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Kurzfassung

Entwicklungen wie intelligente Verkehrssysteme, innovative Stromnetzüberwachung
und -regelung sowie Echtzeitspiele, die mit der Umgebung interagieren, sind neuartige
Applikationen, die einen hohen Anspruch auf geringe Latenzzeit stellen. Fog Computing
ist ein neues Programmierparadigma, das denWeg für solche Applikationen ebnen wird.
Dazu werden Serviceanbieter ihre Hardware (Gateways, Router, Server) außerhalb von
Rechenzentren positionieren, sodass sie sich physisch so nahe wie möglich bei ihren
Endnutzern befindet. Die Nutzer können sich allerdings frei bewegen und müssen daher
abhängig von ihrem Standort, den Servern zugewiesen werden. Gleichzeitig müssen die
Applikationen der Nutzer ebenfalls diesen Servern zugewiesen werden, idealerweise so,
dass sie sich möglichst nahe zu ihnen befinden. Unterschiedliche Ziele von Servicean-
bietern und Nutzern sowie physische Limitierungen der Hardware, machen dieses
Zuweisungsproblem zu einer herausfordernden Aufgabe. Wir erfassen die Ziele von
Nutzern und Serviceanbietern in sechs verschiedenen Zielfunktionen (user distance, power
consumption, resource waste, failure probability, reachability, user evenness). Wir verwenden
Biogeography-based optimization (BBO) eine spezielle Art eines genetischen Algorithmus
inspiriert von einem Prozess aus der Natur, um Lösungen zu finden, die gleichzeitig
alle dieser Zielfunktionen minimieren. Da es sehr schwierig ist, exakte Lösungen zu
finden, vergleichen wir BBO mit einem Greedy-Algorithmus und einem Genetischen
Algorithmus (GA). Unsere ausgiebigen Simulationen zeigen, dass BBO tatsächlich in
der Lage ist, akzeptable Lösungen zu finden, allerdings abhängig von der beobachteten
Zielfunktion. BBO liefert bessere Lösungen als der Greedy-Algorithmus in fast allen Test-
Instanzen und geringfügig bessere Lösungen als GA, besonders in kleineren Instanzen.
Diese Arbeit zeigt, dass BBO ein geeignetes Verfahren ist, um dieses Zuweisungsproblem,
das in Fog Computing auftritt, zu lösen und kann zu kleineren Latenzzeiten für Endnut-
zer einerseits und geringeren Kosten und höheren Verfügbarkeiten für Serviceanbieter
andererseits führen.
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Abstract

Applications such as vehicle routing systems, smart city applications and augmented real-
ity games are new and demanding applications that have very low latency requirements.
Fog Computing is a new computing paradigm that will pave the way for these applications.
To that end, service providers will deploy their hardware (gateways, routers, servers)
outside of data centers in order to move their infrastructure as close as possible to their
users. In order to get benefit from the infrastructure, users have to be assigned to the right
servers, depending on their physical location. Simultaneously, the users’ applications,
have to be assigned to the same servers, ideally such that they are in close proximity
to their users. The different objectives of both service providers and users, as well as
physical limitations and constraints, however, make this assignment task a challenging
problem. We capture user and service provider goals by six different objective func-
tions (user distance, power consumption, resource waste, failure probability, reachability, user
evenness). We use Biogeography-based optimization (BBO), a kind of genetic algorithm
inspired by nature, to find solutions that simultaneously minimize all these functions in
a multiobjective Pareto approach. As exact solutions are hard to obtain, we compare BBO
against a greedy algorithm and the Genetic algorithm (GA). Our extensive simulations
suggest that BBO is indeed applicable to find reasonably good solutions, however results
vary upon the used objective function. BBO generally outperforms the greedy algorithm
in almost all of the instances and often delivers slightly better results than GA as well,
especially for smaller instance sizes. The work shows that BBO is an admissible approach
for solving this assignment problem encountered in Fog Computing which can lead to
lower latency for user applications and cost savings and higher availability guarantees
for service providers.
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CHAPTER 1
Introduction

1.1 Problem Definition

More and more physical devices are connected to the Internet. According to a recent
report by Gartner, an estimated 8.38 billion devices will be online by the end of 2017 and
this number is expected to grow to 20.4 billion by the end of 2020 [4]. Examples range
from fixed things such as household devices, electrical grid sensors and surveillance
cameras to mobile things such as cars, smartphones and wearables like watches and
fitness trackers. In addition to the network, they can also be connected to actuators,
which allows them to not only track and control the environment, but also manipulation
of it for regulation purposes.

These smart devices in their entirety constitute what is now called the Internet of Things
(IoT). The benefits of IoT are manifold. One of the biggest benefits is expected in supply
chainmanagement and asset tracking. Logistics companyDHL stated in a press release in
2015 that it expects a USD 1.9 trillion boost to their supply chain and logistics operations,
due to improved decision-making in warehouse operations and near real-time data
analytics based on smart devices [10]. Another huge opportunity for IoT is efficient
energy management: Energy use within residential homes (lighting, cooling, heating
systems) and energy use for transportation (personal vehicles and public transportation)
can be cut down through IoT-enabled solutions, through intelligent operation of activities
on one hand and traffic management, congestion control, and smart parking, on the
other [31].

IoT devices are said to be at the edge of the network, because they are at the boundary to
the user. Since the number of edge devices grows rapidly, we are now facing a critical
issue: The amount of data produced will soon reach and then surpass the amount of
data that the network is capable of transmitting to cloud data centers for processing that
are situated further away. A possible remedy is processing the data earlier, immediately

1



1. Introduction

after they were recorded. This requires a new architecture, that includes edge data centers
(EDCs). These small, light-weight distributed machines form an intermediate network
and are capable of storing, aggregating and processing data in near real-time at the edge.
Figure 1.1 shows how such an architecture would look like.

(a) (b)

Figure 1.1: (a) Base stations in and around the center of Vienna, Austria [16]. Light blue dots indicate cell
towers, magenta dots indicate radio towers and dark blue dots indicate auxiliary measurement stations. (b)
Envisioned derived fog architecture with Edge Data Centers (EDCs) attached to base stations [36].

Figure 1.1 (a) shows an example of how many base stations exist in a densely populated
area. Figure 1.1 (b) depicts the imagined servers or physical machines (PMs) that would
be co-located with base stations, to enable the aforementioned processing capabilities.
We will refer to this architecture as fog or Fog Computing and will use it as the basis for
our study1.

IoT devices (such as smartphones) are often resource-limited. Since EDCs provide pro-
cessing capabilities, these limitations can be alleviated in order to enhance mobile user
experience: Computation offloading is the practice of offloading expensive computation
tasks to another entity, with the goal of extending battery life and/or increasing com-
putational capabilities of the first entity [50]. The mobile assistant tool Siri [3] is a good
example of how voice recognition can be implemented by computation offloading [7].
Leveraging the close proximity of EDCs, even more demanding applications will be pos-
sible in the future that require more network bandwidth or shorter response times [87].

Virtual Machines (VMs) have been around for many years now and their popularity is due
to two key benefits. First, they are isolated execution environments capable of running
user tasks and applications. This is, they provide all the capabilities of an operating
system. And second, they are location independent, meaning that they can be assigned
to and run on any PM. For example, in cloud data centers with many PMs, it is common
practice to assign VMs to PMs in order to distribute computation load evenly. We will

1Clouds consist of vapor that is far away from the ground where all the humans (users) reside. Fog
consists of vapor that is near to the ground and the users, hence the term Fog Computing.
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1.1. Problem Definition

Table 1.1: Number of possible solutions for the VM/User assignment problem.

# PMs # VMs # Users |Σ|
25 25 25 7.52 · 1046

50 50 50 6.37 · 10108

75 75 75 2.59 · 10176

100 100 100 5.15 · 10247

view VMs as containers for user applications (apps), thus making the user applications
location independent.

Because of these two benefits, isolation and location independence, VMs are a prime
candidate to be used in a fog computing environment. The idea is that users connect
to a EDC in their vicinity and the applications they need (encapsulated in the form of
VMs), are subsequently transferred to the same EDC. If more than one EDC is in a user’s
vicinity, one has to be selected. EDCs, however, can host only a certain number of VMs
due to physical capacity constraints. If a user needs a VM that cannot be hosted on the
EDC they are currently connected to, the VM can also be hosted on a different EDC. In
that case, the user request will then be routed to this different EDC. This incurs some
delay. How to assign both users and VMs to a set of edge data centers such that delay
and other costs are minimized, will be explored in this thesis.

Due to the combinatorial nature of this problem, the number of possible solutions is very
large, even if the numbers of EDCs, VMs and users is relatively small. Let Σ be the set
of all possible solutions to the problem. Assume, any VM can be assigned to any EDC
(ignoring physical limitations for the moment) and that on average three base stations
are in the vicinity of a user. Then the size of this set is given by

|Σ| = MN · 3U , (1.1)

whereM , N and U are the number of PMs, VMs and users, respectively. An illustrative
example of how fast this number grows, is given in Table 1.1.

We will assume the network that connects all PMs is a virtualized, bandwidth guaranteed
network and assume that enough bandwidth is available for both user requests from
a base station to an EDC and from one EDC to another for relaying and inter-EDC
communication purposes. Establishing such bandwidth guarantees on a shared network
infrastructure is a complex and challenging task. Yet, there is myriad of applications that
successfully tackle this task such as SecondNet [38], ElasticSwitch [66], CloudMirror [53],
and very recently DetServ [37].

3



1. Introduction

1.2 Motivation and Contribution of the Thesis

Multi-objective Optimization in Fog Computing Environment

In this thesis, we propose a new approach for efficiently assigning both users and VMs
to small-sized data centers (EDCs) that are geographically dispersed over a large area.

Gu et al. [36] studied a similar scenario, namely cost efficient resource management for
medical systems relying on Fog Computing. Their cost function is a single function
which consists of communication costs between clients and base stations, inter-base
station communication and VM deployment cost. Further, the researchers used a linear
programming (LP) based heuristic for minimizing this cost function. Our work differs in
several ways. First, we used a different set of objective functions, that shifts the focus
away from only considering communication costs. Our approach is capable of balancing
service provider goals on one hand and user requirements on the other. Second, LP
is capable of minimizing only a single function and therefore the researchers used the
sum of objective functions to derive a single function (returning a scalar value). We use
several individual cost functions (a cost vector) that are jointly minimized, using the
concept of Pareto optimality. This avoids the use of the summation or some other kind of
aggregating function and further allows us to incorporate objective functions that are not
comparable with each other because, for example, they are measured on different scales
or use different units. Third, we use a computationally less expensive solving technique
for finding the minima of these cost functions. This may yield results sooner.

Our approach relies on a special variant of genetic algorithm called Biogeography-based
optimization (BBO). Genetic algorithms in general have a variety of benefits, that make
them an attractive choice for solving assignment problems. One of the biggest benefit is
that they impose no restrictions on the nature of the objective functions they are trying
to optimize. Genetic algorithms can be used on non-linear functions, functions that are
not differentiable (since they do not calculate a gradient) and even on discontinuous
functions. This makes them applicable to a wide range of problems. The classical genetic
algorithm (GA) (as described for example in [61]) solves optimization problems using a
linear solution encoding, followed by a selection, crossover and mutation process of those
solutions. BBO was introduced in 2008 by Simon [73] and refined some steps of GA,
namely selection and crossover. We chose BBO as the basis of this work for two reasons:
First, BBO is more recent and it has been shown that the refinements made by Simon
make BBO outperform GA in various scenarios [73, 89, 76]. Second, to the best of our
knowledge, BBO has not been used in a Fog Computing environment. It has already been
used in a Cloud Computing setting [21, 91] and had better convergence characteristics
and was more computationally efficient than the used reference strategies [90], which is
a good premise for a successful study in the Fog Computing realm.
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1.3. Structure of the Thesis

Fog Environment Simulation Scripts

Evaluation of this work will be done using a simulation tool specifically written for this
purpose using MATLAB. Our workflow consists of two major steps: The first step is
the creation of the Fog environment including users and their respective locations as
well as VMs. The second step is the subsequent execution of BBO to find an efficient
assignment of users and VMs to the fog hardware. In the first step, the tool relies
on certain modeling assumptions including the assumed hardware specifications for
physical machines (obtained from SPEC.org [17]) and assumed network connection
layout (that is, the graph structure between PMs). Most of these parameters of the
simulation environment can be altered, making the developed tool customizable to
specific Fog computing scenarios. Therefore, service providers could use the tool to find
user and VM assignments in their own fog environment. In the second step, execution
of BBO, the service provider can also intervene and alter some of the BBO parameters.
This gives the service provider the opportunity to instruct the tool to use more time or a
different mutation strategy which in turn influences the final solution quality.

The primary contributions of this thesis can be summarized as follows:

(1) We abstract the assignment problem and derive several objective functions in order
to study the problem analytically.

(2) We use Biogeography-based optimization, a special variant of genetic algorithm,
and make certain adaptations to its original formulation in order to make it applica-
ble for both a discrete assignment problem and a problem with multiple objective
functions.

(3) We conduct extensive simulations to evaluate the algorithmparameters influence its
efficiency, and demonstrate the efficacy of our approach using various experiment
instance sizes.

1.3 Structure of the Thesis

This thesis is structured as follows. In Chapter 2, we discuss the background of the thesis
and will introduce the concepts of cloud and fog computing. Also, virtual machines and
their migration mechanisms will be discussed. Then the optimization technique used
will be explained, including some adaptations that were made to it.

Chapter 3 reviews current approaches for load balancing. Our focuswill be on assignment
that uses heuristics and metaheuristics are their main mechanisms. Other approaches
will be discussed as well. Specific fog environments challenges and solutions will be
highlighted.

In Chapter 4, we describe the assignment problem in more detail, define the goals we
are trying to achieve and derive from these goals several objective functions, that we will

5



1. Introduction

later minimize. Also in this Chapter, we explain how the optimization technique was
used and modified to solve our specific problem at hand.

Chapter 5 contains the evaluation of our approach, including the experiment setup,
descriptions of the reference algorithms and results and discussion. Lastly, we conclude
give pointers to possible further research directions and conclude was has been learned.

6



CHAPTER 2
Background

2.1 Fog Computing Environment

Fog Computing is a new computing paradigm, that will be reality in the near future as
more and more devices are connected to the Internet. It will complement the Cloud
Computing paradigm, that many applications rely on today and will pave the way for
a whole new type of more demanding and capable applications in the future. In this
Section, first, we look at the definition of Cloud Computing and explain its different
flavors, SaaS, PaaS and IaaS. Second, we introduce Fog Computing and the benefits it
holds for applications. Finally, we follow-up with a discussion about Virtual Machines
and the huge potential they offer.

2.1.1 Cloud Computing

In recent years, cloud computing has become a popular term for a computing paradigm
that offers certain desirable features. Cloud providers provide all the hardware and part
of the software stack necessary for storage of data and computation of tasks, while cloud
users use these resources by implementing their own cloud applications on top of them
and/or use existing tools and applications that are offered. The U.S. National Institute of
Standards and Technology (NIST) defines cloud computing as follows [59, p. 2]:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.

