

D I P L O M A R B E I T

Splitting-Verfahren für nichtlineare Evolutionsgleichungen

Ausgeführt am Institut für

Analysis und Scientifc Computing
der Technischen Universität Wien

unter der Anleitung von Prof. Winfried Auzinger

durch

Michael Quell

Döblergasse 4/12
1070 WIEN

 24.01.2018 _______________________________
 Unterschrift

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

2

Abstract
This thesis motivates and summarizes the construction of splitting schemes

for evolution equations. Further asymptotic correct local error estimators are pro-
posed, to adapt the step-size in time propagation and reduce total computation
time. Commutator free Magnus-type integrators are compared to splitting off the
time variable. The Methods are tested by three applications: Models for solar
cells, reaction-diffusion system by Gray-Scott and Schrödinger wave equations.

Keywords: Evolution equations, splitting methods, order conditions, local error
estimators, commutator free Magnus integrators,

I declare by my signature that this assignment is my own work and that I have
correctly acknowledged the work of others. This assignment is in accordance
with University guidance on good academic conduct.

Vienna, January 24, 2018 __________________
Michael Quell

3

Acknowledgments

I wish to thank various people for their contribution to this thesis. First I would
like to acknowledge the support provided by my family during the hard times of
my study. I am particularly grateful for the assistance given by Dr. Benson Muite
in the beginning. Special thanks should be given to Professor Winfried Auzinger,
my research project supervisor for his professional guidance and valuable support
and to Dr. Othmar Koch for his useful and constructive recommendations on this
project. I would also like to thank Dr. Harald Hofstätter for his technical advice.

4

Contents

1 Introduction 7

2 Operator Splitting Methods 8

3 Order Conditions 10
3.0.1 Solving order conditions 11

4 Local Error Estimators 13
4.1 Defect based . 13

4.1.1 Efficient evaluation of the defect 14
4.2 Embedded formulae . 16
4.3 Palindromic schemes . 16
4.4 MilneDevice . 17
4.5 Time-adaptive strategies . 18

5 Commutator free exponential Time propagators / Magnus 19
5.1 Magnus-type integrators . 19
5.2 Commutator free Magnus integrators 20

5.2.1 Local error and defect. Order conditions and defect based
local error estimate . 20

5.2.2 Efficient evaluation of the defect 22
5.3 Splitting off the time variable “ freezing ” 22

5.3.1 Solution . 23

6 Examples and Results 25
6.1 Methods used . 25

6.1.1 Magnus . 25
6.1.2 Splitting . 25
6.1.3 Hardware . 25

6.2 Solar cells: Application of splitting and Magnus-type integrators . 26
6.2.1 Implementation . 26

5

6.2.2 Matrix exponential . 26
6.2.3 Results (2 electrons) . 27
6.2.4 Results (8 electrons) . 35

6.3 Gray-Scott equation . 42
6.3.1 Implementation . 45
6.3.2 Visual results . 46

6.4 Schrödinger Equations . 47
6.4.1 The cubic NLS . 47
6.4.2 Quantum control . 50

7 Spectral Method 56

6

Chapter 1

Introduction

In many fields in science researchers model systems over time. This leads to the
class of differential equations called evolution equations. Often the their problems
are to complex to be linear, therefore the nonlinear case is studied too. The thesis
starts in Chapter 2 with an motivation to use splitting methods on solving nonlin-
ear evolution equations. Then is followed by a Chapter 3 about getting the order
conditions and constructing splitting schemes. Explicit algorithms are not given,
though they are referenced. The next Chapter 4 gives 4 different methods to esti-
mate the local posterior error of the splitting schemes. The Chapter 5 analyzes a
a special kind of evolution equations, where the numerical results and numerical
comparisons are than displayed in the next Chapter 6. Three types of evolution
equations are discussed

• linear time dependent right hand side in Section 6.2,

• nonlinear parabolic equations in Section 6.3 and

• wave equations in Section 6.4.

In all the three cases it is investigated how well the splitting methods perform,
especially in 6.2 they are compared to the Magnus-type integrators. It is also tried
to answer the question if the computational time can be improved using adaptive
step size selection algorithms based on an estimated local error. In the last Chapter
7 the underlying concept of the space discretization is explained in Section 6.3 and
6.4.

7

Chapter 2

Operator Splitting Methods

We consider evolution equations of the form

∂tu(t) = F(u(t)), t ≥ 0, and u(0) given. (2.1)

In many cases splitting the right-hand side F(u) into two ore more components
leads to an easy way to achieve accurate and efficient results. [23] Let the right-
hand side be

F(u) = A(u)+B(u)+(C(u)+ . . .). (2.2)

In many cases one can integrate all the sub-problems exactly, reducing the com-
plexity and leading to simple and explicit numerical algorithms. A collections of
splitting schemes. I would recommend and which was used here, is authored by
W. Auzinger and O. Koch and can be found at

http://www.asc.tuwien.ac.at/~winfried/splitting

this will be referenced by [5]. This collection lists only schemes, where no as-
sumptions were made on the operators, though for special cases one may find
optimized schemes somewhere else. First we will discuss the case, when the
right hand side is split only in to two components, as the notation is shorter and
everything can easily be expanded to more terms. This results in an evolution
equation (2.1) where the right-hand side is split into two operators,

∂tu(t) = F(u(t)) = A(u(t))+B(u(t)), t ≥ 0. (2.3)

A single step of a multiplicative splitting scheme, starting from u, having s stages
and over a step of length h, is given by

S (h,u) = Ss(h,Ss−1(h, . . . ,S1(h,u)))≈ EF(h,u) , (2.4a)

with
S j(h,u) = EB(b j h,EA(a j h,u)) , (2.4b)

8

http://www.asc.tuwien.ac.at/~winfried/splitting

with appropriate coefficients a j,b j. EF denotes the exact flow associated with the
given evolution equation (2.3). For the simplest case s = 1 and a1 = b1 = 1, one
can easily verify by Taylor expansion of the solution that this yields an scheme
of order 1. The computational effort to achieve high accuracy is lower for higher
order methods. There are general two ways to create higher order schemes, either
generating and solving a system of polynomial order conditions or by composition
of lower order methods. The composition is not discussed here. For a scheme of
order p the local error of a splitting step, which is denoted by

S (h,u)−EF(h,u) =: L (h,u) = O(hp+1) , (2.5)

is of order p+1 for h→ 0.

9

Chapter 3

Order Conditions

As stated in [3] it is sufficient, to assume a linear right hand side F to construct
the order conditions ,

d
dt

u(t) = Fu(t) = (A+B)u(t), u(0)given. (3.1)

This gives for (2.4)

S (h) = Ss(h,Ss−1(h, . . . ,S1(h)))≈ EF(h) = ehF , (3.2)

with
S j(h) = ehB jehA j , A j = a jA ,B j = b jB, j = 1, . . . ,s. (3.3)

In this case the local error (2.5) is of the form (2.5) with a linear operator
L (h). The Taylor expansion of L (h)u at h = 0 up to order p+1 gives,

L (h)u =
p+1

∑
q=1

hq

q!
dq

dhq L (0)u+O(hp+2). (3.4)

If

0 =
d
dh

L (0) =
d2

dh2 L (0) = . . .=
dp

dhp L (0) ⇔ L (h) = O(hp+1), (3.5)

then the method is of order p and the leading local error term is given by

hp+1

(p+1)!
dp+1

dhp+1 L (0), (3.6)

whereas

dq

dhq L (0) = ∑
|k|=q

(
n
k

)
·

s

∏
j=1

k j

∑
l=0

(
k j

l

)
Bl

jA
k j−l
j − (A+B)q, (3.7)

10

with k = (k1,k2, . . . ,ks) ∈ Ns and |k| = k1 + k2 + · · ·+ ks. The righthandside of
(3.7) can be written [9] as linear combination of higher order commutators of A
and B. Consider the ring

C〈A,B〉 (3.8)

in the not commuting powerseries of A and B and with the Lie-bracket

[A,B] := AB−BA, (3.9)

which will also sometimes be reffered as commutator of A and B, gives an free
Lie algebra. The representation in the Lyndon–Shirshov basis [3] of the free Lie
algebra generated by A and B yield non-redundant order conditions. To compare
to methods of the same order, one considers the leading error term (3.6) of the
local error representation,

hp+1

(p+1)!
dp+1

dhp+1 L (0) =
lp+1

∑
k=1

κp+1,kKp+1,k, (3.10)

with lp+1 commutators Kp+1,k of order p+1,and computes

(
lp+1

∑
k=1
|κp+1,k|2

) 1
2

. (3.11)

or, in fact easier to compute and local error measure (LEM)

LEM :=

(
lp+1

∑
k=1
|λp+1,k|2

) 1
2

. (3.12)

The λp+1,k are the coefficients generated for the order condition for p+1. Because
the LEM varies over several orders of magnitudes (3.11) and (3.12) are equally
reasonable; See [9] for details.

3.0.1 Solving order conditions
The number of order conditions grows exponentially, with the number of stages.
Higher order schemes found at [5] are numeric solutions to the order conditions
and than refined with software floats and Newton method to full double precision.
If the number of coefficients is larger than the number of equations the LEM
(3.12) is minimized using state of the art solvers or plain Monte Carlo simulation,
though the minimum given by the Monte Carlo search is not guaranteed to be the

11

global minimum. An alternative is to reduce the number of order condition by
considering special symmetries. For example one considers symmetric schemes,

a j = as+1− j and b j = bs− j, with bs = 0, (3.13)

which are a standard choice for long time integration. Another possibility is to
exchange the roles of A and B, leading to reflected coefficients,

a j = bs+1− j and b j = as+1− j, (3.14)

or so-called palindromic schemes.

12

Chapter 4

Local Error Estimators

In this chapter various asymptotically correct local error estimators will be pro-
posed. The local error estimator is denoted by

P(h,u)≈L (h,u), (4.1)

which has the same order as the local error and P(h,u)−L (h,u) = O(hp+2).
The estimate will be used to adapt the step size.

4.1 Defect based
In [4, 6, 7, 8], asymptotically correct local error estimators based on the defect
which is defined by plugging the splitting operator S into (2.1)

D(h,u) =
d

dh
S (h,u)−FS (h,u), (4.2)

have been constructed and analysed. This idea is based on the integral representa-
tion

L (h,u) =
∫ h

0
∂2EF(h− τ,S (τ,u))D(τ,u)︸ ︷︷ ︸

=:`(τ)

dτ, (4.3)

The notation for the Fréchet derivative of the flux EF(h,u) is, ∂2EF(h,u) . One
can verify by repeating differentiation and evaluation for h = 0 that for a scheme
of order p≥ 1 it is equivalent that

0 =
d

dh
L (0,u) =

d2

dh2 L (0,u) = . . .=
dp

dhp L (0,u) (4.4)

⇔ 0 = D(0,u) =
d
dh

D(0,u) = . . .=
dp−1

dhp−1 D(0,u) (4.5)

13

I.e. the validity of the p-th order conditions guarantees that the first p− 1
derivatives of D vanish at t = 0. By Taylor expansion of (4.3) and ignoring higher
order terms ,

L (h,u) =
∫ h

0
l(τ)dτ ≈

∫ h

0

τ p

p!
`(p)(0)dτ =

τ p+1

(p+1)!
`(p)(0). (4.6)

The notation ≈ stands for asymptotic equivalence. Reversing the Taylor expan-
sion gives,

τ p+1

(p+1)!
`(p)(0)≈ h

p+1
`(h) =

h
p+1

D(h,u). (4.7)

This leads to a local error estimator involving a single evaluation of the defect,

P(h,u) = h
p+1D(h,u) ≈ L (h,u) . (4.8)

This algorithm works generally for splittings of any order into an arbitrary number
of operators if Fréchet derivatives of the subflows are available, see [3].

