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Kurzfassung

Im Bereich der Informatik gibt es viele rechnerisch schwere Probleme. Eine Vielzahl
dieser Probleme kann mit Hilfe von aussagenlogischen Formeln dargestellt, und die
Antwort auf manche dieser Probleme kann direket oder indirekt auf die Anzahl der
Losungen zuriickgefithrt werden. Die Aufgabe, alle Losungen einer aussagenlogischen
Formel zu finden wird auch als das #SAT Problem bezeichnet.

Es hat sich gezeigt, dass verschiedene Algorithmen aus dem Bereich der kiinstlichen
Intelligenz und des maschinellen Lernens von der enormen Parallelisierung auf der
Grafikkarte (GPU) profitiert haben. Viele aktuelle #SAT Loser hingen jedoch von
Methoden, die beim Losen des Erfiillbarkeitsproblems verwendet werden, ab oder
sind Loser die nur eine Anndherung an den korrekten Wert berechnen. Eine zentrale
Methode die beim Losen des Erfiillbarkeitsproblems verwendet wird ist Conflict Driven
Clause Learning (CDCL), welches jedoch Schritte beinhaltet die nur schwer oder nicht
parallelisierbar sind. Eine Parallelisierung auf der Grafikkarte funktioniert allerdings
nur wenn ein Algorithmus viele dhnliche voneinander unabhangige Schritte beinhaltet,
deshalb kann man CDCL schwer oder nur eingeschrankt auf die GPU bringen. Bei
der dynamischen Programmierung auf Basis von Baumzerlegungen hingegen sind
viele dhnliche, voneinander unabhéngige Operationen auszufiihren, daher ist sie fiir
die Grafikkarte gut geeignet. Im Gegensatz zu anderen Verfahren ist die Effizienz
der Dynamische Programmierung von einer niedrigen Weite der Baumzerlegungen
abhangig.

Im Zuge dieser Arbeit haben wir gpusat entwickelt, einen #SAT Loser basierend auf
der dynamischen Programmierung auf Baumzerlegungen. gpusat wurde mit Hilfe von
OpenCL implementiert, ein offener Standard fiir die GPU Programmierung. Als Basis
fiir den Algorithmus von gpusat konnen Baumzerlegungen des primal, incidence und
dual Graphens verwendet werden. gpusat ist auch in der Lage den Weighted Model
Count (WMC) einer Formel zu berechnen. Bei WMC bekommt jedes Literal der Formel
ein Gewicht und das Gewicht einer Losung ist das Produkt der Gewichte ihrer Literale.

Um gpusat mit anderen #SAT Losern zu vergleichen haben wir #SAT und WMC
Instanzen aus unterschiedlichen Quellen gesammelt. Fiir diese Instanzen haben wir
dann Baumzerlegungen des primal, incidence und dual Graphen generiert. Danach
haben wir die Laufzeit von gpusat mit anderen aktuellen #SAT und WMC Losern auf
den zuvor gesammelten Instanzen verglichen.
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Bei unseren Tests hat sich gezeigt, dass gpusat fiir Instanzen mit einer Baumweite von bis
zu 30 mit anderen Losern konkurrieren kann und es war uns moglich einzelne Instanzen
mit einer Baumweite von bis zu 45 zu 16sen. Ungefdhr die Halfte der Instanzen hatte
eine Weite bis zu 30.



Abstract

There are many computational hard problems in computer science and a variety of
these problems can be expressed via Boolean formulas. For some of these problems,
the number of satisfying assignments can be directly linked to the solution. The task to
compute the number of solutions of a Boolean formula is called the #SAT problem.

Algorithms in artificial intelligence and machine learning tasks have profited from the
massive parallelism provided by Graphic Processing Units (GPUs). However many
current #SAT solvers rely on techniques from Satisfiability solving or approximate solving
based on sampling of the search space. A central method for solving the Satisfiability
problem is Conflict Driven Clause Learning (CDCL), but CDCL contains parts which
are hard to or not parallelizable at all. CDCL does not work well on the GPU since
parallelization on the GPU requires an algorithm with many similar independent steps.
Dynamic Programming (DP) on tree decompositions on the other hand parallelizes well
as we can execute many similar operations which are independent from another. For DP
we need tree decompositions with a sufficiently small width.

In the course of this thesis we developed gpusat, a #SAT solver which is based on
dynamic programming on tree decompositions with OpenCL, an open standard that
can be used to parallelize tasks on the GPU. We use tree decompositions of the primal,
incidence and dual graph as base for our dynamic programming algorithms. gpusat is
also able to solve Weighted Model Counting (WMC) where a weight is assigned to every
literal and the weight of a solution is the product of its literal weights.

To compare gpusat with other solvers we collected #SAT and WMC instances from
different sources, and generated tree decompositions of the primal, incidence and dual
graph for each of these instances. Then we compared the runtime of gpusat with other
state of the art #5SAT and WMC solvers on our instances. To get a better understanding of
our benchmark set we also generated an overview of the tree width for our benchmark
instances.

Our experiments have shown that gpusat is competitive with other solvers for a tree
width of up to 30. We were also able to solve some instances with a tree width of up to
45. About half of the instances had a width of 30 or below.
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CHAPTER

Preface

1.1 Motivation

Many computational hard problems in computer science amount to combinatorics. A
variety of these problems, which arise in the real world, can be solved via checking
if a Boolean formula is satisfiable (SAT) or not. If solutions require statistical or
probability measures, then the number of satisfying assignments of these formulas can
be directly related to the solution. The problem of counting the solutions of a Boolean
formula is referred to as #SAT which is a generalization of the SAT problem and is
#P-hard [Rot96]. Examples for these problems are calculating the reliability of energy
infrastructure [DMPV17] or learning preference distributions [CdBD15]. A problem
related to #SAT is Weighted Model Counting (WMC) which asks for the weighted model
count of a formula. In WMC a weight is assigned to every literal, and the weight of a
solution is the product of its literal weights, the WMC is the sum of the weight of all
solutions.

In recent decades there has been an increasing interest in using Graphic Processing
Units (GPUs) for general purpose computing with parallelizeable algorithms. It has
been shown that GPU computing can speed up tasks in artificial intelligence and
machine learning by more than two orders of magnitude [JYP*17]. Most modern
#SAT solvers rely on techniques from SAT-solving [Thu06, SBB*04, IGSS09], knowledge
compilation [LM17, Dar04] or approximate #SAT solving [CEM*14, Dar11] based on
sampling the search space with SAT solvers. Conflict Driven Clause Learning (CDCL)
is a main technique used in modern SAT solvers, but CDCL does not parallelize
well [Man16, FF12, BSS*12].

Parallelization on the GPU works best if there are a lot of independent, similar tasks.
Hence alternative methods for #SAT and WMC are required. A promising approach
in this context is to employ dynamic programming (DP). A solver which is based

1




1. PREFACE

on dynamic programming evaluates the input formula on parts along a given tree
decomposition, and stores the results in tables. Graph representations of the input
formula, such as the primal, incidence or dual graph are used for the decompositions.
The runtime of dynamic programming algorithms depend on the size of these tables,
and the size of the result table grows exponentially with respect to the tree width of the
input formula.

1.2 Methodology and Research Question

Our main research questions we want to answer with this thesis are:

1. How to parallelize dynamic programming on the GPU? What challenges, and
problems are there when parallelizing algorithms on the GPU? How can we
overcome these challenges and problems?

2. How does dynamic programming on the GPU compare to serial and parallel #SAT
and WMC techniques? How does dynamic programming on the GPU compare to
dynamic programming on the CPU?

3. What is the maximum width we can solve with our approach? What is the
maximum width at which we are competitive to other solvers? How many
instances of standard #SAT benchmark sets are we able to solve and are in our
future reach?

To answer these questions, we have implemented gpusat, a #SAT and WMC solver
which is based on dynamic programming on tree decompositions. The CPU code is
written in C++ and OpenCL was used for the GPU code.

gpusat works as follows:

1. We generate the primal, incidence or dual graph of the input formula.
2. We heuristically generate a tree decomposition of the graph.

3. The solver takes the tree decomposition, and then computes the number of solutions
for each possible variable assignment on the GPU, based on [SS10].

4. Then, the solver sums up the number of satisfying assignments in the last bag.

5. The solver prints the number of satisfying assignments.

We have collected #SAT and WMC benchmark sets from different sources for benchmark-
ing. Then we generated the primal, incidence, dual graphs and the tree decompositions
of the graphs for our benchmark set. The tree decompositions were generated with
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htd [AMW17] which heuristically generates a tree decomposition of a graph, as generat-
ing a tree decomposition with minimal width is NP-hard [Bod05].

Then we benchmarked gpusat and the other #SAT and WMC solvers on our benchmark
set. In the end we generated an overview of the widths for each benchmark set, and
compared the runtime of gpusat to other state of the art #SAT and WMC solvers.

1.3 Contributions/Publications

The main contributions of this thesis are as follows:

e We implemented a #SAT solver based on dynamic programming on tree decompo-
sitions which utilizes the massive parallelization and computational power of the
GPU with OpenCL. Our solver can be found at:

https://github.com/Budddy/GPUSAT

e We carried out extensive benchmarking to compare our solver with 11 other state
of the art #SAT and WMC solvers.

e We generated a classification of our benchmark set according to the width, of the
primal, incidence, and dual graphs.

The author has contributed to the following publications:

Johannes Fichte, Markus Hecher, Markus Zisser, and Stefan Woltran. Weighted Model
Counting on the GPU by Exploiting Small Treewidth. Submitted to ESA 2018, under
review.

1.4 Related Work

To the best of our knowledge there are no other #SAT solvers which utilize the GPU for
solving, therefore we take a look at other serial and parallel #SAT solvers which run on
the CPU as well as SAT solvers which run on the GPU.

Many current #SAT solvers such as sharpSAT [Thu06], sharpCDCL [KMM13] and
Dsharp [MMBH12] rely on techniques from SAT solving such as Conflict Driven Clause
Learning (CDCL), an approach which does not parallelize well [Man16, FF12, BSS™12].
The clause learning and conflict analysis add irregularities to the execution which
becomes expensive due to the SIMT architecture of the GPUs and also adds additional
effort for synchronization on parallel architectures [Cosl3]. Other solvers such as
c2d [Dar04] and d4 [LM17] rely on knowledge compilation.

Fichte et. al. [FHMW17] used dynamic programming for solving the #ASP problem in
their solver called dynasp. Charwat and Woltran [CW16] developed a solver called
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dynQBE, which uses dynamic programming to solve QBF formulas. Both of these solvers
work serial on the CPU.

Burchard et al. [BSB15] introduce a parallel #SAT solver called countAntom which runs
on the CPU. As basis for their solver they used the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm which was introduced by Davis et al. [DLL62].

Different approaches to solve the SAT problem on the GPU exist, one approach is from
Deleau et al. [DJKO8]. They developed a solver called GPU4SAT which is based on matrix
multiplications. For solving they use two matrices, the boolean formula is encoded into
the first matrix, and multiple variable assignments are encoded into the second matrix,
then the two matrices are multiplied. For each cell in the resulting matrix a thread
is started on the GPU. Another approach is by Palu et al. [PDEP15] who developed a
system called CUD@SAT. Similar to Burchard at al. [BSB15] they modified the DPLL
algorithm for their solver. Costa [Cos13] used minisat [ES03] as base for his solver, and
partially parallelized it on the GPU. Our approach evaluates a SAT formula along the
path of a tree decomposition in contrast to the methods mentioned before. For all of
these SAT solvers CUDA was used, which is a proprietary standard from the NVIDIA
Corporation, and can only be used on their GPUs in contrast to OpenCL which was used
for our solver.

1.5 Thesis Outline

The remainder of this thesis is structured as follows: Chapter 2 provides the reader
with the necessary background for this thesis. In Chapter 3 we describe our dynamic
programming approach and the algorithms used, starting with the primal algorithm,
then the incidence and the dual algorithms. Next, Chapter 4 provides the reader with
an in-depth view of our implementation, challenges we faced and the techniques we
used to overcome these challenges. Chapter 5 contains a description of our benchmark
setting, the benchmark results and a short discussion. In the final chapter of this thesis
we conclude our work and give hints for further work.



CHAPTER

Background

This chapter provides the reader with a brief background for this work. We start with
basics on #SAT and WMC, followed by the definition of Tree Decompositions (TDs) and
the different graph types used as basis for our solving algorithms. At the end of the
chapter we also provide an introduction to OpenCL.

2.1 #SAT and WMC

A literal is a boolean variable v or its negation —v. A clause is a finite set of literals. A
clause is interpreted as the disjunction of its literals. A clause c is called unit if |c| = 1. A
CNF formula is a set of clauses and is interpreted as the conjunction of its clauses. In
Example 2.1 we can see an example of a SAT formula. We define var(C) as the set of
variables contained in the clause or clause set C. An assignment a maps variables in a
formula to 0O or 1, a : var(C) — 0,1. A clause c is satisfied by an assignment if for some
variable v € var(c) we have v € c and a(v) = 1 or —-v € ¢ and a(v) = 0. Otherwise the
assignment falsifies the clause. An assignment satisfies a formula if each clause in the
formula is satisfied by the assignment. A set C of clauses is unfalsifiable if there is no
truth assignment that falsifies all clauses in C. C is only unfalsifiable if there exists a
variable a € var(C) such thata € C and —a € C. Cis falsifiable if there is a truth assignment
that falsifies all clauses in C. C is satisfiable if there is a truth assignment that satisfies all
clauses in C. C is unsatisfiable if there does not exist a truth assignment that satisfies all
clauses in C.

Example 2.1. Assume the CNF formula C = {cy, ¢, ¢3, ¢4, 5, c6, €7, cg} with the clauses
c1 = {v1,03, 704}, 2 = {=01,06}, €3 = {702,703, ~04}, €4 = {-02, 06}, 05 = {03, 04},
ce = {03, vs5}, ¢z = {—vs, 7v6}, cg = {vs, v7}. If we take the clauses cg and cg then a truth
assignment that falsifies the two clauses is a(vs) = 0 and a(v7) = 0 and a(v3) = 1. An
example for a satisfying assignment of cg and cs would be a(vs) = 1 and a(v7) = 0 and

5
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U1 U2 U3 U4 U5 Ug U7

1 0 0 0 0 1 1
0 000 0 11
0 0001 01
0 0 00 0 01
0 01 01 01
1 0 01 0 1 1
0 0001 01
0 01 01 0 O
1 1.0 0 0 1 0
01 0 0 0 1 1
1 1.0 1 0 1 1

Table 2.1: The satisfying assignments for the formula from Example 2.1.

a(vs3) = 1. Therefore the set {cg, c¢} is falsifiable and satisfiable, but neither unfalsifiable
nor unsatisfiable. If we take the clause set {c1, ¢z} the set would be unfalsifiable as the
literals v1 € ¢; and —v; € ¢, are in the clause set. As the set is unfalsifiable it is also
satisfiable. The clause set {{—v1, =05}, {v1,02}, {—0v1,02}, {v1, ~v2}} is unsatisfiable and
falsifiable as there is no assignment of the variables v; and v, that satisfies every clause.

Tue #SAT PROBLEM.

Input A formula C.
Question How many assignments do the occurring variables satisfy in C?

Example The formula from Example 2.1 has 11 satisfying assignments, which can
be seen in Table 2.1.

In Weighted Model Counting (WMC) each literal is assigned a weight. The weight of an
assignment w(a) is the product of all weights w of its literals. The weighted model count of
a formula is the sum of the weights of all satisfying assignments of the formula.

