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Abstract

In traditional software engineering, artifacts are manually developed, based on a system
specification in terms of documenting models. Models are abstractions of real-world
concepts and environments. Model-driven Engineering (MDE) is a paradigm in which
these models are considered the driving software artifacts, serving also purposes of
code generation besides documenting the underlying system. In this context, the Ob-
ject Management Group (OMG) suggests in their Model-driven Architecture (MDA)
to standardize the models for them to have a maximized re-usability. Consequently,
software engineers benefit from a positively influenced productivity. The topic of model
transformation plays a central role in this context of MDE, as the involved models are
specified on different levels of abstraction.

Since its publication in 2008, Query/View/Transformation-Relations (QVTr) claims to
be the standard model transformation language (MTL) for the declarative specification
of model transformations, and has been used as an enabling formalism. In consideration
of productivity being a central goal in MDE, it is vital for tools and editors to maximize
the usability of their implementing MTL.

However, taking into account the current state of the art in tools for QVTr, several short-
comings are revealed. First, the availability of matured tools is sparse, and furthermore,
they have been developed with the goal to enable the underlying technology. Their design
is not user-centered and, in particular, they lack from a poor level of automation and
interactivity. In addition, we identify a lack of support for short feedback cycles, which
significantly influences the usability of both the editor and implementing MTL. Finally,
we consider the neglection of QVTr’s concrete, graphical syntax in state of the art editors
as unused potential for an increase in readability and traceability.

In the context of this thesis, we shed light on the impact of an increase in interactivity,
automation, readability, traceability, the usage of QVTr’s graphical syntax, and of short
feedback cycles on the usability of QVTr. For this purpose, we propose a theoretical
concept comprising techniques to push the modeling process towards a user-centered
approach. The underlying key principles of our concept comprise the so called outward
modeling style, a suggestion-driven process, interactive graphical model visualizations
and the enforcement of conventions. To show the feasibility of our approach, we conduct
user experiments in an industrial context at the LieberLieber Software GmbH company
in Vienna, using a prototypical implementation.
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Kurzfassung

Die traditionelle Software-Entwicklung (SE) sieht die manuelle Entwicklung von Artefak-
ten vor, ausgehend von einer durch Modelle dokumentierten Spezifikation. Die Modelle
dienen primär der Dokumentation und sind Abstraktionen der realen Welt. Die Modell-
getriebene SE (MDE) ist ein Paradigma, in welchem diese Modelle als die primären
Artefakte angesehen werden, und übernehmen neben der Dokumentation auch die Aufgabe
der Code-Generierung . In diesem Kontext schlägt der Model-driven Architecture (MDA)
Standard vor, diese Modelle zu standardisieren, um deren Wiederverwendbarkeit zu
maximieren. In weitere Folge profitieren Software-Entwickler von einer maximierten Pro-
duktivität. Das Thema der Modell-Transformation spielt eine zentral Rolle in der MDE, da
involvierte Modelle auf separaten Abstraktionsebenen definiert sind. Seit der Publikation
2008 beansprucht die Modell-Transformationssprache (MTL) Query/View/Transformati-
on Relations (QVTr) der Standard für die deklarative Spezifikation von Transformationen
zu sein, und findet seitdem Verwendung in der Forschung. Da Produktivität eines der Ziele
in der MDE ist, ist es für unterstützende Tools unerlässlich, die Benutzerfreundlichkeit
der zugrundeliegenden MTL zu maximieren. In Anbetracht von derzeit verfügbaren Tools
für QVTr offenbaren sich jedoch diverse Mängel. Die Verfügbarkeit von ausgereiften Tools
ist spärlich, und haben primär das Ziel, die zugrundeliegende Technologie nutzbar zu
machen. Das Design ist nicht Benutzer-zentriert und insbesondere herrscht ein Mangel
an Automatisierung und Interaktivität. Zusätzlich fehlt die Unterstützung für möglichst
kurze Feedback-Zyklen, was sich im Besonderen auf die Benutzerfreundlichkeit auswirkt.
Zuletzt betrachten wir das Fehlen der konkreten, grafischen Notation von QVTr in
den Tools als ungenütztes Potential für eine erhöhte Les- und Rückverfolgbarkeit. Im
Kontext dieser Diplomarbeit wird ein Blick auf den Einfluss einer erhöhten Interaktivität,
Automatisierung, Les- und Rückverfolgbarkeit, die Verwendung der grafischen Notation
von QVTr, und von möglichst kurzen Feedback-Zyklen auf die Benutzerfreundlichkeit
von QVTr geworfen. Zu diesem Zweck wird ein theoretisches Konzept vorgeschlagen, das
Techniken umfasst, um den Modellierungsprozess Benutzer-zentriert zu implementieren.
Die zugrundeliegenden Prinzipien umfassen den sogenannten Outward Modellierungsstil,
einen Vorschlag-getriebenen Prozess, interaktive Visualisierungen für Modelle, und die
Durchsetzung von Konventionen. Um die Realisierbarkeit unseres Ansatzes zu demons-
trieren wurden mithilfe einer prototypischen Implementierung Experimente in einem
industriellem Kontext bei der LieberLieber Software GmbH in Wien durchgeführt.
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CHAPTER 1
Introduction

In traditional software engineering, artifacts are manually developed, based on domain
models that describe the software system to be built. The formal specification of these
conceptual models is done using dedicated modeling languages (e.g. Entity-Relationship,
UML, SysML), and serves for documentation and communication purposes.

Model-Driven Engineering (MDE) is a paradigm with the goal of standardizing these
domain models for them to have a maximized re-usability, so that software engineers
benefit from a positively influenced productivity. In order to standardize the reusability
of software models, the OMG defines the separation into platform-independent (PIMs)
from platform-specific models (PSMs) in their Model-Driven Architecture (MDA) [39].
According to this definition, a model for a relational database management system is a
PSM, whereas a model for an UML class diagram is a PIM. Since PIMs and PSMs are
defined on different abstraction levels there clearly exists the need for a mechanism to
transform models from one abstraction level to another.

According to Kleppe et al. [23], a model transformation is defined as follows.

“A transformation is the automatic generation of a target model from
a source model, according to a transformation definition. A transformation
definition is a set of transformation rules that together describe how a model
in the source language can be transformed into a model in the target language.
A transformation rule is a description of how one or more constructs in
the source language can be transformed into one or more constructs in the
target language.”

Figure 1.1 exemplary illustrates such model transformations. The UML diagram (PIM)
on the left is used to generate a relational database schema (PSM) in a model-to-model
transformation. In a subsequent step, the schema is transformed into SQL code in a
model-to-code transformation.
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1. Introduction

Figure 1.1: PIM to PSM model transformation

1.1 Problem Statement

Since its publication in 2008, Query/View/Transformation-Relations (QVTr) claims to
be the standard [41] model transformation language (MTL) for declarative specification
of model transformations. Since then, it has been used as an enabling formalism in
academic research [7, 12, 28, 36, 45]. In consideration of productivity being a central goal
in MDE, it is vital for tools and editors to minimize the required effort that a user has
during the modeling process, and to maximize the usability of the used MTL. We observe
the following shortcomings in state of the art tools for QVTr.

• The availability of matured tools is sparse. Specifically, we identify the tools
Echo [33], medini QVT [34] and QVT Declarative [13] as such, opposing to rather
prototypical implementations such as ModelMorf [2] and plug-ins for Enterprise
Architect (EA) and the Visual Modeling and Transformation System (VMTS) [28].

• The focus of these 3 matured tools lies on enabling technology, but not primarily
on usability. In this context, Strüber et al. [49] claim that a strong focus on
usability for both modeling languages and implementing tools are a prerequisite to
a broader adoption of MDE. What these 3 tools lack in particular is a high level of
interactivity and automation. The modeling process in QVTr contains recurring,
tedious tasks that potentially affect the productivity of users. To the best of our
knowledge, a prototypical, usability-focused QVTr plug-in for Enterprise Architect
is the only attempt yet to tackle this issue.

• We observe a lack of support in these editors for short feedback cycles.
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1.2. Aim of the Work

• Finally, the specification of QVTr [41] also defines a concrete, graphical notation,
which is unsupported in all of the matured tools. We consider this as unused
potential for an increase in readability and traceability.

Based on these observations, we propose the following hypotheses.

• QVTr’s usability benefits from an increase in interactivity and automation, since it
decreases the modeling effort.

• QVTr’s usability benefits from short feedback cycles.

• QVTr’s readability and traceability benefits from using its graphical notation.

1.2 Aim of the Work

The aim of this thesis is to research the impact of an increase in interactivity, automation,
readability, traceability, the usage of QVTr’s graphical syntax, and of short feedback
cycles on the usability of QVTr. For this purpose, we conduct user experiments in an
industrial context at the LieberLieber Software GmbH company.

1.3 Contribution

The contribution of this thesis are answers to the following research questions.

• What are possibilities for interactive, automated, readable and traceable modeling?

• What are possibilities to accelerate feedback cycles?

• Which role does QVTr’s graphical concrete syntax play concerning readability and
traceability?

• How does our concept perform in practice, compared to a state of the art tool?

• In which context does our concept generate the most value?

1.4 Methodological Approach

The methodological approach to reach the listed contributions comprises the following
steps.

• In the first part, state of the art tools for QVTr are discussed with respect to
interactivity, automation, readability and traceability.

5



1. Introduction

• The second part focuses on analyzing the modeling process when using QVTr to
specify model transformations. We do this by means of a usability inspection
method called cognitive walkthrough [17], and apply it on modeling the SimpleUML-
ToSimpleRDBMS example transformation from the QVT standard specification.

• In the third part, we propose a theoretical concept that comprises techniques for
implementing an increase in interactivity, automation, readability and traceability
into the modeling process of QVTr. The concept is based on the insights gained
in the previously conducted analyses of the modeling process and state of the art
tools.

• In the next step, the previously defined concept is prototypically implemented
using the JavaFX [43] programming language, since it is an established language
for developing desktop applications with highly interactive user interfaces. For
convenience reasons we will refer to this prototypical implementation using QViT
as its name.

• Finally, we evaluate the impact of our concept in practice by conducting user
experiments in an industrial context at the LieberLieber Software GmbH in Vienna.

1.5 Structure of the Work
The work done in the context of this thesis is reported in the following structure.

• Chapter 2 presents the state of the art in the topic of model transformations. This
includes a discussion of state of the art tooling support for QVTr, and the research
done in related work.

• In Chapter 3 we report on our analysis of the theoretical modeling process in
QVTr. We begin with a clear definition of the type of model transformations
that are of interest in the scope of this thesis. Then, we define a list of modeling
tasks, challenges and patterns that occur throughout the process of modeling. A
comparison of textual against graphical modeling concludes this chapter.

• In Chapter 4 we present our theoretical concept for productive modeling with QVTr,
comprising a combination of dedicated techniques to increase the level automation,
interactivity, readability and traceability.

• Chapter 5 reports the results of our conducted user experiments including an
interpretation of the collected data. We also briefly describe the prototypical
implementation our proposed concept, which has been used for the experiments.

• Chapter 6 summarizes the work done in this thesis, including the results and
insights gained, and concludes this thesis with an outlook on future work.
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CHAPTER 2
State of the Art

Usability, the problem of attractive visual modeling and the user-experience of tools
for MDE have recently come to the attention of academic research [3,35,49,51]. What
authors conclude in their work is that the adoption of MDE hinges on the usability of
modeling languages and implementing tools, and that the usability is not inherent to the
product itself, but is instead the result of the interaction with it.

In this context, Mens et al. [35] state that for editors to be useful and serve their practical
purpose, they have to achieve a balance between verbosity and conciseness. What they
mean by this statement is what code editors for major general-purpose programming
languages such as Java or C# achieve with so called code snippets. On the one hand,
the editor should expose as few functionality to the user at the same time as possible, in
order to not be overwhelming or cluttered. On the other hand, this way, the modeling
of complex transformations becomes tedious. A comparably low-verbose solution are
code snippets, that the user inserts via dedicated context menus or ideally by keyboard
shortcuts. Furthermore, the authors enumerate certain features that they consider a
transformation tool to have to be usable. Among other points, this list includes CRUD 1

functionality, a suggestions mechanism when to apply a specific transformation, as well as
support for modularization of transformations, such that their re-usability is maximized.
Furthermore, they demand the need for automatic checking of syntactical correctness and
completeness. The first case refers to the well-formedness of a transformation, whereas
the latter property considers whether all elements in a source model have been related to
a respective element in the target model. Next, the authors state that an editor should
constantly analyze a transformation in order to maintain traceability links between the
source and target side. Further features demanded by the authors are extensibility,
interoperability, acceptance by a user community, performance and scalability, as well as
the conformance to official standards.

1create, read, update, delete
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2. State of the Art

2.1 Model Transformations
Modeling languages for the specification of model transformations are defined on separate
levels of abstraction. An abstract syntax (AS) defines the logical structure by means of a
metamodel, where as a complementary concrete syntax (CN) defines its representation.
The de-facto standard metamodeling language is the Meta Object Facility (MOF) [38],
standardized by the OMG. The traditional approach to model transformations is the
manual specification of a model transformation in the terms of the language’s CN. As a
prerequisite to that, users are required to have a deep understanding of the language’s
concepts, which are specified in the AS, while defining the actual model transformation
using the CN. However, since users are typically more familiar with the CN of MTLs, their
usability is significantly affected by how much effort it takes to understand the concepts
encoded into the underlying metamodel(s) [20]. In order to aid users with this so called
concept hiding [20] in metamodels, the approach of model transformation by-example
(MTBE) has been suggested [6, 20, 21, 27, 55]. Unlike the traditional transformation
by-modeling, this approach is result-driven as the specification of model transformations
is done indirectly in terms of examples using the CN. The model transformation is then
derived from this exemplary demonstration and can be applied to different input. Hence,
users are not longer required to have a deep understanding of the AS of a MTL, as
the knowledge in using the CN is sufficient. MTBE is comparable to the recording of
replayable macros of user actions, executed in the context of user interfaces [31]. A
similar approach is that of transformation by-demonstration (MTBD) [27,50]. Like in
MTBE, the model transformation is specified by the user in terms of examples. But the
resulting model transformation is not derived from a post-modeling analysis, but instead
from the set of recorded actions the user has performed during the modeling.

Both MTBE and MTBD are promising approaches to the topic of MDE, as a significant
usability gain for the modeling process of model transformations is inherent to their
underlying ideas. However, in the scope of this thesis we are interested in investigating
on the problem of poor usability of traditionally applied MTLs, which causes the need
for approaches like MTBE and MTBD in the first place.

2.2 Tool Support for QVTr
In this section, we present current state of the art tools for QVTr, and assess them with
regards to their level of maturity, automation, interactivity, readability and traceability.

ModelMorf [2] is a proprietary execution engine for model transformation specified in
QVTr. As it is implemented as a command-line tool, there is no GUI and no support
for QVTr’s graphical syntax. Models are read in the XMI format, and semantical error
messages are provided after a transformation’s execution. Support for the tool has
been discontinued while still being in its beta-phase, but there is support for in-place
transformations, OCL collection types and the possibility to generate trace output.
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2.2. Tool Support for QVTr

QVT Declarative (QVTd) [13] is a project in the context of the Eclipse Modeling Project,
and has the aim to provide the capabilities for textual editing, parsing and debugging
transformations specified in QVTc and QVTr for research purposes in the context of an
Eclipse-based IDE. Although not explicitly targeted at novice users, there has been put
effort into increasing the usability. First, QVTd supports syntactic, context-sensitive
auto-complete functionality, that significantly eases the textual specification as users
are suggested what to specify next at any point in time. Next, the initial configuration
of execution profiles for specific QVTr transformation scripts is automated, as input
models, output models, execution direction and intermediates are preselected for the
user. Error analysis is also done by the editor, but only serve the purpose of error
identification, as no QVTr-related quick fixes are suggested to the user. For an enhanced
readability, QVTd offers the user to configure syntax highlighting, as for example the font
style and color for comments, keywords or strings is changeable. Existing models and
metamodels can be used in QVTd using the XML Metadata Interchange (XMI) and the
EMF Ecore data format respectively. Finally, the editor also supports clickable relation
calls, increasing the traceability of relations. The possibility for transformation execution
has been introduced with the release of Eclipse Neon in June 2016 [59], and there is
ongoing work [57–59] with the aim to optimize the execution’s performance.

medini QVT (medQVT) [22] is an Eclipse-based IDE built upon the Eclipse Modeling
Framework (EMF) for model-to-model transformations using QVTr, developed by IKV++
technologies. It features the textual modeling, execution, debugging of transformations,
and has also support for incremental updates. Its execution engine is open-source and
thus is integrable into external editors. The editor provides a concise, dedicated modeling
and execution environment for QVTr, featuring refactoring techniques and the display of
errors. Similar to QVTd, no applicable quick fixes to identified errors are suggested to
the user. medQVT features auto-complete for the process of textual modeling, but is
unfortunately subject to indeterministic behavior as no suggestions are made at certain
points in time. Syntax highlighting (e.g. keywords and strings) is supported, but is
not configurable by the user, and like in QVTd, relation calls are clickable. Before
modeling, metamodels have to be globally imported using a dedicated configuration
window. medQVT has also support for expressions formulated in the Object Constraint
Language (OCL) [40].

Enterprise Architect (EA) [48] is an integrated development environment for system
design, analysis and source code generation developed by Sparx Systems. 11 years ago,
the LieberLieber Software GmbH [1] company has developed a plug-in for EA to enable
the editing of QVTr transformations using its graphical syntax. The idea was to improve
the usability of the modeling process by (i) stemming it from a textual to a graphical level,
and (ii) by means of user-guidance. In particular, the user is assisted with suggestions
derived through metamodel analysis. However, there currently is no support for the
execution of the created model transformations and thus also no debugging is possible.

Echo [9, 32,33] is an EMF-based tool that provides means for repairing models inconsis-
tencies with their underlying metamodels, built upon the Alloy language. Metamodels

9



2. State of the Art

are imported in the Ecore format, and models in the XMI format. The user specifies the
consistency rules using QVTr and OCL, and is presented the models in a visual way for
an enhanced readability. The tool is user-focused, as it does not only detect consistency
errors, but also provides quick fixes to repair them. Echo always suggest the minimal
set of repair operations needed to resolve the inconsistencies. In this context, the user is
free to chose from a graph-edit or an operation-based distance for applying the quick
fixes. What distinguished the editor from the aforementioned ones is that the user is
presented with dedicated, diagram-like previews for all possible quick fixes applicable to
resolve a specific error. That way, the user is given control of the model repair process,
thus leading to a high degree of interactivity.

Lengyel et al. [28] have developed a QVTr plugin for their Visual Modeling and Transfor-
mation System (VMTS) to define, execute and validate model transformations visually
in QVTr. Figure 2.1 illustrates an example transformation modeled with the plug-in.
Since the target group of their editor comprises engineers without a background in model
engineering the authors wanted to choose a declarative model transformation language
– namely QVTr. Furthermore their editor allows the definition of high-level validation
constraints using OCL (Object Constraint Language) statements. Unfortunately, recent
contact with the authors at the University of Technology and Economics Budapest has
revealed that the support for QVTr in the current version of VMTS has been discontinued
five years ago. We were therefore not able to include the plug-in into our tools assessment.
One of the reasons for the discontinued support is the lack of visual control flow in QVTr,
which is inherent to its declarative nature. Also, the authors claim that the concept
of when and where clauses is tedious to use for branching scenarios. Furthermore, the
authors mentioned that the implementation of the imperative OCL part was challenging.

Figure 2.1: Example of a QVTr relation modeled with the VMTS Plug-In [28]

10



2.3. Complementary Tool Support

2.3 Complementary Tool Support
In contrast to the modeling and execution of transformations, there are editors for the
modeling of models and metamodels, as described in the following.

The Eclipse Modeling Framework (EMF) [52] is a (meta)model framework upon which
tools can be built for modeling, validation, or code-generation. Complementary, the
Graphical Modeling Framework (GMF) [53] is a generative system for graphical editors
based on EMF.

EcoreTools [14] is a graphical diagram editor and analyzer for models specified in the
Ecore format, which is the meta-metamodel of EMF. It features the editing of class
diagrams, a constraint validation view and an overview for package dependencies. The
editor is convenient for modeling the metamodels needed as input for model-to-model
transformations in other, dedicated editors.

Topcased [54] is an Eclipse RCP application that uses EcoreTools to enable the graphical
editing of Ecore models and UML diagrams as well as the generation of metamodels in
the Ecore format.

Schütze et al. [47] investigate the tooling support for OCL debugging and come to
the conclusion that a step-by-step debugger does not yet exist, but that it would be a
significant contribution since step-by-step debugging is one of the most-wanted features in
the academic community. The authors follow a methodological approach by first defining
requirements and features that an OCL debugger should implement. For instance, step-
by-step debugging using breakpoints, the visual designation of visited OCL statements,
conditional breakpoints or the support for debugger watches. The authors describe
their implementation for Dresden OCL, an open-source and Eclipse-based OCL tool and
compare it with existing OCL tools based on their defined requirements. They conclude
their comparisons with the finding that tree-based debugger views are insufficient for
more complex OCL statements that make use of iterators.

Li et al. [29, 30] present an approach to map the selection criteria of QVTr queries to
XPath expressions. The goal is to enable the implementation of such queries as XSLT
functions and thereby combine the visual attractiveness of the graphical syntax and the
expressiveness of the textual syntax. They also present their work on a visual editor,
shown in Figure 2.2, that facilitates the specification of queries using an adapted verison
of QVTr’s graphical syntax.

