
Knowledge and Communication
Complexity in Distributed

Systems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Daniel Pfleger, BSc
Matrikelnummer 1125864

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Prof. Ulrich Schmid

Wien, 8. März 2018
Daniel Pfleger Ulrich Schmid

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Knowledge and Communication
Complexity in Distributed

Systems

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Daniel Pfleger, BSc
Registration Number 1125864

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Ulrich Schmid

Vienna, 8th March, 2018
Daniel Pfleger Ulrich Schmid

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Daniel Pfleger, BSc
Neilreichgasse 85/8/10, 1100 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 8. März 2018
Daniel Pfleger

v

Acknowledgements

First of all I want to express my deepest thanks to Prof. Ulrich Schmid for introducing
me to the interesting topics in distributed algorithms and for his excellent guidance,
counsel and support throughout my master study and especially during the work on this
thesis. I also want to thank the research assistants Kyrill Winkler and Manfred Schwarz
for their refreshing support during the work on this thesis and for poking on weak points
in my arguments during various interesting and enlightening discussions, which opened
my eyes to take alternative ways at some points. My family and friends deserve special
thanks for backing me and for adding variety to stressful times. Last but not least I want
to thank Manuela Hofer for her inexhaustive love and the patience in stressful times and
sleepless nights full of work.

This thesis has been supported by the Austrian Science Fund FWF under the projects
ADynNet (P28182) and RiSE/SHiNE (S11405).

vii

Abstract

This thesis is concerned with the connection between knowledge and communication
complexity in distributed systems. To find a lower bound on communication complexity
for a problem P, we pursue a two-step approach: First we determine the necessary
knowledge the processes must locally acquire to solve P. From this required knowledge
and the processes’ a priori knowledge, we can infer what the processes have to learn
throughout the execution. From this learning process, we can determine a lower bound
on communication complexity.

More specifically, we bridge the gap between Action Models, used in Dynamic Epistemic
Logic to update the epistemic state of the system, and communication complexity and
propose a way to determine a lower bound on the number of bits that need to be sent
applying an action model in the general setting.

As this thesis shall also support the chase for a strongest message adversary for the
problem of solving consensus in directed dynamic networks, we apply our method in the
case of two processes to find a lower bound on the communication complexity for this
problem. It turns out, however, that there is no such bound.

Nevertheless, as a by-product of our analysis, we provide necessary and sufficient con-
ditions for a message adversary that allows to solve consensus in a directed dynamic
network of two processes.

ix

Kurzfassung

Diese Arbeit behandelt die Verbindung zwischenWissen undKommunikations-Komplexität
in verteilten Systemen: Wir möchten eine untere Schranke für die Komplexität der Kom-
munikation ermitteln, die benötigt wird um ein Problem P zu lösen. Dazu verfolgen wir
einen zweistufigen Ansatz: Zuerst ermitteln wir das Wissen, das die Prozesse benötigen,
um P zu lösen. Ausgehend von dem a priori Wissen der Prozesse schließen wir darauf,
was die Prozesse lernen müssen, um dieses benötigte Wissen zu erlangen. In einem zwei-
ten Schritt wird die Kommunikation-Komplexität ermittelt, die für diesen Lernvorgang
mindestens erforderlich ist.

Insbesondere untersuchen wir die Lücke zwischen Action Models, die in Dynamic Epistemic
Logic verwendet werden, um Änderungen im epistemischen Zustand eines Systems zu
formalisieren, und Kommunikations-Komplixität, konkret, wir schlagen eine Methode
vor, um eine untere Schranke für die Anzahl der Bits zu finden, die gesendet werden
müssen, um ein Action Model in einer allgemeinen Situation anzuwenden.

Darüberhinaus soll diese Arbeit die Suche nach einem stärksten Message Adversary
für Konsensus in gerichteten dynamischen Netzwerken unterstützen. Wir wenden da-
her unsere Methode auf ein Zwei-Prozess-System an, um eine untere Schranke für die
Kommunikations-Komplexität dieses Problems zu finden. Allerdings stellt sich heraus,
dass die Kommunikations-Komplexität für Konsensus in gerichteten dynamischen Netz-
werken unbeschränkt ist.

Dennoch liefern wir, als Nebenprodukt unserer Analyse, Bedingungen an den Message
Adversary, die notwendig und hinreichend dafür sind, dass zwei Prozesse in einem
gerichteten dynamischen Netzwerk Konsensus lösen können.

xi

Contents

Abstract ix

Kurzfassung xi

Contents xiii

1 Introduction 1
1.1 Short Overview of Related Work . 2
1.2 Thesis Structure and Major Contributions 3
1.3 The Model . 4

2 Communication Complexity 7
2.1 The Scenario and Model . 8
2.2 Rectangles . 11
2.3 Lower-Bound Techniques . 12

3 Knowledge & Epistemic Logic 15
3.1 Introduction . 15
3.2 Epistemic Logic . 17
3.3 Dynamic Epistemic Logic & Action Models 23

4 Action Models & Communication Complexity 39
4.1 Introduction . 39
4.2 An Action Model Lower Bound on Communication Complexity 40
4.3 A Yao Lower Bound on Communication Complexity 44
4.4 Application on consensus in directed dynamic networks 55
4.5 Summary and Discussion of our Findings 61

5 2-player Consensus in Directed Dynamic Networks 65
5.1 Problem Definition . 65
5.2 Previous Results . 66
5.3 Consensus and Communication Complexity 68
5.4 Solvability of Consensus . 71

xiii

6 Conclusions and Open Questions 93

List of Figures 95

List of Algorithms 99

Bibliography 101

CHAPTER 1
Introduction

The main problem we will consider in this theses is the problem of Consensus in Directed
Dynamic Networks. In the consensus problem, all the n processes of a distributed system
have to decide on a certain value, given some local input at every process. This problem
is well known and has been solved in various variants of distributed message-passing
systems with reliable communication [LSP82, DFF+82, ADG84, BT83, Bra84, FLP85].
In dynamic networks, on the other hand, the problem is more complex, as the processes
cannot rely on the delivery of sent messages [CFQS12]. There is hence on-going research
in this area [SWK09, KOM11, BRS12, BRS+15].

An important abstraction in synchronous dynamic networks are message adversaries,
which determine which messages are lost and which are delivered in every round. One
of the most interesting questions in this area of research is to find a strongest message
adversary that still allows to solve consensus. A strongest message adversary is such that
it admits a correct consensus algorithm whereas any further relaxation of its guarantees
does not allow to find such an algorithm.

A conceivable way to approach this question could be the following:

1. Determine the knowledge a process has to gather to be able to decide on a value
according to the consensus specification.

2. Using this knowledge, determine the minimal number of bits a process has to receive
to gather this knowledge.

3. Find a message adversary that allows to send exactly this minimal number of bits.

4. Check whether this message adversary is a strongest one, by (i) finding a correct
consensus algorithm for it, and (ii) proving consensus impossibility for every
relaxation.

1

1. Introduction

As a preliminary step for such an approach, part of this thesis is concerned with the idea
to connect the communication complexity for a general problem P with the necessary and
sufficient knowledge that must be attained by the processes to solve P, using epistemic
logic. Our idea is to do this in three steps:

1. What do the processes have to know to solve P?

2. What does a single process have to learn from other processes to gain its part of
this knowledge?

3. How many bits have to be sent between the processes during this learning phase?

We will investigate the connection between knowledge gain and communication complexity
in order to bridge the gap between steps 2 and 3. Subsequently, we will apply our approach
to find a lower bound on communication complexity for the consensus problem in directed
dynamic networks consisting of two processes.

1.1 Short Overview of Related Work
[Yao79] found methods to get communication complexity lower bounds for deterministic
two-player games. We will take a look at the fooling set method, which has been implicitly
used by [Yao79] and made more explicit in [LS81]. Another such method is the rank
lower bound introduced in [MS82]. Among others, [DKW09] and [DF89] generalized the
two-player setting to multi-party communication complexity. Concerning communication
complexity, our presentation is based on [KN97], which gives a good overview of different
methods and models.
[Ger97] invented Dynamic Epistemic Logic as a combination of epistemic logic and
dynamic semantics. Epistemic logic [Hin62] allows to formally reason about knowledge
and belief in multi-agent systems. Dynamic Epistemic Logic is used to argue about
knowledge and communication-induced knowledge gain. We will especially use Action
Models to reason about knowledge gain, by updating the epistemic state of the system.
In a nutshell, action models allow to model the actions of players or the environment,
which can alter the knowledge of other players. [vDvdHK08] gives an outline of different
methods for reasoning about knowledge.
We will use small problems like the Cheating Husbands problem [MDH86] to illustrate
our explanations. [FHMV95] gave a deep look into reasoning about knowledge, including
the Muddy Children problem, which is very closely related to the Cheating Husbands
Problem.

Similar to our work is [CK08], which used dynamic epistemic logic and action models
in a combinatorial way to find a lower bound on communication complexity for the
Russian Cards problem. [ALNR09] investigated bounds for a system of reasoning agents,
where agents may have different knowledge and inferential capabilities and have to
draw conclusions from received messages, which contain formulas. They established a

2

1.2. Thesis Structure and Major Contributions

framework to verify time, memory and communication bounds in such a system. The
communication complexity in this work is defined as the number of sent formulas rather
than sent bits, however.

An overview of the related work on solving consensus will be presented in Section 5.2.

1.2 Thesis Structure and Major Contributions
This thesis has been supported by the Austrian Science Fund FWF under the projects
ADynNet (P28182) and RiSE/SHiNE (S11405).

The thesis is structured as follows:

• Section 1.3 defines the model of computation used throughout the thesis, including
the notions of a synchronous message passing system, message adversaries and
indistinguishability.

• Chapter 2 gives an overview of the topic of communication complexity. We will
present the model given by [Yao79], followed by techniques [Yao79, LS81, MS82]
to find lower bounds on the communication complexity of a problem.

• Chapter 3 introduces the notion of knowledge in distributed systems. We will
introduce two small problems: Buy or Sell? and Cheating Husbands, which will
be used to illustrate the content of Chapter 3 and Chapter 4. To reason about
knowledge and knowledge gain, we will also present epistemic logic and action
models, a well-known method to reason in dynamic epistemic logic [Ger97].

• Chapter 4 investigates the connection between knowledge gain and communication
complexity. In particular, we show that an algorithm A is defined by a sequence
of action models AM1, . . . ,AMm and show that the application of the composed
actions model CAMm = (AM1; . . . ;AMm) implies a lower-bound on the communication
complexity of the algorithm A .

• Chapter 5 is concerned with the problem of solving consensus in directed dynamic
networks consisting of 2 processes. Note that this is not at all a toy problem, as
the rich literature on consensus with lossy links [SW89, CBS09, SWK09, CG13]
reveals.

– Section 5.3 tries to apply the approach of Chapter 4 to this problem in order
to find a lower bound on its communication complexity. It turns out, however,
that the latter is unbounded (Theorem 5.3.1).

– Since this thesis shall also contribute to the chase for necessary and sufficient
conditions to solve consensus in directed dynamic networks, we further in-
vestigated this problem in 2 process systems. Section 5.4 defines a message
adversary, which is necessary and sufficient to solve consensus in this setting,
as proved in Theorem 5.4.4.

3

1. Introduction

• Chapter 6 concludes this thesis, by giving a summary and a perspective of open
questions.

1.3 The Model
We consider synchronous message passing systems only. Such systems are modeled as a
set Π of n processes with unique identifiers, which are modeled as state machines. The
processes themselves are reliable and operate in lock-step rounds. At the beginning of
round r, all processes are allowed to send out messages to each other (and to themselves).
The actual communication in round r is controlled by an omniscient message adversary,
which determines which messages are delivered and which messages get lost in this round.
I.e., in each round r, the message adversary determines (we often also say chooses) a
communication graph Gr = (V,Er), such that: (i) each vertex in V corresponds to
exactly one process in Π and (ii) iff the message adversary would permit the delivery of
a messages sent from p to q in round r, the edge from p to q is present in Er. Note that
each Gr contains all self-loops, i.e., each process p always sends a message to itself in
each round r and always receives this message. Rounds are communication closed, in the
sense that each message sent in some round r may either be delivered in r or not at all.
After this message exchange, each process does an instantaneous local computation step.

For our analysis, we need the notions of the local state of a process. The local state Lp is
the set of all the local variables of process p, Lrp denotes the local state of process p at the
end of round r, L0

p denotes the initial state of p. xrp denotes the value of some variable
x in the local state Lrp. At the beginning of round r (before the message exchange),
process p has the local state Lr−1

p . Using this local state and the contents of the received
messages, p computes the new local state Lrp during its computation step of round r,
via a state-transition function that encodes the algorithm executed by p. Similarly, it
determines the contents of the messages it tries to send in round r+ 1, via an appropriate
message-sending function.

We also denote the vector of the local states of all processes at the end of round r as
the configuration Cr; C0 is the initial configuration. The sequence of configurations and
communication graphs is called an execution or run. As we only consider determinis-
tic algorithms, such an execution (C0, σ) is completely determined by a given initial
configuration C0 together with an infinite sequence of communication graphs σ that
is controlled by the message adversary. We say that two configurations C and C ′ are
indistinguishable for a process p, denoted by C ∼p C ′, if its local state is the same in
both configurations, Lp = L′p. Two prefixes σr and σ′r of graph sequences are called
indistinguishable, if the configurations C = 〈C0, σr〉, C ′ = 〈C0, σ′r〉 reached by applying
σr, σ′r to C0 are indistinguishable.

We denote a sequence of graphs from round a to round b by (Gr)br=a; an infinite graph
sequence (also simply called graph sequence in the following) is denoted by (Gr)∞r=1,
typically abbreviated by σ or ε. A prefix of length k of a graph sequence σ = (Grσ)∞r=1 is
written as σk = (Grσ)kr=1. A single graph in round r of the sequence σ is denoted by Grσ.

4

1.3. The Model

A message adversary MA is defined by a set of properties PMA, which must be fulfilled
by each of the graph sequences. Thus, MA can be specified via the set of graph sequences
MA := {(Gr)∞r=1 | (Gr)∞r=1 satisfies PMA} it may choose. A problem is impossible to
solve under a message adversary MA, if there does not exist any deterministic algorithm
that solves the problem for each graph sequence (Gr)∞r=1 ∈ MA. It is easy to see that
no problem that needs at least some communication can be solved under a message
adversary that includes the graph sequence where no communication graph contains even
a single edge.

We will assume that all algorithms considered in this thesis are full-graph-history, i.e.,
processes keep track of all received messages and append the current history to every
message they send.

5

CHAPTER 2
Communication Complexity

Whenever two or more parties — be it humans, computers, processes or something else
— need to solve a problem jointly, they have to communicate with each other. This
communication may be implicit — e.g. via communication by time [Lam78, BZM14] —
or explicit — by sending a message or “talking to each other”. Once there is a solution
(a distributed algorithm) for such a problem that needs to be solved jointly, one usually
thinks about the “goodness” of the solution in order to compare it to another solution
for the same problem: We want to be able to state that solution A is better or equal to
solution B. Thus we need some measure of the complexity of a solution.
The complexity of solutions can also be used to compare problems to each other: Is
problem A more complicated than problem B? If we have optimal algorithms (in terms
of complexity) solving A respectively B, we can use their complexity as measures of the
problem complexity of A respectively B.

One often uses the amount of communication, which is known as communication complex-
ity, as a measure of the complexity. If considered as a complexity measure of a solution
for problem Pr, we will restrict our attention to the number of bits/messages solution A
sends to solve problem Pr. Since many problems in distributed computing (like consensus)
are parameterized via some input (the vector of the processes input values), we will focus
on the worst-case complexity here, taken over all possible inputs. Talking about the
complexity of the problem itself, we use the minimal number of bits/messages that any
solution for problem Pr has to send to solve Pr for the worst-case input.

The simplest scenario is the two-party model defined by [Yao79]. It consists of two
processes only, which have some local input data. The problem Pr at hand is to locally
compute a certain function of both inputs, and the only resource we care about is
communication. Although the model allows to handle issues like randomization and
non-determinism, in this work, we restrict ourselves to the deterministic case.

7

2. Communication Complexity

In this chapter, we will give an overview of this model and the lower-bound techniques
related to it. The content and structure is based on [KN97].

2.1 The Scenario and Model
Let X, Y and Z be arbitrary finite sets and f : X × Y → Z a non-constant function.
There are two processes p0 and p1, which jointly solve the problem of evaluating f(x, y),
for some inputs x ∈ X and y ∈ Y : x is only known to p0, while only p1 knows y.
Thus p0 and p1 have to communicate with each other in order to solve the problem.
Our communication model assumes that the processes send information to each other
alternatingly: one bit is sent by p0 then one bit is sent by p1 and so on, according to
some protocol P. The communication complexity for the problem (function) f is the
least number of bits (= the number of messages) that need to be exchanged between p0
and p1 by any deterministic protocol P in order to determine f(x, y) at p0 or p1. We
assume that the process that can compute f(x, y) for the first time sends a special ⊥
message to the other process and stops. For simplicity, we will assume that ⊥ requires 0
bits, e.g., by using communication-by-time.

Note that, in this model introduced in [Yao79], it is assumed that the processes know both
the identity (id) of themselves and the other process. This allows a protocol to specify
the process sending the first bit (e.g., the process with the minimal identity), making it
an asymmetric model. In distributed computing, the processes usually know their id,
but do not know the id of any other process, giving raise to a symmetric model. Note
that a leader election algorithm can be used to enable an asymmetric model abstraction
on top of a symmetric model. In the symmetric model, one cannot fix a priori a process
that will send the first bit in the communication. [DMR08] studies the communication
complexity of leader election, consensus and maximum finding in ring and chain networks
in the symmetric model.

Example 2.1.1. Consider the example f(x, y) = x∧ y, where f(x, y) = 0 iff at least one
bit in x or y is 0. In the trivial protocol, p0 sends its input to p1 bit by bit, p1 replies
with any bit. p1 computes f(x, y) and sends ⊥ to p0, resulting in 2 · log2|X| bits sent in
total. But there is also a solution using exactly 1 communicated bit: p0 determines the
AND of all the bits of x and sends this bit to p1, p1 determines the AND of all the bits
of y and the received bit. Since there cannot be any protocol solving the problem with
less than one bit of communication, the communication complexity for this function is 1.

2.1.1 The Model

We use a synchronous distributed system model, as defined in Section 1.3. As we are only
interested in the number of bits sent between p0 and p1, we consider the communication
link from p0 to p1 and vice versa reliable — each message sent in round r will be delivered
in the same round.

We are only interested in deterministic protocols:

8

2.1. The Scenario and Model

Definition 2.1.1. A deterministic protocol P (for function f : X×Y → Z) must specify:

• the process which sends the first bit in round 1, w.l.o.g. p0,

• a deterministic function ak (resp. bk) for p0 (resp. p1) to determine the value of the
bit s0

k (resp. s1
k) sent in round k by p0 (resp. p1), such that sik only depends on the

own input x (resp. y) and the received bits (s1
0, . . . , s

1
k−1) (resp. (s0

0, . . . , s
0
k−1)),

• and a way to determine for both processes whether the result f(x, y) has been
determined already by the end of the current round, w.l.o.g. implemented by
sending ⊥ to the other process in the next round.

Since we do not want to execute any protocol P, but rather analyze it, we give an
equivalent alternative definition of a protocol.

Definition 2.1.2 ([KN97], Definition 1.1). A protocol P over X × Y with range Z is a
binary tree, where each internal node v is labeled either by a function av : X → {0, 1} or
by a function bv : Y → {0, 1}, and each leaf is labeled with an element z of Z. The root
r is labeled by a1 : X → {0, 1}. Intuitively, ak (resp. bk) gives the bit sent by p0 (resp.
p1) in round k.

The value of the protocol P on input (x, y) is the label of the leaf reached by starting
from the root, and walking on the tree, as follows: At each node v labeled by av (resp.
bv) walk left if av(x) = 0 (resp. bv(y) = 0) and right if av(x) = 1 (resp. bv(y) = 1).

The cost of the protocol P on input (x, y) is the length of the path taken on input (x, y).
As the longest such path is the height of the protocol tree, the maximal cost over all
inputs is the height of this protocol tree.

Every root-leaf path in this tree corresponds to an execution of P on some input (x, y):
At each internal node the process that is the next to send a bit is computing av, resp. bv,
to determine the value of the next bit.

Figure 2.1 shows the definition of a function f : {x0, x1, x2, x3} × {y0, y1, y2, y3} → {0, 1}
which is computed in the protocol tree of Figure 2.2. The dashed path in Figure 2.2
corresponds to the input (x3, y3), and the sequence of sent bits is (0, 1, 0).

y0 y1 y2 y3
x0 1 1 0 1
x1 0 0 1 1
x2 0 0 1 1
x3 0 0 0 0

Figure 2.1: The function f computed in Figure 2.2.

9

2. Communication Complexity

a1(x0) = 1
a1(x1) = 0
a1(x2) = 0
a1(x3) = 0

b2(y0) = 0
b2(y1) = 0
b2(y2) = 1
b2(y3) = 1

b3(y0) = 1
b3(y1) = 1
b3(y2) = 0
b3(y3) = 1

a4(x1) = 1
a4(x2) = 1
a4(x3) = 0

0

0 1

0 1

Figure 2.2: A protocol tree for function f defined in Figure 2.1. The dashed path
corresponds to the input (x3, y3).

Definition 2.1.3. The cost of a protocol P on input (x, y) is the number of bits
communicated by P on input (x, y).
The cost of a protocol P is the maximal cost of P over all inputs (x, y), denoted by D(P).
The cost of a problem Pr(f) is the minimal cost of any protocol P that computes f . We
denote this cost by D(f).

The trivial protocol in Example 2.1.1 works for any function f , thus we can state an
upper bound on the cost for any f :

D(f) ≤ 2 · log2(min{|X|, |Y |})

Since the problem statement does not allow any solution which does not send a single
bit, the trivial (but, for arbitrary f , not tight) lower bound is 1, hence:

1 ≤ D(f) ≤ 2 · log2(min{|X|, |Y |})

10

2.2. Rectangles

2.2 Rectangles

Since we want the communication complexity lower bound on a function f to be tight,
the trivial lower bound is not of interest. To prove tight lower bounds, [Yao79] took a
combinatorial view on protocols: A protocol P can be seen as a way to partition the set
of possible inputs X × Y to multiple sets with the same communication pattern. E.g.
in the protocol tree in Figure 2.2, the communication pattern for all the input pairs in
{x3} × {y2, y3} is the same, as for all those pairs the protocol follows the dashed path.
Another partition in Figure 2.2 is {x0}× {y0, y1}, for which the protocol follows the path
to the rightmost leaf. This leads to the notion of a rectangle:

Definition 2.2.1 ([KN97], Proposition 1.13). A partition R ⊆ X × Y is a rectangle if
and only if:

(x1, y1) ∈ R and (x2, y2) ∈ R⇒ (x1, y2) ∈ R

Note that rectangles are symmetric, even though Definition 2.2.1 appears to be asym-
metric: From (x1, y1) ∈ R and (x2, y2) ∈ R follows (x1, y2) ∈ R, and from (x2, y2) ∈ R
and (x1, y1) ∈ R follows (x2, y1) ∈ R. Hence, we actually have:

(x1, y1) ∈ R and (x2, y2) ∈ R⇒ (x1, y2) ∈ R and (x2, y1) ∈ R

Furthermore, Definition 2.2.1 directly leads us to the realization that each partition
created by the leaves of a tree, i.e., the set of inputs that lead to the same leaf, is
a rectangle. This can be shown by a simple inductive indistinguishability argument:
Suppose both inputs (x1, y1) and (x2, y2) lead to leaf `, then also (x1, y2) and (x2, y1)
lead to `. Thus the communication pattern for them has to be exactly the same, i.e.,
in each node v the sent bit is the same for all of the four input pairs. We start the
induction at the root node at tree-level k = 0: Since (x1, y1) and (x2, y2) both lead to leaf
`, a1(x1) = a1(x2). Thus, the bit sent by p0 is the same for each of the considered input
pairs, (x1, y1), (x1, y2), (x2, y1) and (x2, y2). By the induction hypothesis the processes
sent the same sequence of bits in rounds 1 to k − 1, i.e., (x1, y1), (x2, y2), (x1, y2) and
(x2, y1) reach the same node v at level k. W.l.o.g. suppose that p1 has to send the
bit in round k. Since all the considered input pairs reached node v, p1 cannot hence
distinguish (x1, y1) from (x2, y1) and (x1, y2) from (x2, y2) and since bv(y1) = bv(y2) by
our assumption, the bit sent by p1 in v is the same for (x1, y1), (x2, y2), (x1, y2) and
(x2, y1).

There is a slightly stronger notion of rectangles, called f-monochromatic rectangles, in
which the result of f is the same. Clearly, the partition created by the leaves of a protocol
tree for function f consists of f -monochromatic rectangles. In fact, if we take any correct
protocol P for a function f , P must actually split X × Y in several partitions which are
f -monochromatic rectangles. We have to distinguish the f -monochromatic rectangles
induced by f , and the ones equivalent to the partition created by a given protocol tree,
however: A set of f -monochromatic rectangles induced by f is a partition of X × Y

11

2. Communication Complexity

into maximal-size f -monochromatic rectangles. Clearly, a f -monochromatic rectangle
created by some protocol tree is a subset of such a rectangle induced by f . Since each
leaf of P creates a unique rectangle, the number of rectangles created by P is the number
of leaves in P and is at least the number of elements in any set of f -monochromatic
rectangles induced by f .

Interpreting P as an assignment from inputs (x, y) to communication patterns, we see
that the maximum number of bits sent in P is equal to the height hP of the tree. Thus,
D(P) = hP . Clearly, there are multiple protocols solving f , and we are interested in
some protocol Pmin such that ∀P : D(Pmin) ≤ D(P). Pmin satisfies D(Pmin) = D(f)
and has the lowest number of f -monochromatic rectangles among all protocols P solving
f . This property can be used to find a lower bound on communication cost for f :

Corollary 2.2.1 ([KN97], Corollary 1.17). If any set of f -monochromatic rectangles
induced by f contains at least t rectangles, then

log2 t ≤ D(f).

If there is a protocol P that partitions X × Y into t rectangles (i.e., P has t leaves), then
P is optimal and D(P) = log2 t.

2.3 Lower-Bound Techniques
Corollary 2.2.1 states a lower bound for D(f) depending on the minimum number of
f -monochromatic rectangles any partition of X × Y requires. This can be used in several
techniques to determine a lower bound of D(f) for an arbitrary function f .

2.3.1 Fooling Sets

The lower bound technique of “fooling sets” is used implicitly by [Yao79]; it first appeared
in [LS81]. The idea is to find a lower bound for the number of induced rectangles t and
use it to find a lower bound for D(f), according to Corollary 2.2.1.

We start by specializing a f -monochromatic rectangle to a z-monochromatic rectangle
R, characterized by (x1, y1) ∈ R and (x2, y2) ∈ R ⇒ f(x1, y1) = f(x2, y2) = z ∈ Z and
(x1, y2) ∈ R and (x2, y1) ∈ R. Thus if f(x1, y2) 6= z or f(x2, y1) 6= z, then (x1, y1) 6∈ R
or (x2, y2) 6∈ R. A fooling set Sz is the set of pairs (x, y) leading to the same value
f(x, y) = z that are not in the same z-monochromatic rectangle (Definition 2.3.1). As a
z-monochromatic rectangle cannot contain more than one element of Sz by maximality,
|Sz| is a lower bound for the number of z-monochromatic rectangles, which in turn is
obviously smaller than t.

