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1. Introduction

The goal of this thesis is the optimal control of reservoir usage for hydro power plants. We
are especially interested in pumped hydroelectricity storage facilities, because the additional
capability of pumping water into the reservoir for storage offers more possibilities for optimi-
sation.

The problem revolves around the question whether to release water to generate electricity,
do nothing, or, if available, to pump water into the reservoir. The control we are looking
for will depend on the actual electricity price and the water level of the reservoir. Therefore,
we need to model the electricity spot price dynamics. There are a lot of possible ways to do
so due to the complexity of the electricity market, see for instance Carmona and Coulon [3].
Electricity is non-storable and has transportation constraints, leading to high dependency,
among others, on local demand, supply and weather conditions at every precise moment (see
Lucia and Schwartz [6, p. 2]).

We will use the approach of Benth, Kallsen and Meyer-Brandis [1, pp. 2–3] and use a mean-
reverting model including seasonality and spikes. The dynamics will be modelled as a sum of
non-Gaussian Ornstein–Uhlenbeck processes giving the normal variation and spike behaviour
of the prices. Although we will not use jump processes and instead use Brownian motions
like Lucia and Schwartz [6, p. 11].

The thesis is organised as follows:

In Chapter 2 we describe the problem and examine the different types of hydro power plants
and take a look at the electricity market. Of special interest are pumped hydroelectric storage
plants and the electricity spot price.

In Chapter 3 we give a mathematical formulation of the problem. At first we define our
control process, which represents the water usage of a hydro power plant, followed by a model
for the water level of the reservoir and the electricity spot price. Then we finally present
the optimization problem, or more precisely the stochastic control problem. We also define
a performance criterion to measure different controls of reservoir usage. This criterion leads
to the value function by taking the supremum over all controls. To simplify the stochastic
control problem, we proceed with a time-invariant case.

In the second half of the chapter we present the dynamic programming principle. Together
with the condition that the value function is smooth enough, this principle will be used
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to derive the HJB equation. Under the same smoothness condition we also prove that the
solution of the HJB equation is the value function and that the optimal control exists. In the
last section of the chapter we give conditions, depending on the water level and electricity
spot price, under which the optimal control assumes one of four values.

In Chapter 4 we use a numeric method to solve the HJB equation, and therefore approximate
the value function and the optimal control. We do this for parameters which model a pumped
hydroelectric storage plant currently under construction, Obervermuntwerk II, owned by Vo-
rarlberger Illwerke. We present an algorithm written in Matlab, based on the finite difference
method. At the end of the chapter we illustrate an approximation of the value function and
the optimal control. We conclude the chapter by proving that the algorithm is a convergent
approximation to the HJB equation.

The whole algorithm is presented in the appendix.
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2. Statement of the Problem

The Problem consists of the optimisation of a hydro power plant. Optimisation in the sense
of generating the highest profit by finding the optimal control for reservoir usage.

The power plant can generate electricity by releasing water through a turbine and a gener-
ator, or, if available, use electricity to pump water into the reservoir for storage. There are
constrictions in the form of the maximum amount of water release- and pump-able at one
time and the capacity of the reservoir.

To achieve the highest profit, one needs to know when to hold back water reserves and when
to generate or use electricity by releasing or pumping water, and in which quantities. This
depends on the actual price of said energy. Due to the fact that electricity prices are stochastic,
we are confronted with a stochastic control problem.

Before presenting the mathematical formulation, which will happen in Chapter 3, we take a
closer look at different types of hydro power plants and the electricity market, particularly at
pumped hydro storage facilities and the spot market.

2.1. Hydro Power Plants

Hydro power plants can be categorised under different aspects. In the light of our problem it
is best to do so under a technical factor, like hydraulic engineering:

1. Run-of-the-river Hydroelectric Power Plants. They have a very small reservoir capacity,
or non at all. Therefore, electricity is generated only by natural stream flow and any
oversupply is wasted.

2. Hydroelectric Storage Plants. Most hydro facilities are of this kind. They make use of
a reservoir, most commonly provided by a dam, to store water and generate electricity
when demanded.

3. Pumped Hydroelectric Storage (PHS) Plants. PHS plants make use of two reservoirs
with different elevation to either supply electricity during high peak demands or using
electricity during low peak demand by moving water between them.
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(see Giesecke and Mosonyi [4, p. 83])

There are more types of hydroelectricity generating plants, like tidal power, glacier power or
wave power plants which we will not examine closer. However, we will provide a more accurate
description of PHS Plants in the following section, because those are the most complex to
optimise among the three listed.

It is noteworthy that some hydro power plants can be legally obligated to keep the water level
of their (upper) reservoir within given limits for reasons like their impact on the environment
(see Giesecke and Mosonyi [4, pp. 44,46]). For example if the reservoir is a lake and its
wildlife must be protected.

Usually, there is an extensive examination of the flow patterns of rivers feeding hydro power
plants. Typically, datasets span at least ten, but most of the time more than twenty-five years,
giving us a good picture on how to model natural stream flow (see Giesecke and Mosonyi [4,
p. 45]).

2.1.1. Pumped Hydroelectricity Storage (PHS) Plants

A PHS plant is normally equipped with turbines, generators and pumps, which are connected
to an upper and a lower reservoir, see Figure 2.1. During off-peak hours, like at night or
weekends, relatively cheap energy is used to operate the pumps to move water from the lower
reservoir to the upper reservoir in order to store energy. During periods of high demand,
water is released back into the lower reservoir through a turbine to generate power at higher
price.
(see Yang [13, pp. 3–4])

There are two main types of PHS facilities:

1. Pure or off-stream PHS, which rely entirely on water that was previously pumped into
the upper reservoir.

2. Combined, hybrid, or pump-back PHS, which make use of both pumped water and
natural stream flow water.

(see Yang [13, p. 4])

An important fact to mention is that energy is lost while pumping water. The round-trip
efficiency, meaning electricity generated through releasing water divided by the electricity
used to pump said water, of facilities with older designs can be lower than 60%, while a
state-of-the-art PHS system may achieve over 80% efficiency (see Yang [13, p. 5]).
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Figure 2.1.: PHS Diagram (see Yang [13, p. 4]).

PHS plants have good controllability due to short start-up times (see Giesecke and Mosonyi
[4, p. 99]).

2.2. Electricity Marked

Electricity has a limited transportability and limited storability. It may be considered a flow
commodity. The non-storability of electricity leads users to perceive electricity delivered at
different times and dates as a distinct commodity.
(see Lucia and Schwartz [6, p. 2])

Therefore, prices depend strongly on the energy demand, influenced by factors like business
activity, temporal weather conditions and the like, in every precise moment. Additionally,
the transportation constraints for electricity, caused by limited transmission capacity and
transportation losses, make prices of energy local. They dependent on characteristics like the
local generation plants, local climate and weather conditions, and market rules together with
their derived uses of electricity.
(see Lucia and Schwartz [6, p. 2])
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In regard to our problem, we are especially interested in the spot market because the operation
of hydro power stations depend heavily on the price of electricity at the precise moment it is
generated.

Electricity spot prices have several key characteristics that can be observed more or less
distinctly in all electricity markets. Let us recall the three most important stylized facts:

Usually, electricity prices have very sharp spikes. This is caused by inelastic demand coupled
with an exponentially increasing curve of marginal costs. A sudden change of demand or
supply, for example caused by temporal weather conditions or technical problems at a local
power plant, causes strong jumps of electricity prices. In light of these sudden changes,
another important observation is that afterwards electricity prices tend to revert back to a
normal level rather swiftly, making mean reverting processes suitable to model spot prices.
Finally, spot prices exhibit seasonal behaviour, namely over one day, one week and over the
year.
(see Benth, Kallsen and Meyer-Brandis [1, p. 2])

Often only one or two components are used to model seasonal behaviour. For example, Lucia
and Schwartz [6, p. 7] use the arithmetic average of all hourly electricity prices for a given
day as the system or spot price, which immediately ignores the intra-day price patterns. Our
model will include all three components of seasonal behaviour. Although, we will study a
simplified case from Section 3.4 onwards that does not include seasonality.
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3. Mathematical Formulation and the HJB
Equation

In this chapter we will provide a mathematical formulation on optimal reservoir usage for a
hydro power plant, assumed to be a PHS facility. It is structured as followed: In Section 3.1
we provide a control function representing the water used by the power plant. Followed by
a model for the water level of the upper reservoir. In Section 3.2 we model the spot price of
electricity.

In Section 3.3 we finally present the whole problem, formulated as a stochastic control prob-
lem. In Section 3.4 we simplify the problem by considering a time-invariant state process.
This simplified case will be the subject-matter for the rest of the thesis.

In Section 3.5 we introduce the dynamic programming principle, which will be used to derive
the HJB equation in the following Section 3.6. In the last section of this chapter we show
that the optimal control function assumes only four values.

The relevant data for the controller are the spot price, denoted by S(t), and the water level,
denoted by Hu(t). The joined process Xu(t) := (Hu(t), S(t)) is the state system and will be
introduced in Section 3.3.

3.1. The Control Process and the Water Level

The process u(t) = u(t, w) : [s,∞) × Ω → [−α1, α2], with s ≥ 0, α1 ≥ 0 and α2 > 0, is our
control process, assumed to be càdlàg and adapted (see Øksendal and Sulem [8, p. 69]).

