
Pluggable Design and
Implementation of the XVSM

Framework Core for .NET

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Andreas Grill, BSc.
Matrikelnummer 00616044

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: A.o. Univ. Prof. Dr. Dipl.-Ing. eva Kühn
Mitwirkung: Projektass. Dipl.-Ing. Stefan Craß

Wien, 2. Mai 2018
Andreas Grill eva Kühn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Pluggable Design and
Implementation of the XVSM

Framework Core for .NET

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Andreas Grill, BSc.
Registration Number 00616044

to the Faculty of Informatics

at the TU Wien

Advisor: A.o. Univ. Prof. Dr. Dipl.-Ing. eva Kühn
Assistance: Projektass. Dipl.-Ing. Stefan Craß

Vienna, 2nd May, 2018
Andreas Grill eva Kühn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Andreas Grill, BSc.
Schumanngasse 1 / 5, 1180 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. Mai 2018
Andreas Grill

v

Acknowledgements

I want to thank professor eva Kühn and her research assistant Stefan Craß for creating
the opportunity to work in this field and for all the helpful feedback and guidance they
have provided throughout the work.

Finally, I want to say a big thank you to my girlfriend, and my parents. You should
know that this wouldn’t have been possible without your patience and encouragement.

vii

Kurzfassung

Im Zuge der Ausbreitung von internetfähigen Geräten gewinnt dezentrale Kommunikation
an Bedeutung. Space-based Computing mittels XVSM ermöglicht intuitive Koordinati-
onsmechanismen, welche auf dem Blackboard-Modell basieren um die Entwicklung von
verteilten Systemen zu vereinfachen. Dies wird ermöglicht durch die Unterstützung von
Erweiterungen und benutzerdefinierten Mechanismen zur Koordination zwischen den
Systemen. Im Verlauf der Weiterentwicklung von XVSM-Implementierungen wurden diese
um Features ergänzt, um XVSM in weiteren Bereichen anwenden zu können. Eine Unter-
suchung der XVSM-Implementierungen auf unterschiedlichen Plattformen hat allerdings
ergeben, dass diverse Erweiterungen tief integriert und mit hoher Koppelung versehen
sind, und benutzerdefinierte Koordinatoren sowohl ein hohes Maß an dupliziertem Code
aufweisen, als auch auf implementierungsspezifische Details der XVSM-Implementierung
Rücksicht genommen werden muss. Obwohl XVSM im Hinblick auf Modularität und
Erweiterbarkeit entwickelt wurde, konnten gewisse Erweiterungen nicht ausreichend
entkoppelt integriert werden. In dieser Arbeit wird deshalb ein Konzept für eine hoch mo-
dulare XVSM-Implementierung vorgestellt und anhand einer Referenzimplementierung für
die .NET-Plattform belegt. Es wird ein Plugin-basierter Mechanismus geboten, welcher es
ermöglicht, Erweiterungen durch Hinzufügen oder Ersetzen von Plugins zu verwalten. Es
werden unterschiedliche XVSM- und andere Space-based Middleware-Implementierungen
sowohl anhand deren Erweiterbarkeitsmechanismen, als auch im Hinblick auf deren
Funktionalität und Defizite bezüglich Erweiterbarkeit verglichen. Ein besonderer Fokus
wird auf die XVSM-Referenzimplementierung MozartSpaces und deren Unterstützung für
benutzerdefinierte Koordinatoren gelegt. In Folge dessen wird eine modulare Architektur
basierend auf dem Managed Extensibility Framework (MEF) für die .NET-Plattform
entwickelt, um die XVSM-Implementierung mit zusätzlichen Erweiterungsmechanismen
zu ergänzen. Mechanismen für Erweiterungen, welche auf aspektorientierten Ansätze
basieren, werden erweitert, um feingranulare Integrationen zu ermöglichen. Durch eine
Ergänzung der Funktionalität des Transaktionssystems wird dessen Anwendbarkeit im
Hinblick auf eine Erweiterung von XVSM verbessert. Mit der vorgestellten Architektur
werden nicht nur Grundlagen für neue und potentiell experimentelle Erweiterungen der
XVSM-Implementierung für die .NET Plattform gelegt, sondern auch eine Referenz für
andere XVSM-Implementierungen hinsichtlich Flexibilität und Erweiterbarkeit geschaffen.

ix

Abstract

With the increasing number of smart and internet connected devices, decentralized
communication between devices is getting more important. Space-based computing with
XVSM provides intuitive coordination mechanisms based on a blackboard architectural
model to ease development for distributed systems. Extensibility and custom coordination
logic are major features of XVSM. Maturing XVSM implementations gained several
extensions to widen their applicability. However, a survey of existing XVSM implemen-
tations on various platforms reveals hardwired integrations and custom coordinators
with frequent code duplications and deep implementation dependencies. Even though
XVSM specifies extensibility mechanisms and a modular architecture, some extensions
require more fine-grained mechanisms. In order to solve this problem, we propose a highly
modular plugin-based XVSM architecture along with a reference implementation for the
.NET platform that supports an extension mechanism simply by adding or replacing
plugins. We compared various XVSM and other space-based middlewares regarding
their extensibility mechanisms, as well as their implemented features and shortcomings
in regard to extensibility, but our main focus was on the XVSM reference implemen-
tation MozartSpaces and especially its custom coordinator support. Consequently
we developed a modular architecture based on the Managed Extensibility Framework
(MEF) for the .NET platform to add additional extensibility mechanisms. Further, we
added aspect-oriented integration on a fine-grained level, as well as an evolutionary im-
provement of XVSM’s transaction system to widen the applicability of XVSM’s specified
extensibility mechanism. The new architecture not only lays the foundation for new, even
experimental, extension development for XVSM on the .NET platform, but also provides
a reference for other XVSM implementations that could benefit from incorporating its
extensible and flexible features.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Methodology . 3
1.2 Structure of Thesis . 4

2 State of the Art & Related Work 5
2.1 Concepts and Classification . 5
2.2 Technologies . 7
2.3 XVSM Overview & Implementations 8
2.4 Apache River . 16
2.5 GigaSpaces XAP . 17
2.6 Comparison . 18

3 Background 21
3.1 .NET Platform . 21
3.2 Peer Model . 22
3.3 Extensibility Platform . 24
3.4 Proxy Framework . 25
3.5 Configuration . 25

4 Requirements 27
4.1 Functional Requirements . 27
4.2 Non-functional Requirements . 28

5 Plugin Framework Design & Implementation 31
5.1 Conceptional Core Elements . 31
5.2 Plugins . 32
5.3 Plugin Instantiation and Lookup . 35
5.4 Plugin Framework Implementation . 41

xiii

5.5 Plugin Configuration . 44
5.6 Plugin Parts . 46
5.7 Plugin Aspects . 48
5.8 Recomposition . 53

6 Plugin-Based XVSM Design & Implementation 57
6.1 Architectural Overview . 57
6.2 Transactions . 65
6.3 Coordination . 92
6.4 Runtime . 116

7 Evaluation 123
7.1 Extensibility . 123
7.2 Performance & Memory Measurments 130
7.3 Requirements . 136
7.4 Suitability of the Plugin Framework 138

8 Future Work & Conclusion 139
8.1 Future Work . 139
8.2 Conclusion . 140

Bibliography 147

Online Resources 151

CHAPTER 1
Introduction

With the increasing number of smart devices and the consolidation of the Internet of
Things, challenges arise regarding communication and synchronization between these
devices [Cis17]. Centralized architectures might not be feasible for all situations. The peer-
to-peer (P2P) architecture provides an alternative with great scalability characteristics
[AS04]. In contrast to a client-server architecture every host can act at the same time as
a client or server. This decentralized approach releases the bottleneck of a central server
host, and allows the utilization of computing resources such as CPU cycles, storage, and
bandwidth of the peers while allowing to share content.

However, when it comes to collaboration between peers, coordination challenges arise. The
Tuple Space (TS) with Linda as a coordination language [Gel85], which was introduced
by Gelernter in 1985, provides an approach that utilizes the advantages of the P2P
architecture with the simplicity of a client-server architecture. TS is a blackboard
approach that decouples communication through space and time, by using tuples as
its primary data structure. The basic statements of TS are out, in, and rd which
correspond to writing a tuple to TS, taking a tuple out of TS, and reading a tuple from
TS without withdrawing it. To retrieve tuples through the in and rd statements, the
Linda coordination language is used to apply a template matching mechanism to the
tuples.

The eXtensible Virtual Shared Memory1 (XVSM) [KRJ05; Cra10; CKS09] is the reference
architecture of the space-based computing architectural style (SBC) [Mor10], developed
at the Institute of Computer Languages of TU Wien. It serves as the foundation of
several middlewares in the context of distributed systems. A middleware is a system
that may be characterized as an abstraction layer between the operating system and
the application. For this thesis, we focus on middlewares that abstract communication
services between applications to form distributed systems [Ber96; EAS07]. In XVSM

1http://www.xvsm.org

1

http://www.xvsm.org

1. Introduction

a space is a set of containers, which store entries and their corresponding coordination
data. XVSM provides a similar basic functionality as the original TS with Linda, by
providing methods for XVSM peers to write, take and read entries to and from a container.
However, it was also developed with a focus on flexibility, extensibility and usability
in mind. In contrast to TS and Linda, XVSM abstracts the coordination model and
provides additional coordination laws that are enforced by separate Coordinators on
each container in order to retrieve data. In addition to the predefined basic coordination
laws, it is even possible in XVSM to define coordination laws that are optimized for the
usage context by providing custom coordinators. The concrete implementation of this
extensibility mechanism depends on the particular XVSM framework and is not exactly
specified in XVSM. Integrated aspects form another mechanism that can be used to
extend the XVSM framework, by providing callbacks and interceptor points to space or
container operations. Even though it is possible with aspects to change the behavior of a
space or a container in an easy and flexible way, this mechanism has proven to be not
sufficient for all possible extensions.

Several XVSM implementations have been developed in various programming languages
such as Java, C#, Haskell, JavaScript, and Objective-C. The current reference implemen-
tation MozartSpaces 2.0 [Bar10; Dön11] was developed in Java and provides the most
features of all XVSM implementations. The latest C# implementations XCOSpaces
[Kar09; Sch08] and TinySpaces [Mar10], although providing basic XVSM functionality,
both have not gained the same amount of extensions as MozartSpaces. As TinySpaces
is a lightweight XVSM implementation targeting embedded systems and XCOSpaces is
older than MozartSpaces 2.0, new features from the current MozartSpaces implemen-
tation could not get easily integrated in these frameworks. Even though XVSM supports
aspects as a native extensibility mechanism, many extensions such as persistence [Zar12],
security [CK12], replication [Hir12], and lifecycle extensions [Wat15; Cra+17] had to
be tightly integrated with the MozartSpaces framework. The extension implementa-
tions take advantage of the known behavior of the framework, which leads to tightly
coupled extensions that cannot easily be transferred to other XVSM implementations.
With every new extension for MozartSpaces that takes advantage of the particular
framework implementation, the amount of required work to migrate the extension to
another XVSM framework, with a different internal architecture than MozartSpaces,
increases gradually.

This thesis aims at designing the core of a new XVSM framework that addresses the
stated extensibility issues. It should lay the foundation for new development that uses
XVSM as a space-based computing platform. The framework consists of a micro kernel
and separate modular and encapsulated components that provide the XVSM functionality.
Development of new and experimental extensions will benefit from this architecture. The
integration of such extensions should be simple without the need to refactor big parts of
the XVSM implementation. This thesis puts a focus on the simple integration of custom
coordinators.

To achieve the stated objective, various challenges have to be resolved. In order to provide

2

1.1. Methodology

the required tools for the development of the new XVSM framework, a custom plugin
framework based on existing extensibility frameworks has to be created. Even though the
extensibility frameworks provide various mechanisms to create adaptable software, they
must be integrated and customized to be used for all development requirements of the
XVSM framework. Different types of plugins with separate extension and performance
characteristics have to be developed to address the framework’s extensibility requirements,
while still taking the possible performance impacts into account. The challenge is to
orchestrate and customize the extensibility frameworks to provide a toolset that can be
used to implement the plugin-based XVSM architecture.

The XVSM architecture and its implementations are analyzed to define the plugin-based
architecture. Tightly coupled code parts, as well as deeply integrated extensions of
previous XVSM implementations influence the creation of the plugin architecture. The
former are split into multiple plugins. Inversion of control mechanisms from the plugin
framework are used to further decouple the plugins. Method signatures can be simplified,
as context objects can be utilized instead of rarely used arguments.

The XVSM framework implementation of the plugin-based architecture is focused on
XVSM’s coordination and transaction layers, as well as providing an overall flexible
framework, which was designed to be easily extended with features from other XVSM
implementations. The transaction implementation supports XVSM’s requirements, but
also provides features that benefit the overall extensibility of the framework, as it improves
the separate usage of transactions in extensions. Developing nested transactions with a
plugin-based architecture that are compatible with XVSM’s formal model is one of the
major challenges of this thesis. Code involved in the coordination process is separated
into a general part and individual coordinator semantics. Coordinators are classified with
various properties that are used in the general part to control the coordination process.
This leads to simpler and more streamlined coordinator implementations.

1.1 Methodology
This thesis uses the guidelines for Design Science Research from [Hev+04]. They provide
a structural approach for effective information system development and research.

The Problem Relevance and Research Contributions guidelines have already been es-
tablished in this chapter. Since XVSM is an established space-based computing model
with several extensions for its concrete implementations, the new implementation, which
simplifies the integration of new and existing extensions, should follow the design decisions
presented in XVSM’s formal model [Cra10]. To follow the Design as a Search Process
and Research Rigor guidelines, concrete XVSM middlewares have been compared with
other space-based middlewares regarding their extensibility characteristics. This led to
the development of architectural propositions, which have been presented at a Modularity
Workshop and shown to the XVSM Technical Board. Feedback is incorporated into the
design and implementation decisions that are presented in this thesis. This thesis provides
an introduction into the problem domain and space-based computing in general. It is

3

1. Introduction

approachable both for developers with already deep knowledge in space-based computing
that are planning on creating an extension, as well as audiences that seek an introduction
to XVSM. Thus it follows the Communication of Research guideline. The guideline
Design as an Artifact is followed by not only designing the modular architecture but also
aiming to provide a reference implementation. It should provide basic XVSM functional-
ity, to allow its usage for developing custom applications. In order to reason about the
new XVSM implementation, the Design Evaluation guideline is followed by deriving a
descriptive evaluation concerning extensibility scenarios for the new architecture. We
focus on the feasibility of the developed extension mechanism to implement the extensions.
In addition, performance analysis is conducted to show the feasibility of the developed
XVSM implementation.

1.2 Structure of Thesis
The following structure is used for this thesis:

Chapter 2 gives an introduction to different extensibility mechanisms and categorizes
their properties into adaption types. The adaption types are used to compare XVSM
and other space-based implementations.

Chapter 3 describes concepts and technologies used for the development of the XVSM
implementation.

In Chapter 4 the results of the XVSM implementation’s requirement analysis are shown
and elaborated. The requirements are structured into functional and non-functional ones.

The Chapter 5 introduces the created plugin framework that lays the foundation of
the new extension mechanisms for the XVSM framework and explains its concept and
implementation.

Chapter 6 describes the proposed XVSM implementation and how the concepts from the
previous Chapter 5 were adopted.

Chapter 7 compares the new XVSM implementation with existing implementations.
Extensibility as well as performance characteristics are compared. Finally, implementa-
tion suggestions for extensions that are available for other XVSM implementations are
provided.

The final Chapter 8 summarizes the results of the thesis and provides suggestions towards
future research and development.

4

CHAPTER 2
State of the Art & Related Work

Since the tuple space architecture was introduced, several middlewares with different
feature sets have been created over time. In one way or the other, extensibility has
been an essential part of several of these middlewares, especially XVSM-based ones.
However, the understanding of an extensible middleware can differ. For instance, some
middleware implementation is considered extensible if it has a modular architecture
that allows late binding of modules at startup, while for other middlewares, a contract-
based implementation is seen as extensible. Thus, we are now taking a deeper look at
existing space-based middlewares and related technologies, and analyze how they have
incorporated extensibility and modularity concepts.

2.1 Concepts and Classification
Before we analyze the different middlewares and technologies, we give a short overview
on typical programming models and mechanisms that can be used to adapt software.
We also present the classification that is used to compare the space-based middlewares
regarding their extensibility properties.

2.1.1 Dependency Injection

Dependency injection (DI) [Pra09] is an inversion of control pattern [1] that is used to
separate the usage and the construction, assembling, and wiring of a component. The
implementation of the component is hidden behind a contract. Typically an inversion of
control container instantiates the component and wires it to its dependent object.

Figure 2.1 shows a simple DI example. In this example the CarRental class depends on
instances of the ICar interface. However, it has no direct dependencies to the concrete
ICar implementations. The Injector applies the inversion of control pattern by
instantiating the concrete classes and wiring them in CarRental.

5

2. State of the Art & Related Work

<<Interface>>

ICar

<<Interface>>

ICarCarRentalCarRental

RaceCarRaceCarTractorTractor

InjectorInjector

Figure 2.1: Example of a Dependency Injection.

This separation of using and instantiating a component provides multiple advantages.
It simplifies testing, since components that are not relevant for testing can be easily
replaced by mocks. Development might be guided to a modular and loosely coupled archi-
tecture. In regard to extensibility, DI is useful since it allows to easily change component
implementations. Depending on the used DI framework, swapping an implementation
can be a matter of changing a configuration file.

2.1.2 Aspect-Oriented Programming

Aspect-oriented programming (AOP) [Kic+97] is a programming model that can be used
to extend or change the behavior of a software application in a cross-cutting manner.
Features that require an integration into multiple, scattered parts of an application are
typically dealt by introducing an additional layer of abstraction in object-oriented lan-
guages. However, adding too many abstraction layers can lead to a probably unnecessarily
complex architecture. It might also require to refactor existing code parts to introduce
new abstraction layers. AOP, on the hand, allows to integrate individual concerns into
different parts of the application by defining join points that specify the concrete places
where the aspect-specific code may modify the application [EFB01].

In regard to extensibility, aspects can be useful as they provide a flexible framework
to change or extend the behavior of an application. Depending on the used AOP
implementation, this can be a powerful extensibility mechanism. For instance, if an AOP
tool is used that dynamically weaves the aspects at compilation time, this practically
allows to integrate custom aspects into almost every possible place in the application.
Unfortunately such a mechanism has the disadvantage that it increases the coupling of
the aspect and the rest of the application, since small changes of the core application
could break the aspect. Thus, using AOP alone is not enough to solve the extensibility
issues.

6

2.2. Technologies

2.1.3 Adaption Type Classification

Comparison of extensibility is not trivial, since it is a general property that can have
various meanings in different scenarios. In our case, we are more interested at which
stage in the development cycle an application has to be adjusted to allow extension or
change of existing behavior. For this, we use adaption types presented in [SM03] and
[McK+04] for classification.

The adaption types of middleware implementations are divided into static and dynamic
composition mechanisms. Software that needs to be rebuild to change its functionality
uses either hardwired or customizable composition mechanisms. Both adaption types
are static but the customizable adaption type still provides more flexibility, as it uses
adaption mechanisms at compile or linking time without the demand to change the source
code. Although configurable composition mechanisms are still considered static, they
provide a higher degree on dynamism, as they might use algorithms and environment
information to select the component to be loaded at startup. While static composition
encompasses hardwired, customizable and configurable composition mechanisms, dynamic
composition can be realized through tunable and mutable composition mechanisms. Static
adaption types have in common that once an implementation has been selected, it cannot
be changed. Dynamic adaption types, on the other hand, provide mechanisms to act and
react according to changing environment information. Tunable and mutable composition
both describe such dynamic software with the ability to change and react at runtime
without halting. They differentiate only in the degree of dynamism. Mutable software, in
contrast to tunable, is even able to change its functionality and purpose into something
completely different.

2.2 Technologies

In this section, we are analyzing frameworks and technologies with a focus on plugin-
based extensibility mechanisms. The frameworks support an application platform that
allows extensions in a plugin-based manner. Even though the frameworks do not address
space-based middlewares, their extension mechanisms still influenced the architecture
and design decisions of the new XVSM framework.

2.2.1 OSGI

OSGI [OSG03] is a specification for Java frameworks that enables dynamic loading
and interaction of plugins, called bundles. With OSGI, it is possible to dynamically
bind bundles by specifying the provided and required services in order to manage and
automatically resolve the dependencies. As OSGI provides mechanisms to dynamically
react on changes, it is possible for bundles to be added or removed at runtime and allow
the application to adapt dynamically. Using OSGI bundles forces the developer to create
a modular architecture and therefore assists a decoupled application design.

7

2. State of the Art & Related Work

2.2.2 Joram

Message-oriented middleware (MOM) was created to reduce complexity and to decouple
communication in distributed systems. To further reduce the coupling to individual MOM
implementations, the Java community has established a specification for MOMs called
Java Message Service (JMS) [MC00]. JMS implementations provide a similar functionality
as XVSM middleware although the focus of XVSM lies more on coordination, as XVSM
provides a richer set of coordination mechanisms [MK11]. Joram [2] is a message-
oriented middleware (MOM) that is programmed in Java and uses the OSGI-based plugin
framework Apache Felix [3] to extend and change functionality at runtime. Joram
provides interceptor extension points which can be used to filter incoming messages
or change incoming and outgoing messages. The concrete interceptor implementation
is located in a separate bundle and will be called through OSGI at runtime. Another
extensibility mechanisms Joram provides are extensions for acquisition and distribution
of messages to extend its compatibility with other systems. While acquisition extensions
are used to create messages from external sources, distribution extensions transform and
send messages to external sources. This extensibility mechanism can be used, for example,
to convert emails to messages and messages to web service requests, but it can also be used
to provide interoperability between incompatible platforms. This extensibility mechanism
can be used to provide interoperability between incompatible platforms. Although the
core of Joram is a single bundle, it consists of many separate and decoupled services
that could be individually replaced by future bundles, which makes Joram a tunable
software.

2.2.3 DataNucleus Access Platform

DataNucleus Access Platform [4] is a plugin-based persistence layer that is pro-
grammed in Java and uses multiple plugin mechanisms. If DataNucleus Access
Platform is running on an OSGI container, the OSGI plugin mechanism is used, but it
can also run in an embedded mode and use its own implementation. The core functionality
of the persistence layer, although located in one single plugin, is internally implemented
in separate plugins, which also serve as extension points to additional external plugins.
The binding of plugins to extension points is realized through an XML protocol located as
a file in the plugin root directory. Because of its extensive use of plugins, DataNucleus
Access Platform is a tunable software when it runs on an OSGI container. If it is
running in embedded mode, it is only a customizable software, since it is not supporting
dynamic adding of plugins at runtime.

2.3 XVSM Overview & Implementations

XVSM was developed as the reference architecture of the space-based computing platform
that acts as an abstraction of distributed systems with the advantage of supporting
multiple architectural styles [MKS10].

8

2.3. XVSM Overview & Implementations

2.3.1 Concept

The basic functionality of XVSM is to provide facilities that allow storing and retrieving
of data in a shared memory, which is called space. Data is stored in the form of so-called
entries, which act as a wrapper for the underlying user data and space-specific metadata.
Entries are stored in containers, which are organizational structures within a space
and have their own coordination mechanism [Cra10]. The space provides methods to
create, remove, or lock containers. A main feature of XVSM is the support of multiple
coordinators that can be used to retrieve entries in different and flexible manners. When
a container is created, coordinators are associated with it, in order to prepare structures
to allow coordinated access for entries to the container. The coordinators are used
to select entries of the correlating container in a coordinator-specific way. With the
FifoCoordinator entries may be selected in the same order as they were initially stored
in the container. For instance, when entries “A”, “B”, and “C” are sequentially inserted
into the container, a retrieval through the FifoCoordinator yields the entries in the same
order “A”, “B”, and “C”. The same container may also contain additional coordinators,
for instance a KeyCoordinator which allows to select the same entries through their
individually unique identifiers. These identifiers must be included as metadata in the
entry objects when entries are written to the space and are called coordination data.
Coordination data is not only used to provide coordinator-relevant metadata for entry
objects, but also to associate entries with coordinators. In this example, the entries
are associated with both coordinators in order to make them accessible through both
of them. When coordinators are bound to a container, they can be either marked as
obligatory or optional. While the former ensures that all entries must be associated
with the coordinator, the latter only makes it possible for entries to be associated with
the coordinator. Entries that are not associated with a specific coordinator may not be
retrieved through it. However, the association can be made automatically by implicit
coordinators. Hence, for a FifoCoordinator, no additional metadata is required to create
the coordination data of an entry.

The basic entry operations that XVSM provides are write, read, and take. The write
operation is used to store entries in containers and, as already mentioned, make them
accessible through coordinators. Containers may be bound to a maximal number of
entries. This could lead to blocking or failing of the write operation depending on the
current number of entries in the container and provided transaction parameters. The
read and take operations select entries in a single container by making use of provided
selectors. Selectors contain coordinator-specific data that are used as parameters for the
selection operation of the coordinator. KeyCoordinators, for instance, require keys to
select entries, which must be provided by KeyCoordinator-specific selectors. In addition
to coordinator-specific data, selectors contain the target entry count of the selection as
well. The selection operation might block, similar to the write operation, or fail if the
requested number of entries is not available for the selection. The concrete behavior in
such a situation depends on the provided timeout and transaction parameter. XVSM
supports concrete timeouts in milliseconds, but also INFINITE, TRY-ONCE, and ZERO

9

2. State of the Art & Related Work

timeouts. With the INFINITE timeout, requests are rescheduled without expiration.
TRY-ONCE, which is also the default timeout of XVSM requests, allows the rescheduling
of requests if the required resources are currently locked. If for instance the entry count
of a read operation with a TRY-ONCE timeout is greater than the amount of entries
stored in the container, the operation is not rescheduled because the entries are not
locked. Finally, the ZERO timeout prevents the rescheduling of requests additionally for
locked resources. If an entry is locked through a take operation in a running transaction,
a further take operation through a different transaction will not be rescheduled and fails
immediately.

The selection operations allow the composition of multiple coordinators in a pipe-and-filter
style [Mon+97]. When multiple selectors are specified, the space consecutively executes
the selection and passes the results on to the next coordinator. This process is repeated
for all specified selectors. Figure 2.2 shows an example with two coordinators filtering
the entries in a series. The FifoCoordinator’s selector only selects the first three stored
entries and the KeyCoordinator checks if one of the three entries is associated with the
provided key. In summary, this composition makes it possible to select an entry by its
key if and only if it is among the first three stored entries remaining in the container.

FifoCoordinator

E1

E2

E3

E4

Selection
Operation

E2E2 KeyCoordinator

E1, E2, E3E1, E2, E3

Figure 2.2: An exemplary Key- and FifoCoordinator visualization with a pipe-and-filter
style.

The space provides even more entry operations such as delete or test. However, these
two operations are based on read and take operations. They are optimizations that use a
different return type. Read and take both return the stored entry objects, while test and
delete simply return an integer representing the number of affected entries.

To ensure consistency, the operations are executed with a transactional context. XVSM
supports a two-layered transactional model with a pessimistic locking implementation.
The outer layer is used for user-controlled, possibly long-running transactions, whose
lifecycles are manually managed. The inner layer is used for the internal operation
execution, which allows to reschedule or rollback failed operations. With the introduction

10

2.3. XVSM Overview & Implementations

of transactions, XVSM may handle concurrent operation execution in a consistent matter.
For instance, in a scenario where multiple workers attempt to take the same entry from
the same container, transactions can ensure that an entry will be only retrieved once. If
a worker crashes midst execution, the previous state of the space can be recovered and
the entry may be available for other workers again.

2.3.2 Architecture

The formal model defines a multi-layered reference architecture for XVSM. The layers
are called CAPI, which stands for “Core Application Programming Interface” and are
numbered from one to four. XVSM is designed such that the lower level CAPI layers
provide their functionality to the upper layers. Thus, with the increasing layer number
the abstraction and functionality increases as well.

CAPI-1 is focused on the basic storage of entries in the space. It only provides methods
to add, remove, or retrieve entries from the space. All operations are non-blocking
and are not transactionally aware. Transactions are introduced in the CAPI-2 layer by
augmenting the entry operations with transactions and providing separate methods to
control the transactions. For instance, lifecycle operations of transactions are introduced
with this CAPI layer to create, commit, or rollback transactions. Through the transaction
support the space implementation gains more functionality, however the space-based
coordination mechanisms are missing, since they are introduced in the CAPI-3 layer.
The flexible coordination mechanism, one of the major features of XVSM, is added with
the CAPI-3 layer to the XVSM architecture. Hence, it is possible to retrieve entries
in a coordinated manner. Below CAPI-3 only a single, given container is supported.
With CAPI-3, the container management is introduced. It is possible to create, remove,
lock, and lookup containers. The final CAPI-4 layer adds the runtime and reschedule
support to XVSM. The lower CAPI layers are non-blocking and return with the following
four status values: OK, NOTOK, LOCKED, and DELAYABLE. The first two values OK and
NOTOK lead to a direct response to the user code, since the result of the dispatched
operation is either successful or unsuccessful. However, if LOCKED or DELAYABLE values
are returned, the operation may be rescheduled depending on the provided operation
timeout.

2.3.3 Extensibility

As its name already implies, XVSM was designed with a focus on extensibility in mind.
The following three design decisions are frequently listed in the context of XVSM’s
extensibility possibilities [Dön11; Bar10]: Custom coordinators, the modular CAPI
architecture and aspects.

With custom coordinator support, domain-specific coordinators can be used in the space
next to built-in coordinators without functional limitations. The space interface was
designed to seamlessly support new coordinators. However, it should be noted that the

11

2. State of the Art & Related Work

implementation complexity depends on the concrete XVSM middleware and may require
deep knowledge of the middleware’s implementation.

Aspects are an AOP feature that is used in XVSM to modify the behavior of the space in
a crosscutting manner [Küh+09]. This allows the modification of particular parts in the
middleware without exchanging whole CAPI layers. XVSM provides fixed interception
points that correspond to join points from AOP and represent the events that can be
augmented by aspects. Aspects may intercept an operation before or after its execution.
Interception before execution allows the aspect to access and modify the arguments used
for the operations. A custom interface allows aspects to even issue own XVSM operations.
Hence, it is possible for an aspect to write the operation’s arguments in a separate
container, for a possible future operation analysis. When operations are intercepted after
execution, their result may be modified.

XVSM provides two different types of aspects: Global and local aspects. Global
aspects can be seen as space aspects that use interception points that affect the space
by making no distinction between concrete containers. Local aspects, in contrast, are
bound to a specific container. They only intercept operations if they are executed on the
corresponding container.

Since aspects play a major role for the extensibility features of XVSM.net as well,
the term “aspect” could be confused. In order to distinguish the aspects from other
aspect-oriented features described in this thesis, we use the term XVSM aspects in
ambiguous cases.

2.3.4 MozartSpaces

MozartSpaces in its second iteration [Bar10; Dön11] is the reference implementation
of XVSM for Java and the most feature complete XVSM implementation up to date.
In this thesis, we will refer to the second version by MozartSpaces if not explicitly
denoted otherwise. Without getting too technical, we will analyze the architecture on a
high level in regard to extensibility.

The MozartSpaces implementation applies the fundamentals of the formal model [Cra10]
and uses many of its concepts. It provides Java interfaces and classes that correspond to
the CAPI-4 and CAPI-3 layers of the formal model. Aspects are supported by providing
several interception points. MozartSpaces comes with a default implementation for
a notification mechanism based on aspects. It uses aspects to write notifications to a
separate notification container after space operations. This container is then used to
notify registered observers.

CAPI-1 and CAPI-2 are integrated into the CAPI-3 layer of the native Java implementa-
tion. This was a decision based on performance considerations. The hypothesis was made
that since the first three CAPI layers are strongly coupled, significant semantical behavior
may be established between CAPI-3 and CAPI-4 [Bar10]. Hence, the layers CAPI-1 and
CAPI-2, defined in the formal model, were not separately implemented. However, Iso-
lation, Operation, and Coordination modules were created to modularize CAPI-3

12

2.3. XVSM Overview & Implementations

instead. The modules used to be instantiated by the dependency injection framework
Guice [5], but in a later revision this was replaced by native Java instantiations.

Coordinators in MozartSpaces have both a Coordinator and a Selector implemen-
tation that are required to store and retrieve entries. The Container implementation
from the Operation module acquires entry locks and delegates entry operations to the
coordinators. It links relevant coordinator selectors together for selection operations and
bootstraps the selection by retrieving the entries through the last selector. The formal
model defined the coordinators as a filter mechanism where every selector represents
individual filtering stages. The filtering always starts with all entries and on every stage
a subset of the previous stage will be selected and may be reordered. [Bar10] compared
this stage-based filtering mechanism in terms of efficiency to a new streaming-based
approach. This alternative approach may significantly reduce the number of checked
entries in some situations. The original approach used a top-down evaluation starting
with all entries in the container and evaluating them stage by stage, comparable to a
pipe-and-filter [Mon+97] architecture. The stream-based approach is rather a bottom-up
evaluation with two selection methods available in Selector implementations: getAll
and getNext. The first method is used to retrieve all entries in regard to the selection
and with respect to the maximum count. The latter method must also respect the
selection and the maximum count but continuously returns entries when it is called
multiple times. The stream-based approach was implemented in MozartSpaces. As the
selectors are responsible to handle the special case if they have no so-called predecessor
selector to fetch entries from and must also ensure the count constraint is not violated,
the implementation of the two selector methods might not be trivial. Unfortunately,
this also leads to code duplication among the selectors. For instance, when comparing1

the methods containing the selection logic of the label and any coordinator selectors
implementation, only 16 out of 72 lines were unique for the label coordinator and 4
lines out of 60 were unique for the any coordinator. Custom coordinators, which are
supported by MozartSpaces, need to incorporate an equivalent implementation in
order to function correctly.

For the persistency integration in MozartSpaces different approaches were discussed
in [Zar12]. An aspect-oriented approach that would allow a loosely coupled integration
was dismissed since required interception points were missing and the integration with
the commit-phase of the transactional model proved to be error-prone. Consequently, an
alternative approach with a tighter integration was followed instead. Figure 2.3 shows
the dependencies to the persistence module. Individual coordinators had to be adjusted
for the persistence integration. Hence, when a new coordinator is created, it needs to
correctly interact with the components from the persistence module in order to function
properly. Although the persistence integration is hardwired, the used persistence provider
is configurable.

1For this comparison, the getAll and getNext methods were extracted from the selectors of the
DefaultLabelCoordinator and DefaultAnyCoordinator implementations. To detect changes,
the POSIX tool diff was used.

13

2. State of the Art & Related Work

DefaultCapi3NativeDefaultCapi3Native

DefaultContainerManagerDefaultContainerManager

DefaultContainerDefaultContainer

<<Interface>>

NativeContainer

<<Interface>>

NativeContainer

<<Interface>>

NativeContainerManager

<<Interface>>

NativeContainerManager

LabelCoordinatorLabelCoordinatorQueueCoordinatorQueueCoordinatorDefaultAnyCoordinatorDefaultAnyCoordinator
LabelCoordinatorQueueCoordinatorDefaultAnyCoordinator

DefaultMzsCoreFactoryDefaultMzsCoreFactory

LabelCoordinatorLabelCoordinatorQueueCoordinatorQueueCoordinatorPersistenceContextPersistenceContext
LabelCoordinatorQueueCoordinatorPersistenceContext

<<Uses>><<Uses>>

<<Uses>><<Uses>>

<<Uses>><<Uses>>

<<Uses>><<Uses>>

Figure 2.3: Overview of persistence dependencies in MozartSpaces.

In the course of the development of MozartSpaces further extensions have been
integrated, such as access control support [CK12], a replication mechanism [Hir12], and a
life cycle management [Wat15]. The replication extension has been implemented through
a facade approach that introduces an additional abstraction layer. Due to an architecture
decision, a possible aspect-based implementation was rejected in favor of the facade
approach. The access control and lifecycle management extensions, on the other hand,
had to be tightly integrated into the core implementation.

2.3.5 XCOSpaces

XCOSpaces [Sch08; Kar09] is a .NET implementation of XVSM. It supports aspects
for predefined extension points to extend its functionality. Similar to MozartSpaces
it supports the execution of custom code before or after space or container operations.
It distinguishes between space and container aspects and supports multiple aspects per
interception point. Aspects represent the main extensibility mechanism of XCOSpaces.
An extension supporting notifications was solely integrated with aspects.

XCOSpaces uses a microkernel that supports contract first design with dynamic binding.
It has a component-oriented architecture that splits the implementation from its contracts.
This allows to make use of a component type by importing its contract without having
knowledge of the concrete implementation. It is even possible to dynamically load the
implementation based on the provided configuration. Thus, the implementation for a
specific contract can be replaced without recompiling the application. XCOSpaces uses
a custom mechanism to load and bind implementation classes to contracts, it uses no

14

2.3. XVSM Overview & Implementations

pre-existing dependency injection framework. It is possible to change the implementation
for the following contracts extending the IXCOService interface:

• IXCOCommunicationService: Contract that is used as an abstraction for the
communication between clients and the space. XCOSpaces supports a low-level
TCP and a windows communication foundation implementation.

• IThreadDispatcher: This contract is used for the thread dispatcher service
that is responsible to manage and execute tasks concurrently.

• ISerializationHelper: The serialization helper service contract is used for
marshalling and unmarshalling of communication messages.

• ILoggerFactory: The logger factory service contract provides an abstraction to
the used logging factory.

The previously listed service contracts are not the only used contracts in XCOSpaces,
but the only service contracts. For instance, the transaction contract ITransaction
is implemented by a single class Transaction and is instantiated directly. Since
XCOSpaces was implemented before the formal XVSM model was developed, it uses
a slightly different architectural approach than the CAPI layers. Hence, there are no
explicit service contracts for the separate CAPI layers.

The coordinators in XCOSpaces use a stage-based filtering approach. When entries
are retrieved from the space, the container iterates over the selectors and continuously
invokes the filtering through the corresponding coordinator. Similar to MozartSpaces,
the coordinator implementation is responsible to enforce the maximum count. Because of
its stage-based filtering approach, it uses a single method to filter entries instead. After
comparing the read method of the LindaCoordinator and LabelCoordinator,
27 out of 86 lines were unique to the LabelCoordinator and 19 out of 78 lines to
the LindaCoordinator. In comparison with MozartSpaces, the stage-based approach
appeared simpler, since it only needs a single method to filter entries, however, the
amount of code duplication of the selection method is comparable to the MozartSpaces
implementations. Other extensions to coordinators, such as the persistency module in
MozartSpaces, are not available to XCOSpaces at the moment, hence spaces may
only utilize in-memory storage.

2.3.6 TinySpaces

TinySpaces is an implementation of XVSM for the .NET Micro Framework that focuses
on embedded devices and limited resource usage [Mar10]. It uses a contract first approach
similar to XCOSpaces but uses CAPI layers from the XVSM formal model. Components
that make up the middleware are interacting through their interface and not directly.
There are contracts for transactions, coordinators, and the runtime, for instance. Instead
of providing a dynamic binding of the implementation after compilation, the contract

15

2. State of the Art & Related Work

implementations are manually, statically bound through facades. This decision was made
due to performance considerations. When TinySpaces is instantiated, the contract
implementations may be passed to the space’s main class. The facades included in
TinySpaces are nested together in order to be supplied as configuration to the space.
Figure 2.4 shows the structure of the facades for the current TinySpaces implementation.
The implementation of the IRuntimeFacade is the outer-most facade that encapsulates
all other facades used to start the space.