Definition 2.3.1. A set Sz ⊂ X × Y is a fooling set for f if:

• ∀(x, y) ∈ Sz : f(x, y) = z

12

2.3. Lower-Bound Techniques

• ∀(x1, y1), (x2, y2) ∈ Sz : f(x1, y2) 6= z ∨ f(x2, y1) 6= z

Denote the number of z-monochromatic rectangles of f by Nz. If f has a fooling set Sz
of size tz, then tz ≤ Nz, thus log2 tz ≤ log2 Nz ≤ D(f). This bound can be tightened by
taking into account the fooling sets for every z ∈ Z on f , which are of course disjoint.
Consequently, we obtain

∑
z∈Z

tz ≤
∑
z∈Z

Nz ≤ t and thus

log2
∑
z∈Z

tz ≤ log2
∑
z∈Z

Nz ≤ D(f).

For an example, consider the function given in Figure 2.1. We see that S0 = {(x1, y0),
(x0, y2), (x3, y3)} and S1 = {(x0, y0), (x1, y2)}. Thus t0 = |S0| = 3 and t1 = |S1| = 2,
hence, 3 ≤ D(f). Note that e.g., (x0, y0) and (x0, y1) cannot be both in S1, since
f(x0, y1) = f(x0, y0) = 1.

2.3.2 Rank Lower Bound

[MS82] came up with a different technique called the “Rank Lower Bound”, using a
matrix Mf describing the output of f (Mf (x, y) = f(x, y)); Figure 2.1 shows an example
of such a matrix. The idea is to estimate the number of z-monochromatic rectangles by
the rank rank(Mf) of Mf , since it turns out that rank(Mf) ≤ Nz.

We will prove this for an arbitrary non-constant function f : X × Y → Z. Given any
protocol P for f , define a matrix M`z for each z-valued leaf `z ∈ Lz of the protocol
tree of P, for every z ∈ Z, as follows: M`z(x, y) = 1 if the protocol reaches `z on the
input (x, y), M`z(x, y) = 0 otherwise. Obviously, for each (x, y) such that f(x, y) 6= z,
M`z(x, y) = 0 for all `z ∈ Lz, while M`z(x, y) = 1 for some `z ∈ Lz. It is easy to see that
Mf =

∑
z∈Z

∑
`z∈Lz

M`z and rank(M`z) = 1 for all `z ∈ Lz. Thus
∑

`z∈Lz
rank(M`z) equals the

number of z-valued leaves of P. By obvious rank properties we find

rank(Mf) ≤
∑
z∈Z

∑
`z∈Lz

rank(M`z) =
∑
z∈Z

Nz ≤ t

Since the protocol P is chosen arbitrarily, this lower bound holds for each P. Thus

log2 rank(Mf) ≤ log2
∑
z∈Z

Nz ≤ D(f)

Taking again the function given in Figure 2.1, we see that rank(Mf) = 3, which gives
the (non-tight) lower bound 2 ≤ D(f).

13

CHAPTER 3
Knowledge & Epistemic Logic

3.1 Introduction
Usually the tasks a distributed system has to solve are primarily referring to the global
behavior of the system. The actions of a single process in such a system depend solely on
its local information, though, and the global behavior emerges from those local actions.
Thus, defining and proving the correctness of distributed systems often involves arguments
about the behavior and interaction between individual processes. In such proofs it is
often argued that: “Once the synchronous round r begins, all processes know that all the
sent messages have been delivered.”, for example.

To formalize such arguments, Fagin, Halpern, Moses and Vardi [FHMV95], but also
others, investigated methods to reason about knowledge. One of them is Dynamic
Epistemic Logic invented by Plaza [Pla07] and Gerbrandy [Ger97]. This logic is used to
argue about knowledge and knowledge gain. At the end of this chapter, we will discuss
Action Models, which are used to formalize the change of knowledge due to certain global
actions.

Since we will work mainly with two examples in this chapter, we define them in the
following subsections.

3.1.1 Definition: Buy or Sell? (adapted from [vDvdHK08], Example 4.1)

Example 3.1.1. Consider two stockbrokers Alice and Bob having a break in a Wall
Street bar. A messenger comes in and tells Alice, that Carol will fetch her this day to
tell her something important about the company “United Agents”. Alice and Bob go
back to work and meet again for dinner.

What can we state about the knowledge of Alice and Bob over time? Clearly, in the
evening, Alice knows either that United Agents is doing well or not. But did Bob also

15

3. Knowledge & Epistemic Logic

have any change in his knowledge? Yes! Before the break he knows that United Agents
does well or not, i.e., knows nothing. After the break he knows that Alice will know
whether United Agents does well or not. At the dinner he knows that Alice knows
whether United Agents does well or not.

3.1.2 Definition: Cheating Husbands ([MDH86])

Example 3.1.2. The queens of the matriarchal city-state of Mamajorca, on the continent
of Atlantis, have a long record of opposing and actively fighting the male infidelity problem.
Ever since the technologically-primitive days of queen Henrietta I, women in Mamajorca
have been required to be in perfect health and pass an extensive logic and puzzle-solving
exam before being allowed to take a husband. The queens of Mamajorca, however, were
not required to show such competence.

It has always been common knowledge among the women of Mamajorca that their
queens are truthful and that the women are obedient to the queens. It was also common
knowledge that all women hear every shot fired in Mamajorca. Queen Henrietta I woke
up one morning with a firm resolution to do away with the male infidelity problem in
Mamajorca. She summoned all of the women heads-of-households to the town square
and read the following statement:

There are (one or more) unfaithful husbands in our community. Although none of
you knew before this gathering whether your own husband was unfaithful, each of you
knows which of the other husbands are unfaithful. I forbid you to discuss the matter of
your husband’s fidelity with anyone. However, should you discover that your husband is
unfaithful, you must shoot him on the midnight of the day you find out about it.

Thirty nine silent nights went by, and on the fortieth night, shots were heard.

This example is quite interesting since life and death depend on the reasoning about
knowledge of other parts of the system. Lets take a look at what would have happened
if there had been exactly one unfaithful husband: Clearly his wife did not know of any
cheating husband. Since the queen announced truthfully that there is at least one such
husband, this wife would have shot her own in the first night. All the other women would
have known 1 cheating husband. Since his wife shot him in the first night, all the other
know that she did not knew about any other husband, or she would not have known that
her husband was cheating.

In general: If there had been n unfaithful husbands, they would all have been shot on
the midnight of the nth day ([MDH86], Theorem 1).
We already sketched the proof for the induction basis on the number of husbands n ≥ 1
above. Now we sketch the proof of the induction step:
If there are n unfaithful husbands, then there are some wives knowing of n unfaithful
husbands (those who are not cheated on) and some wives knowing of n− 1 unfaithful
husbands. If there would have been n− 1 unfaithful husbands they would have been shot

16

3.2. Epistemic Logic

on the midnight of day n − 1, by the induction hypothesis. Since no shots fall in this
night, all the women knowing n− 1 unfaithful husbands know that their own husbands
are unfaithful and shoot them.

We will get a more formal look on this example later on.

3.2 Epistemic Logic

In this section we will introduce basic epistemic logic and some different notions of
knowledge and group knowledge. Defining and arguing about the notions of Basic
Epistemic Logic (Section 3.2.1), Everybody knows and Common Knowledge (Section 3.2.2)
and Dynamic Epistemic Logic (Section 3.3), we follow the textbook [vDvdHK08].

3.2.1 Basic Epistemic Logic

Hintikka [Hin62] formalized modern epistemic logic and gave it a possible world semantics.
Epistemic logic is based on modal logic and formalized using Kripke structures. It is
investigated in very different areas of research, e.g. artificial intelligence [Moo80], game
theory [Aum76] and philosophy [HH89], the area it originated from. [Aum76] also
formalized common knowledge the first time, the notion of which was first discussed by
[Lew69]. Later on also computer scientists started to use epistemic logic as a tool for
argumentation, [FHMV95] gives a survey of many papers investigating this topic.

We start by defining the language and semantics of the basic epistemic logic. To do so
we need the atomic propositions p, q, . . . , which describe some state, e.g., p may stand
for “United Agents is doing well”. To refer to processes (or in general members of the
system) we use agent-symbols a, b,

Definition 3.2.1 (Basic epistemic language ([vDvdHK08], Definition 2.4)). Let P be a
set of atomic propositions, and A a set of agent-symbols. The language LK is generated
by:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ

where p ∈ P and a ∈ A.

As usual, we use also standard abbreviations like (ϕ∨ψ) = ¬(¬ϕ∧¬ψ), (ϕ→ ψ) = (¬ϕ∨ψ)
and (ϕ↔ ψ) = (ϕ→ ψ)∧ (ψ → ϕ). For each process a, we define the knowledge operator
Ka, such that Kaϕ can be interpreted as “process a knows fact ϕ”. Using this operator
we also can describe nested knowledge like KaKbϕ: “a knows that b knows ϕ”.

In the following we will define the semantics of epistemic formulas. Such formulas are
interpreted on states in Kripke models (M, s).

Definition 3.2.2 (Kripke model, see [vDvdHK08], Definition 2.6). A Kripke model is a
tuple 〈S,R, V 〉 on a set of processes A, where:

17

3. Knowledge & Epistemic Logic

• S 6= ∅ is a set of states.

• R is a set of accessibility relations: R = {Ra | a ∈ A}, with Ra ⊆ S × S. A state
t ∈ S is accessible for process a ∈ A from state s ∈ S, iff sRat.

• V : P → 2S is a valuation function for each proposition p. For any proposition p,
V (p) ⊆ S is exactly the set of states in which p is true.

Usually in our context, the accessibility relation Ra for some process a is interpreted
as an indistinguishability relation: “process a cannot distinguish between states s and
t”, thus denoted by ∼a. In general, however Ra need not be symmetric. In such a case,
process a in state s would not know whether it is in s or in t, but process a in t would
know that it is in t and not in s. An indistinguishability relation has all the properties
of an equivalence relation, thus each node contains a self-loop for each process and we
usually omit the arrows on the relation between the nodes.

For an example look at the Kripke model M given in Figure 3.1, which is M = 〈S,∼, V 〉,
with:

• S = {s0, s1, s2}

• ∼a= {(s0, s0), (s1, s1), (s2, s2), (s0, s1), (s1, s0)}

• ∼b= {(s0, s0), (s1, s1), (s2, s2), (s1, s2), (s2, s1)}

• V (p) = {s0, s1}

s0
p

s1
p

s2
¬pa, b

a

a, b

b
a, b

Figure 3.1: First example of a Kripke model. Since ∼a and ∼b are indistinguishability
relations, the model contains self loops.

The following Definition 3.2.3 gives the semantics of formulas in LK in a Kripke model.

Definition 3.2.3 ([vDvdHK08], Definition 2.7). Given a Kripke model M = 〈S,∼, V 〉
and a state s ∈ S, a formula ϕ is true in (M, s), denoted by M, s |= ϕ, iff:
M, s |= p iff s ∈ V (p)
M, s |= (ϕ ∧ ψ) iff M, s |= ϕ and M, s |= ψ
M, s |= ¬ϕ iff not M, s |= ϕ, denoted M, s 6|= ϕ
M, s |= Kaϕ iff for all t ∈ S such that s ∼a t : M, t |= ϕ

18

3.2. Epistemic Logic

The states in a Kripke model can be seen as possible worlds. For an example look
at Figure 3.2, the states represent the weather in Vienna and Dublin via the atomic
propositions p, the sun is shining in Vienna, and q, the sun is shining in Dublin. There
are four possible worlds in the corresponding Kripke model: s0 it is sunny both in Vienna
and Dublin, s1 it is sunny only in Vienna, s2 it is sunny only in Dublin, s3 it is not sunny
both in Vienna and Dublin. Think of the persons Anne and Bob, both in Vienna. Both
of them observe whether it is sunny in Vienna or not. Thanks to his smart-phone, Bob
has access to the internet and looks up the actual weather in Dublin. As Anne’s phone is
broken, she does not have such possibility. Thus, if it is sunny in Vienna, Anne considers
the worlds s0 and s1 possible, since she cannot observe the weather in Dublin. In both of
the worlds it is sunny in Vienna, thus she knows that it is sunny in Vienna and KAnnep
holds (see Definition 3.2.3).
Since Bob observes the weather in both of the cities, he is able to distinguish any of the
states from any other state, thus only considers the actual state possible. Thus, if it is
sunny in both Vienna and Dublin, this holds in all of the worlds he considers possible,
thus KBob(p ∧ q).

s0
p, q

s1
p,¬q

s2
¬p, q

s3
¬p,¬q

a, b
a

a, b

a, b
a

a, b

Figure 3.2: Example for a Kripke model. p denotes the fact that it is sunny in Vienna,
while q denotes sunny in Dublin. Agent a (Anne) only knows whether or not it is sunny
in Vienna, while agent b (Bob) knows the weather in both of the cities.

Here are some examples for the interpretation of epistemic formulas in the Kripke model
of Figure 3.1:

• M, s0 |= p, M, s1 |= p and M, s2 6|= p
These we get directly from V (p).

• M, s0 |= Kap and M, s0 |= Kbp
All states t indistinguishable from s0 for a, namely t ∈ {s0, s1}, satisfy M, t |= p.
All states t indistinguishable from s0 for b, namely t ∈ {s0}, satisfy M, t |= p.

• M, s1 |= Kap and M, s1 6|= Kbp
All states t ∈ {s0, s1} indistinguishable from s1 for a satisfy M, t |= p.
There is a state t = s2 indistinguishable from s1 for b, such that M, t 6|= p.

19

3. Knowledge & Epistemic Logic

• M, s0 |= KbKap
All states t ∈ {s0} indistinguishable from s0 for b satisfy M, t |= Kap as established
above.

• M, s0 6|= KaKbp
There is a state t = s1 indistinguishable from s0 for a, such that M, t 6|= Kbp, as
established above.

3.2.2 “Everybody knows” and Common Knowledge

We now introduce the notions related to “everybody knows ϕ”. Intuitively “everybody
in group B knows fact ϕ” — denoted by EBϕ for some non-empty set of processes B —
has the meaning that for each process a ∈ B it holds that Kaϕ. Therefore we introduce
this notion as syntactical equivalence:

EBϕ =
∧
a∈B

Kaϕ

To introduce nested “everybody knows” we use:

E0
Bϕ = EBϕ

EkBϕ = EBE
k−1
B ϕ

We introduce the notion of Common Knowledge, as the limit of nested “everybody
knows” via the infinite conjunction that “everybody knows that everybody knows that
. . . everybody knows that ϕ”:

CBϕ =
∞∧
n=0

EnBϕ

To demonstrate the difference between everybody knows and common knowledge, we use
an example:

Example 3.2.1. Consider three people a, b, c sitting in a train. a and b are talking to
each other while c listens to some music with her headphones. There is an announcement
via the speakers, stating that the train is half an hour late (denote that fact by ϕ). a and
b stop their conversation and listen to the announcement. Since they both know that the
other heard the announcement as well it holds that “both know that both know that . . .
both know ϕ” ad infinitum. Thus, C{a,b}ϕ.

Since the volume of c’s earphones is just low enough that c understands all the announce-
ments, she also knows ϕ. Thus E{a,b,c}ϕ holds. As c heard a and b complaining about
the delay, KcE{a,b,c}ϕ and even KcC{a,b}ϕ holds. But since a and b did not recognize
that c heard the announcement, E2

{a,b,c,}ϕ and hence C{a,b,c}ϕ do not hold.

To define common knowledge we need to extend our language LK by CBϕ for any
non-empty set of processes B.

20

3.2. Epistemic Logic

Definition 3.2.4 (similar to [vDvdHK08], Definition 2.26). Let P be a set of atomic
propositions, A a set of process-symbols, B a non-empty subset of A and a some process
in A. The language LKC is generated by:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | CBϕ

To define the semantics of common knowledge, we first have to introduce the reflexive
transitive closure of a relation R (Definition 3.2.5) before we can extend the interpretation
given in Definition 3.2.3 towards Definition 3.2.6.

Definition 3.2.5. The reflexive transitive closure of a relation R is the smallest relation
R∗ such that:

• R ⊆ R∗,

• for all x, y, and z: xR∗y ∧ yR∗z ⇒ xR∗z (transitivity)

• for all x, xR∗x (reflexivity)

Note that if y is reachable from x using only pairs of elements related by R, then xR∗y.

Definition 3.2.6. Given a Kripke model M = 〈S,∼, V 〉 and a state s ∈ S, an epistemic
formula of LKC ϕ is true in (M, s), iff:
M, s |= p iff s ∈ V (p)
M, s |= (ϕ ∧ ψ) iff M, s |= ϕ and M, s |= ψ
M, s |= ¬ϕ iff M, s 6|= ϕ
M, s |= Kaϕ iff for all t ∈ S such that s ∼a t : M, t |= ϕ
M, s |= EBϕ iff for all t ∈ S such that s ∼EB t : M, t |= ϕ
M, s |= CBϕ iff for all t ∈ S such that s ∼∗EB t : M, t |= ϕ,

with ∼EB=
⋃
b∈B
∼b.

Since ∼EB=
⋃
b∈B
∼b, everybody in a group B of processes knows a fact ϕ in state s, if ϕ

is true in each state t that can be reached from s using a single step ∼b. I.e. there is no
state t, in which ϕ does not hold, which cannot be distinguished from s by some process
b ∈ B.
As x ∼∗EB y only if y can be reached from x using only steps from ∼EB , a group B
commonly knows a fact ϕ in state s, if ϕ is true in each state t that can be reached from
s by using only indistinguishability relations ∼b corresponding to some process b ∈ B. In
the graphical representation of a Kripke structure this means that a group B commonly
knows ϕ in state s, only if there is no path consisting solely of edges corresponding to
any b ∈ B to any state t in which ϕ does not hold.

21

3. Knowledge & Epistemic Logic

3.2.3 Buy or Sell?

We will now use epistemic logic to describe the knowledge of Alice and Bob, denoted by
a respectively b in Example 3.1.1. At the start of the coffee break we clearly have the
Kripke model MBoS depicted in Figure 3.3. The fact that United Agents is doing well is
denoted by proposition p.

s0
p

s1
¬pa, b

a, b
a, b

Figure 3.3: Example Buy or Sell: Kripke model MBoS at the start of the coffee break.
Proposition p denotes that United Agents is doing well.

Since neither Alice nor Bob knows anything about United Agents, for any state s it holds
that MBoS , s |= Ka(p∨¬p)∧Kb(p∨¬p). It even holds that MBoS , s |= C{a,b}(p∨¬p), it
is common knowledge that both consider it possible that p or ¬p.

The situation in the evening is of greater interest. Carol already talked to Alice and
Bob knows that she did, thus the corresponding Kripke model M ′BoS is as depicted in
Figure 3.4.

s0
p

s1
¬pa, b

b
a, b

Figure 3.4: Example Buy or Sell: Kripke model M ′BoS in the evening. Proposition p
denotes that United Agents is doing well.

If Carol told Alice that United Agents is doing well, the processes are in state s0. From
Figure 3.4 we see that M ′BoS , s0 |= Kap. We also see that still M ′BoS , s0 |= Kb(p ∨ ¬p),
but also M ′BoS , s0 |= Kb((p → Kap) ∧ (¬p → Ka¬p)), i.e., that Bob knows that Alice
knows whether United Agents is doing well or not.

3.2.4 Cheating Husbands

We now look at the Kripke models involved in the Cheating Husbands Problem in
Example 3.1.2. In order to simplify the figures, we will only consider three wives (a, b
and c) and will omit the self-loops in the Kripke models. Each state in the model in
Figure 3.5 is labeled with (xyz), x, y, z ∈ {0, 1}, x = 1(0) as “husband of a is unfaithful
(faithful)”. y = 1(0) depicts “husband of b is unfaithful (faithful)” and z = 1(0) depicts
“husband of c is unfaithful (faithful)”. Figure 3.5 depicts the initial Kripke model MCH .

This is another excellent example to show the difference between E{a,b,c}ϕ and C{a,b,c}ϕ.
Denote by ϕ the fact that at least one husband is unfaithful and consider any state in
which at least two husbands are unfaithful. As it happens,
∀s ∈ {(011), (110), (101), (111)} : MCH , s |= E{a,b,c}ϕ is valid, since in all neighboring

22

3.3. Dynamic Epistemic Logic & Action Models

(111)(011)

(110)

(101)

(010)

(001)

(100)(000) a

b

c

a

b

a

c

b

c

a

b

c

Figure 3.5: Example Cheating Husbands: Initial Kripke model MCH for three wives
a, b, c.

states ϕ holds. On the other hand ∀s ∈ S : MCH , s 6|= C{a,b,c}ϕ, since from each state s
there is a path to (000) in which ϕ does not hold.

Next we will have a look at the situation after queen Henrietta publicly announced the
situation on town square, depicted in Figure 3.6 as model M′CH = (S′CH ,∼′CH , V ′CH).

As the queens announcement is publicly made on the town square, all of the women hear
it and know that all of the other women also hear it. Thus each woman can distinguish
state 000 from the other states and knows that all other women also can. Now, since
there is no path from any other state s to state (000), ∀s ∈ S′ : M ′CH , s |= C{a,b,c}ϕ.

3.3 Dynamic Epistemic Logic & Action Models

Up to now we considered Epistemic Logic only, which is concerned with the knowledge
associated with a certain situation. We will now take a further step towards Dynamic
Epistemic Logic, which is concerned with the dynamic change of knowledge caused by
certain events (actions).

Consider the Buy or Sell? example. Previously we argued about the situation at the
coffee break and about the situation in the evening, but we did not formalize the change
of knowledge during the day, i.e., how the situation changed.

23

3. Knowledge & Epistemic Logic

(111)(011)

(110)

(101)

(010)

(001)

(100)

a

b

a

c

b

c

a

b

c

Figure 3.6: Example Cheating Husbands: Kripke model M ′CH after the public announce-
ment of queen Henrietta.

There are various formalizations regarding this change of knowledge. [Pla89] and [GG97]
came up with the Public Announcement Logic, which deals with public announcements,
albeit without the notion of common knowledge. The axiomatisation of public announce-
ments with common knowledge, as in the cheating husband problem (every member
realizes that the announcement is public and that everybody else also realizes this fact),
has been established in [BMS98]. A further step has been taken by Baltag [Bal99], who
introduced Epistemic Actions Logic. An example of such an action can be found in the
Buy or Sell example, where Carol tells Alice that United Agents is doing well at some
time during the day. In Epistemic Actions Logic, this is formalized as Learning formulas
([vD99], [vD02]), like La,b(!La?p∪La?¬p), which means that both Alice and Bob (denoted
by La,b) learn that Alice will learn either p or not p (denoted by La?p ∪ La?¬p), and
Alice actually learns p (denoted by !La?p). Since these formulas are quite tedious and are
growing very fast [BM04] introduced Action Models, which we will discuss in this section.

3.3.1 Action Models

We will first define action models, the syntax and the semantics of action model logic (as
in [vDvdHK08], Section 6.2), and then apply it to our examples.

We start with some remarks on the notation. In the following we will refer to the Kripke
structures introduced in Section 3.2.1 as epistemic structures or epistemic models. We will

24

3.3. Dynamic Epistemic Logic & Action Models

see in the next definitions that the syntax of epistemic models and action models is quite
similar, since both are defined as Kripke structures. Thus we use the font M = 〈S,∼, V 〉
to denote epistemic models, and M = 〈S,∼,pre〉 when talking about action models.

An action model consists of all possible actions (events) any process can observe in a
given interval of time, e.g. a day or a synchronous round. Like an epistemic model, it is
modeled as a Kripke structure, which contains all those possible actions and the relation
∼ between those actions, such that s ∼a t means that process a cannot distinguish if
action s or action t actually happened. An epistemic model is updated by applying an
action model, in such a way that a state s′ of the updated model is built from a state
s of the original epistemic model and an action s, denoted by s′ = (s,s). Note that
s′ = (s,s) only exists if s is applicable on s; we also say that s fulfills the preconditions
of s, formally M, s |= pre(s). The fact that, when updating an epistemic model with
an action model, not every pair (s,s) needs to be contained in the updated epistemic
model makes sense, since in a world in which it is sunny in Vienna, the (truthful) action
“a tells b that it is not sunny in Vienna” is not applicable.

Since we want to be able to reason about the change of certain epistemic states when
applying certain actions, we need the notion of a pointed action model (M,s). Updating
a certain epistemic state (M, s) with a pointed action model (M,s), such that M is the
action model of all the possible actions and s is the action which is actually applied,
the result is another epistemic state (M ′, s′), with M ′ the updated action model and
s′ = (s,s). Note that S′ may be the empty set. We will denote the application of (M,s)
to (M, s) resulting in (M ′, s′) by (M, s)[[M,s]](M ′, s′). In our graphical representations
the actual epistemic state respectively the actual applied action will be underlined. Please
note that we will sloppily use the word “action” for pointed action models (M,s) as well
as for the actual action s, which are part of an action model. In cases where it is not
clear which “action” we mean, we will state this explicitly.

Definition 3.3.1 (Action Model ([vDvdHK08], Definition 6.2)). For given processes A
and atomic propositions P and any logical language L, the action model M is a structure
〈S,∼,pre〉 such that S is a set of actions, ∼a is an equivalence relation on S for each
a ∈ A, and pre : S→ L a preconditions function that assigns a precondition pre(s) ∈ L
to each s ∈ S. A pointed action model is a structure (M,s), with s ∈ S.

The languages of action models, LKC⊗, formulas on action models, LstatKC⊗, and actions on
action models, LactKC⊗, are defined in Definition 3.3.2 in an inductive manner.

Definition 3.3.2 (Syntax of action model logic ([vDvdHK08], Definition 6.3)). Given
processes A and atoms P , the language LKC⊗(A,P) is the union of formulas ϕ ∈
LstatKC⊗(A,P) and pointed action models α ∈ LactKC⊗(A,P) defined by:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | CBϕ | [α]ϕ
α ::= (M,s) | (α ∪ α)

25

3. Knowledge & Epistemic Logic

with p ∈ P , a ∈ A, B ⊆ A, and (M,s) a pointed action model with finite domain S such
that for all t ∈ S the precondition pre(t) is a LstatKC⊗(A,P) formula that has already
been constructed in a previous stage of the inductively defined hierarchy.

In Definition 3.3.2 we see two new constructs: [α]ϕ stands for “after the application of
action α, it holds that ϕ”. Note that we will also use “update with action α” instead of
“application of α” in the following. (α ∪ α′) denotes a non-deterministic choice between
α and α′.

A valid action model is for example pub(ϕ), the public announcement of formula ϕ.
pub(ϕ) = 〈{pub},∼,pre〉 such for all processes a pub ∼a pub and pre(pub) = ϕ. As
we will see later, this action model states that:

• No process a can distinguish the actions pub and pub — which is clear from this
context as ∼a is an indistinguishability relation which contains a self-loop for all
the actions.

• The action pub can only be applied to a state s of some epistemic model M if
M, s |= ϕ, as will be seen in the Definition 3.3.4 of the semantics of action model
logic.

The composition of two action models is also defined syntactically in Definition 3.3.3.
Applying the actions (M, s) and (M′,s′) to an epistemic state (M, s), one can either
apply them one after the other: (M, s)[[M,s]](M ′, s′)[[M′,s′]](M ′′, s′′), or determine their
composition M′′ = (M;M′), with actual action s′′ = (s,s′), first and apply this composition
on (M, s): (M, s)[[M′′,s′′]](M ′′, s′′).

Definition 3.3.3 (Composition of action models, [vDvdHK08], Definition 6.7)). Let
M = 〈S,∼,pre〉 and M′ = 〈S′,∼′,pre′〉 be two action models in LKC⊗. Then their
composition (M;M′) is the action model M′′ = 〈S′′,∼′′,pre′′〉, such that:

S′′ = S× S′

(s,s′) ∼′′a (t,t′) iff s ∼a t and s′ ∼′a t′

pre′′((s,s′)) = 〈M,s〉pre′(s′)

with 〈M,s〉pre′(s′) denoting an abbreviation for ¬[M,s]¬pre′(s′).

We will now give the definition of the semantics of action model logic. This definition
starts with the semantics of formulas on LstatKC⊗, similar to the semantics of epistemic logic.
The definition will conclude with the semantics of applying an action to an epistemic
model — the heart of this section.