Voorsluys et al. argue that commonality among many cloud service providers is a pay-
per-usemodel, that involves no ongoing commitment and utility prices and that resources

7



2. Background

are provided in an abstracted or virtualized way. Further, users get elastic capacity and
the impression of having access to infinite resources [82, p. 4].

Figure 2.1: Different types of services offered by Cloud Computing provides [82, p. 14]

Many commercial cloud computing services exist, such as Amazon web services [2],
Google Cloud Platform [5], Microsoft Azure [12] and IBM Bluemix [9]. These services
differ in offered functionality as well as in the level of abstraction they provide to the
user and the extent to which a user is capable of configuring the provided resources.
These services can also be seen as a software/cloud stack and depending on this stack
these cloud services are often classified as being Software-as-a-Service (SaaS), Platform-
as-a-Service (PaaS) or Infrastructure-as-a-Service (IaaS). Software as a Service products
are at the top of the cloud stack and provide fully-fletched, ready for use applications,
meant to replace locally installed desktop applications. They operate at a high level
of abstraction, leaving little to no configuration to the user. The Platform as a Service
model on the other hand, offers no applications but rather a toolkit to its users, that
can be used for developing, testing and deploying applications that can leverage cloud
features. With PaaS products, the user does not necessarily know how much processing
power or memory they have available. Cloud services known as Infrastructure as a
Service provide these details, letting the user choose and manage their own virtual
machines (VMs), equip them with computing and storage resources (virtualized CPUs,
memory, hard drives) and install and run custom software [82, p. 13–16]. Amore detailed
taxonomy of cloud services is given in [69]. Figure 2.1 visualizes the cloud computing
stack graphically.

In addition to the categorization based on the different functionalities cloud providers
make available, they can be categorized by the deployment model they offer. A cloud
can be classified as being public, private or something in-between often referred to as
community, or hybrid cloud. Public clouds are large, multi-tenant systems that are used

8



2.1. Fog Computing Environment

concurrently by multiple users, possibly residing in different locations around the world.
Their hardware is generally hosted on the service provider’s premises. Usually, they
are open to the general public and offer their utilities on a pay-per-use model. Private
clouds are for large cooperations and private businesses as well as government agencies.
They are built to support their businesses operations and while they can be accessed
from different locations, access to them is only granted to certain people. The hardware
of private clouds is often times hosted on the organizations’ premises or within one of
their data center(s). If privacy issues are a main concern, a company may establish a
private cloud instead of opting for a public one. Community clouds have similarities
with both public and private clouds. They are shared by a community of consumers that
have shared goals or concerns. The infrastructure is available only to those users and is
owned, managed and operated by one of the entities from the community and or a third
party. Finally, hybrid clouds are a composition of two or more private, community or
public clouds, that are connected by a shared application or proprietary technology. The
individual clouds are hosted by their respective hosts and remain separate entities [59].

2.1.2 Fog Computing

In Section 2.1.1, we argued that one of the characteristics of Cloud Computing is a shared
pool of computing resources. Although not stated explicitly, these resources are thought
to reside inside large data centers or anywhere physically further away from where the
actual computing and storage capabilities will eventually be used.

With the advent of smart devices and the introduction of the Internet of Things (IoT) in
fields such as health care, home and public environments, new challenges are faced. Shi
et al. identified the following issues [72]: First, large quantities of data are generated from
various devices and the transmission link to the cloud is becoming a bottleneck. Second,
the response time from the cloud, which is related to the fact that large quantities of data
have to be sent over the network, may be too high for latency critical applications. And
third, privacy protection is an obstacle to Cloud Computing, because IoT devices may
record confidential information and users may not be willing to put their data on an
outside server.

One way of tackling those issues, is performing storage and computation outside of
data centers and in closer proximity to the devices and/or end-users that need it (Fog
Computing). This is best illustrated by the hypothetical scenario of a child that has
gone missing in a city [72]1. Today, many public spaces have surveillance cameras, and
their recordings are often stored (at least temporarily) on a server. Also, many vehicles
and smartphones have cameras installed. Usually, these pictures and videos are not
uploaded to a server, due to capacity constraints and privacy concerns. With the fog
computing paradigm, however, these devices could work together. When a child goes
missing, the authorities could distribute that child’s’ photo along with a request to all

1The researchers in [72] actually use the term Edge Computing in their publication, but they refer to the
same architecture/vision, that we do. For consistency, we chose to use the term Fog Computing throughout
the whole text.
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devices in a target area to search in their storage for that child. When one device finds
the child in one of its recordings, the result is reported back and an investigation can use
this information to find it. In this scenario, network overhead is reduced and privacy
concerns of individual users are addressed.

Summarizing, Yi et al. provide the following definition of Fog Computing [87]:

Fog computing is a geographically distributed computing architecture with a resource
pool [that] consists of one or more ubiquitously connected heterogeneous devices
(including edge devices) at the edge of network ... [to] collaboratively provide elastic
computation, storage and communication ... to a large scale of clients in proximity.

2.1.3 Edge Data Centers and Users

In order to make fog computing reality, additional hardware will be needed. If, say,
a city wants to leverage fog computing, instead of having one big data center, it must
spread and deploy 10s-100s of smaller edge data centers (EDCs) over its area. One of the
applications that would be enabled this way, would be medical cyber-physical systems,
a recent and growing trend in healthcare, that allow the efficient usage of home medical
monitoring devices [36].

EDCs consist of one or more heterogeneous machines, that are in close proximity to
the user such as in radio base stations or WiFi access points. They operate at different
costs and provide higher bandwidth and lower latency than their centralized cloud
counterparts. They can perform analytics and aggregation tasks immediately after the
data were captured. Furthermore, they are location-aware and allow to flexibly add or
remove network functions based on the current demands of nearby users [52].

As users are located in or move through the city, they can connect to one of the EDCs
within their vicinity. Some coordination mechanism between EDCs has to be in place in
order to assure that users connect to the ’right’ EDC and do not overrun one base station,
while other basestations have almost no users.

2.1.4 Virtual Machines

VMs have become an important tool in cloud computing as they provide the means
of transferring user applications from one physical machine to another. This is done
by moving whole VMs, instead of individual tasks or processes. VMs offer a complete
execution environment to user applications, thus separating them from the actual under-
lying physical server (the host)2. Moving VMs, also called VM migration, is facilitated
by the fact that the interfaces of many server hardware platforms that are used by VMs
are well-defined, thus making it possible to run a single VM on different platforms from

2Here, we focus the discussion on system VMs, that provide a complete and persistent system environ-
ment, capable of running several processes at the same time. Process VMs, on the other hand, are created
and terminated for the use of a single process only.
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different vendors [75]. Migrating a VM together with all its applications means that any
applications that are dependent on their environment, do not have to be re-written or
otherwise adapted, since the execution environment is the same before and after the
migration process. As a result, these applications (together with their VMs) become
location independent.

Figure 2.2: A server containing three VMs, each of which run different operating systems and different
user applications. A Virtual Machine Monitor or Hypervisor, provides a hardware abstraction and runs the
VMs [82, p. 10].

Another reason why VMs are popular in cloud computing is that one physical server, is
able host multiple VMs at the same time (see Figure 2.2). However, this is only possible,
as long as the sum of the resource demands of all the hosted VMs do not exceed the
servers’ resources. Resource demands of VMs are not always static but change over
time, making it difficult to predict how many VMs a server should host. Examples of
such resource demands are: processing power, memory usage, network bandwidth
(download/upload) and file I/O operations (disk usage). A servers’ CPU can only
compute a finite number of instructions per second, a servers’ network controller is
only able to send and receive a certain number of packets per second and hard disks do
not spin with infinite speed. If a server is overwhelmed and cannot fulfill the desired
resource demands of its VMs, user applications running on these VMs will be experience
performance degradation or even come to a complete halt.

2.1.5 Workloads

Workloads can be a result of user requests to a web server, can be due to an application
that queries a database server or a periodically running batch job, that does a regularly
scheduled backup of some files. We will use the term workload, regardless of whether it
affects a servers’ CPU, memory or I/O components.

We will focus on transferring one or more VMs from one server to another as the main
mechanism for shifting or distributing workloads. One of the goals in cloud computing
is to pack as many VMs as possible onto a single server, in order to shutdown the rest of
the servers or put them in idle mode. This is known as VM consolidation. In idle mode,
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servers consume significantly less energy. Therefore, VM consolidation can be seen as
an important tool for reducing energy consumption and saving costs.

Workload distribution has to be done carefully. If one underestimates the future work-
load of a business-critical e-commerce application, for example, and because of that,
underprovisions resources, a company might have a disadvantage over its competitors
and loose customers, if there is a sudden increase in workload. Amazon found, that
every 100 ms increase in loading times of their website, costs them 1% in sales, because
their customers are more likely loose interest and stop shopping [1].

2.1.6 VMMigration Mechanisms

VM migration can be done in several ways. A naive approach would be, to stop the orig-
inal VM, copy all of its contents to the desired destination and then continue operations
from there. This process is called pure stop-and-copy and although it may be simple to
implement, there are better approaches in terms of migration length.

The length of moving a VM from one physical host to another is usually measured in
downtime and total migration time. Downtime is the period during which the services
offered by the VM are not available, due to there being no currently executing instance
of the VM. Clients will notice this as a service interruption. Total migration time is
the period from when the migration process was first initiated, until the last piece of
memory content was transferred and the original VM is removed. Both downtime and
total migration time should be minimal.

The process of memory transfer can be split-up into three phases [27]:

Push phase Pages are pushed across the network from the old to the new destination.
During this time, the source VM continues its normal operation. Pages that are
modified (made dirty), must be sent again.

Stop-and-copy phase The source VM stops its operations, while pages are still being
transferred. The VM at the new location is started.

Pull phase The new VM starts its operations. If it tries to access a page that has not
been transferred yet, a page fault occurs and the required page is pulled across the
network from the source VM.

Most practical solutions use only one or two of these three phases. The naive approach
described above, uses only the second phase. However, this leads to a downtime and
total migration time that is proportional to the memory allocated by the VM.

Figure 2.3 shows a migration timeline that uses the first and second phase called iterative
pre-copy migration. After initial setup steps (Stage 0+1), all pages of the source VM
are copied to the target location and pages that have been modified while the copy
process was ongoing, are transferred again (Stage 2). The source VM is then suspended,
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remaining pages are copied (Stage 3). At this point, there are two identical (but inactive)
VM images on both machines. The source VM is discarded (Stage 4) and finally the
network traffic is rerouted to the new VM, which starts its operations (Stage 5).

Figure 2.3: Migration process example as described in [27].

This process has a much smaller downtime. However, the total migration time depends
on how many iterations have to be made in the pre-copy phase. This in turn, depends on
how frequently and how many pages are changing between each round (page dirtying
rate). Details on how to deal with this issue are discussed in [27].

2.1.7 Remarks

In Section 2.1.4, we discussed that load of a server and by extension a servers’ energy
consumption are important perspectives, when reasoning about VM assignment. These
perspectives mostly concern the cloud provider, because energy consumption translates
to financial costs for them. For cloud users this may be only a minor concern. From their
point of view, other issues such as the number of VM migrations, which translates to
availability of their services and the financial costs that arise from running their VMs, are
more critical. Still, there are many more aspects, that could be taken into consideration,
when designing and implementing an ideal cloud service from the standpoint of a user.
Kritikos et al. surveyed the literature on cloud computing and identified 43 parameters,
that are used to describe the quality of cloud resources/providers [49, Table III]. This
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extensive list contains not only performance metrics and availability, but also quality
criteria relating to ease of configuration, security and reliability.

In Section 2.1.5, we implied that putting a server that has currently no VMs assigned into
idle mode is the only means of saving energy and costs. It should be noted, that modern
CPUs are capable of automatically adjusting their frequency. That means, that if a servers’
CPU is not fully utilized, it does not consume full energy. If a low processing workload
is predicted for a specific server, because its VMs are mostly memory-bound, the CPUs’
frequencies will be throttled through Dynamic Voltage and Frequency Scaling (DVFS). This
results in a significant reduction of energy consumption and reduces the amount of heat
that is produced and also saves costs [51]. Conversely, if a high processing workload is
impending, the voltage of one or more CPUs can be scaled up.

2.2 Networking

2.2.1 Software Defined Networking

In modern cloud and fog computing environments, not only are the computing resources
virtualized, but also the network infrastructure. Instead of dealingwith physical links and
physical switches, we are dealing with virtual links and virtual switches. OpenFlow [58]
is an important communications standard that enables virtualization and serves as the
foundation of many other networking approaches, such as ElasticSwitch [66]. Virtualized
networks offer benefits that conventional networks do not. Most virtualized networks
allow its tenants to demand a minimum bandwidth guarantee. This is very useful to the
tenants as their networked applications often rely on network throughput and this enables
them to derive a performance guarantee of their applications. We will describeOpenFlow,
a technology that enables network providers to configure their infrastructure in a fine
grained manner, and ElasticSwitch, another technology, that builds upon OpenFlow, to
enable bandwidth guarantees in these networks.

2.2.2 OpenFlow

OpenFlow [58] was first introduced in 2008 and its current version 1.5.1 is available
under [13] (released March 2015). OpenFlow is an open networking standard that
describes a list of criteria that Ethernet switches (or routers) have to meet. It is intended
to be vendor independent in order to enable researchers to program switches and run
experiments using a unified programming interface. To beOpenFlow complaint, switches
must support: (1) A Flow Table, with an action associated with each flow entry, that are
carried out when a certain flow is encountered; (2) a Secure Channel that connects the
switch to a controller, that can configure that switch, e.g. adding and removing flow
entries, using (3) theOpenFlow Protocolwhich specifies the common language understood
by both switch and a controller. The controller is thought to reside in the same network
and acts as a means of configuration for researchers. An OpenFlow Switch is visualized
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Figure 2.4: OpenFlow visualization: OpenFlow Switches contain a Flow Table that manages forwarding of
flows. Flow Tables can be configured using one or more controllers, that establish a secure connection to
the switch and use the OpenFlow protocol [13].

in Figure 2.4. We will briefly discuss the structure of the Flow Table and the four actions
that it has to offer.

OpenFlow uses the abstraction of a flow. A flow can be, for example, all network packets
originating from a certain MAC address or IP address, a TCP connection or all packets
containing a certain port number. Each Flow Table entry has an action associated with it,
which can be one of the following options [58]:

(1) Forward this flow’s packets to a given port (or ports).

(2) Forward this flow’s packets to a controller.

(3) Drop this flow’s packets.

(4) Ignore this flow’s packets by forwarding them through the switch’s normal pro-
cessing pipeline.

If a switch offers the capabilities (1)-(3), it is called Dedicated OpenFlow switch. If a switch
additionally offers capability (4), the standard calls it OpenFlow-enabled or Type 0 switch.
The fourth capability is required when one wants to separate experiment traffic from
normally occurring network traffic. Given that capability, researchers can run isolated
experiments, without interfering with other network users.