Example 2.2. We assign each literal from Example 2.1 a weight. w(v;) = 1 —w(-v71) = 0.8,
w(vy) =1 —-w(—v) =02, w(ws) =1 —w(-v3) = 0.1, w(vy) =1 —w(-vy) = 0.7, w(vs) =
1 - w(-vs) = 0.4, w(ve) = 1 — w(—ve) = 0.5. Then the resulting weighted model count of
the formula is 0.13218.

The primal graph of a SAT formula contains a vertex for each variable of the SAT formula,
and has an edge between two vertices if the node variables occur in the same clause.
The incidence graph of a SAT formula contains a node for each variable and clause in the
SAT formula, and an edge between a variable node and a clause node if the variable
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Figure 2.1: The primal (left), incidence (middle) and dual (right) graph for the SAT
formula in Example 2.1

occurs in the clause. The dual graph of a SAT formula contains a node for each clause in
the SAT formula, and has an edge between two clauses, if the two clauses have at least
one common variable.

The three different graph types for the formula from Example 2.1|can be seen in Figure 2.1,
The primal graph is on the left side, the incidence graph is in the middle and the dual
graph is on the right side.

2.2 Tree Decompositions

Tree decompositions were originally introduced by Robertson and Seymour [RS84].
A tree decomposition (TD) of a graph G is a pair (T, x). T is a tree and x is a mapping
which assigns each node n € V(T) a set x(n) € V(G) called a bag. Then (T, x) is a tree
decomposition if the following conditions hold:

1. for each vertex v € V(G) there is a node n € V(T) such that v € x(n),
2. for each edge (x, v) € E(G) there is anode n € V(T) such that x, y € x(n), and
3. ifx,y,z € V(T) and y lies on the path from x to z then x(x) N x(z) € x(y).

The width of a tree decomposition width(T) is max,evr)(Ix(n)]) — 1. The tree width of a
graph is the minimal width over all tree decompositions of the graph. An Example of
a tree decomposition for the graphs from Figure 2.1 can be seen in Figure 2.2 for the
primal graph, in Figure 2.3 for the incidence graph and in Figure 2.4 for the dual graph.
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ni

g

{Ula U37U47U6}

n2

Figure 2.2: A possible decomposition of the primal graph from the formula in Example 2.1.

Nice Tree Decomposition: In order to simplify the cases in our algorithm we use so
called nice tree decompositions. A tree decomposition T is called a nice tree decomposition
if the root and leaf nodes are empty, and the type of each bag is one of:

e leaf: anode n € V(T) is called a leaf node if n has no child nodes

e join: a node 7 is called a join node if n has two child nodes n’ and n” with
x(n) = x(n') = x(n”)

e introduce: anode 7 is called an introduce node if it has a child node #’, x(n) 2 x(n’)
and [x(n)| = [x(n")] + 1

e forget: a node n is called a forget node if it has a child node n’, x(n) C x(n’) and
Ix(ml = [x(n)| -1

For every tree decomposition a nice tree decomposition can be computed within linear
time without increasing the width [Klo94]. An example of a nice tree decomposition for
the graph in Figure 2.2 can be seen in Figure 2.5

Arnborg et. al. [ACP87] has shown, that finding a tree decomposition of at most width
k is NP-complete. Therefore, computing minimal width tree decompositions is only
feasible for small graphs. There are exact methods for obtaining minimal width tree
decompositions, e.g. [GD04, BBO6]. In this thesis we use heuristics for generating
tree decompositions, therefore the width might not be minimal. An overview of
different heuristic algorithms for computing the tree width is provided by Bodlaen-
der and Koster [BK11), BK10] and Hammerl et. al. [HMS15].

2.3 OpenCL

In this section we give a brief introduction to OpenCL (Open Computing Language)
version 1.2. For further details on OpenCL we refer to the OpenCL specification [Mun11].
OpenCL is an open standard used for parallel programming on heterogeneous platforms
consisting of central processing units (CPU) and graphic processing units (GPU). It
defines an application programming interface (API) and a programming language. Each
hardware vendor has to provide drivers for their hardware. The OpenCL programming
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Figure 2.3: A decomposition of the incidence graph from the formula in Example 2.1
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Figure 2.4: A decomposition of the dual graph from the formula in Example 2.1.

language is a subset of the ISO C99 standard, with additional functions needed for
synchronization and image processing. OpenCL was released 2009 and belongs to the
Khronos Group . The most recent version of OpenCL is 2.2, but AMD and NVIDIA
only support version 1.2 in their recent drivers. There exist older driver versions for
AMD GPUs, which support OpenCL version 2.0.

A kernel is a function which can be executed on an OpenCL device. An OpenCL device
can be a GPU or CPU. Each OpenCL device consists of one or more compute units. Each
compute unit has its own local memory and one or more processing elements. Figure 2.6
illustrates a compute unit and its processing elements. Processing elements are virtual
processors on which a command is executed. A work-group is a collection of work items
which are executed on the same compute unit and share the same local memory. A work
item is one execution of an OpenCL kernel. Each work item can be distinguished by its
ID and can be executed on one or more processing elements.

There are two different parallel architectures in OpenCL, Single Instruction Multiple
Data (SIMD) and Single Program Multiple Data (SPMD) architecture. In SIMD each
thread on a compute unit shares the same instruction pointer and works on different
data, that means if two threads take a different execution path they have to wait for the

1See: https://www.khronos.org/
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Figure 2.6: Hardware model of an OpenCL device.

other. In SPMD each thread has its own instruction pointer. GPUs work with the SIMD
mode. Therefore, parallelization on the GPU works best if algorithms execute the same
set of instructions.

Synchronization in OpenCL can be done via work-group barriers or command queue
barriers. Work-group barriers are a mechanism to synchronize threads within a work
group, such that all threads have to reach the barrier before any thread can advance
further. Command queue barriers are for synchronization of jobs in the command queue all
jobs before the barrier have to be finished, before the next job can be executed. Atomic
operations can be used for synchronizing memory access.

There are 4 distinct memory regions defined by the OpenCL standard, which can be
accessed by the kernel. These memory regions are:

1. Global Memory: The global memory is a memory region to which all threads have
read and write access, it has to be allocated beforehand. On the GPU it corresponds
to the local memory of the GPU (VRAM)), it is also the slowest memory region to
access on the GPU.

2. Constant Memory: The constant memory is a memory region to which all threads
have read access, it has to be allocated and initialized beforehand. This region is
used for information which does not change during the kernel execution.

11
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3. Local Memory: The local memory is a memory region to which all threads of a
work-group have access. It can be used to share information between threads of a
work-group. Depending on the hardware the local memory can be accessed faster
than the main memory, e.g., GPUs have a cache for each compute unit, but its size
is much smaller than the global memory.

4. Private Memory: The private memory can only be accessed by the thread it belongs
to. Local variables are stored in this memory region. This is the fastest memory
region.

Buffered objects are used to copy data into the global and constant memory. They contain
the start address and size of the memory region to copy, therefore only connected regions
from the main memory can be copied into the global and constant memory.

In Listing 2.2 we can see a C++ program that calls an OpenCL kernel which adds
two vectors, the kernel code can be seen in Listing 2.1, the Example was taken from
lgist.github.com/ddemidov/2925717, For better readability we have separated the
GPU and CPU code.

The CPU code starts by searching for OpenCL GPU devices. The cl::Platform::get function
queries all available OpenCL platforms, the getDevices function then returns all GPU
devices. Then a command queue is created and the kernel is compiled. In the next
step, buffers are created, which are used to copy chunks of memory from the RAM to
the VRAM. enqueueNDRangeKernel then submits the kernel for execution. For each
element in the first vector a thread on the GPU is started. In the first step, the kernel
function queries its id and then adds the vector values, for which the vector index is
equal to the id of the kernel. enqueueReadBuffer waits until the kernel is finished and
then copies the resulting vector from the VRAM to the RAM.

__kernel void add(
__global const float *a,
__global const float *b,
—_global float *c

)
{
// get the kernel id
size_t 1 = get_global_id(0);
// sum up the vectors
c[i]l = a[i] + b[il;
1

Listing 2.1: An OpenCL kernel which adds two vectors - (a,b) and saves the result in
the third vector - c. The Example is from|gist.github.com/ddemidov/2925717|

// Get list of OpenCL platforms.
< > platform;
::get(&platform);
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2.3.

OpenCL

// Get first available GPU device.
context;
<cl::Device> device;
for(auto p = platform.begin(Q);
device.empty() && p != platform.end(); p++)
{

<cl::Device> pldev;

// Get a GPU
p->getDevices (CL_DEVICE_TYPE_GPU, &pldev);

for(auto d = pldev.begin(Q;
device.empty() && d != pldev.end(); d++)
{
device.push_back(*d);
context = (device);
}
}

// Create command queue.
queue (context, device[0]);

// Compile OpenCL program for found device.
program(context,
::Sources(1l, std::make_pair(source, strlen(source))))

program.build(device);
cl::Kernel add(program, "add");

// Prepare input data.
<float> a(l << 20, 1);
<float> b(1 << 20, 2);
<float> c(l << 20);

// Allocate device buffers and transfer input data to device.
A(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
a.size() * sizeof(float), a.data(Q));
B(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
b.size() * sizeof(float), b.data(Q));
C(context, CL_MEM_READ_WRITE,
c.size() * sizeof(float));

// Set kernel parameters.
add.setArg (0, A);
add.setArg(l, B);
add.setArg(2, CO);

// Launch kernel on the compute device.

13
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queue. enqueueNDRangeKernel (add, cl::NullRange, N,
cl::NullRange);

// Get result back to host.
queue. enqueueReadBuffer (C, CL_TRUE, 0, c.size() * sizeof(float),
c.data(Q));

Listing 2.2: Example for a programm that calls the Kernel from Listing 2.1. The
Exanqﬂeisﬁonlpist.github.com/ddemidov/2925714




CHAPTER

Dynamic Programming

In this chapter, we describe the dynamic programming algorithms we used to solve
the #SAT problem. We start by describing how the dynamic programming approach
on tree decompositions works in general. Then we introduce the algorithms used for
solving, starting with the algorithm for the primal graph, followed by the incidence
graph algorithm and the dual graph algorithm. For further information on the used
algorithms we refer to the original source [SS10].

3.1 Dynamic Programming on Tree Decompositions

In dynamic programming a problem is split up into parts, and the parts are then solved
individually. In our case, we use tree decompositions to split up the search space of
the #SAT problem. The solving algorithm then evaluates the formula along the path of
the tree decomposition in a bottom up order starting in one of the leafs. The solution
count for each assignment in the bag is then stored in a table. The size of the table is
exponential to the size of the bag. The tables of the child nodes can be deleted as soon as
the table of the current node is generated.

The dynamic programming approach on the CPU for a given SAT formula F works as
follows:

1. Generate the primal, incidence, or dual graph G of the SAT formula F.
2. Create a tree decomposition 7 of the graph.
3. Apply dynamic programming for each bag in bottom up order:

a) visit the next node n of the tree decomposition,

b) apply the solving algorithm A to the bag F,, and

15
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Figure 3.1: DP Algorithm on the CPU

¢) store the results in a table 7,,.

4. Print the result based on the table of the root node of the tree decomposition.

3.2 Dynamic Programming Algorithms for #SAT

In this section, we describe the algorithms for each graph type, starting with the primal,
then the incidence, and in the end the dual algorithm. The operations depend on the
type of the tree decomposition node currently processed.

3.2.1 Primal Graph

The primal algorithm stores for a partial assignment a the number i of assignments
which extend a and satisfy all clauses containing only variables from the subtree induced
by the current nodes to the leaf nodes. The leaf operation is applied to the empty set
of clauses which has one solution. In the introduce operation we expand the current
assignment by a new variable, and check if the assignment satisfies all clauses which
only contain variables from the current bag. If we forget a variable, we have already
checked all clauses containing the variable. Hence, once a variable is forgotten it is not
of further concern for the remaining tree decomposition nodes in the traversal. The
join operation connects two subtrees with each subtree containing a different set of
variables and clauses. If there are solutions for the current variable assignment in both
subtrees then we know that the current variable assignment satisfies all clauses from
both subtrees.

In Algorithm 3.1/ we can see each operation of the primal algorithm. The algorithm gets
as input the current node 7 of the tree decomposition, the bag x,, containing the variables
from the node, the clauses F,, which only contain variables from x, and the child tables
C-Tabs of the current node. The solutions of bag x;, are stored in table 7, together with
the variable assignment. For a formula F and an assignment «, F(a) returns all clauses
which are not satisfied by the variable assignment a.

Example 3.1. We have a SAT formula with the following set of clauses: C = {
c1 = {=v1,02, 704}, c2 = {v1,703,05}, c3 = {v2, 4}, ¢4 = {vz, 05}, ¢5 = {vs, —ws}}, the
decomposition of the primal graph can be seen in Figure 3.2. The tables generated



3.2. Dynamic Programming Algorithms for #SAT

Algorithm 3.1: Table algorithm PIRIM(n, x;, F,, C-Tabs).

Data: Node n, bag x, clauses F,,, C-Tabs of node n. Out: Tab 1.
if type(n) = leaf then 7, « {0, 1)};

else if type(n) = intr, a € x, is introduced, v’ € C-Tabs then

N

3 Ty — () 1) | {a,i) € T/, Fu(er) ) =0} U
) o) | {o,i) € T, Fu(er ) = 0}

4 else if type(n) = forg, a ¢ xn is forgotten, T’ € C-Tabs then

5 ‘ Ty < {<a/17/2(/)’,i>€T’:a;:‘b’; l> | <“/ > € T,}

6 else if type(n) = join, 1/, 7" € C-Tabs s.t. T’ # " then

7 | T Ko i) | (o, 1"y e U, (e, i) € T}

8 return 7,

a;:==a\{e— 0,e— 1}, a  =aU{e b}

e—b "

Figure 3.2: The tree decomposition of the primal graph of formula C from Example 3.1

during solving can be seen in Figure 3.3. "n Sol" is the current number of solutions for
the assignment. The number of satisfying assignments for the formula is 11 and can be
seen in table 7g.

3.2.2 Incidence Graph

The incidence algorithm stores a partial assignment a that can be extended to an
assignment f that satisfies all already forgotten clauses from the subtree induced by
the current node to the leaf nodes. Further, each row additional contains the clauses C

from the current bag which are satisfied by  and the number i of these assignments.

The leaf operation is applied to the empty set of clauses which has one solution. In the
introduce clause operation we extend the current set of clauses by a new clause and check
if the current assignment satisfies the clause. The introduce variable operation adds a
new variable to the bag. The assignment of the new variable can satisfy a previously
unsatisfied clause, therefore we need to sum up the model count for the newly satisfied

17
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Figure 3.3: The primal algorithm solutions for the formula in Example 3.1.
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Algorithm 3.2: Table algorithm IINC(y, F,, C-Tabs).

Data: Bag x,, bag-clauses F,,, C-Tabs of node n. Out: Tab 7,,.
1 if type(n) = leaf then 7, < {(0, 0, 1)};
2 else if type(n) = intr, variable a is introduced, " € C-Tabs then
3 Ty {((I;Hl, CuD, Z‘((k’,C’,i)ET’Z(C’UD):(DUC)i> | {a,C,-) € v,D = SatCl(Pn, 0(2;_)1)} U
4 a0, CUD, Lo e cupy=puo)iy | {a,C,) € ', D = SatCl(Fp, a_, )}
5 else if type(n) = intr, clause c is introduced, T € C-Tabs then
6
7
8
9

| 1h— {{a,CU SatCl({c}, a),iy |{x,C,i)e '}
else if type(n) = forg, variable a is forgotten, T € C-Tabs then
| =, C g cneria—p D) 14, C, o) €T')
else if type(n) = forg, clause c is forgotten, v" € C-Tabs then
10 | 7, {a,C\{c),i) | {o,C,i)y €1, ceC}
11 else if type(n) = join, v/, 7" € C-Tabs s.t. T # 7" then
12 | 1, {a,CUC, L0 iner tacrimerc—crucri’ <17y {a, C', -y € T, {a, C”, -y € T}
13 return 7,

a;:=a\{eer 0,e— 1}, af :==a U {e}.

clauses. If we forget a clause, we have already checked all variables which are contained
in the clause and only keep the number of assignments for which the clause was satisfied.
If we forget a variable, we have already checked all assignments of the variable for
each clause which contains the variable and need to sum up the assignments where the
variable occurs positively and negatively. The current variable assignment can then
occur multiple times in the table with a different clause set. In the join operation we
connect two subtrees with different variables and clauses. Clauses can be satisfied by
the partial assignment in one tree, but not yet satisfied in the other. Therefore we need to
collect the models for which the clauses are satisfied by the assignment in one of the
subtrees.