4.1.1 Efficient evaluation of the defect
The defect can be computed simultaneously with the the update of the solution u.
Considering a scheme S with s stages and let d = D(h,u). Hence algorithms for
splitting in 2 , 3 and n operators are given, which can be easily deduced from [8].
Splitting into two operators gives equation (2.3). The sub flows of the operators
are given by EA and EB.

d = 0
for k = 1 : s

d = d +akA(u)
d = ∂2EA(akh,u) ·d
u = EA(akh,u)
d = ∂2EB(bkh,u) ·d
u = EB(bkh,u)

d = d +

{
bkB(u), k < s
(bk−1)B(u), k = s

end
d = d−A(u)

In case of splitting (2.1) into three operators,

∂tu(t) = F(u(t)) = A(u(t))+B(u(t))+C(u(t)), t ≥ 0. (4.9)

14

The coefficients of splitting scheme are named a j,b j and c j with respect to the
name of their operator.

d = 0
for k = 1 : s

d = d +akA(u)
d = ∂2EA(akh,u) ·d
u = EA(akh,u)
d = d +bkB(u)
d = ∂2EB(bkh,u) ·d
u = EB(bkh,u)
d = ∂2EC(ckh,u) ·d
u = EC(ckh,u)

d = d +

{
ckC(u), k < s
(ck−1)C(u), k = s

end
d = d−A(u)−B(u)

The general case using n operators (2.1) yields,

∂tu(t) = F(u(t)) = A1(u(t))+A2(u(t))+ · · ·+An(u(t)), t ≥ 0. (4.10)

One may already guessed the algorithm, but here it is anyway

d = 0
for k = 1 : s

for j = 1 : n−1
d = d +a jkA j(u)
d = ∂2EA j(a jkh,u) ·d
u = EA j(a jkh,u)

end
d = ∂2EAn(ankh,u) ·d
u = EAn(ankh,u)

d = d +

{
ankAn(u), k < s
(ank−1)An(u), k = s

end

d = d−
n−1

∑
j=1

A j(u)

15

4.2 Embedded formulae
Consider a pair of two schemes with orders p, and p+1. The scheme S of order
p is called the worker, which propagates the solution in time and the scheme Ŝ
of order p+ 1 is the controller. An estimate for the local error is given by the
distance between the solutions of the different schemes.

P(h,u) = S (h,u)− Ŝ (h,u)≈L (h,u) (4.11)

For computational efficiency it is desired that most parts of the computation from
the worker can be reused for the controller. To setup those pairs choose first an
efficient controller of order p + 1 and ŝ stages. Denote the coefficients of the
controller Ŝ as â1, â2, . . . , âŝ and b̂1, b̂2, . . . , b̂ŝ. The worker is only a scheme of
order p and therefore does not need to fulfill as many order conditions. This
makes it possible to choose the worker S to have s ≤ ŝ stages and coefficients
a1,a2, . . . ,as and b1,b2, . . . ,bs where ai = âi and bi = b̂i for the first k coefficients
of the scheme. In [9], it is described how to choose a ’good’ S from a set of
possible candidates.

4.3 Palindromic schemes
The local error estimator is based on the adjoint scheme S ∗ of S which is satis-
fies,

S ∗(h,u) = S −1(−h,u). (4.12)

The leading error term of S and its adjoint S ∗ are identical up to the factor (−1)p

see [9] and [14],

L (h,u) = C(u)hp+1 +O(hp+2), (4.13)

L ∗(h,u) = (−1)pC(u)hp+1 +O(hp+2), (4.14)

If p is odd, the averaged scheme

S (h,u) =
1
2
(S (h,u)+S ∗(h,u)), (4.15)

is of order p+ 1. The local error estimator is, defined in the same way as for an
embedded pair

P(h,u) = S (h,u)−S (h,u) =
1
2
(S (h,u)−S ∗(h,u)). (4.16)

16

Palindromic schemes, or ‘reflected schemes’ first proposed in [9] in the ter-
minology of [3], are characterized by b j = as+1− j, j = 1, · · · ,s, i.e.,

(a1,b1,a2,b2, . . . ,as−1,bs−1,as,bs)

= (a1,as,a2,as−1, . . . ,as−1,a2,as,a1).
(4.17)

Assume a scheme of order p is given, and consider a single splitting step of the
form (2.4). Swapping the roles of A and B, i.e., replacing (2.4) by

Ŝ (h,u) = Ŝs(h,Ŝs−1(h, . . . ,Ŝ1(h,u))), (4.18a)

with
Ŝ j(h,v) = EA(b j h,EB(a j h,v)), (4.18b)

also results in a scheme of order p, because no special information about the
nature of A or B enters the order conditions. If S is palindromic then

S (−h,Ŝ (h,u)) = u, which gives Ŝ (h,u) = S ∗(h,u). (4.19)

The computational costs for the local error estimator are the same as for the basic
integrator. Palindromic schemes are not only interesting because, as stated in 3.0.1
the number of order condition is lower, but also because [9] discovered that they
tend to have minimal LEMs among sets of equally costly schemes. The reason for
this is not know, but would be interesting for further investigations.

4.4 MilneDevice
Consider two schemes (S ,Ŝ) [9], with the same order p and s stages. Now let
the local errors L ,L̂ be related via

L (h,u) = C(u)hp+1 +O(hp+2) (4.20a)
L̂ (h,u) = γ C(u)hp+1 +O(hp+2) (4.20b)

with γ 6= 1. The additive scheme

S (h,u) =− γ

1− γ
S (h,u)+

1
1− γ

Ŝ (h,u) (4.21)

is of order p+1, and a local error estimator is given by

P(h,u) = S (h,u)−S (h,u) =− 1
1− γ

(S (h,u)− Ŝ (h,u)). (4.22)

This is more general than Section 4.3, on the other hand, the construction works
in practice only for lower-order schemes, because (4.20b) , (4.20b) is a rather
restrictive requirement, which corresponds to γ =−1

17

4.5 Time-adaptive strategies
After estimating the local error (4.1) P(h,u), it is used to choose the step size
h. Given a local error tolerance TOL, one may want to maximize step size h.
The following formula is used to estimate the optimal step size for the next step
(see [15, 22]).

h = h0 min

{
αmax,max

{
αmin,α

(
TOL

P(h0,u)

) 1
p+1
}}

(4.23)

The notation h0 is used for the step size currently used. The parameters αmin
and αmax limit the change rate of the step size, α is a safety factor to reduce
overestimating the step size due to numerical errors. If the estimated error is
larger than the given tolerance the step is rejected and a new guess is made with
the previously estimated error. In the test the parameters were chosen as,

α = 0.9, αmin = 0.25, αmax = 4.0. (4.24)

More advanced algorithms, e.g. combining the last two step sizes (h0,h−1) and
estimated errors (4.25) to predict the step size have been investigated but did not
show a significant change in efficiency or number of rejected steps.

h= h0 min

αmax,max

αmin,α

(
TOL

P(h0,u)

) β1
p+1
(

TOL
P(h−1,u)

) β2
p+1
(

h0

h−1

)−α1

(4.25)
with

α = 1.0, αmin = 0.25, αmax = 4.0 and α1 = β1 = β2 = 0.25. (4.26)

18

Chapter 5

Commutator free exponential Time
propagators / Magnus

For a non-autonomous linear system of differential equations

d
dt

u(t) = A(t)u(t), t ∈ [t0, tend], u(t0) = u0 given, (5.1)

the formal representation of the solution is given by the Magnus expansion [14],

u(tn + τn) =eΩ(tn+τn)u(tn), tn, tn + τn ∈ [t0, tend] (5.2)

Ω(tn + τn) =
∫ tn+τn

tn
A(σ)dσ +

1
2

∫ tn+τn

tn

∫
σ1

tn
[A(σ1),A(σ2)]dσ2dσ1+ (5.3)

1
6

∫ tn+τn

tn

∫
σ1

tn

∫
σ2

tn
[[A(σ1),A(σ2)],A(σ3)]+ [A(σ1), [A(σ2),A(σ3)]]dσ3dσ2dσ1 + . . .

This has been extensively studied in the literature.

5.1 Magnus-type integrators
Truncation of the infinite sum (5.3) and suitable quadrature of the integrals gives
the class of Magnus-type integrators,

eΩ(tn+τn) ≈ eΩn . (5.4)

Second-order Magnus-type integrator (exponential midpoint scheme)

Ωn ≈ τnA
(

tn +
τn

2

)
(5.5)

19

Fourth-order Magnus-type integrator

Ωn ≈
1
6

τn

(
A(τn)+4A

(
tn +

τn

2

)
+A(tn + τn)

)
− 1

12
τ

2
n [A(tn),A(tn + τn)] (5.6)

For higher order one gets nasty commutators expressions which may alter the
structure of the matrix. This leads to the following alternative approach.

5.2 Commutator free Magnus integrators
To avoid the computational costs of the commutators, commutator free exponen-
tial time integrators were proposed [1, 2]. They are constructed as compositions
of matrix exponentials of linear combinations of A evaluated at certain times. The
scheme is characterized by the order p, the number of evaluation points (nodes)
K of A and the number of matrix exponentials J. Therefore we have the vector

c =

c1
...

cK

 ∈ RK of evaluation points and the matrix a =

a11 . . . a1K
...

aJ1 . . . aJK

 ∈ RJ×K

with the corresponding coefficients.
One step with Magnus form un ≈ u(tn) to un+1 with stepsize τn

un+1 = Stn(τ)un

Stn(τ) = eΩn = eτBJ(tn,τ) · · ·eτB1(tn,τ)

B j(tn,τ) = a j1A(tn + c1τ)+ · · ·+a jKA(tn + cKτ), j ∈ {1, . . . ,J}

From now on assume tn = 0, to shorten the notation.