This framework, although conceptually easy to grasp, has some limitations in practice.
Guo et al. note, that there are practical limits to the maximum size of a flow table. These
limits can be reached under normal circumstances quite rapidly, even in a medium sized
data center, because of the fact that aggregation switches need to store a lot of forwarding
entries, while having only limited memory to do so [38].

15



2. Background

Regardless of this limitation, there are several use cases that OpenFlow enables: For
example, OpenFlow can be used to implement network management and access control.
A controller analyses each new flow using a set of pre-defined rules such as "Guests can
communicate using HTTP, but only via a web proxy" or "VoIP phones are not allowed to
communicate with laptops" [58]. Another example is virtual LANs (VLANs): OpenFlow
can provide users (or VMs) with their own isolated network. This can be realized by
identifying flows from a specific user (or VM) utilizing the flow table and the users’ MAC
address, and successively tagging these flows by assigning a VLAN ID to them.

An application that uses the OpenFlow protocol for configuration is Open vSwitch [64].
Instead of physical switches, Open vSwitch provides network abstraction to VMs using
virtual switches. They are implemented entirely in software and run on a servers’ hyper-
visor. In this way, it is possible to implement sophisticated network functions, without
relying on switches to offer any non-standard capabilities. Additionally, virtual switches
can derive information through integration with virtualization software, that would oth-
erwise be difficult to obtain from inspection of network traffic alone. For example, they
can determine all the MAC addresses of all the virtual interfaces belonging to a single
VM, whether or not a virtual interface is in promiscuous mode or what IP addresses are
currently assigned to a specific virtual interface [64].

2.2.3 ElasticSwitch

As already mentioned above, VM operators would like to have network bandwidth
guarantees from the infrastructure service provider, in order to estimate the performance
of the applications running on their VMs. One way for service providers to derive
these guarantees is through static reservation of bandwidths to their customers. However,
there is a major shortcoming of this approach: Consider two customers A and B share
the same network link and have some pre-assigned fixed capacities. A and B are both
transmitting data. When A is not fully utilizing its assigned share, B could use A’s
residual capacity. Through a static reservation scheme, this is not possible, resulting in
longer than necessary transmission times for B. Also, the network infrastructure is not
used to its fullest potential which is wasteful from an infrastructure providers point of
view. Matters are even worse, when considering that network traffic is bursty in nature
and average utilization in networks is low [26, 44].

ElasticSwitch [66] provides bandwidth guarantees to VMs via a more refined reservation
scheme by strategically rate-limiting VMs using Open vSwitch, therefore running entirely
in hypervisors and requiring no support from switches.

ElasticSwitch relies on the hose model of networking first introduced in [30]. Therein, a
network link is modeled as an undirected edge with a single value for both ingress and
egress bandwidth (therefore symmetric) [71] and every physical machine is connected
to every other physical machine via a single virtual switch. Once a tenant submits a
VM and a bandwidth requirement (using the hose model), ElasticSwitch works in two
steps. The first step is called Guarantee Partitioning (GP). It transforms the hose model
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guarantees of every VM into a set of absolute minimum guarantees for each pair of VMs
that need to communicate. More precisely, the guarantee of VMX and VM Y , BX→Y , is
set to the minimum of the guarantees assigned by either hypervisor (BX→Y

X and BX→Y
Y )

for the traffic between X and Y

BX→Y = min(BX→Y
X , BX→Y

Y ). (2.1)

The second step is called Rate-Allocation (RA), takes the minimum guarantee of the
previous steps as an input. RA tries to use up the additional capacity of any not congested
network links: Between every pair of source and destination VM, a rate-limiter on the
host of the source VM limits the traffic originating from that source VM to a certain value
RX→Y , but not lower than BX→Y :

RX→Y = max(BX→Y , RW_TCP (BX→Y , FX→Y )) (2.2)

whereRW_TCP is the rate given by a weighted TCP-like algorithm operating with weight
BX→Y and congestion feedback FX→Y . Intuitively, RX→Y increases and decreases
proportionally to howmuch congestion is experienced (using a simple weighting scheme
that is influenced by BX→Y ). Congestion is measured by the amount of packet loss.

GP andRA are executed periodically to adjust bandwidth guarantees according to current
demands. It is important to note that ElasticSwitch is orthogonal to the VM placement
strategy as long as the sum of the bandwidths guarantees traversing any link L is smaller then
L’s capacity [66].

2.2.4 Topology Generation and High Level Internet Structure

We have discussed how the mechanics of virtualized networks work (on a conceptual
level) in the previous Section, but did not discuss the network architecture or topology.
In order to mirror the Internet’s architecture and the way individual nodes (PMs) are
connected with each other, we need a model that describes its key characteristics. Many
models for the topology of the Internet have been proposed in the past [40]. The Positive-
Feedback Preference (PFP) model [93] is one of the more recent ones and was introduced
by Zhou et al. in 2005.

Three important empirical observations have been made in the past about the Internet’s
topology at the Autonomous System level. First, the probability P (k) that a node is
connected with k other nodes, decays as a power law function

P (k) ∼ k−γ , (2.3)

where γ is some constant. This was first realized by Barabasi and Albert [22], when they
analyzed the connectivities of various large networks. In their landmark publication,
they could show that this relation could be observed in various of fields of applications
as well, see Figure 2.5. If a networks’ connectivity follows Equation 2.3, the network is
called scale-free. Zhou et al. note, that this formula does not always hold true, because
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Figure 2.5: Three different network graphs and the degree of their nodes from [22]. A) Actor collaboration
graph (212,250 nodes), B) Part of the WWW (325,729 nodes) C) Power grid data (4,941 nodes).

there are some important graphs which consist of nodes with degree 1 than nodes with
degree 2, P (k = 1) > P (k = 2) [93].

Second, the Internet expresses disassortative mixing behavior. In a general, network theory
context, this means that nodes which are not similar, connect with each other. Regarding
the Internet’s topology, it indicates that high-degree nodes have a large number of
low-degree neighbors.

Finally, the third observation is called the rich-club phenomenon: Nodes with a high degree
(the "rich" nodes) are more likely to be well connected with other high-degree nodes,
forming a tightly connected clique [92].

2.2.5 The PFP Model

Figure 2.6: Explanation of graph generation using the Positive-Feedback Preference model [93]

The PFP model provides a simple algorithm for generating networks that comply with
the three observations mentioned in Section 2.2.4. The algorithm starts with a small
random network and in each iteration the network grows by executing one of the three
scenarios depicted in Figure 2.6.

1. A new node is attached to one host node. One new internal link appears between
the host node and another existing node.
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2. A new node is attached to one host node. Two new internal links appear between
the host node and two other existing nodes.

3. A new node is attached to two host nodes. One new internal link appears between
one of the host nodes and another existing node.

The probability for each of the scenarios is p ∈ [0, 1], q ∈ [0, 1−p] and 1−p−q, respectively.
The researchers suggest to set p = 0.3 and q = 0.1, as this produces the same ratio of
nodes to links as a well-known Autonomous System graph. One of the strengths of this
algorithm is that it implements all the three observations mentioned above really well,
especially the rich-club phenomenon. In fact, as the graph grows, the rich nodes not
only become richer, they become disproportionately richer. Also, the model accurately
reproduces the correct ratio between nodes with degree 1 and nodes with degree 2. An
example of a graph generated by the PFP model is shown in Figure 2.7.

Figure 2.7: Example of a network topology graph with 30 nodes that was generated based on the Positive-
Feedback Preference model [93].

2.2.6 Important Graph Measures

In order to compare two graphs, for example, a randomly generated graph and one that
was produced by the PFP model, we briefly introduce some important graph metrics,
that quantitatively capture some key topological characteristics, that are related to im-
portant network dynamics. We will later use these metrics in Section 5.4.5 for evaluation
purposes.

Let G = (V,E) be a graph, where V denotes the set of vertices v1, ..., vn and E denotes
the set of edges e1, ..., em in the graph. Let eccentricity of a vertex v be the length of the
longest shortest path from v to any other vertex v′ in V with v 6= v′. Intuitively, reaching
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all other vertices from a vertex with a high eccentricity takes longer, than from a vertex
with a low eccentricity. In a disconnected graph, all vertices have infinite eccentricity [83].

Mean Shortest Path Length is the average length of all shortest paths in the graph. Low
values indicate that on average the nodes in the graph are close to each other.

Graph Radius is the minimum eccentricity among all vertices in the graph.

Graph Diameter is the maximum eccentricity among all vertices in the graph.

(a) Closeness Centrality (b) Betweenness centrality (c) Degree centrality

Figure 2.8: Different centrality measures applied to same graph [18].

Let centrality capture the importance of a vertex u [11]. Three different centralitymeasures
will be used: Closeness centrality of a vertex u is the inverse sum of the shortest path
lengths d(., .) from u to all other vertices in the graph.

cclose(u) = 1∑
v d(v, u) (2.4)

Betweenness centralitymeasures how often each vertex appears on a shortest path between
two vertices in the graph. Let nst(u) be the number of shortest paths from vertex s to
t that pass through u and Nst be the total number of shortest paths from s to t. Then,
betweenness centrality of vertex u is defined as

cbetween(u) =
∑
s,t 6=u

nst(u)
Nst

(2.5)

Degree centrality of a vertex u is the number of edges connecting to u. Self-loops count as
two edges connecting to the vertex. For simple graphs, this measure is the number of
adjacent nodes to a node u.

cdegree(u) = deg(u) (2.6)

We will use Mean Closeness Centrality, Mean Betweenness Centrality and Mean De-
gree Centrality of all vertices in G as additional graph measures.
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2.3 Biogeography-Based Optimization

The Biogeography-based Optimization (BBO) algorithm was first published by Simon
in 2008 [73]. It is a type of evolutionary algorithm that uses generations of candidate
solutions to find the global optimum (either minimum or maximum) of a real-valued
objective function. The idea for this algorithm comes from the observation how species
in nature migrate between their natural habitats and how new species arise and how
existing species become extinct. In the following section we detail the algorithm, and
describe later how it was adapted for our specific problem.

2.3.1 Algorithm Terminology and Procedure

Figure 2.9: Biogeography-Based Optimization Terminology

Given a multidimensional, real-valued function f(x) : Rn 7→ R, we want to find x such
that, f(x) is at its global optimum (either minimum or maximum). f(x) is often called
objective or fitness function of x and is seen as a measure of quality of x. x is called the
(candidate) solution.

The algorithm uses an iterative approach to search through the space of all possible
candidate solutions. It consists of the following major steps:

• Generate an initial population of solutions for the given problem via some proce-
dure.

• While a termination condition is not met, do the following:

– Rank the population based on their fitness function.
– Save the best solutions temporarily.
– Alter the population through immigration and mutation.
– Again, rank the population based on their fitness function.
– Replace the worst solutions, by the saved, best solutions from before.

We briefly discuss the terminology used. In each iteration, it creates and updates a set of
candidate solutions, which is called a generation. The number of solutions per generation

21



2. Background

is chosen beforehand. The larger the number, the more thoroughly the search space is
explored, but also the more computationally expensive the procedure becomes.

Let Smax be the number of solutions per generation. The objective function is evaluated
Smax times, once for each solution, and based on the result the solutions are ranked from
best to worst. The top k solutions are temporarily saved. These solutions are called elites.

A solution x = [x1, x2, ..., xn] is also called a habitat or island. The best solution is the
habitat that is the most suitable, the worst solution is the least suitable. The constituents
of a solution x1, x2, ..., xn are also called independent variables or individuals.

The migration step is inspired by nature. In the migration step, individuals are allowed
to roam freely, meaning that they can migrate from their original habitat to another
one. Individuals currently living in very suitable habitats, prosper and proliferate and
therefore tend to leave it. When an individual decides tomigrate, it replaces an individual
in the other solution, which has to move out (emigrate). This other individual is then
extinct.

After the immigration/emigration procedure has been completed, random mutation
takes place. Again, this is inspired by nature and how animals procreate. That is, some
of the individuals are replaced by randomly generated individuals from the allowed
range of values. This step creates new solutions and allows the algorithm to explore
more of the search space. Next, the objective function is evaluated again for each solution
and the worst k solutions are replaced by the previous elites. Finally, this new set of
solutions constitutes the next generation of the algorithm, which then starts again. The
algorithm terminates after a fixed number of generations has been produced or the
objective function has been evaluated a predetermined number of times.

The details of initialization are specific to the problem at hand, and will be discussed
in Section 4.3.1; ranking, migration and mutation will be the focus of the Sections 2.3.2,
2.3.3 and 2.3.4, respectively.

2.3.2 Ranking of Solutions

The original version of BBO uses a scalar-valued objective function. Ranking based on
a scalar-valued function is straightforward. For our specific problem, however, we are
using vector-valued objective function f(x) : Rn 7→ Rq (explained in Section 4.2), which
forces us to adapt the original ranking process. The new ranking process is as follows.

Let f(x) = f1(x), f2(x), ..., fq(x) be a vector-valued function and assume, that we want to
find the minimum of all functions. Let S = [x1, ..., xSmax ] be the generation, that needs to
be ranked, let R = [] be a list that represents the final ranking, and let i = 1 be a counter
variable.

22



2.3. Biogeography-Based Optimization

1. Get the set of solutions σ among S for which fi is minimal among all solutions.

a) If |σ| = 1, go to Step 2.
b) If |σ| > 1, then iteratively cull the set by selecting those solutions of σ for

which fj is minimal among all solutions, where j = [2..q] if i = 1 and j =
[i + 1.., q, 1..i − 1] if i > 1. If after this procedure σ still contains more than
one solution, choose a solution arbitrarily from σ and remove all others.

2. Add the single solution s of σ to R, remove s from S and set i = ((i+ 1) mod q) + 1.

3. If there are still solutions left in S, go to Step 1. Otherwise, terminate.

The result of this process is, that the first q solutions in R are the best ones for each
of the objective functions of f(x), the next q are the second best solutions for each of
the objective functions, and so on. If two solutions xi and xj are tied with respect to
a certain objective function, fp(xi) = fp(xj), then the next function is used as a tie
breaker (wrapping around to the first function, if fp was the last function). So, good
performing solutions are at the head of list R, worse solution are at its tail. Table 2.1
depicts the ranked solutions. Based on this ranking immigration and emigration rates of
the solutions’ individuals are determined (see Section 2.3.3).

Table 2.1: Fitness-based immigration and emigration rates. Solutions are assigned values λk and µk based
on their relative fitness to other solutions in their generation.

Rank Solution λ µ

1 xr1 λ1 µ1
2 xr2 λ2 µ2
3 xr3 λ3 µ3
... ... ... ...
k xrk λk µk
... ... ... ...
Smax xrSmax λSmax µSmax
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2.3.3 Migration

Figure 2.10: Linear (left) and sinusoidal (right) immigration and emigration functions [46].