In Algorithm 3.2 we can see how each operation of the incidence algorithm works. The
solutions for the bag x, are stored in table 7, together with the variable assignments
and the satisfied clauses. The algorithm gets as input the current node 7 of the tree
decomposition, the bag x, containing the variables and clauses, the clauses F, from
the current node and the child tables C-Tabs of the child nodes of the current node.
SatCl(C, @) returns all clauses from the set C which are satisfied by the assignment a.

Example 3.2. We have a SAT formula with the following clause set: C = { ¢; =
{=v1, 02, 703}, c2 = {—0vy, v3}}. The decomposition of the incidence graph can be seen in
Figure 3.4. Each table generated during solving can be seen in Figure 3.5. S means that a
clause is satisfied, "n Sol" is the current number of solutions for the assignment. The
number of satisfying assignments for the formula is 5 and can be seen in table 7.
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Figure 3.4: The tree decomposition of the incidence graph of formula C from Example 3.2.

3.2.3 Dual Graph

The dual algorithm saves a clause set ("falsified clauses") restricted to the current bag
and the number of variable assignments restricted to the variables of the clauses in the
subtree below, which falsify the clause set and satisfy all already forgotten clauses. In
the leaf operation we set the model count to 1 since the empty interpretation (uniquely)
falsifies the empty clause set and satisfies the (zero) already forgotten clauses. If we
introduce a new clause we decide if we add it to the set of falsified clauses or not. If we
do not add it do the falsified clauses we need to multiply the model count by the number
of all possible assignments for the variables which are in the new clause, but were not
in a previous clause. If the new clause is introduced as falsifiable we need to rule out
all assignments for the variables from the new clause which were already in a clause
from the bag, but not in one of the falsified clauses. In the forget operation we need to
remove the number of assignments for which the forgotten clause is falsified. In the join
operation we combine two subtrees of the tree decomposition. We need to remove the
variable assignments which are in both subtrees, otherwise these assignments would be
counted twice.

In Algorithm 3.3/ we can see each operation of the dual algorithm. The solutions for the
bag x, are stored in table 7, together with the falsified clauses. The algorithm gets as
input the current node 7 of the tree decomposition, the clauses F;, from the current bag
and the tables C-Tabs of the child nodes of the current node.

Example 3.3. We have a SAT formula with the following clause set: C = { ¢ = {v1, v2, 773},
c2 = {v1, w04}, c3 = {vp, 703}, ca = (=03, 704}, ¢5 = {v1}}, the decomposition of the dual
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Figure 3.5: The incidence algorithm solutions for Example 3.2.
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Algorithm 3.3: Table algorithm DUAIL(¢, x;, F,,, C-Tabs).
Data: Node n, bag x,, bag-clauses F;, C-Tabs of node n. Out: Tab 7,,.

1 if type(n) = leaf then 7, < {{0, 1)};

2 else if type(n) = intr, clause c is introduced, ' € C-Tabs then

3 — {(C, i = 2lar@Near(nly |<C,iye1,Cis falsifiable} U

4 {{C U {c}, m) | (C,i) € /,CU {c}is falsifiable}
5 else if type(n) = forg, clause c is forgotten, v’ € C-Tabs then

6 [tn—{(C,i" —i") | (C,i"y e /,{CU{c},i") e’}

7 else if type(n) = join, v’, 7" € C-Tabs s.t. T’ # v’ then

8 [tn —{(C, st I<C, ") e v',{C, ") e T}

9 return 7,

2

ns

Figure 3.6: The tree decomposition of the dual graph for of formula from Example 3.3

graph can be seen in Figure 3.6. Each table generated during the solving algorithm can
be seen in Figure 3.7, S means that a clause is satisfied, "n Sol" is the number of solutions
for each clause set. In our example we do not store lines where "n Sol" is 0. The number
of solutions for the formula is 5 and can be seen in table 7.

3.24 Dynamic Programming Algorithms for WMC

With some modifications the primal and incidence graph algorithms from the last section
can also be used for weighted model counting. The current version of the dual graph
algorithm can not be used for weighted model counting as it does not distinguish
different literals in different clauses.

Primal Graph For the primal graph algorithm we need to modify the introduce and
the join operations. In the introduce operation we have to multiply the current model
count by the literal weight of the newly introduced variable. In case of an join operation
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Figure 3.7: The dual algorithm solutions for Example 3.3.
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we need to divide the model count by the weight of the literals of the variables in the
current bag as these variables were introduced in both branches of the decomposition
therefore the product of the literals for the assignment contains the literal weights twice.

Incidence Graph For the incidence graph algorithm we need to modify the join and
the introduce variable operations. For the introduce variable operation we need to
multiply the current model count with the literal weight of the newly introduce variable.
For the join operation we need to divide the model count by the literal weight of the
variables which are in the current bag as the literal weight is contained in both subtrees.



CHAPTER

Implementation

In this chapter we describe our implementation. We start with the challenges, one is faced
with when implementing an algorithm on the GPU. Then we describe our techniques for
dynamic programming on the GPU. The last part of this chapter is about the architecture
of our program.

4.1 Challenges

1. OpenCL does not allow function calls as they are not supported by most GPUs. It is
possible to define functions in the kernel code, but these functions are then inlined
by the compiler. Therefore we need non recursive versions of the algorithms or we
can not execute them on the GPU.

2. Only primitive data types are supported by OpenCL. Advanced data structures
such as maps and tables or arbitrary precision types are not supported. Especially
the lack of a big number type for saving the solutions is a problem. Therefore, we
need to implement our own data structures.

3. The SIMT execution model on the GPU. We need to write our code in a way such
that each thread on the GPU has the same execution path, otherwise the threads
have to wait for each other.

4. In general the VRAM is smaller than the RAM. Therefore we need to split up tables
if they are too big for the VRAM.

5. Only connected memory regions can be copied between the VRAM and RAM.
Therefore, we can not copy structures that contain pointers from the RAM to the
VRAM.
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6. The kernel itself can not allocate memory. Therefore, all the memory the kernel
uses has to be allocated before its execution by the CPU code.

7. Kernels should access the same memory region, but not the same address of the
global memory. A memory region is cached if a thread accesses it. Therefore,
consecutive accesses to the same memory region are faster, but only one thread
can access the same address at once.

4.2 Techniques

Our dynamic programming approach on the GPU works slightly different than the
approach we presented in Chapter 3| In contrast to the algorithms described before,
we also save negative cases as OpenCL does not offer advanced data structures such as
tables or maps. A general outline of our approach can be seen in Figure 4.1. The GPU
algorithm works as follows:

1. The primal, incidence, or dual graph of the formula is generated.

2. Then the tree decomposition 7 of the graph is generated and the tree decomposition
and formula are preprocessed. The preprocessing consists of two parts:

a) Unit clauses are removed from the formula together with the variables
contained in the clauses.

b) Small bags of the decomposition are combined to better utilize the GPU.

3. In the next step we iterate over all nodes of the tree decomposition in depth first
order and for each bag:

a) We split up the result table 7; into chunks C if the table containing the model
counts does not fit into the main memory of the GPU (VRAM)), then for each
chunk:

i. Get the next chunk of the child table and execute the kernel K for each
row in the current chunk.
ii. Add the resulting model count to the current model count

4. Then we calculate the model count based on the contents of the last table.

4.2.1 Merge Operations

The algorithms are easier to explain with nice tree decompositions, but non nice tree
decompositions are faster for solving. Therefore we combined the leaf, introduce and
forget operations into one introduce forget (IF) operation. Thereby, reducing the overhead
for memory operations on the GPU and the overhead for copying and retrieving tables
from the GPU. Another advantage is that we can reduce the size of the tables we need to
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Figure 4.1: DP Algorithm on the GPU

store by forgetting the variables which do not occur in the next bag after each introduce
operation.

The introduce forget (IF) operation for bag b works as follows:

1. We generate a new bag b” which contains the elements b’ = b N b, with b, being the
parent of b.

2. Then we introduce the new elements from bag b and forget the elements which are
not in b,

3. In the end bag b is replaced by b’.
Our join operation on bag b works as follows:

1. We take the first child bag b’ and second child bag b”” and generate a new bag b,
containing the elements b, = b’ U b”.

2. Then we introduce the elements which are missing in the child bags and join them
together into bag b;,.

3. For each remaining child bag b. we execute the following:

a) We generate a new bag b’ with the elements b’ = b, U b,, with b,, being the bag
generated in the last step.

b) Then we introduce the elements which are missing in the bags b. and b,, and
join them together into bag b’.

4. In the end we execute an IF operation on the bag which was generated in the last
step to introduce the elements which occur in b, but not in its child bags.

Example 4.1. Example for the primal algorithm. We have a SAT formula with the
following clause set: C = {c; = {v1,04,06}, c2 = {v1, 705}, c3 = {—0v1,07}, ¢4 = {02,703},
cs = {02, Us}, c6 = {v2, 706}, c7 = {v3, U}, cg = {v4, U8}, co = {—T4, Ve}, C10 = {04, V7}}, the
decomposition of the primal graph can be seen in Figure 4.2, The tables generated during
solving can be seen in Figure 4.3, The variable assignment is encoded in the binary
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Figure 4.2: The tree decomposition of the primal graph of the formula from Example 4.1.

representation of the ID, "n Sol" is the current number of solutions for the assignment.
The tables in brackets represent temporary results. The solving works as follows:

1. The solving algorithm starts at node n3 with an IF operation. The IF operation
generates a new bag containing the elements {v1, v2}. The result of the IF operation
can be seen in table 75. Table 7¢ contains the temporary results generated by the
introduce operation. The new bag then replaces the bag of node n3.

2. Next, node n5 will be solved with an IF operation. For the IF operation a new bag
is generated containing the elements {v2, vg}. The new bag then replaces the bag of
node n5. The result of the IF operation can be seen in table 79. Table 719 contains
the temporary results generated by the introduce operation.

3. Then node n4 is solved with an IF operation, the solutions of the operation can be
seen in table 77. The temporary results of the introduce operation are in table 7s.
The bag generated by the IF operation contains the elements {v;, v4}. The new bag
then replaces the bag of node ny.

4. In the next step, node 1, is solved. As the bag of n; contains elements which are
not in its child nodes, we create a new bag containing the elements {v1, v, v4} and
execute a join operation. The result of the join can be seen in table 74. Then we use
an IF operation on node 7, to introduce vs and forget {v2, v6}. The result of the IF
operation is in table 7, with the temporary results in table 73. the bag of node n, is
then replaced by the new bag which contains the elements {v1, v4}.

5. Thelastnode which remains to solve is node 111 which is solved with an IF operation,
the result of the operation can be seen in table 7.

In the end, the solutions of the last bag are summed up and the final solution count is 22.

Example 4.2. Example for the incidence algorithm. We have a SAT formula with
the following clause set: C = {c; = {01, 02, 703}, c2 = {—01, 04}, c3 = {v2, 703}, ¢4 =
{=v2, —v4}}. The decomposition of the incidence graph can be seen in Figure 4.4. Each
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Figure 4.3: The primal algorithm solutions for the formula in Example 4.1.
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ni

2

s ()

Figure 4.4: The tree decomposition of the incidence graph of the formula from Exam-
ple4.2.

table generated during solving can be seen in Figure 4.5, The assignment for the variables
and clauses is encoded in the binary representation of the ID, "n Sol" is the number of
solutions for each assignment. The tables in brackets represent temporary results. Lines
which we did not need to calculate are marked with a "-" in the temporary tables. The
solving works as follows:

1. The solving starts with node n3 with an IF operation. The result of the IF operation
can be seen in table 77 and the temporary result of the introduce is in table 7g. The
new bag containing {c1} then replaces the bag of node n3.

2. Next is node n4 which is solved with an IF operation. The result is in table 719
and the temporary results of the introduce operation are in table 71;. The new
bag generated during the IF operation, which contains the elements {v3, v4} then
replaces the bag of node ny.

3. Next is the join of node n3 and node n4 into node ;. Therefore, we create a new
node n’ with the bag of n” containing the elements of the bag from node 3 and bag
of node n4. Then we introduce the elements and clauses which are in the bag of n’,
but not in the bag of node 13 into node 13 which generates a new bag containing
the elements of the bag of n’, the new bag then replaces the bag of node n3. The
results of the introduce can be seen in table 74. The same is done with node n4 with
the results in table 79. Then node 74 and node n3 are joined into node n’. The result
of the join can be seen in table 75. After the join we execute an IF operation on n’.
The result of the IF operation can be seen in table 73 and the temporary results of
the introduce operation are in table 74.

4. The last node to solve is 11 with an IF operation. The result of the IF operation is
in table 71. In the last node we always forget the remaining clauses to reduce the
table size.

In the end we need to sum up the solution count from table 71 and the final result is 12.

Example 4.3. Example for the dual algorithm. We have a SAT formula with the following
clause set: C = {c1 = {v1, 02}, ©2 = {01,706}, c3 = {v1,07), c4 = {-v2, 03}, c5 = {v2, 05},
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Figure 4.5: The incidence algorithm solutions for Example 4.2.
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Figure 4.6: The tree decomposition of the dual graph of the formula from Example 4.3

c6 = {va,—vs}, c; = {-v4,v6}}, the decomposition of the dual graph can be seen in
Figure 4.6. Each table generated during the solving algorithm can be seen in Figure 4.7.
The clause set is encoded into the binary representation of the ID of each table, 0 means
that the clause is not in the set and 1 means that the clause is in the set, "n Sol" is the
number of solutions for each clause set. The tables in brackets represent temporary
results. The solving works as follows:

1. The algorithm starts by solving node n3 which is solved with an IF operation. The
resulting bag of the IF operation contains the clauses {cj,cs}. The result of the
operation can be seen in table 7, and the temporary results of the introduce are in
table 3.

2. Next, node 75 is solved with an IF operation. The resulting bag which replaces the
bag of node 75 contains the clauses {cy, cs}. The result of the operation can be seen
in table 77 with the temporary results of the introduce in table 7s.

3. In the next step we solve node n4 with an IF operation. The resulting bag contains
the clauses {c1, c2}. The result of the IF operation can be seen in table 7¢.

4. Then we join the nodes 14 and n5 together into node 75, the resulting bag contains
the clauses {c1, c2, cs}. The result can be seen in table 74. Afterwards, we execute an
IF operation on n; and forget the clauses which are not in the bag of node 4, the
new bag created by the IF operation contains the clauses {c1, ¢cs}. The result of the
IF operation is in table 4.

5. In the last step we join node n3 and n; into 11, the result of the join is in table 7;.

The final solution countis48-4-16+0-15+1+ 10-0 = 24.

