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Kurzfassung	

Eine große Anzahl von gebäudebezogenen Evaluierungswerkzeugen, 

beispielsweise zur Ermittlung von Energiekennzahlen, thermischer-

Komfort-Evaluierung, Haustechniksimulation und Tageslichtbewertung, 

benötigt verlässliche Eingabedaten hinsichtlich Tageslichtparametern. Ein 

Beispiel für solche Eingabedaten sind Leuchtdichteverteilungsmodelle des 

Himmelsgewölbes („Sky Models“). Viele Wetterstationen messen zwar 

Strahlungsdaten, aber zumeist lediglich Horizontalstrahlung. Eine 

messtechnische Erfassung von Direkt- und Diffusstrahlung wird vielerorts 

nicht vorgenommen. Um verlässliche Sky Models zu erstellen benötigt man 

Information über i) direkte und indirekte Komponenten der 

Beleuchtungsstärke, sowie ii) Modelle der Lichtausbeute. Viele vergangene 

Forschungsbemühungen befassten sich mit der Ableitung von einfach zu 

generierenden, aber ausreichend-detaillierten Sky Models mit 

entsprechender Unterscheidung von diffusen und direkten Komponenten 

aus Horizontalstrahlungswerten.  Diese Dissertation untersucht die meist 

verwendeten Modelle im Detail, sowie deren Potential für alternative 

Modellierungstechniken und Ansätze. Dabei wurden verschiedene Aspekte 

der Modelle untersucht: 

Diffuse fraction models: Zunächst wurden verschiedene existierenden 

Methoden zur Ableitung des Diffusanteils ausgewählt. Danach wurden 

Messdaten betreffend Globalstrahlung und Diffustrahlung (7 Orte in den 

USA, sowie Wien, Österreich) akquiriert. Mit den verschiedenen Methoden 

wurden aus den Globalstrahlungswerten die Diffusstrahlungen errechnet 

und anschließend mit den Messdaten der Diffusstrahlung verglichen. 

Aufbauend darauf wurde eine neue, empirische Methode zur Errechnung 

des Diffusanteils anhand der Messdaten aus Wien erarbeitet. Mit dem 

Vergleich der errechneten und gemessenen Werte lässt sich die 

akkurateste Methode bestimmen. Anhand dieser Bemühungen lässt sich 

festhalten, dass ein Performanceranking der Modelle immer relativ ähnlich 

ausfiel, also weitestgehend unabhängig von dem Standort ist. Hinsichtlich 

der Qualität der Modelle muss festgehalten werden, dass keines der 

Modelle wirklich befriedigende Genauigkeiten aufweist. Die Methode nach 
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Skartveit und Olseth liefert die genauesten Resultate. Die 

Eigenentwicklung liefert lediglich standort-bezogen für Wien exzellente 

Genauigkeiten. 

Sky luminance/radiance models: Um den Effekt des verwendeten Sky 

Models auf die Verlässlichkeit von Licht-Simulationsergebnisse zu 

untersuchen wurde die Simulationsumgebung Radiance verwendet. Hierbei 

wurden Beleuchtungsstärken im Innenraum eines Testraums (Dachraum 

TU Wien) verwendet, und zwar sowohl in Simulation wie auch via 

Messung. Szenarien in der Simulation stützten sich auf die bereits 

angesprochenen unterschiedlichen Himmelsmodelle. Zusätzlich wurde ein 

Himmelmodell verwendet, dass Mithilfe eines Sky-Scanners am Dach der 

TU Wien erstellt wurde. Messungen und Simulationsresultate wurden 

anschließend verglichen. Die Ergebnisse liefern Rückschlüsse über die 

Qualität von Simulationen zur Vorhersage von Beleuchtungsstärken im 

Innen- und Außenraum, speziell unter verschiedenen und wechselnden 

Randbedingungen. 

Luminous efficacy models: Vier Lichtausbeutemodelle wurden hinsichtlich 

Ihrer Performance auf die Ableitung von Horizontalstrahlungswerten 

untersucht. Die Resultate weisen durch die Bank auf eine hohe 

Ergebnisqualität hin. 

Keywords:	 Himmelsmodelle	 /	 Sky	 models,	 Diffusanteil,	

Leuchtdichteverteilung,	Globalstrahlung,	Direktstrahlung.	



	

Summary	

Many	building	performance	applications	(energy	use,	solar	gains,	thermal	

comfort,	 renewable	 energy	 systems,	 daylight,	 etc.)	 require	 reliable	

representations	 of	 boundary	 conditions	 –	 typically	 in	 terms	 of	 sky	

luminance	 distribution	models.	 Nonetheless,	most	 of	 the	meteorological	

stations	only	monitor	global	horizontal	 irradiance	and	data	such	as	direct	

and	diffuse	horizontal	irradiance	or	illuminance	is	not	available.	However,	

Generation	of	sky	luminance	distribution	requires	information	on	 i)	direct	

and	 diffuse	 components	 of	 illuminance;	 ii)	 luminous	 efficacy	 models.	

Consequently,	multiple	methods	have	been	proposed	in	the	past	to	derive	

from	 measured	 global	 horizontal	 irradiance	 data	 the	 diffuse	 fraction	

(diffuse	fraction	models)	and	to	derive	global	horizontal	 illuminance	from	

global	horizontal	irradiance	data	(luminous	efficacy	models).		

This	thesis	thus	examines	a	number	of	such	models	in	details	and	potential	

for	alternative	modelling	techniques	and	approaches	in	three	parts:		

Diffuse	 fraction	 models:	 A	 number	 of	 existing	 methods	 for	 the	

computation	of	 the	diffuse	 fraction	were	 selected.	Actual	measurements	

of	global	and	diffuse	 irradiance	were	obtained	for	seven	locations	 in	USA	

and	one	location	in	Austria.	The	measured	global	irradiance	data	for	these	

locations	 were	 fed	 to	 the	 aforementioned	 diffuse	 fraction	 models.	 The	

calculation	results	were	then	compared	with	the	corresponding	empirical	

data.	Moreover,	a	new	empirical	diffuse	 fraction	model	based	on	Vienna	

data	is	developed,	which	performs	significantly	better	than	other	7	models	

for	Vienna,	Austria.	At	 the	end,	 the	best	performing	model	 is	selected	to	

be	 used	 in	 predicting	 diffuse	 horizontal	 irradiance	 as	 an	 input	 in	

generation	of	sky	models.	The	comparative	assessment	yielded	a	number	

of	findings.	The	relative	performance	("ranking")	of	the	models	was	found	

to	 be	 more	 or	 less	 consistent	 across	 the	 different	 locations.	 However,	



	 IV	

none	of	the	models	can	be	said	to	be	performing	wholly	satisfactory.	The	

best	performing	model	was	Skartveit	and	Olseth.	Regarding	the	developed	

model	for	Vienna,	it	only	has	excellent	performance	for	Vienna	location.	

Sky	 luminance/radiance	 models:	 To	 explore	 the	 implications	 of	 the	 sky	

model	selection	on	the	fidelity	of	simulation	results,	we	used	Radiance	to	

compute	the	indoor	illuminance	in	an	existing	test	space	on	the	rooftop	of	

a	university	building.	Thereby,	 the	aforementioned	 two	sky	models	were	

considered.	 In	 addition	 to	 latter	 two	 scenarios,	 two	 other	 scenarios	 is	

created	using	diffuse	 fraction	model	 in	generation	of	both	sky	models.	A	

fifth	 scenario	 was	 a	 sky	 model	 generated	 based	 on	 measured	 values	

obtained	from	a	sky	scanner.	Simultaneously,	the	actual	illuminance	levels	

in	 this	 room	 were	 monitored	 under	 different	 outdoor	 conditions	 (clear,	

intermediate,	overcast).		The	comparison	of	the	measurement	results	with	

multiple	 model	 prediction	 results	 facilitates	 an	 empirically	 based	

evaluation	of	the	reliability	of	outdoor	and	indoor	illuminance	predictions	

in	the	face	of	different	assumptions	pertaining	to	the	prevailing	boundary	

conditions.	

Luminous	 efficacy	models:	 Four	 luminous	 efficacy	models	 were	 selected	

and	 their	 performance	 were	 evaluated	 in	 generating	 global	 horizontal	

illuminance.	 Results	 indicated	 superior	 performance	 of	 all	 models	 in	

generation	 of	 global	 horizontal	 illuminance	 from	 measured	 global	

horizontal	irradiance.		

Keywords	

Sky	 models,	 solar	 radiation,	 diffuse	 fraction,	 luminance	 distribution,	

clearness	index,	global	horizontal	irradiance.	
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 Introduction	

Sun	emits	short	and	long	wave	radiation.	Short	wavelength	is	between	100	

nm	 to	 780	 nm	 and	 long	 wave	 between	 780	 nm	 to	 about	 5	 μm.	

Meteorologically	significant	spectral	range	varies	between	300	nm	to	3000	

nm.	The	maximum	solar	radiation	intensity	reaches	at	wavelength	around	

500	 nm.	 Only	 a	 narrow	 bandwidth	 of	 the	 wavelength	 is	 visible	 for	 the	

human	 eyes.	 This	 wavelength	 is	 called	 ‘visible	 light’	 and	 corresponds	 to	

the	range	of	400	nm	to	780	nm	(Harbison	et	al.,	2015).	The	total	amount	

of	solar	radiation	outside	the	earth’s	atmosphere	is	almost	constant	over	

the	 course	 of	 a	 year	 and	 is	 called	 solar	 constant.	 This	 amounts	 to	

approximately	1366	W/m2,	and	can	vary	periodically	throughout	the	year	

(Gueymard,	2004).	The	penetration	of	solar	radiation	through	atmosphere	

is	governed	by	several	factors	including	absorption,	scattering	of	radiation	

by	particles	and	air	molecules.	Absorption	of	solar	radiation	occurs	at	the	

different	wavelengths	 from	ultraviolet	 to	 infrared.	About	99%	of	harmful	

ultraviolet	 radiation,	 of	 wavelength	 less	 than	 320	 nm,	 is	 absorbed	 by	

ozone	 layer.	 Higher	 wavelengths	 are	 absorbed	 mainly	 by	 water	 vapors	

(H2O)	 and	 Carbon	 dioxide	 (CO2).	 This	 phenomenon	 reduces	 the	

electromagnetic	 radiation	 energy	 for	 certain	wavelength	 (Menzel,	 2001).	

Figure	 1-1	 shows	 the	 comparison	 of	 extraterrestrial	 solar	 radiation	 for	

different	spectrum	with	solar	radiation	measured	at	the	ground	surface	of	

the	 earth.	 The	 scattering	 occurs	 when	 the	 electromagnetic	 radiation	 is	

diffused	 at	 any	 direction	 due	 to	 small	 atmospheric	 particles	 and	 clouds.	

The	brightness	and	the	blue	color	of	the	sky	dome	is	due	to	the	scattering	

of	 solar	 radiation	 by	 atmospheric	 particles.	 The	 sum	 of	 energy	 coming	

from	 the	 sky	 dome	 on	 a	 horizontal	 surface	 is	 called	 horizontal	 global	

irradiance.	 Information	 on	 solar	 radiation	 incident	 on	 the	 surface	 of	 the	

building	envelope	is	beneficial	for	building	thermal	and	visual	simulation.	
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Figure	1-1.	Extraterrestrial	solar	spectrum	vs.	earth	surface	solar	spectrum	(image	

source:	http://www.itacanet.org/the-sun-as-a-source-of-energy/part-2-solar-

energy-reaching-the-earths-surface/)	

The	 angular	 diameter	 of	 sun	 is	 approximately	 0.53°.	 Direct	 or	 Beam	

radiation	 is	 the	radiation	travelling	on	a	straight	 line	 from	the	sun	to	the	

surface	and	includes	sun	disk	and	a	circumsolar	area	around	the	disc.	The	

respective	region	varies	depending	on	the	absorption	and	scattering	effect	

(Blanc	et	al,	2013).	The	reflected	radiation	or	Albedo	is	the	radiation	that	is	

reflected	 by	 the	 terrain	 surface.	 This	 component	 extremely	 depends	 on	

the	 reflective	 properties	 of	 the	 ground	 surface	 and	 is	 negligible	 for	 low	

reflective	 terrains.	 In	 general,	 and	 due	 to	 the	 cost	 of	 measurement	

instruments,	only	 the	data	on	global	horizontal	 irradiance	 is	made	 freely	

available	worldwide	 (Maxwell	 1987).	 This	 information	 is	not	 sufficient	 to	

calculate/estimate	the	distribution	of	diffuse	radiance/luminance	over	the	

sky	 hemisphere,	 which	 is	 crucial	 for	 daylight,	 thermal,	 photovoltaic	 and	

solar	 thermal	 collector	 simulation	 and	 design	 purposes.	 Therefore,	

information	 such	 as:	 total	 diffuse	 irradiance,	 direct	 normal	 irradiance,	

diffuse	and	direct	illuminance	are	needed	as	inputs	for	several	engineering	

works.	 Consequently,	 numerous	 studies	 focus	 only	 on	 the	 prediction	 of	

the	diffuse	horizontal	irradiance	based	on	the	global	horizontal	irradiance.	

These	 models	 are	 called	 diffuse	 fraction	 models	 (see	 section	 1.1.1).	
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Another	 model	 which	 comes	 to	 support	 engineers	 is	 luminous	 efficacy	

models	 which	 is	 the	 ratio	 of	 illuminance	 over	 irradiance	 and	 could	 be	

deployed	to	convert	irradiance	to	illuminance	and	vice	versa	(see	chapter	

Chapter	6).	

In	this	context,	this	research	explores	and	evaluates	the	performance	of	a	

number	 of	 well-known	 hourly	 diffuse	 fraction,	 sky	 distribution	 and	

luminous	efficacy	models	in	separate	chapters	employing	large	repository	

of	 radiation	data	 from	Building	physics	 and	Building	ecology	department	

of	TU	Wien	and	7	BSRN	sites	in	the	USA.	In	addition	to	evaluation	of	these	

models,	a	master	thesis	 is	conducted	to	evaluate	the	performance	of	sky	

models	in	predicting	indoor	illuminance	values.	

1.1 Background	

1.1.1 Available	diffuse	fraction	models	

Initial	work	was	done	by	Parmerlee	(1954)	and	Liu	and	Jordan	(1960).	Later	

several	 authors	 contributed	 in	 developing	 diffuse	 fraction	 models	

including	 Choudhury	 (1963),	 Stanhil	 (1966),	 Boes	 (1975),	 Hottel	 (1976),	

Tuller	 (1976),	 Orgill	 and	 Hollands	 (1977),	 Bugler	 (1977),	 Randall	 and	

Whitson	(1977),	Bruno	(1978),	Barbaro	et	al.	(1979),	Iqbal	(1980),	Bird	and	

Hulstrom	(1981),	Spencer	(1982),	Erbs	et	al.	(1982),	Kasten	(1983),	Muneer	

et	al.	(1984),	Carrol	(1985),	Weiss	and	Norman	(1985),	Skartveit	and	Olseth	

(1987),	Maxwell	(1987),	Reindl	et	al.	(1990),	Bivona	et	al.	(1991),	Perez	et	

al.	 (1992),	 Lam	 and	 Li	 (1996),	 Boland	 et	 al.	 (2001),	 Boland	 et	 al.	 (2008),	

Ridley	 et	 al.	 (2010).	Moreover,	 there	 are	models	 which	 are	 adopted	 for	

specific	locations	such	as	Ruth	and	Chant	(1976),	Hawlader	(1984),	Chendo	

and	Maduekwe	 (1994),	 Chandrasekaran	and	Kumar	 (1994),	 de	Miguel	 et	

al.	 (2001),	 Oliviera	 et	 al.	 (2002),	 Karatosou	 et	 al.	 (2003),	 Soares	 et	 al.	

(2004),	Vazifeh	et	al.	(2013).		

Dervishi	 and	 Mahdavi	 (2011,	 2012),	 Vazifeh	 et	 al.	 (2013)	 compared	 a	

number	 of	 outstanding	 models	 selected	 from	 above	 mentioned	 studies	

using	 data	 collected	 at	 the	Department	 of	 Building	 physics	 and	 Building	

ecology,	 TU	 Wien.	 Findings	 indicated	 that	 none	 of	 the	 chosen	 models	
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shows	satisfying	accuracy	 in	 terms	of	prediction	of	 the	diffuse	horizontal	

irradiance.	 Therefore,	 we	 explored	 in	 detail	 different	 meteorological	

variables	to	investigate	possibility	of	deriving	a	new	diffuse	fraction	model	

with	higher	prediction	accuracy.	

1.1.2 Available	 sky	 radiance/luminance	 distribution	

models	

As	mentioned	earlier,	scattering	and	absorbing	phenomenon	of	radiation	

in	 the	 atmosphere	 and	 random	 distribution	 of	 the	 clouds,	

radiance/luminance	 distributes	 heterogeneously	 and	 varies	 for	 different	

locations	 and	 different	 time	 of	 the	 year.	 Solid	 sky	 radiance/luminance	

distribution	models	and	daylight	availability	 information	can	enhance	the	

quality	 of	 indoor	 environment	 and	building	 energy	 conservation.	 Several	

authors	introduced	new	models	to	predict	luminance	distribution	over	the	

sky	 hemisphere.	 Early	 works	 started	 by	 Moon	 and	 Spencer	 (1942)	

introduced	 a	 sky	 luminance	 distribution	 model	 for	 overcast	 sky.	 A	

simplified	 version	 of	 their	 model	 was	 recommended	 by	 CIE	 as	 the	 CIE	

Standard	Overcast	Sky	(CIE,	1955).	Kittler	(1967)	proposed	a	sky	luminance	

distribution	model	for	clear	sky	that	was	recommended	by	CIE	as	the	CIE	

Standard	Clear	Sky	(CIE,	1973).	Littlefair	(1981)	introduced	his	BRE	average	

sky	 model	 for	 an	 average	 sky	 luminance	 distribution.	 Nakamura	 et	 al.	

(1985,	 1987)	 presented	 the	 intermediate	 sky	 plus	 a	 zenith	 luminance	

equation.	 Kittler	 (1985)	 presented	 a	 homogenous	 sky	 to	 show	 absolute	

values	 of	 sky	 luminance	 distribution.	 Perraudeau	 (1988)	 categorized	 the	

sky	 into	 five	 categories	 and	 presented	 an	 equation	 of	 sky	 luminance	

distribution.	 Perez	 et	 al.	 (1993)	 proposed	 his	 All-weather	 sky	 model	

considering	insolation	condition	parameters.	Kittler	et	al.	(1997)	presented	

15	 sky	 categories,	 which	 later	 CIE	 (2013)	 recommended	 it	 as	 Standard	

General	Sky.	

1.2 Motivations	

Engineering	 applications	 in	 building	 industry	 such	 as	 i)	 computational	

prediction	 of	 the	 energy	 demand	 of	 building	 designs;	 ii)	 placement,	
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configuration,	 and	 sizing	 of	 building-integrated	 solar	 energy	 systems	

(solar-thermal	 collectors,	 photovoltaic	 panels);	 iii)	 proper	 selection	 of	

buildings'	 external	 surfaces	 and	 their	 solar-thermal	 properties;	 iv)	

computational	prediction	of	daylight	levels	in	buildings'	interior	spaces;	v)	

selection	of	 location,	 geometry,	 and	photometric	properties	of	buildings'	

windows,	 apertures,	 and	 other	 daylighting	 systems	 require	 accurate	

information	 on	 spatial	 and	 temporal	 distribution	 of	 solar	 irradiance	 and	

illuminance	on	building	 surfaces.	 Performance	evaluation	of	models	 that	

predict	 solar	 radiation	 data	 including	 diffuse	 fraction	 models,	 sky	

radiance/luminance	distribution	models,	and	luminance	efficacy	models	is	

necessary	to	evaluate	the	validity	of	their	applications	in	above	mentioned	

engineering	areas.	

1.3 Objectives	

Discussed	 models	 play	 an	 important	 role	 in	 scientific	 and	 engineering	

applications	 toward	 sustainability	 and	 high-energy	 performance	 building	

(Igawa	et	al.	2004,	Grigiante	et	al.	2011,	Gueymard	2008).	This	thesis	thus	

examines	 a	 number	 of	 such	 models	 in	 detail	 and	 explore	 both	

improvement	 possibilities	 of	 existing	 models	 and	 the	 potential	 for	

alternative	 modeling	 techniques	 and	 approaches.	 Toward	 this	 end,	 the	

current	 research	 specifically	 evaluates	 existing	 high-resolution	 sky	

radiance	 and	 sky	 luminance	 models	 for	 the	 city	 of	 Vienna.	 In	 order	 to	

generate	sky	radiance	maps,	typically	the	diffuse	radiation	component	of	

the	global	horizontal	 irradiance	must	be	derived	based	on	proper	diffuse	

fraction	models	(Dervishi	and	Mahdavi	2012).	Consequently,	the	proposed	

research	starts	with	evaluating	existing	diffuse	fraction	models.	Once	both	

diffuse	 and	 direct	 horizontal	 irradiance	 data	 is	 available,	 the	 existing	

models	for	sky	radiance	generation	can	be	comprehensively	evaluated.	For	

this	purpose,	we	deploy	our	existing	monitoring	facility	and	other	available	

resources	 to	 systematically	 collect	both	 typical	weather	 station	data	and	

additional	 information	 concerning	 the	 diffuse	 component	 of	 the	 global	

horizontal	 irradiance,	global	horizontal	 illuminance,	vertical	 irradiance,	as	

well	as	detailed	sky	luminance	and	radiance	distribution.	
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1.4 Outline	

Some	sections	of	this	thesis	are	based	on	the	notes	written	by	my	research	

supervisor	Professor	Ardeshir	Mahdavi,	and	also	publications	authored	by	

us	and	other	colleagues.	This	thesis	 is	structured	 in	7	chapters,	alongside	

the	Introduction	as	follow.	