In Section 2.3.1, we discussed migration of individuals between islands. Migration
occurs randomly according to the immigration rate λ and the emigration rate µ, that
are specified before the algorithm is started. Figure 2.10, shows two examples of these
rates, linear (left) and sinusoidal (right), where λk = 1 − µk. These immigration and
emigration curves can be more complicated than these examples (see [57] for a detailed
performance analysis of six different migration models). Nevertheless, they provide a
sufficiently good approximation for our purposes. As we mentioned in the previous
section, notice, that the rates are a function of the fitness of the solutions.

The better a solution, the higher the emigration rate of its individuals. This might sound
counter-intuitive at first. However, we want the parts of the good solutions to spread
widely among the generation, in order to produce even better solutions in the next
generation. The immigration rate for a good solution is small, because we do not want to
destroy already good solutions.

The worse a solution gets, the lower is its emigration rate. A similar argument can be
made here: We want the parts of the bad solutions extinguished and replaced by other
parts that are known to yield better solutions. The emigration rate for a bad solution is
small, because we do not want to preserve bad individuals for future generations.

We now have an intuition for how migration takes place. Let us now discuss the im-
migration/emigration step more formally. Let xk be the k-th solution of a generation
and λk and µk its corresponding immigration and emigration rates, respectively. For
each independent variable v in xk do the following: Create a random number ρ ∈ [0..1].
If ρ < λk, then v has been chosen to be replaced. Choose the replacing variable ve, the
emigrant, among all other solutions of this generation according to

P (ve = vm) = µm∑Smax
i=1 µi

form ∈ [1..Smax]. (2.7)
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This means, that individuals for replacement are chosen according to the relative pro-
portions of their solutions’ emigration rate. Equation 2.7 is also known as roulette-wheel
selection.

The equations for µk in the graphs depicted in Figure 2.10 are

µk = Smax + 1− rk
Smax + 1 (2.8)

for the linear model and

µk = 1
2(1 + cos(π · rk/(Smax + 1)) (2.9)

for the sinusoidal model where rk is the rank of a solution, where rk = 1 is the rank of
the best solution and rk = Smax is the rank of the worst solution [46]. The formulas were
slightly adapted, to account for the fact that we have multiple objective functions, that
we do not want to favour over one another: An alternative rank rk is used instead of rk
and calculated as

rk+1 =
{
rk if k is not divisable by q
rk otherwise (2.10)

, where q is the number of objective functions and r1 = r1. For example, if q = 4,
the first few rk are 1, 1, 1, 1, 5, 5, 5, 5, 9, 9, 9, 9, ... . Calculating rk therefore ensures that
immigration/emigration rates are the same for equally good solutions that are ranked
below each other by the procedure described in Section 2.3.2.

2.3.4 Mutation

Mutation is performed to create new solutions, based on existing ones to avoid getting
stuck in local optima of the objective function, and to explore the search space of all
solutions more thoroughly. In the original version of the algorithm, the mutation step
is performed after the migration step, regardless of the quality of the solution (both
good and bad solutions have a chance of mutating) and regardless of the number of
generations that have been produced by the algorithm (the probability for mutation
in one iteration is the same as in the next iteration). We left the original mutation step
unchanged, but introduced an additional mutation step, after the first one. This new
step is dependent on both the quality of the solution and the number of iterations that
have passed.

The original mutation procedure works by (1) selecting variables and (2) replacing that
variables: (1) Let xk be the k-th solution of a generation. For each independent variable
v in xk do the following: Create a random number ρ ∈ [0..1]. If ρ < pmutation, then v
has been chosen to be replaced. pmutation is a parameter that is chosen at the start of
the algorithm. (2) How the actual replacing variable is formed, is problem specific.
In the original, continuous version of the algorithm, the investigator has to know a-
priori the approximate interval the global optimum is located. Replacing a variable was
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implemented by choosing a variable at random from that interval. In Section 4.3.2, we
discuss a replacing strategy for our specific, discrete problem.

Our newly introducedmutation step relies on two parameters: q ∈ (0, 0.5) and γ ∈ [1, 20].
The first one, determines howmany members of the current generation should be chosen
for mutation. For example, if q = 0.25, then the worst 25% of solutions are selected. After
the solutions have been chosen, T is calculated that determines how many individuals
should be mutated in every solution. Equation 2.11 shows the formula for deriving T .

T (i) =
{
e−iγ if e−iγ ≤ 0.5
0.5 otherwise, (2.11)

where i is the count of how many iterations the algorithm has undergone. Then,
max(1, bnT c) individuals are mutated, where n is the length of a solution. In other
words, roughly T% of the variables are mutated.

Figure 2.11, shows how the exponential function behaves in the interval [0..1]. The higher
the parameter γ, the more negative the exponent becomes and the more rapidly the
function approaches zero. This entails, that in the first algorithm runs, a lot of mutations
will take place and because the worst solutions are changed drastically. As more and
more iterations have passed, only a few variables will be mutated. This is desirable,
because at first the algorithm has not converged andmuch optimization is possible. Later,
the algorithm has (hopefully) converged towards an optimum and we want to avoid
changing too many variables of the already near-optimal solutions. The idea for this
iteration-dependent parameter, stems from Simulated Annealing [47].

Figure 2.11: Different exponential functions f(x) = e−γ , with γ = 1, 5, 10.

2.3.5 Further Algorithm Details

Duplicate reduction Since generations are created based on a random process, two
identical solutions can be created by chance. In order to reduce the number of duplicates,
two additional algorithm steps are employed, that are executed after every mutation run:
First, the entire population is scanned for duplicates. Then, if two identical solutions are
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found, a random individual of one of them is chosen and mutated again. This process
does not guarantee that all duplicates are eliminated. It may happen, that the newly
created mutation is identical to some other solution. However, this process drastically
reduces the number of duplicates and requires only a single pass over the list of solutions
of a generation.

Repair of infeasible solutions Creating solutions using migration and mutation may
also yield infeasible solutions. In fact, these solutions may also have a better objective
function and are therefore more likely to survive and be carried forward into future
generations or their objective function may be ill-defined and therefore an ordering
would not be possible. To avoid infeasible solutions, a modification to the algorithm is
made. Before the objective function of a solution is evaluated, the solution is checked
for feasibility and if it is not feasible, it is repaired. Repairing is problem-specific and
discussed later in Section 4.3.3.

2.3.6 Discussion

Biogeography-based optimization is a metaheuristic that has some advantages over other
optimization algorithms, that make it a good choice for solving an assignment problem.
BBO is a kind of genetic algorithm (GA) and as such inherits some properties of it. Any
genetic algorithm, does require its objective function f(x) to have any particular shape
or to be continuous. In fact, it does not even require f(x) to be differentiable. Other
optimization algorithms (such as Gradient Descent [63]) use a gradient to find local
optima and are therefore restricted to differentiable functions only [63]. Next, GAs use
initial solutions and improve them over many iterations. This has two implications:
First, they can be started with a solution, that is already known to be a good solution,
to further improve it. This property is also called forward-compatibility. And second, at
any point in time, these algorithms can be stopped, and the currently best solution can
be extracted. This is useful, if, for example, an application needs results earlier than
expected. Further, GAs can be parallelized and/or executed in a distributed fashion. For
BBO in particular, the migration and mutation phases can be computed simultaneously
to gain a performance boost. Some optimization algorithms use and improve a global
solution (such as Simulated Annealing [47]) and are not easily parallelized.

BBO has been used in many real-world applications. In its original publication, it was
applied to the problem of sensor selection for aircraft engine health estimation [73].
Since then, it has been used in machine learning for classification purposes [45][89], to
solve optimization problems such as the traveling salesman problem [76] and to find the
optimal shape design of an electrostatic micromotor [29]. Zheng et. al used BBO to find
an optimal placement of VMs within datacenters [91]. We will use it to simultaneously
find an assignment for both users and VMs in a fog computing environment.
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CHAPTER 3
Related Work

In this chapter, we discuss existing solutions to the Virtual Machine Placement (VMP)
problem. In the last years, a huge number of solutions were proposed, each of which
has its own set of assumptions and subtleties. Looking at the cloud computing realm, in
a recent publication, Pires et al. surveyed the existing literature [55] and classified the
most recent papers that were concerned with VM placement within a single data center
or among two or more data centers. They reference another publication by Beloglazov et
al. [24], which identified the following open challenges:

(1) development of fast energy-efficient algorithms for the VMP, considering multi-
ple resources for large-scale systems with the ability to predict workload peaks
to prevent performance degradation,

(2) energy-aware optimization of virtual network topologies between VMs for
optimal placement in order to reduce network traffic and thus energy consumed
by the network infrastructure,

(3) development of new thermal management algorithms to appropriately control
temperature and energy consumption,

(4) development of workload-aware resource allocation algorithms, considering that
current approaches assume a uniform workload, and

(5) decentralization and distributed approaches to provide scalability and fault-
tolerance to the VMP problem resolution.

We argue that many of the issues mentioned in the cloud computing literature are also
faced in a fog computing environment and therefore these two problems are closely
related. Therefore, we review both fog computing and cloud computing works. This
chapter is structured as follows. First, we introduce some terminology that will allow
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us to talk about and classify the different VM placement strategies and give a general
overview over the literature. Then, we shortly present two types of commonly assumed
architectures for fog computing. Eventually, we discuss some important state-of-the
art publications in the field of cloud and fog computing, in particular publications
using metaheuristic. In the entire discussion, we will specifically focus on the objective
function(s) the researchers chose in their work as well as the solution techniques that
were applied.

3.1 Terminology

Before moving on to recent load balancing approaches, we would like to introduce the
terminology brought forth by Pires et al. [65]. This will give us the vocabulary necessary
to discuss the load balancing approaches more appropriately and concisely.

Algorithms for the VMP problem may be classified by their use of (A) optimization
approach, (B) objective functions and (C) solution techniques. One of the following
optimization approaches is possible. (1) A mono-objective approach (MOP) that considers
only one objective function or considers the individual optimization several functions,
but one at the time; (2) Amulti-objective solved as mono-objective approach (MAM) that uses
multiple objective functions, combines them into a single function and ultimately solves
the problem using only with single function. A popular method for combining objective
functions is using a linear combination of them (Weighted SumMethod). Finally, (3) a
pure multi-objective approach (PMO), that uses multiple objective functions and treats
all of them separately. In Section 4.2.1, we explain the concept of Pareto dominance
and how this can be achieved. According to [65] a majority of research articles used a
mono-objective (61.9%) or multi-objective solved as mono-objective (34.5%) approach to
solve the VMP problem and only small percentage actually used a pure multi-objective
one (3.6%).

Depending on the optimization approach, the researches can then decide which objective
function(s) to use and whether they want to minimize or maximize each of them. Objec-
tive functions include functions for energy consumption minimization, network traffic
minimization, economical cost optimization (such as economical revenue maximiza-
tion and SLA violations minimization), performance maximization (such as availability
maximization and total job completion time minimization) and resource utilization max-
imization (such as maximum average utilization minimization and resource wastage
minimization).

Finally, the solution technique for the VMP problem is the third classification criterion.
The categories are deterministic algorithms (such as integer linear programming), heuris-
tics (first fit, best fit, greedy algorithms), meta-heuristics (ant colony optimization, genetic
algorithm, simulated annealing) and approximation algorithms.
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3.2 Modeling Approaches and Architectures

In Chapter 1 we explained the architecture that this work relies upon. Other researchers
have used other types of architecture that we will briefly discuss here.

A commonmodeling approach in cloud computing is to use a centralized, globalmanager,
that constantly monitors all the PMs and keeps track of their utilization. This allows the
implemented approaches to work with a global system view. All the PMs are viewed as
on coherent, yet heterogeneous, cluster of machines. Beloglazov et al. [25], for example,
used this modeling approach. Their system model is shown in Figure 3.1.

Figure 3.1: System Architecture of Cloud Computing Data Center from [25]

Other researchers take into account that physical machines and data centers may be
geographically distributed. This enables to investigate how the availability of the hosted
applications is influenced when one or more data centers become unavailable [79]. This
can also lead to the development of new controllers that exploit different electricity prices
of different locations in order to save costs for data center operators [56].

Gupta et al. [39] use an architecture for fog computing where they explicitly model
network link capacities and delays. Their architecture has a tree structure where a cloud
data center constitutes the root of the tree, switches form intermediate nodes and sensors
and actuators form the leaf nodes. Their application scheduling algorithm can take
network traffic into account and avoid congestions, because of that detailed network
modeling.

3.3 VM Assignment using Heuristics

Much of the research relies upon the fact that VM assignment can be modeled as Vector
Packing Problem (VPP) [77], which is a generalization of the classical bin packing problem
and NP-hard. With classical bin packing, there are a number of items that have a certain
size ∈ (0, 1), and bins that have a capacity of 1. The goal is to find an assignment of items
to bins, such that every item is assigned to exactly one bin and as few bins as possible are
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used. In the VMP, each item has d sizes, instead of just one, and each bin has d different
capacities. This problem was first formalized in [34].

A common heuristic to find a good approximate solution for bin packing is called Best
Fit Decreasing (BFD). Let OPT be the number of bins that the optimal solution of a bin
packing instance needs. Then BFD will use at most 11

9 ·OPT + 1 bins [88]. BFD works by
first sorting all items that need to be packed in non-increasing order. Each item is then
assigned to the bin where it fits the best, that is, the bin for which after the assignment
the least amount of space is unused.

Beloglazov et al.[24] analyzed the VM assignment problem in terms of energy usage,
which they try to minimize (MOP). They view energy usage as being only dependent
on the CPU utilization u of their PMs. The researchers divided the problem into two
subproblems: First, finding an assignment of new VMs and second, optimizing the
assignment of existing VMs. The first subproblem, new assignment, can be viewed as
bin packing problem with variable bin sizes and prices. To solve it, they devised an
algorithm that is a modified version of BFD (MBFD). The second subproblem, optimizing
the existing assignment, is tackled in two steps. Selecting those VMs, that need to be
migrated and then assigning them to new hosts using MBFD. VM selection is triggered
based on two predefined thresholds for u for each PM. An upper threshold which should
not be over exceeded, otherwise one or more VMs will be migrated away. And a lower
threshold, that, when deceeded, causes all VMs to be migrated away from the PM. When
VM selection is triggered, the researchers defined three selection policies that rely upon
(1) minimizing the number of VM migrations needed, (2) selecting the VMs with the
highest growth potential and (3) a random choice policy. Beloglazov et al. simulated
VM assignment strategy using the CloudSim framework, and showed the potential for
data center energy savings.

In a publication that same year, Beloglazov et al. [25] again are trying to minimize total
power consumption of all PMs (MOP). This time, they use adaptive thresholds, instead of
static ones, because, they argue, static thresholds are unsuitable for an environment with
dynamic and unpredictable workloads. The adaptive thresholds are calculated based
on statictical analysis of historical VM usage data and use Median Absolute Deviation,
Interquartile Range, Local Regression and Robust Local Regression applied on past CPU
utilization values. Again, the CloudSim framework is used for evaluation purposes.