Rentschler et al. [44] propose an interactive, visual analysis tool for Eclipse to ease
the maintenance of QVT-Operational (QVTo) transformations. In particular, the tool
adds a navigable dependency graph which is synchronized with the state of Eclipse’s
text editor. They motivate the need for their approach by explaining how error-prone
the manual modification of textual QVTo transformations is (e.g. using search/replace
techniques) and that a high level of expertise in QVTo is needed to do so. In their
approach, the model dependencies are statically analyzed and then visualized in an
interactive, navigable graph view. The authors also deal with the problem of information
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Figure 2.2: An editor to define model queries in a visual way using an adapted version of
QVTr’s graphical syntax [29,30]

overload in their graph due to significant numbers of dependencies. In order to mitigate
this problem and to decrease the search space, they propose dedicated filter criteria
depending on the particular maintenance task that should be carried out. For example,
one filter only shows elements that are in direct context to the currently selected unit.
In their conclusion, Rentschler et al. claim that their approach significantly improved
maintenance efficiency and productivity.

A comparative study proposed by Samimi-Dehkordi et al. [26] in October 2016 states that
TGG, which is similar to QVTr, already enjoys comprehensive tool support (MoTE, TGG
Interpreter, eMoflon), whereas only a single matured tool (medQVT) exists for QVTr.
As can be seen in Figure 2.3 QVTr not only lacks available tools, but is also considered
to lack simplicity, measured by the size of the language’s metamodel(s). The modeling
process in the only matured tool medQVT is rather static and hardly offers guidance
for a transformation developer. This makes it difficult especially for novice users of
QVTr to explore capabilities and limitations of the modeling language. Furthermore, the
modeling is based on QVTr’s textual syntax, which, in particular, makes a visual analysis
of relation dependencies an inconvenient task. Understandability and scalability are
features that hinge on visual cues. The work in this thesis contributes to the exploration
of the interrelation between the usability of QVTr and the interactivity of the used
modeling process. In this context, interactivity is defined as the level of guidance that a
user receives throughout the modeling process of a transformation.

Willink [56] motivates the need for a standardized metamodel in order to be able to
re-use OCL implementations in tools that make use of OCL-based languages. The author
also shows that it is possible to realize static model analysis for QVTr in a textual editor
using these standardized OCL implementations.
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Figure 2.3: Visual comparison of bidirectional MTLs [26]
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CHAPTER 3
The QVTr Modeling Process

After our discussion of state of the art tools in the previous chapter, we report on our
conducted analysis of the theoretical process of specifying model transformations with
QVTr in this chapter. Our motivation for conducting this analysis manifests itself in (i)
the fact that we have to know how to manually model a transformation before we are able
to automate it. And (ii), in order to design interactivity-increasing techniques, we are
required to have a deeper understanding of the problem of model transformation per-se.
This includes the definition of model transformation types, a model transformation
pipeline, modeling tasks, modeling challenges, and modeling patterns. We have bundled
the gained insights from this analysis into a theoretical concept, which is presented in
the subsequent chapter. Finally, we elaborate on the different effects that the type of
notation used in an editor has on the modeling process. Informally, this chapter reports
on what can be done to increase usability and productivity, whereas the next chapter
focuses on the concrete how aspects to do so.

3.1 Types of Model Transformations
Before we are able to elaborate on possible improvements to the process of modeling, we
first have to define a clear baseline, and thus delimit the type of model transformations,
that we consider in the scope of this thesis. Model transformations have been categorized
in academic research [10,11,35] by the means of certain features like being in-place, or to
which representation the source model shall be transformed to. In the following list, we
define which type of model transformations we consider.

Approach Classification. Approaches to model transformations can be classified into
being directly-manipulative, imperative, declarative, hybrid or graph-based [11]. In the
first form, model transformations are specified by targeting an application programming
interface (API) using a programming language such as Java. For instance, by means of
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3. The QVTr Modeling Process

the Java Metadata Interface (JMI) it is possible to modify UML models without the use
of a dedicated MTL. The strength of imperative MTLs (e.g. QVT Operational) is that of
an explicit control flow, where as declarative MTLs have the advantage of low verbosity.
With QVTr we consider a declarative MTL. Hybrid MTLs (e.g. Atlas Transformation
Language [19]) aim to combine the advantages of imperative and declarative languages.
Finally, graph-based MTLs (e.g. Triple Graph Grammars [46], Henshin [4]) are similar to
declarative MTLs as models are put into relation from a logical, graph-based perspective.

Delcarative against Operational. With QVTr we consider a declarative model trans-
formation language, meaning that a user specifies the what rather than the how. Opera-
tional languages are also referred to as imperative languages. We also note that functional
and logical languages fall into the category of declarative languages.

Executability. The purpose of MTLs is primarily to provide a formalism to specify
model transformations, whereas the execution thereof is not necessarily an aimed goal.
With QVTr however, we consider besides the modeling aspects also the specification of
executable transformations in this thesis.

Transformation Target. With QVTr we are considering a so called model-to-model
MTL. In this group of MTLs, the transformation’s goal is to instantiate a model of the
target metamodel [11]. In contrast, the so called model-to-text MTLs serve for purposes
of generating another representation of the inputted source model. In this thesis, we
consider QVTr model transformations, which by their definition take as input a target
metamodel, and generate a target model, as well as a trace model in each execution.

Amount of Input & Output Parameters. Since the work in thesis is about model
transformations, we do not consider so called “checkonly” transformations, that do not
generate a target model.

Source Model Model Transformation Target Model
input output

Figure 3.1: Transformations of our interest have exactly one source & target model

For reasons of practicality, we consider only transformations that have exactly one input
and exactly one output model, as illustrated in Figure 3.1. In terms of QVTr, we only
consider transformations that are executed in the so called “enforce” mode. An analysis
that incorporates the support for multiple input and output models is subject to future
research, since we consider the groundwork to be done beforehand.

Endogenous & Exogenous. The involved models in exogenous transformations are
specified in separate MTLs, whereas in endogenous transformations, the same MTL is
used over all models [35]. Since we aim to elaborate on QVTr specifically, we consider
the latter type of transformations in the scope of this thesis.
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3.2. Model Transformation Pipeline

Levels of Abstraction. In this thesis, we primarily consider so called horizontal trans-
formations [35], where the degree of abstraction from the source to target model stays
the same.

Out-Place & In-Place. Mens et al. [35] state that it is possible to further distinguish
endogenous transformations into so called in-place and out-place transformations. In the
first case, the number of models that the transformation operates on is equal to exactly
one, whereas multiple models are involved in the latter case.

Directionality. In this thesis, we are concerned with transformations, that generate
a single target model from a single source model. This type of transformation is
unidirectional, as it is executed in only one direction, as Figure 3.2 depicts.

Source Model Target Model
transforms to

Figure 3.2: The execution direction of our interest is from source to target

In contrast, multidirectional transformations are typically used for model synchronization,
as there is no restriction put on the respective execution direction [11].

Source/Target Relationship. Regarding the input and output models, we emphasize
that we only consider transformations, where the source and target models are two
separate models, which are not the one and the same.

Unconsidered Concepts. Those concepts related to QVTr that are outside of this
thesis’ scope are Black-Box operations such as integration of OCL expressions, change-
propagation, collection types (such as Set, Bag, Sequence and OrderedSet), and negated
object templates.

3.2 Model Transformation Pipeline

Figure 3.3 illustrates the big picture of model transformations that we consider in the
context of this thesis. We note that only transformations are considered, that have
exactly one source and exactly one target model, as depicted in the pipeline figure. First,
we have the transformation definition (TD), which has to be manually modeled by the
user. This transformation has to conform to the syntactic rules specified by the QVTr
language, as well as to the used metamodels on both the source and target side. Although
we have two separate instances of metamodels (the models themselves), we allow that
both the source and target model refer to the same metamodel. Finally, we have an
execution engine, that (i) takes as input the source model. (ii) The engine reads the
defined TD along with the source metamodel it uses, and selects certain elements in the
source model, according to the selection queries contained in the TD. In terms of QVTr,
all “checkonly” domain patterns are evaluated against the source model.
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Source Model Execution Engine Target Model
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Figure 3.3: The Model Transformation Pipeline [11]

After this selection has been done, the execution engine generates a target model taking
as input these selected elements from the source model, and the generative patterns
contained in the TD. Again, from the perspective of QVTr, the “enforce” domain patterns
are evaluated towards the selection from the source model. Then, besides a target model,
also a trace model is generated in parallel. The trace model is a model that includes
information about the links between the selected elements in the source model, and their
correspondent elements that have been generated in the target model. Finally, with the
generation of both the target and trace models, the execution of the transformation ends.
Furthermore, we recognize that for a successful passing through the pipeline, the syntactic
correctness of the TD, and the source model are required as necessary prerequisites. We
point out that an editor may or not be implemented in a way such that it is separated
from its execution engine. In the context of this thesis, we chose for this separation
since we are interested in the specificities of the modeling process, and take a functional,
usable execution as granted. In other words, the process of designing execution engines
is outside of this thesis’ scope. Similarly, we also assume syntactically and semantically
correct metamodels to be given. In particular, we will refer to two specific metamodels
throughout this thesis, as means to provide examples of QVTr scripts. For this purpose,
we have decided to use the SimpleUML and SimpleRDBMS metamodels, as defined in the
QVT standard specification [41]. The respective diagrams for both metamodels can be
found in Figures A.1, A.2 in the appendix.

3.3 Modeling Tasks

In order to gain a deeper understanding of the process of modeling in QVTr, we ex-
amine the SimpleUMLToSimpleRDBMS example transformation, defined in the QVTr
specification [41], and define common tasks that we encounter throughout the process.
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For this to achieve, we utilize a usability inspection method known as cognitive walk-
through [17]. Using this method, we first define a set of tasks that the user has to perform,
in order to successfully model the mentioned transformation. We then walk through
these steps one-by-one, while asking ourselves if our conducted process of modeling so far
has potential for improvement. If so, we document our thoughts for later incorporation.
The concrete techniques to cope with the challenges we encounter in this process are
reported in the next chapter, where we present our theoretical concept for productive
modeling with QVTr.

Figure 3.4 outlines the required tasks we define for the modeling process of QVTr. We
note that although relations have a containment relationship to transformations, we
consider the creation of relations in isolation, and not to be a subtask of that of creating
transformations. Hence, we have defined 3 main tasks, i.e. the creation of transformations,
the creation of relations, and complementary tasks, which go hand-in-hand with the
former two. This choice of separation is reflected in Figure 3.4 as the size of the rectangles
suggest the level of complexity of the respective task.

Declaring Transformations
• Naming Transformations
• Listing involved Models
• Defining Keys and Queries

Creating Relations
• Naming Relation
• Choosing a Relations’ Top-Property
• Defining (Primitive) Domains
• Defining Object Template Patterns
(e.g. mappings of primitive properties, variables
and their data types, and nesting of object templates)
• Defining When/Where Clauses
(e.g. calls to other relations or queries)

Complementary Tasks
• Understanding involved Metamodels
• Navigating Transformations
• Resolving of reported Errors and Warnings
• Executing Transformations

Figure 3.4: Categorization of tasks in the modeling process of QVTr
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3.3.1 Declaring Transformations

Before we are able to model any relations, we have to first define their “housing” in terms
of a transformation declaration. We distinguish between a transformation’s header and
body. The first segment comprises its name, a list of involved models, keys and queries.
The body on the other hand contains the list of relations. We note that no definite order
is defined over this list.

Naming Transformations

At first sight, naming a transformation seems to be a trivial task, which is not worth
being analyzed for usability potential. However, there are certain quirks to it. First of
all, the name of elements such as transformations, relations, or object templates have
to conform to the invalidation rules defined in the QVTr standard, where the names of
these elements are referred to as identifiers. The specified list of reserved keywords in
QVTr comprises checkonly, domain, enforce, extends, implementedby, import, key, overrides,
primitive, query, relation, top. The standard states that identifiers are not allowed to be
equal to either of the listed reserved keywords. In order to escape these terms in names
where their usage can not be avoided, the standard suggests to prepend an underscore
character ’_’, and to enquote the name with single quotation marks. For example,
instead of key, the usage of _’key’ is recommended, as it conforms to the so called
underscore-prefixed-string-literal escape from OCL. Although not explicitly specified in
the standard, there are well-established best-practices for naming in state of the art
programming languages. That is, we consider valid identifiers to be case-sensitive, not
to start with numerical characters, nor to contain any special or whitespace characters.
These restrictions are supposed to be consistently followed during the creation of the
transformation, and have the goal to increase the overall code quality. But there are
further conventions that potentially push further towards the same goal. So far, we
have only considered syntactic rules for names, but there are also semantic rules to be
considered. For example, it is conceivable to encode properties of the transformation
directly into its name for an enhanced readability and traceability. For instance, consider
the transformation declaration defined as follows.

transformation UMLToRDBMS (uml:SimpleUML, rdbms:SimpleRDBMS) { . . . }

The name “UMLToRDBMS” encodes two types of information. (i) The terms “UML”
and “RDBMS” refer to the involved metamodels. (ii) The binding term “To” reports on
the execution direction of the transformation. Note, that a term such as “From” could
also be used as binding word, but may decrease readability, since a name of such form
implies a right-to-left reading direction, opposed to the left-to-right direction given by
the rest of the QVTr script.
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Listing involved Models

The next step of declaring a transformation is result-driven, as it is specified which (source)
model the transformation shall transform into which (target) model as a result. As can
be seen in the following script example, it is conceivable to reflect the transformation’s
execution direction not only in its name, but also with the order of the model list.
If an editor takes the effort to enforce such a convention, then it is even possible to
automatically derive the list of models from the transformation’s name, while the user
types it in. As a required prerequisite to this however, a list of available metamodels has
to be given as input.

transformation UMLToRDBMS (uml:SimpleUML, rdbms:SimpleRDBMS) { . . . }

Another point to consider is the naming of the models. Ideally, an editor also enforces
a certain convention also in this case, to be able to apply automation here as well. A
conceivable heuristic takes the transformation’s name and the set of metamodels involved
in the model list as input, finds the longest common substring (e.g. [16]) by comparing
them, and uses the lower-case version of that substring as the name for the models. For
example, the heuristic would then derive “uml” from “UML” and “SimpleUML”, and
“rdbms” from “RDBMS” and “SimpleRDBMS”.

Defining Keys

Similar to the concept of keys in relational database management systems, the purpose
of keys in QVTr is to prevent duplicate entries – in our case in the target model. A
key, according to the definition in the standard, is “a set of properties that uniquely
identifies an object instance of the class in a model”. Multiple keys may be defined for
this purpose. In order to define a key, the user has to choose a type from one of the
involved metamodels, and select a list of primitive properties, that are defined in this
type. For instance, a key of the form key Column { name }; would ensure that no two
columns exist in the target model, that share the same name. An editor may also check
for duplicate keys, as a key is uniquely identified by its type and an (unordered) list of
primitive properties. For types that have a containment relation to a containing type, an
editor may offer to select so called “non-navigable opposite role” besides other primitive
properties. For example, such a role is necessary to express that an Attribute is uniquely
identified by its name and its owning type, which is Class in this case. The following
script shows an example, of how such a key is defined in QVTr.

transformation UMLToRDBMS (uml:SimpleUML, rdbms:SimpleRDBMS) {
key Attribute {name, opposite(Class.attribute)};
. . .

}

1
2
3
4
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Defining Queries

Queries serve the purpose of utility functions in QVTr. For instance, a query can be used
to transform string representations of data types from one platform to another.

query PrimitiveTypeToSQLType(primitiveType:String) : String {
if (primitiveType = ’INTEGER’ )
then ’NUMBER’
else if (primitiveType = ’BOOLEAN’ )

then ’BOOLEAN’
else ’VARCHAR’
endif

endif
}
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Figure 3.5: Example query to convert QVTr data types into SQL format

Figure 3.5 illustrates an example, in which primitive data types of QVTr, namely
INTEGER, BOOLEAN, STRING, are converted into their corresponding SQL types, which
are NUMBER, BOOLEAN, VARCHAR respectively. In order to define a query, the user
has to (i) provide a query name, (ii) a list of input parameters, (iii) a return data type,
and (iv) finally the actual business logic of the query. This is closely related to the way
functions and methods are defined in common general purpose languages such as Java or
C#. One consideration that editors could take into account for the process of defining
queries is to view them as black-boxes. This means, that users first have to define the
interface they want to work with when invoking the query. In particular, the user begins
with defining the query’s header, i.e. the name, list of input parameters, and the return
type. We identify potential for automation in this process, depending on the contextual
information that an editor has access to. For example, if the query is defined by the user
just-in-time while defining a predicate in a when/where clause, chance is that an editor
is able to automatically derive the return data type from that expression.

relation PrimitiveAttributeToColumn {
sqltype : String;
. . .
where { sqltype = ?; }

}

1
2
3
4
5

Figure 3.6: Just-in-time query definition

Consider Figure 3.6, where the ? symbol denotes the user’s current caret position in the
process of creating the PrimitiveAttributeToColumn relation. An editor, that offers the
possibility to define a new query at this point has access to the contextual information that
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the query’s return type has to be compatible with that of String. This context-sensitive
technique is applicable for all kinds of primitive and complex types. However, we notice
that in the case of relation calls, no such type derivation is necessary, since the return
type of relation calls defaults to Boolean.

relation PrimitiveAttributeToColumn {
sqltype, pn : String;
. . .
where { sqltype = PrimitiveTypeToSqlType(pn, ?); }

}
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Figure 3.7: Just-in-time parameter definition

Similarly, this technique is applicable to the derivation of data types for input parameters
of a query. Consider Figure 3.7, where an editor is able to derive, that the data type of
the first parameter of the PrimitiveTypeToSqlType query has to be compatible with String.

Finally, there is potential for automation in the providing of default names for both
the query’s name, and that of the parameters. Since in the first case, an editor has to
semantically understand the purpose of the query using only the information available
from its invoking relation, a pragmatic heuristic to that is the suggestion of generic
names such as “query1” or “PrimitiveAttributeToColumnQuery”. In the latter case, the
names of the variables that are handed over to the query in its containing relation can
be directly reused. For instance, in the example depicted in Figure 3.7, an editor can
use “pn” as the name of the query’s first parameter, without negatively affecting the
readability.

3.3.2 Creating Relations

The creation of relations can be considered a subtask of creating transformations. Hence,
our previous usage of the term declaration instead of definition. In QVTr, the source side
of a relation selects elements, whereas elements are being generated on the target side.
In this sense, a user has to mentally perform a mapping-driven process, where relations
are its output.

Naming Relations

Like with the declaration of a transformation, one of the first tasks a user has to perform
is the naming of the relation to be created. Similarly, an editor may establish a convention
that encodes certain properties of the relation into its name. For example, it is conceivable
to communicate the mapped domain types with names of the form “PackageToSchema”,
“ClassToTable”, or “AttributeToColumn”. Again, the “To” term encodes the direction of
the relation, and thus determines its source and target side.
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Choosing a Relation’s Top-Property

The decision of whether a relation shall be top or not is a non-trivial task, which
significantly influences the output in the generated target model. In order for a user
to make an educated decision, the whole set of defined relations in the transformation
has to be taken into account. To support this process, editors may provide the user
with graphical visualizations of the call hierarchy and dependencies among relations,
and also perform some dependency analysis automatically. An editor is able to analyze
the dependencies by considering already existing relation calls in when/where clauses of
defined relations. Another point that editors have to consider is that of to which value
the top-property shall be set to by default. In the case of relations being created from
scratch, a default value of false may quickly turn out to be tedious for users, since they
have to manually opt-in for the top-property in order to integrate the relation into the
transformation’s call hierarchy, and thus enabling the relation to affect the generated
output model.

Defining (Primitive) Domains

With means of relations, the user declaratively specifies which elements in the source
model shall be transformed into which elements in the target model. The answer to this
question already defines the domain patterns of the respective relations. Domains can
also be seen as entry-points to the previously defined models of a relation [11]. Informally,
we can consider them as the calling parameters of a function. Hence, domains represent
the set of input parameters, that a relation call has to provide. We distinguish between
domain patterns for the source and target side.

In total, for defining a domain, the user has to (i) provide the respective source/target
side, (ii) the type, (iii) the model, and (iv) the domain’s name. Assuming that the list of
models in the containing relation encodes its execution direction as described before, an
editor may let the user select certain types of the involved metamodels, and automatically
derive whether they should be located on the source or target side using this information.
For example, from “PackageToSchema” as the relation’s name, a heuristic may derive a
checkonly domain uml p:Package, and an enforce domain rdbms s:Schema. We notice that
this heuristic uses generic default names for the domains, such as “p” and “s” to hint to
their respective types in the metamodel.

However, editors shall use such an heuristic with caution, since it is allowed for different
relations to have the same types of domains, while having different names. An example
for this is the AttributeToColumn relation in the SimpleUML metamodel, that has domains
of the types Class and Table, similarly to the domains of the PrimitiveAttributeToColumn
and ComplexAttributeToColumn relations.

The role of primitive domains in QVTr is to provide means for a relation to take
additional parameters as input. Therefore, the name of such domains is closely tied to
the semantic meaning of the parameter’s usage within the relation. For example, in the
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UmlToRdbms transformation shown in the standard specification, primitive domains of
the form primitive domain prefix : String are frequently used.

relation PrimitiveAttributeToColumn {
an, cn : String;
primitive domain prefix : String
where {

cn = if (prefix = ” ) then an else prefix + ’_’ + an endif ;
}

}
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Figure 3.8: Example usage of a primitive domain

Figure 3.8 illustrates, how a primitive domain is used as calling parameter of the
PrimitiveAttributeToColumn relation, to concatenate together the name of a Class object
with a given prefix.