5.2.1 Local error and defect. Order conditions and defect based
local error estimate

The main idea is the same as for splitting, see also (2.5) for the local error, (4.2)
for the defect and (4.8) for the local error estimator. The local error and defect are
now defined by,

L (τ) = S (τ)−E (τ), (5.7)

D(τ) =
d

dτ
S (τ)−A(t0 + τ)S (τ), (5.8)

with the exact flow E associated with the given equation (5.1). The local error
satisfies

d
dτ

L (τ) = A(τ)L (τ)+D(τ) , (5.9)

20

and

L (τ) =
∫

τ

0
Π(τ,σ)D(σ)dσ , with Π(τ,σ) = E (τ)E (−σ) . (5.10)

A scheme of order p is characterized by the property as stated before in (3.5)
L (τ) = O(τ p+1), or equivalently L (0) = 0 and

dq

dτq L (τ)
∣∣
τ=0 = 0 , q = 1, · · · , p . (5.11a)

Since from (3.7) and (5.8) we inductively obtain

dq

dτq L (τ) =
q−1

∑
k=0

(q−1
k

) dq−1−k

dτq−1−k A(τ) dk

dτk L
(k)(τ)+ dq−1

dτq−1 D(τ) ,

and as for the splitting case order conditions (5.11a) are equivalent to

dq−1

dτq−1 D(τ)
∣∣
τ=0 = 0 , q = 1, · · · , p , (5.11b)

and a scheme of order p is characterized by

D(τ) = O(τ p) . (5.11c)

To compute the defect (5.8) for this step one must be able to evaluate

d
dτ

S (τ) =

(
d

dτ
eτBJ(τ)

)
eτBJ−1(τ) · · ·eτB1(τ)+ · · ·+ (5.12)

+ eτBJ(τ) · · ·eτB2(τ)

(
d

dτ
eτB1(τ)

)
(5.13)

d
dτ

eτB j(τ) =
∞

∑
m=0

1
(m+1)!

adm
Ω j(τ)

(
Ω
′
j(τ)
)

eτB j(τ). (5.14)

with the notation

Ω j(τ) = τB j(τ),

Ω
′
j(τ) = B j(τ)+ τB′j(τ),

B′j(τ) = a j1c1A′(c1τ)+ · · ·+a jKcKA′(cKτ),

ad j
Ω
(X) = [Ω,ad j−1

Ω
(X)], j ≥ 1, (5.15)

ad0
Ω(X) = X . (5.16)

It is not possible to compute the infinite sum (5.14), since we only consider a
method of order p, the sum is truncated,

d
dτ

eτB1(τ) ≈
p−1

∑
m=0

1
(m+1)!

adm
Ω j(τ)

(
Ω
′
j(τ)
)

eτB j(τ). (5.17)

21

5.2.2 Efficient evaluation of the defect
For commutator free Magnus integrators it is also possible to evaluate the defect
parallel to the propagtaion of the basic solution see 4.1.1 for the splitting case.
The notation stays the same, d = D(τ). The main computational effort is the
evaluation of the matrix exponentials in (5.20) and (5.21).

for j = 1 : J

B =
K

∑
k=1

a j,kA(ckτ) (5.18)

Bt =
K

∑
k=1

cka j,kAt(ckτ) (5.19)

u = eτBu (5.20)

d =

p−1
∑

m=1

1
(m+1)!adm

τB(B+ τBt)u, j = 1

d + eτBd +
p−1
∑

m=1

1
(m+1)!adm

τB(B+ τBt)u, j > 1
(5.21)

end
d = d−A(τ)u (5.22)

Define At := d
dt A(t). The sum over the commutators (5.15) in the update of the

defect is implemented using only matrix vector multiplications. There might be
some potential to optimize it, since commutators may be bad for numeric evalua-
tion.

5.3 Splitting off the time variable “ freezing ”
To remove the time dependence of the system matrix A(t) from (5.1), one can also
use a splitting approach. A new variable v is introduced, which will represent time
and giving the autonomous system,

d
dt

u(t) = A(v)u(t), (5.23a)

d
dt

v(t) = 1, (5.23b)

or equivalently,

d
dt

(
u(t)
v(t)

)
=

(
A(v) 0

0 0

)
︸ ︷︷ ︸

B

(
u(t)
v(t)

)
+

(
0
1

)
︸︷︷︸

A

, (5.24)

22

with initial condition (u0, t0)T). The splitting operators in this section will be
written as A ,B as A is already used for the system matrix. Splitting the right hand
side in A (u,v) = (0,1)T and B(u,v) = (A(v)u,0)T simplifies the computation,
because now the matrix for the exponential is time independent. For this kind of
splitting where one of the operators is simple like A it might be interesting to find
optimized schemes, which exploit the special structure of A .

Every splitting scheme with s stages applied to (5.1), may also be interpreted
as a commutator free Magnus integrator (CFMI) from Section 5.2 with s = K = J
and

c =

(
a1,a1 +a2, . . . ,

s

∑
i=0

ai

)T

and a = diag(b1, . . . ,bs). (5.25)

As an example for the splitting scheme Strang p = s = 2 with coefficients a1 =
a2 =

1
2 and b1 = 1,b2 = 0 (5.25) yields

c =
(

1
2
,1
)T

and a = diag(1,0). (5.26)

This simplifies to c =
(1

2

)
and a = (1), which is the same as exponential midpoint

rule in (5.5) further named Magnus2. To proof that one can always interpret a
CFMI as a splitting scheme may be more difficult. This is an interesting question
for further investigations.

5.3.1 Solution
We note the initial value of (u,v)T = (u0,v0)

T . For operator A the exact solution
is (

u(t)
v(t)

)
=

(
u0

v0 + t

)
, (5.27)

therefore for the evaluation of the defect based error estimator from Section 4.1
one needs,

∂2EA

(
t,
(

u
v

))
= Id. (5.28)

For operator B the solution is(
u(t)
v(t)

)
= exp

(
t
(

A(v) 0
0 0

))(
u0
v0

)
=

(
exp(tA(v))u0

v0

)
, (5.29)

and for the defect based error estimator

∂2EB

(
t,
(

u
v

))
=

(
exp(tA(v)) ∂

∂v exp(tA(v))u
0 1

)
, (5.30)

23

with differential of the matrix exponential

∂

∂v
exp(tA(v))u =

∞

∑
m=0

1
(m+1)!

adm
tA(v)

(
t

∂

∂v
A(v)

)
exp(tA(v))u. (5.31)

The infinite sum will be approximated as in (5.17) by a partial sum up to m= p−1
if p is the order of the scheme.

24

Chapter 6

Examples and Results

6.1 Methods used

6.1.1 Magnus
The Magnus schemes are named Magnus where as the first number afterwards
gives the order of the scheme. Magnus2 Magnus4 are schemes with the mini-
mal number of matrix exponentials for their order. For the Magnus4Optimized
scheme, the local error constant is smaller at cost of an additional matrix expo-
nential, The coefficients for this three are taken from [2]. The two sixth order
schemes Magnus6_4 and Magnus6_6 which were also considered, are taken from
[1]. The number of matrix exponentials can be found in Table 6.3.

6.1.2 Splitting
The splitting schemes used in the comparisons are all from [5] as mentioned ear-
lier in Section 2. Embedded splitting pairs of order p are named with the pattern
“EMB p+1/p ... ”. Similar Palindromic schemes are named in the manner of
“PP p/p+1 ... ” and Milne pairs have some where the string “milne ” inside
the name. If the coefficients are complex “ c ” will be the last character in the
name. The additional tag “ D ” is added when the defect based error estimator
from Section 4.1 is used with the splitting scheme.

6.1.3 Hardware
The computations where done on a PC running Ubuntu 16.04 with an Intel(R) Core(TM) i7-
2600 CPU @3.4 GHz (4 cores) and 16 GB ram. The Julia language is still in
development, the provided code was written in Julia version v0.5 .

25

6.2 Solar cells: Application of splitting and Magnus-
type integrators

Modeling oxide solar cells physicist get a time-dependent Hermitian matrix

H : R→ Cd×d (6.1)

to describe the movement and interaction of electrons within a Hubbard-type
model in solid state physics. The explicit time-dependency originates from an ex-
ternal electric field associated with a photon. The matrix H is Hermitian, though
formulating the equation like 5.1 we get

d
dt

u(t) = A(t)u(t) =−iH(t)u(t), t ∈ [t0, tend], u(t0) = u0 given, (6.2)

with A(t) is anti-Hermitian, which means ai j =−a ji.
Section 6.2.3 discusses the simple case with 2 electrons, and Section 6.2.4 the

more complex case with 8 electrons in a line.

6.2.1 Implementation
The implementation is done in Julia [11] a high-level, high-performance dynamic
programming language for technical computing. In Julia you are able to call
Python and C code directly, which enables you to acces lots of software libraries
directly. The code is setup in such a way that one can easily change the scheme.
The main computational effort lies in the evaluation of the matrix exponentials.

6.2.2 Matrix exponential
The system Matrix in 6.2.3 has only dimension 4, for witch the native impleman-
tion in julia is used. In the physically interesting cases ,the system matrix A(t)
is a large sparse matrix. The system in 6.2.4 roughly about 0.2% of the 49002

elements are non zero. Expokit [24] is used to compute the matrix exponential.
Expokit evaluates etAu without computing the exponential itself. Expokit is writ-
ten in FORTRAN, that means a wrapper for the code is needed. H. Hofstätter
provided the interface to call Expokit directly from Julia. We choose Expokit over
the native implementation, because its enormous performance increase for sparse
matrices of about 5700 compared to the native implementation of expm in Ju-
lia, see Table 6.2. This allows to complete the computations in an adequate time.
Also in the full case the performance increase is significant as Table 6.1 reports. In
those Tables "time" means the time to compute the matrix exponential of either a
random matrix in C4900×4900 or (6.6) and apply it to a vector in C4900 measured in

26

seconds. "err" is the L2 norm of the difference between initial data and computing
one step forward and backward with step size h = 0.1 The native implemantion
in julia relies on the scaling and squaring algorithm from [16] to compute first the
exponential and then uses a matrix vector multiplication.

time error
Julia’s expm 95.965 1.711e-15

Expokit 1.022 2.984e-08

Table 6.1: full matrix (n = 4900)

time error
Julia’s expm 130.001 2.002e-15

Expokit 0.022 2.184e-09

Table 6.2: sparse matrix (n = 4900)

From Tables 6.1 and Table 6.2 one can easily see the major disadvantage of
Expokit, it is that it can only guarantee accuracy of

√
eps, where eps≈ 1e−16 is

the machine epsilon. This demands further investigations to improve this.
As stated before in 6.2.1 the main computational effort goes into the computa-

tion of the matrix exponentials. That means for the splitting schemes A and B are
chosen that the number of matrix exponentials is minimal. Following Table 6.3
shows how many times the matrix exponential has to be computed per step. The
Magnus schemes are from [1, 2] and the others from [5]. The error estimator for
Magnus schemes is always the defect based one, which generally takes 2s− 1
evaluations. One may determine that for embedded schemes the additional evalu-
ations for the error estimator are smaller than for the defect based ones.