− Chapter	2:	

This	chapter	describes	data	used	in	current	work	and	characterization	

of	the	locations	and	climate	conditions	of	employed	stations.		

− Chapter	3:	

This	 chapter	 explores	 existing	 diffuse	 fraction	 models	 and	 their	

shortcomings	to	predict	the	diffuse	horizontal	irradiance.	Moreover,	a	

high	 performance	 empirical	 model	 for	 Vienna	 location	 is	 presented	

which	is	developed	at	the	Department	of	Building	Physics	and	Building	

Ecology,	TU	Wien,	Vienna,	Austria.	

− Chapter	4:	

In	 this	 chapter,	 two	 studies	 are	 discussed.	 First	 study	 assesses	 two	

well-known	 sky	 luminance	distribution	models	 to	predict	 illuminance	

on	 four	 cardinal	 vertical	 surfaces.	 Second	 study	 explore	 the	

performance	of	mentioned	sky	models	to	predict	irradiance	values	on	

four	cardinal	vertical	surfaces	in	RADIANCE	rendering	program.	

− Chapter	5:	

This	 chapter	 which	 is	 the	 result	 of	 a	 collaborative	 work	 with	 Ms.	

Ghazal	Etminan	(Master	of	science	student	at	TU	Wien),	evaluates	the	

performance	of	sky	models	and	our	own	developed	sky	model	(based	

on	 measured	 data	 from	 sky	 scanner)	 in	 prediction	 of	 indoor	

illuminance	of	a	test	room	compared	to	measured	indoor	illuminance	

values	taken	in	Vienna	for	3	defined	sky	conditions.		

− Chapter	6:	
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This	chapter	evaluates	the	performance	of	luminous	efficacy	models	in	

generating	global	horizontal	illuminance.	

− Chapter	7:	

The	 last	 chapter	 discusses	 the	 contribution	 of	 this	 dissertation	 and	

possibility	of	future	works.		
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 Dataset	

2.1 Data	collection	

Due	 to	 the	 spherical	 shape	 of	 the	 earth,	 solar	 radiation	 is	 not	 equally	

distributed	over	the	planet.	In	addition	to	that,	meteorological	conditions	

and	 site	 topography	 influences	 solar	 radiation	magnitudes.	 Therefore,	 in	

order	to	examine	the	universality	of	the	radiation	models,	having	access	to	

data	 from	 different	 locations	 is	 required.	 For	 this	 purpose,	we	 gathered	

data	from	one	location	in	Vienna,	Austria	and	7	locations	in	United	States.		

2.1.1 USA	

Baseline	 Surface	 Radiation	 Network	 project	 is	 a	 Data	 and	 Assessment	

Panel	from	the	Global	energy	and	Water	Cycle	Experiment	(GEWEX)	under	

the	 umbrella	 of	 the	 World	 Climate	 Research	 Program	 (WCRP)	 (König-

Langlo	and	Sieger,	2012).		

In	this	study,	7	USA	sites’	data	is	accessed	from	Baseline	Surface	Radiation	

Network	(BSRN)	database	for	year	2013	(see	Figure	2-1).	Table	2-1	shows	

general	 information	on	each	station.	20	variables	are	available	from	each	

station.	 Data	 were	 reported	 1-min	 averages,	 which	 during	 the	 pre-

processing	phase	we	converted	to	hourly	averages.	

	
Figure	2-1.	Distribution	map	of	BSRN	sites	deployed	in	this	study	 	
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Table	2-1.	Characteristics	of	stations	in	the	USA	(BSRN)	

Station	 Abb.	 Lat,	Long	(E	+)	 Elev.	 Comment	

Bondville,	IL	 bon	 40.06,	-88.36	 213m	 BSRN	 sta.	 #:	 32;	

Surface	 type:	 grass;	

Topography	 type:	 flat,	

rural	

Desert	Rock,	NV	 dra	 36.62,	-116.01	 1007m	 BSRN	 sta.	 #:	 35;	

Surface	 type:	 desert,	

gravel;	 Topography	

type:	flat,	rural	

Fort	Peck,	MT	 fpk	 48.31,	-105.10	 634m	 BSRN	 sta.	 #:	 31;	

Surface	 type:	 grass;	

Topography	 type:	 flat,	

rural	

Goodwin	Creek,	MS	 gwn	 34.25,	-89.87	 98m	 BSRN	 sta.	 #:	 33;	

Surface	 type:	 grass;	

Topography	type:	hilly,	

rural	

Rock	Springs,	PA	 psu	 40.72,	-77.93	 376m	 BSRN	 sta.	 #:	 36;	

Surface	 type:	

cultivated;	 Topog.	

type:	 mountain	 valley,	

rural	

Sioux	Falls,	SD	 sxf	 43.73,	-96.62	 473m	 BSRN	 sta.	 #:	 37;	

Surface	 type:	 grass;	

Topography	type:	hilly,	

rural	

Table	Mountain,	CO	 tbl	 40.12,	-105.24	 1689m	 BSRN	 sta.	 #:	 34;	

Surface	 type:	 grass;	

Topography	type:	hilly,	

rural	
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2.1.2 Vienna	

Vienna	has	a	mild	climate	with	warm	summers	and	 is	classified	as	Cfb	 in	

Köppen-Geiger	 classification.	The	sky	 in	Vienna	 is	most	of	 the	year	partly	

cloudy	 to	 overcast.	 The	 median	 cloud	 cover	 varies	 from	 44%	 to	 89%	

through	the	year	(Climate-Data.org,	2016).		

The	 weather	 station	 belongs	 to	 Department	 of	 Building	 Science	 and	

Building	Ecology,	TU	Wien	and	 is	 located	near	Karlsplatz,	city	center.	The	

measurement	devices	are	mounted	on	the	rooftop	of	the	TU	Wien’s	main	

building.	 In	 the	 purpose	 of	 this	 work,	 data	 from	 a	 number	 of	

meteorological,	 solar	 radiation	 and	 photonic	 sensors	 are	 employed.	 A	

short	 information	list	of	these	sensors	 is	presented	in	Table	2-2	 (Detailed	

specification	of	these	sensors	 including	their	mounting	status	can	be	find	

in	appendix	A).	

Table	2-2.	List	of	deployed	sensors	for	Vienna	

Instrument	 Measurement	 Brand	 Image	

CM3	Pyranometer	 irradiance	 Kipp&Zonen	

	

SPN1	Pyranometer	 irradiance	 Delta-T	Devices	

	

Skyscanner	

MS321LR	

radiance	&	luminance	 Eko	Instruments	

	

CM121	Shadow	ring	 irradiance	 Kipp&Zonen	

	

CLIMA	Sensor	 meteorological	 Thies	Clima	
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2.2 Data	quality	control	

BSRN	 Surfrad	 data	 are	 written	 in	 ASCII	 text	 and	 are	 organized	 in	 one-

minute	 intervals	 after	 beginning	 of	 2009.	 A	QC	 flag	 of	 zero	 qualifies	 the	

data	point.	Data	points	with	QC	 flag	other	 than	 zero	were	eliminated	 to	

increase	the	quality	of	data.	

Data	 quality	 plays	 an	 important	 role	 in	 data	 analysis	 and	 model	

development.	To	achieve	a	reliable	and	trustful	level	of	data,	several	steps	

of	rigorous	quality	control	analysis	is	done	to	the	BPI	data,	which	are:	

1. The	comparison	of	global	horizontal	irradiance	data	from	sunshine	

Pyranometer	 (Delta-T	 SPN1)	with	 an	accurate	Pyranometer	 (Kipp	

&	 Zonen	 CM3)	 and	 elimination	 of	 data,	 with	 more	 than	 5%	 of	

deviation	for	the	whole	period	of	the	measurement	

2. Discarding	the	data	with	solar	altitude	of	less	than	5	degrees,	due	

to	the	possibility	of	obstructed	sun	by	the	surrounding	hills	

3. Elimination	 of	 data	 with	 global	 horizontal	 radiance	 less	 than	 50	

watts	per	square	meters	or	clearness	index	of	higher	than	unit	

4. Replacement	 of	 error	 containing	 patches	 by	 average	 value	 of	

surrounding	patches	

5. Elimination	of	patches	exceeding	sensor	maximum	range	
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 Diffuse	fraction	models	

3.1 Introduction	

Clearness	 index	 ( 𝑘", 	ratio	 of	 global	 horizontal	 irradiance	 over	

extraterrestrial	 horizontal	 irradiance)	 provides	 useful	 information	 on	 sky	

solar	energy	conditions	(see	equation	1).	The	lower	the	horizontal	diffuse	

component	of	solar	radiation	is,	the	higher	the	clearness	index.	This	index	

barely	 exceeds	 0.85	 for	 location	 Vienna,	 Austria.	 The	 reason	 for	 this	

phenomenon	is	that,	even	on	clearest	day	there	will	be	a	portion	of	solar	

energy	absorbed	or	reflected	by	the	atmosphere	back	to	the	space	before	

reaching	 the	 earth	 ground.	 Although,	 under	 certain	 circumstances,	 this	

number	 can	 nearly	 reach	 to	 unit,	 e.g.	 sky	 with	 bright	 clouds	 and	

unobstructed	sun	(Skartveit	&	Olseth	1987).		

There	 has	 been	 much	 research	 about	 the	 effect	 of	 other	 variables	 on	

diffuse	 component	 of	 solar	 radiation,	 e.g.	 air	 temperature,	 relative	

humidity,	water	content,	and	solar	altitude.	This	chapter	explores	some	of	

available	 diffuse	 fraction	 models	 and	 evaluates	 their	 performances	

compared	 to	 measured	 data.	 Selection	 of	 these	 models	 was	 based	 on	

highly	cited	papers	among	other	diffuse	 fraction	models.	The	models	are	

divided	 into	 three	 categories,	 namely,	 polynomials,	 logistic,	 and	

exponential	models	 (see	 Table	 3-1).	 Definition	 of	 each	models	 and	 their	

formulas	are	explained	in	section	2	of	this	chapter.	Moreover,	the	author	

proposes	 a	new	diffuse	 fraction	model	 and	 its	performance	 is	 compared	

with	those	models.		

𝑘" = 	
𝐼'(

𝐼)*"× 𝑠𝑖𝑛 ∝	
	 (1) 
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𝑘0 =
𝐼0(
𝐼'(
	 (2) 

𝐼)*" = 1367 1 + 0.33 cos
360𝑛
365

	 (3) 

Table	3-1.	Summarized	description	of	models	and	their	variables	

Model	 Function	type	 Variables	

Erbs	et	al.	(1982)	 Polynomial	 𝑘" 		

Maxwell	(1987)	 Exponential	 𝑘"	,	mair	

Skartveit	and	Olseth	(1987)	 Polynomial	 𝑘",	𝛼,	σ3	

Reindl	et	al.	(1990)	 Polynomial	 𝑘" 	,	sin	𝛼,	T	,	ϕ	

Perez	et	al.	(1992)	 Exponential	 W,	Z,	ktʹ,	Δktʹ	

Boland	et	al.	(2008)	 Logistic	 𝑘" 		

BRL	(2010)	 Logistic	 𝑘",	AST	,	𝛼,	𝐾"	,	φ	

3.2 Existing	models	

3.2.1 Polynomial	models		

Polynomial	 functions	 are	 of	 the	 simplest	methods	 to	 derive	 correlations	

despite	 the	 fact	 that	 they	 are	 less	 realistic.	 Some	 of	 the	 earliest	 diffuse	

fraction	 models	 were	 based	 on	 polynomial	 function.	 In	 1960,	 Liu	 and	

Jordan	proposed	a	linear	diffuse	fraction	model	as	a	function	of	clearness	

index.	

Orgill	 and	Hollands	 (1997)	 proposed	a	polynomial	 diffuse	 fraction	model	

as	 a	 function	 of	 clearness	 index	 using	 data	 from	 Toronto,	 Canada.	 Iqbal	

(1980)	 later	proposed	a	diffuse	 fraction	model	as	a	 function	of	 clearness	

index	and	solar	altitude,	which	 showed	a	 significant	enhancement	 in	 the	

model	 performance.	 Reindl	 et	 al.	 (1990)	 proposed	 two	 models,	 a	 full	

version	and	a	simplified	model.	Full	version	model	is	based	on	4	variables,	

namely,	 clearness	 index,	 solar	 altitude,	 temperature,	 and	 relative	

humidity,	and	 the	simplified	version	as	a	 function	of	 clearness	 index	and	

solar	 altitude.	 In	 their	 findings	 full	 version	 model	 gained	 26%	 and	
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simplified	 version	 23%	 improvement	 in	 comparison	 to	Erbs	 et	 al.	 (1982)	

model.	

3.2.1.1 Erbs	et	al.	(1982)	

Erbs	 et	 al.	 (1982)	 suggested	 a	 diffuse	 fraction	 model	 as	 a	 function	 of	

clearness	index,	which	has	different	function	for	different	bins	of	clearness	

index.	 They	 demonstrated	 different	 approaches	 to	 estimate	 diffuse	

fraction	 based	 on	 hourly,	 daily,	 and	 monthly	 average	 data.	 The	 data	 to	

obtain	their	model	was	collected	from	four	available	stations	 in	the	USA,	

Fort	 Hood	 (TX),	 Livermore	 (CA),	 Raleigh	 (NC),	 and	 Maynard	 (NM).	 The	

direct	 beam	 irradiance	 was	 measured	 using	 a	 Pyrheliometer	 and	 global	

horizontal	 irradiance	 data	 using	 a	 Pyranometer.	 In	 order	 to	 validate	 the	

data,	 they	used	data	 from	Highett,	Victoria,	Australia	 that	was	measured	

with	an	unshaded	and	shaded	Pyranometer.	In	addition	to	clearness	index	

dependent	model,	they	calculated	diffuse	fraction	as	a	function	of	𝑘>,	the	

ratio	 of	 horizontal	 global	 irradiance	 to	 clear	 sky	 horizontal	 global	

irradiance.	 However,	 results	 suggested	 no	 significant	 change	 in	 the	

standard	deviation	between	measured	values	and	predicted	one.	

Below	 Erbs	 et	 al.	 (1982)	 model	 as	 a	 function	 of	 clearness	 index	 is	

described:	

For 𝑘" ≤ 0.22;		 

𝐼0(
𝐼'(

= 1 − 0.09𝑘"	 (4) 

For 0.22 ≤𝑘"≤0.8 

𝐼0(
𝐼'(

= 0.9511 − 0.1604𝑘" + 4.39𝑘"E − 16.64𝑘"F + 12.34𝑘"G	 (5) 

For 𝑘">0.8; 
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𝐼0(
𝐼'(

= 0.165	 (6) 

For	 values	of	 clearness	 index	more	 than	0.8,	 they	use	a	 constant	diffuse	

fraction,	similar	 to	 the	Orgill	and	Hollands	 (1997)	approach.	They	explain	

the	 increase	 of	 diffuse	 fraction	 for	 the	 clearness	 index	 values	 of	 higher	

than	 0.8	 with	 the	 bright	 diffuse	 reflection	 from	 the	 clouds	 and	

unobstructed	sun.		

3.2.1.2 Skartveit	and	Olseth	(1987)	

In	1987,	Olseth	and	Hollands	 presented	an	hourly	diffuse	 fraction	model	

using	 clearness	 index	 and	 solar	 altitude	 as	 input	 variables.	 In	 1998,	

Authors	 published	 another	 article	 which	 was	 improved	 with	 adding	 2	

variables	of	 variability	 index	and	 regional	 surface	albedo.	Data	 sets	 from	

Bergen,	Norway	were	 used	with	 data	 only	 for	 April	 to	October	 due	 to	 a	

significant	snow	cover	 in	other	months	of	 the	year.	 In	this	study	a	snow-

free	case	of	Skartveit	and	Olseth	has	been	considered	for	the	comparison	

purposes.	

3.2.1.2.1 The	variability	index	

Distribution	of	clouds	strongly	affects	diffuse	and	beam	irradiance	values	

(Erbs	 et	 al.	 1982).	 Clouds	 can	 be	 in	 different	 colors/temperatures,	

different	 thickness,	 and	 different	 layers	 and	 height.	 Lower	 the	

temperature;	 lower	 the	 emission	 is	 from	 those	 clouds.	 Thicker	 clouds	

diffuse	 the	 solar	 radiation	 uniformly	 but	 reflect	 most	 of	 it	 back	 to	 the	

space.	 Multi-layer	 clouds	 can	 cause	 random	 distribution	 pattern	 of	 the	

radiance/luminance.	 All	 above-mentioned	 variations	 in	 the	 clouds	 will	

increase	 the	 complexity	 of	 sky	 radiance/luminance	 distribution.	 A	

diagnostic	 method	 to	 predict	 the	 cloud	 presence,	 which	 has	 a	 similar	

approach	as	Perez	(1992),	an	hourly	variability	index	σ3	was	introduced	by	

the	authors.	It	is	defined	as	a	root	mean	square	of	deviation	between	clear	

sky	 index	of	 the	 time	 step	 (ρt)	 and,	 respectively,	 the	preceding	 (ρt-1)	 and	

the	subsequent	(ρt+1)	hour:	
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σF =
(𝜌" − 𝜌"KL)E + (𝜌" − 𝜌"NL)E

2
	 (7) 

In	 the	 case,	 when	 the	 preceding	 or	 subsequent	 hour	 is	 missing,	 the	

following	formula	is	used:	

σ3 = 𝜌" − 𝜌"±L 	 (8) 

Clear sky index ρ is: 

ρ =
kR
𝑘L
	 (9) 

And 𝑘L is: 

𝑘L = 0.83 − 0.56𝑒KU.UV×W	 (10) 

Where	α	is	solar	altitude	in	degrees.	

σF	is	 almost	 independent	 of	 solar	 altitude.	 Low	 σ3	 shows	 overcast	 sky,	

which	0.9	 <	 ρt	<1.0	 represents	nearly	 cloudless	 sky.	 It	was	 indicated	 that	

	𝑘" 	for	clear	sky	is	only	related	to	solar	elevation	and	rarely	reaches	up	to	

0.75;	higher		𝑘" 	occurs	in	the	case	of	dealing	with	partially	cloudy	sky	with	
unobstructed	 sun	 disk	 in	 snow-free	 areas	 or	 locations	with	 high	 surface	

albedo.	 In	 those	 cases,	 only	 diffuse	 component	 will	 increase,	 while	 the	

amount	 of	 radiation	 coming	 directly	 from	 the	 sun	 remains	 constant.	 In	

appendix	 II,	 observation	 of	 various	 sky	 types	 and	 correlation	 of		𝑘" 	with	
solar	components	is	discussed.	

If	for	any	reason	σF	is	unknown,	the	following	equation	may	be	applied:	

For	ρ < 1.04: 

𝜎F = 0.021 + 0.397𝜌 − 0.231	𝜌E − 	0.13	𝑒[K{
\KU.]FL
U.LFG

^
}`.abc]	 (11) 

For	ρ > 1.04: 
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𝜎F = 0.12 + 0.65(𝜌 − 1.04)	 (12) 

3.2.1.2.2 Invariable	hours	

For	σF = 0,	the	 diffuse	 fraction	 model	 is	 developed	 applying	 linear	 least	

square	 regression	 to	 Bergen’s	 data	 for	 each	 bins	 (I-IV)	 of	 clearness	

index	𝑘",	as	follows:	

i. For	𝑘" < 	0.22,	 Skartveit	 and	 Olseth	 considers	 a	 totally	 overcast	 sky	

without	any	direct	beam	irradiance:	

	𝑘0 = 1.00	 (13)	

ii. For 	0.22 ≤ 𝑘" ≤ 	 	𝑘E ,	 Broken	 clouds	 and	 semi	 unobstructed	 sun	

dominates.	