4.2.2 Table Splitting

If the table for a node in the tree decomposition is too large for the VRAM, we need to
split the table into parts and compute the result for each part individually. The kernel is
then executed with all possible combinations of parent and child table parts.
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Figure 4.7: The dual algorithm solutions for Example 4.3.
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ID ‘ V3 Vg4 Uy ID ‘ Vs Vg Vg
010 0 0 010 0O
1 ]1 00 17100
2 |0 1 0 2 10 10
3 |1 10 3 11 10
4 10 0 1 4 10 0 1
5 |1 01 5 |1 0 1
6 |0 1 1 6 |0 1 1
7|1 11 711 11

Figure 4.8: Example of splitting for an introduce forget operation with splitting at bag
size 2.

call # current table child table

1 part1 part1
2 part1 part 2
3 part 2 part1
4 part 2 part 2

Table 4.1: The combinations of each call for the introduce forget operation for Figure 4.8.

In the case of an introduce forget operation we have to combine each part of the child
table with each part of the current table. In Figure 4.8 we can see an example of splitting
for an introduce forget operation. Our current table is on the left side and our child table
is on the right side. The combinations of tables we need to call our kernel with can be
seen in Table 4.1.

In case of a join operation on the primal or dual graph we have to combine each part
of the current node with each part of the child nodes. In Figure 4.9 we can see an
example for splitting during a join operation on the decomposition of the primal or dual
graph. The table in the middle with the variables (v3,v4,05,06) is our current table. The
combinations of kernel executions can be seen in Table 4.2.

In case of a join operation on the incidence graph we have to combine each part of the
current node with each combination of child node parts. In Figure 4.10 we can see an
example for splitting during a join operation on the decomposition of the incidence
graph, the table in the middle is our current table. The combinations of kernel executions
can be seen in Table 4.3.
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Figure 4.9: Example of splitting for a join operation of the primal and dual algorithm

with splitting at bag size 2.

call# current table child table1 child table 2

part 1
part1
part 2
part 2
part 3
part 3
part 4
part 4

IO Ul WIN -

part 1
part 2
part 1
part 2
part 1
part 2
part 1
part 2

part 1
part 2
part 1
part 2
part 1
part 2
part 1
part 2

Table 4.2: In this table we can see the combinations of each call for the primal and dual

join operation for Figure 4.9.
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ID | vs w4 ws ID | v wvg4 ws ID | v3 w4 w5
010 0 O 0 [0 O O 0 [0 0 O
1 1 0 0 1 1 0 0 1 |1 00
2 |0 1 0 2 |0 1 0 2 [0 1 0
3 |1 1 0 3 11 1 0 3 |1 1 0
4 10 0 1 4 10 0 1 4 10 0 1
5 1 0 1 5 1 0 1 5 11 0 1
6 [0 1 1 6 [0 1 1 6 |0 1 1
711 1 1 711 1 1 71 11

Figure 4.10: Example of splitting for a join operation with splitting at bag size 2.

call# current table child table1 child table 2

1 part 1 part 1 part1
2 part1 part1 part 2
3 part1 part 2 part1
4 part 1 part 2 part 2
5 part 2 part 1 part1
6 part 2 part 1 part 2
7 part 2 part 2 part1
8 part 2 part 2 part 2

Table 4.3: In this table we can see the combinations of each call for the incidence join
operation for a table with 4 variables/clauses with table splitting at width 2 for Figure 4.10.

4.2.3 Preprocessing

Our preprocessing consists of two steps, first we remove unit clauses and then we
combine small bags of the tree decomposition.

Remove Unit Clauses We iterate over the formula and remove each unit clause from
the formula and the literals which are contained in the clauses. If the literal occurs
in a clause we remove the clause and if the literal occurs negated in a clause then we
remove the literal from the clause. The variables from the literals and clauses also need
to be removed from the tree decomposition. There is a problem in the case of Weighted
Model Counting, as the weights of the literals would be lost. Therefore we generate the
product of the weights of the literals which are removed and then multiply the resulting
weighted model count with the weights.

Example 4.4. We have the SAT formula {{v1,v9}, {v1,v10,v12}, {01, 706}, {v2, 09, 04},

{02, 011}, {=02, ~07}, (-3, =08}, {v3, 07}, {04, 709}, {04, 7010}, {5, 709}, {—Us, V12}, {—vs, U8},
{=v6, 011}, {—v10, 7012}, {01}, {v2}}. After preprocessing the formula looks as follows:
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{v1,v2,v6}

[{'U.% V10, ’Ulz}] [{M, V9, Uw}]

Figure 4.11: The tree decomposition of the formula from Example 4.4 on the left side
before and on the right side after unit preprocessing.

[{'UZ»'UGKUH}’] E{UQ, Us,vs}] [{Uhvm Ug,vm}] {Ua,vu}
\ \
[{Um ’077%'8}] [{U17U97 U1()7U12}] [{U27U47U97 ’010}]

\
[{1}37 'U77'U8}] [{057%7 012}]

{U17 s, U9}

{U67 vg, UQ}

{U3,067US,U10}

[{Us, 7)‘5, va}} [{vz, U6, vm}] [{va, Vs, Vs, vm}]
[{05,7115}] [{05706,7114}] [{vs,vs,vm}] [{U27U67011}J [{v37v47v12}J

{97,U15}

Figure 4.12: Tree decomposition before preprocessing.

{{va, —v9}, {v4, 010}, (U5, 709}, {—Ts, V12}, {—Vs, D11}, {7010, ~T12}}. In Figure 4.11 we can see
the tree decomposition before preprocessing on the left side and after preprocessing on
the right side. The empty bags are then removed in the next preprocessing step.

Combine Small Bags To fully utilize the computational power of the GPU we need a
certain amount of threads. The number of threads depends on the size of the current bag
in the tree decomposition and if the bag is too small then there are not enough threads
for the GPU. In cases where we have small bags we combine consecutive bags of the
tree decomposition as long as we are below a certain threshold. The default value for
the threshold is 10, but a different threshold can be set via the command line parameter
-w,~-combineWidth . In Figure 4.12 we can see a tree decomposition before preprocessing
and in Figure 4.13 we can see the tree decomposition after preprocessing.

4.2.4 Increase Precision

OpenCL doesn’t offer big number or arbitrary precision types. The type with the highest
precision is a 64Bit floating point type (double). Therefore we adapted the quad double
type from https://github.com/scibuilder/QD which links 4 double types together to
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{Uh'UGaUSaUQ}

[{U?,, V4, Vg, Us, Ulo}]

({v2,v3,v5,v6,010}] ({3, 0,012}

[{US;'UG,'U%'UM)'UlS}J [{U37U5a7}13}} [{U27067U11}J

Figure 4.13: The tree decomposition from Figure 4.12 after preprocessing.

increase the precision and create a new type which has the precision of a 256 Bit floating
point type. Internally the type is an array consisting of 4 double types, by summing up
all 4 doubles we get the original number. By using the double 4 type we need 4 times as
much memory compared to using the double type and operations on the double 4 type
need considerably more time.

4.2.5 Increase Range

The exponent of the double type can range from 308 to -307. In the case of #SAT the
exponent is always positive, therefore the exponent range from 0 to -307 will not be used.
To utilize the full double range we use WMC instead of #SAT with a constant weight of
0.78 for every literal and divide the resulting model count by 0.78"V%* with nVars being
the number of variables in the SAT formula.

4.3 Architecture

4.3.1 Input Format

We use the DIMACS | enf format as input format for the SAT formulas. The DIMACS
format consists of three different line types, the comment lines, the problem line and
the clause lines. Comment lines start with a c. There has to be a problem line before
the clause lines start. The problem line starts with p cnf nvars nclauses, cnf indicates that
the file is in CNF format, nvars is the number of variables and nclauses is the number of
clauses. After the problem line is a clause line for each clause from the formula. The
clause lines contain a positive number if a variable occurs positive in the clause and
a negative number if the corresponding variable occurs negative in the clause. The
variable number has to be between 1 and nvars. Clause lines end with a 0.

The format for WMC extends the DIMACS format by adding weight lines. Weight lines
are of the form w var weight, var is the number of the variable and weight is the weight of
the variable if it occurs in a positive literal and 1-weight is the weight of the variable if it
occurs in a negative literal. The weight has to be a real between 0 and 1.

1See: http://www.satcompetition.org/2009/format-benchmarks2009.html
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Example 4.5. In Listing 4.1 we can see a possible cnf representation of the follow-
ing SAT formula: {c; = {v1, 02,03, 706}, 2 = {01,705}, c3 = {vp, V3, Ty, ~V6}, €4 =
{—03, 704,06}, €5 = {—v3, 705}, 2 = {04, Ve}} With the weights w(v,) = 0.7, w(v2) = 0.6,
w(vs) = 0.9, w(vy) = 0.8, w(vs) = 0.6 and w(vg) = 0.1.

This is a comment line.
start of the weights
10.7

SV WN
(— I — I — I —]
= O OO

0.
the problem line
cnf 6 6

the clause lines
-2 3 -60

-1 -5 0

23 -4 -60

-3 -460

-3 -5 0

-4 60

RNV NS 5 5 00

Listing 4.1: Example for a weighted CNF file.

Our input format for the tree decomposition is the DIMACS td format used in the PACE
challenge [DKTW17] ?. The td format consists of optional comment lines which can be
at the beginning of a file. Comment lines start with a c. After the comment lines is a start
line which consist of s td nbags maxBagSize nvars. nbags is the number of bags in the tree
decomposition, nvars is the number of variables and maxBagSize is the maximal number
of vertices in a bag. The start line is followed by a bag line for each bag in the tree
decomposition. A bag line starts with b bld vertices, bld is the id of the bag and vertices is
a list of vertices which are contained in the bag. The bag lines are followed by edge lines.
An edge line contains the id of the first and second bag which are connected by the edge.
In Listing 4.2 we can see the DIMACS td representation of the tree decomposition from
Figure 4.14.

td 9 4 12
1 9 10
9

9 10
9 10
12

8

8

8

= 2« 2k « i« g « 2 « i« 2 « N7
O NOUVI D WDN
WkE WA WwWbAbNDO
VI NNONO NN

2See: https://pacechallenge.wordpress.com/
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10
11
12
13
14
15
16
17
18

{Us, U7, Vg, 1110}

\
[{7&7 v7, U9}J {04, Vg, Vg, Ul()}] [{113, V7,9, Ulo}j

{'U47'U67'Ul2} {U37U77U8}

Figure 4.14: Example tree decomposition for Listing 4.2

b 93511
12
13
14
35
4 6
6 7
6 8
89

Listing 4.2: Example of a td file.

Output Format: The output is in JSON [Cro06] format, the different output parameters
are:

e Model Count: is the model count or the weighted model count
e Time / Solving: is the time needed for solving

e Time / Parsing: is the time needed to parse and preprocess the SAT formula and
tree decomposition

e Time / Build_Kernel: is the time needed to build the kernel

e Time / Init_OpenCL: is the time needed for the first OpenCL operation
e Time / Total: is the total time needed for the execution

e Statistics / Num Join: is the number of executed join operations

e Statistics / Num Introduce/Forget: is the number of executed introduce forget op-
erations

An example output can be seen in Listing 4.3|
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11
12
13
14
15

4.3. Architecture

~

3

Command Line Options

"Model Count": 7973665505280
,"Time": {
"Solving": 8.761
, "Parsing”: 0.003
,"Build_Kernel": 0.001
,"Generate_Model": 0.001
,"Init_OpenCL": 0.077
,"Total": 8.974
1
, 'Statistics":{
"Num Join": 78
, "Num Forget": 174
1

Listing 4.3: Example Output of gpusat.

o -s,--formula <formulaPath>: the path to the SAT formula

The different command line arguments are:

o -f--decomposition <decompositionPath>: the path to the tree decomposition

o -w,--combineWidth <width>: the threshold for combining bags

e -m,--maxBagSize <size>: the maximal bag size before splitting

¢ -c,~-kernelDir <path to kernel Directory>: the path to the directory which contains

the kernel files

e -g,--graph <0[1|2>: sets the type of the input graph
e --noFactRemoval: deactivates the removal of unit clauses
o --weighted: activates the weighted model count

e --CPU: used to run OpenCL on the CPU instead of the GPU

432 CPU

1. First we use the CNFParser to parse the input formula.

The CPU code was written in C++11. It consists of the parser for CNF files, the parser
for the tree decompositions, and a solver for each graph type. The class diagram can be
seen in Figure 4.15, we have omitted the function parameters to increase the readability.

The CPU code works as follows:
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«struct» gpusat : :satformulaType

gpusat : :Preprocessor

+ preprocessDecomp() :void
+ preprocessFacts() :void

numVars : ¢l _long

numWeights : cl long

unsat : bool

variableWeights : solType *

clauses : std : :vector<std : :vector<cl long> >

gpusat : :SolverDual

T

gpusat : :SolverPrimal

«abstracty gpusat : :Solver

# context :

7 queue :

# program :

# maxWidth :

+ isSat :

+ numJoin :

+ numlIntroduceForget :

/V

gpusat : :SolverIncidence

+ solveProblem() :
# virtual solveIntroduceForget() :
# wvirtual solveJoin() :

gpusat : :TDParser

+ parseTreeDecomp() :
- parseEdgeLine() :

- parseStartLine() :

- parseBagLine() :

gpusat : :CNFParser

+ parseSatFormula() :
- parseProblemLine() :
- parseWeightLine() :

«struct» gpusat : :treedecType

«struct» gpusat : :bagType

variables : std : :vector<cl long>
edges : std : :vector<cl long>
num§Sol : cl_long

solution : solType **

bags : std : :vector<bagType*>
numVars : cl_long

Figure 4.15: Class diagram of gpusat.
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2. Then the TDParser parses the tree decomposition.

3. In the next step, the Preprocessor first removes the unit clauses and then prepro-
cesses the tree decomposition.

4. Then we check the graph type of the tree decomposition.

5. If there is no kernel binary we compile the kernel, otherwise the kernel binary is
loaded.

6. Then we start the Solver, depending on the tree decomposition we either use the
Dual, Primal or Incidence solver. The Solver then executes the introduce forget or
join operation for each bag of the tree decomposition.

7. In the end we calculate the final model count and print the solving statistics
together with the model count.

The CNFParser is responsible for parsing the input CNF formula, it has three methods:

e The parseSatFormula method which parses the sat formula, it calls the methods
parseProblemLine, parseWeightLine and parseClauseLine for the respective line in the
CNF file.

e The parseProblemLine method which parses the problem line of the CNF file.
e The parseWeightLine method which parses a weight line of the CNF file.

o The parseClauseLine method which parses a clause line of the CNF file.
The TDParser parses the tree decomposition file, it has four methods:

e The parseTreeDecomp method which parses the tree decomposition, it calls the
methods parseStartLine, parseEdgeLine and parseBagLine for the respective line in
the td file.

e The parseStartLine method which parses the start line of the td file.
e The parseEdgeLine method which parses an edge line of the td file.
e The parseBagLine method which parses a bag line of the td file.

The Preprocessor class is responsible for preprocessing the tree decomposition and
the SAT formula, it has two main methods:

o The preprocessDecomp method which does the preprocessing of the tree decomposi-
tion.

e The preprocessFacts method which does the unit clause removal.
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The Solver class is used to iterate over the tree decomposition and calculate the tables

for each bag. It has three methods:

The SolverDual class implements the solvefoin and solvelntroduceForget method of the
Solver class and calls the respective function of the dual kernel. The SolverPrimal class
like the SolverDual class implementes the solveJoin and solvelntroduceForget methods, but
calls the primal kernel. The SolverIncidence class is used to call the respective kernels

e solveProblem is the main method of the Solver, it iterates over each bag of the tree
decomposition and calls the solveJoin or solvelntroduceForget method based on the

e The solveJoin method has to be implemented by the respective solver, it solves a

e The solvelntroduceForget method has to be implemented by the respective solver, it

current bag.

join node.

solves a introduce and forget node.

for the incidence algorithm.