<<Interface>>

IRuntimeFacade

<<Interface>>

IRuntimeFacade

<<Interface>>

IAspectFacade

<<Interface>>

IAspectFacade

<<Interface>>

ITransactionFacade

<<Interface>>

ITransactionFacade

<<Interface>>

IContainerFacade

<<Interface>>

IContainerFacade

<<Interface>>

ICoordinationFacade

<<Interface>>

ICoordinationFacade

Figure 2.4: Overview of facade nesting in TinySpaces.

Coordinators in TinySpaces use a similar stage-based filtering approach as XCOSpaces.
It includes implementations for FifoCoordinator and KeyCoordinator. Both
coordinators include logic to handle count constraints from selections. Due to perfor-
mance reasons, the duplication check in the KeyCoordinator does not incorporate
transactional visibility.

2.4 Apache River
River is the current implementation of the Jini [Wal99] architecture by the Apache
Software Foundation. Jini provides conventions that aim to help create a distributed
system with a service-oriented architecture that is dynamic and may easily change over
time. When a client requests access to a Jini provided service, it first needs to find the
lookup service. Depending on the infrastructure this may be either accomplished by
sending a broadcast on the network for dynamic detection, or in case the host running
the lookup service is already known by direct connection. The lookup service specified
in Jini may be used to gain access to arbitrary registered services. Services can be
queried by a pattern matching mechanism equal to the pattern matching mechanism
used in JavaSpaces [Arn99; FAH99], which is similar to tuple matching in the Linda
Tuple Space. Hence, by providing a service template that may contain a unique service
identifier, service types, and attribute sets, services are filtered and matched. Services are
matched with the template if their unique identifier matches, they are compatible with all
provided service types, and all attribute set entries can be matched with attributes defined
in the service. Omitting parts of the template, such as the unique service identifier, as
an example, marks the identifier as a wild card and therefore matches every service’s

16

2.5. GigaSpaces XAP

identifier. The attribute set can be used to distinguish between equivalent or very similar
services. For instance, if you want to make use of a Clock-Service for a specific time zone,
you could specify the time zone in the attribute set. When a service is successfully queried
and requested, a proxy object implementing the service interfaces is downloaded and
may then be used to consume the service’s offered functionality. The proxy object may
communicate with the service by using an arbitrary protocol. This process is transparent
to the client since it only interacts with the interfaces of the service proxy [New07].

The River implementation is designed around its services since Jini is a platform for
service-oriented computing [New07]. It includes a tuple space implementation, called
outrigger, which follows the JavaSpaces specification. Outrigger makes use of a
service for transaction management. Instead of simply including the required code by
itself, it uses the service lookup to gain access to a provided transaction manager. With
this it is possible to replace the service for the transaction management without the need
to update and redistribute the outrigger JavaSpaces implementation. Since services
are leased for a specific time, it is even possible to exchange a service dynamically, for
instance, if a lease is expired and a new service request provides a different service.

2.5 GigaSpaces XAP
XAP (eXtreme Application Platform) is, inter alia, a space-based middleware by Giga-
Spaces Technologies Ltd [6]. Previously only commercial, GigaSpaces offers now an open
source edition of XAP that was used in the following to examine its core architecture
with regard to extensibility and flexibility in version 12.2. Furthermore, we will focus in
this thesis on the space-based middleware aspects of XAP and leave out other features of
XAP that are focused on an application platform. XAP is a Java application that uses the
Spring framework [7] for dependency injection. Hence, it is possible to predetermine the
behavior of the middleware by configuring the used beans. In fact XAP’s documentation
[8] explains how to configure different fundamental parts of the middleware by specifying
different bean implementations in configuration files.

Even though the coordination mechanisms of XAP are not as flexible as those of XVSM
frameworks, it provides different types. It is possible to access entries if their unique
identifiers are known through Id Queries. Template matching is also supported in a
similar fashion to River. The most flexible coordination mechanism of XAP provides an
SQL-like selection language. It allows to specify constraints for the entry properties. For
instance, it is possible to select entries by comparing numeric values of their properties.
It is even possible to use SQL-like GROUP BY clauses and apply aggregation functions
such as SUM or AVG. However, custom composable coordinators, such as XVSM provides,
are not supported.

XAP supports multiple transaction managers that use Spring’s abstraction Platform-
TransactionManager. The transaction manager may be chosen and configured by
using Spring’s configuration system. XAP supports declarative and programmatic usage
of transactions through Spring’s transaction management. This allows the usage of opti-

17

2. State of the Art & Related Work

mistic as well as pessimistic transaction management in XAP. However, to use optimistic
transaction management, in addition to configure the space, the entry types need to be
extended to include a version ID. The version ID is required to detect conflicting changes
from different transactions. Hence, changing from optimistic to pessimistic or vice-versa
is more work than simply updating the configuration, as the entry model needs to be
updated too.

Persistency in XAP is realized through two components, one that is responsible for
initial loading of data and the other for persisting changes in the space. XAP comes
with multiple implementations for the components to support the Hibernate ORM
[9] or NoSQL databases such as Cassandra [10], or Mongo [11] out of the box. To
allow custom persistency endpoints, it is intended in XAP to extend the provided
classes SpaceDataSource and SpaceSynchronizationEndpoint to override their
methods. The subtypes supporting the custom endpoint can then be configured using
Spring’s configuration system.

XAP supports interceptors called Space Filters that allow the execution of custom logic
before or after space operations. Space Filters are configured via Spring’s configuration
system and may therefore be used only for embedded spaces. When multiple Space
Filters are configured, it is possible to specify the order in which they are executed
with an integer defining the priority. It is possible to intercept operations such as read,
update, or write, among others2. When a Space Filter is used to intercept before
a write operation, it may modify the entry before it gets written to the space. The
manipulation of entries before they are written or after they are retrieved from the space,
based on business logic, gives more flexibility to the developer. XAP even allows to access
its space interface from a Space Filter which makes it possible, for instance, to write
additional entries for every write operation. Space Filters provide similar applicability
as XVSM’s aspects, even though they cannot be dynamically registered as aspects in
MozartSpaces.

2.6 Comparison
In Table 2.1 we make a comparison of the modularity and extensibility properties of the
space-based middlewares that we previously analyzed: XAP, River, MozartSpaces,
XCOSpaces, and TinySpaces. The classification of extensibility is not a simple “yes” or
“no” question due to numerous degrees of extensibility. Thus, we use the adaption types
from Section 2.1.3 for classification. The static adaption types hardwired, customizable,
and configurable are abbreviated with S1, S2, and S3, while the dynamic adaption types
tunable and mutable are D1 and D2. The following modules and properties were used for
the classification:

• Storage: The storage layer responsible to retain written entries. An extensible
layer, for instance, is changeable from an in-memory to a persistent storage.

2The full list of possible interception points can be found in the official documentation [8].

18

2.6. Comparison

• Transaction: An extensible transaction layer supports the change of different trans-
action implementations, such as distributed transaction, optimistic or pessimistic
transactions.

• Coordination: The coordination layer is responsible to retrieve entries with
different coordination mechanisms, such as pattern matching or queues.

• Runtime: The runtime is responsible to handle execution and rescheduling of
dispatched operations. It is also responsible for transmitting operations over the
network and the serialization of entries.

• Space Interception: This property is no specific layer, but describes whether it
is possible to modify space operations to write or retrieve entries.

XAP River MozartSpaces XCOSpaces TinySpaces
Storage S3 D1 S3 S1 S2
Transaction S3 D1 S1 S1 S2
Coordination S1 S1 S3 S2 S2
Runtime S1 S1 S2 S3 S2
Interception S3 N/A D2 D2 D2

Table 2.1: Comparison of space-based middleware regarding extensibility properties.

Requirements for the extensibility property are not identical for all frameworks and
modules. For some frameworks, it might be sufficient to provide extensions solely through
hardwired integrations, since the development could be streamlined and the application
could provide a single version with all extensions. For those, S1 could suffice, though, this
is not always the case. Extensions exist for XVSM-based frameworks that are optional
or experimental and might not be sensible to include in the main framework version. For
such cases, the S3 adaption type appears to be the sweet-spot since it allows to exchange
a module but does not require recompilation and access to the code.

Extensibility for the storage layer should be flexible since the requirements to persist
entries might differ among usage scenarios. Providing separate framework versions with
different storage layers might be cumbersome and requires maintenance. Hence, in this
case S3 or better appears to be a sensible choice. River is the most flexible framework
for this module, however, XAP and MozartSpaces also provide flexible persistence
provider integration.

An extensible transaction layer might make sense for situations where transaction imple-
mentations with different performance characteristics could be used. For instance, in some
scenarios an optimistic transaction handling could improve the system’s performance. In
another scenario it could make sense to integrate the transaction system with an existing
one, such as a distributed transaction system, for instance. Consequently, S3 provides

19

2. State of the Art & Related Work

sufficient flexibility. River is again the most flexible in this case, but XAP also provides
a flexible enough transaction system.

Custom and flexible coordinator support is a major advantage of XVSM-based frameworks.
In this case, MozartSpaces is the framework with the most flexible extensibility by
providing S3. When XVSM is used and a custom coordinator with optimizations for
the domain logic is created, S3 should be the minimum adaption type, as otherwise, the
framework must be recompiled to integrate a custom coordinator.

The only framework with a configurable runtime layer is XCOSpaces. It could make
sense in some situations to have such a flexible runtime layer that could be adjusted
for the use case. For instance it could make use of a different rescheduling algorithm
depending on the concrete scenario. However, since almost all of the analyzed frameworks
do not have such a high extensibility level for this module, a rather lower extensibility
level of S2 or even S1 should suffice.

The interception support through aspects is another feature XVSM-based frameworks.
All analyzed XVSM frameworks provide the maximum flexibility by supporting D2.
However, for many scenarios S3 could suffice as well.

XVSM.net targets at least the S3 property for all the mentioned modules. However, it
should also provide more fine-grained modules with the same extensibility property as
well to support easier integration of extensions.

20

CHAPTER 3
Background

After comparing the existing implementations, we describe in this chapter the concepts
and technologies that were used for the development of the new XVSM implementation.
We also explore the reasons for using the mentioned technologies.

3.1 .NET Platform
The .NET Framework is a software development platform from Microsoft. It uses a virtual
machine called Common Language Runtime (CLR) to execute code. The .NET platform
supports multiple programming languages that may even follow different paradigms such
as object-oriented or functional programming. These languages tend to be high level
and are required to be compiled into an intermediate form, which is interpreted and
just-in-time (JIT) compiled by the CLR. The most popular programming language on the
.NET platform according to the TIOBE Index [12] is C#. It is a mainly object-oriented
programming language with several functional programming features, such as lambda
expressions and higher-order functions.

C# and the .NET Platform were chosen for the new XVSM implementation for several
reasons. The existing XVSM implementations for the .NET platform do not support
the extensions that were introduced in the current version of MozartSpaces. However,
the .NET platform remains relevant. Since the .NET platform supports a variety of
programming languages, a .NET implementation of XVSM is desired as it allows a better
integration in other .NET applications. C# was chosen due to its popularity and flexible
programming model.

For the development of XVSM, the standard IDE for C# on Windows VisualStudio
with Resharper [13] was used. Resharper extends VisualStudio with many useful
refactoring and static code analysis tools that helped to speed-up the development. For
the development with Resharper an academic license was provided by its developer.

21

3. Background

For testing the popular unit testing framework NUnit [14] was used along with the
mocking framework NSubstitute [15]. Both are open-source and simplify the test
development. NLog [16] is a modern and fast logging framework that is frequently used
on the .NET platform and therefore was also used for this project.

3.2 Peer Model

The Peer Model is an abstract programming model, introduced in [Küh+13], with a
focus on coordination patterns for concurrency and distributed systems. It separates the
coordination from the application logic and uses a component-based approach to improve
scalability of an evolutionary application. Space containers from space-based computing
are used to define internal stages of the model. The Peer Model is relevant for this thesis
since as a programming model for distributed systems, it contains promising coordination
and synchronization mechanisms that are used for the runtime implementation of the
new XVSM middleware implementation. Thus, we will summarize the concepts relevant
for the runtime implementation from [Küh+13] in the following.

3.2.1 Concepts

Peers are the core elements of the Peer Model. They can be seen as uniquely addressable
(URI) components that can be used for coordination and service execution. Peers provide
two spaces, the peer-in-container (PIC) and peer-out-container (POC). Since the PIC
and POC are spaces, they provide mechanism to store and access entries in a coordinated
way. For a typical peer, entries that are sent to the peer are stored in the PIC, and
processed entries are eventually stored in the POC.

When entries are stored in the PIC, wirings are used to act on them. Wirings are active
parts that can trigger the entry movement between the containers and invoke service
executions. Wirings contain so-called guards that can be seen as pre-condition checks.
For instance, a guard could require at least two entries of a specific type “A”. Thus, the
wiring will only activate if two or more entries of that type are available in the PIC. It
should be noted that this wiring will process the maximum amount of entries that satisfy
its guard. When all conditions of the guard are satisfied, the entries are taken from the
container and the next execution stage is entered. Service calls can be registered on the
wiring that could execute arbitrary business logic on the entries and may even transform,
filter, or add new entries. Finally the action of the wiring is executed to transfer entries
either to a local or remote container. The disposal of entries is also possible, when no
action is provided.

Figure 3.1 shows a peer with a type conversion semantic through its graphical notation.
The peer has one specified wiring (W1) with one guard and one action link. The guard
takes a single entry of type X from the PIC to activate the wiring. The entry is moved
to the ConversionService in order to be converted to a resulting entry of type Y.
Finally, the W1’s action link moves the resulting entry to the peer’s POC.

22

3.2. Peer Model

ConversionPeerConversionPeer

X
1
X
1 W1

ConversionService

Y
1
Y
1

Figure 3.1: An exemplary peer showing a single wiring.

Both guard and action links contain preconditions and may either use read or take
operations. In the graphical notation, take operations are depicted as filled circles, and
read operations as white circles. However, in this thesis only take operations are used.
Peers also may contain sub-peers, as an additional abstraction layer that allow to further
organize the modeled logic. Actions may move entries to the PIC of a sub-peer, where
the next wirings are waiting to process entries.

When entries are written to a peer’s container, it is possible to provide time-to-live TTL
and time-to-start TTS properties. The former property marks an expiration date on
the entry that automatically removes the entry, and the latter hides the entry from the
wirings until the start date is passed. These properties are especially useful for the basic
scheduling implementation for the runtime, since some XVSM operations such as read or
write support timeouts.

3.2.2 Peer Model Implementation

PeerSpace.NET [Rau14] is an implementation of the Peer Model for the .NET platform.
It internally uses the framework Xcoordination Application Space [17], short
AppSpace, as the foundation for the communication between peers. The AppSpace is
based on the space-based computing principles and may be described as an abstraction
layer that leverages Microsoft’s asynchronous programming model Concurrency and
Coordination Runtime (CCR) [18] to distributed systems.

The PeerSpace.NET implementation was developed to provide the Peer Model concepts
with an easy to use API. Since it is also based on the .NET platform and provides
advanced coordination mechanisms, it is suitable for XVSM.net’s preliminary runtime
implementation. Due to features such as TTL and the possibility to transparently
move entries to remote containers, it simplifies the implementation of basic runtime
functionality.

23

3. Background

3.3 Extensibility Platform

The focus of the new XVSM implementation lies on extensibility and flexibility, thus the
choice of the extension platform is important and has far-reaching consequences, since
it would be difficult to switch the underlying extensibility platform. Consequently, we
evaluated several major extensibility and dependency injection frameworks. Popular
dependency injection frameworks for .NET, such as Castle Windsor [19], Ninject
[20], or Spring.net [21] were evaluated at first. Even though their injection mecha-
nisms provide useful features to decouple components for better maintainability, they
lack extensibility properties in comparison with the Managed Extensibility Framework
(MEF) [TBS10]. Dependency injection frameworks are not designed to provide extension
mechanisms for yet unknown functionality [See12]. Thus, this makes them not an ideal
choice in our case, since we want to create a foundation that allows future extensions
that are even unknown at the present.

MEF takes a different approach than dependency injection frameworks, even though
it provides inversion of control mechanisms. MEF was introduced along with version
4 of the .NET Framework. It is an extensibility framework that allows to extend an
existing application by loading and wiring of separate .NET assemblies (DLLs) at run
time. Its component model [TBS10] is based on the following primitives: Export,
ExportDefinition, ComposablePart, ComposablePartDefinition, and Im-
portDefinition.

An ExportDefinition provides meta information of an offered service. When services
are evaluated to be consumed, their ExportDefinitions are used for decision making.
For instance, if multiple services are available for a required serialization contract type,
their ExportDefinitions may be used to decide by non-functional means which
concrete service should be chosen. An Export is instantiated by MEF if the correspond-
ing ExportDefinition object is consumed. In MEF, Exports wrap the concrete
service objects along with the originating ExportDefinition. Analog to Export-
Definitions, ImportDefinitions provide meta information to consume a service.
The constraints on ExportDefinitions may then be used to decide which offered
service should be consumed. ExportDefinitions and ImportDefinitions may
be grouped together as a reusable part in the form of a ComposablePartDefinition.
When all ImportDefinitions of the ComposablePartDefinition are satisfied, it
may be instantiated as a ComposablePart, which consequently may be used to retrieve
the exports. Figure 3.2 gives an overview of the component model.

An advantage of this approach used by MEF is that the concrete loading of the code
may be deferred until the Exports are instantiated, which according to [TBS10] has
significant performance advantages in contrast to eager loading.

24

3.4. Proxy Framework

ComposablePartDefinitionComposablePartDefinition

ExportExport ExportDefinitionExportDefinition ImportDefinitionImportDefinition

ComposablePartComposablePart

*

1

*

1

1

*

1

*

1

*

1

*

1

*

1

*

*

1

*

1

Figure 3.2: Overview of MEF primitives.

3.4 Proxy Framework

For the development of the plugin framework, which is described in Chapter 5, a proxy
framework was used. Proxy frameworks may be used as a mechanism for aspect-oriented
programming [Kic+97; SP02]. They allow to wrap a regular object with a proxy object
to support interception and modification of its method invocations.

The open-source DynamicProxy [22] library was used, since it provides a simple proxy
implementation that was easily integrated in the plugin framework. The advantage of
the library is that it is able to create the proxy objects while the application is running
and does not require a separate compilation step. According to [22], DynamicProxy is
used by several other .NET libraries, such as Castle Windsor [19], NSubstitute [15],
or previous NHibernate [23] versions.

3.5 Configuration

The .NET framework has an integrated XML-based configuration support, which was the
first choice for the configuration system because of the direct support in VisualStudio.
Unfortunately, it was not possible to use the integrated configuration capabilities, as they
had limitations with the use of config files in library assemblies. The .NET system does
not natively support settings in class libraries, which are the obvious choice for plugin
projects. Additionally, the handling of multiple configuration files, which can be useful
for plugin implementations, proved to be cumbersome with the integrated configuration
system. Therefore, it was decided to use a different configuration solution. In the process
of researching an adequate configuration or serialization library the YAML [BEI09] file
format was found to be an excellent choice. YAML – a recursive acronym for “YAML
Ain’t Markup Language” – is a data serialization language that was designed with the
goals to be human-friendly in regard to reading and writing, but also to work well with
modern programming languages and support a variety of advanced features. Because of
the lightweight format, the integrated datatype support for lists and dictionaries, and
the possibility to use comments, it was decide to use YAML instead of XML or JSON
for the configuration file format. YamlDotNet [24], which is a popular and open source

25

3. Background

C# serialization library with support for YAML, is used for the deserialization of the
configuration files.

26

CHAPTER 4
Requirements

The previous chapters pointed out the motivation for creating a new space-based middle-
ware. Existing XVSM and other space-based middlewares were compared regarding their
extensibility characteristics. In this chapter, we analyze the requirements that serve as
the foundation for the new XVSM implementation.

4.1 Functional Requirements

The formal model [Cra10] describes the requirements for an XVSM middleware. In this
thesis we build a prototypal XVSM implementation with the functionality focus on the
lower CAPI layers 1 to 3.

CAPI layers

The formal model describes four separate CAPI layers. Analogous to MozartSpaces and
TinySpaces, although the modularization of the CAPI layers are followed, the concrete
method signatures and response types are not implemented. Hence, the Hypothesis 1
presented in [Bar10] is followed in the XVSM.net implementation as well. However, the
CAPI-3 layer should be explicitly implemented.

Container

The concept of containers are part of the CAPI-1 layer, as described in the formal model.
It must be possible to create containers with optional or obligatory coordinators, and
of course to destroy them. Containers must provide basic mechanisms to manage the
entry storage, such as add, remove, and retrieve entries. Containers may be bound to a
maximum size of allowed entries.

27

4. Requirements

Transactions

In the formal model, transactions are the fundamental part of the CAPI-2 layer. The
transaction model uses a pessimistic locking mode that eagerly acquires locks on entries to
prevent violating access of concurrently executing transactions. The distinction between
user and sub-transactions may be generalized as nested transactions. The repeatable read
isolation level is the default XVSM isolation level and should therefore be implemented
as such in XVSM.net. In addition, read committed and read uncommitted should be
implemented as well. Hence, XVSM.net’s architectural design should take different
isolation levels into account.

Coordinator

Coordinator support is essential for XVSM middlewares. Basic coordinators defined in the
formal model should be implemented in XVSM.net. The System coordinator is omitted,
since it is omitted in XCOSpaces and TinySpaces as well, and MozartSpaces
provides the Any coordinator as a replacement. As MozartSpaces is the XVSM
reference implementation, the Any coordinator will be implemented instead. The Query
coordinator is omitted as well, since it would exceed the scope of this thesis.

Runtime

Even though the runtime is not the focus of this thesis, a simple runtime implementation
should be provided in order to support basic XVSM functionality. The rescheduling
functionality of the runtime need not be as sophisticated as the implementation presented
in [Dön11] for MozartSpaces. It is sufficient to ensure failed operations are retried
eventually. The runtime should support blocking operations and timeouts. The interface
of the runtime should be based on the MozartSpaces implementation to increase
familiarity among the different platforms.

4.2 Non-functional Requirements
Some of the non-functional requirements emerged from deficiencies of other XVSM
implementations. The biggest focus lies here on the modularity and extensibility properties
of the middleware.

Modularity & Extensibility

Modularity and extensibility are important requirements for the XVSM.net architecture.
The middleware should be designed with these requirements in mind to make the
architecture ready for future changes. The requirements of the core XVSM functionality
should be satisfied by an orchestration of components. Advanced and possible future
features should be accomplished by replacing and adding such components. This should
be possible without the need to recompile the middleware from the source code, but
instead provide the component orchestration before startup or at runtime. Thus, the

28

4.2. Non-functional Requirements

targeted adaption type is either the static configurable adaption type or one of the
dynamic adaption types.

The transaction implementation should be extended to include arbitrarily nested trans-
actions instead of the two-layered transaction system proposed in the formal XVSM
model. This should improve the flexibility of XVSM aspects, even though aspect imple-
mentations are not the focus of this thesis, since they are closely related to the runtime
implementation, which only needs to provide basic XVSM functionality for this thesis.
However, other aspect-based extension mechanisms presented in this thesis also gain more
flexibility by this approach. An advantage of supporting arbitrarily nested transactions
is that extensions can be easier decoupled from implementation details. For instance, an
extension may use its own nested transaction which can be safely rollbacked, which is not
easily possible if it uses a transaction that is shared among other parts of the application.

Simplified Coordinators

Coordinators should be decoupled from the transaction implementation. It should be
possible to create custom coordinators without internal knowledge of the transaction
implementation or other framework internals. Redundancy should be avoided and
extracted where possible. The goal of this requirement is to make the development of
custom coordinators easier and more focused on the coordination logic and less on the
integration with the middleware.

Stability

Similar to other XVSM implementation, XVSM.net should provide a stable implemen-
tation that gracefully communicates failed operations. The framework should stay stable
when the operation execution leads to conflicts that make rescheduling necessary.

Scalability

The CAPI-3 implementation of XVSM.net should provide comparable performance
characteristics as MozartSpaces but should lay its focus on concurrent execution of
space operations. For instance, it should be possible to execute multiple CAPI operations
on the same container at once, which is not possible with MozartSpaces at the moment.

Usability & Documentation

The APIs and contracts designed for the framework should be focused on usability and
should be well documented on the code level. This is important since this framework
should be usable by third party developers that might not have read this thesis. Modern
features of the development platform should be incorporated when designing the contracts.
However, the runtime CAPI layer should be recognizable for developers familiar with
other XVSM implementations.

29

4. Requirements

Testability

Testing is part of the software development process. It is important to provide sufficient
tests that guarantee the functionality of the middleware framework. The architectural
design should respect this requirement and provide an architecture that supports testing
with different abstraction granularity.

30

CHAPTER 5
Plugin Framework Design &

Implementation

In the previous chapter, we have gathered requirements and examined existing technologies.
Built around MEF, we propose a plugin framework, internally named Plugicity, that
will serve as the foundation for XVSM.net. In this chapter the new framework will be
presented with the fundamental concepts that were used and their concrete architectural
design. The chapter concludes with a look at the recomposition support of the plugin
framework.

5.1 Conceptional Core Elements
The plugin framework incorporates different technologies to provide a modular, flexible,
and maintainable programming model. In this section we give an overview of the
elemental structures that were chosen for the plugin framework to meet the requirements.
Implementation-specific details are kept at minimum to provide an informational overview
of the supported features.

Plugins
The primary element of the plugin framework are plugins that fulfill so-called plugin
contracts and can be located in arbitrary assemblies. A plugin may use other
plugins through their respective plugin contracts without having dependencies of
the concrete implementations. Plugins are never directly instantiated from other
plugins, but new instances can be created either by injection or the usage of the
service locator. The plugin framework supports dynamic service locators that may
utilize metadata, applied to plugins, in order to choose from multiple plugins that
implement the same plugin contract. Depending on several factors, which are
covered in Section 5.3, it is possible that the plugin framework creates a separate

31

5. Plugin Framework Design & Implementation

proxy object after a plugin’s instantiation and deploys it instead of the plugin. A
proxy is an object that can be seen as a stand-in replacement for an actual object
that wraps its functionality. The usage of proxy objects instead of the desired
objects is transparent. Since plugins make use of contracts, proxy objects can be
used to wrap method invocations of a plugin without the need to change code in
the caller. With a proxy it is possible for every plugin to support plugin aspects
(see Section 5.7) and recomposition (see Section 5.8) functionality.

Plugin Aspects
Plugin aspects are special plugins that are able to intercept and modify calls of
plugins or plugin parts to manipulate their behavior, without the need to access
and change the original code. Plugin aspects extend the plugin framework with
AOP functionality to execute code before or after method invocations of plugins or
plugin parts. Further, it is possible to manipulate the arguments of the original
method invocation, change the method’s result and even handle possible thrown
exceptions. The rather powerful mechanism was introduced as a tool for developers
to extend or change the behavior of existing plugins.

Plugin Parts
Plugin parts are lightweight sub-components. Due to the performance implications
of instantiating regular plugins, which will be discussed in Section 5.3, the support
of plugin parts was established as a fast and lightweight alternative that still can be
modified and manipulated by plugin aspects. However, plugin parts are provided
through plugin part factories, which are a special kind of plugin. Thus, plugin parts
are no strict replacement for plugins but rather lightweight plugins with different
semantics. Situations that require frequent instantiations benefit from the use of
plugin parts.

5.2 Plugins
The basic elements in the plugin framework are called plugins, which implement plugin
contracts and provide the functionality that the contract guarantees. In this section we
are covering implementation-specific details of the plugins, as well as their concepts and
how they might be used.

Figure 5.1 provides a UML class diagram of the relevant programming structures that
are used for plugins in this plugin framework.

5.2.1 Plugin Contracts

In the plugin framework, a plugin must implement exactly one plugin contract, which is
a C# interface that inherits from the IPlugin marker interface. Signatures defined in
the plugin contracts can be used in other plugins that have no access to the concrete
implementation of the plugin contract. Hence, it is important to design the contracts
with care, as changes in the contracts must be propagated to all plugins that make use of

32

5.2. Plugins

PluginAttributePluginAttribute

+ ContractType : Type{readOnly}
+ PluginName : String
+ PluginVersion : String
+ PreventAOP : Boolean

<<Enumeration>>

InstantiationConstraint

<<Enumeration>>

InstantiationConstraint

InstanceIdRequired
None
Singleton

PluginContractAttributePluginContractAttribute

+ Instantiation : InstantiationConstraint
+ PartFactory : Boolean
+ PreventAOP : Boolean

PluginPlugin PluginIdentifierPluginIdentifier

+ ContractType : Type{readOnly}
+ PluginName : String{readOnly}
+ PluginVersion : String{readOnly}

1

1

1

1

1

1

1

1

<<Interface>>

PluginContract

<<Interface>>

PluginContract
1

*

1

*

<<Interface>>

IPlugin

<<Interface>>

IPlugin

1

0..1

1

0..1

PluginContract and Plugin are meta
elements, that are placeholders for
concrete interfaces and classes

Figure 5.1: UML class diagram of the plugin meta model.

the contracts. Because of the partition of plugins and plugin contracts, they are usually
deployed in separate assemblies. In addition to the method and property signatures, it
is optionally possible to apply a PluginContractAttribute on the plugin contract
interface to influence the behavior of the plugins. This attribute and its possible settings
are presented in more detail in the relevant sections 5.3, 5.6, and 5.7.

5.2.2 Plugin Specification

A plugin is defined in the plugin framework as a C# class that implements a plugin
contract and has a PluginAttribute applied. In Listing 5.1 a simple hello world
example of a plugin HelloWorld and its plugin contract IHelloWorldContract are
given.

This minimalistic plugin definition with the use of a plugin contract and the application
of the PluginAttribute was designed to be sufficient for default usage scenarios, but
it is also possible to customize the plugin definition by providing custom options in the
attribute that are interpreted by the plugin framework. The PluginAttribute defines
the following changeable properties:

• PluginName defines the name of the concrete plugin. By default the simple name
of the implementing class of the plugin is used, but it is also possible to define a
custom name by providing a string.

33

5. Plugin Framework Design & Implementation

• PluginVersion specifies the version of the concrete plugin. If no custom version
is specified as a string, the version “1.0” is used.

• PreventAOP is a boolean property that specifies whether aspect-oriented program-
ming mechanisms are enabled for this concrete plugin or not. It is also possible
to generally disable AOP through the plugin configuration system by setting the
PreventAOP property of the PlugicityConfigContract. The general config-
uration system is presented in Section 5.5. There is even a third option to disable
AOP by specifying it in the plugin contract through its PluginContractAt-
tribute. If any of this three PreventAOP options are set to true, AOP is
disabled for the corresponding plugins.

1 [Plugin]
2 internal class HelloWorld : IHelloWorldContract
3 {
4 public void Hello()
5 {
6 Console.WriteLine("Hello World!");
7 }
8 }
9

10 [PluginContract]
11 public interface IHelloWorldContract : IPlugin
12 {
13 void Hello();
14 }

Listing 5.1: Example code of a plugin and its plugin contract

The readonly property ContractType stores the most specialized plugin contract the
plugin implements. This property is automatically set.

The properties ContractType, PluginName and PluginVersion are additionally
stored and aggregated in the PluginIdentifier class and are accessible as read-only
properties. The class is required to distinguish multiple concrete plugin implementations
that implement the same plugin contract and is used throughout the plugin framework.
When the default PluginAttribute is used without customization, its application
might seem redundant but is still required by the plugin framework. This was designed
to make plugin implementations more easily identifiable for developers.

Even though the only attribute that is a necessity for plugins is the PluginAttribute,
it is recommended to provide custom attributes for plugins if there are multiple plugin
implementations for the same plugin contract, since it simplifies the selection mechanism.
The custom attributes can be simple C# attributes that do not need to extend from a
special attribute and may be used to distinguish between multiple plugin implementations

34

5.3. Plugin Instantiation and Lookup

for the same contract. Consequently, they are not necessarily connected to the plugin
contract, even though this is a useful pattern that can also be applied.

5.3 Plugin Instantiation and Lookup
The plugin framework provides dependency injection and service locator patterns to
instantiate and lookup plugins. The dependency injection mechanisms are the recom-
mended option to instantiate plugins, but because of C# language limitations requiring
constant values in attributes, the service locator approach is also supported to provide a
dynamic alternative.

The default behavior of the plugin framework is to find the concrete plugin matching
a plugin contract. To find all available concrete plugins, it automatically loads all
assemblies from the application directory. However, this mechanism is adjustable through
the configuration system presented in Section 5.5 by customizing the plugin framework’s
general configuration PlugicityConfigContract. It contains the following properties
to adjust the plugin injection mechanism:

• AssemblyPath is the base path the plugin framework uses to detect and load
assemblies. If this property is not set, the plugin framework tries to automatically
detect the base path.

• PluginSelection maps plugin contracts to a list of concrete plugins. The default
behavior of the plugin framework is to automatically map plugin contracts to all
available concrete plugins. With this property it is possible to override this behavior
for specific plugin contracts.

• PluginBlacklist can be used to specify concrete plugins that should be ignored
by the plugin framework.

The dependency injection implementation in the plugin framework is called plugin
injection and provides two different ways to inject plugins: constructor injection and
a form of setter injection here called property injection, which only supports injection
in public C# properties. While both ways provide the same injection functionality,
constructor injection is the more flexible approach, as it allows to directly use the plugins
after injection. If property injection is used instead, it is not possible to access the injected
plugins from within the constructor as the plugins are set right after the constructor was
called.

5.3.1 Property Injection

The property injection implementation allows the injection of plugins in properties of
other plugins, as can be seen in Listing 5.2. This example illustrates the instantiation
and usage of other plugins and therefore uses the hello world example plugin from Listing
5.1.

35

5. Plugin Framework Design & Implementation

For the property injection it is required that the property is readable and writable, has
public visibility, has the InjectPluginAttribute applied and its property type is a
plugin contract, a plugin contract array or IEnumerable<> of plugin contracts. If any
of the previous requirements are violated the injection will fail. Some restrictions, such
as the property visibility are a consequence of the internal usage of MEF, which will be
discussed in Section 5.4, but these restrictions have turned out to be of no significant
relevance for the plugin framework or XVSM implementation. The properties’ public
visibility, for instance, is usually only relevant for internal classes within the plugin
assembly, as other plugins, which typically reside in different assemblies, have no access
to the class anyway and therefore keep the Information Hiding [Boo86] principle among
plugins intact.

1 [Plugin]
2 internal class HelloWorldRunner : IHelloWorldRunner {
3 [InjectPlugin]
4 public IHelloWorldContract SimpleHelloWorld { get; set; }
5

6 public HelloWorldRunner()
7 {
8 // SimpleHelloWorld == null
9 }

10

11 public void RunHelloWorld()
12 {
13 SimpleHelloWorld.Hello();
14 }
15 }

Listing 5.2: Property injection example

5.3.2 Constructor Injection

The mechanism behind the constructor injection is similar to the mechanism of the
property injection in Section 5.3.1. Both mechanisms only differ among each other in
terms of notation and instantiation point of time. We will now have a look at the
differences of constructor injection and property injection:

Instead of properties the constructor parameters are injected and therefore multiple
InjectPluginAttribute may be applied to the parameters. However, the application
of this attribute is optional for constructor injection, as all constructor parameters must
be injectable anyway. It is still possible to apply the attribute to customize the injection
behavior. The concrete customization possibilities are presented in Section 5.3.3.

With constructor injection, plugins are injected before the constructor gets called with
the plugins as arguments, whereas the property injection mechanism injects the plugins

36

5.3. Plugin Instantiation and Lookup

only after the constructor was called. Situations where the injected plugins are used in
the constructor may therefore require constructor injection. In contrast, there are no
situations where property injection may not be replaced by constructor injection. Even
though property injection is less powerful than constructor injection, it was included in
the plugin framework because it leads to simpler code, on some occasions. Listing 5.3
is an implementation of the IHelloWorldRunner interface with constructor injection
and shows a typical constructor injection usage.

1 [Plugin]
2 internal class HelloWorldRunnerCtor : IHelloWorldRunner
3 {
4 private readonly IHelloWorldContract _simpleHelloWorld;
5

6 public HelloWorldRunnerCtor(IHelloWorldContract helloWorld)
7 {
8 // helloWorld != null
9 _simpleHelloWorld = helloWorld;

10 }
11 public void RunHelloWorld()
12 {
13 _simpleHelloWorld.Hello();
14 }
15 }

Listing 5.3: Constructor injection example

5.3.3 Injection Customization

Both injection mechanisms, property injection and constructor injection, provide the
same specific injection customization through the InjectPluginAttribute.

If the injection type is a single plugin contract, the plugin framework tries to find exactly
one matching plugin implementation on default. If more plugins are found, the injection
fails and produces an error, as the plugin framework cannot decide by its own which
plugin it should instantiate. If no plugin was found, it fails too unless the injection is
marked as optional with the InjectPluginAttribute’s Optional property. When
this property is set to true, the injection process will not fail if no fitting plugin was
found.

The Id property of the attribute is used to associate a plugin instance with an identifier.
Hence, the identifier must be unique for all plugin instances with the same plugin contract.
When an identifier is already associated with a plugin instance and used again with the
same plugin contract, the plugin framework will not instantiate a new plugin instance
but instead inject the already associated plugin instance.

37

5. Plugin Framework Design & Implementation

The association of plugin instances to identifiers may be further affected by the Plug-
inContractAttribute of the target plugin contract. With its Instantiation
property, additional instantiation constraints may be specified either to force the usage
of identifiers with the enum constant InstanceIdRequired or limit the instantiations
to a single plugin instance with Singleton. When the InstanceIdRequired con-
straint is applied to the target plugin contract, injections of this plugin contract will
use a default identifier if no custom identifier was specified. This constraint is often
used in this thesis, to provide an uncomplicated way to inject a default plugin instance,
but still keep the plugin flexible enough to support multiple instances. Singleton sets
all injection identifiers that use the plugin contract to the same value. In contrast to
the InstanceIdRequired constraint, the plugin framework produces an error if an
identifier is manually specified for the injection.

If the property type is a collection of plugin contracts, the Optional and Id properties
should be omitted and left on default, as they do not apply to a collection of plugin
contracts. In this version, the plugin framework only supports injecting of multiple
plugins that implement the same plugin contract without further customized semantics.
If a more sophisticated algorithm is required, it is recommended to make use of the plugin
service locator.

5.3.4 Plugin Service Locator

The service locator pattern [KJ04] is a programmatic alternative to the already presented
dependency injection mechanisms. A service locator can be seen as a kind of registry
which returns services. In this plugin framework, plugins correspond to services, hence
the service locator returns plugin instances and thus is called plugin service locator.

The plugin service locator is implemented itself by a plugin through the plugin contract
IPluginServiceLocator and is injected before being used. The plugin contract
contains multiple method signatures to provide a multitude of instantiation options. The
plugin retrieval may be tailored to specific needs by the use of methods with different
selection possibilities. In the following enumeration, an overview of all available retrieval
methods and their selection capabilities for the plugin service locator is given:

M.1 The parameterless generic method to retrieve a single plugin by specifying its plugin
contract as a generic parameter.

M.2 The generic method to retrieve multiple plugins by specifying their plugin contract
as a generic parameter and providing the required plugin cardinality.

M.3 The non-generic method to retrieve multiple plugins by specifying their plugin
contract type as parameter and provide the required plugin cardinality.