Definition 3.3.4 (Semantics of action model logic ([vDvdHK08], Definition 6.8)). Let
M = 〈S,∼, V 〉 be an epistemic model with (M, s), s ∈ S, an epistemic state of this

26

3.3. Dynamic Epistemic Logic & Action Models

model, M = 〈S,∼,pre〉 an action model, and ϕ ∈ LstatKC⊗ and α ∈ LactKC⊗. Furthermore let
A be a set of processes and P the set of atoms, while a ∈ A, B ⊆ A and p ∈ P .

M, s |= p iff s ∈ V (p)
M, s |= (ϕ ∧ ψ) iff M, s |= ϕ and M, s |= ψ
M, s |= ¬ϕ iff M, s 6|= ϕ
M, s |= Kaϕ iff for all t ∈ S such that s ∼a t : M, t |= ϕ
M, s |= EBϕ iff for all t ∈ S such that s ∼EB t : M, t |= ϕ
M, s |= CBϕ iff for all t ∈ S such that s ∼∗EB t : M, t |= ϕ

M, s |= [α]ϕ iff for all M ′, s′ such that (M, s)[[α]](M ′, s′) : M ′, s′ |= ϕ
(M, s)[[M,s]](M ′, s′) iff M, s |= pre(s) and (M ′, s′) = (M ⊗ M, (s,s))
[[α ∪ α′]] = [[α]] ∪ [[α′]]

We define M ′ = (M ⊗ M) as M ′ = 〈S′,∼′, V ′〉 with:

S′ = {(s,s) | s ∈ S,s ∈ S, and M, s |= pre(s)}
(s,s) ∼′a (t,t) iff s ∼a t and s ∼a t
(s,s) ∈ V ′(p) iff s ∈ V (p)

Please note that, in s ∼a t, ∼a corresponds to the epistemic model M , while in s ∼a t,
∼a corresponds to the action model M.

3.3.2 Buy or Sell?

We will extend this example by some additional scenarios, which differ in the actions
Carol may do:

1. talk: In the original Example 3.1.1, Carol will talk to Alice at some time that day.

2. maytalk: In this variant of Example 3.1.1, the messenger tells them that Carol
wants to talk to Alice at some time that day, but it may be possible that Carol
does not find time to do so.

3. bothmaytalk: In this variant of Example 3.1.1, the messenger tells them that Carol
wants to talk to any or both of them at some time that day, but it may be possible
that Carol does not find time to do so. In any case she will first try to talk to Alice.

For all of our variants, the initial epistemic model MBoS depicted in Figure 3.3 applies.
To simplify the figures, we redefine MBoS , discarding the state labels s0 and s1 and
denoting the states with p and ¬p corresponding to the validity of p in a state. We will
also omit self-loops in the figures, and will denote them by loops in written definitions.

MBoS = 〈S,∼, V 〉, with:
S = {p,¬p}

∼a=∼b= {(p,¬p), (¬p, p)} ∪ loops

V (p) = {p}

27

3. Knowledge & Epistemic Logic

In MBoS neither Alice nor Bob are able to distinguish whether United Agents is doing
well or not.

talk We will now establish an action model Mtalk = 〈S,∼,pre〉 for the first scenario.
There are two possible actions: “Carol tells Alice that United Agents is doing well”,
denoted by w, and “Carol tells Alice that United Agents is not doing well”, denoted by n.

S = {w,n}

Since Bob does not know what Carol tells Alice he cannot distinguish w from n, while
Alice perfectly can.

∼a= {(w,w), (n,n)} = loops

∼b= {(w,w), (n,n), (w,n), (n,w)} = {(w,n), (n,w)} ∪ loops

Since Carol only tells the truth, Carol can only tell Alice that United Agents is doing
well, if it actually does well, and vice versa. Thus:

pre(w) = p

pre(n) = ¬p

Figure 3.7 shows (MBoS⊗Mtalk) which has the same epistemic structure asM ′BoS depicted
in Figure 3.4. In particular, Figure 3.7 incorporates the information that, if United
Agents is actually doing well and Carol actually tells Alice that it is, then in Mtalk the
actual state is (p,w): (Mtalk, (p,w)) is the result of applying (Mtalk,w) on (MBoS , p).
In all of the figures depicting the application of an action model, the original epistemic
model is at the top left, the applied action model on the bottom left, and the resulting
epistemic model to the right. Note that, in Figure 3.12 and Figure 3.13, the resulting
epistemic model is at the bottom of the figure, while the applied action model is on the
top right.

p ¬pa, b

⊗

w n
b

=⇒ (p,w) (¬p,n)b

Figure 3.7: Example Buy or Sell: Application of the Action model for scenario talk. w
denotes the action that Carol tells Alice that United Agents is doing well and n denotes
the action that Carol tells Alice that United Agents is not. The actual initial (resp.
updated) epistemic state, as well as the actually performed action, is underlined. Please
note that self-loops are omitted.

28

3.3. Dynamic Epistemic Logic & Action Models

We now evaluate the knowledge of Alice and Bob about the fact p. We want to know
whether:

MBoS , p
?
|= [Mtalk,w]Kap

By the semantics of action model logic we have to consider all epistemic models (M ′, s′),
such that (MBoS , p)[[Mtalk,w]](M ′, s′). Luckily (Mtalk, (p,w)) is the only such epistemic
model. Clearly Mtalk, (p,w) |= Kap, thus:

MBoS , p |= [Mtalk,w]Kap

Analogously we see that:
MBoS , p 6|= [Mtalk,w]Kbp

since Mtalk, (p,w) 6|= Kbp as (p,w) and (¬p,n) are indistinguishable for b, and p does not
hold in (¬p,n).

maytalk In this alternative scenario there are three possible actions: the two actions
from the previous scenario and an additional one, “Carol does not tell Alice anything”,
denoted by ¬t (for does not tell). As in the previous scenario Figure 3.8 depicts the
resulting action model (MBoS ⊗ Mmt) and its application to the initial situation, for the
actual action ¬t and United Agents doing well.

p ¬pa, b

⊗

w n

¬t

b

b b

=⇒ (p,w) (¬p,n)

(p,¬t) (¬p,¬t)

b

b b

a, b

Figure 3.8: Example Buy or Sell: Action model Mmt for alternative scenario maytalk. w
denotes the action that Carol tells Alice that United Agents is doing well, n denotes the
action that Carol tells Alice that United Agents is not, and ¬t that Carol does not talk
to Alice. Please note that self-loops are omitted. The actual action is ¬t and United
Agents is doing well.

Since the action that “Carol does not tell Alice anything” does not depend on whether
United Agents is doing well or not, pre(¬t) = >. Thus ¬t can be applied to any state
of MBoS . Intuitively, neither Alice nor Bob do know that United Agents is doing well if
Carol does not tell Alice, as Figure 3.8 reveals:

MBoS , p 6|= [Mmt,¬t]Kap

29

3. Knowledge & Epistemic Logic

MBoS , p 6|= [Mmt,¬t]Kbp

Since Alice and Bob both know that Bob does not know p, it holds that:

MBoS , p |= [Mmt,¬t]E{a,b}¬Kbp

It even holds that:
MBoS , p |= [Mmt,¬t]C{a,b}¬Kbp

Since this knowledge exists already in (MBoS , p), i.e., MBoS , p |= C{a,b}¬Kbp, the appli-
cation of the action model does not affect any knowledge about the knowledge of Bob of
the fact p. On the other hand, since Bob does not know whether Carol talked to Alice or
not, it holds that

MBoS , p |= [Mmt,¬t]Ka¬Kap

albeit
MBoS , p 6|= [Mmt,¬t]Kb¬Kap.

However, since
MBoS , p |= Kb¬Kap,

it is apparent that the application of (Mmt,¬t) changes Bob’s knowledge about the
knowledge of Alice’s knowledge of p.

bothmaytalk In this last scenario, the number of possible actions increases again. For
both Alice and Bob we have all three possibilities we had in maytalk. Thus we can create
the action model Mbmt for this scenario by composing two instances of the action model
for maytalk, as depicted in Figure 3.9. The instance which handles Carols communication
to Alice (resp. Bob) is denoted by Mamt (resp. Mbmt). An action of Mamt (resp. Mbmt) is
written as xa (resp. xb). Note that for simplicity Carols tries to talk to Alice before she
considers talking to Bob.

Each possible composed action (x,y) contains the action Carol does regarding Alice (x)
and the one regarding Bob (y). For example, (¬ta,¬tb) denotes the action that Carol is
talking to neither Alice nor Bob, while in action (¬ta,wb), Carol is only talking to Bob,
telling him that United Agents is doing well. The precondition function is:

pre(¬ta,¬tb) = 〈Mamt,¬ta〉preb(¬tb) pre(¬ta,nb) = 〈Mamt,¬ta〉preb(nb)
pre(¬ta,wb) = 〈Mamt,¬ta〉preb(wb) pre(na,¬tb) = 〈Mamt,na〉preb(¬tb)
pre(na,nb) = 〈Mamt,na〉preb(nb) pre(na,wb) = 〈Mamt,na〉preb(wb)
pre(wa,¬tb) = 〈Mamt,wa〉preb(¬tb) pre(wa,nb) = 〈Mamt,wa〉preb(nb)
pre(wa,wb) = 〈Mamt,wa〉preb(wb)

In our example, the precondition function is equivalent to:

pre(¬ta,¬tb) = > pre(¬ta,nb) = ¬p pre(¬ta,wb) = p
pre(na,¬tb) = ¬p pre(na,nb) = ¬p pre(na,wb) = ⊥
pre(wa,¬tb) = p pre(wa,nb) = ⊥ pre(wa,wb) = p

30

3.3. Dynamic Epistemic Logic & Action Models

wa na

¬ta

b

b b

composed with

wb nb

¬tb

a

a a

=⇒ (¬ta,¬tb)(¬ta,nb) (¬ta,wb)

(na,nb) (na,¬tb) (na,wb)

(wa,nb) (wa,¬tb) (wa,wb)

a

b

a

b

a

b

a

b

b

a a

b

Figure 3.9: Example Buy or Sell: Composing the action model for bothmaytalk. Each
action (x,y) contains the action regarding Alice, x, and the action regarding Bob, y. The
gray actions (na,wb) and (wa,nb) cannot be applied to any state of any epistemic model,
since pre(na,wb) = 〈Mamt,na〉preb(wb) and pre(wa,nb) = 〈Mamt,wa〉preb(nb). Note that
pre(na,wb) and pre(wa,nb) are equivalent to ⊥ in this example. Also note that in the
composed action model, the transitive links are implicit.

Thus the actions (na,wb) and (wa,nb) cannot be applied to any state of any epistemic
model. Nevertheless they have to be present in the action model Mbmt.

Figure 3.10 shows the resulting action model (MBoS ⊗ Mbmt). The application of
(Mbmt, (wa,wb)), where Carol tells both Alice and Bob that United Agents is doing
well, on (MBoS , p) is again highlighted by underlining.

Since in the resulting epistemic model state (Mbmt, (p, (wa,wb))), both a and b know p,
we have:

MBoS , p |= [Mbmt, (wa,wb)]E{a,b}p

On the other hand, since there is a path from (Mbmt, (p, (wa,wb))) to (Mbmt, (¬p, (¬ta,¬tb)))
and other states in which ¬p,

MBoS , p 6|= [Mbmt, (wa,wb)]C{a,b}p

3.3.3 Cheating Husbands

In our previous Buy or Sell examples, all communication was private (point-to-point). We
will now use the Example 3.1.2 of the cheating husbands to discuss public announcements:
Queen Henrietta I announced on the town square (in the presence of all the women in
Mamajorca) that “there are (one or more) unfaithful husbands in our community.” We
will now create a corresponding action model Mpub = 〈S,∼,pre〉. Since all women in

31

3. Knowledge & Epistemic Logic

p ¬pa, b

⊗

(¬ta,¬tb)(¬ta,nb) (¬ta,wb)

(na,nb) (na,¬tb) (na,wb)

(wa,nb) (wa,¬tb) (wa,wb)

a

b

a

b

a

b

a

b

b

a a

b

=⇒

(¬p, (na,nb))

(¬p, (¬ta,nb)) (p, (¬ta,wb))

(p, (wa,wb))

(¬p, (¬ta,¬tb)) (p, (¬ta,¬tb))

(¬p, (na,¬tb)) (p, (wa,¬tb))

b

a

a

a

b

a

a, b

b

b

a

b

Figure 3.10: Example Buy or Sell: Action model Mbmt for scenario bothmaytalk. Each
action (x,y) contains the action x regarding Alice and y regarding Bob. The application
of (Mbmt, (wa,wb)) on (MBoS , p) results in (MBoS , p)[[(Mbmt, (wa,wb))]](Mbmt, (p, (wa,wb))).

Mamajorca either hear the same announcement (≥ 1) or no announcement at all (¬t),
and none of them considers it possible that any other of them hears anything else, we
only need

S = {≥ 1,¬t}.

As the actions are distinguishable for any woman, the indistinguishability relation for
any process a is the trivial one consisting of self-loops only:

∼a= {(≥ 1,≥ 1), (¬t,¬t)} = loops

And finally, as the queen is truthful and so is the queens announcement, we get the
precondition function:

pre(≥ 1) = ϕ

pre(¬t) = ¬ϕ

with ϕ denoting the proposition that at least one husband is unfaithful. Looking at
Figure 3.5, it is obvious that ϕ holds in every state except for 000.

Thus we can apply Mpub to the epistemic model MCH of Figure 3.5 and obtain the
epistemic model Mpub = (MCH ⊗ Mpub) depicted in Figure 3.11. Suppose we started in
(MCH , 011). After application of (Mpub,≥ 1), we are in epistemic state (Mpub, (011,≥ 1)).

Clearly, all epistemic formulas established in Section 3.2.4 for M ′CH in Figure 3.6 continue
to hold in Mpub.

32

3.3. Dynamic Epistemic Logic & Action Models

(111,≥ 1)(011,≥ 1)

(110,≥ 1)

(101,≥ 1)

(010,≥ 1)

(001,≥ 1)

(100,≥ 1)(000,¬t)

a

b

a

c

b

c

a

b

c

Figure 3.11: Example Cheating Husbands: Kripke model Mpub after the public announce-
ment of queen Henrietta applied to the initial model MCH from Figure 3.5

We will now look at the action model for the first night MN = 〈SN ,∼N ,preN 〉. Clearly
there are two possible actions:

SN = {shot,silence}

As it is commonly known that all the women in Mamajorca hear every shot in town, we
get the trivial indistinguishability relation for each process a:

∼N,a= loops

Of course the precondition on shot is that at least one woman i knows that her husband
is unfaithful (denoted by proposition qi), while the opposite is the precondition for
silence.

preN (shot) =
∨

i∈{a,b,c}
Kiqi

preN (silence) = ¬preN (shot)

The epistemic model M ′pub = (Mpub ⊗ MN) resulting from applying MN to Mpub is shown
in Figure 3.12. When doing so, we have to take care of two details. First, note that the
precondition for the actions in MN are not mere propositions any more, but epistemic
formulas regarding the knowledge of all the processes. Applying the action model, we

33

3. Knowledge & Epistemic Logic

have to evaluate these formulas for every single state in Mpub, since for each of these
states we have to look which of the actions may be applied. Second, pre(shot) does not
hold at (Mpub, (011,≥ 1)), since there is an indistinguishability relation to state (001,≥ 1)
for b and (010,≥ 1) for c in which their husband is not unfaithful, so no wife knows that
her husband is unfaithful. Thus there is no epistemic state (M ′pub, ((011,≥ 1),shot)) in
M ′pub.

For the epistemic model M ′pub we find:

M ′pub, ((011,≥ 1),silence) |= Kbqb ∧Kcqc

Thus,
MCH , 011 |= [Mpub,≥ 1][MN ,silence]Kbqb ∧Kcqc

And after the second night each wife knows whether she is being cheated or not. Applying
MN toM ′pub, we find preN (shot) =

∨
i∈{a,b,c}

Kiqi is satisfied since b knows qb and c knows

qc in (M ′pub, ((011,≥ 1),silence)). preN (shot) is not satisfied in (M ′pub, ((111,≥
1),silence)) since none of the women knows that her husband is cheating on her. In
(M ′′pub, (((011,≥ 1),silence),shot)) (after the second application of MN) it still holds
that b knows qb and c knows qc but here also a knows ¬qa. Hence,

MCH , 011 |= [Mpub,≥ 1][MN ,silence][MN ,shot]
∧

i∈{a,b,c}
(qi ↔ Kiqi).

34

3.3. Dynamic Epistemic Logic & Action Models

(111,≥ 1)(011,≥ 1)

(110,≥ 1)

(101,≥ 1)

(010,≥ 1)

(001,≥ 1)

(100,≥ 1)(000,¬t)

a

b

a

c

b

c

a

b

c

⊗ shot silence

wwwww�

((111,≥ 1),silence)((011,≥ 1),silence)

((110,≥ 1),silence)

((101,≥ 1),silence)

((010,≥ 1),shot)

((001,≥ 1),shot)

((100,≥ 1),shot)((000,¬t),silence)

a

b

c

Figure 3.12: Example Cheating Husbands with public announcements: Kripke model
M ′pub, after applying (MN ,silence) to (Mpub, (011,≥ 1)) in the first night.

35

3. Knowledge & Epistemic Logic

3.3.4 Cheating Husbands: Scenario II

Note that the fact that “every woman in Mamajorca hears the same announcement, and
none of them considers it possible that any other of them hears anything else” is the
most crucial assumption allowing us to model queen Henrietta’s announcement as public
announcement (Mpub). To underline this statement we introduce a second scenario for
the cheating husband problem:
Assume that all the women of Mamajorca know (e.g. by some magical understanding)
that the queen only announces anything iff there is exactly one unfaithful husband, and
that every of the other women knows this behavior of the queen as well, i.e., this fact is
common knowledge. Iff there is exactly one unfaithful husband, the queen tells only his
wife that her husband is unfaithful. All the other women will never hear anything from
the queen and in no other case does the queen announce anything.

Also in this scenario the women are able to find all the cheating husbands. We will sketch
the arguments why this is the case, again using proposition ϕ for “at least one husband
is unfaithful” and qi for “the husband of i is unfaithful”. Consider the case where k = 1
husband is cheating. Then all the women know about this husband, except for his wife,
which will get the information by the queen and shoots him in the first night. All the
other women then know that this wife did not know any other cheating husband and
trust their own husbands.
Consider any case where k = 2 husbands are cheating. Then EAϕ, since every woman
knows at least one cheating husband. As k 6= 1, the queen does not announce anything.
Since every woman considers it possible that her husband is faithful, none of them shoots
her husband in the first night. But then the two women knowing of exactly one unfaithful
husband are shooting their husbands in the second night, since they know them to be
unfaithful.
As in the previous scenario it can be proved by induction that for k ≥ 1 cheating husbands
all of them are shot in the kth night.

Let us take a look at the action model Mpriv = 〈Spriv,∼priv,prepriv〉 for this private
announcement, as before for a set A of three women a, b and c. Suddenly there are four
possible actions instead of just two trivial ones: telling nothing (denoted by ¬t) and, for
each i ∈ {a, b, c}, telling i that her husband is cheating (denoted by ti).

Spriv = {¬t,ta,tb,tc}

As the queen only speaks to i in action ti, i can only distinguish ti from the other three
actions, for j, l 6= i:

∼priv,i= {(¬t,tj), (tj ,¬t), (¬t,tl), (tl,¬t), (tj ,tl), (tl,tj)} ∪ loops

The preconditions are:

prepriv(¬t) = (qa ∧ qb) ∨ (qa ∧ qc) ∨ (qb ∧ qc) ∨ (¬qa ∧ ¬qb ∧ ¬qc)

prepriv(ti) = qi ∧ ¬qj ∧ ¬ql

36

3.3. Dynamic Epistemic Logic & Action Models

The application of this action model is depicted in Figure 3.13. Note that the grey dotted
edges in the action model are drawn only for sake of completeness since they are also
transitively implied by the path via ¬t.

Applying this action model, it turns out that the result is the same as the one after the
public announcement. This is an interesting fact, since in in the public announcement
scenario, the women needed to know a priori (the, in real life trivial, fact) that the
announcement is public, while in the private announcement scenario, the women needed
to a priori know about a more complex situation. On the other hand, in the public
scenario, the queen “sends out” a single bit to each of the women in each case, summing
up to n bits in total for n women. In the private scenario, though, the queen only needs
to send a single bit to a single woman in some special cases and sends nothing in most
other cases. Thus, the communication complexity in the public scenario is higher than in
the private one.

Intuition tells, that this is connected with the complexity of “a priori knowledge”, the
knowledge the women have initially, before any actions happen. Is this the case? Does
the more complex a priori knowledge in the private scenario allows us to decrease
communication complexity? If so, what does that mean for the complexity of the cheating
husbands problem? We try to answer these questions in the next chapter.

37

3. Knowledge & Epistemic Logic

(111)(011)

(110)

(101)

(010)

(001)

(100)(000)

a

b

a

c

b

c

a

b

c

a

c

b

⊗

¬t

ta tb tc

b, c a, c a, b

c

b

a

wwwww�

(111,¬t)(011,¬t)

(110,¬t)

(101,¬t)

(010,tb)

(001,tc)

(100,ta)(000,¬t)

a

c

b b

c

a

c

a

b

Figure 3.13: Example Cheating Husbands Scenario II with private announcements:
Kripke model Mpriv, after applying the private announcement (Mpriv,¬t) to (MCH , 011)
as the queens announcement. Note that the grey edge in Mpriv are drawn only for sake of
completeness since they are also transitively implied by the paths via ¬t.

38

CHAPTER 4
Action Models & Communication

Complexity

4.1 Introduction

As conjectured at the end of the previous chapter, there may exist a connection between
a priori knowledge, the knowledge processes have initially, and communication complexity,
as introduced in Chapter 2. In this chapter we will go a step further, asking ourselves
whether there might be a connection between action models, introduced in Chapter 3,
and communication complexity.

We will informally discuss some ideas in the following section before presenting our results
in Section 4.2 and Section 4.3.

4.1.1 Ideas

In Section 3.3.4, we recognized that there may be a connection between a priori knowledge
and communication complexity. Actually, the answer to this question is “yes and no”.
Yes, the communication complexity seems to decrease with increasing a priori knowledge.
But no, we do not think that the a priori knowledge itself is the reason for the change in
communication complexity. We think that the reason for the change in communication
complexity is linked to the number of possible events that might happen during an
execution, a parameter which is perfectly captured in the applicable action model.

From another point of view, an action model simply defines the possible observations a
single process can make. Note that these observations are often the same for all processes
in a distributed system. Furthermore, one can typically assume that all of the processes
know the action model and know that the other processes also rely on it. Thus an
action model has to be initially commonly known among all the processes. So, yes, the a

39

4. Action Models & Communication Complexity

priori common knowledge of the action models seems to be the reason for the change in
communication complexity.

4.1.2 Model

In all of our examples in the previous section (Buy or Sell? and both scenarios of Cheating
Husbands), we implicitly used the synchronous model (with perfect communication) as
defined in Section 1.3.

Note that the guarantee, that all the messages sent at the start of round r will be
delivered by the end of round r, allows communication by time. I.e., if a process a did
not receive any message of another process b by the end of round r, then a knows that b
did not send such a message. On the other hand, if a sends a message to b at the start
of round r, a knows at the end of round r that b received this message. [BZM14] made
use of this fact by incorporating NULL-messages: The fact that a does not send any
message to b in round r is denoted by “a sending a NULL-message to b”. The fact that
communication by time is possible is crucial for the results presented in the next section.

Regarding the connection of action models and the synchronous model, we assume that
a corresponding action model is applied each round r:

• At the start of round r, all the messages corresponding to the actual action are
sent.

• By the end of round r, all such messages are delivered and, due to NULL messages,
each process knows that the action model for round r has been applied.

4.2 An Action Model Lower Bound on Communication
Complexity

First we will take a look at the communication complexity involved in applying a single
action model to some epistemic state. We will deduce our results starting from the two
scenarios of the cheating husbands problem, introduced in Chapter 3. We first point out
some properties of those examples, and then introduce the notion of partitions in action
models and a related communication complexity measure based on those partitions.

Reconsider the public and private scenarios of the Cheating Husband problem. Figure 4.1
depicts the action models for the queen’s announcement.

As explained previously, in Mpub, the queen sends a single bit to each of the women, this
bit states “There is at least one unfaithful husband”. In Mpriv the queen sends a single
bit to a single woman, if and only if this woman is the only cheated one. This bit states
“Your husband is the only unfaithful husband”. Since the system runs in a synchronous
setting, a woman knows — via communication by time — that, if the queen sent her a
bit, she would have received it by a certain time τ , e.g., at the end of the day or at the

40

4.2. An Action Model Lower Bound on Communication Complexity

¬t ≥ 1

¬t

ta tb tc

b, c a, c a, b

Action model Mpub modeling the pub-
lic scenario of the cheating husbands
problem.

Action model Mpriv modeling the pri-
vate scenario of the cheating husbands
problem.

Figure 4.1: Action models for the two scenarios of Cheating Husbands. The actions are
denoted by: ¬t . . . the queen does not make a statement, ≥ 1 . . . the queen publicly
announces that there is at least one unfaithful husband, ti . . . the queens tells i privately
that her husband is unfaithful. The partitioning regarding a is depicted in red.

end of the current round. Thus a woman can distinguish the actions by time τ , as she
knows that the action model has been applied.

Considering just a single woman, w.l.o.g. choose a, we see that both of the action models
are partitioned regarding the indistinguishability of a (depicted in Figure 4.1).

Definition 4.2.1 (Partitions of Action Models). An Action Model M = 〈S,∼,pre〉 is
partitioned regarding process a if the underlying indistinguishability graph, consisting
only of edges corresponding to ∼a, is partitioned. The number of those partitions is
denoted by Na

M .

Our claim is that there is a strong connection between the communication complexity
(here the number of bits received by process a) and the number of such partitions Na

M

of the action model M. We can see that, for each woman i in the Cheating Husbands
problem, both of the action models Mpub and Mpriv partition into two partitions. Indeed,
if the queen does not announce anything in Mpriv, woman a does NOT know that the
action has been ¬t, she only knows that the action has been in the partition built by
{¬t,tb,tc}.

Since each of the women has to be able to identify the actual partition the current action
is in, the number of these partitions determines a lower bound on the number of bits
received by any woman in some scenario, i.e., a worst-case lower bound: In Figure 4.1, if
≥ 1 (in Mpub) or ta (in Mpriv) occurs, woman a of course immediately knows the action
itself, without receiving any additional information. In the case of ¬t (in Mpub) or an
action other than ta (in Mpriv), she learns the partition by not receiving anything, i.e.,
via communication by time. Consequently, as both action models split into two partitions
for each woman, the queen has to send one bit to each of them in BOTH scenarios.

41

4. Action Models & Communication Complexity

This does NOT contradict our above observation that, in Mpriv, the queen sends only a
single bit to a single woman. In more detail, consider the actions regarding woman a in
the model Mpriv.

• Action ta: The queen actively sends a bit = 1 to woman a.

• Actions ¬t, tb, tc: The queen does not actively send anything to woman a. Since
woman a has a notion of time and she does not receive any bit up to a certain
time τ , she can conclude that the queen did not send her any bit actively. Thus,
by not sending a bit, the queen sent her some information, namely a passive bit
interpreted as ∅ via a NULL message.

Definition 4.2.2. We define an active bit as a bit (i.e., 0 or 1) sent via explicit commu-
nication from some process a to some process b. A passive bit is defined as the bit “sent”
in a NULL message from some process a to some process b, i.e., communication by time.

Be aware that, by this definition, multiple active bits can be sent from a to b, while a
NULL message in round r counts as a single passive bit only.

We are ready to define the cost of the application of a single action model:

Definition 4.2.3. The worst-case cost Da(M) of the application of an action model M
regarding process a is the worst-case number of active bits received by a when the action
model is applied, i.e., the maximum number of active bits received in some scenario.

