µm has been used.

In [11] no information on the doping procedure is given which can imply that the

material is undoped or that the doping configuration is just not published. The tested

sample is a GaN single crystal. Figure 5.16 shows the experimental results of [11]

and a simulation with the axisymmetric model. Schwarz’s [26] elastic parameters are

again combined with the proposed parameters for Hill’s plasticity theory (cf. Table
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4.2), but instead of the hitherto used tangent modulus of 50 GPa, an ideal plastic

behavior is assumed in this case. Since a cono-spherical indenter has been used in

the experiment the simulation is done with the axisymmetric model.

The simulation of this experiment reveals that the material parameters which work

quite well with previously discussed KAI experiments do not fit that well in this case.

In Figure 5.16, it becomes apparent that despite the ideal plastic material assumption,

the simulation leads to a stiffer material response than the experiment. The release

curve of the experiment is less steep than the one of the simulation, which indicates

that the already relatively compliant elastic parameters by Schwarz [26] are too stiff.

The cathodoluminescence microscope pictures published in this paper allow to draw

conclusions on the slip systems which get activated during the indentation. Figure

5.17 (a) is taken from [11] and shows the slip bands as black lines. Most of these

are orientated in three different directions. The ones parallel to the sample surface

indicate slip in the basal plane. They appear mostly to the side of the indentation.
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Figure 5.16: Experimental [11] and simulated load-penetration curves using a cono-
spherical indenter with a radius of 5 µm. A maximum indentation
depth of 0.5 µm is reached. For further details on the simulation please
refer to the text (Section 5.6.1).
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The inclined slips beneath the indenter show angles of 58◦ and 95◦, respectively.

Both of these angles have been attributed to the {11̄01}〈112̄3〉 system by the authors

(cf. Figure 5.17 (b)).

Figures 5.17 (c) and (d) show the corresponding contour plots of the simulation. The

regions in which the resolved shear stresses reach a higher value than the critical ones

are marked by the gray areas. Figure (c) illustrates the approximated {11̄01}〈112̄3〉

56◦

(b)

-3.25 -1.81 1.81 in [GPa]3.25

(d)(c)

-0.36 0.36 -2.34 -1.30 1.30 2.34 in [GPa]-0.26 0.26

Figure 5.17: Figure (a) shows the cathodoluminescence microscope pictures of [11].
The angles between the pyramidal slip planes visible in this picture can
be found in the schematic representation of slip system {11̄01}〈112̄3〉
depicted in Figure (b). The solid white box in (a) corresponds to the in
(c) and (d) depicted contour plots. Figure (c) shows the resolved shear
stress in the pyramidal {11̄01}〈112̄3〉 system and Figure (d) depicts
the resolved shear stress in the basal plane.
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system and Figure (d) the basal slip system. The section of the GaN probe shown in

Figures (c) and (d) matches approximately the region marked with the thick white

solid line in Figure (a). It is difficult to make distinct statements because the picture

is relatively dark, but one can see that most of the pyramidal slips occur beneath the

center of the indenter, as it is predicted by the contour plots. The slips in the basal

plane extend far to the side of the indentation in the microscope picture, whereas the

contour plot shows only a very small area of critical resolved shear stress in Figure

5.17 (d). In order to further analyze these differences, it would be necessary to know

more about the experimental setup and the used material.

5.6.2 Comparison to Further Papers

As is described in Section 1.2 various other authors have done experiments utilizing

Berkovich indenters. Two more Berkovich indentation experiments are simulated to

allow for a better assessment of the capabilities of the proposed modeling strategy.

For this purpose, the results of Nowak et al. [21] and Tsai et al. [27] are selected. The

experiments have a maximum penetration depth of 0.16 µm and 0.12 µm, respectively,

and the main difference between the two experiments is that in [21] bulk material

has been tested whereas in [27] a 2 µm thin GaN film on sapphire has been used.

The load-penetration curves are shown in Figure 5.18. The material parameters of

GaN are the same for both simulations with the proposed parameters for Hill’s plas-

ticity theory (cf. Table 4.2), a tangent modulus of 50 GPa, and Schwarz’s [26] elastic

parameters (cf. Table 4.1). The simulation results are obtained using the axisym-

metric model since only the general response is of interest. A discrepancy between

the simulation and the experiments can be seen for both cases. This discrepancy is

stronger for Figure 5.18 (a) depicting the experimental results of [21] then it is for

the results of [27] presented in Figure 5.18 (b).

Both results show a stiffer material response for the experiments as for their simulated

counterpart. This is contrary to the findings presented in Section 5.6.1, in which the
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experimental result has a less stiff material response. Moreover, the response of the

bulk material seen in Figure 5.18 (a) is stiffer as the one of the GaN film structure

(b). This difference is not reflected in the simulation, although the sapphire substrate

is modeled with the appropriate elastic material parameters, which can be found in

[4]. The 2 µm GaN layer is too thick, as that the sapphire substrate influences the

load-penetration curve significantly in the simulation.