3.4 VM Assignment using Metaheuristics

Now, we would like to narrow our focus to VMP techniques that use metaheuristics.
Note that metaheuristics are applicable to a wide array of problems and some of them do
not yield a solution right away, but provide more of a framework for deriving a solution.
This framework may sometimes admit infeasible solutions and we will carefully review,
how the investigators deal with this issue of infeasible solutions.

Wu et al. [84] implemented a Genetic Algorithm to assign VMs to PMs. They defined an
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encoding scheme for the problem which is identical to ours if we removed the user part
from it (see Section 4.1.3). Further, they defined a uniform crossover procedure and a
mutation function that, if triggered, changes the assignment of a randomly chosen VM to
a random PM. As objective function, they used the sum of energy consumption of both
their set of physical machines and network infrastructure (MAM). GA can also produce
infeasible solutions. If an infeasible solution is derived by Wu et al., the researchers
choose not to disregard it. Instead, they assign the solution a very bad objective function
such that it is heavily penalized and made sure that the values of the objective functions
of any infeasible solution is less than the objective functions of any feasible solution.

Wu et al. [85] used simulated annealing (SA) and Ali et al. [21] used Biogeography-based
optimization to assign VMs to PMs. They both consider only energy consumption of
the PMs as their single objective function (MOP) and, again, operate inside a cloud data
center and do not consider user assignment. In their evaluations, both papers generate
VM sizes (CPU and memory requirements) by choosing a value uniformly at random
from a pre-defined interval such that PMs are approximately capable of hosting between
1 and 10 VMs at a time. They consider network bandwidth also as one of the VM sizes,
but otherwise ignore network related issues such as migration time of VMs, associated
network overhead of migration or routing issues. BBO can create infeasible solution
during its operations, but [21] does not mention how they are being treated. [85], on the
other hand, mentions that they simply disregard infeasible solutions.

Zheng et al. [91] used BBO for the VMP problem and used multiple objective functions
that they treated independently of each other (PMO). They tried to simultaneously
minimize: PM resource waste (or, in other words, maximize resource utilization), PM
power consumption, PM load unevenness (every PM should approximately have the same
utilization), storage traffic and migration cost. VMs are assumed to be communicating
with each other and therefore they also minimize inter-VM network traffic.

To minimize these functions, they introduce the concept of subsystems to BBO. Within
each subsystem, a single objective function is optimized with respect to its own objective
and constraints. This means that the solutions of a subsystem are ranked internally and
immigration/emigration of individuals only occurs within the subsystem. After that,
in a second step, information between those subsystems is shared with each other so
that the entire system is optimized. In other words, cross-subsystem migration takes
place, where solutions have a certain probability to move from one subsystem to another,
based on a similarity metric.

Infeasible solutions are kept in this algorithm: During the within-subsystem migration
phase, for each solution, the number of constraint violations is recorded and influence
the immigration probability of this solution. Individuals of solutions with fewer or no
constraint violations having a higher probability of immigration than individuals of
solutions with a high number of violations. If two solutions have the same number of
constraint violations, they are further sorted by the quality of their objective functions.

Mennes et al. [60] devised a GA for application placement in hybrid clouds. Hybrid
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clouds, according to their definition, are smaller clouds with heterogeneous capabilities
that contain unreliable PMs and links that are failure prone. Applications are made up of
one or more services and require certain levels of availability guarantees. These services
should be deployed in these hybrid clouds according to PM and link failure probabilities.
A service may be also be deployed multiple times.

The objective function they maximize is the total number of placed applications (MOP).
Their solution encoding or chromosome is vastly different from the solution coding we
are using and based on Biased Random-Key [23]. Biased Random-Keys have found wide
spread usages in metaheuristics [35]. Instead of encoding the solution using integers
or a binary encoding, they use a vector of variables from the interval [0, 1]. This vector,
however, does not readily represent the assignment of applications and services to PM.
For that purpose, a decoding function is employed to transform this vector back into the
solution space using the vector components as sort keys for the decoding function. This
effectively diminishes the problem of infeasible solutions, because the decoding function
only produces feasible ones.

Gao et. al [33] use Ant-Colony Optimization (ACO), another biology-inspired optimization
algorithm, for the VM placement problem. They simultaneously minimize total resource
wastage and power consumption in a pure-multiobjective approach (PMO) and their
procedure yields a non-dominated set of solutions. Ferdaus [32] et al. also use ACO,
and minimize the number of PMs that have at least one VM assigned as their single
objective function (MOP). Both publications model the problem as multidimensional
vector packing problem, using CPU and memory utilization [33], and CPU, memory and
network utilization [32] as VM dimensions.

Xu et. al [86] propose a two step approach for VMP. The first is a mapping for workloads
to VMs, the second a mapping of VMs to PMs. Here, we will focus on the second step.
They minimize resource wastage, power consumption and thermal dissipation using a
genetic algorithm. To combine these possibly conflicting goals into one objective function,
the researchers use fuzzy logic (MAM): Three fuzzy sets called small resource wastage w,
low power consumption p and low temperature t are defined. Then, membership functions of
these fuzzy sets are specified as decreasing functions of variable values, since the smaller
the variables the better the solution. The result of the weighted-averaging fuzzy operator

µ(x) = β ·min(µw(x), µp(x), µt(x)) + (1− β) · avg(µw(x), µp(x), µt(x))

is the final objective function, with better solutions having a higher µ(x). β was set to 0.5
and µw(x), µp(x), µt(x) represent the membership functions of solution x of the three
fuzzy sets.

Abbasi-Tadi et al. [19] used BBO, however in a different context. The researchers studied
task assignment to already assigned VMs, with task makespan as their objective function
(MOP). VMs in their scenario are viewed as having power capacities and workload
processing capacities, each of which are stored in a global virtual machine monitor and
periodically updated via messages. When one or more tasks are assigned, BBO needs to
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sort the VMs based on their fitness. Fitness is based on linear combination of required
bandwidth, required CPU and required memory of the task(s) scaled by the available
bandwidth, available CPU and available memory of each VM, respectively.

3.5 Further VM Assignment Strategies

Ren et al. [68] tackle the VMP problem from an evolutionary game theoretic perspective.
According to their problem definition, an application is made up of three VMs (a database
server, an application server and a web server). A strategy states the locations of and
resource allocations for these three VMs. Finding a good strategy is done as follows:
The algorithm keeps a population of different strategies for each application. In each
population, two strategies are randomly selected and then compete against each other.
Competition is based on both feasibility of the strategies and values of their objective
functions. The looser is removed from the population and the winner is replicated and
mutated with a certain mutation rate. This process is repeated until the population
reaches a steady state. Then, the best strategy from each population is chosen, and
VMs are allocated based on this strategy. They propose five objective functions (CPU
allocation, Bandwidth allocation, Response Time, Power consumption and Workload
Distribution) which are considered separately.

Spinnewyn et al. [78] study fault-tolerant application placement. Their applications are
made up of services to be placed on a network of error-prone nodes and links. Services
can be placedmultiple times to increase the availability of an application. Their placement
is done in multiple steps, where each uses one of the following objective functions: They
try to maximize acceptance, minimize bandwidth usage, minimize CPU resources usage
and minimize the number of duplicates used. The authors formulate the problem as a
binary Integer Linear Program (ILP) and use the Gurobi Optimizer to solve it [6].

Speitkamp et al. [77] study service assignment in virtualized data centers such that
the overall server costs are minimized. They use CPU capacity as their only capacity
dimension but consider various other possible constraints to the problem, for example,
that a server may only host services up to a maximum number, some service may be
hosted only on one specific server and some subsets of services have to be hosted on
the same/different servers. The authors use a number of different methods (branch and
bound, first fit, first fit decreasing and a linear programming-relaxation-based heuristic)
to find approximate solutions for various relaxations of the assignment problem and
also study the resulting solution qualities with respect to practical considerations (such
as instance size and incorporation of additional side constraints in relation to solution
computation time).

3.6 Edge Data Center Load Prediction and Balance

Le Tan et al. [52] used the same architecture in their publication. A number of edge
data centers dispersed over a geographical area. They used set of mobility traces that
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were recorded at a fine granularity over 25 days of taxis traveling in San Francisco. Taxis
would connect to the closest EDC from their location and for each connection the EDCs
computing capacity would be reduced by one. Their goal was to accurately predict the
loads that would occur in these EDCs. To that end, they used aVector Autoregressive Model.
This model is able to predict a signal (here: EDC load) using a linear combination of the
signals’ own lagged values and the lagged values of the other model variables (here: the
EDCs neighbors) and an error term. The researchers showed that this model outperforms
the state-of-the-art location-unaware prediction method by 4.3% and achieved an average
accuracy of up to 93%.

3.7 Assignment in Fog Environments

In a recent publication,Mohan et al. [62] assign taskswithin a Fog environment. It consists
of Edge devices, such as desktops, laptops, nano data centers, tables and smartphones
and Fog devices, such as routers and switches, with more processing power than Edge
devices. Devices can execute tasks, have a certain processing power and are connected
via network links. Tasks have a certain processing requirement and may depend on each
other. They need to be assigned to devices such that if two jobs depend on each other,
the two devices they are assigned to need to be connected via a network link. The two
objective functions they used were network costs and processing costs (MOP) and used
custom heuristics (Network Only Cost Assignment, Least Processing Cost First Assignment)
to find an solution.

Velasquez et al. [81] also consider a Fog environment and describe an abstract architecture
for it, which has to be capable of assigning both tasks (called services in their publication)
and users to a set of PMs. They suggest tominimize the cost functions (1) hop count between
users and the services they request and (2) hop count between communicating PMs. Their
envisioned algorithm can be run multiple times and the assignment created in a previous
iteration can be compared to an assignment in the following one. The researchers then
suggest to also take into account (3) the amount of service migrations, that have to be done,
when deriving a new assignment, which should also be minimal. They hint at ILP as
one of the methods to find a solution to (1)-(3).

Jia et al. [42] study cloudlet placement and mobile user-to-cloudlet allocation in wireless
metropolitan area networks. Users submit computation tasks to a cloudlet they are
assigned to and should receive a response from the cloudlet in a timely manner. Each
cloudlet is modeled as a queue with a certain maximum task servicing capability. If too
many users submit a task, it will become overcrowded. In that case, the cloudlet can
forward tasks to the (remote) cloud. The objective is to find an assignment of cloudlets
among access points (APs) and users to cloudlets such that the average wait time for
offloaded user requests is minimal. Two heuristic algorithms are proposed: Heaviest-
AP First and Density-Based Clustering. The first algorithm assigns users to the closest
cloudlet and then tries to place cloudlets to those APs where the highest number of
workloads arrive. The second algorithm is a refined version of the first, that initially
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assigns the cloudlets based on the maximum number of requests that would arrive if
all users in its vicinity connected to it. In a second step, it spreads the users among the
APs according to a second metric, which causes the user assignment to be spread more
evenly.
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Using BBO

For illustrative purposes, consider an instance of a simplified version of the assignment
problem shown in Figure 4.1. Users that are in the vicinity of a base station, as shown
by the grey circle, can connect to its PM. Some PMs are connected with each other, and
the cost of using a connection may vary. Users need certain VMs, because they inhabit
some of the user’s applications (apps). The needs for this particular instance are shown
in Table 4.1.

Figure 4.1: A simplified problem instance of the User-VM-assignment problem. The found solution is
printed in orange.
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Table 4.1: Example for user needs for certain apps.

User APP1 APP2 APP3

USER1 0 0 3
USER2 1 2 0
USER3 4 0 1

Let the cost of a solution be determined only by how close a user is assigned to the VMs
he needs, scaled by how much he needs them. That is, if a user is assigned to the same
PM as an app it needs, the cost is zero. Otherwise, the cost is the distance to the app times
the amount the app is needed. The cost for the drawn assignment shown in Figure 4.1
is 4, because USER1 and USER3 have all their apps on their server (BS2) and USER2
(assigned to BS4), needs to use the connection between BS4 and BS2 to reach one of its
apps and the cost for that connection is 4.

In the following, we will explain a more realistic setting that we chose that includes more
constraints (Section 4.1) and more cost functions (Section 4.2).

4.1 Modeling the Fog Environment

This sectionwill explain how the Fog Environment wasmodeled and the rationale behind
the assumptions that were used. The problem we are trying to solve is an assignment
problem that is subject to feasibility constraints. We want to find an assignment of both
users and virtual machines (VMs) to physical machines (PMs) such that the assignment is
feasible. Further, the assignment should be minimal with regards to certain costs, which
we will detail in Section 4.2 below. Throughout this chapter we will use the following
conventions: There are 1...i...N VMs and 1...u...U users, that have to be assigned to
1...j...M PMs. VMs and PMs have 1..d..D dimensions.

4.1.1 Physical Machines

PMs have certain capacities for each of their dimensions (such as CPU, memory, network
bandwidth). We will only consider scenarios where the number of dimensions is at least
two. For the sake of simplicity, we will assume that all capacities have been normalized
to one. All PMs were identically constructed and therefore have the same capacities.

PMs need electricity. Power demand is associated with the current workload of a PM, so
we will use CPU utilization to calculate how much electricity it consumes. Let DCPU

j

be the dimension of a PM that represents CPU utilization. We will calculate power
consumption of PM j using

Power(j) = P idle
j + (P busy

j − P idle
j ) ·DCPU

j (4.1)
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4.1. Modeling the Fog Environment

where P idle
j and P busy

j represent a PMs power consumption at 0% and 100% load, respec-
tively. A PM that has no VMs assigned, does not consume any power.

PMs are connected with each other via network links that have a certain delay. This can
be modeled with a simple, weighted graph, in which the vertices and edges represent
PMs and their connections, respectively. The delay of two connected machines are the
weights of the edges. Not every pair of PMs is necessarily connected with each other, but
every PM is reachable from any other PM, via one or more hops. The distance between
two PMs is given by the shortest path in the weighted graph.

PMs are known to become unreachable from time to time. This is modeled by assign-
ing each PM a value fail(j) ∈ (0..1) that represents its failure probability. The failure
probability of a PM j can also be described as 1−Availability(j).

4.1.2 Virtual Machines and Users

VMs have certain resource demands for each of their dimension (such as CPU utilization
or memory consumption). load(i, d) ∈ [0..1] resource demand of VM i for the dimension
d. No VM has a resource demand that exceeds the capacity limits of any of the PMs.
VMs are assumed to be location independent and can therefore be assigned to any PM.

Users, however, can only be assigned to a subset of PMs. This subset may be different
for every user, but every user can connect to at least one PM. Users make a certain
amount of requests in a time interval to specific VMs and therefore need these VMs. Let
needs(u, i) ∈ [0..∞) be the matrix that encodes the needs of user u for VM i. Further, let
needs_bool(u, i) be the matrix that results defined as

needs_bool(u, i) =
{

1 if needs(u, i) ≥ 1
0 otherwise (4.2)

4.1.3 Solution Encoding and Feasibility

An assignment x of users and VMs to PMs can be encoded as

x = (β1, β2, ..., βU , α1, α2, ..., αN ). (4.3)

αi is a function that returns the PM ID to which VM i is currently assigned, βu returns
the PM ID to which user u is currently assigned.

