
Master Thesis

Graph-Based Competitive Clustering:
A Clustering Algorithm for Hyperspectral
Images in Process Analytical Technologies

carried out for the purpose of obtaining the degree of

Diplom-Ingenieur

submitted at TU Wien,
Faculty of Mechanical and Industrial Engineering

by

Benedikt Steindl
Mat.Nr.: 01025978

Alois-Prager-Straße 18
A-2283 Obersiebenbrunn

under the supervision of

Ao.Univ.Prof. Mag. Dr. Johann Lohninger
Institute of Chemical Technologies and Analytics

Vienna, March, 2018 Benedikt Steindl

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

I confirm, that going to press of this thesis needs the confirmation of the examination
commitee.

Affidavit

I declare in lieu of oath, that I wrote this thesis and performed the associated research
myself, using only literature cited in this volume. If text passages from sources are used
literally, they are marked as such.
I confirm that this work is original and has not been submitted elsewhere for any exami-
nation, nor is it currently under consideration for a thesis elsewhere.

Vienna, March, 2018 Benedikt Steindl

Abstract
Recent developments in process analytical technologies have introduced hyperspectral
imaging as a novel tool for quality assessment and process control. This technology allows
to capture spectral information in conjunction with spatial features and thus enables us
to analyze products in their heterogeneous state. As a consequence hyperspectral data
is complex to process and necessitates the use of modern machine learning algorithms.
Clustering is one such technique that can be applied to detect interesting spatial features
which otherwise could easily be overlooked because of the sheer amount of information.
In this thesis a novel clustering algorithm is presented which is designed to cope with
some characteristics of hyperspectral images. As clustering is a widely applied technique
in data-oriented research fields the proposed algorithm is discussed in the light of other
established methods on the algorithmic level as well as by comparing experimental results
of artificial datasets and hyperspectral images.

Kurzfassung
Eine neue Entwicklung im Bereich der Prozessanalytik ist das Anwenden von Hyperspec-
tral Imaging als Methode der Qualitätssicherung und Prozesskontrolle. Diese Technologie
erlaubt die Erfassung von ortsaufgelösten spektroskopischen Daten, wodurch Produkte
in ihrer heterogenen Form analysiert werden können. Wegen ihrer komplexen Struktur
sind für die Analyse von hyperspektralen Daten moderne Machine Learning Algorith-
men notwendig. Eine dieser Methoden ist die Clusteranalyse, welche die Detektion
interessanter örtlicher Merkmale ermöglicht, die sonst aufgrund der großen Menge an
Information leicht übersehen werden können. Inhalt dieser Arbeit ist die Präsentation eines
neuartigen Cluster-Algorithmus, welcher auf gewisse Eigenschaften von Hyperspectral
Images optimiert ist. Da Clusteranalyse eine weit verbreitete Technik in datenlastigen
Forschungsfeldern ist, wird der Algorithmus in Bezug auf andere etablierte Methoden
auf dem algorithmischen Level sowie durch Vergleich von experimentellen Ergebnissen
künstlicher Datensätze und Hyperspectral Images untersucht.

Acknowledgements
First I would like to thank Hans Lohninger who supervised this thesis and guided me
through the long process of its making. Among his greatest achievements I count the
creation of a social environment where one feels valued and understood. This and his
mentoring in all matters of chemistry, programming and chemometrics provided me with
the fundamentals and inspiration needed for this work.

I would also like to thank the attendees of the weekly ‘Jour Fixe’ Wolfgang Ganglberger
and Andreas Cremer for their critical questions which enabled me to find and fix some
design flaws of the proposed method.

Furthermore my thanks go to Elisabeth Renner for her tutoring in the Einstein
summation convention which helped me to pass some of the more difficult exams of the
masters program.

Ladies and Gentlemen, it has been a pleasure.

This thesis and my studies would not have been possible without the long lasting support
of my parents Andrea and Manfred. I thank them deeply for inspiring me to study the
natural sciences and engineering.

Last but not least there remains one individual I would like to name whose contribution
to this thesis should not be underestimated. Its my dog Graham who has been a steadfast
companion and the most faithful of friends during the long hours of programming and
studying.

For Tina

Contents
List of Figures 14

List of Tables 15

1 Introduction 16

2 Cluster Analysis 19
2.1 Notations . 20
2.2 A Short Overview . 21

2.2.1 K-Means . 21
2.2.2 Hierarchical Cluster Analysis . 22
2.2.3 DBSCAN . 24

2.3 Metrics and other Similarity Measures 26
2.4 Clustering Problems . 27
2.5 Graph-Based Algorithms . 30

2.5.1 Fundamentals of Graph Theory 30
2.5.2 Spectral Clustering . 32
2.5.3 Graph-Oriented Clustering . 38

2.6 Common Evaluation Approaches and their Deficiencies 40

3 Graph-Based Competitive Clustering 42
3.1 Concept . 42
3.2 Data Structures . 44
3.3 Initialization . 45
3.4 Clustering . 47
3.5 Implementation and Testing . 51

4 Experimental 52
4.1 2D Artificial Datasets . 53

4.1.1 Introductory Examples . 53
4.1.2 Gradient-Separable Problems . 54
4.1.3 Combined Problems . 55

4.2 Hyperspectral Images . 57
4.2.1 The Curse of Dimensionality . 58
4.2.2 Spectral Descriptors . 58
4.2.3 Overview of the Experiments . 59
4.2.4 Selected Findings . 62

4.3 Conclusions . 64

Bibliography 87

List of Figures

1 Conceptual drawing of a hyperspectral image 17
2 A simple clustering example. 18
3 K-Means clustering result. 23
4 HCA clustering result. 25
5 DBSCAN clustering result. 26
6 K-Means results using different similarity measures. 27
7 Clustering problems as defined by Zahn (1971). 29
8 Clustering problems as defined by Handl and Knowles (2007). 29
9 Mixing Clusters dataset. 30
10 Russian Dolls dataset. 31
11 Examples of graph types. 32
12 Spectral clustering of three connected components. 36
13 Spectral clustering of a single connected components. 37
14 Global and local edge constraints. 39
15 Two-Rounds MST . 40
16 Fundamental concept. 43
17 Flow chart of the vertex states. 47
18 Generalization Problems. 50
19 GBCC clustering result . 52
20 Spectral Descriptors . 59
21 Clustering of the Mixing Clusters dataset. 67
22 Clustering of the Introductory dataset. 68
23 Graph dependency of GBCC . 69
24 Clustering of the Russian Dolls dataset. 70
25 Zoomed-in Clustering of the Russian Dolls dataset. 71
26 Clustering of the Complex dataset. 72
27 Zoomed-in Clustering of the Complex dataset. 73
28 Clustering of the Chemical dataset. 74
29 Zoom 1 of the Chemical dataset. 75
30 Zoom 2 of the Chemical dataset. 76
31 Zoom 3 of the Chemical dataset . 77
32 Clustering of the Coffee Beans dataset 78
33 Clustering of the Microplastic A dataset 79
33 PCA and vertex weight of the Microplastic A dataset 80
33 Allocation weight and allocation path length of the Microplastic A dataset 81
33 Spots of the Microplastic A dataset . 82
33 Centers of the Microplastic A dataset . 83
34 Result of the directed 30-nearest neighbor graph of the Microplastic A dataset 84

14

35 Result of the full-range clustering of the Microplastic B dataset 85
35 Centers of the Microplastic B dataset . 86

List of Tables
1 Linkage criteria used in hierarchical cluster analysis. 24
2 Lance-Williams parameters for hierarchical cluster analysis 24
3 Metrics and quasi-metrics for the measurement of similarity 28
4 Spectral Descriptors for the Microplastic dataset 61
5 Summary of the Experiments on Hyperspectral Images 62

1 Introduction

Modern-day chemical engineering has evolved into a discipline where computational
statistics, machine learning and data mining gain ever more importance. This trend
is partially due to the demand for better sensor equipment to automate and control
ever more complex chemical or pharmaceutical processes. Bakeev (2010) summarizes
various applications of spectroscopic techniques in the chemical industry starting with
mass spectroscopy in the 1970s, followed by infrared spectroscopy in the 1980s and
raman spectroscopy in the 2000s. The data that we acquire from these technologies are
usually high-dimensional and thus tend to be very complex to analyze. Depending on the
resolution of the applied sensors the data might contain up to 1000 variables or higher.

The complexity of the data might increase even further if the analyte is spatially
distributed over a solid matrix of multiple chemical components (e.g. a solid dosage
form with pharmaceutical ingredients, fillers, binders, disintegrants, lubricants and other
materials). A mere bulk analysis of the dissolved product thus only yields a mixed
spectrum of the components and overall concentrations within the product, whereas their
spatial distribution and particle size is completely lost.

Recent developments have introduced hyperspectral imaging (HSI) as a novel tool in
process analytical technologies to overcome these issues. HSIs are acquired by using a
suitable spectroscopic technique to spatially resolve a sample. Each measurement thus
has certain x- and y-coordinates which are used to form an image. An illustration of this
concept is given in figure 1. A key difference in this form of data is that the compositional
heterogeneity of the sample is preserved within the spatial relations of the pixels. This
makes the analysis of such datasets distinct from the ones that are obtained through bulk
analysis because we no longer deal with a single mixed spectrum of all components, but a
set of spectra that represent individual and sometimes quite pure components.

In order to gain the most information from HSIs it is thus necessary to perform some
sort of image segmentation. This means that spectral information which is scattered across
a multitude of layers is combined and thereby reduced to a single map of spatial features.
Each numerical value of that map then stands for a certain label which corresponds to
a specific chemical ingredient. The spatial boundary information can then be used to
measure the size distribution and form of the particles, or chemical information such as
purity.

A well known chemometric technique that can be used for image segmentation is
classification, which is commonly applied in many other process engineering applications
(e.g. sorting-machines). The goal of classification is to assign an observation to one of
many classes. In our case this could be to select a pixel of the HSI and assign it to a certain
class of chemical compound. Whether an observation belongs to a class is determined
by a statistical model which is derived from a training set. This training set is labeled
according to a ground truth, which means that the class of each member of this set is

16

Figure 1: Conceptual drawing of a hyperspectral image. Each pixel contains the spectral
information which was acquired at a certain x- and y-position on the sample. The
z-coordinate reflects the frequency λ or m

z
-value of the corresponding layer.

already known.
In a spectroscopic application the training set could be based on a database of reference

spectra, though this approach can come with many problems and pitfalls:

• The product of a chemical process may contain various byproducts or contaminations
which also have to be part of the training set.

• If the compounds do not form clear grain boundaries or particles, mixture effects
have to be expected. This means that spectra of different mixing ratios have to be
labeled as well to give a clear decision boundary for the classification.

• Reference spectra are usually measured under optimal laboratory conditions with
respect to the sensor equipment and the preparation of the sample. In practical
applications there can be various causes why the quality of the measured spectra
is very low (e.g. signal saturation of the sensor, baseline distortion due to Mie
scattering, deterioration of the equipment, impurities, poor calibration, ...).

These implications finally lead to the conclusion that a training set is best derived from
the measured data. With respect to HSIs this means that a qualified person has to gather

17

(a)

1

2

3

(b)

Figure 2: A simple clustering example. (a) depicts an unlabeled set of dots. A human
being that looks at this illustration will unconsciously group or respectively categorize the
dots to arrive at something like in (b), where the color coding corresponds to a perceived
cluster.

a representative set of spectra from one or more images and label each according to its
class affiliation.

The spatial and spectral resolution of todays HSIs however can make this a very
challenging process which may take many weeks. The amount of information a human
being has to deal with when studying HSIs can be quite overwhelming. One might try to
select one of the many layers and use the spatial intensity features that are visible at this
specific wavelength to gather the desired training data. The problem that comes with
this approach is that the visibility of spatial features can vary with different wavelengths.
Inevitably some features that might be vital for the construction of a training set thus
will be overlooked.

Again there arises the need to have an image segmentation algorithm that can crunch
the HSI into peaces that are more comprehensible for a human being. One such technique,
which will be the central issue of this thesis, is clustering. Contrary to classification this
method does not require a priori information about the data. Instead it produces its own
labeled set based on a mathematical heuristic. Clustering has been applied in almost any
field of studies that has to deal with the interpretation of large amounts of complex data.
The variety of backgrounds where this technique has been applied has lead to a multitude
of different algorithms and more are developed every day to meet the needs of an ever
more data oriented society.

The aim of this thesis is to present a novel clustering algorithm which is designed to
work on high-dimensional spectroscopic data.

18

2 Cluster Analysis
In order to get a quick impression what clustering is about consider figure 2a, where
a scatter plot of black dots is depicted. Even before we are fully aware of it our brain
subconsciously recognizes a structure within this image and organizes the seemingly
meaningless dots into groups or so-called clusters. One possible clustering could be
something like the one depicted in figure 2b, where three clusters are highlighted in
green 1 , orange 2 and blue 3 . In the view of the author this categorization
is meaningful, though that does not imply that others see it the same way. One might
argue that 2 and 3 should yet be partitioned into two smaller clusters or even that
there is no such ‘natural’ grouping at all.

Jain et al. (1999) define clustering (or cluster analysis as it is also known) as

[. . .] the organization of a collection of patterns [. . .] into clusters based on
similarity.

Similarity is often measured by using a distance metric such as the Euclidean distance.
Two points in a data space are then considered more similar if they are closer together
than other observations of the dataset. If we take two adjacent dots from the blue cluster
and one from the orange cluster we come to the conclusion that the blue ones are more
similar to each other than the orange dot. On the other hand if we consider that some
dots of the blue cluster are more distant to each other than to one dot of the orange
cluster we suddenly see that this criterion alone does not suffice to formulate a clustering
algorithm. Xu and Wunsch (2005) see the goal of clustering as

[. . .] to separate a finite unlabeled dataset into a finite and discrete set of
‘natural’, hidden data structures [. . .].

The term natural here refers to a structure that a human being might consider natural,
but this is always in the eye of the beholder and cannot (so far) be formulated in a
mathematical sense. This term becomes even more problematic to assess if we consider
clusters in higher-dimensional data spaces. A human being cannot ‘see’ these clusters and
therefore also cannot tell if their grouping is natural. Finally the Merriam-Webster Online
Dictionary (2017) define cluster analysis as

[. . .] a statistical classification technique for discovering whether the individuals
of a population fall into different groups by making quantitative comparisons
of multiple characteristics.

From the above definitions we can gather how difficult it is to grasp clustering in a
mathematical term and indeed it is questionable whether a general problem-independent
definition will ever be found at all. This is also the reason why clustering is a much
more difficult task than classification, for the latter is a well defined problem with a loss

19

function which precisely formalizes what one is trying to do (Von Luxburg et al., 2012).
There have been many attempts to design such validation criteria for clustering (Arbelaitz
et al., 2013), which suffer from the same lack of a clear definition.

Despite these problems clustering has been successfully applied in exploratory data
analysis and as a means to compress data. Nonetheless its application should be treated
with care and there are various things to consider:

• Clustering can be applied if no a priori information about a dataset is known. On
the other hand one usually already knows a great deal about the data even before
we start to explore it. If we measure the product of a chemical process there are
already some substances that we can expect to be in the data. In most cases we
will also know their abundances.

