
Using Mobile Edge Computing
Technologies for Real-Time

Cornering Assistance

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

BSc Matthias Karan
Matrikelnummer 1027663

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Priv.-Doz. Dr. Hong-Linh Truong

Wien, 22. Jänner 2018
Matthias Karan Hong-Linh Truong

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Using Mobile Edge Computing
Technologies for Real-Time

Cornering Assistance

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

BSc Matthias Karan
Registration Number 1027663

to the Faculty of Informatics

at the TU Wien

Advisor: Priv.-Doz. Dr. Hong-Linh Truong

Vienna, 22nd January, 2018
Matthias Karan Hong-Linh Truong

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

BSc Matthias Karan
Fröbelgasse 33, Top 6-9, 1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 22. Jänner 2018
Matthias Karan

v

Acknowledgements

I would first like to thank my thesis advisor Priv.-Doz. Dr. Hong-Linh Truong. When I
came towards him with a proposal of writing about this topic, he immediately showed
great interest and added key aspects to form the idea into a scientific master thesis.
During the time of writing the thesis, his door was always open to ask and I always got
valuable feedback.

I would also like to thank the Austrian Road Safety Board (KFV) for introducing me to
the very important and interesting topic of traffic safety and for providing useful data
for this thesis.

Finally, I want to express my very profound gratitude to my parents, my sisters, my
brother, friends and colleagues for supporting me throughout my years of study.

vii

Kurzfassung

Während Autohersteller heutzutage in ihren neuesten Modellen immer mehr Fahrassis-
tenzsysteme und gar vollautonome Software einbauen, sitzt aktuell die Mehrheit aller
Autofahrer noch immer in Autos, die ohne diese Hilfstechnologien auskommen müssen.
Bis der Zeitpunkt gekommen ist, an dem vollautonomes Fahren die Straßen vollständig
erobert hat, werden vermutlich noch einige tausend Verkehrsunfälle durch menschliche
Fehler passieren. Statistiken bestätigen: ein Großteil der Autounfälle passiert während
dem Kurvenfahren.

Um für mehr Sicherheit im Auto auch bei älteren Modellen beizutragen, stellt diese Arbeit
ein neues System vor, welches Fahrern in Echtzeit vor und während dem Kurvenfahren
assistiert. Das System ist konzipiert um sowohl in Cloud- als auch in der neuartigen,
sogenannten Edge-Infrastruktur, ausführbar zu sein. Ziel von Edge-Computing ist es,
Recheneinheiten näher zum Anwender beziehungsweise zum Datenerzeuger zu bringen.
In der Arbeit präsentieren wir Lösungen zur GPS-Datenverarbeitung, zum Kombinieren
der GPS-Daten mit externen Datenquellen sowie zur Berechnung von Kurven und deren
Eigenschaften. Als Ergebnis wird ein Prototyp-System entworfen und implementiert
welches in simulierten Verkehrssituationen getestet wird. Der Prototyp wird anhand
Leistung und Datengenauigkeit evaluiert. Basierend auf dem Prototyp, werden schließlich
Kosten geschätzt, um solch ein System für alle Fahrer in Österreich bereitzustellen.

ix

Abstract

Today, modern cars with advanced driver assistance systems (ADAS) and even fully
autonomous driving software are on the rise and expectedly will reduce accidents in
traffic in the future. But as of now, the vast majority of drivers still drive cars without
these technologies. Until cars will be driving fully autonomous, human errors are going
to lead to thousands of car accidents. Statistics show that one major cause of accidents
is related to cornering.

To contribute to safer driving in any type of car, in this thesis we introduce a novel
system that assists drivers in real-time while cornering. The system is designed in a
way that it can be deployed to both the cloud and/or the emerging edge-computing
infrastructure. The goal of edge-computing is to move computational units closer to
where the data is produced. We also contribute solutions to processing location data,
using and combining external data sources and calculating curves and properties. As
a result, we design and implement a prototype that is tested against simulated traffic
scenarios. In the evaluation we show how the prototype behaves in terms of performance
and data quality. Based on the prototype, we finally demonstrate how much it would
approximately cost to serve all drivers across Austria.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

List of Figures xv

List of Algorithms xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Approach & Contribution . 3
1.4 Structure of the Thesis . 4

2 State of the Art 5
2.1 Overview . 5
2.2 Driver Monitoring and Assistance Applications 5
2.3 Edge Computing . 9
2.4 Curve Detection using map data . 13
2.5 Summary . 13

3 Data 15
3.1 Overview . 15
3.2 Data Sources . 15
3.3 Cornering Assistance Data . 19
3.4 Data Fusion . 20
3.5 Summary . 25

4 System Design 27
4.1 Overview . 27
4.2 Tasks . 27
4.3 System Infrastructure . 28

xiii

4.4 System Overview . 29
4.5 Detailed Design & Software Components 30
4.6 Service Orchestration . 32
4.7 Summary . 33

5 Algorithms 35
5.1 Overview . 35
5.2 Speed Recommendation . 35
5.3 Curve Detection . 37
5.4 Upcoming Curve Prediction . 40
5.5 Load Balancing of Driver Requests . 43
5.6 Summary . 45

6 Prototype 47
6.1 Overview . 47
6.2 Implementation . 47
6.3 Configuration & Deployment . 55
6.4 Summary . 64

7 Evaluation 67
7.1 Overview . 67
7.2 Test Data . 68
7.3 Performance Evaluation . 69
7.4 Data Quality Evaluation . 84
7.5 Cost Evaluation . 95

8 Conclusion & Future Work 99
8.1 Conclusion . 99
8.2 Future Work . 100

Bibliography 101

List of Figures

1.1 Overview of the system’s underlying MEC architecture 2

2.1 Comparison of state-of-the-art approaches 10

3.1 Example of a location and the bounding box of the corresponding geohash 18
3.2 Example of how recommendations can be used to create a GUI for safe

cornering . 20
3.3 Overview of data sources and their fusion 21
3.4 Example of fusing driver data with map and weather data making use of

caching . 24

4.1 Overview of the context and infrastructure of the system. 30
4.2 Detailed Design & Software components of the system 31
4.3 Service Orchestration . 34

5.1 Detection Algorithm . 39
5.2 Determining the radius of a curve using the circumcircle of its spanning

triangle . 42
5.3 Example for a trivial and non-trivial case of finding the next upcoming curve 43

6.1 Component structure as Uses-View . 48
6.2 Example OverpassQL query using Overpass-Turbo[Rai] 51
6.3 Topology of the Apex streaming application to detect curves 52
6.4 Additional software components at nodes 54
6.5 Different node-types in terms of resources 56
6.6 Overview of Deployment Model 1 . 58
6.7 Overview of Deployment Model 2 . 59
6.8 Overview of Deployment Model 3 . 60
6.9 Overview of Deployment Model 4 . 62
6.10 Illustration of how a combined edge-cloud-architecture could look like in

Austria . 63
6.11 Sample deployment of the application using docker and docker swarm . . 64
6.12 Metrics of the sample deployment running 2000 cars visualized as Grafana-

Dashboard . 65

xv

7.1 All test tracks used for the performance evaluation. The blue rectangle shows
the OverpassAPI coverage within Austria. 69

7.2 Test track with measured curves and GPS coordinates along our test track 70
7.3 Components of the application to run performance tests 73
7.4 Prometheus metrics of successful test run 4 running in the cloud with a

"full-cache" with 1500 constant drivers. 77
7.5 Apex metrics of successful test run 4 running in the cloud with a "full-cache"

with 1500 constant drivers. 78
7.6 Failing recommendation service when running 2000 cars due to CPU limits. 78
7.7 Screenshot of the Apache Apex Operator Widget showing that the aggregation

only reduces incoming requests by 12%, eventually causing the application to
fail to respond to requests. 79

7.8 Failing unifier operator (marked in blue) when trying to increase aggregates
to reduce the amount of tuples before querying Overpass. 80

7.9 Comparison of result times when running 500 drivers at LTE speed with
full-cache vs. empty-cache . 81

7.10 Components of the application to run data quality tests 86
7.11 Problematic curves revealed on evaluating data quality for Experiment 1 . 89
7.12 Test-drive that shows inaccuracies of GPS locations (0-30m) causing curve 25

and 40 to not be detected as approaching. 91
7.13 Test-drive that shows outages (black markers) causing curve 13 and 25 to not

be detected as approaching. 92
7.14 Screenshot of the Prometheus monitor showing average response-and result

times of selected test runs during data quality evaluation. 94
7.15 Hardware recommendation for the "EFF Fog Node Server"[Cis17a] 97

List of Algorithms

5.1 classifyRC - Classify road condition using weather data 37

5.2 recommend - Recommend safe speeds for approaching curves around a given
location . 38

5.3 detectCurves - Detect curves of all nodes. (Nodes are connected and sorted
by location) . 41

5.4 findNextUpcomingCurve - Finds the next upcoming curve in a local database
containing curves. 44

5.5 findLeastBusyNode - Finds the least busy node in terms of resource occu-
pancy on a running cluster . 45

xvii

CHAPTER 1
Introduction

1.1 Motivation
Every year around 30.000 car accidents happen on Austria’s streets [fV15]. In 2015, 479
of these ended fatally, making it 11% more deaths than in the previous year [Aus16]. As
in previous years, the main causes of accidents still are inattention and excessive speeding.
Though, accidents related to cornering also make up large amounts as studies from the
year 2012, conducted by the ADAC in Germany[Ung12], have shown: Accidents related
to cornering made up to 39% of all single-vehicle accidents. Especially for young-drivers
(aged 18-24), the numbers of accidents related to cornering were very high. Excessive
speeding during cornering made more than 10% of accidents.
In order to reduce accidents related to cornering and contribute to safer car driving,
the goal of this thesis is to provide a system that assists drivers in real-time during
cornering using state-of-the-art mobile edge computing models. While most existing
solutions (see Section 2.2) help users to adapt safer driving styles by detecting risky
driving maneuvers and giving tips afterwards, none of these solutions yet allow real-time
assistance for cornering. In Austria such a system would be especially contributing to
reducing accidents since twisty roads with dangerous curves occur frequently on the
countryside, rural areas and mountains.

1.2 Problem Statement
Using location data from cars together with curve- and recommendation-algorithms, an
application can alert of dangerous curves ahead and warn if a driver is approaching
a curve too fast. A possibility to realize a client application in the car is to create a
smartphone application that can be installed at the driver’s smartphone. Since processing
units and memory are limited on smartphones, in order to accomplish the computation
tasks of above mentioned services in real-time, computational steps can be offloaded

1

1. Introduction

MEC Servers

Base Transceiver Station
(BTS)

Core Network

Cars / Smartphones

Services External
Services

Data

Cloud Servers
Mobile Network

Figure 1.1: Overview of the system’s underlying MEC architecture
Icons used from https://pixabay.com and http://clipart-library.com/clipart/1007672.htm

either to a centralized cloud model or a MEC server model. Compared to the cloud,
the former model, referred to as Mobile Edge Computing is a relatively new paradigm,
allowing to put computation units at the edge of the cellular network, hence directly at
cellular base stations (BTS) [Wik]. The functionalities of the system will therefore be
mapped onto a distributed system consisting of three components: Client Applications
that are placed within the car, MEC Servers located at BTS and centralized Cloud
Servers. The architecture is sketched in Figure 1.1.

Although there are existing systems that handle location data from smartphones in
real-time, for example [LKA+16] continuously (re)-calculate routes for safer driving, in
order to allow curve-detection in real-time, our proposed system requires novel strategies
to handle computation and latencies and therefore following questions remain to be
answered:

• Q1 - Data concerns: What data and at which frequency must data be gathered
from driving cars? What additional data needs be combined with the driver’s
location? What data is produced by the system and who could benefit from the
new data?

• Q2 - Separation of tasks: The system needs to perform different computational
tasks. How can the tasks of the system be distributed and coordinated across
the different components of the system? What distribution of tasks enables best
response times and allows the system to perform in real-time?

2

https://pixabay.com
http://clipart-library.com/clipart/1007672.htm

1.3. Approach & Contribution

• Q3 - Algorithms: Efficient and reliable detection of curves will be one key enabler
of this system. How can curves be detected and upcoming curves be predicted
efficiently around the location of the driver? How can information of curves and
data from external services be used to deduct meaningful assistance tips for car
drivers before/during cornering?

• Q4 - Evaluation: How many drivers can the system handle in parallel? How well
does the system perform at slow network conditions and inaccurate or missing GPS
data? What are the costs to run the system in cloud or edge infrastructures?

The goal of this thesis is to explore possible answers to above research questions with the
development of a real-time-cornering-assistance system.

1.3 Approach & Contribution
In order to provide answers to the stated research questions, in our approach we start by
analyzing all relevant aspects about input data, processing data and desired output data
of the system. We then identify tasks and design a system that is able to distribute them
across multiple services that execute in existing cloud or edge infrastructures. To handle
all identified tasks we present new algorithms. Finally we demonstrate our approach
with implementing a prototype and evaluate it.

This thesis introduces a novel system that assists drivers in real-time while cornering and is
designed in a way that it can be deployed to existing cloud and emerging edge-computing
infrastructures. The contributions of this thesis are:

• We identified all necessary data attributes from drivers and external data sources
to realize a cornering-assistance-application. For each data source, we determined
their frequencies of collection and retrieval, propose how to efficiently fuse them
together and identified the desired output data of the system. Together with the
research of the state-of-the-art, this forms the foundation of the following design of
the system and algorithms.

• We designed an architecture of a distributed system in a way that it can be
deployed to existing cloud but also emerging edge infrastructures. To that end,
we first made clear assumptions about the underlying infrastructure. Based on
the assumptions we proposed an architecture using the microservices pattern that
supports virtualized MEC infrastructures, separates tasks and concerns and enables
scalability. We gave a detailed design of all software components and showed how
services are orchestrated.

• In order to accomplish the tasks of the cornering assistance application, we pre-
sented and implemented new algorithms. Our curve detection algorithm uses
geometric properties of map data and is able to not only identify curves, but also

3

1. Introduction

calculate properties such as length or radius. Using calculated properties of curves
in combination with weather data, our recommendation algorithm derives road
conditions and based on that calculates safe speeds for entering a curve. To signal
warnings when drivers are approaching curves, out of many possible curves in an
area, we implemented another algorithm that is able to predict the next upcoming
curve along the driver’s path from a given location. Since our system is deployed
to a heterogenous infrastructure, where many servers with different capabilities
execute at different locations, we also presented an approach of how to load balance
requests depending on server load and location of clients.

Based on above contributions and to demonstrate a working cornering-assistance-system,
we implemented an open-source prototype. The prototype implementation is available
at: https://github.com/rdsea/EdgeCorneringAssistance.git

1.4 Structure of the Thesis
In Chapter 2 existing driving applications are examined and the state-of-the-art of
MEC and curve detection using map data is presented. Chapter 3 presents relevant
aspects about input data, processing data and desired output data of the system. The
architecture of the cornering-assistance system is designed in Chapter 4. Chapter 5
describes the design of algorithms that are used within services of the system. In Chapter
6 the implemented prototype is described. The prototype is evaluated in Chapter 7.
Finally, the findings of this thesis are summarized and future work is outlined in Chapter
8.

4

https://github.com/rdsea/EdgeCorneringAssistance.git

CHAPTER 2
State of the Art

2.1 Overview
As a starting base for the thesis, papers about existing driver monitoring and assistance
applications, MEC and curve detection algorithms using map data, describe the state-of-
the-art and are discussed in this chapter.

2.2 Driver Monitoring and Assistance Applications
In the following, we will present systems and approaches that have been developed
to detect patterns in car driving using smartphones with focus on different conditions.
While most of the systems that will be presented focus on detecting obvious driving
maneuvers, such as accelerations, braking or lane changes, other relevant conditions such
as human distraction, drowsiness, road conditions, traffic situation or ecological behavior
can be detected. The state-of-the-art of driver behavior applications is split into following
categories of detection: driver condition, ecological driving, environmental condition and
driving maneuvers and for each of the categories one sample approach is picked and
compared by the following main three questions:

1. Which driving behaviors are detected?

2. Which types of data are collected and how is the context supported?

3. What is the underlying infrastructure, which algorithms are used for detection and
how well do they perform?

Environmental Conditions: Ruta et al. [RSSB10] introduced a knowledge-based system
to distinguish between aggressive and regular driving style, even or uneven roads and

5

2. State of the Art

high vs. low-dense traffic. Based on detected behaviors and conditions a prototype app
suggests tips for safe driving. In case of heavy rain, wind or high speed driving, the system
for instance suggests to reduce speed or activate the Anti-lock Braking System (ABS) and
Electronic Stability Control (ESP). Data from the smartphone’s Global Position System
(GPS) and the acceleration sensor is used to detect road conditions, whereas engine
rotation signals from an installed On Board Diagnostics Device (OBD II)[obd] device is
used to classify driving styles. The data is collected in fixed intervals (60 seconds) and
then evaluated by a WebService that performs ontology-based semantic matchmaking
to classify driving behavior and road conditions. The detection is supported by further
data from external web-services that include weather data, road information and location
information. The detection was tested in three different environment settings, with two
test drives each and in all cases the system was able to provide meaningful tips according
to the setting.
A very different detection method has been implemented by Bhoraskar et al. [BVRK12],
where GPS, accelerometer and gyroscope sensor data is used to detect bumps or potholes
in roads and braking as the only driver behavior. This method initially performs
calibration. The detection is based on a machine learning approach. In a first step, a
k-Means clustering algorithm classifies sample points of test data as either “smooth” or
“bumpy”. After this classification step a Support Vector Machine is trained over time to
distinguish between smooth and bumpy. To also support driver behavior detection, the
same approach is applied to detect braking maneuvers. During an evaluation 29 of 37
braking events and 18 out of 20 bump events were correctly identified.
In their cloud-based solution, Zhaojian et al. [LKA+16], propose an application with the
goal of determining routes with low risk of accidents as well as fast travel time. GPS
locations and the desired destination are used to calculate the optimal route and their
planning algorithm avoids risky roads. Risky roads are detected using a risk prediction
model that uses road information, traffic information and weather data. In case the
driver leaves the planned route, the GPS location of the driver is continuously sent to
their cloud server in order to recalculate safety-based routes.

Driver Condition: With the aim of reducing incidents caused by drunk driving, Dai
et al. [DTB+10] proposed a smartphone application that detects driving maneuvers
related to drunk driving by using only acceleration and gyroscope sensor. The focus in
this approach is to detect patterns like hard accelerations, abrupt breaking or left/right
turn movements like drifting or swerving on straight roads and check if they correlate
with typical drunk driving patterns. Compared to [RSSB10], the application does not
restrict the phone’s position within the vehicle which is why a calibration algorithm
is performed first. After calibration, data is captured and drunk driving patterns are
recognized through windowing and variation thresholding. The false positive rate of the
detection in the testing environment was very low when the phone was in fixed position.
In this case the performance of the detection was very good, although the test data set
for drunk driving was imitated and might therefore not strictly be differentiable from
regular patterns like lane changing.
With the use of the front camera of smartphones and complex image processing algorithms

6

2.2. Driver Monitoring and Assistance Applications

You et al. developed CarSafe [YMdOB+12], an application that can detect driver
distraction or drowsiness. The back camera is also used to alert risky distances to other
cars. Like [DTB+10], additionally sensor data from GPS, accelerometer and gyroscope is
used to detect risky accelerations, breaks or lane changes. Evaluation of the algorithm
showed that CarSafe is able to detect dangerous driver conditions at an acceptable 75%
detection rate. Though the performance of the detection is strongly influenced by lighting
conditions (shadows, over-exposure, darkness).

Ecological Driving: With focus on ecological aspects of driving, Araujo et al. [AIdCA12]
designed the Android application DrivingCoach that uses a combination of smartphone
data (GPS and acceleration sensor) and data from an OBD II device (throttle signal, fuel
consumption, engine rotation) to detect unecological driving behavior such as high fuel
consumption and early gear shifting. Additionally, the application can distinguish between
the two road conditions “urban” or “highway”. Raw data from sensors is summarized
using average and min/max operators and then encoded into fuzzy logic values. During
classification, firstly the driving condition as well as fuel consumption are mapped to
fuzzy values (“urban/highway” and “very poor/good consumption”) and in the second
stage the most suitable hint is derived by a fuzzy evaluation algorithm and delivered to
the user via a graphical interface.

Driving Maneuvers: MIROAD (Mobile Sensor Platform for Intelligent Recognition of
Aggressive Driving) is a system designed by Johnson et al. [JT11] that is able to
detect speeding, acceleration, breaking, (u)-turns and lane changing and classify them as
aggressive or very aggressive. Data is fused from GPS, acceleration sensor, gyroscope
and magnetometer and in a first step a driving event’s start and end is detected using a
simple moving average filter. As soon as an event is triggered, the system additionally
starts video capturing using the rear camera. The actual detection of different driving
patterns is done using a Dynamic Time Warping (DTW) algorithm. With this method
it is possible to compare signals of different lengths and therefore it is possible to
compare new captured driving patterns with some pre-defined patterns to classify driving
patterns accordingly. During evaluation, the system performed very well and 97% of
aggressive driving events were detected. Since regular driving maneuvers do not trigger
the algorithm, this approach is only suitable for detecting aggressive events.
Other approaches that also used DTW algorithms for detecting driving maneuvers have
been implemented for instance by Eren et al. [EMAY12] or Saiprasert et al. [SPT15].
Like [AIdCA12], in their approach Paefgen et al. [PKZM12] used a combination of
smartphone sensor data and OBD II data to detect accelerations, breaks and turns.
Similar to [DTB+10], a calibration algorithm is included and thus the smartphone can
initially be in any arbitrary position. The detection makes use of simple thresholding to
detect driving behaviors. The main focus of this paper was to find out if smartphone
measurements are reliable enough to detect driving behaviors by comparing smartphone
results to OBD II results. During evaluation it was revealed that significant correlations
between mobile and OBD II event counts exist and therefore shows that smartphone
applications for driving behavior detection can keep pace with on-board solutions. Though,

7

2. State of the Art

good results highly depended on the position of the smartphone and some positions
resulted in higher error rates.
Facing the problem of heavy noise in sensor data of smartphones, caused by free placement
of the device within the car, in their paper, Li et al. [LLL+12] present algorithms to correct
noise or drift in sensor data. Their system also is one of the first driving monitoring
systems for smartphones that dynamically compensates disorientation of the device
by using wavelet-based analysis. The paper presents a personalized driving behavior
monitoring and analysis system for hybrid vehicles. Compared to other approaches the
authors focus mainly on improving sensing technologies and removing noise. Sensor
data from GPS, accelerometer, gyroscope and magnetometer is collected, pre-processed
using a low-pass-filter and sent to a server for further analysis as soon as the WIFI-
signal is available. Similar to [PKZM12], the authors used data from an OBD II device
(speed, acceleration) as ground truth and compare results with processed signals of the
smartphone. Evaluation of the proposed system resulted in 0.88 – 0.996 correlation values
between processed smartphone signals and OBD II signals.
Considering data collection, the Android application DrivingStyles developed by Meseguer
et al. [MCCM13], similarly to [RSSB10], [AIdCA12] and [PKZM12] uses smartphone
data, in this case only GPS and additionally data from an OBD II device (throttle signal,
engine rotation, speed, acceleration) to analyze if a driver has a “quiet”, “normal” or
“aggressive” driving style. In this approach, after a trip, the recorded data is sent to
a WebService where a Neural Network algorithm classifies driving styles. The Neural
Network is also trained to distinguish road conditions from urban, suburban or highway
roads. Evaluation resulted in 98% degree of accuracy in classifying road conditions and
77% accuracy on driving styles.
Similar to [AIdCA12], the developers of the application SenseFleet by Castignani et al.
[CDFE15] used fuzzy set evaluation to successfully detect risky accelerations, breaks
and lane changing from sensor data (GPS, accelerometer, gyroscope and magnetometer).
Additionally, they consider weather data for event detection and the device’s position
can be calibrated. Users of the app receive scores for their driving (e.g. if risky events
occurred, the score decreases) and scores are aggregated on a web server for further
analysis. Evaluation resulted in an event-detection rate of over 90%, though achieving
these results required long calibration times.
Compared to all other approaches, Wahlstroem et al. [WSH15] focus on detecting sliding
or rollovers during cornering using only location data from a global navigation satellite
system (GNSS) on a smartphone. In order to increase accuracy of location data they
pre-process GNSS data with a kalman filter. Dangerous events during cornering are
detected by estimating vehicle dynamics using physical laws. The paper only presents a
framework how dangerous vehicle cornering events could be detected using smartphones.
An actual detection system has not been implemented so far.
As stated before, [JT11] and most other approaches so far only detect dangerous or
aggressive maneuvers. Daptardar et al. [DLR+15] designed a novel algorithm to also
detect normal maneuvers using acceleration and gyroscope data from smartphone sensors.
After low pass filtering sensor data to reduce noise and applying a 4-state kalman filter

8

2.3. Edge Computing

to correct velocity and acceleration data, their application is able to detect accelerations,
breaks, turns and lane changes using two different algorithmic approaches. While
longitudinal events, e.g. accelerations and breaks, are detected using a jerk energy
based technique, lateral events, e.g. turns and lane changes, are detected using a novel
hidden-markov-model based technique. During evaluation of collected datasets both
approaches were able to detect driving maneuvers with an accuracy of 95%.