It represents the volume flow rate between the two reservoirs. Negative values of u mean that
water is pumped from the lower to the upper reservoir, while positive values of u represent
the water flow from the upper to the lower reservoir. If it were a hydro storage plant instead
of an PHS facility, we would restrict u to be non negative. In the case of a run-of-the river
hydro plant u would be simply equal to the natural stream flow, which would not offer us any
means of optimisation beside not generating electricity while the spot price is negative.

The Process Hu(t) : [s,∞) → [0, H̄], H̄ ∈ R+, represents the water level at time t and
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measures the by the hydro power plant usable amount of water in the upper reservoir. H̄
is the maximal amount of usable water. It may be lower than the natural capacity of the
reservoir, because there can be a legal fluctuation of the water level. An example for a legal
fluctuation is given in section 2.1.

The Process is assumed to have the following form:

Hu(t) = x1 +

∫ t

s
z(p) dp−

∫ t

s
u(p) dp−A(t),

where x1 gives the starting water level, z : R+ → R models the influx of water and A is the
overflow channel, see below. Furthermore, we allow for a variable start point s due to the
fact that Xu(t) is time-variant.

The variable x1 = Hu(s) ∈ [0, H̄] gives the water level at start time s. The function z(t)
models the influx of water, precisely the volume flow rate of the natural stream at time t. For
simplicity, we assume z(t) is a deterministic non negative function. Considering the extensive
stream flow pattern examination mentioned in Section 2.1, this is a plausible assumption.

The integral over the volume flow rate u(t) gives the amount of water that was moved from
or to the upper reservoir until time t. Finally, A(t) models the overflow channel :

A(t) =

∫ t

s
(z(p)− u(p))1{Hu(p)=H̄ ∧ z(p)>u(p)} dp.

A(t) is a non decreasing function that only increases while Hu(t) is at the maximal water
level H̄, and the volume flow rate u(t) of water used is less than the volume flow rate z(t) of
water provided by natural stream flow.

Therefore, A(t) guarantees that Hu(t) fulfils the upper bounding condition given by the max-
imum water level Hu(t) of the reservoir. To assure that Hu(t) is non negative, we need the
following condition for our control function u(t):

u(t) ≤ z(t) on {t ≥ s : Hu(t) = 0}. (3.1)

Altogether, Hu(t) can be simplified as follows:
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Hu(t) = x1 +

∫ t

s
z(p) dp−

∫ t

s
u(p) dp−

∫ t

s
(z(p)− u(p))1{Hu(p)=H̄ ∧ z(p)>u(p)} dp

= x1 +

∫ t

s
(z(p)− u(p))1{Hu(p)<H̄ ∨ z(p)≤u(p)} dp.

3.2. Electricity Spot Price

We denote the spot price of electricity at time t by S(t) and model S by

dS(t) = dΛ(t) + dY (t)

with the starting point x2 := Λ(s) + Y (s) ∈ R, s ≥ 0. Λ(t) is the deterministic, periodic
function modelling the seasonal behaviour and is given by

Λ(t) = µ+
3∑
j=1

cj sin(bj(t− dj))

for constants µ, b, c and d, similar as in Benth, Benth and Koekebakker [2, p. 85]. The
time-inhomogeneity of Λ transfers of course to time-inhomogeneity in the stochastic control
problem which we will set up in the following section. Although, in Section 3.4 we will assume
Xu(t) to be time-invariant in order to simplify the presentation of this discussion.

The diffusion stochastic process Y (t) is described by the following dynamics:

Y (t) =
n∑
i=1

Yi(t),

where

dYi(t) = −λiYi(t) dt+ σi dWi(t)

with given starting points Yi(s) = yi ∈ R, i = 1, . . . , n and n ∈ N. The λi and σi are positive
constants. The processes Wi(t) are independent standard Brownian motions. Therefore,
Yi(t) follows a stationary mean-reverting process, or Ornstein–Uhlenbeck process, with a zero
long-run mean, a speed of mean-reversion λi and a degree of volatility σi.

This resembles closely the model of Benth, Kallsen and Meyer-Brandis [1, p. 3], but we use
standard Brownian motions instead of jump processes.
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An example with three Ornstein–Uhlenbeck processes given by Benth, Kallsen and Meyer-
Brandis [1, p. 5] describes what roles different Ornstein–Uhlenbeck processes can play in
a model of the spot price. It reads as follows: “The first Ornstein–Uhlenbeck process is
for normal variations, with a slow mean reversion. The second process is for more rare
variations, with a stronger mean reversion due to occurrence of market-news altering the
supply or demand, and therefore non-seasonal. The third process is for seasonal spikes and
has strong mean reversion.”

3.3. The Stochastic Control Problem

In this section we provide the state system Xu(t), a performance criterion V u(s, x) and the
corresponding value function V (s, x), leading to the stochastic control problem.

The process Xu(t) = (Hu(t), S(t)) describing our system consists of the water level Hu(t)
and the spot price S(t) given as before:

Hu(t) = x1 +

∫ t

s
(z(p)− u(p))1{Hu(p)<H̄ ∨ z(p)≤u(p)} dp,

⇒ dHu(t) = (z(t)− u(t))1{Hu(t)<H̄ ∨ z(t)≤u(t)} dt.

dS(t) = dΛ(t) + dY (t).

For simplicity, lets assume our model for the spot price uses only one Ornstein–Uhlenbeck
process, giving it the form:

dY (t) = −λY (t) dt+ σ dW (t),

and because Y (t) = S(t)− Λ(t):

⇒ dS(t) = λ
( 1

λ

d

dt
Λ(t) + Λ(t)− S(t)

)
dt+ σ dW (t)

.

Altogether, our state system has the form Xu(t) = (Hu(t), S(t)) and therefore:

dXu(t) =

(
(z(t)− u(t))1{Hu(t)<H̄ ∨ z(t)≤u(t)}

λ( 1
λ
d
dtΛ(t) + Λ(t)− S(t))

)
dt+

(
0
σ

)
dW (t) (3.2)
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with a given starting point Xu(s) = x = (x1, x2) ∈ [0, H̄]× R and t ≥ s.

The interest rate r > 0 is assumed to be constant. Now we will present a performance crite-
rion V u(s, x), which allows us to measure the performance of the hydro power plant:

V u(s, x) := IE
[ ∫ ∞

s
e−rtϕ(u(t))S(t) dt

∣∣∣ Xu(s) = x
]

(3.3)

for s ≥ 0, x ∈ [0, H̄]×R and with ϕ modelling the performance and efficiency of the turbines,
generators and pumps, see below. This criterion measures the performance starting at time s
with the starting point x, meaning the water level is at x1 and the spot price at x2 at time s.
We simply integrate over the product of water moved between the upper and lower reservoir,
and the actual spot price.

We choose not to use a finite time horizon, because otherwise the optimal control would be
to release as much water as possible to generate electricity as we get close to the end point,
with a positive electricity price being the only condition.

The function

ϕ(u) =
(
ζ 1{u≥0} + ξ 1{u<0}

)
u (3.4)

with ζ > 0 and ξ > 0, represents the performance and efficiency of the turbines, generators
and pumps. The amount of electricity generated with water volume flow rate u is given by
ζu, and the amount of electricity needed to pump with water volume flow rate u for storage
is given by ξu. The variable ζ is lower than ξ, because of the round-trip efficiency mentioned
in Section 2.1.1.

The last information we need is that we say that the control process u is admissible and write
u ∈ A if (3.2) has a unique strong solution in [0, H̄] × R, u satisfies the condition (3.1) and
the performance criterion (3.3) is well defined (see Øksendal and Sulem [8, p. 69]).

Now, the stochastic control problem is to find the value function V (s, x) and an optimal control
u∗ ∈ A, such that

V (s, x) := sup
u∈A

V u(s, x) = V u∗(s, x).

(see Øksendal and Sulem [8, p. 70])
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3.4. The Time-Invariant Stochastic Control Problem

To simplify the presentation of this discussion, we consider from now on a time-invariant state
system and therefore value functions not depending on the time in order to skip the partial
derivative with respect to the time. This case will be the subject-matter for the rest of the
thesis. The time-invariant state system Xu(t) = (Hu(t), S(t)) has the form:

dXu(t) =

(
(β − u(t))1{Hu(t)<H̄ ∨ β≤u(t)}

λ(µ− S(t))

)
dt+

(
0
σ

)
dW (t) (3.5)

with Xu(0) = x ∈ [0, H̄] × R, u ∈ A and t ≥ 0. The natural stream flow rate z(t) is now
modelled to be constant β and the seasonal behaviour Λ(t) is modelled to be constant µ.

The time-invariant performance criterion V u(x) has the following form:

V u(x) := V u(0, x) = IE
[ ∫ ∞

0
e−rtϕ(u(t))S(t) dt

∣∣∣ Xu(0) = x
]
. (3.6)

The time-invariant stochastic control problem is to find the value function V (x) and an optimal
control u∗ ∈ A for our time-invariant state system (3.5) and time-invariant performance
criterion (3.6), such that

V (x) := sup
u∈A

V u(x) = V u∗(x). (3.7)

3.5. The Dynamic Programming Principle

We consider the time-invariant stochastic control problem, see (3.7). In order to solve the
problem, we will formulate the HJB equation in the next section. To reach that equation, we
will first present the dynamic programming principle.