Init OpenCL Listing 4.4 contains an example of how we initialize OpenCL. First we
get all OpenCL platforms. Then we search if there is a platform that contains either a
CPU or a GPU device depending on the --CPU command line parameter. If we found a

suitable device we create a command queue.

N WN -

7 {
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

cl_context_properties cps[3]

// get all OpenCL platforms

::get(&platforms);
< >::iterator iter;

// iterate over all platforms
for (iter = platforms.begin(); iter != platforms.end(); ++iter)

= {CL_CONTEXT_PLATFORM,
(cl_context_properties) (*iter)(), 0};

if (cpu)
{
// search for CPU devices
context = (CL_DEVICE_TYPE_CPU, cps);
} else
{

}

// search for GPU devices
context = (CL_DEVICE_TYPE_GPU, cps);

cl_int err;
devices = context.getInfo<CL_CONTEXT_DEVICES>(&err);
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// we found a suitable device
if (err == CL_SUCCESS)

{
// create a command queue
queue = (context, devices[0]);
break;

}

}
Listing 4.4: The initialization of OpenCL.

Compile kernel InListing4.5we cansee an example of how we precompile our OpenCL
kernel. First we read the kernel source from the file. Then we create a cl::Program::Sources
object which holds our source code. Afterwards we create a cl::Program object with the
source. We then compile the program with the program.build() command. Afterwards
we read the binary from the cl::Program object and combine it in a string. Then we
write the string into a file which we can read later. Listing 4.6shows how to load the
precompiled kernel. First we read the binary. The GPUSATUltils::readBinary function is a
small function that reads a file and returns a string containing the file contents. Then we
create a binary object with the kernel data and an OpenCL program from the binary.

// read kernel source from file
kernelStr = ::readFile(sourcePath);
::Sources sources(l, std::make_pair(kernelStr.c_str(Q),
kernelStr.length()));
program = (context, sources);

// compile the kernel source
program.build(devices);

// get the size of the compiled sources
const <size_t> binSizes =
program.getInfo<CL_PROGRAM_BINARY_SIZES>();
<char> binData((unsigned long long int)
std::accumulate(binSizes.begin(), binSizes.end(), 0));
char *binChunk = &binData[0];

<char *> binaries;
for (const size_t &binSize : binSizes)
{
binaries.push_back(binChunk) ;
binChunk += binSize;

}

// save the kernel source into file for later usage
program.getInfo (CL_PROGRAM_BINARIES, &binaries[0]);

binaryfile(binPath.c_str(), std::ios::binary);
for (unsigned int i = 0; i1 < binaries.size(); ++i)
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binaryfile.write(binaries[i], binSizes[i]);
binaryfile.close(Q);

Listing 4.5: The compilation of the kernel.

cl_int err;
kernelStr = ::readBinary(binPath);
::Binaries bins(1l, std::make_pair((const void *)
kernelStr.data(), kernelStr.size()));
program = (context, devices, bins, nullptr, &err);
program.build(devices);

Listing 4.6: The loading of the kernel.

Start kernel In Listing 4.7 we can see a part of the primal introduce forget function.
The function contains two loops, one for the split table parts of the current bag and
one to iterate over the split table parts of the child bag. The parameters of the kernel
are initialized with the kernel.setArg function, the first argument is the position of the
parameter in the kernel source and the second parameter is either a buffer containing a
region of the RAM or a value. The queue.enqueueNDRangeKernel then starts a kernel
for each row in the result table. Afterwards we wait for the execution of the kernel.
The queue.enqueueReadBuffer function reads the current table and a flag indicating
if there are solutions from the GPU. If the table part contains no solutions we delete it
afterwards.

// iterate over all parts of the current solution table
for (int a = 0; a < numlIterations; a++)
{
cl_int solutions = 0;
node.solution[a] = new solType[bagSizeForget]();
cl_long startIdNode = a * bagSizeForget;

buf_solsF(context, CL_MEM_READ_WRITE |
CL_MEM_COPY_HOST_PTR, sizeof(solType) * (bagSizeForget),
node.solution[a]l);
kernel.setArg(®, buf_solsF);

// buffer for the solution table of the curren bag

buf_varsF;
if (fvars.size() > 0)
{
buf_varsF = (context, CL_MEM_READ_WRITE |
CL_MEM_COPY_HOST_PTR, sizeof(cl_long) * fVars.size(),
&fVars[0]);
kernel.setArg(l, buf_varsF);
} else {
kernel.setArg(l, NULL);
}
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cl_int bagsolutions = 0;
bufsolBag(context, CL_MEM_READ_WRITE |
CL_MEM_COPY_HOST_PTR, sizeof(cl_int), &bagsolutions);
kernel.setArg(ll, bufsolBag);

// iterate over all child table parts
for (int b = 0; b < numSubIterations; b++)

{
// buffer for the solution table of the child bag
buf_solsE(context, CL_MEM_READ_WRITE |
CL_MEM_COPY_HOST_PTR, sizeof(solType) * (bagSizeEdge),
cnode.solution[b]);
// start the kernel
queue . enqueueNDRangeKernel (kernel ,
(static_cast<size_t>(startIdNode)),
(static_cast<size_t>(bagSizeForget)));
// wait for the kernel to finish
queue. finish(Q);
1

// check if there are solutions

queue. enqueueReadBuffer (bufsolBag, CL_TRUE, 0, sizeof(cl_int),
&bagsolutions);

solutions += bagsolutions;

// read the solution table from the GPU
queue . enqueueReadBuffer (buf_solsF, CL_TRUE, 0, sizeof(solType) *
(bagSizeForget), node.solution[a]);

// delete table if it contains no solutions
if (solutions == 0)
{
delete[] node.solution[a];
node.solution[a] = nullptr;

numHpath -= bagSizeForget;
} else
{

this->isSat = 1;
}

Listing 4.7: Primal introduce forget function.
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In total we have 12 kernels, for each algorithm there are two different kernels, one for
the join and one for the introduce forget operation, each of these kernels has a double
and double 4 implementation. The kernel code was written in OpenCL version 1.2.

Join In Listing 4.8 we can see the kernel for our join for the primal graph, the join for
the dual graph works similar. The parameters of the join function are the solution table,
the variables and the number of Variables of the current node and the first and second
child node. The start and end id for the current table and for the table of the two edges.
The last parameters are the weights of the literals for weighted model count and a flag
which is set if there are solutions in the current bag.

The kernel first queries its id. Then it queries the corresponding model counts of the first
and second edge with the solvelntroduce_ method. It then generates the product of the
model count of the first and second child node and saves it in the table. The function
then divides the model count by the weights of the literals in the bag if weighted model
count is enabled.

long id = get_global_id(®);
double tmp, tmp_;
double weight = 1;

// get solution count from first edge

tmp = solvelIntroduce_(numV, edgel, numVE1l, variables,
edgeVariablesl, minIdl, maxIdl, startIDEdgel, weights, id);

// get solution count from second edge

tmp_ = solveIntroduce_(numV, edge2, numVE2, variables,
edgeVariables2, minId2, maxId2, startIDEdge2, weights, id);

// weighted model count
if (weights != 0)

{
for (int a = 0; a < numV; a++)
{
weight *= weights[((id >> a) & 1) > 0 ?
variables[a] * 2 : variables[a] * 2 + 1];
1
1

// we have some nSol in edgel
if (tmp >= 0.0)
{
nSol[id - (startIDNode)] *= tmp;
nSol[id - (startIDNode)] /= weight;
1

// we have some solutions in edge2
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if (tmp_ >= 0.0)
{
nSol[id - (startIDNode)] *= tmp_;

}
Listing 4.8: The kernel of the primal join.

In Listing 4.9/ we can see the kernel for the join of the incidence graph. The parameters
of the join function are the solution table of the current node and the child nodes. The
start and end id for the current table and for the table of the two child nodes. The last
parameters are the weights of the literals for weighted model count, a flag which is set to
1 if there are solutions in the current bag, the list of variables from the current bag and
the number of clauses in the current bag.

The kernel first calculates the number of solutions we need to check from the child tables
and then queries its id. Then it sums up the edge solutions if the union of the clause sets
of the child nodes is equal to the clause set of the current node. If weighted model count
is enabled it divides the model count by the weights of the literals in the bag and saves
the count in the table.

// get the number of counts we have to check from the edges

unsigned long combinations = ((unsigned long) exp2((double)
numClauses));

unsigned long start2 = 0, end2 = combinations - 1;

// get the id

unsigned long id = get_global_id(0);

unsigned long mask = id & (((unsigned long) exp2((double)
numClauses)) - 1);

unsigned long templateID = id >> numClauses << numClauses;

double tmpSol = 0;

//sum up the solution count for all subsets of Clauses (Al,A2)
where the intersection of Al and A2 = A
for (int a = 0; a < combinations; a++)
{
if ((templateID | a) >= minIDel && (templateID | a) < maxIDel &&
elSol[(templateID | a) - (startIDel)] != 0)

{
for (int b = start2; b <= end2; b++)
{
if ((Ca | b)) == mask & & ((templateID | b) >= minIDe2 && (
templateID | b) < maxIDe2) && e2Sol[(templateID | b) - (
startIDe2)] != 0)
{
tmpSol += elSol[(templateID | a) - (startIDel)] * e2Sol[(
templateID | b) - (startIDe2)];
}
1
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}
}

if (tmpSol != 0.0)
{
// weighted model count is activated
if (weights != 0)
{
// get weight of current bag for WMC
double weight = 1;
unsigned long assignment = id >> numClauses;
1

for (int a = 0; nVars[a] != 0; a++)
{
weight *= weights[((assignment >> a) & 1) > 0 ? nVars[a] * 2
: nVars[a]l * 2 + 1];
1
nSol[id - (startIDn)] += tmpSol / weight;
} else
{
nSol[id - (startIDn)] += tmpSol;

Listing 4.9: The kernel of the incidence join.

Introduce Forget In Listing4.10/we can see the kernel for our introduce forget operation
of the incidence graph, the introduce forget kernel of the primal and dual graph are
similar. The parameters of the introduce forget function are the solution table, the
variables, the number of Variables, the clauses and the number of clauses for the current
node, the child node and the introduce node. The start and end id for the current table
and child table. The last parameters are the weights of the literals for weighted model
count and a flag which is set if there are solutions in the current bag.

The kernel first queries its id. Then if there are clauses or variables forgotten it collects
all the corresponding values from the child table which are obtained via an introduce. If
there are no forget variables or clauses it only executes an introduce.

unsigned long id = get_global_id(0);

unsigned long templateId = 0;

unsigned long combinations = (unsigned long) exp2((double) numVI -
numVF) ;

if (numVI != numVF || numCI != numCF)
{
//generate template for clauses
for (unsigned long a = 0, b = 0; a < numCI; a++)
{
if (fClauses[b] == iClauses[a])
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{
templateId = templateId | (((id >> b) & 1) << a);
b++;

} else

{
templateId = templateId | (1 << a);

}

}

//generate template for variables
for (unsigned long a = 0, b = 0; a < numVI & b < numVF; a++)

{

if (varsF[b] == varsI[a])
{
templateId = templateId | (((id >> (b + numCF)) & 1) << (a +
numCI));
b++;
1

}

// iterate through all corresponding assignments from the edge
for (unsigned long i = 0; i < combinations; i++)

{
long b = 0, otherId = templateld;
for (a = 0; a < numVI; a++)
{
if (b >= numVF || varsI[a] != varsF[b])
{
otherId = otherId | (((i >> (a - b)) & 1) << (a + numCI));
} else {
b++;
1
}
// get solution count from the edge
solsF[id - (startIDf)] += solveIntroduceF(solskE, clauses, cLen
, varsI, varsE, numVI, numVE, iClauses, eClauses, numCI,
numCE, startIDe, minIDE, maxIDE, weights, otherId);
}
else

// solve only introduce if there is no forget
solsF[id - (startIDf)] += solveIntroduceF(solskE, clauses, clen,
varsI, varsE, numVI, numVE, iClauses, eClauses, numCI, numCE,
startIDe, minIDE, maxIDE,
weights, id);

Listing 4.10: The kernel of the incidence algorithm.
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CHAPTER

Experiments

In this section we describe our experiments, first starting with the setting. The setting
contains the solvers which were used in the benchmarks, then we describe the hardware
used to run our benchmarks and the sets which were used for benchmarking. Then we
take a look at the results of our benchmarks, starting with the #SAT benchmarks, then
the WMC benchmarks and a brief discussion of our results.

51 Setting

To compare the different solvers we used the wall clock time and set the timeout of
each run to 900s. We also limited the available RAM to 8GB. For gpusat we used one
randomly generated tree decomposition.

5.1.1 Solvers

For all solvers the default configuration was used except for countAntom which we set
to use 12 cores on the CPU. The solvers we used for benchmarking are can be seen in
Table 5.1.

5.1.2 Hardware

In this section we describe the Hardware which was used to run our benchmark set. We
used two different machines, one for our GPU experiments and one for the CPU solvers.
For our CPU experiments a recent hardware configuration was used and for gpusat we
used a cheap consumer hardware. The configuration of our GPU machine can be seen
in Table 5.2, For the CPU experiments we used a cluster consisting of 9 nodes, hyper
threading was disabled. The configuration of each node can be seen in Table 5.3.
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Solver ‘ Description ‘ #SAT ‘ WMC ‘ Reference

c2d a solver based on knowledge X [Dar04]
compilation techniques

d4 a solver based on knowledge X [LM17]
compilation techniques

miniC2D a solver based on knowledge X X [LM17]
compilation techniques

sts ‘ an approximate solver ‘ X ‘ X ‘ [EGS12]

sharpSAT ‘ a solver based on CDCL ‘ X ‘ ‘ [Thu06]

Cachet ‘ a solver based on CDCL ‘ X ‘ X ‘ [SBB*04]

DSHARP a solver based on knowledge X [MMBH12]
compilation techniques

sdd a solver based on knowledge X [Darl11]
compilation techniques

dynQBF 1.1.1 a QBF solver based on dynamic X [CW16]

programming; in our experiments
we used a modified version for
solving the #SAT problem

dynasp a #ASP solver based on dynamic X [EHMW17]
programming; in our experiments
we used a modified version which
is able to solve the #5SAT problem

cnf2eadt a solver based on knowledge X [KLMT13]
compilation techniques

ApproxMC an approximate solver based on X [CEM*14]
knowledge compilation techniques

bdd_minisat_all | a solver based on knowledge X [TS16]
compilation techniques

sharpCDCL ‘ a solver based on CDCL ‘ X ‘ ‘ [KMM13]

Clasp a standard SAT and ASP solver X [GKS12]

which is also able to solve #SAT and
#ASP problem; clasp is based on
CDCL

countAntom ‘ a parallel solver based on DPLL ‘ X ‘ ‘ [BSB15]

Table 5.1: Overview of the different solvers used in the benchmarks.
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Setting

Operating System:  Ubuntu 16.04.3 LTS
Linux kernel version:  4.4.0-87
CPU: Intel Core i3-3245 (dual core - 3.4GHz)
RAM: 16GB
GPU: Sapire Pulse ITX Radeon RX 570 (32 compute
units, 2048 shaders and 4GB VRAM)
GPU driver: amdgpu-pro 17.10

Table 5.2: The configuration of our GPU machine.

Operating System: Ubuntu 16.04.01 LTS
Linux kernel version: 4.4.0-101
CPU: two Intel Xenon E5-2650 CPUs (12 cores per CPU) 2.2GHz
RAM: 256GB

Table 5.3: The configuration of our CPU machine.