2.2.1 Summary of existing Driver Monitoring Systems

Figure 2.1 gives an overview of above described driver monitoring and assistance systems
and compares them in terms of features and system design. As it has been pointed
out, the compared solutions are able to detect lots of driving related events in different
categories. Except for [LKA+16], that continuously re-calculates routes, all other above
presented approaches provide assistance only after a certain driving event occurred. In
our approach though, we need to provide assistance before the driver actually enters a
curve. Hence, our approach can not be compared in all terms as it has been done in this
section. Still, similar to almost all presented approaches, also in this thesis the GPS of
the smartphone will be used to track the driver. While in [RSSB10] and [BVRK12] for
instance, every GPS coordinate is transferred to some distributed server, in our thesis we
will actually only send very few locations and only at a certain time. While most other
approaches use many other sensors of the smartphone, for instance [JT11], [BVRK12]
and [AIdCA12] additionally use the acceleration, gyroscope and magnetometer sensors,
our approach needs no other sensors. Using fewer sensors can save a lot of battery usage
of the driver’s smartphones. [RSSB10], [AIdCA12] and [LKA+16] make use of contextual
support for their application in the form of weather, road or even traffic information.
Also in our approach we retrieve weather information to derive road conditions. For
future works though, it might also be useful to incorporate road or traffic information for
our cornering application. Regarding detection of driving maneuvers, only one of the
presented approaches deals with cornering. The presented approach of Wahlstroem et
al.[WSH15] is the only one that considers detecting dangerous cornering movements such
as sliding or rollover. Compared to this thesis though, an actual detection system has
not been implemented so far.

2.3 Edge Computing

Often called the successor of Cloud Computing, Edge Computing, also often referred to
as “Fog Computing”, is an emerging paradigm that provides cloud and IT services within
the close proximity of end-users, therefore moving computing applications, data and
services away from some central nodes (the core) to the other logical extreme (the edge)
of the Internet [GLME+15]. While in cloud computing data is pushed to centralized
computing infrastructures and analyzed there, in edge-centric computing, analytics and
computations are done in close proximity or even directly where data is generated. Facing

9

2. State of the Art

ruta
dai

m
iroad

drivingcoach
paefgen

w
olverine

li
eren

carsafe
drivingstyles

w
ahlstroem

sensefleet
saiprasert

daptardar
zhaojian

Published
2010

2010
2011

2012
2012

2012
2012

2012
2012

2013
2014

2015
2015

2015
2016

Detection
Driving	Behavior
acc

x
x

x
x

x
x

x
brk

x
x

x
x

x
x

x
x

turns
x

x
x

x
x

u-turns
x

lane	change	/	sw
erving

x
x

x
x

x
speeding

x
x

x
x

"aggresive	vs.	regular"	style	
x

x
"safe	vs.	risky"	style

x
distance	to	other	cars

x
risky	cornering

x
Ecological	Aspects
(high)	fuel	consum

ption
x

(early)	gear	shifting
x

Environm
ental	Conditions

road	classification
x

x
x

bum
p	detection

x
traffic	situation

x
w
eather	conditions

x
w
ind	conditions

x
risky	roads

x
Driver	Condition
drunk	driving

x
distraction/drow

siness
x

Data	Collection
Sm

artphone
GPS

x
x

x
x

x
x

x
x

x
x

x
x

Acc
x

x
x

x
x

x
x

x
x

x
x

x
Gyro

x
x

x
x

x
x

x
x

M
agnetom

eter
x

x
x

x
x

Cam
era	(rear)

x
x

Cam
era	(front)

x
O
BD	II
Throttle	Signal

x
x

Instant	Engine	Fuel	consum
ption

x
Engine	rotation

x
x

x
Speed

x
Acceleration

x
x

Context	Support
W
eather	Data

x
x

x
Road	Inform

ation
x

x
Tim

e	of	Day
x

x
Traffic	inform

ation
x

Figure
2.1:

C
om

parison
ofstate-of-the-art

approaches

10

2.3. Edge Computing

challenges that arose with cloud computing, the main improvements of edge computing
are to reduce end-to-end latencies and lessen the bandwidth of the network.

To achieve these improvements in edge-centric infrastructures, new types of computing
and storage resources, so called "Fog Nodes" [BMZA12] or "Edge Nodes", are placed
at the edge of the network. Cloudlets are resource rich computers in the near vicinity
of mobile users. They can be installed within a wireless network, instantiate virtual
machines and run custom software on them. Examples for locations of cloudlets can be in
a private home network, wifi-hotspots in airports or within a railway carriage [VSDTD12].
Compared to usual data centers, a micro data cloud includes all the components of a
data cloud in one standalone system that can be deployed anywhere indoors or outdoors
and therefore is ideal for edge computing.

2.3.1 Mobile Edge Computing

Mobile Edge Computing (MEC), a niche of edge computing, is an emerging technology
that provides cloud and IT services within the close proximity of mobile subscribers that
focuses on applications for mobile network providers[AA16]. There are already some
telecommunication operators that use Cloud Radio Access Networks (C-RAN) to move
cloud resources away from the core network to the base stations. If computing resources
are moved closer to the cell site, response times can be improved significantly[KMJ16].
Just recently ETSI ISG (industry specification group)[ETS17], who are the founders
of the Mobile-edge Computing industry initiative, announced that they will rename
Mobile Edge Computing into Multi-access Edge Computing[Mor16]. Nevertheless the
abbreviation MEC will remain.

2.3.2 MEC Platform

As described in their Introductory Technical White Paper[PNC+14], ETSI ISG design
the MEC server platform to consist of a hosting infrastructure (IaaS) and an application
platform. Through virtualization, the application platform provides an abstraction
layer for the hosting infrastructure. Hence developers will be able to deploy and exe-
cute their MEC Applications within Virtual Machines, „allowing complete freedom of
implementation“[PNC+14].

2.3.3 Existing Architectures using MEC

Facing the challenge of processing and storing high cumulative data rates of video
material from cameras, [SSX+15] proposed GigaSight, a system that stores crowd-sourced
video content that allows users to keep control about privacy preferences, for instance
denaturing video frames by cutting off faces. Users send their captured video material
to GigaSight’s architecture which consists of two main components: a centralized cloud
storage and so called Cloudlets that in the architecture form a tier between smartphones
and the centralized cloud. Computation, therefore processing the videos, is solely done
on virtual machines at near cloudlets. The centralized cloud only stores the final results.

11

2. State of the Art

One key challenge in this approach was to ensure the privacy of the user’s video content.
Therefore each uploaded video by a user was assigned to a distinct virtual machine at
the cloudlet.
While [SSX+15] focused on processing uploaded videos, [LFHAB16] created a new
architecture for video streaming using MEC. With their system they propose to improve
the performance of Dynamic Adaptive Streaming over HTTP, often referred to as DASH.
Compared to a traditional DASH system architecture, they are placing a MEC server
between a content provider and the client requesting a video to stream. The MEC service
in general is responsible for selecting optimal quality/bitrate video and representations for
each client. The main goal of the MEC service therefore is to reduce network congestion.
During testing, compared to standard DASH solutions, their novel strategy allowed up
to 54% shorter and 4 times less frequent interruptions.
A different use case for using MEC technology, presented by ITSE ISG, is Active Device
Location Tracking [PNC+14]. In their exemplary use case, they propose an architecture
for tracking mobile devices solely over the network and therefore being completely
independent of GPS. This approach would require to run geo-location algorithms directly
at MEC Servers, measuring a device’s location via available network information at
the cellular base station. Besides location tracking, in the above mentioned technical
whitepaper they also present other possible architectures showing how MEC could improve
systems in the area of video analytics, augmented reality or content caching for instance.
In their futuristic vehicular scenario, [GWA+17] discuss possible use cases of using
MEC within the automotive domain. Their proposed future system called "electronic
horizon" shall provide a "detailed preview of the road ahead". Proposed features include
functions like for instance "adaptive cruise". With this feature it shall be possible to
automatically reduce a car’s velocity to catch green lights. The system therefore needs
to know about traffic situations in real-time. Another interesting feature is "adaptive
headlight adjustment". When "electric horizon" knows of upcoming hazards, this feature
automatically adjusts headlights such that drivers can spot them. In their paper they
strike out that getting all the data necessary from different sources to enable these
features on the one hand, and uploading data from the drivers and sensors of the car on
the hand hand, still is a big challenge. They propose how MEC can be the enabler for
these features.

2.3.4 Summary of existing Edge Architectures

All presented architectures show how edge computing technologies can be used for modern
applications. Similar to [SSX+15], in our approach we also combine edge with cloud
resources. While in their approach, they only move a central storage to the cloud and
do all the computation in the edge, in our approach we do not restrict the computation
to execute only in the edge. Another difference to our approach is that we will not use
Cloudlets in the edge. Instead we design our system to be deployable to MEC servers
that run at Base Transceiver Stations (BTS). As deploying applications to MEC servers
at BTS is not yet possible, these servers are simulated in the thesis.
While in our approach we use GPS to track drivers, the presented exemplary use case

12

2.4. Curve Detection using map data

of Active Device Location Tracking[PNC+14] would be a great improvement for our
application and in case it is ever realized might become very interesting for future works.
Similar to our approach, [GWA+17] proposed a future system in the automotive sector
using MEC. Besides their new features presented earlier, they also mention a feature to
detect curves ahead. Our cornering-assistance-application can therefore be seen as one
first implementation of a feature of the "electronic horizon".

2.4 Curve Detection using map data
Due to freely available geographic data, like for instance OpenStreetMaps (OSM) [Ope17a],
nowadays it is possible to gain information of road segments easily. One existing algorithm
to detect curves from public available map data has been implemented by Adam Franco in
his project “Curvature”[Fra17]. His open-source algorithm is able to read in Open Street
Map data, analyze the shape of every road and find out how twisty a road segment is.
"The goal of this program is to help those who enjoy twisty roads (such as motorcycle or
driving enthusiasts) to find promising roads that are not well known"[Fra17]. Compared
to the presented algorithm, in our approach the focus lies not on analyzing complete
roads and classifying them in terms of how "twisty" they are. Instead we want to detect
every single curve and its properties as accurate as possible. While Curvature is an
application to find fun roads to drive on, the goal of our approach is to assist drivers
safely through curves. While our algorithm is based on similar concepts, for instance
using OSM data and formulas for calculating the radius, the detection method is different
and was designed independently.

2.5 Summary
In this chapter existing approaches of driver monitoring and assistance applications
were presented and compared in terms of features. We also presented existing MEC
applications and examined their architectures. Lastly we presented a detection algorithm
that uses similar concepts to our approach. As it has been pointed out in Section 2.2,
currently no system comprehensively deals with detecting cornering maneuvers and
especially there is not yet a solution to assist drivers during cornering. Using state-of-
the-art MEC architectures as described in Section 2.3.1 and curve detection algorithms
described in Section 2.4, the thesis will combine these technologies and present a novel
approach in the field of driver assistance applications and MEC.

13

CHAPTER 3
Data

3.1 Overview

Before designing the architecture of the system and making concrete choices about
implementations, at first data that is required and processed by the system is analyzed
and described. This chapter reflects the way how data is transferred to and through the
system.

3.2 Data Sources

In order to detect upcoming curves and give assistance while cornering, the system
requires to receive, process or combine data from multiple sources. External data sources,
provided by third parties are used to enhance and combine the driver’s data with useful
contextual information. While map data will be used for curve detection, weather data
will help to deduct assistance tips.

3.2.1 Driver

The most important source is the driver. More specifically the source is the GPS that
can be obtained from a client application installed on the driver’s smartphone or possible
other means within the car. During a trip, the application at certain points will collect
location information from the GPS sensor. Today’s GPS sensors of different smartphone
manufacturers and operating systems usually contain similar readings, specifically in
Android for instance, a location can consist of latitude, longitude, timestamp and other
information such as bearing, altitude, velocity and accuracy[Goo17a]. For detecting
upcoming curves, most importantly latitude and longitude are needed. To also detect
slopes of curves, altitudes can be helpful. For providing accurate assistance on the detected
curves, bearings (i.e. the driver’s direction, also called azimuth) and timestamps will be

15

3. Data

Attribute Description Example
DriverID Unique identifier of a

Driver.
931

Timestamp Unix timestamp of GPS
sensor readings.

1495639690

Latitude/Longitude Location in earth coordi-
nates

48.2084114,16.371282

Altitude Altitude in meters above
the WGS 84 reference el-
lipsoid.

325m

Bearing Horizontal direction of
travel of the device in
degrees (0.0, 360.0].

172°

Speed Speed in meters/second
over ground

25m/s

Table 3.1: Summary of driver’s data attributes

important. In case the GPS is obtained from a smartphone application, all necessary
data attributes can be collected very easily. The data attributes are summarized in Table
3.1.

Another very important data concern that will affect the reliability of curve detection
and assistance are GPS inaccuracies of mobile phones. In their evaluation of GPS sensors
of mobile phone’s from 2011, [ZB11] revealed that positions provided by mobile phones
have a median horizontal error of between 5.0 and 8.5 meters. An evaluation of all GPS
locations from the trip database provided by the Austrian Road Safety Board (KFV)
(see Section 7.2.1) showed that the highest available accuracy provided by all 26 different
Android test-devices was 3 meters. This high accuracy value of 3 meters was achieved
in 84.65% of all recorded locations. Although this shows that GPS sensors perform
quite well on smartphones on Austria’s roads, still, GPS inaccuracies and outages are
problematic for traffic applications.
In the near future, GPS inaccuracies might be not be such a big issue anymore. On
September 21, 2017, Broadcom announced that they are currently "sampling the first
mass-market chip that can take advantage of a new breed of global navigation satellite
signals and will give the next generation of smartphones 30-centimeter accuracy instead
of today’s 5 meters" [Moo17].

3.2.2 Map Data

To calculate curves from locations, information about roads in form of static map data is
needed. There are many online-services providing map APIs such as Google Maps[Gooa],
Bing Maps[Mic], Here Maps[Her] or OpenStreetMaps[Foue] to name the most famous ones.
Requirements for the application regarding map data are to cover all roads of Austria

16

3.2. Data Sources

and have access to road data via an API, ideally not restricted by query limits. For the
application the decision was made to use OpenStreetMaps since it is open-source, provides
many APIs and allows downloading any map data of the world. In OpenStreetMaps,
each geographic coordinate within a road segment holds a “highway” tag, indicating it is
part of a road [Foud]. Having a GPS coordinate it is therefore possible to query if the
point is part of a road segment. Since one road segment is formed by multiple geographic
points, so called “nodes” [Foud], it is possible to detect if a road segment forms a curve
and calculate its properties such as radius or length. Map data for a specific area, i.e. in
the area of a driver’s current location, can be queried using OverpassAPI [Fou17] via a
Bounding Box (see Section 3.2.3). OverpassAPI can either be used as an online-service
with querying limitations or installed on an own private instance without any limits.
Data attributes queried from OpenStreetMaps using OverpassAPI are summarized in
Table 3.2.

Attribute Description Example
Bounding Box Bounding Box of an area. [52.5311,13.3644;52.5114,13.4035]

Way Ordered list of nodes. {’id’:1234,’nodes’:[2345,3456],’tags’:
{’highway’:’residential’,’name’:’Foo’}}

Node Specific GPS point {’type’: ’node’,’id’: 2345,
’lat’: 50.7468,’lon’: 7.1563}

Table 3.2: Summary of map data attributes

3.2.3 Bounding Box

In order to efficiently store and query curves, they can be aggregated by their location
using a so called Bounding Box. A Bounding Box is a special bounding volume for
an object in form of an axially parallel box where the object touches all four sides of
the box[Kow12]. Each curve belongs to a bounding box that is of dynamic size. For a
location of a driver, a bounding box can be calculated that represents a greater area
around its location. To avoid that multiple bounding boxes are overlapping, the boxes
are calculated based on Geohashes[geo].
Geohashing is a way of encoding latitude and longitude pairs into one string. Using
geohashing, the world map is divided into a grid. Depending on how many bits are used
for creating a geohash, the precision varies. The simplest geohash of a location could
be encoded by using only one single bit. In this case, the whole world map is divided
horizontally into two pieces. The left side of the grid would be encoded to 0 and the
right side to 1. To increase the precision of a location, sub-dividing the world map can
be done until we get to street-level or beyond. At that point, more and more bits are
needed to generate the geohashes. To reduce the size of the resulting hash, the bits
can be represented as alphanumeric characters using 32 bit encoding. An example of a
geohashed location at street level using a precision of 8 characters would be: 5pf666y7.
The chosen character precision of a geohash also defines the hash’s bounding box. The

17

3. Data

Figure 3.1: Example of a location and the bounding box of the corresponding geohash

larger the precision of the geohash, the smaller the corresponding bounding box will
be. Figure 3.1 shows a location and its geohashed bounding box using a precision of 6
characters.

3.2.4 Weather Data

Generating appropriate cornering assistance tips depends a lot on the properties of the
curve, but also on current weather conditions. Different weather situations can completely
change road surface conditions or visibility conditions and therefore require an adapted
driving behavior by the driver. In general the following weather conditions will have an
impact on the driver:

• Strong Winds / Storms

• Heavy Rain / Wet Roadway

• Fog / Mist

• Snow

• Glaze

A requirement for our cornering-assistance-application therefore is to receive weather data
that allows to distinguish between these conditions. Similar to map services, there are
lots of available online-services providing weather APIs. OpenWeatherMap[Opeb] offers
an API to query the current weather for a specific location with lots of different specific

18

3.3. Cornering Assistance Data

Attribute Description Example
Latitude/Longitude Location of weather informa-

tion
48.2084114,16.371282

Weather Short description of current {’id’: 803, ’main’: ’Clouds’,
weather condition ’description’: ’broken clouds’}

Temperature Current temperature in Kelvin 281.83K
Wind Current speed and direction of

wind
{’speed’: 6.7,’deg’: 350}

Rain Volume of rain for the last 3
hours

{"3h": 1.85}

Table 3.3: Summary of weather data from OpenWeatherMap (OWM)[Ope17b]

conditions allowing to detect all above mentioned conditions. The service can be used
for free with a limitation though of not more than 60 queries per minute[owm]. As an
alternative, ZAMG provides weather data of 21 weather stations in Austria completely for
free[fMuG]. Compared to OpenWeatherMap, the drawbacks are that the exact location
cannot be queried and no explicit weather conditions are given.
For the thesis, the free plan of OpenWeatherMap will be used with respect to the given
limitations. Queried data attributes from OpenWeatherMap servers are summarized in
Table 3.3.

3.3 Cornering Assistance Data

Data sources as specified in Section 3.2 produce large amounts of data. The system will
process data of input sources and produce data that is stored within the system itself,
consumed by the end-user or possibly shared to third parties. This section describes data
that is used to assist drivers.

3.3.1 Curves

One of the central outcomes of the system will be detected curves within the area of
the driver’s location. Detected curves along with their properties will need to be stored
at some places within the system. Key properties of a curve are: Radius, Length, Slope
and Location Points. After successful deployment of the cornering assistance application
and its distributed system, it is expected that a collection of curves will emerge and
will grow with users and duration of execution. Having a broad collection of curves and
their properties throughout Austria’s road network might be of interest for third party
organizations or open data platforms such as Austria’s Open Government Data [dSW17].
Although the thesis will not consider designing or implementing redistribution services,
the storage of curves is designed in a way that its possible to continuously export and
share output data.

19

3. Data

Figure 3.2: Example of how recommendations can be used to create a GUI for safe
cornering

Map extract used from http://www.openstreetmap.org/

3.3.2 Recommendation and Assistance

While drivers are cornering, meaningful assistance shall be presented to the end-user via a
graphical user interface deployed on the application of the drivers. The assistance shall be
given in form of Recommendations that are computed by the system’s algorithm. To guide
drivers safely through a curve, the assistance shall begin before a curve is approached.
Firstly, the assistance therefore signals a warning on the screen when a dangerous curve is
approaching. Warnings are shown as soon as the driver is less than a specified threshold
of meters away from an upcoming curve. Secondly, the recommendation outputs a value
that determines the recommended speed a driver shall have to safely drive through the
curve. Figure 3.2 sketches how these recommendations could be used to create a user
interface that assists drivers step by step while cornering. As stated earlier in the thesis,
the client application with user interfaces that actually provide the assistance to the
drivers are not the focus of this thesis. This section just showed how the implemented
algorithms and produced data can finally be wrapped into an assistance application.

3.4 Data Fusion

After data is collected or queried from the different sources and before the analysis of data
can be initiated, as a first step data fusion needs to be done. The goal of performing data
fusion is to combine relevant information from two or more data sources into a single one

20

http://www.openstreetmap.org/

3.4. Data Fusion
D

riv
er

 D
at

a

Map Data

Weather Data
Fu

se
d

D
at

a

………………….

………………….

………………….

………………….

Data Fusion Analysis

Figure 3.3: Overview of data sources and their fusion

that provides a more accurate description than any of the individual data sources[HL97].
In this application, sensor data from the driver’s client application is fused together
with map data from OpenStreetMaps and weather data provided by OpenWeatherMap.
Figure 3.3 conceptually shows how the three data streams are fused together before
they can be analyzed as a whole. Usually data is fused together by common data fields
between the sources. Specifically in this application all three data sources, e.g. sensor
data, map data and weather data contain latitude and longitude values indicating the
location of data. Collected raw data from a driver is therefore enhanced with map data
and weather data from the driver’s specific location. Regarding data fusion, the following
three questions arise for the application:

• Q1 - What are the frequencies of data streams?
Every data source in the application has a different behavior in terms of frequencies
or update rate.