Proposition 3.5.1 (Dynamic Programming Principle). We have

V (x) = sup
u∈A

IE
[ ∫ ε

0
e−rtϕ(u(t))S(t) dt+ e−rεV (Xu(ε))

]
for any x ∈ [0, H̄]× R and ε > 0.
(see Schmidli [9, p. 31])
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Proof. Let κ > 0. For any x ∈ [0, H̄]× R choose a control ṽx such that

V (x) < V ṽx(x) + κ.

This can be done in a measurable way, see the Measurable Selection Theorem [12]. Take an
arbitrary control v and define

vε(t) :=

{
v(t) if t ∈ [0, ε],
ṽXv(ε)(t− ε) if t > ε.

Then, conditioning on Fε and using the Markov property, gives us the following:

V (x) ≥ V vε(x)

= IE
[ ∫ ε

0
e−rtϕ(v(t))S(t) dt+

∫ ∞
ε

e−rtϕ(ṽXv(ε)(t− ε))S(t) dt
]

= IE
[ ∫ ε

0
e−rtϕ(v(t))S(t) dt+ e−rεIE

[ ∫ ∞
ε

e−r(t−ε)ϕ(ṽXv(ε)(t− ε))S(t) dt
∣∣∣ Fε]]

= IE
[ ∫ ε

0
e−rtϕ(v(t))S(t) dt+

+ e−rεIE
[ ∫ ∞

ε
e−r(t−ε)ϕ(ṽXv(ε)(t− ε))S(t) dt

∣∣∣ Xvε(ε) = Xvε(ε)
]]

= IE
[ ∫ ε

0
e−rtϕ(v(t))S(t) dt+

+ e−rεIE
[ ∫ ∞

0
e−rtϕ(ṽXv(ε)(t))S(t) dt

∣∣∣ Xvε(0) = x
] ∣∣∣

x=Xvε (ε)

]
= IE

[ ∫ ε

0
e−rtϕ(v(t))S(t) dt+ e−rεV ṽXv(ε)(Xvε(ε))

]
> IE

[ ∫ ε

0
e−rtϕ(v(t))S(t) dt+ e−rεV (Xv(ε))

]
− κ.

Because the right-hand side does not directly depend on ṽ, the (weak) inequality must also
hold fur κ = 0.

V (x) ≥ sup
v∈A

IE
[ ∫ ε

0
e−rtϕ(v(t))S(t) dt+ e−rεV (Xv(ε))

]
.

Starting with an arbitrary control yields

16



V u(x) = IE
[ ∫ ε

0
e−rtϕ(u(t))S(t) dt+ e−rεV u(Xu(ε))

]
≤ IE

[ ∫ ε

0
e−rtϕ(u(t))S(t) dt+ e−rεV (Xu(ε))

]
≤ sup

ū∈A
IE
[ ∫ ε

0
e−rtϕ(ū(t))S(t) dt+ e−rεV (X ū(ε))

]
.

Taking the supremum over u yields

V (x) ≤ sup
u∈A

IE
[ ∫ ε

0
e−rtϕ(u(t))S(t) dt+ e−rεV (Xu(ε))

]
.

Both inequalities together give us the dynamic programming principle, also called Bellman’s
“Principle of Optimality”.
(see Schmidli [9, pp. 30–31])

This principle says that if the behaviour from zero to ε is optimal, and it is also after ε optimal,
then it is overall optimal.

3.6. The Hamilton–Jacobi–Bellman (HJB) Equation

We consider the time-invariant stochastic control problem, see (3.7). We derive the HJB
equation from the dynamic programming principle using Itô‘s formula and show that the
solution of the HJB equation is the value function corresponding to the problem. Furthermore,
we will give proof that the optimal control exists.

From now on we will use the notation Vx1(x) = ∂
∂x1

V (x), Vx2(x) = ∂
∂x2

V (x) and Vx2x2(x) =
∂2

∂x2x2
V (x). We also use the same notation for a generic function F : [0, H̄] × R → R if it is

smooth enough.

The following lemma shows us that a given function f attains a maximum in u, and that
at the maximum, as u depends on x, f is as a function of x measurable. This function will
later turn out to be part of the HJB equation. The second Lemma shows that the partial
differential Vx1(x) is non-negative.

Lemma 3.6.1. Assume that F is in C1,2([0, H̄]× R,R) and Fx1 ≥ 0. Then there is a mea-
surable function u : [0, H̄]×R→ [−α1, α2] with u ≤ β for x1 = 0 such that f : [−α1, α2]→ R,

17



f(u) := ϕ(u)x2 − rF (x) + (β − u)Fx1(x)1{x1<H̄ ∨ β≤u} + λ(µ− x2)Fx2(x) +
1

2
σ2Fx2x2(x),

attains a maximum in

u(x) =


−α1 for x ∈ [0, H̄]× (−∞, 0]

or x ∈ {(y1, y2) ∈ [0, H̄)× (0,∞) : ξy2 < Fx1(y1, y2)},
0 for x ∈ {(y1, y2) ∈ [0, H̄)× (0,∞) : ξy2 ≥ Fx1(y1, y2) ∧ ζy2 ≤ Fx1(y1, y2)},
α2 for x ∈ {(y1, y2) ∈ (0, H̄]× (0,∞) : ζy2 > Fx1(y1, y2)},
β otherwise.

Proof. The terms of interest are those which depend on u:

ϕ(u)x2 + (β − u)Fx1(x1, x2)1{x1<H̄ ∨ β≤u} −→ max
u∈[−α1,α2]

. (3.8)

Recall that ϕ(u) is equal to
(
ζ 1{u>0} + ξ 1{u<0}

)
u, see (3.3).

Case 1: Let us start with x1 ∈ [0, H̄] and x2 ∈ (−∞, 0]. It follows easily that we maximise
(3.8) with u = −α1.

• x ∈ [0, H̄]× (−∞, 0], ⇒ u = −α1.

For x1 = H̄ and x2 = 0 (3.8) is maximised for u ∈ [−α1, β]. For convenience we have chosen
u = −α1.

Case 2: Now we set x1 ∈ (0, H̄) and x2 ∈ (0,∞). We can simplify (3.8) as follows:

u
((
ζ 1{u>0} + ξ 1{u<0}

)
x2 − Fx1(x1, x2)

)
−→ max

u∈[−α1,α2]
. (3.9)

In order to maximise (3.9), we can choose one of three values. If ξx2 < Fx1(x1, x2), then
u = −α1. For ζx2 > Fx1(x1, x2), u = α2. Otherwise, u = 0. For convenience we also choose
u = 0 if ξx2 = Fx1(x1, x2) or ζx2 = Fx1(x1, x2).

Altogether, this results in the following values for u:

• x ∈ {(y1, y2) ∈ (0, H̄)× (0,∞) : ξy2 < Fx1(y1, y2)}, ⇒ u = −α1.
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• x ∈ {(y1, y2) ∈ (0, H̄)× (0,∞) : ξy2 ≥ Fx1(y1, y2) ∧ ζy2 ≤ Fx1(y1, y2)}, ⇒ u = 0.

• x ∈ {(y1, y2) ∈ (0, H̄)× (0,∞) : ζy2 > Fx1(y1, y2)}, ⇒ u = α2.

Case 3: We set x1 = 0 and x2 ∈ (0,∞). The only difference to the previous case is the
condition u ≤ β:

• x ∈ {(y1, y2) ∈ [0, 0]× (0,∞) : ξy2 < Fx1(y1, y2)}, ⇒ u = −α1.

• x ∈ {(y1, y2) ∈ [0, 0]× (0,∞) : ξy2 ≥ Fx1(y1, y2) ∧ ζy2 ≤ Fx1(y1, y2)}, ⇒ u = 0.

• x ∈ {(y1, y2) ∈ [0, 0]× (0,∞) : ζy2 > Fx1(y1, y2)}, ⇒ u = β.

Case 4: We set x1 = H̄ and x2 ∈ (0,∞). This changes (3.8) to:

ϕ(u)x2 + (β − u)Fx1(x1, x2)1{β≤u} −→ max
u∈[−α1,α2]

.

For u ≤ β this becomes maxu∈[−α1,β]{ϕ(u)x2}. Because x2 is positive, u maximises this ex-
pression by being equal to β. That means that u is at least β, leaving us with

u(ζx2 − Fx1(x1, x2)) −→ max
u∈[β,α2]

,

which leads to the following values for u:

• x ∈ {(y1, y2) ∈ [H̄, H̄]× (0,∞) : ζy2 ≤ Fx1(y1, y2)}, ⇒ u = β.

• x ∈ {(y1, y2) ∈ [H̄, H̄]× (0,∞) : ζy2 > Fx1(y1, y2)}, ⇒ u = α2.

For convenience we have chosen u = β for ζy2 = Fx1(y1, y2).

Lemma 3.6.2. Assume V ∈ C1,0([0, H̄]× R,R). Then Vx1 ≥ 0.

Proof. We compare the value function at different starting water levels x1, x̃1 and identical
starting electricity price x2. Since we may use the same strategy at higher water levels, we
get V u(x1, x2) ≤ V u(x̃1, x2) for x1 ≤ x̃1 and thus
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V (x1, x2) = sup
u∈Ax1

V u(x1, x2) ≤ sup
u∈Ax1

V u(x̃1, x2) ≤ sup
u∈Ax̃1

V u(x̃1, x2) = V (x̃1, x2).