Similar to the results of the KAI experiments, the simulated release curve shows a

slope which matches the experiment, which means that the differences occur mainly

due to the chosen plasticity parameters of the simulation. A higher reference yield

stress or a stiffer hardening behavior could lead to a better fitting result. This demon-

strates that the proposed approach works in principle quite well but it has to be

evaluated for each individual stack design independently.

Figure 5.18: Simulation of the experimental result by Nowak [21] (a) and Tsai
[27] (b). The simulations are done with the approximated Berkovich
indenter in the axisymmetric model.
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Chapter 6

Conclusion and Outlook

In this last chapter, a short summary of the achieved results is given and the most

important findings are highlighted. Furthermore, the problems which are connected

with the modeling of Gallium Nitride are addressed and thoughts on further studies

are given.

6.1 Conclusion

The main goal of this thesis is to find a modeling approach capable of simulating the

elasto-plastic response of nanoindentation experiments of GaN on Silicon Wafers, as

they are conducted at the industrial competence center KAI. To be able to address

the direction dependencies of the single crystal GaN structure a modeling approach

utilizing Hill’s plasticity theory is proposed. This approach is based on the idea

that the critical shear stresses of the individual slip planes can be used to determine

transversely isotropic Hill parameters. For this purpose, experimental yield stress

values [30] and theoretical Peierls-Nabarro critical shear stresses [2] are used. A

constant tangent modulus is applied to describe the isotropic hardening behavior.

To verify that it responds as expected, the approach is tested via single element

simulations. These tests have quite satisfactory results.
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The simulation of the KAI Berkovich nanoindentation experiments shows an ex-

ceptionally good correlation between experimental and simulated load-penetration

curves. During the evaluation process preceding this simulation, two sets of trans-

versely isotropic elastic parameters and an isotropic material model are compared and

three different tangent moduli are tested. These evaluations lead to the utilization of

the transversely isotropic elastic material parameters, proposed in [26] and a tangent

modulus of 50 GPa.

To get a better understanding of the initiation of plastic behavior in the GaN layer,

the resolved shear stresses of the individual slip systems are visualized in form of

contour plots. These contour plots indicate that the basal plane, as well as at least

one of the pyramidal planes, are activated during the indentation process. In the

prismatic slip planes, the critical resolved shear stresses are not exceeded.

The effect of production-related residual stress states due to the lattice mismatch of

GaN and Silicon is studied. Therefore, the influence of two different residual stress

states on the load penetration curve and on the critical resolved shear stresses of

selected slip systems is examined. Overall the visible effects of residual stresses are

very limited. Virtually no impact could be seen on the load-penetration curves and

only very small changes in the resolved shear stresses.

Furthermore, a KAI experiment with a cono-spherical indenter is simulated utilizing

the proposed material properties. The strong and rather late appearing pop-in events

visible in the experimental load-penetration curves of this experiments cannot be

reproduced in the simulation. They represent a strong nonlinear behavior which is

outside the scope of this thesis. Nevertheless, the maximum indentation force and the

release curve of the simulation fits the experimental ones. Regarding the simulation

of experiments found in the literature, it is obvious that the material properties of

GaN are depended on the production process and the probe design, i.e. whether it is

a bulk material or has a wafer structure. Despite these difficulties, it is possible to

see a correspondence between the slip systems which reach critical shear stresses in

the simulation and the active ones reported in the literature. The results of further
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nanoindentation simulations show a higher discrepancy compared to the associated

experimental load-penetration curves.

In summary, the modeling approach for single crystal plasticity has great potential

and its use results in a well correlating simulation of the Berkovich indentation ex-

periments of GaN on Si wafers carried out at the KAI. In addition, the analysis of

the individual slip system allows conclusions to be drawn on their activation. The

results of these stress state evaluations are widely consistent with microscopy pictures

published in the literature.

6.2 Outlook

As mentioned in the introduction, this thesis is the second one in a series of three. The

third thesis in this project will combine the elasto-plastic material approach with the

cohesive zone crack model of Clemens Reichel to allow a comprehensive evaluation of

the indentation fracture mechanism of such a wafer structure. It is of great interest

to study the influence of plasticity on crack initiation and propagation.

Regarding the modeling approach for single crystal plasticity, further studies will

help to assess its full potential. For example, a closer look should be taken on the

plastic strain development in the slip directions to examine the predictive capabilities

of plastic single crystal deformations.