Driver data
GPS sensor readings from the driver’s smartphones can possibly be gathered at
very high frequency rates, usually ranging from 1Hz up to even more than 50Hz,
depending on the smartphone and query configurations (see GPSSensorFrequency
in Table 6.1). GPS sensor readings in the application will be needed not only
for detecting upcoming curves around the driver’s current location, but also to

21

3. Data

derive assisting tips that depend on the current speed for instance. While for the
former, location updates will only be needed at specific points, e.g. when there is
no more curve information stored locally for upcoming curves, for the latter, higher
frequency rates are desired. As soon as recommendations are available on the
device, speed updates can be used to calculate fine grained assisting tips locally. To
detect curves and derive general assisting tips with using map and weather data, not
every single location update actually needs to be sent to the distributed algorithm.
The frequency of how often locations need to be sent to the distributed algorithm
is a configurable parameter of the system (see LocationUpdateInterval in Table 6.1).

Map data
Although map data is static in general, within this application it will be queried
dynamically according to a driver’s location. On arrival of a new location from a
driver, map data is queried within a bounding box describing a greater area around
the driver. The size of this bounding box again is is a configurable parameter of
the system (see MapBoundingBoxSize in Table 6.1).

Weather data
Weather conditions for a location can change very frequently during a day. While
theoretically changes could occur every second, if it starts raining for instance,
normally weather changes do not happen so frequently. The OpenWeatherMaps
API recommends querying weather conditions for a location not more than once
per 10 minutes[Opeb].

• Q2 - Location of Data Fusion?
Since the system’s architecture is distributed across multiple places, i.e. mobile
devices, edge and cloud servers, the data fusion of driver data, map and weather
data can possible be done at any of these places.

Fusion at mobile devices
At collection of driver’s data on mobile devices, the data could directly be fused
with map data and weather data by requesting the corresponding servers using
their APIs. Following this approach, analysis would be delayed until the map
and weather requests successfully delivered results. Since each mobile device only
has information about its own location, also no efficient caching of map data or
weather data that could be used for other drivers within close proximity can be done.

Fusion at the edge
One great advantage of performing data fusion at edge servers in terms of reduced
latencies is, assuming enough resources in terms of computation and storage, a local
instance of OpenStreetMaps containing map data of Austria could be installed,
making it possible to perform OverpassAPI queries at the edge instead of sending

22

3.4. Data Fusion

requests to a distant OpenStreetMaps (OSM) server. Additionally, compared to
the approach of fusing directly at mobile devices, when each driver’s data is sent
to the edge first, caching map and weather data can efficiently be done. Figure
3.4 shows an example of multiple drivers driving in two greater areas (Vienna and
Upper Austria) at the same time. Each box within the sample maps represents
a bounding box of map data for that area. If multiple drivers are driving within
a same bounding box at the same time (i.e. drivers 1,2 and drivers 5,6), map
data for that area can be reused between the drivers and no additional queries to
OpenStreetMaps are needed. Assuming different weather conditions in each area,
i.e. rainy in Vienna while sunny in Upper Austria, drivers within an area can share
the same weather data and no additional requests to OpenWeatherMap are needed.

Fusion in the cloud
Fusing data in the cloud enables similar advantages as described at edge servers. In
the cloud though, computation and storage resources for instance for running OSM
servers is no problem at all and can be scaled as needed. Since the key challenge in
the application is to enable real-time analytics, latencies between mobile devices
and edge will be lower than doing the same at the cloud.

Simply said, the location of data fusion depends on where we need what type of
data. For the curve detection on the one hand it is necessary that driver data
is already fused with map data. On the other hand for providing warnings and
assistance tips, detected curves, i.e. enhanced driver data with map data, needs to
be fused with weather data. For this thesis the assumption therefore is made that
data fusion is performed at the same place at where the corresponding analysis
step is executed.

• Q3 - Static or dynamic fusion?
In this application, data will be generated in lots of different locations within
Austria. While the before mentioned question deals with the location of data fusion
within the architecture, data fusion can also happen at different geo-locations. In
case data fusion is done at the edge for instance, multiple edge servers could be
placed at different geo-locations. Static data fusion on the one hand would describe
fusing data at some location at the edge regardless of the current driver’s actual
position. If on the other hand the location of data fusion moves to other locations
it is considered as dynamic. In dynamic data fusion, the edge server to fuse the
data can be determined by different criteria, for instance the closest edge server
to the driver’s current position or the one with lowest latencies. Doing dynamic
fusion of data and finding the optimal node to perform data aggregation within a
geo-distributed edge architecture is a very complex problem and would extend the
work of this thesis. The problem has extensively been dealt with by [HCS15] for
instance. Their work focused on designing aggregation algorithms to optimize WAN
traffic and staleness (the delay in getting the result) in geo-distributed streaming

23

3. Data

M
(V
ienna)

M
(U
pperA

ustria)

Figure
3.4:

Exam
ple

offusing
driver

data
w
ith

m
ap

and
w
eather

data
m
aking

use
ofcaching

W
eather

icons
designed

by
D

ario
Ferrando

from
h
t
t
p
s
:
/
/
w
w
w
.
f
l
a
t
i
c
o
n
.
c
o
m
/

M
ap

extract
used

from
h
t
t
p
:
/
/
w
w
w
.
o
p
e
n
s
t
r
e
e
t
m
a
p
.
o
r
g
/

24

https://www.flaticon.com/
http://www.openstreetmap.org/

3.5. Summary

systems. In the thesis, data fusion will be done in a static way on any available
edge server.

3.5 Summary
In this chapter we presented all aspects about data collection, processing data and the
resulting data that will be used to assist drivers. We identified data attributes from
drivers, map data and weather information to realize our cornering-assistance-application
and summarized them. For each data source, we determined frequencies of collection or
retrieval and proposed how to efficiently fuse them together. Together with the research
about existing architectures and detection approaches conducted in Chapter 2, this forms
the foundation of the following design of the system.

25

CHAPTER 4
System Design

4.1 Overview
Based on the initial problem statement, the conducted research on the state-of-the-art
in Chapter 2 and data requirements analyzed in Chapter 3, this chapter presents the
architectural design of our cornering-assistance system using mobile edge computing
technologies. At first, tasks that the system will have to handle are discussed. Secondly,
the underlying infrastructure of the system is introduced. Based on the tasks and
assumptions made on the infrastructure, in the next sections the design of the system is
presented.

4.2 Tasks
To design the system as a whole, it is necessary to clearly specify tasks in a way that they
can be deployed onto the different components of the system within the infrastructure.
As initially presented in Section 1.2, the tasks of the computing algorithm will execute on
a distributed system consisting of three components: Client Applications that are placed
within the car, MEC Servers located at BTS and central cloud servers. Summarizing all
the tasks of the proposed system, the distributed algorithm will handle the following 7
main tasks:

• Data Collection
In order to assist drivers, data from the drivers needs to be collected frequently.
The data provider in this thesis are smartphones that are placed somewhere in the
car or are carried with by the driver. The relevant data that is needed is described
in Table 3.1.

• Data Enhancement
To provide drivers with context-relevant information about upcoming curves, the

27

4. System Design

collected data needs to be enhanced by data provided from external services. As
described in Sections 3.2.2 and 3.2.4, data from OpenStreetMaps and OpenWeath-
erMaps will be queried to calculate curves and provide assistance according to
specific weather conditions.

• Data Fusion
As described in Section 3.4 collected data and data provided by external services
will be fused together. The fused data serves as input data for further analysis
steps.

• Curve Analysis
Curve detection is one of the major aspects of this thesis. As described in Sec-
tion 3.3.1 the goal of this task is to detect curves and its properties from map
data.

• Assistance Analysis
Another major aspect of the thesis is to assist drivers during cornering in different
road and weather situations. As described in Section 3.3.2 the goal of this task is
to create useful assistance from the detected curve data and the current weather
situation.

• Curve Storage
Throughout the system, curves will need to be persisted, cached and queried
efficiently. The final goal is to have a collection of curves and its corresponding
properties that can possibly be exported or shared with interested 3rd parties.

• Visualization
The final goal is to provide the analyzed data in real-time to the user.

In the detailed system design (Section 4.5) we will map these tasks onto specific software
components.

4.3 System Infrastructure

Having all tasks specified, the next step is to map these tasks onto different components
of the system. Assuming a uniform infrastructure, where all edge/cloud nodes have the
same or similar resources available, a naive approach would be to simply deploy the tasks
statically across edge and cloud resources. For instance, all computationally expensive
tasks could be deployed to the cloud, while other, less expensive tasks are deployed
to edge nodes. Such a static design might work well for a uniform infrastructure. In
fact though, the underlying infrastructure is likely to be very heterogeneous in terms
of resources. Additionally, since the edge infrastructure will be shared between many
applications, the algorithm should be designed in a way that it takes only as much
resources as needed. In order to fit the system design to the underlying infrastructure,

28

4.4. System Overview

the thesis follows a more dynamic approach of deploying tasks across the computation
layers.

Assumptions:
IT-infrastructures in different areas or whole countries can vary widely. Especially for
edge-infrastructures, yet there are no clear specification on how these infrastructures
will look like. As the outcome of the thesis shall be a concept of a framework that
can possibly deployed to any country, it is important to fit the system’s design to
different infrastructures. The following assumptions are made about resource nodes in
the infrastructure:

• In general it is assumed that in the future, there will be few cloud nodes and many
edge nodes.

• Cloud nodes are assumed to have (theoretically) unlimited and very powerful
resources. Edge nodes on the other hand are limited in terms of resources.

• Every resource node itself, i.e. edge or cloud nodes, can have very different resources.
While some nodes might have lots of resources and provide rich services, others
only have few resources and services.

Compared to a static system design described earlier, the system design of the thesis
intends to dynamically execute tasks according to the underlying infrastructure. Tasks
are not bound to execute on a specific layer, i.e. either the edge or cloud, but the location
of execution depends on factors such as resource availability, location, amount of data,
etc.

4.4 System Overview

Based on the required tasks for the algorithm and assumptions made about the in-
frastructure, in this and the following sections of Chapter 4, the concrete design of
the system is presented. Figure 4.1 presents an overview of the whole system. The
overview of the system shows the context of the application together with the assumed
infrastructure. The context of the system is to assist drivers on the road during cornering.
Assisting drivers in this specific context means to recommend a safe speed before a driver
approaches a curve. This also includes to handle different weather and road conditions.
The ultimate goal of the designed system is to deliver a system that can perform the
recommendation for thousands of drivers simultaneously before drivers enter curves. As
pointed out in Section 4.3, the cornering assistance system shall be deployed to a highly
heterogeneous infrastructure consisting of many edge nodes and few cloud nodes.

29

4. System Design

CloudEdgeApplication-Context

Edge
Node

Figure 4.1: Overview of the context and infrastructure of the system.
Icons used from http://bbcpersian7.com,

http://www.pngpix.com/download/black-ford-shelby-gt-h-top-view-car-png-image,
https://www.wpclipart.com/, http://clipart-library.com/clipart/1007672.htm and warszawianka from

http://www.Freestockphotos.biz

4.5 Detailed Design & Software Components

In this section, the detailed design and its software components are described. To
support all required tasks, achieve a good separation of concerns and enable scalability,
the architecture of the system follows the principle of micro-services. As described in
Section 2.3.2, the infrastructure will be based on the future MEC platform. Since MEC
Applications will be deployed within virtual machines, our services are implemented to
support virtualization tools like docker[Inca]. Figure 4.2 shows how the specified tasks
from Section 4.2 are mapped to services.

As Figure 4.2 points out, 1 to n clients connect to a service registry and bind to a
recommendation service. Clients will be implemented as native mobile applications. A
local database is used to cache already fetched curves and recommendations. Besides
the database, client applications have a UI (see Section 3.3.2) that provides assistance
to the driver. The figure also shows how two general types of services can be identified.
Application-specific services that are setup solely for the purpose of this system and
external services that are used by this system, but are maintained by external providers.
The recommendation service is responsible for calculating a recommended speed for
all upcoming curves around a given location. Input for the service is location data
that comes directly from cars. To calculate a recommended speed, the service needs
information about upcoming curves and the current weather.
An external database, denoted as DB in the figure, is used to permanently store curve
results and is queried by recommendation services to receive already calculated curves.

30

http://bbcpersian7.com
http://www.pngpix.com/download/black-ford-shelby-gt-h-top-view-car-png-image
https://www.wpclipart.com/
http://clipart-library.com/clipart/1007672.htm
http://www.Freestockphotos.biz

4.5. Detailed Design & Software Components

Detection

RecommendationCar 1

Car 2

Car 3

Car 4

Car 5

...

Car n

Service Registry

lookup

Node 1

Node 2

Node 3

Node n

...

M
o

nito
ring

Node 1

Node 2

Node 3

Node n

...

M
o

nito
ring

pu
bl

is
h

Weather
Provider

Maps
Provider

DB

read

write

bind

Clients

Services

External Services

Node 1

Node 2

...

Node n

DB

DB

DB

DB

DB

DB

DB

DB

DB

DB

bi
nd

Figure 4.2: Detailed Design & Software components of the system

Since the database needs to be accessible from multiple services running on multiple
nodes, it needs to be highly available, scalable and easily maintainable. Today, there are
many Database as a Service (DaaS) solutions, for instance MongoDB Atlas[Monb] or
MLab[Coo], to achieve these requirements out of the box. Therefore the decision was
made to use an external platform instead of creating another custom service.
While curves are retrieved from the external database, weather data is queried from a
weather provider. In case the database has no curves stored yet, the detection service is
requested. On retrieval of new curves from the external database, the results are cached
to a local database. This way, upcoming requests that are handled by the same node can
directly use data from the local cache and the detection service is not called twice for the
same data.
The detection service detects and calculates detailed information about upcoming
curves. Input is location data from one of the recommendation services. In order to
detect curves, map data needs to be queried from an external maps provider. When the
service finished, the detected curves are written to the external database.
To enable service communication, a service registry is needed. Services can be published,
looked up and bound to. Clients/Cars bind to a recommendation service which itself

31

4. System Design

binds to the detection service. Before a client (or a service) can bind to another service,
a lookup on the service registry is done to receive all available services. To enable high
scalability and support the underlying edge/cloud-infrastructure, each of the three custom
services can be deployed to n different nodes. Each node can possibly run 1 to n services.
In order to allow efficient load-balancing between the available services, each node
monitors itself. To that end, nodes export metrics about their current resource usage to
a monitor. The monitor is accessible by the other services in the system.

4.6 Service Orchestration

After defining the services, in order that they can communicate to each other, they need
to be well orchestrated. In this section the orchestration, i.e. the order of how the clients
and services contact each other, is described step by step.

1. At the very first start of the application in the car, a client queries all available
recommendation services with their location from the service-registry. A list of
services and their location is returned. The list is cached and updated periodically
at the client. The interval for refreshing this list is a configurable parameter (see
RefreshServiceList in Table 6.1).

2. Every time a client has no information stored about upcoming curves in the local
database, the cached service-list is searched for the nearest recommendation-service
that is available to the current location of the car. A request containing the current
exact location is then sent to the nearest recommendation-service. "Upcoming
curves" in this context means, curves that lie within a specified bounding box. Its
size refers to the bounding box of the geohash precision that corresponds to the
exact location (see LocalSearchBoundingBox in Table 6.1).

3. At the nearest recommendation-service, a load-balancing algorithm decides if the
node of the requested service can perform the execution. If not, the load-balancer
chooses another node where a recommendation-service executes.

4. The recommendation-service calculates a “safe” recommended speed for curves
around the requested location. To that end, both curve caches, i.e. the local
database and the distributed database are requested for already calculated curves
around the location.

5. If curves are available, to every curve the recommended speed is calculated and the
response is delivered back to the client.

6. If no curves are available in the database yet, a request to a running curve-detection
service is sent. The load-balancer chooses an available detection-service that can
handle the request.

32

4.7. Summary

7. Similar to 3.), the load-balancer decides if the request can be handled by the
requested node running a detection-service itself, or if is forwarded to another node.

8. At the detection-service, curves around a requested location are calculated with all
necessary information. After the service is done with calculations for requests, the
results are stored back to the database. The call to the detection is designed to be
non-blocking. Hence, the recommendation-service that sent the request will not wait
for the result of the curve-detection. Since clients frequently send location-requests
to the recommendation-service, on further requests, detected curves from a previous
nearby location will be available in the database.

Figure 4.3 summarizes the above described steps of communication between clients and
services.

4.7 Summary
In this chapter we designed the architecture of the cornering-assistance-application.
We first made clear assumptions about the underlying infrastructure. Based on the
assumptions, we designed the architecture using the microservices pattern that supports
virtualized MEC infrastructures, separates tasks and concerns and enables scalability.
Finally we gave a detailed design of all software components and showed how the services
are orchestrated. The concrete handling of tasks at the services is done using algorithms
that are explained in the next chapter.

33

4. System Design

C
ar / C

lient
Service R

eg
istry

R
eco

m
m

end
atio

n - n

...

R
eco

m
m

end
atio

n - 2

R
eco

m
m

end
atio

n - 1
D

B

D
etectio

n - n...

D
etectio

n - 2

D
etectio

n - 1

1

2

3

5

4

6

7

8

S
ervice | Location

rec-1
node-1

rec-2
node-2

…
...

Figure
4.3:

Service
O
rchestration

34

CHAPTER 5
Algorithms

5.1 Overview
This chapter describes the design of algorithms that are used within our introduced
services of Chapter 4. Concrete implementation details of the algorithms are discussed in
Chapter 6.

5.2 Speed Recommendation
To be meaningful in every situation, the recommended speed to enter and drive through
a curve depends on the curve’s specific properties (radius, length, slope) and weather
conditions. Since there is no general rule for how fast a curve should be taken to be
considered as safe cornering, in the following we describe our approach of calculating
this value.
A first guiding principle for determining the recommended speed is to find out the
theoretical maximum speed a driver can have while cornering without skidding off the
road. Physically this means that in order that adhesion is not exceeded by the centrifugal
force, the following inequality[kur] must hold:

v2

r
> µ ∗ g

In the above formula, r denotes the curve’s radius, μ the coefficient of static friction
and g the gravitational acceleration, which is assumed as 9.81m/s2. The true value for
the coefficient of static friction depends on the exact tire profile of the car and the road
conditions. For the thesis the following simplifications for the the coefficient of static
friction on specific weather conditions are assumed[Str]:

Dry : 0.85,Wet : 0.5, Snow : 0.25, Glaze : 0.1

35

5. Algorithms

To determine the theoretical maximum speed (in km/h) a driver can have while cornering
without skidding off the road, the above formula can be rewritten as follows:

vmax = (√µ ∗ g ∗ r) ∗ 3.6

Since we want to recommend a speed for safe cornering, the maximum speed must be
reduced by a certain factor. The factor to reduce the maximum speed to a meaningful
value is a parameter of the system (see ReduceMaxSpeedByFactor in Table 6.1). To find
out a realistic value for this factor, a very early prototype of the curve detection was run
on 40.000 kilometers of trips provided by the KFV trip database (see Section 7.2.1). For
every detected curve, the actual speed when drivers entered the curve, was compared
to the theoretical maximum speed. It was concluded that considering all trips of that
dataset, on average 41% of the theoretical maximum speed was reached on entering the
curve. Using this result as default factor for reducing the theoretical speed, can lead to
a relatively realistic value for the recommended speed. The recommended speed for a
curve can be finally calculated as:

vrecommended = (√µ ∗ g ∗ r) ∗ 3.6 ∗ 0.41

Using the above described formulas and parameters, Table 5.1 shows examples of recom-
mended speeds for different curves.

Radius (m) Road Condition Recommended Speed (km/h)
40 Dry 27.0
40 Wet 20.7
40 Snow 14.6
40 Glaze 9.2
75 Dry 36.9
75 Wet 28.3
75 Snow 20.0
75 Glaze 12.7

Table 5.1: Examples of recommended speeds for different curves

In order to implement the above described algorithm for a recommended safe speed
for cornering, current weather data, road conditions and curve information are needed.
Algorithm 5.1 shows a very simple approach to determine the current road condition
based solely on existing weather data. A future, more sophisticated algorithm, could
also evaluate additional factors. For instance the road type or even detailed information
about the car (tire profile, etc.) could be evaluated. For this algorithm it is assumed
that most weather providers contain at least the three values:

• weatherName: A description of the current weather in one word

• rainAmount1h: The amount of rain within a given time period (for the algorithm 1
hour is assumed)

36

5.3. Curve Detection

• temperature: The outside temperature in Celsius

Depending on the chosen weather provider and language settings, the search strings for
weatherNames need to be adjusted.

Algorithm 5.1: classifyRC - Classify road condition using weather data
Input: weatherName, rainAmount1h, temperature
Output: friction

1 friction := 0.85; /* DEFAULT */

2 if weatherName in {"clear sky", "clouds", "scattered clouds", ...} then
3 if rainAmount1h > 1.0 then

/* rain within last hour means road is still likely to
be wet */

4 friction := 0.5; /* WET */

5 end
6 else
7 friction := 0.85; /* DRY */
8 end

9 else if weatherName in {"drizzle", "rain", "thunderstorm", ...} then
10 friction := 0.5; /* WET */

11 else if weatherName in {"snow", ...} then
12 friction := 0.25; /* SNOW */

13 else
14 friction := 0.85; /* DEFAULT */
15 end

16 if temperature > 3.0 then
17 friction := 0.10; /* GLAZE */
18 end
19 return friction

With weather data available, the recommended speeds for multiple curves around a given
area can be computed as shown in Algorithm 5.2.

5.3 Curve Detection
Public available map data, for instance OpenStreetMaps, include detailed information
about road networks on the entire planet. Using this road data, the goal is to detect
curves as accurate as possible. As described in detail in Section 3.2.2, OpenStreetMaps
stores roads as way-objects. Each way consists of multiple nodes. A node contains
location information in the form of latitude and longitude coordinates. Multiple node

37

5. Algorithms

Algorithm 5.2: recommend - Recommend safe speeds for approaching curves
around a given location
Input: lat, lon
Output: curveList

1 curves := database.$near(lat, lon);
2 for curve in curves do
3 weather := getWeatherDataFromProvider(lat, lon);
4 friction := classifyRC (weather.name, weather.rain1h, weather.temp);
5 curve.safeSpeed := Math.sqrt(friction * 9.81 * curve.radius) * 3.6 * 0.41);
6 end
7 return curves

objects determine the exact path of a road. In OpenStreetMaps, node-objects along the
same way are always ordered correctly. Using these geometric properties of nodes and
ways, it is possible to detect curves on roads with an algorithm. The proposed algorithm
is sketched in Figure 5.1. It shows multiple steps of the algorithm and the resulting
curve in the last step. Each step shows n nodes along a single way. Considering Node N1
as the starting point and following the way in ascending order (i.e. N1-N2-...-Nn), the
sketched way forms a right-curve.
In every iteration i=1, i=2, ..., i=n, where n denotes the number of nodes in a way, a
Triangle Ti consisting of the three connecting nodes Ni, Ni+1 and Ni+2 is formed. Each
Triangle Ti consists of the two segments Si and Si+1. The next step is to find out whether
the two segments Si and Si+1 are straight to each other or form a bend. To that end, the
angle ai(Si, Si+1) is calculated. If ai exceeds a certain threshold (the default threshold
is 3 degrees, see AngleThreshold in Table 6.1), the segments are considered to form a
bend. In case the angle is positive, we have a bend to the right, otherwise to the left.
Otherwise, if the angle is below the threshold, the segments form a straight.
For every Triangle Ti, the containing Nodes Ni+1 and Ni+2 are declared as Curves of a
detected type (i.e. either: LEFT, RIGHT or STRAIGHT). If two consecutive triangles
Ti and Ti+1 have been declared as curves with the same type, they are merged together.
This way, curves grow on every iteration until a following triangle is declared as a straight
or differs from the previously declared type.
In the given example of Figure 5.1, on iteration i=3, the angle a3(S3, S4), exceeds the
threshold of 3 degrees. Since the angle is also positive, the triangle T3 and its nodes
N3, N4 and N5 are declared as curve of type RIGHT. The same applies to the following
iterations i=4, i=5, ... until i=9. Since there is no interrupting triangle of another type
(i.e. all triangles are of type: RIGHT), the nodes of the matching triangles (N3, N4, ...
N10) are declared as one curve of type RIGHT.