Note carefully that it is the particular algorithm that actually determines the encoding
used for communicating the occurrence of the actions to the processes. The number of
active bits received by a may hence depend on which particular action occurs, which
explains why we restrict our attention to the maximum number of active bits for defining
Da(M). Of course, this implies that we can only guarantee that Da(M) bits are sent in
some scenario, not in any scenario. Even worse, we cannot assume that the action that
causes the worst-case cost Da(M) for process a is the same as the action that causes
the worst-case cost Db(M) for process b. Therefore, defining the total worst-case cost
D(M) of the application of an action model M as the sum of Da(M) over all processes a,
would be overly conservative, and does hence not give a lower bound for the system-wide
communication complexity.

However, we can give a lower bound for Da(M):

Lemma 4.2.1. In a synchronous system with processes A, the worst-case cost Da(M) of
the application of an action model M for process a ∈ A satisfies:

log2 (Na
M − 1) ≤ Da(M),

where Na
M is the number of partitions regarding a in M.

42

4.2. An Action Model Lower Bound on Communication Complexity

Proof by contradiction. Suppose there exists an action model M such that Da(M) <
log2 (Na

M − 1) for some process a ∈ A. Then 2Da(M) + 1 < Na
M . It is easy to see that

receiving Da(M) active bits with value 0 or 1, a can distinguish at most 2Da(M) + 1
(including the single passive bit) partitions of M. Since 2Da(M) + 1 < Na

M , by a pigeonhole
argument, there are at least two partitions P0 and P1 which cannot be distinguished by
a.

Now assume that applying (M,s) at epistemic state (M, s) results in (M ′, s′), i.e.,

• s0 ∼a s1 in epistemic model M ,

• s0 ∈ P0, s1 ∈ P1 in action model M applicable to s0 respectively s1 (P0 and P1
indistinguishable by a), and

• (s0,s0) 6∼a (s1,s1) in epistemic model M ′.

If a cannot distinguish between the actions in P0 and P1, then, since s0 ∼a s1, (s0,s0) ∼a
(s1,s1) in epistemic model M ′ contradicting the result of applying (M,s) to (M, s).

Thus a has to receive at least log2 (Na
M−1) active bits during the application of (M,s).

As we will apply our lower bound method to synchronous systems with lossy links also,
we cannot always assume that communication by time can be used. The following
Lemma 4.2.2 provides a lower bound for Da(M) in this case.

Lemma 4.2.2. In a system with processes A, the worst-case cost of Da(M) of the
application of an action model M for process a ∈ A satisfies:

log2 (Na
M) ≤ Da(M),

where Na
M is the number of partitions regarding a in M.

Proof by contradiction. This proof follows the same argument as the proof for Lemma 4.2.1.

Suppose there exists an action model M such that Da(M) < log2(Na
M) for some process

a ∈ A. Then 2Da(M) < Na
M . It is easy to see that receiving Da(M) active bits with value

0 or 1, a can distinguish at most 2Da(M) (note that in the general setting there is no
communication by time and thus no passive bit can be sent or received) partitions of M.

The remaining proof is done by a chain of arguments analogous to the proof of Lemma 4.2.1,
which shows that there are at least two partitions which are indistinguishable for a. Thus,
a has to receive at least log2(Na

M) (active) bits during the application of (M,s).

In this Section 4.2, we only considered the application of a single action model. Looking
at the communication complexity of an algorithm A solving a specific problem P using
multiple rounds of communication, the first thing that comes to mind with the above

43

4. Action Models & Communication Complexity

method is to sum up the communication complexity of the single rounds. Unfortunately,
this would not provide a tight lower bound on communication complexity of algorithm
A solving P, as the worst-case scenario for round r action model AMr is not necessarily
the same as the worst-case scenario for the action model AMr′ in round r′. Fortunately,
however, Definition 3.3.3 may provide a way to circumvent this problem: By computing
the composition of the action models of rounds 1, 2, . . . , k, where k is the round in which
A has terminated, we get a single action model for which we can compute the lower
bound using the above method.

We conclude this section by stressing the fact that the worst-case cost Da(M) given by
Definition 4.2.3 is tied to the communication complexity for applying a given action model
M, i.e., of an algorithm A that implements M. It is not related to the specific problem
solved by A , in particular, the lower bounds for Da(M) established in Lemma 4.2.1 and
Lemma 4.2.2 are not the communication complexity lower bounds for the problem at
hand. We will shed some light on this issue in the following section.

4.3 A Yao Lower Bound on Communication Complexity
In this section, we will develop an alternative method to infer a lower bound on the
communication complexity of an algorithm A solving a specific problem P . This method
is based on the approach of [Yao79]. We will restrict ourselves to problems P in which
two processes p0 (holding x) and p1 (holding y) both have to compute the result of a
function f(x, y) in the reliable synchronous message passing model. Each algorithm
computing such a function can be defined using a single action model for each round.
As described in Chapter 3, one can either apply the action models of the single rounds
one-by-one on the initial epistemic model or can compute the composed action model
and apply it once on the initial epistemic state.

4.3.1 Model

Since our method is based on the approach of [Yao79], we use a model quite similar to his:
We restrict ourselves to a scenario and model similar to the one described in Section 2.1,
with the differences that (i) each process can send an arbitrary number of bits in each
round, (ii) that we consider symmetric function computation without communication by
time, and (iii) once an algorithm for computing f(x, y) terminates, the result shall be
common knowledge among the processes p0 and p1.

4.3.2 Action Models and Protocol Trees

In our setting, all actions correspond to messages sent between the two processes. Thus
all actions are executed and communicated by one of the two processes.

Since our message passing model is synchronous and reliable here, each action can
be distinguished from any other action by both processes at the end of a round. As
process a can only send some information x to process b if it knows that x is valid, an

44

4.3. A Yao Lower Bound on Communication Complexity

action corresponding to this sending process has to have a precondition containing Kax.
Consequently, even though process a can distinguish the action in which a sends x to b
in round r from the action a sends ¬x to b in round r, the application of one of those
actions does not change a’s view on the facts x and ¬x in the resulting epistemic state
compared to the original one, as a already knew x resp. ¬x. On the other hand, since b
can distinguish the actions x and ¬x, b learns x resp. ¬x, which eliminates edges in ∼b
in the resulting epistemic model, leading to a partitioning between the states where Kbx
and Kb¬x.

To be precise, this is only true if x is a preserved formula (as introduced in [vDvdHK08]),
which requires x to be propositional or positive knowledge (but not x = ¬Kaϕ, for exam-
ple). Thus we will also restrict ourselves to algorithms in which processes communicate
only by means of preserved formulas.

Note that the fact that all actions are distinguishable for each process is only valid
because we restrict the scenario to two processes: In a system with three processes, it
would be possible that process p0 doing actions s resp. t is sending 0 resp. 1 to process
p1 but nothing to process p2, thus p2 cannot distinguish actions s and t.

Nevertheless, even in a system of n processes, the terminal epistemic model, in which
the n processes all know the result of f , must be partitioned into several partitions that
are separated for all processes: Each such partition consists of (potentially multiple)
epistemic states, which are similar for all processes and in which the result of f is the
same. Otherwise, the result of f would not be common knowledge.

Since all the processes have the same initial knowledge (except for their own initial
value), the initial epistemic model M = (S,∼, V) is not partitioned, but a hyper-cube.
An example can be found in the initial model of the Cheating Husbands in Figure 3.5.
As already discussed earlier, the terminal epistemic model is the result of applying the
composed action model to the initial epistemic model. Thus, the partitioning of the
terminal epistemic model results from a partitioning of the composed action model.

We will use this partitioning of the composed action model to build a protocol tree of
the algorithm.

Definition 4.3.1. An algorithm A is defined by a set of action models {AM1, . . . ,AMk},
such that a single action model AMi is applicable in round i of the synchronous execution.
The action model AMi partitions into tAMi disjoint partitions (for every process p0, p1).

Definition 4.3.2. The composed action model of the first k rounds (CAMk) is defined
as the composition of the action models AM1, . . . ,AMk. The inductive definition is:

• CAM1 = AM1

• CAMk = (CAMk−1;AMk)

The composed action model CAMk = (SCAMk ,∼CAMk ,preCAMk) partitions into tCAMk disjoint
partitions. Denote the i-th partition of CAMk, consisting of actions Sk,i ⊆ SCAMk , by Pk,i.

45

4. Action Models & Communication Complexity

Note that applying the actions in Pk,i to the initial epistemic model M = (S,∼, V) leads
to a set of partitions of the epistemic model M ′ = M ⊗ CAMk.

Clearly, if A computes f in m rounds, the resulting composed action model is CAMm, the
composition of the action models of the first m rounds.

Definition 4.3.3. The protocol tree TA = (V,E) of an algorithm A , starting at the
root vertex v that represents the initial epistemic model M = (S,∼, V), is defined as:

• V = {v} ∪ {Pk,i | Pk,i for some i is a partition of CAMk, k ∈ {1,m}}

• E = {(v,P1,j) | P1,j a partition of CAM1} ∪ {(Pk,i,Pk+1,j) | ∃s ∈ Sk,i,t ∈
SAMk+1 : (s,t) ∈ Sk+1,j for some i and j, and k ∈ {1,m− 1}}.

Definition 4.3.3 states that each partition of each composed action model CAMk is a node
in the protocol tree. All the nodes corresponding to the partitions of CAM1 are connected
to the root node v. There is a connection between two nodes Pk,i and Pk+1,j if and
only if they are on levels k and k + 1 and there is an action s in Sk,i (the set of actions
corresponding to Pk,i) which is a prefix of an action (s,t) of Sk+1,j (the set of actions
corresponding to Pk+1,j), with t ∈ SAMk+1 an action of AMk+1. Lemma 4.3.1 proves that
TA is indeed a tree.

Lemma 4.3.1. TA, defined in Definition 4.3.3, is a tree.

Proof. First we will prove that each node in TA (except for v) has at least one predecessor:
To do so, we prove that there is no node at level k which is not connected to any node at
level k − 1.
For the nodes on level k = 1 this is trivial, since they are by definition connected to the
node v, the single root of the tree.
For the other nodes assume that there is a node on some level k > 1, which is not
connected to any node at level k − 1. This would mean that there is a node Pk,i on level
k such that none of its actions (s,t) fulfills s ∈ Sk−1,j ,t ∈ SAMk

for any node Pk−1,j on
level k − 1. Since Pk,i is a partition of CAMk, and thus all of its actions are actions in the
set of SCAMk , this contradicts the fact that CAMk = (CAMk−1;AMk) and Definition 3.3.3.

Next we will prove that each node in TA has at most one predecessor:
Suppose there are two nodes Pk,1 and Pk,2 on level k, with actions s1 ∈ Sk,1 and s2 ∈ Sk,2,
which are both connected to the same node Pk+1,i on level k + 1. Since s1 and s2 are in
two different partitions, we see that s1 6∼p0 s2 ∧ s1 6∼p1 s2. But as both Pk,1 and Pk,2
are connected to Pk+1,i, it also holds that (s1,t1) ∼p0 (s2,t2) or (s1,t1) ∼p1 (s2,t2)
for some t1,t2 ∈ SAMk+1 . This contradicts Definition 3.3.3.

So far, we only considered the protocol tree TA that is solely defined in terms of the
action models CAMk. Now we turn our attention to the application of TA to the initial

46

4.3. A Yao Lower Bound on Communication Complexity

epistemic model M = (S,∼, V) that is a hypercube. As already said, it must induce
a partitioning of the resulting epistemic model, i.e., the leaves in TA, which allows to
solve f(x, y). The following Lemma 4.3.2 shows that the CAMm and the resulting TA of a
correct solution must induce rectangles at the leafs of TA.

Lemma 4.3.2. Let M = (S,∼, V) be the hypercube describing the initial epistemic model
of a solution algorithm for computing f(x, y), defined by the action models AM1, . . . ,AMm
(resulting in the composed action model CAMm) and the resulting TA. Then, every rectangle
corresponds to at least one partition, in the final epistemic model M ′ = M ⊗ CAMm, i.e.,
at least one leaf, and every leaf corresponds to some (not necessarily maximal) rectangle.

Proof. First, as A must compute f(x, y) for every input (x, y), and A terminates only in
leaves of TA, every (x, y) leads to some leaf. Consequently, for every rectangle R, which
usually contains more than one input, say (x1, y1) and (x2, y2), we can assign the set of
leafs LR its constituent inputs lead to.

We now show that actually |LR| = 1, which implies that every leaf corresponds to some
rectangle. Similar as in Section 2.2, suppose both inputs (x1, y1) and (x2, y2) allow the
application of actions leading to the node ` of TA, then also (x1, y2) and (x2, y1) lead to `:
The path through the tree has to be the same for all of the four input pairs. We start our
inductive argument at level 0, the initial epistemic model. In the initial epistemic model,
p0 cannot distinguish the situation with input (x1, y1) from (x1, y2) resp. (x2, y1) from
(x2, y2). A similar argument holds for p1. Since (x1, y1) and (x2, y2) lead to the same
node `, the actions of AM1 have to be in the same partition for both of them and since p0
cannot distinguish (x1, y1) from (x1, y2), the action applied by p0 has to be the same in
both cases (similarly for (x2, y2) and (x2, y1)). Since p1 cannot distinguish (x1, y1) from
(x2, y1), the action applied by p1 has to be the same in both cases (similarly for (x2, y2)
and (x1, y2)). As p0’s action is the same for (x1, y1) and (x1, y2) and p1’s action is the
same for (x1, y2) and (x2, y2), and the actions of AM1 have to be in the same partition for
(x1, y1) and (x2, y2), also the action for (x1, y2) has to be in the same partition in AM1.
By the analogous argument, it follows that also the action for (x2, y1) in AM1 is in the
very same partition of AM1 = CAM1.
Now suppose the execution of A for (x1, y1) resp. (x2, y2) reached some node Pk,i on
level k of TA. By the induction hypothesis also the executions for (x1, y2) and (x2, y1)
have reached this node. Due to the initial premise of reaching the same leaf `, the
executions for (x1, y1) and (x2, y2) must reach some common node Pk+1,j corresponding
to a partition in CAMk+1 = (CAMk;AMk+1). As already stated before, the epistemic model
after round k + 1 can be derived in two ways: Applying action model by action model or
once applying CAMk+1 on the initial epistemic model: the resulting epistemic models are
equivalent. Thus, by the same argument as before (only using AMk+1 instead of AM1), it
follows that all the actions on the inputs have to be in the same partition in AMk+1 and
hence in CAMk+1. Consequently, all the inputs lead to the same node on level k + 1 as
asserted.

47

4. Action Models & Communication Complexity

We proceed with an example using the function f(x, y) given in Figure 4.2, which has to
be computed by the processes p0 (having x as its input) and p1 (with input y). There
are of course several algorithms for computing this function. For example, look at the
action models for the multiple rounds of algorithm A in Example 4.3.1, where, as in the
original Yao-Scenario (Figure 2.1 and Figure 2.2), the processes send a single bit in each
round alternatingly. Note that A is optimal in terms of communication complexity.

y0 y1 y2 y3
x0 1 1 0 1
x1 0 0 1 1
x2 0 0 1 1
x3 0 0 0 0

Figure 4.2: The function f computed in the following examples.

Example 4.3.2 shows the action models for the multiple rounds of a different algorithm
B. In the first round of B, the process p0 sends the information whether its input is x0,
x1, x2 or x3 (using two bits), while process p1 only sends the information whether its
input is in {y0, y1} or {y2, y3} (using one bit). If the result is not computed at the end of
the first round, which is the case if p0’s input is x0 and p1’s input is either y2 or y3, p1
again sends a single bit stating whether its input is y2 or y3.

In both of the examples, an action of the form e.g. (x0, x1) depicts that p0 sends the
information that its input value is either x0 or x1 to p1, while Kix0 in a precondition
formula means that, in the appropriate epistemic state, pi knows that x0 is the input to
p0.

We depict by RfA the set of rectangles that corresponds to the leaves of TA.

Example 4.3.1. The action models for the optimal algorithm A for f , given in Fig-
ure 4.2, are the following:

48

4.3. A Yao Lower Bound on Communication Complexity

AM1: SAM1 = {(x0), (x1, x2, x3)}
∼pi = loops

pre(x0) = K0x0
pre((x1, x2, x3)) = K0(x1 ∨ x2 ∨ x3)

AM2: SAM2 = {(y0, y1, y3), y2, (y0, y1), (y2, y3)}
∼pi = loops

pre((y0, y1, y3)) = K1(x0 ∧ (y0 ∨ y1 ∨ y3))
pre(y2) = K1(x0 ∧ y2)

pre((y0, y1)) = K1((x1 ∨ x2 ∨ x3) ∧ (y0 ∨ y1))
pre((y2, y3)) = K1(x1 ∨ x2 ∨ x3) ∧ (y2 ∨ y3))

AM3: SAM2 = {x3, (x1, x2)}
∼p0 = loops

pre(x3) = K0(x3 ∧ (y2 ∨ y3))
pre((x1, x2)) = K0((x1 ∨ x2) ∧ (y2 ∨ y3))

The resulting composed action model is CAM3:
SCAM3 = {(x0, (y0, y1, y3)), (x0, y2),

((x1, x2, x3), (y0, y1)),
(((x1, x2, x3), (y2, y3)), x3),
(((x1, x2, x3), (y2, y3)), (x1, x2))}

∼pi = loops
pre((x0, (y0, y1, y2))) = K0x0 ∧K1(y0 ∨ y1 ∨ y3)

pre((x0, y2)) = K0x0 ∧K1y2
pre((x1, x2, x3), (y0, y1)) = K0(x1 ∨ x2 ∨ x3) ∧K1(y0 ∨ y1)

pre(((x1, x2, x3), (y2, y3)), x3) = K0x3 ∧K1(y2 ∨ y3)
pre(((x1, x2, x3), (y2, y3)), (x1, x2)) = K0(x1 ∨ x2) ∧K1(y2 ∨ y3)

The corresponding protocol tree TA is given in Figure 4.3.

v

P1,0 P1,1

P2,00

0 1

0 1

x1, x2, x3 x0

y0, y1 y2, y3

x3 x1, x2

y2 y0, y1, y3

Figure 4.3: The protocol tree TA for function f defined in Figure 4.2.

49

4. Action Models & Communication Complexity

The rectangles RfA corresponding to the protocol tree TA are depicted in Figure 4.4.

x0

x1

x2

x3

y0 y1 y2 y3

1

0

0

0

1

0

0

0

0

1

1

0

1

1

1

0

Figure 4.4: The rectangles RfA corresponding to the protocol tree TA in Figure 4.3.

We see that there are 5 completely separated partitions in CAM3 corresponding to 5 leaves
in the protocol tree TA. Since A follows the original Yao protocol, we get that A has
to send at least log2(5) ≤ 3 bit to compute f . Another way to look at it is that in
the protocol tree of height 3, in each of the 3 rounds at least 1 bit is received (as the
communication is reliable and at least 1 bit is sent).

Example 4.3.2. Since in the first round of B both processes send a message, the pre-
condition for each of the actions in AM1 is of the form K0a ∧K1b, with a and b denoting
the information in the message sent by p0 resp. p1. The action models for the alternative
algorithm B computing f , given in Figure 4.6, are the following:

AM1: SAM1 = {(x0, (y0, y1)), (x0, (y2, y3)),
(x1, (y0, y1)), (x1, (y2, y3)),
(x2, (y0, y1)), (x2, (y2, y3)),
(x3, (y0, y1)), (x3, (y2, y3))}

∼pi = loops
pre((x0, (y0, y1))) = K0x0 ∧K1(y0 ∨ y1)
pre((x0, (y2, y3))) = K0x0 ∧K1(y2 ∨ y3)
pre((x1, (y0, y1))) = K0x1 ∧K1(y0 ∨ y1)
pre((x1, (y2, y3))) = K0x1 ∧K1(y2 ∨ y3)
pre((x2, (y0, y1))) = K0x2 ∧K1(y0 ∨ y1)
pre((x2, (y2, y3))) = K0x2 ∧K1(y2 ∨ y3)
pre((x3, (y0, y1))) = K0x3 ∧K1(y0 ∨ y1)
pre((x3, (y2, y3))) = K0x3 ∧K1(y2 ∨ y3)

AM2: SAM2 = {y2, y3}
∼pi = loops

pre(y2) = K1(x0 ∧ y2)
pre(y3) = K1(x0 ∧ y3)

The resulting composed action model is CAM2:

50

4.3. A Yao Lower Bound on Communication Complexity

SCAM2 = {(x0, (y0, y1)), ((x0, (y2, y3)), y2),
((x0, (y2, y3)), y3), (x1, (y0, y1)),
(x1, (y2, y3)), (x2, (y0, y1)),
(x2, (y2, y3)), (x3, (y0, y1)),
(x3, (y2, y3))}

∼pi = loops
pre((x0, (y0, y1))) = K0x0 ∧K1(y0 ∨ y1)

pre((x0, (y2, y3)), y2) = K0x0 ∧K1y2
pre((x0, (y2, y3)), y3) = K0x0 ∧K1y3

pre((x1, (y0, y1))) = K0x1 ∧K1(y0 ∨ y1)
pre((x1, (y2, y3))) = K0x1 ∧K1(y2 ∨ y3)
pre((x2, (y0, y1))) = K0x2 ∧K1(y0 ∨ y1)
pre((x2, (y2, y3))) = K0x2 ∧K1(y2 ∨ y3)
pre((x3, (y0, y1))) = K0x3 ∧K1(y0 ∨ y1)
pre((x3, (y2, y3))) = K0x3 ∧K1(y2 ∨ y3)

The corresponding protocol tree TB is given in Figure 4.5.

v

1 P1,0 0 1 0 1 0 0

0 1

x0, (y0, y
1)
x0,

(y2,
y3)

x 1,
(y 0,

y 1)

x 1
, (
y 2
, y

3)
x

2 , (y
0 , y

1)

x2 , (y2 , y3)

x3 , (y0 , y1)

x3 , (y2 , y3)

y 2

y3

Figure 4.5: The protocol tree TB for function f defined in Figure 4.2.

The rectangles RfB corresponding to the protocol tree TB are depicted in Figure 4.6.

We see that there are 9 completely separated actions in CAM2, corresponding to 9 leaves
in the protocol tree. Here one can argue that in round 1 p0 distinguishes between 4
different values, thus sends at least 2 bits in round 1, while p1 distinguishes between
(y0, y1) and (y2, y3), thus sends at least 1 bit in round 1, which adds up to a total number
of at least 3 bits in round 1. In round 2 only p1 sends a single bit, thus in the worst-case
the total number of sent bits in B is at least 4. Since communication is reliable, at least
4 bits are received. Note that also here at least log2(9) ≤ 4 bit are received, thus there
seems to be a strong connection between the minimum number of received bits and the
number of partitions in the composed action model. In the following, we will establish
and prove this connection.

51

4. Action Models & Communication Complexity

x0

x1

x2

x3

y0 y1 y2 y3

1

0

0

0

1

0

0

0

0

1

1

0

1

1

1

0

Figure 4.6: The rectangles RfB corresponding to the protocol tree TB in Figure 4.5.

Example 4.3.3. This example demonstrates the consequences of duplicated messages.

We use the same scenario as in Example 4.3.1 with an additional duplicated action x′0 in
the first round. Thus the first round for algorithm A′ is as follows:

AM1: SAM1 = {(x0), (x′0), (x1, x2, x3)}
∼pi = loops

pre(x0) = K0x0
pre(x′0) = K0x0

pre((x1, x2, x3)) = K0(x1 ∨ x2 ∨ x3)
The resulting composed action model is CAM3:

SCAM3 = {(x0, (y0, y1, y3)), (x0, y2),
(x′0, (y0, y1, y3)), (x′0, y2),
((x1, x2, x3), (y0, y1)),
(((x1, x2, x3), (y2, y3)), x3),
(((x1, x2, x3), (y2, y3)), (x1, x2))}

∼pi = loops
pre((x0, (y0, y1, y2))) = K0x0 ∧K1(y0 ∨ y1 ∨ y3)

pre((x0, y2)) = K0x0 ∧K1y2
pre((x′0, (y0, y1, y2))) = K0x0 ∧K1(y0 ∨ y1 ∨ y3)

pre((x′0, y2)) = K0x0 ∧K1y2
pre((x1, x2, x3), (y0, y1)) = K0(x1 ∨ x2 ∨ x3) ∧K1(y0 ∨ y1)

pre(((x1, x2, x3), (y2, y3)), x3) = K0x3 ∧K1(y2 ∨ y3)
pre(((x1, x2, x3), (y2, y3)), (x1, x2)) = K0(x1 ∨ x2) ∧K1(y2 ∨ y3)

The corresponding protocol tree TA′ is given in Figure 4.7.

The rectangles RfA′ corresponding to the protocol tree TA are depicted in Figure 4.8.

In Figure 4.7, the paths through node P1,2 are duplicates of the paths through P1,1.
These duplicates are caused by the action x′0, which is a duplicate of x0. Furthermore, we
see that the two leaves colored in red (resp. blue) both correspond to a single rectangle
in Figure 4.8.

52

4.3. A Yao Lower Bound on Communication Complexity

v

P1,0 P1,1 P1,2

P2,00

0 1

0 1 0 1

x1, x2, x3 x0
x′0

y0, y1 y2, y3

x3 x1, x2

y2 y0, y1, y3 y2 y0, y1, y3

Figure 4.7: The protocol tree TA′ for function f defined in Figure 4.2. The colored leaves
correspond to the colored rectangles in Figure 4.8. We see that two leaves correspond to
a single rectangle in A′ which defines duplicated messages.

x0

x1

x2

x3

y0 y1 y2 y3

1

0

0

0

1

0

0

0

0

1

1

0

1

1

1

0

Figure 4.8: Two of the rectangles RfA′ corresponding to the protocol tree TA′ in Figure 4.7.
We see that two leaves of TA′ correspond to each of the colored rectangles.

4.3.3 Main Results

According to the previous section, action models can be related to protocol trees and
rectangles of a function f . In this section, we will prove a lower bound on the number
of bits received by the processes during the worst-case execution of an algorithm A for
computing a function f(x, y). This section is again restricted to the 2-process case, in
which process p0 resp. p1 has input x resp. y. In the following we denote the maximum
number of bits received by pi by Di, and RfA the rectangles corresponding to the protocol
tree TA.

Lemma 4.3.3. p0 receives at least log2(RX) ≤ D0 bits during the worst-case execution
of A solving f(x, y), with RX denoting the maximum number of rectangles in any row of
Mf , the matrix defining the function f .

Proof. Assume the input of p0 is some fixed value xi ∈ X such that there are Rxi =
RX rectangles in the row of Mf corresponding to xi. Suppose in contradiction that
log2(RX) > D0. Then RX > 2D0 . It is easy to see that, by receiving D0 bits, p0 can

53

4. Action Models & Communication Complexity

distinguish at most 2D0 rectangles in the row of xi. Since RX > 2D0 there is a row in
RfA, such that there are at least two rectangles R0 and R1 which cannot be distinguished
by p0.

The rectangles R0 and R1 correspond to some leaves `0 and `1 of TA, which again
correspond to some partitions P0 and P1 of the composed action model for A . Thus,
if p0 cannot distinguish R0 and R1, p0 is also not able to distinguish the corresponding
partitions P0 and P1.

As in Lemma 4.2.1, assume that applying (M,s) to epistemic state (M, s) results in
(M ′, s′), i.e.,:

• s0 ∼p0 s1 in epistemic model M , which follows from Lemma 4.3.2 in conjunction
with the fact that p0 is the only process that can be uncertain about the initial
epistemic state (xi, yi), as xi is fixed.

• s0 ∈ P0, s1 ∈ P1 in action model M applicable to s0 respectively s1 (P0 and P1
indistinguishable by p0), and

• (s0,s0) 6∼p0 (s1,s1) in epistemic model M ′.