Now we derive the HJB equation. Recall

dXu(t) =

(
(β − u(t))1{Hu(t)<H̄ ∨ β≤u(t)}

λ(µ− S(t))

)
dt+

(
0
σ

)
dW (t)

with start point Xu(0) = x ∈ [0, H̄]× R, u ∈ A and t ≥ t, see (3.5).

Proposition 3.6.3 (HJB equation). Let V ∈ C1,2([0, H̄)×R,R). Then V satisfies the HJB
equation:

0=sup
u∈[−α1,α2]

{
ϕ(u)x2 − rV (x) + (β − u)Vx1(x)1{x1<H̄ ∨ β≤u} + λ(µ− x2)Vx2(x) +

1

2
σ2Vx2x2(x)

}
for any x ∈ [0, H̄]× R.

Proof. Let u ∈ A, ε > 0 and x ∈ [0, H̄]× R. We take e−rεV (Xu(ε)) and apply Itô‘s formula:

e−rεV (Xu(ε)) = e0V (Xu(0)) +

∫ ε

0
(−r)e−rtV (Xu(t)) dt+

∫ ε

0
e−rtVx1(Xu(t)) dXu

1 (t) +

+

∫ ε

0
e−rtVx2(Xu(t)) dXu

2 (t) +
1

2

∫ ε

0
e−rtVx2x2(Xu(t)) d〈Xu

2 , X
u
2 〉t

= V (x) +

∫ ε

0
e−rt

[
− rV (Xu(t)) + (β − u(t))Vx1(Xu(t))1{Hu(t)<H̄ ∨ β≤u(t)} +

+ λ(µ− S(t))Vx2(Xu(t)) +
1

2
σ2Vx2x2(Xu(t))

]
dt+

+

∫ ε

0
e−rtσVx2(Xu(t)) dW (t).

Replacing e−rεV (Xu(ε)) in the dynamic programming principle (cf. Proposition 3.5.1) with
the above yields
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���V (x) = sup
u∈A

IE
[ ∫ ε

0
e−rtϕ(u(t))S(t) dt+���V (x) +

∫ ε

0
e−rt

[
− rV (Xu(t)) +

+ (β − u(t))Vx1(Xu(t))1{Hu(t)<H̄ ∨ β≤u(t)} + λ(µ− S(t))Vx2(Xu(t)) +

+
1

2
σ2Vx2x2(Xu(t))

]
dt
]
,

with IE
[ ∫ ε

0 e
−rtσVx2(Xu(t)) dW (t)

]
disappearing because the integral with the Brownian

motion as integrator is equal to zero under the expectation.

We know that Vx1 is non negative and u ≤ β for x1 = 0, see Lemma 3.6.2 and condition (3.1).
This allows us to choose an u such as in Lemma 3.6.1 and set u∗(t) := u(Xu(t)). This leads to

0 = IE
[ ∫ ε

0
e−rt

[
ϕ(u∗(t))S(t)− rV (Xu∗(t)) +

+ (β − u∗(t))Vx1(Xu∗(t))1{Hu∗ (t)<H̄ ∨ β≤u∗(t)} + λ(µ− S(t))Vx2(Xu∗(t)) +

+
1

2
σ2Vx2x2(Xu∗(t))

]
dt
]
,

because the maximum is assumed.

With Fubini’s theorem we interchange the expectation and the integral. In the next step we
want to divide by ε and send ε to zero, and therefore take a closer look at the jump process
u∗ and the indicator function at time zero:

ϕ(u∗(0))S(0) + (β − u∗(0))Vx1(Xu∗(0))1{Hu∗ (0)<H̄ ∨ β≤u∗(0)}. (3.10)

The process u∗(0) jumps when ϕ(u∗(0))S(0) is equal to u∗(0)Vx1(Xu∗(0)), or may jump from
−α1 to β when (S(0), Hu∗(0)) is equal to (0, H̄). In the first case the jumps of u∗ have no
influence at the time they occur, because every term with u∗ is negated. In the second case
the jump of u∗ also has no influence, because (3.10) is equal to zero for both −α1 and β.

Now we examine the indicator function, because its value does not only depend on u∗. There
is only one case where the indicator function may change values at time zero without u∗

jumping. It happens when Hu∗(0) = H̄ and Hu∗(δ) < H̄ for any δ > 0. It follows that
β < u∗(0) must hold, because more water needs to be released than comes in at time zero.
This yields

lim
δ→0

1{Hu∗ (δ)<H̄ ∨ β≤u∗(δ)} = 1 = 1{Hu∗ (0)<H̄ ∨ β≤u∗(0)}.
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Finally, we can divide by ε and send ε to zero. This results in

0 = IE
[
ϕ(u∗(0))S(0)− rV (Xu∗(0)) + (β − u∗(0))Vx1(Xu∗(0))1{Hu∗ (0)<H̄ ∨ β≤u∗(0)} +

+ λ(µ− S(0))Vx2(Xu∗(0)) +
1

2
σ2Vx2x2(Xu∗(0))

]
= ϕ(u∗(0))x2 − rV (x) + (β − u∗(0))Vx1(x)1{x1<H̄ ∨ β≤u∗(0)} + λ(µ− x2)Vx2(x) +

+
1

2
σ2Vx2x2(x).

Choosing the supremum over u instead of u∗ again leads to the HJB equation:

0= sup
u∈A

{
ϕ(u(0))x2 − rV (x) + (β − u(0))Vx1(x)1{x1<H̄ ∨ β≤u(0)} + λ(µ− x2)Vx2(x) +

+
1

2
σ2Vx2x2(x)

}
=sup
ũ∈[−α1,α2]

{
ϕ(ũ)x2 − rV (x) + (β − ũ)Vx1(x)1{x1<H̄ ∨ β≤ũ} + λ(µ− x2)Vx2(x) +

1

2
σ2Vx2x2(x)

}
for any x ∈ [0, H̄]× R.

We showed that if the value function is smooth enough, it satisfies the HJB equation. In
general, it does not follow that a solution of the HJB equation is the value function. The
subsequent Verification Theorem shows, however, that in our case the solution to the HJB
equation is indeed the value function, and also proves that the optimal control exists.

Theorem 3.6.4 (Verification Theorem). Let F ∈ C1,2([0, H̄] × R,R) and Fx1 ≥ 0. If F
satisfies the HJB equation (cf. Proposition 3.6.3), then F is the value function V . In this
case u∗(t) := u(Xu(t)), for a function u such as in Lemma 3.6.1, is an optimal control.

Proof. Let u ∈ A and x ∈ [0, H̄]× R. We take e−rεF (Xu(ε)) and apply Itô‘s formula:
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e−rεF (Xu(ε)) = e0F (Xu(0)) +

∫ ε

0
(−r)e−rtF (Xu(t)) dt+

∫ ε

0
e−rtFx1(Xu(t)) dXu

1 (t) +

+

∫ ε

0
e−rtFx2(Xu(t)) dXu

2 (t) +
1

2

∫ ε

0
e−rtFx2x2(Xu(t)) d〈Xu

2 , X
u
2 〉t

= F (x) +

∫ ε

0
e−rt

[
− rF (Xu(t)) + (β − u(t))Fx1(Xu(t))1{Hu(t)<H̄ ∨ β≤u(t)} +

+ λ(µ− S(t))Fx2(Xu(t)) +
1

2
σ2Fx2x2(Xu(t)) + ϕ(u(t))S(t)

]
dt+

+

∫ ε

0
e−rtσFx2(Xu(t)) dW (t)−

∫ ε

0
e−rtϕ(u(t))S(t) dt

≤ F (x) +

∫ ε

0
e−rtσFx2(Xu(t)) dW (t)−

∫ ε

0
e−rtϕ(u(t))S(t) dt.

In the second step we expanded the term with
∫ ε

0 e
−rtϕ(u(t))S(t) dt. The inequality in the

last step follows because F satisfies the HJB equation. Applying the expectation yields

IE
[
e−rεF (Xu(ε))

]
≤ F (x)− IE

[ ∫ ε

0
e−rtϕ(u(t))S(t) dt

]
,

with IE
[ ∫ ε

0 e
−rtσFx2(Xu(t)) dW (t)

]
disappearing because the integral with the Brownian

motion as integrator is equal to zero under the expectation.

Sending ε to infinity and bringing the expectation from the right side of the inequality to the
left results in

IE
[ ∫ ∞

0
e−rtϕ(u(t))S(t) dt

]
≤ F (x).

The expectation is the time-invariant performance criterion V u(x), see (3.6). This leads to
the inequality

V u(x) ≤ F (x),

which holds for all u ∈ A. Therefore, it follows that

V (x) ≤ F (x).
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The inequality came into the calculation because F satisfies the HJB equation and we use a
random control u ∈ A. Now we choose u such as in Lemma 3.6.1 and set u∗(t) := u(Xu(t)).
Then

V (x) ≤ F (x) = V u∗(x) ≤ V (x).

Now we prove that for u such as in Lemma 3.6.1, u∗(t) := u(Xu(t)) is an optimal control.
We take e−rεV (Xu∗(ε)) and apply Itô‘s formula:

e−rεV (Xu∗(ε)) = V (x) +

∫ ε

0
e−rt

[
− rV (Xu∗(t)) +

+ (β − u∗(t))Vx1(Xu∗(t))1{Hu∗ (t)<H̄ ∨ β≤u∗(t)} +

+ λ(µ− S(t))Vx2(Xu∗(t)) +
1

2
σ2Vx2x2(Xu∗(t)) + ϕ(u∗(t))S(t)

]
dt+

+

∫ ε

0
e−rtσVx2(Xu∗(t)) dW (t)−

∫ ε

0
e−rtϕ(u∗(t))S(t) dt

= V (x) +

∫ ε

0
e−rtσVx2(Xu∗(t)) dW (t)−

∫ ε

0
e−rtϕ(u∗(t))S(t) dt.