38

5.3. Curve Detection

C
ur

ve
-T

yp
e:

 S
T
R
A
I
G
H
T

i
=
1

C
ur

ve
-T

yp
e:

 S
T
R
A
I
G
H
T

i
=
2

C
ur

ve
-T

yp
e:

 R
I
G
H
T

i
=
3

C
ur

ve
-T

yp
e:

 R
I
G
H
T

i
=
4

C
ur

ve
-T

yp
e:

 R
I
G
H
T

i
=
5

C
ur

ve
-T

yp
e:

 R
I
G
H
T

i
=
6

C
ur

ve
-T

yp
e:

 R
I
G
H
T

i
=
7

C
ur

ve
-T

yp
e:

 R
I
G
H
T

i
=
8

C
ur

ve
-T

yp
e:

 S
T
R
A
I
G
H
T

i
=
9

R
ES

U
LT

Fi
gu

re
5.
1:

D
et
ec
tio

n
A
lg
or
ith

m

39

5. Algorithms

5.3.1 Calculation of curve properties

In order to provide assistance, i.e. determine recommended speeds on curves (see Section
5.2), it is necessary to calculate specific properties of curves. Interesting properties of
curves are radius, length or slope for instance.
The most important property is the radius. Since nodes of ways are never 100% accurate
and also the distance between two consecutive nodes can vary, the goal is to find a good
approximation of the actual radius. One technique, which is also used by Adam Franco’s
Curvature-Algorithm [Fra17], is to determine the circumcircle[Ref] of a triangle that
spans three points of the curve. The points A and C denote the starting- and end point
of the detected curve. Point B is the central point of all the nodes forming the curve.
This point needs to be defined differently for every curve. In case the number of nodes
that form a curve is uneven, the center point can simply be determined as follows:

B = nodes[round(size(nodes)/2)]

On the other case, if the number of points is even, the calculation is more complex:

B = interpolate(nodes[floor(size(nodes)/2)], nodes[round(size(nodes)/2)]

The function interpolate takes two nodes, performs an interpolation on their coordinates,
resulting in a new point that lies exactly in their middle.
After having the triangle points A, B and C it is easy to determine its sides a, b and c.
The resulting formula for calculating radius then looks as follows:

r = abc

(
√

(a+ b+ c)(b+ c− a)(c+ a− b)(c+ a− b)(a+ b− c))

Figure 5.2 shows the same curve as in the previous figure (Figure 5.1) with three points A,
B and C. Since the number of nodes of the curve is uneven (8), point B was interpolated.
The length of a curve can simply be determined by the sum of all distances between all
segments:

n∑
i=1

distance(curveNodes[i], curveNodes[i+ 1])

5.3.2 Summary of the detection algorithm

Using above described formulas and principles, Algorithm 5.3 shows how curves can be
detected. It is assumed, that the incoming nodes are connected and ordered correctly
already. The function calculateProperties() is not specified in detail, but simply makes
use of the formulas described in the previous sections.

5.4 Upcoming Curve Prediction
The system is designed in a way that a client from within its car calls a recommendation
service and receives curves in the area of the current location. Depending on the location

40

5.4. Upcoming Curve Prediction

Algorithm 5.3: detectCurves - Detect curves of all nodes. (Nodes are connected
and sorted by location)
Input: nodes
Output: curves

1 curves[] := array;
2 for int i=0; i < nodes.length-2; i++ do
3 Si := segment(nodes[i], nodes[i+1]);
4 Si+1 := segment(nodes[i+1], nodes[i+2]);
5 curveType := STRAIGHT;
6 if abs(angle(Si, Si+1)) > 3° then
7 if angle(Si,Si+1) >= 0° then
8 curveType := RIGHT;
9 end

10 else
11 curveType := LEFT;
12 end
13 end
14 currentCurve := curve(node[i],node[i+1],node[i+2],curveType);
15 previousCurve := curves[curves.length-1];
16 if previousCurve == NULL then
17 curves.push(currentCurve); /* New curve starts */
18 end
19 else
20 if currentCurve.type == previousCurve.type then
21 previousCurve.extend(currentCurve); /* Previous curve is

extended */

22 end
23 else
24 curves.push(currentCurve); /* New curve starts */
25 end
26 end
27 end
28 for curve in curves do
29 if curve.type == STRAIGHT then
30 curves.remove(curve);
31 continue;
32 end
33 curve.calculateProperties(); /* Calculates all properties */

34 end
35 return curves

41

5. Algorithms

...

A
C

a

b
c

r

B

Figure 5.2: Determining the radius of a curve using the circumcircle of its spanning
triangle

of driving and the size of the bounding box, multiple curves can be returned. As described
in Section 3.3.2, the goal of the local client application is to guide drivers safely through
upcoming curves by providing assistance that shall begin before a curve is approached.
To find out what curve the driver is approaching next, in trivial cases, the client simply
needs to find the nearest of all received curves around the area of the current location.
The trivial case though only applies, if the road the driver currently is on, is not too
twisty. Non-trivial cases arise when roads are very twisty. In these cases, the nearest
curve might not automatically be the next upcoming curve. Figure 5.3 shows examples
for both a trivial and a non-trivial case. To find out whether a curve is approaching, the
distance between the nearest curve’s center point and the current location is calculated.
Only if the distance is lower than a specified threshold (t1), it is considered as candidate
for the next upcoming curve. For the thesis this threshold is set to a fixed value of 300
meters. Distances are approximated using the haversine formula[Typ].
In the next step, it is checked if the found curve candidate is indeed the next upcoming
curve. To do the validation, both the driver’s bearing and the curve’s bearing are
considered. The bearing, also called azimuth (θ), is the angle at which a smooth curve
crosses a meridian, taken clockwise from north[Deu]. As described in Section 3.2.1, most

42

5.5. Load Balancing of Driver Requests

nearest

approaching

nearest

approaching

trivial-case non-trivial-case

Figure 5.3: Example for a trivial and non-trivial case of finding the next upcoming curve

GPS systems deliver this value directly. If this value is not available, calculating the
bearing can be done by using latitude and longitude of two connecting locations using
the formula[Typ]:

θ = arctan(sin(∆long)∗ cos(lat2), cos(lat1)∗ sin(lat2)− sin(lat1)∗ cos(lat2)∗ cos(∆long)

A curve’s bearing is calculated for the start point of the curve. In case the end point of
a curve lies closer to the current driver, start and end points are switched. The curve
candidate is considered as upcoming curve only if the calculated driver bearing and curve
bearing are similar. The similarity is controlled by another threshold (t2) . For the thesis
a fixed threshold of 45° was chosen.

Using above described formulas, Algorithm 5.4 shows how the next approaching curve
regarding a driver’s current location can be found. In order to calculate the direction
of where the driver goes (azimuth), additionally to the current location we need store
the previous location. For the algorithm we assume that the client application already
has curves stored to its local database. We further assume that the database provides
queries to receive results sorted by distance from a given location. MongoDB for instance
provides this query using the $near-function[Mona].

5.5 Load Balancing of Driver Requests
In order to be able to serve thousands of drivers with cornering assistance simultaneously,
scalability is an important aspect of the system. One design to achieve scalability is
by using a microservices architecture, as described in Section 4.6. A second important
design is to include software components that enable load balancing on the available
nodes and services. Load balancing though can not only be used to reach scalability,
but also for instance to reduce costs in terms of service-charges, maintenance or energy
consumption for instance. This way the load balancer can possibly prefer cheaper nodes
over more expensive ones. As already mentioned shortly in the description of the service
orchestration (see Section 4.6), in the system’s architecture, load balancing is used to

43

5. Algorithms

Algorithm 5.4: findNextUpcomingCurve - Finds the next upcoming curve in a
local database containing curves.
Input: lat, lon, latPrevious, lonPrevious
Output: approaching

1 driverBearing = azimuth(lat, lon, latPrevious, lonPrevious);
2 nearest = database.$near(lat, lon);
3 if nearest != NULL then
4 distToCenter = haversine(nearest.center.lat, nearest.center.lon, lat,lon);
5 distToStart = haversine(nearest.start.lat, nearest.start.lon, lat,lon);
6 distToEnd = haversine(nearest.end.lat, nearest.end.lon, lat, lon);
7 if distToCenter < t1 then
8 if distToEnd < distToStart then
9 copyStart = nearest.start;

10 nearest.start = nearest.end;
11 nearest.end = copyStart;
12 end
13 nearestBearing = azimuth(nearest.start.lat, nearest.start.lat,

nearest.points[1].lat, nearest.points[1].lon);
14 bearingDiff = abs(nearestBearing - driverBearing);
15 if bearingDiff > 180 then
16 bearingDiff = bearingDiff - 360);
17 end
18 if bearingDiff < t2 then
19 return nearest;
20 end
21 end
22 end
23 return NULL

decide which services, running on specific nodes, handle requests from clients or other
services. In theory, many aspects can be considered to decide whether a node can handle
a request. Costs can be one factor to choose specific nodes, as we pointed out earlier.
A very important aspect that should be considered is the location of a request. In case
the closest node to the originating request is chosen, network latencies can possibly be
reduced. Also the current resource utilization of a node, for instance CPU usage, available
memory, number of threads or number of handled HTTP requests can be considered. The
size of requested or transmitted data, for instance location data, map data or weather
data could also be used to choose a node.
Since implementing custom load-balancing is a huge topic, the thesis does not focus on all
aspects. For the sake of simplicity, the thesis will only consider location and CPU usage
aspects. Assuming each node periodically provides metrics about its resource occupancy,

44

5.6. Summary

deciding whether a node can handle a specific service is simply determined by checking if
the current CPU usage is above a certain threshold. The default threshold for the thesis
is set to 70% (see MaxCpuUsage in Table 6.1). In case a node cannot handle a request to
a service (i.e. its CPU usage is above the threshold), another capable node that is able to
handle the requested service shall be found. Based on available metric information about
all nodes in a cluster, Algorithm 5.5 shows how to find the least busy node regarding
CPU usage. The algorithm takes as input a list of information about running nodes
(denoted as nodeInfoList) and the desired service for which a node shall be found.

Algorithm 5.5: findLeastBusyNode - Finds the least busy node in terms of resource
occupancy on a running cluster
Input: nodeInfoList, service
Output: node

1 currentMinCpuUsageValue = 100;
2 currentLeastBusyNode = NULL;
3 for nodeInfo in nodeInfoList do
4 if !nodeInfo.providesService(service) then
5 continue;
6 end
7 if nodeInfo.metrics.cpuUsage < currentMinCpuUsageValue then
8 currentMinCpuUsageValue = nodeInfo.metrics.cpuUsage;
9 currentLeastBusyNode = nodeInfo;

10 end
11 end
12 return nodeInfo;

5.6 Summary
In order to accomplish the tasks specified in the previous chapter, in this chapter we
presented new algorithms. Our curve detection algorithm uses geometric properties
of map data and is able to not only identify curves, but also to calculate properties
such as length or radius. Using the calculated properties of curves in combination with
weather data, we presented our recommendation algorithm that derives road conditions
and based on that calculates safe speeds for entering a curve. To signal warnings when
drivers are approaching curves, out of many possible curves in an area, we showed how to
predict the next upcoming curve along the driver’s path from a given location. Since our
system is deployed to a heterogenous infrastructure, where many servers with different
capabilities execute at different locations, we finally also presented an approach of how
to load balance requests depending on many factors. Based on this and the architecture
described in Chapter 4, in the next chapter we introduce our prototype implementation
for the cornering-assistance-application.

45

CHAPTER 6
Prototype

6.1 Overview

Based on the presented architecture (Chapter 4) and algorithms (Chapter 5), in this
chapter we present a prototype implementation of the cornering-assistance-system.

6.2 Implementation

The implementation of the prototype is split up into multiple components. As described
in Section 4.5, the cornering-assistance-application is designed using a microservices
architecture. Each service can be deployed onto different nodes and is able to execute
on its own. The implementation of all components is written in the Java programming
language (versions 1.7 and 1.8). The structure of the cornering-application is split up
into the following components:

• commons: A Java library that contains common code used in the services (recom-
mendation, detection and simulator)

• detection: Source code for the detection service

• recommendation: Source code for the recommendation service

• simulator : Java applications that simulates client/car functionalities

• docker : Configuration to deploy a sample prototype and experiments

An overview of the structure and its components is given in Figure 6.1. The figure depicts
a uses-view.

47

6. Prototype

commons

MongoDBConnector

RabbitMQConnector

LoadBalancer

detection

ApexApplication

OSMConnector

recommendation

gRPCServer

OWMConnector

docker

node-1

node-2

node-n

...

<<uses>> <<uses>>

<<uses>> <<uses>>

simulator

test-performance

test-data-quality

RedisConnector

<<uses>>

Figure 6.1: Component structure as Uses-View

48

6.2. Implementation

6.2.1 Commons Library

The commons library is a Java Library that implements common requirements that are
used by the recommendation and detection services and in the simulator programs. In
this library we provide helper classes for many different software components.
For the cornering-assistance-application, curve information needs be stored to and read
from a central database. In order to be flexible in terms of storing data and have powerful
spatial querying capabilities, we choose MongoDB as our database system. To be able
to scale the application easily and access the database from multiple services, a DaaS
provider, for instance AtlasDB[Monb], should be used. Using the Singleton-pattern, the
commons-library provides a class to connect to the central database, query curves within
a certain area and write them to the database.
To be able to easily transfer data between our services, we use the asynchronous message
communication protocol AMQP. AMQP is an "open standard for passing business
messages between applications or organizations."[Oas]. A popular and very easy-to-use
implementation of AMQP is RabbitMQ[Rab].
In the commons-library we implement a simple connector that establishes a connection
to a remote RabbitMQ-Server and publishes messages to a queue.
As described in Section 5.5, the commons library implements the logic and algorithms
for deciding whether a service can handle a request, or if not finding another suitable
service to handle requests.

6.2.2 Detection Component

The detection component is responsible for performing curve analytics, therefore to
calculate upcoming curves in the area of the raw location of a driver. The analytics
algorithm is using the stream processing paradigm. Stream processing is a paradigm in
computer science describing the requirement of handling streams of data such as sensor
readings [Vor15]. Stream processors consist of multiple operators that can compute
in parallel and that communicate data via channels. In general, there are 3 types of
modules in stream processors: sources that pass data into the system, operators that
do computation on data, and sinks that pass data from the system. Stream processors
and their modules are often visualized as directed acyclic graphs [Ste97] and are called a
topology.

Our selected stream processing framework to detect curves is Apache Apex[Foua]. Apache
Apex can process big data in-motion in a way that is highly scalable, highly performant,
fault tolerant, stateful, secure, distributed and easily operable. In Apache Apex, streaming
applications are expressed in implementing Operators, that take tuples from one or
multiple Input-Ports, process them and emit them to the Output-Port. Each operator
can be scaled individually by creating multiple instances and distributing data among
them. The following operators were implemented for the cornering-application:

• InputOperator: To kick-off the stream processing pipeline, requests containing
the location of a driver are sent to RabbitMQ and are ingested by the operator.

49

6. Prototype

Hence, the data source of the Apex DAG is an InputOperator that listens to a
defined queue on the RabbitMQ Server. The InputOperator uses code provided by
the apex-malhar[Foub] library that simplifies reading messages from RabbitMQ.
When new tuples arrive at a queue on RabbitMQ, they are forwarded to the output
port, which is connected to the input port of the downstream operator.

• RequestAggregator: In order to deal with many incoming requests, in a next
step, similar requests in terms of time and location are aggregated. This way, time
consuming tasks such as sending requests to map providers as well as calculating
curves, can be reduced. As a first filter, only requests that arrive within a predefined
time window are grouped together. This time window is a configurable parameter of
the system (see AggregationTimeWindow in Table 6.1). As discussed earlier in the
thesis in Table 3.1, each incoming data tuple contains information about a location
in form of latitude/longitude pairs. To decide whether locations of multiple requests
are nearby, for each tuple a corresponding bounding box is calculated. From the
calculated bounding box, a geohash is calculated. A second filter groups together
those requests that have the same geohash and therefore fall into the same bounding
box. The size of this bounding box can be configured (see AggregationBoundingBox
in Table 6.1). Finally, the resulting geohashes are emitted to the downstream
operator.

• OSMQueryOperator: From the upstream RequestAggregator operator, geo-
hashes arrive as tuples to the input port. For each geohash, the points (left, top,
right, bottom) of the corresponding Bounding Box are calculated. From the calcu-
lated bounding box, the operator creates an OverpassAPI request using Overpass
QL. The query is customized to return only specific streets, i.e. that have have one
of the following OSM highway-tags[Foud]: highway, primary, secondary, tertiary or
motorway. This way, unwanted roads, for example residential roads or pathways,
are excluded from the detection. An example of how such a request to OverpassAPI
using Overpass-Turbo[Rai] and its result look like is given in Figure 6.2. The result
of the query is a list of OSM ways that lie within the bounding box. Finally all
received ways are emitted to the downstream operator. Depending on the size and
number of ways for a requested area, sending queries to the Overpass API can block
the execution of the streaming application. In case the selected Overpass server is
slow or the OSMQueryOperator receives many tuples (i.e. geohashes) that produce
large amounts of data, this operator can be a bottleneck during the execution.
To avoid this problem and keep the streaming pipeline in flow, partitioning[ape]
is used on this operator. In Apache Apex, partitioning allows to create multiple
instances of an operator. Data is distributed across available instances. This way,
tuples can be processed in parallel by the same type of operator. The number of
partitions is a configurable parameter (see OSMPartitions in Table 6.1). In the
example topology depicted in Figure 6.3, the OSMOperator was partitioned to 3
instances.

50

6.2. Implementation

Figure 6.2: Example OverpassQL query using Overpass-Turbo[Rai]

• DetectCurvesOperator: The input tuples for the curve detection are single OSM
Way objects from the upstream OSMQueryOperator. Each tuple contains nodes,
that represent points along a road. For every way, the curve detection algorithm
(see Section 5.3) calculates properties of the curve including start/center-end points,
radius and length (see Section 3.3). From every incoming tuple, possibly many
curves can be detected and will be emitted to the downstream operator.

• OutputOperator: This operator receives curves and stores them to the MongoDB
database using the commons library code. To reduce the number of connections
to the database, the operator caches curves for a configurable time interval (see
CacheCurvesTimeInterval in Table 6.1) and then stores them in one single batch.

Connecting all the operators of the application with streams, the resulting topology
is depicted in Figure 6.3. In this sample topology the OSMQueryOperator was
partitioned into 3 instances.

6.2.3 Recommendation Component

The recommendation component contains algorithms to calculate a recommended "safe"
speed for curves. In order to respond to client requests, we implement our HTTP service
using Google’s gRPC framework[WZZ93]. gRPC is a lightweight, easy-to-use, fast, open-
source RPC framework. Our service implements methods and its parameters using so
called Protocol Buffers as the Interface Definition Language (IDL). Clients can then call
these defined methods on a local object called a stub. gRPC takes care of establishing the
connection, serializing the parameters, sending the request and returning the response to
the client.

51

6. Prototype

InputOperator

RequestAggregator

OSMQueryOperator OSMQueryOperator OSMQueryOperator

Unifier

CurvesOperator

MongoDBOperator

Figure 6.3: Topology of the Apex streaming application to detect curves

Similar to the detection service, on receiving a new request, at first the LoadBalancer
checks whether the current node can handle the request or otherwise forwards the request
to another node. For each incoming request containing a car’s current location, curves
in the area around the location are retrieved from the central MongoDB database. In
case no curves are yet available for the requested location, the request is forwarded
to the detection service using RabbitMQ via the commons-library code. Otherwise,
current weather data is queried from OpenWeatherMaps using HTTP. To receive weather
data, instead of using the exact received location of a car, a geohash of a configurable
bounding box size is calculated. Weather is queried using an API call via HTTP to the
OpenWeatherMaps server. An open-source library called OWM-JAPIs[aka] is used to to
easily query the API and its result using Java.
The presented algorithms from Section 5.2 are implemented in the service and are used to
derive road conditions. Having the road conditions and curve information, recommended
speeds for every curve are calculated. The service finally returns curve information
including the recommended speed to the user.

52

6.2. Implementation

To efficiently reuse already fetched weather data, the in-memory database Redis[Red],
in combination with the popular Java library Lettuce[Let], are used to cache weather
data. Weather data is stored together with its geohash and a timestamp, representing
the exact time of when the data was requested. According to OpenWeatherMaps, since
"normally the weather is not changing so frequently"[Opeb], it is recommended to query
the weather for the same location at most once within 10 minutes. Therefore, on every
incoming request the cache is checked for weather data that lies within the same geohash
and is not older than 10 minutes. To keep the cache size small, outdated weather data is
deleted when requested.

6.2.4 Simulation Programs

The simulator directory contains two Java applications that simulate some client/car
functionalities. The simulations will be used for the evaluation and are discussed in
Sections 7.3 and 7.4. In the future, in case the prototype shall be extended to a production-
grade application, the simulator’s client functionalities can serve as blueprint for a native
mobile application. Since developing a native mobile application is not the focus of the
thesis, these functionalities are only simulated using Java applications. This makes it
also easier and more efficient to evaluate the distributed cornering application.

6.2.5 Docker Configurations

Using docker and the docker-compose tool[Inca], nodes for deploying the cornering-
assistance-application are configured. The architecture is designed to deploy multiple
nodes, each running different services. Figure 6.4 shows a generic node that executes 1 to
n services. Each node in the Figure executes the following described additional software
components:

• Consul Service Registry: As described earlier, nodes can run 1 to n services. In
order that clients or other services can bind to theses services, every service running
on a node needs to be registered to a service-registry. For the cornering-application
the service discovery software Consul[Has] is used. Consul needs to have at least
one server instance and arbitrary many client instances. Services can then be
registered using DNS. The consul instances are executed using Consul’s official
docker image. Every node that provides services for the cornering application
executes one client instance of Consul. Client instances join an existing consul
cluster by either registering to one of the available server instances or to any client
instance that is already registered to the server. To be fault-tolerant and highly
available, in a production environment it is highly recommended to have at least 3
or 5 server instances.