6.2.3 Results (2 electrons)
In this simple case, for 2 electrons and 2 states the Hamiltonian H ∈ C4×4 reads,

H(t) =

v11 + v22 −v12(t) −v21(t) 0
−v12(t)∗ 2v11 +U 0 v21(t)
−v21(t)∗ 0 2v22 +U v12(t)

0 v21(t)∗ v12(t)∗ v11 + v22

* . . . complex comjungate.

27

Method # matrix exponentials # matrix exponentials
without errorestimator with errorestimator

Magnus2 1 1
Magnus4 2 3

Magnus4Optimized 3 5
Magnus6_4 4 7
Magnus6_6 6 11

BM 11-6 PRK D 10 19
A 10-6 D 9 17

Symm-Milne-32 2 4
EMB 4/3 AK p 5 8
EMB 4/3 M/AK 5 7

EMB 5/4 AK (ii) 8 11
EMB 4/3 AK s 5 7

PP 3/4 A 3 6
PP 5/6 A 8 16

Table 6.3: Number of matrix exponential computed per step.

The initial condition is choosen u0 = (1,0,0,0)T and the other parameters are
given by,

v11 = 0, v22 = 1, v12(t) = eiω(t), v21(t) = e−iω(t), (6.3a)

ω(t) =
1
10

e−
1
6 (t−6)2

cos
(

7π

4
(t−6)

)
and U = 3. (6.3b)

The interesting time for this simulation is between t0 = 0.0 and tend = 8.0.

Reference solution

Starting with a step size of t0 − tend the step size is halved every iteration, as
long as the distance between the solution at tend and the one computed with the
previous step size is decreasing. For this purpose PP 3/4 A was used. It took
15 refinements to the final step size, 2.441e− 04 with the minimal distance of
1.735e−12 to the previously computed one. Also a the values of the solution at
t0+(tend− t0) ·2−i, i ∈ 1,2, . . . ,15 are computed to be used as a reference solution
for estimating the local error and its orders. The following tables show the results.

28

Tables

First we present some tables to show general, that the schemes have the predicted
order. Then second order methods are compared to determine their efficiency and
later on 4-th order methods are compared.

• Tables 6.4 and 6.5 show the global error at the end of the integration interval.
The used step size is in the column h, err is the L2 norm of the error and p is
the experimental order, which is computed by the logarithm of the quotient
from the error of two consecutive step sizes.

h err p
1 8.000e+00 1.030e−01
2 4.000e+00 1.328e−01 −0.37
3 2.000e+00 1.179e−01 0.17
4 1.000e+00 8.571e−02 0.46
5 5.000e−01 3.764e−02 1.19
6 2.500e−01 8.160e−03 2.21
7 1.250e−01 2.065e−03 1.98
8 6.250e−02 5.180e−04 2.00
9 3.125e−02 1.296e−04 2.00

10 1.563e−02 3.241e−05 2.00
11 7.813e−03 8.103e−06 2.00
12 3.906e−03 2.026e−06 2.00
13 1.953e−03 5.064e−07 2.00
14 9.766e−04 1.266e−07 2.00
15 4.883e−04 3.165e−08 2.00
16 2.441e−04 7.914e−09 2.00

Table 6.4: Global Error at t = 8.0; Magnus2

29

h err p
1 8.000e+00 9.939e−02
2 4.000e+00 1.209e−01 −0.28
3 2.000e+00 1.043e−01 0.21
4 1.000e+00 4.252e−02 1.29
5 5.000e−01 7.685e−03 2.47
6 2.500e−01 2.362e−03 1.70
7 1.250e−01 5.951e−04 1.99
8 6.250e−02 1.490e−04 2.00
9 3.125e−02 3.728e−05 2.00

10 1.563e−02 9.320e−06 2.00
11 7.813e−03 2.330e−06 2.00
12 3.906e−03 5.825e−07 2.00
13 1.953e−03 1.456e−07 2.00
14 9.766e−04 3.641e−08 2.00
15 4.883e−04 9.103e−09 2.00
16 2.441e−04 2.277e−09 2.00

Table 6.5: Global Error at t = 8.0; Symm-Milne-32

• In Table 6.6 the properties of the local error can be seen. Collumn err1
shows the local error in L2 norm and err2 the error of the defect based error
estimator also in the L2 norm, which is the same as the error of the by the
error estimator corrected solution. The orders are the ones one would expect
for Strang p = 2, p+1 and p+2.

30

h err1 p1 err2 p2
1 8.000e+00 1.030e−01 5.653e+01
2 4.000e+00 2.357e−02 2.13 2.407e−01 7.88
3 2.000e+00 2.372e−03 3.31 1.601e−02 3.91
4 1.000e+00 4.896e−04 2.28 1.313e−03 3.61
5 5.000e−01 6.205e−05 2.98 8.883e−05 3.89
6 2.500e−01 9.476e−06 2.71 7.760e−06 3.52
7 1.250e−01 1.202e−06 2.98 4.605e−07 4.07
8 6.250e−02 1.495e−07 3.01 2.654e−08 4.12
9 3.125e−02 1.856e−08 3.01 1.572e−09 4.08

10 1.563e−02 2.307e−09 3.01 9.534e−11 4.04
11 7.813e−03 2.875e−10 3.00 5.865e−12 4.02
12 3.906e−03 3.588e−11 3.00 3.636e−13 4.01
13 1.953e−03 4.481e−12 3.00 2.273e−14 4.00
14 9.766e−04 5.599e−13 3.00 1.516e−15 3.91
15 4.883e−04 6.998e−14 3.00 1.415e−16 3.42
16 2.441e−04 8.749e−15 3.00 2.221e−16 −0.65
17 1.221e−04 1.099e−15 2.99 1.110e−16 1.00

Table 6.6: Local error and error of the defect based error estimator for Magnus2

• In Table 6.7 the Methods Magnus2 and Magnus2 are compared, using equidis-
tant time stepping for different step sizes. It is shown that Magnus2 is ap-
proximately twice as fast as Symm-Milne-32, because as stated in 6.3 the
number of matrix exponentials is twice. The time is averaged over 100
runs and the unit is in seconds. The error for Symm-Milne-32 is much
smaller for the same step size, because of a much smaller local error con-
stant, Symm-Milne-32 has 0.05 and Magnus2 has 0.6.

31

Method h err time
Magnus2 1e−01 1.324e−03 0.005

Symm-Milne-32 1e−01 3.812e−04 0.004
Magnus2 1e−02 1.328e−05 0.015

Symm-Milne-32 1e−02 3.818e−06 0.029
Magnus2 1e−03 1.328e−07 0.141

Symm-Milne-32 1e−03 3.818e−08 0.277
Magnus2 1e−04 1.335e−09 1.383

Symm-Milne-32 1e−04 3.889e−10 2.785

Table 6.7: Global error at t = 8.0 for equidistant time-stepping, various stepsizes

• The costs for the error estimator vary significantly as Table 6.8 shows. For
Magnus2 there is no additional matrix exponential to be evaluated, whereas
the error estimator for Symm-Milne-32 is as expensive as the basic integra-
tor.

Method 10000 steps without err est 10000 steps with err est
Magnus2 0.175 0.300

Symm-Milne-32 0.345 0.728

Table 6.8: Effort for the error estimator

• To determine if adaptive step size selection is faster than without, Table 6.9
shows that for Magnus2 it is a draw, but for Symm-Milne-32 it is definitely
not. It uses about half the steps as needed for Magnus2. The columns "#
steps adap" and "# steps equi" give the number of computed time steps, for
the adaptive time stepping and the equidistant time stepping. The last two
columns "time adap" and "time equi" show the computation time measured
in seconds for both variants.

32

Method # steps adap # steps equi time adap time equi

TOL = 10−8

Magnus2 1613 2487 0.046 0.046
Symm-Milne-32 757 1195 0.059 0.044

TOL = 10−10

Magnus2 7490 11544 0.204 0.204
Symm-Milne-32 3515 5523 0.259 0.194

TOL = 10−12

Magnus2 34772 53581 0.947 0.986
Symm-Milne-32 16322 25637 1.189 1.036

Table 6.9: Comparison of the efficiency of Strang (Magnus2) and
Symm-Milne-32. The tolerances were 10−8 (top), 10−10 (middle) and 10−12 (bot-
tom), respectively. For equidistant time the minimal stepsize was used

• In Table 6.10 it is shown that Magnus4Optimized has the lowest error con-
stant and Magnus4 is the fastest. Step sizes for this methods smaller than
10−3 seem not to be beneficial as the global error increases again due to the
effect of rounding error.

33

Method h err time
Magnus4 1e−01 3.300e−06 0.004

Magnus4Optimized 1e−01 1.525e−07 0.006
EMB 4/3 AK s 1e−01 3.395e−06 0.009
EMB 4/3 M/AK 1e−01 8.947e−07 0.010

Magnus4 1e−02 3.336e−10 0.035
Magnus4Optimized 1e−02 1.478e−11 0.057

EMB 4/3 AK s 1e−02 3.424e−10 0.075
EMB 4/3 M/AK 1e−02 9.100e−11 0.079

Magnus4 1e−03 3.317e−12 0.369
Magnus4Optimized 1e−03 3.125e−12 0.609

EMB 4/3 AK s 1e−03 7.132e−12 0.663
EMB 4/3 M/AK 1e−03 4.356e−12 0.840

Magnus4 1e−04 9.105e−12 3.832
Magnus4Optimized 1e−04 2.192e−11 5.944

EMB 4/3 AK s 1e−04 3.859e−11 5.734
EMB 4/3 M/AK 1e−04 2.683e−11 7.007

Table 6.10: Global error at t = 8.0 for equidistant time-stepping, various stepsizes

• To compare the efficiency of the error estimator look at Tabel 6.11, where
you can see that the defect based error estimator for the Magnus schemes
cost more than the basic integrator itself, for the embedded splitting scheme
the cost for the error estimator are only 40% of the basic integrator.

Method 10000 steps without err est 10000 steps with err est
Magnus4 0.384 0.842

Magnus4Optimized 0.616 1.579
EMB 5/4 AK (ii) 1.369 1.911

Table 6.11: Effort for the error estimator

• Table 6.12 shows that for all Magnus schemes the adaptive time step selec-
tion is slower than computing with a fixed step size. The EMB 5/4 AK (ii)
is for larger tolerances slightly better, and for smaller tolerances it could be
called a tie. The fasted method over all is the Magnus4Optimized, which
also needs fewest steps. The number of rejected steps (not displayed) is up
to 4 because in the beginning the initial step size given was to big.