• Spectroscopic data is usually high-dimensional and noisy. The majority of clustering
algorithms are prone to the so-called Curse of Dimensionality, which is a term
introduced by Bellman (1961) to describe the strange behavior of distance metrics in
high-dimensional data spaces. Noise can be quite problematic for some algorithms as
well and it can easily be shown that adding artificial noise to a dataset can produce
an entirely different clustering result. Both problems can be tackled by using Spectral
Descriptors (Lohninger and Ofner, 2014), which perform a dimensionality reduction
as well as a noise reduction. On the other hand this also introduces assumptions
about the content of the data which might lead to overlooking some important
details.

• If we browse through the clustering literature of different research fields and take a
look what kind of data is clustered in these papers, we also see how different the
internal structures of data can be. Imagine that we select two descriptive wave
numbers from an HSI and plot the values against each other in a two-dimensional
scatter plot. If we do the same with datasets from different research fields, e.g.
geodesics, face recognition, letter recognition, the structures that we will see might
look quite different. In vibrational spectroscopy there is often a high correlation
between variables which produces elongated clusters. On the other hand we might
find clusters of great size and density differences.

With these things in mind one then has to choose which clustering algorithms are reasonably
applicable for the current problem. To be able to so one has to know the criterion and
the characteristics of the methods in question. We will now take a closer look on the
differences between three of the more well established algorithms.

2.1 Notations

• An object (also pattern, feature vector or observation) is a single data item of a set
of measurements used by the clustering algorithm. It typically consists of a vector

20

of d measurements: xi = (xi,1, xi,2, . . . , xi,d).

• The individual scalar components xi,j of an object xi are called features.

• d is the dimensionality of the object or the object space.

• A set of objects is denoted X = {x1, . . . ,xn}. In many cases a set of objects is
viewed as an n× d matrix.

2.2 A Short Overview

From the viewpoint of machine learning clustering is an unsupervised learning method.
This means that a clustering algorithm only needs the unlabeled dataset X to produce a
result. Contrary to that classification is categorized as supervised learning. With respect
to the result of the algorithm clustering can be divided into two categories:

Partitional Clustering attempts to form K clusters Ci in a set of objects X , so that

• Ci 6= {} ∀i = 1, . . . , K

• ⋃Ki=1Ci = X

• Ci ∩ Cj = {} ∀i, j = 1, . . . , K ∧ i 6= j

Hierarchical Clustering attempts to build a nested tree structure of partitions H, so
that

• H = {H1, . . . , Hq} q ≤ n

• Ci,m ∈ Hm, Cj,l ∈ Hl,m > l

⇒ Ci,m ⊆ Cj,l ∨ Ci,m ∩ Cj,l = {}

From the methodical viewpoint clustering can be further divided into grid-based, density-
based, graph-based, model-based and combinatorial algorithms (Birant and Kut, 2007;
Liu et al., 2012). The category graph-based contains another subcategory which is
called spectral clustering (Von Luxburg, 2007). In order to distinguish spectral methods
from other graph-based methods we will denote all algorithms which are not spectral as
graph-oriented.

2.2.1 K-Means

K-Means is based on the within-cluster sum of squares criterion defined as

e2(X ,C) =
K∑
j=1

|Cj |∑
i=1
||x(j)

i − cj||2, (1)

21

where i = 1, . . . , |Cj|, C = {C1, . . . , CK} and x(j)
i ∈ Cj,x(j)

i 6∈ Ck ∀k 6= j. cj is the
centroid of cluster Cj, which can be calculated with

cj = 1
|Cj|

|Cj |∑
i=1

x(j)
i . (2)

The goal of K-Means is to minimize e with respect to the user-defined number of clusters
K by going through the following steps:

1. Choose the initial cj randomly from the objects xi.

2. All xi are assigned to the nearest cj to form cluster Cj.

3. Compute the new centroids cj from the objects x(j)
i of Cj.

4. Repeat steps 2. and 3. until a termination condition is reached (e.g. no or minimal
reassignment between clusters).

The result of the K-Means algorithm is the Voronoi decomposition of X with respect to
the centroids cj (assuming that the algorithm stops at step 2.). Since e can have multiple
local minima one usually repeats the clustering algorithm with different initial conditions
in hope to find the global minimum.

Figure 3 depicts two clustering results for K = 3 and K = 6 of the same dataset
that was introduced in figure 2. In conjunction with the Voronoi decompositions these
results reveal some of the characteristics of K-Means. In the view of the author K = 3
constitutes a meaningful number of clusters with boundaries corresponding to clusters
1 , 2 and 3 . However the results in figures 3a and 3b are quite different from
that assumption. As can be expected from the within-cluster sum of squares criterion
the globular cluster 1 is detected correctly. Clusters 2 and 3 both share some of
each others data points. This is due to the large values of e when elongated clusters that
are close together are concerned. If one increases to K = 6 cluster 1 is preserved while
2 and 3 are further divided.
K-Means is one of the most well established clustering algorithms and has often been

used as a benchmark to compare others against it. Through the years other algorithms
such as K-Medoid and Kernel K-Means (Jain, 2010) have been derived from it.

2.2.2 Hierarchical Cluster Analysis

Hierarchical Cluster Analysis (HCA) can be considered as a family of clustering algorithms
that build a nested tree structure which reflects the hierarchy between the clusters with
respect to a certain criterion. In general there are also partitional algorithms that can be
applied consecutively on a dataset so that each resulting cluster is further divided into
smaller clusters until the number of clusters reaches the number of objects.

22

2 4 6 8 10 12

2

3

4

5

6

7

8

9

10

11

(a) (b)

2 4 6 8 10 12

2

3

4

5

6

7

8

9

10

11

(c) (d)

Figure 3: K-Means clustering result. (a) and (c) show the clustering results for K = 3
and K = 6. (b) and (d) depict the corresponding Voronoi decomposition with respect to
the centers (indicated by ‘x’).

In the classical sense HCA refers to the linkage criteria listed in table 1 which are
applied in an agglomerative way. This means that the observations xi form the initial
clusters. The selected criterion is then applied to each pair of observations to find the one
which will form the cluster of the next hierarchical level. This process is repeated until
all clusters are merged together. The threshold at which the criterion merges a pair of
clusters is depicted in the dendrogram to highlight the hierarchy between the clusters. By
cutting the tree at a certain threshold level one obtains a clustering where all clusters
below that threshold have been merged.

Lance and Williams (1967) discovered an equation that combines the listed criteria
into a single expression which is defined as

dījk = αidik + αjdjk + βdij + γ|dik − djk|. (3)

Here dij, dik and djk represent the distances between clusters Ci, Cj and Ck whereas
dījk denotes the distance between the merged cluster Ci ∪ Cj and Ck respectively. The

23

Table 1: Linkage criteria used in hierarchical cluster analysis.

Algorithm Criterion Characteristics
Single Linkage Minimum distance between the

nearest patterns of two clusters
Forms bigger clusters. Outliers
are isolated

Complete Linkage Minimum distance between the
most distant patterns of two
clusters

Forms smaller clusters

Average Linkage The mean of the distances of all
patterns of the two clusters

The real structure of the data
set is reflected well

Ward’s Method Formation of the cluster, where
the variance of all distances in-
creases the least

The real structure of the data
set is reflected well, if the clus-
ters are of equal size

associated parameter settings for each linkage method are given in table 2.
Figure 4 depicts two results of Ward’s Method for K = 3 in 4a and K = 6 in 4c. To

emphasize the difference between the linkage criteria this figure also shows a result from
Single Linkage in 4e. What strikes the eye is that Single Linkage can produce the same
result which the author deems meaningful. Though this should not be understood in a
way that Single Linkage is superior to other methods. If one moves the threshold just a
little bit lower the clusters will fall apart into dense central regions surrounded by many
small clusters in the outskirts.

Table 2: Lance-Williams parameters for hierarchical cluster analysis. nl denotes the
number of objects in cluster Cl.

Algorithm αi αj β γ

Single Linkage 0.5 0.5 0 -0.5
Complete Linkage 0.5 0.5 0 0.5
Average Linkage 0.5 0.5 0 0
Ward’s Method ni+nk

ni+nj+nk

nj+nk

ni+nj+nk

−nk

ni+nj+nk
0

2.2.3 DBSCAN

Density Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al.,
1996) is an algorithm that focuses on neighborhood relations rather than using a variance-
oriented criterion like K-Means. Since its philosophy is somewhat related to graph-based
algorithms the definitions will be discussed more in detail.

DBSCAN requires the user to define Eps, which can be interpreted as a radius that is
drawn around each point and MinPts, which is a minimum number of other points that

24

(a) (b)

(c) (d)

(e) (f)

Figure 4: HCA clustering result. (a) and (c) show the clustering results for K = 3 and
K = 6 using ‘Ward’s Method’. (b) and (d) depict the corresponding dendrograms. (e)
and (f) show the resulting clusters when using ‘Single Linkage’. The vertical red line in
the dendograms show where the hierarchical tree was cut to receive the result.

25

have to be within that radius. The Eps-neighborhood of a point p, denoted by NEps(p), is
then defined by NEps(p) = {q ∈ X | D(p, q) ≤ Eps}. A point p is directly density-reachable
from a point q if p ∈ NEps(q) and |NEps(q)| ≥ MinPts. The latter definition is also known
as the core point condition because points at the border of a cluster will usually not satisfy
this condition due to a lack of close enough neighbors.

A point p is considered density-reachable from a point q if there is a chain of points
p1, . . . , pn, p1 = q, pn = p such that pi+1 is directly density-reachable from pi. Two border
points of the same cluster are possibly not density reachable from each other because the
core point condition might not hold for both of them. A point p is density-connected to a
point q is there is a point o such that both p and q are density-reachable from o. Finally
a cluster Ci has to satisfy the following conditions:

• ∀p, q : if p ∈ Ci and q is density-reachable from p then q ∈ Ci.

• ∀p, q ∈ Ci : p is density connected to q.

All points which are not part of a cluster are considered noise. A result for Eps = 1.2 and
MinPts = 4 is depicted in figure 5a. As can be seen DBSCAN can correctly identify the
three clusters as seen by the author. If one reduces Eps to 0.7 DBSCAN identifies all
points not satisfying this criterion as noise which is depicted as the black dots in figure 5b.

The ability to reject noise is sometimes an important criterion for selecting a suitable
clustering algorithm for a given problem. K-Means and HCA do not distinguish noise as
a different cluster.

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

(a)

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

(b)

Figure 5: DBSCAN clustering result for MinPts = 4 and Eps = 1.2 in (a) and MinPts = 4
and Eps = 0.7 in (b).

2.3 Metrics and other Similarity Measures

In the previously described algorithms it was assumed that the Euclidean distance is used
as a similarity measure. Table 3 lists some other commonly used measures and metrics

26

that can be applied to define similarity. The different metrics can change the clustering
result quite dramatically as can bee seen in figure 6 where the city block metric and the
cosine similarity have been used to perform a K-Means clustering. Through the rest of
this thesis the Euclidean metric is used.

(a) City block metric (b) Cosine similarity

Figure 6: K-Means results using different similarity measures.

2.4 Clustering Problems

As we saw in the previous section different clustering algorithms can sometimes produce
quite contradicting results. This is of course due to the different mathematical criteria
used to obtain the clustering. Clustering is also not a domain-independent discipline.
In each research field there are data structures which are of more importance to detect
than in others and therefore there are some specifics that can be problematic for certain
algorithms.

Zhong et al. (2010) define the clusters in figures 7a-b as well-separated. This means
that any pair of points within one cluster is closer together that a pair of points from
both clusters. Let a and b be the two points from both clusters which are closest together.
If the local point density around these points is high with respect to the distance between
the two points then the problem is called distance-separated. If the local point density of
the two points differs significantly then the problem is called density-separated. Under
these definitions figures 7a-e would then be considered as distance-separated whereas
figure 7f would be a density-separated problem. Figures 7g-h constitute touching problems
as these clusters are connected through a ‘neck’. The removal of the neck should produce
two clusters which are substantially larger than the neck itself.

Furthermore clusters can be categorized into compact and connected. The former is a
set of points such that the distance between any point in the cluster and the representative
(this can be the centroid or medoid) is less than the distance between the point and any
representative of other clusters. The latter is a set of points such that for every point in

27

Table 3: Metrics and quasi-metrics for the measurement of similarity

Measures Forms Comments

Euclidean Di,j =

√√√√ d∑
k=1

(xi,k − xj,k)2 Special case of Minkowski metric at
n = 2. This metric is the most
widely used. It tends to form hy-
perspherical clusters.

Squared
Euclidean

Di,j =
d∑

k=1
(xi,k − xj,k)2 Puts more emphasis on patterns

with a greater distance.

Tchebycheff Di,j = max
1≤k≤d

|xi,k, xj,k| Special case of Minkowski metric at
n→∞.

Minkowski Di,j = (
d∑

k=1
|xi,k − xj,k|1/N)N Features with large values and vari-

ances tend to dominate over other
features.

Mahalanobis Di,j = (xi − xj)TS−1(xi − xj) S is the within-group covariance ma-
trix. This measure is invariant to
any nonsingular linear transforma-
tion. It tends to form hyperellip-
soidal clusters.

Pearson
Correlation

Di,j = 1− ri,j
2 ri,j is the Pearson correlation coef-

ficient. This measure is not a met-
ric. It is unable to detect the magni-
tude of differences of two variables.
Widely used for analyzing gene ex-
pression data.

Point
Symmetry

Di,r = min
j=1,...,n
j 6=i

||(xi − xr) + (xj − xr)||
||xi − xr)||+ ||xj − xr)||

Not a metric. xr is a reference point
to the observation xi. Di,r is min-
imized when a symmetric pattern
exists.

Cosine
Similarity

Sy = cosα = xT
i xj

||xi||||xj||
Most commonly used measure in
document clustering.

Gaussian
Similarity

Di,j = exp(−||xi − xj||2/(2σ2)) Often applied in spectral clustering
to derive similarity graphs.

28

Figure 7: Clustering problems as defined by Zahn (1971).

the cluster there exists at least one other point in the cluster so that the distance between
them is less than the distance between this point and any point not in the cluster. Figure
8a constitutes a compact problem whereas figure 8b is a connected problem.

Figure 8: Clustering problems as defined by Handl and Knowles (2007).

The illustrations of figures 7 and 8 show the clusters with clear boundaries so that
it is unambiguous where one cluster ends and the other begins. In chemical datasets
there usually occur mixture effects because compounds diffuse into each other or are
inhomogeneous. As a two-dimensional example one could illustrate this problem like in
figure 9. For a human being it is easy to see the three clusters though it is not obvious
where to draw the decision boundaries to separate them.

Another problem that is not mentioned in the above definitions is that clusters can
vary greatly in size and density and can even be nested. One might argue that this falls
under the definition of density-separated, but this would require some notion of a cluster
boundary. In figure 10 such a problem is illustrated to highlight the difference. At first
glance there is only one cluster in figure 10a. If one looks closer there seems to be a
second compact cluster within the rectangle. Figure 10b shows a zoomed-in view of the
rectangle which again seems to contain only one cluster. If one zooms in towards the
second rectangle the single cluster separates again as in figure 10c which makes a total of
three clusters that reside within this dataset.