Type set Origin | N vMdn cMdn

WMC DQMR Cachet 660 140 350
WMC Grid Cachet 420 18245 2786.5
WMC Plan Cachet 11 812 3222
#SAT Mixed c2d 14 1286.5 11370
#SAT Basic fre/meel 92 604 1680
#SAT Proj. fre/meel 308 59032 71456.5
#SAT  Weig. fre/meel | 1080 200 500

Table 5.4: Overview of the used benchmark sets with the number of instances, the
median number of clauses (cMdn), and the median number of variables (v Mdn).

5.1.3 Benchmark Sets

Our benchmark set consists of 2585 instances from #SAT and WMC solving. Our #SAT
is made up of 1465 instances, 1451 instances are from the collection of Daniel Fremont!,
and 14 instances are from C2DZ%. Our WMC set contains 1091 instances from cachet’

Treewidth For our benchmark sets we generated upper bounds on the tree width for
the primal, dual and incidence graph. We used 900s as timeout for the decomposer.
In Table 5.5/ we can see the number of instances within different width ranges of the
incidence graph. Table 5.6 shows the median and maximal time which was needed to

1See: https://github.com/dfremont/counting-benchmarks

2See: http://reasoning.cs.ucla.edu/c2d/results.html

3See: http://www.cs.rochester.edu/users/faculty/kautz/Cachet/Model_Counting_
Benchmarks/index.htm
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set ‘0-20 21-30 31-40 41-50 51-60 61-90 91-150 151-300 >300 To
DOMR 35 388 97 140 0 0 0 0 0 0
Grid 90 150 118 12 15 35 0 0 0 O
Plan 1 0 1 1 0 3 0 0 4 1
Mixed 1 1 1 3 2 1 0 0 5 0
Basic 37 9 5 6 11 16 3 0 4 1
Proj. 4 0 2 0 0 2 30 105 140 25
Weig. 125 538 215 152 15 35 0 0 0 O

Table 5.5: Overview of how many instances are in each width range of the incidence
graph. The column "To" contains the number of instances, which took more than 900s to
decompose.

set | tmax tMdn | wMdn 50% 80% 90% 95%
DQMR | 02 00 275 28 41 42 44
Grid 19 02 29 29 38 55 70
Plan 176 04 74 82 442 445 na
Mixed | 228 38 55 59 442 445 540
Basic 176 02 26 39 65 86 349
Proj. 8339 537 297 363 2195 4973 na
Weig. 19 01 28 28 40 43 47

Table 5.6: Overview of the upper bound of the incidence tree width, t is the time needed
to generate the decompositions, w Mdn is the median width, and the percentiles of the
upper bounds on the tree width.

set ‘0-20 21-30 31-40 41-50 51-60 61-90 91-150 151-300 >300 To
DOMR 35 390 95 140 0 0 0 0 0 0
Grid 91 153 114 12 15 35 0 0 0 O
Plan 1 0 1 1 1 2 0 0 4 1
Mixed 1 1 2 2 1 2 0 0 5 0
Basic 37 9 5 6 12 15 3 0 4 1
Pro;j. 4 0 2 0 0 0 12 114 154 22
Weig. 126 543 209 152 15 35 0 0 0 0

Table 5.7: Overview of how many instances are in each width range of the primal
graph. The column "To" contains the number of instances, which took more than 900s to
decompose.
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set ‘tmax tMdn | wMdn 50% 80% 90% 95%
DQMR 0.1 0.0 28 28 41 42 44
Grid 1.2 0.2 29 29 39 55 71
Plan 9.3 2.9 73 85 399 442 na
Mixed 15.8 3.9 57 63 399 442 540
Basic 9.3 0.9 26 37 64 88 352
Proj. 895.3 118.1 324 328 1084 1872 na
Weig. 1.2 0.1 28 28 40 43 48

Table 5.8: Overview of the upper bound of the primal tree width, t is the time in seconds
needed to generate the decompositions, w Mdn is the median width, and the percentiles
of the upper bounds on the tree width.

set ‘0-20 21-30 31-40 41-50 51-60 61-90 91-150 151-300 >300 To
DOQMR 0 0 0 0 0 152 298 210 0 0
Grid 0 0 0 0 19 80 223 81 17 0
Plan 0 0 0 0 0 2 0 4 1 4
Mixed 0 0 1 0 1 1 2 1 2 6
Basic 1 2 5 1 3 18 11 16 31 4
Pro;j. 4 0 0 0 0 0 0 0 121 183
Weig. 0 0 0 0 19 232 521 291 17 0

Table 5.9: Overview of how many instances are in each width range of the dual graph.
The column "To" contains the number of instances, which took more than 900s to

decompose.

set ‘ tmax tMdn ‘ w Mdn 50% 80% 90% 95%
DQMR 0.7 0.3 110 110 164 169 171
Grid 9.8 0.7 121 121 157 217 279
Plan 3.9 15 164 204 na na na
Mixed 4.1 04 1125 3908 na na na
Basic 107.3 0.7 180.5 187 438 751 3416
Pro;j. 896.9 311.1 1573 na na na na
Weig. 9.8 0.3 113 113 163 170 191

Table 5.10: Overview of the upper bound of the dual tree width, t is the time needed to
generate the decompositions, w Mdn is the median width, and the percentiles of the

upper bounds on the tree width.
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Figure 5.1: Distribution of instances for each interval of upper bounds for the primal
width.

generate the decompositions of the incidence graph and the tree width for which 50%,
80%, 90% and 95% of the instances are below of. For #SAT there are 715 instances of
1494 that are in the width range from 0-30, which is 47.8% of the instances. For WMC
there are 664 instances of 1091 which are in the width range from 0-30, which is 60.9% of
the instances.

In Table 5.7 we can see the number of instances within different width ranges of the
primal graph. Table 5.8 shows the median and maximal time which was needed to
generate the decompositions of the primal graph and the tree width for which 50%,
80%, 90% and 95% of the instances are below of. For #SAT there are 721 instances of
1494 that are in the width range from 0-30, which is 48.3% of the instances. For WMC
there are 670 instances of 1091 which are in the width range from 0-30, which is 61.4% of
the instances. Surprisingly, there were more instances for which the primal graph was
within our range, as the tree width of the incidence graph can be at most 1 more than the
width of the primal and dual graph [KV00]. The reason therefore could be that we only
use a heuristic and not an exact solver to generate the tree decompositions.

In Table 5.9 we can see the number of instances within different width ranges of the dual
graph. Table 5.10 shows the median and maximal time which was needed to generate
the decompositions of the dual graph and the tree width for which 50%, 80%, 90% and
95% of the instances are below of. For #SAT there are only 7 instances of 1494 that are in
the width range from 0-30. For WMC there are 0 instances of 1091 which are in the width
range from 0-30. Therefore, we did not include the dual algorithm in our benchmarks.

Our decomposer did not generate a decomposition for 27 instances of the incidence
graph, 24 instances of the primal graph and 197 instances of the dual graph within 900s.
Figure 5.1/shows the distribution of the number of instances on the y axis and the upper



5.2. Results

solver | 0-10 11-20 21-30 31-40 41-50 51-60 >60 u| 0-30| r 0-30| ALL| r ALL
gpusat (p) 16 153 523 80 104 0 0 0| 692 1| 876 7
c2d 12 152 519 175 116 20 118 0| 683 2| 1112 3
d4 16 153 510 156 119 23 15111| 679 3| 1128 1
countAntom 16 141 513 147 129 2315919 670 4| 1128 1
gpusat (i) 16 152 490 79 97 0 0 0| 658 5| 834 8
miniC2D 16 151 491 137 103 8 67 0| 658 6| 973 4
gpusat (p4) 16 153 478 79 97 0 0 0| 647 7| 823 9
sts 16 146 448 101 146 10 45 0| 610 8| 912 6
sharpSAT 12 125 465 136 112 11 10023| 602 9| 961 5
gpusat (i4) 16 152 427 77 8 0 0 0| 595 10| 761 11
cachet 16 117 421 91 109 8 56 2| 554| 11| 818 10
dsharp 16 119 356 71 97 7 5 0| 491| 12| 671 13
sdd 16 127 339 113 75 5 4 0| 482 13| 679 12
dyngbfe 16 119 333 81 67 0 5 0| 468 14| 621 14
dyngbfa 16 120 331 80 68 0 5 0| 467| 15| 620 15
dynasp (i) 16 151 258 0 0 0 0 0| 425 16| 425 17
dynasp (p) 16 152 252 0 0 0 0 0 420 17| 420 18
cnf2eadt 16 62 193 50 57 8 4410| 271| 18| 430 16
approxmc 16 37 174 42 43 1 3510| 227| 19| 348 19
bdd_minisat_alll 9 30 95 26 28 1 15 0| 134| 20| 204 20
sharpCDCL 9 13 8 20 24 1 3310| 105/ 21| 183 21

Table 5.11: Number of instances solved in the primal width range #SAT, and the ranking.

nomn

The column "u" contains instances for which the width is unknown.

bound of the primal width on the x axis for the upper bound of the primal and incidence
tree width .

5.2 Results

In this section we describe the findings of our experiments. We start with the #SAT
benchmarks, then we describe the WMC benchmarks. The width ranges in the cactus
plots are from the incidence and primal graph combined. gpusat (p) and gpusat (i) is
gpusat with the primal/incidence algorithm, gpusat (p4) and gpusat (i4) is gpusat width
the advanced precision double4 type.

5.2.1 #SAT

In Table 5.11|we can see the number of instances solved for the different primal width
ranges. Table 5.13 shows the solved instances for each incidence width range. The
number of instances which were solved fastest by each solver can be seen in Table/5.12/for
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solver | 0-10 11-20 21-30 31-40 41-50 51-60 >60 u| 0-30| r0-30| ALL| r ALL
sharpSAT 8 64 189 45 45 4 4213| 261 1] 397 1
countAntom 0 29 98 59 34 17 91 0| 127 2| 328 2
sts 0 6 113 32 52 2 12 0| 119 3| 217 3
gpusat (p) 0 18 39 1 0 0 00 57 4| 58 7
dsharp 1 3 41 11 13 0 0 0] 45 5| 69 5
c2d 0 5 29 33 0 0 00 34 6| 67 6
cnf2eadt 2 3 19 6 12 1 20 24 7| 45 8
d4 0 6 9 10 0 2 49 0| 15 8| 76 4
dynasp (p) 0 13 0 0 0 0 00| 13 9/ 13 9
cachet 1 2 4 1 1 0 00 7 10 9 10
gpusat (i) 0 0 5 3 0 0 00 5 11 8 11
approxmc 2 1 1 0 0 0 06 4 12 4 13
bdd_minisat_all 0 1 2 1 0 1 10 3 13 6 12
sharpCDCL 1 0 2 0 1 0 0 4 3 14 4 13
dynasp (i) 1 2 0 0 0 0 00 3 15 3 15
miniC2D 0 0 1 0 0 0 00 1 16 1 16
dyngbfa 0 0 0 0 0 0 00 0 17 0 17
dyngbfe 0 0 0 0 0 0 00 0 17 0 17
sdd 0 0 0 0 0 0 00 0 17 0 17

Table 5.12: Number of #SAT instances solved fastest in the primal width range, and the

non

ranking. The column "u" contains instances for which the width is unknown.

the primal graph, and in Table 5.14/for the incidence graph. gpusat (p) solved the most
instances for each width range up to width 30, but sharpSAT solved the most instances
the fastest. gpusat (p) solved the sixth most instances when considering the whole
benchmark set. With the double 4 type we were not able do solve as many instances
as with the normal double type. The primal algorithm solved 45 instances less and the
incidence algorithm solved 63 instances less.

Precision In Table 5.15/we can see the precision for the solvers which did not calculate
the exact model count, the values are the error in relation to the correct value. Cachet

prints the exact number of models, but for some instances the count was slightly off.

Dsharp only prints the first 7 digits of the model count. sts and approxmc are both
approximate solvers.

5.2.1.1 Variation of Decompositions for #SAT

We tested gpusat on different decompositions, to get an understanding of how different
decompositions affect the solving algorithm. In Figure 5.2/and Figure 5.3 we can see a
cactus plot containing the best, worst, average and median runtime for each instance



5.2. Results

solver | 0-10 11-20 21-30 31-40 41-50 51-60 >60 u| 0-30| r0-30| ALL| r ALL
sharpSAT 7 65 188 46 45 2 4512 261 1| 397 1
c2d 0 5 31 31 0 0 0 0 34 6| 67 6
d4 0 6 8 10 1 2 49 0] 15 8| 76 4
cachet 1 2 4 1 1 0 00 7 10 9 10
dsharp 1 3 41 11 13 0 0 0] 45 5/ 69 5
approxmc 2 1 1 0 0 0 06 4 12 4 13
gpusat (p) 0 18 39 1 0 0 0 0] 57 4| 58 7
gpusat (i) 0 0 4 4 0 0 00 5 11 8 11
sharpCDCL 1 0 2 0 1 0 04 3 13 4 13
dyngbfa 0 0 0 0 0 0 00 0 17 0 17
dyngbfe 0 0 0 0 0 0 00 0 17 0 17
dynasp (i) 1 2 0 0 0 0 00 3 13 3 15
dynasp (p) o 13 0 0 0 0 00 13 9| 13 9
miniC2D 0 0 1 0 0 0 00 1 16 1 16
cnf2eadt 2 3 17 9 1 1 20 24 7| 45 8
bdd_minisat_all 0 1 2 0 1 2 00 3 13 6 12
sdd 0 0 0 0 0 0 00 0 17 0 17
sts 0 6 111 33 52 3 11 0] 118 3| 216 3
countAntom 0 28 9% 63 33 17 91 0| 127 2| 328 2

Table 5.13: Number of #5SAT instances solved in the incidence width range, and the

non

ranking. The column "u" contains instances for which the width is unknown.

over 5 runs with different decompositions for the primal and incidence graph. The
ranking of the runs can be seen in Table 5.16.

5.2.1.2 Width 0 to 30

In Figure 5.4 we can see a cactus plot comparing the different #SAT solvers for the width
range 0 to 30. In this width range gpusat (p) solved the most instances with a total of 692,
followed by c2d with 686 instances. On the third place is d4 with 681 solved instances.
CountAntom is on the fourth place with 670 instances. On the fifth place is gpusat with
the incidence algorithm which solved 658 instances.

5.2.1.3 Width 11 to 20

In Figure 5.5 we can see a cactus plot comparing the different #SAT solvers for the width
range 11 to 20. In this width range gpusat (p), gpusat (p4) and d4 solved the most
instances with a total of 154. gpusat (i), gpusat (i4), miniC2D and c2d are on the fourth
place with 153 solved instances.
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solver 0-10 11-20 21-30 31-40 41-50 51-60 >60 u| 0-30| r 0-30| ALL| r ALL
sharpSAT 7 65 188 46 45 2 4512] 260 1| 397 1
c2d 0 5 31 31 0 0 0 0] 36 6 67 6
d4 0 6 8 10 1 2 49 0] 14 8] 76 4
cachet 1 2 4 1 1 0 0O 7 10 9 10
dsharp 1 3 41 11 13 0 0 0] 45 5[ 69 5
approxmc 2 1 1 0 0 0 06 4 11 4 13
gpusat primal 0 18 39 1 0 0 005 657 4| 58 7
gpusat incidence 0 0 4 4 0 0 00 4 11 8 11
sharpCDCL 1 0 2 0 1 0 04 3 13 4 13
dyngbfa 0 0 0 0 0 0 00 0 17 0 17
dyngbfe 0 0 0 0 0 0 00 0 17 0 17
dynasp incidence 1 2 0 0 0 0 00 3 13 3 15
dynasp primal 0 13 0 0 0 0 00 13 9/ 13 9
miniC2D 0 0 1 0 0 0 00 1 16 1 16
cnf2eadt 2 3 17 9 11 1 20| 22 7| 45 8
bdd_minisat_all 0 1 2 0 1 2 00 3 13 6 12
sdd 0 0 0 0 0 0 00 0 17 0 17
sts 0 6 111 33 52 3 11 0] 117 3| 216 3
countAntom 0 28 9 63 33 17 91 0| 124 2| 328 2

Table 5.14: Number of #SAT instances solved fastest in the incidence width range, and

the ranking. The column

"n_o_n

u

contains instances for which the width is unknown.

solver ‘ mean median min max
cachet 1-10713 0 0 811-107"
dsharp 7.98-10 507-1077 0 4.36-107%
approxmc 2.06-10791 4.69-1079%2 0 1-10°

sts 1.50-107%" 2.65-1072 0 1.02-10°

gpusat (p) | 4.08-107% 145-107% 0 1.38-1071
gpusat (i) | 3.81-10™° 436-107"® 0 1.38-107%
gpusat (p4) | 2.19-10732 0 0 4.05-1073
gpusat (i4) | 2.10-107% 0 0 526-1073!