M.4 The generic method to retrieve multiple plugins by specifying their plugin contract
with an attribute type as generic parameters, a selection predicate, and the required
plugin cardinality.

38

5.3. Plugin Instantiation and Lookup

M.5 The generic method to retrieve multiple plugins by specifying their plugin contract
as generic parameter and providing a selection predicate and the required plugin
cardinality.

M.6 The non-generic method to retrieve multiple plugins by specifying their plugin
contract type as parameter and providing a selection predicate and the required
plugin cardinality.

The plugin cardinality defines whether the plugin service locator should return an instance
of exactly one plugin, zero or one plugins, or zero or more plugins. The plugin cardinality
should not be confused with the number of plugin instances as the plugin service locator’s
retrieval methods always return at most one instance for every plugin per call.

The methods from M.1 to M.3 may be used for basic plugin retrieval without a custom
selection predicate. Plugins are only filtered by their plugin contract and the given
cardinality. Whereas, the other methods from M.4 to M.6 support a more sophisticated
plugin selection mechanism through predicates.

Method M.4 intensifies the filtering of the plugins in addition to the plugin contract
type filter used in the basic methods. Because of the provided attribute type, the plugin
framework will only select plugins that have an attribute of the specified type applied.
The selection predicate is a function of type a→ bool, of which the single parameter a is
an instance of the generic class MatchWithAttribute<>. It contains an instance of
the plugin’s custom attribute, as well as an instance of the PluginAttribute. The
concrete plugin can be chosen by using the metadata from these attribute instances.
The framework instantiates the plugin or plugins according to the predicate results with
respect to the specified cardinality. A code example of this method invocation is shown
in Listing 5.4.

1 [Plugin]
2 internal class RunnerFactory : IRunnerFactory {
3 [InjectPlugin]
4 public IPluginServiceLocator ServiceLocator { get; set; }
5

6 public IHelloWorldRunner CreateRunner(string name) {
7 return ServiceLocator
8 .GetPlugins<IHelloWorldRunner, RunnerInfoAttribute>(
9 match => match.MetadataAttribute.RunnerName == name

10 , Cardinality.ExactlyOne).First();
11 }
12 }

Listing 5.4: Example of advanced plugin instantiation through the plugin service locator.

In this code example an IRunnerFactory plugin is implemented to return instances
of plugins with the IHelloWorldRunner plugin contract that have a specific name.

39

5. Plugin Framework Design & Implementation

Through the predicate function, the concrete plugin with the matching name of its
RunnerInfoAttribute is picked. The lambda argument match is a generic Match-
WithAttribute<> instance with two properties: MetadataAttribute and Plugi-
nAttribute. The former returns the instance of the custom attribute and the latter
the plugin attribute. Since the used cardinality guarantees that the resulting list of the
GetPlugins method will contain exactly one element, or otherwise an exception is
thrown, the First method is used to pick and return the element. Listing 5.5 shows
an exemplary concrete plugin with the custom RunnerInfoAttribute applied that is
chosen for instantiation by the name “simple”.

1 [Plugin, RunnerInfoAttribute("simple")]
2 internal class SimpleHelloWorldRunner : IHelloWorldRunner {
3 private readonly IHelloWorldContract _simpleHelloWorld;
4

5 public SimpleHelloWorldRunner(IHelloWorldContract
helloWorld) {

6 _simpleHelloWorld = helloWorld;
7 }
8 public void RunHelloWorld() {
9 _simpleHelloWorld.Hello();

10 }
11 }

Listing 5.5: Example of a plugin with a custom attribute used for custom selection.

The methods from M.5 to M.6 are similar to method M.4 as they also use a selection
predicate but they do not prefilter the plugins on the basis of a specific attribute. They
evaluate the predicate with an instance of the non-generic MatchWithAttributes
class that stores beside the plugin attribute all attributes that are applied to the plugin.
The method M.6 is a non-generic version of method M.5 with an additional parameter of
the contract type instead of a generic parameter.

The methods M.3 and M.6 are non-generic variants of the methods M.2 and M.5. Instead
of a generic parameter that defines the concrete plugin contract, the methods provide an
additional regular parameter that is used to dynamically specify the plugin contract as a
C# Type. Thus, the return value of the methods is also non-generic and uses the super
interface IPlugin instead of the concrete plugin contracts. These non-generic variants
are the most flexible selection methods of the plugin service locator, since they can be
used for plugin contracts that were unknown at compilation time.

The internal instantiation mechanism is delegated by the plugin service locator plugin
to the plugin loader plugin through the plugin contract IPluginLoader, which is
discussed in Section 5.4.

Even though the instantiation of a plugin through the plugin service locator requires
more glue code than constructor or property injection, it is a more flexible mechanism,

40

5.4. Plugin Framework Implementation

since it allows to programmatically instantiate plugins and use selection predicates to
choose the correct plugin. However, it is recommended to prefer the injection mechanisms
over the plugin service locator if they are a viable solution.

5.4 Plugin Framework Implementation

In this section we give an overview of the architectural design of the plugin framework
and show how the basic functionality of the plugin mechanism is realized. We show how
we used MEF to detect and instantiate plugins.

The plugin framework supports a bootstrapping mechanism that loads the minimal
required plugins to initialize the plugin framework. The goal of the bootstrapping is to
create the plugin framework container. With this container it is possible to instantiate
the first plugin and, therefore, provide an entry point for the custom application.

5.4.1 Overview

Figure 5.2 depicts internal plugins and their dependencies, which are used in the plugin
framework to provide the presented functionality.

The main plugin of the plugin framework is the IPlugicityContainer, named after
the plugin framework’s internal name plugicity. This plugin is responsible to instantiate
and wire plugins required for the plugin framework. However, the plugin requires working
instances of IConfig and IPluginLoader plugins. The bootstrapping mechanism
used to provide the plugin instances is explained with more detail in Section 5.4.2.

The IConfig plugin, as explained in Section 5.5, is used to access the configuration sys-
tem of the plugin framework and is required for the IPluginLoader plugin. In addition,
the IPluginLoader plugin requires the INamedPluginsRegistry, IProxyMan-
ager, and IPluginAspectRegistry plugins to provide basic functionality. Plugins
that are injected with an identifier, or that have a constraint on their plugin contracts
that forces them to use an identifier, are registered at the INamedPluginsRegistry
plugin. This plugin is used as a storage for already instantiated plugins that are accessible
through their identifier. The IProxyManager plugin is used to create and manage
proxy objects that wrap concrete plugins in order to allow aspect and recomposition
mechanisms. The IPluginAspectRegistry plugin contains a list of all plugin aspects
and the corresponding plugin contracts they target. The IProxyManager depends on
it, to wire plugin aspects to the created proxy objects.

The IRecompositionHandler, which is described in Section 5.8, is instantiated by
the IPlugicityContainer plugin to react on changes in the filesystem to start the
recomposition process. It has a dependency on the IPluginAspectRegistry plugin
to notify the registry of changed plugin aspects because of a recomposition. It also has
further dependencies to the IPluginLoader and IProxyManager to instantiate new
plugins and replace old plugins in the existing proxies.

41

5. Plugin Framework Design & Implementation

IPlugicityContainer

IPluginLoader

IConfig

IRecomposition-
Handler

INamedPlugins-
Registry

IProxyManager

IPluginAspect-
Registry

IPluginService-
Locator

ISharedPlugin-
MemoryRegistry

IProxyManagerIProxyManagerIPluginAspectIProxyManagerIProxyManagerIPluginAspect

Figure 5.2: Architectural overview of the plugin framework.

The IPluginServiceLocator depends on the IPluginLoader to select and in-
stantiate concrete plugins with the specified semantics. This plugin is not necessarily
required for the plugin framework to work, however it increases its functionality and is
included in the core assemblies. The ISharedPluginMemoryRegistry allows shared
state between plugins and is also included in the core assemblies. The plugin and its
mechanisms are explained with more detail in Section 5.7.5.

5.4.2 Bootstrapping

The PlugicityBootstrapper class provides a single method to instantiate a Plugic-
ityContainerConfig object, which can be used to customize the plugin framework
configuration by overriding configurations or providing a custom configuration file path.
The classes involved for the bootstrapping are meant to be used with a fluent style, hence
the PlugicityContainerConfig object provides a method to instantiate the plugin
framework container right after the configuration, as can be seen in the code extract in
Listing 5.6. In this example, the PluginBlacklist setting of the plugin framework’s
main configuration contract PlugicityConfigContract is overwritten.

42

5.4. Plugin Framework Implementation

1 var container =
2 PlugicityBootstrapper.InstantiatePlugicityContainer()
3 .ManualConfig(c =>

c.Overwrite<PlugicityConfigContract>(new
4 {
5 PluginBlacklist = new[] {"MyXYZPlugin"}
6 })).InstantiatePlugicityContainer();
7 var app = container.GetPlugin<MyApplicationPlugin>();

Listing 5.6: Exemplary plugin framework container bootstrapping and instantiation of a
custom plugin.

The plugin framework bootstrapping can be split into three phases. In the first phase
the plugin framework configuration is loaded and interpreted to gather the required
assemblies. In the second phase a separate MEF container is created and provided
with instances of AssemblyCatalog to load the plugin framework core plugins, such
as IConfig, IPluginLoader, and IPlugicityContainer, which are used in the
final bootstrapping phase three. The IPlugicityContainer plugin is initialized
with the other two plugins and the originally provided configuration. It configures
the plugin loader, loads the remaining required plugin framework plugins and binds
them to the naming registry. The plugin loader uses its own MEF container with a
custom ExportProvider that contains more functionality than the bootstrapping
container used earlier. Then, the IProxyManager plugin for creating proxy objects
that are required for plugin aspects, as well as the registry for the plugin aspects
IPluginAspectRegistry and all available plugin aspects are loaded. After the
initialization procedure, the IPlugicityContainer plugin provides a delegation of
GetPlugin<>() invocations to the IPluginLoader plugin, to instantiate custom
plugins.

5.4.3 Plugin Loader

The IPluginLoader plugin is responsible to load and manage plugins through MEF.
During initialization, a MEF directory catalog is used to scan for assemblies that contain
plugins. Since we do not use MEF’s attributes to import or export plugins but use
custom interfaces and attributes, we make use of MEF’s custom convention system with
its RegistrationBuilder class. It allows the plugin framework to select the plugins
through their PluginAttribute and wire the corresponding imports. In addition
we use a custom ExportProvider that extends MEF’s default export provider and
overrides its GetExportsCore() method. MEF supports custom export providers since
they allow a more refined control of the exports. A major part of the export provider’s
responsibilities is the plugin selection. For instance, if a plugin is blacklisted through the
configuration system, the export provider filters the plugin from possible instantiation
candidates.

43

5. Plugin Framework Design & Implementation

5.5 Plugin Configuration

Configuration is still needed for plugins to quickly make adjustments without the need for
recompilation or the creation of own plugins with an almost identical code base. As already
mentioned in Section 3.5, it was decided to create a custom configuration system and not
use the integrated .NET system to provide a more flexible solution. The configuration sys-
tem is implemented by the built-in Config plugin in the Plugicity.Plugin.Config
namespace. The Config plugin implements the IConfig interface and is solely respon-
sible for accessing the configuration.

5.5.1 Configuration Concept

The configuration is structured with config contracts, which are classes that are used
as a container for coherent settings. Such a config contract may be filled by data from
configuration files or manually through code. The config contract must be a specializa-
tion of the AbstractConfigContract class and only contain public properties that
represent the settings. Even though the properties may be of any type, not all types can
be deserialized from a config file. YAML is used as the file format of the configuration file
and it supports primitive datatypes, enumerations and several collections, such as lists
and dictionaries. Config contracts with YAML-incompatible data types are not illegal as
long as the illegal property is not included in the YAML config file. As the configuration
can also be provided programmatically, settings that are incompatible with YAML can
be helpful in certain scenarios. For instance, this allows to programmatically provide a
custom predicate function through the configuration system.

Config contracts were designed for two different usage scenarios: as a settings imple-
mentation that can be accessed from multiple plugins that have access to the config
contract, but also for private plugin configurations that other plugins do not necessarily
need access to.

5.5.2 Configuration Access

The Config plugin is the central point of the configuration system and provides access
to the configuration through config contracts. The first time a specific config contract gets
requested, the Config plugin instantiates an instance of the specific config contract and
looks in the search path for a compatible YAML configuration file that has compatible
elements. If a compatible YAML configuration was found, it gets deserialized and
mapped to the requested config contract. The plugin framework provides a facility to
specify manual, volatile configuration overwrites for the config contracts. When the
plugin framework container gets initialized, it is possible to specify an IManualConfig
instance that contains manual configuration elements to overwrite specific configurations
on a per-setting granularity. Details regarding the creation process of IManualConfig
are covered in Section 5.5.3.

44

5.5. Plugin Configuration

The relevant configuration elements of IManualConfig are applied to the config contract
after the YAML deserialization and mapping have been finished, in order to ensure the
possibility to overwrite the settings.

Finally a clone of the prepared config contract is created by calling the Clone() method
of the AbstractConfigContract to prevent an external modification of the settings.

A visual illustration in form of a UML sequence diagram of the described access mechanism
is given in Figure 5.3.

sd GetConfigContract

: Config: Capi3 : ConfigUtil c : Capi3ConfigContract c2 : Capi3ConfigContract: IManualConfig

GetConfig<Capi3ConfigContract>()

c2

GetConfigClassInstance(Capi3ConfigContract)

c

<<create>>

Clone()

c2

<<create>>

GetConfig(Capi3ConfigContract)

ManualOverwrites

Apply ManualOverwrites on c

Figure 5.3: UML sequence diagram for the first configuration read access of a config
contract with manual overwrite.

5.5.3 Manual Configuration

Through the ManualConfig class it is possible to provide custom volatile settings
that overwrite default or serialized ones. ManualConfig provides multiple overloaded
Overwrite() methods that can be used to specify the custom settings.

The different Overwrite() methods either require the config contract type as a generic
parameter, or its full name as a string in order to map the manual configuration to the
right config contract. The overwritten settings may be either specified in a dictionary
or as an anonymous type. Listing 5.7 gives an example of all possible Overwrite()
methods and their usages.

45

5. Plugin Framework Design & Implementation

1 // typed with anonymous object
2 plugicityConfig.ManualConfig(
3 c => c.Overwrite<HelloWorldConfigContract>(new {Message =

"Hello (configured) World"}));
4

5 // typed with dictionary
6 plugicityConfig.ManualConfig(
7 c =>
8 c.Overwrite<HelloWorldConfigContract>(new

Dictionary<string, object>
9 {

10 {"Message", "Hello (configured) World"}
11 }));
12

13 // dynamic with dictionary
14 plugicityConfig.ManualConfig(
15 c =>

c.Overwrite("XVSM.CodeExamples.HelloWorldConfigContract",
new Dictionary<string, object>

16 {
17 {"Message", "Hello (configured) World"}
18 }));

Listing 5.7: Exemplary programmatical overriding of plugin configurations.

5.6 Plugin Parts

Plugin parts are lightweight components with support for plugin aspects that do not
suffer from instantiation overhead such as regular plugins.

5.6.1 Plugin Parts Concept

Whenever a regular plugin is instantiated, the MEF’s selection algorithm to find the
correct implementation is run. This frequent reevaluation is significantly slower than
the instantiation of simple classes, which internal micro-benchmarks have shown. These
performance implications might make it unfeasible to use plugins for situations where
quick and frequent instantiations are required. The developer then needs to decide early
in development whether the performance implications might be problematic for this
concrete situation or not. The problem is that the advantages of plugins, such as the
support of plugin aspects, might not be very relevant at development time, but shine
later when an existing application may be modified without recompilation. Hence, it
was decided to create another conceptional element, called plugin parts, that should help

46

5.6. Plugin Parts

developers to use the plugin framework without affecting the instantiation performance
too much.

Plugin parts are lightweight sub-components of plugins, which fulfill so-called plugin part
contracts that extend the interface IPluginPart. In contrast to plugins, plugin parts
may not be injected or instantiated through the plugin service locator, but also do not
support the injection of other plugins. Plugin parts are directly instantiated instead by
plugins called plugin part factories that implement special plugin contracts. Plugin parts
instantiated by these plugin part factories fully support plugin aspect mechanisms.

5.6.2 Plugin Part and Plugin Part Factory Specification

Plugin parts are simple objects that do not require to have specific attributes applied
in order to work, in contrast to plugins, however they still must implement a contract
interface that is a subtype of IPluginPart. Plugin part factories are regular plug-
ins implementing plugin contracts with PluginContractAttributes that have the
property PartFactory set to true.

Listing 5.8 gives an example definition of a plugin part and its corresponding plugin part
factory.

1 public interface IActor : IPluginPart {
2 void Run(object[] objects);
3 }
4

5 [PluginContract(PartFactory = true)]
6 public interface IActorFactory : IPlugin {
7 IActor CreateActor();
8 }
9

10 [Plugin]
11 internal class ActorFactory : IActorFactory {
12 public IActor CreateActor() {
13 return new Actor();
14 }
15 }
16

17 internal class Actor : IActor {
18 public void Run(object[] objects) {
19 // Concrete implementation
20 }
21 }

Listing 5.8: Simple example of plugin part instantiation.

47

5. Plugin Framework Design & Implementation

Plugin part factories were designed to be solely used to instantiate plugin parts. Therefore,
methods with return values are required to return single plugin part contract interfaces.
Any other return value will lead to an exception when the plugin part factory is initialized.

5.6.3 Instantiation

Plugin parts are directly instantiated like any other C# class by plugin part factories in
their designated methods. As plugin parts do not support the injection of other plugins,
they depend on regular plugins to satisfy their plugin dependencies. Plugin part factory
plugins are well equipped to handle such situations, as they can easily instantiate or
lookup the required plugins and provide them in the constructor of the plugin part
class. Listing 5.9 shows the instantiation of a plugin part whose plugin dependencies are
provided as arguments in the constructor. Since the factory typically keeps the required
plugins in-memory, instantiations of the plugin part have little overhead.

1 [Plugin]
2 internal class ActorFactory : IActorFactory {
3 private readonly IExecutionContext _context;
4

5 public ActorFactory(IExecutionContext context) {
6 _context = context;
7 }
8 public IActor CreateActor() {
9 return new Actor(_context);

10 }
11 }

Listing 5.9: Plugin part instantiation with plugin dependencies.

5.6.4 Implementation

The integration of plugin parts is possible solely through the provided functionality of
the plugin framework. Plugin parts are implemented through a single plugin aspect (cf.
Section 5.7). The plugin aspect intercepts the methods of the plugin part factories that
return IPluginPart instances. Only the interception after the method invocation that
instantiates the plugin part is relevant for the plugin aspect. The resulting IPluginPart
instance is then wrapped by the proxy manager with a proxy object. This allows the
interception of plugin parts with further plugin aspects.

5.7 Plugin Aspects

Plugin aspects provide mechanisms to transparently intercept and modify the behavior
of plugins or plugin parts. With plugin aspects it is possible to change the arguments of

48

5.7. Plugin Aspects

method calls, change the return value of methods, and even to handle thrown exceptions,
all while being transparent to the caller and callee.

5.7.1 Plugin Aspects Concept

Plugin aspects are bootstrapped as regular plugins that implement the generic interface
IPluginAspect<>, which extends the IPluginAspect plugin contract. The generic
type of the interface specifies the target type that should be intercepted. The target
type is usually a specific plugin or plugin part contract but may be also IPlugin or
IPluginPart interfaces to apply the aspect to multiple targets. In this section the
term target refers to an intercepted instance of the target type, which might be either a
plugin or a plugin part.

Plugin aspects require the application of two attributes: the PluginAttribute, which is
a general plugin requirement, and the PluginAspectAttribute. The latter attribute
is needed to specify a unique aspect id for the plugin aspect.

Through the generic IPluginAspect<> interface, plugin aspects may provide a predi-
cate to select the methods that should be intercepted by their signatures. Since plugin
contracts may have many methods but plugin aspects may only target a few of them, this
selector predicate was introduced to simplify the plugin aspect development. In addition
to the predicate, the interface contains two methods to provide interception points before
and after the corresponding plugin method was called. With this two interception points
it is possible to change the behavior of the target by modifying the arguments, return
values, but also by handling exceptions that might have occurred in the plugin.

It is possible for multiple plugin aspects to be registered on the same target. The target
is then intercepted in a specific order by all the corresponding plugin aspects one by one.
This list of plugin aspects is called aspect chain.

The instantiation and registration of plugin aspects is handled by the plugin framework.
Plugin aspects are only instantiated once and registered to possibly multiple targets.
This leads to a reuse of plugin aspects on calls of different targets.

5.7.2 Interception with Plugin Aspects

The generic IPluginAspect<> interface provides two method signatures that provide
interception points before and after the target’s methods are called.

InterceptBeforeExecution
This method is called before the target’s method is called. The interception method
provides the concrete instance of the intercepted target, a MethodInfo object,
and an array with the original call’s arguments. The MethodInfo class is part of
the .NET reflection support and contains metadata about the called method of the
target. The arguments of the original call are stored in an object array. It is possible
to modify the arguments by simply changing them in the array. Further executed

49

5. Plugin Framework Design & Implementation

aspects in the same chain will be called with the modified arguments and have
no access to the original arguments anymore. After the code of the interception
method was executed, the plugin framework will continue with calling the aspect
chain and finally calling the original target, unless an exception has occurred. In
the case of an exception, the exception will be escalated and the target will not
be called at all. Further aspect methods aspect methods that should have been
executed before the target will be skipped as well.

InterceptAfterExecution
After the method of the target was called and either returned normally or stopped
prematurely because of a thrown exception, this method is called to handle the
result or the thrown exception. The signature of the interception method contains
the same parameters as the InterceptBeforeExecution method with the
addition of the following two: an object which contains the result of the target, and
an Exception object. The exception object contains the instance of the thrown
exception, if one was thrown at all. In contrast to the other interception method,
this method also provides a return type, which may include the resulting object and
a directive that specifies how the exception should be handled if one was thrown.
The directive may be set to PostponeHandling to leave the exception handling
to other aspects in the aspect chain or escalate the exception to the caller if the
last aspect in the aspect chain uses this directive. With the DropException
directive the thrown exception will be skipped. Further executions of the aspect
chain and the original caller of the target will not be notified about the exception.
The EscalateException directive aborts the execution of the aspect chain right
away and re-throws the exception to notify and leave the handling to the caller.

The IPluginAspect<> interface provides the signature of the readonly property Meth-
odSelector, which is a C# Predicate with MethodInfo as parameter. This property
is used to select the concrete methods of the targets that should be intercepted. Hence,
the Predicate will be called for every method of the target. The MethodInfo parameter
may be used to decide which methods should be intercepted. An example implementation
of the MethodSelector property is shown in Listing 5.10, which excludes all methods
that are not named “Hello”.

1 public Predicate<MethodInfo> MethodSelector
2 {
3 get { return m => m.Name == "Hello"; }
4 }

Listing 5.10: Method selection in a plugin aspect.

5.7.3 Execution Order

The plugin aspects that are contained in a single aspect chain can be sorted and executed
in a custom order. The sorting details are specified in the PluginAspectsConfig-

50

5.7. Plugin Aspects

Contract, which provides two properties:

OrderedAspectIds
With this property it is possible to manually specify a list with plugin aspect
identifiers in the favored order for target types. Plugin aspects whose identifiers
have a lower index are then called before ones with a higher index. Unknown
plugin aspects are inserted in alphanumeric order after the specified plugin aspects.
Aspect chains of unspecified target types are also sorted in alphanumeric order.

AspectIdsComparer
If the manual sorting is not powerful enough, it is possible with this property to
specify a custom comparer object of type IComparer<IPluginAspect>. With
a custom comparer object, an individual sorting is possible, which is depending on
the available aspects and not on a static configuration.

If no custom sorting mechanism is used, an alphanumeric sorting based on the plugin
aspect identifiers is applied instead. The order in which the plugin aspects are organized
in the aspect chains define the execution order of the plugin aspects’ interception
methods. The before methods are executed in an ascending order and the after methods
in descending order.

5.7.4 Instantiation

As previously mentioned, plugin aspect instances may be shared across different targets.
This is the result of a performance optimization, which was integrated because of the fact
that plugin parts are also possible targets besides regular plugins. As plugin parts are
lightweight and possible short-lived elements, it is essential that the creation process of
plugin parts should not be delayed because of plugin aspects. The use of separate plugin
aspects for every instantiated plugin part would have negated the elemental concept
behind plugin parts because of the instantiation overhead of plugin aspects. Plugin
aspects are plugins and therefore share the required instantiation computations of regular
plugins. This led to the decision to share plugin aspect instances with different targets.

However, the sharing of plugin aspect instances may affect the way individual plugin
aspects are implemented when they are stateful. As every intercepted call provides the
target’s object, it is possible to manually manage the state by using the target’s object
as an identifier in a dictionary with separate objects that hold the individual states of
the plugin aspect.

5.7.5 Shared Memory of Plugin Aspects

Even though plugin aspects have access to the target with the intercepted method,
its calling parameters and return value, they have no direct access to previously used
parameters or calculated return values of other plugins or plugin parts. Accessing such

51

5. Plugin Framework Design & Implementation

previously used elements with additional plugin aspects is trivial, however, transferring
the data from one plugin aspect to another is more difficult. As plugin aspects already
support the modification of method parameters, the obvious approach would have been
to use the method parameters to transfer the elements, but this leads to several issues.
C# is a static programming language, therefore method parameters cannot be easily
added at runtime and would require byte-code manipulation. If the elements should
be transferred along the execution path of multiple plugins, then all involved classes
were subject to byte-code manipulation as the parameters must be passed along. If the
elements should be transferred to a plugin aspect which is not in the execution chain
of the former plugin aspect, transferring through the parameters is not feasible. This
issue has an impact on the power of plugin aspects, as it would not allow plugin aspects
on independent parts of systems to have access to a shared state with other plugin
aspects. Hence, a different approach with a central registry was followed. The plugin
contract ISharedPluginMemoryRegistry with its default implementation provides
a convenient access to a data registry. The ISharedPluginMemoryRegistry plugin
contract has the InstanceIdRequired instantiation constraint to guarantee that the
same instance of the ISharedPluginMemoryRegistry plugin will be injected on
default. Figure 5.4 depicts the interfaces that are used for the registry.

<<Interface>>

IPlugin

<<Interface>>

IPlugin

<<Interface>>

ISharedPluginMemoryRegistry

<<Interface>>

ISharedPluginMemoryRegistry

+ AssociateMemoryWithSubId(originalId : MemoryId, subId : MemoryId)
: ISharedPluginMemory
+ GetMemory(id : MemoryId) : ISharedPluginMemory
+ RegisterMemory(id : MemoryId, data : Object) : ISharedPluginMemory

<<Interface>>

ISharedPluginMemory

<<Interface>>

ISharedPluginMemory

+ Data : Object
+ OriginalId : MemoryId

<<Interface>>

IDisposable

<<Interface>>

IDisposable

+ Dispose()

MemoryIdMemoryId

+ Id : String
+ NameSpace : Type

Figure 5.4: UML Class Diagram of Shared Plugin Memory Interfaces

The ISharedPluginMemoryRegistry interface provides the method signature Get-
Memory to retrieve an ISharedPluginMemory instance from the registry by providing
a memory identifier through MemoryIdentifier. A memory identifier consists of
a textual identifier and an optional type. The latter is used to organize memory in-
stances in namespaces. Hence, it is recommended to use the plugin contract type of
the plugin that uses the shared plugin memory. Before the data can be retrieved it
must have been registered first, which is possible through the RegisterMemory method
signature. The method stores an arbitrary object in the registry and associates it to
the additionally specified memory identifier for efficient lookup functionality through

52

5.8. Recomposition

the GetMemory method. Both method signatures return an instance of the interface
ISharedPluginMemory, which encapsulates the data and the memory identifier that
were specified in the RegisterMemory method. One might notice the absence of a
method signature in the ISharedPluginMemoryRegistry interface to unregister
data, however, the ISharedPluginMemory interface is a specialization of the C#
IDisposable interface and therefore must provide a Dispose method that should
be called to get rid of the ISharedPluginMemory instance. The remaining Asso-
ciateMemoryWithSubId method signature of ISharedPluginMemoryRegistry
is used to specify a sub-memory identifier in addition to the previously associated orig-
inal memory identifier for the same memory instance. The GetMemory method will
return the same ISharedPluginMemory instance for the sub-memory identifier as it
would for the original memory identifier. For every associated sub-memory identifier the
corresponding ISharedPluginMemory instance must be separately disposed before
the original instance can be disposed. This design decision might seem uncomfortable
for development but it ensures a dedicated lifetime handling of the shared memory in
order to help prevent memory leaks and access of obsolete memory. Without a concrete
example, the mechanism to associate sub-memory identifiers might seem unmotivated,
however, it was introduced due to requirements resulting from XVSM’s request context
feature implementation, which is discussed in Section 6.4.3.

5.7.6 Programmatic Target Selection

The presented mechanism to provide plugin aspects for plugins (or plugin parts) either
requires to directly target the concrete contract or use the general IPlugin or IPlug-
inPart interfaces. However, if certain plugins with different or even unknown contract
should be intercepted, a more refined selection mechanism is required. To solve this, a
programmatic target selection mechanism is available through the PluginSelector
property of the generic IPluginAspect interface. It is a property that requires a
boolean selection function that decides whether a plugin or plugin part should be used as
a target type for the aspect. It provides two parameters, the type and its plugin contract
attribute if available.

5.8 Recomposition

The plugin framework provides support to change the program code at runtime without
requiring a restart of the application. This feature is called recomposition in the plugin
framework and is a type of dynamic software update (DSU) [HN05]. It supports the
dynamic adding, removal and replacement of plugins and plugin aspects.

5.8.1 Controlling Recomposition

At the moment recomposition may only be bootstrapped by adding or removing assemblies
from the plugin directory. This leads to a re-evaluation of the available plugins and

53

5. Plugin Framework Design & Implementation

starts the recomposition process. The plugin framework provides hooks to control the
recomposition process with the IRecompositionHandler plugin.

The plugin provides a registrable event OnPluginsChanged that is fired when plugins
are added or removed. The event includes the plugin attributes of the changed plugins
in separate lists for added and removed plugins. It allows to provide a mechanism to
programmatically decide when the recomposition should be started. For instance, an
application might first finish open requests and block or delay new requests until the
recomposition is finished. When the application decides the recomposition should be
started, the RecomposePlugins() method of the IRecompositionHandler plugin
must be executed in order to start the recomposition. When the recomposition is finished,
the plugin provides a notification through a separate event on its registered event handlers.

1 [Plugin]
2 class RequestHandler : IRequestHandler {
3 private readonly ReaderWriterLockSlim _lock = new

ReaderWriterLockSlim(LockRecursionPolicy.NoRecursion);
4

5 public RequestHandler(IRecompositionHandler handler) {
6 handler.OnRecompositionStarted +=
7 (s, e) => _lock.EnterWriteLock();
8 handler.OnRecompositionFinished +=
9 (s, e) => _lock.ExitWriteLock();

10 handler.OnPluginsChanged +=
11 (s, e) => handler.RecomposePlugins();
12 }
13

14 public void Handle(object request) {
15 _lock.EnterReadLock();
16 try {
17 // execute request
18 } finally {
19 _lock.ExitReadLock();
20 }
21 }
22 }

Listing 5.11: Plugin that controls the recomposition while queuing incoming requests.

Arbitrary plugins are able to inject the IRecompositionHandler plugin and register
for the events. Listing 5.11 shows an example plugin that queues incoming requests
while the recomposition is active. The plugin uses a ReaderWriteLockSlim to queue
incoming requests until the recomposition is finished and the exclusive write lock is
released.

54

5.8. Recomposition

5.8.2 Implementation

Recomposition is an optional feature of the plugin framework. It must be explicitly enabled
by setting the Recomposition property of the plugin framework’s main configuration
contract to true. The IRecompositionHandler plugin is responsible to handle the
recomposition lifecycle. It listens on an event handler of the IPluginLoader plugin
to detect when the available plugins have changed. The IPluginLoader uses MEF’s
functionality via a DirectoryCatalog to react on changes of the plugin assemblies
on the file system. Through the information passed to the IPluginLoader it is able
to detect which plugins were added and which were removed. This information is
then passed to the IRecompositionHandler through the previously mentioned event.
After receiving this information, the IRecompositionHandler notifies its registered
listeners through the OnPluginsChanged event and stores the information for a future
recomposition.

When the RecomposePlugins method is called and the recomposition is started, the
IRecompositionHandler executes the following steps:

1. Notify the registered listeners that the recomposition has started.

2. Instruct the plugin loader to load the new plugins and mark the removed plugins
as deleted.

3. Instantiate new plugins and migrate existing instances through their proxy objects.

4. Update the registered plugin aspects through the proxy objects.

5. Notify the registered listeners that the recomposition is finished.

Unfortunately, the recomposition process has a few limitations at the moment. It is
not possible to exchange plugin implementations of plugins that were injected with
a cardinality higher than 1. For instance, when an IEnumerable<IMyPlugin> of
plugins are injected, their instances are not replaced. The plugin framework would have
to exchange the IEnumerable<> instance, or create a proxy for it too. However, at
the moment the only workaround is to programmatically change the IEnumerable<>
instance during the recomposition.

Plugin parts suffer from a similar issue that prevents them from being automatically
exchanged with newer version. Even though plugin parts could be exchanged in theory,
due to their usage of proxy objects, it is unfeasible from a performance perspective. It
would be required to keep a list of all plugin parts in order to change their instances, but
such a list would negate the idea and benefit of plugin parts, as short-lived and cheap
instances.

Another limitation of the recomposition mechanism is that the removed plugins still stay
in memory. The problem is that the .NET platform does not allow to unload specific
assemblies from the AppDomain at the moment [25]. Nevertheless, it would be possible

55

5. Plugin Framework Design & Implementation

to create a new AppDomain, load all required assemblies from the new AppDomain,
and destroy the old AppDomain. However, this approach could be followed in a future
version of the plugin framework, if it is needed.

56

CHAPTER 6
Plugin-Based XVSM Design &

Implementation

The plugin framework that was presented in the previous chapter is the base for the
XVSM.net implementation. This chapter begins with an architectural overview and
continues with an in-depth look at the main components of the space-based framework
and how they were designed in accordance with the plugin framework. The chapter
concludes with illustrations on how XVSM.net can be used from a developer’s point of
view.

6.1 Architectural Overview

XVSM.net is organized in over forty separate Visual Studio projects, which compile
to individual assemblies. To get a better understanding of XVSM.net we will take a
quick glance at all relevant projects. The projects can be grouped into the following four
categories:

1. Contract projects contain Plugin and PluginPart contracts with associated types,
such as interfaces, classes, attributes, structs or enums. These projects do not
contain elements with business logic code unless they are used to ensure valid usage
of the contracts, or to provide helper functionality through extension methods. It is
also possible to include configuration contracts and files in these projects to provide
a configuration which can be used by multiple Plugins and PluginParts. Contract
projects may depend on other contract projects and extend or use their contract
interfaces or associated types, but they must not depend on other types of projects.

The names of contract projects are prepended with “XVSM.Contract”.

57

6. Plugin-Based XVSM Design & Implementation

2. Plugin projects contain the business logic of XVSM.net and therefore depend
on at least one contract project to implement one or more Plugin or PluginPart
contracts. These projects are not restricted, such as contract projects, in terms
of functionality or behavior, but should only contain coherent elements regarding
the business logic. Similar to contract projects, plugin projects may provide
configuration capabilities as well, but the configuration contracts must be bound to
Plugins in order to be used. In addition to implementations of contract projects,
plugin projects may use other injected Plugin and PluginPart implementations
through their corresponding contracts.
The names of plugin projects are prepended with “XVSM.Plugin”.

3. Utility projects are mixed projects that are required, in addition to contract
and plugin projects, to run XVSM.net. Some projects are required on startup
while others may be used optionally by a client. Utility projects do not include
Plugins, PluginParts or the corresponding contracts, as these elements are located
in contract and plugin projects.
The names of the projects start with “XVSM” but do not overlap with the naming
guideline of the contract or plugin projects.

4. Supporting projects are additional projects that are included in the Visual-
Studio solution for testing and documentation but, as they do not provide crucial
functionality for the space-based framework, are not covered any further in this
thesis.

In the following, we are going to take a closer look at the concrete projects in the
respective category.

6.1.1 Contract Project Instances

Figure 6.1 illustrates all used contract projects with their mutual dependencies. In the
following, we will give a simple overview of the individual contract projects.

XVSM.Contract.Core includes essential XVSM elements that all other XVSM con-
tract projects directly or indirectly depend on. IXvsmCore is a plugin contract,
which acts as the framework’s API endpoint, and can be used to issue XVSM
requests and handle their results. With IXvsmCore it is possible to access an
implementation of the ICapi interface, which provides method signatures that
developers should be familiar with. Capi stands for Core Application Programming
Interface and was established in the formal model [Cra10]. The Entry class, which
contains the entry data and its corresponding coordination data, is located in
the project along other XVSM-related dependencies of ICapi, such as ITrans-
actionReference or IContainerReference, which are interfaces that repre-
sent references to XVSM elements but are solely used for an external representation.

58

6.1. Architectural Overview

XVSM.Contract.InternalCore
XVSM.Contract.RequestContext-

Registry

XVSM.Contract.Transaction.Pessimistic-
Locking

XVSM.Contract.Capi3

XVSM.Contract.Core

XVSM.Contract.Transaction XVSM.Contract.Coordinator

XVSM.Contract.Container

XVSM.Contract.Runtime

Figure 6.1: Contract projects dependencies.

Internally used references are located in the XVSM.Contract.InternalCore
contract project.
IRequestContext and the other elements in the sub-namespace RequestCon-
text, such as the plugin contract IRequestContextFactory, are used to
provide a data container that is shared throughout an XVSM request.
The coordination sub-namespace is used by concrete coordination implementations
such as custom coordinators or the default coordinators located in the XVSM.Stan-
dardCoordinators project.

XVSM.Contract.Runtime provides the contracts that are relevant for the XVSM
Core Processor (XP) as described in [Cra10]. ICapiService is a plugin con-
tract that is used for arbitrary Capi requests such as Read- or Write-Entries.
ICapiServiceMapper is used to lookup the correct ICapiService plugin
corresponding to the concrete request. IRequestResponseHandler manages
incoming requests, invokes the lookup and execution of the CAPI services through
the ICapiServiceExecutor and maps the service result to the correct response
instance.

XVSM.Contract.RequestContextRegistry is a contract project that was designed
to be used throughout several XVSM.net plugins and therefore directly depends
on XVSM.Contract.InternalCore. It contains the plugin contract of IRe-
questContextRegistry, which is used to register and lookup instances of
IRequestContext. Section 6.4.3 gives more details about its mechanism.

XVSM.Contract.InternalCore provides basic internal XVSM elements that are not
needed by the client and therefore not included in the XVSM.Contract.Core
project. The only plugin contracts that are included in the project are IXvsm-
ReferenceFactory and IEntryFactory. The former can be used to create

59

6. Plugin-Based XVSM Design & Implementation

internal references to address elements in the space. External references such as
ITransactionReference and IContainerReference need to be remapped
to instances of IXvsmReference in order to be usable for the core processor.

CoreEntry is the internal representation of Entry, which includes, additionally
to the entry data and the coordination data, the internal reference of the entry
stored in IEntryReference. The latter plugin contract IEntryFactory is
used to create CoreEntry instances. The specified IEntryReference interface
was used instead of the more general IXvsmReference for easier and clearer
custom coordinator implementations.