𝑘0 = 𝑓 	𝑘", α = 1 − (1 − 𝑘0L)(0.11 𝐾 + 0.15𝐾 + 0.74𝐾E)	 (14)	

Where		

𝐾 = 0.5(1 + sin
	𝑘" − 0.22
𝑘L − 0.22

𝜋 − 0.5𝜋 )	 (15)	

𝑘E = 0.95𝑘L	 (16)	

𝑘0L = 0.07 + 0.046
90 − α
α + 3

	 (17)	

For	𝛼	less	than	1.4°,	𝑘0Lis	considered	as	1.	

iii. For	𝑘E ≤ 𝑘" ≤ 	 	𝑘kl*,	 an	 almost	 cloudless	 sky	 was	 assumed.	 Thus,	

diffuse	 component	 will	 be	 constant,	 and	 diffuse	 fraction	 will	 be	

dependent	on	solar	elevation	and	turbidity.	From	this	assumption:	
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𝑘0 = 𝑘0E𝑘E
(1 − 𝑘")
𝑘"(1 − 𝑘E)

	 (18)	

The	upper	limit		𝑘kl*	is	derived	from	𝑘mkl*:	

	𝑘kl* =
	𝑘mkl* +

𝑘0E𝑘E
(1 − 𝑘E)

1 + 𝑘0E𝑘E
(1 − 𝑘E)

	 (19)	

Where		𝑘mkl*	is	fitted	to	an	extreme	beam	transmittance	modelled	by	the	

SMARTS2	(Gueymard	1993):	

	𝑘mkl* = 0.81n	 (20)	

𝜔 =
1

sin	 α

U.V
	 (21)	

iv. For	𝑘" ≥ 	 	𝑘kl*,	they	assumed	that	diffuse	fraction	is	only	 influenced	

by	clouds,	due	to	the	constant	beam	irradiance:	

𝑘0 = 1 − 	𝑘kl*
1 − 	𝑘0kl*

	𝑘"
	 (22)	

Where	maximum	diffuse	fraction	for	maximum	clearness	index	is:	

	𝑘0kl* = 𝑘0E𝑘E
(1 − 	𝑘kl*)
	𝑘kl*(1 − 	𝑘E)

	 (23)	

3.2.1.2.3 Variable	hours	

For	σF > 0,	the	least	square	analysis	indicated	use	of	a	term	∆(	𝑘", α, σF)	,	

which	should	be	added	to	 the	above	 invariable	hours	diffuse	 fraction	 for	

all	bins	(I	to	IV):	

For	0.14 ≤ 𝑘" ≤ 	 𝑘*:	
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	∆ 	𝑘", α, σF = −2𝑘rE(1 − 𝑘r)𝜎FL.F	 (24)	

For	𝑘* ≤ 𝑘" ≤ 	 𝑘* + 0.71:	

∆ 	𝑘", α, σF = 3𝑘s(1 − 𝑘s)E𝜎FU.V	 (25)	

For	𝑘" > 	 𝑘* + 0.71	and	for	𝑘" < 	0.14:	

∆ 	𝑘", α, σF = 0	 (26)	

Where:	

𝑘* = 0.56 − 0.32𝑒KU.UVt	 (27)	

𝑘r =
	𝑘" − 0.14
𝑘* − 0.14

	 (28)	

𝑘s =
	𝑘" − 𝑘*
0.71

	 (29)	

3.2.1.3 Reindl	et	al.	(1990)	

Reindl	 et	 al.	 (1990)	 presented	a	polynomial	 diffuse	 fraction	model.	 Their	

goal	was	 to	derive	a	model	which	 is	 simple	and	uses	basic	microclimatic	

weather	 data	 such	 as	 global	 horizontal	 irradiance,	 temperature	 and	

humidity.	 They	 used	 data	 from	 5	 locations	 (three	 in	 Europe	 and	 two	 in	

United	States)	and	data	 from	Oslo,	Norway	 for	 comparison	purposes.	All	

data	 was	 processed	 to	 achieve	 high	 quality	 data	 such	 as	 elimination	 of	

flagged,	 elimination	 of	 data	 which	 violate	 physical	 limits	 or	 conversion	

principles.	The	motivation	behind	 their	 study	was	 to	 investigate	whether	

adding	extra	predictors	to	the	Liu	and	Jordan	type	models	will	significantly	

reduce	 the	 standard	 errors.	 They	 also	 limited	 the	 model	 inputs	 to	
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commonly	 observed	 climatic	 variables	 such	 as	 ambient	 temperature,	

relative	 humidity,	 etc.	 Three	 piecewise	 correlation	 was	 presented	 using	

different	number	of	variables.	A	piecewise	correlation	over	three	ranges	of	

clearness	index:		

For 𝑘" ≤ 0.3; 	 uvw
uxw

≤ 1.0        

𝐼0(
𝐼'(

= 1.00 − 0.232𝑘" + 0.0239 sin 𝛼 − 0.000682𝑇l + 0.0195𝜙	 (30) 

For	0.3 < 𝑘" < 0.78 

𝐼0(
𝐼'(

= 1.329 − 1.716𝑘" + 0.267 sin 𝛼 − 0.00357𝑇l + 0.106𝜙	 (31) 

For	𝑘" ≥ 0.78 & uvw
uxw

≥ 0.1  

𝐼0(
𝐼'(

= 0.426𝑘" − 0.256 sin 𝛼 + 0.00349𝑇l + 0.0734𝜙	 (32) 

Where,	 𝐼0(	 is	 horizontal	 diffuse	 irradiance,	 𝐼'( 	is	 horizontal	 global	

irradiance,	𝑇{	is	 outdoor	 temperature	 and	𝜙	is	 relative	 humidity.	 For	 the	

locations,	where	temperature	and	relative	humidity	are	not	available,	they	

presented	second	piecewise	correlation:	

For 𝑘" ≤ 0.3; 	 uvw
uxw

≤ 1.0 

𝐼0(
𝐼'(

= 1.02 − 0.254𝑘" + 0.0123 sin 𝛼	 (33) 

For	0.3 < 𝑘" < 0.78 

𝐼0(
𝐼'(

= 1.4 − 1.749𝑘" + 0.177 sin 𝛼	 (34) 

For	𝑘" ≥ 0.78 & uvw
uxw

≥ 0.1  
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𝐼0(
𝐼'(

= 0.486𝑘" − 0.182 sin 𝛼	 (35) 

Comparison	 results	 revealed	 that	 first	 piecewise	 correlation	 (Four	

variables)	reduced	the	residual	sum	of	squares	by	14.4%	comparing	to	the	

correlation	that	depends	only	on	clearness	index	(using	the	same	dataset).		

3.2.2 Logistic	function	models		

3.2.2.1 Boland	

Boland	et	al.	 (2001),	made	an	attempt	on	 finding	a	model	 for	 the	whole	

range	of	𝑘",	unlike	previous	models	such	as	Erbs	et	al.	(1982),	Reindl	et	al.	

(1990),	Olseth	and	Hollands	 (1987),	and	 Spencer	 (1982),	which	 split	 data	

according	to	different	ranges	of	𝑘".	Accordingly,	he	used	 logistic	 function	
that	could	fit	the	data.	Using	curve-fitting	tool	he	derived	two	equations,	

Eq.	36	for	15-minutes	data	and	Eq.	37	for	hourly	data:	

𝐼0(
𝐼'(

=
1

1 + 𝑒8.645(𝑘𝑡−0.613)	 (36) 

𝐼0(
𝐼'(

=
1

1 + 𝑒7.997(𝑘𝑡−0.586)	 (37) 

Mentioned	 model	 was	 compared	 with	 Reindl	 model	 and	 showed	 slight	

improvement	 in	the	statistical	measures	such	as	R-square	and	Composite	

Residual	 sum	of	 squares	 (CRSS).	 The	main	 advantage	of	Boland	model	 is	

the	 use	 of	 one	 single	 equation	 for	 the	whole	 range	 of	𝑘".	 This	 equation	

predicts	 low	 diffuse	 fraction	 for	 high	𝑘",	 which	 is	 not	 the	 case	 in	 reality	

and	due	 to	 the	 sky	with	 visible	 sun	 and	partly	 cloudy,	𝑘" 	will	 reach	near	
0.9.	Consequently,	there	will	be	a	high	diffuse	irradiance	as	a	result	of	the	

reflection	of	clouds.		

3.2.2.2 Boland-Ridley-Lauret	(BRL)		

Employing	 a	 Bayesian	 framework,	 Lauret	 et	 al.	 (2010)	 derived	 a	 simple	

logistic	hourly	model	by	using	5	variables,	which	are	apparent	solar	 time	
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(AST),	 solar	 altitude	 α,	 clearness	 index	𝑘",daily	 clearness	 index	𝐾"	and	

persistence	 index	 ψ.	 Application	 of	 these	 variables	 enhances	 the	

performance	 of	 the	 predictive	 model	 due	 to	 their	 characteristics.	 The	

proposed	model	is:	

𝐼0(
𝐼'(

=
1

1 + 𝑒−5.32+7.28𝑘𝑡−0.03𝐴𝑆𝑇−0.0047𝛼+1.72𝐾𝑡+1.08𝜓	 (38) 

𝐾" =
𝐼�EG

��L

𝐼U,�EG
��L

	 (39) 

𝜓 =

𝑘"NL + 𝑘"KL
2
𝑘"NL
𝑘"KL

	

 

(40) 

3.2.3 Exponential	Models		

Maxwell	 (1987)	 introduced	 an	 exponential	 model	 based	 on	 physical	

principles	by	developing	a	computer	program,	called	the	Direct	Insolation	

Simulation	 Code	 (DISC	 model).	 Following	 this	 step,	 Perez	 (1992)	 used	

Maxwell	 beam	 irradiance	 for	 his	 first	 model,	 applying	 correcting	

coefficients	to	predict	beam	irradiance	more	accurately.	His	second	model	

is	air-mass	independent.	

3.2.3.1 Maxwell		

Maxwell	 (1987)	predicted	 normal	 beam	 irradiation	𝐼m	from	 hourly	 global	

irradiation	 values,	 using	 quasi-physical	 model.	 The	 amount	 of	 diffuse	

fraction	 can	 be	 calculated	 in	 order	 to	 compare	 it	 with	 other	 models.	

Initially,	Maxwell	calculated	a	maximum		𝑘" 	for	clear	sky	𝐾�,>:	

𝐾�,> = 0.866 − 0.122𝑚l�� + 0.0121𝑚l��
E −	

0.000653𝑚l��
F + 0.000014𝑚l��

G 	
(41) 

In	which	𝑚l�� 	is	air	mass	depending	on	α:	

sunrise	<t<	sunset	

t=sunrise	

t=sunset	



Diffuse	fraction	models	

	 23	

𝑚l�� =
1

𝑠𝑖𝑛 𝛼 + 0.50572
(𝛼 + 6.07995)L.VFVG

	 (42) 

Then	a	reduction	∆𝐾�of	the	maximum	is	considered:	

∆𝐾� = 𝑎 + 𝑏𝑒>k���	 (43) 

Where	 parameters	 of	 a,	 b	 and	 c	 are	 determined	 for	 two	 ranges	 of	𝑘",	
using	two	equations	below:	

If 𝑘"	 ≤ 

0.6	

𝑎 = 0.512 − 1.560𝑘" + 2.286𝑘"E − 2.222𝑘"F
𝑏 = 0.370 + 0.962𝑘"																																										
𝑐 = −0.280 + 0.932𝑘" − 2.048𝑘"E																	

 (44) 

If 𝑘"	 > 

0.6	

𝑎 = −5.743 + 21.77𝑘" − 27.49𝑘"E + 11.56𝑘"F

𝑏 = 41.4 − 118.5𝑘" + 66.05𝑘"E + 31.9𝑘"F									
𝑐 = −47.01 + 184.2𝑘" − 222𝑘"E + 73.81𝑘"F				

 (45) 

Finally,	 the	direct	normal	 irradiance	and	diffuse	horizontal	 irradiance	can	

be	derived	using:	

𝐼m,���� = 𝐼U. 𝐾�	 (46) 

𝐼0 = 𝐼 − 𝐼m,���� sin 𝛼	 (47) 

3.2.3.2 Perez		

Perez	et	al.	 (1992)	used	a	 statistical	approach	 from	a	 large	multi-climatic	

experimental	database	to	derive	two	models	for	converting	hourly	global	

irradiance	into	hourly	direct	beam	irradiance.	This	approach	was	based	on	

the	 parameterization	 of	 insolation	 conditions	 (Perez	 et	 al.	 1990),	 using	

four-dimensional	 space.	 In	 the	 current	 thesis	 the	 first	 model	 was	 used.	

Direct	normal	beam	irradiance	is:	
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𝐼 = 𝐼m,0���. 𝑋(𝐾"�, 𝑍,𝑊, ∆𝐾"�)	 (48) 

Where	𝐼0��� 	the	direct	 normal	 irradiance	 is	 estimated	by	 the	DISC	model	

(Maxwell,	 1987)	 and	𝑋(𝐾"�, 𝑍,𝑊, ∆𝐾"�) 	is	 a	 coefficient	 made	 of	 four	

insolation	 condition	parameters,	which	are	adjusted	 clearness	 index	(𝐾"�)	

that	 represents	 meteorologically	 similar	 conditions	 irrespective	 of	 the	

position	 of	 the	 sun	 (Eq.	 49).	𝑍�	is	 the	 solar	 zenith	 angle	 (Eq.	 50),	∆𝐾"�	

stability	 index	 (Eq.	 51)	 and	𝑊	is	 atmospheric	precipitable	water	 (Eq.	 52).	

These	 coefficients	 are	 obtained	 from	 a	 look-up	 table	 consisting	 of	 a	

6×6×5×7	matrix	 (See	 Table	 3-2).	 As	 for	 the	 second	model,	 Perez	 et	 al.	

used	 two	 terms	of	a	 and	b,	which	were	derived	statistically	 from	a	 large	

multi-climatic	experimental	data	set.	These	coefficients	are	the	average	of	

500	data	points	and	were	obtained	from	a	four	dimensional	look-up	table	

consisting	 of	8×5×4×6	matrixes	 (see	Table	 3-3).	 The	 instruction	 to	 how	

to	use	Perez	look	up	table	is	given	in	Appendix.	

𝐾"� =
𝑘"�

1.031(𝑒

KL.G
U.]N ].G

k��� + 1)

	
(49) 

𝑍 = 90 − 𝛼	 (50) 

∆𝐾"� = 0.5( 𝐾"� − 𝐾"NL� + 𝐾"�−𝐾"KL� )	 (51) 

𝑊 = 𝑒(U.U��vKU.U��)	 (52) 

Table	3-2.	Bins	used	in	Perez	function	

Bins	 	 𝑲𝒕
� 		 𝒁		 𝑾	(cm)	 ∆𝑲𝒕

� 		
1	 0.00-0.24	 00-25	 0-1	 0.000-0.015	
2	 0.24-0.40	 25-40	 1-2	 0.015-0.035	
3	 0.40-0.56	 40-55	 2-3	 0.035-0.070	
4	 0.56-0.70	 55-70	 3-∞	 0.070-0.150	
5	 0.70-0.80	 70-80	 0-∞	 0.150-0.300	
6	 0.80-1.00	 80-90	 	 0.399-1.000	
7	 	 	 	 0.000-1.000	
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Table	3-3.	Bins	used	for	the	Perez	second	model	

Bins	 	 𝑲𝒕
� 		 𝒁			 𝑾	(cm)	 ∆𝑲𝒕

� 		
1	 0.00-0.29	 0.0-40.0	 0-1.50	 0.000-0.020	
2	 0.29-0.42	 40.0-52.5	 1.50-2.75	 0.020-0.048	
3	 0.42-0.53	 52.5-65.0	 2.75-∞	 0.048-0.110	
4	 0.53-0.64	 65.0-75.0	 0.00-∞	 0.110-0.250	
5	 0.64-0.71	 75.0-90.0	 	 0.250-1.000	
6	 0.71-0.75	 	 	 0.000-1.000	
7	 0.75-0.79	 	 	 	
8	 0.79-1.00	 	 	 	

3.3 BPI	model	

This	 section	 describes	 in	 detail	 the	 efforts	 made	 to	 develop	 a	 high	

performance	empirical	diffuse	fraction	model	for	the	Vienna	climate.	The	

model	is	the	result	of	comprehensive	research	effort	and	data	analysis	at	

the	 Department	 of	 Building	 Physics	 and	 Building	 Technology	 (BPI),	 TU	

Wien.		

3.3.1 Approach	

In	 order	 to	 choose	 the	 appropriate	 parameters	 that	 correlate	 with	 the	

diffuse	 fraction,	 a	 number	 of	 commonly	 observed	 available	 climatic	

variables	 normalized	 and	 compared	 to	 the	 measured	 diffuse	 fraction.	

These	variables,	apart	 from	the	clearness	 index,	are	the	global	horizontal	

irradiance,	solar	altitude,	temperature,	and	relative	humidity.		

3.3.1.1 Feature	scaling	

Since	the	range	of	variables	varies	widely,	feature-scaling	method	is	used	

to	 scale	 down	 variables	 between	 0	 and	 1.	 This	 method	 increases	 the	

convergence	speed	when	fitting	methods	are	used.	In	order	to	standardize	

the	independent	variables	rescaling	is	done.	The	formula	is	as	follows:	

𝑋� =
𝑋 −min	(𝑋)

max 𝑋 −min	(𝑋)	
(53) 

Where,	𝑋	is	the	vector	of	each	variable	and	𝑋�	is	the	normalized	data.	
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3.3.1.2 Pearson	moment	correlation	

Pearson	moment	correlation	index	was	employed	in	order	to	estimate	the	

strength	 of	 correlation	 of	 each	 variable	 with	 diffuse	 fraction.	 This	 index	

shows	 the	 linear	 dependency	 of	 two	 variables	 of	 X	 and	 Y.	 This	 index	 is	

defined	 as	 covariance	 of	 two	 variables	 divided	 by	 product	 of	 their	

standard	deviation.	

𝑟 =
𝑐𝑜𝑣	(𝑋, 𝑌)
𝜎 𝜎¡

	 (54) 

Where,	r	is	the	Pearson	index,	and	X	and	Y	are	variables.	𝑟	can	vary	from	-

1	 to	 1	 depending	 on	 the	 correlation	 between	 two	 variables.	 Absolute	

values	of	r	higher	than	0.7	show	strong	correlation	while	absolute	values	

of	r	below	0.3	show	weak	correlation	between	two	variables.		

In	this	study	scaled	features	(clearness	index,	horizontal	global	irradiance,	

solar	altitude,	temperature,	relative	humidity)	are	divided	into	10	bins	(0-

0.1,	to	0.9-1.0).	

Workflow	 of	 Pearson	 index	 calculation	 for	 different	 variables	 is	

demonstrated	 in	Figure	 3-1.	 Pearson	 indexes	 are	 shown	 in	Table	 3-4.	 By	

looking	at	this	table,	it	can	be	inferred	that	all	5	variables	have	moderate	

correlation	 with	 diffuse	 fraction,	 considering	 that	 highest	 to	 lowest	

correlations	 are	 global	 horizontal	 irradiance,	 clearness	 index,	 solar	

altitude,	temperature	and	lowest	relative	humidity.	

	

Figure	3-1.	Workflow	of	Pearson	index	calculation	
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Table	3-4.	Pearson	moment	correlation	for	different	variables	vs.	diffuse	fraction	

	

	

Pearson	moment	number	 Varying	feature	
0.45	 Global	horizontal	irradiance	
0.45	 Global	horizontal	irradiance	
0.44	 Global	horizontal	irradiance	
0.44	 Global	horizontal	irradiance	
0.44	 Global	horizontal	irradiance	
0.44	 Global	horizontal	irradiance	
0.44	 Global	horizontal	irradiance	
0.43	 Global	horizontal	irradiance	
0.43	 Global	horizontal	irradiance	
0.43	 Global	horizontal	irradiance	
0.42	 Global	horizontal	irradiance	
0.42	 Global	horizontal	irradiance	
0.41	 	Solar	altitude	
0.41	 	Temperature	
0.41	 	Solar	altitude	
0.41	 Global	horizontal	irradiance	
0.41	 	Solar	altitude	
0.40	 	Solar	altitude	
0.40	 	Solar	altitude	
0.40	 	Temperature	
0.40	 Global	horizontal	irradiance	
0.40	 	Solar	altitude	
0.40	 	Solar	altitude	
0.39	 	Temperature	
0.38	 	Temperature	
0.38	 	Temperature	
0.38	 	Temperature	
0.38	 	Temperature	
0.38	 	Humidity	
0.38	 	Temperature	
0.38	 	Temperature	
0.37	 	Temperature	
0.37	 	Solar	altitude	
0.37	 	Humidity	
0.37	 	Temperature	
0.37	 	Humidity	
0.37	 	Solar	altitude	
0.36	 	Solar	altitude	
0.36	 	Humidity	
0.36	 	Humidity	
0.35	 	Humidity	
0.35	 	Humidity	
0.35	 	Temperature	
0.35	 	Humidity	
0.35	 	Humidity	
0.35	 	Humidity	
0.35	 	Humidity	
0.35	 	Humidity	
0.34	 	Humidity	
0.33	 	Humidity	
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In	 order	 to	 better	 observe	 the	 correlation	 of	 each	 variable	 with	 diffuse	

fraction,	 each	 variable	 plus	 clearness	 index	 is	 compared	 with	 diffuse	

fraction	 in	 a	 contour	 and	 3D	 plot.	 Figure	 3-2	 shows	 that	 higher	 global	

horizontal	 irradiance	 (𝐼'()	 corresponds	 with	 higher	 and	 lower	 clearness	

index	and	diffuse	fraction	respectively.	Same	correlation	can	be	seen	in	3D	

plot	plus	the	fact	that	average	global	irradiance	covers	almost	entire	range	

of	 clearness-diffuse	 fraction	 (see	 Figure	 3-3).	 Figure	 3-4	 and	 Figure	 3-5	

shows	 the	correlation	of	 temperature	with	diffuse	 fraction	and	clearness	

index.	 In	 most	 cases	 temperature	 doesn’t	 impact	 diffuse	 fraction	 but	

extreme	high	and	low	temperatures	slightly	correlate	to	extreme	low	and	

high	diffuse	fraction	respectively.	Similar	to	temperature,	extreme	relative	

humidity	 correlates	 with	 extreme	 diffuse	 fraction	 but	 in	 a	 reverse	

correlation,	 which	 means,	 extreme	 high	 relative	 humidity	 values	 (near	

100%)	 corresponds	 to	 diffuse	 fraction	 near	 1	 and	 extreme	 dry	 instances	

(relative	humidity	below	20%)	represents	 low	diffuse	 fraction	 (see	Figure	

3-8	and	Figure	3-9).	