Table 5.15: The mean, median, minimal and maximal relative error for each #SAT solver.



5.2. Results

rank ‘ solver ‘ #

1 gpusat (p) best 722
2 gpusat (p) avg 722
3 gpusat (p) median | 718
4 gpusat (i) best 691
5 gpusat (i) avg 691
6 c2d 686
7 d4 681
8 gpusat (p) worst 674
9 countAntom 670
10 gpusat (i) median | 667
11 gpusat (i) worst 639

Table 5.16: The ranking for the solver in the variations overview for #SAT with the
number of solved instances.
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Figure 5.2: Cactus plot containing the min, max, and median of the solving time of the
primal algorithm for the #SAT problem.
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Figure 5.3: Cactus plot containing the min, max, and median of the solving time of the
incidence algorithm for the #SAT problem.
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Figure 5.5: Cactus plot for the runtime of the #SAT solvers in the width range 11-20.

5.2.1.4 Width 21 to 30

In Figure 5.6/ we can see a cactus plot comparing the different #SAT solvers for the width
range 21 to 30. In this width range gpusat (p) solved the most instances with a total of
524, closely followed by c2d with 523 instances. On the third place is countAntom with
514 solved instances. d4 is on the fourth place with 513 instances. On the fifth place is
gpusat (i) which solved 491 instances.

5.2.1.5 Width 31 to 45

In Figure 5.7 we can see a cactus plot comparing the different #SAT solvers for the width
range 31 to 45. In this width range c2d solved the most instances with a total of 284,
followed by countAntom with 271 instances. On the third place is d4 with 268 solved
instances. sharpSAT is on the fourth place with 248 instances. On the fifth place is sts
which solved 244 instances. gpusat (p) managed to solve 188 instances and gpusat (i)
solved 180 instances.

5.2.1.6 Width Total

In Figure 5.8 we can see a cactus plot comparing the different #SAT solvers for all
benchmark instances. Overall countAntom solved the most instances with a total of
1147, followed by d4 with 1139 instances. On the third place is c2d with 1112 solved
instances. sharpSAT is on the fourth place with 984 instances. On the fifth place is
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Figure 5.6: Cactus plot for the runtime of the #SAT solvers in the width range 21-30.
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Figure 5.8: Cactus plot for the runtime of the #SAT solvers in the whole width range.

miniC2D which solved 971 instances. gpusat (p) is on the seventh place and managed to
solve 875 instances. gpusat (i) is on the eighth place with 834 solved instances.

522 WMC

Table 5.17/shows the number of instances solved for the different primal width ranges.
In Table 5.19 we can see the solved instances within each incidence width range. The
number of instances which each solver managed to solve first can be seen in Table 5.18
for the primal, and in Table 5.20 for the incidence width ranges. The most instances in
the range from 0-20 were solved by gpusat. sts solved 7 instances more than gpusat in
the width range from 21-31, but gpusat produced a small error on average while sts

produced a error of 1037 on average.

Precision The only exact solver we could compare with for precision was Cachet, but
Cachet only prints 7 digits in the case of WMC. In Table 5.21 we can see the precision,
the values are the error in relation to the Cachet value. The error for miniC2d seems

quite high, but miniC2D only prints 3 digits after the decimal point.

5.2.2.1 Variation of Decompositions for WMC

We also tested gpusat on different decompositions, for WMC solving. In Figure 5.9 and
Figure 5.10 we can see a cactus plot containing the best, worst, average, and median
runtime for each instance over 5 runs with different decompositions for the primal and

incidence graph. The ranking of the runs can be seen in Table 5.22.
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solver 0-10 11-20 21-30 31-40 41-50 51-60 >60 u | 0-30| r 0-30| ALL| r ALL
cachet-wmc| 0 92 448 108 105 2 90| 540 6| 764 6
sts 0 121 533 200 152 1 60| 654 1| 1013 1
miniC2D 0 126 513 143 110 5 60| 639 2| 903 2
gpusat (p) 0 128 526 88 104 0 00| 654 1| 846 3
gpusat (i) 0 127 487 83 101 0 00| 614 3| 798 4
gpusat(p4) | 0 128 476 79 96 0 00| 604 4| 779 5
gpusat (i4) 0 127 432 75 90 0 00| 559 5| 724 7

Table 5.17: Number of WMC instances solved in the primal width range, and the ranking.

no_n

The column "u" contains instances for which the width is unknown.

solver | 0-10 11-20 21-30 31-40 41-50 51-60 >60 u | 0-30| r 0-30| ALL| r ALL
cachet-wmc 0 62 264 71 69 2 80| 328 1 479 1
miniC2D 0 29 5 46 9 3 10| 84 3| 143 3
gpusat (p) 0 37 202 24 33 0 00| 237 2| 293 2
gpusat (i) 0 0 20 13 9 0 00| 20 4] 42 4

Table 5.18: Number of WMC instances fastest solved in the primal width range, and the

no_n

ranking. The column "u" contains instances for which the width is unknown.

solver ‘ 0-10 11-20 21-30 31-40 41-50 51-60 >60 u ‘ 0-30 ‘ r 0-30 ‘ ALL ‘ r ALL
cachet-wmc 0 92 442 114 105 1 10 0| 540 6| 764 6
sts 0 120 530 204 152 0 70| 654 1| 1013 1
miniC2D 0 125 508 150 109 3 80| 639 2| 903 2
gpusat (p) 0 127 523 92 104 0 00| 654 1| 846 3
gpusat (i) 0 126 483 87 102 0 00| 614 3| 798 4
gpusat (p4) 0 127 475 81 96 0 00| 604 4| 779 5
gpusat (i4) 0 126 431 77 90 0 00| 559 5| 724 7

Table 5.19: Number of WMC instances solved in the incidence width range, and the

non

ranking. The column "u" contains instances for which the width is unknown.

solver | 0-10 11-20 21-30 31-40 41-50 51-60 >60 u| 0-30| r 0-30| ALL| r ALL
cachet-wmc 0 62 262 76 69 1 90| 328 1| 479 1
miniC2D 0 29 5 49 8 2 20| 84 3| 143 3
gpusat (p) 0 3 203 21 33 0 00| 237 2| 293 2
gpusat (i) 0 0 18 15 9 0 005 20 4| 42 4

Table 5.20: Number of WMC instances fastest solved in the incidence width range, and

no_n

the ranking. The column "u" contains instances for which the width is unknown.
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Figure 5.9: Cactus plot containing the min, max, and median of the solving time of the
primal algorithm for the WMC problem.
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Figure 5.10: Cactus plot containing the min, max, and median of the solving time of the
incidence algorithm for the WMC problem.

69



5. EXPERIMENTS

70

solver ‘ mean median min max
miniC2D 44-100'  7-102 0 1-10%
sts 1.03-107% 4.11-10%° 0 6.06-10%
gpusat (p) | 7.83-1077 4.89-1077 0 4.39-107°
gpusat (i) 794-1077 501-1077 0 4.39-107°
gpusat (p4) | 8.11-107 523-1077 0 4.39-107°
gpusat (i4) | 8.20-1077 529-107 0 4.39-107°

Table 5.21: The mean, median, minimal and maximal relative error for each WMC solver.

rank ‘ solver ‘ #

1 gpusat (p) best 670
2 gpusat (p) avg 670
3 gpusat (p) median | 667
4 sts 658
5 gpusat (i) best 642
6 gpusat (i) avg 642
7 miniC2D 640
8 gpusat (p) worst 630
9 gpusat (i) median | 618
10 gpusat (i) worst 590
11 cachet 540

Table 5.22: The ranking for the solver in the variations overview for WMC with the
number of solved instances.

5.2.2.2 Width 0 to 30

In Figure 5.11 we can see a cactus plot comparing the different WMC solvers for the
width range 0 to 30. In this width range sts solved the most instances with a total of 658,
closely followed by gpusat (p) with 657 instances. On the third place is miniC2D with
640 solved instances. gpusat (i) is on the fourth place with 615 instances. On the fifth
place is gpusat p4 which solved 604 instances. On the sixth place is gpusat i4 with 559
solved instances and on the last place is Cachet with 540 instances.

5.2.2.3 Width 11 to 20

In Figure 5.12 we can see a cactus plot comparing the different WMC solvers for the
width range 11 to 20. In this width range gpusat (p), gpusat p4 and gpusat (i) solved the
most instances with 128, followed by gpusat i4 with 127 instances. On the fifth place is
miniC2D with 126 solved instances. On the sixth place is sts with 121 solved instances
and on the last place is Cachet with 92 instances.
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Figure 5.11: Cactus plot for the runtime of the WMC solvers in the width range 0-30.
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Figure 5.12: Cactus plot for the runtime of the WMC solvers in the width range 11-20.
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Figure 5.13: Cactus plot for the runtime of the WMC solvers in the width range 21-30.

5.2.2.4 Width 21 to 30

In Figure 5.13 we can see a cactus plot comparing the different WMC solvers for the
width range 21 to 30. In this width range sts solved the most instances with a total of
538, followed by gpusat (p) with 530 instances. On the third place is miniC2D with 515
solved instances. gpusat (i) is on the fourth place with 488 instances. On the fifth place
is gpusat i4 which solved 433 instances. On the sixth place is Cachet with 448 solved
instances and on the last place is gpusat i4 with 433 instances.

5.2.2.5 Width 31 to 45

In Figure 5.14 we can see a cactus plot comparing the different WMC solvers for the
width range 31 to 45. In this width range sts solved the most instances with a total of
350, followed by miniC2D with 254 instances. On the third place is Cachet with 218
solved instances. gpusat (p) is on the fourth place with 199 instances. On the fifth place
is gpusat with the incidence algorithm which solved 186 instances. On the sixth place is
gpusat p4 with 177 solved instances and on the last place is gpusat i4 with 167 instances.

5.2.2.6 Width Total

In Figure 5.15 we can see a cactus plot comparing the different WMC solvers for all
benchmark instances. Overall sts solved the most instances with a total of 1013, followed
by miniC2D with 903 instances. On the third place is gpusat (p) with 846 solved instances.
gpusat (i) is on the fourth place with 799 instances. On the fifth place is gpusat p4 which
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Figure 5.14: Cactus plot for the runtime of the WMC solvers in the width range 31-45.

solved 779 instances. On the sixth place is Cachet with 764 solved instances and on the
last place is gpusat i4 with 724 instances.

5.3 Discussion

Our tree width overview shows that about half of our instances have a width below 30
and about two third of our instances have width below 40. At the moment, we were
able to compete with other solvers up to a width of 30. As there are still some possible
future improvements for our solver to save memory and improve performance, a width
of 40 should be in our possible reach. For our hardware we needed to split tables at
a width of 24 when we use the double4 type and at a width of 26 when we use the
normal double type. In the width interval from 0 to 30 we were not able to solve 22 of
670 instances in the case of WMC and 23 of 721 #SAT instances. gpusat solved more
instances with the primal algorithm than with the incidence algorithm, which could be
due to the simpler solving algorithm used for the primal graph, and the widths of both
graph representations are close together.

The usage of WMC for #SAT instances with an unified weight gave almost no precision
loss, but enabled us to solve instances with higher model counts. The higher precision
type was slower than the double type, but it solved the same number of instances for
small width. The higher precision types did not pay off as the gain was rather small
and the memory usage was increased by 4 times. gpusat was not able to solve as many
instances as sts for WMC, but the weighted model count of sts was in some cases far
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Figure 5.15: Cactus plot for the runtime of the WMC solver in the whole width range.

away from the correct model count, in the worst case the failure was about 606421 times
larger than the correct result.
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CHAPTER

Conclusion

6.1 Summary

In this thesis we took a closer look on how to parallelize dynamic programming
algorithms on the GPU. For this purpose we implemented gpusat, which is able to solve
the #SAT and WMC problem on the GPU with OpenCL. gpusat is based on dynamic
programming on tree decompositions. OpenCL enables us to easily parallelize tasks on
the GPU, CPU, and other devices.

We pointed out challenges, one is faced when implementing algorithms on GPUs and
techniques we used to overcome these challenges and optimize the performance of our
algorithms.

We collected benchmark sets, for the #SAT and WMC problems and found that almost
half of the problem instances had a tree width of 30 or below and about two third of
the instances had a width of 40 or below for the incidence and primal graphs. For these
instances we were able to generate tree decompositions in under a second with htd.

To compare gpusat with other approaches we did extensive benchmarking. Our
benchmark experiments showed, that gpusat is competitive with other #SAT solvers for
a tree width of up to 30. We were even able to solve some instances for a width of up to
45.

6.2 Future Work

There are still some open points for further improvement for gpusat.

The main point for future improvement will be to reduce the memory consumption of
gpusat with a map type. At the moment we save the positive and negative solutions
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6. CONCLUSION

in an array. With a map type we would only need to save the positive solutions and
therefore reducing the memory consumption and the number of table splits.

Another point for improvement will be a better preprocessing of the SAT formulas. In
our experiments we have seen, that we can reduce the width with a better preprocessing.