Finally, it is interesting to apply this modeling strategy to a different experimental

setup or to another single crystal material and to compare it to a classical crystal

plasticity simulation approach.
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Appendix A

Rotation Convention and Schmid Fac-

tor Table

The Schmid factors calculation procedure and the final results for all of the slip

systems of GaN are presented in the following. As explained in Chapter 3.1, the

transformation

RσRT =

σx′x′ τx′y′ τx′z′

σy′y′ τy′z′

sym. σz′z′

 (A.1)

is used to calculate the Schmid factors of the various slip system. For most systems,

rotations around two axes are necessary to perform the transformation between the

local and the global coordinate systems. Solely to calculate the Schmid factor of the

{11̄01}〈112̄3〉 slip system a third rotation is needed. The z-ỹ-˜̃z Euler angle sequence

R =

c(α)c(β)c(γ)− s(α)s(γ) −s(α)c(β)c(γ)− c(β)s(γ) s(α)c(γ)

c(α)c(β)s(γ) + s(α)c(γ) −s(α)c(β)s(γ) + c(α)c(γ) s(β)s(γ)

−c(α)s(β) s(α)s(β) c(β)

 (A.2)
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c() ... cos() α ...first rotation around the z-axis

s() ... sin() β ...second rotation around the ỹ-axis

γ ...third rotation around the ˜̃z-axis

is chosen as rotation convention. The orientations of the slip systems of GaN are

described by the rotation angles presented in Table A.1. The angle α describes the

rotation around the 〈0001〉 axis and β the inclination towards the basal plane. The

third rotation γ is only used for the {11̄01}〈112̄3〉 slip system and characterizes the

two possible orientations of the 〈112̄3〉 direction. For each slip plane three angles α

have to be considered, due to the six-folded symmetry of the GaN crystal.

These rotation angles are used to transform the stress tensor σ into a coordinate

system ( )′ in which the z′-axis is perpendicular to the slip plane and the y′ and

x′-axis point in the slip directions. The two slip direction are orthogonal for the

{1̄21̄0}, the {11̄00}, the {112̄2}, and the {11̄02} plane. Thus, the Schmid factors for

a uniaxial stress σii (i = x, y, z), are then equal the transformed shear stresses τx′z′

and τy′z′ . The shear stress τy′z′ is hereby the Schmid factor of the slip direction in the

basal plane and τx′z′ is the Schmid factor of the second slip direction (〈0001〉, 〈112̄3〉

or 〈11̄01〉).

Table A.1: Rotation angles for the slip systems of GaN.

Slip plane α β γ

{0001} 0◦ 0◦, 60◦, 120◦

{1̄21̄0} 90◦ 0◦, 60◦, 120◦

{11̄00} 90◦ 30◦, 90◦, 150◦

{11̄01} 62.0◦ 30◦, 90◦, 150◦ (±15.74◦)

{112̄2} 58.4◦ 0◦, 60◦, 120◦

{11̄02} 43.2◦ 30◦, 90◦, 150◦
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In case of the {11̄01} slip plane, the two sliding directions are not orthogonal to

each other and therefore have to be considered separately. The Schmid factors of

the 〈1̄21̄0〉 direction are calculated without the third rotation γ. However, for the

slip direction 〈112̄3〉 the two possible orientations have to be evaluated using the

third rotation γ = ±15.74◦. The corresponding Schmid factors are then equal τx′z′ .

The highest and therefore critical Schmid factors of each slip system are presented in

Table A.2.
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Table A.2: Schmid factors for all slip systems and uniaxial stresses in the global
coordinate system. The values for the Peierls-Nabarro stresses τY

PN are
taken from [2] and the experimental uniaxial compression yield stress
σY

exp is taken from [30].

Slip system Load Schmid factor τ c
PN[GPa] σY

PN[GPa] σY
exp[GPa]

{0001} 〈1̄21̄0〉 σxx 0 2.34

{1̄21̄0} 〈0001〉 σxx 0 16.5

σyy 0 16.5

σzz 0 16.5

〈11̄00〉 σxx 0.433 19.7 45.5

σyy 0.433 19.7 45.5

σzz 0 19.7

{11̄00} 〈0001〉 σxx 0 10.4

σyy 0 10.4

σzz 0 10.4

〈1̄21̄0〉 σxx 0.433 1.21 2.79

σyy 0.433 1.21 2.79

σzz 0 1.21

{11̄01} 〈112̄3〉 σxx 0.402 54.7 136.06

σyy 0.399 54.7 137.09

σzz 0.399 54.7 137.09 7.85

〈1̄21̄0〉 σxx 0.382 11.3 29.58

σyy 0.382 11.3 29.58

σzz 0 11.3

{112̄2} 〈112̄3〉 σxx 0.446 29.8 66.16

σyy 0.335 29.8 88.95

σzz 0.446 29.8 66.16 7.85

〈11̄00〉 σxx 0.369 23.3 63.14

σyy 0.369 23.3 63.14

σzz 0 23.3

{11̄02} 〈11̄01〉 σxx 0.374 85.3 228.07

σyy 0.499 85.3 170.94

σzz 0.499 85.3 170.94 7.85

〈1̄21̄0〉 σxx 0.296 15.2 51.35

σyy 0.296 15.2 51.35

σzz 0 15.2
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