We define the indicator function a(i, j) and b(i, j) for a specific assignment x as follows:

a(i, j) =
{

1 if VM i is assigned to PM j
0 otherwise (4.4)
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b(u, j) =
{

1 if user u is assigned to PM j
0 otherwise (4.5)

A solution of the assignment problem is feasible, if the following two sets of criteria are
fulfilled:

• No PM is used more than it is physically possible. In other words, the sum of
resource demands of all the VMs that are assigned to a single PM, does not exceed
this PMs’ capacities in any dimension.

N∑
i=1

D∑
d=1

load(i, d) · a(i, j) ≤ 1 ∀j = 1..M (4.6)

• All the users are assigned to a PM from their set of possible PMs. Let poss(u) denote
that set for user u. It has to hold, that

b(u, j) = 1 =⇒ j ∈ poss(u) ∀u = 1..U. (4.7)

4.2 Cost functions

We want to find an assignment of both users and virtual machines to physical machines,
such that the assignment is not only feasible, but also takes the following properties into
account:

• User distance The distance in terms of latency between a user and the VMs it needs
is minimal. In general, the more a user needs a VM, the closer it should be assigned
to it. Ideally, all the VMs a user needs are assigned to the same PM as the user
himself.

• Power consumption Physical machines exhibit a power consumption that is related
to their current workload. The fewer machines are used in an assignment, the more
power is saved.

• Resource waste VMs may have a high demand of one resource (dimension), but a
low demand in others. In an ideal assignment, all dimensions of a PM are used
equally.

• Failure probability Reliable PMs, that is, PM with a high availability guarantee,
should be preferred over unreliable ones with a low availability guarantee.

• Reachability Network links are also a potential source of failure. To ensure that a
user is able to reach the VMs he needs, certain VM locations should be preferred
over others, namely PMs that are reachable via multiple paths. These paths should
be edge-disjoint, meaning that they do not have any network links in common.
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4.2. Cost functions

• User evenness Each PM should serve approximately the same number of users to
ensure an appropriate service quality.

These properties have been formulated as cost-functions f1(x), f2(x), ..., f6(x) below,
which should all be minimized, ideally simultaneously. Before we describe them, we
introduce some additional notation.

Auxiliary functions

For a specific assignment c, we define the following auxiliary functions:

• dist(u, i) ∈ [0..∞) be the distance between the current assignment of user u and
the current assignment of VM i. The distance is 0, if user and VM are assigned to
the same PM. If they are assigned to different PMs, we use the shortest path in the
graph. Since there are only edges with positive weights and therefore no negative
cost cycles, the shortest paths can be calculated using Dijkstra’s Algorithm [28].

• edpaths(u, i) ∈ [1..∞) is the number of edge-disjoint paths between the current
assignment of user u and the current assignment of VM i. The number of edge-
disjoint paths between a pair of vertices in an undirected, weighted graph can be
determined by setting all edge weights to unit weight and then determining the
maximum flow between those vertices.

• p(j) ∈ [0..1] is the fraction of users that are currently assigned to PM j. If every
user is assigned to a different PM, then p(j) = p(j′) ∀j, j′ ∈M [74].

Cost functions

User distance

f1(x) =
N∑
i=1

U∑
u=1

dist(u, i) · needs(u, i) (4.8)

Power consumption

f2(x) =
N∑
i=1

M∑
j=1

Power(load(i, 1)) · a(i, j) (4.9)

Resource waste

f3(x) =
N∑
i=1

D∑
d=1

1−
M∑
j=1

load(i, d) · a(i, j) (4.10)

Failure probability

f4(x) =
M∑
j=1

[fail(j) ·
N∑
i=1

x(i, j)] (4.11)
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Reachability

f5(x) =
N∑
i=1

U∑
u=1

dist(u, i) · needs_bool(u, i)
edpaths(u, i) (4.12)

User evenness

f6(x) =
M∑
j=1

p(j)2 (4.13)

Minimizing user distance (f1) assures that the delay user experience will be minimal.
The more frequently a user makes a request to a particular VM, the closer it should be
assigned. Therefore, the distance is scaled by the needs. Minimizing resource waste (f3)
assures that there are no spaces when VMs are assigned to PMs (multidimensional bin
packing). This ensures that capacities of PMs are not wasted and PMs are used efficiently.
The cost function for failure probability (f4) ensures that reliable PMs are favored over
unreliable ones. Reachability (f5) is minimal if the user and the VMs they need are placed
on the same PM. Otherwise, it is proportional to the number of paths that exist from
the users to their VMs. Finally, user evenness (f6) is minimal, if all users are assigned to
different PMs and ensures that a single PM does not get overcrowded. Equation 4.13 is
also called Simpson Index.

4.2.1 Pareto dominance

In Section 4.2 we stated, that we seek solutions that minimize several cost functions
simultaneously. However, there are situations, where it is not clear which solution is
preferred over which. Imagine the following scenario: Let x be a feasible solution and let

y = f(x) = [f1(x), f2(x), ..., fq(x)] (4.14)

be its corresponding vector of cost functions. Let x′ be another feasible solution and y′
be its costs. Which solution is preferred if y(i) > y′(i) but y(j) < y′(j) for i 6= j and
1 ≤ i, j ≤ q?

For this reason, we use the concept of Pareto dominance. We say x dominates x′, denoted
as x � x′, if f(x) is less than or equal to f(x′) in every objective function and strictly
less in at least one objective function. We say x and x′ are non-comparable, denoted as
x ∼ x′, if neither x dominates x′ nor x′ dominates x [65]. So in the above scenario, both
solutions are non-comparable. Algorithm 4.1 shows the pseudo-code for comparing two
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solutions.

Algorithm 4.1: Pareto Dominance

Data: y,y′, two objective function arrays, that correspond to the two solutions x,x′

Result: Returns either true if x � x′ or false otherwise.

1 flag ← false;

2 for i ∈ {1..q} do
3 if y[i] > y′[i] then return false ;

4 if y[i] < y′[i] then flag ← true ;

5 end

6 return flag

4.3 Problem-Specific Algorithm Adaptations

This section details how certain algorithm steps were adapted, because, first, we are
dealing with a discrete, rather then a continuous problem and, second we have problem-
specific constraints.

4.3.1 Initial Solutions

In Section 2.3.1, we discussed the BBO algorithm, and how it derives a generation of
solutions from the previous ones. The initial generation, however, must be provided to
the algorithm. We decided to generate these initial solutions greedily. More precisely,
we use a greedy heuristic that tries to minimize the distance between users and their
VMs, which minimizes objective function f1 (Equation 4.8), while trying to be not too
wasteful with PM resources (functions f2 and f3, Equations 4.9 and 4.10).

The reason for using greedy initial solutions minimizing f1 is the following. If our
problem definition was formalized differently and we were only considering f1 as our
single objective function, our user/VM assignment problem would be similar to the
famous Quadratic Assignment Problem (QAP) introduced in 1957 by Koopmans and
Beckmann [48]. This problem is NP-hard and has been well studied in the past. Strategies
for solving QAP include using Genetic Algorithms and BBO and both of which generate
their initial population either randomly (e.g. [80, 41, 54]) or using a greedy strategy
(e.g. [20]).

Let x = (β1, β2, ..., βU , α1, α2, ..., αN ) be a solution that we want to create as defined in
Section 4.1.3. The first part of the solution (the user assignment), is created by randomly
assigning users to one PM. More precisely, each βu in x is derived by selecting a PM
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uniformly at random from poss(u) with 1 ≤ u ≤ U . A placement for VMs, the second
part of x, is found according to Algorithm 4.2.

Algorithm 4.2: Greedy Assignment of VMs

1. Let x be a partially filled solution, that has users assigned but not VMs

2. Sort all users by their ID

3. For each user u

a) If all VMs have been assigned in x, terminate.
b) Put all the VMs user u needs into a list L and sort L by the needs of u

decreasingly. The VM that is needed the most is therefore at the top of L, the
VM that is needed the least is at the bottom of L. VMs that are not needed by
u are not present in L.

c) Remove all VMs from L that were already assigned in x.
d) For each VM v in L

i. If v can be assigned to the same PM as u, assign it.
ii. Otherwise, iterate over all other PMs in increasing order of distance.

Assign v to the first PM, that is capable of holding it.

This procedure generates different solutions each time it is executed, because it contains a
random component and can therefore be run several times to create the initial generation.
It is also guaranteed that every solution is feasible.

4.3.2 Mutation of Solutions

In the original publication of BBO [73], the input variables to the objective function are
continuous. Each of these continuous variables has a certain allowed range of values that
it can take on (domain of definition). When a new, mutated solution is generated, the
value of a single variable is replaced by new value randomly chosen from that variables’
domain of definition. We adapt this procedure, to make it applicable to this specific
discrete problem.

Let x be a feasible solution that we want to alter in one variable, such that a new, different
solution is created and let vi be that variable. We distinguish two cases: If i ≤ U , we
replace i by choosing a new PM by choosing a random VM from poss(i), similar to the
initial solution generation from Section 4.3.1. If i > U , we choose a random PM from
the whole set of possible PMs. This may yield an infeasible solution, since PMs have
a limited capacity, and therefore we immediately repair the solution as described in
Section 4.3.3.
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4.3.3 Repair of Solutions

Repairing solutions is sometimes necessary, because the migration and mutation step
of the BBO algorithm may yield infeasible solutions, as we have already discussed in
Section 2.3.5.

Let x be an infeasible solution and let I be the set of indices of the variables that contains
(1) the users, that are infeasibly assigned and (2) the PMs, that are over their capacity
limits (see also Section 4.1.3). For each i ∈ I with i ≤ U , do the mutation procedure
from Section 4.3.2. For each i ∈ I with i > U , pick a random VM v from the overloaded
PM i. Then apply the last step from Algorithm 4.2 again: Iterate over all other PMs in
increasing order of distance. Assign v to the first PM, that is capable of holding it.

After this procedure, x is guaranteed to be feasible.
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CHAPTER 5
Evaluation

Chapter 2 was concerned with creating a model for the fog environment and the overall
strategy for solving the assignment problem. In this Chapter we build upon these models
and strategies and discuss how the concrete parameters were chosen for both of them.
We further give two reference strategies to evaluate against, briefly touch on some imple-
mentation specific issues and finally present the results of this work. The results section
contains several parts: Section 5.4.1 contains the results for monoobjective optimization,
while Section 5.4.2 contains the general results for multiobjective optimization. Sec-
tion 5.4.5 describes another set of experiments that used a different underlying topology.
Section 5.5 discusses limitations and opportunities for future work. The conclusion is
given in Section 5.6.

5.1 Experiment Setup

The environment of all test cases is generated randomly, given a number of parameters.
The behavior of the BBO algorithm is also driven by some parameters that have to be
provided at the start of the simulations. A summary over both environment and BBO
parameters alongside an explanation is given in Table 5.1.

5.1.1 BBO Parameters

The parameters ngen and popsize control the number of solutions that the BBOalgorithm
produces and tests. Both parameters together are the main drivers of the runtime of
the algorithm. The shape of the immigration and emigration functions, tfunc, could
either be set to linear or sinusoidal. We set tfunc to sinusoidal in all experiments, except
for the simulations where its impact on the solution quality was assessed (Table 5.7).
The mutation probability, pmutate, determines the likelihood of a single individual to
mutate in the BBO algorithm after the migration step. It was set to 0.01 in all experiments,
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Table 5.1: Parameters for execution of the BBO algorithm and the test environment.

Short Name Explanation

BBO parameters
ngen Maximum number of generations.
popsize Population size of every generation.
tfunc Type of migration functions determines the shape of both µ

and λ.
pmutate Mutation probability of an individual.
keep The number of individuals to preserve from one generation to

the next (elites).
Environment
parameters
nvms Number of Virtual Machines (VMs).
npms Number of Physical Machines (PMs).
nusers Number of users.
ndim The number of dimensions of both VMs and PMs, such as CPU,

memory or network bandwidth usage.
nuserconnections The number of PMs which a user is able to connect to.
pmavail Interval for the range of the availabilities for a PM.
pmpower Power consumption in Watts of a PM. All PMs are assumed to

be constructed identically.

which was the original authors suggestion, unless in the ones that evaluate its impact.
Finally, the number of solutions to carry over from one iteration of the algorithm to the
next, keep, was set to twice the number of cost functions, that were being evaluated. In
other words, keep=2 in the monoobjective experiments and keep=12, where all of the
cost functions were used. This strategy guarantees that (at least) the best two solutions
of each cost function are preserved from one generation to the next.

5.1.2 Environment Parameters

nvms, npms and nusers determine the size of the solution space. Table 1.1 lists the max-
imum number of solutions the solution space can have, given those three parameters
(but ignoring other constraints). Changing some or all of those parameters has a signifi-
cant influence on how long it takes to evaluate each of the six cost functions. Further,
npms determines how many nodes the underlying network infrastructure graph has that
connects all the PMs.

ndim, nuserconnections, pmavail and pmpowerwere fixed parameters in all experiments.
The number of dimensions of VMs and PMs, ndim, was set to 2. This means both VMs
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Table 5.2: Physical machine power consumption in Watts by percentage of utilization [17].

Physical machine 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117

and PMs are considered to have only two limiting capacities, CPU andmemory. We could
have set it to a larger value, but the BBO algorithm only uses ndim when it evaluates cost
function f3 (Resource waste) and when the feasibility of a solution is checked. Increasing
ndim to 3 or more would unnecessarily slow down cost function evaluation, and not
necessarily yield any new information regarding the efficacy of our algorithmic approach.

The number of EDC a user can be assigned to, nuserconnections, was set to 3. This
means, that there are always exactly three choices to assign a user. Figure 1.1a shows
a real-world example of the geographical distribution of cell towers in and around the
center of Vienna. In this Figure, it is obvious that users could connect to more than three
base stations. However, we chose a conservative estimate, that also holds true for less
densely populated areas.

The availability interval, pmavail, of all PMs was fixed to [0.99, 0.99999]. At the start of a
simulation, the availability of each PM is set to a value chosen uniformly at random from
this interval. For example, an availability of 99% equals a downtime of 7.20 h/month,
while an availability of 99.999% equals a downtime of 25.9 sec/month. Availability
guarantees of cloud providers often fall in this range1.

Further, the power consumption parameter, pmpower, was fixed for all physical machines.
Their values are shown in Table 5.2 by percentage of server utilization. They stem from a
HP ProLiant G4 server (Intel Xeon 3040, 2 cores at 1860 MHz, 4 GB of memory) and are
the result of the SPECpower benchmark [17]. They have been used in the past by other
researchers to evaluate cloud data center scheduling policies [25].