At this point one should ask how we can so easily recognize the clusters of figures
9 and 10 even though there are no clear boundaries between them. The answer lies

29

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

Figure 9: The Mixing Clusters dataset consists of three clusters that have no clear
boundary between them.

in the density distribution of the datasets. The human perception is very sensitive to
gradients and there are obviously some regions where the density of data points increases
or decreases. The author will denote problems which are separable using data gradients
as gradient-separable. This form of separability stands at the center of this thesis and will
be discussed in more depth in later chapters.

2.5 Graph-Based Algorithms

2.5.1 Fundamentals of Graph Theory

A graph G = (V,E) is an abstraction where the relations between objects are represented
by the presence or absence of connecting edges. V represents a non-empty set of vertices
and E a set of edges. With respect to the dataset the objects xi,xj ∈ X thus become
vertices vi, vj ∈ V and the edge that connects vi and vj is denoted as eij ∈ E. Each edge
eij has an associated weight wij ≥ 0 that describes the similarity between vertices vi and
vj . The weighted adjacency matrix of the graph is the matrix W = (wij). If wij = 0 then
vi and vj are not connected. If wij = wji ∀i, j = 1, . . . , n then W is symmetric and the
graph is called undirected. The opposite would be a directed graph where a connection
from vi to vj does not imply a connection from vj to vi. Figure 11 depicts three common
examples of similarity graphs that were derived from the introductory dataset in figure 2
using the euclidean distance as a metric to measure the edge weight.

The Delaunay Triangulation DT(X) is a triangulation of the dataset X such that no
point is inside the circumcircle of any triangle of DT(X). For a d-dimensional space it is

30

2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

(a)

10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

6

(b)

10.44 10.46 10.48 10.5 10.52 10.54 10.56 10.58

5.5

5.52

5.54

5.56

5.58

5.6

5.62

5.64

5.66

5.68

(c)

Figure 10: The Russian Dolls dataset consist of a series of three nested globular clusters
that differ greatly in their size. The rectangle in (a) represents the frame of (b) and so on.

defined as a triangulation DT(X) such that no point of X is inside the circum-hypersphere
of any d-simplex in DT(X).

The Minimum Spanning Tree (MST) is a graph that connects all vertices with the
minimum possible total edge weight and without any cycles. In most cases the MST is
unique but there can be more than one MST with the same total weight under certain
circumstances.

The k-nearest neighbor graph (kNN) is computed by performing a k nearest neighbor
search for each object xi. Each object xj among the k-neighborhood is then linked to
xi through an edge eij. In general the kNN graph is directed because xj being in the
K-neighborhood of xi does not imply that xi is also in the k-neighborhood of xj . However
some algorithms require the graph to be undirected. One way to achieve this is to set
all wji := wij if wij 6= 0 and wji = 0. The so called mutual k-nearest neighbor graph is
deduced by setting all wij := 0 if wij 6= wji.

If one compares the different graph types in figure 11 with the original dataset of figure
2 there are some fundamental differences in how the resulting graph stores neighborhood
relations and what information is lost. The Delaunay triangulation in figure 11a connects

31

(a) Delaunay Triangulation (b) Minimum Spanning Tree

(c) KNN with K = 13 (d) KNN zoomed in

Figure 11: Examples of graph types. The rectangle in (c) corresponds to the zoomed-in
view in (d). Arched edges represent a bidirectional connection.

all three clusters through their border points regardless of the distance between them. On
the other hand the intra-cluster relations are reduced to the neighbors which are part
of a triangle. The MST in figure 11b reduces the number of edges even further as there
are only two edges that connect the three clusters. The kNN graph clearly shows its
undirected nature if one takes a closer look at the zoomed-in view in figure 11d. Here
cluster 2 is connected through directed edges to 3 but not vice versa. Another
interesting property of kNN graphs is that if k is set low enough the clusters can be fully
disconnected from each other simply because there is no member of a different cluster
among any of the k-neighborhoods of the objects xi.

2.5.2 Spectral Clustering

Spectral Clustering is a family of algorithms that use standard clustering methods such
as K-Means to cluster the eigenvectors of the Laplacian matrix L (Von Luxburg, 2007;
Nascimento and De Carvalho, 2011). Different kinds of Laplacians can be deduced from
the weighted adjacency matrix W and the degree matrix D of a graph G = (V,E). The

32

degree of a vertex vi is defined as di = ∑n
j=1wij, where n denotes the number of vertices.

D is then defined as the diagonal matrix Dii = di. Given a subset of vertices A ⊂ V

and its complement Ā = V \ A the indicator vector 1A = (f1, . . . , fn)T ∈ Rn is defined
as the vector with entries fi = 1 if vi ∈ A and fi = 0 otherwise. A ⊂ V is connected if
any two vertices in A can be joined by a path such that all intermediate points also lie in
A. A is called a connected component if it is connected and if there are no connections
between vertices in A and Ā. The nonempty sets A1, . . . , AK form a partition of the graph
if Ai ∩ Aj = ∅ and A1 ∪ · · · ∪ AK = V .

In the following G is assumed to be undirected. Eigenvectors are not necessarily
assumed to be normalized which means that the constant vector 1 and a multiple a1 for
a 6= 0 will be considered as the same eigenvectors. Eigenvalues will be ordered increasingly,
respecting multiplicities. The first K eigenvectors therefore correspond to the K smallest
eigenvalues.

The unnormalized graph Laplacian is defined as

L := D−W (4)

and has the following properties:

• fTLf = 1
2
∑n
i,j=1wij(fi − fj)2 ∀f ∈ Rn.

• L is symmetric and positive semi-definite.

• The smallest eigenvalue of L is 0 and the corresponding eigenvector is the constant
vector 1.

• L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ · · · ≤ λn.

A property of the unnormalized graph Laplacian which is important for spectral clustering
is that the multiplicity K of the eigenvalue 0 of L equals the number of connected
components A1, . . . , AK in the graph. The eigenspace of eigenvalue 0 is spanned by the
indicator vectors 1A1 , . . . , 1AK

of those components.
This property can be proven by considering the case K = 1 which means that G is a

single connected component. Let f be an eigenvector with eigenvalue 0. Then we know
that

1
2

n∑
i,j=1

wij(fi − fj)2 = 0 (5)

which can only be true if all the terms wij(fi − fj)2 vanish. Since wij ≥ 0 this means
that all fi = fj. Thus f is the constant vector 1 which is also the indicator vector of the
connected component.

Now let us consider the case of K > 1 connected components. Without loss of
generality we order the vertices of the graph Laplacian L so that vertices of the same

33

component are next to each other. We thus get a matrix

L =

L1

L2
. . .

LK

 (6)

of block diagonal form where each Li is the graph Laplacian of the ith connected component.
Every Li has an eigenvalue of 0 with a multiplicity of 1. The corresponding eigenvector is
the constant vector 1 with respect to Li. Thus the matrix L has as many eigenvalues of 0
as there are connected components and the corresponding eigenvectors are the indicator
vectors 1A1 , . . . , 1AK

with respect to L.
There are two matrices which are called normalized graph Laplacians. They are defined

as
Lsym := D

1
2LD

1
2 = I−D

1
2WD

1
2 (7)

and
Lrw := D−1L = I−D−1W, (8)

and have the following properties:

• Lsym is a symmetric matrix and Lrw is closely related to a random walk.

• fTLsymf = 1
2
∑n
i,j=1wij

(
fi√
di
− fj√

dj

)2
∀f ∈ Rn.

• λ is an eigenvalue of Lrw with eigenvector u if and only if λ is an eigenvalue of Lsym

with eigenvector w = D
1
2u.

• λ is an eigenvalue of Lrw with eigenvector u if and only if λ and u solve the
generalized eigenproblem Lu = λDu.

• 0 is an eigenvalue of Lrw with the constant vector 1 as eigenvector. 0 is an eigenvalue
of Lsym with eigenvector D 1

2 1.

• Lsym and Lrw are positive semi-definite and have n nonnegative real-valued eigenval-
ues 0 = λ1 ≤ · · · ≤ λn.

As is the case with the unnormalized Laplacian L the multiplicity K of the eigenvalue 0
of both Lsym and Lrw equals the number of connected components A1, . . . , AK . For Lrw

the eigenspace of 0 is spanned by the indicator vectors 1Ai
of those components. For Lsym

the eigenspace of 0 is spanned by the vectors D 1
2 1Ai

.
Based on the properties of graph Laplacians we can now formulate the method of

unnormalized spectral clustering which goes through the following steps:

1. Compute L ∈ Rn×n and define the desired number of clusters K.

34

2. Compute the first K eigenvectors u1, . . . ,uK of L.

3. Let U ∈ Rn×K be the matrix containing the vectors u1, . . . ,uK as columns. Let
yi ∈ RK be the vector corresponding to the ith row of U. Cluster the points yi using
the K-Means algorithm into clusters A1, . . . , AK .

Normalized spectral clustering as defined by Shi and Malik (2000) differs in step 2 as
the K eigenvectors are computed from the generalized eigenproblem Lu = λDu which
means that L is replaced by Lrw. Ng et al. (2002) proposed to use the matrix Lsym. The
rows of the resulting matrix U are then normalized to gain the matrix T = (tij) where
tij = uij/(

∑K
k=1 u

2
ik)1/2. From there the procedure continues as in step 3 with T replacing

U. In step 3 the K-Means algorithm is used though other clustering algorithms are
applicable as well.

In the case of K connected components the eigenvectors of the eigenvalue 0 are the
indicator vectors 1A1 , . . . , 1AK

. Thus each vertex vj ∈ Ai is mapped to the same point
which makes it a very trivial clustering problem. An example of such a clustering task
is given in figure 12, where a kNN graph with k = 13 was computed on three well-
separated clusters. As can be seen in figure 12a all three clusters form their own connected
component. The graph was clustered using the graph Laplacian Lrw. As expected the
first three eigenvalues in figure 12c are 0 which corresponds to the number of connected
components. The corresponding eigenvectors are the indicator vectors 1A1 , 1A2 , 1A3 in
12d-f. Note that the indicator vectors are not normalized and thus 1Ai

and a multiple
a1Ai

for a 6= 0 are considered as the same eigenvectors. The remaining eigenvectors would
contain information about the structures within the connected components but as can
bee seen in 12g-h there seems to be no clustering tendency.

The appearance of the eigenvectors changes completely however, if the graph in
question is a single connected component. The Mixing Clusters dataset of figure 9 was
derived from the three clusters in figure 12 by adding points into the empty space between
them. As can bee seen in figure 13a these additional points serve as a bridge for the
13-nearest neighbor graph to connect the three clusters. An interesting feature which
is visible in figure 13c is the so-called eigengap between the eigenvalues λ3 and λ4. The
distance |λ3 − λ4| is obviously significantly larger than the preceding ones. The eigengap
can be used as a heuristic for choosing the number of clusters K if the data contains
well-pronounced clusters. Figure 13d depicts the constant eigenvector for eigenvalue 0.
Seen up close the values vary within a small margin which is due to errors in the numerical
computation of the eigenvectors. The eigenvectors uj>1 in 13e-f are no longer constant but
their values still indicate the affiliation of vertices to certain subsets. Here it becomes clear
why only the first K eigenvectors are used for the final clustering step as the information
content of u4 and u5 is already very small.

35

(a) Undirected 13-nearest neighbor
graph

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

(b) Clustering result

0 10 20 30 40 50 60 70 80 90

j

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

j

(c) Eigenvalues λj

0 10 20 30 40 50 60 70 80 90

i

-0.25

-0.2

-0.15

-0.1

-0.05

0

u
 1

,i

(d) Eigenvector u1

0 10 20 30 40 50 60 70 80 90

i

-0.2

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

u
 2

,i

(e) Eigenvector u2

0 10 20 30 40 50 60 70 80 90

i

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

u
 3

,i

(f) Eigenvector u3

0 10 20 30 40 50 60 70 80 90

i

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

u
 4

,i

(g) Eigenvector u4

0 10 20 30 40 50 60 70 80 90

i

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

u
 5

,i

(h) Eigenvector u5

Figure 12: Spectral clustering of three connected components.

36

(a) Undirected 13-nearest neighbor
graph

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

(b) Clustering result

0 20 40 60 80 100 120

j

0

0.5

1

1.5

j

(c) Eigenvalues λj

0 20 40 60 80 100 120

i

-0.09534625892457

-0.09534625892457

-0.09534625892456

-0.09534625892456

-0.09534625892455

-0.09534625892455

u
 1

,i

(d) Eigenvector u1

0 20 40 60 80 100 120

i

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

u
 2

,i

(e) Eigenvector u2

0 20 40 60 80 100 120

i

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

u
 3

,i

(f) Eigenvector u3

0 20 40 60 80 100 120

i

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

u
 4

,i

(g) Eigenvector u4

0 20 40 60 80 100 120

i

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

u
 5

,i

(h) Eigenvector u5

Figure 13: Spectral clustering of a single connected components.

37

2.5.3 Graph-Oriented Clustering

Apart from spectral clustering there is another family of clustering algorithms that
heavily rely on data being represented as graphs. These methods distinguish themselves
from spectral clustering as they do not cluster the eigenvectors of a graph Laplacian.
In fact they are more comparable to algorithms such as DBSCAN. Depending on the
construction method graphs have some advantages over using the dataset for clustering. A
computationally intensive part of the clustering process is the calculation of the similarity
measure. As objects or pairs of them are usually iteratively revisited the similarity measure
thus has to be recomputed over and over again. If one stores the pairwise distances as
weights of a graph the associated adjacency matrix W thus becomes a look-up table
which can greatly increase performance. For non-graph-oriented algorithms this means to
compute the fully connected graph, which is the graph that links every object xi with any
other object xj, where i 6= j = 1, . . . , n.

Especially in high-dimensional data spaces this transforms an expensive repeated com-
putation of the similarity measure between two points xi and xj to the much cheaper task
of reading the weight wij of the weight matrix W from memory. Many implementations
of clustering algorithms use this approach though it comes with a great drawback: For
a dataset of n objects the storage requirement for a fully connected graph using double
precision is n2*sizeof(double). For a set of n = 250000 data points this corresponds to
a memory requirement of 465.7 GiB, which is clearly out of range for most computing
devices. This obstacle encourages the study of algorithms which use less memory intensive
graphs.

Another aspect of graphs such as the ones presented in figure 11 is that they are an
abstraction of the dataset in which the applied algorithm focuses on local neighborhood
relations rather than using the distance information of the entire dataset. This makes
graph-based methods well-suited for dealing with connected clustering problems. In the
following some concepts of graph-oriented algorithms will be discussed in brief. Most
of them use the same criteria as in other non-graph-oriented algorithms with the sole
difference that these are applied to vertices and edges instead of objects.