34

Method # steps adap # steps equi time adap time equi

TOL = 10−8

Magnus4 175 233 0.045 0.020
Magnus4Optimized 74 99 0.036 0.008
EMB 5/4 AK (ii) 93 128 0.024 0.033

TOL = 10−10

Magnus4 440 585 0.086 0.023
Magnus4Optimized 172 240 0.033 0.014
EMB 5/4 AK (ii) 227 321 0.053 0.045

TOL = 10−12

Magnus4 1105 1469 0.098 0.057
Magnus4Optimized 422 599 0.070 0.037
EMB 5/4 AK (ii) 562 807 0.115 0.112

Table 6.12: Comparison of the efficiency of Magnus4, Magnus4Optimized and
Emb 5/4 AK (ii) The tolerances were 10−8 (top), 10−10 (middle) and 10−12

(bottom), respectively. For equidistant time the minimal stepsize was used

6.2.4 Results (8 electrons)
Now for 8 electrons in a line the system matrix H ∈ C4900×4900 is given by fol-
lowing definition,

f (t) = cos

(
ae

(
−(t−t0)

2)
2σ2

)
(cos(ω(t− t0))− cos(ω(−t0))

)
−1 (6.4)

g(t) = sin

(
ae

(
−(t−t0)

2

2σ2

)
(cos(ω(t− t0))− cos(ω(−t0))

)
(6.5)

H(t) = Hdiag +Hoff1 + f (t) ·Hoff1 + i ·g(t) ·Hoff2 (6.6)

where Hdiag is a diagonal matrix Hoff1 is symmetric and Hoff2 is skew symmetric.
As a result H(t) is also hermitian. The scalar parameters for f and g are given by,

U = 5, a = 2, ω = 7, t0 = 2, σ = 1. (6.7)

Reference Solution

Starting with a step size of t0−tend the step size is halved every iteration, as long as
the distance between the solution at tend and the one computed with the previous
step size is decreasing. In this case PP 56 A was used. It took 11 refinements

35

to the final step size, 7.813e− 3 with the minimal distance of 1.870e− 8 to the
previously computed one. Also a the values of the solution at t0 + (tend − t0) ·
2−i, i ∈ 1,2, . . . ,11 are computed to be used as a reference solution for estimating
the local error and its orders.

Tables

The tables in this section are similar to them shown in 6.2.3, but for a much larger
system. First there are some tables to show general that the splitting works, eq that
the schemes have the predicted order, than second order methods are compared to
determine their efficiency and later on 4-th order methods are compared.

• Tables 6.13, 6.14 and 6.15 show the global error, with respect to the refer-
ence solution at the end of the integration interval. The used step size is in
the column h, err is the error and p is the experimental order, which is com-
puted by the logarithm of the quotient from the error of two consecutive step
sizes. For Emb 5/4 A k (ii) the global order is barley visibly because
the step size region before the numerical rounding errors is very small.

h err p
1 8.000e+00 1.058e+00
2 4.000e+00 1.358e+00 −0.36
3 2.000e+00 1.167e+00 0.22
4 1.000e+00 1.407e+00 −0.27
5 5.000e−01 1.380e+00 0.03
6 2.500e−01 6.350e−01 1.12
7 1.250e−01 1.894e−01 1.75
8 6.250e−02 4.847e−02 1.97
9 3.125e−02 1.217e−02 1.99

10 1.563e−02 3.044e−03 2.00
11 7.813e−03 7.593e−04 2.00
12 3.906e−03 1.881e−04 2.01

Table 6.13: Global Error at t = 8.0; Magnus2

36

h err p
1 8.000e+00 1.417e+00
2 4.000e+00 1.276e+00 0.15
3 2.000e+00 1.405e+00 −0.14
4 1.000e+00 1.383e+00 0.02
5 5.000e−01 9.244e−01 0.58
6 2.500e−01 3.767e−01 1.30
7 1.250e−01 5.665e−02 2.73
8 6.250e−02 1.423e−02 1.99
9 3.125e−02 3.560e−03 2.00

10 1.563e−02 8.885e−04 2.00
11 7.813e−03 2.203e−04 2.01
12 3.906e−03 5.328e−05 2.05

Table 6.14: Global Error at t = 8.0; Symm-Milne-32

h err p
1 8.000e+00 1.082e+00
2 4.000e+00 1.458e+00 −0.43
3 2.000e+00 1.367e+00 0.09
4 1.000e+00 1.257e+00 0.12
5 5.000e−01 5.125e−01 1.29
6 2.500e−01 5.653e−02 3.18
7 1.250e−01 4.152e−04 7.09
8 6.250e−02 3.194e−05 3.70
9 3.125e−02 8.233e−06 1.96

10 1.563e−02 6.869e−06 0.26
11 7.813e−03 6.798e−06 0.02
12 3.906e−03 6.789e−06 0.00

Table 6.15: Global Error at t = 8.0; EMB 5/4 AK (ii)

• In Table 6.16 the properties of the local error can be seen. Collumn err1
shows the local error and err2 the error of the defect based error estimator,
which is the error of the by the error estimator corrected solution. The
orders are the ones one would expect for Strang p = 2, p+1 and p+2.

37

h err1 p1 err2 p2
1 8.000e+00 1.058e+00 1.666e+03
2 4.000e+00 1.368e+00 −0.37 1.007e+01 7.37
3 2.000e+00 1.379e+00 −0.01 8.609e+01 −3.10
4 1.000e+00 9.787e−01 0.49 9.053e+00 3.25
5 5.000e−01 2.639e−01 1.89 4.638e−01 4.29
6 2.500e−01 4.377e−02 2.59 5.061e−02 3.20
7 1.250e−01 6.941e−03 2.66 3.533e−03 3.84
8 6.250e−02 8.973e−04 2.95 2.139e−04 4.05
9 3.125e−02 1.110e−04 3.02 1.299e−05 4.04

10 1.563e−02 1.370e−05 3.02 7.990e−07 4.02
11 7.813e−03 1.699e−06 3.01 5.003e−08 4.00
12 3.906e−03 2.111e−07 3.01 3.971e−09 3.66

Table 6.16: Local error and error of the defect based error estimator for Magnus2

• In the Table 6.17 it is shown that Magnus2 is approximately twice as fast as
Symm-Milne-32, because as stated in 6.3 the number of matrix exponentials
is twice. The error for Symm-Milne-32 is much smaller for the same step
size.

Method h error time
Magnus2 1e−01 1.228e−01 1.931

Symm-Milne-32 1e−01 3.630e−02 3.741
Magnus2 1e−02 1.244e−03 18.223

Symm-Milne-32 1e−02 3.607e−04 36.254
Magnus2 1e−03 1.393e−05 184.817

Symm-Milne-32 1e−03 5.180e−06 363.343

Table 6.17: Global error at t = 8.0 for equidistant time-stepping, various stepsizes

• The costs for the error estimator vary dramatically as Table 6.18 shows. For
Magnus2 there is no additional matrix exponential to be evaluated, whereas
the error estimator for Symm-Milne-32 is as expensive as the basic integra-
tor.

38

Method 1000 steps without err est 1000 steps with err est
Magnus2 22.762 27.459

Symm-Milne-32 46.037 90.545

Table 6.18: Effort for the error estimator

• The main question is if the computation with error estimating and adap-
tive step size selection is faster than without. Table 6.19 gives the an-
swer for Magnus2 this is correct with an speed up of a factor 2, but for
Symm-Milne-32 it is not. It uses about half the steps as needed for Magnus2.

Method # steps adap # steps equi time adap time equi

TOL = 10−4

Magnus2 275 705 7.928 16.335
Symm-Milne-32 147 360 15.300 16.505

TOL = 10−6

Magnus2 1263 3269 35.013 74.313
Symm-Milne-32 618 1637 57.627 74.398

TOL = 10−8

Magnus2 5846 15166 161.191 345.653
Symm-Milne-32 2917 7701 280.121 352.199

Table 6.19: Comparison of the efficiency of Strang (Magnus2) and
Symm-Milne-32 The tolerances were 10−4 (top), 10−6 (middle) and 10−8 (bot-
tom), respectively. For equidistant time the minimal stepsize was used

• Figure 6.1 shows the adaptive chosen step size for Magnus2. If the step
size is chosen too small, in this case five orders of magnitude wrong, the
adaptive selection algorithm nearly instantly corrects this. The wrong initial
step size gives you a total of additional 9 steps to compute. The minimal
step size occurs around t = 2, because there the changes of the matrix are
the strongest in time.

39

Figure 6.1: Step size over time for Magnus2 with TOL = 10−8 with different initial
step sizes.

• In the Table 6.20 it is shown that Magnus4Optimized has the lowest error
constant and Magnus4 is the fastest, but due to the numerical inaccuracy all
compared methods have the same error for step sizes smaller than 0.01.

Method h err time
Magnus4 1e−01 5.469e−04 4.165

Magnus4Optimized 1e−01 4.153e−05 6.669
EMB 4/3 AK s 1e−01 4.626e−04 8.165
EMB 4/3 M/AK 1e−01 1.236e−04 9.376

Magnus4 1e−02 4.730e−06 40.363
Magnus4Optimized 1e−02 4.731e−06 66.643

EMB 4/3 AK s 1e−02 4.736e−06 74.517
EMB 4/3 M/AK 1e−02 4.774e−06 91.337

Magnus4 1e−03 1.587e−06 428.143
Magnus4Optimized 1e−03 1.638e−06 699.416

EMB 4/3 AK s 1e−03 1.582e−06 728.632
EMB 4/3 M/AK 1e−03 6.338e−06 909.764

Table 6.20: Global error at t = 8.0 for equidistant time-stepping, various stepsizes.

40

• Table 6.21 shows that for the Magnus-type schemes the evaluation of the
sum of commutators already has not negligible costs. The embedded scheme
proofs again the the costs of the error estimator are cheap compared to the
other methods.

Method 1000 steps without err est 1000 steps with err est
Magnus4 51.934 102.975

Magnus4Optimized 85.633 200.748
EMB 5/4 AK (ii) 177.413 244.238

Table 6.21: Effort for the error estimator

• Table 6.22 shows that for Magnus4 and EMB 5/4 AK (ii) it is a tie or
doing adaptive time stepping is slightly better. Though the fasted method
over all is the Magnus4Optimized. Also worth wile to mention is that for
tolerance 10−8 the number of steps used in EMB 5/4 AK (ii) is signifi-
cant higher than before, this is probably the result that the error estimator is
the difference of two solution, which are limited in their accuracy by

√
eps.

This leads to many rejections of steps. For the both Magnus schemes the
defect error estimator which is scaled by the step size still gives an accurate
estimate.

41

Method # steps adap # steps equi time adap time equi

TOL = 10−4

Magnus4 70 148 8.138 7.425
Magnus4Optimized 39 77 10.639 6.365
EMB 5/4 AK (ii) 35 67 15.556 13.181

TOL = 10−6

Magnus4 172 375 18.017 18.930
Magnus4Optimized 76 156 17.634 13.325
EMB 5/4 AK (ii) 84 167 27.678 29.217

TOL = 10−8

Magnus4 430 952 43.826 47.752
Magnus4Optimized 169 345 33.952 28.826
EMB 5/4 AK (ii) 658 1382 224.973 245.597

Table 6.22: Comparison of the efficiency of Magnus4, Magnus4Optimized and
Emb 5/4 AK (ii) The tolerances were 10−4 (top), 10−6 (middle) and 10−8 (bot-
tom), respectively. For equidistant time the minimal stepsize was used. Note that
for TOL=10−8 the accuracy of the matrix exponetial is the limiting factor.