• Prometheus: To be able to perform load balancing between nodes based on
metrics provided by each node, a monitoring component is needed. Monitoring
components need be able to export metrics on every node and provide these metrics

53

6. Prototype

node

N
ode-E

xporter

P
rom

etheus

C
onsul-C

lient

service-1

service-2

service-n

...

Figure 6.4: Additional software components at nodes

to other interested nodes. For the cornering-application, on every node the open-
source monitoring solution Prometheus[Proa] is installed. Using Prometheus, so
called "exporters" can be added that "scrape" certain metrics and send them to
a server that collects the data. An API can then be used to query metrics via
HTTP. Another great advantage of Prometheus is that it supports service discovery
via Consul natively. Hence, Prometheus can be configured to automatically query
targets (i.e. services) by specifying the address of a Consul server.

• Node Exporter: Node Exporter is a Prometheus exporter "for hardware and OS
metrics exposed by *NIX kernels, written in Go with pluggable metric collectors"[Prob].
Having this exporter executing on every node, metrics about hardware resources
are available in Prometheus.

As described in Section 4.3, the underlying edge-/cloud-infrastructure of the application
is likely to be heterogeneous in terms of resources. Edge or cloud nodes can have very
different resources. While some nodes might have lots of resources and provide rich
services, others only have few resources and cannot provide all services.
To reflect this heterogeneous infrastructure, we pre-configured different types of nodes
in the source-code of the prototype. Specified types of nodes vary from less powerful,
i.e. the node has few resources available, to very powerful nodes that have theoretically

54

6.3. Configuration & Deployment

unlimited resources. Figure 6.5 shows 4 such pre-configured nodes. Of course many other
combinations of services on nodes are possible.

6.3 Configuration & Deployment

6.3.1 Parameters

The cornering-application is designed in a way that it can be used as a framework and
customized to specific needs. Throughout the system many different parameters can be
adjusted. The parameters are summarized in Table 6.1.

6.3.2 Deployment Models

To run the cornering-application, all the previously described software components need
to be deployed to an infrastructure. The design of the architecture allows several different
deployment models. In this section, four possible deployment models are presented.
Since the external service OpenWeatherMaps cannot be installed on a private instance,
it is always considered completely outside of the system and will not be discussed in any
of the deployment models.

Deployment Model 1 (DM1)

The most typical infrastructure for running a microservices architecture is to have
one big data-center and clients connecting to it (see Figure 6.6). Hence all services
of the application are deployed onto a cloud data-center with the possibility to scale,
i.e. deploy many instances of each service, as needed. External services, including an
OpenStreetMaps instance and the Database-Cluster are not managed by this deployment
and sit in different data-centers. This way, the software components of the application
sit in 3 different data-centers. In case the database cluster and the application specific
services are deployed to the same cloud provider, the number of different data-centers
would be reduced to 2.

Overpass API: In this deployment, requests to OpenStreetMaps are sent to the main
Overpass API servers. These servers are located at the University College in London[Fouf].
In practice though it turned out that running multiple OverpassAPI requests (of the
same form as depicted in Figure 6.2) in short time-intervals, exceeded the available quota
very fast. In this case, the IP sending the requests, is blocked from the API for a certain
time period.

MongoDB Cluster: There are many DaaS providers that host MongoDB clusters in
different cloud data centers. MongoDB Atlas[Monb] or MLab[Coo] for instance both offer
MongoDB clusters in either Amazon AWS, Google Cloud Platform or Microsoft Azure.

The following list sums up the concrete resources needed for managing this deployment
model:

55

6. Prototype

node-1

service-registry-service

node-2

N
ode-E

xporter

P
rom

etheus

C
onsul-C

lient

node-4

N
ode-E

xporter

P
rom

etheus

C
onsul-C

lient

detection-servicerecommendation-service

recommendation-service

node-3

N
ode-E

xporter

P
rom

etheus

C
onsul-C

lient

detection-service

le
ss

 p
ow

er
fu

l
m

or
e

po
w

er
fu

l

node-n

...

Figure 6.5: Different node-types in terms of resources

56

6.3. Configuration & Deployment

Name Description Sections Comp. Default
GPSSensorFrequency Frequency of GPS sensor 3.4 Car 1 Hz
LocalSearchBoundingBox Geohash character preci-

sion of local Bounding box
4.6 Car 6

MaxPolls Maximum number of send-
ing polls to rec-service un-
til time-out

Car 3

PollDelay Duration to wait until
sending next poll request

Car 3s

MapBoundingBoxSize Geohash character preci-
sion Bounding Box for
map data

3.4,
3.2.3

Det 6

WeatherBoundingBoxSize Geohash character preci-
sion of the Bounding Box
for weather data.

3.4,
3.2.3

Rec 6

ReduceMaxSpeedByFactor Factor to reduce theoreti-
cal max speed

5.2 Rec 0.41

FindCurvesMode Find curves by geohash,
radius, or bounding-box

Rec bb

GRPCTimeout Deadline until a GRPC re-
quest times out

Rec 5s

AngleThreshold Minimum angle between
two segments

5.3 Det 3

MaxCpuUsage Maximum CPU usage of
a node

5.5 LB 70%

AggregationTimeWindow Time window to aggregate
requests

6.2.2 Det 5 sec

AggregationBoundingBox Geohash character preci-
sion of aggregation Bound-
ing Box

6.2.2 Det 6

CacheCurvesTimeInterval Cache duration of curves
in MongoOperator before
persisting

6.2.2 Det 5 sec

OSMPartitions Number of operator parti-
tions to handle

6.2.2 Det 5 sec

RefreshServiceList Time interval to refresh
service list

4.6 Car 5 min

Table 6.1: Configurable parameters of the cornering application
Comp.: Component

Det: Detection service
Rec: Recommendation service

LB: Load balancer

57

6. Prototype

CarDB

Consul-Server
0..3

Service Nodes
1..ndetectionrecommendation

MongoDB
Cluster

Overpass Instance
1 1

Cloud Datacenter

Cloud Datacenter Cloud Datacenter

Figure 6.6: Overview of Deployment Model 1

• 0..3 Consul-Servers

• 1..n Servers for running recommendation and/or detection services

• 1 MongoDB-Cluster

The lower-bound cardinality of 0 Consul-Servers only is applicable if the services are not
scaled, i.e. there is exactly 1 recommendation node and 1 detection node. In this case no
load-balancing needs to be performed and the clients and services can communicate via
fixed IP’s.

Deployment Model 2 (DM2)

Similar to the first model, this model follows the typical way of having one large data-
center that runs the application specific services. As Figure 6.7 points out, the main
difference of this deployment model is that all external services are put into the same
data-center.

Overpass API: This model requires to setup and install an own instance of the Over-
passAPI. At the time of writing the thesis, the minimum hardware requirements for
running an instance are 1GB RAM and about 200GB - 300GB disk space (usage of SSD
disks is highly recommended) for a full planet instance. The actual memory requirements
of course depend on the maximum number of concurrent requests the instance needs to
handle. Additionally, the instance needs to be setup with OpenStreetMaps data, covering
the desired region. While the Main OverpassAPI servers cover whole planet earth, the
map data for this instance can of course be reduced to only the region that is needed (for

58

6.3. Configuration & Deployment

CarDB

Consul-Server

0..3

Service Nodes

1..ndetectionrecommendation

MongoDB
Cluster

Overpass Instance

1

1

Cloud Datacenter

Figure 6.7: Overview of Deployment Model 2

instance Austria). In this case the required disk space of course also decreases depending
on the selected region. Fortunately, there are lots of OSM map data exports that cover
different regions, countries or even cities. A very popular provider for OSM data exports
is Geofabrik[Fouc]. Compared to using the servers provided by the OSM Foundation,
running an own instance has the great advantage of using it limitless.

MongoDB Cluster: The database cluster in this case needs to be deployed onto the
existing application-specific data-center. Fortunately, as described in DM1 already,
existing DaaS allow to easily install clusters at several cloud provider (AWS, Google
Cloud Platform or Microsoft Azure).

The following list sums up the concrete resources needed for managing this deployment
model:

• 1..3 Consul-Servers

• 1..n Servers for running recommendation and/or detection services

• 1 MongoDB-Cluster

• 1 OverpassAPI instance

Deployment Model 3 (DM3)

A key focus of this thesis is to create an architecture for a system that can be deployed
to future edge infrastructures (see Section 4.3). The first two deployment models only
used the traditional approach of using cloud data centers.
Assuming the availability of edge computing servers (for instance MEC servers at BTS),
this deployment model shows how the application can be deployed using a combination
of edge- and cloud nodes. As Figure 6.8 shows, this deployment model still has one cloud
data center that is able to run all services as before. Additionally though, application-

59

6. Prototype

detection

recommendation

CarDB

Cloud Datacenter

Overpass Instance 1

MongoDB
Cluster

1Service Nodes

0..ndetrec

Consul-Server

0..3

Edge Node (high compute)

det

0..
n

...

...

rec

consul

detection

recommendation

Edge Node (low compute)

rec

0..
n

...

detection

recommendation

Edge Node (low compute)

consul

0..
3

...

Figure 6.8: Overview of Deployment Model 3

specific services, namely consul, recommendation and detection, are also placed across
edge nodes.

As described in Section 4.3, it is assumed that edge nodes can be very different in terms of
available resources (i.e. cluster-size, CPUs, memory, storage, etc.). In their IoT platform
called EFF [Cis17a], Cisco Systems for instance use two types of hardware specifications
for their edge nodes: low compute and high compute hardware.
The specifications of both of the types are summarized in table 6.2.

Edge Node Type low compute
Disk Space N/A
Hardware Single Core
Memory 256MB

OS Red Hat 7.2, CentOS 7.2,
Ubuntu 14.04 LTS, Windows 10, IOX

Edge Node Type high compute
Disk Space 100GB
Hardware 6 Core
Memory 2GB/core

OS Red Hat 7.2, CentOS 7.2,
Ubuntu 14.04 LTS, Windows 10, IOX

Table 6.2: Specification of two types of edge nodes currently used in the industry (Cisco
Systems[Cis17a])

In the following, we denote the hardware specifications of an edge node as size, or shortly

60

6.3. Configuration & Deployment

S(edge). To follow current industry standards, in this thesis, the types presented in Table
6.2 are inherited. Hence, S(edge) can either be low compute or high compute.
The number of available edge nodes is denoted as N and the number edge nodes of a
specific size will be denoted as N(S(edge)). The placement of services on edge nodes, but
also on cloud nodes, highly depends on both of these values. To run a single consul-server
for instance, very few resources are needed. Also running the recommendation service
should run well on low resources. On the other hand, running the detection service
which includes running an Apex Application on a Hadoop cluster, requires more powerful
resources.
One significant change compared to the first two deployment models is, that with using
edge nodes, the number of service nodes and consul servers at the cloud can now range
from 0 to n and 0 to 3 respectively (compared to 1 to n in the first two models). Hence,
in case there are already 3 or more consul servers deployed to edge nodes, at the cloud no
more consul-servers are needed. Similarly, if there are many detection/recommendation
services deployed to edge nodes, at the cloud, few or no more services need to be deployed.
This way, external services still are deployed to the cloud, application-specific services
though can be deployed to the cloud only as backup resources. In case edge nodes are
busy or even crash, the cloud nodes can serve as backup nodes.
The following list sums up the concrete resources needed for managing this deployment
model:

Cloud:

• 0..3 Consul-Servers

• 0..n Servers for running recommendation and/or detection services

• 1 MongoDB-Cluster

• 1 OverpassAPI instance

Edge:

• 0..n low compute edge nodes

• 0..n high compute edge nodes

Deployment Model 4 (DM4)

Taking the usage of edge nodes even one step further than in DM3, also external services,
that previously were reserved for executing in the cloud only, could be deployed to the
edge (see Figure 6.9).

Overpass API: In this model an OverpassAPI instance can be put at the edge. In
case the detection is performed at the edge as well, large latency improvements can be

61

6. Prototype

Edge Node (high compute)

MongoDB
Shard 0..

n

Cloud Datacenter

Overpass Instance 0..1

MongoDB
Cluster

0..1Service Nodes

0..ndetrec

Consul-Server

0..3

...

Edge Node (high compute)

0..
nOverpass

detection

recommendation

Edge Node (high compute)

det

0..
n

...

rec

consul

detection

recommendation

Edge Node (low compute)

rec

0..
n

...

detection

recommendation

Edge Node (low compute)

consul

0..
3

...

CarDB

Figure 6.9: Overview of Deployment Model 4

expected. At the cloud, an instance of the OverpassAPI can now be put optionally (for
example as a backup instance).

MongoDB Cluster: The same goes for putting parts of the database closer to where
the recommendation server runs. One MongoDB instance can be deployed to each edge
node. This way, the recommendation service no longer needs to query the DB at the
cloud, but can directly receive data from close edge nodes and again latencies could be
reduced. Another database cluster at the cloud can be used as large backup database in
case edge nodes fail or die for instance.
Deploying a database cluster like this requires additional logic. For instance all detected
curves in one edge data-center need to be synchronized with the central database in the
cloud. In case an edge node fails and later on recovers, curves should be restored from
the backup. These functionalities are not covered in the prototype of the thesis. If both
the OverpassAPI instance and the MongoDB are deployed to the edge, this deployment
model assumes the availability of (possibly many) high compute edge nodes in one area.

Cloud:

• 0..3 Consul-Servers

• 0..n Servers for running recommendation and/or detection services

• 0..1 MongoDB-Cluster (as centralized database collecting all data from shards and
serving as backup)

• 0..1 OverpassAPI instance

Edge:

62

6.3. Configuration & Deployment

E-LNZ E-VIE

E-GRZE-IBK

...Edge Node

...Cloud Node

C-Frankfurt

E-SZB

Figure 6.10: Illustration of how a combined edge-cloud-architecture could look like in
Austria

• 0..n low compute edge nodes

• 0..n high compute edge nodes

Location of Deployment: The location of deploying the edge nodes should depend
on the locations of drivers that are sending requests. If deploying the system to cover
Austria for instance, Figure 6.10 proposes 5 different locations to deploy the Edge Nodes.
Each edge data-center (blue) handles drivers that are within its area. The areas can be
encoded using geohashes.
Using DM4, each edge data-center can operate independently from each other. Hence,
the Overpass instance only needs map data for a certain region and the database only
stores curves that are within this region. Since each edge node only handles a subset
of complete Austria, queries to caches, databases and Overpass would perform faster.
The areas, depicted as black rectangles in the figure, are arbitrarily taken and do not
represent real geohashes.

6.3.3 Sample Deployment using Docker

Using virtualization in the cloud, applications consisting of many services can easily be
deployed nowadays. As described earlier in Section 2.3.2, also in MEC, developers will be
able to deploy and execute applications within virtual machines. Using docker, services
can be mapped to containers that execute on virtual machines.
For our services, the prototype contains docker configurations to deploy them to virtual
machines. In order that containers across different physical machines can communicate
to each other, a so called overlay network using docker swarm [Incb] is created. Figure
6.11 shows a sample deployment of the application using docker in swarm mode. This

63

6. Prototype

swarmnet
(overlay-network)

rec-1

grpc-server-1

consul-client-1

prometheus-1

redis mongo

rec-2

grpc-server-2

consul-client-2

prometheus-2

redismongo

det-3

node-exporter-1 node-exporter-2

consul-client-3

apex

rabbit-3

node-exporter-3

consul

consul-server

Figure 6.11: Sample deployment of the application using docker and docker swarm

sample deployment consists of 1 consul-server, 1 detection service and 2 recommendation
services. Additionally, external services namely a central database, an Overpass instance
and a container to monitor the application are deployed. The external services are not
part of the internal overlay network.
Figure 6.12 shows a Grafana-Dashboard with metrics of the sample deployment running
2000 cars. The graphs for the CPU-usage show how the load is balanced between rec-1
and rec-2. At around 2 minutes of execution, rec-1 peeks at exactly 70% CPU usage.
After that, the load balancing algorithm decides to no longer take requests at rec-1. This
results in more requests at rec-2. This way, the CPU usage of rec-2 increases, while the
CPU usage of rec-1 recovers to be able to handle requests again. The configurations for
this sample deployment are available in the source-code of the prototype.

6.4 Summary
In this chapter we introduced our prototype implementation of the cornering-assistance-
application. The prototype implements many software components that we presented in

64

6.4. Summary

Fi
gu

re
6.
12

:
M
et
ric

s
of

th
e
sa
m
pl
e
de

pl
oy
m
en
t
ru
nn

in
g
20

00
ca
rs

vi
su
al
iz
ed

as
G
ra
fa
na

-D
as
hb

oa
rd

65

6. Prototype

detail. Since our system can be understood as a framework that is highly configurable
for specific needs, we provided an overview of all parameters and our used default values
for the prototype. Our system is designed in way to be deployable to cloud and edge
infrastructures. We presented 4 different models that demonstrate different deployment
possibilities. We concluded the chapter with describing a sample deployment of our
prototype by running multiple simulated cars.

66

CHAPTER 7
Evaluation

7.1 Overview
In previous chapters, the design, algorithms and finally a prototype of the cornering
assistance application were elaborated. This chapter evaluates the implemented prototype
by the three factors: performance, data quality and costs.
For performance and data quality, experiments will be run on different settings and
environments that are discussed in the respective sections. Finally, costs will be estimated
for the different models.

For the thesis, the goal of our evaluation is to clarify the following questions:

• Q1: How many drivers can the system handle in parallel?

• Q2: How long do drivers have to wait for curve results?

• Q3: How accurate are detected curves?

• Q4: How well are curves detected along roads? While driving, does the system
detect approaching curves?

• Q5: How well does the detection perform on inaccurate GPS positions, or even
GPS outages?

• Q6: What happens if the mobile network is slow?

• Q7: How much would it approximately cost to run the system for all drivers across
Austria per month?

We will give answers to these questions by performing multiple experiments that are
covered in the following sections.

67

7. Evaluation

7.2 Test Data

To evaluate our prototype we used different test tracks that are described in the following
sections. All test data sets are available in our open-source prototype.

7.2.1 Test tracks

For this project, the Austrian Road Safety Board (KFV)[kfv] provided a database con-
taining real trip information collected during a field study. The provided PostgreSQL[pgs]
database dump contains car trips of 26 study participants during a time period of six
months in the year 2016. Altogether the database contains trips of more than 46.000
kilometers on Austria’s roads. Any personal data such as driver’s name, car-details,
address, phone number etc. have been deleted from the provided dump and are not
available for the thesis. By contract with the KFV, the database and its contents may
be used only for the purpose of this thesis at the TU Wien.
Stored trips in the database have been recorded through an Android application installed
on driver’s smartphones who carried them within the car. The application collected the
timestamps of recordings, location data and sensor readings from the gyroscope and the
accelerometer. The frequency rate for all readings was 1Hz. Additionally the smartphone
was paired with an installed OBD II dongle collecting further detailed data such as engine
revolution, fuel consumption, speed and many more. The only relevant fields for thesis
are: Timestamp, Latitude, Longitude.

We use tracks from the provided database for the performance tests and created a subset
of the database consisting of around 1000 unique trips. To increase the number of unique
trips, this subset was further subdivided into tracks containing GPS coordinates for 5
minutes. This leads to a total of 4832 unique trips that can be used for the evaluation.
Figure 7.1 visualizes all tracks that are used for the evaluation on a map.

7.2.2 Test track with measured curves

To perform data quality experiments, it is necessary to have a set of measured curves,
preferably in Austria, that can be used to compare our results of the curve detection
to curves in the real world. In a master’s thesis[Sch11] from the University of Natural
Resources and Life Sciences in Vienna (BOKU), we found a test set of measured curves.
For his evaluation about driver behavior on different curves, Schmidl specified a test-track
with locations of multiple curves. In total, his test-track consists of 40 curves. To receive
measured values for the radius of each curve, the author used data provided by the
road detection system ROADStar [Tec], which is maintained by the Austrian Institute of
Technology (AIT). ROADStar is a "mobile laboratory" that periodically measures road
conditions, targeted mainly to provide cost-effective maintenance planning for roads in
Austria. The pre-defined test-track chosen by the author was sampled twice (once per
direction) by ROADStar, resulting in two slightly different values for the radius.

68

7.3. Performance Evaluation

Figure 7.1: All test tracks used for the performance evaluation. The blue rectangle shows
the OverpassAPI coverage within Austria.

For the evaluation of our prototype, we will use only 1 direction, which results in 21
curves. To receive latitude and longitude values, for our evaluation, each curve was
located manually by using the provided image and OpenStreetMaps. In case a curve had
two values for the radius, we simply used the mean value. Table 7.1 lists our selected
curves with its location and radius values. Now that we have a set of measured curves,
we need location data of a driver going along a path visiting all curves. To simulate
a driver going along our test track, we created GPS data points. To create the GPS
coordinates, we sent above listed curve locations to a public available route service called
Project OSRM[OSR]. The service calculates the fastest route between the given points
and returns a list of IDs of OSM nodes. To finally receive GPS locations from the
resulting node IDs, we used the Overpass API[Fou17]. Our resulting track consists of
383 GPS coordinates. Figure 7.2 visualizes the created GPS data points together with
the measured curves along our test track.

7.3 Performance Evaluation

For evaluating the performance of the prototype, two of the presented Deployment
Models (see Section 6.3.2) will be compared. One cloud-only model will be compared
to a combined edge- and cloud-based model. For each type of model, two deployment
models have been presented in Section 6.3.2.
To test the performance of the system, many cars driving concurrently are simulated.
The goal of the performance tests is to find out approximately how many drivers the

69

7. Evaluation

 …
 m

easured curves
 …

 G
P

S
 path

Figure
7.2:

Test
track

w
ith

m
easured

curves
and

G
PS

coordinates
along

our
test

track

70

7.3. Performance Evaluation

ID lat,lon radius
1 48.151677, 15.525706 286
4 48.151296, 15.517207 286
5 48.146191, 15.495941 245
7 48.144730, 15.495242 295.5
9 48.136539, 15.483416 351.5
11 48.130847, 15.481313 226
13 48.129647, 15.478860 245.5
15 48.116701, 15.459248 150
17 48.116552, 15.456408 228.5
19 48.115907, 15.446606 294
21 48.114155, 15.439727 249.5
23 48.111861, 15.433888 197
25 48.111403, 15.428590 160.5
27 48.099881, 15.422875 212
28 48.096802, 15.450801 107
29 48.094158, 15.460351 176
31 48.096025, 15.470488 108
33 48.095161, 15.475041 168.5
35 48.094973, 15.477507 220
39 48.095331, 15.484366 71
40 48.094820, 15.485075 93

Table 7.1: Selected curves with measured radius available for evaluating data quality

system running on two different deployment models can handle, such that result times
are acceptable. Table 7.2 shows the metrics that are of interest for this test.

Metric Name Description
response-time Average time (in ms) that passed between all sent recommen-

dation requests and all received responses. "How fast does the
recommendation-service respond"

result-time Average time (in ms) that passed between all sent recommendation
requests and only received responses that contain curves. "How
long do clients have to wait for curves as final result?"

response-ratio Ratio of all sent requests (recommendation & poll) to any received
response. "How many requests are answered?"

result-ratio Ratio of all sent requests (recommendation only) to received curve
responses. "How many requests are answered with curve results?"

number-of-drivers Total number of drivers that were constantly driving during an
experiment.