XVSM.Contract.Transaction contains abstract transaction-related elements, such
as the ITransaction plugin part contract with its supported lifecycle operations
commit and rollback. Transactions are managed and can be retrieved through plugins
that implement the ITransactionRegistry plugin contract. The ITransac-
tionFactory plugin contract provides a method to create a new transaction by
providing the space URI and the desired isolation level.

XVSM.Contract.Transaction.PessimisticLocking includes the contracts used to
realize the pessimistic transaction implementation in XVSM.net. Hence, plugin
contracts such as ILockListManager to handle the locked resources, as well as
IIsolationLevelHandler, which supports separate plugins for isolation level
handling, and the IIsolationLevelRegistry that returns the concrete plugin
for a provided isolation level, are included in this project.

XVSM.Contract.Coordinator provides all coordinator-related elements that are rel-
evant for coordinator development. It contains the ICoordinator plugin part
contract, which defines the basic functionality that a coordinator must support,
but also provides basic attributes such as the CoordinatorAttribute that is
used to provide meta information about the coordinator implementation. Coordi-
nators are instantiated through plugins with the ICoordinatorFactory plugin
contract, which wraps the concrete coordinators with plugin parts of the IUni-
versalCoordinator plugin part contract. The latter plugin parts are used to
provide a non-generic coordinator interface and make use of the ICoordination-
ContextFactory during coordination operations to provide context objects to
the concrete ICoordinator plugin parts. The last plugin contract of this project
is the IImplicitCoordinationDataFactory plugin contract. It is used by
containers to automatically create coordination data for supported coordinators.

XVSM.Contract.Container contains the contracts used to manage containers and
entries. Hence contracts for the IContainer plugin part as well as the IEntryS-
torage are contained in this project. The IContainerFactory and ICon-
tainerRegistry plugin contracts to instantiate and register container plugin
parts are also included in this project.

60

6.1. Architectural Overview

XVSM.Contract.Capi3 provides access to the CAPI-3 layer representation of XVSM-
.net. It most notably contains the interface provided by the ICapi3 plugin
contract with the CAPI-3 operation result classes. However, the ISelectionMan-
ager plugin contract is included as well, since its Select method has dependencies
on transactions as well as coordinations contract projects. The ISelectionMan-
ager is used to wire the coordinators and orchestrate the entry selection. The
ICoordinationLockHandler plugin contract is used to manage general locks
for the coordinators per operation.

6.1.2 Plugin Project Instances

Figure 6.2 illustrates the XVSM.net architecture from the plugin framework’s point
of view. This illustration contains all used regular plugin contracts (blue boxes) and
plugin part contracts (green boxes). The plugin contracts of the plugin part contracts’
factory plugins are omitted for a simpler visualization. Both solid and dashed directed
blue associations denote the dependencies among plugin or plugin part contracts, as the
target contract is directly used by the default implementation of the source contract.
The solid directed blue and green associations stand for the control flow of Capi Take
and Write operations between characteristic plugins and plugin parts. The gray Client
box denotes the client code from developers that use XVSM.net and interact with it
through the IXVSMCore plugin contract. While the blue associations stand for calling
plugins, the green associations indicate that a result will be returned from the called
plugin or plugin part. Additional plugins that are provided by the plugin framework
and used in the plugin implementation are not included in this illustration for reasons of
clarity and comprehensibility.

To give a better understanding of XVSM.net’s architecture, we discuss the control flow
of typical space operations.

Container creation

This operation starts by creating a request at the client, which uses the IXvsmCore
plugin to either directly handle the request or transmit it to a remote space, so that it can
be handled there. IXvsmCore creates an open request at the IRequestResponseHan-
dler that is used to correlate requests and responses, and is used to make client requests
synchronous. After that, IXvsmCore forwards the request to the ICapiServiceEx-
ecutor plugin. The ICapiServiceExecutor uses the ICapiServiceMapper to
lookup the ICapiService plugin responsible to handle the container creation operation
request and issues the execution.

Before the container operation can be forwarded to the ICapi3 plugin, depending
on whether a transaction was provided, a transaction is looked up or newly created
through the ITransactionRegistry and ITransactionFactory plugins. In case
of a provided transaction, a sub-transaction is created and supplied to ICapi3’s create

61

6. Plugin-Based XVSM Design & Implementation

ISelection-
Manager

ICoordinator-
Factory

ICapi3

ITransaction-
Registry

ITransaction-
Factory

IIsolation-
LevelRegistry

ILockList-
Manager

IContainer-
Registry

IContainer-
Factory

Client

IXvsmRefer-
enceFactory

IXvsmCore

IRequest-
Response-
Handler

ICapiService-
Mapper

ICapiServiceICapiService

IContainerIContainer

IUniversal-
Coordinator
IUniversal-
Coordinator

IIsolation-
LevelHandler
IIsolation-

LevelHandler

IRequest-
Context-
Registry

ITransactionITransaction

IEntry-
Storage

IEntryFactory

IRequest-
Context-
Factory

ICoordination-
LockHandler

ICapiService-
Executor

ICoordinatorICoordinator

ICoordination-
Context-
Factory

ICoordination-
Context-
Factory

IImplicit-
Coordination-
DataFactory

IImplicit-
Coordination-
DataFactory

XVSM.net

Figure 6.2: Dependency and architectural overview of XVSM.net’s Plugins and Plugin
Parts architecture.

62

6.1. Architectural Overview

container operation with other information from the request, such as the container name,
its used coordinators, and maximum size.

ICapi3 uses the provided transaction for creating the container. This allows the container
to be automatically removed in case of a transactional rollback. It also ensures that no
other container can be created with the same name. The ICoordinationLockHandler
is called as well to create initial locks for the coordinator, which can be used for future entry
operations. After that, it uses the IContainerFactory and IContainerRegistry
to create and register the container.

The newly created IContainer plugin part has access to the IEntryStorage plugin
to store entries in the future. It creates the coordinators specified in the creation request
through the ICoordinatorFactory and stores them to register future written entries.

The goal of the container creation operation is now reached, and the control flow
returns back all the way to the IXvsmCore plugin to resolve the open request of the
IRequestResponseHandler plugin and give control back to the client, which now
should resume execution.

Writing entries

The first part of this operation is very similar to the previously described operation to
create containers, with the major difference that another ICapiService plugin is used.
This plugin is responsible to forward the write operation to the ICapi3 plugin and uses
the IEntryFactory plugin to wrap them in an internal entry representation.

When the ICapi3 plugin is invoked for the write operation, it also creates a sub-
transaction to ensure consistency in case of a rollback. It uses the IContainerRegistry
to lookup the container plugin part the entries should be written to. However, before the
entries can be written, the ICoordinationLockHandler is invoked again to acquire
all relevant coordinator and container locks. If this fails, the write operation is rescheduled
to be executed later. In case it succeeds, the entries are written to the container and
stored with the IEntryStorage plugin. The container automatically adds coordination
data to entries that are missing them if possible.

Analogue to the container creation, since the operation’s goal is reached, the control flow
is given back to the client.

Taking entries

The first part of this operation also does not differ much from the container creation
operation until the ICapi3 plugin is executed to take entries from the container. Like the
other operations, it creates a sub-transaction for consistency and looks up the container
through the IContainerRegistry plugin. It also accesses the ICoordination-
LockHandler to acquire the container and coordinator locks required for this operation.
If this fails, the operation is rescheduled as well. If it is successful, however, the entry

63

6. Plugin-Based XVSM Design & Implementation

references are selected through the ISelectionManager plugin. The ISelection-
Manager orchestrates and uses the IUniversalCoordinator plugin parts for the
selection, which internally use the ICoordinator plugin parts. In the end a list of
entry references is returned to the ICapi3 plugin which transactionally acquires them
for the take operation and, if successful, takes them from the IContainer plugin part.

After the entries are successfully taken from the container, and the operation is finished,
the previously mentioned behavior of giving back the control to the client is performed
as well.

6.1.3 Utility Project Instances

There are two utility projects: XVSM and XVSM.StandardCoordinators. The former
contains helper methods to manage an XVSM.net space. It includes the XvsmFactory
class to create a new space, and the SpaceConfig to provide a fluent interface to
configure it.

The latter project contains concrete coordinator classes that are internally mapped to
coordinator plugins. They are used to specify coordinators when creating containers,
provide coordination data when writing new entries, or specifying selection semantics by
a coordinator-specific selector.

Listing 6.1 gives an example on how to use these classes in order to start a space, create
a container, and write and take entries.

1 using (var space = XvsmFactory.CreateSpace()
2 .ConfigFileBasePath("myConfigLocation")
3 .InstantiateSpace()) {
4 var c1 = space.Capi.CreateContainer(
5 "c1", coordinators: new []{new FifoCoordinator(true)});
6

7 var entry1 = new Entry("e1",
FifoCoordinator.NewCoordinationData());

8 var entry2 = new Entry("e2",
FifoCoordinator.NewCoordinationData());

9

10 space.Capi.Write(new [] {entry1, entry2}, c1);
11

12 space.Capi.Take<string>(c1, new[]
{FifoCoordinator.NewSelector(2)});

13 }

Listing 6.1: Example showing basic XVSM.net usage.

In the following sections we are going to illustrate individual parts of Figure 6.2 to give a
better understanding of the behavior of the involved plugins and plugin parts.

64

6.2. Transactions

6.2 Transactions

In this section we are going to take a deeper look at the transactional model of XVSM and
the new concepts and implementation. Figure 6.3 shows the relevant plugin contracts of
the transaction mechanism. ITransactionFactory and ITransactionRegistry
plugins are used to create and lookup ITransaction plugin parts. Transactions,
implemented through the ITransaction plugin part contract, provide a consistent
access on space references and allow to specify actions that are executed on specific events
in the lifecycle of the transaction. For instance, it is possible to provide a reference such
as xvsm://localhost/c1/xyz and acquire a write lock. The transaction ensures
that no other write lock with the same reference exists, if the acquisition was successful.

The ILockListManager is internally used by the ITransaction plugin part to keep
track on the acquired locks and their types. The logic that decides which kind of lock
should be acquired is contained in the IIsolationLevelHandler plugins, which
can be retrieved through the IIsolationLevelRegistry. The ICoordination-
LockHandler plugin contract makes use of ITransaction for entry and container
operations and, thus, is explained with more detail in Section 6.3.

6.2.1 Transactions in XVSM

Transactions in XVSM are specified in the CAPI-2 layer and are typically used by
operations of the CAPI-3 layer for transactional safety. XVSM’s transactional model is
based on transactions of database theory, and may be described by the ACID properties,
which stand for atomicity, consistency, isolation and durability [BN97]:

Atomicity Operations in a transaction are seen from the outside as a single operation
whose resulting state is becoming visible only after committing. In case of an error
the intermediate changes are not visible and it appears to the outside as if the
operation has not been invoked at all.

Consistency This property guarantees that the state changes of the system will lead
from one consistent state to another consistent state when the transaction commits.
Intermediate states may be inconsistent but if a transaction aborts or rollbacks,
the state will be returned to a previous consistent state.

Isolation Concurrent execution of operations may have an unexpected impact on each
other and could lead to race conditions. Transactions should therefore isolate
the intermediate state changes, so that operations that are running in different
transactions are only applied to consistent states or intermediate states of their
own transaction.

Durability After a transaction has been committed, this property guarantees that the
changes of the transaction are permanent.

65

6. Plugin-Based XVSM Design & Implementation

ISelection-
Manager

ICoordinator-
Factory

ICapi3

ITransaction-
Registry

ITransaction-
Factory

IIsolation-
LevelRegistry

ILockList-
Manager

IContainer-
Registry

IContainer-
Factory

Client

IXvsmRefer-
enceFactory

IXvsmCore

IRequest-
Response-
Handler

ICapiService-
Mapper

ICapiServiceICapiService

IContainerIContainer

IUniversal-
Coordinator
IUniversal-
Coordinator

IIsolation-
LevelHandler
IIsolation-

LevelHandler

IRequest-
Context-
Registry

ITransactionITransaction

IEntry-
Storage

IEntryFactory

IRequest-
Context-
Factory

ICoordination-
LockHandler

ICapiService-
Executor

ICoordinatorICoordinator

ICoordination-
Context-
Factory

ICoordination-
Context-
Factory

IImplicit-
Coordination-
DataFactory

IImplicit-
Coordination-
DataFactory

XVSM.net

Figure 6.3: Extract of the dependency and architectural overview showing components
relevant for transactions.

Similar to the JavaSpaces specification [Sun02], XVSM does not strictly demand persis-
tence for the durability property, but rather only requires that committed transactional
changes are permanent as long as the middleware core is running.

The formal model describes two different types of transactions: User transactions and
sub-transactions. User transactions are manually created through the CAPI interface.
They are used to group domain-related CAPI calls in a single transaction. The internal
CAPI operations in XVSM, however, make use of sub-transactions, which are child
transactions that are associated with exactly one user transaction. Sub-transactions may
have many parallel running sibling transactions but they do not support further child
transactions. Hence, the formal model uses nested transactions with a fixed depth of two
layers, which is illustrated in Figure 6.4.

6.2.2 Nested Transactions

XVSM.net does not differentiate between the transaction types like the formal model,
but uses a closed nested transaction model instead that supports unrestricted transaction

66

6.2. Transactions4 XVSM CORE API

Figure 2: User and sub transactions

4.2.2 Locking semantics

There are three main lock types in the model, corresponding to the three basic operations:

• insert lock: These xtrees were newly created and should be invisible for other

transactions.

• delete lock: These xtrees will be deleted, so other transactions that try to access

them should wait until the transaction that holds the locks rollbacks or commits.

This is an exclusive lock, so locks of other transactions must not exist on xtrees

with delete locks.

• read lock: These xtrees are read by one or more transactions and must not be

deleted. An xtree can have read locks of multiple transactions, so this is a shared

lock.

A take operation does not remove the xtrees from the space immediately, it just marks

them as deleted via the delete lock. Read locks can be upgraded to delete locks if no

other reading transaction is present. If an xtree has both an insert lock and a delete

lock, the xtree is invisible to other transactions, as it only temporarily exists within one

transaction. An exclusive read lock can also be set manually on an xtree by invoking a

special CAPI-2 method. This lock has the same meaning as a delete lock when checking

32

Figure 6.4: Transactions in the XVSM formal model [Cra10].

levels to incorporate both transaction types within a single type. User transactions
correspond to top-level transactions in the hierarchy, and sub-transactions correlate with
children of the top-level transactions. Transactions with an even lower level are not
defined in the formal model as they are not required for the core XVSM functionality
but they are possible in XVSM.net. Unrestricted levels provide more flexibility with
finer-grained partial rollbacks and help to further decouple the plugins, as plugins now
may use an additional transaction level and therefore may be unaffected of partial
rollbacks of other plugins. For instance, in MozartSpaces the pre- and post-aspects as
well as the corresponding CAPI-3 operation all make use of the same sub-transaction
instance. If an error occurs in one of the pre-aspects that results in a rollback of the
sub-transaction, previous pre-aspects will be rollbacked as well and the further execution
of the operation will not be possible. With unrestricted transaction levels it is possible
to use an additional layer of child transactions that may be rollbacked without forcing
the whole operation to fail and rollback.

6.2.3 Transaction Contracts

In this sub-section we are taking a look at the concrete contracts of the XVSM.net
transaction model. Even though these contracts were developed with the pessimistic
locking model in mind, they were designed to be still flexible enough for a possible
optimistic locking approach in the future. Hence, in this sub-section we are focusing on

67

6. Plugin-Based XVSM Design & Implementation

the contracts and not on their concrete implementation in plugins and plugin parts (cf.
Section 6.2.8).

ITransaction is the central contract that is used for all transaction-related operations.
Its main purpose is to acquire access to space references and register actions that are
executed on transactional events. This is realized through the IAcquisitionRequest
interface and the TransactionalActions class. ITransactionFactory provides
functionality to create top-level ITransaction instances, which are then registered
in the ITransactionRegistry for lookup purposes. Sub-transactions, on the other
hand, are not created by the ITransactionFactory but instead are instantiated
through a parent ITransaction instance with its CreateSubTransaction method.
Details of the contracts are shown in Figure 6.5. The stereotypes «PluginContract»,
«PluginPartContract», and «Disposable» are used in this chapter to simplify the UML
class diagrams by depicting plugin contracts, plugin part contracts, and IDisposable
interfaces.

<<PluginPartContract, Disposable>>

ITransaction

<<PluginPartContract, Disposable>>

ITransaction

+ Reference : IXvsmReference
+ Finished : bool
+ IsolationLevel : string

+ Commit() : void
+ Rollback() : void
+ PrepareAcquisition() : IAcquisitionRequest
+ CreateSubTransaction(isolationLevel : string = null)
 : ITransaction
+ CouldExistInTransaction(reference : IXvsmReference)
 : bool
+ RemovedByTransaction(reference : IXvsmReference)
 : bool

<<Interface>>

IAcquisitionRequest

<<Interface>>

IAcquisitionRequest

+ Access(reference : IXvsmReference, mode : AccessMode)
 : IAcquisitionRequest
+ Access(references : ICollection<IXvsmReference>, mode
 : AccessMode) : IAcquisitionRequest
+ Acquire(tryOnly : bool = false, actions : TransactionalActions = null)
 : IAcquisitionRequestResult

<<PluginContract>>

ITransactionPartFactory

<<PluginContract>>

ITransactionPartFactory

+ InstantiateTransaction(reference : IXvsmReference,
 isolationLevel : string) : ITransaction

<<PluginContract>>

ITransactionFactory

<<PluginContract>>

ITransactionFactory

+ CreateTransaction(spaceUri : string, isolationlevel : string)
 : ITransaction

<<PluginContract>>

ITransactionRegistry

<<PluginContract>>

ITransactionRegistry

+ RegisterTransaction(tx : ITransaction) : void
+ RemoveTransaction((reference : IXvsmReference) : void
+ GetTransaction(reference : IXvsmReference) : ITransaction

<<Enumeration>>

AcquisitionStatus

<<Enumeration>>

AcquisitionStatus

Acquired
NotAcquirable
AcquisitionNotNeeded

TransactionalActionsTransactionalActions

+ FinalCommit : Action<FinalCommitArgs>
+ AnyRollback : Action<AnyRollbackArgs>
+ BeforeAcquisition : Action<BeforeAcquisitionArgs>
+ AfterAcquisition : Action<AfterAcquisitionArgs>
+ NoAcquisition : Action<NoAcquisitionArgs>

<<Enumeration>>

AccessMode

<<Enumeration>>

AccessMode

Read
ReadExclusive
Write
Take

<<Interface>>

ISingleAcquisitionResult

<<Interface>>

ISingleAcquisitionResult

+ Status : AcquisitionStatus
+ ElementReference : IXvsmReference
+ OwningTransactions
 : IEnumerable<IXvsmReference>

<<Interface>>

IAcquisitionRequestResult

<<Interface>>

IAcquisitionRequestResult

+ Successful : bool
+ SingleResults : IEnumerable<ISingleAcquisitionResult>

Figure 6.5: UML class diagram of the transaction-related contracts.

68

6.2. Transactions

ITransactionFactory

ITransactionFactory is used to create top-level transactions, which is the responsi-
bility of the XVSM runtime in CAPI-4 through the CreateTransaction method. The
spaceUri parameter is used for the creation of the transaction’s space reference. The
factory is responsible to use a unique reference in the space. The default implementation
of ITransactionFactory therefore makes use of a numeric integer counter to create a
space unique identifier which is then provided to the IXvsmReferenceFactory, along
with the space URI, to create the unique reference. The isolationLevel parameter is
the string representation of the transactional isolation level. XVSM.net also provides a
type-safe access to the isolation levels through the XvsmConstants.IsolationLevel
class in the core contract project. Nevertheless, the isolation level is always represented
as a string in the contracts to ensure compatibility for additional isolation levels in the
future. The ITransactionFactory uses an instance of the ITransaction plugin
part factory for quick instantiations of ITransaction plugin parts with its method
InstantiateTransaction.

ITransactionRegistry

The ITransactionRegistry contract provides methods to register, retrieve and
remove transactions, which is also the responsibility of the XVSM runtime. These
methods are not used for sub-transactions.

ITransactionPartFactory

ITransactionPartFactory is a plugin part factory that has direct access to an
implementation of the ITransaction plugin part contract and is therefore responsible
for creating new ITransaction instances by providing all plugin dependencies.

ITransaction

The ITransaction plugin part contract is a central and important contract of XVSM-
.net. It is used in the majority of the ICAPI3 methods to provide transactional safety
for its operations. ITransaction was designed to be used for locking space references
and registering actions that are executed on certain transaction events.

CreateSubTransaction instantiates a new sub-transaction with the same ITrans-
action plugin part contract. Because the containing contract of this method is no plugin
part factory, the plugin framework will not automatically transform the instantiated
object into a plugin part. Hence, depending on the concrete ITransaction plugin part
implementation, the instantiated object is a plugin part or a simple object, implementing
the plugin part contract. Since the top-level transaction is guaranteed to be a plugin
part, due to its instantiation through the PluginPartFactory, it is possible to create
a custom plugin aspect that transforms the object result of this method to a plugin part
as well, assuming plugin aspects are not prevented by the configuration of the plugin

69

6. Plugin-Based XVSM Design & Implementation

framework. The optional isolationLevel parameter can be used to specify a different
isolation level for the sub-transaction. By default the sub-transaction will inherit the
isolation level of its parent transaction. Even though this parameter is only rarely used
in the default implementations, it was added to support coordinator lock semantics and
will be discussed in Section 6.3.6.

The contract’s Commit method is used to finalize the transaction recursively along
with its sub-transactions. When a top-level transaction is committed, all final-commit
actions that were provided in the TransactionalActions.FinalCommit property
in the transaction hierarchy are invoked. All locks that were acquired in the transaction
hierarchy should be either transferred to the parent transaction or, for top-level trans-
actions, are propagated to the environment and will be accessible for all transactions.
The Rollback method is working in a similar way to the Commit method and recur-
sively rollbacks the transaction and its sub-transactions when being invoked. However,
whenever a transaction is rollbacked, its own registered any-rollback actions, provided
through TransactionalActions.AnyRollback, and those of already committed
sub-transactions are invoked. For instance, if a deeply nested, already committed sub-
transaction with a hierarchical depth of 5 has an any-rollback action that deletes a space
container, the container will still be deleted if a transaction with a depth of 2 from the
same hierarchy is rolled back. The ITransaction plugin part contract extends from
System.IDisposable to control the transaction’s lifecycle through C#’s using-statement.
The transaction’s Commit and Rollback methods are used to manually control its
lifecycle. However, if the using-statement is left without invoking these lifecycle methods,
it automatically invokes the Rollback method of the transaction. Listing 6.2 shows a
typical usage of an ITransaction plugin part.

1 using (var stx = tx.CreateSubTransaction())
2 {
3 stx.PrepareAcquisition()
4 .Access(entryReference, Write)
5 .Acquire();
6

7 stx.Commit();
8 }

Listing 6.2: Example showing basic transaction operations.

PrepareAcquisition returns an instance of an IAcquisitionRequest object that
is aware of the current transaction and provides acquisition functionality in the transac-
tion’s context. This is a variant of the builder pattern [Hel+00] that allows to specify
the acquisition details through a fluent interface before finally executing the acquisition.

The two methods CouldExistInTransaction and RemovedByTransaction are
used to gain insight into the current transactional state of the provided element reference.
The former method returns true if there is a possibility that the concerning element
exists or could be rollbacked to exist again in the transaction’s context. In any other case

70

6.2. Transactions

it should return false. The latter method, however, returns true if the concerning
element is guaranteed to be removed when the transaction hierarchy is committed and
false otherwise. At first glance, the methods might seem redundant and negations of
each other, but when we look closely we should find that there is a slight difference. The
first method judges with respect to the global transactional state of the element but the
second method only concerns the current transaction hierarchy.

The ITransaction plugin part contract also provides several read-only properties that
provide information about the transaction. Reference returns the transaction’s own
space reference and IsolationLevel can be used to retrieve the string representation of
its isolation level. The boolean Finished property only returns true if the transaction
does not support further invocation of the Commit or Rollback methods.

AccessMode

The access modes that are defined in the AccessMode enumeration specify the different
transactional acquisition types and correspond to the three basic XVSM operations read,
write and take with the addition of ReadExclusive. ReadExclusive was added to
provide an access mode that demands exclusive read access in contrast to the shared
read access mode (Read) and without implying that the element was added (Write) or
removed (Take) from the space.

IAcquisitionRequest

IAcquisitionRequest is used to prepare a single transactional acquisition request
with its belonging transaction. The Access method signatures are used to specify the
target references and their required access modes. After all target references have been
set, the Acquire method may be called to carry out the acquisition request atomically
and return with an IAcquisitionRequestResult object. The method contains two
optional parameters, tryOnly and actions. The boolean parameter tryOnly may
be used to simulate the acquisition without making any transactionally visible changes
and influencing other transactions. This parameter was added for performance improving
algorithms that check the acquisition possibility of elements without carrying out the
acquisition. The second parameter actions is an object of the class Transaction-
alActions and may provide custom actions for transactional events. These actions
could be stored for future commit or rollback invocations, or are directly executed within
the acquisition request.

IAcquisitionRequestResult

The IAcquisitionRequestResult interface is a simple container for the individual
acquisition requests and therefore only contains two properties: The Successful
property indicates whether all requested individual acquisitions have been obtained, or not.
Detailed information about the individual acquisitions is stored in the SingleResults
property as IAcquisitionSingleResult objects.

71

6. Plugin-Based XVSM Design & Implementation

AcquisitionStatus

The AcquisitionStatus enumeration is used to specify the outcome of the individual
acquisitions. It provides the following items:

Acquired: The element has been successfully acquired with the specified access modes.

NotAcquirable: It was not possible to acquire the element with the specified access
mode.

AcquisitionNotNeeded: The element has not been acquired because it is already
accessible with the specified access mode in this transaction.

IAcquisitionSingleResult

The result of every single acquisition is stored in a separate IAcquisitionSingleRe-
sult instance. Its Status property provides an enum of the type Acquisition-
Status that represents the outcome of the element acquisition and the property
ElementReference contains the reference of the corresponding element. In the case
of failed acquisition, the property OwningTransactions contains the reference of the
transactions that hold the locks for the element.

TransactionalActions

Instances of the TransactionalActions class are used to register C# Action<>
objects to execute custom logic on certain transactional events. This is used, for instance,
to fully delete an entry of a container only after committing the top-level transaction
that is used for a take operation.

The TransactionalActions class contains five properties that may be used to pro-
vide custom handling of transactional events. The FinalCommit and AnyRollback
properties were already mentioned in the ITransaction section. An action registered
in the FinalCommit property will only be invoked when a top-level transaction commits.
If any other transaction in the hierarchy commits instead, the invocation will be post-
poned for the commit of the top-level transaction. When any transaction in the hierarchy
rollbacks, on the other hand, actions registered in the AnyRollback properties of the
rollbacked transactions are invoked right away. The actions in the BeforeAcquisition
and AfterAcquisition properties are only invoked after a compatibility check of
the IAcquisitionRequest’s required locks and the lock availability. The action in
the BeforeAcquisition is then invoked right before the locks are acquired, whereas
the action of the AfterAcquisition property is invoked afterwards. Provided that
the IAcquisitionRequest’s required locks cannot be obtained, then the action of
the NoAcquisition property is invoked in return. All actions are invoked with an
individual class parameter that might contain metadata of the concrete event. Yet,
the parameters are not used in the current XVSM.net implementation and are only
included for an easier future integration. The advantage of using these events in a

72

6.2. Transactions

TransactionalActions object is that the actions should be executed within a special
locked transactional environment and may be used to protect against side-effects from
parallel running transactions. However, this relies to a great degree on the concrete
implementation of ITransaction and IAcquisitionRequest.

6.2.4 Locking Contracts

In this sub-section, we are now showing the locking constructs that are used by the
PessimisticTransaction plugin implementation. In the spirit of the XVSM.net ar-
chitecture, the locking-related parts were also developed in plugins over contracts. Figure
6.6 illustrates the locking-relevant contract elements from the XVSM.Contract.Trans-
action.PessimisticLocking namespace:

<<Interface>>

ILockList

<<Interface>>

ILockList

+ ElementReference
 : IXvsmReference
+ List : IReadOnlyList<Lock>

+ AddLock(Lock newLock) : void
+ RemoveLock(Lock existingLock) : void

<<Enumeration>>

LockType

<<Enumeration>>

LockType

Free
Read
ReadExclusive
Insert
Delete

<<Interface, Disposable>>

IBorrowedLockLists

<<Interface, Disposable>>

IBorrowedLockLists

+ LockLists
 : IReadOnlyDictionary<IXvsmReference,ILockList>
+ RollbackCreatedLockLists : bool

+ RemoveLockList(element : IXvsmReference) : void

<<PluginContract>>

ILockListManager

<<PluginContract>>

ILockListManager

+ BorrowLockLists(existingReferences : ICollection<IXvsmReference>,
 newReferences : ICollection<IXvsmReference>, snapshot : bool, maxLockTime : int)
 : IBorrowedLockLists
+ GetLockListSnapshot(elementReference : IXvsmReference) : ILockList

LockLock

+ ElementReference : IXvsmReference
+ LockType : LockType
+ OwningTransaction : ITransaction

Figure 6.6: UML class diagram of locking related interfaces and contracts.

Lock & LockType

The Lock class is used to represent a single transactional lock on a space reference
that has been acquired through a transaction. Every instance of the Lock class stores
the reference of the target element, as well as the type of the lock, also referred to as
lock type, in the read-only properties ElementReference and LockType. The third

73

6. Plugin-Based XVSM Design & Implementation

property OwningTransaction is of type ITransaction and contains the transaction
that acquired the lock. However, this third property is not set for locks that have
the LockType property set to Free, since they are accessible by any transaction and
have no owner. Due to implementation details regarding concurrency, it was decided
to explicitly set the lock type to Free instead of having no lock type set. The other
elements of the LockType enumeration Read, ReadExclusive, Insert and Delete
correspond to the access modes from the transaction contracts (see Section 6.2.3) and
define the resulting locks of the acquisition operations. Please note that the Take access
mode leads to a Delete lock type. The concrete semantics of the different lock types in
combination with the isolation levels are discussed in Section 6.2.5. All lock types with
the exception of Free, however, have an owning transaction that must be always set in
the Lock instance.

For better readability, we will use the terms free-lock, read-lock, readexclusive-lock, insert-
lock, and delete-lock from here on for Lock instances with the corresponding LockType
value.

All properties of the Lock class are read-only, thus the instances of the class are immutable.
If an acquisition with a different access mode, hence different lock type, is processed, a
new Lock instance has to be created.

ILockList

As instances of Lock are immutable and may only contain one lock type and one owning
transaction, it must be possible to have multiple Lock instances associated with the
same space reference. Otherwise, it would be unfeasible to fully define the lock state of a
space reference. For instance, in the example in Listing 6.3 a top-level transaction tx and
its child transaction stx both access the same element in the space. With only a single
Lock instance it would not be possible to cleanly rollback the acquisition made through
the stx transaction as the prior owning transaction would have been overridden. This
also applies for shared read-locks by transactions from a different transaction hierarchy.

1 // Up till now, element ref1 has only a free-lock associated.
2 tx.PrepareAcquisition().Access(ref1, Read).Acquire();
3 var stx = tx.CreateSubTransaction();
4 stx.PrepareAcquisition().Access(ref1, Take).Acquire();
5 stx.Rollback();

Listing 6.3: Acquisition example of a transaction hierarchy with two levels.

Hence, multiple immutable instances of the Lock class are used to describe the full
lock state of a single element in the space and they are accumulated as lock lists by the
ILockList data structure.

ILockList is an interface that provides the methods AddLock and RemoveLock for
simple lock list manipulations. It also provides the read-only property ElementRef-
erence to retrieve the space reference of the concerning element, and the read-only

74

6.2. Transactions

property List to access all the locks associated with the element. New locks that are
added through the AddLock method are appended at the end of the list. Thus, the
order of the locks represent their time of acquisition.

ILockListManager & IBorrowedLockLists

The instance of the ILockListManager plugin contract, called lock list manager, is
the central point that holds and provides the lock lists. The contract provides two
methods to retrieve lock lists, BorrowLockLists and GetLockListSnapshot. The
GetLockListSnapshot method is the simpler method of the two, as it only returns a
single existing lock list that represents the lock state of the provided element reference.
The returned lock list is a snapshot, and thus immutable and could show outdated lock
information. After the lock list has been retrieved, additional locks might have been
added or existing locks might have been removed from the lock list. However, these
changes will not be reflected in the snapshot. This retrieval method is therefore only used
for quick and uncritical checks of the state of the lock list. This is used for optimistic
checks where a computationally expensive algorithm should be executed only if there is
a chance that a later acquisition succeeds.

The method BorrowLockLists, on the other hand, grants a more sophisticated access
to the lock lists. With this method, the lock lists are accessed in a bulk mode by
providing multiple references at once. Hence, already existing lock lists are retrieved by
providing the corresponding space references in the existingReferences collection,
whereas lock lists for elements that do not yet have a lock list must be separately
provided in the newReferences collection. This differentiation was a design decision
that serves as a simplification for concurrency handling. The snapshot parameter
of the method defines whether the resulting lock lists should be exclusively borrowed
(false), or if only snapshot copies should be retrieved (true). If set to true, the method
provides similar semantics as the GetLockListSnapshot method. It allows to decide
whether an acquisition would be possible without actually executing it. The last and
optional parameter maxLockTime allows to override the configured maximum timeout
in milliseconds when entering a lock.

The result of this method is an instance of the disposable IBorrowedLockLists in-
terface, which contains the requested existing lock lists, as well as new lock lists for the
specified new references. The lock lists are all stored in the property LockLists of a
dictionary type and are accessible by the element’s reference as the key. The IBorrowed-
LockLists interface also provides the method RemoveLockList to remove the lock
list with the specified element reference from the lock list manager. The method is used
when the corresponding element is removed from the space. The concrete removal of the
lock lists will be delayed until the IBorrowedLockLists instance is disposed. Since new lock
lists are automatically created by providing new references to the BorrowLockLists
method, the IBorrowLockLists interface provides a possibility to undo the creation by
setting the RollbackCreatedLockLists boolean property to true. As soon as the

75

6. Plugin-Based XVSM Design & Implementation

IBorrowedLockLists instance is disposed, the newly created lock lists are removed
again if this property is set.

The lock list manager is responsible to guarantee exclusive access to the lock lists by the
current IBorrowedLockLists instance. No other thread should be able to access the
same existing lock lists (cf. Figure 6.6). If a concurrent access occurs, the thread should
be blocked and depending on the configuration an exception can be raised. The concrete
thread-safe implementation is presented in Section 6.2.7. This exclusive access lasts until
the IBorrowLockLists instance is disposed by the caller. However, this only applies
to existing lock lists and not newly created ones. The protection of newly created lock
lists is complex and error-prone in combination with rollbacked transactions. This issue
will be discussed in Section 6.2.8, as it requires more information about specific aspects
of the concrete implementation.

6.2.5 Isolation Level Contracts

The isolation level contracts are used to provide the semantics that connect the access
modes with the full lock state of an element in the space. Figure 6.7 illustrates elements
of the isolation level contracts.

<<PluginContract>>

IIsolationLevelRegistry

+ GetIsolationLevelHandler(isolationLevel : string)
 : IIsolationLevelHandler

<<PluginContract>>

IIsolationLevelHandler

+ Name : string
+ MinCoordinationLockModeName : string
+ MaxCoordinationLockModeName : string

+ GetAcquisitionRecipe(locks : ILockList, accessMode : AccessMode)
 : AcquisitionRecipeAcquisitionRecipe

+ Compatibility : AcquisitionCompatibility
+ AcquisitionAction
 : PredefinedAcquisitionAction
+ AcquisitionLockType : LockType
+ FinalCommitAction
 : PredefinedLockListAction
+ AnyRollbackAction
 : PredefinedLockListAction

<<Enumeration>>

AcquisitionCompatibility

GeneralCompatibility
ExclusiveOwnerCompatibility
NoCompatibility

<<Enumeration>>

PredefinedAcquisitionAction

NoAction
AddLock
AddUniqueLockOnly

<<Enumeration>>

PredefinedLockListAction

NoAction
ReplaceWithFreeLock
RemoveLockFromLockList
RemoveLockList

Figure 6.7: UML class diagram of the isolation-related contracts.

IIsolationLevelRegistry

The plugin contract IIsolationLevelRegistry is a registry that is used as a central
point to lookup isolation level handlers with the GetIsolationLevelHandlermethod
by providing the string representation of the isolation level. The method then returns an
instance of IIsolationLevelHandler. Every transaction or sub-transaction stores
a reference to an isolation level handler that corresponds to the string representation
provided from the transaction instance. When a top-level transaction is created, the
globally configured isolation level string representation is used by default, but it can
be overridden with a different isolation level if it is provided as an argument. When

76

6.2. Transactions

a sub-transaction is created, the isolation level is inherited from its parent by default,
however, it is also possible to specify a custom isolation level with its instantiation method.
Thus, transactions of the same transaction hierarchy can have different isolation levels.
This mechanism is used when a custom isolation level is provided for CAPI operations.
This allows, for instance, to execute two read operation with different isolation levels.

IIsolationLevelHandler & AcquisitionRecipe

The IIsolationLevelHandler plugin contract provides the concrete semantics of an
isolation level in XVSM.net. XVSM.net comes with multiple default implementations
that are presented in Section 6.2.6.

Its Name property corresponds to the transactional isolation level’s string representation
and is equal to the lookup string that is used in the registry for the IIsolation-
LevelHandler. The two string properties MinCoordinationLockModeName and
MaxCoordinationLockModeName define the lower and upper boundary for coordi-
nation locks in the ICoordinationLockHandler. Coordination locks are acquired
through the ICoordinationLockHandler plugin for coordinator operations such
as read, take, or write on the involved coordinators and container. The lock mode
boundaries are used to alter the behavior of the ICoordinationLockHandler plu-
gin. The semantics of the lock modes are shown in Section 6.3.6. The only method
of the IIsolationLevelHandler plugin contract is the GetAcquisitionRecipe
method, which is used to return a kind of recipe that contains the semantics for an
acquisition with an instance of the class AcquisitionRecipe. This class is used by
the ITransaction implementation when an acquisition request is handled to decide
whether an element reference can be acquired with the provided access mode. If an
acquisition is possible, the AcquisitionRecipe class also provides rules that are
interpreted by the ITransaction implementation to modify the lock list and register
transactional actions.