If p0 cannot distinguish between the states in partitions P0 and P1, then, since s0 ∼p0 s1,
(s0,s0) ∼p0 (s1,s1) in epistemic model M ′ contradicting the result of applying (M,s) to
(M, s).

Lemma 4.3.4. p1 receives at least log2(RY) ≤ D1 bits during the worst-case execution
of A solving f(x, y), with RY denoting the maximum number of rectangles in any column
of Mf , the matrix defining the function f .

Proof. Analogous to the proof of Lemma 4.3.3.

The following Theorem 4.3.1 will establish a lower bound on the cost DA of an algorithm
A using the number of partitions tCAMm of the composed action model CAMm, which can
be seen as the action model analogon of Corollary 2.2.1.

Theorem 4.3.1. During any execution of an algorithm A, which computes f(x, y) in m
rounds,

tCAMm ≥ t

where tCAMm is the number of partitions of the composed action model of A after m rounds,
and t is the number of monochromatic rectangles of f(x, y). Moreover, at least log2 tCAMm
bits must be received in the system during the execution of A, i.e.,

log2 tCAMm ≤ DA.

54

4.4. Application on consensus in directed dynamic networks

Proof. Suppose tCAMm < t, i.e., there are less leaves in TA than there are monochromatic
rectangles. Then, there are two rectangles R1,R2 that lead to the same leaf. However,
this contradicts Lemma 4.3.2, as every leaf corresponds to a single rectangle.

By Lemma 4.2.2 a lower bound for the worst-case cost DaA, regarding a process a, is
log2 t

a
CAMm ≤ D

a
A, with taCAMm the number of partitions of CAMm regarding some process a.

Additionally each process has to be able to distinguish all the partitions of CAMm, else the
result of f(x, y) would not be common knowledge. Thus taCAMm = tCAMm and furthermore
log2 tCAMm ≤ DaA. Trivially, DaA ≤ DA.

Thus we can conclude that log2 t ≤ log2 tCAMm ≤ DA.

Note that Theorem 4.3.1 does not state anything about the worst-case cost Df for
computing f(x, y), but only establishes a lower bound for the worst-case cost DA for
some execution of algorithm A computing f(x, y).

4.4 Application on consensus in directed dynamic
networks

We will now apply the method developed in Section 4.3.3 to get a lower bound on the bit
complexity for the consensus problem. The considered scenario consists of two processes
connected via a directed dynamic network. The message adversary we consider is MA↔2 ,
which may generate any graph sequence from {←,↔,→}∗ \ {↔2}. The problem here
is that consensus does not specify a unique function: Validity only fixes the outcome
for all inputs being the same, but not in the remaining cases. Agreement, on the other
hand, only requires the outputs at p0 and p1 to be the same. As a consequence, the
actual output computed here may depend on the algorithm and on the particular graph
sequence σ, chosen by the message adversary.

In a directed dynamic network, we can consider consensus as a function f(x, y, σ), thus
the result depends on the input of p0 (x) and p1 (y), but also on the graph sequence
σ chosen by MA. An example for the message adversary MA↔2 , which may generate
any graph sequence except (↔,↔), is given in Figure 4.9. Whereas there are multiple
correct ways for defining f↔2(x, y, σ), they need to satisfy f↔2(v, v, σ) = v by validity.
Moreover, by a simple indistinguishability argument, the result on σ =←∗∈MA↔2 must
be y, while it is x on σ =→∗∈MA↔2 (for a detailed explanation see Chapter 5).

There is an algorithm A solving consensus for each MA↔k , k ≥ 2, where every process
receives at least 2 bit. In this algorithm, p0 and p1 both send their initial value x resp.
y in round 1 to each other. In each round r ≥ 2, each process sends the last value it
received (or its initial value if it did not receive any value up to round r). Once a process
received the same value it sent or does not receive a value in some round r ≥ 2, it decides
the last sent value and terminates. This algorithm A , also solving consensus for the
eventual message adversary MA↔∗ , is explained in more detail in Section 5.4.

55

4. Action Models & Communication Complexity

y = 0 y = 1
x = 1 0 0 1

←,←

←,↔

←,→

↔,→

↔,←

→,←

→,↔

→,→

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

Figure 4.9: A function f↔2(x, y, σ) defining the outcome of consensus in the 2 process
case with adversary MA↔2 .

In the following, the action models for this algorithm A are given:
The single actions are given in the form (v0, v1,G), with vi ∈ {0, 1} the value considered
by pi (either pi’s initial value, or the last value it received) and G ∈ {←,↔,→} the graph
chosen by the message adversary in the current round.

AM1 : SAM1 = {(0, 0,→), . . . , (1, 1,→), (0, 0,↔), . . . , (1, 1,↔),
(0, 0,←), . . . , (1, 1←)}

∼p0 = {((0, 1,→), (0, 0,→)), ((0, 0,↔), (0, 0,←)),
((1, 0,←), (1, 0,↔)), ((1, 0,→), (1, 1,→)),
((1, 1,↔), (1, 1,←)), ((0, 1,←), (0, 1,↔))}

∼p1 = {((0, 0,→), (0, 0,↔)), ((0, 0,←), (1, 0,←)),
((1, 0,↔), (1, 0,→)), ((1, 1,→), (1, 1,↔)),
((1, 1,←), (0, 1,←)), ((0, 1,↔), (0, 1,→))}

pre((v0, v1,→)) = K0v0 ∧K1v1
pre((v0, v1,←)) = K0v0 ∧K1v1
pre((v0, v1,↔)) = K0v0 ∧K1v1

AM2 is identical to AM1, except that the precondition function must explicitly omit
combining (vi, vj ,↔) ∈ AM1 and (v′i, v′j ,↔) ∈ AM2. The graphical representation of AMi
for this example is given in Figure 4.10.

The resulting composed action model after two rounds, CAM2 = (AM1;AM2), is depicted
in Figure 4.11 and has 32 actions split up in 2 partitions. Recall that the composition
must explicitly omit combining (., .,↔) ∈ AM1 and (., .,↔) ∈ AM2. For readability, the
composed actions are labeled in Table 4.1.

56

4.4. Application on consensus in directed dynamic networks

(1, 0,↔) (1, 0,←) (0, 0,←) (0, 0,↔) (0, 0,→) (0, 1,→)

(1, 0,→) (1, 1,→) (1, 1,↔) (1, 1,←) (0, 1,←) (0, 1,↔)

p0p1p0p1p0

p1

p0 p1 p0 p1 p0

p0

Figure 4.10: The graphical representation of AMi.

1 (0, 0,→), (0, 0,→) 17 (1, 0,→), (1, 1,→)
2 (0, 0,→), (0, 0,↔) 18 (1, 0,→), (1, 1,↔)
3 (0, 0,→), (0, 0,←) 19 (1, 0,→), (1, 1,←)
4 (0, 0,↔), (0, 0,→) 20 (1, 0,↔), (0, 1,→)
5 (0, 0,↔), (0, 0,←) 21 (1, 0,↔), (0, 1,←)
6 (0, 0,←), (0, 0,→) 22 (1, 0,←), (0, 0,→)
7 (0, 0,←), (0, 0,↔) 23 (1, 0,←), (0, 0,↔)
8 (0, 0,←), (0, 0,←) 24 (1, 0,←), (0, 0,←)
9 (0, 1,→), (0, 0,→) 25 (1, 1,→), (1, 1,→)
10 (0, 1,→), (0, 0,↔) 26 (1, 1,→), (1, 1,↔)
11 (0, 1,→), (0, 0,←) 27 (1, 1,→), (1, 1,←)
12 (0, 1,↔), (1, 0,→) 28 (1, 1,↔), (1, 1,→)
13 (0, 1,↔), (1, 0,←) 29 (1, 1,↔), (1, 1,←)
14 (0, 1,←), (1, 1,→) 30 (1, 1,←), (1, 1,→)
15 (0, 1,←), (1, 1,↔) 31 (1, 1,←), (1, 1,↔)
16 (0, 1,←), (1, 1,←) 32 (1, 1,←), (1, 1,←)

Table 4.1: Composed actions of CAM2 = (AM1;AM2) in Figure 4.11.

The corresponding protocol tree Tcons is depicted in Figure 4.12.

We observe that tCAM2 = 2 here. Recalling Theorem 4.3.1, the lower bound for DA in
directed dynamic networks on adversary MA↔2 hence satisfies DA ≥ 1, which is trivially
a lower bound on the number of received bits in the system.

Relation to [Yao79]

2-process consensus in directed dynamic networks can also be directly related to the
approach of [Yao79]. Actually, there are two possibilities to define rectangles in our
setting:

Possibility I The obvious approach is to extend the original definition of rectangles to
also incorporate σ:

57

4. Action Models & Communication Complexity

9 1 4 6 22 20

10 2 7 23

13 11 3 5 8 24

p0 p1 p0 p1 p0

p0 p1

p1 p0 p1 p0 p1

p1 p1 p1 p1 p1p1 p1

p0 p0p0 p0 p0 p0 p0

16 32 29 27 19 21

15 31 26 18

12 14 30 28 25 17

p1 p0 p1 p0 p1

p1 p0

p0 p1 p0 p1 p0

p0 p0 p0 p0p0 p0 p0

p1 p1p1 p1 p1 p1 p1

Figure 4.11: The graphical representation of CAM2. The actions in the upper partition
all lead to the decision 0, the ones in the lower partition to a decision 1. They hence
correspond to monochromatic rectangles.

v

P1,0

0 1

Figure 4.12: The protocol tree Tcons corresponding to the action model CAM2 = (AM1;AM2)
defined in Figure 4.10 that solve consensus by computing the function f↔2 given in
Figure 4.9. P1,0 represents the single partition of AM1 representing Figure 4.10, 0 resp. 1
the two partitions of Figure 4.11.

Definition 4.4.1. A rectangle R of a function f(x, y, σ) is defined as a set such that:
(x1, y1, σ1), (x2, y2, σ2) ∈ R,

58

4.4. Application on consensus in directed dynamic networks

iff (x1, y1, σ2), (x1, y2, σ1), (x1, y2, σ2), (x2, y1, σ1), (x2, y1, σ2), (x2, y2, σ1) ∈ R.

Using Definition 4.4.1, the minimum number of monochromatic rectangles of f↔2 turns
out to be 4: The partitioning of f↔2 is shown in Figure 4.13. The number of leaves of
Tcons (which determines the communication complexity (1 bit)) is 2 and hence smaller
than the number of rectangles this definition leads to. It may be possible to trace this
contradiction to the fact that σ is not a purely local input to a single process, as all
processes can infer something about σ in some cases. For example, if σ =→, then p1 can
infer that σ 6=← even though only p0 knows σ =→ exactly.

y = 0 y = 1
x = 1 0 0 1

←,←

←,↔

←,→

↔,→

↔,←

→,←

→,↔

→,→

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

Figure 4.13: The rectangle partitioning of the function f↔2(x, y, σ) defining the outcome
of consensus in the 2 process case with adversary MA↔2 using Definition 4.4.1.

Possibility II An alternative method, which does not suffer from the problem described
above, is to use the original rectangle definition by Yao. To get rid of the indeterminism
in the consensus specification, i.e., the dependency of the computed function on the
algorithm and the graph sequence, we partition the set of computed functions into
all the possibilities allowed by the consensus specification. Every partition is then an
independent distributed function computation that can be treated with Yao’s approach.
The worst-case communication complexity of the original algorithm is determined by the
maximum worst-case communication complexity of the individual distributed function
computations.

We denote the set of graph sequences for which the input of x and y results in a
decision on z by P zxy. For example, P 0

01 of the function f↔2 given in Figure 4.9 is
{(↔,←), (→,←), (→,↔), (→,→)}. Enumerating all the possible sets P zxy, we get: P 0

00,
P 1

00, P 0
01, P 1

01, P 0
10, P 1

10, P 0
11 and P 1

11. Clearly P 1
00 and P 0

11 are empty due to validity.
Since the decision in P 0

00 and P 1
11 is given by validity and, thus, independent of the

59

4. Action Models & Communication Complexity

algorithm, there is no need to explicitly consider these two sets of graph sequences.
These eliminations leave only the non-trivial sets P 0

01, P 1
01, P 0

10 and P 1
10. We now use

those sets to build multiple two-dimensional function matrices depending solely on x
and y by taking all the possible intersections of those sets. For f↔2(x, y, σ) given in
Figure 4.9, this results in P 0

01 ∩ P 0
10 = ∅, P 0

01 ∩ P 1
10 = {(↔,←), (→,←), (→,↔), (→,→)},

P 1
01 ∩ P 0

10 = {(←,←), (←,↔), (←,→), (↔,→)} and P 1
01 ∩ P 1

10 = ∅ (we omit P 0
xy ∩ P 1

xy

here since those are trivially empty sets). Each such intersection specifies the graph
sequences for which a unique two-dimensional function matrix in x and y applies.

For example, P 0
01 ∩P 1

10 = {(↔,←), (→,←), (→,↔), (→,→)} are the graph sequences for
which f(x, y) = x applies.

As those intersections obviously are disjoint, the adversaries choice of the graph sequence
σ also determines the actual function f ′(x, y) that has to be calculated.

Figure 4.14 shows the consensus algorithm A of Figure 4.9 partitioned into those two-
dimensional matrices. The trivial partitions for P 0

00 and P 1
11 are marked blue, while

the partitions relevant for the creation of the non-trivial functions are marked orange
resp. red. Intersecting, e.g., P 0

10 and P 1
01, we get function f ′↔2 (orange). The results

for f ′↔2(0, 0) and f ′↔2(1, 1) are given by Validity, while the other two results are defined
by the used partitions, e.g., P 0

10 corresponds to f ′↔2(1, 0) = 0 in the lower left corner.
In order to analyze the communication complexity of A, we can analyze the involved
functions in isolation, and take the maximum.

Since we are now back at the usage of two-dimensional function matrices depending
solely on local input values, we can use the original definition of rectangles by Yao, and
hence all the techniques of Section 4.3. Note that, in each of those matrices, the number
of monochromatic rectangles t is 2.

As the two-dimensional functions f ′↔2 and f ′′↔2 are valid for specific subsets of graph
sequences only, we only need to consider composed actions which correspond to these
graph sequences. E.g., looking at f ′↔2 , we need to consider only the graph sequences in
{(←,←), (←,↔), (←,→), (↔,→)}. Figure 4.15 again shows the graphical representation
of CAM2 based on Figure 4.11. The composed actions corresponding to f ′↔2 are marked
in orange, while the composed actions corresponding to f ′′↔2 are marked in red. We see,
that in both cases the Composed Action Model corresponding to the considered function
has two partitions, regarding AM1, the ability to restrict the composed Action Model
CAM2 to the partition relevant for, say, f ′↔2 , does not lead to a restriction of Figure 4.10,
hence P01 remains the same. Thus the protocol tree for the two-dimensional functions is
the same as in Figure 4.12, so tCAM2 = 2 again.

This is because there is at least one process p0 or p1, which does not know after the first
round using this algorithm whether it will compute f ′↔2 or f ′′↔2 . Since tCAM2 = t = 2, for
either f ′↔2 and f ′′↔2 , Theorem 4.3.1 shows that the algorithm is optimal.

60

4.5. Summary and Discussion of our Findings

4.5 Summary and Discussion of our Findings

In Section 4.2, we first established a lower bound on the number of bits received by
a single process p0 when applying some Action Model. We found that the number of
bits received by a single process is tightly coupled to the number of partitions of the
Action Model. Lemma 4.2.1 resp. Lemma 4.2.2 provide a lower bound depending on the
availability resp. non-availability of communication by time. As we cannot assume that
the worst action (in terms of communication) for process p0 is the same action as the
worst action for process p1, however, the sum of the lower bounds for all processes does
not lead to an overall lower bound on communication complexity for applying the Action
Model.

Following [Yao79], we restrict ourselves to scenarios similar to his in Section 4.3: We
concentrate on the symmetric computation of a function f(x, y), x resp. y being the
inputs of two processes p0 resp. p1, and use a synchronous model, in which each process
can send arbitrarily many bits in each asynchronous round in a model with guaranteed
message delivery. Once an algorithm for computing f(x, y) terminates, the result shall be
commonly known among the processes p0 and p1. Similar to [Yao79], we defined a protocol
tree TA on the basis of the Action Models {AM1, . . . ,AMm} defined by some algorithm A
in Section 4.3, where m is the round in which A terminates. Using these Action Models,
we compute the Composed Action Model CAMk = (CAMk−1;AMk) for any round k, k ≤ m.
The nodes on level k of the protocol tree correspond to the partitions of the Composed
Action Model CAMk for round k. Using a relation between the monochromatic rectangles
of the function matrix Mf and TA’s leaves, which correspond to the partitions of CAMm,
we established Theorem 4.3.1, which gives a (possibly conservative) lower bound on the
overall (system-wide) communication complexity for any given function computation
algorithm.

We applied our methods for deriving lower bounds on the communication complexity
for the consensus problem in directed dynamic networks in Section 4.4. To do so, we
considered a scenario consisting of two processes connected via a directed dynamic
network. As the consensus result does not only depend on the initial values x and y,
but also on the graph sequence σ chosen by a message adversary, we cannot interpret
the problem just as the computation of a 2-dimensional function. Thus, we considered
consensus in directed dynamic networks as the computation of a 3-dimensional function
f(x, y, σ).

Since [Yao79] does not deal with 3-dimensional functions, we also proposed two possibili-
ties to handle this problem. The first approach just generalizes the definition of rectangles
to also incorporate σ. As the latter is not purely local to one of the processes, however,
this does not lead to a communication complexity lower bound, even for the simple
message adversary MA↔2 . The other approach exploits the structure of the message
adversary and the consensus problem, dividing the 3-dimensional function matrix into
multiple 2-dimensional matrices, which are valid for disjoint sets of graph sequences.
This second approach leads to the correct lower bound for the simple message adversary

61

4. Action Models & Communication Complexity

MA↔2 . However, it remains to be proven that this approach is universally applicable in
directed dynamic networks.

The main shortcomings of our approach are the following:

1. Besides the restrictions inherited from the basic model, we can only apply our
lower-bound results on algorithms, for which there exists a maximum number of
rounds until termination. Consequently we can only apply the deduced method to
finite message adversaries, since there is no algorithm with a maximum number of
rounds for eventual message adversaries. In Chapter 5, we discuss the impact of
eventual message adversaries on the bit complexity and solvability of the consensus
problem.

2. The restriction to 2 processes is extremely limiting. A main focus of future work
has to be the extension of our method to systems of n > 2 processes.

3. Further research should also consider a definition of rectangles on multi-dimensional
functions and functions with non-local input, like the graph sequence of directed
dynamic networks, and may prove or disprove our second approach to do so.

62

4.5. Summary and Discussion of our Findings

y = 0 y = 1
x = 1 0 0 1

←,←

←,↔

←,→

↔,→

↔,←

→,←

→,↔

→,→

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

P 0
10 =

{(←,←), (←,↔),
(←,→), (↔,→)}

P 1
01 =

{(←,←), (←,↔),
(←,→), (↔,→)}

f ′↔2,P 0
10,P

1
01

(x, y) =
y0 = 0 y1 = 1

x0 = 0 0 1
x1 = 1 0 1

P 1
10 =

{(↔,←), (→,←),
(→,↔), (→,→)}

P 0
01 =

{(↔,←), (→,←),
(→,↔), (→,→)}

f ′′↔2,P 1
10,P

0
01

(x, y) =
y0 = 0 y1 = 1

x0 = 0 0 0
x1 = 1 1 1

Figure 4.14: Partitioning of three-dimensional function f↔2 into two two-dimensional
functions f ′↔2 and f ′′↔2 . The trivial partitions for P 0

00 and P 1
11 are marked blue, while

the partitions relevant for the creation of the functions are marked orange resp. red.
Combining, e.g., P 0

10 and P 1
01 we get function f ′↔2 (orange). The results for f ′↔2(0, 0)

and f ′↔2(1, 1) are given by Validity, while the other two results are defined by the used
partitions, e.g., P 0

10 corresponds to f ′↔2(1, 0) = 0 in the lower left corner. Since f ′↔2 and
f ′′↔2 are two-dimensional, the original rectangle-definition by Yao and hence the results
of Section 4.3 can be used again.

63

4. Action Models & Communication Complexity

9 1 4 6 22 20

10 2 7 23

13 11 3 5 8 24

P 0
0,1 P 0

0,0 P 0
1,0

p0 p1 p0 p1 p0

p0 p1

p1 p0 p1 p0 p1

p1 p1 p1 p1 p1p1 p1

p0 p0p0 p0 p0 p0 p0

16 32 29 27 19 21

15 31 26 18

12 14 30 28 25 17

P 1
0,1 P 1

1,1 P 1
1,0

p1 p0 p1 p0 p1

p1 p0

p0 p1 p0 p1 p0

p0 p0 p0 p0p0 p0 p0

p1 p1p1 p1 p1 p1 p1

Figure 4.15: The graphical representation of CAM2 for the two-dimensional functions f ′↔2

(defined by P 0
1,0 and P 1

0,1 and depicted in orange) and f ′′↔2 (defined by P 0
0,1 and P 1

1,0 and
depicted in red). The trivial partitions P 1

1,1 and P 0
0,0 are marked in blue.

64

CHAPTER 5
2-player Consensus in Directed

Dynamic Networks

In this section, we present our main contribution: We apply the model of the previous
chapters to deterministic distributed consensus in synchronous directed dynamic networks
connected by unreliable, unidirectional links controlled by a message adversary. We
restrict our investigation to systems made up of 2 processes when solving the following
tasks:

1. Specify the knowledge required to solve consensus in this setting.

2. Specify the possible actions and thus the minimal Action Models.

3. Use the approach from Chapter 4 to get a lower bound on the communication
complexity.

4. Specify a „minimal“ communication topology that allows to solve consensus for
this communication complexity.

We start with some definitions in Section 5.1 and a survey of some related previous
results on consensus in directed dynamic networks, obtained both via classical methods
as well as knowledge-based ones in Section 5.2. The lessons learned from applying our
approach are presented in Section 5.3. Section 5.4 provides our results on necessary and
sufficient conditions for solving consensus in the case of two processes.

5.1 Problem Definition
In the consensus problem, each process p has an initial value xp and a decision value yp
in its local state. The value yp is written only once, and is undefined (yp = ⊥) initially.

65

5. 2-player Consensus in Directed Dynamic Networks

To solve consensus, an algorithm has to fulfill the following properties for each process
p, q ∈ Π:
(Agreement) If p assigns value vp to yp and q assigns value vq to yq, then vp = vq.
(Termination) Eventually, every p assigns a value to yp.
(Validity) If each process p has input xp = v, then all processes q have to decide yq = v.

In Section 5.3 and Section 5.4, we restrict the system to have two processes {p0, p1}
only. Thus, in each round r, a message adversary may choose the network graph Gr
from the set of graphs {←,↔,→}. Also note that we do not allow the empty graph
there. Whenever an empty graph is in this set, the adversary may choose the sequence
consisting of only empty graphs arbitrarily long, which makes consensus not solvable.

Many message adversaries are defined based on the guaranteed existence of certain graph
properties over time. A root component, or simply root, R(G) of a graph G denotes a
set of vertices which is strongly connected and where there is no edge from any vertex
outside R(G) to some vertex inside R(G). A graph containing exactly one root is called
a rooted graph. This notion is extended towards a vertex-stable root component, or stable
root: If in some graph sequence (Gr)br=a = (Ga,Ga+1, . . . ,Gb) each graph Gr is rooted and
for each such graph the root R(Gr) consists of the same processes, this root is called a
vertex-stable root component. Its dynamic diameter D is the number of rounds needed
such that the state sa−1

i of the root members i ∈ R, at the beginning of a graph sequence
σ = (Gr)br=a in which R is a vertex-stable root component for a sufficient number of
consecutive rounds in σ, affects another state sa−1+D

j . In the case of two processes,
obviously D = 1.

5.2 Previous Results

We start with some related existing results regarding consensus. Section 5.2.1 lists
algorithms and impossibility results for consensus in directed dynamic networks, as
defined above. Some related results obtained by epistemic reasoning in the general
distributed computing setting are surveyed in Section 5.2.2.

5.2.1 Consensus in Directed Dynamic Networks

[BRS12] showed that consensus is impossible to solve for a message adversary that does
not eventually generate a root component that is not vertex-stable for at least D rounds,
with D the dynamic diameter of the dynamic network. They also developed an algorithm,
which solves consensus for a message adversary that guarantees that each graph Gr
contains a single root component that is eventually stable for 4D rounds.

[BRS+15] developed a more complex algorithm, which is able to solve consensus under a
message adversary that may generate multiple vertex-stable root components but ensures
some distinct information flow between successive root components.

66

5.2. Previous Results

In [SWS16], a message adversary has been presented that guarantees rooted graphs and
the eventual existence of a single vertex-stable root for 2D + 1 rounds. An algorithm has
been provided, which solves consensus under this message adversary.

[WSS16] (Theorem 2) proves that even non-uniform consensus cannot be solved under
♦STABLED(x) (see Definition 5.3.1) if x ≤ D, where x is the duration of the eventually
guaranteed stable root. Informally, this is because there are executions, even with
a stability phase of D rounds, where some process cannot precisely determine the
root component of the stability window. The determination of this root component is
crucial since each root component may be the base for a decision in the suffix of some
indistinguishable execution. In addition, they present an algorithm that solves consensus
under message adversary ♦STABLED(D + 1).

5.2.2 Consensus and Knowledge

The classic consensus problem is defined in the model were all the links are reliable, but
up to f processes may fail by crashing. To solve consensus in this model, an algorithm
has to fulfill the following properties for each process p, q ∈ Π:
(Agreement) yp = yq for all non-faulty processes p and q.
(Termination) Eventually, yp is assigned a value at every non-faulty process p.
(Validity) If xp = v for all processes p, then yq = v for every terminated non-faulty
process q.

[HM90] is a seminal work on the knowledge-base approach in distributed environments.
The authors used the well-known Coordinated Attack Problem, which can be seen as an
instance of simultaneous consensus, to investigate different types of common knowledge.
It turns out that any protocol for the coordinated attack problem has the property that
whenever the generals attack, it is common knowledge that they are attacking. They
also investigate in how common knowledge can be attained and come to the conclusion
that nothing can become common knowledge unless it is also common knowledge in the
absence of communication. Since practical distributed systems are subject to temporal
imprecision, common knowledge cannot be attained in such systems.

Thus, [HM90] also examines the states of knowledge which are attainable in systems in
which communication delivery is guaranteed but message delivery times are uncertain.
They come up with the notion of ε-Common Knowledge, which is defined similar to classic
common knowledge. Rather than everyone knowing a fact at the same time, however, all
of the processes come to know the fact within an interval of ε time units. As common
knowledge corresponds to simultaneous actions, ε-common knowledge corresponds to
actions that are guaranteed to be performed within ε time units of one another. E.g.,
the attacking generals can attack within one hour of each other if and only if they attain
1h-common knowledge of the fact that they are attacking.

Another notion of [HM90] is �-Common Knowledge defined similarly to ε-common
knowledge, with the difference that all processes come to know a fact at some unknown
point of time in an execution. �-common knowledge corresponds to eventual actions.

67

5. 2-player Consensus in Directed Dynamic Networks

E.g., in an instance of the consensus problem in which all of the processes eventually
decide a value, the value which is decided upon has to become �-common knowledge.

[CGM13] investigated the knowledge that a single process requires to decide a value in
binary consensus (where the input values xp are from {0, 1}). They came up with the
notions of strict domination and unbeatable protocols. Q strictly dominates P, denoted
by Q � P, if for all adversaries α and every process p, if p decides in P under α at time
tp, then p decides in Q under α at some time t′p ≤ tp. P is an unbeatable protocol for
some problem P if no protocol Q solving P strictly dominates P . Their protocols differ
from others, since they are not defined based on the usual algorithmic message passing
level, but on the knowledge level. They assume that the underlying communication is
full-information, i.e., each process sends its entire local state to all the other processes in
each message.