Defining Object Templates (OTs)

The effects of object templates are sensitive to the kind of domain, in which hierarchy
they are defined in. That is, on the source side, OTs further restrict the selection criteria,
that the complete pattern represents. Under a target side domain however, OTs further
refine the generative pattern. Informally, the more OTs a user defines on the source
side, the less elements are being selected. In contrast, the more OTs a user defines on
the target side, the more elements are being generated. A user has to be aware of this
difference, in order to effectively define OTs. The challenge in defining OTs for the source
side is to find the balance between a too strict and too weak selection pattern. From
a perspective of effectiveness, it is crucial for users to carry a strong understanding of
the underlying metamodel, in order to extend OTs with compatible OTs. We identify
potential for automation in this context, since an editor may provide non-committal
suggestions of extending OTs to the user derived by means of static metamodel analysis.
Besides defining the blueprint of models via raw OTs, they can also hold primitive
properties. A common usage is the mapping of primitive properties using variables. We
also identify potential for automation here, since an editor may also offer suggestions for
the mapping of common primitive properties, taking into account multiple OTs, that the
user has selected beforehand. Since QVTr is a declarative language, the mapping of the
values from source-to-target is done implicitly with variables that have the same name.
Figure 3.9 illustrates this, as the primitive name property is mapped from the p domain
on the source side, to the s domain on the target side.

Defining When/Where Clauses

When and where clauses allow the user to specify pre- and postconditions to a specific
relation. A precondition may be the call to another relation, that has to be executed

25



3. The QVTr Modeling Process

top relation PackageToSchema {
pn : String;
checkonly domain uml p : Package { name = pn };
enforce domain rdbms s : Schema { name = pn };

}
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Figure 3.9: Mapping of the primitive name property with OTs

before. An example to this is the binding of unbound containment relations, as illustrated
in Figure 3.10.

top relation PackageToSchema {
checkonly domain uml p : Package {};
enforce domain rdbms s : Schema {};

}
top relation ClassToTable {

checkonly domain uml c : Class { namespace = p : Package{}; }
enforce domain rdbms t : Table { schema = s : Schema{}; }
when { PackageToSchema(p, s); }

}
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Figure 3.10: Binding of an unbound containment relation

In this example, the ClassToTable relation specifies two nested domains, each referencing
a parent type, i.e. Package in the case of Class, and Schema for the Table type. Another
usecase for when and where clauses is that of calling other relations. With the concept
of relation calls, in either a when or where clause, the user establishes a call hierarchy
among the relations of a transformation. Thus, the execution order of relations is defined.
For a relation to be invoked by an execution engine, it has to either be defined as a
postcondition in the where clause of a calling relation, or defined to be a top relation.
Besides relation calls, where clauses are also used to bind unbound variables, which are
defined in an enforce domain.

top relation PackageToSchema {
checkonly domain uml p : Package {};
enforce domain rdbms s : Schema { name = pn };
where { pn = ’schema1’ ; }

}
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Figure 3.11: Binding of an unbound containment relation
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Consider the example shown in Figure 3.11. Without the assignment of pn in the where
clause of the PackageToSchema relation, the value of the primitive name property of the
s domain of kind “enforce” would be unbound.

Hence, the execution engine would have no means to determine which value to assign the
name of the schema element to, which is being generated in the target model. We also
note that the usage of OTs can be categorized into different modeling patterns, such as
branching, merging and mapping. Such patterns are explained in more detail later in the
section about modeling patterns.

Further usecases for when and where clauses are that of invoking queries or the integration
of black-box operations, such as OCL expressions, where the latter one is outside of this
thesis’ scope.

3.4 Complementary Tasks
The tasks described so far are purely functional, but the modeling process also requires
the user to perform non-functional tasks of complementary nature. In this context, we dis-
tinguish between the understanding of metamodels, navigation through transformations,
the incorporation of reported errors, and the execution of transformations themselves.

3.4.1 Understanding involved Metamodels

In informal terms, metamodels provide the user with the “building blocks” needed to
specify transformations. While examining through the modeling process of our example
transformation, we noticed that a significant amount of time is spent with understanding
the involved metamodels, their types and primitive properties. This is especially the
case when defining new OTs, since the extension thereof underlies the rules of type
compatibility as defined in the respective metamodel. The need for an understanding
of the metamodel comes apparent when, for example, the user intends to define the
containment relation of the Class domain in the ClassToTable relation, as depicted in
Figure 3.10. Using an editor that does not provide the information, that the relation to
Package is established through the primitive namespace property, the user has to spend
effort with manually consulting the metamodel documentation of the SimpleRDBMS
metamodel. The same applies to complex properties, i.e. the types of OTs with which a
certain OT can be extended with.

3.4.2 Navigating Transformations

A task that is closely related to the implementing editor is that of navigation. We
identify multiple forms of it, including (i) the problem of having an overview of defined
relations, (ii) understanding the execution order, (iii) identifying variable occurrences,
(iv) understanding the nesting of object templates, (v) identifying unused relations, and
(vi) defining entry points for the execution of the transformation. Each of these tasks
require navigation through the various different views editors provide the user with.
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3. The QVTr Modeling Process

Facing the variety of navigational tasks, we identify that the degree of how navigable a
transformation is, significantly depends on the navigation capabilities of the used editor.

Considering the model transformation pipeline and its implications on the amount of
information needed to be presented to the user, we identify that the proper design of
navigable views for an editor is a non-trivial task. Editors have to find the balance
between a clear, uncluttered layout and the level of accessibility to the editor’s modeling
functionalities. In addition, editors have to find a way to present dedicated views for
the modeling, execution and analysis of transformations. For an editor to provide short
feedback cycles, users have to be able to easily navigate from the modeling to the
execution view, and back again. And there are even further types of views that users
may find useful throughout the modeling process. That is, editors may provide dedicated,
editable views for both the graphical and the textual syntax of QVTr.

3.4.3 Resolving reported Errors

One of the major benefits of using a dedicated modeling editor is that of a reduced
analyzation effort, as the editor performs static and dynamic error analysis and reports
the results to the user in the form of visually represented errors. In contrast to static
(metamodel) analysis, dynamic (model) analysis takes the so-far modeled transformation
into account. We identify that the resolving of an error consists of (i) perceiving its
existence as the editor indicates this with error icons or similar means, (ii) understanding
what the problem is, (iii) understanding the cause which includes locating the involved
elements, (iv) developing a solution to it, and (v) validating the error’s successful resolving.
Regarding (i), editors may use specific colors, icons or text in a dedicated errors view, or
the status bar of the main window. For case (ii), editors may provide both a concise and a
comprehensive, textual problem description. Concerning (iii), the process of debugging is
an established technique to understand causes of errors. However, debugging techniques
are outside of the scope of this thesis, since it is a user-driven technique. Instead, we are
interested in ways of implementing editor-driven user guidance, such that the required
modeling effort for users is minimized. For example, visual hints like underlined or
highlighted text, or elements on a diagram canvas help to identify location and identity of
the error’s involved actors. That way, involved actors to a problem are easily identifiable,
which drastically reduces the search space for error-related parts of the transformation.
In the case of (iv), editors may provide a textual description of a suggested solution to
the problem. Furthermore, it is even conceivable to offer the application of this solution
in a one-button-click-to-apply fashion. It is also conceivable to even provide multiple
of such easy-to-apply solutions, and ease the user’s decision to choose one of them by
letting the user peek into previews of the respective effects on the transformation. Finally
for (v), editors may also visually indicate with success notifications, that a specific error
has been successfully resolved. For example, a message like “Successfully resolved the
unbound containment in the ClassToTable relation.” could be decently presented to the
user. Appropriate means of presenting this information without interfering with the
modeling process are push notifications, animated progressbars in a status bar, or a
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fade-out animation of the error from its list in the dedicated errors view.

3.4.4 Transformation Execution

Another task that is strongly tied to the implementing editor is that of executing the
modeled transformation. A common approach to this is the usage of configurable profiles,
which have to be manually set up by the user initially, and can then be reused throughout
the subsequent modeling process. Such profiles contain all information that an execution
engine needs, in order to perform the transformation. For our purposes, we derive this
information directly from our defined transformation pipeline in Figure 3.3. Hence, we
define the following information for such an execution profile to have.

• The file locations to all involved metamodels.

• The file location to a source model.

• The transformation to be executed.

• The execution direction of the transformation.

• The file locations to where the target and trace models shall be generated to.

• (Optionally, a file location to store logging output to.)

We also require the metamodels, source-model and the transformation to be in a data
format, that the execution engine supports. Popular data formats are the Extensible
Markup Language (XML) [62] format for trace models, the XML Metadata Interchange
(XMI) [42] format for source models, the EMF Ecore [52] format for metamodels, and
the textual format of QVT for the transformation script itself. We identify the following
challenges for editors to overcome. First, if the editor caches the metamodels for
performance reasons, they may become out-of-sync when externally updated. The same
applies to the source and target models. Editors may attach file change listeners to the
respective file locations, and inform the user about a possible data loss, if not incorporating
the updated file. Second, editors that target external execution engines which are not
part of the editor itself, depend on the level of integration the execution engine provides.
This comes apparent, if an execution engine only stores the generated output directly to
disk, and not to memory. This way, editors have to take the detour of waiting for the
files to be successfully written, and reload the generated file after each execution. For
editors with performance constraints, this is an important, architectural point to consider.
Finally, we identify significant usability potential in the way and behavior of an editor to
provide and present the generated output to the user. Conceivable points to consider
are instant-presentation after each click on a dedicated “generate” button, automatic
re-generation after each change a user applies to the transformation, the incorporation
of trace links into the target models’ visualization, or the heuristic positioning of the
diagram elements, in the case of such a visualization.
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3. The QVTr Modeling Process

3.5 Modeling Challenges
In this section, we provide a non-exhaustive list of common modeling challenges that the
user encounters during the modeling process of QVTr.

3.5.1 Relation Dependencies

The first modeling challenge in our list is the establishment of a correct call hierarchy
among relations such that the desired output is generated correctly. This involves the
sub-challenges of (i) understanding dependencies, (ii) the decision of which relations
should be top, and (iii) what the order of execution over all relations is. Unfortunately,
there is no bullet-proof method to answer these questions, but we can nevertheless provide
the following heuristics to head towards the right direction.

• A high degree of unrelated top relations, i.e. they have no relation calls defined in
when clauses between them, commonly results in multiple unconnected parts in
the target model.

• On the one hand, it is conceivable that relations, which match types of higher
hierarchy in their respective metamodel, are the first to be executed. On the other
hand, the inverse conclusion of “the more specific, the later in the order” should be
drawn with caution, because such relations can also be modeled as stand-alone top
relations, which are then generating independent parts by themselves.

• Dependencies that are already established by existing relation calls in when and
where clauses, provide considerable hints to which relations may be chosen to be
top, and which not. In the next chapter of this thesis, we introduce a technique to
automate this in an editor.

• Given a transformation, that already produces the desired target model, it is
conceivable to analyze the call hierarchy for unused relations. A purging heuristic
may be implemented for this purpose, as it identifies non-top relations, that are
also not called from elsewhere via a relation call within a where clause.

3.5.2 Result Validation

Another modeling challenge the user has to cope with is that of validating that the
generated output conforms to the excepted output. This includes the (i) execution of the
transformation, (ii) the analyzation of the generated result, and (iii) the identification
of changes needed to adapt the transformation to push it towards the expected result.
In the field of software engineering, this process is also referred to as the incorporation
of so called feedback cycles, which ideally are as short as possible in terms of time, and
available as early as possible. The duration of such cycles hinges on the support for them
in the respective editor. For example, editors may auto-update the target model after
each change made to the transformation.
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Another consideration is how the relative changes after each new transformation execution
shall be visualized and presented to the user. Fade-in animations or similar means
potentially enhance the traceability of performed actions and their effects for the user,
and ensure a minimized time and effort to gain modeling feedback from the editor.

3.5.3 Type Completeness

This challenge refers to the detection of unused types in the involved metamodels. In
particular, we consider a type unused in the scope of a transformation, if it does not
occur as the type of an OT in any relation in the transformation. The effect of an unused
type is possible data loss from source-to-target. In the other extreme case, types might
be covered multiple times and, unless the involved relations are not defined in a way such
that they select disjoint sets in the source model, redundant parts may be generated in
the target model.

3.5.4 Traceability

Another challenge in the modeling process regards the traceability of the generated
output. Specifically, the task of understanding which patterns in the transformation are
responsible for the generation of which elements in the target model, based on which
selection in the source model.

Source Model
• Element 1
• Element 2
• Element 3

Transformation
L Relation 1
• Pattern 1
• Pattern 2

� Relation 2

Target Model
• Element 1
• Element 2

Figure 3.12: Traceability links between the source and target model

Figure 3.12 visualizes the source (red) and target (blue) links, that a user has to be able
to make, in order to trace back the elements in the generated output. We identify that
the way editors visualize these links significantly influences this form of traceability. In
addition, there are further forms of traceability, like that of tracing back all occurrences
of a variable or a specific string literal in the scope of a relation.

3.5.5 Naming

As described before, the naming of elements such as transformations, relations, object
templates and variables is, like in traditional software development, a common problem
which is tackled by using standardizations, conventions and best-practices. Common
errors are the usage of reserved keywords or invalid characters like special or whitespace
characters within names. The level of how an editor communicates these invalidation
rules to the user significantly influences the complexity of this modeling challenge.
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Another point to consider is that the naming of elements can significantly be automated
by an implementing editor. We introduce techniques to do so in the next chapter of this
thesis.

3.6 Modeling Patterns

Throughout the modeling process in our example transformation, we have identified
different modeling patterns of how variable assignments and object templates can be
used to achieve different kinds of goals. In the following, we list the patterns we identify
for the modeling process of QVTr.

3.6.1 Mapping

A common pattern is that of a 1:1 mapping. There are different variations to this, may it
be Type-To-Type, OT-To-OT or Primitive-Property-To-Primitive-Property. Independent
from the case, the goal is always to match semantically equivalent pairs from the source
to the target model.

Figure 3.13: Example of a 1:1 mapping with the PackageToSchema relation

The precedent case for a mapping pattern in our examined example transformation is
that of the PackageToSchema relation, as shown in Figure 3.13.

3.6.2 Branching

To understand the problem of branching, we consider Figure 3.14, in which we have two
elements of type Class, and where one also has an Attribute element. If we want to treat
Classes differently, in case they have attributes, we have to use the branching modeling
pattern. A conceivable usecase for this would be when all Classes shall be transformed to
Tables, and Attributes shall be Columns that are contained in the Table elements. This
is done by defining a so called branching relation of name AttributeToColumn, in which
another relation PrimitiveAttributeToColumn is invoked by means of a relation call in the
where clause. Figures 3.15 and 3.16 illustrate these relations. It is conceivable to add
further relations in a similar way such as to support cases like super classes.

3.6.3 Enriching

We identify a variation of the mapping pattern as to when there is one input element,
but multiple output elements.
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Figure 3.14: Example of the branching modeling pattern

Figure 3.15: The AttributeToColumn relation in our example

Figure 3.16: The PrimitiveAttributeToColumn relation in our example

One could also refer to the enrichment pattern as a 1:n mapping. Figure 3.17 illustrates
an example, as for all Classes not only Tables are generated, but also a primary key
Column that holds id values.
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Figure 3.17: Example of a model enrichment

3.6.4 Merging and Hierarchy Flattening

Contrary to the enriching pattern, we refer to a n:1 mapping as the merging pattern.
Figure 3.18 depicts an example, as a single Table is generated for Classes, that have a
parent relation to a super element of the same type.

Figure 3.18: Example of the merging pattern

3.6.5 Binding

So far we have considered different variations of the mapping pattern. Another pattern is
that of binding unbound containment relations or variables. We have already discussed
the former usecase in Figure 3.10. An example for an unbound variable is that of an
expression of the form name = pn within the hierarchy of an “enforce” domain pattern,
where pn does not have any other occurrences within the same relation. This variable
could be bound by adding the expression pn = ’packageName’ to the where clauses of
the respective relation.

3.6.6 Shared Parent

In the case of metamodels defining containment relations among their types, the pattern
of a so called shared parent occurs. This challenge is concerned with the question of how
to achieve it, that certain elements are contained in the same, shared parent element. In
the example shown in Figure 3.19, two elements Book:Table and DVD:Table have been
generated by the ClassToTable relation, as illustrated in Figure 3.11. Although the user
has specified that for all elements of type Class, which have a relation to an element of
type Package, a corresponding Table element should be created contained in a parent
element of type Schema, both objects still have their own parents defined.
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Figure 3.19: Example of the shared parent pattern

The solution to that problem is the definition of a relation call of the form Package-
ToSchema(p, s) in the ClassToTable relation, which would bind the p and s OTs.

3.6.7 Inward & Outward Modeling

We identify an interesting difference in the direction towards which modeling is performed
to. In particular, we distinguish between the inward and outward modeling style, where
the difference between them is merely the order in which diagram elements are created.
The former case refers to the way modeling is done in traditional diagram editors. The
user selects and drags specific elements onto the diagram canvas, and connects them
together afterwards. In contrast, the idea of outward modeling is to let the user select
already existing elements on the diagram, and to offer context-sensitive suggestions of
new elements, that the user can add by simply clicking on it. This entails that diagrams
are required to have at least one selectable diagram element at any time. That way,
the diagrams subsequently grow from the inside to the outside. One can see a relation
between the way relations grow “from-in-to-outside”, and the way users have to think
when successively strengthening a selection pattern for the source model. We notice that
this technique is not limited to the use of the GN, as possible suggestions for extending
OTs may also be provided using auto-complete drop-downs, in the case of editors based
on the TN.
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3.7 Textual against Graphical Modeling

We have also analyzed the differences in the modeling process when using the TN or GN.

3.7.1 Standard Specification

In order to analyze the differences between the TN and GN, we begin with describing
what the QVTr standard specifies for editors based on the GN, by the means of Figure
3.20.

Figure 3.20: The standardized visual representation of relations using the GN

First, a new hexagon-shaped symbol is introduced to represent the interface between the
related domains in each relation. This symbol also has information attached to it, that
comprises (i) which models the domains are based on, (ii) the metamodels the models
are based on, and (iii) the relation’s execution direction with a “c” (i.e. “checkonly”)
indicating the source side, and “e” (i.e. “enforce”) identifying the respective domain to
be on the target side. The standard also specifies, that the relation itself is represented
in a box shape, having separate sections for the object templates, and when/where
clauses. In Figure 3.20, the where clause UML2Rel(c,t) expresses that the UML2Rel
relation is invoked after the successful execution of the PackageToSchema relation, and
that it is given the object templates c and t as call parameters. The representation of an
object template is also box-shaped, and divided into two parts. The upper section states
the name and metamodel type, whereas statements concerning primitive properties are
located in the lower one. Domains, which are a special form of OTs, are indicated as
such by “«domain»” attached to the top border of their respective box. The nesting of
OTs is done by connecting the respective pair of boxes with a solid, straight line.
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3.7.2 Well-Formedness

Using the TN, there is potential for erroneous modeling of a transformation with regards to
its well-formedness. Using appropriate bracket characters, the user has to manually ensure
this type of syntactic correctness, and to properly define the scopes of transformations,
relations, object templates and when/where clauses. Using the GN in editors, the
effort users have to spend in this context can be automated to some extent, as the user
defines relations and object templates by means of closed units, which are the atomic
building blocks available for modeling. Concerning expressions in when/where clauses,
or for primitive properties, there is also some degree of automation, that an editor can
implement. For example, defined variables can also be treated as closed units that do not
have to be typed out manually by the user, but instead be selected from a drop-down or
similar interface widget.

3.7.3 Condensity & Spatial Arrangement

Using the TN enables a more condensed representation of a transformation, compared
to using the GN. On the other hand however, the possibilities for spatial arrangement
are limited to that of inserting empty lines and indentation. Users of editors based on
the GN are given more freedom of visually configuring object templates on the diagram
canvas, and thus are enabled to adapt the visualization to their needs. Due to a more
coarse-grained visualization using the GN, editors may also consider to separate the
respective visualizations of relations into different views. This can, for example, be
achieved using a tabbed diagram canvas, where each relation is represented in a dedicated
tab. Using the TN however suggests that all relations have to be contained in a single file,
which is not necessarily worse, but may still affect its readability, depending on the user.

3.7.4 Reading Direction

An interesting point to consider is that of different reading directions depending on the
notation used. In the case of the TN, the information is presented to the user in a vertical
way, whereas the GN suggests a horizontal reading direction. We assume that this is also
due to the form of the standardized hexagon symbol, and the example visualizations in
the standard document.

3.7.5 Object Template Refinement

Another considerable difference lies in the way object templates are extended with further
object templates. Using the TN, extending of OTs is done by nesting, whereas when
using the GN, the boxes representing OTs on the diagram canvas stay on the same level,
and are instead just connected to each other with solid lines.
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3.7.6 Explicit against Implicit Property Mapping

Between the TN and GN, we identify a difference in suitability for the explicit mapping
of primitive properties. We define an implicit mapping between primitive properties
to be established, if a variable of the same name is part of the respective assignment
expression. For instance in Figure 3.13, the primitive name property of the Package is
implicitly mapped to the property of the same name by means of the pn variable. We
define an explicit way of mapping to be a procedure, where users first select a set of
object templates, and then get suggested a list of mappings they can explicitly apply.
Due to the broader-grained layout of clickable elements, we identify an advantage for the
GN, due to bigger touch-areas, and thus a more fault-tolerant selection process. However,
it is also conceivable to implement the technique of explicit property mapping in editors
based on the TN.