Liu et al. (2012) used the Delaunay triangulation which is depicted in figure 14a as a
model of the spatial proximity relationships among objects. Some edges are then removed
by applying an global edge constraint which is defined as

GDC(vi) = µw + µw
µ(vi)

σw, (9)

where µw is the average edge weight, σw its standard deviation and µ(vi) the average
weight of all edges originating from vi. This produces the graph in figure 14b. In a second
step a local edge constraint produces the graph in figure 14c, which is defined as

LDC(vi) = µ2nd(vi) + βµ2nd

σ (vi), (10)

38

where µ2nd(vi) is the mean of the 2nd-order neighborhood, µ2nd
σ (vi) the mean of the standard

deviation and β > 1. The final graph is then clustered with a density-based clustering
algorithm which is comparable to DBSCAN to obtain the result.

(a) (b) (c)

Figure 14: The edges of the Delaunay triangulation in (a) are subjected to a global edge
constraint which produces the graph in (b), followed by a local edge constraint resulting
in graph (c). (Liu et al., 2012)

The removed links are often referred to as ‘inconsistent’ edges. Minimum Spanning
Tree clustering also uses this method were edges eij of an MST, such as the one in figure
11b, are removed if the condition

|µ2nd(vi)− wij| > ζµ2nd

σ (vi) (11)

holds, where ζ is a user-defined value. This approach has the drawback that only very
little information is used to determine the removal of an edge which can lead to an
over-segmentation of the clusters.

Zhong et al. (2010) therefore proposed to use the Two-Rounds MST which is depicted
in figure 15c. This graph is a combination of two computations where the first MST T1 is
conducted on the fully connected graph of the dataset and the second T2 on the remaining
edges after all edges belonging to the first MST are removed. The weights wij are then
redefined as

wnew
ij := wij −min(avg(Ei \ eij), avg(Ej \ eji))

wij
, (12)

where avg(Ei \ eij) refers to the average weight of edges originating from vi excluding edge
eij. In the next step the edges are sorted in descending order with respect to wnew

ij . The
clustering then happens by consecutively removing edges until a cut is achieved and a
subset of the Two-Rounds MST thus becomes a connected component. Whether the cut
is valid is determined by

Ratio(B) = min(|B ∩ T1|, |B ∩ T2|)
|B|

≥ λ, (13)

39

where B is the set of removed edges and λ = 1/3. For each new connected component
this procedure is repeated until all further cuts are invalid. The idea behind this validity
criterion is the following: If two separated clusters are tested the cardinalities |B ∩ T1|
and |B ∩ T2| will be almost equal, thus resulting in a value around 0.5. For a connected
component that should not be further divided the ratio will be more skewed as the
cardinality of |B ∩ T2| is much larger.

(a) 1st-round MST (b) 2nd-round MST

(c) Two-Rounds MST

Figure 15: The Two-Rounds MST proposed by Zhong et al. (2010) is a combination of
the 1st and 2nd-round minimum spanning tree.

2.6 Common Evaluation Approaches and their Deficiencies

The previous section gave a brief overview of different kinds of clustering algorithms and
showed that some procedures can behave very differently depending on the structure of
the dataset and the shapes of the clusters. This leads to a fundamental problem when the
task of clustering has to be performed on a high-dimensional dataset. Since our perception
is limited to three dimensions the visual assessment of the clustering in the feature space
is no longer possible. As a consequence the evaluation of the results is no longer trivial.

Scanning the literature one can find many different attempts to evaluate such clusterings.
These methods are often used to argue that a certain algorithm successfully clusters the
data in a meaningful way or that one method outperforms another. The problem that
comes with this evaluation procedures is that they are insufficient and often completely
misleading (Von Luxburg et al., 2012). The following paragraphs will discuss these
approaches and their issues more closely:

40

Evaluation using artificial datasets. The clustering algorithm is applied on an
artificial dataset which is created by drawing samples from a mixture of probability
functions. Thereby the samples can be assigned to a ‘ground truth’ which makes it easy
to evaluate whether the clusters were correctly recognized. This procedure makes sense if
one wants to assess the statistical performance of a clustering algorithm under certain
assumptions but it cannot be used to evaluate the usefulness of the clustering.

Evaluation using classification benchmark datasets. The clustering algorithm is
applied to a classification dataset. These datasets have the property that each observation
already has a class affiliation which is then treated as the ground truth against which the
clustering result is compared. Well-known datasets of this type are the Iris Flower dataset
by Fisher (1936) or the Wine dataset by Forina et al. (1986). The former is a dataset
of 150 samples that contains the features ‘sepal width’, ‘sepal length’, ‘petal width’ and
‘petal length’ of three species of Iris, namely I. setosa, I. virginica and I. versicolor.

Using such a dataset for evaluation can be particularly misleading because we assume
that the class labels coincide with the cluster structure. In the case of the Iris Flower
dataset the classes virginica and versicolor overlap and form a cluster which cannot be
separated in a way that the result coincides with the labels. This sophism becomes even
more apparent if one considers the origin of the dataset. Edgar Anderson collected the
data by using his domain-knowledge as a botanist to cluster the three species in-vivo. It
seems unlikely that Anderson decided on the class affiliation based on the four features
mentioned above.

Evaluation using real world datasets. The clustering is applied to a real world
dataset and the validity of the clustering is assessed through the domain-knowledge of the
researcher. This approach suffers from the same problem as the evaluation on classification
benchmarks. In the case of the Iris Flower dataset the researcher would thus conclude
that the method produces a bad result since the classes of virginica and versicolor could
not be correctly reproduced even though these two plants are ‘obviously’ different.

Evaluation using cluster validity indices Different clustering results are subjected
to a cluster validity index which is a score that is computed from the dataset and the
associated cluster labels. One of the best known indices is probably the Davies-Bouldin
index (Davies and Bouldin, 1979) which is a sum over the ratio of intra-cluster and
inter-cluster distances. In theory this index should become minimal at the optimal number
of clusters for a given algorithm. More about this topic can be found in Arbelaitz et al.
(2013), who have conducted an extensive comparison of validity indices.

Such indices make sense on the level of the algorithm itself but they tell little about
the usefulness of the clustering. Here one tries to prove the validity of a heuristic using a
heuristic. Furthermore these indices are not comparable between clustering algorithms.

41

3 Graph-Based Competitive Clustering

3.1 Concept

As the previous sections gave an overview about different clustering algorithms and
clustering problems we will now take a closer look on the motivation behind a novel
clustering algorithm which will be presented in the following sections.

• Hyperspectral Images (HSI) tend to be high-dimensional even if methods of dimen-
sionality reduction are applied. In addition they will also tend to contain many
objects as their number corresponds to the number of pixels. The computation of a
clustering can thus become a very time consuming task if no graph-based method is
used. This is due to the multiple recalculation of distance measures between the
objects. On the other hand one cannot simply use a fully connected graph to solve
this problem as the storage requirement for such a data structure would indeed be
very large. This motivates to use graphs which require less memory such as the
ones in figure 11. This also comes with an additional advantage: Once a graph
is computed and stored it can be reused to assess different clustering results for
different parameters.

• One aim of using clustering as an image segmentation tool is to find lateral features
which are distinct from each other. Often only very few pixels contain information
which is of interest. The rest is usually background, noise, or compounds which
are expected to be present. Thus the objects which contain relevant information
will only be present in small numbers. The clusters of these compounds can be
very small and nested within larger clusters, which is comparable to the problem
in figure 10. Many clustering algorithms tend to recognize the ‘bulk’ structures
within a dataset and have difficulties in dealing with large differences in scale. Small
variations of densities are thus overlooked. This motivates the construction of an
algorithm which is invariant to cluster scales.

The proposed method is based around the following idea which is depicted in figure
16. Let two clusters be connected by a path P that starts from vertex A which is in the
densest region of the left cluster and ends at vertex O which is in the densest region of the
right cluster. If one begins a walk along the edges of P starting at vertex A the weights
of the edges increase monotonically until one reaches vertex I. From there the following
edge n will be shorter than m and the consecutive edges will decrease monotonically until
one reaches vertex O.

If one would have to make a decision where to separate the two clusters along the
path P then the edge m would be the obvious choice. A simple algorithm to solve this
task would be the following:

42

A
B

f
C

g

D

h

E
i

F

j
Gk

H

l

I

m
J

n

K

p
Lq

M
r

Ns
Ot

Figure 16: Fundamental concept.

1. Choose either vertex A or O as a starting point and label it with a unique cluster
ID.

2. Move to the next vertex.

3. Label the vertex with the cluster ID.

4. Move to the next vertex if one of the following holds:

Condition 1: The next vertex is still unlabeled and the weight of the previous
edge is less than the weight of the next edge.

Condition 2: The next vertex is labeled with a different cluster ID, condition 1
holds and the weight of the edge following the next vertex is greater than the
weight of the edge between the current and the next vertex.

5. Repeat steps 3 and 4 until none of the conditions apply. Then repeat from step 1
with the other vertex as starting position.

This procedure will label the vertices from A to H with one ID and the vertices from O

to I with a different ID. This can be easily checked by starting with vertex A. Condition
1 will let us proceed until we reach vertex I where edge n is shorter than m. If we now
start the second loop with O we advance until we reach vertex J . From there condition 1
and condition 2 holds and we overwrite the label of vertex I. Now neither condition 1 or
condition 2 are satisfied as m is longer than l. Thus the algorithm stops. If one starts
with O in the first loop we will arrive at the same result.

43

The concept of this algorithm is based on the assumption that clusters can be separated
by following the distance gradient along the edges until a maximum is reached. The
decreasing distances following the maximum thus indicate the presence of a second cluster
which should stop the advance in this direction. If the other cluster reaches the maximum
edge it has the chance to reclaim the vertex that was wrongly allocated to the first cluster.
In the end both clusters will enclose the maximum edge.

Even though the path is correctly separated by the algorithm this problem is rather
trivial as it is only one-dimensional. Now the question arises whether this concept can be
enhanced so that it can be used to cluster graphs. Then one will run into the following
obstacles:

• The starting positions of the algorithm have to be determined.

• A vertex can have multiple connections that can either be bidirectional or unidirec-
tional depending on whether the graph is undirected or directed. The algorithm
will therefore have to consider multiple edges per each vertex.

• There are a multitude of paths that connect the densest areas of two clusters.
Therefore the algorithm has to deal with an arbitrary number of these paths at the
same time.

• In general a clustering problem will contain more than two clusters.

In the following sections these problems will be addressed to construct a clustering
algorithm which will be dubbed Graph-Based Competitive Clustering (GBCC).

3.2 Data Structures

The proposed clustering algorithm requires a flexible data structure where internal pa-
rameters can be stored. The graph can be represented by the (n× n) weighted adjacency
matrix W = (wij), where wij corresponds to the weight of edge eij that connects vertices
vi and vj for i, j = 1, . . . , n. If vi and vj are not connected then eij 6∈ E. Nonetheless a
value has to be assigned to wij which by convention is set to 0. From a computational
point of view this can lead to a large amount of unnecessarily allocated memory as the
wij > 0 will only sparsely populate the array that represents the matrix W. Indeed the
memory requirement for also storing the zeros would be the same as when storing a fully
connected graph. As this problem often occurs in computational mathematics special
data structures called sparse matrices have been implemented which can represent large
matrices where only a small amount of values are not zero. A trivial example of such
a structure is the Dictionary of Keys that maps pairs of row and column indices to the
value of the element. Other common formats are the List of Lists or the Yale format.

The vertices vi which correspond to the objects xi will have to store various variables
about the ongoing procedure. Depending on the used programming language they could

44

be implemented as an array of structs or a struct containing the arrays for each property.
For illustrative purposes the vi and W can be depicted conjointly like in

W =

v1 v2 . . . vn

v1 w11 w12 . . . w1n

v2 w21 w22 . . . w2n...
vn wn1 wn2 . . . wnn

. (14)

If we now want to find the vertices vj that are connected to vi by an edge eij we simply
have to find all wij > 0 in the ith row like in

v1 . . . v3 . . . v5 . . . v8 v9 . . . vn

v1 ↑ ↑ ↑ ↑
... ↑ ↑ ↑ ↑
vi → → wi3 → wi5 → wi8 wi9...
vn

, (15)

which will redirect us to the connected vertices. On the other hand if we want to find the
vertices vh that are connected to vi by an edge ehi we have to find all whi > 0 in the ith

column like in

v1 . . . vi . . . vn

v1 ↓
... ↓
v4 ← ← w4i

v5 ← ← w5i... ↓
v7 ← ← w7i...
vn

. (16)

Note that in this example vi and v5 are connected by a bidirectional edge as there is both
a wi5 > 0 and a w5i > 0. The above illustrations are particularly useful for understanding
GBCC and should be kept in mind through the following sections.

3.3 Initialization

Before the actual clustering of the graph can begin the starting positions of the algorithm
have to be determined. As depicted in figure 16 these positions should be situated at
the dense areas of the dataset so that the algorithm can expand along the gradient of

45

increasing edge weights. Let vertices vj ∈ Ni be the neighborhood of vertex vi given that
wij > 0. If |Ni| ≥ k we can build the k-neighborhood of vi by sorting the vertices vj with
respect to wij in ascending order and then forming the subset Ni,k ⊆ Ni of the first k
elements. The property vertex weight vw

i is then defined as

vw
i =

1
|Ni,k|

∑
j wij ∀wij : vj ∈ Ni,k if ∃Ni,k

1
|Ni|

∑
j wij ∀wij : vj ∈ Ni if @Ni,k

, (17)

which serves as a density measure to compare different vertices against each other. If
applicable the k-neighborhood will be used to calculate the average edge weight. This is
necessary because the number of edges is not necessarily the same for each vertex and if
the graph is constructed in a way that very distant edges are included in the neighborhood
then the average will be shifted towards larger values even though the density is high
around that vertex.

Using this density measure we can now define the starting positions which we will
denote as centers. Let N q

i \ vi be the qth-order neighborhood of vi which are all vertices
that are reachable from vi over q − 1 hops. The property center vc

i is then defined by

vc
i =

true if vw
i < minj vw

j ∀vj ∈ N q
i \ vi

false else
. (18)

Note that since vi can be its own higher-order neighbor for q > 1 it has to be excluded
from N q or equation (18) might never be true for any vertex. The parameters k and q
can now be used do determine the centers of graph G which serve as the initial prototypes
for the evolving clusters. Therefore the number of centers is equal to the number of
clusters K. The proposed method is scale invariant as the density estimation vw

i is only
compared within a neighborhood N q

i . Therefore clusters can be detected independently
from differences in density and extent.

Some clustering algorithms such as K-Means require the user to specify the number
of clusters and in some applications the ability to predefine K might be desirable. This
can be achieved by optimizing |K̂ −K|, where K̂ is the resulting number of clusters for a
given combination of k and q. The calculations of vw

i and vc
i are both computationally

expensive for larger graphs which makes it necessary to parallelize the calculation across
multiple CPU cores. If we vary k within a margin [kmin, kmax] and q within a margin
[qmin, qmax] then the quickest approach is to first compute vw

i for a k ∈ [kmin, kmax] and
then compute vc

i for different q ∈ [qmin, qmax] with respect to the current k. The winning
combination should be the one that minimizes |K̂ −K| and has the lowest k.