An instance of the AcquisitionRecipe class is used as a container that holds the
five properties that are used for the lock acquisition. The Compatibility property
is an enumeration of the type AcquisitionCompatibility and is used to define
constraints of the lock acquisition with the following values: GeneralCompatibility,
ExclusiveOwnerCompatibility and NoCompatibility. While GeneralCom-
patibility denotes that there are no compatibility constraints on the lock acquisition,
NoCompatibility, on the other hand, implies that the lock acquisition is not pos-
sible under any circumstances. This only applies to locks that have an owner, which
excludes locks with the Free lock type. In between the two values lies Exclusive-
OwnerCompatibility, which restricts the lock acquisition to the owner of all the
locks in the lock list. This means that every lock must be either owned directly or
through its ancestors by the transaction that tries to carry out the acquisition, or oth-
erwise the acquisition would not be possible. The type of the AcquisitionAction
property is the enumeration with the name PredefinedAcquisitionAction and is
used to describe how the acquisition of the lock should be performed. It contains the

77

6. Plugin-Based XVSM Design & Implementation

values NoAction, AddLock and AddUniqueLockOnly. The first value NoAction
denotes that no acquisition action should be performed. This value is used if the ac-
quisition is not compatible at all or if the acquisition action is just not required. The
value AddLock represents that a new lock with the lock type, specified in the property
AcquisitionLockType, should be created and added to the lock list to finally carry
out the lock acquisition. The final value AddUniqueLockOnly is semantically equal
to AddLock with the additional constraint that the action will only be performed if
the resulting lock would be unique in the lock list in terms of lock type and owning
transaction. This is used for shared locks that would otherwise lead to duplicates
in the lock list. As already mentioned, the AcquisitionLockType property con-
tains the lock type that is used for a possible newly created lock. Hence, the instance
of IIsolationLevelHandler is responsible to correctly map the access mode to
the lock type of the lock. The two remaining properties FinalCommitAction and
AnyRollbackAction are used to register predefined actions that are only executed
on the corresponding event. The action in the FinalCommitAction property will be
executed when the top-level transaction in the transaction hierarchy commits, while the
AnyRollbackAction, on the other hand, will be executed when any transaction of
the transaction hierarchy will rollback. Hence, these actions are executed analogously to
the actions in TransactionalActions presented in Section 6.2.3. However, in this
case the actions are limited by the values of the enumeration PredefinedLockLis-
tAction to simplify the implementation of the IIsolationLevelHandler plugin
contract. The possible predefined actions are NoAction, ReplaceWithFreeLock,
RemoveLockFromLockList and RemoveLockList. The value NoAction trivially
describes that no operation will be performed. With the ReplaceWithFreeLock
value an action is executed that removes the previously created lock and adds a new
free-lock instead. The value RemoveLockFromLockList describes an action that is
equivalent to the previously stated value ReplaceWithFreeLock with the difference
that it excludes the subsequent addition of the free-lock. This value should only be used
if the lock list contains at least two locks because an empty lock list should be avoided.
The final value RemoveLockList is used to invoke the RemoveLockList method on
the corresponding IBorrowedLockList instance to remove the lock list for good.

6.2.6 Isolation Level Implementation

XVSM.net comes with four default plugins that implement the IIsolationLevel-
Handler plugin contract and correspond to the read uncommitted, read committed,
repeatable read, and serializable isolation levels from the database theory. The plugins are
referred to as ReadUncommittedPlugin, ReadCommittedPlugin, RepeatableReadPlugin and
SerializablePlugin to tell them apart from the conceptual isolation levels. The main task
of these plugins is to provide instances of AcquisitionRecipe that correspond to
their isolation level. They also provide minimum and maximum coordination lock modes,
which will be covered later in Section 6.3.6. Hence, we will solely focus on the creation
of these recipes in this sub-section. UML state diagrams will be used as an illustration
of the allowed lock acquisitions and transaction operations. The plugins are discussed

78

6.2. Transactions

in the order of their isolation level, starting with the one with the lowest guarantee of
consistency [Gra+76].

ReadUncommittedPlugin

The ReadUncommittedPlugin is located in the XVSM.Plugin.IsolationLevelHand-
ler.ReadUncommitted namespace and corresponds to the read uncommitted isolation
level. As the lowest isolation level of the included four, it does not provide protection
against inconsistencies due to effects of other concurrent operations but it still protects
space references from entering illegal lock states. For instance, it is not possible to
successfully issue a take-acquisition on the same element twice.

Insert

Free

FinalCommitRead
ReadExclusive

Take

Delete

Rollback[insert-lock]

Read
ReadExclusive

New
Write

FinalCommit

Rollback

Take

Rollback[!insert-lock]

Figure 6.8: UML state diagram illustrating the lock state of a space element for the read
uncommited isolation level.

Figure 6.8 shows the possible logical lock states of a space element for the ReadUncom-
mittedPlugin. It uses logical states that do not explicitly exist in the implementation
in terms of single LockType values, but they represent the compound state of a space
element’s lock list. For instance, the New state corresponds to a removed or non-existing
lock list. Every other state in the state diagram corresponds to a lock list with one or
more locks. Only one lock of the lock list, however, defines the state: The lock with
the highest priority LockType value. This leads to the following priority order of locks:
free-lock, read-lock, readexclusive-lock, insert-lock, and delete-lock. Hence, a lock list
with a free-lock and a delete-lock corresponds to the Delete state.

There are two types of state transitions in the state diagram: acquisition transitions (blue

79

6. Plugin-Based XVSM Design & Implementation

color) and transaction transitions (gray color). Acquisition transitions visualize acquisition
operations by the following events: Read, ReadExclusive, Write and Take. These events
correspond to the access modes that are provided to IAcquisitionRequest instances
(cf. Section 6.2.3). The transaction transitions, on the other hand, correspond to
transitions that change the transactions’ own states. The events FinalCommit and
Rollback belong to these transitions. The FinalCommit event corresponds to committing
the top-level transaction in the transaction hierarchy. The Rollback event occurs when the
transaction is rollbacked that currently holds the defining lock of the state. It is possible
to have multiple rollback transitions in a row when a transaction is rollbacked that holds
multiple locks. For instance, a rollback of a transaction that holds both an insert-lock
and an delete-lock of the same lock list would lead to two rollback transitions from the
state Delete over the state Insert to the final state New. Please also note that the guard
of the rollback transition from the Delete state ensures that the lock list also contains an
insert-lock. This is important for the transitions in the state diagram as no ambiguity is
allowed. The rollback transitions may be seen as undo operations of the acquisitions that
led to the current state. Hence, almost all rollback transitions are implemented by the
use of the RemoveLockFromLockList value in the AnyRollbackAction property
of the recipe. The only exception is a rollback from the Insert state, since in addition to
creating an insert-lock, a lock list had to be created first. Here the RemoveLockList
value is used to not only remove the insert-lock but also the lock list. The guards
applied to the rollback transitions are used to distinguish the possible previous states.
The guard [insert-lock] ensures that the lock list also contains an insert-lock, while the
other used guard [!insert-lock] ensures that the lock list has no insert-lock. Acquisition
transitions that are not specified in the state diagram all lead to a failing acquisition
and an instance of AcquisitionRecipe with the NoCompatibility value from the
AcquisitionCompatibility enumeration.

The only possible transition from the New state is a write-acquisition, since read-,
readexclusive-, or take-acquisitions all demand an existing space element, which is
not guaranteed without an insert-lock. The write-acquisition leads to the creation of
such an insert-lock by the use of the PredefinedAcquisitionAction AddLock.
The Insert state along with the Free state both provide transitions for all acquisition
operations with the exception of write-acquisitions. Allowing the acquisitions for all
transactions is a unique behavior of the ReadUncommittedPlugin, as it does not protect
from inconsistencies that come from reading temporary created space elements or even
removing them. This phenomena is called dirty reads. It is even possible to issue a
take-acquisition on a space element in the Insert state from a different transaction,
since the owner of the insert-lock is not checked. As a consequence of this behavior,
the ReadUncommittedPlugin does not create read- or readexclusive-locks at all. Hence,
read- and readexclusive-acquisitions do not lead to different states and do not create
new locks in the lock list. This is realized with the NoAcquisition value in the
AcquisitionAction property of the recipe. If the top-level transaction of the previous
write-acquisition is committed, the insert-lock will be replaced by a free-lock. This
corresponds to the FinalCommitAction value ReplaceWithFreeLock. The other

80

6.2. Transactions

transitions with the FinalCommit event all lead to the New state, as their current states
all contain a delete-lock. As with any other transition that leads to the New state, the
RemoveLockList value is used to fully remove the lock list. Take-acquisitions are
allowed when it is guaranteed that the space element still exists, which is the case in the
Free and Insert states. These states have transitions with the Take event that lead to
the Delete state, by simply creating a delete-lock in their corresponding lock lists with
the AddLock value in the recipe.

Even though the ReadUncommittedPlugin might not be usable for most situations, due
to its lacking consistency qualities, it can be used to gather insight of other transactions
and from a conceptual point of view, it can be seen as the starting point for the isolation
level handlers.

ReadCommittedPlugin

Insert

Free

ReadExclusive

FinalCommit

ReadExclusive

Take [owner]

FinalCommit
Rollback

Read [owner]
ReadExclusive [owner]

Take[owner]

Delete

Rollback[insert-lock]

Rollback[readexclusive-lock]

Read

Read [owner]
ReadExclusive [owner]

New
Write

FinalCommit

Rollback

Take

Rollback[!insert-lock &&
!readexclusive-lock]

Figure 6.9: UML state diagram illustrating the lock state transitions for the read
commited isolation level.

The ReadCommittedPlugin is located in the XVSM.Plugin.IsolationLevelHand-
ler.ReadCommitted namespace and is based on the ReadUncommittedPlugin. Figure
6.9 shows that the state diagram for the read committed implementation is an extension

81

6. Plugin-Based XVSM Design & Implementation

of read uncommitted with additional constraints. All transitions from Figure 6.8 also
exist here but many of them have an additional guard now. The guard [owner] is located
on several acquisition transitions. It depicts that the event will only fire the transition if
the transaction of the acquisition is the owner of the source state’s defining lock. This
is a constraint that guarantees that only the owning transaction of the current lock is
allowed to carry out the acquisition. This is an important difference between this plugin
and the ReadUncommittedPlugin, as it protects from the dirty reads phenomena. It is
not possible anymore to access or remove space elements from a different transaction
hierarchy that have not been committed yet. Therefore, the acquisition transitions
from the Insert state have this guard applied to protect the space element from other
transaction hierarchies until it is committed or removed. This guard is realized with
the ExclusiveOwnerCompatibility value in the Compatibility property of the
recipe.

This presented guard is not the only difference to the previous plugin. The state
ReadExclusive was introduced. From the state Free it is possible to acquire a readexclusive-
lock to reach the new state. This is realized with the AddLock value in the recipe.
From there, further read-, readexclusive-, or take-acquisitions are only allowed for the
owning transaction of the readexclusive-lock. However, further read- and read-exclusive
transitions are overruled by the existing readexclusive-lock anyway. Thus, these two
transitions are realized with the NoAcquisition value in the recipe. The take-transition,
on the other hand, might lead to the Delete state with the creation of a delete-lock. The
delete-lock is created, as usual, with the AddLock value.

The Delete state may be entered from three different states now: Insert, Free, and
ReadExclusive. According to the definition of the states in the figure, every one of these
states has a different defining lock in their lock lists. The Insert state has an insert-lock,
the Free state a free-lock and the ReadExclusive state a readexclusive-lock included in
their lock list. Hence, the logical Delete state describes the lock list state of three different
possible lock lists.

The ReadCommittedPlugin may be used for much more situations than the ReadUncom-
mittedPlugin because of its protection against dirty reads. The support of a separate
state for readexclusive-acquisitions is also useful for some XVSM.net operations. For
instance, the CAPI-3 operation to lock a container is implemented by issuing such a
readexclusive-acquisition. One thing this isolation level does not protect from is the
non-repeatable read phenomena. It is possible to successfully create a read-acquisition
through a transaction that if repeated later with the same transaction might not work
anymore. The space element could have been removed in the meantime, since the previous
read-acquisition would not protect it from being removed by a different transaction. The
following isolation level will cover this phenomena.

82

6.2. Transactions

New
Write

Insert

Free

Read ReadExclusive

FinalCommit

Read

ReadExclusive

ReadExclusive
[count(read-locks) = 1

&& owner] Take [owner]

Take [owner]

FinalCommit[count(read-locks) = 1]
Rollback[count(read-locks) = 1]

FinalCommit

Read [owner]
ReadExclusive [owner]

FinalCommit
Rollback[!read-lock]

Read [owner]
ReadExclusive [owner]

Rollback

Take[owner]

Delete

Rollback[insert-lock]

Rollback[readexclusive-lock]

Rollback [read-lock && !readexclusive-lock]

Rollback [read-lock]

Take

Rollback[!insert-lock &&
!readexclusive-lock &&

!read-lock]

Read

FinalCommit[count(read-locks) > 1]
Rollback[count(read-locks) > 1]

Figure 6.10: UML state diagram illustrating the lock state transitions for the repeatable
read isolation level.

RepeatableReadPlugin

With the RepeatableReadPlugin, which is located in the XVSM.Plugin.Isolation-
LevelHandler.RepeatableRead namespace, the state diagram from the previous
ReadCommittedPlugin is extended further in Figure 6.10. The changes from the previous
state diagram come from the addition of shared read-locks that led to the new logical
state Read.

The Read state is reachable with a read-acquisition from the Free state. This is the only
way to reach this state by an acquisition transition. This reflects the implementation
behavior that it is only possible to create the first read-lock in the lock list if the lock list
solely contains a free-lock. Any other lock would either make the acquisition unnecessary

83

6. Plugin-Based XVSM Design & Implementation

or incompatible. Hence, the Read state corresponds to a lock list containing a free-lock
and read-locks.

From the Read state there are two possible acquisition transitions with the following
events: ReadExclusive and Read. The transition with the ReadExclusive event is only
allowed when the lock list contains only a single read-lock that is also owned by the same
transaction. This transition may then be used in situations where it is required to turn the
shared access of a space element into an exclusive access. The acquisition transition with
the Read event is a little bit different to the other transitions that correspond to the read-
acquisition. It allows to create additional read-locks if the executing transaction does not
own any read-lock yet. This is the single use of the PredefinedAcquisitionAction
value AddUniqueLockOnly. This value ensures that the read-lock is only added to the
lock list if it does not contain any other read-lock with the same owning transaction.

The multiple transaction transitions illustrate the different behavior depending on the
concrete amount of read-locks in the lock list. When the lock list only contains a single
read-lock, both types of transaction transitions will lead to the Free state as the read-lock
will be removed.

The RepeatableReadPlugin implements the recommended isolation level of the formal
model, as it reasonable extends the ReadCommittedPlugin by adding shared read-locks.
In addition to the protection against the dirty read phenomena, it protects against the
non-repeatable read phenomena, as well. However, there is another phenomena, called
phantom reads, that could still occur with this isolation level and is covered by the last
isolation level handler plugin.

SerializablePlugin

The SerializablePlugin, which is located in the XVSM.Plugin.IsolationLevelHand-
ler.Serializable namespace, is the last of the four isolation level handler plug-
ins. It has exactly the same state diagram as the RepeatableReadPlugin in Figure
6.10, as it creates instances of the AcquisitionRecipe with the same semantics. The
concrete implementation actually injects the RepeatableReadPlugin and delegates the
GetAcquisitionRecipe method to it. The only difference to the RepeatableRead-
Plugin is the provided value in the MinCoordinationLockModeName property, which
modifies the default acquired coordination lock through the ICoordinationLockHan-
dler plugin. This can be seen as a locking mechanism on a higher order that leads to
less concurrency, especially for modifying operations, but improves the consistency. This
protects against the phantom reads phenomena, which occurs, for instance, when one
transaction commits while another transaction is still running and executes the same read
operation twice with different results, once before and once after the other transaction
commits. This could occur due to the changes from the committing transaction that
are visible right away after it is finished. Hence, a repeated access to the space element
would lead to different results in the same transaction. With the SerializablePlugin,
operations that lead to this phenomena would be blocked and rescheduled by the runtime.

84

6.2. Transactions

Nevertheless, it is still possible to access different coordinators concurrently from the
same container since this isolation level handler only increases the locks that are acquired
on the coordinators.

However, even though XVSM.net supports this isolation level, it is a purely exper-
imental plugin with limited use cases due to its aggressive locking strategy. It was
developed for experimental purposes and because the acquisition of coordination locks
through the ICoordinationLockHandler was already in place and required for the
implementation of the Vector coordinator. The Vector coordinator has unique locking
semantics and only allows modifying operations, such as write, take, or delete from a
single transaction hierarchy. This will be covered in Section 6.3.

6.2.7 Locking Implementation

BorrowLockLists

LockLists

Create new
LockLists

Borrow existing
LockLists

<<centralBuffer>>
BorrowedLockLists

LockLists

Return
BorrowedLockLists

All LockLists

Figure 6.11: UML activity diagram showing the general functionality of the
BorrowLockLists method.

The default plugin implementing the locking contracts (cf. Section 6.2.4) is simply
called LockListManager and is located in the XVSM.Plugin.LockListManager
namespace. The main challenge of developing this plugin was to create a thread-safe imple-
mentation while maintaining concurrency as much as possible. The implementation uses
C#’s ConcurrentDictionary class from the System.Collections.Concurrent
namespace to store the lock lists with their corresponding space element reference as a
lookup key. Future references to this concrete instance will be called LockListDictionary
in this sub-section.

The characteristic method of the plugin is the BorrowLockLists method, which is
used by the transaction implementation (cf. Section 6.2.8) to create new lock lists and get
exclusive access to the existing ones. As illustrated in Figure 6.11, the method is dividable
into two major tasks: the handling of existing lock lists, and the handling of new lock lists.
These two tasks are visualized by separate activity diagrams and will be covered later in
this sub-section. The input parameters were omitted in this figure for better readability.
When both activities are finished, their preliminary resulting lock lists are provided to a
new BorrowedLockLists instance that implements IBorrowedLockLists.

85

6. Plugin-Based XVSM Design & Implementation

references : ICollection<IXvsmReferences>

Borrow existing LockLists

Sort
References

references

sorted references

reference

[LockList does not exist]

<<dataStore>>
LockListDictionary

<<iterate>>

Lookup
LockList

LockList or null

Create
EmptyLockList

Enter LockList
Monitor

LockList

[LockList exists]

Exit LockList
Monitor

Exit LockList
Monitor

LockList

[snapshot] [no snapshot]

LockList

[lock list is removed]

SnapshotLockList

LockList

Check LockList
Removed

LockList[lock list is not removed]

EmptyLockList

LockListCollection :
ICollection<ILockList>

Cleanup &
Reschedule

LockLists with entered monitors

Create Immutable
Snapshot

The snapshot
argument is
evaluated

Exit monitor of
previously

entered LockList

Figure 6.12: UML activity diagram visualizing the algorithm to acquire exclusive access
to existing lock lists.

Exclusive Access to Existing Lock Lists

This sub-task is illustrated as an UML activity in Figure 6.12. Its function is to check
the provided space references for existing lock lists and acquire exclusive access for
them. As this is a bulk task, the provided parameter is a collection of space references
and is visualized in the input parameter of the activity. It should be noted that the
implementation method also contains the parameters snapshot and maxLockTime.
However, they were omitted as parameters in the activity diagram for clearness, but they
will be still covered in this sub-section. The action Sort References is used to create a
deterministic ordering of the references as a deadlock prevention mechanism. The provided
references are iterated in the sorted order and their corresponding lock lists are tried to
be looked up in the LockListDictionary. When a lock lists was successfully retrieved, its
monitor lock will be entered. As many monitor locks may not be released until later when
disposing the IBorrowedLockLists instance, without sorting, it would be possible to
acquire locks in a circular dependent way and run into a deadlock. Thus, the sorting
was used to guarantee that the monitors are entered without circular dependencies and
deadlocks. When it still takes too long to enter the monitor lock, an exception is thrown
and the runtime needs to reschedule the operation. The default maximum time before
the exception is raised can be configured through the LockEnterTimeout property of
the LockListManagerConfigContract. However, it is also possible to override the

86

6.2. Transactions

default maximum time by providing the maximum lock time as parameter.

After the lock lists’ monitor lock was successfully entered, the snapshot argument is
evaluated, which defines whether the original lock list should be directly used or an
immutable copy of it. In the latter case the lock list is checked whether it was marked
as “removed”. It is possible that the lock list was removed by another transaction
before its monitor lock could be entered. For such situations, its monitor lock will be
exited right away and an empty immutable lock list is used instead. This is the same
behavior as if no lock list is associated with a given element reference. Hence, the
transaction implementation must act accordingly for such situations. If the lock list,
however, was not marked as “removed”, the lock list is copied in an immutable instance
of the type SnapshotLockList. The monitor of the retrieved lock list will be exited
too as exclusive access is not required anymore.

As illustrated in the activity diagram of Figure 6.11, all the resulting lock lists will be
temporarily stored until the sub-task of handling new lock lists is finished too.

Create new LockLists
references : ICollection<IXvsmReferences>

Create new LockLists

reference

[LockList does not exist]

<<dataStore>>
LockListDictionary

<<iterate>>

Lookup
LockList

LockList or null

Create New
LockList

Enter LockList
Monitor

LockList

[LockList exists]

Exit LockList
Monitor

Create mutable
Snapshot

LockList SnapshotLockList

LockList

EmptyLockList

LockLists : ICollection<ILockList>

Exit monitor of
previously

entered LockList

Figure 6.13: UML activity diagram depicting the algorithm to enter monitors from lock
lists.

The second sub-task is illustrated as an activity as well. Figure 6.13 shows the process
of creating new lock lists by providing element references. For every single reference, a
lookup is issued on the LockListDictionary to prevent the creation of duplicate lock lists
for the same reference. When an existing lock list was found indeed, a mutable copy
will be created but is not yet registered at the LockListDictionary. At first, its monitor
is entered to prevent concurrent access. Right after, a regular lock list copy is created
and the monitor is exited again. The creation of a mutable lock list copy is different

87

6. Plugin-Based XVSM Design & Implementation

from the usual immutable snapshot lock lists that were previously used, because now
the calling transaction of the BorrowLockLists method might not be aware that a
snapshot was returned. Hence, the addition and removal of locks in this returned lock
list should not directly lead to an exception. When finally the lock list is added to the
LockListDictionary, an exception will be thrown if there is still another existing lock list
with the same reference. The reason why this sub-task even tests for existing lock lists
and not simply always returns new lock lists is to allow the calling transaction a more
precise reaction by avoiding raising exceptions. If simply an empty mutable lock list was
returned, the transaction could not directly react at all until the exception is thrown
when the IBorrowedLockLists instance is disposed and the addition of the new lock
lists failed. Listing 6.4 illustrates the situation where this problem could arise:

1 tx1.PrepareAcquisition().Access(ref1, Write).Acquire();
2 // -> successful
3

4 tx2.PrepareAcquisition().Access(ref1, Write).Acquire();
5 // -> exception or unsuccessful

Listing 6.4: Duplicate write-acquisition of the same element.

Both transactions tx1 and tx2 access the same reference ref1 for write access. However,
as new space references need to be unique, the acquisition of tx2 will not work. The
problem is that the second acquisition must not lead to an exception in this case but
should simply return an unsuccessful result. Hence, the implementation returns the
mutable snapshot of the existing lock list to provoke an incompatibility with the isolation
level and therefore failing fast.

BorrowedLockLists

All the lock lists that have been retrieved or created in the previous sub-tasks are put
in a BorrowedLockLists instance that implements the IBorrowedLockLists interface.
This instance will be returned to the calling transaction. When the instance is disposed,
several operations are executed:

• Existing lock lists that were marked to be removed are unregistered in the Lock-
ListsDictionary.

• The monitor locks of the existing and entered lock lists are exited.

• Newly created lock lists are registered in the LockListDictionary, but only if the
RollbackCreatedLockLists property is not set to true.

6.2.8 Pessimistic Transaction Implementation

The default plugin part for the ITransaction contract is a pessimistic nested locking imple-
mentation called PessimisticTransaction and is located in the XVSM.Plugin.Pessimis-

88

6.2. Transactions

ticTransaction namespace. This plugin part makes use of the previously presented
plugins implementing the locking contracts and isolation level contracts.

Commit and Rollback

The implementation of the commit method is visualized in Figure 6.14, showing the
commit of the top-level transaction of a hierarchy with three levels.

tx:
ITransaction

tx:
ITransaction

stx[i]:
ITransaction

stx[i]:
ITransaction

commit

:ICapi3:ICapi3

commit

sstx[j]:
ITransaction

sstx[j]:
ITransaction

commit

transfer locks
& lock list actions

& transactional actions

transfer locks
& lock list actions

& transactional actions

loop

[has next child
transaction sstx[j]]

loop

[has next child
transaction sstx[j]]

loop

[has next running
child transaction
stx[i]]

loop

[has next running
child transaction
stx[i]]

refref

RunFinalCommitActions

Figure 6.14: UML sequence diagram showing the committing process of a transaction
hierarchy with three levels.

The commit method is recursively propagated to all the running sub-transactions. The
deepest running child transaction starts to transfer its locks, registered lock actions and
transactional actions to its parent transaction. This process is repeated until the top-level
transaction contains these stored elements from the full transaction hierarchy. With these
elements, the top-level transaction initiates the execution of the FinalCommit event,
which is illustrated in the separate Figure 6.15.

Before any action is invoked or applied, all lock lists of the transaction hierarchy are
borrowed again to obtain exclusive access. Since all requested lock lists are already
existing, the newReferences parameter of the borrowing method is left null. As this
borrowing request incorporates the re-borrowing of all lock lists that have ever been used
by any transaction in the hierarchy, this request might take some time and is therefore
executed with priority. This second borrowing of the same lock lists is important to
guarantee transactional safety for the registered lock list actions but also to provide a
protected execution environment for the transactional actions. These actions are invoked
before borrowed lock lists are returned, which provides them the guarantee that the lock
lists may not be modified in the meantime.

89

6. Plugin-Based XVSM Design & Implementation

:ITransaction
ta:Transactio-

nalActions
:ILockList-
Manager

b:IBorrowed
LockLists

l[i]:
ILockList

BorrowLockLists
(existing references,

null)

new(lock lists)

b

modify lock list

dispose
remove
lock lists

loop

[has next stored
lock list action
for lock list l[i]]

sd RunFinalCommitActions

alt

[remove
lock list]

[modify
lock list]

mark lock list for removal

loop

[has next trans-
actional action
ta[j]]

invoke FinalCommit action

Figure 6.15: UML sequence diagram illustrating the execution of registered final commit
actions.

Initiating a rollback on a transaction hierarchy functions in a similar way as a commit.
Instead of the registered final commit action, the registered rollback actions are executed
and these actions are executed by every rollbacked transaction individually and not only
the top-level transaction.

Lock Acquisition

The method PrepareAcquisition returns an instance of an IAcquisitionRe-
quest implementation. When the acquisition request is set up and its Acquire method
is called, the ITransaction instance is called back again to carry out the acquisition.

90

6.2. Transactions

Figure 6.16 visualizes an example acquisition process and shows the interaction of the
lock list manager and isolation level handler plugins in a simplified form.

:IAcquisition-
Request

:ITransaction
ta:Transactio-
nalActions

:ILockList-
Manager

:IIsolationLevel-
Handler

b:IBorrowed
LockLists

l[i]:
ILockList

acquire (references, access modes, ta)

BorrowLockLists
(existing references,

new references)

new(lock lists)b

get acquisition recipe(l[i], accessMode)

acquisition recipe

prepare acquisition

loop

[b.LockLists has
next ILockList l[i]]

BeforeAcquisition

modify lock list

dispose
register

new lock lists

loop

[b.LockLists has
next ILockList l[i]]

get list of locks

locks

AfterAcquisition

acquisition result

store lock and lock list actions

store transactional actions

store result

check compatibility

Figure 6.16: UML sequence diagram illustrating a successful lock acquisition.

When ITransaction is invoked by the IAcquisitionRequest instance, it uses the
lock list manager to borrow the lock lists for the provided references. The references are
divided between write-acquisitions and the rest, in order to provide separate lists for the
borrowing method. The lock list manager then returns with an IBorrowedLockLists
instance that contains the requested lock lists for exclusive access.

These lock lists are iterated and an acquisition recipe is requested for each one from
the transaction’s isolation level handler. When the resulting acquisition recipe attests
compatibility for the single acquisition request, the recipe is stored until the other recipes
of the remaining lock lists are checked too. The temporary storing is required since either
all individual acquisition requests must be performed or none. In this successful example,
however, all acquisition recipes attest compatible acquisitions.

The second iteration that finally carries out the acquisition is surrounded by the invocation
of the TransactionalActions instance’s registered events. The lock list is modified
in the specified way of the concrete acquisition recipe and the results are stored to be

91

6. Plugin-Based XVSM Design & Implementation

later returned together. When a new lock was created and the acquisition recipe’s lock
list actions for the FinalCommit or AnyRollback events are set, the lock and the
lock actions are stored in an internal list of the transaction. When the event occurs, the
corresponding lock list actions will be executed.

If the compatibility test in the first iteration failed for any single acquisition, the second
iteration as well as the two invocations of the transactional actions would be omitted
and instead a single invocation of the NoAcquisition transactional action would be
executed. Disposing the IBorrowedLockLists instance makes sure the borrowed existing
lock lists are unlocked and can be borrowed by other transactions. The newly created lock
lists are registered in the ILockListManager instance. Before returning the results,
the TransactionalActions instance is stored as well in the transaction, since it
might contain custom actions for the FinalCommit or AnyRollback events.

6.2.9 NoTransaction Implementation

The NoTransaction plugin implementation in the namespace Xvsm.Plugin.No-
Transaction is an alternative that provides the functionality for the transaction
contracts. It does not use locking to protect and isolate elements and therefore does
not use the isolation level handlers as well. It is a very simple implementation of the
transaction contracts’ interfaces that should be used in scenarios where no transactional
safety is needed.

Nested instances and the transactional actions, however, are supported by this implemen-
tation and work similar to the PessimisticTransaction plugin. The commit is propagated
to every running sub-transaction, which leads to the transfer of the registered transac-
tional actions to the top-level transaction. The top-level transaction iterates through
the transactional actions and invokes the final commit actions. The rollback functions,
similarly as the invocation of the rollback method, are also propagated to all running
sub-transactions. The plugin implementation respects the transaction contracts to allow
its usage as a drop-in replacement for the pessimistic transaction implementation.

6.3 Coordination
In the formal model the coordination is introduced in the CAPI-3 layer, which is
responsible for entries and containers. It provides methods for retrieving and storing
entries in a structured way. In this section we are taking a look at the CAPI-3 layer of
XVSM and show how the coordination mechanism of XVSM is realized in XVSM.net.
Figure 6.17 depicts the involved plugin and plugin part contracts.

The central contract, that acts as an entry point, is the ICapi3 plugin contract. It
provides an API according to the CAPI-3 layer of the formal model. Its main responsibility
is to provide entry operations with coordination support in a consistent, transactional
manner. Thus, the plugin and plugin part contracts ICapi3 depends on are used to
achieve this functionality.

92

6.3. Coordination

ISelection-
Manager

ICoordinator-
Factory

ICapi3

ITransaction-
Registry

ITransaction-
Factory

IIsolation-
LevelRegistry

ILockList-
Manager

IContainer-
Registry

IContainer-
Factory

Client

IXvsmRefer-
enceFactory

IXvsmCore

IRequest-
Response-
Handler

ICapiService-
Mapper

ICapiServiceICapiService

IContainerIContainer

IUniversal-
Coordinator
IUniversal-
Coordinator

IIsolation-
LevelHandler
IIsolation-

LevelHandler

IRequest-
Context-
Registry

ITransactionITransaction

IEntry-
Storage

IEntryFactory

IRequest-
Context-
Factory

ICoordination-
LockHandler

ICapiService-
Executor

ICoordinatorICoordinator

ICoordination-
Context-
Factory

ICoordination-
Context-
Factory

IImplicit-
Coordination-
DataFactory

IImplicit-
Coordination-
DataFactory

XVSM.net

Figure 6.17: Extract of the dependency and architectural overview showing coordination-
relevant components.

Containers are managed by ICapi3 through the IContainerFactory and IContain-
erRegistry plugins. The resulting IContainer plugin parts are used by ICapi3
to store and retrieve entries. To achieve this, the IContainer instances delegate the
storage responsibility of entries to the IEntryStorage plugin. Coordinators are instan-
tiated by IContainer plugin parts according to the provided information of ICapi3’s
create container operation. When entries are stored, their coordination data are registered
at the coordinators. In some cases the IContainer plugin part uses the IImplic-
itCoordinationDataFactory to create the coordination data automatically before
registering it.

For ICapi3’s entry selection operations, such as read, take, or delete, the ISelection-
Manager plugin is used to orchestrate the selection by wiring the IUniversalCoor-
dinator plugin parts and executing the selection. They, on the other hand, delegate
their operations to the concrete ICoordinators plugin parts.

ITransaction plugin parts are used to create a sub-transaction to acquire locks and
execute the operation in a consistent manner. The ICoordinationLockHandler
plugin is used to acquire general coordination-specific locks per operation.

In this section we show the concrete specification of these plugin and plugin part contracts
as well as provide details of their implementation characteristics.

6.3.1 Container Contracts

Containers are plugin parts with the contract IContainer. As a plugin part, its
instantiation is performed by a plugin part factory with the IContainerPartFactory

93

6. Plugin-Based XVSM Design & Implementation

contract. However, this plugin part factory is not directly used by CAPI-3 to instantiate
containers, but instead the IContainerFactory plugin is used, which internally
delegates the instantiation requests to the plugin part factory. This separate plugin was
introduced to allow the simultaneous usage of multiple container implementations. For
instance, it is possible to create a container plugin part that does not support bounded
XVSM containers but instead is optimized for unbounded containers. For situations where
a bounded container is requested, on the other hand, a different implementation should
be used. The IContainerFactory plugin is responsible to select the implementation
that fits the situation best. This can be realized through the plugin framework’s dynamic
plugin selection mechanism that allows to choose the concrete plugin through its metadata.
Figure 6.18 shows an UML class diagram visualizing the contracts that are used for the
container creation and retrieval.

<<PluginContract>>

IContainerPartFactory

+ InstantiateContainer (reference : IXvsmReference,
 coordinators : IEnumerable<CoordinatorInstanceInformation>,
 size : int)
 : IContainer

CoordinatorInstanceInformation

+ CoordinatorName : string
+ CoordinatorTypeName : string
+ Obligatory : bool

<<PluginContract>>

IContainerFactory

+ CreateContainer(name : string,
 coordinators : IEnumerable<CoordinatorInstanceInformation>,
 size : int, spaceUri : string)
 : IContainer

<<PluginContract>>

IContainerRegistry

+ RegisterContainer(container : IContainer)
 : void
+ GetContainer(reference : IXvsmReference)
 : IContainer
+ RemoveContainer(reference : IXvsmReference)
 : IContainer

Figure 6.18: UML class diagram showing contracts for the container creation and retrieval.

The CreateContainer method of the IContainerFactory contract requires the
container name, a collection defining the coordinator instances, the maximum number
of entries and the space URI as arguments. The specified name and space URI are
used to create a space reference with the IXvsmReferenceFactory plugin. The
newly created reference, along with the remaining parameters, are delegated to the
InstantiateContainer method of the concrete plugin part factory. The integer
defines the maximum number of entries for bounded containers but may also be used
to specify unbounded containers when the value is zero. The provided collection of
CoordinatorInstanceInformation objects specifies the associated coordinators
of the container. These instances contain the name and type of the coordinator as
strings and define whether the usage of the coordinator is required or optional. With
all this information, it is possible for the container to arrange the instantiation of the
coordinators and manage their instances. The created container may then be registered
at the registry plugin IContainerRegistry for future lookups by the CAPI-3 layer.

Containers in XVSM.net represent the containers of XVSM. They are an additional
abstraction layer for the space and provide a custom orchestration of useable coordinators.
Figure 6.19 shows the contracts of the containers and related elements in XVSM.net.

94

6.3. Coordination

<<PluginPartContract>>

IContainer

<<PluginPartContract>>

IContainer

+ Reference : IXvsmReference
+ Name : string
+ Size : int
+ Coordinators : IEnumerable<CoordinatorInformation>

 + GetCoordinatorsByName(names : IEnumerable<string>)
 : ICollection<CoordinatorInformation>
 + GetCoordinatorsForEntries(entries : IEnumerable<ICoreEntry>)
 : ICollection<CoordinatorInformation>
 + GetEntryReferences()
 : ICollection<IXvsmReference>
 + GetEntriesByReferences(references : ICollection<IXvsmReference>)
 : ICollection<ICoreEntry>
 + UpdateAndCheckEntriesForObligatoryCoordinationData(
 entries : ICollection<ICoreEntry>) : void
 + AddEntries(entries : ICollection<ICoreEntry>,
 metadata : ICoordinationMetadata) : void
 + RemoveEntries(entryReferences : ICollection<IXvsmReference>,
 metadata : ICoordinationMetadata) : void
 + Destroy()
 : void

CoordinatorInformationCoordinatorInformation

+ Coordinator
 : IUniversalCoordinator
+ CoordinatorAttribute
 : CoordinatorAttribute
+ InstanceInformation
 : CoordinatorInstanceInformation

<<Interface>>

ICoreEntry

<<Interface>>

ICoreEntry

+ Reference : IXvsmReference
+ EntryObject : object
+ CoordinationData
 : Dictionary<string, ICoordinationData>

<<Interface>>

ICoordinationData

<<Interface>>

ICoordinationData

+ CoordinatorName : string

Figure 6.19: UML class diagram illustrating the container contract.

The arguments that have been provided to the plugin part factory of the container may
be accessed through the container’s properties to give information about the container.
However, the Coordinators property uses a slightly different type that includes the
previously provided CoordinatorInstanceInformation object as well as objects
of the instantiated coordinator. The instantiated coordinator is accessible through the
Coordinator property and implements the IUniversalCoordinator, which are
described in Section 6.3.3. The attribute of the coordinator is also stored for a quick
access to the coordinator’s metadata without the need of C#’s reflection API. As already
mentioned, the container is responsible to instantiate coordinator instances according to
the specified coordinator names and types. However, the container implementation does
not directly instantiate the coordinators but uses an instance of the ICoordinator-
Factory plugin. The task of this factory is to select the correct coordinator plugin and
instantiate it through its corresponding plugin part factory.

The methods GetCoordinatorsByName and GetCoordinatorsForEntries pro-
vide functionality to retrieve coordinator information objects from the container. The
former method simply returns coordinators with the specified names and is used by the
CAPI-3 layer before entries are selected by the retrieved coordinators. The latter method
returns all coordinators that are relevant for the entries and is called whenever entries
are written to the container. Entries may be registered on different coordinators, thus
the information for coordinators that are relevant to at least one entry is returned. This
coordinator information is useful to acquire coordinator-specific locks before the entries
are written to the container.

The method GetEntryReferences returns the entry references of all stored entries

95

6. Plugin-Based XVSM Design & Implementation

in the container, which are otherwise only accessible through the coordinators. The
entry references may then be used with the bulk method GetEntriesByReferences
to retrieve the corresponding entry objects. These returned instances are objects of
the type ICoreEntry, which includes the entry reference, its data object and the
coordination data. This coordination data was included with the entry object to pro-
vide additional coordination-relevant information for the coordinators. The method
UpdateAndCheckEntriesForObligatoryCoordinationData, as the name im-
plies, checks if the provided entries contain the required coordination data of obligatory
coordinators and automatically creates implicit coordination data if possible.

Entries are added with the method AddEntries by providing a collection of ICoreEn-
try instances and an ICoordinationMetadata object. The container is responsible
to store the entries and provide their coordination data to the coordinators. ICoor-
dinationMetadata is used to provide additional metadata for the operation. The
concrete specializations of the interface are shown in Section 6.3.3. Containers must
provide a RemoveEntries method to remove stored entries. When they are removed
from the container, they must be unregistered from the coordinators as well.

The remaining method in the container interface is the Destroy method that is used to
quickly remove the container with all stored entries and associated coordinators.