In more detail, a process can decide 0 as soon as it knows that xp = 0 for some correct
process p. Moreover, as long as a process considers it possible that some process currently
knows that xp = 0 for some correct process p, it can not decide 1, but may do so as soon
as it knows that no process q knows xp = 0 for any correct process p. Thus, the necessary
knowledge for solving consensus of process p is:

(1) if Kp(xq = 0) for some correct q then decide 0

(2) if Kp

∧
q∈Π
¬Kq(xp = 0) for some correct p then decide 1

A process p can decide 0 if it knows that some correct process q has an initial value of
0 according to (1). A process p can decide 1 at time tp if there is no hidden path with
respect to p by (2).

Based on this, the authors identified conditions on the necessary and sufficient communi-
cation structures, namely, the absence of hidden paths. They say the state of process p at
time tp is hidden from the process q at time tq, if both (i) p does not know that q failed
before time tp and (ii) there is no message chain from process q at time tq to process p at
time tp. There is a hidden path with respect to process p at time tp if there is a sequence
of processes q0, q1, . . . , qm and the state of qi at time i is hidden from p at time tp, for all
i ∈ {0, 1, . . . , tp}.

5.3 Consensus and Communication Complexity

The goal of our research is to specify a minimal network topology a message adversary
has to guarantee such that consensus is solvable under this adversary. The approach
pursued in this section is to (i) determine a lower bound on communication complexity
for the consensus problem in directed dynamic networks using the knowledge each single
process requires to decide a value, such that Agreement, Validity and Termination hold,
and (ii) to infer some conditions from it. Unfortunately, however, we encountered a

68

5.3. Consensus and Communication Complexity

problem here: There is no finite lower bound on the communication complexity for the
consensus problem in general dynamic networks. To show this, we will prove that there
is a message adversary such that every algorithm solving consensus under this adversary
has unbounded bit complexity in some run.

Definition 5.3.1 (♦STABLED(x)). The message adversary ♦STABLED(x) ensures that
the following properties hold for any graph sequence σ ∈ ♦STABLED(x):

• σ eventually has a R-rooted subsequence of length x,

• every graph Gr ∈ σ is rooted, and

• the dynamic diameter is D.

[WSS16] developed an algorithm solving consensus under ♦STABLED(D + 1). In the
following, we use the term stabilization round rσ as the first round of the first 2-stable
root component of a run σ in ♦STABLED(2).

Lemma 5.3.1. There is no algorithm solving consensus for ♦STABLE1(2) that termi-
nates in any round r ≤ rσ on every graph sequence σ.

Proof. Suppose in contradiction that there is such an algorithm A.

Let σ be an arbitrary graph sequence with stabilization round rσ generated by ♦STABLE1(2),
such that A solves consensus and terminates in some round r ≤ rσ.
Consider an arbitrary graph sequence ε generated by ♦STABLE1(1) ⊇ ♦STABLE1(2)
without any root stable for at least 2 consecutive rounds, such that σrσ = εrσ , i.e., the
prefixes of length rσ are the same for σ and ε.

By our assumption, A would solve consensus on σ and terminate in some round r ≤ rσ,
thus it would terminate within prefix σrσ . Since εrσ = σrσ , no process p would be able
to distinguish σ and ε within this prefix, thus A would solve consensus also on ε and
terminate in the same round r ≤ rσ, a contradiction to the fact that consensus under
♦STABLE1(1) is impossible according to [WSS16] (proof of) Theorem 2.

Lemma 5.3.2. In any algorithm A which solves consensus in ♦STABLE1(2), both
processes attempt to send at least one bit in rσ in run σ.

Proof. Suppose in contradiction that there is such an algorithm A in which at most one
of the processes attempts to send some message containing at least one bit.

Let σ be an arbitrary graph sequence generated by ♦STABLE1(2). Denote by rσ the
first round of the first 2-stable root in σ. By Lemma 5.3.1, A terminates in some round
tσ > rσ on σ.

69

5. 2-player Consensus in Directed Dynamic Networks

Let ε be another arbitrary graph sequence generated by ♦STABLE1(2), such that
σrσ−1 = εrσ−1, Grσσ 6= Grσε , (Grσ)tσr=rσ+1 = (Grε)tσr=rσ+1 and rε > tσ. I.e., the prefix of length
tσ is equal except for round rσ and rε > tσ. By Lemma 5.3.1, A terminates in some
round tε > rε > tσ on ε.

There are two cases:

• No process attempts to send some bit in rσ:
Looking at all the possible pairs of graphs (Grσσ ,Grσε) ∈ {←,↔,→}2, we see that
without attempting to send any bit in round rσ none of the processes can distinguish
Grσσ and Grσε , since none of them receives any bit in rσ in both of the sequences.

• Exactly one process attempts to send a bit in rσ (w.l.o.g. say p0):
There is a possible pair of graphs (Grσσ ,Grσε) = (↔,→) such that none of the
processes can distinguish Grσσ and Grσε . p1 cannot distinguish the two graphs since
in both σ and ε it receives the message from p0. Since p1 does not attempt to send
any bit, p0 does not receive any bit in rσ, even if there is an incoming edge for p0
in Grσσ .
An example for such a scenario is σtσ = ((←,→)k,↔,↔,←,→), in which Grσσ =
Grσ+1
σ =↔, and εtε = ((←,→)k,↔,→,←,→,←,←), in which Grεε = Grε+1

ε =←
and rε = tσ + 1.
Note that if p1 is the only process attempting to send something, the crucial pair
of graphs is (←,↔).

Since the prefixes of length tσ > rσ of σ and ε differ only in round rσ and none of the
processes can distinguish Grσσ and Grσε in both of the above cases, none of the processes
can distinguish the prefixes σtσ and εtσ . Thus, since A terminates in round tσ on σ, it
also terminates in round tσ < rε on ε. This is a contradiction to Lemma 5.3.1 for ε, thus
in any algorithm A which solves consensus in this setting, both processes attempt to
send at least one bit in round rσ.

Lemma 5.3.3. In any run of any algorithm solving consensus in ♦STABLE1(2), at least
one process has to receive at least one bit in each round r ≤ rσ.

Proof. Let σ be an arbitrary graph sequence generated by ♦STABLE1(2) and denote the
first round of the first 2-stable root component by rσ. Let ε be another arbitrary graph
sequence generated by ♦STABLE1(2), such that the first round of the first 2-stable root
component in ε is in some round r ≤ rσ and σr′ = εr′ , for all r′ ≤ r.

By Lemma 5.3.2 both processes attempt to send at least one bit in round r of any run of
A on ε. Since any possible graph in round r has at least one edge, at least one process
has to receive at least one bit in round r on both σ and ε.

Thus in each run of each algorithm at least one process has to receive at least one bit on
any arbitrary graph sequence in any arbitrary round r ≤ rσ.

70

5.4. Solvability of Consensus

Theorem 5.3.1. Any algorithm solving consensus in ♦STABLE1(2) has unbounded bit
complexity.

Proof. This follows directly from Lemma 5.3.3. Since in ♦STABLE1(2) the number rσ of
the first round of the first stable root may be unbounded, in each run of each algorithm
at least one process has to receive at least one bit in an unbounded number of rounds,
leading to an unbounded number of bits received.

Theorem 5.3.1 implies that it is not possible to give a finite lower bound on communication
complexity for the consensus problem in directed dynamic networks under ♦STABLE1(2)
and, hence, in general. Thus our idea to look for such a bound to find a minimal
communication topology based on the results of Chapter 4 cannot work out. Nevertheless,
during this research, we developed alternative ideas that lead us to necessary and sufficient
conditions for consensus in dynamic networks with n = 2. In the next section we present
our results.

5.4 Solvability of Consensus

In this section, we will identify necessary and sufficient conditions for a message adversary
that allows consensus to be solved on two processes in a directed dynamic network.

In Theorem 5.4.1, we will re-prove the well-known result [SW89, SWK09, CG13] that it
is impossible to solve consensus under the unrestricted message adversary MAu, which
is allowed to choose any graph sequence (Gr)∞r=1 with Gr ∈ {←,↔,→}.

There are algorithms solving consensus under messages adversaries that are restricted
by exactly one infinite graph sequence, e.g., MA↔∗ = MAu \ {↔∗}, which is allowed
to choose any graph sequence except the one consisting of ↔ in each round. Solving
consensus on MA↔∗ is surprisingly easy: Initially each process p sends its initial value
xp. In each round r ≥ 2, each process sends the value it received in the previous round.
Once it receives the same value it sent in the previous round or does not receive a value
at all, a process decides this value and terminates. This algorithm is guaranteed to work
correctly since MA↔∗ ensures that the graph in some round is eventually ← or →, i.e.,
some process (say p) does not receive any value in some round. Thus, the value process
q attempted to send is lost, and from this time on there is only the value that p sent
present in the system. Hence it is safe to decide on it.

Therefore, our hypothesis is that consensus is solvable under some message adversary
MAS , if and only if MAS = MAu \S, with S a (small) set of sequences satisfying certain
conditions. We start our considerations by looking at the unrestricted message adversary
MAu and will derive that, in each round r, there is an indistinguishability chain: For
each prefix σr, there is a prefix σ′r which is indistinguishable from σ for p and a prefix
σ′′r which it is indistinguishable from σ for q, formally expressed as σ′ ∼r σ ∼q σ′′. This
indistinguishability chain includes all possible prefixes of graph sequences that arise in

71

5. 2-player Consensus in Directed Dynamic Networks

our impossibility proof for MAu (Theorem 5.4.1). To prove this, we come up with the
notion of a Sorted Sequence Tree.

In Section 5.4.1 we define this tree and prove some useful properties. Subsequently, in
Section 5.4.2, we prove the impossibility of solving consensus under MAu. Finally, in
Section 5.4.3, we introduce the notions of fair and unfair graph sequences and give
necessary and sufficient conditions a message adversary has to meet to allow solving
consensus in a directed dynamic network of two processes.

5.4.1 Sorted Sequence Tree

A crucial prerequisite for our analysis is the Sorted Sequence Tree (SST), which is
designed to (i) enumerate all the r-round prefixes of possible graph sequences σ in the
two process system and (ii) to sort these sequences such that two neighboring prefixes
are indistinguishable from each other for at least one process.

Definition 5.4.1 (Sorted Sequence Tree).
The Sorted Sequence Tree (SST) for graph sequences made up from {→,↔,←} is
constructed as follows:

• Start with the first level:

•

← ↔ →

• At each level attach to each leaf L, where L is identified by the path leading to it

– If NL
↔ is even:

L

← ↔ →

– If NL
↔ is odd:

L

→ ↔ ←

with NL
↔ denoting the number of bidirectional graphs (↔) along the path from the

root to leaf L.

It is easy to see that the SST enumerates all graph sequences, since each node has all of
the three possible graphs as children, i.e., each prefix of a graph sequence is extended
with all possible graphs for the next round. Figure 5.1 depicts the SST up to level 3. We
see that each single prefix of length r (σr) corresponds to exactly one path from the root
to exactly one leaf L at level r, e.g., the dashed path in the figure corresponds to the
prefix (↔,←,→). We also say that the leaf at level r itself corresponds to the prefix
σr. Note that Nσr

↔ , the number of bidirectional rounds in prefix σr, is equal to NL
↔, and

N (↔,←,→)
↔ = 1

72

5.4. Solvability of Consensus

•

← ↔ →

← ↔ → → ↔ ← ← ↔ →

←↔→→↔←←↔→→↔←←↔→→↔←←↔→→↔←←↔→

Figure 5.1: Sorted Sequence Tree up to level 3. The dashed path corresponds to the
graph sequence (↔,←,→).

As already stated, we need the notion of neighborhood between nodes of the SST and
further on graph sequences and prefixes. The goal is to prove that at each level r
there is an indistinguishability chain consisting of all prefixes of length r. In such an
indistinguishability chain, two neighboring sequences in the chain are indistinguishable
from each other for at least one of the processes. To do so, we define the neighbors
of a node at each level r (Definition 5.4.2) and prove that this neighborhood relation
creates exactly one chain of neighbors at this level, such that this chain contains all the
nodes at level r (Lemma 5.4.3). Using this neighborhood relation for nodes, we then
define the neighborhood relation on prefixes and prove the existence of such a chain there
(Corollary 5.4.1).

Definition 5.4.2. We say that node ` is the left neighbor of node `′ (` 6= `′) on level r
of the SST, iff:

• If ` and `′ share the same parent p and

– ` is the left child of p and `′ is the central child of p or
– ` is the central child of p and `′ is the right child of p.

• If ` and `′ do not share the same parent but have parents p 6= p′ respectively, then
` is `′’s left neighbor, iff:

– p is p′’s left neighbor on level r − 1 and
– ` is p’s right child and `′ is p′’s left child.

` is the right neighbor of `′ iff `′ is the left neighbor of `.

We define the leftmost node at level r to be the one with only ← on the path from the
root of the SST to the node. The rightmost node at level r is the one with only → on
the corresponding path.

Lemma 5.4.1. At each level r, the leftmost (rightmost) node has exactly one right (left)
neighbor, while the other nodes have exactly one right and one left neighbor.

73

5. 2-player Consensus in Directed Dynamic Networks

Proof by induction on level r. The claim obviously holds at level r = 1. All the nodes
have the same parent, meaning ← is left neighbor to ↔, which is left neighbor to → by
Definition 5.4.2.

Assume the claim holds for all the nodes at level r − 1.
Suppose ` is any node at level r except the leftmost and assume that it does not have a
left neighbor. I.e., there is no node `′ such that `′ is a left neighbor to `. Consider the
following cases:

• ` is not the left child of its parent p. By the definition of the SST, each node p has
three children and since ` is not the left child of p, there has to be a child left of `.
Thus ` has a left neighbor.

• ` is the left child of its parent p. Since ` is not the leftmost node on level r, p cannot
be the leftmost node on level r − 1. By the induction hypothesis, there has to be a
node p′, which is the left neighbor of p at level r − 1. Since p′ has three children,
there is a node `′ (p′’s right child), which is left neighbor to ` by Definition 5.4.2.

Thus any node ` at level r except the leftmost has to have at least one left neighbor. To
show that every such node has exactly one left neighbor, suppose in contradiction that `
has at least two left neighbors `′, `′′.

• `, `′ and `′′ share the same parent p. By Definition 5.4.2 we get that `′ = `′′.

• ` and `′ do not share the same parent and ` and `′′ do not share the same parent.
We denote those parents by p, p′ and p′′ respectively, all of them at level r − 1. By
Definition 5.4.2 we get that both p′ and p′′ (precisely p′ = p′′) are left neighbors of
p. The induction hypothesis guarantees p′ = p′′ in any case. To be left neighbors
of `, both `′ and `′′ have to be p′’s right child by Definition 5.4.2, concluding that
`′ = `′′.

• ` and `′ share the same parent p, while ` and `′′ do not share the same parent. By
Definition 5.4.2, `′ can only be `’s left neighbor if ` is p’s central or right child,
while ` has to be p’s left child (so that `′′ can be `’s left neighbor), a contradiction.

Up to now we proved that each node ` at level r except the leftmost has exactly one left
neighbor.

We will continue to show a similar property for all nodes ` at level r, except the rightmost,
namely that each of them has exactly one right neighbor.
As before suppose that ` is any node at level r, except the rightmost, and assume that it
does not have any right neighbor. I.e., there is no node `′ such that ` is left neighbor to
`′. Consider the following cases:

• ` is not the right child of its parent p. By the same argument as before we see that
there has to be a right neighbor for `.

74

5.4. Solvability of Consensus

• ` is the right child of its parent p. Since ` is not the rightmost node on level r,
p cannot be the rightmost node at level r − 1. By induction hypothesis, there
has to be a node p′, which is the right neighbor of p at level r − 1. Since p′ has
three children, by Definition 5.4.2 there is a node `′ (p′’s left child), which is right
neighbor to `.

Thus any node ` at level r, except the rightmost, has at least one right neighbor. To
show that ` has exactly one right neighbor, suppose in contradiction that ` has at least
two right neighbors `′ and `′′, i.e., ` is left neighbor to both `′ and `′′.

• `, `′ and `′′ share the same parent p. By Definition 5.4.2 we get that `′ = `′′.

• ` and `′ do not share the same parent and ` and `′′ do not share the same parent.
Denote those parents by p, p′ and p′′ respectively, all of them at level r − 1. By
Definition 5.4.2 p is left neighbor to both p′ and p′′ (precisely p′ = p′′). The
induction hypothesis guarantees p′ = p′′ in any case. ` has to be p’s right child and
both `′ and `′′ have to be p′’s left child by Definition 5.4.2, thus, by Definition 5.4.1,
`′ = `′′.

• ` and `′ share the same parent p, while ` and `′′ do not share the same parent. By
Definition 5.4.2 ` can only be `′’s left neighbor if ` is p’s left or central child. On the
other hand ` can only be `′′’s right neighbor if ` is p’s right child, a contradiction.

Thus we can conclude that each node `, except of the rightmost, at level r has exactly
one right neighbor.

Lemma 5.4.2. The neighborhood relation does not create a cycle at any level r of the
SST.

Proof by induction on level r. The claim holds trivially at level r = 1, since no node is
neighbor to itself and ← and → both have only one neighbor.

Assume the claim holds for level r − 1.
From Definition 5.4.1, we know that each node at level r has a parent at level r − 1
and each node at level r − 1 has three children at level r. By Definition 5.4.1 and
Definition 5.4.2 all the children of a node build a chain of neighbors and if nodes ` and `′
at level r are neighbors, their parents p and p′ at level r − 1 are either neighbors or `
and `′ have the same parent (p = p′).

Suppose there is a cycle of neighbors at level r, i.e., there are nodes `0, . . . , `m, such that
`i is left neighbor to `i−1 (for i ≥ 1) and `0 is left neighbor to `m. Then, by the above
observation, their parents p0, . . . , pm′ also build a cycle at level r − 1, which contradicts
our induction hypothesis.

75

5. 2-player Consensus in Directed Dynamic Networks

Lemma 5.4.3. At each level r, the neighborhood relation builds a chain from the leftmost
node at this level to the rightmost node, such that there is a right neighbor to the leftmost
node, which is a left neighbor to another node, . . . , which is a left neighbor to the rightmost
node. This chain contains all the nodes at level r.

Proof. Suppose this would not be the case.
By Lemma 5.4.1 the leftmost and rightmost nodes of some level r have exactly one right
respectively left neighbor, while all the other nodes of this level have exactly one right
and one left neighbor. Thus there has to be such a chain starting out from the leftmost
(rightmost) node and go to the right (left) neighbor. By Lemma 5.4.2, an already visited
node cannot be reached twice, so the path ends in the rightmost (leftmost) node. Since
no node is visited twice and each node is part of a chain, all the nodes are included in
the chain.

Lemma 5.4.4. If node p0 is left of pm at level r, i.e., there are nodes p0, . . . , pm at level
r, such that pi−1 is left neighbor of pi, then all of the children of p0 (`00, `10, `20) are left
of all of the children of pm (`0m, `1m, `2m). The analogous statement holds if p0 is right of
pm.

Proof. Clearly, `00 and `10 are both left of `20 and `1m and `2m are both right of `0m, by
Definition 5.4.2, so it is sufficient to prove that `20 is left of `0m at level r + 1.

Suppose `20 is not left of `0m. Since p0 is left of pm, p0 6= pm, thus `20 6= `0m, so `20 has to be
right of `0m. Thus there have to be nodes v0, . . . , vn, such that `20 = v0, `0m = vn and vi−1
right of vi. So for each pair of neighbors (vi−1, vi) they either share the same parent or
the parent pi−1 is right neighbor of the parent pi, by Definition 5.4.2. Thus at level r,
node p0, parent of v0 = `20, is right neighbor to p1, which is . . . right neighbor to pm−1,
which is right neighbor to pm. So p0 is right of pm, contradicting our premise, as the
same node cannot be the right and left neighbor of some other node by Definition 5.4.2.

The proof, that if p0 is right of pm, the children of p0 are right of the children of pm, is
analogous.

As already stated, each prefix σr of length r of some graph sequence σ corresponds to
exactly one path from the root of the SST to a node ` at level r of the SST respectively
to node ` itself. Thus it is easy to extend the neighborhood of nodes to the neighborhood
of prefixes.

Definition 5.4.3. Consider two graph sequences σ and σ′ and their prefixes σr and σ′r
of length r. We say that σr is left (right) neighbor of σ′r, iff their corresponding paths in
the SST end in leaves ` and `′ respectively and ` is left (right) neighbor to `′.

Corollary 5.4.1 directly follows from Lemma 5.4.3, since, by Definition 5.4.3, the neigh-
borhood of graph sequences is defined using the neighborhood of nodes.

76

5.4. Solvability of Consensus

Corollary 5.4.1. The neighborhood relation for graph sequences creates a chain of
prefixes of length r from prefix ←r to →r.

In the following Lemma we take a look at the structure of two neighboring graph
sequences.

Definition 5.4.4. We say that two graphs Gr1 and Gr2 differ asymmetrically (in round
r) if w.l.o.g. Gr1 =↔ and Gr2 ∈ {←,→}. Two graph sequences σ, σ′ with prefixes σr0 ,
σ′r0 differ asymmetrically from each other in exactly one round r ≤ r0, if Gr1 ∈ σr0 and
Gr2 ∈ σ′r0 differ asymmetrically in round r and all other graphs in σr0 , σ′r0 are the same.

Lemma 5.4.5. Consider two graph sequences σ and σ′ with prefixes σr0 and σ′r0 of
length r0. σr0 and σ′r0 differ asymmetrically from each other in exactly one round r ≤ r0,
if and only if they are neighbors.

Proof ⇒ by induction on prefix length r0. Obviously this holds for all prefixes of length
r0 = 1, since all of them differ in exactly one round and both ← and → are neighbors to
↔.

Assume the claim holds for all prefixes of length r0 − 1.
Consider two prefixes of length r0, σr0 and σ′r0 , that differ asymmetrically in exactly one
round r ≤ r0, with Grσ =↔ and Grσ′ ∈ {←,→}. There are two cases:

• r < r0: Since σr0 and σ′r0 differ asymmetrically in exactly one round, we can
conclude that Gr0

σ = Gr0
σ′ . Thus we can apply the induction hypothesis on the two

prefixes σr0−1 and σ′r0−1 of length r0 − 1, which implies that σr0−1 and σ′r0−1 are
neighbors. Clearly σr0−1 and σ′r0−1 correspond to the parent nodes of σr0 and σ′r0 .
As Gr0

σ = Gr0
σ′ , by Definition 5.4.2 and Definition 5.4.3, σr0 and σ′r0 are neighbors in

the SST, since Nσr0−1
↔ 6= N

σ′r0−1
↔ .

• r = r0: Since σr0 and σ′r0 differ asymmetrically in exactly one round, we can
conclude that the two prefixes σr0−1 and σ′r0−1 are equal. Thus they correspond
to the same node in the SST, which is the parent of the nodes corresponding to
σr0 and σ′r0 . Since G

r0
σ =↔ and Gr0

σ′ ∈ {←,→}, by Definition 5.4.1, Definition 5.4.2
and Definition 5.4.3, we can conclude that σr0 and σ′r0 are neighbors.

Proof ⇐ by induction on sequence length r0. Obviously all prefixes of length r0 = 1 differ
from each other in exactly one round. Since← is left neighbor to↔, which is left neighbor
to →, the claim holds.

Assume the claim holds for all prefixes of length r0 − 1.
Consider two neighboring prefixes of length r0, σr0 and σ′r0 , and denote their prefixes of
length r0 − 1 by σr0−1 and σ′r0−1 respectively.
We have to consider two cases:

77

5. 2-player Consensus in Directed Dynamic Networks

• σr0−1 = σ′r0−1:
Obviously σr0 and σ′r0 differ only in round r0. By Definition 5.4.1, Definition 5.4.2
and Definition 5.4.3, we see that, since σr0 and σ′r0 are neighbors, (w.l.o.g.) Gr0

σ =↔.
Hence, σr0 and σ′r0 differ asymmetrically in round r0 only.

• σr0−1 6= σ′r0−1:
By Definition 5.4.2 and Definition 5.4.3, σr0−1 and σ′r0−1 are neighbors, since σr0

and σ′r0 are neighbors. Due to the induction hypothesis, there exists a round
r ≤ r0 − 1 such that Grσ 6= Grσ′ and (w.l.o.g.) Grσ = ↔, while Grσ′ ∈ {←,→}, and
for all rounds r′ 6= r : Gr′σ = Gr′σ′ . Thus, N

σr0−1
↔ = N

σ′r0−1
↔ + 1. By Definition 5.4.2

and Definition 5.4.3, the neighborhood of σr0 and σ′r0 requires that σr0 corresponds
to the left (right) child of the node corresponding to σr0−1 and σ′r0 corresponds
the right (left) child of the node corresponding to σ′r0−1. Due to Definition 5.4.1

and the fact that Nσr0−1
↔ and N

σ′r0−1
↔ differ by exactly 1, we get that Gr0

σ = Gr0
σ′ .

Thus we can conclude that σr0 and σ′r0 only differ in round r, with Grσ = ↔ and
Grσ′ ∈ {←,→}.

We are now ready to move on to the next section, where we prove the impossibility of
consensus under the unrestricted message adversary MAu.

5.4.2 Impossibility of Consensus under MAu

In this section, we re-prove the well-known result [SWK09] that consensus is impossible to
solve in a 2 process system in a directed dynamic network under the unrestricted message
adversary MAu by using SSTs. To do so, we exploit that, in any round r0, each process
p is uncertain about the round r ≤ r0, in which it received the last message, and that
the notions of indistinguishability and neighborhood are equivalent (Lemma 5.4.6 and
Lemma 5.4.7). The impossibility follows from the fact that there is an indistinguishability
chain between the prefixes ←r0 and →r0 , due to which at least one process cannot decide
in round r0 under MAu.

We will first explore what processes can possibly know about the particular graph sequence
experienced in a run. Obviously, their local knowledge is maximized by a full-history
graph approximation algorithm:

Definition 5.4.5. In a run with graph sequence σ = (Gr)∞r=1, a full history algorithm
maintains a local estimate σk,p = (Grp)kr=1 at process p that is computed at the end of
round k. It is sent to the other process q in round k + 1. As q also maintains a local
estimate σk,q = (Grq)kr=1, it updates this estimate to σk+1,q = (G′rq)k+1

r=1 . For each round
r ∈ {1, k}, Grq ∈ σk,q is a set which contains either a single graph or contains two graphs,
which are indistinguishable for q. I.e., Grq ∈ {{←}, {↔}, {→}, {→,↔}}. The analogous
statement holds for p.

Receiving the estimate σk,p in some round k + 1, q updates and extends its estimate for
each round r ≤ k as follows:

78

5.4. Solvability of Consensus

• Grq ∈ {{←}, {↔}, {→}}: G′
r
q = Grq

• Grq = {→,↔}: G′rq = Grq ∩ Grp

For round k+1, the estimate is G′rq =← if q does not receive a message and G′rq = {→,↔}
else. Again, the analogous statement holds for p’s estimate.

Lemma 5.4.6. Running a full graph history algorithm A , for any graph sequence σ,
process p at any round r0 is uncertain about the graph Grσ of round r ≤ r0 in which
it received the last message mr

q,p from process q, provided mr
q,p exists. In this case, p

considers it possible that Grσ is either the graph in which both processes received a message
or the graph in which only p received a message. However, p knows the graph Gr′σ for any
other round r′ 6= r (r′ ≤ r0).

Proof by induction on sequence length r0. Choose any sequence σ and consider its prefix
σr0 of length r0.

In an inductive manner, we start at the prefix of length r0 = 1. Since all the processes
run a full graph history algorithm, both p and q try to send their whole history to the
other process. W.l.o.g. consider the situation of p. If p does not receive any message in
round r0 = 1, it knows that the underlying communication graph is G1

σ = →. On the
other hand, if q receives a message from p in round r0 = 1, it is uncertain about G1

σ, since
it does not know whether or not q received the message sent from p to q, so it cannot
distinguish the graphs ↔ and ← in the case it received a message in round r0 = 1.