5.1.3 Environment Generation

Based on the parameters discussed in the previous Section, several other entities are
generated to arrive at the full experiment setup. Some of the generation processes are
based on commonly used, statistical distributions. Their notation, mean and variance
are given in Table 5.3.

Table 5.3: Notation for statistical distributions.

Symbol Distribution Name Mean Variance

N (µ, σ2) Normal Distribution µ σ2

P(λ) Poisson Distribution λ λ
U{a, b} Uniform Distribution, discrete 1

2(a+ b) 1
12(b− a)2

U(a, b) Uniform Distribution, continuous 1
2(a+ b) 1

12(b− a)2

1Amazon EC2 SLA - https://aws.amazon.com/ec2/sla/
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VM generation VMs exhibit a certain load. We will assume that the distribution un-
derlying all VMs is identical. Further, we assume that all components of each
VM are drawn from the same distribution. This assumption is based on previous
work by Zheng et al. [91]. For that purpose, we chose a Normal distribution of
N (µ = 0.15, σ2 = 0.05) (measured in fraction of PM capacity). However, other
modeling approaches do exist: Jin et al. [43] modeled VMs using 4 components, 1
of which is larger (between 30-40% of the capacity of a PM) than the other 3 which
are small (between 5-10%). Xu et al. [86] uniformly chose CPU demand (measured
in GHz) from the set {0.25 0.5 1 1.5 2 2.5 3} and memory demand (measured in GB)
from the set {0.25 0.5 1 1.5 2 2.5 3 4}. Ruan et al. [70] set all VMs to the same size.

User generationUsers connect to PMs and thenmake requests to VMs. Users have a cer-
tain location and as a result are only capable of connecting to a subset of all PMs of
size nuserconnections. These PMs are determined by choosing nuserconnections
PMs uniformly at random from the set of all PMs. Further, users are assumed to
make a number of requests per time interval to a VM. Modeling this count data,
we used a Poisson distribution P(λ = 10).

PM failure generation Each PMs individual failure probability is generated by drawing
from U(a, b), where a, b are the bounds of pmavail.

Finally, PMnetwork generation has to take place. Aswe already explained in Section 1.1,
we assume thatwe have a virtualized bandwidth guaranteed network at our disposal, that
provides enough bandwidth for all of our transmission purposes. Therefore, our main
concern is modeling the appropriate connections (network layout) between PMs and
the appropriate delays (measured in milliseconds). Both are represented by a weighted
graph G = (V,E), which is generated in multiple steps. First, a complete graph Kn is
generated by drawing the all of its edge weights from U(a = 10, b = 20). This assures
that the graph is fully connected as it contains n·(n−1)

2 edges, where n = |V |. In this
graph, we can reach any PM from any other PM in one hop. Next, a minimum spanning
tree is derived, which is done via MATLABs minspantree() function, that implements
Prim’s algorithm2. This tree contains n−1 edges. In this graph, we still can reach any PM
from any other PM, however, there is exactly one path to do so. For our evaluation, we
desire something in between a fully connected graph and a tree, and therefore calculate
n = n·(n−1)

4 . While |E| < n, we select a pair of non-adjacent vertices and add an edge
between them. The edge weight again is drawn from U(a = 10, b = 20).

This results in a PM connection architecture, where every PM is connected to half of the
other PMs on average, and thewhole graph is guaranteed to be connected. In Section 5.4.5,
we will use a different graph layout, that more accurately reflects the graph topology of
the Internet, but all edge weights we will be drawn from the same uniform distribution.

2MATLAB reference: https://de.mathworks.com/help/matlab/ref/graph.minspantree.html
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5.2 Comparison Algorithms

Our approach was evaluated against two reference strategies; a greedy strategy (Greedy)
and a genetic algorithm (GA).

5.2.1 Greedy Strategy

This algorithm finds a list of initial solutions and iteratively tries to improve them. Initial
solutions are found the same way as for the BBO algorithm (see Section 4.3.1). Let S
denote the list of solutions and |S| = q is the number of objective functions. In every
iteration, all solutions s ∈ S are investigated by exploring a random subset of their
neighbors. This is done by first mutating 10% of the variables in s and then repairing s,
in case it was infeasible. Mutation and repair procedures are explained in Sections 4.3.2
and 4.3.3, respectively.

After mutation and repair, the algorithm determines if the new solutions are better than
the existing ones. Let S′ be the new list of solutions that were created based on S. Iterate
over S′ and let j be the iteration variable. If solution S′[j] dominates S[j], set S[j]← S′[j].
Domination is assessed by Algorithm 4.1.

The Greedy procedure stops after a predefined number of iterations have taken place,
which was set to 10000 in all experiments.

5.2.2 Genetic Algorithm

GA [61] was created to mimic the survival of the fittest process from nature, where the
best adapted species survive the longest and are able to reproduce. First, a set of initial
solutions, also called a generation, is created (see Section 4.3.1). Then, these solutions are
mutated, repaired and ranked. Solutions with a higher quality are ranked higher, while
poor solutions will be have a lower rank. After that, solutions are recombined with each
other. Being selected for recombination depends on the rank of a solution. Recombination
yields a new offspring generation. This new generation is again ranked and recombined.
As a result, GA iteratively improves a list of solutions from one generation to the next.
Ranking, mutation and repair functions are identical to the ones we used for BBO (see
Sections 2.3.2, 4.3.2 and 4.3.3, respectively).

Recombination

Recombination is called crossing-over and works as follows. Several methods for crossing-
over exist. We chose uniform crossover, which selects variables from both solutions
uniformly. It is implemented as follows. We are given two solutions, as the result of the
selection process explained below, xA and xB from the existing generation. Let p be the
number of variables they contain (the length of those solutions). We create a boolean 0/1
random vector u that has dimension p. The components u(i) of the vector have the same
probability of occurrence, P (u(i) = 0) = P (u(i) = 1) = 0.5.
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The new, recombined solution xAB is derived by

xAB(i) =
{

xA(i) if u(i) = 0
xB(i) if u(i) = 1 (5.1)

for 1 ≤ i ≤ p.

Ranking, Mutation and Selection

After recombination, solutions are mutated and repaired and then ranked based on their
fitness functions. For ranking, we implemented the same adaptation as for BBO, to being
able to rank according to multiple objective functions. After ranking, the top 25% of
solutions are mutated and repaired and replace the bottom 25% of solutions. Finally,
after another ranking of solutions, the elites of the previous generation, replace the worst
solutions. Then, the next iteration of the algorithm begins.

The selection of two solutions for crossing over is based on their ranking. The lower the
costs, the higher the ranking and the more likely it is for a solution to be chosen. This is
called fitness proportionate selection [61, p. 124f] and the probability pi for a solution i to
be chosen is

pi = µi∑Smax
j=1 µj

, (5.2)

where µi is
µi = Smax + 1− ri

Smax + 1 , (5.3)

ri is the rank of solution i and Smax is the number of solutions in the generation. This is
virtually identical to the Roulette-wheel selection of BBO and Equation 2.7.

5.3 Implementation and Setup Details

All algorithms were implemented in MATLABTM [67]. Several scripts from the original
publication by Simon [14] and a follow-up publication by Khademi et al. [8] are pub-
lished online. These scripts were used as a template and were one of the reasons why
MATLAB was chosen as the simulation environment. The automatic generation of test
instances and their components such as the structure of the underlying network graph,
the sizes of VMs, the location of the users and all other necessary components were also
implemented in MATLAB. The fact that a variety of graph statistics tool (such as graph
centrality measures) and graph algorithms (such as minspantree()) are readily available
in MATLAB, was another reason why we chose this simulation environment.

Some auxiliary Python [15] scripts were written to output the results into table format.
Overall, there are 33 MATLAB files, totaling 3115 lines, and 4 Python files, totaling 285
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lines3. All simulations were carried out on a HP Notebook (Intel Core i5 with 2 cores
running at 2.30 GHz each; 16 GB RAM).

5.4 Results and Discussion

Ideally, we would like to have exact solutions to the problem instances for comparison,
however, the large solution space does not allow it to compute them easily (see also
Table 1.1). In order to test the correctness of our BBO implementation, very small instances
were created (nvms, nusers, npms ≤ 5) and exact solutions were derived for those via
enumeration. The BBO algorithmwas able to compute the same (or slightlyworse) results,
giving us confidence in the correctness of the implementation (results not shown). The
genetic algorithm was able to do the same.

5.4.1 Monoobjective Results

As a first set of simulations, we minimized all the objective functions individually. This
was in part done to get some intuition for which kind of solution values we can expect
from the chosen problem instances. Plots of results using the largest tested instance
are depicted in Figure 5.1 which shows the convergence behavior of the cost functions
(y-axis) by number of generations (x-axis); the full results are summarized in Table 5.4.

3The toolCLOCwas used to determine thesemetrics and is available at https://github.com/AlDanial/
cloc.
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Figure 5.1: Results of the BBO algorithm minimizing the six objective functions individually. Figure
depicts the scenario where nvms=100, npms=100 and nusers=100 and BBO was started with a generation
size ngen=50 (test cases 19-24 in Table 5.4). Average of the cost function of a generation depicted in red,
minimum of a generation in blue.

In Figure 5.1, the minimum cost of every generation is drawn in blue, the average cost is
drawn in red. As can be seen clearly, the minima are always monotonically decreasing.
This is because the best two solutions for each cost function are always chosen as elites
and therefore preserved from one generation to the next. The average costs (red line),
are also decreasing from one generation to the next for some of the cost functions (user
distance, failure probability, edge-disjoint paths and user evenness). For other cost functions
(electricity costs, resource waste), the minimum stays the same while the average oscillates
and does not decrease from one generation to the next. This could be due to the fact
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Table 5.4: Results of minimizing each of the six objective functions individually.

No. nvms npms nusers popsize ngen Costs Best Greedy Best BBO Best GA BBO
Greedy

BBO
GA

1 25 25 25 50 300 f1 77346.0000 72636.0000 73955.0000 0.94 0.98
2 25 25 25 50 300 f2 570.9187 570.8945 570.8930 1 1
3 25 25 25 50 300 f3 1.7899 1.7899 1.7899 1 1
4 25 25 25 50 300 f4 0.0417 0.0417 0.0433 1 0.96
5 25 25 25 50 300 f5 657.0193 584.7590 600.2455 0.89 0.97
6 25 25 25 50 300 f6 464.0000 464.0000 464.0000 1 1
7 50 50 50 50 300 f1 382848.0000 349524.0000 363548.0000 0.91 0.96
8 50 50 50 50 300 f2 1029.4583 1029.3620 1029.3620 1 1
9 50 50 50 50 300 f3 2.3846 2.3846 2.3846 1 1
10 50 50 50 50 300 f4 0.0633 0.0418 0.0417 0.66 1
11 50 50 50 50 300 f5 1554.8663 1403.6661 1426.6085 0.9 0.98
12 50 50 50 50 300 f6 232.0000 224.0000 224.0000 0.97 1
13 75 75 75 50 300 f1 913635.0000 850194.0000 886814.0000 0.93 0.96
14 75 75 75 50 300 f2 1491.8871 1490.7479 1490.8703 1 1
15 75 75 75 50 300 f3 3.2695 3.2695 3.2695 1 1
16 75 75 75 50 300 f4 0.0984 0.0597 0.0692 0.61 0.86
17 75 75 75 50 300 f5 2494.9406 2249.4691 2344.5369 0.9 0.96
18 75 75 75 50 300 f6 168.8889 151.1111 158.2222 0.89 0.96
19 100 100 100 50 300 f1 1689689.0000 1595252.0000 1631001.0000 0.94 0.98
20 100 100 100 50 300 f2 1948.7193 1947.5218 1948.3727 1 1
21 100 100 100 50 300 f3 3.7480 3.7480 3.7480 1 1
22 100 100 100 50 300 f4 0.1592 0.0702 0.1020 0.44 0.69
23 100 100 100 50 300 f5 3410.2372 3064.1655 3248.5522 0.9 0.94
24 100 100 100 50 300 f6 130.0000 108.0000 118.0000 0.83 0.92
BBO = Biogeography-Based Optimization with sinusoidal migration functions, GA = Genetic Algorithm
with fitness proportionate selection. The last two columns show the ratio between BBO and the other
algorithms, rounded to two decimal places.

that the initial solution used for starting the BBO algorithm was already very close to
optimal. Another explanation might be that the BBO procedure, due to its very general
approach of searching through the solution space, is not powerful enough to choose
good neighboring solutions that are both feasible and able to minimize these specific cost
functions.

Figure 5.1 also unveils another noteworthy behavior: Functions f1, f4, f5 and f6 show a
exponential function-like shape: During the first iterations, there is a stronger gradient
because these initial solutions can be improved a lot. As the generation numbers get
higher, the gradient decreases because the found solutions cannot be improved any
further. This behavior can be an indicator for the algorithm finding/converging towards
an optimum.

Table 5.4 shows the results of the monoobjective simulation runs. In all test cases, BBO
was able to outperform the Greedy approach. In 22 out of 24 test cases, BBO was able to
find equally good (9/22 test cases) or better (13/22) solutions than the Genetic algorithm.
All test cases using the objective functions f1 (user distance) or f4 (failure probability),
resulted in better objective function values when solved with BBO, showing that in
these scenarios, BBO should be preferred over the other two reference algorithms. The
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most improvement of BBO compared to both reference algorithms, was in the biggest
instance (nvms=100, npms=100, nusers=100) for cost function f4 (test case 22), where the
found solution was 69% of the cost of the GA solution and 44% of the cost of the Greedy
solution.

5.4.2 Multiobjective Results

Figure 5.2: Results of the VM-User assignment problem with nvms = 100, npms = 100 and nusers = 100.
All objective functions were minimized simultaneously using Biogeography-Based Optimization with
popsize = 50 and sinusoidal migration functions. Average of the cost function of a generation depicted in
red, minimum of a generation in blue.

Figure 5.2 depicts the results for the multiobjective simulation runs. Similar to what
we have seen in Section 5.4.1 with monoobjective optimization, minimum and average
generation values for some cost functions (f1, f4, f5) decrease, while for other cost
functions (f2, f3), minimum values stay constant and average values do not decrease.
Interestingly, cost functions f2 and f3 show an identical shape, yet on a different scale.
Intuitively, this makes sense: Solutions that only use a few PMs, use less electricity (f2)
and at the same time are able to pack more VMs on fewer PMs therefore waste less
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resources (f3). Therefore, good solutions for f2 are also good solutions for f3.

An issue with multiobjective optimization occurs, when different cost functions require
almost opposite solutions to reach their global minimum: The cost functions user distance
f1 and user evenness f6 are a good example for this. While f1 would be minimal is all
users were assigned to a single PM and all the VMs were assigned to that PM as well
(ignoring all other constraints for the moment), f6 would be minimal is all users were
spread evenly among all PMs. These two goals conflict with each other, and thus making
it also difficult for the BBO procedure to find a reasonably good solution for both targets
and to converge towards an optimum suitable for both functions.