6.3.2 Entry Storage

The implementation of the default container plugin does not directly store the entries but
uses an instance of the IEntryStorage plugin. All container objects share the same
instance of this plugin. Figure 6.20 shows the plugin contract of the IEntryStorage
plugin. The container plugin invokes the AddContainerStorage method with its
reference to create a personal storage location. Entries may be stored, retrieved or
removed by providing the container reference that also identifies the storage location.
With the RemoveContainerStorage method, all remaining entries in the storage
location can be removed at one go.

<<PluginContract>>

IEntryRegistry

+ AddContainerStorage(containerReference : IXvsmReference) : void
+ RemoveContainerStorage(containerReference : IXvsmReference) : void
+ AddEntry(containerReference : IXvsmReference, entry : ICoreEntry) : void
+ GetEntry(containerReference : IXvsmReference, entryReference : IXvsmReference) : ICoreEntry
+ RemoveEntry(containerReference : IXvsmReference, entryReference : IXvsmReference) : ICoreEntry
+ GetStorageEntries(containerReference : IXvsmReference) : ICollection<IXvsmReference>

Figure 6.20: UML class diagram showing the IEntryStorage plugin contract.

It was decided to create this separate storage plugin for flexibility of the storage imple-
mentation. This was created with persistence in mind. A custom entry storage that
saves the entries in a database does not need an additional container implementation

96

6.3. Coordination

with this separate plugin. This is especially useful as the container incorporates logic for
the coordinator management that is also required for an alternative persistent storage.

6.3.3 Coordinator Contracts

Coordinators of XVSM correspond to plugin parts of the ICoordinator plugin part
contract, which are referred to as coordinators as well. The development of a flexible and
type-safe concept for the coordinator contracts led to the contract hierarchy in Figure
6.21.

<<PluginPartContract>>

ICoordinator

+ CoordinatorName : string
+ CoordinatorReference : IXvsmReference
+ ContainerReference : IXvsmReference

<<PluginPartContract>>

IUniversalCoordinator

+ BaseCoordinator : ICoordinator
+ CoordinationDataType : Type
+ SelectorType : Type

+ RegisterEntries(
 entries : ICollection<EntryInformation>,
 request : ICoordinationMetadata)
 : void
+ UnregisterEntries(
 entryReferences : ICollection<IXvsmReference>,
 request : ICoordinationMetadata)
 : void
+ SelectEntryReferences(
 selector : ISelector,
 previousCoordinator : IEnumerable<IXvsmReference>,
 firstCoordinator : bool,
 request : ICoordinationMetadata)
 : IEnumerable<IXvsmReference>

<<Interface>>

D : ICoordinationData,
S : ISelector

ICoordinator

+ RegisterEntries(
 entries : ICollection<EntryInformation<D>>)
 : void
+ UnregisterEntries(
 references : ICollection<IXvsmReference>)
 : void
+ SelectEntryReferences(
 selector : S,
 previousCoordinator : IEnumerable<IXvsmReference>,
 firstCoordinator : bool)
 : IEnumerable<IXvsmReference>

<<Interface>>

D : ICoordinationData,
S : ISelector,

C : ICoordinationContext

ICoordinator

+ RegisterEntries(
 entries : ICollection<EntryInformation<D>>,
 context : C)
 : void
+ UnregisterEntries(
 references : ICollection<IXvsmReference>,
 context : C)
 : void
+ SelectEntryReferences(
 selector : S,
 previousCoordinator : IEnumerable<IXvsmReference>,
 firstCoordinator : bool,
 context : C)
 : IEnumerable<IXvsmReference>

Figure 6.21: UML class diagram showing the coordinator contract inheritance without
interface members.

The non-generic plugin part contract ICoordinator is the base interface of all coordina-
tors. The class diagram shows a plugin part contract and two simple interfaces extending
the base interface. These interfaces are generic and could not be realized as true plugin
part contracts since the current implementation of the plugin framework does not support
generic plugin or plugin part contracts. However, it is possible to use a generic interface
in combination with a non-generic base interface that is exported as the plugin part
contract. The corresponding plugin part factory simply returns instances of the base
interfaces, which then can be manually casted to the concrete generic interface when
used. The various coordinator plugin parts must implement one of the generic interfaces
as they provide type-safe access to coordination-related objects. Universal coordinator’s,
which are plugin parts with the IUniversalCoordinator contract, are internally
used as wrappers for the coordinator plugin parts with the generic interfaces. They are
responsible to translate general coordinator requests to comply with the concrete generic
coordinators and their generic type parameters. The sequence diagrams in Figures 6.22
and 6.23 exemplarily illustrates this delegation process. The IContainer plugin part

97

6. Plugin-Based XVSM Design & Implementation

is responsible to register entries on the relevant coordinators, while the ICapi3 plugin
retrieves the entry references from the coordinators.

u1
:IUniveralCoordinator

u1
:IUniveralCoordinator

g1
:ICoordinator<C,S>

g1
:ICoordinator<C,S>

write entries

write entries

:IContainer:IContainer

Figure 6.22: The delegation of write opera-
tions by IUniversalCoordinator plu-
gin parts.

u2
:IUniveralCoordinator

u2
:IUniveralCoordinator

g2
:ICoordinator<C,S,T>

g2
:ICoordinator<C,S,T>

select entry
references

select entry
references

entry references
entry references

:ICapi3:ICapi3

Figure 6.23: Showing the delegation of en-
try reference selection operations by IUni-
versalCoordinator plugin parts.

Invocations on the coordinator with the IUniversalCoordinator interface are del-
egated to its corresponding generic coordinator implementation. Thus, every instance
of IUniversalCoordinator stores the corresponding generic coordinator object that
was passed through the ICoordinator parameter from its instantiation method.

The RegisterEntries and UnregisterEntries methods of the coordinator in-
terfaces are used to keep track of entry operations. The RegisterEntries method
is called by the container to provide the coordinator with the coordination data of
newly written entries. The generic EntryInformation<> objects that are handed over
contain the references of the entries and their coordination data. In XVSM.net the
responsibility for the storage of the coordination data is placed on the coordinators. Here,
XVSM.net behaves similar to MozartSpaces and differs from the formal model as it
is beneficial to leave the storage of the coordination data at the coordinators. This allows
the coordinators to store the coordination data in data structures optimized for entry
retrieval operations. For instance, a Label coordinator could store the coordination data
in a data structure optimized for lookup operations. The UnregisterEntries method
is invoked for all removal operations on the container. The references of the entries are
provided as parameters to allow the coordinators to remove the stored coordination data.

With the method SelectEntryReferences it is possible to retrieve and filter entries
with the semantics of the coordinator. An ISelector instance is provided that contains
metadata about the selection, such as the count or coordinator name. The concrete type
in the generic interface may contain additional selection data that the coordinator could
use. The coordinators are used to retrieve previously registered entries through specific
selectors.

Every coordinator must have a CoordinatorAttribute applied to provide metadata
about the coordinator. The Deterministic property defines whether the results of the
coordinator’s SelectEntryReferences method are repeatable from the same state.
This metadata is useful for selection algorithms that can use this information to quickly
abort the operation when a required entry from a deterministic coordinator is not available.
However, the property does not take concurrent state modifications into account for non-
determinism. Details about the selection algorithm are presented in Section 6.3.5. The

98

6.3. Coordination

Implicit property of the attribute denotes whether the coordinator requires manually
provided coordination data or not. The container implementation is responsible to check
if the provided entries contain the required coordination data. Thus, coordinators that
require certain metadata of entries for storage have the property set to false to force
the provision of manually provided coordination data. When entries without coordination
data should be managed by a specific coordinator that has the Implicit property set
to false, the container will abort the operation with an exception. However, there is an
approach to customize the process of creating implicit coordination data for coordinators
with the Implicit property set to true. If it is possible to automatically extract the
required coordination data from the entry object, then the corresponding instance of the
IImplicitCoordinationDataFactory plugin contract is used to create the coordi-
nation data. Instances of the IImplicitCoordinationDataFactory plugin contract
are automatically wired through their applied ImplicitCoordinationDataFacto-
ryAttribute, which contains the property CoordinationDataType that specifies
the type of the coordination data the IImplicitCoordinationDataFactory can
create. The container is responsible for the instantiation of these factory plugins and in-
vokes their single method CreateImplicitCoordinationData with the coordinator
reference, its name, and the entry object as arguments to create the custom coordination
data. The final property LockMode defines what additional locking is required for the co-
ordinator to function properly. The concrete lock modes of the CoordinatorLockMode
type are discussed in Section 6.3.6.

With the generic ICoordinator interface, the developer of a coordinator simply needs
to specify the concrete types that are used for the coordinator as the casting and mapping
of the types is handled by other dedicated plugins. In the following, the generic type
parameters and their translation operations are described:

ICoordinationData: The coordination data of an entry is stored in instances of this
type and is provided to the coordinator when entries are registered. It is possible to
simply use the ICoordinationData interface as the generic type parameter for
coordinators that require no custom coordination data. Some coordinators, on the
other hand, require custom coordination data and therefore may provide a custom
class with additional properties. This is useful, since little data is provided by
default to the coordinator for every entry, as can be seen in Figure 6.24. The non-
generic EntryInformation class is provided to the universal coordinator, which
then casts the included CoordinationData property to the generic type of the
corresponding generic coordinator instance. The casted type, along with the entry
reference, is then packed in a new generic instance of the EntryInformation class
and provided to the generic coordinator instance. Without a custom coordination
data class, the entry reference must be sufficient entry data for the coordinator to
conclude the entry registration.

ISelector: For every entry selection operation, a selector object is provided to the
relevant coordinator. The selector object contains relevant selection information for

99

6. Plugin-Based XVSM Design & Implementation

EntryInformation

+ Reference : IXvsmReference
+ CoordinationData : ICoordinationData

D : ICoordinationData

EntryInformation

+ Reference : IXvsmReference
+ CoordinationData : D

<<Interface>>

ICoordinationData

+ CoordinatorName : string

Figure 6.24: UML class diagram showing classes relevant for the entry registration.

the coordinator. Some coordinators do not need any custom selection information
and therefore directly use the ISelector interface as the generic type parameter.
Other coordinators, however, do require custom selection data and use a custom
class with additional properties for the selector. The ISelector interface contains
the coordinator name and the selection count for the coordinator as properties.
The universal coordinator is again responsible to cast the selector instance to the
concrete type and provide the resulting instance to the relevant coordinator.

ICoordinationContext: This interface is used for the optional generic type parameter
to provide extended coordination information for the coordinator. In this case,
it only makes sense to use a specialization of the ICoordinationContext in-
terface as type parameter, since the base interface does not contain any elements.
XVSM.net already comes with a specialization of this interface, which is illus-
trated in Figure 6.25. The interface ITransactionalContext can be used by

<<Interface>>

ITransactionalContext

+ CouldExistInTransaction(
 entryReference : IXvsmReference)
 : bool
+ RemovedByTransaction(
 entryReference : IXvsmReference)
 : bool

<<Interface>>

ICoordinationContext

Figure 6.25: UML class diagram showing the ITransactionalContext interface.

the coordinator to gain insight of the transactional states of the entries. The two

100

6.3. Coordination

included methods correspond to the equally named methods of the ITransaction
interface presented in Section 6.2.3. It would have also been possible to simply
provide the used transaction object in the ITransactionalContext instance
and let the coordinators directly access the methods through the transaction object,
but this would have made the transaction object accessible to the coordinator.
This is a consequence of the design decision to separate the coordinators’ logic
from the internal plugins and plugin parts of XVSM.net. This coordination
context mechanism is extensible and allows to provide custom context objects that
extend the ICoordinationContext interface. Context objects are instantiated
through plugins implementing the ICoordinationContextFactory plugin con-
tract that are invoked through the universal coordinator instances. Figure 6.26
illustrates the plugin contract used to instantiate context instances and the meta-
data provided to the factories. It was decided to leave the casting of the concrete

<<Interface>>

ICoordinationMetadata

<<Interface>>

IRegisterMetadata

+ Transaction : ITransaction

<<Interface>>

IUnregisterMetadata

+ Transaction : ITransaction

<<Interface>>

ISelectionMetadata

+ Transaction : ITransaction
+ AccessMode : AccessMode

<<PluginContract>>

ICoordinationContextFactory

+ CreateCoordinationContextForRegistering(
 request : ICoordinationMetadata)
 : ICoordinationContext
+ CreateCoordinationContextForUnregistering(
 request : ICoordinationMetadata)
 : ICoordinationContext
+ CreateCoordinationContextForSelection(
 request : ICoordinationMetadata)
 : ICoordinationContext

CoordinationContextFactoryAttribute

+ CoordinationContextType : Type

Figure 6.26: UML class diagram showing the plugin contract to instantiate custom
context objects with related elements.

metadata types to the factories, since later added factories will probably require
specialized metadata types anyway. The universal coordinator is responsible to
lookup the correct context factory with the plugin service locator by checking
the CoordinationContextFactoryAttribute of the context factories. The
context factory with an attribute that has the correct context type stored in its
CoordinationContextType property is then used for the context instantiation.
The universal coordinator casts the resulting context object to the required type and
provides it along with the other arguments to the generic coordinator. The provided
IRegisterMetadata, IUnregisterMetadata, and ISelectionMetadata
methods all contain the ITransaction instance used for the operation, which is
required to create the ITransactionalContext instance.

101

6. Plugin-Based XVSM Design & Implementation

6.3.4 Coordinator Instantiation

The instantiation of the coordinators through the IContainer implementation requires
several steps, thus, the responsibility is sourced out to a separate plugin that is accessed
through its ICoordinatorFactory plugin contract. This plugin is responsible to
lookup and instantiate the generic coordinator implementation suitable for the specified
type, before instantiating and returning a wrapping instance of the IUniversalCoor-
dinator interface. The generic coordinator types are not hardcoded in XVSM.net but
make use of a string identifier stored in the plugin part factories’ metadata. Figure 6.27
shows the concrete contracts involved in the instantiation.

<<PluginContract>>

ICoordinatorPartFactory

<<PluginContract>>

ICoordinatorPartFactory

+ InstantiateCoordinator(
 containerReference : IXvsmReference,
 coordinatorReference : IXvsmReference,
 coordinatorName : string) : ICoordinator

<<PluginContract>>

ICoordinatorFactory

<<PluginContract>>

ICoordinatorFactory

+ InstantiateCoordinator(
 containerReference : IXvsmReference,
 coordinatorName : string,
 coordinatorTypeName : string)
 : IUniversalCoordinator

CoordinatorFactoryMetadataAttributeCoordinatorFactoryMetadataAttribute

+ CoordinatorTypeName : string

<<PluginContract>>

IUniversalCoordinatorPartFactory

<<PluginContract>>

IUniversalCoordinatorPartFactory

+ InstantiateUniversalCoordinator(
 coordinator : ICoordinator)
 : IUniversalCoordinator

Figure 6.27: UML class diagram showing plugin contracts required for the instantiation
of coordinators.

When the instantiation method of the ICoordinatorFactory plugin is called, it
creates the coordinator-specific ICoordinatorPartFactory based on the provided
coordinator type. To lookup the right plugin part factory, the ICoordinatorPartFac-
tory implementations must have the CoordinatorFactoryMetadataAttribute
applied with a string specifying the coordinator type. The instantiation request of the
coordinator is delegated to the ICoordinatorPartFactory, which instantiates the
concrete coordinator and passes the container and coordinator references along with the
coordinator name to the coordinator.

After the coordinator has been instantiated and returned to the ICoordinatorFactory
plugin, the plugin invokes the IUniversalCoordinatorPartFactory’s method to
wrap the generic coordinator implementation with an IUniversalCoordinator plugin
part. The IUniversalCoordinator instance is returned to the container.

6.3.5 Selection Manager

The plugin implementing the ISelectionManager plugin contract, called Selection-
Manager, contains the single method Select to execute selection operations and is

102

6.3. Coordination

called by the ICapi3 plugin. Figure 6.28 depicts its signature. Its first parameter
selectionData provides pairs of the used selector and the corresponding coordinator
information object, which is used by the coordinator orchestration required for the selec-
tion. As the second and final parameter, selection metadata is provided to the selection
manager. Through the metadata the operation’s transaction as well as its access mode
are retrieved by the SelectionManager.

<<PluginContract>>

ISelectionManager

<<PluginContract>>

ISelectionManager

+ Select(
 selectionData : Tuple<ISelector, CoordinatorInformation>[],
 metadata : ISelectionMetadata)
 : ICollection<IXvsmReference>

Figure 6.28: UML class diagram showing the plugin contract of the SelectionManager.

The SelectionManager has several tasks related with the selection of entry references.
One of its tasks is to link the coordinators together in the requested evaluation order.
Since the coordinators are not generally responsible to enforce the count constraints or
ensure the transactional availability of the entry references, these tasks also lie in the
responsibility of the SelectionManager. To handle all these tasks, the SelectionManager
makes use of a variant of the mediator and pipe-and-filter [Mon+97] style by using
CoordinatorMediator instances that handle the communication between the coordi-
nators. Thanks to C#’s support of generators through the yield keyword [KPS12], a
streaming-based coordination implementation has been realized.

The first coordinator yielding entry references is the only coordinator for the selection
that has the firstCoordinator boolean argument set to True. The yielded entry
references may then be passed individually by the first mediator instance to the next
coordinator and so on. In the default implementation, the first mediator takes a special
role among all the mediators. It is responsible to evaluate the transactional availability
of the yielded entry references and filter them when necessary. XVSM.net uses a similar
double-checking locking strategy as MozartSpaces by using an optimistic approach that
might lead to re-execution of the selection operation, but preserves concurrency, since
alternative pessimistic locking strategies would limit concurrent execution significantly
[Bar10]. It is important to note that the first mediator only checks if the entry references
are available. The transactional acquisition of the entry references is left to the selection
methods of ICapi3 in Section 6.3.9. The transactional availability is checked by applying
a try-only acquisition of the entry reference on the provided transaction instance with the
supplied access mode. When the entry reference is available it is simply yielded to the next
coordinator. However, when the acquisition check fails, an EntryLockedException
exception is thrown. Since the exception extends from Capi3Exception, a Locked
operation result could be returned when none of the following conditions are satisfied:

103

6. Plugin-Based XVSM Design & Implementation

1. The selector of the first coordinator has COUNT_MAX for the count property. This
is the direct consequence of the used selector count property and conforms to the
required behavior.

2. The entry reference could not exist in the transaction of the operation. Since the
unregistering of entries is delayed until the FinalCommit event, the coordinators
contain references of entries that were removed in one transaction. With the check
for this condition, the mediator automatically filters these entry references.

3. The selector of the first coordinator has a discrete value for the selector count
property and the first coordinator is not deterministic. This check is an optimization
that leads to less Locked operation results in some situations. It makes use of
the condition that some coordinators do not guarantee a deterministic result and
therefore simply filters the unavailable entry reference. However, if such a filtered
entry reference leads to too few available entries at a later point, a Locked operation
result is still returned instead of a Delayable.

Checking the transactional availability of entry references is not the only task of mediators,
they are also responsible to enforce the selector count properties. This time the task is not
solely subject to the top most mediator but is the responsibility of all mediators. Every
yielded entry reference of the previous coordinator that is not filtered by the mediator
is locally counted in the mediator. When the selector count property is discrete, the
responsible mediator stops selection when the discrete count has been reached or raises
an exception when the coordinator yields too few available entry references. The possible
exception that is raised is a CountNotMetException, which is a Capi3Exception
and results to an operation result with a Delayable value.

6.3.6 Concurrency & Locking

Methods of the generic coordinator implementations may be invoked concurrently. This
applies especially to the three methods that are used to register, unregister or retrieve entry
references. In XVSM.net, the responsibility to cope with this concurrency lies in the
coordinators themselves by default. In most coordinators of the default implementation,
this is simply solved by using data structures that are optimized for concurrent usage,
such as the ConcurrentDictionary. Since the coordinators are unaware of the
concrete transaction and used isolation level, it is sufficient to simply execute the invoked
methods without special transactional handling. Ensuring transactional correctness is
the responsibility of the plugins requesting the coordinator operations, such as ICapi3
and IContainer.

Even though XVSM.net leaves the concurrency handling to the coordinators, it provides
an automatic locking mechanism for entry operations tied to the used transaction. The
so-called coordination lock modes define the concrete locking behaviors, which are carried
out by the coordination lock handler plugin implementing the ICoordinationLock-
Handler plugin contract, shown in Figure 6.29. This is realized in the plugin by using

104

6.3. Coordination

<<PluginContract>>

ICoordinationLockHandler

+ AcquireCoordinationLocks(
 tx : ITransaction,
 containerReference : IXvsmReference,
 coordinators : IEnumerable<CoordinatorInformation>,
 accessMode : AccessMode)
 : OperationResult
+ CreateInitialCoordinationLocks(
 tx : ITransaction,
 containerReference : IXvsmReference,
 coordinators : IEnumerable<CoordinatorInformation>)
 : OperationResult
+ RemoveCoordinationLocks(
 tx : ITransaction,
 containerReference : IXvsmReference,
 coordinators : IEnumerable<CoordinatorInformation>)
 : OperationResult

Figure 6.29: UML class diagram showing the ICoordinationLockHandler plugin
contract.

the transaction system to acquire locks on coordinator and container references. This
mechanism was added as an abstraction layer to support coordination-specific locking
semantics. The reason was to introduce an indirection that allows to acquire coordinator
locks for the semantics of the Vector coordinator, which differs from the other coordi-
nators in this regard and requires a stricter lock mode. However, container locks are
also acquired to realize CAPI-3’s container locking functionality through this plugin. In
addition, it allows the realization of the serializable isolation level. If the serializable
isolation level is used in the transaction of the coordination method, the coordination
lock mode is increased to the provided minimum boundary of the corresponding isolation
level handler.

The coordination lock handler provides three methods to manage the locks on the
references. The methods CreateInitialLocks and RemoveLocks are invoked by
the default container plugin to ensure that locks for the container’s and coordinators’
references are created or removed in alignment with the container’s life cycle. The
remaining method AcquireLocks is then invoked for entry operations with the access
mode defining the concrete operation type as additional parameter. Depending on the
provided access mode and the used coordination lock mode, specific acquisition requests
are issued for the container and coordinator references, as can be seen in Figure 6.30.

The sequence diagram shows the behavior of the coordination lock handler for entry oper-
ations that lead to invocation of its AcquireLocks method. For better readability, the
sequence diagram simplifies the retrieval of the minimum and maximum coordination lock
modes by omitting the involved isolation level handler. In the concrete implementation
the isolation level handler of the running transaction is accessed to obtain the lock modes

105

6. Plugin-Based XVSM Design & Implementation

:ICapi3:ICapi3
:ICoordination-

LockHandler
:ICoordination-

LockHandler
tx

:ITransaction
tx

:ITransaction
acquire locks(tx,c[],

access mode)
get min lock mode
for isolation level

min lock mode

get max lock mode
for isolation level

max lock mode

create sub
transaction :ITransaction:ITransactionnew()

:IAcquisition-
Request

:IAcquisition-
Request

prepare acquisition

new()

loop

[has next c[i]]

loop

[has next c[i]]

altalt
access coordinator reference

upgrade container access mode from Read to ReadExclusive

access container lock

acquire locks

acquisition result

create operation result

operation result

c[i] : Coordinator-
Information

c[i] : Coordinator-
Information

get base lock mode

base lock mode

commit

calculate concrete
lock mode

get lock mode
modifier

Figure 6.30: UML sequence diagram showing the behaviors of the coordination lock
handler’s AcquireLocks method regarding lock acquisition.

through its MinCoordinatorLockModeName and MaxCoordinatorLockModeName
properties. These lock modes serve as lower and upper bound constraints for the base
lock modes specified in the coordinators’ attributes. The lock modes have a total order,
ascending from requiring no locking to locking the whole space container for access
through a single transaction. If the base lock mode is below the minimum coordination
lock, for instance, the minimum lock mode is used in the coordination lock handler

106

6.3. Coordination

instead of the base lock mode. The coordinator information objects are iterated and
the coordinator attribute is accessed to retrieve the base coordination lock mode. This
process was simplified in the sequence diagram as well. With the base coordination lock
mode and its boundary constraints, the concretely used lock mode is calculated and
applied depending on the provided access mode. The following enumeration shows the
supported lock modes in the same ascending order that also applies to the boundary
constraints of the base lock mode:

• FullConcurrency: All public coordinator methods might be concurrently accessed
by different threads and in different transactions. No acquisition is issued for the
coordinator’s reference. This is the default coordination lock mode that is used in
most coordinators.

• FullConcurrencyWithReadLocks: All public coordinator methods now acquire
shared read-locks on the coordinator references.

• SingleWrite: The methods used to register or unregister entries at a coordinator
now acquire an exclusive lock on the coordinator’s reference while the retrieval
method issues no read lock. This means that separate transactions within different
transaction hierarchies may not have concurrent write access on the coordinator
until the lock holding transaction commits and releases the exclusive lock. As an
optimization, this lock mode acquires no read-lock for retrieval operations.

• SingleWriteOrSharedRead: This lock mode extends the SingleWrite lock
mode to acquire shared read-locks for executing the retrieval methods of the
coordinators. This is the minimum lock mode of the serializable isolation level and
protects against phantom reads. This is realized by practically locking the full
coordinator for modifications in a single transaction hierarchy.

• SingleWriteOrSingleRead: This coordination lock mode even further minimizes
concurrent access by acquiring readexclusive-locks not only for methods modifying
coordinators but also for the execution of the retrieval method.

• SingleContainerAccess: This most severe coordination lock mode changes the
acquisition type of the container’s reference into a readexclusive-lock and therefore
fully locks the container and all its coordinators for a single transaction hierarchy.

After the access operations for the coordinators’ references have been prepared, the
container reference gets prepared as well. Depending on the type of operation and used
lock modes, the container reference either issues a single read-acquisition or readexclusive-
acquisition. When the acquisition could be successfully applied, the sub-transaction is
committed and a successful operation result is returned. However, when the acquisition
failed, an unsuccessful operation result is returned to the ICapi3 plugin, which then
aborts the operation.

107

6. Plugin-Based XVSM Design & Implementation

The provided transaction is used to create a new sub-transaction with a repeatable read
isolation level that is used for the acquisition operations if the transaction tx has a lower
isolation level. In the sequence diagram, the transaction tx has a lower isolation level
such as read committed, thus a further sub-transaction is created. The transaction tx
corresponds to the sub-transaction of the XVSM formal model, hence the transactions
are further nested in this case. If the transaction tx had a repeatable read isolation level,
it would have been directly used by the coordination lock handler. It makes use of the
repeatable read isolation level since lower isolation levels do not support read locks.

6.3.7 Coordinator Implementations

XVSM.net comes with several default coordinator plugins to provide basic XVSM
functionality. The coordinators with implementation details are briefly described in the
following:

AnyCoordinator

The AnyCoordinator plugin is the simplest coordinator provided by default in XVSM.net.
It requires no custom coordination data and simply stores the entry references in a data
structure for quick lookups. The register or unregister methods store or remove the
provided entry references in its local storage, which is then used by the selection method
for filtering. The entry references from the previous coordinator that are not stored
in the AnyCoordinator instance are removed from the result. When the coordinator is
used as the first coordinator, simply all stored entry references are returned. Since the
filtering mechanism of the coordinator is applied to each entry reference individually,
the coordinator is able to return the result as a stream. In general, the coordinator is
indeterministic since its semantics allow to return the entry references in arbitrary order,
which could lead to different results for selections with a discrete maximum element
count. Regarding concurrency and locking, the coordinator uses the default coordination
lock mode and allows full concurrent access to all methods.

FifoCoordinator

The FifoCoordinator plugin stores entry references in a queue data structure to retain the
first-in-first-out order in which the entries are written to the container. The coordinator
requires no custom coordination data for the written entries. The register method simply
stores the entry references in the same Fifo order as the method is invoked. Since
invocations might occur concurrently through different transactions, it is not guaranteed
that all entries, written in a single transaction, are consecutively stored, their partial
order, though, is guaranteed. When entries are retrieved through the selection method,
the entry references from previous coordinators in the coordinator chain are collected
first to be filtered and returned in the Fifo order. Entry references that are not stored
in the FifoCoordinator are simply filtered from the result. The coordinator does not
support streaming as the entry references of previous coordinators are collected first. The

108

6.3. Coordination

result of the FifoCoordinator is deterministic, since all selected entry references must
be included for a semantically correct result. Regarding concurrency and locking, the
coordinator uses the default coordination lock mode and allows full concurrent access to
all methods.

LifoCoordinator

The LifoCoordinator plugin uses the same concept as the FifoCoordinator with the
difference that it stores the entries in a stack data structure to represent the last-in-
first-out order of the written entries. Every other aspect of the plugin is identical to the
FifoCoordinator.

RandomCoordinator

The RandomCoordinator plugin acts identical to the AnyCoordinator for the registering
or unregistering of entries. It requires no custom coordination data and stores the entry
references in a data structure optimized for quick lookups. However, the selection method
differentiates from its AnyCoordinator pendant since it needs to return the result in a
shuffled order. The previous coordinator’s results need to be collected and filtered first,
before they are shuffled to return a permutation. The shuffling algorithm is implemented
in the plugin and uses a modern version of the Fisher-Yates shuffle from [Knu97]. Since
the results of the previous coordinators are captured first, the coordinator does not
support streaming. Its selection results are indeterministic as all possible permutations of
the result are semantically correct results. All methods of the coordinator can be invoked
concurrently from different transactions.

KeyCoordinator

The KeyCoordinator plugin stores entries with associated strings, here called keys. Every
entry that is registered in the coordinator must have a single unique key assigned to it,
which is provided by custom coordination data. Registering multiple entries with the
same key leads to exceptions and aborts the operation. For the selection a single key must
be specified in the used selector, which limits the coordinator to return only entries with
the specified key associated. As a consequence of the key’s unique constraint, the method
only returns a single available entry reference at most. This unique constraint leads to a
rather complex handling of the registering and unregistering of entry references. Since it
is possible to remove an entry from the container within a non-committed transaction
hierarchy, the coordinator must have insight of specific transactional information, which is
established with the ITransactionalContext object. The coordinator allows to store
multiple entry references for a single key when there is no possibility that these entries
could coexist after committing or rollbacking any involved transactions. When entries
are selected, the possible entry references are determined first before using them to filter
all other entry references from the previous coordinator’s result. The KeyCoordinator is
deterministic since at most one transactionally available entry reference may be returned

109

6. Plugin-Based XVSM Design & Implementation

and no other result would be semantically correct for the coordinator. Even though all
methods of the coordinator may be invoked in parallel, concurrent execution of register
or unregister operations of entries with the same key is not possible.

LabelCoordinator

The LabelCoordinator can be seen as a relaxed variant of the KeyCoordinator that
associates entry references with strings as well. However, it uses so-called labels instead of
keys that do not have to be unique in the coordinator. Every registered entry still requires
exactly one associated label, which is provided by custom coordination data. The used
selector contains a single specified label that is used as a filter to only return elements
with the same associated label. In contrast to the KeyCoordinator, the LabelCoordinator
does not need transactional insight of provided entry references in order to store them,
since this is only required to enforce the uniqueness constraint of keys. This leads to a
simpler implementation than its KeyCoordinator counterpart. The selection algorithm,
however, works identical as it internally retrieves all possible entry references for the
provided label from the local storage, before it consecutively filters the results of the
previous coordinator. Consequently, this allows the support of streaming. When multiple
entries have the same label, all entries are returned in an arbitrary order. Hence, the
coordinator is indeterministic. Concerning the concurrency, the LabelCoordinator allows
concurrent access on its methods and has no restriction on registering entry references
with the same label concurrently.

VectorCoordinator

The VectorCoordinator allows to store and retrieve entry references by indices. Entry
references are stored in a list and can be either inserted at a specified index or appended
at the end. The concrete insertion point is defined with an integer through the custom
coordination data. When entries are selected, a custom selector implementation is
used to provide the required index. Whenever entry references are added or removed,
the indices are shifted in order to ensure continuous numeration. The realization of
this constraint leads to the usage of a more severe coordination locking mode. Thus,
the VectorCoordinator uses the SingleWrite coordination lock mode that prevents
execution of the register and unregister methods through different transaction hierarchies.
However, if the same VectorCoordinator with multiple entries is accessed from one
transaction that removes an entry, read access from other transaction hierarchies is
possible as long as the selected entry references can be acquired. For instance, if an
entry is removed within one running transaction hierarchy, another concurrently running
transaction hierarchy cannot acquire read access to the same entry with the default
isolation level. Internally, the coordinator stores the entry references in a list data
structure that allows quick insertions at random positions. The selection method iterates
through the list and returns a sub-list for the specified selection index and count. When
the coordinator is not the first coordinator, the result of the previous coordinator is used
to ensure that all entry references of the sub-list are available.

110

6.3. Coordination

LindaCoordinator

The LindaCoordinator imitates the coordination behavior of the original Tuple Space
with the Linda coordination language [Gel85]. Instead of tuples, the template matching
algorithm compares objects and their fields. Analog to the MozartSpaces implemen-
tation, the entry classes and their fields need to be annotated with attributes in order
to be used for the template matching. The XvsmQueryableAttribute is applied to
classes with an optional property that allows automatic indexation of their fields. For
manual indexation the IndexAttribute may be applied to fields. The implementation
of the template matching algorithm is conceptionally equivalent to the MozartSpaces
implementation with the exception that it allows the matching of entries with different
class types as long as their indexed fields are compatible. The coordinator requires no
explicit coordination data provided by the developer, since entry objects themselves
are sufficient. However, the default implicit coordination data objects do not include
the entry object. This issue is solved through a concrete plugin implementation of the
IImplicitCoordinationDataFactory plugin contract that provides the Linda-
CoordinationData. The coordinator applies the template matching consecutively at
the entry references and yields the matches. The implementation allows full concurrent
access on all its methods.

LeastUsedCoordinator

The LeastUsedCoordinator orders the stored entry references dynamically, depending on
the number of their read accesses. Whenever entries are selected in the coordinator for
readonly operations, the internal counters of the resulting entry references are incremented.
When entries are selected, the coordinator sorts the resulting entry references by their
internal counter in ascending order. Hence, the entries that are least accessed are returned
first. The coordinator requires neither custom coordination data nor a custom selector
but uses a plugin aspect to increment the access counters. The formal model recommends
the usage of an accountant function that is invoked for every successful read operation
on the coordinators. This accountant function was neither directly implemented in
MozartSpaces nor in XVSM.net, since it is not needed for regular coordinators. The
LeastUsedCoordinator is the only coordinator coming with XVSM.net that could have
made use of this function. Nonetheless, it is possible in XVSM.net to implement the
LeastUsedCoordinator by simulating the accountant function through a plugin aspect on
the ICapi3 plugin. This aspect intercepts the invocation of ICapi3’s ReadEntries
method and increments the internal counters for successfully read entries. Furthermore,
the coordinator is fully thread-safe and uses the default locking mode. Since its selection
method returns the entry references in a specific order, it is deterministic and does not
support streaming. It is deterministic even though parallel read access could change
the specific order, since the deterministic property is defined that a re-evaluation of the
selection from the same state would also produce this result.

Table 6.1 summarizes the properties of the coordinators.

111

6. Plugin-Based XVSM Design & Implementation

Deterministic Implicit Streaming Lock Mode
Any 7 3 3 FC
Fifo 3 3 7 FC
Lifo 3 3 7 FC
Random 7 3 7 FC
Label 7 7 3 FC
Key 3 7 3 FC
Vector 3 7 7 SW
Linda 7 3 3 FC
LeastUsed 3 3 7 FC

Table 6.1: Summary of the default coordinator plugins and their properties.

6.3.8 Writing Entries

CAPI-3, as the coordination layer, provides the functionality to write entries in containers,
which is realized with the WriteEntries method of ICapi3. The method signature
includes the active transaction, the reference of the container, and the entry objects as
parameters. The entry objects are provided in a collection of ICoreEntry instances,
which contain the entry reference and data along with explicit coordination data. Figure
6.31 depicts the behavior of the method on a successful execution.

The sequence diagram focuses on a successful execution for an uncluttered visualization.
The method’s implementation starts by using the container reference to lookup the
corresponding container instance from the container registry plugin. When no container
was found, the method execution will be aborted with a NotOk operation result. In
the case of a successful lookup, the transaction instance is used to create a new sub-
transaction to pool the following transaction acquisitions together for a better isolation.
Only when the sub-transaction is committed, all acquisitions are propagated to its
parent transaction. In the case of a possible abortion, the parent transaction will not
be affected by the temporary acquisitions. The entries with their coordination data
are included in the UpdateAndCheckEntriesForObligatoryCoordinationData
method invocation of the container. The container then checks whether they contain the
required coordination data and automatically inserts implicit coordination data instances,
if possible. The detailed behavior of the method has been covered in Section 6.3.1. Missing
coordination data will lead to the abortion of the CAPI-3 method with the returning
of the NotOk value. Assuming the entries do have all required coordination data, the
next step is to retrieve information about the coordinators used for the entries. This
information is returned in the form of the type CoordinatorInformation and includes
the reference of the coordinator and its CoordinatorAttribute. The coordinator
information objects are provided to the CoordinationLockHandler along with the
container reference and the sub-transaction instance. Depending on the used coordination
lock modes, the CoordinationLockHandler instance acquires transactional locks
in the context of the provided sub-transaction. If the CoordinationLockHandler

112

6.3. Coordination

:ICapi3
:IContainer-

Registry
c :

IContainer
:ICoordination-

LockHandler

stx :
ITransaction

get container
(container reference)

c

create
sub transaction

update and check obligatory
coordination data (entries)

get coordinators for entries
(entries)

coordinator information
acquire locks

(tx, container reference, coordinators, write)

locking result

acquire (entries,
write, any rollback action)

acquisition result

add entries (entries)

commit

write entries
(container reference, entries, tx)

result

Figure 6.31: UML sequence diagram showing a successful operation of writing entries in
CAPI-3.

cannot successfully acquire the locks, though, the CAPI-3 method will be aborted and
return with the Locked value.

After successful acquisitions of the CoordinationLockHandler, the entry references
must be acquired as well. The sequence diagram simplifies the visualization of the entry
acquisition for better readability and excludes the IAcquisitionRequest object.
Even though technically, this acquisition could fail as well, the entries are assumed
to use new, unused references and therefore should always be successfully acquirable.
Right after the successful acquisition, the entries are stored and registered through the
container. In addition to storing the entries, the container is responsible to register the
entries at the coordinators as well, which is depicted in Figure 6.32. Depending on the
concrete semantics of the coordinators, it is possible that the registration produces an
error and must be aborted. This is realized by raising Capi3Exceptions that are
caught in the CAPI-3 methods and lead to an abortion with an unsuccessful operation
result depending on the concrete exception. As such an abortion could happen after
some entries might be already stored and registered, a compensation action must be used
for such situations. When the entries are acquired, an action for the AnyRollback event
is provided to compensate the changes of the CAPI-3 method invocation. Since the lock

113

6. Plugin-Based XVSM Design & Implementation

c :
IContainer

c :
IContainer

:IEntry-
Storage
:IEntry-
Storage

ux : IUniversal-
Coordinator

ux : IUniversal-
Coordinator

fx : IImplicit-
Coordination-
DataFactory

fx : IImplicit-
Coordination-
DataFactory

add entry (entry)

add entries
 (entries)

result

loop

[has next entry]

loop

[has next entry]

aggregate entry and coordination data

create implicit coordination data (entry, coordinator reference)

coordination data

opt

[has implicit
coordination data
factory fx]

opt

[has implicit
coordination data
factory fx]

loop

[has next
coordinator ux]

loop

[has next
coordinator ux]

register entries
(entries for coordinator, coordination data)

Figure 6.32: UML sequence diagram showing a successful writing of entries to a container.

acquisitions are compensated automatically, the only necessary compensation task left is
to remove and unregister the entries. To realize this, the RemoveEntries method of
the container is invoked with all entry references as parameters. However, assuming the
storing and registering of the entries went successfully, the sub-transaction is committed
and the CAPI-3 method returns with a successful operation result with the Ok value.