Suppose the claim holds for any prefix of length r0 − 1.
Consider the prefix σr0 of length r0 and prefix σr0−1 of length r0 − 1. By the induction
hypothesis, there may be a round r ≤ r0 − 1 in which p received the last message mr

q,p in
σr0−1, where p is uncertain about the graph Grσ, but it knows the graph Gr′σ for any other
round r′ 6= r (r′ ≤ r0 − 1). Distinguish the two cases:

• p does not receive any message in round r0. As in the base case, p knows that the
graph is Gr0

σ = →. But as it does not receive any additional information about any
previous rounds it is still uncertain about the graph Grσ. For any other round r′ 6= r
(r′ < r0), p knows the graph Gr′σ by the induction hypothesis.

• p receives a message in round r0. As in the base case, p is uncertain about the
graph Gr0

σ , since it cannot distinguish between ←, in which the message to q gets
lost, and ↔ in which q receives the message. On the other hand, it receives q’s
whole graph history and thus gets additional information about the graph Grσ in
the message mr0

q,p:

– q is uncertain about Grσ:
By the induction hypothesis, q considers it possible that Grσ ∈ {→,↔} at
the end of round r0 − 1. As already stated, p considers it possible that
Grσ ∈ {←,↔}. Thus, at the reception of mr0

q,p, p can conclude that Grσ = ↔.

79

5. 2-player Consensus in Directed Dynamic Networks

– q is certain about Grσ:
By the induction hypothesis, q is certain that Grσ = ← at round r0 − 1. At
the reception of mr0

q,p p is also certain that Grσ = ←.

Thus p0 is certain about Grσ after receiving mr0
q,p but is uncertain about Gr0

σ , the
graph of the round it received its last message from q. For any other round r′ 6= r
(r′ < r0) p0 knows the graph Gr′σ by the induction hypothesis.

Intuitively, if a process p is uncertain about a specific round in some prefix σr0 , it cannot
distinguish between σr0 and σ′r0 , the prefix which is equal to σr0 except for this single
round.

Lemma 5.4.7. Two prefixes σr0 and σ′r0 are indistinguishable for some process p which
is running a full graph history algorithm iff they are neighbors in the SST at round r0.

Proof.
⇒ Assume the prefixes σr0 and σ′r0 are indistinguishable for p running a full graph

history algorithm for determining the actual graph sequence chosen by the adversary.
Suppose in contradiction σr0 and σ′r0 are not neighbors.
Since σr0 and σ′r0 are no neighbors, they have to differ in at least two rounds from
each other (by Lemma 5.4.5). This contradicts the indistinguishability of σr0 and
σ′r0 since, by Lemma 5.4.6, p is uncertain about exactly one round r ≤ r0 in σr0 ,
thus would be able to distinguish σr0 and σ′r0 via the difference in at least one other
round. Thus σr0 and σ′r0 have to be neighbors.

⇐ Assume prefixes σr0 and σ′r0 are neighbors. Suppose in contradiction that σr0 and
σ′r0 are distinguishable for all processes p.
By Lemma 5.4.5, σr0 and σ′r0 differ in exactly one round r1, with Gr1

σ =↔ and
Gr1
σ′ ∈ {←,→}. Due to the possible graphs in this round, there is a process, say
p, such that p received a message in round r1 in both σr0 and σ′r0 , thus (w.l.o.g.)
Gr1
σ′ =←. Since r1 is the last round in which p received a message, Grσr0

= Grσ′r0
=→

for all rounds r ∈ [r1 + 1, r0]. Thus p does not receive a message in rounds r1 + 1
up to r0, and so it is still uncertain about the graphs Gr1

σr0
and Gr1

σ′r0
in round r1 (by

Lemma 5.4.6).
Thus p cannot distinguish σr0 and σ′r0 in round r0.

Lemma 5.4.8. For a full graph history algorithm A for determining the actual graph
sequence σ, for any prefix length r, there is an indistinguishability chain from ←r to →r

that contains all the prefixes of length r. I.e., for all σir (i ∈ {1, . . . , 3r − 1}) it holds that,
for σ0

r =←r and σ3k−1
r =→r, σi−1

r is indistinguishable from σir for some process p.

Proof. By Lemma 5.4.7, the indistinguishability relation and neighborhood relation are
equivalent. Thus, from Corollary 5.4.1, it follows that the indistinguishability relation on
any level r in the SST creates such an indistinguishability chain for every r.

80

5.4. Solvability of Consensus

Lemma 5.4.9. Any algorithm A which solves consensus, decides xp (resp. xq) on graph
sequence →∗ (resp. ←∗).

Proof. Suppose there is an algorithm A solving consensus which decides xq on →∗. On
input x = (xp, xq) = (0, 1), both p and q would decide 1. Since p does not receive any
message on →∗, it cannot distinguish x = (0, 1) from x′ = (0, 0). Thus, on x′ = (0, 0), p
would decide 1 also. This decision contradicts validity, thus A does not solve consensus.
An analogous proof works for the decision on xq on ←∗.

Definition 5.4.6. We say a prefix σr is v-valent for algorithm A if on any graph sequence
σ, such that σr is the prefix of length r of σ, A decides v. We also say it is univalent, if
v does not matter.
A prefix σr is bivalent if it is not univalent.

It follows that a prefix σr is bivalent if there are two graph sequences σ and σ′, such that
σr is prefix of both of them and A decides v on σ and v′ on σ′. Note that once a prefix
σr is v-valent, any σr′ , with r′ ≥ r and σr a prefix of σr′ , is also v-valent.

With these preparations, we can now start with proving the impossibility of consensus:

Theorem 5.4.1 (Impossibility of Consensus). No algorithm can solve consensus under
the unrestricted message adversary MAu.

Proof. It suffices to prove that no consensus algorithm based on a full history graph
algorithm exists, as reduction can be used to also rule out other consensus algorithms as
well. So assume there is a full history algorithm A which solves consensus under MAu.
Then A terminates on any graph sequence σ, deciding either xp or xq. Due to Lemma 5.4.9
there is at least one graph sequence in MAu on which A decides xp and at least one
other graph sequence on which A decides xq. Since each graph sequence has a decision
value, there are two cases:

• ∃r0 : ∀σ : σr0 is univalent: There is a round r0 such that all prefixes of length r0
(and longer) are univalent.
Consider this round r0, in which all of those prefixes start to be univalent and
look at the prefixes σr0 and εr0 , such that σr0 ∼p εr0 for some process p and σr0 is
v-valent, while εr0 is v′-valent (v 6= v′). Due to Lemma 5.4.8, Lemma 5.4.9 and the
fact that there is no bivalent prefix of length r0, such a situation has to exist.
W.l.o.g. assume that σr0 is xp-valent, εr0 is xq-valent and σr0 ∼p εr0 for process p.
We now extend these two prefixes to σ→ = (σr0 ,→∗) and ε→ = (εr0 ,→∗). Since
MAu contains all the possible graph sequences, σ→, ε→ ∈MAu, and since σr0 is
x0-valent and εr0 is x1-valent, A decides x0 on σ→ and x1 on ε→.
Note that since Grσ→ = Grε→ =→, for any r > r0, and σr0 ∼p εr0 , p cannot distinguish
σ→ and ε→ in any round r ≥ r0, as it does not receive any message after round r0.
Thus, ∀r ≥ r0 : σ→r ∼p ε→r .

81

5. 2-player Consensus in Directed Dynamic Networks

Now assume w.l.o.g. that MAu chooses ε→ and consider the run of A on ε→, then,
by Termination and Agreement, p and q must decide xq by some round r ≥ r0.
Since σ→r ∼p ε→r , however, this contradicts xp-valence of σr0 .

• ∀r : ∃σ : σr is bivalent: For each round there is a non-empty set V r of bivalent
prefixes σr.
We use König’s infinity lemma to show that in this case there exists some graph
sequence σ ∈ MAu which is forever bivalent. For any prefix σr ∈ V r, we choose
f(σr) = σr−1 ∈ V r−1. Since |V r| is finite, so is the degree of any node in the tree
induced by f . Hence, König’s lemma ensures an infinite path σ in the tree, since
the tree contains an infinite number of nodes for infinite r.
So there exists a graph sequence σ such that for any round r its prefix σr is bivalent.
Hence, A cannot terminate on σ.

5.4.3 Necessary and Sufficient Conditions for Solving Consensus

Using the results of Section 5.4.1 and Section 5.4.2, we will develop necessary and
sufficient conditions for solving consensus: If and only if a message adversary meets these
conditions, there exists an algorithm that solves consensus in a two process system in a
directed dynamic network.

As we stated at the beginning of Section 5.4, there are adversaries, restricted by only
one graph sequence, under which consensus can be solved, e.g., MA↔∗ = MAu \ {↔∗},
which is allowed to choose every graph sequence except the forever bidirectional one. One
might be prone to believe that it is always enough to restrict the message adversary by
just one arbitrary graph sequence. This is not the case, however, since under MA↔,←,→∗ ,
which is not allowed to choose the sequence starting with ↔,←, followed by infinitely
many rounds of→, consensus is impossible to solve, as we will see by Theorem 5.4.4: The
reason is that this graph sequence is forever indistinguishable for p from (↔,↔,→∗).

Our idea is that any restricted adversary MAS = MAu \ S, with S a set of excluded
graph sequences, that allows to solve consensus must satisfy the following property: S
must contain a sub-set S′, which is such that the graph sequences in S′ “split” the SST
in two partitions, one of them containing the xq-valent graph sequence ←∗, the other the
xp-valent graph sequence →∗. Due to the indistinguishability chain in Lemma 5.4.8, each
graph sequence in the first partition has to be xq-valent, while all the graph sequences
in the second partition have to be xp-valent. If S is chosen such that each process can
distinguish the actual graph sequence σ from all the graph sequences in S′ at some round
r, then each process eventually knows in which partition the current sequence σ is and
can safely decide xp or xq.

To formalize our idea, we start by defining the notion of fair and unfair graph sequences.

Definition 5.4.7 (Fair and Unfair Graph Sequences). A Fair Graph Sequence is an
infinite sequence of graphs σ = G1,G2, . . . ,Gr, . . . , with Gr ∈ {→,↔,←}, such that it
guarantees that for each process p and each graph sequence ε 6= σ there exists a round r

82

5.4. Solvability of Consensus

such that p can distinguish εr from σr, i.e., εr 6∼p σr, in a full graph history algorithm.
An Unfair Graph Sequence is an infinite sequence of graphs σ = G1,G2, . . . ,Gr, . . . , with
Gr ∈ {→,↔,←}, which is not fair.

Note the importance of this definition: It states that if a message adversary is restricted
not to choose some fair graph sequence σ, at some round r process p recognizes that the
actual graph sequence ε is not the “forbidden” graph sequence σ.

Lemma 5.4.10. The graph sequences ←∗ and →∗ are fair graph sequences.

Proof. W.l.o.g. consider the graph sequence ←∗; the proof for →∗ is analogous. Let any
graph sequence ε 6=←∗ be given. Clearly there has to be a round r0 such that Gr0

ε 6= G
r0
←∗ .

By Lemma 5.4.6, any process p is uncertain about the graph in the last round in which
it received a message.
If ε differs from ←∗ in more than one round, then p is able to distinguish them at some
round, since it will eventually be aware of all but one differences.
Thus, we are only interested in a graph sequence ε, where ε differs from←∗ in exactly one
round r0. Since Gr0

←∗ =←, Gr0
ε ∈ {↔,→}. In both cases, q on ε immediately recognizes

the difference, since it receives a message, while it would not receive any if the actual
graph sequence would be ←∗. Since Gr0+1

ε = Gr0+1
←∗ =←, in round r0 + 1, p receives a

message and thus receives the information that q recognized a difference between ε and
←∗.

Since we have chosen ε arbitrarily and shown that each process eventually recognizes the
difference, the graph sequences ←∗ and →∗ are fair.

Definition 5.4.7 defines fair and unfair graph sequences only based on their indistinguisha-
bility for processes. We proceed with developing results about the structure of those
graph sequences: Lemma 5.4.11 shows that each unfair graph sequence ends with an
infinite sequence of either ← or →. As a consequence, Corollary 5.4.2 states that each
graph sequence that does not end in such an infinite unidirectional sequence is fair.

Lemma 5.4.11. For each unfair graph sequence ε, there exists a round r0, such that
any graph Gr+1

ε = Grε ∈ {←,→} for r > r0.

Proof. Choose an unfair graph sequence ε and suppose that it does not end in an infinite
sequence of either ← or →. Then, for each round r with w.l.o.g. Grε = ←, there is some
round r′ > r with Gr′ε ∈ {→,↔}. Consider some arbitrary graph sequence σ 6= ε. Clearly
there is some round r0 such that Gr0

σ 6= Gr0
ε , and by Lemma 5.4.6, we can again restrict

our attention to the case where σ and ε only differ in round r0. Since ε does not end
with an infinite sequence of either ← or →, there is either some round r↔ > r0 with
Gr↔ε =↔ or two rounds r← > r0 with Gr←ε =← and r→ > r0 with Gr→ε =→. Thus both
process p and q receive a message after r0. By Lemma 5.4.6, they both know the actual
graph Gr0

ε and, since Gr0
ε 6= Gr0

σ , can distinguish εr and σr after some round r > r0.

83

5. 2-player Consensus in Directed Dynamic Networks

This contradicts the assumption that ε is an unfair graph sequence and proves that ε has
to end in an infinite sequence of either ← or →.

Note that Lemma 5.4.11 does not imply the other direction, since ←∗ and →∗ are both
fair graph sequences, by Lemma 5.4.10.

Corollary 5.4.2. Each graph sequence that does not end in an infinite suffix ←∗ or →∗
is a fair graph sequence.

Proof. This follows directly from Definition 5.4.7 and Lemma 5.4.11.

By Definition 5.4.7, for each unfair graph sequence σ, there is another unfair graph
sequence ε, such that σ and ε are indistinguishable forever for some process p. Essentially,
this is because the difference in σ and ε is not recognized by p before the graph sequence
starts to be the infinite sequence of the same unidirectional graph, which does not
allow recognizing the difference forever. So what would be the situation if a message
adversary was restricted exactly by a pair of such forever indistinguishable unfair graph
sequences? Lemma 5.4.12 states that such a pair has the same "splitting" property
regarding indistinguishability as a single fair execution:

Lemma 5.4.12. Consider a pair of unfair graph sequences σ, σ′ such that there is some
p for which σ and σ′ are indistinguishable forever (∃p : ∀r : σr ∼p σ′r). Any other sequence
ε (ε 6= σ, ε 6= σ′) is distinguishable from both σ and σ′ for each process from some round
r0 on, i.e., : ∃r0 : ∀r ≥ r0 : ∀p : σr 6∼p εr ∧ σ′r 6∼p εr.

Proof. Suppose the opposite: There exists such a pair of unfair graph sequences σ, σ′
for which there are a graph sequence ε (ε 6= σ, ε 6= σ′) and some process p which cannot
distinguish εr from σr or σ′r in any round r. I.e., ∃p : ∀r : εr ∼p σr ∨ εr ∼p σ′r.

As in the previous proofs, we will consider p only, since the part for q is analogous and
only differs in the direction of specific edges.

First we will take a look at the consequences of ∀r : εr ∼p σr: By Lemma 5.4.7, for all
prefix lengths r, εr is neighbor to σr. Furthermore, by Lemma 5.4.5, ε and σ only differ
in a single round r0 and we can conclude that p is uncertain about round r0 forever.
By Lemma 5.4.6, p received its last message in round r0 in both ε and σ. Thus, for all
rounds r1 > r0 : Gr1

ε = Gr1
σ = →. Lemma 5.4.5 also implies that either Gr0

ε = ↔ and
Gr0
σ ∈← or Gr0

ε ∈← and Gr0
σ = ↔; recall that p receives a message in r0.

By analogous arguments, it follows from ∀r′ : εr′ ∼p σ′r′ that there is a round r′0 such
that Gr

′
0
ε 6= G

r′0
σ′ , ∀r′1 6= r′0 : Gr

′
1
ε = Gr

′
1
σ′ and ∀r′1 > r′0 : Gr

′
1
ε = Gr

′
1
σ′ = →, as well as from

∀r : σr ∼p σ′r that there is a round r′′0 such that Gr
′′
0
σ 6= G

r′′0
σ′ , ∀r′′1 6= r′′0 : Gr

′′
1
σ = Gr

′′
1
σ′ and

∀r′′1 > r′′0 : Gr
′′
1
σ = Gr

′′
1
σ′ = →. It also holds that either Gr

′
0
ε = ↔ and Gr

′
0
σ′ ∈← or Gr

′
0
ε ∈←

and Gr
′
0
σ′ = ↔ (similar for σ and σ′ in round r′′0).

84

5.4. Solvability of Consensus

We claim now that r0 = r′′0 resp. r′0 = r′′0 . Suppose not, then there is a smallest one, say
r0 ≤ r′′0 . Since ∀r > r0 : Grε = Grσ = →, r′′0 > r0 could not be the last round in which p
received a message in graph sequence ε, thus r′′0 = r0. The analogous argument holds for
r′0.

Putting everything together, we have that Gr0
ε 6= Gr0

σ , Gr0
ε 6= G

r0
σ′ and Gr0

σ 6= G
r0
σ′ as well as

∀r 6= r0 : Grε = Grσ and Grε = Grσ′ . Looking at the round r0, we only need to distinguish
the following cases: (i) Gr0

ε = ↔, leading to Gr0
σ = ← (since p receives a message in

r0) leading to Gr0
σ′ = ↔, or (ii) Gr0

ε = ← (since p receives a message in r0), leading to
Gr0
σ = ↔, which means that Gr0

σ′ = ←. Thus ε = σ or ε = σ′, a contradiction.

So any graph sequence ε is either distinguishable from σ and σ′ for all processes or is
equal to σ or σ′.

By Definition 5.4.7 and Lemma 5.4.12, any message adversary MAS , with either a single
fair graph sequence {σ} = S or a pair of forever indistinguishable unfair graph sequences
{ε, ε′} = S, allows that at some round r each process knows that the actual graph
sequence is not in S.

We now define a message adversary MAα, for which consensus is solvable, by means of
Algorithm 5.1.

Definition 5.4.8. Message adversaryMAα may choose any graph sequence σ ∈MAu\α,
with α a set of graph sequences such that:

• σ ∈ α a fair graph sequence, or

• ε, ε′ ∈ α are unfair graph sequences such that ∃p : ∀r : εr ∼p ε′r.

In Corollary 5.4.3 and Theorem 5.4.2, we will prove that Algorithm 5.1 actually solves
consensus for adversary MAα. It relies on the following ideas:

As we discovered earlier, a message adversary MAα, with either a single fair graph
sequence {σ} = α or a pair of forever indistinguishable unfair graph sequences {ε, ε′} = α,
allows that at some round r, each process knows that the actual graph sequence is not in
α. We can use this fact to partition the SST (Definition 5.4.1), as depicted in Figure 5.2
and Figure 5.3. The dash-dotted red paths depict the graph sequences in α. Since this
path(s) are either a single fair one or a pair of forever indistinguishable unfair graph
sequences, all the other graph sequences can at some point in time be distinguished from
any graph sequence in α. For example, look at the dashed blue sequence, which can be
distinguished from all sequences in α in both figures.

It is crucial to note that, although MAα is not allowed to choose some graph sequence
σ ∈ α, each finite prefix σr is a prefix of infinitely many possibly chosen graph sequences.
Thus, even in an unbounded late round r, no process can think of σr as forbidden, since
the graph sequence σ′, with σ′r = σr but σ′ 6= σ, is allowed to be chosen by the adversary.

85

5. 2-player Consensus in Directed Dynamic Networks

•

← ↔ →

← ↔ → → ↔ ← ← ↔ →

←↔→→↔←←↔→→↔←←↔→→↔←←↔→→↔←←↔→

Figure 5.2: The red (dash-dotted) sequence is a single fair sequence and splits the SST in
two partitions. I.e., for each graph sequence (e.g. the blue (dashed) one) all the processes
are eventually able to distinguish it from this fair sequence.

•

← ↔ →

← ↔ → → ↔ ← ← ↔ →

←↔→→↔←←↔→→↔←←↔→→↔←←↔→→↔←←↔→

Figure 5.3: The red (dash-dotted) unfair sequences build a pair of forever indistinguishable
unfair sequences and partition the SST to two parts. I.e., for each graph sequence (e.g.
the blue (dashed) one) all the processes are eventually able to distinguish it from this
pair of unfair sequences.

Our algorithm uses this partitioning property. Each process p gets α as input via
the sets fair and unfair and chooses either a single fair or a pair of unfair executions
deterministically, denoted by the set cut. It uses these chosen graph sequences to partition
the SST in a left (yellow) partition, containing the xq-valent graph sequence ←∗, and
a right (green) partition, containing the xp-valent graph sequence →∗, as depicted in
Figure 5.4. In any graph sequence in the left partition the algorithm has to decide xq
and in the right partition it decides xp, due to indistinguishable chains from ←∗ and →∗
respectively.

All the algorithm has to do is to recognize in which partition the actually chosen graph
sequence ε is. We know that the prefix εr of any chosen graph sequence ε is, at some
round r, distinguishable from the prefix cr of each graph sequence c ∈ cut. Once this
is the case in round r0, the algorithm checks whether the indistinguishability chain
from ←r0 towards its local estimate ε̂r0 of εr0 of the SST contains the prefix cr0 of a
graph sequence c ∈ cut. If this is the case, then obviously ε is in the right partition
and the algorithm decides xp. In the other case, ε is in the left partition, which forces
the algorithm to decide xq. Note that the local estimate ε̂r0 may contain two possible
graph sequences ε̂0

r0 and ε̂0
r0 , which differ from each other in one round r ≤ r0 (due to

Lemma 5.4.6), while one of them is equal to the actual prefix εr0 .

86

5.4. Solvability of Consensus

Algorithm 5.1: Solving consensus, code for pi
input : xi . . . initial value

fair . . . set of fair graph sequences not chosen by adversary
unfair . . . set of unfair graph sequences not chosen by adversary

output : dec . . . decision value
variables : possi . . . possible graph sequences considered by pi, represented by an array

with element r holding the set of possible graphs for round r
cut . . . a set of graph sequences not chosen by adversary, used to split
the set of all graph sequences
tree . . . SST containing all possible r-prefixes, for every r ≥ 1

1 if fair 6= ∅ then
2 cut = deterministic_choice(fair);
3 else
4 cut = deterministic_choice_pair(unfair);
5 end
6 possi [*] = ∅; tree = ⊥; dec = ⊥; x1−i = ⊥;
7 for round r ≥ 1 do

/* Build next level of SST according to Definition 5.4.1 */
8 tree = next_level(tree); send(xi, possi);
9 receive(xj, possj);

/* Update possible graph sequences */
10 for k = [1 . . . r −1] do possi [k] = possi [k] ∩ possj [k] ;
11 if i == 0 then

/* I am p */
12 if possj 6= ∅ then
13 possi [r] = {↔,←}
14 else
15 possi [r] = {→}
16 end
17 else

/* I am q */
18 if possj 6= ∅ then
19 possi [r] = {→,↔}
20 else
21 possi [r] = {←}
22 end
23 end

/* Check whether possible graph sequence can be distinguished
from cut */

24 if ∀c ∈cut : ∃k ∈ {1 . . . r } : c [k] 6∈ possi [k] then
/* If there is a path to ←r without crossing the cut, decide

on x1, else decide on x0 */
25 for σr = ←r; σr 6∈ cut; σr = right_neighbor(σr, tree) do
26 if σr ∈ possi then dec = x1; break;
27 end
28 if dec = ⊥ then dec = x0;
29 end
30 end

87

5. 2-player Consensus in Directed Dynamic Networks

•

← ↔ →

← ↔ → → ↔ ← ← ↔ →

←↔→→↔←←↔→→↔←←↔→→↔←←↔→→↔←←↔→

Figure 5.4: The red (dash-dotted) fair graph sequence ε ∈ α splits the SST into two
partitions. As soon as a process, running Algorithm 5.1, recognizes, that the actual
graph sequence σ is not in α, it checks whether it is in the left (yellow) or right (green)
partition and decides xq respectively xp.

In Algorithm 5.1, we change notation from processes p and q to p0 and p1 for indexing
convenience. Furthermore, we use possi as an array of sets, which contains the local
estimates of process pi. I.e., the set possi[k] contains all the graphs pi thinks possible in
round k. Thus, pi can distinguish the actual graph sequence from the forbidden sequences
(in the set cut), if for each graph sequence c ∈ cut there is some round k such that
Gkc 6∈ possi[k]. Once pi can distinguish the actual graph sequence from the forbidden
sequences (in Line 24), it checks whether its estimate is between ←r and cut (in the loop
starting at Line 25). If this is the case, pi decides x1 else it decides x0.

Corollary 5.4.3. Algorithm 5.1 is a full graph history algorithm.

Proof. This follows directly from Definition 5.4.5.

Theorem 5.4.2. Algorithm 5.1 solves consensus under message adversary MAα.

Termination. Due to Definition 5.4.8, there is either some fair graph sequence σ or two
forever indistinguishable unfair graph sequences ε, ε′ that MAα is not allowed to choose.
The set α, containing the forbidden fair and unfair sequences, is input to Algorithm 5.1
via the parameters fair and unfair. In Line 2 and Line 4, each process p chooses the
same (pair of) sequence(s) for cut, i.e., cut is either a single fair graph sequence σ or a
pair of indistinguishable unfair sequences ε, ε′.
Due to Corollary 5.4.3, we can use Definition 5.4.7 and Lemma 5.4.12 to conclude that
each process running Algorithm 5.1 can at some round r distinguish the actual graph
sequence σ chosen by MAα from all the graph sequences in cut. Thus, the statement
in Line 24 eventually evaluates to true in some round r, leading to a decision in either
Line 28 or Line 26. Note that the loop in Line 25 terminates, since there is a fixed
number of prefixes of length r (exactly 3r − 1).

Validity. In Line 8, a process pi always sends its initial value xi, thus p1−i cannot receive
a value different from xi. pi has to decide x0 or x1. One of the values is pi’s initial value,

88

5.4. Solvability of Consensus

the other is either ⊥ or p1−i’s initial value. W.l.o.g. assume x0 = ⊥ at p1, which is only
possible if the actual graph sequence σ =←∗. By Lemma 5.4.9, ←∗ is x1-valent, thus p1
cannot decide any other value than x1 in this case. Thus, pi cannot decide any value
other than x0 or x1 and validity holds.

Agreement. W.l.o.g. assume that p0 is the first process to decide. Let us denote the graph
sequence chosen by the adversary by σ. Since, in each round r, p0 and p1 are uncertain
about at most a single round r′0 (resp. r′1) ≤ r in σr (Lemma 5.4.6), possri = {σr, εir} for
process pi and σr ∼i εir, thus ε0

r ∼0 σr ∼1 ε
1
r (i ∈ {0, 1}). Due to Lemma 5.4.7, ε0

r and
ε1
r are neighbors to σr and by Lemma 5.4.1, one of ε0

r and ε1
r is the left neighbor of σr,

while the other one is its right neighbor.

To prove agreement, we look at the two cases p0 decides x0 and p0 decides x1. p0 can
only decide in some round r0 if all the estimated prefixes possr0

0 of length r0 are either on
the left or on the right side of cut. We have to prove that if, in round r0, p0’s estimated
prefixes are w.l.o.g. left of cut, then, in some round r1, p1’s estimated prefixes are also
left of cut. To do so, we need to distinguish the situation in which ε0

r0 is the left neighbor
of σr0 (and ε1

r0 the right neighbor of σr0) from the situation in which ε0
r0 is the right

neighbor of σr0 (and ε1
r0 the left neighbor of σr0).

Case 1: p0 decides x1 in round r0.
Suppose in contradiction that p1 decides x0 in round r1, r0 ≤ r1.