Table 7.2: Metrics used for performance experiments

71

7. Evaluation

7.3.1 Simulation Application for Performance Evaluation

In order to be able to test the system with multiple drivers, a simulation application as
well as test-tracks are needed. Our simulation application to run the performance tests
is part of the prototype implementation, introduced in the previous chapter of the thesis.
The application is wrapped in a SpringBoot[Spr] application that contains the simulation
application and a web-server. The simulation application can run a configurable test
instance. Each test creates a number of configurable drivers. Every driver runs in its
own thread. To avoid blocking the application (i.e. GPS locations shall be emitted
continuously), each driver has two extra single-threads to send requests and handle
responses.

numThreads = numDrivers ∗ (1 + 2) = numDrivers ∗ 3

A driver instance simulates GPS tuples that are read from available .csv-files. The GPS
emits latitude, longitude pairs as they were recorded. Each driver can access the remote
recommendation service via a gRPC-stub. Within a test run, Prometheus metrics are
captured using the instrumentation Java client[Proc].
Our simulation application implements a web-server. Its main purpose is to export
captured Prometheus metrics to an endpoint. A monitor running Prometheus can scrape
the metrics from the provided API endpoint to see test results on the fly. Additionally,
the web-server provides a simple UI to start tests, specify parameters and stop tests.
The UI was implemented using the framework AngularJS[ang]. Figure 7.3 shows the
components of the SpringBoot application and the UI to start tests. When running the
performance application with thousands of drivers, in the worst-case, also thousands of
OverpassAPI requests would be sent. Since the main-server is very limited in usage (see
Section 6.3.2), an own private instance is setup in the cloud. On the private instance, the
database needs to be initialized with map data. To reduce the installation size on the
instance, a custom map export was created using BBBike’s extract tool[Sch]. Since most
of the trips in the database provided by the KFV lie within the "Graz & Umgebung"
area, the database was initialized with this area only. The exact coverage of the private
OverpassAPI instance can be seen in Figure 7.1.

7.3.2 Experiment 1 - Performance of cloud-only model

Experiment 1 tests a cloud-only model. In general both DM1 (Section 6.3.2) and DM2
(Section 6.3.2) could be used for testing this type of model. Since having limitless
query possibilities, i.e. running an own instance of OverpassAPI, is crucial for doing the
evaluation, DM2 qualifies best and will be used for this experiment.

Testbed for Experiment 1

To provide an appropriate cloud environment for the system, multiple resources hosted
on Google Cloud Platform (GCP)[gcp] are used. For the evaluation, the presented list of
required resources for DM2 (see Section 6.3.2) will be covered by virtual machines running
at GCP. In order to avoid high costs for the evaluation, the minimum requirements of

72

7.3. Performance Evaluation

W
eb

Se
rv

er

P
O

S
T
st
ar
tT
es
t(c

on
fig

s)
P

O
S

T
st
op

Te
st
()

G
E

T
m
et
ric

s(
)

Si
m

ul
at

io
n

A
p

p
li

ca
ti

o
n

(p
er

fo
rm

an
ce

)

U
I

Te
st

E
xe

cu
to

r

Te
st*

D
riv

er*

R
ec

S
tu

b1

G
P

S
11

Tr
ip

M
an

ag
er

Tr
ip

Fi
le

1*

Fi
gu

re
7.
3:

C
om

po
ne

nt
s
of

th
e
ap

pl
ic
at
io
n
to

ru
n
pe

rf
or
m
an

ce
te
st
s

73

7. Evaluation

Name Service Type Specs
Local Fleet MacBook Air 8GB RAM, 2 x

1.8GHz, IntelCore
i5, Network: LTE,
Max Java Threads:
2009

Cloud Fleet GCP n1-standard-1 default, Network:
75-300mbps

Recommendation GCP n1-standard-1 default
Detection GCP n1-standard-4 default

OverpassAPI GCP n1-standard-8 default
MongoDatabase GCP n1-standard-1 default

Table 7.3: Hardware specifications for Experiment 1

this list, i.e. the lowest cardinalities of each element, are used. This implies that load
balancing, as described in Section 5.5, is turned off. A positive effect of turning off load
balancing is that it makes it easier to compare cloud- and edge-based models. Since
load balancing and using many VMs in the cloud can theoretically be scaled almost
unlimitedly, it would not be possible to find an actual maximum number of drivers that
can be handled. Using load balancing in the cloud would also make it hard to compare
the system to the edge model, where we have very limited resources (especially for the
evaluation). The downside of course is that the possible maximum number of drivers
will drop significantly. Also instead of having to pay for a hosted MongoDB cluster, for
instance AtlasDB, a single self-hosted MongoDB instance suffices for the evaluation tests.

To simulate a large number of cars, multiple so called "fleets" of cars can be started on
different machines. Therefore, the simulation application, which was presented earlier
in Section 7.3.1, is deployed to each available machine. This way, every machine can
start an arbitrary number of drivers. A local machine and a GCP virtual machine are
used to create the fleets. To keep the system independent from the fleets and provide
a more realistic setting, they are deployed in different regions. Hence, the system and
the fleets never run in the same private network (VPC). The available internet speed at
the cloud fleet is very fast. During the test runs it varied between 75mbps and 300mpbs.
At the local machine, the maximum network bandwidth was throttled to Long Term
Evolution (LTE) using Apple’s Network Link Conditioner[NSH]. To give a realistic
answer to question Q2, only result- and response times are used where the network was
bound to LTE . Tables 7.3 and 7.4 list all specific resources and specifications that are
used to provide the deployment for this experiment. Specifications for GCP resources
are taken from the GCP web-page[Goo17b].

74

7.3. Performance Evaluation

Software Component Parameter Value
Car Simulation Application performance

LocalSearchBoundingBox 6
Poll Delay 3s
Max Polls 3 (6)
GRPC Timeout 5s

Recommendation Find Curves Mode "geohash"
Geohash-Precision 6
Simulate WeatherAPI true
WeatherBoundingBoxSize 4

Detection AggregationTimeWindow 1s
Aggregation BB Size 6
OSMPartitions 5
Overpass-Server private
AngleThreshold 2°

Table 7.4: Software specifications for Experiment 1

Caching

A very important factor for evaluating the performance is the cache-hit-rate. On every
request to the recommendation, a lookup is done first at the local cache on the requested
service. In case nothing is found, the distributed database (which the detection writes
to) is queried. Depending on how many curves are already in the caches, responses can
be handled faster since the detection does not have to be called. To see this behavior, for
each run, one of the two following cache configurations are available:

• full-cache: The distributed cache already has a predefined set of curves stored.

• empty-cache: The distributed cache is completely empty.

While empty-cache shows how the system behaves in its initial deployment phase, full-
cache shows how the system behaves when its already deployed for a while. To be able
to import data for the full-cache scenario, an initial test run with 100 drivers constantly
driving for around 1 hour was executed. This resulted in the a cache data set of 20.000
curve-objects which corresponds to a database size of 5.2MB.
Before each full-cache test run, both caches at recommendation and the central database
service were cleared and restored with the above mentioned pre-calculated curve set. In
case the system is run on empty-cache, the software parameter MaxPolls is increased to
6. This is because in such a scenario, the detection will take longer to store the curves.
To reduce the number of timeouts, the client polls the recommendation service for curves
more often.

75

7. Evaluation

Test Runs of Experiment 1

To find out the number of drivers that can be handled, multiple runs will be executed
on the given testbed. The number of drivers is increased on every following test run.
This way we will find out the approximate boundaries of the prototype running on the
configured test environment. For each test run, the metrics: number-of-drivers, response-
time, response-rate, result-time and result-rate will be analyzed. To be consistent, all
runs are executed for approximately the same duration. The duration for each test-run
was set to approximately 7 minutes. In test runs 1-9, the goal is to increase the number
of drivers and find the maximum the system can handle. The last two test runs 10 and
11 are designed in a way to find out a realistic value for response- and result times. In
case a simulated driver finished its trip, i.e. it reached the end of the .csv-file to read in
GPS coordinates, a new trip is started immediately. This way the number of drivers is
always constant.
In Experiment 1, we run the simulation application natively on a local MacBookAir
laptop. On the provided machine, a maximum of 669 drivers (= 2009 Java Threads /
3) can be started. To avoid running out of memory, the maximum number of drivers
was bound to 500 on the local machine. On Linux (64 Bits) machines the maximum
number of Java threads is much higher and during the test runs no problems occurred
when running with 1500 or even 2000 drivers.

Run Drivers C/L rT rR resT resR cache
1 100 50:50 288 97% 351 87% full
2 500 50:50 361 90% 441 78% full
3 1000 50:50 383 82% 391 70% full
4 1500 67:33 958 77% 1021 65% full
5 2000 75:25 4224 11% 4342 9% full
7 100 50:50 174 99% 1457 61% empty
8 500 50:50 184 99% 527 64% empty
9 1000 50:50 226 99% / 0% empty
10 500 0:100 322 88% 383 77% full
11 500 0:100 321 99% 726 83% empty

Table 7.5: Test results of Experiment 1
Drivers: Total number of drivers that were constantly driving.

C/L: Ratio of how many drivers were running on the cloud instance compared to running locally.
rT: response-time

rR: result-rate
resT: result-time
resR: result-ratio

cache: Test started with "full-cache" or "empty-cache"

Evaluation of maximum number of drivers - cloud-only model

Using the results of the test runs from Experiment 1 (Table 7.5), we evaluate question
Q1 and find out the maximum number of drivers running on the cloud-only model. As
expected, the more drivers are added to the system, latencies increase, while response-and

76

7.3. Performance Evaluation

Figure 7.4: Prometheus metrics of successful test run 4 running in the cloud with a
"full-cache" with 1500 constant drivers.

result rates decrease. The response-rate and with it the result-rate, slightly drops with
adding more drivers. The main reason for this is that at the recommendation service,
the single MongoDB instance can only handle up to 500 connection concurrently. If all
connections are taken, this will lead to a gRPC-timeout, resulting in an unanswered
response. In a production system, a hosted MongoDB cluster can be configured to
serve more connections. The largest M100 cluster hosted at AtlasDB for instance can
serve up to 16000 connections[Monb]. In Figure 7.4 the Grafana[Lab]-Dashboard shows
informations and metrics collected by Prometheus from the two target car fleets of run 4.
Figure 7.5 shows that with caching, the streaming application at the detection service
never receives more than 75 requests per second, resulting in very good latencies of only
of around 500 ms. Test Run 5, with 2000 drivers, showed the limits for the prototype
running without load balancing. On average, only around 10% of the requests resulted in
responses or results. The reason for the failing requests is that the single recommendation
server reached its limits after around 5 minutes of execution. As depicted in Figure 7.6,
the CPU usage of the instance peaked to 95% and finally reached 100%. The gRPC-server
could no longer handle requests, resulting all following requests to fail. In case more
recommendation servers would be available with load balancing enabled, this state would
have been avoided.
Test runs 7-9 show how the system performs when it is freshly deployed (empty-cache).
While the response-times stay low and 99% of the requests are responded, the result
times went up compared to running with full-cache. Since every request in the very
beginning of the test run results in calling the detection, in the worst case, when no
aggregates could be found, the Apex streaming application has to handle a request from
every driver at the same time. While the system still was able to handle up to 500

77

7. Evaluation

Figure 7.5: Apex metrics of successful test run 4 running in the cloud with a "full-cache"
with 1500 constant drivers.

Figure 7.6: Failing recommendation service when running 2000 cars due to CPU limits.

78

7.3. Performance Evaluation

Figure 7.7: Screenshot of the Apache Apex Operator Widget showing that the aggregation
only reduces incoming requests by 12%, eventually causing the application to fail to
respond to requests.

drivers, at 1000 drivers the detection service failed. The reason for the failing detection
service is the OSMOperator. When many requests are incoming at the same time, the
single OverpassAPI instance blocks the application flow. Even though the OSMOperator
was partitioned to 5 instances, still this did not resolve the bottleneck. As presented in
6.2.2, the Apex application contains a RequestAggregator that tries to aggregate similar
requests by time and location. As Figure 7.7 shows, in test run 9 this resulted in 1630
tuples that the OSMOperators and OverpassAPI needed to handle. This caused extreme
latencies, i.e. no tuples exited the pipeline and the recommendation service could not
serve any further curves. The configured TimeWindow of only 1 second and geohash
character precision of 6, were only able to reduce the tuples by around 12%. To decrease
the tuples at the Aggregator, in another test run, the TimeWindow was increased to 3
and the Geohash precision was set to 4 (causing a very large area to create aggregates).
Using this configuration, at 2000 incoming tuples, the operator was able to aggregate
the tuples by almost 87% to only 266. Having larger aggregates though also implies
having larger results in terms of data. While the latencies of the OSMOperators were

79

7. Evaluation

Figure 7.8: Failing unifier operator (marked in blue) when trying to increase aggregates
to reduce the amount of tuples before querying Overpass.

reduced, the downstream operator to unify the results was not able to handle the amount
of emitted ways and failed, causing the pipeline to be halted. Figure 7.8 shows the failing
unifier operator in blue. One solution to fix this problem would be to also partition the
downstream DetectCurves operator. When the OSMPartitions are set to 5, this would
also lead to 5 additional containers for the DetectCurves operator. Having 5 additional
containers would increase the already very high memory usage even more. While on a
cloud instance this could be easily achieved by buying a larger VM, at the edge this is
not yet a solution since computational resources are very limited.

Running the application on the given testbed when it was already deployed (full-cache),
the maximum number of drivers lies between 1500 and 2000 drivers.
Test runs 7-9 showed how important caching is for running the application. When the
caches are empty, the system fails at running 500 to 1000 drivers. Before deploying
the system to a ready-to-use state, it should be considered to run the application in
detection-mode first for a certain time. This can be achieved by simply providing geohash
locations that are known to be frequently driven to the detection service. Another option
would be to scale the Overpass-server to multiple high-compute instances. While this
would resolve the bottleneck, if low costs are of importance, this should be only considered
as a second option.

Evaluation of result time - cloud-only model

With the given results, we can evaluate question Q2 - "How long do drivers have to wait
for curve results?". To that end, we find out the average result-time when the prototype
is deployed to the cloud-only model. With full-cache, the prototype showed very good

80

7.3. Performance Evaluation

Run 10: 500 drivers, LTE network, “full-cache”

Run 11: 500 drivers, LTE network, “empty-cache”

Figure 7.9: Comparison of result times when running 500 drivers at LTE speed with
full-cache vs. empty-cache

results until test run 4, with drivers receiving curves with an average delay of only around
1 second. Since in test runs 1-9, the cloud-fleet had very high network bandwidths
available, these results are not used for determining the actual result time. This has been
done in test runs 10 and 11, where a realistic scenario of 500 drivers with LTE network
was executed. As it can be seen in Figure 7.9, the maximum result-time on full-cache,
at the very beginning of the run, was at around 1.5 seconds. When the system was up
for around 7 minutes on full-cache, this value dropped and on average drivers received
curves in 383ms. Compared to when all caches were empty, the maximum result-time
was at around 4 seconds and after 7 minutes of run time dropped to an average of 726ms.

When running 500 drivers at LTE speed (full-cache), on average a driver receives
curve results in less than 0.4 seconds. On a system start-up (empty-cache) this
value almost doubles and a driver still receives curve responses in no more than 0.8
seconds.

7.3.3 Experiment 2 - performance of cloud/edge model

The second experiment tests the combination of using both edge-and cloud computing
models. Both DM3 (Section 6.3.2) and DM4 (Section 6.3.2) could be used for testing
this type of model. As discussed in Section 6.3.2, DM4 shows how to use edge nodes to
cover many specific areas. This deployment model suited well because of the fact that

81

7. Evaluation

the private OverpassAPI covers only a specific area. Hence, Experiment 2 deploys DM4
using a simulated edge node located in Vienna. Instead of using actual data from the
Vienna area, the available test tracks in Graz & Umgebung are used. The actual location
of the data though is not of importance and any other region could also be used.

Testbed for Experiment 2

As deploying applications to MEC servers is not yet possible, edge resources, i.e. edge
nodes, are simulated in the thesis. For the evaluation, an edge node is represented by a
server provided by the TU Wien. The local server is provided by the DSG group[dsg]
and runs in their "DSG Cloud" which is implemented in the open-source framework
OpenStack[Opea]. The resources of the used virtual machines are configured in a way
to be comparable to a high compute edge node that is currently used in the industry
and was presented earlier in Table 6.2. For the lack of having multiple edge nodes,
similar as in Experiment 1, the lowest cardinalities of the elements in the presented list
for DM4 are used. Hence, instead of n edge nodes, only 1 edge node with S(edge) =
high compute is deployed. Besides the edge node, DM4 requires an additional cloud
data-center. Similarly to Experiment 1, GCP is used to provide resources in the cloud.
As noted in the description of DM4, synchronization between edge databases and a
central database is not covered in the prototype. Therefore a central (backup) database
is not deployed at the cloud. To run an OverpassAPI instance that can handle many
requests at a time, many resources are needed. To keep resources at the DSG Cloud low,
the same instance, as it was deployed in Experiment 1, will be reused.
To increase the number of drivers that can be executed in one test, compared to Exper-
iment 1, the simulation application was deployed via a Linux-based docker image on
the local laptop. This way, it was tested that around 5000 drivers could theoretically
run in parallel. The cloud fleet is no longer executed, as the goal is to provide an edge
scenario with cars running in close proximity to the server. Table 7.6 breaks down the
specification of the VMs for running the simulated edge node and the cloud node. The
software specifications are the same as in Experiment 1. As presented in the very last
line of the table, when summing up all resources of the VMs running in the simulated
edge node, the CPU and memory specifications almost exactly match the one’s specified
by Cisco’s high compute edge node (see Table 6.2). Differences are 1 additional CPU
core, around 1.5 GB additional RAM and slightly more disk space of 20GB in total. To
fit the specification of the simulated edge node, for the detection, an instance type of
"m1.large" results in around 8GB of memory, compared to 15GB in Experiment 1. In
Experiment 1 the actual used memory for the yarn resource manager was decreased to
12GB. In order to be able to run the Apex application with the same partition size as in
Experiment 1, each operator memory was reduced from 512 MB to 256MB.

Test Runs of Experiment 2

Test runs will be executed in the same way as described in Experiment 1. This time
though we want to simulate an edge scenario. Hence, drivers shall send requests within

82

7.3. Performance Evaluation

Name Service Type Specs
Local Fleet MacBook Air 8GB RAM, 2 x

1.8GHz, Intel-
Core i5, Network:
LTE, Max Java
Threads: 2009

OverpassAPI GCP n1-standard-8 default
Recommendation DSG Cloud m1.medium CPU Cores: 2

Memory: 3.75GB
DiskSpace: 40GB

Detection DSG Cloud m1.large CPU Cores: 4
Memory: 7.68GB
DiskSpace: 40GB

MongoDatabase DSG Cloud m1.small CPU Cores: 1
Memory: 1.92GB
DiskSpace: 40GB

Simulated Edge Node DSG Cloud CPU Cores: 7
(total) Memory: 13.5GB

DiskSpace:
120GB

Table 7.6: Hardware specifications for Experiment 2

close proximity to the requested server. This was achieved by using only the local
laptop (the same as in Experiment 1) sending requests to the simulated edge node in
the DSG Cloud. During the tests, the laptop was run inside the TU Library, hence
the actual distance to the simulated edge node was around 500m. For each test run,
the metrics number-of-drivers, response-time, response-rate, result-time and result-rate
will be analyzed. Again the test-runs were canceled at around 7 minutes. Test runs 1-4
executed on full-cache and 5-7 on empty-cache.

Evaluation of maximum number of drivers - cloud/edge model

Table 7.7 shows the results of Experiment 2. Until test run 5, the prototype running
in the simulated edge node performed very well. Same as in Experiment 1, also in
Experiment 2 the maximum number of drivers when running on full cache was found
after running 2000 drivers in parallel. The reason again was the single gRPC server at
the recommendation server that was no longer able to handle more requests, leading to
failing responses and results. Since the specifications for the VMs are almost the same, it
should not be too surprising that the values are very similar to Experiment 1 running
in the cloud. The cloud prototype’s response and result times are slightly better. The
reason for this was the higher network bandwidth between the simulated drivers and
the servers. When running on empty cache, compared to the cloud prototype, the edge

83

7. Evaluation

Run Drivers rT rR resT resR cache
1 100 395 99% 489 86% full
2 500 493 84% 587 84% full
3 1000 513 72% 584 84% full
4 1500 951 88% 996 76% full
5 2000 4551 8% 4612 7% full
6 100 291 99% 1649 70% empty
7 300 284 49% 1846 25% empty
8 500 450 42% / /% empty

Table 7.7: Test results of Experiment 2
Drivers: Total number of drivers that were constantly driving.

rT: response-time
rR: result-rate

resT: result-time
resR: result-ratio

cache: Test started with "full-cache" or "empty-cache"

prototype already failed earlier, at 500 drivers. The reason for this is the lower memory
capacity for running the Apex application, causing the OSMOperators to fail.

Experiment 2 showed, that similar to Experiment 1, the prototype is able to handle
between 1500 and 2000 drivers on hardware that can be compared to an edge node
currently used in the industry. Running the prototype on an empty-cache reduced this
number to only 300 drivers. This is due to the lower available memory for running
Apache Apex to detect curves.

Evaluation of result time - cloud/edge model

At the last successful test run 4, the average delay between a driver sending requests to
the simulated edge node and receiving results was at almost exactly 1 second.

The scenario showed that with using current LTE network standards, the response times
are almost as low as the one’s measured between simulated drivers and the cloud services.
Hence, running 500 drivers at LTE speed and full-cache on an edge node, on average
a driver receives curve responses in around 0.6 seconds (+ 0.2 compared to
Experiment 1). A system start-up (empty-cache) was only possible to test for a maximum
300 drivers. In such a scenario, on average drivers receive curve responses in 1.8 seconds
(+1.0 seconds compared to Experiment 1).

7.4 Data Quality Evaluation

An important measure of how well a system performs, is to evaluate the quality of data
it produces. The goal is to find answers to the stated questions Q3 to Q6, stated in the
introduction of the chapter (see Section 7.1). Table 7.8 shows the metrics that are of
interest for this test.

84

7.4. Data Quality Evaluation

Metric Name Description
detection-rate Percentage of successfully detected curves.

approaching-rate Percentage of successfully classified curves as they approach while
driving.

radius-error Average error of calculated radius compared to measured radius.

Table 7.8: Metrics used for data quality experiments

To simulate a driver going along our predefined test-track (see Section 7.2.2), the GPS
coordinates are replayed in sorted order. In order to realize a realistic driving speed,
GPS coordinates can be emitted at a configurable speed. By calculating the distance to
a previously emitted coordinate, the time delay (in seconds) to emit the next location is
calculated with:

timeDelay(i) = haversine(location(i), location(i− 1))
speed

3.6

To stay consistent across all following experiments, the constant speed is fixed to 75km/h.