76



List of Figures

2.1 Figure primal, incidence and dual graph/. . . . ... ... ... .. ..... 7
2.2 Figure primal graph decomposition . . . ... ... ... ... ....... 8
2.3 Figure incidence graph decomposition . . . . . ... ... ... .. ..... 9
2.4 Figure dual graph decomposition . . . . .. ... .. ... .......... 9
2.5 Figure nice tree decomposition . . . .. .. ... ... . L 0oL 10
26 FigureOpenCL . ... ... ... ... .. ... ... .. ... ... ... 11
3.1 Figure DP Algorithm CPU| . . . . . ... ... ... ... ... ..... 16
3.2 Primal graph decomposition. . . . ... ... ... .. ... . ... . ... 17
3.3 Primal algorithmexample. . . . . . ... .. ... ... .. ... ... ... 18
3.4 Incidence graph decompostion. . . . .. .. ... ... .. ... ... 20
3.5 Incidence algorithmexample. . . . . . ... ... ... ... ... ... 21
3.6 Dual graph decomposition. . . .. ... ... ............ .. ... 22
3.7 Dual algorithmexample. . . . . .. ... ... ... ..o L 00 23
4.1 Figure DP Algoritbhm GPU . . . .. ... ... ... ... . ... ... .. 27
4.2 Primal graph decomposition for Example 4.1/ . . . . ... .. ... ... .. 28
4.3 Primal algorithm solutions for Example 4.1/ . . . .. ... .. ... ... .. 29
4.4 Incidence graph decompostion for Example4.2 . . . . ... ... ... ... 30
4.5 Incidence algorithm solutions for Example 4.2 . . ... ... ... ... .. 31
4.6 Dual graph decomposition for Example 4.3 . . . .. ... ... ....... 32
4.7 Dual algorithm solutions for Example4.3| . . . ... ............. 33
4.8 Example splitting IF operation| . . ... .. ... ... ............ 34
49 Example splitting join operation| . . . .. ... ... ... ... ... .. 35
4.10 Example splitting join operation| . . . . ... ... ... .. ... ..... 36
4.11 Figure tree decomposition unit preprocessing|. . . . . . . . . ... ... .. 37
4.12 Figure tree dcomposition before preprocessing| . . . . . .. ... ... ... 37
4.13 Figure tree dcomposition after preprocessing . . . . ... .. .. ... ... 38
415 Figureclassdiagram . . .. .. ... ... .. .. ... ... . L. 42
5.1 Figure width distribution . . . ... ... ... ... .. . 000 0L, 58
5.2 Figure #5AT variationprimal . . . . .. .. ... .. .o 0 000 63
5.3 Figure #5AT variationincidence. . . . . ... .. ... ... ... ... ... 64

77



5.4 Figure #5SAT width0-30. . . . . . ... ... ... ... ... .. ... ...

5.5 Figure #SAT width 11-20 . . . . . .. .. ... .. ... ... ... ..
5.6 Figure #5SAT width21-30 . . . . .. ... ... .. ... ... ... ...,
5.7 Figure #5SAT width31-45 . . . . . ... ... ... ... ... .. .. ...
5.8 Figure#SAT ALL . .. ... .. ... ... ... .
59 Figure WMC variationprimal . . . . . ... ............. .. ...
5.10 Figure WMC variationincidence . . . . . ... ... ... ... .......
5.11 Figure WMC width 0-30 . . ... .... ... ... ... ..........
512 Figure WMC width11-20 . . ... ... ... .. ... ... ... ......
5.13 Figure WMC width21-30 . .. ... .. ... ... ... ..........
514 Figure WMC width31-45 . ... ... ... ... ... .. ..........
5.15 Figure WMCALL| . . ... ... ... ... . .. .
List of Tables
2.1 Table satisfying assignments for Example2.1 . . .. ... ... ... ....
4.1 Table combinations splitting IF . . . . ... ... ... .. ..... .. ...
4.2 Table combinations splitting join for primaland dual . . . ... ... ...
4.3 Table combinations splitting join for incidence . . . ... .. .. ... ...
5.1 TableSolvers . . .. ... ... .. ... .. ... ..
52 Table GPU configuration . . . . . .. .. ....................
5.3 Table CPU configuration . . . ... ... ... . ... ... .........
5.4 Table Benchmark Set Overview| . . . .. ... ... ... .. .........
5.5 Table Overview Tree widthincidencel. . . . . .. .. ... .. ... .. ...
5.6 Table incidence width percentiles . . . . .. ... ... .. ... .. .....
5.7 Table Overview Tree width primal . . . . ... ... ... ..........
5.8 Table primal width percentiles| . . . .. .. ... ... .. ..... .. ...
5.9 Table Overview Tree widthdual . ... ... ... .. ... .........
5.10 Table dual width percentiles . . . . . .. .. ... ... .. ..... .. ...
511 Table #solved #SAT primal . . . ... ... ... ... .. ... .. .....
5.12 Table # fastest solved #5AT primal . . . .. ... ... .. ..... .. ...
5.13 Table # solved #SAT incidence . . . . . . . ... ... ... ... .. .....
5.14 Table # fastest solved #5AT incidence . . . . . .. .. ... .. ... .. ....
5.15 Table precision #SAT . . . . ... .. ... ... L Lo
5.16 Table ranking variation #SAT . . . ... . ... ... ... .. ... ... ..

78



5.17 Table # solved WMC primal . . . . . . ..
5.18 Table # fastest solved WMC primal . . . .
5.19 Table # solved WMC incidencel . . . . ..
5.20 Table # fastest solved WMC incidence| . .
5.21 Table precision WMC . . . ... ... ...
5.22 Table ranking variation WMC| . . . . . . .

2.1 Example OpenCL Kernel,| . ... ...
2.2 Example OpenCL Program. . ... ..
4.1 Example for a weighted CNF file. . . .
42 Exampleofatdfile. .. ... ... ..
43 Example Output of gpusat. . .. ...
4.4 Listing initialization of OpenCL . . . .
4.5 Listing precompile OpenCL kernel . .
4.6 Example loading a precompiled Kernel

68
68
68
68
70
70

Listings

4.7 Listing starting the primal introduce forget kernel. . . . . . ... .. ..

4.8 Listing primal join kernel| . . ... ..
49 Listing incidence join kernel . . . . . .
4.10 Listining introduce forget kernel . . .

12
12
39
39
41
44
45
46
46
48
49
50

List of Algorithms

3.1 Table algorithm PRIM(n, x,, F,, C-Tabs).

3.2 Table algorithm IINC(x, F,;, C-Tabs). . .
3.3 Table algorithm DUAL(t, x,, F,,, C-Tabs)

17
19
22

79






[ACP87]

[AMW17]

[BBO6]

[BK10]

[BK11]

[Bod05]

[BSB15]

[BSS*12]

Bibliography

Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity
of finding embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods,
8(2):277-284, 1987.

Michael Abseher, Nysret Musliu, and Stefan Woltran. htd - A free, open-
source framework for (customized) tree decompositions and beyond. In
Proceedings of the 14th International Conference on Integration of Al and OR
Techniques in Constraint Programming, CPAIOR 2017, Padua, Italy, June 5-8,
2017, pages 376-386, 2017.

Emgad H. Bachoore and Hans L. Bodlaender. A branch and bound algorithm
for exact, upper, and lower bounds on treewidth. In Proceedings of the Second
International Conference on Algorithmic Aspects in Information and Management,
AAIM 2006, Hong Kong, China, June 20-22, 2006, Proceedings, pages 255-266,
2006.

Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations I.
upper bounds. Inf. Comput., 208(3):259-275, 2010.

Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations II.
lower bounds. Inf. Comput., 209(7):1103-1119, 2011.

Hans L. Bodlaender. Discovering treewidth. In Proceedings of the 31st
Conference on Current Trends in Theory and Practice of Computer Science,
SOFSEM 2005, Liptovsky Jan, Slovakia, January 22-28, 2005, Proceedings, pages
1-16, 2005.

Jan Burchard, Tobias Schubert, and Bernd Becker. Laissez-faire caching for
parallel #5SAT solving. In Proceedings of the 18th International Conference on
Theory and Applications of Satisfiability Testing - SAT 2015, Austin, TX, USA,
September 24-27, 2015, pages 46-61, 2015.

Sander Beckers, Gorik De Samblanx, Floris De Smedt, Toon Goedemé, Lars
Struyf, and Joost Vennekens. Parallel hybrid sat solving using opencl. In
Proceedings of the 24th Benelux Conference on Artificial Intelligence, BNAIC 2012,
pages 11-18. Maastricht University, 2012.

81



[CdBD15]

[CFM*14]

[Cos13]

[Cro06]

[CW16]

[Dar04]

[Darl1]

[DJKO8]

[DKTW17]

[DLL62]

82

Arthur Choi, Guy Van den Broeck, and Adnan Darwiche. Tractable learning
for structured probability spaces: A case study in learning preference
distributions. In Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, I[CAI 2015, Buenos Aires, Argentina, July 25-31, 2015,
pages 2861-2868, 2015.

Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia,
and Moshe Y. Vardi. Distribution-aware sampling and weighted model
counting for SAT. In Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada., pages
1722-1730, 2014.

Carlos F. Costa. Parallelization of sat algorithms on gpus. Technical report,
Technical report, INESC-ID, Technical University of Lisbon, 2013.

Douglas Crockford. The application/json media type for javascript object
notation (JSON). RFC, 4627:1-10, 2006.

Giinther Charwat and Stefan Woltran. Dynamic programming-based QBF
solving. In Proceedings of the 4th International Workshop on Quantified Boolean
Formulas (QBF 2016) co-located with 19th International Conference on Theory
and Applications of Satisfiability Testing (SAT 2016), Bordeaux, France, July 4,
2016., pages 2740, 2016.

Adnan Darwiche. New advances in compiling CNF into decomposable
negation normal form. In Proceedings of the 16th Eureopean Conference on
Artificial Intelligence, ECAI'2004, including Prestigious Applicants of Intelligent
Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, pages 328-332, 2004.

Adnan Darwiche. SDD: A new canonical representation of propositional
knowledge bases. In Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, I[CAI 2011, Barcelona, Catalonia, Spain, July 16-22, 2011,
pages 819-826, 2011.

Hervé Deleau, Christophe Jaillet, and Michaél Krajecki. Gpu4sat: solving
the sat problem on gpu. In Proceedings of the 9th International Workshop on
State—of—the—Art in Scientific and Parallel Computing, PARA 2008 , Trondheim,
Norway, 2008.

Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller.
The PACE 2017 parameterized algorithms and computational experiments
challenge: The second iteration. In Proceedings of the 12th International
Symposium on Parameterized and Exact Computation, IPEC 2017, September 6-8,
2017, Vienna, Austria, pages 30:1-30:12, 2017.

Martin Davis, George Logemann, and Donald W. Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394-397, 1962.



[DMPV17] Leonardo Duefias-Osorio, Kuldeep S. Meel, Roger Paredes, and Moshe Y.

[EGS12]

[ESO3]

[FF12]

Vardi. Counting-based reliability estimation for power-transmission grids.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
February 4-9, 2017, San Francisco, California, USA., pages 4488-4494, 2017.

Stefano Ermon, Carla P. Gomes, and Bart Selman. Uniform solution sampling
using a constraint solver as an oracle. In Proceedings of the Twenty-Eighth
Conference on Uncertainty in Artificial Intelligence, Catalina Island, CA, USA,
August 14-18, 2012, pages 255-264, 2012.

Niklas Eén and Niklas Sorensson. An extensible sat-solver. In Proceedings
of the 6th International Conference on Theory and Applications of Satisfiability
Testing, , SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003, pages
502-518, 2003.

Hironori Fujii and Noriyuki Fujimoto. Gpu acceleration of bcp procedure
for sat algorithms. In Hamid R. Arabnia, Hiroshi Ishii, Minoru Ito Kazuki
Joe, and Hiroaki Nishikawa, editors, Proceedings of the 2012 International
Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’12), pages 10-16. CSREA Press, 2012.

[FHMW17] Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran.

[GDO04]

[GKS12]

[GSS09]

[HMS15]

[JYP*17]

Answer set solving with bounded treewidth revisited. In Proceedings of
the 14th International Conference on Logic Programming and Nonmonotonic
Reasoning, LPNMR 2017, Espoo, Finland, July 3-6, 2017, pages 132-145, 2017.

Vibhav Gogate and Rina Dechter. A complete anytime algorithm for
treewidth. In Proceedings of the 20th Conference in Uncertainty in Artificial
Intelligence, UAI '04, Banff, Canada, July 7-11, 2004, pages 201-208, 2004.

Martin Gebser, Benjamin Kaufmann, and Torsten Schaub. Conflict-driven
answer set solving: From theory to practice. Artif. Intell., 187:52-89, 2012.

Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model counting. In
Handbook of Satisfiability, pages 633—-654. 2009.

Thomas Hammerl, Nysret Musliu, and Werner Schafhauser. Metaheuristic
algorithms and tree decomposition. In Springer Handbook of Computational
Intelligence, pages 1255-1270. Springer, 2015.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark,
Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir
Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann,
C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian
Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan,

83



[KLMT13]

[Klo94]

[KMM13]

[KV00]

[LM17]

[Man16]

[MMBH12]

[Mun11]

84

Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,
Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul
Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark
Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew
Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory
Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter
performance analysis of a tensor processing unit. In Proceedings of the 44th
Annual International Symposium on Computer Architecture, ISCA 2017, Toronto,
ON, Canada, June 24-28, 2017, pages 1-12, 2017.

Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis, and Samuel Thomas.
Knowledge compilation for model counting: Affine decision trees. In
Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
IJCAI 2013, Beijing, China, August 3-9, 2013, pages 947-953, 2013.

Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture
Notes in Computer Science. Springer, 1994.

Vladimir Klebanov, Norbert Manthey, and Christian J. Muise. Sat-based
analysis and quantification of information flow in programs. In Proceedings
of the 10th International Conference on Quantitative Evaluation of Systems, QEST
2013, Buenos Aires, Argentina, August 27-30, 2013., pages 177-192, 2013.

Phokion G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment
and constraint satisfaction. J. Comput. Syst. Sci., 61(2):302-332, 2000.

Jean-Marie Lagniez and Pierre Marquis. An improved decision-DNNF
compiler. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017,
pages 667-673, 2017.

Norbert Manthey. Towards next generation sequential and parallel SAT
solvers. KI, 30(3-4):339-342, 2016.

Christian J. Muise, Sheila A. Mcllraith, J. Christopher Beck, and Eric I. Hsu.
Dsharp: Fast d-dnnf compilation with sharpsat. In Proceedings of the 25th
Canadian Conference on Advances in Artificial Intelligence, Canadian Al 2012,
Toronto, ON, Canada, May 28-30, 2012., pages 356-361, 2012.

Aaftab Munshi. The opencl specification version: 1.2 document revision:
15,2011.



[PDFP15]

[Rot96]

[RS84]

[SBB*04]

[SS10]

[Thu06]

[TS16]

Alessandro Dal Palt, Agostino Dovier, Andrea Formisano, and Enrico
Pontelli. Cud@sat: SAT solving on gpus. |. Exp. Theor. Artif. Intell., 27(3):293—
316, 2015.

Dan Roth. On the hardness of approximate reasoning. Artif. Intell., 82(1-
2):273-302, 1996.

Neil Robertson and Paul D. Seymour. Graph minors. IIL. planar tree-width.
J. Comb. Theory, Ser. B, 36(1):49-64, 1984.

Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and Toniann
Pitassi. Combining component caching and clause learning for effective
model counting. In Proceedings of the Seventh International Conference on
Theory and Applications of Satisfiability Testing, SAT 2004, 10-13 May 2004,
Vancouver, BC, Canada, 2004.

Marko Samer and Stefan Szeider. Algorithms for propositional model
counting. J. Discrete Algorithms, 8(1):50-64, 2010.

Marc Thurley. sharpsat - counting models with advanced component
caching and implicit BCP. In Proceedings of the 9th International Conference on
Theory and Applications of Satisfiability Testing - SAT 2006, , Seattle, WA, USA,
August 12-15, 2006, pages 424-429, 2006.

Takahisa Toda and Takehide Soh. Implementing efficient all solutions SAT
solvers. ACM Journal of Experimental Algorithmics, 21(1):1.12:1-1.12:44, 2016.

85



	Kurzfassung
	Abstract
	Contents
	Preface
	Motivation
	Methodology and Research Question
	Contributions/Publications
	Related Work
	Thesis Outline

	Background
	#SAT and WMC
	Tree Decompositions
	OpenCL

	Dynamic Programming
	Dynamic Programming on Tree Decompositions
	Dynamic Programming Algorithms for #SAT
	Primal Graph
	Incidence Graph
	Dual Graph
	Dynamic Programming Algorithms for WMC


	Implementation
	Challenges
	Techniques
	Merge Operations
	Table Splitting
	Preprocessing
	Increase Precision
	Increase Range

	Architecture
	Input Format
	CPU
	GPU


	Experiments
	Setting
	Solvers
	Hardware
	Benchmark Sets

	Results
	#SAT
	WMC

	Discussion

	Conclusion
	Summary
	Future Work

	List of Figures
	List of Tables
	Listings
	List of Algorithms
	Bibliography