3.7.7 Variable Management

Finally, we identify potential for automation in the way the declaration of variables is
managed in an editor. Using the TN may potentially imply more effort, since the user
has to manually declare variables, decide on appropriate data types, and group them
together within the scope of the respective relation, as shown in the following script.

relation PrimitiveAttributeToColumn {
an, pn, cn, sqltype : String;
. . .

}

1
2
3
4

Using the GN, an on-the-fly approach is conceivable, where the declaration of the variables
and their grouping is automated, and hence not of concern of the user anymore.

38



CHAPTER 4
A Concept for Productive

Modeling with QVTr

In this chapter, we present our theoretical concept that comprises techniques and strategies
to implement an increase in automation, interactivity, readability and traceability into
the modeling process of QVTr.

4.1 Design Decisions
Before presenting the concrete techniques of our concept, we present the rationale behind
certain design decision that constitute the foundation of our concept. These principles
have been chosen based on the modeling process analysis in the previous chapter.

Graphical Syntax. We decide to build our concept on top of QVTr graphical syntax,
as we consider it to be promising with regards to its adaptability to the user’s needs,
its suitability for explicit property mapping, automatable variable management, and a
possibly enhanced readability. In addition, the GN allows us to provide the user with
closed units that form the building blocks for modeling, while eliminating the need for
manually ensuring well-formedness.

Outward Modelig. The usage of the outward modeling style is to some extent implied
when using the GN. For instance, it helps to reduce clutter in the GUI of editors, since
no toolbox, that would allow for the dragging of elements onto the diagram, is required.
Instead, the object templates to add to the diagram are presented in a pop-over view
on-demand as certain already existing OTs are selected by the user. Furthermore, the
way diagrams grow “from-in-to-outside” possibly correlates with the way users think
when successively strengthening a selection pattern for the source model of a specific
relation.
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Suggestion-driven Modeling Process. Consider the following scenario. The user
wants to extend an object template, but (i) does not know the metamodel, and (ii)
does not know which types are compatible, forcing the user to manually refer to the
metamodel documentation. This “foggy set” scenario reveals that for executing a valid
action, the user has to first be aware of the total set of possible actions and second, has
to filter out those which lead to errors. Being presented with all valid object templates to
choose from repeatedly during the modeling process, the user interactively learns about
the underlying metamodel. Additionally, keyword filtering speeds up the time it takes
for the user to find the desired type, as the search space is gradually narrowed down as
the specified keyword is typed in by the user.
A modeling process where the creation/adding of new elements is done by means of
offered suggestions avoids situations of “foggy sets” and reduces the users’ effort as already
formulated elements only have to be selected, and not created by the users themselves.
In addition, we consider a suggestion-driven approach to be a promising technique for
the preventive reduction of errors. This is due to the fact that the total set of offered
suggestions restricts the user to only these possibilities, which have already been approved
to be valid by the editor.

Visual Result Validation. We lay the foundation for short feedback cycles in the
modeling process with visualizations of the generated target and trace models, such that
the time users have to spend on validating the result with the excepted one is minimized.
In particular, users need to be able to (i) quickly execute the transformation, (ii) view it
in its graphical representation, (iii) easily trace back the generated elements by means
of a visualized trace model, and (iv) validate if it conforms to the expected output. If
not, users are able to change the transformation respectively, and to repeat the process.
In order to achieve this process for users, a combination of the following techniques is
required.

1. We minimize the time until users are able to initially execute the modeled trans-
formation by means of automatically created execution profiles that represent the
input to the underlying execution engine. In addition, it is conceivable to establish a
system that detects changes to the transformation made by the user, and regenerates
the transformation each time anew.

2. The visualization of the target model in a diagram-like manner entails the automatic
positioning of elements on the canvas. In this context, the hierarchy of types and
associations among the elements has to be taken into account. Being able to visually
analyze the generated output ensures a minimized time for users to manually perform
the result validation.

3. We directly integrate the visualization of the links between source and target elements
defined in the trace model into the target model visualization by means of a color
encoding. That is, in the scope of a specific relation, OTs that are responsible for
the selection of certain elements in the source model are highlighted in a yellow-ish
color, and so are the elements in the source model visualization.
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Figure 4.1: Color encoding representing the generated trace model

Similarly, OTs responsible for the generation of specific elements in the target model
are, just as these elements in the target model, designated in a green-ish color.

Conventions and their Enforcement. We identify significant potential for an increase
in automation of the modeling process with the enforcement of certain conventions on the
user. For example, the domain patterns of a relation could potentially be automatically
derived from a relation’s name of the form “PackageToSchema”. A convention that
enforces the format for relation names enables the editor to automatically derive the
domain patterns. Further scenarios where conventions are conceivable to be applied
are default names for variables, or the capitalization of names in OTs. The challenge
however is how such conventions can be subtly suggested to the users in an editor, without
interfering with their intentions or getting tedious and annoying. One possibility to do
so is to let an editor present suggestions to the user in that specific format. That way it
is suggested to the user to follow that convention. For the scenario where the user enters
a relation’s name in a differing format, an editor may derive the new format and ask the
user if that new format should now be considered the new default format for suggestions
in the future. That way, an editor automatically adapts to the user’s needs.

Multiple Ways of Achievement. Users learn about a subject by answering their
own questions themselves. Hence, it is vital for an implementing editor to not block
users by trying to monolithically enforce behaviors to achieve certain tasks on them.
Instead, an editor that provides multiple ways for achieving the same goal is more likely
to accommodate with the intentions and internalized behaviors that vary among users.

Fault Tolerance. In order to encourage the user’s explorative behavior during the
modeling process, the strategy of fault tolerance is beneficial. A common technique to
achieve this is the implementation of an undo/redo system, where each action that can
be executed by the user has defined an inverse action, which reverses the effects carried
out by the original action. These actions are then managed with a stack data structure
to establish a FIFO ordering among the executed actions.

Usability Heuristics. We base our concept on certain heuristics as suggested by
Nielsen [37]. In particular, we chose the heuristics about communicating the current
status of the system, an undo/redo system, consistency, error prevention, recognition
rather than recall, hot-key accelerators, a clear and minimalistic GUI, and explaining
errors descriptions.
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4.2 Preliminary Notation
In order to provide a concise description of the techniques that our concept comprises,
we introduce the following notation.

• A project p is a tuple (M̂, T ), where M̂ is a set of metamodels, and T is a set of
transformations.

• A transformation τ ∈ T is defined as a function f that takes as input a set of
models M , a set of keys K, a set of queries Q, a set of relations R, a source model
s, an execution direction d ∈M and returns a target model s′.

τ : f(M,K,Q,R,s,d) = s′

• Each model m ∈M represents an instantiation of a metamodel m̂ ∈ M̂ .

• A metamodel m̂ consists of types t.

• m̂t denotes the metamodel of a type t.

We define the following utility functions.

• kind(d) ∈ {checkonly, enforce} denotes the type of a domain d.

• type(x) denotes the type of an object template or domain x.

• dom(x) denotes the domain of an object template x, and may return x if it already
is a domain.

• sup(t) denotes the super type of type t, or ∅ if there is no super type.

• isAbstract(t) evaluates to > if a type t is abstract, ⊥ otherwise.

• isTop(r) evaluates to > if a relation t is top, ⊥ otherwise.

• name(x) denotes the name of an element x.

• toLower(a) denotes the lower-case version of a string x.

• startsWith(a, b) evaluates to > if the string a starts with the string b.

We define the following operator overloads.

• x[i] denotes the i-th character of a string x.

• ∈ denotes element-inclusion in sets, as well as substring relations.
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• + denotes numerical addition, as well as string concatenation.

• t1 ⊆ t2 denotes that the two types t1, t2 are compatible with each other, meaning
that t1 is more specific than t2. In other words, t1 is either equal to, or is an
extending type of t2.

• r1 < r2 denotes that relation r1 is a pre-condition to r2.

• r1 > r2 denotes that relation r1 is a post-condition to r2.

We define the following functions, that return sets of elements as output.

• MOD(τ) denotes the set of models in a transformation τ .

• OTS(r) denotes the set of all object templates defined in a relation r.

• VAR(r) denotes the set of all variables defined in a relation r.

• DOM(r) denotes the ordered list of domains in a relation r (excluding primitive
domains).

• PRIMDOM(r) denotes the ordered list of primitive domains in a relation r (exclud-
ing normal domains).

• REL(τ) denotes the set of relations in a transformation τ .

• TYP(m̂) denotes the set of all types in a metamodel m̂.

• SUP(t) denotes the set of all super types of a type t.

• REF(t) denotes the set of all references to other types of a type t.

• PARM(x) denotes the ordered list of parameters of a query x or a relation call x.

• WHEN(r) denotes the set of all when clauses of a relation r.

• WHERE(r) denotes the set of all where clauses of a relation r.
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4.3 Automation
We start with techniques to increase the degree of automation in the modeling process of
QVTr, such that the user’s required effort is decreased.

4.3.1 Derivation of Model Declarations

The declaration of a transformation requires the user to provide a name, and a list
of model declarations. Under the assumption that a set M̂ of metamodels is given
and that the user inputs the name of a transformation τ in a format that encodes the
involved metamodels, there are 2 ways of automation conceivable. (i) M can either be
constructed by parsing a given transformation name, or (ii) the transformation’s name
can be generated from a given M . The first approach carries higher entropy since a
transformation name may not only contain names of metamodels, but also terms that
hint to the execution direction of τ . However, the transformation direction is undefined
over the elements in M , leaving no option to encode this information into a generated
transformation name. Let I be the string that the user inputs for the name of τ . Then
we construct a set of models M for τ as follows.

∀m̂ ∈ M̂ ∃m ∈M : name(m) = toLower(name(m̂)) ⇐⇒ name(m̂) ∈ I (4.1)

For instance, let I = “UMLToRDBMS” and M̂ = {UML, RDBMS}. Applying construc-
tion rule 4.1 on I and M̂ yields the following declaration for τ .

transformation UMLToRDBMS (uml:UML, rdbms:RDBMS) { . . . }

In order to not interfere with the editors widget to manage the models (e.g. a table
or list), the described technique for automatic derivation of model declarations may be
disabled as soon as that widget is not empty anymore.

Additionally, as conventions are favored in our concept, we introduce the following
constraint for the ordering of model declarations. This constraint applies to model decla-
rations whether added manually by the user, or automatically by the described derivation
technique. We assume that I has an order of the form (x1, . . . , xk, ?, xk+1, . . . , xn), where
xi, 1 ≤ i ≤ n is a substring in I that uniquely identifies a metamodel m̂ ∈ M̂ , and ? is a
substring that either identifies its LHS or its RHS to be the source-side of τ .

The reason for enforcing this order is to eliminate confusion about the two transformation
directions that, on the one hand, name(τ) implies and, on the other hand, the order of
models in M implies. For instance, in a transformation declaration that is defined by

transformation UMLToRDBMS (uml:UML, rdbms:RDBMS) { . . . }

the directions implied by name(τ) and the ordering in M are the same. In contrast, in
the declaration that is defined by
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transformation UMLFromRDBMS (rdbms:RDBMS, uml:UML) { . . . }

the directions are inconsistent. The definition ? ∈ {“To”, “From”} is conceivable, de-
pending on which convention over the direction of transformations an editor intends to
enforce. However, we favor the usage of “To” to be the binding word, since it does not
conflict with the reading direction of the rest of the QVTr script. A possibility to advise
a convention’s usage to the user are auto-completing suggestions (see Section 4.4.1 for
details), which follow the chosen convention.

4.3.2 Derivation of Domain Patterns

The concept of deriving model declarations from a transformation’s name is also applicable
between domain templates and a relation’s name. This time, let I be the string the user
inputs for a relation name. Then we construct the set D of domain templates as follows.

∀m̂ ∈ M̂ ∀t ∈ TYP(m̂) ∃d ∈ D :
type(d) = t ∧ name(d) = toLower(t[0])

⇐⇒ name(t) ∈ I
(4.2)

Additionally, we assume I to have an order of the form (x1, x2, ..., xk−1, ?, xk+1, . . . , xn)
where xi is a substring in I that uniquely identifies a metamodel m̂i ∈ M̂ , and ? is a
substring that identifies its LHS as the source-side. Then ∀d ∈ D we derive whether
kind(d) is either “enforce” or “checkonly” as follows. Let d ∈ D be an arbitrary domain
template, and i be the position in I, where m̂type(d) = xi, then we set

kind(d) =
{
checkonly, if i < k

enforce, otherwise.

For example, let I = “PackageToSchema” and M̂ = {UML, RDBMS}. Applying con-
struction rule 4.2 on I and M̂ yields:

relation PackageToSchema {
checkonly domain p : UML::Package { . . . }
enforce domain s : RDBMS::Schema { . . . }

}

1
2
3
4

In order to resolve a name collision between two domains d1, d2 in the scope of a relation
r, we append the cardinality defined by |{d | d ∈ DOM(r)\{d2}∧ name(d) = name(d2)}|
to name(d2). For example, if name(d1) = name(d2) = “s” represents the name collision,
then we append |{d1, d2}\{d2}| = |{d1}| = 1 to the name of d2, which then yields
name(d2) = “s1”.

45



4. A Concept for Productive Modeling with QVTr

4.3.3 Default Top Property

When creating a new relation, we set its top-property always to true by default. Our
rationale behind this decision is that manually opting-in for the top-property blocks
the user from instantly seeing the effect of the created relation in the transformation’s
execution. For this to achieve, the user has to manually set the relation to be top using
the dedicated view in the editor. Instead, if the relation is already top by default, the
transformation can be executed instantly, and effort in terms of time is reduced for users.

4.3.4 Automatic Parameter Selection

We automate the initial selection of parameters in relation calls or queries in our concept.
In the workflow of creating relation calls and queries, the relation or query to call has
to be specified before defining the call parameters. Call parameters can either be new
literals (primitive types such as strings or integers) or (primitive) domains and variables
that already exist in the relation, that the respective relation call or query is created in.
Our general approach for the automatic parameter selection is as follows. Since in all
cases, the data type of the parameter must match the declared type of the slot where the
parameter belongs to, we automate the parameter selection by first generating a list of
parameters of a compatible type in the scope of the respective relation. Then, we simply
select the first element in that list as default. In the following, we distinguish between
the parameter selection for relation calls, and queries.

Relation Calls

For the preselection of a call parameter, for each parameter slot in a relation call rc,
where r1 is the calling relation and r2 the called relation, we first construct a set Lparm
for each parameter in rc containing suitable object templates or variables from r1, as
shown in construction rule 4.3.

∀p ∈ PARM(rc) ∃Lparm = Lot ∪ Lvar,
∀d ∈ DOM(r2) ∃ot ∈ Lot ⇐⇒ ot ∈ OTS(r1) ∧ type(ot) = type(d),

∀dprim ∈ PRIMDOM(r2) ∃v ∈ Lvar ⇐⇒ v ∈ VAR(r1) ∧ type(v) = type(dprim)
(4.3)

For the preselection, the first element in each Lparm is automatically selected.

Queries

The procedure of preselecting parameters for queries is similar to that of relation calls.
Let r be a relation that calls a query q. Then we construct the Lparm-lists as follows.

∀p ∈ PARM(q) ∃Lparm = {ot | ot ∈ OTS(r) ∧ type(ot) = type(p)} ∪
{v | v ∈ VAR(r) ∧ type(v) = type(p)}

(4.4)
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4.3.5 Default Names

Some elements in QVTr require to be manually named by the user. In particular, these
elements are (primitive) domains, models, variables, relations, queries, object templates
and transformations. The setting of a default name can be automated for each of these.
In our concept, we enforce the following conventions for default names.

Generic Names. The name of queries and primitive domains is sensitive to their
purpose in the containing where clause. Hence, no other convention but that of
generic default names of the form “q1” or “primdom2” is possible.

Type-driven Names. Names for object templates, domains and variables have to be
defined in a way such that they hint to their underlying type. For instance, an
object template of the type UML::Package would have the name “pkg” or even just
“p”, and an integer variable would have the name “numberOfVertices”.

Metamodel-driven Names. Names for models and transformations have to be defined
in a way such that they include the names of involved metamodels. Furthermore
transformation names include the “To” binding word, which hints to the transfor-
mation’s execution direction.

Domain-driven Names. Finally, names for relations have to be defined in a way such
that they relate to their defined domains. For example, the relation “Package-
ToSchema” suggests that it contains a checkonly domain of type UML::Package,
and an enforce domain of type RDBMS::Schema.

In order to prevent name collisions, we can make use of the technique mentioned in
Subsection 4.3.2, which is to append the number of collisions to one of the names.

4.3.6 Typed Expression Containers

When creating a new variable in an existing expression, its data type has to be compatible
with the expression’s type. A common technique for this to achieve is backtracking. For
example, in the expression prefix = cn the cn variable has to be backtracked, only to
find out that it holds the name of an object template of the type UML::Class in a string.
In contrast, in our concept we introduce the notion of typed containers for expressions.
The idea is that the container’s type is set preemptively, and thus dictates the type to
which its contained expression evaluates to. Hence, only variables can be created and
concatenated in the expression, which type matches with that of the container. That
way, the complexity of an algorithm to derive a new variable’s type is in Θ(1).

4.3.7 Automatic Execution Profile Creation

An execution profile is the set of configured input parameters needed to execute a QVTr
transformation. According to the transformation pipeline, the needed input parameters
to generate both a target model s′ and a trace model mtraces comprise
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• a source model s,

• a transformation τ ,

• and a domain d ∈ MOD(τ), which defines τ ’s execution direction.

In state of the art editors for QVTr, such profiles have to be created manually by the
user. In our concept, we use heuristics to suggest a default profile based on actions
carried out by the user while modeling the transformation. The goal is to minimize the
effort the user has with manual configuration. As this heuristically determined profile
represents a suggestion merely to ease the initial execution of the transformation, the
user is still free to adapt the profile as needed afterwards. We use the following heuristics
to automatically determine all of the aforementioned required input parameters for the
generation of a default execution profile.

Source Model. Editors may enforces a convention, where all source models have to
be manually put into a specific directory by the user. This directory may be
project-specific or be defined globally in the editor. All the source models located
in this directory form a list S of suggestions to be selected for the execution profile.
In order to minimize the list, those models s ∈ S are excluded where the underlying
metamodel ŝ is either undefined in the currently edited transformation τ , or is not
on τ ’s source-side. Formally, this exclusion constraint is defined as follows.

s /∈ S ⇐⇒ @m ∈ MOD(τ) : m̂ = ŝ ∨
∀r ∈ REL(τ) @d ∈ DOM(r) : kind(d) = checkonly ∧ type(d) ∈ TYP(ŝ)

However, since this behavior is platform-dependent, it is not considered in our
concept. Instead, our used technique intends that an editor only remembers
previously imported source models for each project individually, and re-loads them
automatically.

Transformation. For automatically choosing the transformation τ to be executed in
the profile, we heuristically select that transformation which currently has the focus
in the editor. Since according to explanations in Section 4.6 to the definition and
outlaying of views, the user’s focus is concentrated on a tabbed diagram canvas.
Hence, the entity represented in the currently opened tab in the canvas determines
the focus. For editors that allow the arrangement of multiple tabs side-by-side,
that tab is determining the focus in which the keyboard cursor remains. In case
the focused entity is not a transformation itself, but instead a relation, we directly
select this relation’s transformation. Using this heuristic also means that the
transformation in the execution profile is subject to frequent change as the user
navigates from transformation to transformation using the sidebar.

Execution Direction. A conceivable heuristic to determine the execution direction of a
transformation is to choose that one model m ∈ MOD(τ) having the most domains
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of kind “enforce”. If there is no distinct domain of such kind, we try to derive the
direction from the transformation’s name. We do this by finding a model m ∈ τ ,
where name(m) occurs as substring in name(τ) after the “To” binding word.

Output Directories. Regarding the output directories where to store s′ and mtraces

models to, it is convenient to let the editor manage their location on disk without
requiring the user to specify any storage locations manually. Plus, an editor may
offer the option to override this storage location on-demand. A conceivable usecase
scenario would be when the user intends to integrate the output models into
an external transformation pipeline. However, since the management of output
directories is platform-dependent, we do not consider them in our concept.

4.3.8 Automatic Target Model Generation

For short feedback cycles in the process of result validation, we propose the (silent)
automatic re-generation of the target model after every change made to the transformation.
In order to automatically kick off the transformation’s execution after each change the
user made to the transformation, an editor has to be able to constantly monitor for
and detect such changes. We achieve this in our concept with the encapsulation of all
modifying actions users can perform to a transformation into units of undoable actions.
In this context, we distinguish between optimistic and pessimistic generation. In the first
case, a running generation process may be interrupted as the user requests a new one. In
the later case, the editor does not allow to fire a new generation as long as a previously
requested one is still running, e.g. by disabling the respective interface element to do so.

4.3.9 Automatic Vertex Positioning (AVP)

To some extent, we are able to automate the positioning of elements, so called vertices,
that represent QVTr elements on the diagram. In Figure 4.2 we introduce the boxmodel
used for representing vertices in our concept.

s

n

w e

x

y

Figure 4.2: The boxmodel of AVP

As can be seen, we make use of cardinal directions, as for example v.n denotes the
northern, top boundary of the rectangle that represents an arbitrary vertex v.