6.3.9 Selecting Entries

CAPI-3 provides several methods that internally select entries. The ReadEntries,
TakeEntries, DeleteEntries and TestEntries methods are all based on the
same internal principle and share their implementation. Figure 6.33 shows a successful
application of the TakeEntries algorithm implementation as an example. Nevertheless,
we will discuss the algorithm differences in the other selection operations as well.

The TakeEntries method is invoked with the container reference, the active transaction
and the used selectors for the entry retrieval. The algorithm starts by using the container
reference to retrieve the container implementation from the container manager. If the
container reference could not be found, the whole method is aborted with a NotOk value
as operation result.

If the container was successfully retrieved, it is used to gather information about the
required coordinators by providing their names. The coordinator information objects are
later used for the CoordinationLockHandler to possibly acquire locks on the coordinator
references. A new sub-transaction is created that allows to atomically commit or rollback
transactional acquisitions of this method and will be used for any further task requiring

114

6.3. Coordination

:ICapi3:ICapi3
:IContainer-

Registry
:IContainer-

Registry
c :

IContainer
c :

IContainer
:ICoordination-

LockHandler
:ICoordination-

LockHandler

tx :
ITransaction

tx :
ITransaction

get container
(container reference)

c

create
sub transaction

acquire locks
(tx, container reference, coordinators, take)

select entries
(selectors, tx, take)

entry references

locking result

acquire (entry references,
take, final commit action)

acquisition result

get entries (entry references)

commit

:ISelection-
Manager

:ISelection-
Manager

get coordinators
(coordinator names)

coordinators

entries

take entries
(tx, container reference, selectors)

result

Figure 6.33: UML sequence diagram showing a successful take operation in CAPI-3.

a transaction instance.

The CoordinationLockHandler is now invoked, with the container reference, the coordi-
nator information and the sub-transaction instance. The concrete type of the selection
operation is mapped to an access mode value and provided to the CoordinationLock-
Handler, since the CoordinationLockHandler needs to be aware of the selection type.
Take or Delete selection types are mapped to the Take access mode and all other
selection types to the Read access mode. If the CoordinationLockHandler is not able to
acquire all locks successfully, the execution of the selection method is aborted with an
unsuccessful operation result. When the coordination locks could be acquired though,
the SelectionManager plugin is used to select the entry references by providing the
transaction instance, the selectors and the mapped access mode. It is possible that a
Capi3Exception could get raised, which will lead to an abortion as well. Assuming
the entry references were successfully selected, they must be transactionally acquired. To
realize this, the selection method creates an acquisition request and atomically acquires
all entry references with the mapped access mode. For Take or Delete selections, the
acquisition request includes a transactional action as well. Only when the FinalCommit
event takes place, the entries will be unregistered from the coordinators and removed
from the container. We now assume that the entry references have been successfully
acquired. Depending on the selection type, the entry instances are looked up through

115

6. Plugin-Based XVSM Design & Implementation

the container’s GetEntries method. The lookup is only issued for Read or Take selection
types, Test and Delete simply return the count of affected entry references. Finally, the
sub-transaction is committed and the operation result is returned.

As we have discussed the method’s behaviour when the acquisition of the entry references
has been successfully executed, we should now take a look at the case when the acquisition
fails. Since the selection method can be executed by concurrent threads, it is possible
that entry references are not available anymore when they are transactionally acquired.
This is a consequence of the optimistic locking approach used by the SelectionManager.
A trivial solution is to simply retry the operation at a later point by returning with a
Locked operation result and let the runtime reschedule it.

6.4 Runtime
The CAPI-4 layer defines the XVSM runtime and is responsible for scheduling and
executing XVSM operations either on a local or remote XVSM core. Since this thesis
turns its focus on the modular structure of XVSM and the implementations of the core
plugins of the CAPI layers below the runtime, its implementation of the contracts deviate
from the formal model for a simpler implementation and to show the benefits of the
modular architecture.

6.4.1 Overview

The plugins that are involved in the runtime are depicted in Figure 6.34. The IXvsmCore
plugin can be described as the bridge between the client and the space. It provides access
to an ICapi and IRequestContextFactory implementation via its two readonly
properties. ICapi is no plugin or plugin part but provides an interface comparable
to MozartSpaces’ and the formal model’s CAPI interface. XVSM.net provides
a Peer Model implementation of the IXvsmCore plugin that uses the Peer Model
for communication and coordination of request execution. Details of the Peer Model
implementation are covered in Section 6.4.2. The IRequestContextFactory plugin
may be used to create a request context object that can be passed to several methods of
the CAPI interface.

Since the methods of the CAPI interface are synchronous, a blocking implementation
is required, which is realized through the IRequestResponseHandler plugin. It
provides a method that consumes requests and blocks until another of its methods is
invoked with the corresponding response object.

The instance of the ICapiServiceExecutor plugin is able to process arbitrary requests
by dynamically delegating the request to the registered concrete service plugin of the
corresponding ICapiService plugin. This is implemented by using the Plugin Service
Locator and matching the concrete type of the request object with the defined metadata
attributes on the ICapiService plugins through the ICapiServiceMapper plugin.
Every ICapiService plugin handles exactly one unique request type and returns

116

6.4. Runtime

ISelection-
Manager

ICoordinator-
Factory

ICapi3

ITransaction-
Registry

ITransaction-
Factory

IIsolation-
LevelRegistry

ILockList-
Manager

IContainer-
Registry

IContainer-
Factory

Client

IXvsmRefer-
enceFactory

IXvsmCore

IRequest-
Response-
Handler

ICapiService-
Mapper

ICapiServiceICapiService

IContainerIContainer

IUniversal-
Coordinator
IUniversal-
Coordinator

IIsolation-
LevelHandler
IIsolation-

LevelHandler

IRequest-
Context-
Registry

ITransactionITransaction

IEntry-
Storage

IEntryFactory

IRequest-
Context-
Factory

ICoordination-
LockHandler

ICapiService-
Executor

ICoordinatorICoordinator

ICoordination-
Context-
Factory

ICoordination-
Context-
Factory

IImplicit-
Coordination-
DataFactory

IImplicit-
Coordination-
DataFactory

XVSM.net

Figure 6.34: Extract of the dependency and architectural overview showing runtime-
relevant components.

an object with a corresponding response type. Request and response objects have
a one-to-one relation and are associated by having the same request id. The service
plugins are stateful and keep shared instances of the ICapi3, ITransactionRegistry,
IContainerRegistry and other space-relevant plugins.

The ICapi interface, as shown in Listing 6.5, was designed for developers that are familiar
with the MozartSpaces’ CAPI realization. Thus, C#’s asynchronous programming
language features, such as async and await were not used. However, as C# supports
default arguments in method signatures, the number of explicit method overloads could
be reduced.

1 // Container Operat ions
2 I C o n t a i n e r R e f e r e n c e CreateContainer (s t r i n g name = nul l , s t r i n g spaceUri = nul l , i n t

s i z e = XvsmConstants . C o nt a i n e r S i z e . UnboundContainer ,
IEnumerable<AbstractCoordinator > c o o r d i n a t o r s = nul l , I T r a n s a c t i o n R e f e r e n c e
t r a n s a c t i o n R e f e r e n c e = nul l , s t r i n g i s o l a t i o n L e v e l = nul l , IRequestContext
requestContext = n u l l) ;

3
4 I C o n t a i n e r R e f e r e n c e LookupContainer (s t r i n g name , s t r i n g spaceUri = nul l , long

t imeOutInMi l l i s econds = XvsmConstants . RequestTimeout . TryOnce ,
I T r a n s a c t i o n R e f e r e n c e t r a n s a c t i o n R e f e r e n c e = nul l , s t r i n g i s o l a t i o n L e v e l = nul l ,
IRequestContext requestContext = n u l l) ;

5
6 void LockContainer (I C o n t a i n e r R e f e r e n c e c o n t a i n e r R e f e r e n c e , I T r a n s a c t i o n R e f e r e n c e

t r a n s a c t i o n R e f e r e n c e = nul l , s t r i n g i s o l a t i o n L e v e l = nul l , IRequestContext
requestContext = n u l l) ;

7
8 void DestroyContainer (I C o n t a i n e r R e f e r e n c e c o n t a i n e r R e f e r e n c e , I T r a n s a c t i o n R e f e r e n c e

t r a n s a c t i o n R e f e r e n c e = nul l , s t r i n g i s o l a t i o n L e v e l = nul l , IRequestContext
requestContext = n u l l) ;

9

117

6. Plugin-Based XVSM Design & Implementation

10 // Entry Operat ions
11 void Write (IEnumerable<Entry> e n t r i e s , I C o n t a i n e r R e f e r e n c e c o n t a i n e r R e f e r e n c e , long

t imeOutInMi l l i s econds = XvsmConstants . RequestTimeout . TryOnce ,
I T r a n s a c t i o n R e f e r e n c e t r a n s a c t i o n R e f e r e n c e = nul l , s t r i n g i s o l a t i o n L e v e l = nul l ,
IRequestContext requestContext = n u l l) ;

12
13 IEnumerable<TEntry> Read<TEntry>(I C o n t a i n e r R e f e r e n c e c o n t a i n e r R e f e r e n c e ,

IEnumerable<I S e l e c t o r > s e l e c t o r s = nul l , long t imeOutInMi l l i s econds =
XvsmConstants . RequestTimeout . TryOnce , I T r a n s a c t i o n R e f e r e n c e t r a n s a c t i o n R e f e r e n c e =
nul l , s t r i n g i s o l a t i o n L e v e l = nul l , IRequestContext requestContext = n u l l) ;

14
15 IEnumerable<Entry> Read (I C o n t a i n e r R e f e r e n c e c o n t a i n e r R e f e r e n c e , IEnumerable<I S e l e c t o r >

s e l e c t o r s = nul l , long t imeOutInMi l l i s econds =
XvsmConstants . RequestTimeout . TryOnce , I T r a n s a c t i o n R e f e r e n c e t r a n s a c t i o n R e f e r e n c e =
nul l , s t r i n g i s o l a t i o n L e v e l = nul l , IRequestContext requestContext = n u l l) ;

16
17 IEnumerable<TEntry> Take<TEntry>(I C o n t a i n e r R e f e r e n c e c o n t a i n e r R e f e r e n c e ,

IEnumerable<I S e l e c t o r > s e l e c t o r s = nul l , long t imeOutInMi l l i s econds =
XvsmConstants . RequestTimeout . TryOnce , I T r a n s a c t i o n R e f e r e n c e t r a n s a c t i o n R e f e r e n c e =
nul l , s t r i n g i s o l a t i o n L e v e l = nul l , IRequestContext requestContext = n u l l) ;

18
19 IEnumerable<Entry> Take (I C o n t a i n e r R e f e r e n c e c o n t a i n e r R e f e r e n c e , IEnumerable<I S e l e c t o r >

s e l e c t o r s = nul l , long t imeOutInMi l l i s econds =
XvsmConstants . RequestTimeout . TryOnce , I T r a n s a c t i o n R e f e r e n c e t r a n s a c t i o n R e f e r e n c e =
nul l , s t r i n g i s o l a t i o n L e v e l = nul l , IRequestContext requestContext = n u l l) ;

20
21 i n t Test (I C o n t a i n e r R e f e r e n c e c o n t a i n e r R e f e r e n c e , IEnumerable<I S e l e c t o r > s e l e c t o r s =

nul l , long t imeOutInMi l l i s econds = XvsmConstants . RequestTimeout . TryOnce ,
I T r a n s a c t i o n R e f e r e n c e t r a n s a c t i o n R e f e r e n c e = nul l , s t r i n g i s o l a t i o n L e v e l = nul l ,
IRequestContext requestContext = n u l l) ;

22
23 i n t Delete (I C o n t a i n e r R e f e r e n c e c o n t a i n e r R e f e r e n c e , IEnumerable<I S e l e c t o r > s e l e c t o r s =

nul l , long t imeOutInMi l l i s econds = XvsmConstants . RequestTimeout . TryOnce ,
I T r a n s a c t i o n R e f e r e n c e t r a n s a c t i o n R e f e r e n c e = nul l , s t r i n g i s o l a t i o n L e v e l = nul l ,
IRequestContext requestContext = n u l l) ;

24
25 // Transact ion Operat ions
26 I T r a n s a c t i o n R e f e r e n c e CreateTransact ion (long t imeOutInMi l l i s econds =

XvsmConstants . RequestTimeout . TryOnce , s t r i n g i s o l a t i o n L e v e l = nul l , s t r i n g
spaceUri = nul l , IRequestContext requestContext = n u l l) ;

27
28 void CommitTransaction (I T r a n s a c t i o n R e f e r e n c e t r a n s a c t i o n R e f e r e n c e , IRequestContext

requestContext = n u l l) ;
29
30 void Rol lbackTransact ion (I T r a n s a c t i o n R e f e r e n c e t r a n s a c t i o n R e f e r e n c e , IRequestContext

requestContext = n u l l) ;
31
32 // Misc
33 void Shutdown (s t r i n g spaceUri = nul l , IRequestContext requestContext = n u l l) ;

Listing 6.5: The method signatures of the ICapi interface.

6.4.2 Peer Model Implementation

As already mentioned in Section 3.2, the Peer Model and its .NET implementation
PeerSpace.NET are used for the runtime implementation. We will describe the used
peers, sub-peers, and wirings in the following.

As depicted in the Figure 6.35, a working XVSM.net setup with the PeerSpace plugin
uses two different kind of peers, the RuntimePeer and CorePeer. The RuntimePeer
acts as a facade that encapsulates the runtime and scheduling logic. The CorePeer is a
sub-peer that is responsible for the execution of space operations.

Figure 6.35 shows the wiring of the RuntimePeer that moves the request object (RQ1)
from its PIC to the CorePeer’s PIC. Please note that only two exemplary wirings of the

118

6.4. Runtime

CorePeerCorePeer

RQ1
1

RQ1
1

W1

ICapiServiceExecutor

RT1
≥0

RT1
≥0

RuntimePeerRuntimePeer

RQ1
1

RQ1
1

RS1
1

RS1
1

FR
1

FR
1

FR
≥0

FR
≥0

RS1
≥0

RS1
≥0

RR1
≥0

RR1
≥0

W2RT1
x() | 1

RT1
x() | 1

RQ1
≥1

RQ1
≥1

W4

IRequestResponse-
Handler

RR1
y() | ≥1

RR1
y() | ≥1

W5

Extract Request

W3
RT1

z() | ≥1

RT1
z() | ≥1

Figure 6.35: The runtime Peer Model implementation, showing CAPI (W1), rescheduling
(W2, W3), and response wirings (W4, W5) for an embedded space.

CorePeer are depicted in the figure to ease visualization. The wiring W1 is an exemplary
CAPI wiring that takes the request object RQ1 from the CorePeer’s PIC and passes
it to the ICapiServiceExecutor plugin for execution. The result of the execution
is returned to the service with additional meta information about the execution. The
execution can lead to three different types of outcome: it can be successful, it can fail,
and it can be rescheduled. Depending on the concrete outcome, the execution response
contains different information that is interpreted by the wiring’s service. For instance,
if RQ1 leads to a successful execution, its response object (RS1) is emitted and moved
to the CorePeer’s POC in addition to emitting a reschedule token (RT1) describing
the succeeded operation to its PIC. The type of the required reschedule token would
be included in the execution’s meta information. The reschedule token is emitted to
implement basic rescheduling semantics required for the XVSM runtime. As an example,
this allows the implementation to automatically retry a take operation after a previously
locked entry gets available again. In comparison with MozartSpaces, however, the
rescheduling implementation is not as sophisticated, thus, leaving room for improvement.

The execution of the CAPI service might fail and could lead to a failed response that
should immediately notify the blocking client. In this case a failed response object
FR is emitted by the wiring’s service execution context and moved to the CorePeer’s
POC; the emission of a reschedule token is not required in this case. Since the CAPI-3
layer of XVSM not only defines succeeding and failing operations, but also temporarily
failing operations (Delayable, Locked) that should be rescheduled, depending on the

119

6. Plugin-Based XVSM Design & Implementation

CAPI execution result, the original request object RQ1 is wrapped, along with metadata
describing the required triggers to retry the operation, in a retry request object (RR1).
This retry request object is emitted and moved to the CorePeer’s PIC. PeerSpace.NET’s
support for time-to-live (TTL) properties on entries are used on retry request objects to
implement the timeout support, as the request object might include a maximum timeout
the client should be blocked. In addition to the retry request objects with a TTL, a failed
response object with a time-to-start (TTS) is emitted that becomes visible to the space
after the retry request has timed out. In case of a timed out request, the failed response
object is handled and the failure is reported to the client. However, if the request object
could be successfully handled within its TTL, the failed response object is discarded
when it becomes visible to the W5 wiring.

The second wiring in the Figure 6.35 (W2) contains two input links that are used to take
the retry request objects RR1 along with the reschedule token RT1 from the PIC. The
conditions x() and y() of the guards use the metadata of the rescheduled request and the
reschedule token to decide whether the requests should be retried. An example for the
conditions would be a rescheduled insert operation due to a full container. In this case
x() could be satisfied when RT1 was emitted due to a take or delete operation, and y()
is satisfied if it awaits such a removal operation. If all guards are satisfied, the original
request object RQ1 is extracted from RR1 and moved back to the CorePeer’s PIC in
order to be consumed by the W1 wiring again for retrial. Since a single reschedule token
could lead to the retrial of multiple rescheduled request, the wiring takes all RR1 request
objects that satisfy the guards.

To prevent the immediate retrial of a rescheduled request because of a pre-existing
reschedule token, the Wiring W3 removes reschedule tokens that cannot be used at the
moment to reschedule requests, which is checked by the z() function.

The wirings W4 and W5 are used to handle the response objects. When W4 consumes
a response object RS1 or W5 consumes a failure response FR, they invoke the IRe-
questResponseHandler plugin with the consumed entry. The waiting client will be
notified directly through the IRequestResponseHandler and continues execution.

The wiring W1 may be seen as a wiring type or placeholder for various wirings that differ
on the request object type and the response object type. Since we allow to dynamically
register ICapiService plugins, the wirings are dynamically created as well. The
CapiServiceHandlerMetadata attributes of the plugins are used to retrieve the
request and response object types per plugin. The wiring W2 is an exemplary wiring. The
concrete implementation uses three different wirings that kick-start the retrial depending
on concrete triggers: retryAfterEntryRemoval, retryAfterEntryInsert, and
retryAfterCommitOrRollback. When a removal or insert operation is successfully
executed, the first two wirings, or after a transaction is committed or rolled back, the
last wiring, restores the request objects of rescheduled requests that are waiting for these
triggers.

Setups with a remote space core require two RuntimePeers. The RuntimePeer running

120

6.4. Runtime

on a client host acts as a proxy between the client code and a remote RuntimePeer.
Requests are serialized and transferred over the network in order to be processed by the
RuntimePeer and passed to its CorePeer.

Analogue to the dynamically created wirings of the CorePeer, there are two types of wirings
in the RuntimePeer responsible for the remote communication and one in the CorePeer.
The first wiring of the RuntimePeer is used to move request objects to the PIC of the
remote RuntimePeer and providing the address of the client host’s peer in the metadata.
The remote host executes the request as if the request object would have been locally
written to its PIC. However, instead of invoking the IRequestResponseHandler, an
additional wiring type in the CorePeer moves the response object back to the client host’s
PIC. The second wiring type of the RuntimePeer for remote communication consumes the
response object from the PIC and resolves the IRequestResponseHandler instance
blocking the client’s request.

6.4.3 Request Context

The request context in XVSM provides a shared state that is passed from the CAPI-4
API to aspects and coordinators. It allows, for instance, aspects to access the data and
modify it. Thus, it is a shared memory between aspects and coordinators. Instead of
passing a request context object through the call-stack from CAPI-4 to the coordinators,
XVSM.net uses its plugin framework.

1 public void SimpleRequestContextExample() {
2 using (var ctx =

requestContextRegistry.RegisterRequestContext()) {
3 // store data in the request context
4 ctx.RequestContext.SetProperty("myProp", "test");
5 MyMethod();
6 }
7 }
8 private void MyMethod() {
9 var myProp = requestContextRegistry.RequestContext["myProp"];

10 // myProp == "test"
11 }

Listing 6.6: Example showing usages of the request context through accessing the default
IRequestContextRegistry plugin.

The ISharedPluginMemory plugin is used as the foundation for the IRequestCon-
textRegistry and IRequestContextFactory plugins. The latter plugin is simply
used to create empty request context objects. However, the implementation of the
IRequestContextRegistry makes use of the ISharedPluginMemory plugin to
associate the request context to a shared plugin memory. To access the stored request
context through the ISharedPluginMemory plugin, a shared identifier must be used.

121

6. Plugin-Based XVSM Design & Implementation

It was considered passing a request identifier as a parameter to all methods that could
possibly access the request context, but this approach was discarded since the original
idea of using the plugin mechanism to access the request context was to avoid adding
such a separate parameter to all possible method signatures. Thus, instead of manually
passing such an identifier, the thread identifier, which is globally accessible but unique per
request, was used. When a CAPI-3 method is executed, the thread identifier is registered
for the provided request context until the method execution is finished. After that the
registered thread identifier is removed. For situations where sub-threads are spawned, it
is possible to register them for the same request context until their execution is finished.
The implementation uses C#’s IDisposable interface for a simple and explicit way to
unregister the thread identifier, as can be seen in Listing 6.6.

This listing shows an example where a string test is stored in the request context under
the key myProp. The default implementation of the request context object allows to
access properties through C#’s custom Indexer feature, which is shown in the listing.

In addition, the request context object implementation also provides prefixes, analogue
to the MozartSpaces implementation, which can be specified in an overload for the
methods SetProperty and GetProperty.

122

CHAPTER 7
Evaluation

In this chapter, we evaluate the introduced XVSM implementation regarding its ex-
tensibility properties at first by comparing them with other XVSM implementations.
A performance analysis is conducted with focus on lower CAPI layers. The stated
requirements from Chapter 4 are analyzed regarding their fulfilment. Finally, the chapter
concludes with a retrospective analysis concerning the suitability of the plugin framework.

7.1 Extensibility

This section begins by providing scenario descriptions on how to implement concrete
extensions with the introduced XVSM implementation. It concludes by comparing its
architecture with other XVSM implementations.

7.1.1 Persistence

The plugin architecture in XVSM.net provides a flexible, extensible storage mechanism,
which allows the integration of different persistency implementations in the storage
layer. There are persistency implementations that were already loosely coupled in
MozartSpaces and should be easily integrable into XVSM.net. For instance, there
is an implementation that uses a separate MozartSpaces CAPI-3 layer to execute
space operations on a database [Bar10]. Since the CAPI-3 layer is a simple plugin
in XVSM.net, a custom CAPI-3 database plugin is an equivalent solution to the
MozartSpaces implementation, which is based on a separate CAPI-3 module. Then
there is an approach that uses XVSM aspects [Mei11] for persistency. As XVSM aspects
are a higher-level extension mechanism defined in XVSM, an equivalent implementation
of the extension for the .NET platform could support this persistency extension, when
XVSM’s aspect specification will be implemented. However, the newest persistency
extension for MozartSpaces [Zar12] is more difficult to integrate than replacing several

123

7. Evaluation

XVSM layer implementations or using XVSM aspects, as a more integrated approach
was used due to efficiency and effectiveness. In the following, we analyze the concrete
integration points of the persistency extension and provide suggestions for an XVSM.net
implementation.

In MozartSpaces the runtime was adjusted to load the persistence configuration files
and initialize the persistence context. In XVSM.net the persistence context may be
realized through a singleton plugin. It could make use of the plugin configuration system
and initialize the persistence context in its constructor. MozartSpaces CAPI interface
method createContainer was extended to provide an additional parameter to use an
in-memory persistence implementation. Of course, it is also possible in XVSM.net to
adjust the interface, however, it is recommended to use the request context dictionary to
provide such a parameter, which may then be accessed by the persistence context plugin.
If syntactic sugar for the parameter is desired, it is still possible to create a wrapper
around the CAPI interface that adds the parameter to the request context dictionary.

The container implementation of MozartSpaces made use of a ConcurrentHashMap
to store entries in-memory. Consequently, it had to be adjusted to use a persistent storage
instead. The DefaultContainerManager of MozartSpaces was adjusted as well. It
used to keep the state of all containers in-memory and, therefore, was updated to persist
container metadata, such as the container name, ID, and maximum supported entry count.
Coordinators are not fully persisted, but are recreated for restoration. The states of
optional or obligatory coordinators are recreated by custom persistence lifecycle hooks in
the coordinators. The FifoCoordinator (implemented in DefaultQueueCoordinator),
for instance, restores its StoredMap in the postRestoreContent hook to recreate
the queue data structure with the entries in the correct FIFO order. Hence, coordinators
included in MozartSpaces had to be adjusted for the persistence integration as well.
To prevent reloading of all entries into memory, they use a lazy entry implementation to
only load the entry when needed.

When the characteristics in XVSM.net’s architecture are taken into account, a different
approach may be used for persistency extension with comparable properties. XVSM.net
might provide a custom IContainerRegistry plugin that stores the container meta-
data similar to MozartSpaces. For restoration, it could retrieve the container metadata
from the persistent storage and recreate the container. The IEntryStorage plugin
could be exchanged with a custom implementation that uses the persistent context to
store entries. The concrete implementation of the ICoreEntry interface can be replaced
with a lazy implementation that retrieves the requested data from the persistence context.
Since the ICoreEntry distinguishes between coordination data and the entry payload,
it is even possible to prefetch the coordination data, which is used by most coordinators,
and load the payload only when requested. This approach has the advantage that no
changes to the coordinators are required for persistency support. Nevertheless, it is still
possible to provide the persistence context plugin to the constructor of the coordinator
via its part factory to enable custom persistence restoration per coordinator. As the
coordinator part factory is a plugin, it can inject the persistence context plugin and pass

124

7.1. Extensibility

it to the coordinator constructor.

The persistence extension in MozartSpaces provides two different transaction imple-
mentations: buffered and mapped transactions. The concept of the mapped transactions
is to use database transactions for the pessimistic transaction system required by the
space. This has the advantage that it is simple to integrate and moves transactional logic
from the space implementation to the database. However, mapped transactions may
only be used when the used database supports transactions with compatible semantics,
which are long-running transactions with read uncommitted isolation level [Zar12]. The
alternative, buffered transactions, do not have such requirements for the database. They
defer the database interaction until the space transaction is committing by keeping
a log of database operations that should be executed then. If the transaction is roll-
backed instead, the log is simply discarded. Both transaction implementations should
be realizable in XVSM.net. A new database transaction must be started whenever
a new user transaction is created. A plugin aspect that is invoked after the creation
of the transaction plugin part by the transaction factory could start the corresponding
database transaction and register transactional actions that mirror commit and rollback
for the database transaction. It must be possible to retrieve the database transaction
from an operation that runs under a space transaction. Consequently, the database
transaction may be registered in the persistence context under the transaction reference.
Thus, operations of the entry storage may then lookup the database transaction in order
to perform the persistence operation under the said transaction. Figure 7.1 shows all
recommended changes for a persistency extension with mapped transactions. When
we take a look at a possible implementation for the buffered transactions, it requires
similar integration points. The plugin aspect may be used to register the final commit
transactional action to start a database transaction and perform the stored operations
under it. The operations may be stored either by a custom IEntryStorage plugin or
by a plugin aspect for the IEntryStorage plugin.

As can be seen, XVSM.net’s architecture allows an easily pluggable persistence exten-
sion for the storage layer. Since typical coordinators do not need to be adjusted for
persistence support, the development of custom coordinators is simplified. In comparison
with MozartSpaces the default code base of XVSM.net does not require hardcoded
dependencies to the persistency implementation. Other modular persistency implementa-
tions for other XVSM middlewares such as XCOSpaces or TinySpaces that are based
on XVSM aspects have performance and integration drawbacks according to [Zar12].

7.1.2 Nested Transactions in Aspects

XVSM aspects are a dynamic and easy to use extension mechanism. The current
implementations in XVSM frameworks are well-suited for use cases where no tight
transaction integration is required, such as a notification extension. However, with the
existing mechanism it is not possible to use a third transaction layer that provides access
to already acquired resources from the sub-transaction. This would allow partial rollbacks
and therefore increase the functionality of XVSM aspects.

125

7. Evaluation

ISelection-
Manager

ICoordinator-
Factory

ICapi3

ITransaction-
Registry

ITransaction-
Factory

IIsolation-
LevelRegistry

ILockList-
Manager

IContainer-
Registry

IContainer-
Registry

IContainer-
Factory

IContainer-
Factory

Client

IXvsmRefer-
enceFactory

IXvsmCore

IRequest-
Response-
Handler

ICapiService-
Mapper

ICapiServiceICapiService

IContainerIContainer

IUniversal-
Coordinator
IUniversal-
Coordinator

IIsolation-
LevelHandler
IIsolation-

LevelHandler

IRequest-
Context-
Registry

ITransactionITransaction

IEntry-
Storage
IEntry-
Storage

IEntryFactory

IRequest-
Context-
Factory

ICoordination-
LockHandler

ICapiService-
Executor

ICoordinatorICoordinator

ICoordination-
Context-
Factory

ICoordination-
Context-
Factory

IImplicit-
Coordination-
DataFactory

IImplicit-
Coordination-
DataFactory

IPersistenceIPersistence

XVSM.net

Aspect

Figure 7.1: Extract of a possible XVSM.net persistence extension with highlighted
changes.

Since XVSM.net supports arbitrarily nested transactions, partial rollbacks are possible in
a future aspect implementation without further implementation. An additional advantage
of this mechanism is the improved isolation of aspects. Since they can use their own
transaction, their implementation may be simplified.

7.1.3 Custom Coordinators

The ability to support multiple coordinators is one of the core concepts of XVSM. The
variety of coordinators allows developers to choose the best fitting coordinator compilation
for the used domain. However, sometimes it might be more efficient to develop a custom
coordinator for a specific problem. Thus, XVSM describes custom coordinators in
its formal model and XVSM frameworks such as MozartSpaces, XCOSpaces, or
TinySpaces provide support for custom coordinators. One of the major goals of
XVSM.net design was to simplify the creation of custom coordinators but still support

126

7.1. Extensibility

the streaming-based coordination approach that was introduced in [Bar10]. In Table
7.1, we are comparing the XVSM implementations MozartSpaces (MS), XCOSpaces
(XCO), TinySpaces, and XVSM.net regarding the coordinator responsibilities. The
table depicts coordinators with a responsibility by using a checkmark (3) or a cross (7)
if the task is handled by a different part of the framework. “N/A” is used to visualize
that the responsibility is not handled at all in the framework.

MS XCO TinySpaces XVSM.net
Registering Entries 3 3 3 3

Unregistering Entries 3 3 3 3

Selecting Entries 3 3 3 3

Counting Entries 3 3 3 7

Transactional Availability Check 3 N/A N/A 7

Handle First Coordinator 3 3 7 7

Acquire Coordinator Locks 3 N/A N/A 7

Transactional Log Registration 7 3 3 7

Table 7.1: Coordinator responsibilities in XVSM middlewares.

Coordinators in all four implementations must handle basic coordination tasks to reg-
ister, unregister, and select entries. All implementations except XVSM.net require
a coordinator to only return the requested amount of entries. In XVSM.net the Co-
ordinatorMediator iterates over the streamed entry references returned from the
corresponding coordinator and ensures that the required amount of entries are passed
to the next coordinator or layer. The TinySpaces and XCOSpaces implementations
check the entry count without taking transactional visibility into account. For instance,
when an entry is registered in a coordinator with a running user transaction, it still
might get returned by a selection through another transaction. If the selection uses a
take operation, the entries cannot be acquired with the default XVSM isolation level and
lead to a rescheduling of the operation, even though another matching entry could still
satisfy the selector count. MozartSpaces avoids this issue by manually checking the
transactional entry availability in the coordinators. In TinySpaces and XVSM.net the
first coordinator is not required to have a special handling, because the entries from the
container are simply passed to the first coordinator, in contrast to the implementation
in XCOSpaces and MozartSpaces. In MozartSpaces the transactional availability
check is only performed for the first coordinator as a performance optimization. Hence,
every existing coordinator in MozartSpaces had a special handling when used as
the first coordinator. For the Vector coordinator, coordination locks are acquired in
MozartSpaces and XVSM.net, but only MozartSpaces requires the coordinator
to manually acquire the lock. In XVSM.net this is realized through the ICoordina-
tionLockHandler plugin. Coordinator locks are not available in TinySpaces as it
has no Vector coordinator implementation. In XCOSpaces no coordinator locks are
acquired for Vector coordinators, hence violating access to a Vector coordinator’s entries
leads to rescheduling of the operation. The registration of transactional logs for entries

127

7. Evaluation

by acquiring entry locks is automatically executed for coordinators in MozartSpaces
and XVSM.net. Hence, their coordinators are not required to provide special handling
after a transactional rollback or commit.

Key coordinator implementation
0

50

100

150

200

250

300
272280

96Li
ne

s
of

C
od

e

Key coordinator implementation
0

10

20

30

40

50

60

70

51

66

22
C
yc
lo
m
at
ic

C
om

pl
ex
ity

MozartSpaces
XCOSpaces
XVSM.net

Figure 7.2: Key coordinator implementation measurements.

Figures 7.2 and 7.3 compare Key coordinator and Vector coordinator implementations
regarding their complexity in MozartSpaces, XCOSpaces, and XVSM.net. The
open source code quality and static analysis platform SonarQube 6.7 [26] was used
for the measurement of the code. TinySpaces is missing from this comparison since
its code base would have to be updated to be analyzed by SonarQube. The charts of
both figures show the lines of code (LOC) and the Cyclomatic Complexity after McCabe
[McC76]. Both are popular metrics used for object-oriented programming languages
according to [Nuñ+17]. Cyclomatic Complexity counts the number of linear independent
paths in source code. The usage of many and complicated control structures increases
the Cyclomatic Complexity.

Both measurements of the Key coordinator and Vector coordinator substantiates the
previous responsibility comparison of coordinators in different XVSM middlewares. It
shows the benefits of the new architecture in regard to simplification of coordinators.

7.1.4 Security

MozartSpaces supports a dynamic, data-driven access control mechanism [CK12;
Cra+12] called XVSM Access Control Model. It uses a policy language that resembles

128

7.1. Extensibility

Vector coordinator implementation
0

50

100

150

200

250

300 297

207

161

Li
ne

s
of

C
od

e

Vector coordinator implementation
0

10

20

30

40

50
53 53

32

C
yc
lo
m
at
ic

C
om

pl
ex
ity

MozartSpaces
XCOSpaces
XVSM.net

Figure 7.3: Vector coordinator implementation measurements.

XACML [Mos+05] and that makes use of the flexible coordination system provided by
XVSM. The policy rules are stored in a container and may be accessed through a custom
coordinator. When the space is started, the policy container is created by MozartSpaces’
container manager. The container implementation conducts the authorization check
for all entries before the entry selection operation is invoked by the coordinators. The
authorization result is passed to the coordinator chain, where the first coordinator is
responsible to check the authorization result. When the selected entries are retrieved
from the coordinators, the authorization result is checked again by the container after
handling the entry lock acquisition. When entries are written to the container, their
authorization is checked by the container implementation, right before storing them.

A possible implementation in XVSM.net could automatically create the policy container
on its first usage. This is possible since the plugin architecture allows the injection
of the IContainerFactory plugin. When entries are written to the container, a
custom plugin aspect could execute the authorization check and throw an exception to
resemble the behavior of the MozartSpaces implementation. The check in the entry
retrieval may be realized through a custom ISelectionManager plugin that uses an
authorization-aware CoordinatorMediator. Of course, the authorization result may
not be passed manually, but could be evaluated by a CAPI-3 plugin aspect that adds the
result to the request context object. This allows the modified CoordinatorMediator
to access it without passing it manually through the call-chain.

129

7. Evaluation

7.1.5 Comparison

Due to the pluggable architecture with recomposition support of XVSM plugins, plugin
parts, and plugin aspects, all layers can be classified with the configurable adaption type
S3 (see Section 2.1.3) and potentially, even the dynamic adaption type D2 if recomposition
handling is implemented for the layers. The easiest way to change an implementation in
XVSM.net is by providing a custom assembly that replaces a predefined one. Since this
is possible without recompilation of the whole middleware, all modules would be classified
with S3, naturally. However, XVSM.net even provides recomposition support through
its underlying extension framework MEF. Even though recomposition may require manual
recomposition handling, it is possible through the plugin framework.

The recomposition mechanism not only allows to change plugin or plugin part imple-
mentations at runtime. It makes it also possible to add plugin aspects. This allows us
to modify or mutate the existing code to an unknown degree. Thus, we may classify
the modules with a mutable adaption type. Even though the platform of XVSM.net
supports recomposition, it still needs to be enabled and manually orchestrated. Hence,
we classify each property with S3 that is possible to be increased up to D2. When the
runtime is fully implemented with XVSM aspect support, the interception property will
be improved to D2.

Table 7.2 extends the comparison from Section 2.6 with XVSM.net. MozartSpaces
and XCOSpaces are abbreviated as MS and XCO. Thanks to the plugin framework, all
plugins of XVSM.net have an S3 adaption type without additional adjustments. The
table shows the main layers, where XVSM.net stands out against the other frameworks
because of its consistent classification as S3 with an option to D2. Thus, changing the
behavior of XVSM.net can be realized by configuring other used plugin throughout its
whole implementation. This properties reflect its flexibility regarding extensions as was
shown in this chapter.

XAP River MS XCO TinySpaces XVSM.net
Storage S3 D1 S3 S1 S2 S3 & (D2)
Transaction S3 D1 S1 S1 S2 S3 & (D2)
Coordination S1 S1 S3 S2 S2 S3 & (D2)
Runtime S1 S1 S2 S3 S2 S3 & (D2)
Interception S3 N/A D2 D2 D2 S3 & (D2)

Table 7.2: Extended comparison of space-based middleware regarding extensibility
properties.

7.2 Performance & Memory Measurments

In this section we take a look at performance and memory characteristics of XVSM.net
in comparison with MozartSpaces. The CAPI-3 layer is used for the comparison, as

130

7.2. Performance & Memory Measurments

an early evaluation showed that a lot of performance overhead is produced by the entry
serialization operation in the PeerSpace.NET implementation that is used in CAPI-4 of
XVSM.net. Since this thesis is focused on CAPI-3 anyway, we restrict the comparison
on this layer as well.

To avoid benchmarking pitfalls, we use the benchmarking tools JMH [27] for Mozart-
Spaces, and BenchmarkDotNet [28] for XVSM.net to execute the performance mea-
surements. The tools simplify the development of benchmarks by taking care of warmups,
multiple iterations, and calculating the result. The performance benchmarks were con-
ducted on a desktop computer running Windows 10 Pro (1709) in 64-bit on an Intel
Core i5-2500 CPU with 16GB of DDR3 RAM. The tests were run for multiple times to
ensure that they can be reproduced and no unexpected system activity influenced the
results. The Java Runtime Environment 1.8.0 was used for the MozartSpaces tests
and its pendant for the .NET platform, the Common Language Runtime (4.0), was used
for XVSM.net.