46

free

pending

active

passive

vertices

centers

Figure 17: Flow chart of the vertex states.

3.4 Clustering

Once the centers are determined the clustering step can begin. The following rules
will require a vertex to assume different states which are depicted in figure 17. The
state is stored in the vertex property vs

i and can take the values free, pending, active
and passive. The initial state of all vertices is free except for the centers which are
initialized as active. Following the concept in section 3.1 conditions 1 and 2 now have to
be generalized in order to be applicable to arbitrary graphs.

Definition 1. Let vi be an active vertex and vj a vertex of its neighborhood then vj
satisfies the gradient condition with respect to vi if

va
i < wij. (19)

Definition 2. Allocation is the term used to denote the process of assigning a free vertex
to a certain cluster. If vertex vi allocates vj to its cluster then the properties are set
to vID

j := vID
i , va

j := wij and vs
j := pending. A free vertex can be allocated only if the

gradient condition holds for vertices vi and vj.

The vertex property va
i , which was introduced in definition 1, will be denoted as the

allocation weight. The role that this property has in the generalization effort becomes clear
if one remembers that we are no longer dealing with a one-dimensional path. Now there is
no obvious ‘previous’ vertex to which the weight to the ‘next’ vertex can be compared. In
conjunction definitions 1 and 2 already show how this problem can be solved. Each time
a vertex is assigned to a cluster it stores the weight through which it has been allocated.
This information can then be used to determine the distance gradient. On the other hand
there also needs to be a way to update the allocation weight if a smaller one was found
over a different path.

47

Definition 3. Let vi be an active vertex and vj a vertex of its neighborhood then vj
satisfies the update condition with respect to vi if the gradient condition and

wij ≤ va
j (20)

holds.

Definition 4. Let vID
i = vID

j be two vertices of the same cluster. The term update then
denotes the process of changing the allocation weight va

j to a smaller value if the update
condition holds. Thus va

j := wij. If vj is a free or a passive vertex its state is set to
vs
j := pending.

Finally there remains the case were a cluster has overstepped the maximum edge and
the vertex has to be reassigned to a different cluster coming from the other direction.

Definition 5. Let vID
i 6= vID

j be two vertices of different clusters then conquering denotes
the process of reassigning vertex vj to the cluster of vi. Conquering can only happen if
the update condition holds. The properties are then set as vID

j := vID
i and va

j := wij . If vj
is a free or a passive vertex its state changes to vs

j := pending.

In conjunction with the above definitions and the vertex states we can now define
the GBCC-algorithm which is given as pseudocode in algorithm 1. Note that from a
computational viewpoint it does not make sense to implement definitions 2, 4 and 5
separately as only definition 4 does not affect vID

j . They are thus combined in the if-clause
in lines 16 to 22. We will now take a closer look on how the procedure clusters some very
basic graphs to highlight its behavior under certain conditions. The star connection in
figure 18a enhances the conceptual problem of figure 16 by a third cluster. The centers
a, d and g are drawn as bold circles. The for-loop in lines 1 to 10 initializes all centers
as active and with a unique cluster ID. The allocation weight is set to zero as there is
no ‘previous’ vertex. All other vertices are initialized as free and their cluster ID set to
zero. Line 12 in the while-loop gives us the set of the active vertices. For each element
in that set we construct the set of the neighbors in line 14. Each neighbor is then tested
whether it can be added to the cluster. This is a trivial case for vertices b, e and h since
the allocation weight of the centers are all zero. The new members remain in the pending
state until all active vertices have processed their neighbors. Finally the active vertices
are set to passive and the pending vertices become active. The while-loop repeats in
the same manner and vertices c, f and i are added to their respective clusters.

The next while-loop will reveal how conquering is implemented. Without loss of
generality we assume that vertex c is the first to test its neighbors. Like in the previous
loop it will add j to its cluster. If f is the next vertex in line it will test vertex j. This
time j is no longer a free vertex but the update condition holds since wef < wfj < wcj.
j is therefore conquered by the pink cluster and its allocation weight is set to wfj. The

48

Algorithm 1: Pseudocode of GBCC
1 for i := 1 to n do
2 if vc

i = true then
3 vs

i := active;
4 vID

i := getUniqueClusterID();
5 va

i := 0;
6 else
7 vs

i := free;
8 vID

i := 0;
9 end

10 end
11 while ∃vs

i = active do
12 A := {vi ∈ V | vs

i = active};
13 foreach vi ∈ A do
14 N := {vj ∈ V | wij > 0};
15 foreach vj ∈ N do
16 if updateCondition(vi, vj) ∨ (vs

j = free ∧ gradientCondition(vi, vj))
then

17 vID
j := vID

i ;
18 va

j := wij;
19 if vs

j = free ∨ passive then
20 vs

j := pending;
21 end
22 end
23 end
24 vs

i := passive;
25 end
26 P := {vi ∈ V | vs

i = pending};
27 foreach vi ∈ P do
28 vs

i := active;
29 end
30 end

49

final outcome is that i conquers j again as whi < wij < wfj. The last repetition of the
while-loop finds j as the only active vertex but since there are no free vertices left and
the update condition does not hold for any of its neighbors the while-loop finally ends.

Figure 18b is an example where three clusters meet in a triangle. On the first glance
this scenario seems to be more complex but if one compares the neighborhood relations of
vertices a, c and e with the vertex j of figure 18a it becomes clear that there is only little
difference between the two examples.

Figures 18c and d highlight why (19) is formulated with a ‘<’-sign and (20) with a
‘≤’-sign. If one applies algorithm 1 to figure 18c the green cluster of center a is the first
to arrive at the junction c. From there it allocates vertex d. Whether h is first allocated
by the green or the blue cluster is ambiguous and depends on the indexing of the vertices.
Nonetheless h will belong to the blue cluster after the next while-loop. In this particular
situation the green cluster holds vertices c and d. The next loop brings the conquering of
c by h. Now the green cluster is split into two disconnected sets which obviously would
be an undesirable result. As d was allocated by c its allocation weight is wcd. Because
of the ‘≤’-sign in (20) the update condition is thus satisfied since whc < wcd ≤ wcd and c
finally conquers d.

(a) Star connection (b) Delta connection

(c) Override problem (d) Update problem

Figure 18: Problems that proof the correct generalization for arbitrary graphs.

50

A similar problem occurs in figure 18d which takes a closer look on what happens
within a cluster. Starting from center a the gradient condition allows the procedure to
move forward until vertices h and c are reached. c cannot allocate d because wbc > wcd. h
on the other hand can update c since wgh < whc < wbc which sets the allocation weight of
c to whc. In the next while-loop it can then allocate d. If d is the first to allocate e we
have the same problem again and j has to update e so that f can be allocated.

To give an example how GBCC behaves on a kNN graph a clustering result of the
Mixing Clusters dataset is given in figure 19. The underlying graph is an undirected
13-nearest neighbor graph. The red edges denote the allocation weights. Seen from the
center of a cluster each vertex at the cluster border can thus be connected by a path
along the allocation weights so that the distances increase monotonically. In between two
border vertices of different clusters there might be an edge that connects both vertices
with a weight that is greater than the weights of both border vertices. In that case we
have found a path P as illustrated in the conceptual drawing in figure 16.

To conclude this section we still need to clarify what the role of the vertex state
pending is in the given pseudocode example. One might wonder why newly allocated and
updated vertices cannot be set directly to active. The introduction of the state pending
serves as a means to ensure an implementation-independent formulation of the procedure.
Without this intermediate state vertices would be set directly to active which would
make line 12 ambiguous. In that case it would not be clear whether the set A would have
to be supplemented by the new active vertices. For each new active vertex we would
have to test its neighbors and then set it back to passive. This process could happen
multiple times as there could be many vertices in the neighborhood that would update
the vertex under consideration. Therefore the pending state introduces a period in which
the smallest allocation weight can be determined without triggering the retesting of the
neighbors. On the other hand we have the if-clause in line 19 that ensures that if an
active vertex is among the neighbors its state is not set to pending since it is still in the
queue for testing its own neighbors and will do so anyway.

3.5 Implementation and Testing

For the purpose of initial testing GBCC was implemented in Matlab R2016b (The
MathWorks, Inc.; mathworks.com). The pseudocode in algorithm 1 adheres to the original
Matlab code and should be applicable for other programming languages as well. The
experiments which will be presented in the following section were conducted on an Apple
Mac Mini Server (late 2012) running Matlab on Arch Linux. The results of K-Means
and HCA were computed using Epina ImageLab (Epina GmbH; imaglab.at) on Microsoft
Windows using the same machine in dual-booting mode.

51

mathworks.com
imaglab.at

Figure 19: Clustering result using GBCC on the Mixing Clusters dataset.

4 Experimental

As we saw in section 2.6 the evaluation of clustering algorithms and clustering results is not
a trivial task and sometimes ‘evaluated’ results tell little about the general applicability
of the clustering algorithm. The biggest problem that we face here is that our perception
is limited to three dimensions and as clustering algorithms usually operate in high-
dimensional spaces the ‘true’ structure is hidden from our vision.

In their paper Von Luxburg et al. (2012) severely criticized the usual methods of
cluster validation as insufficient and often completely misleading. The author shares the
same opinion in that regard, though nonetheless some sort of validation, be it ‘insufficient’
or not, is absolutely necessary to get a notion about the characteristics of a clustering
algorithm and how the results relate to other methods. The author argues that in the
end clusters and classes are an invention of humankind which makes the human being
the measure of all things in that context. We will therefore start our evaluation and
comparisons on datasets which can be easily understood by humans.

52

4.1 2D Artificial Datasets

4.1.1 Introductory Examples

In the following we will compare clustering results of GBCC with other methods such
as K-Means, DBSCAN, Spectral Clustering and HCA. The first two experiments have
been conducted on the Mixing Clusters dataset which was initially introduced in figure
9 and the Introductory dataset of figure 2. These have the advantage that they contain
only a few clusters which are also easy to perceive. In the view of the author K = 3
clusters constitute a reasonable assumption for both datasets and as a means to make the
results comparable we will force the algorithms to produce the desired number of clusters.
However one should keep in mind that this is not a fair comparison as algorithms such as
DBSCAN and Single Linkage will have difficulties with this restriction. The results of the
following experiments can be found on pages 67-77.

The experiment on the Mixing Clusters dataset is depicted in figure 21. The unclustered
data is given in figure 21a. The results of GBCC are depicted in figures 21b and c, where
the former also shows the underlying undirected 13-nearest neighbor graph as gray lines
and the allocation weights as red lines. Next to the latter is the K-Means result in
21d. In order to force DBSCAN (figure 21e) to produce three clusters the parameters
MinPts and Eps had to be adjusted manually. In this particular case the algorithm
also produces an additional noise cluster which is colored in black. DBSCAN cannot be
prevented from doing so since increasing the size of the data clusters causes them to merge
before the noise cluster disappears. Spectral clustering in figure 21f was conducted using
the normalized Laplacian Lrw of the same undirected 13-nearest neighbor graph. The
experiment concludes with the results of HCA using Ward’s Method in 21g and Single
Linkage in 21h.

Despite some minor differences the results in figures 21c-g look quite similar. In
fact K-Means and Spectral Clustering produce the same result. Contrary to that Single
Linkage shows one large cluster that contains all objects except for two singleton clusters.
This method tends to form many clusters of great size differences and therefore has
difficulties dealing with problems which are not well-separated.

The clustering of the Introductory dataset is depicted in figure 22 which was conducted
using the same course of action. The methods DBSCAN and Single Linkage provide the
expected result since both work well on connected clusters. Now the methods K-Means
and Ward’s Method clearly show that their variance-oriented clustering approach has
difficulties with the elongated clusters. At first glance the result of GBCC in figure 22c
surprises as the green cluster is not fully separated from the pink cluster. This phenomenon
can be explained by taking a closer look at the graph in figure 22b. As GBCC was forced
to optimize the number of clusters to K = 3 the center of the green cluster, which is
labeled with the number ‘2’, was placed in the far left corner. Since the growth of the
cluster can only happen along increasing edge weights the allocation weights become

53

larger and larger if one follows the red lines from the left to the right. At a certain point
the allocation weights are so ‘ill-conditioned’ that the pink cluster can advance in this
territory even though it has to cross the gap. Such behavior is definitely undesirable but
cannot be prevented if the number of clusters is set too low. In fact connected clusters are
rather problematic for GBCC as the distant tips are prone to conquering by a different
cluster.

On the other hand this problem also depends on the underlying graph structure.
Figure 23 depicts four clusterings of the Introductory dataset where different graphs have
been used as input for the algorithm. The Delaunay Triangulation in figures 23a-b clearly
shows that it is ill-suited for GBCC. Since this graph is constructed by forming triangles
which do not contain any other point within their circumcircle the neighborhood of a
vertex becomes very constrained. This makes the growth of the clusters difficult because
there are far less vertices that satisfy the gradient condition. In this particular case the
cluster originating form center ‘2’ can only partially allocate the underlying connected
cluster and the remaining vertices keep their 0-initialized cluster ID. Furthermore the
other two clusters both have vertices right inside of them that could not be allocated.

The kNN graph is not as limited in that regard which can be seen in figures 23c-h. In
these examples a directed kNN graph was used to show that making the graph undirected
has little advantage and only increases memory load. The 15-NN graph in figures 23c-d
still shows that the clusters have difficulties in allocating all vertices. With the 40-NN
graph in 23e-f we arrive at the same result as in figure 22c, where only a small number
of vertices is wrongly allocated. However as mentioned above this problem should not
be tackled by increasing the number of neighbors. A better solution is to allow a greater
number of clusters K as in figures 23g-h. GBCC is after all designed to move along a
distance gradient and relies on the competition between neighboring clusters.

4.1.2 Gradient-Separable Problems

Since GBCC is designed to solely work on distance gradients it is a well suited algorithm
to solve gradient-separable problems. An exemplary dataset of this kind is the Russian
Dolls dataset which was introduced in figure 10. As the clusters vary greatly in size the
clustering result of this dataset is separated into figures 24 and 25 where the former is a
global view and the latter a zoomed-in view of the dataset. The rectangle in figure 24a
indicates the zooming range of figure 25.

The underlying graph for this experiment is an undirected 15-nearest neighbor graph
depicted in figures 24b and 25b. The global view of the GBCC result in 24c already
shows the three clusters and the zoomed-in view in 25c reveals that the smallest cluster is
correctly separated from its larger neighbor. As could be expected the results of K-Means,
Ward’s Method and Single Linkage could not produce a satisfying result. Again the
variance-oriented approach of K-Means and Ward’s Method simply overlook the small
variations in density and do not find the third cluster. Single Linkage merges the smallest

54

cluster into its larger neighbor after the hierarchy level of K = 31 clusters. The result of
DBSCAN in figures 24e and 25e was produced by manually setting the parameters MinPts
and Eps. In this dataset it was not possible to force the number of clusters to K = 3 so
that the smallest cluster remains separated. The black cluster is the unclustered data
which DBSCAN defines as noise. So even though the result appears to show a satisfying
result it is not the case here. Spectral Clustering on the other hand identified all three
clusters with only minor errors with respect to the smallest cluster.