Sending ε to infinity and applying the expectation yields

V (x) = IE
[ ∫ ∞

0
e−rtϕ(u∗(t))S(t) dt

]
,

which proves our statement, see (3.7).

3.7. The Optimal Control

We consider the time-invariant stochastic control problem, see (3.7), and will show under
which conditions the optimal control for reservoir usage of a hydro power plant attains one
of the four values {−α1, 0, β, α2}.

Corollary 3.7.1. Assume V ∈ C1,2([0, H̄] × R,R). There is a function u : [0, H̄] × R →
{−α1, 0, β, α2} such that
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u(x) =


−α1 for x ∈ [0, H̄]× (−∞, 0]

or x ∈ {(y1, y2) ∈ [0, H̄)× (0,∞) : ξy2 < Vx1(y1, y2)},
0 for x ∈ {(y1, y2) ∈ [0, H̄)× (0,∞) : ξy2 ≥ Vx1(y1, y2) ∧ ζy2 ≤ Vx1(y1, y2)},
α2 for x ∈ {(y1, y2) ∈ (0, H̄]× (0,∞) : ζy2 > Vx1(y1, y2)},
β otherwise,

and u∗(t) := u(Xu(t)) is an optimal control.

Proof. We know that Vx1 is non negative and u ≤ β for x1 = 0, see Lemma 3.6.2 and condition
(3.1). Thus the values u attains follow immediately from Lemma 3.6.1.

That u∗(t) := u(Xu(t)) is an optimal control is guaranteed by Theorem 3.6.4.

Altogether, we found an optimal control attaining four values, which depends on the water
level and the spot price. Pump water (u = −α1), do nothing (u = 0), release water equal to
the natural stream flow (u = β), or release water at full capacity (u = α2). Such a control is
illustrated in Figure 3.1. Also, see Figure 4.1 from numerical analysis.

Figure 3.1.: The four values the optimal control attains for reservoir usage of a hydro power
plant.
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The form of the curves x2 = 1
ζVx1(x1, x2) and x2 = 1

ξVx1(x1, x2) in Figure 3.1 are guesses,
since they depend on the partial derivative of the value function. However, assuming the value
function V is concave in x1 for a fixed positive x2, together with it being non-decreasing in
x1, we can say that the slope Vx1 is steep for small x1 and levels out for bigger x1. This leads
us to assume that the curves x2 = 1

ζVx1(x1, x2) and x2 = 1
ξVx1(x1, x2) have large values for

small x1 and lower values for bigger x1.

This coincides with our expectation that with a low water level in the reservoir, we accept
higher electricity prices in order to raise the level of the reservoir through pumping water
than for water levels closer to the maximum storage capacity.

26



4. Numerics

In this chapter we numerically solve the time-invariant stochastic control problem, see (3.7).
We start with taking a closer look at our parameters. In order to use realistic parameters,
we will orient us on a real pumped hydroelectric storage plant, Obervermuntwerk II, which
is currently under construction by Vorarlberger Illwerke and will begin operation in 2018.

In the second section we show how we obtain our initial values. In the third section we
explain how the algorithm operates. It will be written using Matlab and the whole code can
be found in the appendix. In the fourth section we present our solution, the approximation
of the value function and the optimal control. In the last section we look at the convergence
of our algorithm.

4.1. The Parameters

We need the following parameters. The maximal usable amount of water in the upper reservoir
H̄ and the constant natural stream flow rate β. The maximal flow rate from the lower to
the upper reservoir α1, the maximal flow rate from the upper to the lower reservoir α2, the
performance and efficiency of the generators and pumps ξ and the performance and efficiency
of the generators and turbines ζ. We also need the long-run mean µ, the speed of mean-
reversion λ, the degree of volatility σ and the yearly discount rate r.

As our time unit we use t = 1 day, because the time invariance does not allow us to model
the difference between night and day and therefore we use the average daily spot price.

Obervermuntwerk II will use the Silvretta-Reservoir as an upper reservoir, which has a ca-
pacity of 38 600 000m3 (see Vorarlberger Illwerke AG [11]). In order to find the value for a
constant natural stream flow rate, we assume that the available amount of water in an average
year is twice the capacity of the reservoir. This leads to an average natural stream flow rate of
2.448 cubic meters per second (m3/s). In Section 4.4 we will also look at the impact a higher
stream flow rate has. The reservoir is also used by the hydro power plant Obervermuntwerk
I, and therefore we will choose to halve both values:

• H̄ = 193 measured in 100 000m3.
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• β = 1.224 ∗ 0.036 ∗ 24 = 1.057536 measured in 100 000m3/d (per day).

The pumps use 360 MW (megawatt) with a maximal water flow rate of 135m3/s and the
turbines produce 360 MW with a maximal water flow rate of 150m3/s (see Vorarlberger
Illwerke AG [10]):

• α1 = 135 ∗ 0.036 ∗ 24 = 116.64 measured in 100 000m3/d.

• α2 = 150 ∗ 0.036 ∗ 24 = 129.6 measured in 100 000m3/d.

It follows that the round-trip efficiency is 90%, and that it takes approximately 1.5 days to
empty the reservoir and 1.6 days to fill it.

We choose the long-run mean µ = 40 EUR/MWh (megawatt hour), the speed of mean-
reversion λ = 20 per year and the degree of volatility σ = 10 per year based on estimates.
We set the yearly discount rate r at 3%. In order to keep µ = 40 we translate EUR/MWh to
EUR/3600MJ (megajoul) and MW to 3600MJ/day, which leads to ξ and ζ being multiplied
with 24:

• µ = 40 measured in EUR/3600MJ.

• λ = 20
365 .

• σ = 10√
365

.

• r1 = (1.03)
1

365 − 1. Discrete discount rate.

• r2 = log(1.03)
365 . Continuous discount rate.

• ξ = 360∗24
α1

.

• ζ = 360∗24
α2

.

4.2. Initial Values

Before we present our algorithm, we show how to acquire initial values for a full reservoir and
any spot price. To be precise, we approximate the value function V (x1, x2) for x1 = H̄ and
x2 ∈ R. The code is written in Matlab and can be found in the appendix.
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Step 1: We consider a deterministic setting, i.e., where the degree of volatility σ of the spot
price S(t) is equal to zero.

The solution of our Ornstein–Uhlenbeck process defined by

dS(t) = λ (µ− S(t)) dt+ σ dW (t),

is given by

S(t) = S(0)e−λt + µ
(
1− e−λt

)
+

∫ t

0
σeλ(s−t) dW (s).

(see Lucia and Schwartz [6, p. 13])

In our deterministic setting the integral term disappears because σ = 0, therefore

S(t) = S(0)e−λt + µ
(
1− e−λt

)
, (4.1)

Step 2: We compute the time-invariant performance criterion for the control α2 while water
is in the reservoir, and β when it is empty. This leads to a function Vα2 , defined for [0, H̄]×R+,
which is equal to the deterministic value function for a spot price above or equal to a curve
g.

First we compute an auxiliary function

F (s, z) = IE
[ ∫ z

0
e−rtS(t) dt

]
,

with s := S(0).

The solution (4.1) of S(t) leads to

F (s, z) =

∫ z

0
se−(r+λ)t + µ

(
e−rt − e−(r+λ)t

)
dt

=
1

r + λ

(
s
(
1− e−(r+λ)z

)
+
µλ

r

(
1− e−rz

)
+ µ

(
e−(r+λ)z − e−rz

))
. (4.2)

The time until the reservoir is empty for a water level x1 is given by
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η(x1) =
x1

α2 − β
, (4.3)

and the expected stock price at time η follows from (4.1):

S(η(x1)) = µ+ (s− µ)e−λη(x1).

Recalling the time-invariant performance criterion (3.6) together with the control α2 until η
and β afterwards, leads to

Vα2(x1, s) = ζα2F (s, η(x1)) + e−rη(x1)ζβF (S(η(x1)),∞) (4.4)

with (x1, s) ∈ [0, H̄]× R+.

Step 3: We maximise u in the HJB equation for Vα2 . The area where u 6= α2 is below or
equal to a curve g, and the area where u = α2 is above g. Together with Corollary 3.7.1 it
follows that

ζ g(y1) =
∂

∂x1
Vα2(y1, g(y1)) (4.5)

for all y1 ∈ [0, H̄]. This equation allows us to derive g.

We start by inserting (4.2) into (4.4), leading to

Vα2(x1, s) =
ζ

r + λ

(
s
(
α2 + (β − α2)e−(r+λ)η(x1)

)
+
α2µλ

r
+

+ µ(β − α2)
(λ
r
e−rη(x1) + e−rη(x1) − e−(r+λ)η(x1)

))
.

By recalling (4.3) we easily derive the derivative

∂

∂x1
Vα2(x1, s) =

ζ

r + λ

(
s(r + λ)e−(r+λ)η(x1) +

+ µ
(
λe−rη(x1) + re−rη(x1) − (r + λ)e−(r+λ)η(x1)

))
. (4.6)

Inserting (4.6) into (4.5) leads to the following explicit expression for g, because (4.6) is an
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affine transformation in the second variable:

g(x1) =
µ

1− e−(r+λ)
x1

α2−β

(
e
−r y1

α2−β − e−(r+λ)
x1

α2−β
)

with x1 ∈ [0, H̄].