Throughout the modeling process, such an AVP is needed in the following cases.
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• The user interactively creates a new relation by defining a source and a target domain.
In this case, the vertices representing the two domains have to be automatically
positioned on the diagram canvas.

Algorithm 4.1: The naive recursive AVP algorithm
1: d1 ← DOM(r)[0], d2 ← DOM(r)[1];
2: hGap← an arbitrary positive number;
3: position d1 in the upper left corner
4: recursively position all direct children of d1 below it, using BFS;
5: hex.n← d1.n ∧ hex.w ← (right-most child of d1).e+ hGap ;
6: ∀pi ∈ PRIMDOM(r) : pi.n← min(hex.n, pi−1.n) + (i is odd ?− hGap : hGap);
7: d2.e← hex.w ∧ d2.n← hex.n;
8: recursively position all direct children of d2 below it, using BFS;
9: position all di ∈ DOM(r), i > 2 similarly beneath the south-most vertex so far;

Algorithm 4.1 outlines the naive approach to the positioning of vertices that
represent domains and their descendant OTs. It begins with the positioning of the
first domain. Then, all children are recursively positioned using breadth-first-search
(BFS), i.e. layer-by-layer having the anchor to d1.w. Then the hexagon symbol,
abbreviated with hex, is positioned right next to the right-most child of d1, and
vertically on the same level of d1. Optionally, primitive domains are positioned
underneath the hex vertex in a “wobbly” manner, as odd elements are slightly
positioned westwards, and eastwards otherwise. Finally, d2 is positioned right next
to hex, and the same recursive BFS procedure is used for positioning the children
of d2. An inherent caveat to the algorithm is the fact that it is globally uninformed,
and thus vertex overlapping is possible. If there are more than two domains, the
remaining ones are positioned similarly starting from the most south vertex so far.

This is opposed to a comparably moderate time complexity of O(|V |+ |E|). Figure
4.3 illustrates the positioning the algorithm outputs for the AssocToFKey relation.

Figure 4.3: Example of the general, naive AVP algorithm

• After executing a so called One-Click-Extension (OCEs) (see Section 4.4.6), a new
vertex representing the new object template is added to the diagram canvas, and
has to be automatically positioned. For this purpose, we use an algorithm similar
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to line 6 in Algorithm 4.1, such that new OTs are added in a vertical, “wobbly”
manner beneath its parent OT, as shown in Figure 4.4.

Figure 4.4: Example of the AVP algorithm for OCEs

• The vertices in a dependency graph visualization (see Section 4.7) have to be
positioned automatically. For this purpose, we use Algorithm 4.2.

Algorithm 4.2: AVP algorithm for dependency graph visualizations
1: rs← REL(τ)
2: sort rs by hierarchy in descending order;

/* top relation > relation
more relation calls in when clauses > less relation calls in when clauses */

3: position rs[0] in the upper left corner;
4: position all ri ∈ rs\{rs[0]} where isTop(ri) = >;

/* those with a “when” relation call in a row below rs[0],
otherwise right next to each other on same row as rs[0] */

5: position the remaining non-top relations row-by-row below the lowest row so far;
/* the less relation calls a relation has, the more it is positioned to the left */

The algorithm accounts for the call hierarchy of a transformation, as it favors top
relations to be above non-top relations, and heuristically positions relations with
less relation calls to the left side of the diagram. Figure 4.5 depicts the positioning
of the algorithm for our SimpleUMLToSimpleRDBMS transformation.

Figure 4.5: Example of the AVP algorithm for dependency graph visualizations
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• The vertices that represent the objects in the source/target model visualizations
have to be automatically positioned. For this purpose, we use Algorithm 4.3,
which, starting from a root element, recursively positions all child elements of the
respective parent element in a single row, sorted by their names in ascending order.

Algorithm 4.3: AVP algorithm for visualizations of source/target models
1: v ← the root element;
2: L = {c | c is a direct child of v and has not been positioned yet};
3: sort L by name(?) in ascending order;
4: position all elements c ∈ L in a single row below v;
5: mark all elements c ∈ L to be positioned;
6: repeat lines 1 to 4 recursively for each element c ∈ L;

4.3.10 Automatic Variable Management

Due to our design decision of using QVTr’s GN for the modeling process, we are able to au-
tomate the declaration, grouping and purging of variables in the scope of a specific relation.
We achieve this automation by defining a list Lvar for each relation, including variables v
that have a name and data type associated with them. For the automatic declaration of
the variables in the TN, an algorithm is able to simply loop over the variables and print
them out line-by-line using a format such as name(v) : type(v). In order to minimize
the verbosity of this generated list, an algorithm may group together the variables by
type using the format defined by name(v1), name(v2), . . . , name(vn) : type(v1), where
type(v1) = type(v2) = . . . = type(vn). Finally, those v ∈ Lvar may eventually be purged
from the list, if they do not have any occurrences in the respective relation anymore. This
is done by simply searching for occurrences in the object template hierarchies established
by the domains of the relation, including expressions of primitive properties, as well as
occurrences in when/where clauses.

4.4 Preventive Interactivity

We continue proposing our concept with techniques that interactively provide the users
with suggestions to choose from, while restricting them at the same for the purpose
of error prevention. Because the suggestions have been generated by the editor, they
comprise the set of available user actions, and are approved in the sense that they do not
lead to errors when chosen by the user.

4.4.1 Auto-Completion

Whenever the user is asked to name certain elements in QVTr, an editor can not only set
a default name, but also offer non-committal alternatives to choose from. In particular,
such suggestions may be provided when naming (i) transformations, or (ii) relations.
The technique for auto-completion is to first generate an extensive list of suggestions that
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successively shrinks as the user types in parts of the name. That way, an editor responds
to the user in an interactive way, while defensively enforcing name conventions. Let I
be the string that the user inputs and S the set of name suggestions. Initially, when I
equals the empty string, we construct S as follows.

1. S = {name(m̂1) + “To” + name(m̂2) | m̂1, m̂2 ∈ M̂ ∧ m̂1 6= m̂2} which is the
cartesian product of M̂ with itself. For example, let M̂ = {UML, RDBMS}, then
we generate S = {“UMLToRDBMS”, “RDBMSToUML”}.

2. S = {name(c) | c ∈ TYP(m̂)∧m ∈ MOD(t)}. The user may either instantly choose
one s ∈ S or manually type in I.

In the second case, a scenario may occur where I is a substring of one s ∈ S. For
example, if I = “U” and S = {“UML”, “RDBMS”}. Given this condition, we can set
S = S ∪ {s | ¬startsWith(s, I)}. This yields only such suggestions that complete
the user’s input string. As the user types further, the case where ∃s ∈ S : s = I may
eventually arrive. For instance, when I = “UML” and S = {“UML”, “RDBMS”}. In this
case, we can set S = {s1 + “To”+ s2 | s1 ∈ S ∧ s2 ∈ S ∧ s1 = I}. Notice that S covers the
special case where s2 = s1 for endogenous transformations like “GeometryToGeometry”.

4.4.2 Naming Conventions

In Section 4.3.5 we already discussed which elements in QVTr require the user to provide
a name for, and how a default name could be automatically set. However, the user may
still adapt this default name to a different format or change it completely. In order to not
let the user alone in either of these scenarios, an editor may offer alternative names in a
dropdown list for the user to choose from. For example, consider the variable name for
the primitive name property in an object template of type UML::Package. Conceivable
names are “pn”, “pkgName”, “packageName”, “pname”. All of these names correspond
to a specific format. One way of enforcing a format is to assume a specific format by
default, and when the user selects a name of a different format, to ask the user in a subtle
pop-over if that format should be the new default. As the editor interactively adapts
itself to the user’s naming convention, it is also able to set default names of the desired
format in the future. That way, the recurring and tedious task of adapting names to a
specific convention is prevented which reduces the modeling effort. An editor may freely
choose the scope of these default formats. For example, a naming convention may differ
across projects, but could also be set globally in the editor.

4.4.3 Common Property Mappings (CPM)

Since QVTr is a declarative modeling language, the mapping of primitive properties
across object templates is done implicitly by using variables. For example, to map the
name of an object template of type UML::Package to another of type RDBMS::Schema,
both object templates would hold a primitive property of the form name = pn. For this
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to achieve, a user has to manually create the same primitive property twice. What can
be done instead is to first let the user select a set of object templates, to find primitive
properties that the object templates in the set have in common, and to display them as
applicable suggestions in a “one-click-to-apply-fashion”.

Figure 4.6: Example of a common property mapping

Figure 4.6 illustrates an example of such suggestions, in which the two OTs c:Class
and t:Table have been simultaneously selected. Note that the user is still free to edit
the variable’s name before applying the mapping. We construct the set P of common
properties between two distinct object templates o1 and o2 as follows.

P = {p1 | p1 ∈ o1 ∧ p2 ∈ o2 ∧ name(p1) = name(p2) ∧ type(p1) = type(p2)}

Note that o1 and o2 may also contain inherited properties from their super types in the
metamodel.

4.4.4 Prediction of new Relations

An interesting way of minimizing the modeling effort is to predict and suggest the base
structure of whole relations. This not only has the advantage of sparing the user to
model the raw structure of relations manually, but it also aids the user to decide which
types should be related to which types. The notion behind the prediction algorithm is
to statically analyze the involved metamodels of a transformation, and to compute the
similarities of all possible pairs of types. Thus, this strategy of static metamodel analysis
is only applicable for exogenous transformations. Using a certain threshold value for the
similarity, the algorithm returns only those pairs of types that would be meaningful to
be related to in a new relation. We distinguish between static and dynamic similarity
measures. Static ones only consider the underlying metamodels, whereas a dynamic
measure also takes an already modeled transformation into account. The following list
describes the similarity measures used in our concept.
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Hierarchy Similarity. We define the hierarchy similarity σhry of two types t1, t2 to be
the normalized edit distance (e.g. the Levenshtein distance [63]) of their hierarchy
strings. The Levenshstein distance between the first i characters of a string s1 and
the first j characters of a string s2 is defined as follows.

lev(i,j)(s1, s2) =


max(i, j) if min(i, j) = 0

min


lev(i−1,j)(s1, s2) + 1
lev(i,j−1)(s1, s2) + 1
lev(i−1,j−1)(s1, s2) + 1(s1[i] 6=s2[j])

otherwise

(4.5)
Examples:
lev(4,6)(“Class”, “Column”) = 4
lev(4,4)(“Class”, “Clazz”) = 2
lev(7,6)(“Package”, “Schema”) = 6
lev(1,1)(“x”, “x”) = 0
The hierarchy string shry of a type t ∈ TYP(m̂) is constructed as follows.

shry(t) =


“” if t is ∅
“e” + shry(super(t)) if super(t) is abstract
“n” + shry(super(t)) otherwise

(4.6)

Examples:
shry(RDBMS::Schema) = “e”
shry(UML::PrimitiveDataType) = shry(UML::Class) = “eee”
shry(UML::Classifier) = “ee”
shry(UML::ModelElement) = “”

Finally, we define the hierarchy similarity σhry between two types t1, t2 as follows.

σhry(t1,t2) = 1−
lev|n1|,|n2|(n1, n2)
max(|n1|, |n2|)
n1 = name(t1)
n2 = name(t2)

(4.7)

Examples:

t1 t2 σhry

UML::Class UML::Class 1.0
UML::Package RDBMS::Schema 1.0
UML::Association RDBMS::Key 1/2
UML::Class RDBMS::Column 1/3
UML::Attribute RDBMS::ModelElement 0
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References Similarity. We define the references similarity σref of two types t1, t2 as
the sum of three different similarities: (i) number of references, (ii) number of
references that are containments, and (iii) occurrences of multiplicities. Let R1
be the set of references to other types in t1 and assume R2 likewise, then σref is
defined as follows.

σref =
normalize(|R1|, |R2|) + normalize(|R1(c)|, |R2(c)|) + σmult

3 , (4.8)

σmult =


0 if |Dmult

max | = 0∑|Dmult
max |

i=0 normalize(Dmult
max (i), Dmult

min (i))
|Dmult

max |
otherwise

,

Dmult
max =

{
Dmult

1 if |Dmult
1 | > |Dmult

2 |
Dmult

2 otherwise
,

Dmult[k → v](x)1 =
{
v if x = k

0 otherwise
,

normalize(x, y) =


1 if x = 0 ∧ y = 0

1− abs(x− y)
max(x, y) otherwise

,

R(c) ⊂ R = {r | r ∈ R, isContainment(r)}

Examples:

t1 t2 σref

UML::Class UML::Class 1.0
UML::Package RDBMS::Schema 1.0
UML::Class RDBMS::Column 2/3
UML::Attribute RDBMS::ModelElement 1/3

Abstractness Similarity. We define the abstractness similarity σabt of two types t1,
t2 as follows.

σabt(t1,t2) =
{

1 if isAbstract(t1) = isAbstract(t2)
0 otherwise

1Dmult is a dictionary, which assigns a value v to each unique key k.
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Examples:

t1 t2 σabt

UML::Class RDBMS::Column 1.0
UML::Package RDBMS::Schema 1.0
UML::Class UML::Class 1.0
UML::Attribute RDBMS::ModelElement 0
UML::Classifier RDBMS::ModelElement 0

Primitive Properties Similarity. We define the primitive properties similarity σprop
of two types t1, t2 as follows. Let P1 be the set of primitive properties of type t1
and assume P2 likewise. Note that P1, P2 also include inherited properties.

σprop = 1− |P1 ∩ P2|
|P1 ∪ P2|

(4.9)

Examples:

t1 t2 σprop

UML::Package RDBMS::Schema 1.0
UML::Attribute RDBMS::ModelElement 1.0
UML::Class UML::Class 1.0
UML::Class RDBMS::Column 3/4

One-Click-Extensions Similarity. All of the aforementioned similarity measures are
static, since they only consider properties of the underlying metamodels of t1 and
t2. In contrast, a dynamic metric would also take a transformation τ into account
yielding different similarities for two types, depending on the contained relations in
τ . The idea is to assign a higher similarity to two types t1, t2, if there already exists
a relation with types t′1, t′2 as domains, where t′1, t′2 are direct neighbors of t1, t2.
For instance, if τ already contains a relation ClassToTable, then the creation of a
PackageToSchema relation is considered to have a higher probability, compared to
the scenario where ClassToTable does not exist. Formally, we define σoce as follows.

σoce(t1,t2) =
{

1 if ∃r ∈ REL(τ) ∃d1, d2 ∈ DOM(r) : areMapping(d1, d2)
0 otherwise

(4.10)

areMapping(d1, d2) = isOCEof(type(d1), t1)
∧ isOCEof(type(d2), t2)
∧ kind(d1) = checkonly
∧ kind(d2) = enforce

(4.11)

isOCEof(t1, t2) =
{
> if t1 ∈ OCE(t2)
⊥ otherwise

(4.12)
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OCE(t) = {u | u ∈ REF(t) ∧ ¬isAbstract(u)} ∪ EXT(t, m̂t) (4.13)

EXT(t, m̂) = {tm̂ ∈ TYP(m̂) | t ∈ SUP(tm̂)} (4.14)

Total Weighted Similarity. Since certain measures are more expressive than others,
we suggest the usage of a total weighted similarity, that is computed as follows.

σ(t1,t2) =
∑

σi(t1,t2) · κ (4.15)

For the selection of feasible κ values we take into account the following considerations.
Since ∀i ∈ {hry, ref, abt, prop, oce} it holds that

∑
κi = 1.0, i.e. for a balanced

weighting we have 1/5 for each κ. However, since σref combines 3 different similarity
metrics, we consider its entropy to be 3 times higher than that of σhry. Hence,
κref = 3 · κhry which yields κhry = 2/5 · 25% = 1/10 and κref = 2/5 · 75% = 3/10. This
leaves a total of 3/5 to distribute over the remaining values. For the remaining two
static metrics we define κabt = κprop since we do not consider either one to be of
more importance than the other. Since σoce is significantly depending on the actual
τ , we recommend a lower impact on the overall similarity compared to σabt and
σprop. For instance, a proportion of 1:7 ensures that σoce is only slightly steering
the similarity to one of two directions rather than making up for a large part of
it. The proportion of 1:7 yields κabt = κprop = 7 · κoce and taking into account the
aforementioned calculations κabt = κprop = 0.28 and κoce = 0.04.
In summary, we suggest to set κref = 3/10,
κhry = 1/10,
κabt = κprop = 0.28,
κoce = 0.04.
Examples:

t1 t2 σhry σref σabt σp σoce σ

UML::Package RDBMS::Schema 1.0 1.0 1.0 1.0 0.0 96%
UML::Class RDBMS::Table 1/3 0.7 1.0 1.0 0.0 80.4%
UML::Attribute RDBMS::Column 1.0 0.5̇ 1.0 3/4 0.0 75.7%
UML::ModelElement RDBMS::Table 0.0 1/3 0.0 1.0 0.0 38%

Under the assumption that a relation ClassToTable already exists, σoce = 1 for a
relation PackageToSchema resulting in a total similarity of 1.0 which is an increase
of 100%. Under the assumption that a relation PackageToSchema already exists,
σoce = 1 for a relation ClassToTable resulting in a total similarity of 0.844 which is
an increase of roughly 5%.

t1 t2 σhry σref σabt σp σoce σ

UML::Package RDBMS::Schema 1.0 1.0 1.0 1.0 1.0 84.4%
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4.4.5 Concatenations

In order to add interactivity to the process of specifying expressions (RHS) with their
assignments (LHS), we suggest to view expressions as concatenations that are located in
a typed expression container. That is, the user first specifies the type of the container and
then defines the variable assignment and formulates the expression. That way, an editor
is able to interactively propose suggestions that conform to the chosen type. Expressions
are formulated for primitive properties, variable assignments and in when/where clauses.
We distinguish the following cases to specify the type of the container. (i) The expression
dictates the type of the concatenation, i.e. the user first specifies the expression on the
RHS, and afterwards the variable to assign the expression’s result to on the LHS. Since
in this case, the data type of the expression’s result defines the variable’s type, an editor
is able to suggest existing variables to the user that are of that specific type and in
the scope of the relation. (ii) The assignment dictates the type of the concatenation,
i.e. the user first specifies the variable (i.e. the name and the data type) on the RHS,
and afterwards the expression on the LHS. In this case, when suggesting the user with
possible options to concatenate with the expression, an editor is able to minimize the set
of these suggestions to those that have a type that is compatible with the variable’s type.

4.4.6 Derivation of extending Object Templates aka
One-Click-Extensions (OCEs)

A recurring task when modeling relations is the specification of object templates. In
QVTr, object templates hold primitive properties and other object templates. Since the
type of an object template defines which primitive properties or other object templates
are allowed to be added, a high level of metamodel understanding is required to avoid
type incompatibility errors. We introduce the concept of so called One-Click-Extensions
(OCEs) for the extension of existing object templates that, one the one hand, help to
prevent type incompatibilities, and, on the other hand, provide an interactive way of
gaining a deeper metamodel understanding. The underlying idea of OCEs is to enforce
outward modeling by (i) letting the user select an object template, and (ii) to suggest a
list of possible object templates to attach to the selection, which are applicable in a one-
click fashion. This is significantly contrary to the way in which elements are created and
connected to each other in traditional diagram editors. There, the modeling is practiced
inwards as elements are dragged on a canvas first, and linked together afterwards. Figure
4.7 illustrates the intended workflow of using OCEs. We now define how suggestions
for OCEs are constructed. Let ot be an arbitrary object template that the user selects.
Then, we construct the set E of OCEs using construction rules 4.13 and 4.14, with the
only difference that the REF(type(ot)) function in the former rule has to be replaced
with a variation, such that it also returns all references of all super types of ot along
the hierarchy. The user benefits from OCEs since they allow for a quick and safe way
of exploring the types defined in a specific metamodel. However, one limitation is that
the user only peeks ahead to applicable types one layer at a time and not further. For
the case, were a whole path of object templates has to be created before reaching the
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Figure 4.7: The workflow of how One-Click-Extensions (OCE) are used

desired type, OCEs are somewhat limiting. For such usecases, we suggest the usage of
“path-pickers” instead. The idea is to not only allow the user to select a single object
template to add to the relation, but a whole path of object templates at once. However,
a definite formal description of such a path-picker is outside of this thesis’ scope.

4.4.7 References to other Object Templates

OTs can be referenced using their names as variables. In the following QVTr script, the
object template cl is referenced by the object template k.

enforce domain rdbms t : RDBMS::Table {
column = cl : RDBMS::Column {

name = cn + ’tid’ ,
type = ’NUMBER’

},
key = k : RDBMS::Key {

column = cl
}

};

1
2
3
4
5
6
7
8
9

When creating a reference to another object template, an editor may interactively suggest
other OTs to reference to. Using either of GN or TS, we do this in our concept by graying
out all OTs of the relation with incompatible types, as shown in Figure 4.8. That way,
the user is visually directed to those OTs that can be validly referenced to, and errors
are being prevented.
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Figure 4.8: The workflow of referencing OTs to other OTs

Since the viewport of the diagram in an editor may not be big enough to display all
possible targets to select for an OT referencing, we suggest the usage of dedicated visual
indicators, that point in the direction of these selectable OTs on the canvas. For instance
consider Figure 4.9, in which an icon, placed along the diagram viewport’s boundary,
indicates that two more OTs to select can be found in a south-east direction.