4.1.3 Combined Problems

Some strong points and some limits of the tested algorithms were already revealed by
the above experiments though so far the problems have been kept quite simple. We will
now expose the clustering algorithms to two multi-challenge datasets. Both problems
implement clusters of great size differences with both large and small complex structures.
By intention the datasets have been designed in a way that a ‘true’ clustering cannot be
determined even by human beings as cluster borders are rather ambiguous.

The clustering of the Complex dataset is depicted in figures 26 and 27 with the
rectangle in 26a indicating the data range of the zoomed-in view. In this dataset we
find a small complex structure in the lower left corner which is embedded within a large
noise-like structure. As mentioned above a fair comparison between clustering algorithms
cannot be obtained by forcing an equal number of clusters. DBSCAN and especially Single
Linkage have problems with these restriction as the experiments on the Mixing Clusters
and the Russian Dolls dataset confirmed. Therefore the goal of this clustering was to
produce a more or less equal amount of detail in the small complex structure without
giving any attention to the resulting number of clusters. This approach makes sense if
one considers the fact that in a real-world clustering the information that we want to find
might be hidden within larger structures. In that case the results show the difficulty of
selecting a number of clusters K so that the results are comparable on a certain level of
scale.

The underlying graph for GBCC is a directed 30-nearest neighbor graph. The desired
number of clusters for the optimization |K̂ −K| was set to K̂ = 20 using an interval of
[kmin, kmax] = [2, 30] and [qmin, qmax] = [1, 7]. The detected number of clusters amounts to
K = 13. As can be seen by taking a close look at figure 26b only two centers are placed
into the noise-like structure whereas the remaining centers accumulate in the complex
smaller structure. By comparing the global view to the zoomed-in view of figure 27b one
can see how GBCC reacts to noise. The gray cluster labeled with ‘1’ bypasses its violet
neighbor ‘2’ and grows into the sparsely populated space below. Since there is no other
center in that region which center ‘2’ has to compete with, it can grow freely until most
of the objects below the complex structure are allocated.

As expected the number of clusters has to be much higher for the variance-oriented
algorithms K-Means and Ward’s Method which was set for both to K = 21 and results

55

in almost the same number of clusters within the complex structure. In this dataset the
noise-rejection capability of DBSCAN clearly comes in handy if one interprets the large
structure as noise. Here its parameters were set to MinPts = 2 and Eps = 1.4. As Eps
imposes a global constraint on the inter-object distances it is not possible to cluster the
complex structure and the noise-like structure at the same time. In comparison to GBCC
Spectral Clustering treats the noise differently. Where GBCC detects the two centers
‘12’ and ‘13’ Spectral Clustering combines the entire region into one large cluster. Single
Linkage was set to a number of K = 133 clusters to produce a comparable result. As most
of the clusters are singletons it will be rather difficult to distinguish relevant information
from noise in a similar higher-dimensional clustering problem.

The next clustering was conducted on the Chemical dataset which is depicted in figures
28, 29, 30 and 31. This artificial structure was designed with the purpose to mimic certain
characteristics of HSIs. As spectral information often shows high correlation between
neighboring variables the individual chemical compounds tend to form lobe-like clusters.
If the intrinsic dimensionality of a dataset is not too high these features can be made
visible by projection methods such as principal component analysis (PCA). The structures
seen by the author in various of these plots provided the inspiration for this dataset.

As the scale differences of the clusters are again very high the results are partitioned
into three zooming ranges which are denoted by the rectangles in figure 28a. The numbers
1, 2 and 3 correspond to the figures 29, 30 and 31.

The clustering was conducted on a directed 15-nearest neighbor graph. The settings
for the optimization |K̂ −K| were set to K̂ = 20 using an interval of [kmin, kmax] = [2, 15]
and [qmin, qmax] = [1, 7]. The resulting number of clusters here amounts to K = 16. In
this case the goal of the clustering was to achieve a more balanced result between large
and small features since the size differences are more gradual. Similar to the results of the
Complex dataset the number of clusters for the variance-oriented methods K-Means and
Ward’s Method are much higher. Single Linkage again suffers from the varying densities
in data distribution and produces a large number of singleton clusters. The parameters of
DBSCAN were set to MinPts = 3 and Eps = 2. In this case the global constraint imposed
by Eps becomes a problem because the lobe-shaped clusters that extend to the left of the
data structure could constitute relevant chemical information.

With respect to density-separability there are two interesting data ranges to be found
in figures 29b and 30b. Clusters ‘13’ and ‘12’ are both dense clusters that are embedded
in an otherwise sparse region. These two situations are similar to the density-separable
problem as defined by Zahn (1971). If one remembers that GBCC allocates the vertices
by moving along increasing edge weights this result should not be possible because a
path that extends from the dense region into the sparse region will allow a growth in this
direction and therefore parts of the sparse clusters would be allocated. The explanation for
this phenomenon lies in the underlying 15-nearest neighbor graph. kNN graphs have the
special property that if the number of neighbors k is sufficiently small the k-neighborhood

56

is limited to other members of the cluster and does not extend beyond its borders. In
the case of density-separated problems the vertices of the sparse regions will therefore
be connected to the dense cluster but not vice versa. This means that the dense cluster
allocates its vertices without any knowledge of the sparse cluster whereas the vertices of
the sparse cluster cannot conquer the dense regions as their allocation weights are too
large. It is noteworthy that also Spectral Clustering partially recognized cluster ‘12’.

Another example where both GBCC and Spectral Clustering produced comparable
results is figure 31. Here both algorithms identified the two microscopic clusters which are
located inside rectangle 3. If one also considers figures 25c and 25f as well as 27c and 27f
with their respective number of clusters K the results indicate that GBCC and Spectral
Clustering behave similarly under problems where clusters have great size and density
differences.

4.2 Hyperspectral Images

From the viewpoint of a human being HSIs are huge compared to other types of images.
Even though their spatial resolution tends to be much smaller than common digital
photos the hints and clues one is trying to find to confirm a hypothesis are scattered
across a multitude of layers. Despite this difficulties HSIs offer a great advantage over
other high-dimensional data when comparing multivariate algorithms. As each object
also has a corresponding pixel coordinate the labels obtained by a clustering algorithm
can be used to construct a segmented image where each color corresponds to a certain
class or cluster. As the human perception has evolved to quickly recognize shapes by
color contrast comparing different cluster images thus becomes a much easier task than
comparing tabular results.

For the following experiments two different HSIs have been selected. The Coffee
Beans dataset (Parrag et al., 2014) is an UV/VIS/NIR image of a mixture of roasted
and green coffee beans as well as stones. From the viewpoint of process engineering
similar data might be used to control a sorting machine in order to separate the three
constituents through a classification engine. The Microplastic dataset (Löder, 2017) is an
IR image of a mixture of plastic particles and a variety of organic materials. This dataset
has been selected for its complex chemical composition and the occurrence of mixture
effects between neighboring pixels. The data was obtained by measuring a filter cake that
contains various particles that occur in rivers and lakes.

Both datasets represent challenging problems. However before we can go into the
details of the individual experiments there are some issues to consider when dealing with
HSIs which arise from the high dimensionality.

57

4.2.1 The Curse of Dimensionality

Consider an HSI that is made up of d layers and has a lateral resolution of w × h pixels.
This corresponds to a d-dimensional data space which is filled with w × h objects. A
typical property of such high-dimensional spaces is that they are literally empty of data.
This phenomenon can be explained by the following example: Let X be a sample of n
objects that are evenly distributed along a one-dimensional data space in the unit interval
[0, 1]. In order to get an interval which contains only 10% of our data we simply have
to choose [0, a] where a = 0.1. If we move into a two-dimensional data space the unit
interval becomes a unit rectangle. Assuming that we still have the same number of n
evenly distributed objects we now have to choose a =

√
0.1 which in this case is the edge

length of a smaller rectangle within the unit space. For a three-dimensional space the
edge length of the corresponding cube would be a = 3

√
0.1 and for a d-dimensional space

a = d
√

0.1. Thus a converges towards 1 with increasing d.
This phenomenon is called the Curse of Dimensionality (Bellman, 1961) which indeed

can be very problematic for machine learning methods such as clustering and classification.
The sparsity of the data also has effects on the kNN graph which we rely upon for
GBCC and Spectral Clustering. Radovanović et al. (2010) found that with increasing
dimensionality the indegree distribution becomes skewed to the right. The indegree of a
vertex vi is the number of edges eji. Respectively, the outdegree is defined as the number
of edges eij which for kNN is obviously k. A skewness to the right therefore means that
the graph tends to contain hubs where many vertices point towards a few which in turn
only have k neighbors. This phenomenon is thus referred to as hubness.

As GBCC has undergone only little testing so far it is difficult to predict how hubness
affects the clustering of the graph. However it can be assumed that certain vertices will
thus play a strategic role for the growth of the clusters as the conqueror of such a hub
will also allocate all other vertices that lie along paths of increasing distances similar to
the example in figure 18c.

4.2.2 Spectral Descriptors

One way to cope with the effects of the Curse of Dimensionality is to reduce the di-
mensionality of the dataset X . An obvious way to do this is to simply resample the
spectra to a lower resolution. A drawback of this approach is that all variables are treated
equally regardless of whether they contain relevant information or not. Furthermore
the resampling factor would have to be very high because a reduction from 1000 to 500
variables still produces a high-dimensional space.

Another approach is to use mathematical functions that combine multiple spectral
features into one descriptive variable. With respect to chemical data these functions are
called spectral descriptors (Lohninger and Ofner, 2014). A selection of two descriptors
is given in figures 20a and 20b. The former is the area between a peak and a baseline.

58

(a) ABL-Descriptor (b) TC-Descriptor

Figure 20: Spectral Descriptors are a means to reduce the dimensionality as well as the
noise of the data. If chosen correctly the features of a complex chemical spectrum can
be represented by only a handful of these descriptors. (Epina ImageLab Documentation,
2018)

By using this spectral descriptor all features between the baseline reference points b1
and b2 are represented by the resulting area. The latter is computed from the Pearson
product-moment correlation coefficient of the template triangle which is defined by the
points b1 and b2 as well as the peak position a1. The resulting value is then multiplied
by the area between b1 and b2.

There are many other possibilities to construct spectral descriptors. Some examples
are:

• the raw intensity of a certain feature

• the ratio of two intensities

• the ratio of two peak areas

• the centroid of the spectral line between two boundaries

Spectral descriptors can also be applied to the first and second derivative of the spectrum.
By applying different types to key distinctive features one can thus construct a set of
descriptors that can be used to replace the raw data. Despite their ability to greatly
reduce the dimensionality they also tend to reduce noise and improve the structure of
the data. This impacts the performance of many chemometric techniques in a positive
way since the data now contains much more specific information. A drawback of spectral
descriptors is that the design of a descriptive set for a complex dataset is time-intensive
and there is also the danger that certain spectral features might be overlooked in that
process.

4.2.3 Overview of the Experiments

The experiments on the Coffee Beans and Microplastic datasets were both conducted with
different goals and objectives in mind. The original Coffee Beans dataset was spatially

59

downsampled by a factor of two to arrive at a resolution of 160× 180 pixels. The spectral
resolution was kept at the original 155 sampling points. The goal behind this clustering
was to study the effects of high-dimensionality. Before these test were made it was
not even clear whether GBCC would produce any usable result under such demanding
circumstances. The optimization parameter K̂ was set to 7 assuming 3 clusters for roasted
beans, green beans and stones as well as 4 clusters for other compounds.

The goal behind the clustering of the Microplastic datasets was to detect polymer
particles of polystyrene (PS), polyacrylonitrile (PAN), polypropylene (PP) and poly-
methylmethacrylate (PMMA) which are embedded in a complex matrix of bio-organic
and inorganic particles. As these microplastic particles only occur in small abundances
and are difficult to distinguish from other compounds in the 609-dimensional data space
a set of 23 spectral descriptors was designed to specifically detect these four polymers.
Table 4 lists the used types and their respective parameters. Because of the high spatial
resolution of 276× 295 pixels an additional smaller range of 150× 150 pixels was extracted
from the dataset for an independent test. For both ranges K̂ = 12 was assumed for the
four polymers as well as 8 other organic and inorganic substances.

From the clusterings of the two-dimensional datasets which were presented in section 4.1
and other tests on smaller downsampled HSIs it was already known that the optimization
procedure for determining the centers is the time-critical part. In order to reduce
computational time the range of the order of neighborhood was set to [qmin, qmax] = [1, 3].
The range for computing the vertex weight was kept at [kmin, kmax] = [2, k], where k
denotes the number of neighbors of the underlying kNN graph.

With respect to the graph types it was assumed that k should be kept low so that
the center optimization as well as the clustering step does not have to deal with too
many neighbors. It was therefore set to k = 15 and k = 30 respectively. The full range
Microplastic dataset only featured the 30-NN graph due to the increased computational
cost. In addition both directed and undirected kNN graphs were computed for each
dataset. Regarding the choice of k one should keep in mind that this results in very
sparsely connected graphs. For images of a comparable spatial resolution this means that
a vertex is connected to only 0.1% to 0.01% of the data. Contrary to that the 15-nearest
neighbor graph of the Chemical dataset connected each vertex to 2.9% of the data. On the
one hand this might seriously impact the center optimization and therefore the number of
clusters. On the other hand it is not clear whether a ‘good’ result can be attributed to
the clustering capabilities of GBCC or is mainly caused by the clustering tendencies of
kNN graphs.

The experiments were conducted by first clustering the directed kNN graphs which
took approximately 10 hours in total to finish. From that it was concluded that the
clustering of the undirected kNN graphs should be feasible within an acceptable amount
of time. The second run then took about 20 hours to complete. As expected the center
optimization required about 80% of the total computational time and thus forms the

60

Table 4: Spectral Descriptors for the Microplastic dataset. A description of each type of
descriptor can be found in the Epina ImageLab Documentaion (2018).

Name Type Range Baseline #Nb. Derivative Comment
DC0001 RBL 1450/1373 1489. . . 1315 1 0 PAN/PMMA
DC0002 TC 1739 1824. . . 1674 1 0 PMMA
DC0003 TC 2245 2287. . . 2191 1 0 PAN
DC0004 TC 1732 1782. . . 1658 1 0 PMMA
DC0005 TC 2947 3105. . . 2804 1 0 PMMA/PP
DC0006 RBL 1450/1388 1527. . . 1334 1 0 PMMA/PAN/PP
DC0007 TC 2923 2970. . . 2869 1 0 PS
DC0008 TC 3028 3128. . . 2981 1 0 PS
DC0009 TC 1601 1624. . . 1562 1 0 PS
DC0010 RBL 2958/2877 3024. . . 2754 1 0 PP/PMMA
DC0011 ABL 3012. . . 2754 1 0 PP
DC0012 TC 1458 1493. . . 1396 1 0 PP/PMMA
DC0013 TC 1377 1392. . . 1350 1 0 PP/PAN
DC0014 TC 1751 1790. . . 1728 1 1 PMMA/PAN
DC0015 TCI 1701 1655. . . 1728 1 1 PMMA
DC0016 TC 1493 1473. . . 1520 1 1 PMMA
DC0017 TC 2252 2276. . . 2245 1 1 PAN
DC0018 TCI 2233 2245. . . 2210 1 1 PAN
DC0019 TC 1462 1481. . . 1450 1 1 PAN/PS
DC0020 TC 1612 1635. . . 1597 1 1 PS
DC0021 TC 1462 1481. . . 1439 1 1 PS/PAN
DC0022 TCI 2947 2958. . . 2935 1 1 PP
DC0023 TC 1385 1400. . . 1373 1 1 PP/PS/PAN

bottleneck of the clustering method.