Step 4: We define the time it takes for a non-negative starting spot price below g to reach
g and call it γ. Until time γ the optimal control in the deterministic case for the maximum
water level is β.

The time γ(x1, s) is obtained from (4.1), because S(γ(x1, s)) = g(x1):

g(x1) = se−λγ(x1,s) + µ
(
1− e−λγ(x1,s)

)
,

⇒ γ(x1, s) = log
( µ− s
µ− g(x1)

) 1

λ

with (x1, s) ∈ [0, H̄]× R+.

Step 5: We compute the time-invariant performance criterion for H̄ and the control β until
time γ and add the with time γ discounted function Vα2(H̄, g(H̄)). This leads to a function
Vβ(s), defined for [0, g(H̄)], which is equal to the deterministic value function on H̄×[0, g(H̄)]:

Vβ(s) = ζβF (s, γ(H̄, s)) + e−rγ(H̄,s)Vα2(H̄, g(H̄))

with s ∈ [0, g(H̄)].

Step 6: Similar to Step 4 we define the time it takes for a starting spot price below zero to
reach zero and call it ν. Until time ν the optimal control is −α1.

The time ν is again obtained from (4.1):

ν(s) = log
(

1− s

µ

) 1

λ
.

Step 7: We compute the time-invariant performance criterion for H̄ and the control −α1 un-
til time ν and add the with time ν discounted function Vβ(H̄, g(H̄)). This leads to a function
Vα1(s), defined for (−∞, 0), which is equal to the deterministic value function on H̄×(−∞, 0):
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Vα1(s) = −ξα1F (s, ν(s)) + e−rν(s)Vβ(0)

with s ∈ (−∞, 0).

Step 8: Now we compute the value function in the stochastic setting, i.e. σ > 0. We ob-
tain the deterministic value function Vdet from Steps 1-5. Then we convolute Vdet with the
normal distribution. This leads to the value function V (x1, x2) defined for x1 = H̄ and x2 ∈ R:

V (H̄, x2) =

∫ ∞
−∞

Vdet(H̄, x2 − y)
1√

2πσ2
e−

y2

2σ2 dy ≈
8000∑

j=−8000

Vdet(H̄, x2 −
j

800
)

1
800√
2πσ2

e−
(
j

800 )2

2σ2 .

We approximate the convolution with a sum from −10 to 10 and step size 1
800 . We start at

−10 and stop at 10 because the exponential function becomes very small.

4.3. Algorithm

In order to solve the time-invariant stochastic control problem, we need to solve the HJB
equation (cf. Proposition 3.6.3):

0=sup
u∈[−α1,α2]

{
ϕ(u)x2 − rV (x) + (β − u)Vx1(x)1{x1<H̄ ∨ β≤u} + λ(µ− x2)Vx2(x) +

1

2
σ2Vx2x2(x)

}
for any x ∈ [0, H̄]× R.

Our algorithm is based on the finite difference method for non-linear PDE, which proceeds
by replacing the derivatives in a differential equation with finite difference approximations
based only on values of the function itself at discrete points. This results in a large but finite
algebraic system of equations to be solved instead of the differential equation. The simplest
finite difference approximation is the difference quotient.
(see LeVeque [5, p. 3])

The code is written in Matlab and can be found in the appendix.

Step 1: We start by discretizing a rectangular sub-area. This results in a grid for the value
function V (x) and the control u where each grid point correspondents with a water level x1

and a spot price x2. The algorithm consists of two nested for-loops. The outer loop is for the
water level and moves from the maximal to the minimal level, and the inner loop is for the
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spot price and moves from a chosen minimal price of e-20 to a maximal price of e80 .

Step 2: The algorithm operates by approximating V with values of V from a higher water
level by using Taylor’s Theorem about the point (x1 + ε1, x2):

V (x1, x2) = V (x1 + ε1, x2)− ε1Vx1(x1 + ε1, x2) + o1(ε1) (4.7)

with ε1 > 0 as the step size for the water level.

The “little-oh” notation means that the error of the approximation, also called truncation
error, decays to zero at least as fast as ε1 as ε1 → 0 (see LeVeque [5, pp. 5,247]).

We know V (x1 + ε1, x2) either from our initial values or from a previous iteration, while
Vx1(x1 + ε1, x2) will be approximated in the following steps.

Step 3: The partial differential Vx1(x1 + ε1, x2) is obtained through the HJB equation:

Vx1(x1 + ε1, x2) =
1

β − u(x1 + ε1, x2)

(
− ϕ(u(x1 + ε1, x2))x2 + rV (x1 + ε1, x2)−

− λ(µ− x2)Vx2(x1 + ε1, x2)− 1

2
σ2Vx2x2(x1 + ε1, x2)

)
(4.8)

for u 6= β.

The optimal control is only equal to β for x1 ∈ {0, H̄}. Our algorithm does not need u(0, ·)
for water level zero, because we use u(0 + ε1, ·) to approximate V (0, ·). At maximal water
level H̄ the optimal control assumes the values {−α1, β, α2}, see Corollary 3.7.1. We replace
β with zero, causing a small error. Fortunately, we will see that the optimal control assumes
β only for a few spot prices.

Now we look at the case where the control is −α1 and the water level is maximal, which
causes the indicator function in the HJB equation to be equal to zero. First, we approximate
Vx1 as if the indicator is equal to one, in essence assuming that the maximal capacity of the
upper reservoir is a little bigger than H̄. Then we approximate Vx1 with zero and run the
algorithm with both approximations. This results in no significant difference, meaning both
approximations are usable.

The values unknown are Vx2x2(x1 + ε1, x2), Vx2(x1 + ε1, x2) and u(x1 + ε1, x2), and will be
approximated in the following steps.

Step 4: The partial differentials Vx2(x1 +ε1, x2) and Vx2x2(x1 +ε1, x2) are approximated with
the centred difference quotients of the first and second order:
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Vx2(x1 + ε1, x2) =
V (x1 + ε1, x2 + ε2)− V (x1 + ε1, x2 − ε2)

2ε2
+O2(ε22), (4.9)

and

Vx2x2(x1 + ε1, x2) =
V (x1 + ε1, x2 + ε2)− 2V (x1 + ε1, x2) + V (x1 + ε1, x2 − ε2)

ε22
+O2(ε22)

(4.10)

with ε2 > 0 as the step size for the spot prize.

The “big-oh” notation means that the truncation error decays to zero at least as fast as ε22 as
ε22 → 0. This is easily deduced by expanding the function value of V (x) in a Taylor series as
done by LeVeque [5, pp. 5,7,247].

For the chosen minimal and maximal spot price we cannot use the centred difference quotients,
and instead use the one sided difference quotients. Both for the first and the second order
approximations the truncation error decays to zero as fast as ε2 as ε2 → 0, which is again
deduced by expanding the function value of V (x) in a Taylor series.

Step 5: The non-linearity of the HJB equation leads to three choices for u(x1 + ε1, x2). Our
algorithm computes Vx1 for control −α1 while the spot price is negative, and then for all three
controls −α1, β and α2 when the spot price changes to positive values. It chooses the control
that maximises the HJB equation. While in the inner loop, meaning a fixed water level and
a monotone rising spot price, we also stop considering the controls we already changed away
from. We do this because the optimal control cannot change from on control to another and
back again for a fixed water level and a monotone rising spot price, see Lemma 3.6.2 and
Corollary 3.7.1. Lemma 3.6.2 also tells us that Vx1 must be non-negative.

4.4. Solution

The algorithm plots two graphics. Figure 4.1 shows the optimal control depending on the
water level and spot price. For the minimal water level zero and a spot price of 40 EUR/MWh
and above, the optimal control is to release water equal to the natural stream flow β. For a
rising water level the optimal control changes to α2, while the required minimal value of the
spot price drops. At the maximum water level H̄ the value is 2.49 EUR/MWh, which cannot
be clearly seen in Figure 4.1 because the slope is too steep.

The area where the optimal control is waiting corresponds to the round-trip efficiency. It
expanses for a lower and shrinks for a higher efficiency.

34



For water level zero and a spot price below 35.43 EUR/MWh the optimal control is to
pump water. This value also drops for a rising water level. For water level H̄ the value
is 1.69 EUR/MWh.

For water level H̄ and a spot price between 2.49 and 1.69 EUR/MWh the optimal control is
β.

Raising the natural stream flow would lead to lower spot prices required both for changing
from releasing water to waiting, and from waiting to pumping water. We get closer to a model
of a Run-of-the-river Hydroelectric Power Plant the higher we assume the natural stream flow
to be.

Figure 4.1.: The approximation of the optimal control for the parameters from Section 4.1.

Figure 4.2 shows the value function, and Figure 4.3 shows it rotated 90 degrees. In the
following we discuss the behaviour of the value function for rising spot prices and fixed water
levels:

• For spot prices above 40 EUR/MWh the value function increases. The slope is steeper
for higher water levels, because we can benefit longer from the high spot prices. At
minimal water level we still have a rising slope, since we can release the water from the
natural stream flow.

• For spot prices between 40 and 0 EUR/MWh the value function changes from decreasing
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at minimal water level, to increasing at maximal water level. For low water levels we
choose to pump water, therefore we are saving money when the spot price decreases. At
the maximal water level we mainly release water, meaning we profit from rising prices.
The area where the optimal control is waiting the value function hardly changes.