6.3 Gray-Scott equation
As a parabolic example, we study the Gray-Scott system (see [13]) modeling
a two-component reaction-diffusion process, in two, x ∈ R2, or three, x ∈ R3,
dimensions

∂tu(x, t) = cu ∆u(x, t)−u(x, t)v2(x, t)+α(1−u(x, t)), (6.8a)

∂tv(x, t) = cv ∆v(x, t)+u(x, t)v2(x, t)−β v(x, t). (6.8b)

The nonlinear term describes the reaction u+ 2v→ 3v of two chemical compo-
nents which are described by (u(x, t),v(x, t)). α is the rate of fresh u added and β

is the amount of v removed. This has beed discussed in [10]. For this model it is
natural to have periodic boundary conditions. The system is a model for pattern
formation with dynamical behavior. Splitting only in two components (6.9) will
not allow to solve the nonlinear term B exactly,(

cu∆−α 0
0 cv∆−β

)
U(x, t)+

(
α

0

)
︸ ︷︷ ︸

=A

+

(
−u(x, t)v2(x, t)
u(x, t)v2(x, t)

)
︸ ︷︷ ︸

=B

. (6.9)

The implementation solves this by using numerical integration for, example a
Runge–Kutta integrator. In Table 6.23 the global error and experimental order

42

for Strang is shown.

h err p
1 1.000e+00 1.831e−03 1.77
2 5.000e−01 5.363e−04 1.94
3 2.500e−01 1.393e−04 1.98
4 1.250e−01 3.518e−05 1.99
5 6.250e−02 8.817e−06 1.99
6 3.125e−02 2.205e−06 1.99
7 1.563e−02 5.515e−07 1.99
8 7.813e−03 1.378e−07 2.00
9 3.906e−03 3.446e−08 2.00

10 1.953e−03 8.613e−09 2.00
11 9.765e−04 2.145e−09 2.04

Table 6.23: Global error at t = 1.0; Strang

Though splitting into 3 operators according to(
cu∆−α 0

0 cv∆−β

)
U(x, t)+

(
α

0

)
︸ ︷︷ ︸

=A

+

(
0

u(x, t)v2(x, t)

)
︸ ︷︷ ︸

=B

−
(

u(x, t)v2(x, t)
0

)
︸ ︷︷ ︸

=C

.

allows all the subflows to be integrated exactly, but the computation time is higher
[10]. For example compare Table 6.23 with 6.24, this shows that the error for
the same step size is approximately twice as big. This also corresponds to the
computed LEM see [5] for both of this schemes, the value of the LEM for Strang
is 0.6 and Strang ABC has LEM 1.5.

43

h err p
1 1.000e+00 3.401e−03 2.00
2 5.000e−01 8.502e−04 2.00
3 2.500e−01 2.125e−04 2.00
4 1.250e−01 5.313e−05 2.00
5 6.250e−02 1.328e−05 2.00
6 3.125e−02 3.321e−06 1.99
7 1.563e−02 8.302e−07 1.99
8 7.813e−03 2.075e−07 1.99
9 3.906e−03 5.189e−08 1.99

10 1.953e−03 1.297e−08 1.99
11 9.766e−04 3.250e−09 1.97

Table 6.24: Global error at t = 1.0; Strang ABC

See Table 6.25 where PP 3/4 A 3 c is the only ABC-splitting scheme. This
table also shows that a second order scheme needs a lot more steps than a third or-
der scheme. The fewest steps were made by the ABC-splitting scheme. The fastest
for the larger tolerance was the equidistant Emb 4/3 A c and for the smaller tol-
erance equidistant PP 3/4 A c. Time adaptivity is of no use in this simulation
as the solution has rapid changes all the time on different places, which will not
allow larger bigger step sizes in time.

Method # steps adap # steps equi time adap time equi

TOL = 10−5

Milne 2/2 c (i), 406 486 57.04 28.21
Emb 4/3 A c, 67 79 17.72 11.46
PP 3/4 A c, 116 135 23.02 12.99

PP 3/4 A 3 c, 65 67 26.74 13.23

TOL = 10−8

Milne 2/2 c (i), 4691 5625 878.72 503.93
Emb 4/3 A c, 516 612 174.30 128.19
PP 3/4 A c, 929 1107 195.87 106.79

PP 3/4 A 3 c, 555 645 244.41 138.38

Table 6.25: Comparison of the efficiency of Milne 2/2 c (i), Emb 4/3 A
c, PP 3/4 A c and PP 3/4 A 3 c for (6.8). The tolerances were 10−5 (top)
and 10−8 (bottom), respectively.

44

For parabolic equations it is essential that the splitting coefficients have non-
negative real part. This leads for higher order schemes p > 2 to complex coeffi-
cients. Coefficients from [5] can be identified to have complex entries by “ c ” at
the end of their name. The full error analysis was done in [10].

6.3.1 Implementation
The code is written in FORTRAN, using MPI library and 2DECOMP&FFT [21],
a library to distribute the data efficient to multiple nodes (computers) and compute
the FFT. This allows the code to be run on large clusters as the Vienna Scientific
Cluster (VSC) [27].

This high performance computing (hpc) system has 1314 nodes with 2 AMD
Opteron “Magny Cours 6132HE” with 8 cores each running at 2,2 GHz. The
memory of one node is 8 x 4 GB ECC DDR3 RAM and an 16 GB SSD. The
system is connected by 2 x Gigabit Ethernet LAN and 1 x Infiniband-QDR. The
operating system is Scientific Linux 6.0 with Intel MPI and Open MPI. Figure 6.2
shows that if double the number of cores where used to run the simulation the time
is nearly halved, which would be the ideal case, dotted line. See section 6.3.2 for
the 3-dimensional case to get the used parameters.

Figure 6.2: Scaling the number of cores.

To generate the pictures shown in 6.3.2 ParaView 4.1 [25] was used. This is
a multi functional software to analyze and generate pictures from scientific data.

45

With this tool it is possible to use co-processing to render the visualization in situ
without the need to write the raw data to disc, which can be very time consuming.

6.3.2 Visual results
The free parameters in (6.8) are chosen as

cu = 0.04, cv = 0.005, α = 0.038, β = 0.076. (6.10)

2 dimensions

In 2-dimension x = (x,y) ∈ [−4π,4π]2 we prescribe the initial condition as

u(x,y,0) = 0.5+ exp(−1− (x2 + y2)), v(x,y,0) = 0.1+ exp(−1− (x2 + y2)).
(6.11)

A visualization of the solution component v at t = 0, 2000 and 4000 is shown
in Figure 6.3.

Figure 6.3: Solution component v at t = 0 (left), t = 2000 (middle) and t = 4000
(right) for (6.8).

3 dimensions

In 3 spatial dimensions x = (x,y,z)∈ [−4π,4π]3 we prescribe the initial condition

u(x,y,z,0) = 0.5+ exp(−1− (x2 + y2 + z2)), (6.12)
v(x,y,z,0) = 0.1+ exp(−1− (x2 + y2 + z2)). (6.13)

In Figure 6.4 we show the component v computed by a complex embedded 4/3
splitting pair from [19] with an underlying spatial discretization with 5123 basis
functions and a tolerance of 10−5. The solution is plotted at times t = 2500, t =
3000, t = 4000, and t = 5000.

46

Figure 6.4: Solution component v for (6.8) in 3D at times t =
2500, 3000, 4000, 5000.

6.4 Schrödinger Equations
Splitting also works for wave equations, though one should choose only schemes
with real coefficients. The standard form of the non relativistic Schrödinger equa-
tion for a single particle moving in an electric field is given by,

ih̄∂tψ(x, t) =
(
− h̄2

2m
∆+V (x, t)

)
ψ(x, t) (6.14)

with h̄ the Planck constant, m the particle’s mass and V the potential energy. The
notation for the unknown function is changed form u to ψ , because it is standard
in literature about Schrödinger equations. There are two examples considered
first the cubic nonlinear Schrödinger (NLS) equation 6.4.1 and a semi classical
example in 6.4.2 with an time dependent potential.

6.4.1 The cubic NLS
The cubic nonlinear Schrödinger equation [26] is given by

i∂tψ(x, t) =− 1
2∆ψ(x, t)+κ |ψ(x, t)|2 ψ(x, t) , (6.15a)

ψ(x,0) = ψ0(x) , x ∈ Rn , t > 0 , (6.15b)

47

where we set κ =−1. To reduce computing complexity and because all interesting
effects are available, the 1-dimensional case is considered x = x ∈ R with the
initial condition chosen as the sum of two solitons,

ψ0(x) =
2

∑
j=1

a j e−ib jx

cosh(a j(2x− c j))
, x ∈ [−16,16] . (6.15c)

with a1 = 2.0, a2 = 2.0, b1 = 1.0, b2 = 3.0, c1 = 5.0, c2 =−5.0.
The cubic NLS has been treated earlier in [4], a theoretical analysis is given

in [20]. The two solitons which eventually cross [18], posing a challenge for an
adaptive step-size selection algorithm. The two solitons cross approximately at
t = 2.3 as Figure 6.5 shows. The step size drops by a factor of 5 during the col-
lision and afterwards regains to previous level. This kind of behaviour for the
solution is necessary that the adaptive algorithms are faster than using an equidis-
tant time integrator to achieve the same global error at tend as Table 6.26 shows.

The last column in Table 6.26, ladled with err, shows that the global error
strongly correlates with the prescribed tolerance. The scheme PP 5/6 A is the
best for low tolerances and it beats the equidistant step size solution every time.
The schemes with the defect based error estimator often fail to beat the equidistant
step size solution.

Figure 6.5: Solution of (6.15) (top), and stepsizes generated by an adaptive pro-
cedure based on PP 5/6 A with tolerance 10−10 (bottom).

48

Method # steps adap # steps equi time adap time equi err

TOL = 10−5

Emb 4/3 AK p 275 586 0.123 0.130 6.646e−05
PP 3/4 A 438 772 0.150 0.106 7.608e−05
PP 5/6 A 154 394 0.136 0.149 3.447e−04

Emb 4/3 AK p D 265 469 0.131 0.103 1.848e−04
PP 3/4 A D 438 776 0.185 0.126 7.526e−05
PP 5/6 A D 188 581 0.188 0.263 3.945e−05

TOL = 10−8

Emb 4/3 AK p 1536 3159 0.655 0.617 6.971e−08
PP 3/4 A 2478 2858 0.758 0.427 3.719e−07
PP 5/6 A 503 1292 0.392 0.477 1.114e−07

Emb 4/3 AK p D 1495 1619 0.647 0.316 9.817e−07
PP 3/4 A D 2478 2865 0.924 0.438 3.717e−07
PP 5/6 A D 567 1391 0.449 0.561 6.386e−08

TOL = 10−10

Emb 4/3 AK p 4854 10382 1.975 2.091 6.609e−10
PP 3/4 A 7837 6766 2.406 1.060 1.174e−08
PP 5/6 A 1136 2433 0.945 0.975 1.786e−09

Emb 4/3 AK p D 4728 3870 2.163 0.862 3.089e−08
PP 3/4 A D 7837 6766 2.506 1.069 1.174e−08
PP 5/6 A D 1174 2491 1.122 1.074 1.553e−09

Table 6.26: Comparison of the efficiency of Emb 4/3 AK p, PP 3/4 A, and PP
5/6 A and their their corresponding defect based error estimators for Nonlinear
Schroedinger. The tolerances were 10−5 (top), 10−8 (middle) and 10−10 (bottom),
respectively. For equidistant time the optimal stepsize to get the same up to a 1%
margin global error at tend = 5.0 was used.