Table 5 summarizes the results of the clusterings of all three datasets which highlights
some interesting relations between the selected parameters. Microplastic A here refers to
the extracted range and Microplastic B to the full image. If one compares the yielded
number of clusters K to the corresponding graph type a larger degree of connectivity
seems to positively impact the center optimization. The rightmost column gives the
percentage of vertices that were not assigned to a cluster but remained in the free state.
Apparently this amount also seems to decrease with increased connectivity.

Only the directed 30-NN graph of the Microplastic B dataset yielded the desired
number of clusters. This might be due to the restricted range of the order of neighborhood
q. Here it seems that a maximum of 3 is simply too low for images of that size. As the
number of clusters of most of the experiments is much too high to be visualized as a
segmented image only a selection of the results will be presented in the following section.

61

Table 5: Summary of the Experiments on Hyperspectral Images

Dataset Resolution n d Graph K̂ K free [%]
Coffee Beans (160× 180) 28800 155 15-NN 7 79 13.2

30-NN 33 8.3
undir. 15-NN 52 0.2
undir. 30-NN 26 0

Microplastic A (150× 150) 22500 23 15-NN 12 125 13.8
30-NN 41 4.7
undir. 15-NN 41 3.7
undir. 30-NN 12 0.4

Microplastic B (276× 295) 81420 23 30-NN 12 259 5.6
undir. 30-NN 38 4.1

4.2.4 Selected Findings

The figures that are referenced in this section can be found on pages 78-86. The clustering
of the undirected 30-NN graph of the Coffee Beans dataset is summarized in figure 32.
The segmented image obtained by GBCC is depicted in figure 32a which is compared
to the K-Means algorithm in 32b. Regarding the comparability of the two images one
should keep in mind that K-Means was set to yield 8 clusters which is less than a third of
what GBCC yielded. Furthermore it is difficult for the human perception to distinguish
between 26 different color shades. For example only three of the five lime green clusters
actually represent roasted coffee beans.

Nonetheless the two cluster images reveal some notable aspects of GBCC in comparison
with K-Means. A rather striking spatial feature is the vertical stripe that was caused
by damaged pixels in the spectroscopic detector. GBCC segmented the stripe into two
clusters whereas K-Means did not detect it at all. Spectral samples of the clusters at
spots 1 and 3 are given in figure 32c and 32e were the spike in the affected layer is clearly
visible.

Another important difference between the two algorithms is that GBCC separated
the roasted and green coffee beans as well as the stones whereas K-Means combined the
stones with the roasted beans into one cluster. Here spot 2 represents a spectrum of a
stone, spot 4 a roasted and spot 6 a green coffee bean. The respective figures are 32d, 32f
and 32h. This result can be interpreted in two different ways. On the one hand it could
mean that K-Means has more difficulties operating in the 155-dimensional data space
than GBCC. On the other hand it could mean that for K-Means K = 8 is simply not
sufficiently high enough to also separate the stones from the roasted beans.

A more in-depth discussion will now follow on the results of the Microplastic datasets.
Figure 33 summarizes the clustering of the undirected 30-NN graph of the Microplastic A
dataset which yielded the desired 12 clusters. To get a better impression about what

62

structures the clustering algorithms have to deal with a PCA plot of the first two principal
components is given in 33c. One should keep in mind that PCA tends to reduce noise in
the data and that the situation in the 23-dimensional data space is much more complex
than it appears in the plot. There are five regions that can be distinguished in that figure.
Each lobe that protrudes from the dense cloud at the origin represents one of the four
polymers PS, PAN, PP and PMMA. Because of the use of the aforementioned spectral
descriptors all other bio-organic and inorganic particles form the dense mass of data points
at the origin.

The clustering results of GBCC and K-Means are depicted in figures 33a and 33b.
Spots 1 to 4 reference spectral samples of the polymers PP, PS, PMMA and PAN which
can be found in figures 33g-j. If one disregards the exact cluster affiliation of each pixel
an overall assessment of the two algorithms shows that both detected the same spatial
features. However if one takes a closer look at the detected particles there are some
differences to be noted. For one GBCC assigned clusters 3, 5 and 9 to pixels which mostly
contain one of the polymers where K-Means assigned clusters 6, 7, 8, 9, 10, 11 and 12. All
remaining clusters were assigned to structures of the background. This discrepancy can
be explained if one compares this clustering problem to the Chemical dataset in figure 28.
As the center optimization is designed to be invariant to size differences of clusters it gives
less weight to the lobes than K-Means and thus also focuses on the denser structures
closer to the origin.

From these circumstances there now arises the question whether GBCC actually
identified the polymers by placing centers into the lobes. Figures 33l-w which depict
spectral samples of the centers give a surprising but yet not unexpected result. Of the
12 centers only centers 3 and 9 represent the polymer PAN whereas all other polymers
were not detected. The remaining centers are thus situated in the dense cloud close to
the origin. Why only PAN was detected can be explained by comparing the data density
within each of the four lobes in the PCA plot. Here PAN clearly forms the densest cluster
followed by PMMA, PS and finally PP.

To get a better impression how the density of the polymer clusters relate to the cloud
at the origin three of GBCC’s internal parameters have been visualized in figures 33d-f.
The vertex weight was computed from the average distance to the 30-nearest neighbors.
This illustration confirms that the PAN spectra form a very dense cluster in relation to
the other polymers if one compares spots 1 to 4. Especially PP which is indicated by spot
1 seems to be very sparse. Figure 33d also shows various other dark spots representing
dense clusters at the origin which explains why GBCC did not detect the other polymers.
Similar conclusions can be drawn from the visualizations in figures 33e and 33f. The former
illustrates the final allocation weight of each vertex after GBCC finished its clustering
step. Here the allocation weights of PAN and of many of the background pixels are much
lower than those of the other polymers. The latter is the summation of all allocation
weights if one follows an allocation path from the center to a specific vertex. As the spots

63

1 to 3 are barely recognizable this too indicates the sparsity of these clusters.
If only PAN was recognized by the center optimization one might ask why the other

polymers were clustered at all. The answer can be found by closely comparing the spectral
samples in figures 33l-w to the cluster image in figure 33a. Centers 3 and 9 are both PAN
spectra but because of the lack of centers in the two neighboring lobes they were able
to advance into the domain of the PS and PP spectra. Center 5 which mainly clustered
the PMMA lobe also competed against center 3 in the PP lobe. This explains why the
particle indicated by spot 1 is made up of clusters 3 and 5 and why the PAN fibers which
are mainly covered by cluster 3 also show labels of cluster 9.

From a mere spectroscopic point of view one might argue that GBCC failed to produce
a valid clustering result for the Microplastic A dataset. However in this case one makes the
same wrong assumptions that have been discussed in section 2.6 regarding the evaluation
using benchmark datasets. Even though all centers except 3 and 9 can be considered as
noise or ‘useless’ information they could also constitute an invaluable discovery if one
is following a different objective. Furthermore the center optimization is designed to
detect dense clusters of varying sizes and using K̂ = 12 was simply too strict under these
circumstances. This can be shown by assessing the centers of the other experiments. The
clustering result of the Microplastic B dataset is given in figure 35a along with a selection
of the 38 centers given in figures 35b-h. Here the center optimization detected PMMA in
figures 35b and 35h, PAN in figures 35c, 35d, 35e and 35f, and PS in figure 35g.

Finally there remains cluster 11 in figure 33a which in the author’s view shows the
true potential of GBCC as a scale-invariant clustering method. This cluster is an artifact
of the measurement process where a fluctuation in the flushing gas caused the appearance
of a prominent negative CO2 peak which can be seen in figure 33v. This feature was
detected because of spectral descriptor DC0009 which is designed to detect a certain peak
at 1601 cm−1 in the PS spectrum. As the pixels in the fluctuation zone also exhibit a
peak in that range which seems to correlate with the fluctuation in the gas current the
descriptor causes them to form a dense cluster inside of the cloud at the origin. Even
though this cluster contains many pixels and thus covers a large portion of the clustered
image it remains hidden if one tries to find it using PCA or K-Means. This cluster is also
visible in figure 34 which shows the result of the directed 30-nearest neighbor graph and
figure 35a.

4.3 Conclusions

Visual assessment of the experiments on the 2D artificial datasets revealed how GBCC
relates to other established clustering algorithms. It seems that of the five other methods
Spectral Clustering produces clusters of comparable shapes and like GBCC it can deal
with great size and density differences. Furthermore the comparisons also revealed that
both K-Means and Ward’s Method as well as DBSCAN and Single Linkage seem to

64

behave in a similar way. In the latter case the similarity of Single Linkage to DBSCAN
only becomes evident if one considers the singleton clusters as noise or unclustered data.

The experiments on HSIs showed that GBCC can also cope with structures in high-
dimensional data spaces. Some of the conclusions drawn from these results indicate a
behavior similar to the results obtained from the 2D artificial datasets. Regarding the
underlying kNN graphs that were used to represent the neighborhood relations in the
spectral data it could be shown that an increase in connectivity positively affects the
center optimization as well as the clustering step of GBCC.

Even though the experiments show some characteristics of GBCC they should be
considered as preliminary steps rather than a full evaluation. The leap from 2D artificial
datasets to high-dimensional HSIs revealed some algorithmic as well as computational
issues that will be discussed in the following:

In the current implementation GBCC can be considered a computationally intensive
algorithm. Especially the center optimization is a hindrance for its application as an
exploratory data analysis tool. Here it should be noted that even though the optimization
is parallelized it still uses a ‘brute force’ approach to optimize the number of centers to
the desired number of clusters. A binary search for the optimal parameters might be an
easier way to achieve the same result in far less time.

The sparse matrix used to represent the graph also plays a key role when it comes to
speeding up the method. Even though this data structure can store large graphs using
only little memory it is nonetheless expensive in computational terms. This is due to the
way values at certain indices are stored. If one wants to access the value wij the address
in memory is determined by a search for that indices which can be a time-consuming
process. Contrary to that an array-based data structure enables us to calculate the
memory address directly. The use of Matlab’s sparse matrix implementation which is
based on the compressed sparse column format enabled GBCC to run on any graph that
can be described through a weighted adjacency matrix. Now that it has become clear
that GBCC performs well on kNN graphs the center optimization as well as the clustering
step might speed up significantly by using a simpler and less general data structure that
is optimized for these types of graphs. In the light of these considerations it might be
interesting to study whether increasing the connectivity in high-dimensional data might
not be easier achieved by increasing the number of neighbors k rather than by making
the kNN graph undirected. This way the data structure needed to describe a kNN graph
could be kept quite simple and memory addresses could be calculated directly.

Regarding the center determination the experiments revealed that GBCC is heavily
dependent on the positioning of these starting points. The clustering step needs the
presence of other competing clusters to correctly determine boundaries and a lack of
such can allow it to move against distance gradients. Therefore further energy should be
directed toward the development of the optimization procedure and investigating different
approaches how dense areas can be detected in high-dimensional data spaces. One idea

65

that was inspired by the findings of Radovanović et al. (2010) regarding hubness of kNN
graphs is to use the indegree of a vertex instead of the vertex weight to determine suitable
center candidates.

In the view of the author this thesis shows that conducting a clustering on an unknown
dataset requires substantial knowledge about the characteristic of the applied method in
order to correctly interpret the found clusters. If one remembers the different clustering
problems that were discussed in section 2.4 a usable result might be obtained easier by
comparing results of two or more antithetic methods rather than by selecting the algorithm
which is deemed as the best for the assumed underlying data structure. In that regard
GBCC proofs to be a valuable contribution because of its scale-invariant nature and its
ability to solve gradient-separable problems.

66

2 4 6 8 10 12 14 16

2

4

6

8

10

12

(a) unclustered (b) GBCC with graph

2 4 6 8 10 12 14 16

2

4

6

8

10

12

(c) GBCC

2 4 6 8 10 12 14 16

2

4

6

8

10

12

(d) K-Means

2 4 6 8 10 12 14 16

2

4

6

8

10

12

(e) DBSCAN

2 4 6 8 10 12 14 16

2

4

6

8

10

12

(f) Spectral Clustering

2 4 6 8 10 12 14 16

2

4

6

8

10

12

(g) Ward’s method

2 4 6 8 10 12 14 16

2

4

6

8

10

12

(h) Single Linkage

Figure 21: Clustering of the Mixing Clusters dataset forcing K = 3 clusters.

67

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

(a) unclustered (b) GBCC with graph

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

(c) GBCC

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

(d) K-Means

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

(e) DBSCAN

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

(f) Spectral Clustering

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

(g) Ward’s method

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

(h) Single Linkage

Figure 22: Clustering of the Introductory dataset forcing K = 3 clusters.

68

(a) DT(X)

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

(b) GBCC of DT(X)

(c) 15-NN graph

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

(d) GBCC of 15-NN

(e) 40-NN graph

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

(f) GBCC of 40-NN

(g) 40-NN forcing K = 4

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

(h) GBCC of forcing K = 4

Figure 23: Graph dependency of GBCC.

69

0 2 4 6 8 10 12 14 16 18

-2

0

2

4

6

8

10

12

(a) unclustered (b) GBCC with graph

0 2 4 6 8 10 12 14 16 18

-2

0

2

4

6

8

10

12

(c) GBCC

0 2 4 6 8 10 12 14 16 18

-2

0

2

4

6

8

10

12

(d) K-Means

0 2 4 6 8 10 12 14 16 18

-2

0

2

4

6

8

10

12

(e) DBSCAN

0 2 4 6 8 10 12 14 16 18

-2

0

2

4

6

8

10

12

(f) Spectral Clustering

0 2 4 6 8 10 12 14 16 18

-2

0

2

4

6

8

10

12

(g) Ward’s method

0 2 4 6 8 10 12 14 16 18

-2

0

2

4

6

8

10

12

(h) Single Linkage

Figure 24: Clustering of the Russian Dolls dataset forcing K = 3 clusters. The range
denoted by the rectangle in (a) corresponds to the zoomed-in view in figure 25.