In	general,	 there	 is	no	strong	correlation	between	any	of	 these	variables	

and	diffuse	 fraction.	Therefore,	development	of	a	high	 resolution	diffuse	

fraction	 model	 based	 on	 these	 data	 is	 not	 possible.	 However,	 we	

attempted	 and	 were	 successful	 to	 develop	 an	 empirical	 diffuse	 fraction	

model	which	is	able	to	accurately	predict	diffuse	fraction	for	Vienna.		
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Figure	3-2.	Comparison	of	diffuse	fraction	vs.	clearness	index	for	different	global	

horizontal	irradiance	(𝐼'()	

	

Figure	3-3.	Three-dimensional	comparison	of	diffuse	fraction	vs.	clearness	index	

and	𝐼'(	
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Figure	3-4.	Comparison	of	diffuse	fraction	vs.	clearness	index	for	different	

temperatures	

	

Figure	3-5.	Three-dimensional	comparison	of	diffuse	fraction	vs.	clearness	index	

and	temperatures	
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Figure	3-6.	Comparison	of	diffuse	fraction	vs.	clearness	index	for	different	solar	

altitudes	

	

Figure	3-7.	Three-dimensional	comparison	of	diffuse	fraction	vs.	clearness	index	

and	solar	altitudes	
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Figure	3-8.	Comparison	of	diffuse	fraction	vs.	clearness	index	for	different	relative	

humidity	

	

Figure	3-9.	Three-dimensional	comparison	of	diffuse	fraction	vs.	clearness	index	

and	relative	humidity	
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3.3.1.3 Sun	state	

Visibility	of	 the	sun	disc	 influences	global	and	diffuse	values.	We	call	 this	

variable	“sun	state”	and	 in	order	to	classify	 it	we	assign	a	binary	number	

system:	in	case	of	obstructed	sun,	we	assign	sun	state	to	0	and	in	case	of	

visible	sun	1.	Figure	3-10	illustrates	effect	of	sun	state	classifier	in	𝑘0 − 𝑘"	

diagram;	 blue	 dots	 represent	 instances	 that	 sun	 is	 obstructed	 by	 clouds	

(sun	 state	 =	 0)	 and	 red	 dots	 represent	 visible	 sun	 (sun	 state	 =	 1).	 This	

figure	shows	that	upper	band	of	conventional	𝑘0 − 𝑘"	diagram	belongs	to	

sun	state	=	1	and	lower	band	to	sun	state	=	0.	

	

	

Figure	3-10.	Effect	of	sun	state	(Top:	3d	𝑘𝑑 − 𝑘𝑡	plot,	Bottom:	2d	𝑘𝑑 − 𝑘𝑡	plot)	
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3.3.2 Model	Description	

The	 distribution	 of	 clouds	 significantly	 affects	 the	 magnitude	 of	 solar	

radiation	 reaching	 the	building	 surface.	A	 standard	weather	 station	does	

not	 give	 information	 about	 cloud	 cover	 and	 distribution.	 Consequently,	

simple	 diffuse	 fraction	 models	 must	 rely	 on	 standard	 variables	 such	 as	

temperature,	 humidity,	 and	 global	 horizontal	 irradiance.	 A	 potential	

relationship	 between	 such	 variables	 and	 the	 diffuse	 fraction	 may	 be	

captured	 via	 statistical	 analysis	 of	 the	 measured	 data.	 With	 regard	 to	

Vienna	data,	we	noticed	that	the	correlation	between	clearness	index	and	

diffuse	 fraction	 can	 be	 improved,	 if	 multiple	 discrete	 ranges	 of	 global	

horizontal	 irradiance	are	differentiated.	Therefore,	 for	each	bin	of	 global	

horizontal	 irradiance,	 linear	 least	 square	 regression	was	 employed	 to	 fit	

the	model	to	the	data	(observed	values	of	diffuse	fraction	for	the	Vienna	

location	 in	 the	 year	 2013).	 From	 14	 initial	 variables,	 six	 promising	 ones	

were	 selected.	 These	 variables	 are	 clearness	 index,	 daily	 clearness	 index	

(average	of	 hourly	 clearness	 index	day),	 solar	 altitude,	 relative	humidity,	

temperature,	 and	 sun	 state.	 Sun	 state	 and	 clearness	 index	 have	 the	

highest	impact	on	diffuse	fraction.	Sun	state	data	was	imported	from	the	

Pyranometer.	 The	 selected	 variables	 and	 their	 definitions	 are	 given	 in	

Table	3-5.	

The	coefficients	derived	from	least	square	regression	are	included	in	Table	

3-6.	 Note	 that	 the	 values	 of	 temperature	 and	 relative	 humidity	 had	 a	

rather	limited	influence	on	the	resulting	diffuse	fraction	results.		

Table	3-5.	Variables	used	in	BPI	model	

Variable	 Symbol	 Formulation	

Solar	altitude	 α	 (
α
90
)V.�	

Clearness	index	 𝑘𝑡	 (1 − 𝑘𝑡)
0.8	

Daily	clearness	index	 𝐾𝑡	 (1 − 𝐾𝑡)
0.5	

Temperature	 T	
(1 −

(𝑇 + 20)
70

)
1.8

	

Relative	humidity	 ϕ	 ϕ	/100	

Sun	state	 SS	 SS	
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Table	3-6.	Coefficients	for	the	proposed	BPI	model	as	a	function	of	the	global	

horizontal	irradiance	(𝐼'()	range	

𝑰𝒈𝒉	bins	 1	 SS	 𝜶	 𝒌𝒕	 𝑲𝒕	 T	 ϕ	

0<𝑰𝒈𝒉<100	 0.88	 -0.39	 0.33	 -0.004	 0.044	 0.071	 -0.001	

100<𝑰𝒈𝒉<200	 0.796	 -0.529	 0.349	 -0.0890	 0.231	 0.0180	 0.0257	

200<𝑰𝒈𝒉<300	 0.487	 -0.530	 -0.450	 0.193	 0.331	 0.0750	 0.0350	

300<𝑰𝒈𝒉<400	 0.535	 -0.574	 -0.244	 0.118	 0.370	 0.0670	 0.00180	

400<𝑰𝒈𝒉<500	 0.0980	 -0.470	 -0.561	 0.453	 0.566	 0.198	 0.0710	

500<𝑰𝒈𝒉<600	 0.392	 -0.632	 -1.27	 0.287	 0.387	 0.220	 0.115	

600<𝑰𝒈𝒉<700	 0.442	 -0.644	 -0.755	 0.162	 0.496	 0.0790	 0.0770	

700<𝑰𝒈𝒉<800	 0.526	 -0.649	 0.192	 -0.174	 0.451	 0.0490	 0.2076	

800<𝑰𝒈𝒉<900	 0.329	 -0.742	 -0.0110	 0.502	 0.610	 0.136	 0.0794	

900<𝑰𝒈𝒉<1000	 2.97	 -2.325	 -0.484	 -1.365	 -0.199	 -0.562	 0.407	

3.4 Results	and	Discussions	

2013	hourly	data	of	8	locations	(7	in	USA	and	1	BPI,	Vienna,	Austria)	were	

used	 to	 predict	𝐼0(	using	 above	 described	 diffuse	 fraction	 models.	 The	

predicted	 values	 are	 compared	 applying	 different	 indicators	 in	 order	 to	

evaluate	 the	 performance	 of	 the	 models,	 namely,	 Mean	 Bias	 Error	 (%),	

Root	Mean	Square	Error	(%),	Mean	Absolute	Error	(%),	and	Relative	Error	

(%).	A	brief	description	of	each	indicator	is	given	below:	

1. Mean	Bias	Error	(MBE):	

𝑀𝐵𝐸 = [ (S� − M�) M�]�
��L 𝑛 ×100	 (55) 

2. Root	Mean	Square	Error	(RMSE):	

𝑅𝑀𝑆𝐸 = { (S� − M�) M�
E�

��L }
𝑛 ×100	 (56) 

3. Relative	Error	(RE):	

𝑅𝐸� = (S� − M�) M� ×100	 (57) 
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4. Mean	Absolute	Error	(MAE):	

𝑀𝐴𝐸 = [ (S� − M�) M� ]�
��L 𝑛 ×100	 (58) 

Table	 3-7	 to	 Table	 3-10	 entail	 the	 comparison	 results	 of	 measured	 and	

calculated	𝐼0( 	values	 (diffuse	 horizontal	 irradiance)	 in	 terms	 of	 typical	

statistics,	namely	Root	Mean	Square	Error	(RMSE)	 (Table	3-7),	Mean	Bias	

Error	 (MBE)	 (Table	 3-8),	 Mean	 Absolute	 Error	 (MAE)	 (Table	 3-9),	 and	

percentage	of	results	with	Relative	Errors	(RE)	less	than	20%	(Table	3-10).	

In	order	 to	obtain	 an	overview	of	 the	 relative	predictive	performance	of	

the	models,	we	 followed	the	 following	procedure.	For	each	of	 the	above	

four	 statistics	 and	 each	 of	 the	 locations,	 the	models	 ranked	 numerically	

from	 1	 (best	 performing	 model)	 to	 8	 (worst	 performing	 model).	 The	

respective	 scores	were	 then	 summed	 for	 each	model	 and	 each	 location	

and	displayed	in	Table	3-11.	Data	included	in	this	tables	suggests	that	the	

Skartveit	 and	 Olseth,	 BRL,	 and	 Maxwell	 models	 better	 comparatively.	

However,	 none	 of	 the	 models	 can	 be	 argued	 to	 perform	 satisfactorily.	

Assume,	 for	 instance,	 that	 we	 target	 a	 model	 performance	 yielding	 a	

threshold	of	 at	 least	80%	of	 the	predictions	with	a	RE	 value	of	 less	 than	

20%.	As	Table	3-10	suggests,	none	of	the	models	can	come	even	close	to	

meeting	such	a	requirement.	

BPI	 model	 is	 empirically	 developed	 using	 collected	 measured	 data	 in	

Vienna	from	year	2011.	In	order	to	validate	the	BPI	model,	we	compared	it	

using	its	driven	coefficient	from	year	2011	with	other	7	models	As	the	BPI	

model	 is	 empirically	 developed	 based	 on	 historical	 data,	 this	 model	

performs	 better	 only	 for	 data	 from	 Vienna	 site	 and	 has	 an	 average	
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performance	 among	other	models	 for	 data	 from	7	 locations	 in	USA	 (see	

Figure	3-11	and	Figure	3-12).	

	

Table	3-7.	Root	Mean	Square	Error	(RMSE	in	%)	of	predicted	𝐼0(	to	SPN1	data	

Model	 bon	 dra	 fpk	 gwn	 psu	 sxf	 tbl	 vie	

Erbs	et	al.	 37.82	 66.58	 50.07	 39.19	 38.19	 48.82	 51.04	 46.8	

Maxwell	 30.31	 48.82	 40.31	 29.16	 33.11	 42.16	 44.27	 37.91	

Reindl	 40.91	 82.06	 49.83	 46.13	 44.36	 50.78	 66.23	 44.19	

Perez	et	al.	 32.54	 53.98	 42.34	 35.96	 33.83	 40.63	 55.87	 40.34	

Skartveit	 27.60	 49.61	 38.99	 29.17	 30.79	 38.09	 51.39	 40.92	

Boland		 38.10	 59.97	 51.9	 38.42	 37.6	 49.94	 49.02	 48.33	

BRL	 29.38	 37.53	 39.92	 28.28	 29.25	 39.43	 40.7	 36.08	

BPI	 35.32	 45.86	 38.67	 34.45	 34.70	 42.92	 44.68	 30.98	

	

Table	3-8.	Mean	Bias	Error	(MBE	in	%)	of	predicted	𝐼0(	to	SPN1	data	

model	 bon	 dra	 fpk	 gwn	 psu	 sxf	 tbl	 vie	

Erbs	et	al.	 7.38	 45.28	 16.09	 15.68	 12.41	 17.54	 18.14	 19.21	

Maxwell	 -8.07	 18.97	 -3.09	 3.66	 1.12	 1.68	 5.79	 9.55	

Reindl	 11.19	 40.64	 18.53	 19.08	 16.02	 22.75	 24.78	 17.95	

Perez	et	al.	 -0.84	 31.19	 7.24	 9.52	 7.15	 7.80	 21.28	 15.85	

Skartveit	 -5.55	 19.10	 4.38	 4.82	 4.81	 4.00	 13.97	 14.76	

Boland		 6.60	 34.48	 15.78	 13.95	 11.60	 18.21	 10.29	 19.15	

BRL	 -11.44	 -0.25	 -4.23	 -3.01	 -2.76	 -1.26	 -10.64	 8.68	

BPI	 -2.09	 -8.37	 2.15	

	

-6.28	 -0.23	 4.64	 -5.25	 6.69	

	

Table	3-9.	Mean	Absolute	Error	(MAE	in	%)	of	predicted	𝐼0(	to	SPN1	data 
model	 bon	 dra	 fpk	 gwn	 psu	 sxf	 tbl	 vie	

Erbs	et	al.	 33.03	 54.68	 38.29	 28.63	 27.54	 35.12	 38.95	 27.34	

Maxwell	 27.38	 34.55	 30.84	 21.02	 24.17	 29.16	 32.52	 23.39	

Reindl	 33.54	 57.10	 36.50	 30.1	 29.03	 35.83	 44.41	 26.09	

Perez	et	al.	 27.89	 41.19	 31.67	 23.75	 24.05	 27.85	 40.55	 24.6	

Skartveit	 25.54	 33.26	 29.01	 20.62	 22.00	 25.41	 35.92	 23.87	

Boland		 33.07	 46.37	 39.73 27.63	 27.00	 35.94	 37.05	 28.16	

BRL	 28.16	 27.94	 31.96	 21.48	 22.37	 28.19	 31.55	 21.64	

BPI	 25.7	 33.69	 30.23	 25.35	 25.90	 29.62	 33.17	 19.96	
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Table	3-10.	Percentage	of	predicted	𝐼0(	data	having	RE	less	than	20%	with	SPN1	

data	

model	 bon	 dra	 fpk	 gwn	 psu	 sxf	 tbl	 vie	

Erbs	et	al.	 47	 21	 36	 49	 52	 41	 35	 58	

Maxwell	 55	 39	 42	 60	 55	 48	 39	 60	

Reindl	 50	 30	 39	 53	 52	 41	 38	 62	

Perez	et	al.	 56	 30	 42	 57	 56	 49	 36	 58	

Skartveit	 59	 44	 45	 60	 59	 52	 41	 60	

Boland		 48	 29	 36	 51	 52	 40	 38	 58	

BRL	 50	 45	 40	 56	 56	 46	 40	 65	

BPI	 50	 40	 40	 53	 51	 45	 40	 78	

	

Table	3-11.	Ranking	of	the	performance	of	different	models	for	different	locations	

using	all	4	statistical	measures	

model	 bon	 dra	 fpk	 gwn	 psu	 sxf	 tbl	 vie	 Sum	

	

Erbs	et	al.	 25	 30	 29	 29	 28	 25	 25	 30	 221	

Maxwell	 153	 14	 113	 81	 133	 13	 102	 133	 97	

Reindl	 27	 29	 26	 30	 29	 29	 29	 23	 222	

Perez	et	

al.	

112	 20	 17	 173	 14	 123	 28	 20	 139	

Skartveit	 61	 123	 81	 81	 81	 61	 163	 16	 80	

Boland		 25	 25	 29	 25	 24	 30	 18	 30	 206	

BRL	 20	 41	 15	 92	 92	 102	 81	 82	 83	

BPI	 153	 102	 92	 18	 19	 19	 102	 41	 104	
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Figure	3-11.	Cumulative	Distribution	Function	of	Relative	Errors	for	percentage	of	

results	(Testing	dataset	–	year	2011)	

	

	

Figure	3-12.	Cumulative	Distribution	Function	of	Relative	Errors	for	percentage	of	

results	(Validation	dataset)	
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3.5 Conclusion	

8	 models’	 performances	 including	 the	 BPI	 model	 were	 compared	 for	 8	

locations	 using	 different	 statistical	 measures.	 Results	 showed	 indigent	

performance	of	all	models	to	predict	diffuse	fraction	for	overall	locations.	

For	 Vienna,	 the	 BPI	 model	 performed	 significantly	 better	 than	 other	 7	

models.	 However,	 for	 other	 7	 locations,	 the	 Skartveit	 and	 Olseth	 model	

performed	better	than	the	other	7	models	 in	most	stations	and	for	most	

statistical	measures,	followed	by	the	BRL	model.		

Complexity	 in	 weather	 and	 climate	 models	 including	 aerosols	 and	 their	

specifications	 such	 as	 random	distribution	 of	 clouds,	 distance,	 thickness,	

and	 color	of	 clouds,	 significantly	 influence	magnitude	and	distribution	of	

diffuse	 component	 of	 solar	 radiation.	 This	 intricacy	 cannot	 be	 modeled	

using	 standard	weather	 station	 data	 such	 as	 temperature,	 humidity	 and	

global	 horizontal	 irradiance.	 Although,	 in	 near	 future	 by	 increasing	 the	

number	of	satellites,	their	record	intervals	and	image	resolution,	exploring	

this	 information	 could	 model	 this	 complexity	 and	 lead	 to	 high	

performance	 diffuse	 fraction	model	 development	which	 can	 be	 used	 for	

locations	in	which	satellite	data	is	available.		

Next	two	chapters	discuss	generation	of	sky	models	and	their	implications	

in	 indoor	 illuminance,	 which	 as	 input	 they	 require	 global	 and	 diffuse	

irradiance.	Therefore,	to	verify	reliability	of	top	performing	diffuse	fraction	

models	in	estimating	indoor	illuminance,	we	used	the	Skartveit	and	Olseth	

model	in	generating	diffuse	irradiance	as	input	data	of	two	sky	models.	
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 Sky	radiance/luminance	

distribution	model	

4.1 Introduction	

Deployment	 of	 performance	 simulation	 in	 building	 design	 and	 control	

phase	 can	 enhance	 the	 buildings'	 performance	 in	 their	 life	 cycle.	 This	

requires	 reliable	 input	 data	 for	 simulation	models.	 Specifically,	 obtaining	

high-resolution	 solar	 radiation	 data	 can	 represent	 a	 challenge.	 Several	

authors	have	proposed	models	to	predict	the	distribution	of	radiance	and	

luminance	over	the	sky	hemisphere	based	on	global	and	diffuse	horizontal	

irradiance	 and	 illuminance	 data	 (Nakamura	 et	 al.,	 1985,	 Matsuura	 and	

Iwata,	 1990,	 Perez	 et	 al.,	 1993,	Brunger	and	Hooper,	 1993,	 Igawa	et	 al.,	

1997,	 Kittler	 et	 al.,	 1997,	 Kittler	 et	 al.,	 1998,	 Tregenza,	 1999,	 CIE,	 1955,	

1973,	1994,	1996,	and	Mahdavi	&	Dervishi,	2013).	Among	 these	models,	

CIE	 (1955,	 1973)	 and	 Perez	 et	 al.	 (1993)	 are	 widely	 used	 and	 are	

embedded	 in	 the	 RADIANCE	 simulation	 application	 (Ward,	 1994).	 This	

chapter	investigates	general	performance	of	these	sky	models	within	two	

studies.	 One	 study	 reports	 on	 the	 comparison	 of	 predicted	 vertical	

illuminance	values	(obtained	using	the	above	mentioned	sky	models)	with	

corresponding	 measurements	 for	 the	 location	 Vienna,	 Austria.	 Second	

study	 compares	 simulated	 vertical	 irradiance	 values	 generated	 by	

RADIANCE	 software	using	 two	embedded	 sky	models	GENDALYIT	 (Ward,	

2014),	 GENSKY	 (Ward,	 2014)	 with	 corresponding	 measurements.	