To contradict this assumption, we have to prove that in no round r ≥ r0 some prefix cr
(of any c ∈ cut) is contained in the indistinguishability chain between ←r and {ε1

r , σr}.

In Algorithm 5.1, p0 decides x1 in Line 26 there is a chain:
(i) ←r0= γ0

r0 ∼y0 γ
1
r0 ∼y1 · · · ∼yk−1 γ

k
r0 = ε1

r0 ∼1 σr0 ∼0 ε
0
r0 or

(ii) ←r0= γ0
r0 ∼y0 γ

1
r0 ∼y1 · · · ∼yk−1 γ

k
r0 = ε0

r0 ∼0 σr0 ∼1 ε
1
r0 ,

with γ`r0 prefixes of length r0 and yi some process p0 or p1, such that ∀c ∈ cut : cr0 6∈
{γ0

r0 , . . . , γ
k
r0} and ∀c ∈ cut : cr0 6∈ {ε0

r0 , σr0}. Thus ∀c ∈ cut : cr0 right of ε0
r0 and, by

Lemma 5.4.4 and Definition 5.4.3, for each r ≥ r0 : ∀c ∈ cut : cr right of ε0
r .

For case (i) clearly p1 and decides x1 in Line 26, since it is guaranteed that no c ∈ cut
is on the chain from ←r0 to ε1

r0 . Thus p1 also decides x1 in r0, since it did not decide
earlier.

For case (ii) we know, by termination, that there is some round r1 ≥ r0 such that p1
decides. Suppose p1 decides x0, thus it decides in Line 28. Then there has to be a chain:
←r1= γ′0r1 ∼y0 γ

′1
r1 ∼y1 . . . c

′
r1 · · · ∼yk−1 γ

′`
r1 = ε0

r1 ∼0 σr1 ∼1 ε
1
r1 .

The fact that in this chain c′r1 is left of ε0
r1 contradicts the fact that c′r0 is right of ε0

r0 , by
Lemma 5.4.4.

Case 2: p0 decides x0 in round r0.
Suppose in contradiction that p1 decides x1 in round r1, r0 ≤ r1. In Algorithm 5.1, p0
decides x0 in Line 28 if it did not decide earlier. This is only the case if ∀c ∈ cut : c 6∈

89

5. 2-player Consensus in Directed Dynamic Networks

{σr0 , ε
0
r0} and there is a chain:

(i)←r0= γ0
r0 ∼y0 γ

1
r0 ∼y1 . . . cr0 · · · ∼yk−1 γ

k
r0 = ε0

r0 ∼0 σr0 ∼1 ε
1
r0 or

(ii)←r0= γ0
r0 ∼y0 γ

1
r0 ∼y1 . . . cr0 · · · ∼yk−1 γ

k
r0 = ε1

r0 ∼1 σr0 ∼0 ε
0
r0 .

For case (i) p1 clearly decides x0 in Line 28, since there is a c ∈ cut, such that c ∈
{γ0

r0 , . . . , γ
k
r0}.

For case (ii) we know, by termination, that there is some round r1 ≥ r0 such that p1
decides. Suppose p1 decides x1. Then it passed Line 25 and decided in Line 26, because
there is a chain:
←r1= γ′0r1 ∼y0 γ

′1
r1 ∼y1 · · · ∼yk−1 γ

′`
r1 = ε1

r1 ∼1 σr1 ∼0 ε
0
r1

such that there is no ∀c ∈ cut : cr1 6∈ {γ′
0
r1 , . . . γ

′`
r1}. The fact that there is no such c

contradicts chain (ii) and Lemma 5.4.4, since there is a graph sequence c ∈ cut such that
cr0 is left of ε1

r0 .

This completes the correctness proof of Algorithm 5.1. Finally, we will present our main
theorem: That the restrictions, met by message adversary MAα are indeed necessary
and sufficient for solving consensus. We start with the following technical lemma:

Lemma 5.4.13. Pick an arbitrary initial configuration C. Let σ, ε ∈MAα and assume
p0, p1 have decided in the executions (C, σt) and (C, εt). If there is an indistinguishability
chain from σt to εt consisting of feasible prefixes ρit, i.e., ρit 6= δt for all δ ∈ α, then, in a
correct consensus algorithm A, p0, p1 have decided the same value in (C, σt) and (C, εt).

Proof. Suppose this is not the case. Then the decision values on (C, σt) and (C, εt) differ
from each other, i.e., dec(C, σt) 6= dec(C, εt).

We proceed by induction on ` ≥ 1 to show that then there is a sequence V1, . . . , V` of
non-empty sets of feasible graph sequence prefixes of length r` where at least one process
has not decided and Vi contains all the prefixes of the members of Vi+1. By König’s
Lemma, this contradicts that A is a correct consensus algorithm.

Consider the graph sequences γ(0) = σ and, for ` ≥ 1, σ(`) = γ(`− 1). In the following
we will show by induction on ` ≥ 1, that there are graph sequences γ(`), such that in
(C, γ(`)r`) at least one process has not decided. We further set V` = {γ(`)r`} and for
0 < i < ` add γ(`)ri to Vi. As there are only finitely many prefixes of each length ri,
|Vri |, and thus the node degree, is finite.

For the base case ` = 1, let r1 = t. Suppose there is no graph sequence γ(1), such
that at least one process has not decided in (C, γ(1)r1). Then, by the properties of the
SST, there are three prefixes ρi−1

r1 ∼pi ρ
i
r1 ∼pj ρ

i+1
r1 , with i, j ∈ {p0, p1}, i 6= j such that

dec(C, ρi−1
r1) = dec(C, σr1) and dec(C, ρi+1

r1) = dec(C, εr1). Due to indistinguishability pi
has decided dec(C, σr1) on (C, ρir1), while pj has decided dec(C, εr1) on (C, ρir1). This
contradicts the supposition that A solves consensus.

The induction step follows since, for all admissible executions (C, γ(`)), there is a round
r`+1 such that both processes have decided in (C, γ(`)r`+1). Otherwise A would not solve

90

5.4. Solvability of Consensus

consensus for MAα. Note that we don’t know when the processes decide in (C, γ(`)),
thus r`+1 is not necessarily equal to r` + 1.

Lemma 5.4.14. Let γ ∈ S be an unfair sequence and σ, ε ∈ MAα such that σ is
left of γ, ε is right of γ and, for any round r, γr is reachable from σr and εr via an
indistinguishability chain of prefixes that does not include any δr with δ ∈ S \ {γ}. Pick
any input assignment C. If p0, p1 have decided in the executions (C, σt) and (C, εt) of a
correct consensus algorithm A , then they have decided on the same value.

Proof. By definition of unfair graph sequences, and as there is an indistinguishability
chain from σt to εt not containing any prefix δt of some δ ∈ S \ {γ}, there is a feasible
unfair sequence γ′ with γr ∼pi γ′r for all rounds r and some process pi. W.l.o.g. let γ′ be
left of γ. Since γ′ ∈ MAα, there is a round s such that both p0, p1 have decided some
value v in (C, γ′s). Lemma 5.4.13 shows that the decision of (C, γ′s) and (C, σt) is on the
same value v. Thus pi decides v also on (C, γs).

By the structure of the SST, we can extend γs to a fair sequence γ′′ to the right of γ,
since its forever indistinguishable counterpart γ′ is to its left. Since pi decided v on
(C, γs = γ′′s) and since A solves consensus, there is a round u such that also pj have
decided v on (C, γ′′u).

Again by invoking Lemma 5.4.13 we conclude that both processes also decided v on
(C, εt).

The case where γ′ is right of γ is analogous: Now there is a fair extension γ′′ of γs left
of γ. The decision must be the same on (C, εt) and (C, γ′s) as well as on (C, σt) and
(C, γ′′u).

Theorem 5.4.3. Consensus is impossible under MAα if S contains no fair graph
sequence and no pair of unfair graph sequences.

Proof. Under the input assignment C where x0 = 0 and x1 = 1, by validity and
termination, p0, p1 have decided 0 in (C,→t) and 1 in (C,←t) for some round t. Since
S includes no fair sequence, both executions are admissible. Since the path from →t

to ←t contains no fair execution nor a pair of unfair executions, repeated application
of Lemma 5.4.14 shows that the same decision is reached in (C,→t) and (C,←t), a
contradiction.

Theorem 5.4.4 (Necessary and Sufficient Consensus Message Adversary). Consensus is
solvable under a message adversary MAα = MAu \ S if and only if S is a set of graph
sequences, such that

• ∃σ ∈ S : σ is a fair graph sequence, or

• ∃ε, ε′ ∈ S : ε, ε′ are unfair graph sequences such that ∃p : ∀r : εr ∼p ε′r.

91

5. 2-player Consensus in Directed Dynamic Networks

Proof ⇒. See Theorem 5.4.3.

Proof ⇐. By Definition 5.4.8, MAα fulfills exactly the conditions. Since Algorithm 5.1
solves consensus under MAα, which is proven in Theorem 5.4.2, consensus is solvable if
a message adversary MAα fulfills the given properties.

92

CHAPTER 6
Conclusions and Open Questions

To solve consensus in directed dynamic networks, n synchronous processes connected
via unreliable directed links shall decide on a common value. The unreliability of the
communication links is modeled by a message adversary, which determines whether or
not a message sent by a process in a round is delivered. One of the unsolved questions
in this area is to precisely characterize a strongest message adversary: The strongest
message adversary is the least restricted message adversary under which deterministic
consensus is solvable.

This thesis develops the first steps of two very different approaches to answer this question.
The first one combines the knowledge-based approach with communication complexity in
the following way: First, determine the knowledge a process has to gather to decide a
value. Second, use this knowledge to compute a lower bound on the number of messages
a process has to receive, and finally, use this communication complexity to find a message
adversary which allows to send exactly the needed bits.
We developed an important ingredient for such an approach in Chapter 4, where we
established a connection between Action Models, describing the actions observed by the
processes in some round and used to update the epistemic state of the system, and
communication complexity: Theorem 4.3.1 proves a lower bound on the number of bits,
which have to be received during the application of an action model. Furthermore,
we reduced deterministic consensus to distributed function computation and developed
two different methods for determining the number of bits that have to be received by
algorithms computing a function f(x, y) using two processes with input x resp. y.

Once this lower bound had been proved, we tried to use this connection to establish a
lower bound on communication complexity for solving consensus in a directed dynamic
network with 2 processes. During our investigations, however, we encountered the problem
that there is a message adversary ♦STABLED(2), which allows consensus to be solved
but for which the communication complexity is unbounded (Theorem 5.3.1). Thus, it

93

6. Conclusions and Open Questions

is impossible to give a lower bound on the communication complexity for consensus in
directed dynamic networks in general.

Nevertheless, we found necessary and sufficient conditions for a message adversary that
allows consensus for n = 2 processes to be solved by using a different approach. It
turns out that such a message adversary has to exclude certain graph sequences (at
least one fair or a pair of unfair ones), which effectively breaks the otherwise existing
indistinguishability chain between all sequences. We defined a message adversary MAα,
which exactly fulfills those conditions, and developed an algorithm that solves consensus
under this adversary. Moreover we proved that any message adversary that does not
fulfill these conditions does not allow to solve consensus.

Open Questions There are two main open questions remaining:

• We found a method to determine a lower bound on communication complexity
for an algorithm computing a function f(x, y) in the 2-process case. As already
discussed at the end of Chapter 4, there are two important open tasks:

– Extend the method to the n-process case (n > 2).
– Extend the method for dynamic networks under general message adversaries.

• We found necessary and sufficient conditions for solving consensus in a dynamic
network with 2 processes.

– Can these conditions be redefined to be used to get such conditions for the
system with n processes?

– What exactly are such conditions for the n process system?

94

List of Figures

2.1 The function f computed in Figure 2.2. 9
2.2 A protocol tree for function f defined in Figure 2.1. The dashed path

corresponds to the input (x3, y3). 10

3.1 First example of a Kripke model. Since ∼a and ∼b are indistinguishability
relations, the model contains self loops. 18

3.2 Example for a Kripke model. p denotes the fact that it is sunny in Vienna,
while q denotes sunny in Dublin. Agent a (Anne) only knows whether or not
it is sunny in Vienna, while agent b (Bob) knows the weather in both of the
cities. 19

3.3 Example Buy or Sell: Kripke model MBoS at the start of the coffee break.
Proposition p denotes that United Agents is doing well. 22

3.4 Example Buy or Sell: Kripke model M ′BoS in the evening. Proposition p
denotes that United Agents is doing well. 22

3.5 Example Cheating Husbands: Initial Kripke model MCH for three wives a, b, c. 23
3.6 Example Cheating Husbands: Kripke model M ′CH after the public announce-

ment of queen Henrietta. 24
3.7 Example Buy or Sell: Application of the Action model for scenario talk. w

denotes the action that Carol tells Alice that United Agents is doing well
and n denotes the action that Carol tells Alice that United Agents is not.
The actual initial (resp. updated) epistemic state, as well as the actually
performed action, is underlined. Please note that self-loops are omitted. . . . 28

3.8 Example Buy or Sell: Action model Mmt for alternative scenario maytalk. w
denotes the action that Carol tells Alice that United Agents is doing well,
n denotes the action that Carol tells Alice that United Agents is not, and
¬t that Carol does not talk to Alice. Please note that self-loops are omitted.
The actual action is ¬t and United Agents is doing well. 29

95

3.9 Example Buy or Sell: Composing the action model for bothmaytalk. Each
action (x,y) contains the action regarding Alice, x, and the action regarding
Bob, y. The gray actions (na,wb) and (wa,nb) cannot be applied to any
state of any epistemic model, since pre(na,wb) = 〈Mamt,na〉preb(wb) and
pre(wa,nb) = 〈Mamt,wa〉preb(nb). Note that pre(na,wb) and pre(wa,nb) are
equivalent to ⊥ in this example. Also note that in the composed action model,
the transitive links are implicit. 31

3.10 Example Buy or Sell: Action model Mbmt for scenario bothmaytalk. Each action
(x,y) contains the action x regarding Alice and y regarding Bob. The ap-
plication of (Mbmt, (wa,wb)) on (MBoS , p) results in (MBoS , p)[[(Mbmt, (wa,wb))]]
(Mbmt, (p, (wa,wb))). 32

3.11 Example Cheating Husbands: Kripke model Mpub after the public announce-
ment of queen Henrietta applied to the initial model MCH from Figure 3.5 . 33

3.12 Example Cheating Husbands with public announcements: Kripke modelM ′pub,
after applying (MN ,silence) to (Mpub, (011,≥ 1)) in the first night. 35

3.13 Example Cheating Husbands Scenario II with private announcements: Kripke
modelMpriv, after applying the private announcement (Mpriv,¬t) to (MCH , 011)
as the queens announcement. Note that the grey edge in Mpriv are drawn only
for sake of completeness since they are also transitively implied by the paths
via ¬t. 38

4.1 Action models for the two scenarios of Cheating Husbands. The actions
are denoted by: ¬t . . . the queen does not make a statement, ≥ 1 . . . the
queen publicly announces that there is at least one unfaithful husband, ti . . .
the queens tells i privately that her husband is unfaithful. The partitioning
regarding a is depicted in red. 41

4.2 The function f computed in the following examples. 48
4.3 The protocol tree TA for function f defined in Figure 4.2. 49
4.4 The rectangles RfA corresponding to the protocol tree TA in Figure 4.3. . . . 50
4.5 The protocol tree TB for function f defined in Figure 4.2. 51
4.6 The rectangles RfB corresponding to the protocol tree TB in Figure 4.5. . . . 52
4.7 The protocol tree TA′ for function f defined in Figure 4.2. The colored leaves

correspond to the colored rectangles in Figure 4.8. We see that two leaves
correspond to a single rectangle in A′ which defines duplicated messages. . . 53

4.8 Two of the rectangles RfA′ corresponding to the protocol tree TA′ in Figure 4.7.
We see that two leaves of TA′ correspond to each of the colored rectangles. . 53

4.9 A function f↔2(x, y, σ) defining the outcome of consensus in the 2 process
case with adversary MA↔2 . 56

4.10 The graphical representation of AMi. 57
4.11 The graphical representation of CAM2. The actions in the upper partition all

lead to the decision 0, the ones in the lower partition to a decision 1. They
hence correspond to monochromatic rectangles. 58

96

4.12 The protocol tree Tcons corresponding to the action model CAM2 = (AM1;AM2)
defined in Figure 4.10 that solve consensus by computing the function f↔2

given in Figure 4.9. P1,0 represents the single partition of AM1 representing
Figure 4.10, 0 resp. 1 the two partitions of Figure 4.11. 58

4.13 The rectangle partitioning of the function f↔2(x, y, σ) defining the outcome
of consensus in the 2 process case with adversary MA↔2 using Definition 4.4.1. 59

4.14 Partitioning of three-dimensional function f↔2 into two two-dimensional
functions f ′↔2 and f ′′↔2 . The trivial partitions for P 0

00 and P 1
11 are marked blue,

while the partitions relevant for the creation of the functions are marked orange
resp. red. Combining, e.g., P 0

10 and P 1
01 we get function f ′↔2 (orange). The

results for f ′↔2(0, 0) and f ′↔2(1, 1) are given by Validity, while the other two
results are defined by the used partitions, e.g., P 0

10 corresponds to f ′↔2(1, 0) = 0
in the lower left corner. Since f ′↔2 and f ′′↔2 are two-dimensional, the original
rectangle-definition by Yao and hence the results of Section 4.3 can be used
again. 63

4.15 The graphical representation of CAM2 for the two-dimensional functions f ′↔2

(defined by P 0
1,0 and P 1

0,1 and depicted in orange) and f ′′↔2 (defined by P 0
0,1

and P 1
1,0 and depicted in red). The trivial partitions P 1

1,1 and P 0
0,0 are marked

in blue. 64

5.1 Sorted Sequence Tree up to level 3. The dashed path corresponds to the graph
sequence (↔,←,→). 73

5.2 The red (dash-dotted) sequence is a single fair sequence and splits the SST in
two partitions. I.e., for each graph sequence (e.g. the blue (dashed) one) all
the processes are eventually able to distinguish it from this fair sequence. . . 86

5.3 The red (dash-dotted) unfair sequences build a pair of forever indistinguishable
unfair sequences and partition the SST to two parts. I.e., for each graph
sequence (e.g. the blue (dashed) one) all the processes are eventually able to
distinguish it from this pair of unfair sequences. 86

5.4 The red (dash-dotted) fair graph sequence ε ∈ α splits the SST into two
partitions. As soon as a process, running Algorithm 5.1, recognizes, that the
actual graph sequence σ is not in α, it checks whether it is in the left (yellow)
or right (green) partition and decides xq respectively xp. 88

97

List of Algorithms

5.1 Solving consensus, code for pi . 87

99

Bibliography

[ADG84] Chagit Attiya, Danny Dolev, and Joseph Gil. Asynchronous byzantine con-
sensus. In Proceedings of the Third Annual ACM Symposium on Principles
of Distributed Computing, PODC ’84, pages 119–133, New York, NY, USA,
1984. ACM.

[ALNR09] Natasha Alechina, Brian Logan, Hoang Nga Nguyen, and Abdur Rakib.
Verifying time, memory and communication bounds in systems of reasoning
agents. Synthese, 169(2):385–403, 2009.

[Aum76] Robert J Aumann. Agreeing to disagree. The annals of statistics, pages
1236–1239, 1976.

[Bal99] Alexandru Baltag. A logic of epistemic actions. In Electronic) Proceedings
of the FACAS workshop, held at ESSLLI’99, 1999.

[BM04] Alexandru Baltag and Lawrence S. Moss. Logics for epistemic programs.
Synthese, 139(2):165–224, 2004.

[BMS98] Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The logic
of public announcements, common knowledge, and private suspicions. In
Proceedings of the 7th Conference on Theoretical Aspects of Rationality
and Knowledge, TARK ’98, pages 43–56, San Francisco, CA, USA, 1998.
Morgan Kaufmann Publishers Inc.

[Bra84] Gabriel Bracha. An asynchronous [(n - 1)/3]-resilient consensus protocol.
In Proceedings of the Third Annual ACM Symposium on Principles of
Distributed Computing, PODC ’84, pages 154–162, New York, NY, USA,
1984. ACM.

[BRS12] Martin Biely, Peter Robinson, and Ulrich Schmid. Agreement in directed
dynamic networks. In Proceedings of the 19th International Conference
on Structural Information and Communication Complexity, SIROCCO’12,
pages 73–84, Berlin, Heidelberg, 2012. Springer-Verlag.

[BRS+15] Martin Biely, Peter Robinson, Ulrich Schmid, Manfred Schwarz, and Kyrill
Winkler. Gracefully Degrading Consensus and k-Set Agreement in Directed

101

Dynamic Networks, pages 109–124. Springer International Publishing,
Cham, 2015.

[BT83] Gabriel Bracha and Sam Toueg. Resilient consensus protocols. In Proceed-
ings of the Second Annual ACM Symposium on Principles of Distributed
Computing, PODC ’83, pages 12–26, New York, NY, USA, 1983. ACM.

[BZM14] Ido Ben-Zvi and Yoram Moses. Beyond lamport’s happened-before: On
time bounds and the ordering of events in distributed systems. J. ACM,
61(2):13:1–13:26, April 2014.

[CBS09] Bernadette Charron-Bost and André Schiper. The Heard-Of model: com-
puting in distributed systems with benign faults. Distributed Computing,
22(1):49–71, April 2009.

[CFQS12] Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola
Santoro. Time-varying graphs and dynamic networks. IJPEDS, 27(5):387–
408, 2012.

[CG13] Étienne Coulouma and Emmanuel Godard. A characterization of dynamic
networks where consensus is solvable. In Proceedings Structural Infor-
mation and Communication Complexity - 20th International Colloquium
(SIROCCO’13), Springer LNCS 8179, pages 24–35, 2013.

[CGM13] Armando Castañeda, Yannai A. Gonczarowski, and Yoram Moses. Good,
better, best! - unbeatable protocols for consensus and set consensus. CoRR,
abs/1311.6902, 2013.

[CK08] Aiswarya Cyriac and K. Murali Krishnan. Lower bound for the commu-
nication complexity of the russian cards problem. CoRR, abs/0805.1974,
2008.

[DF89] Danny Dolev and Tomás Feder. Multiparty communication complexity.
In Foundations of Computer Science, 1989., 30th Annual Symposium on,
pages 428–433. IEEE, 1989.

[DFF+82] Danny Dolev, Michael J Fischer, Rob Fowler, Nancy A Lynch, and H Ray-
mond Strong. An efficient algorithm for byzantine agreement without
authentication. Information and Control, 52(3):257–274, 1982.

[DKW09] Jan Draisma, Eyal Kushilevitz, and Enav Weinreb. Partition arguments in
multiparty communication complexity. CoRR, abs/0909.5684, 2009.

[DMR08] Yefim Dinitz, Shlomo Moran, and Sergio Rajsbaum. Bit complexity of
breaking and achieving symmetry in chains and rings. J. ACM, 55(1):3:1–
3:28, February 2008.

102

[FHMV95] R. Fagin, J.Y. Halpern, Y. Moses, and M. Vardi. Reasoning About Knowl-
edge. MIT Press, 1995.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM, 32(2):374–382,
April 1985.

[Ger97] Jelle Douwe Gerbrandy. Dynamic epistemic logic. Institute for Logic,
Language and Computation (ILLC), University of Amsterdam, 1997.

[GG97] Jelle Gerbrandy and Willem Groeneveld. Reasoning about information
change. Journal of Logic, Language and Information, 6(2):147–169, 1997.

[HH89] Jaakko Hintikka and Merrill B. Hintikka. Reasoning about Knowledge
in Philosophy: The Paradigm of Epistemic Logic, pages 17–35. Springer
Netherlands, Dordrecht, 1989.

[Hin62] J. Hintikka. Knowledge and belief: an introduction to the logic of the two
notions. Contemporary philosophy. Cornell University Press, 1962.

[HM90] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge
in a distributed environment. (3):549–587, 1990.

[KN97] Eyal Kushilevitz and N. Nisan. Communication Complexity. Cambridge
University Press, 1997.

[KOM11] Fabian Kuhn, Rotem Oshman, and Yoram Moses. Coordinated consensus
in dynamic networks. In Proceedings of the 30th Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, PODC ’11,
pages 1–10, New York, NY, USA, 2011. ACM.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[Lew69] David Lewis. Convention: A philosophical study. Harvard University Press,
1969.

[LS81] Richard J. Lipton and Robert Sedgewick. Lower bounds for vlsi. In Proceed-
ings of the Thirteenth Annual ACM Symposium on Theory of Computing,
STOC ’81, pages 300–307, New York, NY, USA, 1981. ACM.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July
1982.

[MDH86] Yoram Moses, Danny Dolev, and Joseph Y. Halpern. Cheating husbands
and other stories: A case study of knowledge, action, and communication.
Distributed Computing, 1(3):167–176, 1986.

103

[Moo80] Robert C Moore. Reasoning about knowledge and action. SRI International
Menlo Park, CA, 1980.

[MS82] Kurt Mehlhorn and Erik M. Schmidt. Las vegas is better than determinism
in vlsi and distributed computing (extended abstract). In Proceedings of
the Fourteenth Annual ACM Symposium on Theory of Computing, STOC
’82, pages 330–337, New York, NY, USA, 1982. ACM.

[Pla89] Jan Plaza. Logics of public communications. In Proceedings of the 4th
International Symposium on Methodologies for Inteligent Systems, pages
201–2016, 1989.

[Pla07] Jan Plaza. Logics of public communications. Synthese, 158(2):165–179, Sep
2007.

[SW89] Nicola Santoro and Peter Widmayer. Time is not a healer. In Proc. 6th
Annual Symposium on Theor. Aspects of Computer Science (STACS’89),
LNCS 349, pages 304–313, Paderborn, Germany, February 1989. Springer-
Verlag.

[SWK09] Ulrich Schmid, Bettina Weiss, and Idit Keidar. Impossibility results and
lower bounds for consensus under link failures. Technical report, 2009.

[SWS16] Manfred Schwarz, Kyrill Winkler, and Ulrich Schmid. Fast consensus
under eventually stabilizing message adversaries. In Proceedings of the
17th International Conference on Distributed Computing and Networking,
ICDCN ’16, pages 7:1–7:10, New York, NY, USA, 2016. ACM.

[vD99] Hans van Ditmarsch. The logic of knowledge games: Showing a card, 1999.

[vD02] Hans P. van Ditmarsch. Descriptions of game actions. Journal of Logic,
Language and Information, 11(3):349–365, 2002.

[vDvdHK08] Hans van Ditmarsch, Wiebe van der Hoek, and Berteld Kooi. Dynamic
Epistemic Logic. Springer, 2008.

[WSS16] Kyrill Winkler, Manfred Schwarz, and Ulrich Schmid. Consensus in directed
dynamic networks with short-lived stability. CoRR, abs/1602.05852, 2016.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive
computing(preliminary report). In Proceedings of the Eleventh Annual
ACM Symposium on Theory of Computing, STOC ’79, pages 209–213, New
York, NY, USA, 1979. ACM.

104

	Abstract
	Kurzfassung
	Contents
	Introduction
	Short Overview of Related Work
	Thesis Structure and Major Contributions
	The Model

	Communication Complexity
	The Scenario and Model
	Rectangles
	Lower-Bound Techniques

	Knowledge & Epistemic Logic
	Introduction
	Epistemic Logic
	Dynamic Epistemic Logic & Action Models

	Action Models & Communication Complexity
	Introduction
	An Action Model Lower Bound on Communication Complexity
	A Yao Lower Bound on Communication Complexity
	Application on consensus in directed dynamic networks
	Summary and Discussion of our Findings

	2-player Consensus in Directed Dynamic Networks
	Problem Definition
	Previous Results
	Consensus and Communication Complexity
	Solvability of Consensus

	Conclusions and Open Questions
	List of Figures
	List of Algorithms
	Bibliography