7.4.1 Simulation Application for Data Quality Evaluation

Our simulation application to run the data quality tests is part of the prototype im-
plementation. The application reads in our predefined test-track and replays the GPS
coordinates in sorted order. The application is very similar to the application described
in Section 7.3.1. In this application we implement the "Upcoming Curve Prediction"
algorithm (Algorithm 5.4) and only simulate one driver at a time on the predefined
track. Additionally, a UI running on the web-server exactly visualizes all results of the
distributed detection algorithm as well as the local detection to predict upcoming curves.
Alongside the results of the detection, the UI shows the curves of the predefined test-set,
including its measured radius. Using the UI, the evaluation can be done by comparing
the prototype’s results to the expected results. To provide results to the UI in real-time,
messages are sent to a RabbitMQ Server running on the same host as the application.
The messages are then consumed by a WebSocket. In order to implement Algorithm 5.4
that detects upcoming curves while driving, a local database is needed that is able to
perform queries by distance. To that end, a local MongoDB instance running on the
application’s host is used. On arrival of new results from the detection service at the
recommendation gRPC stub, curve results are stored to the local MongoDB instance.
Using MongoDB, we are able to query objects in the database by their distance to a
given location using using $near [Mona].

7.4.2 Testbed for data quality experiments

Compared to the performance experiments, hardware and software configurations for
running the data-quality evaluation do not change and are the same for all following

85

7. Evaluation

W
eb

Server

P
O

S
T startSim

ulation(configs)
P

O
S

T stopSim
ulation()

G
E

T
m
etrics()

Sim
ulatio

n A
p

p
licatio

n
(d

ata q
uality)

U
I

S
im

ulation
E

xecutor

S
im

ulation

*

D
river

*

U
pcom

ing
P

rediction

1

G
P

S
1

1
C

onfig

TripFile
1

W
eb

so
cket

Figure
7.10:

C
om

ponents
ofthe

application
to

run
data

quality
tests

86

7.4. Data Quality Evaluation

Name Service Type Specs
Car / MacBoookAir CPU Cores: 2

Memory: 8.0GB
Processor: 1.8GHz
Intel Core i5

Recommendation GCP n1-standard-1 default
Detection GCP n1-standard-2 default

OverpassAPI Main Server
MongoDatabase GCP n1-standard-1 default

Table 7.9: Hardware specifications for data quality experiments

Software Component Parameter Value
Car Application data quality

LocalSearchBoundingBox 6
Poll Delay 3s
Max Polls 3s

Recommendation Find Curves Mode "geohash"
Geohash-Precision 6
Simulate WeatherAPI false
WeatherBoundingBoxSize 4

Detection AggregationTimeWindow 1s
Aggregation BB Size 6
OSMPartitions 5
Overpass-Server Public Main-Server
AngleThreshold 2°

Table 7.10: Software specifications for Data Quality Experiments

experiments. Tables 7.9 and 7.10 show the specific hardware and software setups that we
use for the data quality evaluation.

7.4.3 Experiment 3 - detection accuracy

In this experiment we give answers to Question Q3 - "How accurate are the detected
curves?" and Questions Q4 - "How well are curves detected along roads? While driving,
does the system detect approaching curves?". To that end, our predefined test-track is
simulated once from the start to the end. To monitor results, Prometheus runs on the
localhost of the test laptop. The monitoring client takes track of the following metrics:
detection-rate, approaching-rate and radius-error.

87

7. Evaluation

ID Detected ApproachedmR dR recSpeed error
1 true true 286 341 78 55
4 false false 286 / / /
5 true true 245 262 68 17
7 true true 296 459 91 163
9 true false 352 703 112 352
11 true true 226 260 68 34
13 true true 246 267 69 22
15 true true 150 162 54 12
17 true true 229 242 66 14
19 true true 294 360 80 66
21 true true 250 256 68 7
23 true true 197 191 58 6
25 true true 161 190 58 30
27 true true 212 292 72 80
28 true true 107 531 97 424
29 true false 176 439 88 263
31 true true 108 246 66 138
33 false false 169 / / /
35 true true 220 253 67 33
39 false false 71 / / /
40 true true 93 234 65 141

Table 7.11: Test results of Experiment 3
Detected: The distributed algorithm detected the curve.

Approached: The simulation labeled the curve as approached while driving.
mR: Measured Radius
dR: Detected Radius

recSpeed: Recommended Speed
error: The error of the detected radius in meters

Evaluation of detection accuracy

Using the results of Experiment 3 (7.11), we evaluate questions Q3 and Q4 and receive an
average radius error of 103.06 meters. The overall detection-rate is 86% and the
overall approaching-rate is 76%. A detection-rate and approaching-rate of around
80% indicates that the system performs very well when detecting curves. Having an
average radius of over 100m though, in general would suggest that the prototype cannot
yet be classified as reliable when recommending speeds. If the results are studied in
more detail, it is clearly visible that the detection seems to have problems with the
curves: 2,7,9,28 and 29. Figure 7.11 visualizes these specific curves and on examination
the following problems were found: Curves 7 and 40 are overlapping with other curves.
Overlapping curves are still very error-prone for the detection. Curve 9 is a very large
curve (radius > 300m). Curves with very large radius barely have angle differences
between points. The curve detection algorithm does not perform well if angles are too
low. Curve 29 has very few data points. If there are too few data points, the curve

88

7.4. Data Quality Evaluation

9

28
29

7

40

Figure 7.11: Problematic curves revealed on evaluating data quality for Experiment 1

89

7. Evaluation

Run Detection Rate % Approaching Rate %
1 86% 67%
2 86% 76%
3 86% 76%
4 86% 67%

Table 7.12: Test results of Experiment 4

detection is very error-prone. Discarding these 4 problematic curves the average error of
the radius drastically drops to 46.64 meters.

7.4.4 Experiment 4 - GPS problems

The fourth experiment evaluates Question Q3 - "How well does the detection perform on
inaccurate GPS positions, or even GPS outages?". This time our predefined test-track is
simulated in four different test runs.
In the first run, inaccuracies are added to the GPS positions. This has been done by
simply offsetting the GPS coordinates by a certain amount of meters. According to an
evaluation from the year 2009 by Zandbergen et al.[Zan09], the iPhone 3 had an average
accuracy of 8 meters. According to this study, the GPS error never exceeded 30 meters.
Hence, for this experiment the worst case scenario of 30 meters is used as upper bound
for the maximum error. For each GPS coordinate, a random error between 0 and 30
meters was added. This resulted in an average GPS error of 15 meters for all coordinates.
The other 3 runs simulate GPS outages at random locations. To simulate outages we
simply skip tuples for a certain duration. The number of outages and their duration are
configurable and were changed as follows: In test run 2 we defined 5 outages with each
having a duration of 10 seconds. In the next test run 3 we increased the duration to 20
seconds. In the last test run 4 we defined 10 outages with a duration of 20 seconds.
Since the accuracy was already determined in the previous experiment, the monitor for
this experiment only takes track of the detection-rate and approaching-rate.

Evaluation of data quality with GPS problems

Table 7.12 shows the test results of Experiment 4. When the GPS was inaccurate, the
detection-rate was not affected and stayed at 86%. The approaching rate though dropped
by 9% to 67%. Figure 7.12 shows the two curves (25 and 40) that were not marked as
approaching, causing the rate to drop. In the figure, green lines indicate curves (highly
approximated using only 3 points) that were found by the remote detection. Purple
lines indicate curves that have successfully been marked as approaching at the time of
driving. As the figure shows, especially for curve 25 for instance, the locations (marked
by black dots) are heavily offset, causing the local approaching algorithm to not detect an
upcoming curve. When 5 outages occured with a duration of 10 or even 20 seconds, both
the detection-rate and the approaching-rate were not affected and both stayed at 86%
and 76%. Only when the number of outages was doubled to 10, with each outage lasting

90

7.4. Data Quality Evaluation

25

40

Fi
gu

re
7.
12

:
Te

st
-d
riv

e
th
at

sh
ow

s
in
ac
cu

ra
ci
es

of
G
P
S
lo
ca
tio

ns
(0
-3
0m

)
ca
us
in
g
cu

rv
e
25

an
d
40

to
no

t
be

de
te
ct
ed

as
ap

pr
oa

ch
in
g.

91

7. Evaluation

25

13

Outages

Figure 7.13: Test-drive that shows outages (black markers) causing curve 13 and 25 to
not be detected as approaching.

20 seconds, the approaching-rate slightly drops by 9% to 67%. Figure 7.13 shows the
two curves (13 and 25) that were not marked as approaching because outages happened
right before. In the figure, the large black markers indicate outages. The outages are also
visible by looking at the locations (black dots) which have holes. The output measures
for this specific test of course highly depend at what exact time the outages happen.
Since the tests places the outages randomly (at certain intervals given by the number of
outages), the results though show that again, the system is very fault-tolerant even to
complete outages. Again this is achieved by using geohashes and pre-calculating curves.

In general the detection is very fault-tolerant to inaccuracies and outages.
This shows how efficient it is to pre-calculate curves for an area around the current
location using geohashes. If cars would connect to a remote service to fetch curves on
every GPS update, the rates would drop significantly when GPS errors occur. Using
the approach of the thesis to only connect to a remote service at certain points and
performing offline detection using the local cache, makes the system highly fault-tolerant.

92

7.4. Data Quality Evaluation

7.4.5 Experiment 5 - Network problems

In Experiment 5 we evaluate Question - Q6 "What happens if the mobile network is slow?".
As introduced in Experiment 1 (see Section 7.3.2) already, Network Link Conditioner can
be used to throttle the network bandwidth. Network Link Conditioner provides many
pre-configured profiles. 2 profiles that will be used in the experiment are summarized in
Table 7.13.

Profile Bandwidth Delay(ms) Packets
Dropped(%)

LTE 50mbps% 50 0
Edge(2G) 240kbps% 400 0

Table 7.13: Network Profiles provided by Apple’s Network Link Conditioner[NSH]

The values of the table only specify the downlink properties. Since the uplink values are
almost the same for every profile, they are left out here. For all previous data quality
experiments, LTE network conditions were used. In the first test run of this experiment,
we simulate a very slow network connection using Edge (2G). In all previous test runs,
both the recommendation and the central database made use of caching and already
had curves in their caches. To simulate a worst-case scenario, additionally to using only
Edge (2G) network, we also clear all caches. The monitoring client tracks the metrics
average-result-time and average-response-time. Figure 7.14 shows the average response

Run Detection Rate
%

Approaching
Rate %

rT resT

1 86% 76% 1127ms 1127ms
2 86% 76% 1976ms 5891ms

Table 7.14: Test results of Experiment 5

and result times when executing different runs of the experiments. Compared to the first
test-run of Experiment 4 with WiFi network and full caches, the average result time
increased by a factor of almost 67 compared to the worst-case test run.

Evaluation of data quality with network problems

Table 7.14 shows the test results of Experiment 5. If the network is slow, both detection
rates and approaching rates stayed unaffected at 86% and 76%. Previous runs of
Experiment 3 and Experiment 4 used the standard WiFi connection and had full caches.
This caused very low average response rates and result rates of 88ms. Although on a
slow network the average result times increased to a factor of 12, the detection and
approaching rate still stayed the same. Even on the worst-case scenario, when average
result times rise up to a factor of 67 compared to the standard connection, the detection
system works well. After seeing the results of Experiments 3 and 4, this is not too

93

7. Evaluation

E
xp

erim
ent 4 - R

un 1: W
iFi + full caches

E
xp

erim
ent 5 - R

un 1: E
d

g
e (2G

) + full caches

E
xp

erim
ent 5 - R

un 2: E
d

g
e (2G

) + em
p

ty caches

Figure
7.14:

Screenshot
ofthe

Prom
etheus

m
onitor

show
ing

average
response-and

result
tim

es
ofselected

test
runs

during
data

quality
evaluation.

94

7.5. Cost Evaluation

surprising anymore. Again, pre-calculating curves for areas around the current location
(using geohashing) makes the system highly tolerant against slow and even very slow
network conditions. Experiment 5 showed that the system is also highly tolerant for slow
network connections.

7.5 Cost Evaluation

This final section of the evaluation estimates costs for running the system on the presented
edge and cloud models. An estimated cost shall be found for theoretically running the
system in Austria for all drivers across the country. The evaluation gives an answer to
the last question Q7 - "How much would it approximately cost to run the system for all
drivers across Austria per month?".

7.5.1 Cost Estimation Basics

The basis for evaluating monthly costs to run the system across Austria is to use the results
from the performance tests of Experiment 1 and Experiment 2 (see Sections 7.3.2 and
7.3.3). Both experiments showed the maximum number of drivers the prototype system
can handle when deployed on the lowest cardinalities of their respective deployment
model. For each experiment, the costs of the testbed it executed on are calculated per
month. An estimate can then be calculated by scaling the costs to the estimated number
of cars in Austria that are on the road for the duration of the experiments.
Statistics from 2016 provided by Statistik Austria and the VCÖ showed, that an average
driver in Austria goes around 34km a day by car[VCÖ16]. According to the same
statistics, there are around 3 million car drivers in Austria. It follows that in total, drivers
in Austria go around 102 million kilometers by car a day. The average kilometers of all
drivers in Austria for a certain duration (in minutes) can then be calculated as follows:

totalAvgKm =
kmP erDay

24
60 ∗ durationMinutes

The approximate duration for the performance tests of Experiment 1 and 2 took 7
minutes. Using the formula above, the total average distance that is driven in Austria in
that duration is around : 0.5 million kilometers.

It remains to find out how many kilometers the drivers covered during the test runs of
the experiments. In a separate test run, which again executed for 7 minutes with 500
drivers simultaneously, the total traveled distance was around 3000 kilometers. Hence,
this test run covered 0.006% of all drives in Austria at that time. To receive the kilometer
coverage for any test run the following formula is used:

kmCoveredInExperiment = maxNumberOfDrivers

500 ∗ 3000

95

7. Evaluation

Service Price in $ per month
recommendation 28.43
detection 108.6
MongoDB (Atlas) 8.99
Overpass 223.2
Total: 369.22
Max Drivers: 1750
Scale Factor: 47.62
OWM subscription: 2000.00
Scaled Costs to cover Austria: 19582.26

Table 7.15: Estimated costs for running the prototype on a cloud model

Finally we can receive a factor to scale the costs to cover all drivers in Austria using the
formula:

costScaleFactor = totalAverageKm

kmCoveredInExperiment

7.5.2 Costs for cloud model

Table 7.15 breaks down the costs for running the prototype on the cloud model. The
prices are calculated for the specified resources (Section 7.3.2) using the GCP Price
Calculator Tool[Goob]. For using the OpenWeatherMaps (OWM) API with all drivers
across Austria, we assume to subscribe to an Enterprise license that allows up to 200.000
requests per minute[owm]. As described in Experiment 1 (see Section 7.3.2), to save
costs during the evaluation, the hosted MongoDB provider Atlas was not used. An own
database instance was sufficient. For the price estimation, a comparable "M2" AtlasDB
configuration[Monb] to the single GCP VM instance was selected.

7.5.3 Costs for edge model

To estimate the costs for the simulated Edge Node of Experiment 2 (see Section 7.3.3),
the earlier discussed (6.3.2) high compute Edge Node of Cisco System’s EFF platform
is examined. On their product data sheet[Cis17c] (see screenshot in Figure 7.15) they
recommend specific hardware for the node. The following costs are covered by the
estimation:

• Server Hardware Costs: Assuming the recommended "Cisco UCS C220 Rack
Server" is used, the price at Cisco at the time of writing this thesis was 3045.00$[Cis].
Further assuming that the server has a service life of 10 years, the monthly costs
for the server can be estimated to: 25.38$.

• Energy Consumption: According to Cisco’s spec-sheet, the energy consumption
lies at 915W[Cis17b]. In Austria the price for one kWh can be estimated with

96

7.5. Cost Evaluation

Figure 7.15: Hardware recommendation for the "EFF Fog Node Server"[Cis17a]

around 20cents[EC] (0.22$ using the currency of 05.12.2017). To get the monthly
energy costs, the following formula is used:

monthlyEnergyCosts = W ∗ 30 ∗ 24 ∗ pricePerKWh

1000

• Internet Costs: Choosing a business product of Austria’s well known provider
A1[A1] that allows up to 300MBit/s download and 30MBits/s upload, the monthly
costs would currently lie at: 114.15$.

The above list of course does not cover all costs that would arise when installing an
edge node. If running the edge node at a BTS, additional costs such as cooling, heating,
maintenance workers or rental payments can emerge. Table 7.16 breaks down the costs
for running the prototype on a cloud/edge model.

7.5.4 Evaluation of costs

The estimated total costs per month to run the system across Austria in the cloud-only
model are around 20.000$. Running the system on a combined edge-cloud model would
yield in around 27.000$. Edge computing is still very new and currently only few
companies provide real-world solutions. If edge computing is becoming more popular in
the industry, expectedly there will be cheaper edge hardware available. Since using an
edge-infrastructure to run this application would yield in approximately 35% higher costs,

97

7. Evaluation

Service/Expense Price in $ per month
Hardware Costs 25.38
Power Consumption 144.94
Internet Infrastructure 114.15
MongoDB (Atlas) 8.99
Overpass 223.20
Total: 516.65
Max Drivers: 1750
Scale Factor: 47.62
OWM subscription: 2000.00
Scaled Costs to cover Austria: 26602.87

Table 7.16: Estimated costs for running the prototype on a cloud/edge model

we currently recommend to deploy our cornering-assitance-application to a cloud-only
model.

98

CHAPTER 8
Conclusion & Future Work

8.1 Conclusion
In this thesis we introduced a novel system that assists drivers in real-time while cornering
and designed it in a way that it can be deployed to existing cloud and emerging edge-
computing infrastructures. We identified relevant data attributes from drivers and
external data sources, determined their frequencies of retrieval and proposed how to
efficiently fuse them. Using the microservices pattern we designed an architecture that
supports virtualized MEC infrastructures, separates tasks and concerns and enables
scalability. In order to accomplish the tasks of the cornering assistance application, we
implemented new algorithms to detect curves and properties, recommend safe speeds
for entering a curve, predict upcoming curves along the driver’s path from a given
location and also presented an approach of how to load balance requests depending
on factors such as server load or location of clients. Based on these contributions we
implemented an open-source prototype which is available at: https://github.com/
rdsea/EdgeCorneringAssistance.git

The evaluation of the implemented prototype shows that more than a thousand drivers
can use the system simultaneously and receive results from the distributed system in
almost real-time (less than half a second). Using load balancing, the prototype is
designed to scale to many thousands of drivers depending on the available hardware
and infrastructure. Our assistance-application, using the results from our elaborated
algorithms, is able to warn drivers before they approach a curve at very high detection
rates of more than 76%. The evaluation showed that our system is highly fault tolerant
to GPS errors such as inaccuracies or even full outages. Our system also proved to work
just as well on slow network connections, which can occur frequently when being on the
road. Results of the accuracy of the system, i.e. calculating properties of curves, show
that for many curve types the calculated radius has errors between approximately 5 to 50
meters. However, the evaluation also showed that some types of curves were not detected

99

https://github.com/rdsea/EdgeCorneringAssistance.git
https://github.com/rdsea/EdgeCorneringAssistance.git

8. Conclusion & Future Work

at all or that the error of the calculated radius exceeded 100 meters.
To show how much it would cost to deploy such a system using future edge-infrastructures,
Austria was used as an example. The costs were evaluated for a theoretical scenario,
where all drivers across the country are served by the system. We concluded that the
costs would be around 20.000$ per month using a cloud-only model. Running the system
on a combined edge-cloud model we estimated around 35% higher costs.

8.2 Future Work
For the system to be considered as safe to operate on the streets, the detection rate and
especially the accuracy would need to be tested with more streets and be adjusted to fit
all types curves. For the lack of having human experts available, the recommended speed
that the system provides was not evaluated. The thesis only gave a first approach on
how to recommend speeds for approaching curves. To that end, currently only latitude
and longitude data were processed and used for the calculation. An important value
though also is the driver’s altitude and the slope a curve has. Hence, in future works the
detection can be enhanced to recommend speeds more accurately using also height data.
Since the focus of this thesis was to implement a distributed detection algorithm, client
functionalities were only simulated and written as small Java Applications. Implementing
a native application that can actually be installed at the driver’s phone or even in the car
itself could be another part of future works. While load balancing was implemented based
on only factors such as server load or location of clients, we proposed many other factors
that could be implemented for this and possibly also other MEC-based applications in
the future.

100

Bibliography

[A1] A1. Internet im büro. https://www.a1.net/business/
produkte-angebote/internet/internet-im-buero/s/
internet-im-buero. (Accessed on 08/12/2017).

[AA16] Arif Ahmed and Ejaz Ahmed. A survey on mobile edge computing. 2016
10th International Conference on Intelligent Systems and Control (ISCO),
Jan 2016.

[AIdCA12] Rui Araujo, Angela Igreja, Ricardo de Castro, and Rui Esteves Araujo.
Driving coach: A smartphone application to evaluate driving efficient
patterns. 2012 IEEE Intelligent Vehicles Symposium, Jun 2012.

[aka] akapribot. Owm japis. https://bitbucket.org/akapribot/
owm-japis. (Accessed on 05/12/2017).

[ang] Angularjs — superheroic javascript mvw framework. https://
angularjs.org/. (Accessed on 01/22/2018).

[ape] Best practices - apache apex documentation. https://apex.apache.
org/docs/apex/development_best_practices/. (Accessed on
12/12/2017).

[Aus16] Statistik Austria. Unfaelle mit personenschaden. https:
//www.statistik.at/web_de/statistiken/energie_umwelt_
innovation_mobilitaet/verkehr/strasse/unfaelle_mit_
personenschaden/019874.html, 2016.

[BMZA12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the first
edition of the MCC workshop on Mobile cloud computing, pages 13–16.
ACM, 2012.

[BVRK12] Ravi Bhoraskar, Nagamanoj Vankadhara, Bhaskaran Raman, and Pu-
rushottam Kulkarni. Wolverine: Traffic and road condition estimation
using smartphone sensors. 2012 Fourth International Conference on Com-
munication Systems and Networks (COMSNETS 2012), Jan 2012.

101

https://www.a1.net/business/produkte-angebote/internet/internet-im-buero/s/internet-im-buero
https://www.a1.net/business/produkte-angebote/internet/internet-im-buero/s/internet-im-buero
https://www.a1.net/business/produkte-angebote/internet/internet-im-buero/s/internet-im-buero
https://bitbucket.org/akapribot/owm-japis
https://bitbucket.org/akapribot/owm-japis
https://angularjs.org/
https://angularjs.org/
https://apex.apache.org/docs/apex/development_best_practices/
https://apex.apache.org/docs/apex/development_best_practices/
https://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/verkehr/strasse/unfaelle_mit_personenschaden/019874.html
https://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/verkehr/strasse/unfaelle_mit_personenschaden/019874.html
https://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/verkehr/strasse/unfaelle_mit_personenschaden/019874.html
https://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/verkehr/strasse/unfaelle_mit_personenschaden/019874.html

[CDFE15] German Castignani, Thierry Derrmann, Raphael Frank, and Thomas
Engel. Driver behavior profiling using smartphones: A low-cost platform
for driver monitoring. IEEE Intelligent Transportation Systems Magazine,
7(1):91–102, 2015.

[Cis] Cisco. Cisco ucs c220 m4 rack server data sheet. https://www.
cisco.com/c/en/us/products/servers-unified-computing/
ucs-c220-m4-rack-server/index.html. (Accessed on
04/12/2017).

[Cis17a] Cisco. Cisco edge fog fabric (eff). Technical report, Cisco Systems, April
2017.

[Cis17b] Cisco. Cisco ucs c220 m4 rack server spec sheet. https:
//www.cisco.com/c/dam/en/us/products/collateral/
servers-unified-computing/ucs-c-series-rack-servers/
c220m4-sff-spec-sheet.pdf, Dec 2017. (Accessed on 08/12/2017).