All performance tests had five warmup iterations and five additional iterations that were
used for the benchmark results.

7.2.1 Write Performance

This test compares the performance of entry write operations in different transactional
scenarios. Thus, we distinguish between the following three scenarios:

1. Use a separate user transaction per write operation (denoted as OwnTx).

2. Use a separate sub transaction per write operation (denoted as SameTx).

3. Use the same sub transaction to write all entries (denoted as OneTx).

These three scenarios were chosen to distinguish the influence that the used transactional
scenarios have for both frameworks. In addition to the MozartSpaces and the regular
XVSM.net implementation, an additional variant of XVSM.net with the NoTransaction
implementation from Section 6.2.9 is compared. This is used to show how a minimal
overhead of the transaction system affects the performance.

In all scenarios 10,000 entries are written to an unbounded container with a single Fifo
coordinator by using the default isolation level repeatable read. The space and the
container are created in a setup method before every measurement iteration.

Figure 7.4 shows the results of the benchmarks. It can be clearly seen that MozartSpaces
easily out-performs XVSM.net. Performance profiling has shown for XVSM.net that
big parts of its computation time is spent for garbage collecting and internal lock
handling, especially when the default pessimistic transactional locking plugin is used.
The gap between the OwnTx and SameTx scenarios with the OneTx scenario indicates
the overhead of creating 10,000 transactions. Since, the NoTransaction plugin also

131

7. Evaluation

OwnTx SameTx OneTx
0

50

100

150

200

19.59 18.15 11.35

218.1

157.44

70.22
92.79

55.13

23.03

M
ill
ise

co
nd

s

MozartSpaces
XVSM.net
XVSM.net NoTransaction

Figure 7.4: Performance of Write operations on a Fifo coordinator.

instantiates lightweight transactions, even though without locking and isolation support,
its performance is also increased by writing the entries in a batch within the same
transaction.

In addition to the previously shown results, a concurrent version of the benchmark for
the OwnTx scenario was created and its results are depicted in Figure 7.5. For these
performance measurements, a container with a Label coordinator is created and 10,000
entries are written to it. The measurements were taken with a different number of parallel
jobs that would evenly divide the number of entries to be written among them. For
instance, the single running job of the first data point is required to write all 10,000
entries by it self, but for the second data point the two jobs individually need to write
5000 entries. In Java, the jobs are executed on the common ForkJoinPool with a
Completable Future and on C# through Parallel Tasks. In both cases the
higher-level abstraction was used to allow the platform to optimize the execution.

As can be seen in the figure, MozartSpaces still outperforms XVSM.net in terms
of raw performance, however, XVSM.net benefits more from concurrently executed
jobs. MozartSpaces also gains performance improvements if two jobs are executed in
parallel, but executing three or four job decreases the performance again. In contrast,
XVSM.net increasingly benefits with a higher number of parallel running jobs, at least
up to four running jobs. With the increasing number of parallel running jobs, the relative
benefit decreases which leads to the conclusion that not all parts of XVSM.net involved

132

7.2. Performance & Memory Measurments

in the write operation are scaling for concurrent execution.

1 2 3 40

50

100

150

200

250

300

Number of running jobs

M
ill
ise

co
nd

s
MozartSpaces

XVSM.net
XVSM.net NoTransaction

Figure 7.5: Performance of concurrent Write operations on a Label coordinator.

7.2.2 Read Performance

The performance of read operations in XVSM.net was measured in a similar fashion to
the write performance from the previous section. Analogue to the three scenarios from
the write performance, these three scenarios were derived for the measurements:

1. Use a separate user transaction per read operation (denoted as OwnTx).

2. Use a separate sub transaction per read operation (denoted as SameTx).

3. Use the same sub transaction to read all entries (denoted as OneTx).

To measure the read operation performance, an unbounded container with a Fifo coor-
dinator is created. After the creation of the container, 10,000 entries are written to it.
This procedure is performed in a setup method for every measurement iteration. In every
iteration read operations are executed with the default isolation level repeatable read.

The results of the read performance measurements are depicted in Figure 7.6. Similar
to the write performance, MozartSpaces outperforms XVSM.net with the default
transaction plugin for OwnTx and OneTx scenarios. Surprisingly, MozartSpaces’ per-
formance suffered significantly for the SameTx scenario. The performance measurement

133

7. Evaluation

OwnTx SameTx OneTx
0

100

200

300

400

500

600

16.15

614.34

7.36

172.46

89.2
33.5151.68 27.79 3.19

M
ill
ise

co
nd

s

MozartSpaces
XVSM.net
XVSM.net NoTransaction

Figure 7.6: Performance of Read operations on a Fifo coordinator.

was repeated multiple times to rule out a possible measurement error, but the result was
reproducible. Hence, a measurement error is not expected. JMH denotes a standard
deviation for this measurement of 104.20 ms. It appears that the performance degradation
is connected to the number of locks on the same entry, which was confirmed by further
tests with a Label coordinator.

The concurrent read performance for the OwnTx scenario was measured too, as visualized
in Figure 7.7. In this case, MozartSpaces produces its best performance when two jobs
are running concurrently. For three or four concurrently running jobs, its performance
degrades again. Both XVSM.net variants, on the other hand, improve their performance
gradually with more concurrently running jobs for the observed measurements. However,
the relative performance improvement steadily degrades with more concurrently running
jobs.

7.2.3 Memory Usage

To measure and compare the memory usage of XVSM.net, we used dotMemory [29]
from the Resharper utility, which was available through an academic license. For the
Java pendant to measure the memory usage of MozartSpaces, VisualVM [30] from
the Java SDK was used. Both tools were used to analyze the heap memory usage of the
space when executing several write operations on a single unbounded container with a
Fifo coordinator and the default isolation level repeatable read. Per individual write

134

7.2. Performance & Memory Measurments

1 2 3 40

50

100

150

200

250

300

Number of running jobs

M
ill
ise

co
nd

s

MozartSpaces
XVSM.net

XVSM.net NoTransaction

Figure 7.7: Performance of concurrent Read operations on a Label coordinator.

operation, a single user and sub transaction were created. To minimize the impact of
Java’s garbage collector the initial heap size was configured to 512MB and the maximum
heap size to 2GB1

Figure 7.8 shows the resulting memory usage of XVSM.net and MozartSpaces for
different write operations. The figure depicts the high memory usage of XVSM.net,
which is a consequence of the plugin framework and its used libraries. However, the overall
memory consumption is in an acceptable range, especially for spaces with a higher number
of stored entries. As depicted in the figure, after executing 50, 000 write operations, the
difference between the memory consumption of XVSM.net and MozartSpaces shrinks
to a smaller fraction of the overall memory consumption.

Overall, the memory usage of XVSM.net lies in a comparable range with Mozart-
Spaces. The higher base usage was expected due to the extensive usage of plugins within
the plugin framework.

7.2.4 Conclusion

By comparing the provided benchmarks, it is clear that XVSM.net is not at the same
performance level as MozartSpaces at the moment. Even with the NoTransaction
plugin, its performance lies behind MozartSpaces in most scenarios. However, its

1The memory test application was started with the arguments -Xmx2G -Xms512M.

135

7. Evaluation

1,000 10,000 25,000 50,0000

25

50

75

100

125

150

175

200

225

250

275

Number of Write operations

H
ea
p
us
ag

e
in

M
B

(1
06

by
te
s)

MozartSpaces
XVSM.net

Figure 7.8: Memory usage of Write operations.

scalability characteristics show an advantage for multi-threaded environments with more
than two threads.

Architectural implementation specifics, such as the use of proxy objects, are expected
to have an impact on the overall performance of the framework. However, there are
multiple optimization possibilities that could be incorporated in the future, such as using
byte-code manipulation instead of relying on proxy objects.

7.3 Requirements

The requirements of XVSM.net were defined in Chapter 4. In this section we will
compare the defined requirements with the implemented solution.

7.3.1 Functional Requirements

The implementation of the lower CAPI layers 1 to 2 were mainly realized through the
IContainer, IEntryStorage, and ITransaction plugins and plugin parts. As
defined, the CAPI layers were not implemented as explicit layers but they provide the
required functionality for the CAPI-3 layer implementation. The ICapi3 plugin provides
XVSM’s required CAPI-3 functionality as an explicit layer. As can be seen from its
contract, XVSM’s requirements were satisfied, as it is possible to execute the required

136

7.3. Requirements

entry operations read, write, take, delete, and test, as well as the required container
operations create, lookup, destroy, and lock.

When containers are created, it is possible to specify optional or obligatory coordinators,
as required. A container plugin with support for bounded containers is provided in the
solution as well.

The transaction implementation of the default ITransaction plugin part supports
pessimistic locking with arbitrarily nested transactions. Hence, the required two level
transaction system of XVSM’s formal model can be realized. The provided default
IIsolationLevelHandler support the required repeatable read and the optional
read committed and read uncommitted isolation levels defined in the requirements. Due
to XVSM.net’s architecture, multiple isolation levels are supported at a plugin level.

The required Any, Fifo, Lifo, Label, Key, Linda, and Vector coordinator from XVSM’s
formal model were all implemented. In addition the Random and LeastUsed coordinator
were also implemented to show the flexibility of XVSM.net in combination with the
plugin framework. Other coordinators that are missing, such as the Query coordinator,
can be added through a future extension.

A runtime implementation based on the Peer Model was implemented and shown in this
thesis with a simple rescheduling mechanism. The rescheduling mechanism is not as
advanced as the MozartSpaces implementation and would require more optimization as
it retries operations more often than needed. The implementation of the runtime does not
use the XVSMP protocol and it therefore lacks interoperability with other XVSM-based
frameworks at the moment. The requirement of the blocking interface implementation
with similar method signatures as the MozartSpaces’ implementation was satisfied as
can be seen in this thesis.

7.3.2 Non-functional Requirements

As already shown in this chapter, XVSM.net makes use of a plugin framework with
flexible extensibility features that allow to change or extend the behavior with a multitude
of mechanisms without the need to recompile the source code.

The requirement to simplify the implementation of custom coordinators was fulfilled.
Custom coordinator implementation was simplified in XVSM.net by reducing the
responsibility of the coordinators and focusing their implementations on the coordination
logic, as was shown in this chapter.

As shown in Section 6.4, XVSM.net provides a mechanism to handle failed operations
and notifies gracefully the failed operations to the operation’s issuing client.

As seen in this chapter, XVSM.net supports concurrent execution of multiple operations
on a single container as required. Even though the overall performance of XVSM.net
is not at the same level as MozartSpaces at the moment, it shows better support for
multi-threaded scenarios, thus, fulfilling the scalability requirements.

137

7. Evaluation

All plugin and plugin part contracts are documented through C#’s XML documentation
comments, which is an equivalent to the comment documentation Javadoc used in
MozartSpaces. It allows to generate an API documentation from the source code. The
contracts were designed to only need the minimal required parameters. For instance, the
request context could be removed from many method signatures as a parameter thanks
to the plugin framework, which allowed to inject the request context instead. C#’s
features, such as default arguments, custom indexer, or the using statement through
the IDisposable interface were used to further simplify the usage of the plugins and
plugin parts.

Due to the many plugin and plugin part contracts used in XVSM.net and its dependency
injection support, creating tests for plugins is well supported throughout the framework.
Through dependency injection, it is possible to provide mocks of other plugins or plugin
parts by simply providing the instances in the constructor or setter methods of the plugin
that should be tested. The usage of contracts helps in creating black-box tests against
the plugin’s or plugin part’s specification.

7.4 Suitability of the Plugin Framework
Even though a lot of work was put in the development of the plugin framework throughout
this thesis, it proved to be helpful in fulfilling the stated requirements and greatly
supported the development of XVSM.net. The plugin aspect feature and its incentive
for high modularization increased the flexibility of XVSM.net in terms of extensibility
as shown in this chapter. The aspired adaption type S3 could be easily realized by using
the plugin framework.

As the plugin framework is not depending on XVSM.net it can be used for other
applications and middlewares too. Applications that want to provide a highly modular,
extensible architecture may profit from the usage of the plugin framework in a similar
way as XVSM.net did.

138

CHAPTER 8
Future Work & Conclusion

This chapter gives a summary over what has been accomplished with this thesis and
provides suggestions for future research and development options.

8.1 Future Work
XVSM.net marks a new foundation for XVSM on the .NET platform, but it is still at
an early development stage. Further work for the runtime needs to be done. The runtime
needs to be extended and updated to fully support the scheduling mechanisms defined in
the formal model. It should be coordinated with the MozartSpaces development to
provide an interoperable implementation that is not limited by a non-interoperable entry
payload serialization mechanism. XVSM aspects are still missing from XVSM.net and
should be added with a future runtime plugin, although XVSM.net is well-prepared
for XVSM aspect implementation through its nested transactions and plugin aspect
support. For an interoperable runtime implementation, it should be evaluated whether
interoperable aspects might be a feasible option. Since, both the .NET and the Java
platforms support JavaScript interpretation out of the box [Pon14] or via third party
libraries, it should be considered as an interoperable alternative for writing XVSM aspects
in the platform-native programming language.

Due to the performance impacts of the default transaction implementation, it should
be evaluated whether a nested transaction variant of the MozartSpaces implemen-
tation could provide a viable alternative. An initial performance profiling has shown
that big parts of the processing time is lost due to the complex locking mechanisms.
Since MozartSpaces’ implementation does not allow concurrent operation execution
per container but still provides satisfying performance characteristics, we hope that a
non-concurrent, nested transaction implementation provides a similar performance than
MozartSpaces’ current implementation. An alternative to the used proxy implementa-
tion that uses byte-code manipulation to integrate plugin aspects should be evaluated for

139

8. Future Work & Conclusion

general performance improvements of the plugin framework. More broadly, plugins for
persistence, replication, security, the meta model, and the query coordinator should be
developed and integrated with the proposed plugin architecture.

Parallel to the full .NET Framework, Microsoft has developed a more lightweight and
modular version (.NET Core [31]) that has cross-platform support. Future work should
examine whether the Core Framework supports all required dependencies for XVSM.net
and, if possible, port the source code to the new platform.

Java 9’s Jigsaw module system [Jec17] could provide an interesting possibility for
MozartSpaces to modularize its implementation. It is supported out of the box in Java
9 and provides some mechanisms of OSGI frameworks and MEF. It should be evaluated
and compared with OSGI frameworks and other frameworks providing modularization
concepts. However, the modular architecture of XVSM.net should be considered for
MozartSpaces for a refactoring of the core application.

During the creation of this thesis, a flexible extension to XVSM was proposed [Cra+17].
This extension uses an event-based approach and allows the execution of custom user-
defined code after certain event conditions are triggered. In combination with the
modular architecture presented in this thesis, this may lead to even simpler extension
implementations for certain use cases. This is an interesting development for space-based
middlewares and should be further looked into.

8.2 Conclusion

In this thesis we have presented a new XVSM implementation for the .NET Framework
with a high focus on modularity and extensibility. We have introduced a plugin framework
based on an established technology for the .NET platform as a foundation for the
implementation of the space-based middleware presented in this thesis. Since the plugin
framework is not depending on the XVSM implementation, it may be used for other
applications too that could benefit from a modular and flexible architecture.

The middleware was designed to be highly adaptable and circumvent issues of other XVSM
implementations. It has been shown that extensions, such as the persistence extension, do
not need to be hardwired in the middleware implementation. The modular structure and
easy extensibility was designed to encourage and motivate the development of experimental
extensions. It also serves as the basis for separate middleware distributions including
different plugins. For instance, a non-transactional high-performance distribution could
be offered along the standard distribution.

A significant part of the thesis went into simplifying the coordinator implementations,
since the knowledge of middleware internals that other XVSM implementations required
increased the complexity to create custom coordinators and led to code duplication. The
thesis presented coordinator classification properties and showed how they can be used
in combination with a pluggable and modular architecture to extract redundant and

140

8.2. Conclusion

complex code segments from the coordinators. We hope to see more custom coordinators
in the future, due to the simplification.

The nested transaction implementation with support of concurrent container operations
increased the flexibility of future XVSM aspect implementations at the cost of performance.
Even though the performance was overall acceptable, it leaves room for optimizations.
However, the increased flexibility for aspects due to the possibility of partial rollbacks
benefits the extensibility of XVSM.

XVSM.net satisfies the specified requirements and lays the foundation for future devel-
opments for space-based middleware on the .NET platform. Even though it is far from
feature parity with MozartSpaces, its focus lies on mechanisms to achieve this goal.

141

List of Figures

2.1 Example of a Dependency Injection. 6
2.2 An exemplary Key- and FifoCoordinator visualization with a pipe-and-filter

style. 10
2.3 Overview of persistence dependencies in MozartSpaces. 14
2.4 Overview of facade nesting in TinySpaces. 16

3.1 An exemplary peer showing a single wiring. 23
3.2 Overview of MEF primitives. 25

5.1 UML class diagram of the plugin meta model. 33
5.2 Architectural overview of the plugin framework. 42
5.3 UML sequence diagram for the first configuration read access of a config

contract with manual overwrite. 45
5.4 UML Class Diagram of Shared Plugin Memory Interfaces 52

6.1 Contract projects dependencies. 59
6.2 Dependency and architectural overview of XVSM.net’s Plugins and Plugin

Parts architecture. 62
6.3 Extract of the dependency and architectural overview showing components

relevant for transactions. 66
6.4 Transactions in the XVSM formal model [Cra10]. 67
6.5 UML class diagram of the transaction-related contracts. 68
6.6 UML class diagram of locking related interfaces and contracts. 73
6.7 UML class diagram of the isolation-related contracts. 76
6.8 UML state diagram illustrating the lock state of a space element for the read

uncommited isolation level. 79
6.9 UML state diagram illustrating the lock state transitions for the read commited

isolation level. 81
6.10 UML state diagram illustrating the lock state transitions for the repeatable

read isolation level. 83
6.11 UML activity diagram showing the general functionality of the BorrowLockLists

method. 85
6.12 UML activity diagram visualizing the algorithm to acquire exclusive access to

existing lock lists. 86

143

6.13 UML activity diagram depicting the algorithm to enter monitors from lock
lists. 87

6.14 UML sequence diagram showing the committing process of a transaction
hierarchy with three levels. 89

6.15 UML sequence diagram illustrating the execution of registered final commit
actions. 90

6.16 UML sequence diagram illustrating a successful lock acquisition. 91
6.17 Extract of the dependency and architectural overview showing coordination-

relevant components. 93
6.18 UML class diagram showing contracts for the container creation and retrieval. 94
6.19 UML class diagram illustrating the container contract. 95
6.20 UML class diagram showing the IEntryStorage plugin contract. 96
6.21 UML class diagram showing the coordinator contract inheritance without

interface members. 97
6.22 The delegation of write operations by IUniversalCoordinator plugin

parts. 98
6.23 Showing the delegation of entry reference selection operations by IUniver-

salCoordinator plugin parts. 98
6.24 UML class diagram showing classes relevant for the entry registration. . . 100
6.25 UML class diagram showing the ITransactionalContext interface. . 100
6.26 UML class diagram showing the plugin contract to instantiate custom context

objects with related elements. 101
6.27 UML class diagram showing plugin contracts required for the instantiation of

coordinators. 102
6.28 UML class diagram showing the plugin contract of the SelectionManager. 103
6.29 UML class diagram showing the ICoordinationLockHandler plugin con-

tract. 105
6.30 UML sequence diagram showing the behaviors of the coordination lock han-

dler’s AcquireLocks method regarding lock acquisition. 106
6.31 UML sequence diagram showing a successful operation of writing entries in

CAPI-3. 113
6.32 UML sequence diagram showing a successful writing of entries to a container. 114
6.33 UML sequence diagram showing a successful take operation in CAPI-3. . 115
6.34 Extract of the dependency and architectural overview showing runtime-relevant

components. 117
6.35 The runtime Peer Model implementation, showing CAPI (W1), rescheduling

(W2, W3), and response wirings (W4, W5) for an embedded space. 119

7.1 Extract of a possible XVSM.net persistence extension with highlighted
changes. 126

7.2 Key coordinator implementation measurements. 128
7.3 Vector coordinator implementation measurements. 129
7.4 Performance of Write operations on a Fifo coordinator. 132

144

7.5 Performance of concurrent Write operations on a Label coordinator. . . . 133
7.6 Performance of Read operations on a Fifo coordinator. 134
7.7 Performance of concurrent Read operations on a Label coordinator. . . . 135
7.8 Memory usage of Write operations. 136

List of Tables

2.1 Comparison of space-based middleware regarding extensibility properties. 19

6.1 Summary of the default coordinator plugins and their properties. 112

7.1 Coordinator responsibilities in XVSM middlewares. 127
7.2 Extended comparison of space-based middleware regarding extensibility prop-

erties. 130

List of Listings

5.1 Example code of a plugin and its plugin contract 34
5.2 Property injection example . 36
5.3 Constructor injection example . 37
5.4 Example of advanced plugin instantiation through the plugin service

locator. 39
5.5 Example of a plugin with a custom attribute used for custom selection. 40
5.6 Exemplary plugin framework container bootstrapping and instantiation of

a custom plugin. 43
5.7 Exemplary programmatical overriding of plugin configurations. 46
5.8 Simple example of plugin part instantiation. 47
5.9 Plugin part instantiation with plugin dependencies. 48
5.10 Method selection in a plugin aspect. 50
5.11 Plugin that controls the recomposition while queuing incoming requests. 54
6.1 Example showing basic XVSM.net usage. 64

145

6.2 Example showing basic transaction operations. 70
6.3 Acquisition example of a transaction hierarchy with two levels. 74
6.4 Duplicate write-acquisition of the same element. 88
6.5 The method signatures of the ICapi interface. 117
6.6 Example showing usages of the request context through accessing the

default IRequestContextRegistry plugin. 121

146

Bibliography

[Arn99] K. Arnold. “The Jini architecture: dynamic services in a flexible network”.
In: Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).
June 1999, pp. 157–162.

[AS04] S. Androutsellis-Theotokis and D. Spinellis. “A Survey of Peer-to-peer Con-
tent Distribution Technologies”. In: ACM Comput. Surv. 36.4 (Dec. 2004),
pp. 335–371.

[Bar10] M.-S. Barisits. “Design and implementation of the next generation XVSM
framework : operations, coordination and transactions”. MA thesis. TU
Wien, 2010.

[BEI09] O. Ben-Kiki, C. Evans, and B. Ingerson. YAML ain’t markup language
(YAML)(tm) version 1.2. Tech. rep. Sept. 2009.

[Ber96] P. A. Bernstein. “Middleware: A Model for Distributed System Services”.
In: Commun. ACM 39.2 (Feb. 1996), pp. 86–98.

[BN97] P. A. Bernstein and E. Newcomer. Principles of Transaction Processing: For
the Systems Professional. Morgan Kaufmann Publishers Inc., 1997.

[Boo86] G. Booch. “Object-oriented Development”. In: IEEE Trans. Softw. Eng. 12.1
(Jan. 1986), pp. 211–221.

[Cis17] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2016–2021. Whitepaper. Feb. 2017.

[CK12] S. Craß and E. Kühn. “A Coordination-based Access Control Model for Space-
based Computing”. In: Proceedings of the 27th Annual ACM Symposium on
Applied Computing. SAC ’12. Mar. 2012, pp. 1560–1562.

[CKS09] S. Craß, E. Kühn, and G. Salzer. “Algebraic Foundation of a Data Model
for an Extensible Space-based Collaboration Protocol”. In: Proceedings of
the 2009 International Database Engineering & Applications Symposium.
IDEAS ’09. Sept. 2009, pp. 301–306.

[Cra+12] S. Craß, T. Dönz, G. Joskowicz, and E. Kühn. “A Coordination-Driven Au-
thorization Framework for Space Containers”. In: 2012 Seventh International
Conference on Availability, Reliability and Security. Aug. 2012, pp. 133–142.

147

[Cra+17] S. Craß, E. Kühn, V. Sesum-Cavic, and H. Watzke. “An Open Event-
Driven Architecture for Reactive Programming and Lifecycle Management in
Space-Based Middleware”. In: 2017 43rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA). Aug. 2017, pp. 189–193.

[Cra10] S. Craß. “A formal model of the Extensible Virtual Shared Memory (XVSM)
and its implementation in Haskell : design and specification”. MA thesis.
TU Wien, 2010.

[Dön11] T. Dönz. “Design and implementation of the next generation XVSM frame-
work : runtime, protocol and API”. MA thesis. TU Wien, 2011.

[EAS07] W. Emmerich, M. Aoyama, and J. Sventek. “The Impact of Research on
Middleware Technology”. In: SIGOPS Oper. Syst. Rev. 41.1 (Jan. 2007),
pp. 89–112.

[EFB01] T. Elrad, R. E. Filman, and A. Bader. “Aspect-oriented Programming:
Introduction”. In: Commun. ACM 44.10 (Oct. 2001), pp. 29–32.

[FAH99] E. Freeman, K. Arnold, and S. Hupfer. JavaSpaces principles, patterns, and
practice. Jini technology series. Addison-Wesley, 1999.

[Gel85] D. Gelernter. “Generative Communication in Linda”. In: ACM Trans. Pro-
gram. Lang. Syst. 7.1 (Jan. 1985), pp. 80–112.

[Gra+76] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. “Granularity of
locks and degrees of consistency in a shared data base”. In: IFIP Working
Conference on Modelling in Data Base Management Systems. Jan. 1976,
pp. 365–394.

[Hel+00] R. Helm, R. E. Johnson, E. Gamma, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Braille Jymico Incorporated,
2000.

[Hev+04] A. R. Hevner, M. T. Salvatore, P. Jinsoo, and S. Ram. “Design science in
information systems research”. In: MIS quarterly 28.1 (Mar. 2004), pp. 75–
105.

[Hir12] J. Hirsch. “An adaptive and flexible replication mechanism for MozartSpaces,
the XVSM reference implementation”. MA thesis. TU Wien, 2012.

[HN05] M. Hicks and S. Nettles. “Dynamic Software Updating”. In: ACM Trans.
Program. Lang. Syst. 27.6 (Nov. 2005), pp. 1049–1096.

[Jec17] A. Jecan. “Project Jigsaw”. In: Java 9 Modularity Revealed: Project Jigsaw
and Scalable Java Applications. Apress, 2017, pp. 17–30.

[Kar09] M. Karolus. “Design and implementation of XcoSpaces, the .Net reference
implementation of XVSM : coordination, transactions and communication”.
MA thesis. TU Wien, 2009.

[Kic+97] G. Kiczales et al. “Aspect-oriented programming”. In: ECOOP’97 — Object-
Oriented Programming. Vol. 1241. Lecture Notes in Computer Science. June
1997, pp. 220–242.

148

[KJ04] M. Kircher and P. Jain. Pattern-Oriented Software Architecture: Patterns
for Resource Management. John Wiley & Sons, 2004.

[Knu97] D. E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co., Inc.,
1997.

[KPS12] O. Kiselyov, S. Peyton-Jones, and A. Sabry. “Lazy v. Yield: Incremental,
Linear Pretty-Printing”. In: Programming Languages and Systems. Dec. 2012,
pp. 190–206.

[KRJ05] E. Kühn, J. Riemer, and G. Joskowicz. XVSM (eXtensible Virtual Shared
Memory) Architecture and Application. Tech. rep. Space-Based Computing
Group, Institute of Computer Languages, TU Wien, Nov. 2005.

[Küh+09] E. Kühn, R. Mordinyi, L. Keszthelyi, C. Schreiber, S. Bessler, and S. Tomic.
“Aspect-Oriented Space Containers for Efficient Publish/Subscribe Scenarios
in Intelligent Transportation Systems”. In: Proceedings of the Confederated
International Conferences, CoopIS, DOA, IS, and ODBASE 2009 on On
the Move to Meaningful Internet Systems: Part I. OTM ’09. Nov. 2009,
pp. 432–448.

[Küh+13] E. Kühn, S. Craß, G. Joskowicz, A. Marek, and T. Scheller. “Peer-Based
Programming Model for Coordination Patterns”. In: Coordination Models
and Languages. Vol. 7890. Lecture Notes in Computer Science. June 2013,
pp. 121–135.

[Mar10] A. O. B. Marek. “Design and implementation of TinySpaces : the .NET
micro framework based implementation of XVSM for embedded systems”.
MA thesis. TU Wien, 2010.

[MC00] R. Monson-Haefel and D. Chappell. Java Message Service. O’Reilly &
Associates, Inc., 2000.

[McC76] T. J. McCabe. “A Complexity Measure”. In: IEEE Transactions on Software
Engineering SE-2.4 (Dec. 1976), pp. 308–320.

[McK+04] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. “Composing
adaptive software”. In: Computer 37.7 (July 2004), pp. 56–64.

[Mei11] T. Meindl. “XVSM Persistence : developing an orthogonal functional profile
for the eXtensible Virtual Shared Memory”. MA thesis. 2011.

[MK11] R. Mordinyi and E. Kühn. “Coordination Mechanisms in Complex Software
Systems”. In: Next Generation Data Technologies for Collective Computa-
tional Intelligence. Vol. 352. Studies in Computational Intelligence. 2011,
pp. 3–30.

[MKS10] R. Mordinyi, E. Kühn, and A. Schatten. “Space-Based Architectures As
Abstraction Layer for Distributed Business Applications”. In: Proceedings
of the 2010 International Conference on Complex, Intelligent and Software
Intensive Systems. CISIS ’10. Feb. 2010, pp. 47–53.

149

[Mon+97] R. T. Monroe, A. Kompanek, R. Melton, and D. Garlan. “Architectural
styles, design patterns, and objects”. In: IEEE Software 14.1 (Jan. 1997),
pp. 43–52.

[Mor10] R. Mordinyi. “Managing complex and dynamic software systems with space-
based computing”. PhD thesis. TU Wien, 2010.

[Mos+05] T. Moses et al. “Extensible access control markup language (xacml) version
2.0”. In: Oasis Standard 200502 (Feb. 2005).

[New07] J. Newmarch. Foundations of Jini 2 programming. Apress, 2007.
[Nuñ+17] A. S. Nuñez-Varela, H. G. Pérez-Gonzalez, F. E. Martínez-Perez, and C.

Soubervielle-Montalvo. “Source code metrics: A systematic mapping study”.
In: Journal of Systems and Software 128.Supplement C (June 2017), pp. 164–
197.

[OSG03] OSGI Alliance. Osgi Service Platform, Release 3. IOS Press, Inc., 2003.
[Pon14] J. Ponge. “Oracle nashorn: A next-generation javascript engine for the JVM”.

In: (Feb. 2014).
[Pra09] D. R. Prasanna. Dependency Injection. 1st. Manning Publications Co., 2009.
[Rau14] D. Rauch. “PeerSpace.NET”. MA thesis. TU Wien, 2014.
[Sch08] T. Scheller. “Design and implementation of XcoSpaces, the .Net reference

implementation of XVSM : core architecture and aspects”. MA thesis. TU
Wien, 2008.

[See12] M. Seemann. Dependency injection in .NET. Manning New York, 2012.
[SM03] S. M. Sadjadi and P. K. McKinley. “A survey of adaptive middleware”. In:

Michigan State University Report MSU-CSE-03-35 (2003).
[SP02] W. Schult and A. Polze. “Aspect-oriented programming with C# and .NET”.

In: Object-Oriented Real-Time Distributed Computing, 2002. (ISORC 2002).
Proceedings. Fifth IEEE International Symposium on. Apr. 2002, pp. 241–
248.

[Sun02] Sun. JavaSpaces Service Specification. Tech. rep. Sun Microsystems, 2002.
[TBS10] M. Trofin, N. Blumhardt, and C. Szyperski. “The .NET Primitives for Open,

Dynamic and Reflective Component Frameworks”. In: Software Composition.
Vol. 6144. Lecture Notes in Computer Science. July 2010, pp. 138–153.

[Wal99] J. Waldo. “The Jini Architecture for Network-centric Computing”. In: Com-
mun. ACM 42.7 (July 1999), pp. 76–82.

[Wat15] H. Watzke. “Lifecycle and memory management for extensible virtual shared
memory (XVSM)”. MA thesis. TU Wien, 2015.

[Zar12] J. Zarnikov. “Energy-efficient persistence for extensible virtual shared mem-
ory on the android operating system”. MA thesis. TU Wien, 2012.

150

Online Resources

[1] M. Fowler. Inversion of control containers and the dependency injection pattern.
Jan. 2004. url: https://martinfowler.com/articles/injection.html
(visited on March/17/2018).

[2] OW2 Consoritium. JORAM: Java Open Reliable Asynchronous Messaging. url:
http://joram.ow2.org (visited on March/23/2018).

[3] The Apache Software Foundation. Apache Felix. url: http://felix.apache.
org (visited on March/14/2018).

[4] DataNucleus. DataNucleus Access Plattform. url: http://www.datanucleus.
org (visited on March/23/2018).

[5] Various. Guice. url: https://github.com/google/guice (visited on
March/12/2018).

[6] GigaSpaces. XAP, In-Memory Computing Platform. url: https://www.gigas
paces.com/product/xap (visited on March/23/2018).

[7] Various. Spring Framework. url: https://projects.spring.io/spring-
framework (visited on March/12/2018).

[8] GigaSpaces. XAP 12.2 Documentation. url: https://docs.gigaspaces.
com/xap/12.2/ (visited on March/12/2018).

[9] Various. Hibernate ORM. url: http://hibernate.org/orm/ (visited on
March/12/2018).

[10] The Apache Software Foundation. Apache Cassandra. url: http://cassandra.
apache.org (visited on March/12/2018).

[11] MongoDB, Inc. MongoDB. url: https://www.mongodb.com (visited on
March/12/2018).

[12] PTIOBE Software Quality Company. TIOBE Index for January 2018. Accessed:
2018-01-05. Jan. 2018. url: https://www.tiobe.com/tiobe-index/ (visited
on January/05/2018).

[13] JetBrains s.r.o. Jetbrains Resharper. url: https://www.jetbrains.com/
resharper/ (visited on March/23/2018).

151

https://martinfowler.com/articles/injection.html
http://joram.ow2.org
http://felix.apache.org
http://felix.apache.org
http://www.datanucleus.org
http://www.datanucleus.org
https://github.com/google/guice
https://www.gigaspaces.com/product/xap
https://www.gigaspaces.com/product/xap
https://projects.spring.io/spring-framework
https://projects.spring.io/spring-framework
https://docs.gigaspaces.com/xap/12.2/
https://docs.gigaspaces.com/xap/12.2/
http://hibernate.org/orm/
http://cassandra.apache.org
http://cassandra.apache.org
https://www.mongodb.com
https://www.tiobe.com/tiobe-index/
https://www.jetbrains.com/resharper/
https://www.jetbrains.com/resharper/

[14] .NET Foundation and contributors. NUnit. url: http://nunit.org (visited on
March/23/2018).

[15] A. Egerton and D. Tchepak. NSubstitute. url: http://nsubstitute.github.
io (visited on March/23/2018).

[16] J. Kowalski, K. Christensen, and J. Verdurmen. NLog. url: http://nlog-
project.org (visited on March/23/2018).

[17] Xcoordination. Xcoordination Application Space. url: http://www.xcoordina
tion.com/application_space (visited on January/01/2018).

[18] Microsoft. CCR Introduction. url: https://msdn.microsoft.com/en-
us/library/bb648752.aspx (visited on January/01/2018).

[19] Castle Project.Windsor. url: http://www.castleproject.org/projects/
windsor/ (visited on March/23/2018).

[20] Various. Ninject. url: http://www.ninject.org (visited on March/23/2018).
[21] Various. Spring.NET. url: http : / / springframework . net (visited on

March/12/2018).
[22] Castle Project. DynamicProxy. url: http://www.castleproject.org/

projects/dynamicproxy (visited on March/23/2018).
[23] NHibernate Community. NHibernate. url: http://nhibernate.info (visited

on March/14/2018).
[24] A. Aubry. url: http://aaubry.net/pages/yamldotnet.html (visited on

March/23/2018).
[25] J. Zander. Why isn’t there an Assembly.Unload method? May 2004. url: https://

blogs.msdn.microsoft.com/jasonz/2004/05/31/why-isnt-there-
an-assembly-unload-method/ (visited on March/17/2018).

[26] SonarSource S.A, Switzerland. SonarQube. url: https://sonarqube.org
(visited on March/23/2018).

[27] Various. JMH. url: http://openjdk.java.net/projects/code-tools/
jmh/ (visited on January/01/2018).

[28] .NET Foundation and contributors. BenchmarkDotNet. url: http://benchmar
kdotnet.org (visited on January/01/2018).

[29] JetBrains s.r.o. Jetbrains dotMemory. url: https://www.jetbrains.com/
dotmemory/ (visited on April/02/2018).

[30] Various. VisualVM. url: https : / / visualvm . github . io (visited on
April/02/2018).

[31] Various. Choosing between .NET Core and .NET Framework for server apps. Mar.
2018. url: https://docs.microsoft.com/en-us/dotnet/standard/
choosing-core-framework-server (visited on March/28/2018).

152

http://nunit.org
http://nsubstitute.github.io
http://nsubstitute.github.io
http://nlog-project.org
http://nlog-project.org
http://www.xcoordination.com/application_space
http://www.xcoordination.com/application_space
https://msdn.microsoft.com/en-us/library/bb648752.aspx
https://msdn.microsoft.com/en-us/library/bb648752.aspx
http://www.castleproject.org/projects/windsor/
http://www.castleproject.org/projects/windsor/
http://www.ninject.org
http://springframework.net
http://www.castleproject.org/projects/dynamicproxy
http://www.castleproject.org/projects/dynamicproxy
http://nhibernate.info
http://aaubry.net/pages/yamldotnet.html
https://blogs.msdn.microsoft.com/jasonz/2004/05/31/why-isnt-there-an-assembly-unload-method/
https://blogs.msdn.microsoft.com/jasonz/2004/05/31/why-isnt-there-an-assembly-unload-method/
https://blogs.msdn.microsoft.com/jasonz/2004/05/31/why-isnt-there-an-assembly-unload-method/
https://sonarqube.org
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://benchmarkdotnet.org
http://benchmarkdotnet.org
https://www.jetbrains.com/dotmemory/
https://www.jetbrains.com/dotmemory/
https://visualvm.github.io
https://docs.microsoft.com/en-us/dotnet/standard/choosing-core-framework-server
https://docs.microsoft.com/en-us/dotnet/standard/choosing-core-framework-server

	Kurzfassung
	Abstract
	Contents
	Introduction
	Methodology
	Structure of Thesis

	State of the Art & Related Work
	Concepts and Classification
	Technologies
	XVSM Overview & Implementations
	Apache River
	GigaSpaces XAP
	Comparison

	Background
	.NET Platform
	Peer Model
	Extensibility Platform
	Proxy Framework
	Configuration

	Requirements
	Functional Requirements
	Non-functional Requirements

	Plugin Framework Design & Implementation
	Conceptional Core Elements
	Plugins
	Plugin Instantiation and Lookup
	Plugin Framework Implementation
	Plugin Configuration
	Plugin Parts
	Plugin Aspects
	Recomposition

	Plugin-Based XVSM Design & Implementation
	Architectural Overview
	Transactions
	Coordination
	Runtime

	Evaluation
	Extensibility
	Performance & Memory Measurments
	Requirements
	Suitability of the Plugin Framework

	Future Work & Conclusion
	Future Work
	Conclusion

	Bibliography
	Online Resources