Figure 4.9: Visual indicator that points to OTs, which are out-of-sight in the viewport

4.5 Corrective Interactivity

Unlike the techniques described so far, the techniques introduced in this section aim at
guiding the user interactively to solve already occurred problems. We distinguish two
kinds of problems, according to their level of severity. Errors are crucial problems, which
require immediate attention since they prevent a transformation from being executed.
Warnings however are problems that may potentially result in unexpected results when
executing the transformation, but they per-se do not stop the transformation from being
executed. Each error and warning is presented to the user along with textual descriptions
of the problem itself, the involved transformations and relations, and of the suggested
solution to be applied in a one-click fashion.
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4.5.1 Errors

We consider errors to be violations to the syntactical correctness of a transformation.

Sanity Checks

We define the following rules in order to check for general sanity of the transformation.

Sanity Rule Problem Description & Suggested Solution

∀p(M̂, T ) : |M̂ | > 0 Each project has at least one metamodel.
Fix: Import at least one metamodel into p.

∀p(M̂, T ) : |T | > 0 Each project has at least one transformation.
Fix: Create a new transformation in p.

∀τ ∈ T : |MOD(τ)| > 0 Each transformation has at least one model.
Fix: Define at least one model declaration in τ .

∀τ ∈ T : |REL(τ)| > 0 Each transformation has at least one relation.
Fix: Create or predict a new relation in p.

∀τ ∈ T ∃r ∈ REL(τ) : isTop(r) Each transformation has at least one top relation.
Fix: Manually set an arbitrary r ∈ REL(τ) to be top,
or let the editor automatically suggest them.

∀r ∈ REL(τ) : |DOM(r)| > 0 Each relation has at least one domain.
Fix: Define at least one domain pattern in r.

Invalid Relation Calls and Queries

A relation call to a non-top relation is only allowed in the where clause of an arbitrary
relation. That is, a non-top relation can only be a post-condition to another relation.
Also, queries are only allowed to be called from where clauses. Similarly, a relation call
to a top-relation is only allowed in the when clause of an arbitrary relation. That is, a
top relation can only be a pre-condition to another relation. The suggested solution to
these problems is to either (i) toggle the top-property of the called relation, or to (ii)
delete the respective relation call. In the case of queries, only the deletion can be offered
to the user.

Invalid Relation Call Parameters

As described before, the concept of a relation call in QVTr is similar to that of a function
call in traditional procedural programming languages. Hence, it becomes clear that
the type of each OT defined as a parameter in a relation call must be compatible with
the type of the domain, that the OT corresponds to. In addition, the number of call
parameters must exactly match the number of domains of the called relation. Formally,
let r1 be the calling relation and r2 the called relation. Assume that the relation call
also has a list of parameters P of the form (p1, p2, . . . , pn) where ∀pi ∈ OTE(r1) and
n = |DOM(r2)|. For the parameter list to be valid, it must hold that ∀i, 1 ≤ i ≤ n
it holds that type(pi) ⊆ type(di) where di denotes the i-th domain in DOM(r2). The
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suggested solutions to the problem is (i) the deletion of the relation call, or (ii) to let
the editor automatically chose the parameters again by means of automatic parameter
selection described in Section 4.3.4.

Invalid Names

As described before, names that contain a reserved keyword are suggested to be prepended
with an underscore character “_”, and also be enquoted with single quotation marks.
Our concept however suggests a slightly stricter set of rules for names, which is similar
to those of state of the art programming languages such as Java. Let I be a trimmed2

string, representing a name. Then, I disqualifies as a valid name in the following cases.

• I equals the empty string.

• I contains a whitespace character, detected by the regular expression \\s+.

• The first character of I represents a numeric value. In particular, a character is
considered numeric if it matches with the regular expression [-+]?\d∗\.?\d+.

• I contains a special character with the exception of the underscore character “_”.
In particular, I contains special characters if it matches with the regular expression
[^a-zA-Z0-9_].

• I equals a reserved keyword, as defined in Section 3.3.1.

The procedure to convert an invalid name to a valid name directly follows from the stated
constraints. First, all whitespace characters are replaced with an underscore character.
Then, if the name starts with a numeric value, that number is replaced with another
underscore character. Finally, an underscore character is prepended to each occurrence
of a reserved keyword and a special character in the name.

4.5.2 Unbound Enforce Variables

Variables that appear in the context of an enforce domain are required to have a value
assigned/bound to it. Variable assignments can either occur in object templates that
are children of a checkonly domain, or in a where clause. The transformation can’t
be executed as long as variables are unbound within an enforce domain. For example,
consider the following relation, in which the pn variable is unbound.

Possible solutions to resolve this issue are to either bind the variable in the p domain
with

checkonly domain uml p : UML::Package { name = pn }

2no leading or trailing whitespace characters
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top relation PackageToSchema {
pn : String;
checkonly domain uml p : UML::Package {};
enforce domain rdbms s : RDBMS::Schema { name = pn };

}

1
2
3
4
5

or as a where clause like presented in the following example.

top relation PackageToSchema {
pn : String;
. . .
enforce domain rdbms s : RDBMS::Schema { name = pn };
where { name = ’schemaName’ }

}

1
2
3
4
5
6

4.5.3 Warnings

Similar to errors that refer to violations of the syntactic correctness of transformations,
warnings refer to possible infringements of their semantic correctness. Unlike errors,
warnings do not prevent a transformation from being executed. However, the generated
output may not conform to the expected one. Warnings have the goal to only steer the
user’s attention to possible bugs in the transformation, but can still be ignored as such.

Unbound Containment Relations

We have a containment between two types, if the type t1 of an object template ot has a
containment relation to the type t2 of its parent in the underlying metamodel. That is,
instances of type t2 are contained by instances of type t1. Furthermore, a containment is
unbound, as long as ot is not used as a parameter in a relation call in a when clause in
the respective relation r1. In the following example, p and s are both unbound as their
types Uml::Package and Rdbms::Schema contain the types Uml::Class and Rdbms::Package
of their parent OTs.

top relation ClassToTable {
checkonly domain uml c : UML::Class {

namespace = p : UML::Package {}
};
enforce domain rdbms t : RDBMS::Table {

schema = s : RDBMS::Schema{}
};

}

1
2
3
4
5
6
7
8
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The suggested solution to resolve such unbound containments is to offer the creation
of a relation call to another relation r2 that takes as input all of the t2 types. That is,
under the assumption that r1 contains two unbound containments, one in a checkonly
and the other one in an enforce domain, another relation r2 qualifies as a pre-condition
to r1 (and thus can be called in a where clause) if the following constraints hold. Let
(ot1, ot2, . . . , otk−1, otk, otk+1, . . . , otn) be the list of object templates involved in unbound
containments in r1, where ∀oti, 1 ≤ i ≤ k it holds that kind(dom(oti)) = checkonly,
and ∀otj , k + 1 ≤ j ≤ n it holds that kind(dom(otj)) = enforce. Then, an arbitrary
relation r2, r1 6= r2 qualifies as a precondition to r1 (i.e. r1 < r2) if it holds that
∀oti, 1 ≤ i ≤ n,∃di ∈ DOM(r2) such that type(di) = type(oti). Note that the order of
oti has to match to the order of domains di.

If such a relation r2 could be found, an editor may offer the automatic creation of a
relation call to it. For instance, under the assumption that a relation PackageToSchema
exists, the following example illustrates how the unbound containments described in the
previous example are bound by such a relation call in the when clause of the relation.

top relation PackageToSchema {
checkonly domain uml p : UML::Package {}
enforce domain rdbms s : RDBMS::Schema {}

}
top relation ClassToTable {

checkonly domain uml c : UML::Class {
namespace = p : UML::Package {}

};
enforce domain rdbms t : RDBMS::Table {

schema = s : RDBMS::Schema{}
};
when { PackageToSchema(p, s); }

}

1
2
3
4
5
6
7
8
9
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13

Abstract Type Instantiations

Abstract types serve to form the structure of a metamodel. For example, they can be
used to group together a set of properties that inheriting types have in common. Another
example usage would be the separation into multiple type branches, if such a distinction
is desired. Similar to the concept of abstractness in object-oriented programming we
consider the instantiation of abstract types in object templates and domains as mistakes
made by the user in our concept. The suggested solution to resolve an instantiation of
an abstract type t is to let the user change the type to a non-abstract one, while staying
in the scope of m̂t.

65



4. A Concept for Productive Modeling with QVTr

Unused Relations

In our concept, a relation r is considered to be unused if it holds that

1. ¬isTop(r),

2. and @r′, r 6= r′ that calls r in one of its where clauses.

Possible solutions to resolve an unused relation is to either delete it, or to set its top
property to >.

Cycles and Deadlocks

For the detection of cyclic dependencies we introduce the concept of dependency graphs.
A dependency graph is a directed graph Gτ = (V,E) of a transformation τ , each vertex
v ∈ V represents a relation r ∈ REL(τ) and each edge e ∈ E = (v1, v2) from v1 to v2
denotes that the relation represented by v1 is a pre-condition to the relation represented
by v2.

In order to construct a dependency graph Gτ = (V,E) for a given transformation τ , we
define the following construction rules.

1. ∀r ∈ REL(τ) : ∃v ∈ V .

r

2. ∀r ∈ REL(τ) ∀rc(r1,r2) ∈WHEN(r) : ∃e ∈ E = (v1, v2) such that v1 represents r1
and v2 represents r2.

r1 r2is pre-condition to

3. ∀r ∈ REL(τ) ∀rc(r1,r2) ∈WHERE(r) : ∃e ∈ E = (v1, v2) such that v1 represents
r1 and v2 represents r2.

r1 r2is post-condition to

For the sake of simplicity, we introduce the notation r1 < r2 > r3 to express that r1 is a
pre-condition to r2, and that r2 is a post-condition to r3.

We define a cycle of length n to be a path in Gτ of the form r1 < r2 < · · · < rn < r1, ri 6=
rj , i 6= j, 1 ≤ i, j ≤ n, where the parameters in all involved relation calls stay unmodified.
For example, let a relation call from relation rcaller to relation rcalled be defined as a
pair (rcaller, rcalled), and assume a parameter list P = (ot | ot ∈ OT(rcaller)). Then, the
relation call has modified parameters, if ∃p ∈ P such that p /∈ DOM(rcaller).
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Note that by our definition, a deadlock is just a cycle of length 2.

The suggested solution to break a cycle is to select an arbitrary pair (ri, rj) from the
cycle path where ri < rj , and to remove the dependency between them by deleting the
respective relation call to rj in ri.

4.5.4 Suggestion of Top Relations

A dependency graph can not only be used to detect and break cyclic dependencies, but
also to heuristically determine which relations of a transformations should be top, and
which should not. A relation is a potential candidate for a top relation if its corresponding
vertex in the dependency graph either has only incoming “when” edges, or has no incoming
edges at all. Formally, we define these constraints as follows. Let r ∈ REL(τ) be an
arbitrary relation, and v be its corresponding vertex in the dependency graph. Then we
set the top-property of r as follows.

isTop(r) =
{
> if deg−(v) = 0 ∨ ∀(r1, r) ∈ E : ∃rc(r1,r) ∈WHERE(r)
⊥ otherwise

(4.16)

Applied to our SimpleUmlToSimpleRdbms transformation, this algorithm identifies the
relations ClassToTable, PackageToSchema, and AssocToFKey to be top, where as the rest
of the relations is identified to be non-top.

4.5.5 Metamodel Coverage

A property that we have not considered yet is syntactical completeness, which refers
to the ability of an editor to check if the types of elements in the source model have a
corresponding element defined in the target model.

A type t is considered to be unused in the scope of a transformation τ , if @r ∈ REL(τ)
such that @d ∈ DOM(r) where ∃ot ∈ OTE(d) : type(ot) = t ∧ ¬isAbstract(t) ∧
(kind(dom(ot)) = checkonly ∨ enforce). Note that we can restrict the search for un-
used types to either checkonly or enforce domains with the last constraint.

4.6 Readability

We define the readability of a subject s to be a variable that depends on the way
information is visualized and to what extent this way corresponds with the user. The
visualization of subjects has certain degrees of freedom that we separate into two types.
First, we consider properties that are inherent to text (e.g. font type, size, weight and
style), and second, the spatial configuration of text. We notice that these degrees of
freedom are significantly influenced by the type of notation being used for the visualization.
In the case of QVTr, a GN and a TN is defined. However, readability is subjective to the
user and, in particular, on the level of experience with the subject. Under the assumption
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that proper syntax highlighting is available, textually viewing QVTr transformations is
likely to be considered more readable than viewing it graphically, especially for advanced
users of the language. In contrast, novice users possibly benefit from an approach
based on the GN since the information to consume is presented in a less dense and
thus overwhelming way. Our concept includes the following techniques to increase the
readability.

Definition and Outlaying of Views. Since the GUI of an editor is the link between
the user and the transformation to be edited or executed, it is worth spending thoughts
on how its appearance and structure can contribute to the readability. A challenging
part of designing an editor for QVTr is to decide which parts of the model transformation
pipeline should be presented to the user at what time using which form of visualization.
An editor that has the goal to enable the user to model and execute transformations at
all, has to at minimum provide navigable and editable views for transformations and
their containing relations, as well as a way for the user to select source models to execute
the transformation on. For this basic functionality, the following views are required.

1. View for navigating through the contents of transformations.
2. View for editing transformations and relations.

However, this minimal toolset is limited in terms of providing productive modeling, since
it does not allow for short feedback cycles. Since our concept incorporates the idea of
a visual result validation as described in Section 4.1, we require the following views in
addition.

3. Visualization view for the source model.
4. Visualization view for the target model.
5. Visualization view for the trace model.

After the required views that an editor has to provide have been defined, the editor’s
designer has to decide on the layout of these views. Since a total of 5 views pushes the
limits of current state of the art screen resolutions to their limit, we combine views 1. to
2. in a single main view, and outsource views 3. to 5. into a separate execution view to
minimize clutter in the GUI. Since our concept is based on the GN of QVTr, view 2. is
represented by a tabbed diagram canvas. Additionally, we house view 1. in a sidebar
to the left, which can be collapsed as needed. As can be seen in Figure 4.10 the main
view is laid out in a way which ensures that the user’s focus concentrates on the diagram
canvas.
The concrete layout is separated into 3 parts, described as follows.

• A title bar that grants access to functions for managing projects, creating or
importing transformation and relations and for opening additional views of the
project.
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Figure 4.10: A clear and focused layout for the required main view

• A sidebar that lists the contents of the currently opened project and allows for its
navigation.

• The tabbed diagram canvas that allows for editing relations and viewing transfor-
mations.

Now that also the outlaying of the chosen views is defined in our concept, the used
notation for each view has to be decided on. Since QVTr has both a textual and a
graphical syntax, editors may choose to support either one, or both of them. In our
concept, we suggest the editing of transformations using the GN, whereas an optional view
for viewing the transformation is provided using the TN. We choose for the optionality
of the TN view to further concentrate the user’s focus on the diagram canvas.

Another important aspect that the designer of an editor has to decide on is the level of
edit granularity in the diagram canvas. The challenge here is to find a balance between 2
extremes such that the readability is not affected negatively. The first extreme is a static
visualization, where the vertices are not editable directly on the canvas, but instead in
separate dialog windows. The other extreme is a highly dynamic canvas that integrates
editable widgets such that vertices are directly edited on the canvas itself. In our concept,
we choose an approach where the structure of the relation is edited on the canvas itself,
but individual vertices are only editable in dedicated dialog windows. This is due to the
idea of presenting the outline of a relation in the canvas, that a user can arrange in a
way that is desired and most readable. For the detailed editing of object templates or

69



4. A Concept for Productive Modeling with QVTr

predicates in the when/where clauses, the editing context switches to dedicated dialog
windows, to avoid information overloading and to strengthen the user’s focus on a single
task at a time. For emphasizing this context switch, we also gray out the underlying
windows of dialogs.

Id Subject to visualize Visualized in Notation Editable?
1. Navigation Main View TN No
2. Transformations Main View GN, TN Yes
3. Relations Main View GN, TN Yes
4. Source Model Execution View GN No
5. Target Model Execution View GN No
6. Trace Model Execution View GN No

Table 4.1: Required views in our concept

Table 4.1 summarizes the required views.

Syntax Highlighting. Syntax highlighting is a well-established strategy for increasing
the readability of source code among state of the art textual editors for traditional
programming languages such as Java or the family of C languages. The idea is to
minimize the time it takes users to understand the semantics of code by letting them
consume the code with dedicated colors and styles for keywords, literals or comments.
For example, Figure 4.11 illustrates different colors and font weights depending on the
data type of values.

« domain »
a : Area

name = ’area1’
numVertices = 3.0
isHidden = false

Figure 4.11: Syntax highlighting for QVTr’s GN

For the textual notation of QVTr, Figure 4.12 illustrates a conceivable styling.

Domain Numbering. The QVTr standard does not specify how the GN should com-
municate the order of domains in a relation. Clearly, there is a need for a user to find
out about the order, since the order of parameters in relation calls is sensitive to it.
Otherwise, a relation call with parameters to another relation that has an undefined
domain ordering is non-deterministic. Users of editors based on the TN can rely on the
order being established by the reading order, which typically is top-down. Considering
the GN however, the reading order is not a reliable option anymore, since the vertices can
be positioned by the user as desired. To establish a visual ordering that is independent of
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4.6. Readability

- - This relation maps packages to schemas.
top relation PackageToSchema {

sn : String;
checkonly domain uml p : UML::Package {};
where { sn = ’schema1’; }

}

1
2
3
4
5
6

Figure 4.12: Syntax highlighting for QVTr’s TN

the vertices’ positions, we put a number indicating its position to each limb that connects
a domain vertex to the hexagon symbol. Figure 4.13 illustrates this form of domain
numbering.

D1 D2 Dn
...

1 2
n

Figure 4.13: Visualizing the order of domains in a relation with numbering

Domain Kind Sensitive Captions (DKSC). Taking into account novice users of
QVTr, which are not yet familiar with QVTr’s terminology, we suggest the use of so
called DKSC. These could potentially make the use of OTs clearer, i.e. “checkonly”
OTs are selecting elements from a source model, whereas OTs under an enforce domain
generate elements in a target model. Figure 4.14 illustrates an example of DKSC, as
the terms “source-selection” and “target-generation” are used to indicate the respective
domain kind.

Figure 4.14: An example of Domain Kind Sensitive Captions (DKSC)

Top Property Indicator. Furthermore, the QVTr standard does not specify how top
relations should be visually marked as such. To increase the readability in this context,
the term “top” is put beside the relation’s name, using a bold font weight. Figure 4.15
illustrates that the PackageToSchema relation is a top relation, whereas the ClassToTable
relation in Figure 4.16 is not.

Landing Page. While not specifically targeted at an increased readability, our concepts
includes the use of a landing page, when first starting the editor. On this welcoming
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Top PackageToSchema

p : Package 7 s : Schema

Figure 4.15: An indicator for the top property beside the name of a relation

ClassToTable

c : Class 7 t : Table

Figure 4.16: No indicator for the top property beside the name of a relation

page, the user finds buttons that suggest the next required actions necessary to start with
modeling. As can be seen in Figure 4.17, we first display a single “New Transformation”
button, and after there has been one created in the current project, we also display “New
Relation” and “Predict new Relation” in addition.

Figure 4.17: A landing page communicates necessary actions to the user

Icons. The entities a user has to manage in QVTr comprise transformations, relations,
metamodels and their types. For each of them, the usage of dedicated icons allows for
the following advantages.

• The icons and suggest a parent/child relation, based on the directory/file
analogy. Since there is such a parent/child relationship between transformations
and relations, and between metamodels and types, it is conceivable to use folder and
file icons respectively. The locations of usage may expand from the project explorer
in the sidebar to the icons used in tabs, or in dialogs. One the one hand, such an
analogy is effective since it allows users to instantly understand the relationships,
behaviors and properties of new, yet unknown entities. However, a bad analogy
may also mislead the user and cause for misconceptions.
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• In addition, the usage of icons for these entities increases their recognition value.
This is especially useful in dialog windows, as the user faster recognizes to which
entity a dialog refers to, as the icon is indicating if it is about a transformation, a
relation, or a metamodel.

• Subtle details in an icon can hint to specific states of entities. In QVTr this is
especially useful for indicating the top-property of relations. In our concept, top
relations are marked as such using as icon, as opposed to non-top relations being
represented with as an icon.

• Another usage of icons that the user can benefit from significantly is that of indicating
error states. In our concept, we distinguish between errors using , warnings using

and the absence thereof using as icons. The GUI may indicate the error state
of the currently opened project at a central place. To make it easier to locate the
sources of errors and warnings, it is conceivable to directly replace the icons of
affected transformations and relations with those of an error or a warning.

• Finally, icons are conveniently used to suggest the outcome of certain actions that
a user can execute by clicking on a specific button. Examples for this are the
icon for deletions, the icon for copying, or that suggest the execution of utility
tools like the suggestion of top relations or the prediction of new relations.

In each case, the consistent usage of the same icons for the same elements is crucial, since
otherwise the aforementioned recognition values would be negated again.

4.7 Traceability
Considering the complexity of the transformation pipeline, traceability plays a central
role for the usability. We define traceability as a subject’s ability to be traced by the user.
Our concept includes the following techniques, which aim to increase the traceability of
QVTr and the generated target model.