In Figure 6.6 the Table 6.26 is used to generate a work precision diagram.
On the x-axis the compuation time in seconds is drawn and on the y-axis the L2
norm of the global error at tend . Lines of the same color belong to same scheme,
full lines are with adaptive time integration and the dashed ones for equidistant
time integration. Strang scheme is added to show off the superiority of the other
schemes. The Emb 4/3 AK p is the best third order scheme, the adaptive algo-
rithm is also faster than the equidistant strategy.

49

10
−3

10
−2

10
−1

10
0

10
1

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

compute time

a
c
c
u

ra
c
y

Emb 4/3 AK p

PP 3/4 A

PP 5/6 A

Emb 4/3 AK p (defect)

PP 3/4 A (defect)

PP 5/6 A (defect)

Strang (defect)

Figure 6.6: Work precission diagram of (6.15).

6.4.2 Quantum control
A model of quantum control of atomic systems discussed in [17] introduces a
potential which explicitly depends on time to control the permeability:

i∂tψ(x, t) = ε∆ψ(x, t)+ ε
−1V (x, t)ψ(x, t) , (6.16a)

ψ(x,0) = ψ0(x) , x ∈ Rn , t > 0 , (6.16b)

with potential V (x, t). The potential is the sum of an time independent and a time
dependent one, which effects permeability. For this example it is also chosen the
1-dimensional case, where x = x ∈ R. The initial state and potential are given by

ψ0(x) = (δπ)−
1
4 e

i k0(x−x0)
δ

− (x−x0)
2

2δ

V (x, t) = V0(x)+ρ(3t−1)ρ(sin(2π(x− t)))︸ ︷︷ ︸
=:E(x,t)

V0(x) = ρ(4x)sin(20πx)

ρ(x) =

{
e
−1

1−x2 , |x|< 1
0, otherwise,

where x0 = −0.3, k0 = 0.1, δ = 10−3 and ε = 2−8. The space was discretized
with 2048 points on the interval (−1,1), with periodic boundary conditions.

50

It is clearly visible by comparing Figure 6.7 and Figure 6.8 that the time de-
pendent potential allows larger amounts to pass through. This shows that the
anticipated effect can be reached.

Figure 6.7: V (x, t) =V0(x) Figure 6.8: V (x, t) =V0(x)+E(x, t)

Figure 6.9 shows the space time plot of the solution with the time dependent
potential. It shows that during the interaction of the solition and the barrier the
step size decreases and in the end increases again. Changing the semiclassical

Figure 6.9: Solution (top) and step sizes (bottom) generated for (6.16) with
ε = 2−8 for PP 5/6 A and tolerance 10−10.

parameter ε to 10−5 gives after an initial drop by factor 10 oscillating step sizes,

51

see Figure 6.10. This results lead to further investigation on the parameter ε and
the step size selection strategy.

Figure 6.10: Solution (top) and step sizes (bottom) generated for (6.16) with
ε = 10−5 for PP 5/6 A and tolerance 10−10.

To compare the step size selection strategies from 4.5 the change ratio is plot-
ted in Figure 6.11, where ‘Simple’ refers to (4.23) and ‘2 Steps’ to (4.25). The
change ratio in the first step is the highest because the algorithm needs to find the
sutible stepsize. The 2 Step algorithm seems to have a smoother sequence of step
sizes, especially in the case with small ε . Table 6.27 shows that the simple step
size selection algorithm 4.23 is better than 4.25 in this situation. When forced to

Selection startegy ε steps rejected steps rejections per steps
Simple 3.91e−03 655 5 0.0076

1.00e−05 10386 12 0.0012
2 Steps 3.91e−03 662 16 0.0242

1.00e−05 10489 101 0.0096

Table 6.27: Comparing different step size selection methods PP 5/6 A

reach the given local error tolerance 10−10 by a relative tolerance of 10−1,

err < TOL and
err

TOL
−1 < reltol (6.17)

52

Figure 6.11: Comparing selection strategies for PP 5/6 A with tolerance 10−10.
Left ε = 2−8 and right ε = 10−5 .

the number of rejected steps increases, as Table 6.28 shows. The two-step step
size selection algorithm performs now better. But for the smaller value of ε both
strategies fail, because they end up in an cycle of insufficient step sizes. Decreas-

Selection startegy ε steps rejected steps rejections per steps
Simple 3.91e−03 587 1408 2.3986

1.00e−05 ∞ ∞ −
2 Steps 3.91e−03 591 989 1.6734

1.00e−05 ∞ ∞ −

Table 6.28: Comparing different step size selection methods PP 5/6 A forced
relative tolerance 10−1.

ing the relative tolerance to 10−2 drastically deteriorates the number of rejected
steps for the two-step step size selection strategy, see Table 6.29

Selection startegy ε steps rejected steps rejections per steps
Simple 3.91e−03 586 1538 2.6246

1.00e−05 ∞ ∞ −
2 Steps 3.91e−03 586 4605 7.8584

1.00e−05 ∞ ∞ −

Table 6.29: Comparing different step size selection methods PP 5/6 A forced
relative tolerance 10−2.

53

Investigating small ε

Table 6.30 and 6.31 show for different values of ε , how the error estimator and the
size of the first step correlate. For a given ε and given tolerance 10−10 the adaptive
step size selecting strategy has been applied 100 times, for the step starting from
t0 = 0. The result of this procedure is seen in the column labeled h. The column to
the right tries to measure if the step size converged to a specific value or oscillates
by giving the ratio of h and the previously step size h−1, 1.0 is the value for
convergence. The last two columns give the by the error estimator estimated error
and the exact error to the reference solution computed by h

100 with PP 5/6 A. The
error estimator is in the range of the exact error. Though the error estimator for
small epsilon sometimes leads to too large step sizes and errors but the number of
rejected steps is only slightly higher than in cases with larger ε .

ε h h/h−1 err est err
3.91e−03 1.347e−03 1.000e+00 5.314e−11 5.698e−11
1.00e−05 4.165e−03 4.000e+00 2.177e−07 3.894e−07

Table 6.30: 1 step PP 5/6 A

ε h h/h−1 err est err
3.91e−03 1.334e−03 1.000e+00 5.053e−11 5.414e−11
1.00e−05 3.906e−03 4.000e+00 1.774e−07 3.130e−07

Table 6.31: 1 step PP 5/6 A D

Further investigations on the parameter ε yielded that for some values of ε the
step size selection leads to oscillations. The step size change is limited by a factor
of 4, see 4.5 and Figure 6.12. The instant change from 1

4 to 4 and back are the
result of swapping from the too large step size to the smaller one or vice versa. The
defect based error estimator has more problems with small ε . Reducing the change
rate to 2 gives Figure 6.13. Comparing both Figures shows that the problem is not
solved by this measure.

54

Figure 6.12: Comparing h/h−1 for PP
5/6 A and PP 5/6 A D with tolerance
10−10 and changerate limited by 4.

Figure 6.13: Comparing h/h−1 for PP
5/6 A and PP 5/6 A D with tolerance
10−10 and changerate limited by 2.

55

Chapter 7

Spectral Method

The spectral method is used to solve partial differential equations, by representing
the solution using global ansatz functions. Typical ansatz function are sin and cos
for periodic boundary conditions or Chebyshev polynomials else.

Consider the NLS equation (6.15). The spacial dimension is set to 1 for
simplicity. In higher dimensions the arguments follow the same. Since the L2-
function ψ can be assumed to be negligible outside an interval which can be scaled
down to [−π,π], without restriction of generality,

i∂tψ(x, t) = − 1
2∆ψ(x, t)+κ |ψ(x, t)|2 ψ(x, t) , (7.1)

ψ(x,0) = ψ0(x) , x ∈ [−π,π] , t > 0 , (7.2)
u(−π, t) = u(π, t) , t ∈ [0, tend] (7.3)

Trigonometric Interpolation First the desired function is semidiscretized in
space, by using an cut of Fourier series.

ψ(x, t)≈ ψk(x, t) =

k
2−1

∑
j=− k

2

c j(t)ei jx, x ∈ [−π,π], k even (7.4)

The c j(t) satisfy,

c j(t) =
∫

π

−π

ψ(x, t)ei jxdx. (7.5)

In this case, we consider collocation on an equidistant grid

x j = j
2π

k
, j =−k

2
,−k−1

2
, . . . ,

k
2
−1, (7.6)

which yields the set of equations,

i∂tψk(x j, t)=− 1
2∆ψk(x j, t)+κ |ψk(x j, t)|2 ψk(x, t), j =−k

2
,−k−1

2
, . . . ,

k
2
−1.

(7.7)

56

Discrete Fourier Transform Let Fk : Ck → Ck denote the discrete Fourier
transform of length k,

φ̂ = Fkφ with φ̂l =

k
2−1

∑
j=− k

2

e−il j2 π

k φ j, l =−k
2
,−k−1

2
, . . . ,

k
2
−1. (7.8)

The inverse transform F−1
k is given by

φ = F−1
k φ̂ with φl =

1
k

k
2−1

∑
j=− k

2

eil j2 π

k φ̂ j, l =−k
2
,−k−1

2
, . . . ,

k
2
−1. (7.9)

Though mathematicians like it more if F =F−1, but this is computational exten-
sive because than you would have to scale the data twice with a factor 1√

k
instead

once with 1
k . Both of the transforms can be implemented with computational

complexity O(k logk) via the fast Fourier transform (FFT) [12]. For the Fourier
transform generally holds,

F
∂

∂x
φ(x) = ixFφ(x) (7.10)

The derivative in x direction in the problem is changed to a multiplication after
the Fourier transformation. This changes the PDE to an ODE, in t

i∂tψk =−
1
2
F−1

k (ix)2Fkψk + |ψk|2ψk (7.11)

The approximation error at t = 0 for any s ∈ N+ is bounded by

‖ψ−ψk‖L2 ≤Ck−s‖∂ s
x ψ‖L2 (7.12)

if ∂ s
x ψ(·,0) ∈ L2, which can be shown by Parseval’s formula and partial integra-

tion. The error bounds for all t > 0 is given by,

‖ψ(t)−ψk(t)‖L2 ≤Ck−s(1+ t) max
τ∈[0,t]

‖∂ s
x ψ(τ)‖L2 (7.13)

if the exact solution fulfills ∂ s+2
x ψ(·, t) ∈ L2.