70

10.25 10.3 10.35 10.4 10.45 10.5 10.55 10.6 10.65 10.7

5.4

5.45

5.5

5.55

5.6

5.65

5.7

5.75

(a) unclustered (b) GBCC with graph

10.25 10.3 10.35 10.4 10.45 10.5 10.55 10.6 10.65 10.7

5.4

5.45

5.5

5.55

5.6

5.65

5.7

5.75

(c) GBCC

10.25 10.3 10.35 10.4 10.45 10.5 10.55 10.6 10.65 10.7

5.4

5.45

5.5

5.55

5.6

5.65

5.7

5.75

(d) K-Means

10.25 10.3 10.35 10.4 10.45 10.5 10.55 10.6 10.65 10.7

5.4

5.45

5.5

5.55

5.6

5.65

5.7

5.75

(e) DBSCAN

10.25 10.3 10.35 10.4 10.45 10.5 10.55 10.6 10.65 10.7

5.4

5.45

5.5

5.55

5.6

5.65

5.7

5.75

(f) Spectral Clustering

10.25 10.3 10.35 10.4 10.45 10.5 10.55 10.6 10.65 10.7

5.4

5.45

5.5

5.55

5.6

5.65

5.7

5.75

(g) Ward’s method

10.25 10.3 10.35 10.4 10.45 10.5 10.55 10.6 10.65 10.7

5.4

5.45

5.5

5.55

5.6

5.65

5.7

5.75

(h) Single Linkage

Figure 25: Zoomed-in Clustering of the Russian Dolls dataset forcing K = 3 clusters. The
depicted range corresponds to the zooming rectangle in figure 24a.

71

-50 0 50 100

-50

0

50

100

(a) unclustered (b) GBCC with graph

-50 0 50 100

-50

0

50

100

(c) GBCC yielding K = 13

-50 0 50 100

-50

0

50

100

(d) K-Means yielding K = 21

-50 0 50 100

-50

0

50

100

(e) DBSCAN yielding K = 16

-50 0 50 100

-50

0

50

100

(f) Spectral Clustering yielding K = 14

-50 0 50 100

-50

0

50

100

(g) Ward’s Method yielding K = 21

-50 0 50 100

-50

0

50

100

(h) Single Linkage yielding K = 133

Figure 26: Clustering of the Complex dataset. The range denoted by the rectangle in
(a) corresponds to the zoomed-in view in figure 27. In this clustering example the goal
was to achieve an approximately equal amount of clusters in the complex structure in the
lower left corner of the dataset.

72

-25 -20 -15 -10 -5 0 5 10 15 20

-20

-10

0

10

20

30

(a) unclustered (b) GBCC with graph

-25 -20 -15 -10 -5 0 5 10 15 20

-20

-10

0

10

20

30

(c) GBCC yielding K = 13

-25 -20 -15 -10 -5 0 5 10 15 20

-20

-10

0

10

20

30

(d) K-Means yielding K = 21

-25 -20 -15 -10 -5 0 5 10 15 20

-20

-10

0

10

20

30

(e) DBSCAN yielding K = 16

-25 -20 -15 -10 -5 0 5 10 15 20

-20

-10

0

10

20

30

(f) Spectral Clustering yielding K = 14

-25 -20 -15 -10 -5 0 5 10 15 20

-20

-10

0

10

20

30

(g) Ward’s Method yielding K = 21

-25 -20 -15 -10 -5 0 5 10 15 20

-20

-10

0

10

20

30

(h) Single Linkage yielding K = 133

Figure 27: Zoomed-in Clustering of the Complex dataset. The depicted range corresponds
to the zooming rectangle in figure 26a.

73

-80 -60 -40 -20 0 20 40

-50

-40

-30

-20

-10

0

10

20

30

40

50

1

2

3

(a) unclustered (b) GBCC with graph

-80 -60 -40 -20 0 20 40

-50

-40

-30

-20

-10

0

10

20

30

40

50

(c) GBCC yielding K = 16

-80 -60 -40 -20 0 20 40

-50

-40

-30

-20

-10

0

10

20

30

40

50

(d) K-Means yielding K = 20

-80 -60 -40 -20 0 20 40

-50

-40

-30

-20

-10

0

10

20

30

40

50

(e) DBSCAN yielding K = 10

-80 -60 -40 -20 0 20 40

-50

-40

-30

-20

-10

0

10

20

30

40

50

(f) Spectral Clustering yielding K = 16

-80 -60 -40 -20 0 20 40

-50

-40

-30

-20

-10

0

10

20

30

40

50

(g) Ward’s Method yielding K = 24

-80 -60 -40 -20 0 20 40

-50

-40

-30

-20

-10

0

10

20

30

40

50

(h) Single Linkage yielding K = 80

Figure 28: Clustering of the Chemical dataset. The ranges denoted by the rectangles 1, 2
and 3 in (a) correspond to the zoomed-in views in figures 29, 30 and 31.

74

10 11 12 13 14 15 16

23

24

25

26

27

28

29

30

(a) unclustered (b) GBCC with graph

10 11 12 13 14 15 16

23

24

25

26

27

28

29

30

(c) GBCC

Figure 29: Zoom 1 of the Chemical dataset. This data range corresponds to rectangle 1
in figure 28a. GBCC was the only algorithm that could detect this cluster.

75

-6 -4 -2 0 2 4 6 8 10

-6

-4

-2

0

2

4

6

8

10

12

(a) unclustered (b) GBCC with graph

-6 -4 -2 0 2 4 6 8 10

-6

-4

-2

0

2

4

6

8

10

12

(c) GBCC yielding K = 16

-6 -4 -2 0 2 4 6 8 10

-6

-4

-2

0

2

4

6

8

10

12

(d) K-Means yielding K = 20

-6 -4 -2 0 2 4 6 8 10

-6

-4

-2

0

2

4

6

8

10

12

(e) DBSCAN yielding K = 10

-6 -4 -2 0 2 4 6 8 10

-6

-4

-2

0

2

4

6

8

10

12

(f) Spectral Clustering yielding K = 16

-6 -4 -2 0 2 4 6 8 10

-6

-4

-2

0

2

4

6

8

10

12

(g) Ward’s Method yielding K = 24

-6 -4 -2 0 2 4 6 8 10

-6

-4

-2

0

2

4

6

8

10

12

(h) Single Linkage yielding K = 80

Figure 30: Zoom 2 the Chemical dataset. This data range corresponds to rectangle 2 in
figure 28a.

76

-0.05 0 0.05

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(a) unclustered (b) GBCC with graph

-0.05 0 0.05

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(c) GBCC

-0.05 0 0.05

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

(d) Spectral Clustering

Figure 31: Zoom 3 of the Chemical dataset. This data range corresponds to rectangle 3
in figure 28a. GBCC and Spectral Clustering were the only algorithms that could detect
these two clusters.

77

(a) GBCC (b) K-Means

(c) Spot 1 (d) Spot 2

(e) Spot 3 (f) Spot 4

(g) Spot 5 (h) Spot 6

Figure 32: Clustering of the Coffee Beans dataset.

78

(a) GBCC (b) K-Means

Figure 33: Clustering of the Microplastic A dataset.

79

(c) PCA (d) Vertex weight

Figure 33: PCA and vertex weight of the Microplastic A dataset.

80

(e) Allocation weight (f) Allocation path length

Figure 33: Allocation weight and allocation path length of the Microplastic A dataset.

81

(g) Spot 1 (h) Spot 2

(i) Spot 3 (j) Spot 4

(k) Spot 5

Figure 33: Spots of the Microplastic A dataset.

82

15002000250030003500

IR-Spectrum [cm -1]

0.2

0.4

0.6

0.8

1

1.2

1.4

(l) Center 1

15002000250030003500

IR-Spectrum [cm -1]

0.3

0.4

0.5

0.6

(m) Center 2

15002000250030003500

IR-Spectrum [cm -1]

0.5

0.6

0.7

0.8

0.9

(n) Center 3

15002000250030003500

IR-Spectrum [cm -1]

0.6

0.8

1

1.2

1.4

1.6

1.8

(o) Center 4

15002000250030003500

IR-Spectrum [cm -1]

0.6

0.8

1

1.2

1.4

1.6

1.8

(p) Center 5

15002000250030003500

IR-Spectrum [cm -1]

0.25

0.3

0.35

0.4

0.45

(q) Center 6

15002000250030003500

IR-Spectrum [cm -1]

0.3

0.4

0.5

0.6

0.7

(r) Center 7

15002000250030003500

IR-Spectrum [cm -1]

-0.06

-0.04

-0.02

0

0.02

(s) Center 8

15002000250030003500

IR-Spectrum [cm -1]

0.4

0.5

0.6

0.7

0.8

(t) Center 9

15002000250030003500

IR-Spectrum [cm -1]

0.5

0.6

0.7

0.8

0.9

1

(u) Center 10

15002000250030003500

IR-Spectrum [cm -1]

-0.15

-0.1

-0.05

0

0.05

0.1

(v) Center 11

15002000250030003500

IR-Spectrum [cm -1]

0.3

0.4

0.5

0.6

0.7

(w) Center 12

Figure 33: Centers of the Microplastic A dataset.

83

Figure 34: Result of the directed 30-nearest neighbor graph of the Microplastic A dataset.
Due to the large number of clusters the boundaries are less well-pronounced though the
PAN fibres and PS particles can still be distinguished from the background. Because the
connectivity is less than in an undirected kNN graph 4.7% of the data remain unclustered
as indicated by the black cluster 0.

84

(a) GBCC

Figure 35: Result of the full-range clustering of the Microplastic B dataset. Despite the
large number of clusters particle boundaries can still be distinguished from the background.

85

15002000250030003500

IR-Spectrum [cm -1]

0.6

0.7

0.8

0.9

1

(b) Center 1

15002000250030003500

IR-Spectrum [cm -1]

0.35

0.4

0.45

0.5

0.55

0.6

(c) Center 4

15002000250030003500

IR-Spectrum [cm -1]

0.5

0.6

0.7

0.8

(d) Center 11

15002000250030003500

IR-Spectrum [cm -1]

0.5

0.6

0.7

0.8

0.9

(e) Center 15

15002000250030003500

IR-Spectrum [cm -1]

0.5

0.6

0.7

0.8

(f) Center 20

15002000250030003500

IR-Spectrum [cm -1]

0.6

0.8

1

1.2

(g) Center 23

15002000250030003500

IR-Spectrum [cm -1]

0.6

0.8

1

1.2

1.4

(h) Center 37

Figure 35: Centers of the Microplastic B dataset.

86

Bibliography
C. T. Zahn, “Graph-theoretical methods for detecting and describing gestalt clusters,” IEEE

Transactions on computers, vol. 100, no. 1, pp. 68–86, 1971.

J. Handl and J. Knowles, “An evolutionary approach to multiobjective clustering,” IEEE
transactions on Evolutionary Computation, vol. 11, no. 1, pp. 56–76, 2007.

K. Bakeev, Process Analytical Technology: Spectroscopic Tools and Implementation Strategies
for the Chemical and Pharmaceutical Industries. John Wiley & Sons, 2010.

A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM computing surveys
(CSUR), vol. 31, no. 3, pp. 264–323, 1999.

R. Xu and D. Wunsch, “Survey of clustering algorithms,” Neural Networks, IEEE Transactions
on, vol. 16, no. 3, pp. 645–678, 2005.

“Merrian-webster online dictionary,” 2017. [Online]. Available: https://www.merriam-webster.
com/dictionary/cluster%20analysis

U. Von Luxburg, R. C. Williamson, and I. Guyon, “Clustering: Science or art?” in Proceedings
of ICML Workshop on Unsupervised and Transfer Learning, 2012, pp. 65–79.

O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and I. Perona, “An extensive comparative
study of cluster validity indices,” Pattern Recognition, vol. 46, no. 1, pp. 243–256, 2013.

R. Bellman, “Adaptative control processes,” 1961.

H. Lohninger and J. Ofner, “Multisensor hyperspectral imaging as a versatile tool for image-based
chemical structure determination,” Spectroscopy Europe, vol. 26, no. 5, pp. 6–10, 2014.

D. Birant and A. Kut, “St-dbscan: An algorithm for clustering spatial–temporal data,” Data &
Knowledge Engineering, vol. 60, no. 1, pp. 208–221, 2007.

Q. Liu, M. Deng, Y. Shi, and J. Wang, “A density-based spatial clustering algorithm considering
both spatial proximity and attribute similarity,” Computers & Geosciences, vol. 46, pp.
296–309, 2012.

U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing, vol. 17, no. 4, pp.
395–416, 2007.

A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern recognition letters, vol. 31,
no. 8, pp. 651–666, 2010.

G. N. Lance and W. T. Williams, “A general theory of classificatory sorting strategies: 1.
hierarchical systems,” The computer journal, vol. 9, no. 4, pp. 373–380, 1967.

M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for discovering
clusters in large spatial databases with noise.” in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

87

https://www.merriam-webster.com/dictionary/cluster%20analysis
https://www.merriam-webster.com/dictionary/cluster%20analysis

C. Zhong, D. Miao, and R. Wang, “A graph-theoretical clustering method based on two rounds
of minimum spanning trees,” Pattern Recognition, vol. 43, no. 3, pp. 752–766, 2010.

M. C. Nascimento and A. C. De Carvalho, “Spectral methods for graph clustering–a survey,”
European Journal of Operational Research, vol. 211, no. 2, pp. 221–231, 2011.

J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on pattern
analysis and machine intelligence, vol. 22, no. 8, pp. 888–905, 2000.

A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,” in
Advances in neural information processing systems, 2002, pp. 849–856.

R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of eugenics,
vol. 7, no. 2, pp. 179–188, 1936.

M. Forina, C. Armanino, M. Castino, and M. Ubigli, “Multivariate data analysis as a discrimi-
nating method of the origin of wines,” Vitis, vol. 25, no. 3, pp. 189–201, 1986.

D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE transactions on pattern
analysis and machine intelligence, no. 2, pp. 224–227, 1979.

V. Parrag, J. Felföldi, and F. Firtha, “Coffee beans mixed with stones: a
hyperspectral training data set for multivariate image analysis,” 2014. [Online]. Available:
http://imagelab.at/en_data_repository.html

M. Löder, “Microplastic,” 2017, Private Communications.

M. Radovanović, A. Nanopoulos, and M. Ivanović, “Hubs in space: Popular nearest neighbors in
high-dimensional data,” Journal of Machine Learning Research, vol. 11, no. Sep, pp. 2487–2531,
2010.

“Epina imagelab documentation: Spectral descriptors,” 2018. [Online]. Available:
http://www.imagelab.at/help/spectral_descriptors.htm

88

http://imagelab.at/en_data_repository.html
http://www.imagelab.at/help/spectral_descriptors.htm

	List of Figures
	List of Tables
	Introduction
	Cluster Analysis
	Notations
	A Short Overview
	K-Means
	Hierarchical Cluster Analysis
	DBSCAN

	Metrics and other Similarity Measures
	Clustering Problems
	Graph-Based Algorithms
	Fundamentals of Graph Theory
	Spectral Clustering
	Graph-Oriented Clustering

	Common Evaluation Approaches and their Deficiencies

	Graph-Based Competitive Clustering
	Concept
	Data Structures
	Initialization
	Clustering
	Implementation and Testing

	Experimental
	2D Artificial Datasets
	Introductory Examples
	Gradient-Separable Problems
	Combined Problems

	Hyperspectral Images
	The Curse of Dimensionality
	Spectral Descriptors
	Overview of the Experiments
	Selected Findings

	Conclusions

	Bibliography