Trace Model Visualization. First, we consider the traceability of the objects in a
generated target model to their related objects in the respective source model, according
to a certain relation in the transformation. The idea is to visually highlight those objects
in the source model, that were queried against and also those objects that were generated
in the target model, according to a specific relation.
For instance, consider the following AttributeToColumn relation, which maps each class
with an attribute to a column in a table.
As can be seen in Figures 4.19 and 4.20 the respective elements are visually highlighted
using a certain color encoding. Being able to inspect a target model in such a per-relation
way allows the user for an increased traceability.

Occurrence Highlighting. A way of increasing the intra-relational traceability is to
visually highlight all occurrences of a certain variable or object template in the scope of
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relation AttributeToColumn {
an : String;
checkonly domain uml c : UML::Class {

attribute = a : UML::Attribute { name = an; }
};
enforce domain rdbms t : RDBMS::Table {

column = cl : RDBMS::Column { name = an; }
};

}

1
2
3
4
5
6
7
8
9

Figure 4.18: A relation that maps classes with attributes to columns in tables.

Figure 4.19: Objects selected by the AttributeToColumn relation in a source model

Figure 4.20: Objects generated by the AttributeToColumn relation in a target model

a single relation. That way, a user is able to quickly find out about the location thereof.
An established way of achieving this in text editors is to decently change the background
color of all occurrences of a variable, as soon as the user puts the cursor on it. For editors
that implement QVTr’s GN, figures 4.21, 4.22 illustrate how this can also be done using
a mouse-hover behavior.
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Figure 4.21: Occurrences of the p object template are highlighted on mouse-hover

Figure 4.22: Occurrences of the cn variable are highlighted on mouse-hover

Figure 4.22 illustrates how occurrence highlighting increases the traceability of the value
of variables used in enforce domains. That way a user is able to quickly determine that,
in this example, the cn variable holds the name of persistent classes.

Navigable Relation Calls. A way to increase the inter-relational traceability is to
allow for navigable relation calls. The idea is to visually indicate the relation call as
a clickable hyperlink, as soon as the user hovers over it, to suggest the navigation
capabilities.

Figure 4.23: Hyperlink-behavior for relation calls
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Dependency Graph Visualization. Viewing a transformation in textual form turns
out to be tedious only for finding out about the call dependencies among the relations.
It is conceivable to offer the user a dedicated view showing the hierarchy among relations
only. Figure 4.24 shows how such overviews are defined in our concept.

Figure 4.24: Overview of the call hierarchy among multiple relations

Each relation is represented by a node holding both the top property and the relation’s
name. The nodes are navigable, as a mouse-click on them would open the respective
relation in a new tab in the tabbed diagram canvas. A relation is a pre-condition to
another, if a dashed arrow is pointing to it. Similarly, a relation constitutes a post-
condition to another, if it has a solid arrow pointing to it. Note that the node arrangement
is done in a top-down order, to visually indicate the hierarchy among the relations.
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CHAPTER 5
Evaluation

The theoretically formalized concept in Chapter 4 provides conceivable means to reason
about the first 3 of our 5 research questions in this thesis. For the remaining 2 questions,
we are interested in how that theoretic concept performs against state of the art editors
for QVTr in practice. At this point, we like to emphasize our intention of not comparing
actual implementations, but instead the enabled modeling approaches against each other.
Hence, in this chapter, we report on the empirical study that we have conducted to
achieve this comparison.

5.1 Prototypical Implementation
In order to be able to evaluate our proposed theoretical concept, we have prototypically
implemented it using the JavaFX [43] programming language, since it is an established
language for developing desktop applications with highly interactive user interfaces. In
this context, we have incorporated the ten usability heuristics proposed by Nielsen [37].
For completion’s sake we would like to note that the non-functional requirement execution
performance has been considered of secondary importance during the implementation of
our prototype. In the following, we describe the components of which our QViT editor
consists of.

Diagram Canvas. We have implemented a diagram canvas, that contains draggable
and selectable vertices for domains, the hexagon symbol, and object templates. The box
that represents a relation automatically resizes as the user drags vertices around. For
the purpose of providing OCEs and CPMs, we make use of a pop-over that appears as
soon as the user selects certain vertices on the canvas.

Parser & Serializer. QViT contains parsers for the Ecore, the textual QVT and
the XMI data format, and is also able to store the such imported (meta-)models and
transformations back to disk in their respective formats using dedicated serializers.
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Undo/Redo System. We have encapsulated all actions that a user can perform to
modify a transformation into closed units, that are undoable and redoable. Different
stacks of executed actions are defined in the context of the main view and dialogs.

Detail Dialogs & Alerts. The dialogs in which the user is able to edit the details of
projects, transformations, relations and object templates appear in a modal fashion over
the main view. In addition, modal alerts are raised for the purpose of informing the user
about success, info and error messages.

Additional Utility Views. QViT contains a dedicated execution view in which the
imported source model and the generated target and trace models are visualized in
draggable diagrams. In addition, a dedicated text view shows the currently focused
transformation in its textual notation.

Quick Fixes. We have implemented the techniques concerning preventive interactivity
by means of quick fixes, accessible over the title bar in the main view. A clickable
hyperlink shows the number of currently detected errors and warnings, and a click on
the hyperlink opens a pop-over, containing a detailed list of all found problems. As soon
as the user selects one item from this list, the description of the problem, the involved
actors and of the suggested solution is presented. This pop-over is also the location where
the quick fixes are applied by a single button click.

Logging System. Finally, we have implemented a system that logs user’s mouse and
keyboard input, as well as all executed actions that modify a transformation.

5.2 Experiment Plan
The planning of our experiments is inspired by the work of Wohlin et al. [61] for
experimentation in software engineering. According to them, an empirical study is mainly
exploratory or explanatory. In the first type, the research is primarily done by observing
the participant while putting minimum effort to control the test environment. This
passive way of conducting a study is suitable when to gain new perspectives on the
object of study, since each participant possess different understandings and beliefs. In
contrast, the latter type focuses on the discovery of relationships between specific and
well defined causes and effects. Hence, a much more controlled test set-up is required in
this case. This type of study is useful when the impact of a well documented modification
to a specific method should be evaluated. In the context of this thesis, we choose a
hybrid approach rather than favoring one type over the other. This is because we are
not only interested in finding out about the usability effects of our concept, but also in
understanding their causes. For this to achieve, we have to observe and interpret the
reactions, intentions, emotions and (non-)verbal behavior of the participants during the
experiment. Since our aim is to identify the context in which our concept generates
the most value, we conduct the experiments under controlled conditions with MDE
practitioners in an industrial environment. In particular, we were granted to perform the
experiment at the LieberLieber Software GmbH company in Vienna.
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5.2.1 Scope

In the first step, we define the scope of the experiment, in order to answer why the
experiment is conducted. For this to achieve, we formulate the goal definition of our
experiment using the goal definition framework [61] as follows.

The goal of our empirical study is to analyze our proposed concept
for the purpose of identifying the context1 in which it generates the most value
with respect to its usability
from the point of view of MDE practitioners
in the context of a software company with a professional interest in MDE.

5.2.2 Planning

The second step aims to define how the experiment is conducted.

Selection of Context and Participants. We conduct our experiment in the context
of an MDE-based software company consisting of professional MDE practitioners with
a software engineering background. Our rationale for this selection is based on the
actual professional interest of these participants, as opposed to students which possibly
are indifferent towards the experiment. Furthermore, since in our experiment we are
interested in evaluating the first-time usability of our concept, they were selected such
that their knowledge level with both editors were equally balanced. This has been
done by self-assessment of the participants. We also required participants to have an
understanding of modeling tools in general.

Comparative Design. Since we want to evaluate the capability of our proposed concept
to contribute to an increased usability of using QVTr, we have decided to use a comparative
design for our experiments. Hence, in order to measure an increase in usability, we have
to first define a baseline towards which the comparison should relate to. A state of the
art editor for QVTr is an appropriate candidate for such a baseline. In order to ensure
that the experiment does not compare the capabilities of two editors rather than two
theoretical approaches, we must ensure functional equivalence. In other words, we have
to select a state of the art tool, such that the functionality provided by QViT is a subset
of that of the selected tool. This subset comprises the modeling and execution of model
transformations. Taking this considerations into account, the Eclipse-based state of the
art editor medQVT is an appropriate choice for the comparison. For an increased fairness,
we have also implemented QViT in a way, such that it can easily interface with different
execution engines. Hence, we were able to make both editors use the same execution
engine for a fair comparison. To further increase the fairness of the comparison, the
participants were required to have equal experience with both editors, which mainly was
less to no experience at all.

1The users and their environment.
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Task to be achieved. The experimental testing of two approaches also requires the
definition of a certain model transformation exercise. We have decided to provide partici-
pants with pre-defined source and target models as input to the model transformation
task.

Figure 5.1: The source model to be transformed

The task to achieve is to create a QVTr transformation, that transforms the given source
model in Figure 5.1 into a given target model, that can be seen in Figure 5.2.

Figure 5.2: The target model to generate from the source model

The printed-out hard-copy that was handed out to the participants during the experiments
can be found in the appendix of this thesis.
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The example solution to our defined task is illustrated in the following QVTr script.

transformation UMLToRDBMS (uml:UML, rdbms:RDBMS) {

top relation PackageToSchema {
pn : String;
checkonly domain uml p : UML :: Package { name = pn };
enforce domain rdbms s : RDBMS :: Schema { name = pn };

}

top relation ClassToTable {
cn : String;
checkonly domain uml c : UML :: Class {

name = cn,
namespace = p : UML :: Package {}

};
enforce domain rdbms t : RDBMS :: Table {

name = cn,
schema = s : RDBMS :: Schema {},
_key = k : RDBMS :: Key { name = ’id’ }

};
when { PackageToSchema(p, s); }
where { AttributeToColumn(c, t); }

}

relation AttributeToColumn {
an : String;
checkonly domain uml c : UML :: Class {

attribute = a : UML :: Attribute { name = an }
};
enforce domain rdbms t : RDBMS :: Table {

column = c1 : RDBMS :: Column { name = an }
};

}
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

We have designed this exercise in a way, such that it covers the lion’s share of commonly
used QVTr concepts which are listed in the following.

• creation of transformations, relations, model declarations, domains
• one-to-one mappings, and nested object templates
• when and where clauses, and relation calls
• primitive properties, and variables
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Variables Selection. The independent variables that are not under our control during
the experiments are the experience levels of participants in QVTr, medQVT and QViT.
However, as stated earlier, we have required participants to have balanced experience
with both editors using self-assessment. In contrast, the dependent variables in our
experiments are the effectiveness, efficiency and satisfaction of participants, as defined by
ISO 9241-11 [18].

Data Collection. We have setup a system that collected quantitative data during the
experiments. First of all, the computer screens of the test machines have been recorded
including the movement of the mouse cursor. Privacy of the collected data has been
ensured by only recording video and no audio material. We have chosen for the screen
recording, since it enables the post-test derivation of the intentions that the user had
during the usage of the tested software. In addition, we have implemented QViT in a
way such that it logs each occurred event, key-stroke and mouse-click, including the time
of occurrence and the (x, y)-coordinates in the later case. Examples of logged events are
when the user’s focus switches from the main view into the execution view, or into a
modal dialog. In order to collect qualitative data, we have designed a questionnaire with
closed questions targeting our hypotheses. The questionnaire has been implemented as
an online webpage, to ensure easy and fast usage during the experiment.

5.2.3 Execution

Consequently, the next step after the experiment planing was its actual execution. The
experiments were conducted off-line, in 2 separate sessions at the LieberLieber Software
GmbH, which is a medium-sized company in Vienna focusing on products for MDE. In
the beginning, the participants were told to test out a new tool for QVTr that has been
developed with a focus on usability. However, they were not informed about how the
usability should be achieved, i.e. about our hypotheses from Chapter 1. After a quick
introduction to the two syntaxes of the QVTr modeling language, the participants were
told that their task during the experiment is to compare two approaches against each
other. (i) Textual modeling with medQVT against (ii) graphical modeling with QViT.
They were not told that the first approach hardly offers interactivity and automation
compared to the second approach. After this introduction, they were exposed to the
approach provided by medQVT, as they were demonstrated the modeling of an example
transformation in a think-aloud style. After that, the participants were asked to solve
the same task using QViT, and they were told that they would have the chance to give
feedback about the comparison in an interview and a questionnaire afterwards.

5.3 Results
In this section, we descriptively present visualizations and textual reports of the data that
has been collected during the two sessions of our empirical study. The interpretation of
the presented data follows in the subsequent section. If not explicitly described otherwise,
the visualizations show the averaged data over all participants.
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5.3.1 Time Distributions

First, we present the data that shows how the participants spent their time during their
experiment sessions.

• Time spent in Views
Figure 5.3 illustrates in which views the participants have spent their time. As
mentioned in Chapter 4, we distinguish between

– the main view, that contains the project explorer and the tabbed diagram
canvas,

– the execution view, containing the visualizations of the source, target and
trace model,

– the text view, containing a textual representation of the currently edited
transformation,

– and in modal dialogs, used for detailed editing of projects, transformations,
relations and object templates.

• Time spent in Dialogs
Figure 5.4 zooms in on the distribution over specific dialogs.

• Time spent with Modeling Tasks
Figure 5.5 depicts for which modeling tasks the participants have spent their time.
The various different modeling tasks have been defined in Chapter 3.

5.3.2 Input Distributions

We have also recorded each mouse-click and key-stroke along with the time of occurrence
during the experiment.

• User Input Distribution
Figure 5.6 compares the overall occurrence of mouse input in the form of mouse-
clicks (primary and secondary mouse buttons) against that of keyboard input.

• Mouse Input Distributions
Figure 5.7 shows the distribution of mouse input per view.

• Keyboard Distributions
Similar to the previous, Figure 5.8 shows the distribution of keyboard input per
view.

• Mouse/Keyboard Distributions
Figure 5.9 illustrates in which view either the mouse or the keyboard has been the
dominant form of input.
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Figure 5.3: Time spent in Views Figure 5.4: Time spent in Dialogs

Figure 5.5: Time spent with Modeling Tasks Figure 5.6: User Input Distribution

Figure 5.7: Mouse Input Distribution Figure 5.8: Keyboard Input Distribution

Figure 5.9: Mouse/Keyboard Distribution
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5.3.3 Mouse Input Agglomerations

With the use of Heatmapper [5], we can visualize those spatial locations on the views,
where agglomerations of mouse-click input occurred. In order to ensure the validity
of these heatmaps, we have disabled window resizing in QViT during the experiments.
Window positioning however was still enabled.

Figure 5.10: Heatmap over the Execution View
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Figure 5.11: Heatmap over the Text View

Figure 5.12: Heatmap over the Main View
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Figure 5.13: Heatmap over the Relation Details Dialog

Figure 5.14: Heatmap over the Transformation Details Dialog
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5.3.4 Timelines

Figures 5.16, 5.17 illustrate the distributions of view-usage and user-input over time,
using the data of different participants.

View-Usage over Time
Figure 5.16

Blue Main View
Red Dialog View
Green Execution View
Purple Text View

Figure 5.16: View-usage over time of different participants
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User Input over Time
Figure 5.17

Red Keyboard Input
Blue Mouse Input

Figure 5.17: Cumulative user-input over time of different participants
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5.3.5 Questionnaire & Interviews

Figure 5.18 illustrates the results of the qualitative questionnaires and interviews in terms
of a word cloud. The bigger a certain word in the cloud, the more often it has occurred
during the interviews and in the answered questionnaires. Tables 5.1 and 5.2 summarize
the answered questions of the questionnaires by comparing the percentages of positive
with that of negative answers.

Figure 5.18: Word cloud representing the results of our questionnaire and interviews

Was using QViT. . . Yes No
1. easier 100% 0%
2. visually better structured and clearer 100% 0%
3. visually more appealing 100% 0%
4. more restrictive 50% 50%
5. more repetitive 30% 70%
6. faster to use 100% 0%
7. easier to navigate 100% 0%
8. easier to edit 100% 0%
9. faster to learn 100% 0%
10. more time-consuming 0 % 100%
11. more readable 100% 0%
12. easier for learning QVTr 100% 0%
13. easier to understand 100% 0%

Table 5.1: Questionnaire Results
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What decreased the modeling effort in QViT? Yes No
14. Model Derivation from Transformation names 100% 0%
15. Domain Derivation from Relation names 100% 0%
16. Suggestion of Default Names 100% 0%
17. Automatic parameter-selection in Relation calls 100% 0%
18. Automatic configuration of the execution profile 100% 0%
19. Auto-Complete for names 100% 0%
20. One-Click-Extensions 100% 0%
21. Prediction of new Relations 100% 0%
22. Quick Fixes 100% 0%
23. Common Property Mappings 100% 0%
24. Transformation Overview Diagram 100% 0%
25. Cycle and Deadlock Detection 0% was not used 0%
26. Suggestion of Top Relations 0% was not used 0%
27. Detection of unused Relations 100% 0%
28. Visualization of source and target model 100% 0%
29. Green and Yellow markings 100% 0%
30. The usage of QVTr’s graphical syntax 100% 0%

Did the offered suggestions. . . Yes No
31. help to better understand the used metamodels? 100% 0%
32. help to better understand the QVTr language? 100% 0%
33. help to prevent errors? 100% 0%
34. increase productivity / reduce effort? 100% 0%

Did the green and yellow markings. . . Yes No
35. increase the traceablity of objects? 100% 0%
36. help to better understand the QVTr language? 100% 0%
37. help to identify and locate errors? 100% 0%
38. increase productivity / reduce effort? 100% 0%

Did the graphical syntax. . . Yes No
39. make QVTr more readable? 100% 0%
40. make QVTr easier to understand? 100% 0%
41. ease navigation? 100% 0%
42. increase productivity / reduce effort? 100% 0%

When would you favor QViT over medQVT? Yes No
43. Novice user in MDE 50% 50%
44. Experienced user in MDE 80% 20%
45. Novice user in QVTr 50% 50%
46. Experienced user in QVTr 80% 20%
47. Smale-scale project 70% 30%
48. Large-scale project 100% 0%

Table 5.2: Questionnaire Results
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5.4 Observations
The following list summarizes the observations that we have made by (i) observing
the participants during the experiment’s execution, and (ii) by analyzing the screen
recordings.

• Participants did not perceive the text view to be read-only, but expected that
changes made to it would be applied to the diagram.

• After generating the target model by clicking on the generate button, participants
sometimes had trouble to make the connection between the modeling actions that
they applied, and the generated target model.

• As expected, participants used different ways of achieving the same goal. This
was especially true for navigation, as some participants heavily used the project
explorer for opening detail dialogs of relations and transformations, whereas others
used the Edit menu in the toolbar, and yet others used the context menu of the
diagram canvas for it.

• Participants heavily let themselves be guided by the offered quick fixes, read the
problem and suggested solution descriptions, and also applied the suggested quick
fix.

• Participants heavily benefited from the color-encoded trace model visualization, as
they said they better understood why the elements in the target model have been
generated.

• An interesting behavior that we have observed is that, as intended, the participants
unconsciously adapted themselves to using the naming convention as connoted
by the name suggestions. This supports our theory that it is possible for editors
to subtly enforce certain conventions on the user. As described in Chapter 4, an
editor may support multiple conventions, but choose to select one as the default
one. Then, the users either adapt themselves to using that convention, or start
using another one. And in the latter case, an editor may ask the user by means of
a non-committal, subtle pop-over to use that convention as the new default.

• Some participants assumed that the creation of new object templates is done in
the detail dialog of the respective relation, instead of using the OCEs directly on
the diagram canvas.

• Some participants were confused about the chains of confirmation alerts, as they
did not expect to be prompted again after confirming the respective previous one.

• One participant mentioned that it was pleasing to be notified about when specific
names have already been defined by other elements, such as relations or object
templates. This would have improved the awareness of what was already defined in
the transformation, and it was easier to keep the overview.
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5.5 Interpretation
In this section, we interpret our gained data from the user experiments in order to draw
conclusions for our last two research questions.

How does our concept perform in practice, compared to a state of the art
tool?

How is the Effectiveness influenced? Except for a single case, all participants were
able to successfully achieve the task that they were given. We consider this completion
rate of 84% of our experiments to be a promising result, taking into account the mixed
level of knowledge and experience of the participants with QVTr. In this context,
multiple participants argued during the interviews, that they would not have been able
to achieve the task using medQVT, because of missing user guidance. In particular,
they were referring to all techniques that were about offering suggestions (OCEs, CPMs,
Default Names, Auto-Complete, Relation Prediction, Quick Fixes), as well as those about
enhanced traceability (trace model visualization, Occurrence Highlighting).