[Cis17c] Cisco. Edge fog fabric data sheet. https://www.cisco.com/c/
en/us/products/collateral/cloud-systems-management/
edge-fog-fabric/datasheet-c78-738866.html, Apr 2017.
(Accessed on 05/12/2017).

[Coo] ObjectLabs Cooperation. mlab cloud mongodb hosting. https://mlab.
com/company/. (Accessed on 05/12/2017).

[Deu] MathWorks Deutschland. Azimuth between points on sphere or el-
lipsoid. https://de.mathworks.com/help/map/ref/azimuth.
html. (Accessed on 02/11/2017).

[DLR+15] Saurabh Daptardar, Vignesh Lakshminarayanan, Sharath Reddy, Suraj
Nair, Saswata Sahoo, and Purnendu Sinha. Hidden markov model based
driving event detection and driver profiling from mobile inertial sensor
data. 2015 IEEE SENSORS, Nov 2015.

[dsg] Distributed systems group. http://www.infosys.tuwien.ac.at/.
(Accessed on 01/22/2018).

[dSW17] Magistrat der Stadt Wien. Offene daten österreich | data.gv.at. https:
//www.data.gv.at/, May 2017. (Accessed on 05/09/2017).

[DTB+10] Jiangpeng Dai, Jin Teng, Xiaole Bai, Zhaohui Shen, and Dong Xuan.
Mobile phone based drunk driving detection. Proceedings of the 4th
International ICST Conference on Pervasive Computing Technologies for
Healthcare, 2010.

102

https://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-c220-m4-rack-server/index.html
https://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-c220-m4-rack-server/index.html
https://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-c220-m4-rack-server/index.html
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/c220m4-sff-spec-sheet.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/c220m4-sff-spec-sheet.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/c220m4-sff-spec-sheet.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/c220m4-sff-spec-sheet.pdf
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/edge-fog-fabric/datasheet-c78-738866.html
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/edge-fog-fabric/datasheet-c78-738866.html
https://www.cisco.com/c/en/us/products/collateral/cloud-systems-management/edge-fog-fabric/datasheet-c78-738866.html
https://mlab.com/company/
https://mlab.com/company/
https://de.mathworks.com/help/map/ref/azimuth.html
https://de.mathworks.com/help/map/ref/azimuth.html
http://www.infosys.tuwien.ac.at/
https://www.data.gv.at/
https://www.data.gv.at/

[EC] E-Control. Was kostet eine kwh? https://www.e-control.at/
konsumenten/strom/strompreis/was-kostet-eine-kwh. (Ac-
cessed on 08/12/2017).

[EMAY12] H. Eren, S. Makinist, E. Akin, and A. Yilmaz. Estimating driving behavior
by a smartphone. 2012 IEEE Intelligent Vehicles Symposium, Jun 2012.

[ETS17] ETSI. Etsi - industry specification groups (isgs). http://www.
etsi.org/about/how-we-work/how-we-organize-our-work/
industry-specification-groups-isgs, 2017. (Accessed on
03/25/2017).

[fMuG] Zentralanstalt für Meteorologie und Geodynamik. Zamg website. https:
//www.zamg.ac.at/cms/de/aktuell. (Accessed on 01/11/2017).

[Foua] Apache Software Foundation. Apache apex. https://apex.apache.
org/. (Accessed on 02/07/2017).

[Foub] Apache Software Foundation. Apache apex malhar documentation. https:
//apex.apache.org/docs/malhar/. (Accessed on 02/07/2017).

[Fouc] OpenStreetMaps Foundation. Geofabrik. https://www.geofabrik.
de/. (Accessed on 04/11/2017).

[Foud] OpenStreetMaps Foundation. Openstreetmap wiki. http://
wiki.openstreetmap.org/wiki/DE:Key:highway. (Accessed on
04/04/2017).

[Foue] OpenStreetMaps Foundation. Osm. https://www.openstreetmap.
org. (Accessed on 12/04/2017).

[Fouf] OpenStreetMaps Foundation. Osmf server info. https://hardware.
openstreetmap.org/. (Accessed on 03/12/2017).

[Fou17] OpenStreetMaps Foundation. Overpass api. http://wiki.
openstreetmap.org/wiki/Overpass_API, 2017. (Accessed on
05/03/2017).

[Fra17] Adam Franco. Curvature - find twisty roads. http://roadcurvature.
com/, 2017. (Accessed on 03/12/2017).

[fV15] Kuratorium für Verkehrssicherheit. Verkehrsunfallstatistik 2014. http:
//unfallstatistik.kfv.at/, 2015.

[gcp] Cloud-computing, hostingdienste und apis von google | google cloud plat-
form. https://cloud.google.com/. (Accessed on 01/22/2018).

[geo] Geohash - wikipedia. https://en.wikipedia.org/wiki/Geohash.
(Accessed on 12/12/2017).

103

https://www.e-control.at/konsumenten/strom/strompreis/was-kostet-eine-kwh
https://www.e-control.at/konsumenten/strom/strompreis/was-kostet-eine-kwh
http://www.etsi.org/about/how-we-work/how-we-organize-our-work/industry-specification-groups-isgs
http://www.etsi.org/about/how-we-work/how-we-organize-our-work/industry-specification-groups-isgs
http://www.etsi.org/about/how-we-work/how-we-organize-our-work/industry-specification-groups-isgs
https://www.zamg.ac.at/cms/de/aktuell
https://www.zamg.ac.at/cms/de/aktuell
https://apex.apache.org/
https://apex.apache.org/
https://apex.apache.org/docs/malhar/
https://apex.apache.org/docs/malhar/
https://www.geofabrik.de/
https://www.geofabrik.de/
http://wiki.openstreetmap.org/wiki/DE:Key:highway
http://wiki.openstreetmap.org/wiki/DE:Key:highway
https://www.openstreetmap.org
https://www.openstreetmap.org
https://hardware.openstreetmap.org/
https://hardware.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Overpass_API
http://wiki.openstreetmap.org/wiki/Overpass_API
http://roadcurvature.com/
http://roadcurvature.com/
http://unfallstatistik.kfv.at/
http://unfallstatistik.kfv.at/
https://cloud.google.com/
https://en.wikipedia.org/wiki/Geohash

[GLME+15] Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta,
Teruo Higashino, Adriana Iamnitchi, Marinho Barcellos, Pascal Felber,
and Etienne Riviere. Edge-centric computing: Vision and challenges.
SIGCOMM Comput. Commun. Rev., 45(5):37–42, September 2015.

[Gooa] Google. Maps. https://maps.google.com. (Accessed on
12/04/2017).

[Goob] Google. Price calculator. https://cloud.google.com/products/
calculator/. (Accessed on 05/12/2017).

[Goo17a] Google. Location | android developers. https://developer.android.
com/reference/android/location/Location.html, 2017. (Ac-
cessed on 05/03/2017).

[Goo17b] Google. Machine types. https://cloud.google.com/compute/
docs/machine-types, Nov 2017. (Accessed on 02/12/2017).

[GWA+17] Dennis Grewe, Marco Wagner, Mayutan Arumaithurai, Ioannis Psaras, and
Dirk Kutscher. Information-centric mobile edge computing for connected
vehicle environments: Challenges and research directions. In Proceedings
of the Workshop on Mobile Edge Communications, pages 7–12. ACM, 2017.

[Has] HashiCorp. Consul. https://www.consul.io/. (Accessed on
06/07/2017).

[HCS15] Benjamin Heintz, Abhishek Chandra, and Ramesh K. Sitaraman. Opti-
mizing grouped aggregation in geo-distributed streaming analytics. In
Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’15, pages 133–144, New York,
NY, USA, 2015. ACM.

[Her] Here. Wego. https://wego.here.com. (Accessed on 12/04/2017).

[HL97] D. L. Hall and J. Llinas. An introduction to multisensor data fusion.
Proceedings of the IEEE, 85(1):6–23, Jan 1997.

[Inca] Docker Inc. Docker. https://www.docker.com/. (Accessed on
08/09/2017).

[Incb] Docker Inc. Swarm mode overview | docker documentation. https:
//docs.docker.com/engine/swarm/. (Accessed on 12/23/2017).

[JT11] Derick A. Johnson and Mohan M. Trivedi. Driving style recognition
using a smartphone as a sensor platform. 2011 14th International IEEE
Conference on Intelligent Transportation Systems (ITSC), Oct 2011.

104

https://maps.google.com
https://cloud.google.com/products/calculator/
https://cloud.google.com/products/calculator/
https://developer.android.com/reference/android/location/Location.html
https://developer.android.com/reference/android/location/Location.html
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types
https://www.consul.io/
https://wego.here.com
https://www.docker.com/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/

[kfv] Kuratorium für verkehrssicherheit. https://www.kfv.at/. (Accessed
on 12/12/2017).

[KMJ16] Stojan Kitanov, Edmundo Monteiro, and Toni Janevski. 5g and the
fog — survey of related technologies and research directions. 2016 18th
Mediterranean Electrotechnical Conference (MELECON), Apr 2016.

[Kow12] Wolfgang Kowarschick. Multimedia-Programmierung. Hochschule Augs-
burg, Fakultät für Informatik, gehalten im Wintersemester 2012, 2012.
Die Lehrinhalte der Vorlesung „Multimedia-Programmierung“ werden
nicht in einem Skript, sondern im GlossarWiki und auch auf der Web-Site
http://mmprog.hs-augsburg.de/ zur Verfügung gestellt.

[kur] Kurvenradius – wikipedia. https://de.wikipedia.org/wiki/
Kurvenradius. (Accessed on 01/09/2018).

[Lab] Grafana Labs. Grafana. https://grafana.com/. (Accessed on
02/12/2017).

[Let] Lettuce. Lettuce. https://lettuce.io/. (Accessed on 12/12/2017).

[LFHAB16] Yue Li, Pantelis A Frangoudis, Yassine Hadjadj-Aoul, and Philippe Bertin.
A mobile edge computing-based architecture for improved adaptive http
video delivery. In Standards for Communications and Networking (CSCN),
2016 IEEE Conference on, pages 1–6. IEEE, 2016.

[LKA+16] Zhaojian Li, Ilya Kolmanovsky, Ella Atkins, Jianbo Lu, Dimitar P. Filev,
and John Michelini. Road risk modeling and cloud-aided safety-based
route planning. IEEE Transactions on Cybernetics, 46(11):2473–2483,
Nov 2016.

[LLL+12] Kun Li, Man Lu, Fenglong Lu, Qin Lv, Li Shang, and Dragan Maksimovic.
Personalized driving behavior monitoring and analysis for emerging hybrid
vehicles. Pervasive Computing, pages 1–19, 2012.

[MCCM13] Javier E. Meseguer, Carlos T. Calafate, Juan Carlos Cano, and Pietro
Manzoni. Drivingstyles: A smartphone application to assess driver behav-
ior. 2013 IEEE Symposium on Computers and Communications (ISCC),
Jul 2013.

[Mic] Microsoft. Bing maps. https://www.bing.com. (Accessed on
12/04/2017).

[Mona] MongoDB. Mongodb manual 3.6. https://docs.mongodb.com/
manual/reference/operator/query/near/.

[Monb] Inc. MongoDB. Mongodb atlas pricing. https://www.mongodb.com/
cloud/atlas/pricing. (Accessed on 02/12/2017).

105

https://www.kfv.at/
https://de.wikipedia.org/wiki/Kurvenradius
https://de.wikipedia.org/wiki/Kurvenradius
https://grafana.com/
https://lettuce.io/
https://www.bing.com
https://docs.mongodb.com/manual/reference/operator/query/near/
https://docs.mongodb.com/manual/reference/operator/query/near/
https://www.mongodb.com/cloud/atlas/pricing
https://www.mongodb.com/cloud/atlas/pricing

[Moo17] Samuel K. Moore. Superaccurate gps chips coming to smartphones in
2018. IEEE Spectrum, September 2017.

[Mor16] Iain Morris. Etsi drops ’mobile’ from mec | light reading. http://www.
lightreading.com/mobile/mec-(mobile-edge-computing)
/etsi-drops-mobile-from-mec/d/d-id/726273, 2016. (Ac-
cessed on 03/25/2017).

[NSH] NSHipster. Network link conditioner. http://nshipster.com/
network-link-conditioner/. (Accessed on 02/12/2017).

[Oas] Oasis. Amqp. https://www.amqp.org/about/what/. (Accessed on
02/07/2017).

[obd] On-board diagnostics - wikipedia. https://en.wikipedia.org/
wiki/On-board_diagnostics. (Accessed on 01/16/2018).

[Opea] Openstack. Openstack. https://www.openstack.org/. (Accessed
on 03/12/2017).

[Opeb] OpenWeatherMap. Openweathermap. https://openweathermap.
org/weather-conditions. (Accessed on 05/26/2017).

[Ope17a] OpenStreetMaps. Openstreetmap wiki. https://wiki.
openstreetmap.org/wiki/Main_Page, 2017. (Accessed on
03/12/2017).

[Ope17b] OpenWeatherMap. Weather conditions - openweathermap. https://
openweathermap.org/weather-conditions, 2017. (Accessed on
05/26/2017).

[OSR] Project OSRM. Osrm api documentation. http://project-osrm.
org/docs/v5.10.0/api/#general-options. (Accessed on
02/12/2017).

[owm] Price and limitation of openweathermap api. https://
openweathermap.org/price. (Accessed on 01/17/2018).

[pgs] Postgresql: The world’s most advanced open source database. https:
//www.postgresql.org/. (Accessed on 01/22/2018).

[PKZM12] Johannes Paefgen, Flavius Kehr, Yudan Zhai, and Florian Michahelles.
Driving behavior analysis with smartphones: Insights from a controlled
field study. In Proceedings of the 11th International Conference on Mobile
and Ubiquitous Multimedia, MUM ’12, pages 36:1–36:8, New York, NY,
USA, 2012. ACM.

106

http://www.lightreading.com/mobile/mec-(mobile-edge-computing)/etsi-drops-mobile-from-mec/d/d-id/726273
http://www.lightreading.com/mobile/mec-(mobile-edge-computing)/etsi-drops-mobile-from-mec/d/d-id/726273
http://www.lightreading.com/mobile/mec-(mobile-edge-computing)/etsi-drops-mobile-from-mec/d/d-id/726273
http://nshipster.com/network-link-conditioner/
http://nshipster.com/network-link-conditioner/
https://www.amqp.org/about/what/
https://en.wikipedia.org/wiki/On-board_diagnostics
https://en.wikipedia.org/wiki/On-board_diagnostics
https://www.openstack.org/
https://openweathermap.org/weather-conditions
https://openweathermap.org/weather-conditions
https://wiki.openstreetmap.org/wiki/Main_Page
https://wiki.openstreetmap.org/wiki/Main_Page
https://openweathermap.org/weather-conditions
https://openweathermap.org/weather-conditions
http://project-osrm.org/docs/v5.10.0/api/#general-options
http://project-osrm.org/docs/v5.10.0/api/#general-options
https://openweathermap.org/price
https://openweathermap.org/price
https://www.postgresql.org/
https://www.postgresql.org/

[PNC+14] Milan Patel, B Naughton, C Chan, N Sprecher, S Abeta, A Neal, et al.
Mobile-edge computing introductory technical white paper. White Paper,
Mobile-edge Computing (MEC) industry initiative, 2014.

[Proa] Prometheus. Monitoring system & time series database. https://
prometheus.io/. (Accessed on 07/08/2017).

[Prob] Prometheus. Node exporter. https://github.com/prometheus/
node_exporter. (Accessed on 07/08/2017).

[Proc] Prometheus. Prometheus instrumentation library for jvm applications.
https://github.com/prometheus/client_java. (Accessed on
01/12/2017).

[Rab] RabbitMQ. Rabbitmq java client library. http://www.rabbitmq.com/
java-client.html. (Accessed on 02/07/2017).

[Rai] Martin Raifer. Overpass turbo. http://overpass-turbo.eu/. (Ac-
cessed on 04/04/2017).

[Red] Redis. Redis. https://redis.io/. (Accessed on 04/04/2017).

[Ref] Math Open Reference. Circumcircle of a triangle. https://www.
mathopenref.com/trianglecircumcircle.html. (Accessed on
12/10/2017).

[RSSB10] Michele Ruta, Floriano Scioscia, Eugenio Di Sciascio, and Politecnico Di
Bari. A mobile knowledge-based system for on-board diagnostics and car
driving assistance. UBICOMM 2010 : The Fourth International Confer-
ence on Mobile Ubiquitous Computing, Systems, Services and Technologies,
2010.

[Sch] Wolfram Schneider. Bbbike. https://extract.bbbike.org/. (Ac-
cessed on 01/12/2017).

[Sch11] Stephan Schmidl. Untersuchung des fahrverhaltens in unterschiedlichen
kurvenradien bei trockener fahrbahn. Master’s thesis, Universität für
Bodenkultur Wien, Mar 2011.

[Spr] Spring. Spring boot project. https://projects.spring.io/
spring-boot/. (Accessed on 01/12/2017).

[SPT15] Chalermpol Saiprasert, Thunyasit Pholprasit, and Suttipong Tha-
jchayapong. Detection of driving events using sensory data on smart-
phone. International Journal of Intelligent Transportation Systems Re-
search, 15(1):17–28, Jul 2015.

107

https://prometheus.io/
https://prometheus.io/
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/prometheus/client_java
http://www.rabbitmq.com/java-client.html
http://www.rabbitmq.com/java-client.html
http://overpass-turbo.eu/
https://redis.io/
https://www.mathopenref.com/trianglecircumcircle.html
https://www.mathopenref.com/trianglecircumcircle.html
https://extract.bbbike.org/
https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/

[SSX+15] Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan Pillai,
Zhuo Chen, Kiryong Ha, Wenlu Hu, and Brandon Amos. Edge analytics
in the internet of things. IEEE Pervasive Computing, 14(2):24–31, 2015.

[Ste97] Robert Stephens. A survey of stream processing. Acta Informatica,
34(7):491–541, 1997.

[Str] Johannes Strommer. Haftreibungszahlen. https://www.
johannes-strommer.com/rechner/basics-mathe-mechanik/
haftreibungszahlen/. (Accessed on 26/04/2017).

[Tec] AIT Austrian Institute Of Technology. Roadstar. https://www.ait.
ac.at/themen/road-condition-monitoring-assessments/
strassenzustandserfassung-mit-dem-roadstar/.

[Typ] Movable Type. Calculate distance and bearing between two lati-
tude/longitude points using haversine formula in javascript. https:
//www.movable-type.co.uk/scripts/latlong.html. (Accessed
on 02/11/2017).

[Ung12] Dipl. Ing. Thomas Unger. Junge fahrer 2012. Berichte der ADAC Unfall-
forschung, 2012.

[VCÖ16] VCÖ. Österreichs autofahrer fahren im schnitt 34 kilo-
meter pro tag. https://www.vcoe.at/news/details/
vcoe-oesterreichs-autofahrer-fahren-im-schnitt-34-kilometer-pro-tag,
Feb 2016.

[Vor15] William Vorhies. Stream processing – what is it and who needs it - data sci-
ence central. http://www.datasciencecentral.com/profiles/
blogs/stream-processing-what-is-it-and-who-needs-it,
10 2015. (Accessed on 04/22/2017).

[VSDTD12] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt. Cloudlets:
Bringing the cloud to the mobile user. In Proceedings of the third ACM
workshop on Mobile cloud computing and services, pages 29–36. ACM,
2012.

[Wik] Wikipedia. Mobile edge computing - wikipedia. https://en.
wikipedia.org/wiki/Mobile_edge_computing. (Accessed on
03/24/2017).

[WSH15] Johan Wahlstrom, Isaac Skog, and Peter Handel. Detection of dangerous
cornering in gnss-data-driven insurance telematics. IEEE Transactions on
Intelligent Transportation Systems, 16(6):3073–3083, Dec 2015.

108

https://www.johannes-strommer.com/rechner/basics-mathe-mechanik/haftreibungszahlen/
https://www.johannes-strommer.com/rechner/basics-mathe-mechanik/haftreibungszahlen/
https://www.johannes-strommer.com/rechner/basics-mathe-mechanik/haftreibungszahlen/
https://www.ait.ac.at/themen/road-condition-monitoring-assessments/strassenzustandserfassung-mit-dem-roadstar/
https://www.ait.ac.at/themen/road-condition-monitoring-assessments/strassenzustandserfassung-mit-dem-roadstar/
https://www.ait.ac.at/themen/road-condition-monitoring-assessments/strassenzustandserfassung-mit-dem-roadstar/
https://www.movable-type.co.uk/scripts/latlong.html
https://www.movable-type.co.uk/scripts/latlong.html
https://www.vcoe.at/news/details/vcoe-oesterreichs-autofahrer-fahren-im-schnitt-34-kilometer-pro-tag
https://www.vcoe.at/news/details/vcoe-oesterreichs-autofahrer-fahren-im-schnitt-34-kilometer-pro-tag
http://www.datasciencecentral.com/profiles/blogs/stream-processing-what-is-it-and-who-needs-it
http://www.datasciencecentral.com/profiles/blogs/stream-processing-what-is-it-and-who-needs-it
https://en.wikipedia.org/wiki/Mobile_edge_computing
https://en.wikipedia.org/wiki/Mobile_edge_computing

[WZZ93] Xingwei Wang, Hong Zhao, and Jiakeng Zhu. Grpc: A communication
cooperation mechanism in distributed systems. SIGOPS Oper. Syst. Rev.,
27(3):75–86, July 1993.

[YMdOB+12] Chuang-Wen You, Martha Montes-de Oca, Thomas J. Bao, Nicholas D.
Lane, Hong Lu, Giuseppe Cardone, Lorenzo Torresani, and Andrew T.
Campbell. Carsafe. Proceedings of the 2012 ACM Conference on Ubiquitous
Computing - UbiComp ’12, 2012.

[Zan09] Paul A Zandbergen. Accuracy of iphone locations: A comparison of
assisted gps, wifi and cellular positioning. Transactions in GIS, 13:5–25,
2009.

[ZB11] Paul A. Zandbergen and Sean J. Barbeau. Positional accuracy of assisted
gps data from high-sensitivity gps-enabled mobile phones. Journal of
Navigation, 64(3):381–399, 2011.

109

	Kurzfassung
	Abstract
	Contents
	List of Figures
	List of Algorithms
	Introduction
	Motivation
	Problem Statement
	Approach & Contribution
	Structure of the Thesis

	State of the Art
	Overview
	Driver Monitoring and Assistance Applications
	Edge Computing
	Curve Detection using map data
	Summary

	Data
	Overview
	Data Sources
	Cornering Assistance Data
	Data Fusion
	Summary

	System Design
	Overview
	Tasks
	System Infrastructure
	System Overview
	Detailed Design & Software Components
	Service Orchestration
	Summary

	Algorithms
	Overview
	Speed Recommendation
	Curve Detection
	Upcoming Curve Prediction
	Load Balancing of Driver Requests
	Summary

	Prototype
	Overview
	Implementation
	Configuration & Deployment
	Summary

	Evaluation
	Overview
	Test Data
	Performance Evaluation
	Data Quality Evaluation
	Cost Evaluation

	Conclusion & Future Work
	Conclusion
	Future Work

	Bibliography