The results for the multiobjective simulation are summarized in Table 5.5. We evaluated
the BBO algorithm and the two reference algorithms (Greedy and GA) with different
instance sizes of the assignment problem. For BBO and GA intermediate results after
certain number of generations are shown as well as the time it took to derive them.
Since each generation takes approximately the same time to derive, an almost linear
relationship between generation size and execution time can been seen.

Both BBO and GA clearly outperform the Greedy approach. The gap between BBO and
GA, however is much smaller or non-existent. In terms of objective function values,
both approaches are virtually identical for functions f2 and f3, most likely due to the
issue mentioned above. For objective functions f1, f5, f6, the ratios of the values of the
functions stay relatively close to 1 (between 0.980 and 1.107). For objective function f4,
ratios are in the range of 0.895 and 1.416, with GA performing better than BBO in many
cases. Still, there is no clear indication of superiority of one approach over the other.

Table 5.6 shows the full set of solutions for the biggest tested instance size, which was also
summarized in Table 5.5, test cases 16 and 28 for BBO and GA, respectively. Minimum
values are printed in bold. This table tells a more comprehensive story of the quality
of solutions produced by each algorithm and shows clearly that there can be huge
differences in the values of the individual cost functions, depending on which solution
is chosen. A solution might have a small value for cost function fi, but at the same
time a high value for cost function fj . This is very likely due to the nature of the cost
functions and the different goals they are trying to achieve and also a property of pure
multiobjective optimization using Pareto dominance. The means of the set of solutions
are also shown in Table 5.6. BBO seems to yield better (lower) means of its population,
however these differences are small.
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Table 5.6: Full set of solutions from both BBO and GA, with nvms=100, npms=100 and nusers=100. Each
solution is minimal for (at least) one of the cost functions f1 - f6.

Algorithm f1 f2 f3 f4 f5 f6

BBO
1637982 2997 27.7 0.5383 3416 270.0
1679233 1949 3.7 0.5846 3513 236.0
1683438 1950 3.7 0.5802 3529 234.0
1770945 3948 49.7 0.1822 3732 218.0
1674186 3946 49.7 0.4925 3332 268.0
1726486 4467 61.7 0.5398 3637 126.0

Mean 1695378 3209 32.7 0.4863 3527 225.3

GA
1649854 3250 33.7 0.5437 3458 270.0
1666935 1949 3.7 0.5851 3461 238.0
1667415 1949 3.7 0.5851 3464 242.0
1789088 3865 47.7 0.1542 3846 186.0
1669419 4296 57.7 0.5358 3320 282.0
1733834 4726 67.7 0.5530 3639 124.0

Mean 1696091 3339 35.7 0.4928 3531 223.7
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5.4.3 Influence of Different BBO Parameters

Table 5.7: Results for different starting parameters for the BBO Algorithm with nvms=50, npms=50 and
nusers=50; p = mutation probability.

No. Algorithm popsize ngen Time [s] f1 f2 f3 f4 f5 f6

1 BBO 50 100 20 376528 1029.46 2.3846 0.1290 1522.88 256
2 50 200 40 369163 1029.46 2.3846 0.0900 1490.01 248
3 50 300 60 365179 1029.46 2.3846 0.0790 1449.18 240
4 50 400 80 361798 1029.46 2.3846 0.0702 1424.56 232
5 50 500 99 359186 1029.46 2.3846 0.0657 1416.76 232

6 BBO 50 100 20 376528 1029.46 2.3846 0.1290 1522.88 256
7 100 100 45 376476 1029.46 2.3846 0.1311 1493.44 256
8 150 100 78 375143 1029.35 2.3846 0.1082 1497.23 240
9 200 100 130 371019 1029.46 2.3846 0.1061 1465.06 240
10 300 100 231 369848 1029.44 2.3846 0.0840 1485.37 240

11 BBO linear 50 100 20 383425 1029.46 2.3846 0.1624 1535.01 248
12 50 200 40 376956 1029.46 2.3846 0.1162 1484.97 248
13 50 300 59 370040 1029.46 2.3846 0.0846 1475.51 248
14 50 400 79 367116 1029.46 2.3846 0.0792 1458.29 248
15 50 500 99 366288 1029.46 2.3846 0.0787 1454.17 248

16 BBO p=0.01 50 100 22 376528 1029.46 2.3846 0.1290 1522.88 256
17 BBO p=0.02 50 100 21 382356 1029.46 2.3846 0.1385 1526.32 248
18 BBO p=0.05 50 100 25 395129 1029.46 2.3846 0.1310 1624.13 264
19 BBO p=0.10 50 100 26 398348 1029.46 2.3846 0.1367 1622.45 280
20 BBO p=0.15 50 100 30 400383 1029.46 2.3846 0.1597 1682.84 280

Table 5.7 shows another set of test cases that were created to study the behavior of the
BBO algorithm under various parameters. The number of generations, the population
size, the shape of the migration functions and the mutation probability of candidate
solutions have been varied (in that order), so study their impact on solution quality. All
of these experiments rely on the same problem instance in order to create comparable
results.

According to these simulations, increasing the population size is inferior to increasing the
number of generations (see test cases 1-5 vs. 6-10 in Table 5.7). In other words, generating
only a small set of solutions and letting them compete against each other, yielded better
results, than simply exploring more solutions within the same generation.

Linear migration functions seem to yield worse results than sinusoidal (test cases 1-5 vs.
11-15). Further, increasing the mutation probability (test cases 16-20), also yielded worse
solutions. This indicates that the mutation procedure that alters existing solutions may
actually destroy good solutions more frequently than actually yielding new and good
results.
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5.4.4 Comparison BBO and GA

Table 5.8: Results for specific problem instances where the number of VMs and users is lower than the
number of PMs (test cases 1-8) and where the number of VMs and users is equal to or greater than the
number of PMs (test cases 9-16).

No. Alg. nvms npms nusers popsize ngen f1 f2 f3 f4 f5 f6

1 BBO 5 50 5 50 300 1701 112.2936 0.1879 0.0003 7.0499 2000
2 BBO 10 100 10 50 300 10768 228.4602 0.3354 0.0026 22.6339 1000
3 BBO 20 200 20 50 300 56085 458.0906 1.3929 0.0104 56.6255 500
4 BBO 30 300 30 50 300 138355 681.8566 2.3446 0.0161 94.7629 333
5 GA 5 50 5 50 300 1853 112.2936 0.1879 0.0003 7.5923 2000
6 GA 10 100 10 50 300 10974 228.4602 0.3354 0.0038 24.0459 1000
7 GA 20 200 20 50 300 57956 458.1627 1.3929 0.0105 58.4265 500
8 GA 30 300 30 50 300 140794 681.8566 2.3446 0.0255 95.9497 333

9 BBO 20 20 20 50 300 48120 457.9376 1.3929 0.0240 500.5000 600
10 BBO 40 20 40 50 300 213120 807.2144 1.4129 0.0615 2128.1434 512
11 BBO 80 20 80 50 300 973138 1595.5620 3.7507 0.2131 10050.3093 503
12 BBO 100 20 100 50 300 1596619 1947.6685 3.7480 0.4062 17449.3403 502
13 GA 20 20 20 50 300 48865 457.9376 1.3929 0.0228 501.4472 600
14 GA 40 20 40 50 300 210885 807.2744 1.4129 0.0614 2031.3212 525
15 GA 80 20 80 50 300 965028 1595.7259 3.7507 0.2094 9973.1556 500
16 GA 100 20 100 50 300 1602569 1947.4929 3.7480 0.4027 17070.7492 502

Table 5.8 shows results for a special subset of problem instances. The first half, test cases
1-8, shows results for instances where the number of VMs nvms and the number of users
nusers is a fraction of the number of PMs. The second half, test cases 9-16, show results,
for instances where nvms and nusers is equal to or greater than npms. In the first set
of test cases, BBO can outperform GA as it is able to find solutions that have equal or
smaller values for each of the objective functions. In the second set of test cases, this
is no longer the case. One explanation for this performance edge in the first set of test
cases, are the differences in the length of the solution encodings. BBO seems to perform
better (relatively to GA), when solutions have a short encoding. This may be due to
the way new generations are derived in both algorithms. In GA, solutions are ranked
according to their objective function. Two solutions are chosen and recombined using
uniform crossover, where high ranking (well performing) solutions are chosen more
frequently than low ranking solutions. In BBO, solutions are also ranked. Based on
that ranking, immigration rate λ and emigration rate µ are calculated. Good solutions
(solutions with high µ) are chosen more frequently to spread their individual variables
among the generation. Bad solutions (solutions with high λ) are chosen more frequently
as the target of those individual variables. This more refined scheme of BBO, seems to
have a more positive impact on shorter encoded solutions.

5.4.5 Optimization using the Internet Topology

The graph that defines how PMs are connected to each other described in Section 5.1 was
created randomly. However, this might not necessarily reflect the Internet’s architecture,
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which is why we conducted another set of experiments that rely on a more precise
representation. The Positive-Feedback Preference (PFP) model [93] was selected for
automatically generating an architecture, that mirrors the Internet’s architecture more
closely (see also Section 2.2.4). Table 5.9 compares the random graph and the PFP model
in terms of some key graph measures defined in Section 2.2.6.

Table 5.9: Graph measures for graphs used in the experiments

Graph Measure Main Analysis PFP Graph

Number of Nodes 50 50
Number of Edges 613 117

Mean Shortest Path Length 18.34 40.05
Graph Radius 23 53

Graph Diameter 30 84
Mean Closeness Centrality 0.01 0.01

Mean Betweenness Centrality 12.24 43.74
Mean Degree Centrality 24.52 4.68

Both graphs have the same number of edges, but the PFP graph is much sparser than the
randomly generated graph (117 vs. 613 edges). In the PFP graph, the graph radius and
diameter are much larger, which means that their nodes have a much higher eccentricity.
Further, mean degree centrality is much lower, and the mean shortest path lengths are
higher which indicates that the PFP graph is much more spread than the random graph.

Table 5.10: Results using the PFP graph as underlying topology†. Best and mean of the results of the final
iteration of the algorithms are shown.

Algorithm f1 f2 f3 f4 f5 f6

Greedy 811978 1029.5 2.4 0.1693 35165 336
Mean 835893 1305.5 8.7 0.1793 39083 356
BBO 529944 1029.5 2.4 0.0680 10646 232
Mean 635796 1508.8 13.4 0.1624 19643 495
GA 537487 1029.4 2.4 0.0533 11466 240
Mean 644687 1479.3 12.7 0.1639 20223 491

† Test parameters were nvms=50, npms=50, nusers=50 and for the two genetic algorithms additional param-
eters were popsize=50 and ngen=300.

Both BBO and GA outperform the Greedy algorithm in most of the objective functions,
except for functions f2 where Greedy and BBO are tied and f3 where all of the algorithms
are tied. The performance of BBO and GA is relatively equal, with only very small
differences. The means shown in Table 5.10 are sometimes better (that is, lower) for the
Greedy approach. This may be explained due to the fact that the genetic algorithms
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introduce some random variability in each of their iterations. As a consequence, they
are able to escape local minima in the search for new solutions, whereas the Greedy
approach might be stuck in a local minimum indefinitely.

5.5 Limitations and Future Work

As mentioned in Section 1.1, we analyzed this assignment problem assuming that we
have a guaranteed network bandwidth at our disposal. Related to that, in Section 4.2
we stated, that in order to calculate the delay between two PMs, we use the shortest
path between them. Using these two assumptions means that we largely avoided the
intricacies of network-related issues. In a real-world setup however, these assumptions
may not hold and a more detailed network model that includes a more sophisticated
routing scheme may be more suitable.

BBO is very versatile and does not rely on a particular network layout such as a star or
tree topology. This is why our network topology in Section 5.1 is a randomly generated
graph, where each node, on average, is adjacent to half of the other nodes and the graph
generated such that it is guaranteed to be connected. In Section 5.4.5 we chose a different
approach based on a model that is more accurately reflecting the Internet’s topology.
Future work could investigate whether the performance of BBO varies, if a topology
is chosen that specifically represents the IoT’s infrastructure. Other researchers, for
example, scattered PMs on a hexagonal grid across a geographical area, which resulted
in a PM having between 3 (the outer most PMs) and 6 neighbors (the inner ones) [52].

Another research direction could be to incorporate more heterogeneity into the system
model to mimic real-world scenarios more closely. Then, one could explore the influences
of these heterogeneities on the algorithm performance and solution quality. In this work,
we included different machine availabilities into our model but limited our evaluation
to identically constructed PMs. In future work, the impact of EDCs with different CPU
and memory capabilities could be examined. Distributed data storage facilities could
also come into play. Also, one could devise a system model where edge computing
resources are not fixed but dynamically rented from some service provider: Different
service providers could charge different hourly rates for the machines they provide and
change these rates according to market fluctuations, similar to what we see today in the
field of cloud computing providers.

5.6 Conclusion

The Internet of Things is growing at a rapid pace and poses new challenges that need
to be tackled. An estimated 8.38 billion devices will be connected to the Internet by the
end of 2017 and that number is expected to more than double by the end of 2020 [4].
We envisioned an architecture, where service providers create data centers attached to
already existing base stations. These data centers are capable of accepting user requests
and running user applications, while being physically closer to the users than remote
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cloud data centers. Efficiently assigning both users and their applications to these data
centers is complicated because latency requirements of users on one hand and cost
considerations of service providers on the other, need to be balanced.

Biogeography-based Optimization is a metaheuristic that can be used to solve assignment
problems. Given a set of initial solutions, it ranks the solutions depending on their
quality, then alters and recombines them to arrive at new and better solutions. It does so
over many iterations until a predefined number of solutions has been produced or the
solutions’ qualities are sufficient. BBO was adapted to handle the discrete nature of this
problem as well as multiple objective functions.

In a first set of experiments, we minimized each of the objective functions individually. A
maximumnumber of 300 generationswas chosen. For four of the used objective functions,
BBO converged towards an optimum. For the remaining two objective functions, the
algorithm was unable to improve the initially chosen greedy solutions. This may be
due to the imposed physical constraints of the problem and the limited information the
algorithm was given to find solutions. In another set of experiments, the six objective
functions were minimized simultaneously. Not all of the objective functions converged
(similar to before), yet for some it was possible to find an improvement. Two more
sets of experiments investigated the algorithm’s performance using different starting
parameters of BBO and a different underlying graph structure of the problem.

In all experiments, BBO generally outperformed the greedy approach as it found equally
good or better solutions for the problem instances depending on the observed cost
function. The performance advantage of BBO compared to GA is much smaller however
(only a few percentage points). In the majority of scenarios, both algorithms deliver
the same solution qualities, yet in some test cases BBO yielded slightly better solutions.
For instances with many PM compared to users and VMs, BBO with its more refined
solution recombination scheme, seems to have a clearer edge over GA.

The work shows that BBO is an admissible approach for solving this assignment problem
encountered in Fog Computing which can lead to lower latency for user applications
and cost savings and higher availability guarantees for service providers.
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