How is the Efficiency influenced? Participants said that our concept significantly
reduces the required modeling effort, due to our techniques of automation.
Figure 5.5 interestingly shows that the task of navigation nearly took participants the
same amount of time as modeling itself. We assume that the reason for that is the high
degree of separation in the GUI. There are 3 separate views and 6 different dialogs (some
of them also having a tab view) implying continuous focus-switching from view-to-view,
view-to-dialog, dialog-to-view, dialog-to-dialog and tab-to-tab. The heatmap of the main
view in Figure 5.12 also shows, that the project explorer has been the dominant choice
of users to switch between relations, as opposed to clicking on the tab headers. We
assume that the reason for that is the directory/folder analogy implemented by the
project explorer, as it visualizes the relations in a hierarchical order. By this, it is clearer
to the user to which transformation a specific relation belongs to, and this appears more
accessible. We also notice that in all heatmaps of dialogs (Figures 5.11, 5.13, 5.14, 5.15),
the users have clicked on the window’s title bar to re-position it. We assume that this was
necessary, because the dialogs hid relevant information that the user needed underneath.
In QViT, we have implemented an algorithm, that positions all dialogs in the center of
the respective screen, thus mostly covering the diagram canvas of the main view.
On the other side, we notice a comparably small amount of 6% that users spent with
the execution of the transformation. This reduced effort is also represented by means of
a comparably small user-input effort in Figures 5.7, 5.8 and 5.9. Furthermore, we can
also see it in Figure 5.16, as the usage function of the execution view is not as steep as
that of the main and dialog views. We believe that the reason for this is our technique
of automatic execution profile creation, as well as the option to automatically generate
the transformation anew after every change made by the user. By this, fast feedback
cycles are provided to the user. We also notice that although the actual execution of the
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transformation required a relatively low amount of effort, the manual analyzation by the
user did not, as can be seen in Figure 5.3. There we can see, that users closely spent
half the time (19%) viewing the source and target models, in comparison to the time of
actual modeling in the main (38%) and dialog (39%) views. However, according to the
questionnaire and the interviews, the participants perceived the source, target and trace
model visualizations to be a convenient, time-sparing way of understanding the effects of
the modeled transformation. In this context, one participant also mentioned that the
predictability of certain changes to the (i.e. CPMs and editing of primitive properties in
object templates) transformation was positively influenced by these visualizations.

The actual modeling of the transformation is done in the main and dialog views, in which
participants spent 77% of their time on average. A similar picture is drawn in Figure
5.5, which shows that 67% of the time, participants were busy with actual modeling
including error resolving. It is interesting to see, that modeling and error resolving
roughly took participants the same amount of time. This shows that, even in spite of
preventive error techniques, a significant amount of the total modeling effort is taken
by incorporating reported errors. We see this as significant evidence, that it is vital for
editors to implement a usability-focused approach that aids the user to (i) identify, (ii)
locate, (iii) understand and (iv) resolve errors. The fact that participants especially
pointed out the usefulness of the quick fixes also supports this claim. In the context of
dialogs, the major part was taken by the dialog that allows for the editing of relation
details. When we take a look on the heatmap 5.13 for this dialog, we see that what users
commonly did was naming the relation, setting its top-property and editing domains. In
particular, the name and the type of the domains have been changed quite often. We are
tempted to say unfortunately, since the naming of domains underlies our techniques of
default names and automatic name collision resolving. Yet still, users spent time to edit
the domain names. Consequently, we are thinking to take element naming even a step
further and fully automate it in future work, wherever applicable. Possible use-cases of
this form are the generic names of (primitive) domains and object templates. We also
notice an agglomeration in the lower right quarter of the dialog, which we identify as
the Apply button of modal confirmation prompts, that appear when clicking on the New
Domain and New Primitive Domain buttons. A similar agglomeration of this kind can
be found on the heatmap 5.15 of the dialog for editing object template details. Also here
were users quite busy with naming the respective object template, which could have been
avoided as explained before. It is also interesting to see in Figure 5.16, that modeling
was mainly done in dialogs, as users mostly spent their time in dialog views, closely
followed by the main view. We see this evolution critically, as our concept intends to
concentrate the user’s modeling tasks on to the diagram canvas in the main view, and
leaving detailed editing in dialogs to be the exception. In reality however, we noticed
that it was not obvious to users that they could achieve the same tasks on the main
view, without opening a detail dialog. Yet still, the dialogs have been used as the main
tool to modify the transformation. We assume that this is because outward modeling
is an unusual approach to diagram modeling, as users were surprised to discover that
the objects on the diagram canvas could be selected with a mouse-click, and thus being
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presented with OCEs. It was also not obvious to users that multiple elements could be
selected at the same time and thus being presented CPMs. It would be interesting to
evaluate techniques and styles in future work, that try to increase the “click-ability” of
elements on the canvas.
Comparing mouse and keyboard effort of the actual modeling of a transformation, we see
in Figure 5.9 that our concept has successfully outsourced keyboard input into the detail
dialogs, while minimizing it in all other views. This separation of editing granularity has
also projected a form of consistency on the participants, as they quickly recognized that if
keyboard input is required (e.g. for naming elements), it has to be done in a detail dialog.
This allowed them to quickly accommodate with the GUI of QViT, which was completely
new to them. We also notice in the heatmap of the main view in Figure 5.12, that users
hardly spent time with the manual arrangement of vertices on the diagram canvas. This
is positive evidence that our automatic vertices positioning algorithm has successfully
reduced the modeling effort of users due to automation. However, one participant argued
that it was confusing that in spite of the types of some object templates being higher in
the hierarchy according to the metamodel, they still have been automatically positioned
below their parenting object template.
Finally, we would like to mention that the participants considered OCEs in particular as
a significant decrease of the modeling effort, since with them it is not longer required to
manually inspect the metamodel documentation, as it is required in medQVT. However,
the participants did not perceive the OCEs to increase the learnability of a yet unknown
metamodel, in contrast to our expectation.
Since the resolving of reported errors took participants 37% of their time on average
(Figure 5.5), we conclude that a usability-focused, corrective error reporting and resolving
system like the quick fixes in our concept are vital for editors to have. The participants
mentioned that they let themselves be guided by the quick fixes and that this has
significantly contributed to working towards the correct end result. In spite of our proposed
preventive error techniques, users still made many errors, some of them preventing the
QVTr execution engine to produce any output model at all. This emphasizes the
importance of not only indicating users with the mere existence of errors, but also to
offer appropriate suggested solutions, that can be applied in a one-click-fashion. Multiple
participants also said that the fact that only 2 clicks are necessary to inspect and apply a
quick fix was the main motivation for them to perceive QViT to be easier than medQVT.

How is the user Satisfaction influenced? In the beginning of our user experiments,
the participants where overwhelmed with the complexity of QVTr, as they were presented
an example model transformation using medQVT. They said that during this presentation,
they instantly expected QViT to have a much higher degree of user-friendliness. And as it
turned out in the questionnaire and the interviews, these expectations were broadly met,
as the single major concern they equally had was the still high level of understanding
in QVTr needed for effective usage of QViT. One participant pointed out that the high
level of automation was a pleasing experience, especially the pre-selection of appropriate
relation call parameters. Another participant felt that the tidiness and clearness of the
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GUI in QViT also made QVTr appear to be easier to understand, because it was easy to
keep the overview. In contrast, another participant mentioned that the learning curve of
both editors for novice users would be roughly the same. Taking these observations into
account, we conclude that QViT left the participants with a positive feeling about the
feasibility of our implemented approach behind QViT.

Which role does QVTr’s graphical concrete syntax play concerning read-
ability and traceability?

The usage of QVTr’s GN had a positive influence on the usability in general, according to
the questionnaires and interviews. We assume that this is mainly due to our techniques
that target to increase the readability, such as the loosened condensity of the presented
information on the diagram canvas, the trace model visualization through element-coloring
in the diagram canvas, or visual dependency analysis in the execution view. In addition,
due to automatic variable management, the participants in the experiment did not have
to deal with the declaration and management of variables and their types at all. This
has been successfully automated for them in QViT. On the flipside, it came apparent to
us during the experiments that the participants were confused about effects of outward
modeling. That is, that object templates are being defined through OCEs, for which
an already existing object template on the diagram canvas has to be clicked on before
being presented with the various different OCEs. Similarly, it took some time for the
participants to find out about the possibility of multi-selection on the diagram canvas,
and thus the advantages of CPMs.

As an implication of these observations, we identify that the mere existence of various
different functional behaviors in an editor stays without effect, as long as these existences
are poorly communicated to the user. In the case of OCEs and how we have implemented
them in QViT, participants initially perceived the pop-up, in which the OCEs are
displayed, to be a configuration window for primitive properties of the respectively selected
object template. Figure 5.19 illustrates how OCEs of a domain of type RDBMS::Table
are being presented to the user in QViT.

The fact that some participants tried to apply changes to the modeled transformation
through textually changing the textual representation in the text view makes us see the
GN of QVTr not to be a replacement for the TN, but rather to be complementary. This
is contrary to our expectation in the very beginning of this thesis, as we assumed that a
stand-alone graphical approach is key to an increase in usability and productivity. But
under the assumption that an editor offers two fully editable views using the GN and TN,
then we see multiple advantages. On the one hand, an editor of this form is more tolerant
towards personal preferences of the user with the type of modeling – be it textually or
graphically. Hence, such an editor implements less assumptions than an editor, which
strictly enforces either of the two modeling styles. On the other hand, the choice between
GN and TN not only affects the way users actively model a transformation, but also how
they perceive and analyze it passively. With techniques such as syntax highlighting for
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Figure 5.19: OCEs of a RDBMS::Table domain in QViT

the TN, and the loosened information condensity in the GN, we have considered effective
techniques to serve the readability needs in both cases in our concept.

5.6 Conclusion
We now summarize our key findings that we gained by the user experiments.

In QViT, mouse-clicks dominate over key-strokes. As Figure 5.6 illustrates,
mouse-clicks are the dominant type of user-input in our concept. One the one hand, it is
therefore vital for editors to use a clear style for elements that are supposed to be clicked
by the user. On the other hand, our heatmaps show the locations in the GUI of QViT,
where mouse-click user-input is concentrated the most, and thus the widgets that should
require the smallest amount of accommodation time. In the case of QViT, these widgets
were mainly textboxes, having an auto-complete dropdown attached to them.

QViT does not take the burden off of knowing QVTr. During the experiments,
it came apparent to us that one of the users had quite the hard time to achieve the
exercise, due to a lack of understanding of QVTr and no software engineering background.
While the concept implemented in QViT theoretically enables the usage of QVTr also for
novice users, it is not its key strength. The concepts of QVTr that also other participants
struggled with the most were when/where clauses, and the correct usage of variables. In
the latter case, it may be confusing what the expression name = pn really does, without
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considering its surrounding context. If located in an object template that is within in the
hierarchy of a checkonly domain, then the direction of assignment is left-to-right. This
means that the “name” value of the respective object template is stored into variable
for later use. However, if located within a hierarchy of an enforce domain, the direction
of assignment is right-to-left, meaning that the value the variable holds is assigned to
the “name” property of the respective object template. From that, we derive that our
concept generates the most value for MDE practitioners, that have already modeled
QVTr transformations in another editor. In addition, developers of future editors for
QVTr and MTLs benefit from our proposed concept as it gives insights into how a high
level of usability and productivity can be implemented. In this case, the users benefit
from a significant increase in usability and productivity. However, for users that are
new to MDE, MTLs and QVTr in particular, our concept is limited in the sense that
it does not explain the semantics behind these concepts. One of the participants in
our experiments pointed out, that a solution to that might be a guided tour or tutorial
within the editor, where the user is guided via explanatory audio-commentary through
an example transformation.

QViT is a promising alternative to the medQVT state of the art tool. Our
experiments at the LieberLieber Software GmbH company shed light on the potential of
our concept. We were granted to get valuable hands-on feedback from industrial MDE
practitioners, for which our proposed concept is of professional interest. The promising
completion rate of roughly 84% and moderate session duration of 38 minutes on average
of our experiments have demonstrated the feasibility of our concept, taking into account
the comprehensive task to be achieved, which covered the lion’s share of QVTr concepts.
Furthermore, participants have argued in the questionnaire and during the interviews that
they would favor QViT over the state of the art tool medQVT for productivity reasons.
However, as illustrated in the last questions of the second part of the questionnaire
5.2, participants gave this recommendation with having worked with QVTr before as
prerequisite. Therefore we identify such users to be the group, that our concept would
have the most impact on in terms of productivity improvement. For completion’s sake
we point out that QViT has been implemented in a way such that it is decoupled from
an underlying execution engine. Hence, we invite future developers to target their own
QVTr execution engines with QViT.
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CHAPTER 6
Conclusion

6.1 Summary

In the beginning of this thesis, the main question was to find out about the reasons behind
QVTr’s poor level of adoption, taking into account its claim to be the de-facto standard
for model transformations. During our assessment of respective state of the art tools,
we quickly discovered 4 critical shortcomings. That is, although QVTr’s initial public
release was 10 years ago, the availability of appropriate, matured tools is still sparse.
Furthermore, the few tools that can be considered mature are focused on enabling the
technology rather than being user-centric and usability-focused. In particular, modeling is
difficult and tedious in these tools, because feedback cycles are comparably slow. Finally,
we discovered unused potential for approachability, readability and traceability with the
neglection of QVTr’s GN in these editors.

After the tools analysis, we have conducted a comprehensive, theoretical analysis of the
modeling process and workflow when using QVTr. Thereby, we have assigned all needed
modeling tasks into 4 separate categories, namely modeling itself, the incorporation of
reported errors, navigation and the execution of the transformation. We also revealed
that the usage of the GN opens doors to novel approaches to the modeling process itself.
In particular, we have defined new methods to variable management, layouting, reading
directions, condensity, and well-formedness. We then packaged our gained insights
from both the tools and modeling process analyses into a theoretical concept, and have
evaluated it in an industrial context. By this we have shown, that there is significant
potential for an increase in the usability of modeling tools for QVTr, and that a formula
of automation, interactivity and understandability can push these boundaries.

We have also elaborated on the question of finding the context, in which our concept
generates the most value. Regarding this question, we came to the conclusion, that our
concept does not take off the burden of understanding the concepts of QVTr from users,
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but provides a significant productivity increase for those that have already modeled
transformations in other state of the art tools.

Nonetheless, QViT has pushed the usability boundaries by a margin such that the editor
is also feasible for novice users of QVTr, since our proposed concept of quick fixes offer
them a certain amount of user guidance, which can be even further improved in future
work.

Tables 6.1, 6.2 list all described techniques of our concept along with a concise description
of which methods are used to implement them.

Technique Achieved By
for an increase in readability

Definition and Outlaying of Views Design Decisions
Syntax Highlighting Type Analysis, Substring Search
Domain Numbering Domain Counting
Top Property Indicator Dynamic Relation Analysis
Icons GUI Design
Layouting GUI Design
View Granularity GUI Design
Automatic Vertices Positioning BFS Heuristics

for an increase in traceability
Trace Model Visualization Color-Encoding & Trace Model Analysis
Occurrence Highlighting Dynamic Relation Analysis
Navigable Relation Calls GUI Design
Dependency Graph Visualization Dependency Graph Analysis

Table 6.1: Techniques in our approach
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6.2 Future Work
Although our concept provides an entry-point to developers of future editors, the user
experiments showed that there are still further usability concerns to elaborate on. The
following list provides the interested reader with some possible directions to consider.

• Implement dialogs in a way such that they do not hide the diagram canvas under-
neath, since users may need to have a look on it, before users are able to carry
out certain tasks within the dialogs. This came apparent to us, as we noticed that
users often re-positioned the dialogs, in order to reveal what was underneath.

• The generic naming of elements such as OTs and (primitive) domains could be fully
automated, such that users don’t have to spend any time with manual naming.

• It would be interesting to investigate on novel techniques and styles that increase
the “click-ability” of elements on the diagram canvas, such that it becomes obvious
to users that (multiple) elements can be selected.

• AVP could take the type hierarchy of the underlying metamodel into account, when
positioning new object templates either below or above a parenting object template.

• Novice users in MDE, MTLs and QVTr in particular may benefit from a guided tour
within the editor, were they are guided through an example model transformation
by the means of explanatory audio-commentary. In the best case, the example
transformation that would be demonstrated in this tour would elaborate on QVTr
concepts in an ascending order, sorted by their complexity. We would define such
an order, beginning with the least complex topic, as follows.

1. Usage of Metamodels in the context of QVTr
2. Creation of Transformations
3. Creation of Model Declarations
4. Creation of Relations
5. Top-Property of Relations
6. Creations of Domain Declarations
7. Object Templates
8. Variables and Primitive Data Types
9. One-To-One Mappings
10. Nesting of Object Templates
11. When and Where Clauses
12. Relation Calls, Queries
13. Integration of OCL expressions

104



6.2. Future Work

• A useful improvement to the text view would be a system such that textual changes
made in this text view are automatically applied to the diagram canvas. At the
time of writing this thesis, changes are unidirectional from the diagram canvas
towards the text view in QViT.

• In order to avoid confusion about what the most recent action was that the user
performed, a new view is conceivable, in which a history off all executed actions
is presented. This should also increase the traceability. This history is then also
automatically updated whenever the user undo’s or redo’s a specific action. Another
advantage of this is that the learnability of QVTr is potentially affected, since it is
easier for users to understand the effects of certain changes that they have made to
the transformation.

• For novice users to QVTr it may potentially be confusing that a “when” clause
refers to a pre-condition, unlike a “where” clause, that defines a post-condition. It
is conceivable for editors to use the terms “pre-” and “post-condition” instead for
buttons and widgets in the interface, such that this confusion is mitigated.

• In order to avoid unexpected chains of popping up dialogs, a wizard-like dialog
could be used instead. We consider this an effective solution since wizard also
reflect the information to users, in which step they currently are, and especially
when the last step of the procedure has been reached. Hence, any confusion about
if there are still further steps to handle in modal dialogs is eliminated.

• In order to emphasize that the editing of transformations, relations, and object
templates in dialogs is meant to be for details, and that instead the editing of these
elements on the diagram canvas is the main way of editing, it is conceivable to also
label buttons that open the dialogs with the term “Details”, rather than “Edit”.
This technique would also support the “click-ability” of the vertices on the diagram,
and thus novice users of the respective editor may find out faster about OCEs and
CPMs, which appear only after vertices selection.
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APPENDIX A
Diagrams of Metamodels

Figure A.1: The SimpleRDBMS metamodel as defined in [41]
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A. Diagrams of Metamodels

Figure A.2: The SimpleUML metamodel as defined in [41]
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APPENDIX B
User Experiment Exercise

Please use the QViT editor to specify the “UMLToRDBMS” transformation, which
comprises the following 3 relations.

1. PackageToSchema

2. ClassToTable

3. AttributeToColumn

The call hierarchy of these relations is defined in Figure B.1.

top PackageToSchema

top ClassToTable

AttributeToColumn

Figure B.1: The call hierarchy of relations in the transformation
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B. User Experiment Exercise

The source model, which serves as the input to the transformation, is given as follows.

Library : Package

name = ’Library’

DVD : Class
name = ’DVD’

kind = ’Persistent’

Room : Class
name = ’Room’

Book : Class
name = ’Book’

kind = ’Persistent’

Visitor : Class
name = ’Book’

kind = ’Transient’

author : Attribute
name = ’author’

Figure B.2: Input: SimpleUML Model

Your modeled transformation should transform the given source model into the following
target model.

Library : Schema

name = ’Library’

DVD : Table
name = ’DVD’

Book : Table
name = ’Book’

id : Column
name = ’id’

kind = ’Integer’

pk_DVD : Key

name = ’pk_DVD’

author : Column
name = ’author’

id : Column
name = ’id’

kind = ’Integer’

pk_Book : Column

name = ’pk_Book’

Figure B.3: Output: SimpleRDBMS Model

After the test session you will have the opportunity to compare QViT with medini QVT
in the context of an online questionnaire and an interview.

Thank you for your time and interest in the user experiments.
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APPENDIX C
User Experiment Questionnaire

Please fill out the following questionnaire, in order to compare the textual modeling
approach with medini QVT against graphical modeling with QViT.

Was using QViT. . . Yes No
1. easier 2 2
2. visually better structured and clearer 2 2
3. visually more appealing 2 2
4. more restrictive 2 2
5. more repetitive 2 2
6. faster to use 2 2
7. easier to navigate 2 2
8. easier to edit 2 2
9. faster to learn 2 2
10. more time-consuming 2 2
11. more readable 2 2
12. easier for learning QVTr 2 2
13. easier to understand 2 2

What decreased the modeling effort in QViT? Yes No
14. Model Derivation from Transformation names 2 2
15. Domain Derivation from Relation names 2 2
16. Suggestion of Default Names 2 2
17. Automatic parameter-selection in Relation calls 2 2

Table C.1: Questionnaire
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C. User Experiment Questionnaire

18. Automatic configuration of the execution profile 2 2
19. Auto-Complete for names 2 2
20. One-Click-Extensions 2 2
21. Prediction of new Relations 2 2
22. Quick Fixes 2 2
23. Common Property Mappings 2 2
24. Transformation Overview Diagram 2 2
25. Cycle and Deadlock Detection 2 2
26. Suggestion of Top Relations 2 2
27. Detection of unused Relations 2 2
28. Visualization of source and target model 2 2
29. Green and Yellow markings 2 2
30. The usage of QVTr’s graphical syntax 2 2

Did the offered suggestions. . . Yes No
31. help to better understand the used metamodels? 2 2
32. help to better understand the QVTr language? 2 2
33. help to prevent errors? 2 2
34. increase productivity / reduce effort? 2 2

Did the green and yellow markings. . . Yes No
35. increase the traceablity of objects? 2 2
36. help to better understand the QVTr language? 2 2
37. help to identify and locate errors? 2 2
38. increase productivity / reduce effort? 2 2

Did the graphical syntax. . . Yes No
39. make QVTr more readable? 2 2
40. make QVTr easier to understand? 2 2
41. ease navigation? 2 2
42. increase productivity / reduce effort? 2 2

When would you favor QViT over medini QVT? Yes No
43. Novice user in MDE 2 2
44. Experienced user in MDE 2 2
45. Novice user in QVTrs 2 2
46. Experienced user in QVTr 2 2
47. Smale-scale project 2 2
48. Large-scale project 2 2

Table C.2: Questionnaire
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