• For negative spot prices the value function decreases, because we receive money for
filling our reservoir. The value function hardly changes even for different water levels,
since it only takes approximately 1.6 days to fill the reservoir.

Figure 4.2.: The approximation of the value function for the parameters from Section 4.1.
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Figure 4.3.: The approximation of the value function. Figure 4.2 rotated 90 degrees.

4.5. Convergence

In order to prove convergence we wish to use the framework provided by Morton and May-
ers [7, pp. 151–161]. They give a definition for consistency and stability, and prove that
consistency and stability of a scheme is sufficient for convergence in the Lax Equivalence
Theorem.

From now on we treat the water level x1 as the time variable and the spot price x2 as the
space variable. Thus our problem, solving a non-linear PDE, falls under the general form of
problems considered by Morton and Mayers [7, pp. 151–152], only with initial values at time
H̄ and the time variable decreasing.

We denote xi ∈ G, i ∈ {1, 2}, if xi corresponds with a grid line from our discretization done
in Step 1 of our algorithm, see Section 4.3. The step size for the time variable ε1 and the
step size for the space variable ε2 together give the grid size. We denote the solution of the
HJB equation, the value function, as always with V and the approximation of the solution
obtained by the algorithm described in Section 4.3 with V̂ .

In the framework of Morton and Mayers [7, p. 7] our problem is considered a parabolic equa-
tion in one space variable. Although their definition does not fit our HJB equation exactly,

37



we only use this characterization of the problem to indicate why we choose one of two norms
introduced in this framework over the other. Both norms are used to define stability and
convergence, but Morton and Mayers [7, pp. 152–154,61] call the first norm appropriate for
parabolic problems. That norm is the maximum norm given by

‖V (x1, ·)‖∞ := max{|V (x1, x2)|, x2 ∈ G}.

for x1 ∈ G. This norm gives the maximal value of the at the grid points of the grid line x1

evaluated function V .

To prove convergence, we first show that our algorithm is consistent and stable.

Our algorithm is consistent if the truncation error given by the approximation converges to
zero for the step size converging to zero (see Morton and Mayers [7, p. 157]).

In essence, stability means that for small changes in the initial values there are only small
changes in the solution of our algorithm. We denote a different approximated solution to the
HJB equation obtained from different initial values with Ŵ , and thus for stability have to
prove that

‖V̂ (x1, ·)− Ŵ (x1, ·)‖∞ ≤ K ‖V̂ (H̄, ·)− Ŵ (H̄, ·)‖∞

for a constant K and all x1 ∈ G.
(see Morton and Mayers [7, p. 158])

Lemma 4.5.1. The algorithm described in Section 4.3 is consistent and stable for a fixed
step size ε2.

Proof. In our case the condition for consistence holds, see (4.7). Indeed consistency will
usually hold for any finite difference scheme.
(see Morton and Mayers [7, p. 160])

Stability, on the other hand, is not so easily obtained.

First we consider the case where the control û ∈ {−α1, 0, α} is the same for V̂ and Ŵ at the
grid point (x1 + ε1, x2). We denote û := û(x1 + ε1, x2) and

δj := V̂ (x1 + ε1, x1 + jε2)− Ŵ (x1 + ε1, x1 + jε2)

for j ∈ {−1, 0, 1}.
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Let x1, x2 ∈ G. Using (4.7), (4.8), (4.9) and (4.10) allows us to compute

V̂ (x1, x2)− Ŵ (x1, x2) = δ0 − ε1
1

β − û

(
rδ0 − λ(µ− x2)

δ1 − δ−1

2ε2
− 1

2
σ2 δ1 − 2δ0 + δ−1

ε2

)
=
(

1− ε1r

β − û
− ε1σ

2

(β − û)ε22

)
δ0 +

ε1
β − û

(λ(µ− x2)

2ε2
+
σ2

2ε22

)
δ1 +

+
ε1

β − û

(
− λ(µ− x2)

2ε2
+
σ2

2ε22

)
δ−1.

The coefficients in front of δ1 and δ−1 can have different signs depending on ε2 and x2, but
one term will always be eliminated. Now we estimate the absolute value

|V̂ (x1, x2)− Ŵ (x1, x2)| ≤
(

1− ε1r

β − û
− ε1σ

2

(β − û)ε22

)
|δ0|+

ε1
β − û

(λ(µ− x2)

2ε2
+
σ2

2ε22

)
|δ1|+

+
ε1

β − û

(
− λ(µ− x2)

2ε2
+
σ2

2ε22

)
|δ−1|

≤
(

1 +
ε1r

|β − û|
+

ε1σ
2

|β − û|ε22
+

ε1
|β − û|

c(x2, ε2)
)
δ

with δ := max{|δ1|, |δ0|, |δ−1|} and c(x2, ε2) := max{λ|µ−x2|
ε2

, σ
2

ε22
}. The number of steps with

length ε1 needed to reach x1 from H̄ is given by H̄−x1
ε1

. This leads to

|V̂ (x1, x2)− Ŵ (x1, x2)| ≤

≤
(

1 +
ε1

|β − û|
(r +

σ2

ε22
+ c(x2, ε2))

) H̄−x1
ε1 |V̂ (H̄, x2)− Ŵ (H̄, x2)|. (4.11)

The inequality (4.11) holds for any x1, x2 ∈ G and therefore

‖V̂ (x1, ·)− Ŵ (x1, ·)‖∞ ≤ e
H̄
|β−û| (r+

σ2

ε22
+c(ε2))

‖V̂ (H̄, ·)− Ŵ (H̄, ·)‖∞

as ε1 → 0 and with c(ε2) := max{λ60
ε2
, σ

2

ε22
}, because we set x2 ∈ [−20, 80] in Step 1 of Section

4.3. The exponential function is our constant K.

Now we look at the case where û is not equal for V̂ and Ŵ . From Corollary 3.7.1 and Step
3 in Section 4.3 we know that when the optimal control changes from one control to another
at point (y1, y2), then Vx1(y1, y2) has the same value for both controls. The optimal control
also changes at most two times for either a fixed x1 and any x2 or vice versa. This leads us
to assume that the non-linearity given by û has no influence on stability.
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Thus our algorithm is consistent and stable for a fixed value for ε2.

Now we prove the convergence of our algorithm.

Theorem 4.5.2. The algorithm described in Section 4.3 is a convergent approximation to
the HJB equation (cf. Proposition 3.6.3) in the sense that

lim
ε2→0

lim
ε1→0

‖V (x1, x2)− V̂ (x1, x2)‖∞ = 0.

Proof. The by Morton and Mayers [7, p. 159]) introduced Lax Equivalence Theorem states
that consistency and stability is sufficient for convergence. The theorem is formulated for
linear problems, but as stated in the proof of Lemma 4.5.1 we consider the non-linearity to
be no issue in our case. Thus it follows from Lemma 4.5.1 that our algorithm is a convergent
approximation to a partial integro-differential equation for ε1 → 0. The name “integro” is due
to the central difference quotients, which can be written as integrals with the Dirac measure
as integrator.

Now we consider the partial integro-differential equation and note that it converges to the
HJB equation for ε2 → 0, because the centred difference quotients when taken to the limit
as the step size ε2 approaches zero are equal to the derivative. Thus we have shown that our
algorithm is a convergent approximation to the HJB equation, although not for step sizes
ε1, ε2 → 0, but for ε2 → 0 after ε1 → 0.

For our error analysis we have to consider both limits. Let us assume we want the error of our
algorithm approximating the HJB equation to be equal to or smaller than z > 0. Then we
first have to look at the error given by the approximation of the HJB equation with a partial
integro-differential equation. We can choose ε2 so that the truncation error of (4.9) and (4.10)
are for example less than or equal to z

2 . Then we have to choose an ε1 so that the error given
by our algorithm approximating the partial integro-differential equation is less than or equal
to z

2 . This error can be obtained through the stability constant K and the truncation error
of (4.7).

Together the error will then be less than or equal to z.
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A. Matlab Code

V alpha2.m:
function [ y ] = V alpha2( barH,s,r,alpha2,beta,zeta,lambda,mu )
% Computes V(barH,s) in the deterministic case if s is large enough.

% Computes expectation of \int 0ˆz S t eˆ{-rt} dt where s = S 0:
F= @(s,z) (s*(1-exp(-(r+lambda)*z))+mu*lambda/r*(1-exp(-r*z))
+mu*(exp(-(lambda+r)*z)-exp(-r*z))) / (r+lambda);

eta = barH/(alpha2-beta); % Time until reservoir is empty.
S eta = mu+(s-mu)*exp(-lambda*eta); % Expected stock price at empty reservoir.
y=zeta*alpha2*F(s,eta)+exp(-r*eta)*zeta*beta*F(S eta,Inf);
end

V det.m:
function [ y ] = V det( barH,s,r,alpha1,alpha2,beta,zeta,lambda,mu,xi )
% Computes V(barH,s) in the deterministic case.