GENDAYLIT	 is	 based	 on	 Perez	 et	 al.	 sky	 model	 (Perez	 et	 al.,	 1993)	 and	

GENKSY	based	on	four	 literatures,	mainly	CIE	 (CIE,	1955,	1973,	1994,	and	

1996).	
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4.2 Prediction	of	vertical	illuminance	

Two	mentioned	sky	models	(Perez	et	al.	and	CIE)	are	described	below	and	

implemented	in	MATLAB	(MATLAB,	2010)	to	calculate	vertical	illuminances	

on	 four	 cardinal	 surfaces	 and	 to	 calculate	 luminance	 on	 145	 Tregenza	

(1999)	patches	over	sky	hemisphere.	

4.2.1 Perez	et	al.	

Combining	physical	principles	and	a	 large	set	of	experimental	data,	Perez	

et	al.	(1993)	 introduced	a	model	to	predict	the	relative	sky	luminance	for	

discrete	 sky	 patches	 (Lr).	 The	 model	 contains	 two	 variables	 and	 five	

coefficients	(Eq.	59).	The	variables	are	the	zenith	angle	of	the	considered	

sky	point	and	the	angular	distance	between	the	sky	point	and	the	sun	disk.	

The	coefficients	resulted	from	least	square	fitting	of	the	data	and	can	be	

obtained	from	a	table.	

𝐿� = 1 + 𝑎𝑒
m

²³´	(µ) 1 + 𝑐𝑒0¶ + 𝑒cosE(𝜉) 	 (59) 

Here,	Lr	is	the	relative	luminance,	which	is	the	ratio	of	sky	luminance	over	

zenith	 luminance	 (Lz),	 ξ	 is	 the	angular	distance	between	 the	 sky	element	

and	the	sun	disk,	Z	is	the	zenith	angle	of	considered	sky	element	and	a,	b,	

c,	d,	and	e	are	insolation	conditions	and	are	function	of	sky	brightness	(Δ)	

and	 sky	 clearness	 (ϵ)	 and	 Zenith	 angle.	 In	 order	 to	 choose	 the	 five	

coefficients	 of	 each	 instance	 from	 the	 table,	 two	 variables,	 namely,	 sky	

brightness	(Δ)	and	sky	clearness	(ϵ)	must	be	calculated	(Eq.	60,	61).	

𝜖 =

𝐼0( + 𝐼0�
𝐼0(

+ 1.041𝑍�F

1 + 1.041𝑍�F
	 (60) 

𝛥 =
𝑚l��𝐼(.0�º

𝐼)*"
	 (61) 

Here, 	𝐼0( 	is	 the	 horizontal	 diffuse	 irradiance,	 𝐼0� 	the	 normal	 direct	

irradiance,	Zs	the	solar	zenith	angle,	mair	the	optical	air	mass,	and	𝐼)*"	the	
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extraterrestrial	 normal	 irradiance.	𝐼0� 	is	 generated	 based	 on	 a	 diffuse	

fraction	 model	 (Perez	 et	 al.	 1992).	 Zenith	 luminance	 (Lz)	 was	 calculated	

according	to	Perez	et	al.	(1990).	

A	short	description	of	the	effect	of	each	coefficient	is	as	follows:	

• Coefficient	 a:	 positive	 a	 denotes	 that	 relative	 luminance	 is	

darkening	 from	 zenith	 to	 the	 horizon.	While	 negative	 a	 denotes	

brightening	of	sky	from	the	zenith	to	the	horizon	

• Coefficient	 b:	 b	modulates	 luminance	 gradient	 near	 the	horizon.	

Smaller	b	represents	narrower	bright	band	near	horizon	

• Coefficient	 c:	 magnitude	 of	 c	 represents	 relative	 intensity	 of	

circumsolar	region.	Higher	the	c,	higher	the	magnitude	of	relative	

luminance	of	circumsolar	region	

• Coefficient	d:	 represents	width	of	 circumsolar	 region.	Higher	 the	

absolute	of	d,	sharper	the	circumsolar	region	(less	width)	

• Coefficient	 e:	 shows	 the	 backscattered	 effect	 of	 light	 from	 the	

ground	on	counterpart	to	the	sun.	

4.2.2 CIE	

International	Commission	on	 Illumination	(CIE,	2003)	distinguishes	15	sky	

types.	 For	 each	 sky	 type,	 CIE	 offers	 a	 specific	 formula	 to	 calculate	 the	

Luminance	 values.	 To	 deploy	 this	 version	 of	 the	 CIE	 model,	 for	 each	

instance,	 we	 calculated	 15	 types	 of	 sky	 luminance	 and	 chose	 the	 best	

fitting	 sky	 type	 based	 on	 RMSE	 with	 sky	 scanner	 data.	 The	 ratio	 of	 the	

patch	luminance	Li	to	zenith	luminance	Lz	is	expressed	as	follows:	

𝐿�
𝐿»
=
𝑓 𝒳 𝜙 𝑍
𝑓 𝑍� 𝜙 0°

	 (62) 

X	is	calculated	using	the	following	equation:	
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𝒳 = 𝑎𝑟𝑐 cosKL(cos	( 𝑍�) cos 𝑍 + sin	( 𝑍�) sin(𝑍 )cos(𝐴»))	 (63) 

Here,	Az	is	azimuth	angle	difference	between	sun	disk	and	patch	element.	

In	this	case,	zenith	luminance	(Lz)	was	derived	based	on	Darula	and	Kittler	

(2002).	

None	of	the	models	estimates	the	direct	luminance.	In	fact,	they	calculate	

the	 diffuse	 luminance	 distribution.	 In	 order	 to	 estimate	 the	 direct	

luminance	 value	 for	 each	 instance,	 direct	 normal	 illuminance	 measured	

data	was	converted	to	direct	luminance:	

𝐿�¾� =
𝐸�

𝜋(sinE(𝜂 2))
	 (64) 

Here,	 Lsun	 is	 direct	 luminance,	 En	 is	 direct	 normal	 illuminance,	 and	 η	 is	

angular	diameter	of	the	sun	(assumed	0.53°).	

After	adding	the	direct	luminance,	all	patch	values	were	normalized	to	the	

horizontal	global	illuminance:	

𝐿��À�k =
𝐸'(

[Ω� cos(𝑍�)LG�
��L ]

𝐿�	 (65) 

Here,	 Linorm	 is	 the	 normalized	 patch	 luminance	 and	 Eh.g	 is	 the	 horizontal	

global	illuminance.	

Note	that	it	is	not	possible	to	differentiate	between	the	15	CIE	skies	solely	

on	 the	 basis	 of	 weather	 station	 data.	 Therefore,	 for	 each	 instance	 we	

selected	the	sky	category	that	yielded	the	closest	results	to	the	measured	

patch	luminance	data.	

We	 implemented	 both	 models	 in	 MATLAB	 (MATLAB,	 2010).	 For	

comparison	purposes,	vertical	illuminance	values	were	derived	from	patch	

luminance	values	of	the	two	sky	models:		
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𝜓� = Ω� cos( 𝜑�) cos(𝜆� − 𝛽)	 (66) 

𝐸Å)�,Æ = 𝐿�𝜗�

LG�

��L

	 (67) 

Here,	𝜗� 	is	 i
th	 patch	 vertical	 transformation	 function,	Ω� 	is	 i

th	 patch	 solid	

angle,	𝜆� 	is	 the	 i
th	 patch	 azimuth	 angle,	𝛽	is	 the	 vertical	 plane	 normal	

angle,	 Li	 is	 ith	 patch	 luminance	 values	 and	 Ever,	𝛽	is	 vertical	 illuminance	

value	in	the	direction	of	𝛽.	

Model-based	 predictions	 of	 vertical	 illuminance	 values	 were	 compared	

with	corresponding	measured	vertical	illuminance	for	the	aforementioned	

8	 months’	 period.	 Moreover,	 to	 evaluate	 the	 accuracy	 of	 the	 sky	

luminance	distribution	predicted	by	 the	 two	models,	we	also	utilized	 the	

sky	 scanner	 luminance	 measurements	 for	 145	 discrete	 Tregenza	 sky	

patches	(Tregenza,	1999).	Thus,	a	patch-to-patch	comparison	of	calculated	

and	measured	luminance	values	could	be	facilitated	for	data	obtained	for	

the	same	period.		

4.3 Prediction	of	vertical	irradiance	using	RADIANCE	

In	 order	 to	 calculate	 radiance	 on	 145	 patches	 of	 Tregenza	 over	

hemisphere	 and	 irradiance	 values	 of	 four	 cardinal	 vertical	 surfaces,	 we	

deployed	 RADIANCE	 rendering	 program.	 Both	 embedded	 sky	 models	

(GENDAYLIT	 and	 GENSKY,	 see	 Figure	 4-1	 for	 an	 overview	 of	 sky	

generation)	 and	 own	 developed	 sky	 model	 for	 sky	 scanner	 data	 are	

deployed.	 A	 brief	 description	 of	 each	model	 is	 provided	 in	 the	 following	

sections.	
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Figure	 4-1.	 Flowchart	 of	 sky	 generation	 in	 RADIANCE	 (GENDAYLIT	 on	 the	 left	 –	

GENSKY	on	the	right)	

	

	

	

Figure	4-2.	Sky	fisheye	high	dynamic	range	images	for	GENDAYLIT	(on	the	left)	and	

GENSKY	(on	the	right)	–	10:45	a.m.	local	time,	10	July	2014,	Vienna	

4.3.1 GENDAYLIT	

	GENDAYLIT	generates	a	RADIANCE	 scene	description	based	on	the	Perez	

sky	distribution	model	(Perez	et	al.,	1993)	for	the	given	atmospheric	inputs	

(direct	 and	diffuse	 component	 of	 the	 solar	 irradiance/illuminance),	 date,	

and	 local	 standard	 time.	 The	 default	 output	 is	 the	 radiance	 of	 the	 sun	

(direct)	 and	 the	 sky	 distribution	 (diffuse)	 integrated	 over	 the	 visible	

spectrum.	 In	 cases,	where	 illuminance	data	 are	 given	 as	 input,	 luminous	

efficacy	factor	is	used	to	convert	illuminance	values	to	irradiance.	In	order	

to	 assure	 having	 the	 correct	 input	 for	 each	 instance,	 sun	 zenith	 and	
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altitude	 are	 given	 instead	 of	 local	 time	 data.	 An	 important	 input	

parameter	 to	 consider	 using	 GENDAYLIT	 model	 is	 –O	 parameter,	 which	

defines	 the	 output	 to	 be	 in	 visible	 range	or	 full	 spectrum	of	 radiance	 or	

luminance	(0,	1,	and	2	respectively).	

4.3.2 GENSKY	

GENSKY	 generates	 a	 RADIANCE	 scene	 description	 based	 on	 CIE	 sky	

distribution	 model.	 Similar	 to	GENDAYLIT,	 sun	 azimuth	 and	 altitude	 are	

given	for	each	instance	as	input	data	instead	of	local	time.	With	regard	to	

GENSKY,	 it	 is	 important	 to	 consider	 that	 four	 types	of	 sky	 conditions	are	

distinguished,	namely:	sunny,	cloudy,	uniform,	and	intermediate.	Each	sky	

category	 must	 be	 defined	 by	 the	 user	 as	 input	 for	 RADIANCE	 GENSKY	

program.	 To	 deploy	 the	 implemented	 GENSKY	 model	 in	 RADIANCE,	 we	

made	 use	 of	 the	 option	 to	 assign	 specific	 values	 to	 the	 tool's	 pertinent	

parameter	in	accordance	with	the	relevant	sky	category.	Toward	this	end,	

we	considered	the	following	categories:	clear	(sunny	in	terms	of	GENSKY),	

overcast	 (cloudy	 in	 terms	of	GENSKY),	 and	 intermediate	 (intermediate	 in	

terms	 of	GENSKY).	 In	 order	 to	map	 our	weather	 station	 data	 into	 these	

four	categories,	we	used	a	simple	assignment	rule	based	on	the	magnitude	

of	 the	 direct	 normal	 and	 diffuse	 horizontal	 irradiance	 components	 (see	

Table	 4-1).	 The	 output	 of	 both	 GENDAYLIT	 and	 GENSKY	 sky	 models	 in	

RADIANCE	 consists	 of	 sky	 patch	 radiance	 values	 in	W.sr-1.m-2	 (see	Figure	

4-2	for	example	of	sky	generation	using	both	skies).	

Table	4-1.	GENSKY	categorization	in	the	present	study	

𝑰𝒏.𝒅	 Kt	 Kd	 Category	

>=	200	W.m-2	 -	 <1/3	 Clear	sky	

<	200	W.m-2	 <1/3	 >=1/3	 Overcast	sky	

else	 Intermediate	sky	

4.3.3 Sky	scanner	

Sky	 scanner	MS321-LR	 (EKO	 Instruments,	 2014)	measures	 distribution	 of	

radiance	and	luminance	of	145	sky	patches	using	its	11°	aperture	sensors.	
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It	takes	around	4.5	minutes	to	track	145	patches	having	two	axis	control.	

Luminance	 values	 are	 measured	 per	 kcd/m2	 and	 radiance	 values	 per	

W/m2/sr.	Radiance	and	 luminance	sensors	of	sky	scanner	are	not	able	to	

measure	 direct	 irradiance	 and	 luminance	 values	 respectively.	 Maximum	

measuring	 capacity	 of	 sensors	 are	 300	 W/m2/sr	 for	 radiance	 and	 50	

kcd/m2	 for	 luminance.	 Therefore,	 sky	 scanner	 is	 measuring	 diffuse	

distribution	 of	 radiance	 and	 luminance	 over	 sky	 hemisphere	 (see	 Figure	

4-3).	

In	 order	 to	 generate	 sky	 scanner	 sky	 within	 RADIANCE	 program	 several	

steps	are	involved	including:	

• Normalization	 of	 145	 patches	 radiance	 values	 using	 total	 diffuse	

horizontal	irradiance	

• Generation	of	patches	with	creating	skybright.cal	function	for	sky	

scanner	(see	Appendix	E	for	source	code)	

• Creation	 of	 a	 text	 “rad	 file”	 to	 define	 sky	 glow	 to	 include	

generated	skybright.cal	for	sky	scanner	

• Defining	 angular	 diameter	 of	 the	 sun	 equals	 to	 0.533°	 as	 a	 light	

source	giving	its	x,	y,	and	z	unit	orientation	

It	should	be	noted	that	sun	light	intensity	is	defined	from	calculating	direct	

radiance	from	direct	irradiance	deploying	Equation	64.	Direct	irradiance	is	

calculated	 from	 the	 difference	 between	 global	 horizontal	 irradiance	 and	

diffuse	horizontal	irradiance.	
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Figure	4-3.	Top:	Sky	scanner	MS-321LR,	Bottom:	Fisheye	image	of	sky	generated	

via	sky	scanner	

4.4 Results	and	Discussions	

4.4.1 Vertical	illuminance	comparison	

Table	 4-2	 provides	 an	 overview	 of	 the	main	 results.	 Thereby,	measured	

and	 predicted	 vertical	 illuminance	 and	 patch	 luminance	 values	 were	

compared.	 Note	 that	 the	 RMSE	 and	MBE	 values	 for	 vertical	 illuminance	

values	are	given	in	units	of	klx,	whereas	those	for	patch	luminance	values	

are	 given	 in	 kcd.m-2.	 The	 distributions	 of	 the	 relative	 errors	 of	 the	

illuminance	 predictions	 for	 the	 four	 surface	 orientations	 are	 depicted	 in	

Figure	 4-4.	 Figure	 4-5	 shows,	 for	 both	 sky	 models,	 the	 cumulative	

distribution	function	of	percentage	of	results	with	Relative	Errors	RE	(%)	of	

calculated	 vertical	 illuminance	 values.	 Likewise,	 Figure	 4-6	 illustrates	
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relative	 errors	 in	 calculation	 of	 patch	 luminance	 values	 in	 terms	 of	

cumulative	distribution	functions.	

To	 evaluate	 the	 performance	 of	 data	we	 can	 look	 at	 the	 percentages	 of	

results	with	 relative	errors	 less	 than	20%	 (Figure	4-5).	 This	 yields	 for	 the	

best	 performing	 model	 (CIE)	 82%	 (North),	 80%	 (East),	 74%	 (South),	 and	

75%	(West)	and	for	Perez	et	al.	72%	(North),	77%	(East),	71%	(South),	and	

70%	 (West).	 Patch	 comparison	 similarly	 suggests	 a	 rather	 modest	

performance	 level	 (CIE:	 51%;	 Perez	 et	 al.:	 46%).	 The	 slightly	 better	

performance	of	the	CIE	model	may	be	due	to	the	fact	that	in	this	case,	for	

each	 instance	 we	 used	 the	 best	 possible	 sky	 category,	 as	 mentioned	 in	

introduction.		

Table	4-2.	Statistical	evaluation	of	CIE	and	Perez	models	based	on	vertical	

illuminance	predictions	

Orient.	 Model	 R2	 RMSE	 CVRMSE	 MBE	
Illuminance	North	 CIE	 0.90	 2.05	 18.41	 -0.05	

Perez	 0.87	 2.34	 21.00	 -0.13	
Illuminance	East	 CIE	 0.97	 6.29	 23.66	 -1.56	

Perez	 0.97	 6.55	 24.64	 -0.60	
Illuminance	South	 CIE	 0.95	 8.77	 25.52	 -3.56	

Perez	 0.94	 8.94	 26.00	 -1.76	
Illuminance	West	 CIE	 0.96	 7.20	 26.40	 -1.11	

Perez	 0.95	 7.64	 28.03	 0.08	
Patch	luminance	 CIE	 0.88	 3.54	 43.13	 -0.05	

Perez	 0.82	 4.32	 52.65	 0.32	
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Figure	4-4.	Comparison	of	the	CIE	and	Perez	sky	models	in	terms	of	relative	error	

distributions	of	predicted	vertical	illuminance	values	(Relative	errors	over	100%	

are	merged	into	the	100%	error	bin)	

	

Figure	4-5.	Comparison	of	CIE	and	Perez	et	al.	sky	models’	relative	errors	(%)	for	

vertical	surfaces	facing	the	four	cardinal	directions	in	terms	of	cumulative	

distribution	functions	



Sky	radiance/luminance	distribution	model	

	 52	

	

Figure	4-6.	Cumulative	distribution	functions	of	the	relative	errors	(%)	of	the	two	

models'	patch	luminance	predictions	with	respect	to	sky	scanner	data	

4.4.2 Vertical	irradiance	comparison	

Table	 4-3	 provides	 a	 comparison	of	 the	measured	and	predicted	 vertical	

irradiance	and	patch	radiance	values.	Note	that	RMSE	and	MBE	values	for	

vertical	irradiance	are	given	in	units	of	W.m-2	whereas,	those	for	radiance	

are	 given	 in	 W.m-2.sr-1.	 The	 distributions	 of	 the	 relative	 errors	 of	 the	

irradiance	 predictions	 for	 the	 four	 surface	 orientations	 are	 depicted	 in	

Figure	 4-7.	Figure	 4-8	 shows	 a	 comparison	 of	measured	 patch	 radiances	

with	 the	 respective	predictions	of	 the	 two	 sky	models.	Figure	4-6	 shows	

the	cumulative	distribution	function	of	the	relative	errors	of	the	calculated	

vertical	 irradiance	 for	 both	 sky	models.	Figure	4-9	 shows	 the	 cumulative	

distribution	function	of	the	relative	errors	of	the	patch	radiance	values	for	

both	models.	