57

List of Figures

6.1 Step size over time for Magnus2 with TOL = 10−8 with different
initial step sizes. 40

6.2 Scaling the number of cores. 45
6.3 Solution component v at t = 0 (left), t = 2000 (middle) and t =

4000 (right) for (6.8). 46
6.4 Solution component v for (6.8) in 3D at times t = 2500, 3000, 4000, 5000. 47
6.5 Solution of (6.15) (top), and stepsizes generated by an adaptive

procedure based on PP 5/6 A with tolerance 10−10 (bottom). . . 48
6.6 Work precission diagram of (6.15). 50
6.7 V (x, t) =V0(x) . 51
6.8 V (x, t) =V0(x)+E(x, t) . 51
6.9 Solution (top) and step sizes (bottom) generated for (6.16) with

ε = 2−8 for PP 5/6 A and tolerance 10−10. 51
6.10 Solution (top) and step sizes (bottom) generated for (6.16) with

ε = 10−5 for PP 5/6 A and tolerance 10−10. 52
6.11 Comparing selection strategies for PP 5/6 Awith tolerance 10−10.

Left ε = 2−8 and right ε = 10−5 53
6.12 Comparing h/h−1 for PP 5/6 A and PP 5/6 A D with tolerance

10−10 and changerate limited by 4. 55
6.13 Comparing h/h−1 for PP 5/6 A and PP 5/6 A D with tolerance

10−10 and changerate limited by 2. 55

58

List of Tables

6.1 full matrix (n = 4900) . 27
6.2 sparse matrix (n = 4900) . 27
6.3 Number of matrix exponential computed per step. 28
6.4 Global Error at t = 8.0; Magnus2 29
6.5 Global Error at t = 8.0; Symm-Milne-32 30
6.6 Local error and error of the defect based error estimator for Magnus2 31
6.7 Global error at t = 8.0 for equidistant time-stepping, various step-

sizes . 32
6.8 Effort for the error estimator . 32
6.9 Comparison of the efficiency of Strang (Magnus2) and Symm-Milne-32.

The tolerances were 10−8 (top), 10−10 (middle) and 10−12 (bot-
tom), respectively. For equidistant time the minimal stepsize was
used . 33

6.10 Global error at t = 8.0 for equidistant time-stepping, various step-
sizes . 34

6.11 Effort for the error estimator . 34
6.12 Comparison of the efficiency of Magnus4, Magnus4Optimized

and Emb 5/4 AK (ii) The tolerances were 10−8 (top), 10−10

(middle) and 10−12 (bottom), respectively. For equidistant time
the minimal stepsize was used 35

6.13 Global Error at t = 8.0; Magnus2 36
6.14 Global Error at t = 8.0; Symm-Milne-32 37
6.15 Global Error at t = 8.0; EMB 5/4 AK (ii) 37
6.16 Local error and error of the defect based error estimator for Magnus2 38
6.17 Global error at t = 8.0 for equidistant time-stepping, various step-

sizes . 38
6.18 Effort for the error estimator . 39
6.19 Comparison of the efficiency of Strang (Magnus2) and Symm-Milne-32

The tolerances were 10−4 (top), 10−6 (middle) and 10−8 (bottom),
respectively. For equidistant time the minimal stepsize was used . 39

59

6.20 Global error at t = 8.0 for equidistant time-stepping, various step-
sizes. 40

6.21 Effort for the error estimator . 41
6.22 Comparison of the efficiency of Magnus4, Magnus4Optimized

and Emb 5/4 AK (ii) The tolerances were 10−4 (top), 10−6 (mid-
dle) and 10−8 (bottom), respectively. For equidistant time the
minimal stepsize was used. Note that for TOL=10−8 the accu-
racy of the matrix exponetial is the limiting factor. 42

6.23 Global error at t = 1.0; Strang 43
6.24 Global error at t = 1.0; Strang ABC 44
6.25 Comparison of the efficiency of Milne 2/2 c (i), Emb 4/3

A c, PP 3/4 A c and PP 3/4 A 3 c for (6.8). The tolerances
were 10−5 (top) and 10−8 (bottom), respectively. 44

6.26 Comparison of the efficiency of Emb 4/3 AK p, PP 3/4 A, and
PP 5/6 A and their their corresponding defect based error estima-
tors for Nonlinear Schroedinger. The tolerances were 10−5 (top),
10−8 (middle) and 10−10 (bottom), respectively. For equidistant
time the optimal stepsize to get the same up to a 1% margin global
error at tend = 5.0 was used. 49

6.27 Comparing different step size selection methods PP 5/6 A 52
6.28 Comparing different step size selection methods PP 5/6 A forced

relative tolerance 10−1. 53
6.29 Comparing different step size selection methods PP 5/6 A forced

relative tolerance 10−2. 53
6.30 1 step PP 5/6 A . 54
6.31 1 step PP 5/6 A D . 54

60

Bibliography

[1] A. Alverman and H. Fehske. High-order commutator-free exponential time-
propagation of driven quantum systems. J. Comput. Phys., 230:5930–5956,
2011.

[2] A. Alverman, H. Fehske, and P.B. Littlewood. Numerical time propagation
of quantum systems in radiation fields. New J. Phys., 14:105008, 2012.

[3] W. Auzinger and W. Herfort. Local error structures and order conditions in
terms of Lie elements for exponential splitting schemes. Opuscula Math.,
34:243–255, 2014.

[4] W. Auzinger, H. Hofstätter, O. Koch, and M. Thalhammer. Defect-based
local error estimators for splitting methods, with application to Schrödinger
equations, Part III: The nonlinear case. J. Comput. Appl. Math., 273:182–
204, 2014.

[5] W. Auzinger and O. Koch. Coefficients of various splitting methods.
http://www.asc.tuwien.ac.at/˜winfried/splitting/.

[6] W. Auzinger, O. Koch, and M. Thalhammer. Defect-based local error esti-
mators for splitting methods, with application to Schrödinger equations, Part
I: The linear case. J. Comput. Appl. Math., 236:2643–2659, 2012.

[7] W. Auzinger, O. Koch, and M. Thalhammer. Defect-based local error es-
timators for splitting methods, with application to Schrödinger equations,
Part II: Higher-order methods for linear problems. J. Comput. Appl. Math.,
255:384–403, 2013.

[8] W. Auzinger, O. Koch, and M. Thalhammer. Defect-based local error es-
timators for high-order splitting methods involving three linear operators.
Numer. Algorithms, 70:61–91, 2015.

[9] Winfried Auzinger, Harald Hofstätter, David Ketcheson, and Othmar Koch.
Practical splitting methods for the adaptive integration of nonlinear evolution

61

equations. part I: Construction of optimized schemes and pairs of schemes.
BIT Numerical Mathematics, 57:55–74, 2017.

[10] Winfried Auzinger, Othmar Koch, and Michael Quell. Adaptive high-order
splitting methods for systems of nonlinear evolution equations with periodic
boundary conditions. Numerical Algorithms, pages 1–23, 2016.

[11] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Ju-
lia: A fast dynamic language for technical computing. arXiv preprint
arXiv:1209.5145, 2012.

[12] James W Cooley and John W Tukey. An algorithm for the machine calcu-
lation of complex fourier series. Mathematics of computation, 19(90):297–
301, 1965.

[13] P. Gray and S.K. Scott. Chemical Waves and Instabilities. Clarendon, Ox-
ford, 1990.

[14] E. Hairer, Ch. Lubich, and G. Wanner. Geometric Numerical Integration.
Springer-Verlag, Berlin–Heidelberg–New York, 2002.

[15] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential Equa-
tions I. Springer-Verlag, Berlin–Heidelberg–New York, 1987.

[16] Nicholas J Higham. The scaling and squaring method for the matrix ex-
ponential revisited. SIAM Journal on Matrix Analysis and Applications,
26(4):1179–1193, 2005.

[17] Arieh Iserles, Karolina Kropielnicka, and Pranav Singh. On the discretisa-
tion of the semiclassical schrödinger equation with time-dependent potential.
Cambridge Numerical Analysis Report NA2015/02. Cambridge, UK: Cam-
bridge Numerical Analysis Group, Department of Applied Mathematics and
Theoretical Physics, Cambridge University, 2015.

[18] M.S. Ismail and T.R. Taha. Numerical simulation of coupled nonlinear
Schrödinger equation. Math. Comput. Simulation, 56:547–562, 2001.

[19] O. Koch, Ch. Neuhauser, and M. Thalhammer. Embedded split-step formu-
lae for the time integration of nonlinear evolution equations. Appl. Numer.
Math., 63:14–24, 2013.

[20] O. Koch, Ch. Neuhauser, and M. Thalhammer. Error analysis of high-
order splitting methods for nonlinear evolutionary Schrödinger equations
and application to the MCTDHF equations in electron dynamics. M2AN
Math. Model. Numer. Anal., 47:1265–1284, 2013.

62

[21] Ning Li and Sylvain Laizet. 2decomp & fft-a highly scalable 2d decompo-
sition library and fft interface. In Cray User Group 2010 conference, pages
1–13, 2010.

[22] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical
Recipes in C — The Art of Scientific Computing. Cambridge University
Press, Cambridge, U.K., 1988.

[23] Blanes S., F. Casas, and A. Murua. Splitting and composition methods in
the numerical integration of differential equations. Bol. Soc. Esp. Mat. Apl.,
45:87–143, 2008.

[24] Roger B Sidje. Expokit: a software package for computing matrix exponen-
tials. ACM Transactions on Mathematical Software (TOMS), 24(1):130–156,
1998.

[25] Amy Henderson Squillacote and James Ahrens. The paraview guide, volume
366. Kitware, 2007.

[26] C. Sulem and P.-L. Sulem. The Nonlinear Schrödinger Equation.
Appl. Math. Sciences. Springer-Verlag, New York, 1999.

[27] http://vsc.ac.at/. Vienna Scientific Cluster. 2011.

63

http://vsc.ac.at/

	Introduction
	Operator Splitting Methods
	Order Conditions
	Solving order conditions

	Local Error Estimators
	Defect based
	Efficient evaluation of the defect

	Embedded formulae
	Palindromic schemes
	MilneDevice
	Time-adaptive strategies

	Commutator free exponential Time propagators / Magnus
	Magnus-type integrators
	Commutator free Magnus integrators
	Local error and defect. Order conditions and defect based local error estimate
	Efficient evaluation of the defect

	Splitting off the time variable `` freezing ''
	Solution

	Examples and Results
	Methods used
	Magnus
	Splitting
	Hardware

	Solar cells: Application of splitting and Magnus-type integrators
	Implementation
	Matrix exponential
	Results (2 electrons)
	Results (8 electrons)

	Gray-Scott equation
	Implementation
	Visual results

	Schrödinger Equations
	The cubic NLS
	Quantum control

	Spectral Method