% Computes expectation of \int 0ˆz S t eˆ{-rt} dt where s = S 0:
F = @(s,z) (s*(1-exp(-(r+lambda)*z))+mu*lambda/r*(1-exp(-r*z))+
mu*(exp(-(lambda+r)*z)-exp(-r*z))) / (r+lambda);
% The optimal control is equal to alpha 2 above g and at full reservoir:
g barH = mu* (exp(-r*barH/(alpha2-beta))-exp(-(r+lambda)*barH/(alpha2-beta)))
/ (1-exp(-(r+lambda)*barH/(alpha2-beta)));

% Time until spot price >= g barH, with current spot price equal to zero:
gamma = log( (mu)/(mu-g barH) )/lambda;
% V(barH,0):
V beta 0 = zeta*beta*F(0,gamma)
+exp(-r*gamma)*V alpha2( barH,g barH,r,alpha2,beta,zeta,lambda,mu );

y = s;
for j=1:length(s)

if s(j) >= g barH
y(j) = V alpha2( barH,s(j),r,alpha2,beta,zeta,lambda,mu );

elseif s(j) < 0
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% Time until spot price >= 0, with current spot price equal to s(j):
nu = log(1-s(j)/mu)/lambda;
y(j)=-alpha1*xi*F(s(j),nu) + exp(-r*nu)*V beta 0; %V alpha1

else
% Time until spot price >= g barH, with current spot price equal to s(j):
gamma = log( (mu-s(j))/(mu-g barH) )/lambda;
y(j)= zeta*beta*F(s(j),gamma)
+exp(-r*gamma)*V alpha2( barH,g barH,r,alpha2,beta,zeta,lambda,mu ); % V beta

end
end
end

conv.m:
function [ y ] = conv( z,sigma,V det hash,s hash 1 )
% Adds the stochasticity with sigmaˆ2 = 100/365.

M=-10:1/800:10;
st=M(2)-M(1); % Step size.

% Convolution between V det and a normal distribution:
y= sum( V det hash(1+fix((z-M-s hash 1)*800)).*exp(-M.ˆ2/sigmaˆ2/2) )
*st/sqrt(2*pi*sigmaˆ2);
end

ApproxVu.m:
% Approximation for the value function and the optimal control.
% HJB equation:
% 0=sup {u in [-alpha 1, alpha 2]}{phi(u)*x 2-r*V(x)+(beta-u)*V {x 1}(x)*
% *indicator {x 1<barH v beta <= u}+lambda*(a-x 2)*V {x 2}(x)+
% +sigmaˆ2/2*V {x 2x 2}(x)}
% N data points for the water level with step length sN, M data points for the spot price
% with step length sM.
% V x 2 and V x 2x 2 are approximated with the difference quotient and V x 1 with the
% HJB equation.
% V is approximated by the Taylor series.

N=1250; % Number of data points for the water level.
M=250; % Number of data points for the spot price.
barH=193; % Maximal water level of the upper reservoir in 100 000 mˆ3.
mu=40; % The long-run mean of the spot price in EUR/MWh (megawatt hour)=
% EUR/3600MJ (megajoule).
barS=80; % Maximal starting spot price in EUR/MWh=EUR/3600MJ.
ubarS=-20; % Minimal starting spot price in EUR/MWh=EUR/3600MJ.
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pumps=360*24; % Performance and efficiency of the pumps (*24: MW (megawatt) ->
% 3600MJ/day).
turbines=360*24; % Performance and efficiency of the turbines (*24: MW (megawatt) ->
3600MJ/day).
lambda=20/365; % Speed of mean-reversion (/365: t=1 year -> t=1 day).
sigma=10/sqrt(365); % The degree of volatility (/sqrt(365): t=1 year -> t=1 day).
alpha1=135*0.036*24; % Maximal flow rate from the lower to the upper reservoir (*24*0.36:
mˆ3/s -> 100 000 mˆ3/day).
alpha2=150*0.036*24; % Maximal flow rate from the upper to the lower reservoir (*24*0.36:
mˆ3/s -> 100 000 mˆ3/day).
beta=1.224*0.036*24; % Natural stream flow rate (*24*0.36: mˆ3/s -> 100 000 mˆ3/day).
r=0.03; % Yearly discount rate.
r1=(1+r)ˆ(1/365)-1 ; % Discrete discount rate (t=1 year -> t=1 day).
r2=log(1+r)/365; % Continuous discount rate (t=1 year -> t=1 day).

V=zeros(M,N); % Allocation for the value matrix.
u=ones(M,N)*-alpha1; % Allocation for the optimal control.

xi=pumps/alpha1;
zeta=turbines/alpha2;
if xi<zeta

disp(’xi must not be smaller than zeta’)
return

else
round trip efficiency = zeta/xi

end

x1=barH*(0:N-1)/(N-1); % Vector with N data points for the water level, from min to max.
x2=ubarS*(1-(0:M-1)/(M-1))+barS*(0:M-1)/(M-1); % Vector with M data points for the spot
price, from min to max.
sN=(x1(N)-x1(1))/(N-1); % Step size for the data points of the water level.
sM=(x2(M)-x2(1))/(M-1); % Step size for the data points of the spot prices.
neg=find(x2>0,1); % Point where the spot price changes from positive to negative.
mean=find(x2>mu,1); % Point where the spot price is approximately mu.
u(M,:)=alpha2; % We know that for the maximal spot price the control is alpha2.

% Computing values which will be accessed multiple times in order to speed up the algorithm:
s hash=-200:1/800:200;
V det hash=V det( barH,s hash,r2,alpha1,alpha2,beta,zeta,lambda,mu,xi );
for j=1:length(x2)

V(j,N)=conv(x2(j),sigma,V det hash,s hash(1));
end

for h=N-1:-1:1 % Water level.
U=[-alpha1,0,alpha2]; % Candidates for the optimal control.

43



Phi=[xi,0,zeta];
j=1;
V x2=(V(2,h+1)-V(1,h+1))/sM;
V x2x2=(V(3,h+1)-2*V(2,h+1)+V(1,h+1))/sMˆ2;
V x1=(alpha1*xi*x2(1)+r1*V(1,h+1)-lambda*(mu-x2(1))*V x2-sigmaˆ2/2*V x2x2)
/ (beta+alpha1);
V x1=max([0,V x1]);
V(1,h)=V(1,h+1)-sN*V x1;
for s=2:neg-1 % Negative spot price.

V x2=(V(s+1,h+1)-V(s-1,h+1))/(2*sM);
V x2x2=(V(s+1,h+1)-2*V(s,h+1)+V(s-1,h+1))/sMˆ2;
V x1=(alpha1*xi*x2(s)+r1*V(s,h+1)-lambda*(mu-x2(s))*V x2-sigmaˆ2/2*V x2x2)
/ (beta+alpha1);
V x1=max([0,V x1]);
V(s,h)=V(s,h+1)-sN*V x1;

end
for s=neg:M-1 % Positive spot price.

V x2=(V(s+1,h+1)-V(s-1,h+1))/(2*sM);
V x2x2=(V(s+1,h+1)-2*V(s,h+1)+V(s-1,h+1))/sMˆ2;
while j<=3

V x1 U=(-U.*Phi*x2(s)+r1*V(s,h+1)-lambda*(mu-x2(s))*V x2-sigmaˆ2/2
*V x2x2) ./ (beta-U);
if j==3

u(s,h+1)=alpha2;
V x1=V x1 U(end);
break

end
[∼,I]=max(U.*Phi*x2(s)+(beta-U)*V x1 U(1)); % Argmax.
if I==1

u(s,h+1)=U(1);
V x1=V x1 U(1);
break

end
U(1)=[]; % Excluding the control that does not maximise the HJB anymore.
Phi(1)=[];% Excluding the control that does not maximise the HJB anymore.
j=j+1;

end
V x1=max([0,V x1]);
V(s,h)=V(s,h+1)-sN*V x1;

end
V x2=(V(M,h+1)-V(M-1,h+1))/sM;
V x2x2=(V(M,h+1)-2*V(M-1,h+1)+V(M-2,h+1))/sMˆ2;
V x1=(-alpha2*zeta*x2(M)+r1*V(M,h+1)-lambda*(mu-x2(M))*V x2-sigmaˆ2/2
*V x2x2) / (beta-alpha2);
V x1=max([0,V x1]);
V(M,h)=V(M,h+1)-sN*V x1;

end
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% The graphics for u and V:
x=(0:barH/(N-1):barH)/100;
y=(ubarS:(barS-ubarS)/(M-1):barS);
[X, Y] = meshgrid(x,y);

figure(1);
contour(X,Y,u,3,’LineWidth’,0.8)
colormap(jet)
xlabel(’1 000 000 mˆ3 water’)
ylabel(’EUR/MWh’)
text(0.7,0.63,’long-run mean’,’Units’,’normalized’)
text(0.48,0.73,’u=\alpha 2’,’Units’,’normalized’)
text(0.01,0.73,’\leftarrow u=\beta’,’Units’,’normalized’)
text(0.48,0.576,’u=0’,’Units’,’normalized’)
text(0.48,0.32,’u=-\alpha 1’,’Units’,’normalized’)
text(0.91,0.22,’u=\beta \rightarrow’,’Units’,’normalized’)
text(0.48,0.12,’u=-\alpha 1’,’Units’,’normalized’)

hold on
plot(get(gca,’xlim’), [40 40],’–k’,’LineWidth’,0.6); % A line for the long-run mean.
plot(get(gca,’xlim’), [0 0],’k’,’LineWidth’,0.6); % A line for zero.
hold off

figure(2);
mesh(X,Y,V/1000000)
axis tight
xlabel(’1 000 000 mˆ3 water’)
ylabel(’EUR/MWh’)
zlabel(’1 000 000 EUR’)
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