Table	4-3.	Statistical	evaluation	of	vertical	irradiance	(incident	on	surfaces	facing	

four	cardinal	directions)	and	sky	patch	radiance	as	predicted	via	GENDAYLIT	and	

GENSKY	

Orient.	 Model	 R2	 RMSE	 CV_RMSE	 MBE	
Irradiance	North	 GENDAYLIT	 0.74	 27.0	 27.4	 -1.49	

GENSKY	 0.69	 28.8	 29.0	 -3.00	
Irradiance	East	 GENDAYLIT	 0.97	 64.8	 22.5	 8.11	

GENSKY	 0.95	 73.5	 25.4	 13.91	
Irradiance	South	 GENDAYLIT	 0.97	 44.4	 17.0	 -0.69	

GENSKY	 0.96	 46.6	 17.8	 -2.97	
Irradiance	West	 GENDAYLIT	 0.96	 64.9	 22.8	 2.53	

GENSKY	 0.96	 68.6	 23.5	 7.57	
Patch	radiance	 GENDAYLIT	 0.86	 37.6	 49.4	 -1.13	

GENSKY	 0.85	 38.5	 50.5	 0.89	
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Figure	4-7.	Comparison	of	the	GENSKY	and	GENDAYLIT	sky	models	in	terms	of	

distributions	of	the	relative	errors	of	predicted	vertical	irradiance	values	

	

Figure	4-8.	Comparison	of	measured	and	computed	patch	radiance	values	(Left:	

GENDAYLIT;	Right:	GENSKY)	
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Figure	4-9.	Comparison	of	GENSKY	and	GENDAYLIT	sky	models’	relative	errors	(%)	

for	vertical	surfaces	facing	the	four	cardinal	directions	in	terms	of	cumulative	

distribution	functions	

	

Figure	4-10.	Comparison	of	patch	radiance	values	of	two	models	with	sky	scanner	

data	using	cumulative	distribution	of	percentage	of	the	results	for	different	

relative	errors	(%)	
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4.5 Conclusions	

Illuminance	 on	 four	 vertical	 surfaces	 as	well	 as	 luminance	 values	 of	 145	

sky	patches	were	estimated	using	 two	sky	models	 (Perez	et	al.,	CIE).	The	

comparison	 of	 the	 computational	 results	 with	 corresponding	 high-

resolution	measurements	 conducted	 in	Vienna	points	 to	a	 rather	 limited	

predictive	 potential.	 Hence,	 these	 sky	 models	 would	 have	 to	 be	

substantially	 improved	 –	 or	 at	 least	 calibrated	 –	 to	 reproduce	 the	

measured	 data	 with	 sufficient	 accuracy.	 Future	 research	 will	 pursue	 a	

collaborative	multi-location	model	comparison	using	 larger	data	sets	and	

more	detailed	statistical	analyses.	

Irradiance	on	 four	 vertical	 surfaces	as	well	 as	 radiance	values	of	145	 sky	

patches	 were	 estimated	 using	 two	 sky	 models	 (GENDAYLIT,	 GENSKY)	

embedded	 in	 the	 RADIANCE	 rendering	 program.	 While	 the	 GENDAYLIT	

appears	 to	perform	slightly	better,	 the	 comparison	of	 the	 computational	

results	with	corresponding	measurements	conducted	in	Vienna	points	to	a	

rather	limited	predictive	potential	of	both	models	studied.	In	the	case	of	a	

patch-to-patch	 comparison	 of	measured	 and	 computed	 radiance	 values,	

large	 errors	 may	 be	 expected,	 given	 the	 chaotic	 nature	 of	 cloud	

distribution	and	corresponding	radiance	variance	across	the	sky	dome.	In	

our	study,	only	about	42%	of	patch	radiance	predictions	display	a	relative	

error	less	than	20%.	But	the	errors	are	quite	large	even	in	case	of	vertical	

irradiance	 calculations.	 For	 instance,	 the	 slightly	 better	 performing	

GENDAYLIT	model	yields	the	following	percentages	of	results	with	relative	

errors	 less	 than	 20%:	 60%	 (North),	 65%	 (East),	 73%	 (South),	 and	 64%	

(West).	 Hence	 these	 sky	 models	 would	 have	 to	 be	 improved	 –	 or	

calibrated	–	to	more	reliably	reproduce	the	measured	data.		
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 Case	Study:	The	Reliability	of	

Indoor	Illuminance	Prediction	

5.1 Introduction	

Recent	advancements	in	ITC	enables	us	to	process	huge	amount	of	data	in	

real-time	resolution.	Building	predictive	control	systems	can	benefit	 from	

ITC.	There	are	different	aspects	in	building	predictive	control.	One	of	these	

aspects	 is	 indoor	 lighting	 and	 daylight.	 In	 addition	 to	 building	 predictive	

control,	indoor	daylighting	design	plays	an	important	role	in	design	phase	

of	a	building.	Different	factors	are	limiting	general	accuracy	of	daylighting	

simulation,	 e.g.	 boundary	 conditions,	 modelling	 enclosure,	 simulation	

engine	(e.g.	radiosity,	raytracing).	In	this	case,	boundary	conditions	are	sky	

luminance	distribution	data	and	outdoor	obstructions.	The	 latter	chapter	

we	 evaluated	 performance	 of	 sky	 models	 in	 predicting	 sky	

luminance/radiance	distribution.	Current	chapter	which	is	partly	a	master	

thesis,	 evaluates	 the	 performance	 of	 diffuse	 fractions	 and	 sky	models	 in	

estimating	 indoor	 illuminances	 in	 a	 test	 room	 located	 at	 rooftop	 of	 TU	

Wien.	

5.2 Methodology	

This	study	has	two	main	part,	i)	measuring	indoor	horizontal	illuminances	

of	 6	 points	 on	 work-plane	 and	 2	 vertical	 points	 of	 the	 test	 room,	 ii)	

simulating	 indoor	 horizontal	 illuminances	 of	 same	 points.	 In	 order	 to	

simulate	indoor	illuminances,	we	deployed	RADIANCE	rendering	program.	

Description	 of	 the	 test	 room,	 measurement,	 and	 simulation	 parts	 are	

explained	in	details.		
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5.2.1 Test	Room	

The	test	room	is	 located	on	the	rooftop	of	 the	main	building	of	TU	Wien	

(48.1986°	N,	 16.3694°	 E,	 see	 Figure	 5-1).	 The	 room	has	 about	 8	meters’	

length,	 2.3	meters’	width,	 and	 2.6	meters’	 height	 and	 has	 two	windows	

which	 are	 facing	 the	 south-west	 (each	 has	 1.16	 cm	 height	 and	 0.9	 cm	

width)	and	are	double	glazed.	As	the	room	is	located	on	the	rooftop	there	

aren’t	 any	 significant	 obstruction	 to	 block	 the	 direct	 sun	 shine	 from	 sun	

rise	to	sunset	through	the	whole	year	 long.	The	room	is	painted	 in	white	

and	had	only	 three	 tables	and	a	TV	hanging	on	 the	west	wall	during	 the	

measurements	were	taken.		

	
Figure	5-1.	Location	of	the	test	room,	TU	Wien,	Vienna,	Austria	

5.2.2 Measurements	

Three	 set	 of	 measurements	 were	 taken	 in	 this	 study,	 i)	 illuminance	

measurements,	ii)	indoor	surfaces	reflectance,	and	iii)	transmissivity	of	the	

glazing.	 To	 measure	 illuminance,	 lux	 meters	 were	 deployed.	 8	 sensors	

were	 installed,	 two	 vertically	 oriented	 at	 the	 height	 of	 1	meters	 on	 the	

walls	and	6	horizontally	on	the	tables	at	the	height	of	74	cm	from	the	floor	

(see	Figure	5-3).	For	measuring	the	approximate	reflectance	of	the	opaque	
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interior	 surfaces,	 illuminance	 (lux)	 and	 luminance	 (cd/m2)	at	 the	 specific	

point	of	each	surface	were	measured	deploying	Minolta	luminance	meter	

(LS-100)	and	illuminance	meter	(T10-A	series)	(See	Figure	5-2).	A	list	of	all	

reflectance	 of	 surfaces	 is	 presented	 in	 Table	 5-1.	 The	 transmissivity	 of	

windows	was	measured	using	two	illuminance	meter,	one	installed	in	the	

outer	 surface	 of	 glazing	 and	 other	 one	 inside.	 Both	 sensors	 measured	

simultaneously	 illuminance	 values.	 The	 fraction	 of	 illuminance	 which	

passes	 through	 glazing	 is	 transmissivity	 of	 the	 glazing.	 After	 several	

recording	 of	 transmissivity,	 0.73	 were	 assumed	 as	 an	 average	 value	 for	

transmissivity	of	windows.	

Measurements	 were	 taken	 under	 three	 different	 sky	 conditions,	 clear,	

overcast,	and	 intermediate,	the	3rd	of	July,	 the	5th	of	September,	and	the	

7th	 of	 September	 2015	 respectively	 to	 represent	 almost	 all	 weather	

conditions.	All	measurements	were	logged	in	1-minute	intervals.	

	

	

	
Figure	5-2.	Minolta	luminance	meter	(LS-100)	(on	the	left)	and	illuminance	meter	

(T10-A	series)	(on	the	right)	
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Table	5-1.	The	reflectance	of	the	test	room	surfaces	

Surface	 				R												G													B	 Specularity	 Roughness	

Table	 0.51		 0.51	 0.51	 0.083	 0.08	

Wall	 0.88		 0.88	 0.88	 0.02	 0.08	

Floor	 0.43		 0.43	 0.43	 0.03	 0.43	

Radiator	 0.58		 0.58	 0.58	 0.02	 0.08	

Entrance	door	 0.81		 0.81	 0.81	 0.02	 0.08	

Door	(Staircase)	 0.88		 0.88	 0.88	 0.02	 0.08	

Ceiling	 0.88		 0.88	 0.88	 0.02	 0.08	

Window	frame	 0.85		 0.85	 0.85	 0.08	 0.02	

	

	
Figure	5-3.	Arrangement	of	illuminance	meters	in	the	test	room	(Photo	credit:	

Ghazal	Etminan)	

5.2.3 Simulation	

A	 3D	model	 of	 the	 test	 room	was	 created	 in	Google	 SketchUp	 program	

(see	Figure	5-4)	and	then	with	the	help	of	the	“su2ds”	plug-in	we	exported	
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the	geometric	data	from	Google	SketchUp	to	RADIANCE.	All	sensors	in	the	

test	room	were	included	in	a	separate	file	in	the	model,	positioned	in	the	

same	points	as	the	actual	sensors	in	the	room.		

In	order	to	simulate	indoor	illuminances	several	steps	were	followed:	

1. Drawing	the	test	room’s	geometry	using	Google	Sketchup	

2. Deploying	 Su2ds	 plug-in	 to	 convert	 test	 room’s	 geometry	 from	

Google	Sketchup	to	RADIANCE	rad	file	(geometry.rad)	

3. Preparing	material	file	using	surface	reflectance	and	transmissivity	

of	windows	(material.rad)	

4. Preparing	sensor	position	and	orientation	file	(sensor.pts)	

5. Collecting	weather	data	(Global	and	diffuse	horizontal	irradiance)	

6. Generation	of	sky	models	(sky.rad)	

7. Adding	sky	and	ground	source	to	the	sky.rad	file	

8. Creation	 of	 octree	 file	 from	 geometry.rad,	 material.rad,	 and	

sky.rad	using	oconv	RADIANCE	command	

9. Calculation	 of	 illuminances	 for	 sensor	 points	 using	 rtrace	

RADIANCE	command	

A	schema	of	all	these	steps	are	demonstrated	in	Figure	5-5.	The	simulation	

interval	is	chosen	to	be	15-minutes.	Therefore,	a	MATLAB	code	is	written	

to	 loop	 through	 item	 5	 to	 9	 from	 above	 list	 and	 calculate	 illuminance	

values	for	each	instance.		

As	we	discussed	 in	 chapter	 3,	 in	 order	 to	 evaluate	 the	 impact	 of	 diffuse	

fraction	models	in	prediction	of	indoor	illuminance,	we	have	created	both	

sky	models	using	Skartveit	and	Olseth	model	to	predict	diffuse	horizontal	

irradiance	 as	 sky	 models’	 input.	 Therefore	 in	 total	 5	 scenarios	 of	

simulation	were	generated	(see	Figure	5-6).	
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Figure	5-4.	Different	view	from	test	room	geometry	in	Sketchup	(from	top	to	

bottom:	Top	view,	North-East	view,	North-East	view	section)	

	



Case	Study:	The	Reliability	of	Indoor	Illuminance	Prediction	

	 62	

	
Figure	5-5.	An	overview	of	simulation	steps	to	calculate	indoor	illuminances	

	

	

Figure	5-6.	Five	simulation	scenarios	deploying	different	diffuse	irradiance	and	

different	sky	models	

5.3 Results	and	Discussions	

Figure	5-8	to	Figure	5-15	illustrates	the	cumulative	distribution	function	of	

Relative	 Errors	 (RE)	 for	 8	 indoor	 virtual	 sensors.	 In	 order	 to	 better	
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understand	and	compare	all	sensors,	we	plotted	the	percentages	of	data	

having	 less	 than	 20%	 RE	 for	 all	 sensors	 in	 Figure	 5-7.	 Moreover,	 a	

numerical	 table	compares	different	 scenarios	 for	all	8	 sensors	 (see	Table	

5-2).	In	addition	to	RE,	Root	Mean	Square	Errors	(RMSE)	of	each	scenario	

for	all	8	sensors	 is	presented	 in	Table	5-3.	 In	order	 to	shorten	sky	model	

terms	 in	 figures,	 we	 used	 following	 abbreviations,	 GENDAYLIT	 as	 GDY,	

GENSKY	as	GSK.	For	both	statistical	measures	(RE	and	RMSE)	Sky	scanner	

scenario	shows	significant	better	performance,	which	was	expected	as	sky	

scanner	 scenario	 is	 based	 on	 measured	 sky	 radiance	 values.	 All	 four	

scenarios	other	than	sky	scanner	scenario	have	RMSE	more	than	30%	in	all	

8	sensors.	In	the	6	out	of	the	8	sensors,	the	sky	scanner	scenario	displays	

about	80%	of	the	cases	RE	less	than	20%.	All	other	4	datasets	barely	reach	

the	criteria	of	having	60%	of	the	cases	with	relative	error	RE	less	than	20%.	

On	 average	 the	 sky	 scanner	 scenario	 has	 40%	 less	 RMSE	 than	 other	 4	

scenarios	 (about	 30%	RMSE).	 In	 sensors	 3	 and	 7	which	 are	 close	 to	 the	

windows,	all	scenarios	including	sky	scanner	fail	to	reach	even	50%	of	the	

cases	with	less	than	20%	RE.	The	only	explanation	for	this	could	be	due	to	

the	 errors	 in	 indoor	 illuminance	 meters	 to	 measure	 high	 illuminance	

values	near	the	windows.		

	

	
Figure	5-7.	Percentage	of	results	with	less	than	20%	RE	for	different	sensors	

(Overview)	
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Table	5-2.	Percentage	of	results	having	less	than	20%	RE	for	different	sensors	and	

different	scenarios	

Scenario	 S1	 S2	 S3	 S4	 S5	 S6	 S7	 S8	

GDYSkartveit	 54	 31	 45	 46	 43	 41	 47	 33	

GSKSkartveit	 66	 40	 45	 35	 35	 23	 44	 47	

SkyScanner	 82	 78	 45	 78	 80	 82	 23	 79	

GDY	 33	 33	 20	 35	 32	 35	 7	 24	

GSK	 52	 35	 20	 61	 62	 63	 7	 32	

	

Table	5-3.	Root	Mean	Square	Errors	(RMSE	in	%)	of	5	scenarios	for	all	sensors	

Scenario	 S1	 S2	 S3	 S4	 S5	 S6	 S7	 S8	

GDYSkartveit	 46.9	 43.8	 55.9	 39.9	 111.9	 213.2	 63.6	 39.2	

GSKSkartveit	 46.6	 51.5	 67.0	 39.1	 106.3	 212.8	 76.9	 48.5	

SkyScanner	 13.7	 18.3	 39.7	 18.9	 81.5	 16.6	 49.0	 15.1	

GDY	 93.0	 72.5	 85.7	 70.2	 133.1	 66.7	 101.5	 72.9	

GSK	 42.1	 46.4	 61.9	 30.8	 51.1	 28.6	 75.1	 50.0	

	

	

Figure	5-8.	Cumulative	Distribution	Function	of	Relative	Errors	(Sensor	1)	
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Figure	5-9.	Cumulative	Distribution	Function	of	Relative	Errors	(Sensor	2)	

	

	

Figure	5-10.	Cumulative	Distribution	Function	of	Relative	Errors	(Sensor	3)	
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Figure	5-11.	Cumulative	Distribution	Function	of	Relative	Errors	of	(Sensor	4)	

	

	

Figure	5-12.	Cumulative	Distribution	Function	of	Relative	Errors	of	(Sensor	5)	
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Figure	5-13.	Cumulative	Distribution	Function	of	Relative	Errors	of	(Sensor	6)	

	

	

Figure	5-14.	Cumulative	Distribution	Function	of	Relative	Errors	of	(Sensor	7)	
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Figure	5-15.	Cumulative	Distribution	Function	of	Relative	Errors	of	(Sensor	8)	

5.4 Conclusion	

5	different	scenarios	simulated	indoor	illuminance	in	a	modelled	test	room	

in	 Vienna,	 Austria	 (see	 Figure	 5-6).	 Simulation	 results	 compared	 with	

measured	values	taken	from	test	room	at	the	rooftop	of	TU	Wien.	Results	

suggest	that	Sky	scanner	simulation	scenario	performs	significantly	better	

than	other	4	scenarios	in	predicting	indoor	illuminances.		

No	 significant	 performance	 difference	 was	 found	 between	 following	

scenarios:	i)	GENSKY	generated	via	measured	diffuse	horizontal	irradiance	

&	GENSKY	generated	via	diffuse	fraction	model	of	Skartveit,	ii)	GENDAYLIT	

generated	 via	 measured	 diffuse	 horizontal	 irradiance	 &	 GENDAYLIT	

generated	 via	 diffuse	 fraction	 model	 of	 Skartveit	 and	 Olseth.	 It	 can	 be	

inferred	 that	 deploying	 predicted	 diffuse	 irradiance	 in	 generation	 of	 sky	

models	had	no	significant	impact	in	prediction	of	indoor	illuminance.	As	it	

was	 shown,	 errors	 of	 using	 sky	models	 for	 indoor	 illuminance	prediction	

are	 enough	 high	 that	 employment	 of	 diffuse	 fraction	 models	 may	 not	

necessarily	increase	the	errors.	
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 Luminous	Efficacy	of	Daylight	

6.1 Introduction	

When	it	comes	to	simulation	of	 indoor	illuminance,	 it	 is	essential	to	have	

knowledge	 on	 sky	 luminance.	 As	 we	 discussed	 earlier	 high	 resolution	

daylight	data	is	mostly	unavailable	or	is	in	other	forms	such	as	irradiation	

data.	 Luminous	 efficacy	 let	 us	 generate	 daylight	 data	 where	 measured	

illuminances	 are	 not	 available	 (Littlefair,	 1985).	 Luminous	 efficacy	 of	

daylight	 is	the	ratio	of	 illuminance	over	 irradiance	with	the	unit	of	 lumen	

per	Watt	 which	 is	 not	 a	 constant.	 There	 are	 different	 luminous	 efficacy	

measures	 for	 different	 components	 of	 daylight,	 e.g.,	 global	 horizontal	

luminous	 efficacy,	 diffuse	 luminous	 efficacy,	 direct	 luminous	 efficacy.	

Various	research	is	done	in	order	to	calculate	luminous	efficacy	or	develop	

a	 model	 to	 predict	 luminous	 efficacy.	 One	 of	 earliest	 works	 was	 in	

Scandinavia	(Pleijel,	1954),	Kew,	England	(Blackwell,	1954),	Uccle,	Belgium	

(Dogniaux,	 1960),	 South	 Africa	 (Drummond,	 1960).	 Many	 of	 those	

proposed	 a	 constant	 value	 for	 luminous	 efficacy	 of	 between	 105	 to	 128	

lm/W.	 Thought	 later	works	 developed	 prediction	models	manly	 function	

of	clearness	index	(e.g.,	Perez	et	al.,	1990,	Muneer	et	al.,	2000,	Ruiz	et	al.,	

2001,	 Dervishi	 and	 Mahdavi,	 2013).	 Part	 of	 “Innovativ	 Projekte”	 was	

dedicated	to	compare	different	luminous	efficacy	on	a	horizontal	surface.	

6.2 Global	Luminous	Efficacy	Models	

We	 have	 compared	 performance	 of	 four	 luminous	 efficacy	𝐾'	models	 in	

estimating	hourly	luminous	efficacy	for	Vienna	for	year	2013.	An	overview	

of	each	model	is	as	follow:	

• Muneer	et	al.	(2000)	first	model	
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𝐾' = 136.6 − 74.541𝑘" + 57.342𝑘"
E	 (68) 

• Muneer-Robledo	second	model	(Ruiz	et	al.,	2001):	

𝐾' = 138.45 − 91.641𝑘" + 67.08𝑘"
E	 (69) 

Where,	𝑘"	is	clearness	index	

• Ruiz,	Soler,	and	Robledo	model:	

𝐾' = 104.83(sin ∝)U.UEV𝑘"
KU.LUÊ	 (70) 

Where,	𝑘"	is	clearness	index	and	∝	is	altitude	of	the	sun	in	radian	

• Perez	et	al.	model	(1990):	

𝐾' = 𝑎� + 𝑏�𝑊 + 𝑐� cos 𝑍 + 𝑑� ln ∆	 (71) 

Where	𝑎� ,	𝑏� 	,	𝑐� ,	 and	𝑑� 	are	 coefficients	 and	 are	 chosen	 from	 a	 table	

knowing	Perez	𝜀.	𝑊	is	water	vapor,	𝑍�	is	solar	zenith	angle,	and	∆	is	Perez	

sky’s	brightness.	

6.3 Results	and	Discussions	

Figure	6-1	 illustrates	global	horizontal	 irradiance	measured	values	versus	

global	horizontal	 illuminance	values	 from	TU	Wien	 station	2013.	 In	order	

to	better	understand	the	correlation	between	global	horizontal	irradiance	

measured	 values	 versus	 global	 horizontal	 illuminance	 values,	 luminous	

efficacy	of	data	is	calculated	and	plotted	in	a	box	plot	format.	The	median	

luminous	 efficacy	 for	 2013	 was	 121.16	 lumen/Watt	 (see	 Figure	 6-2).	

Luminous	 efficacy	 models	 that	 we	 discussed	 in	 this	 chapter	 mainly	 are	

function	 of	 clearness	 index	 and	 solar	 altitude.	 Therefore,	 we	 plotted	

luminous	efficacy	against	these	two	variables	in	Figure	6-3	and	Figure	6-4.	

It	can	be	inferred	that	by	increasing	solar	altitude	luminous	efficacy	is	also	



Luminous	Efficacy	of	Daylight	

	 71	

increased.	 Conversely,	 by	 increasing	 in	 clearness	 index	 luminous	 efficacy	

decreased.	

In	order	to	examine	the	performance	of	 luminous	efficacy	models,	Mean	

Bias	 Errors	 (MBE),	Mean	 Absolute	 Errors	 (MAE),	 and	 Root	Mean	 Square	

Errors	 (RMSE)	 (see	Table	 6-1).	Moreover,	 to	better	 evaluate	 the	models,	

Cumulative	 Distribution	 Function	 of	 Relative	 Errors	 (RE)	 for	 different	

models	are	displayed	in	Figure	6-5.	

	

	
Figure	6-1.	Global	horizontal	irradiance	vs.	global	horizontal	illuminance	for	

Vienna	–	2013	
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Figure	6-2.	Global	luminous	efficacy	for	Vienna	–	2013	

	

	
Figure	6-3.	Global	luminous	efficacy	as	a	function	of	solar	altitude	for	Vienna	–	

2013	
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Figure 6-4. Global	luminous	efficacy	as	a	function	of	clearness	index	for	Vienna	

–	2013	

	
Figure	6-5.	Cumulative	Distribution	Function	of	Relative	Errors	(RE)	for	4	luminous	

efficacy	models	

	

Table	6-1.	Global	luminous	efficacy	model	performance	comparison	

Model	 PR>20%RE	 MBE	 MAE	 RMSE	
Muneer	et	al.	 +5	 +3.8	 +7.2	 +10.3	
Muneer-Robledo	 +4	 +1.2	 +6.8	 +9.7	
Ruiz	et	al.	 +3	 +0.8	 +6.2	 +8.9	
Perez	et	al.	 +2	 -4.5	 +7.6	 +9.7	
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 Conclusions	

7.1 Contributions	

7.1.1 Chapter	3	

We	 compared	 7	 well-known	 diffuse	 fraction	 models	 with	 1	 locally	

developed	model	 for	Vienna	 (BPI).	 The	 comparison	made	based	on	data	

from	multiple	 locations	with	 different	 climates.	 The	Skartveit	 and	Olseth	

model	performed	slightly	better	than	the	other	7	models	in	most	stations	

and	for	most	statistical	measures,	followed	by	BRL	model.	However,	none	

of	the	models	can	be	said	to	be	performing	wholly	satisfactory.		

We	 developed	 a	 high	 resolution	 local	 diffuse	 fraction	model	 for	 Vienna.	

Results	suggest	that	Vienna	model	performs	significantly	better	than	other	

models	 just	 for	 Vienna	 data	 and	 has	 an	 average	 performance	 on	 other	

locations.	The	 followings	are	a	number	of	 reasons	 that	we	 think	 it	 is	not	

possible	 to	 develop	 a	 global	 high	 resolution	diffuse	 fraction	model	 using	

basic	 weather	 data.	 The	 complexity	 in	 weather	 and	 climate	 models	

including	 aerosols	 as	 well	 as	 the	 nature	 and	 distribution	 of	 clouds,	

significantly	 influence	 the	 magnitude	 and	 distribution	 of	 the	 diffuse	

component	 of	 solar	 radiation.	 This	 intricacy	 is	 not	 reflected	 in	 the	 data	

typically	 provided	 by	 standard	 weather	 stations	 (e.g.,	 temperature,	

humidity	and	global	horizontal	irradiance).	

7.1.2 Chapter	4	

We	 compared	 two	 widely	 used	 sky	 models	 with	 corresponding	

measurements	 in	 generation	 of	 sky	 luminance	 and	 radiance	 description	

from	 their	 original	 article	 and	 deploying	 RADIANCE	 rendering	 program	

respectively.	 Results	 suggest	 that	 both	 sky	 models	 failed	 to	 predict	

satisfactorily	vertical	illuminance	or	irradiance	values	on	cardinal	surfaces.	
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Principles	behind	the	subpar	performance	of	these	models	lies	in	the	fact	

that	distribution	of	luminance	or	radiance	over	sky	hemisphere	is	highly	a	

function	 of	 cloud	 distribution	 and	 characteristics.	 Therefore,	 employing	

basic	 weather	 data	 from	 a	 standard	 weather	 station	 does	 not	 provide	

adequate	 information	 to	 accurately	 predict	 radiance	 and	 luminance	

distributions.	

7.1.3 Chapter	5	

We	had	5	different	simulation	scenarios	in	RADIANCE	rendering	program.	

Indoor	 illuminance	 values	 based	 on	 each	 scenario	 compared	 with	

measured	indoor	illuminance	from	a	test	room	located	in	Vienna,	Austria.	

Results	suggest	that	Sky	scanner	simulation	scenario	performs	significantly	

better	than	other	4	scenarios	as	it	was	expected.		

No	 significant	 performance	 difference	 was	 found	 between	 following	

scenarios:	i)	GENSKY	generated	via	measured	diffuse	horizontal	irradiance	

&	GENSKY	generated	via	diffuse	fraction	model	of	Skartveit,	ii)	GENDAYLIT	

generated	 via	 measured	 diffuse	 horizontal	 irradiance	 &	 GENDAYLIT	

generated	via	diffuse	fraction	model	of	Skartveit	and	Olseth.		

Given	 the	 limited	 scope	 of	 our	 study	 (a	 single	 room,	 relatively	 short	

measurement	 period),	 the	 generalization	 of	 the	 results	 might	 not	 be	

warranted.	 However,	 the	 presented	 case	 study	 does	 imply	 the	 need	 for	

careful	characterization	of	 the	daylight	simulation	process	 in	general	and	

the	 reliability	 of	 sky	 luminance	 models	 in	 particular.	 Qualification	 of	

related	accuracy	statements	and	claims	must	be	carefully	approached	lest	

providing	the	users	with	overtly	simplistic	expectations	regarding	models'	

fidelity	and	applicability.	

7.1.4 Chapter	6	

We	 compared	 4	 luminous	 efficacy	 models	 with	 measured	 luminous	

efficacy	 from	data	 in	Vienna.	Results	 indicated	adequate	performance	of	

all	models	 in	prediction	of	 global	horizontal	 illuminance	 for	Vienna	data.	

Thus,	these	models	can	reliably	be	implicated	in	engineering	practices		
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7.2 Outlook	

Intensified	future	efforts	toward	combination	of	terrestrial	measurements	

(via	standard	weather	stations)	with	satellite-based	imaging	may	not	only	

lead	to	the	formulation	of	more	sophisticated	modelling	techniques	and	a	

higher	quality	level	in	prediction	of	the	diffuse	fraction	of	the	global	solar	

radiation	but	also	a	high	resolution	sky	luminance	distribution	model	using	

advanced	machine	learning	techniques.	

Recent	 achievements	 in	 ITC	 enable	 us	 to	 monitor,	 control,	 and	 predict	

building	performances	with	real-time	data.	Therefore,	 integration	of	real-

time	 high	 resolution	 sky	 models	 with	 other	 building	 systems	 (heating,	

cooling,	and	ventilation)	can	lead	to	high	performance	building	predictive-

control	models	(Mahdavi,	2006,	Mahdavi,	2008,	Mahdavi	et	al.,	2009).	

7.3 Publications	

Vazifeh,	E.,	Schuss,	M.,	Mahdavi,	A.	(2016).	A	Comparative	Assessment	of	Diffuse	
Fraction	Models.	Under	proceeding	of	 the	11th	 International	Conference	on	
Building	&	Environment,	enviBUILD	2016,	Brno,	Czech	Republic.	

Etminan,	 G.,	 Vazifeh,	 E.,	 Mahdavi,	 A.	 (2016).	 The	 Implications	 of	 Assumed	
Boundary	Conditions	 for	The	Reliability	of	 Indoor	 Illuminance	Predictions:	A	
Case	 Study.	 Under	 proceeding	 of	 the	 11th	 International	 Conference	 on	
Building	&	Environment,	enviBUILD	2016,	Brno,	Czech	Republic.	

Vazifeh,	 E.,	 Schuss,	M.,	Mahdavi,	 A.	 (2015).	 Radiometric	 boundary	 condition	
models	for	building	performance	simulation:	an	empirical	assessment.	
Energy	 Procedia,	 Proceedings	 of	 6th	 International	 Building	 Physics	
Conference,	IBPC,	p188.	

Vazifeh,	 E.,	 Schuss,	M.,	Mahdavi,	 A.	 (2015).	 An	 Empirically-Based	Assessment	of	
Computational	 Sky	 Luminance	 Distribution	 Models.	 Proceedings	 of	 the	 14	
IBPSA	Conference,	Hyderabad,	India,	Paper	ID	2224,	p5.	

Vazifeh,	 E.,	 Schuss,	M.,	Mahdavi,	 A.	 (2015).	 Sky	 luminance	 patterns	Distribution	
Patterns:	 Empirical	 Assessment	 and	 Computational	 Models.	 LpS2015	 -	 LED	
Lighting	Technologies	 -	Trends	&	Technologies	 for	Future	Lighting	Solutions,	
ISBN:	9783950320961.	64	-	73.	

Vazifeh,	 E.,	 Schuss,	 M.,	 Mahdavi,	 A.	 (2015).	 Radiometric	 boundary	 condition	
models	 for	 building	 perfromance	 simulation:	 an	 empricial	 assessment.	 6th	
International	Building	Physics	Conference	2015,	IBPC	2015.	



Conclusions	

	 77	

Vazifeh,	 E.,	 Schuss,	M.,	Mahdavi,	 A.	 (2015).	 Prediction	 of	 vertical	 irradiance	 on	
building	 surfaces:	 an	 empirical	 comparison	 of	 two	 models.	 Building	
Simulation	Applications	2015	-	2nd	IBPSA-Italy	Conference.	Paper	ID	110,	p6.	

Vazifeh,	 E.,	 Schuss,	 M.,	 Mahdavi,	 A.	 (2014).	 Development	 and	 evaluation	 of	
models	 for	 the	 computation	 of	 sky	 radiance	 and	 lumincane	 distribution.	
ECPPM2014,	Vienna,	Austria,	ISBN:	978-1-138-02710-7.	237	-	242.	

Vazifeh,	 E.,	 Mahdavi,	 A.	 (2014).	 A	 Comparative	 Performance	 Study	 of	 Diffuse	
Fraction	 Models	 Based	 on	 Data	 from	 Vienna,	 Austria.	 2nd	 ICAUD	 –	
Proceedings,	EPOKA-University.	p7.	

	



References	

	 78	

 References	

8.1 Literature	

Barbaro,	S.,	Coppolino,	S.,	Leone,	C.,	&	Sinagra,	E.	(1979).	An	atmospheric	
model	 for	 computing	direct	and	diffuse	 solar	 radiation.	 Solar	Energy,	
22(3),	225-228.	

Bivona,	 S.,	 Burlon,	 R.,	 &	 Leone,	 C.	 (1991).	 Instantaneous	 distribution	 of	
global	and	diffuse	radiation	on	horizontal	surfaces.	Solar	Energy,	46(4),	
249-254.		

Bird,	R.	&	Hulstrom,	R.	(1981).	A	simplified	clear	sky	model	for	direct	and	
diffuse	 insolation	 on	 horizontal	 surfaces.	 Golden,	 Colo.:	 Solar	 Energy	
Research	Institute.	

Blackwell,	M.J.	(1954).	Five-year	continuous	recordings	of	total	and	diffuse	
solar	 irradiance	 at	 Kew	 Observatory.	 Meteorological	 Resource	
Publication	895,	Meteorological	Office,	London.		

Blanc,	P.,	Espinar,	B.,	Wald,	L.	(2013).	Report	on	Direct	Normal	Irradiance	
Standards.	MACC-II,	Technical	Report	D121.1.	

Boes,	 E.	 C.	 (1975).	 Estimating	 the	 direct	 component	 of	 solar	 radiation.	
Sandia	Report	SAND75-0565.	

Boland,	J.,	Scott,	L.,	&	Luther,	M.	(2001).	Modelling	the	diffuse	fraction	of	
global	 solar	 radiation	 on	 a	 horizontal	 surface.	 Environmetrics,	 12(2),	
103-116.	

Boland,	J.,	Ridley,	B.,	&	Brown,	B.	(2008).	Models	of	diffuse	solar	radiation.	
Renewable	Energy,	33(4),	575-584.	

Brunger,	A.	&	Hooper,	F.	(1993).	Anisotropic	sky	radiance	model	based	on	
narrow	 field	 of	 view	 measurements	 of	 shortwave	 radiance.	 Solar	
Energy,	51(1),	53-64.	

Bruno,	R.	(1978).	A	correction	procedure	for	separating	direct	and	diffuse	
insolation	on	a	horizontal	surface.	Solar	Energy,	20(1),	97-100.		



References	

	 79	

Bugler,	 J.	 (1977).	 The	 determination	 of	 hourly	 insolation	 on	 an	 inclined	
plane	 using	 a	 diffuse	 irradiance	 model	 based	 on	 hourly	 measured	
global	horizontal	insolation.	Solar	Energy,	19(5),	477-491.		

Carroll,	 J.	 (1985).	 Global	 transmissivity	 and	 diffuse	 fraction	 of	 solar	
radiation	 for	clear	and	cloudy	skies	as	measured	and	as	predicted	by	
bulk	transmissivity	models.	Solar	Energy,	35(2),	105-118.		

Chendo,	M.	&	Maduekwe,	A.	(1994).	Hourly	global	and	diffuse	radiation	of	
Lagos,	Nigeria—Correlation	with	some	atmospheric	parameters.	Solar	
Energy,	52(3),	247-251.	

Chandrasekaran,	 J.	 &	 Kumar,	 S.	 (1994).	 Daily	 utilizability	 from	 hourly	
cumulative	frequency	curves.	Renewable	Energy,	4(8),	891-895.	

Choudhury,	N.	(1963).	Solar	radiation	at	New	Delhi.	Solar	Energy,	7(2),	44-
52.		

CIE.	 (1955).	 Natural	 Daylight.	 Compte	 Rendu	 CIE	 13	 Session.	 Official	
Recommendation,	2,	part	3.2,	II-IV	&	35-37.	

CIE.	(1973).	Standardization	of	luminance	distribution	on	clear	skies.	Paris.		

CIE.	(1995).	Spatial	distribution	of	daylight.	Vienna.		

CIE.	(2003).	Spatial	distribution	of	daylight.	Vienna,	Austria.		

Climate-Data.org.	 2015.	 http://en.climate-data.org/region/1461/	 (Last	
accessed,	June,	2016)	

Darula,	 S.	 and	 Kittler,	 R.	 (2002).	 CIE	 general	 sky	 standard	 defining	
luminance	distributions.	eSim,	Montreal,	Canada.	

De	Miguel,	 A.,	 Bilbao,	 J.,	 Aguiar,	 R.,	 Kambezidis,	 H.,	 &	 Negro,	 E.	 (2001).	
Diffuse	solar	irradiation	model	evaluation	in	the	North	Mediterranean	
Belt	area.	Solar	Energy,	70(2),	143-153.		

Dervishi,	 S.	 &	 Mahdavi,	 A.	 (2011).	 A	 comparison	 of	 luminous	 efficacy	
models	based	on	data	from	Vienna,	Austria.	Building	Simulation,	4,	4;	
183	-	188.	

Dervishi,	 S.	 &	 Mahdavi,	 A.	 (2012).	 Computing	 diffuse	 fraction	 of	 global	
horizontal	 solar	 radiation:	 A	model	 comparison.	 Solar	 Energy,	 86(6),	
1796-1802.	



References	

	 80	

Dervishi,	 S.	 &	Mahdavi,	 A.	 (2013).	 A	 simple	model	 for	 the	 derivation	 of	
illuminance	values	 from	global	 radiation	data.	Building	Simulation,	6,	
4;	379	-	383.	

Dogniaux,	 R.	 (1960).	 Données	 météorologiques	 concernant	
l’ensoleillement	 et	 l’éclairage	 naturel.	 Cahiers	 du	 Centre	 Scientifique	
du	Bâtiment,	44:1-24.	

Drummond	A.	J.	(1960).	Note	on	the	measurement	of	natural	illumination	
II.	Daylight	and	skylight	at	Pretoria:	The	luminous	efficacy	of	daylight.	
Architectural	Meteorology	Vienna;	Series	B,	9:1-149.	

EKO	 instruments	 CO.	 (2014).	 Instruction	 manual	 for	 Sky	 scanner	 MS-
321LR.	

Erbs,	D.,	 Klein,	 S.,	&	Duffie,	 J.	 (1982).	 Estimation	 of	 the	 diffuse	 radiation	
fraction	 for	 hourly,	 daily	 and	monthly-average	 global	 radiation.	 Solar	
Energy,	28(4),	293-302.		

Gueymard,	 C.	 (1993).	 Critical	 analysis	 and	 performance	 assessment	 of	
clear	sky	solar	irradiance	models	using	theoretical	and	measured	data.	
Solar	Energy,	51(2):121–138	

Gueymard,	 C.	 (2004).	 The	 sun’s	 total	 and	 spectral	 irradiance	 for	 solar	
energy	 applications	 and	 solar	 radiation	 models.	 Solar	 Energy,	 76(4),	
423-453.	

Gueymard,	C.	 (2008).	REST2:	High-performance	solar	 radiation	model	 for	
cloudless-sky	 irradiance,	 illuminance,	 and	 photosynthetically	 active	
radiation	–	Validation	with	a	benchmark	dataset.	Solar	Energy,	82(3),	
272-285.		

Grigiante,	M.,	Mottes,	F.,	Zardi,	D.,	De	Franceschi,	M.	(2011).	Experimental	
solar	 radiation	measurements	 and	 their	 effectiveness	 in	 setting	 up	 a	
real-sky	irradiance	model.	Renewable	Energy,	(36),	1–8	

Harbison,	 R.,	 Lee,	 R.,	&	 Stedeford,	 T.	 (2015).	 Hamilton	Hardy's	 Industrial	
Toxicology.	John	Wiley	&	Sons.		

Hawlader,	 M.N.A.	 (1984).	 Solar	 diffuse,	 global	 and	 extraterrestrial	 solar	
radiation	 for	 Singapure.	 International	 Journal	 of	 Ambient	 Energy,	
5(1):31-37.	

Hottel,	 H.	 (1976).	 A	 simple	 model	 for	 estimating	 the	 transmittance	 of	
direct	solar	radiation	through	clear	atmospheres.	Solar	Energy,	18(2),	
129-134.		



References	

	 81	

Igawa,	N.,	Nakamura,	H.,	Matsuzawa,	T.,	Koga,	Y.,	Goto,	K.,	Kojo,	S.	(1997).	
Sky	luminance	distribution	between	two	CIE	standard	skies.	Proc.	Lux	
Pacifica,	E7-E18.	

Igawa,	N.,	Koga,	Y.,	Matsuzawa,	T.,	&	Nakamura,	H.	(2004).	Models	of	sky	
radiance	 distribution	 and	 sky	 luminance	 distribution.	 Solar	 Energy,	
77(2),	137-157.		

Iqbal,	 M.	 (1980).	 Prediction	 of	 hourly	 diffuse	 solar	 radiation	 from	
measured	 hourly	 global	 radiation	 on	 a	 horizontal	 surface.	 Solar	
Energy,	24(5),	491-503.	

Karatasou,	 S.,	 Santamouris,	 M.,	 &	 Geros,	 V.	 (2003).	 Analysis	 of	
experimental	 data	 on	 diffuse	 solar	 radiation	 in	 Athens,	 Greece,	 for	
building	 applications.	 International	 Journal	 Of	 Sustainable	 Energy,	
23(1-2),	1-11.	

Kasten,	 F.	 (1983).	 Parametrisierung	 der	 globalstrahlung	 durch	
bedeckungsgrad	und	trubungsfaktor,	Ann.	Met.	20,	49-	50.	

Kittler,	 R.,	 (1967).	 Standardization	 of	 outdoor	 conditions	 for	 the	
calculation	of	daylight	factor	with	clear	skies.	 In:	Proceed-	 ings	of	the	
CIE	 International	 Conference	 on	 Sunlight	 in	 Buildings,	 Bouwcentrum	
International,	Rotterdam,	pp.	273–285.		

Kittler,	R.	 (1985).	 Luminance	distribution	characteristics	of	homogeneous	
skies:	 a	 measurement	 and	 prediction	 strategy.	 Light.	 Res.	 and	
Technol.,	17,	4,	183-188		

Kittler,	 R.,	 Perez,	 R.,	 and	 Darula,	 S.	 (1997).	 A	 new	 generation	 of	 sky	
standards.	In:	proceedings	of	the	Lux	Europa	1997.	359-373.	

Kittler	 R.,	 Perez	 R.,	 and	 Darula	 S.	 (1998).	 A	 set	 of	 standard	 skies	
characterizing	daylight	conditions	for	computer	and	energy	conscious	
design.	 US	 SK	 92	 052	 Final	 Report,	 ICA	 SAS	 Bratislava,	 Polygrafia	
Bratislava.	

König-Langlo,	G.	and	Sieger,	R.	(2012).	BSRN-Archive	Overview	and	Status,	
Twelfth	 BSRN	 Scientific	 Review	 and	 Workshop,	 AWI	 Potsdam,	
Germany.	

Lam,	J.	&	Li,	D.	 (1996).	Correlation	between	global	solar	radiation	and	 its	
direct	and	diffuse	components.	Building	And	Environment,	31(6),	527-
535.	



References	

	 82	

Lauret,	P.,	Boland,	J.	Ridley,	B.	(2010).	Derivation	of	a	solar	diffuse	fraction	
model	in	a	Bayesian	framework,	Case	Studies	in	Business,	Industry	and	
Government	Statistics	1,	3:108-122.	

Littlefair,	P.	(1981).	The	luminance	distribution	of	an	average	sky.	Lighting	
Research	And	Technology,	13(4),	192-198.		

Littlefair,	 P.	 (1985).	 The	 luminous	 efficacy	 of	 daylight:	 a	 review.	 Lighting	
Research	And	Technology,	17(4),	162-182.		

Liu,	 B.	 &	 Jordan,	 R.	 (1960).	 The	 interrelationship	 and	 characteristic	
distribution	 of	 direct,	 diffuse	 and	 total	 solar	 radiation.	 Solar	 Energy,	
4(3),	1-19.		

Mahdavi,	A.	(2006).	The	technology	of	sentient	buildings.	ITU	A|Z.	3	(1/2),	
24:36.		

Mahdavi,	 A.	 (2008).	 Predictive	 simulation-based	 lighting	 and	 shading	
systems	control	in	buildings.	Build.	Simul.,	1(1),	25-35.		

Mahdavi,	 A.,	M.	 Schuss,	 G.	 Suter.	 (2009).	 Recent	 advances	 in	 simulation	
powered	 building	 systems	 control.	 Eleventh	 International	 IBPSA	
Conference.	Glasgow,	Scotland.	

Mahdavi,	 A.	 and	 Dervishi,	 S.	 (2013).	 A	 simple	 all-weather	 sky	 radiance	
model.	IBPSA,	Chambery.	916-921.	

MATLAB	 (2010).	 MATLAB	 Statistics	 Toolbox	 Release	 2010a.	 The	
MathWorks,	Inc.,	Natick,	Massachusetts,	United	States.	

Matsuura,	K.,	Iwata,	T.	(1990).	A	model	of	daylight	source	for	the	daylight	
illuminance	calculations	on	 the	all	weather	 conditions.	Proceeding	of	
3rd	international	daylighting	conference.	Moscow,	USSR.	

Maxwell,	E.L.	 (1987).	A	quasi-physical	model	 for	 converting	hourly	global	
horizontal	to	direct	normal	insolation,	Report	SERI/TR-215-3087,	Solar	
Energy	Institute,	Golden,	CO.	

Menzel,	 W.	 (2001).	 Applications	 with	 meteorological	 satellites.	 World	
Meteorological	Organization.		

Moon,	 P.,	 Spencer,	 D.E.,	 (1942).	 Illumination	 from	 a	 non-	 uniform	 sky.	
Trans.	Illum.	Engng.	Soc.	37,	707–726.		



References	

	 83	

Muneer,	 T.,	 Hawas,	 M.,	 &	 Sahili,	 K.	 (1984).	 Correlation	 between	 hourly	
diffuse	 and	 global	 radiation	 for	 New	 Delhi.	 Energy	 Conversion	 And	
Management,	24(4),	265-267.		

Muneer,	 T.,	 Gul,	 M.,	 &	 Kubie,	 J.	 (2000).	 Models	 for	 Estimating	 Solar	
Radiation	 and	 Illuminance	 From	Meteorological	 Parameters.	 Journal	
Of	Solar	Energy	Engineering,	122(3),	146.		

Nakamura,	 H.,	 Oki,	 M.,	 &	 Hayashi,	 Y.	 (1985).	 Luminance	 distribution	 of	
intermediate	sky.	J.	Light	&	Vis.	Env.,	9(1),	6-13.	

Nakamura,	H.,	Oki,	M.,	and	Iwata,	T.	(1987).	Mathematical	Description	of	
the	 Intermediate	Sky.	Proc.	of	21st	CIE	Session,	CIE,	Venice,	 Italy,	pp.	
230–231.		

Oliveira,	 A.,	 Escobedo,	 J.,	 Machado,	 A.,	 &	 Soares,	 J.	 (2002).	 Correlation	
models	 of	 diffuse	 solar-radiation	 applied	 to	 the	 city	 of	 São	 Paulo,	
Brazil.	Applied	Energy,	71(1),	59-73.	

Orgill,	 J.	 &	 Hollands,	 K.	 (1977).	 Correlation	 equation	 for	 hourly	 diffuse	
radiation	on	a	horizontal	surface.	Solar	Energy,	19(4),	357-359.		

Parmerlee	 G.V.	 (1954).	 Irradiation	 of	 Vertical	 and	 horizontal	 surfaces	 by	
diffuse	 solar	 radiation	 from	 cloudless	 skies,	 ASHVE	 transuction	 341-
358.	

Perez,	 R.,	 Ineichen,	 P.,	 Seals,	 R.,	 Michalsky,	 J.,	 &	 Stewart,	 R.	 (1990).	
Modeling	daylight	availability	and	 irradiance	components	 from	direct	
and	global	irradiance.	Solar	Energy,	44(5),	271-289.		

Perez,	R.,	Ineichen,	P.,	Maxwell,	E.,	Seals,	R.,	Zelenka,	A.,	(1992).	Dynamic	
global	 to	 direct	 irradiance	 conversion	 models.	 ASHRAE	 Trans.	 Res.	
Series,	354–369.	

Perez,	R.,	Seals,	R.,	Michalsky,	J.,	Steward,	R.	(1993).	All-weather	model	for	
sky	 luminance	 distribution-preliminary	 configuration	 and	 validation.	
Solar	energy,	Vol:	50	(3).	235-245.	

Perraudeau,	M.	 (1988).	 Luminance	models.	National	 Lighting	Conference	
1988,	Cambridge.	291-292.	

Pleijel,	 G.	 (1954).	 The	 computation	 of	 natural	 irradiance	 in	 architecture	
and	 town	 planning.	 Meddelande	 Bull.,	 Statens	 Namnd	 for	
Byggnadsforskning.	Stokholm,	25:1-30.	



References	

	 84	

Randall,	 C.	M.	 and	Whitson,	M.	 E.	 (1977).	 Final	 report--hourly	 insolation	
and	 meteorological	 data	 bases	 including	 improved	 direct	 insolation	
estimates.	Aerospace	Report	No.	ATR-78	(7592)-1.	

Reindl,	 D.T.,	 Beckman,	 W.A.,	 Duffie,	 J.A.	 (1990).	 Diffuse	 fraction	
correlations,	Solar	Energy,	45(1):1-7.	

Ridley,	 B.,	 Boland,	 J.,	 &	 Lauret,	 P.	 (2010).	 Modelling	 of	 diffuse	 solar	
fraction	with	multiple	predictors.	Renewable	Energy,	35(2),	478-483.	

Ruiz,	E.,	Soler,	A.,	&	Robledo,	L.	(2001).	Assessment	of	Muneer’s	Luminous	
Efficacy	Models	 in	Madrid	 and	 a	 Proposal	 for	New	Models	 Based	on	
His	Approach.	Journal	Of	Solar	Energy	Engineering,	123(3),	220.		

Ruth,	D.	&	Chant,	R.	 (1976).	The	 relationship	of	diffuse	 radiation	 to	 total	
radiation	in	Canada.	Solar	Energy,	18(2),	153-154.		

Skartveit,	A.	Olseth,	 J.A.	 1987.	A	model	 for	 the	diffuse	 fraction	of	hourly	
global	radiation,	Solar	Energy,	38:271-274.	

Skartveit,	A.,	Olseth,	J.,	&	Tuft,	M.	(1998).	An	hourly	diffuse	fraction	model	
with	correction	for	variability	and	surface	albedo.	Solar	Energy,	63(3),	
173-183.		

Soares,	J.,	Oliveira,	A.	Boznar,	M.,	Mlakar,	P.,	Escobedo,	J.F.	and	Machado,	
J.A.	 (2004).	Modeling	hourly	 diffuse	 solar.radiation	 in	 the	 city	 of	 Sao	
Paulo	 using	 a	 neural-network	 technique.	 Applied	 Energy,	 79(2):201-
214.	

Spencer,	 JW.	 (1982).	 A	 comparison	 of	 methods	 for	 estimating	 hourly	
diffuse	solar	radiation	from	global	solar	radiation,	Solar	Energy,	29:19-
32.	

Stanhill,	G.	 (1966).	Diffuse	sky	and	cloud	radiation	 in	 Israel.	Solar	Energy,	
10(2),	96-101.		

Stephens,	G.,	O'Brien,	D.,	Webster,	P.,	Pilewski,	P.,	Kato,	S.,	&	Li,	J.	(2015).	
The	albedo	of	Earth.	Rev.	Geophys.,	53(1),	141-163.		

Tregenza,	P.R.	 (1999).	Standard	skies	 for	maritime	climates.	 Lighting	Res.	
&	Technol.	31	(3),	97-106.	

Tuller,	 S.	 (1976).	 The	 relationship	 between	 diffuse,	 total	 and	
extraterrestrial	solar	radiation.	Solar	Energy,	18(3),	259-263.		



References	

	 85	

Vazifeh,	 E.,	 Dervishi,	 S.,	 Mahdavi,	 A.	 (2013).	 Calculation	 models	 for	 the	
diffuse	fraction	of	global	solar	radiation.	CESBP,	Vienna,	Austria.	587	-	
590.	

Ward,	G.J.	(1994).	The	radiance	lighting	simulation	and	rendering	system.	
In	 Proceedings	 of	 the	 21st	 annual	 conference	 on	 Computer	 graphics	
and	interactive	techniques,	pages	459–472.	ACM	Press.	

Ward,	 GJ.	 (2014a).	 http://radsite.lbl.gov/radiance/man_html	
/gendaylit.1.html.	(Accessed	May	2015).	

Ward	 GJ.	 (2014b).	
http://radsite.lbl.gov/radiance/man_html/gensky.1.html.	 (Accessed	
May	2015.)	

Weiss,	A.	&	Norman,	J.	(1985).	Partitioning	solar	radiation	into	direct	and	
diffuse,	visible	and	near-infrared	components.	Agricultural	And	Forest	
Meteorology,	34(2-3),	205-213.		

	 	



References	

	 86	

8.2 Tables	

Table	2-1.	Characteristics	of	stations	in	the	USA	(BSRN) ............................................. 9	
Table	2-2.	List	of	deployed	sensors	for	Vienna ......................................................... 10	
Table	3-1.	Summarized	description	of	models	and	their	variables ............................. 13	
Table	3-2.	Bins	used	in	Perez	function .................................................................... 24	
Table	3-3.	Bins	used	for	the	Perez	second	model ..................................................... 25	
Table	3-4.	Pearson	moment	correlation	for	different	variables	vs.	diffuse	fraction ...... 27	
Table	3-5.	Variables	used	in	BPI	model ................................................................... 34	
Table	3-6.	Coefficients	for	the	proposed	BPI	model	as	a	function	of	the	global	

horizontal	irradiance	(𝐼𝑔ℎ)	range ........................................... 35	
Table	3-7.	Root	Mean	Square	Error	(RMSE	in	%)	of	predicted	𝐼𝑑ℎ	to	SPN1	data ......... 37	
Table	3-8.	Mean	Bias	Error	(MBE	in	%)	of	predicted	𝐼𝑑ℎ	to	SPN1	data ....................... 37	
Table	3-9.	Mean	Absolute	Error	(MAE	in	%)	of	predicted	𝐼𝑑ℎ	to	SPN1	data ................ 37	
Table	3-10.	Percentage	of	predicted	𝐼𝑑ℎ	data	having	RE	less	than	20%	with	SPN1	

data .................................................................................... 38	
Table	3-11.	Ranking	of	the	performance	of	different	models	for	different	locations	

using	all	4	statistical	measures .............................................. 38	
Table	4-1.	GENSKY	categorization	in	the	present	study ............................................ 47	
Table	4-2.	Statistical	evaluation	of	CIE	and	Perez	models	based	on	vertical	

illuminance	predictions ......................................................... 50	
Table	4-3.	Statistical	evaluation	of	vertical	irradiance	(incident	on	surfaces	facing	

four	cardinal	directions)	and	sky	patch	radiance	as	predicted	
via	GENDAYLIT	and	GENSKY .................................................. 52	

Table	5-1.	The	reflectance	of	the	test	room	surfaces ................................................ 59	
Table	5-2.	Percentage	of	results	having	less	than	20%	RE	for	different	sensors	and	

different	scenarios ................................................................ 64	
Table	5-3.	Root	Mean	Square	Errors	(RMSE	in	%)	of	5	scenarios	for	all	sensors .......... 64	
Table	6-1.	Global	luminous	efficacy	model	performance	comparison ........................ 73	
Table	0-1.	Instruments	specifications .................................................................... 92	
Table	0-2.	Recorded	climate	data	for	Vienna	city	from	1971	to	2000 ...................... 93	
Table	0-1.	Perez	Look-up	Table ............................................................................ 95	
	

	 	



References	

	 87	

8.3 Figures	

Figure	1-1.	Extraterrestrial	solar	spectrum	vs.	earth	surface	solar	spectrum	(image	
source:	http://www.itacanet.org/the-sun-as-a-source-of-
energy/part-2-solar-energy-reaching-the-earths-surface/) ......... 2	

Figure	2-1.	Distribution	map	of	BSRN	sites	deployed	in	this	study ............................... 8	
Figure	3-1.	Workflow	of	Pearson	index	calculation .................................................. 26	
Figure	3-2.	Comparison	of	diffuse	fraction	vs.	clearness	index	for	different	global	

horizontal	irradiance	(Igh) ..................................................... 29	
Figure	3-3.	Three-dimensional	comparison	of	diffuse	fraction	vs.	clearness	index	

and	Igh ................................................................................ 29	
Figure	3-4.	Comparison	of	diffuse	fraction	vs.	clearness	index	for	different	

temperatures ....................................................................... 30	
Figure	3-5.	Three-dimensional	comparison	of	diffuse	fraction	vs.	clearness	index	

and	temperatures ................................................................. 30	
Figure	3-6.	Comparison	of	diffuse	fraction	vs.	clearness	index	for	different	solar	

altitudes .............................................................................. 31	
Figure	3-7.	Three-dimensional	comparison	of	diffuse	fraction	vs.	clearness	index	

and	solar	altitudes ................................................................ 31	
Figure	3-8.	Comparison	of	diffuse	fraction	vs.	clearness	index	for	different	relative	

humidity .............................................................................. 32	
Figure	3-9.	Three-dimensional	comparison	of	diffuse	fraction	vs.	clearness	index	

and	relative	humidity ............................................................ 32	

Figure	3-10.	Effect	of	sun	state	(Top:	3d	kd-kt	plot,	Bottom:	2d	kd-kt	plot) ............... 33	
Figure	3-11.	Cumulative	Distribution	Function	of	Relative	Errors	for	percentage	of	

results	(Testing	dataset	–	year	2011) ...................................... 39	
Figure	3-12.	Cumulative	Distribution	Function	of	Relative	Errors	for	percentage	of	

results	(Validation	dataset) ................................................... 39	
Figure	4-1.	Flowchart	of	sky	generation	in	RADIANCE	(GENDAYLIT	on	the	left	–	

GENSKY	on	the	right) ............................................................ 46	
Figure	4-2.	Sky	fisheye	high	dynamic	range	images	for	GENDAYLIT	(on	the	left)	and	

GENSKY	(on	the	right)	–	10:45	a.m.	local	time,	10	July	2014,	
Vienna ................................................................................. 46	

Figure	4-3.	Top:	Sky	scanner	MS-321LR,	Bottom:	Fisheye	image	of	sky	generated	
via	sky	scanner ..................................................................... 49	

Figure	4-4.	Comparison	of	the	CIE	and	Perez	sky	models	in	terms	of	relative	error	
distributions	of	predicted	vertical	illuminance	values	
(Relative	errors	over	100%	are	merged	into	the	100%	error	
bin) ..................................................................................... 51	

Figure	4-5.	Comparison	of	CIE	and	Perez	et	al.	sky	models’	relative	errors	(%)	for	
vertical	surfaces	facing	the	four	cardinal	directions	in	terms	
of	cumulative	distribution	functions ....................................... 51	



References	

	 88	

Figure	4-6.	Cumulative	distribution	functions	of	the	relative	errors	(%)	of	the	two	
models'	patch	luminance	predictions	with	respect	to	sky	
scanner	data ........................................................................ 52	

Figure	4-7.	Comparison	of	the	GENSKY	and	GENDAYLIT	sky	models	in	terms	of	
distributions	of	the	relative	errors	of	predicted	vertical	
irradiance	values .................................................................. 53	

Figure	4-8.	Comparison	of	measured	and	computed	patch	radiance	values	(Left:	
GENDAYLIT;	Right:	GENSKY) .................................................. 53	

Figure	4-9.	Comparison	of	GENSKY	and	GENDAYLIT	sky	models’	relative	errors	(%)	
for	vertical	surfaces	facing	the	four	cardinal	directions	in	
terms	of	cumulative	distribution	functions .............................. 54	

Figure	4-10.	Comparison	of	patch	radiance	values	of	two	models	with	sky	scanner	
data	using	cumulative	distribution	of	percentage	of	the	
results	for	different	relative	errors	(%) .................................... 54	

Figure	5-1.	Location	of	the	test	room,	TU	Wien,	Vienna,	Austria ............................... 57	
Figure	5-2.	Minolta	luminance	meter	(LS-100)	(on	the	left)	and	illuminance	meter	

(T10-A	series)	(on	the	right) ................................................... 58	
Figure	5-3.	Arrangement	of	illuminance	meters	in	the	test	room	(Photo	credit:	

Ghazal	Etminan) ................................................................... 59	
Figure	5-4.	Different	view	from	test	room	geometry	in	Sketchup	(from	top	to	

bottom:	Top	view,	North-East	view,	North-East	view	section) ... 61	
Figure	5-5.	An	overview	of	simulation	steps	to	calculate	indoor	illuminances ............. 62	
Figure	5-6.	Five	simulation	scenarios	deploying	different	diffuse	irradiance	and	

different	sky	models ............................................................. 62	
Figure	5-7.	Percentage	of	results	with	less	than	20%	RE	for	different	sensors	

(Overview) ........................................................................... 63	
Figure	5-8.	Cumulative	Distribution	Function	of	Relative	Errors	(Sensor	1) ................. 64	
Figure	5-9.	Cumulative	Distribution	Function	of	Relative	Errors	(Sensor	2) ................. 65	
Figure	5-10.	Cumulative	Distribution	Function	of	Relative	Errors	(Sensor	3) ............... 65	
Figure	5-11.	Cumulative	Distribution	Function	of	Relative	Errors	of	(Sensor	4) ............ 66	
Figure	5-12.	Cumulative	Distribution	Function	of	Relative	Errors	of	(Sensor	5) ............ 66	
Figure	5-13.	Cumulative	Distribution	Function	of	Relative	Errors	of	(Sensor	6) ............ 67	
Figure	5-14.	Cumulative	Distribution	Function	of	Relative	Errors	of	(Sensor	7) ............ 67	
Figure	5-15.	Cumulative	Distribution	Function	of	Relative	Errors	of	(Sensor	8) ............ 68	
Figure	6-1.	Global	horizontal	irradiance	vs.	global	horizontal	illuminance	for	

Vienna	–	2013 ...................................................................... 71	
Figure	6-2.	Global	luminous	efficacy	for	Vienna	–	2013 ............................................ 72	
Figure	6-3.	Global	luminous	efficacy	as	a	function	of	solar	altitude	for	Vienna	–	

2013 .................................................................................... 72	
Figure 6-4. Global	luminous	efficacy	as	a	function	of	clearness	index	for	Vienna	–	

2013 .................................................................................... 73	
Figure	6-5.	Cumulative	Distribution	Function	of	Relative	Errors	(RE)	for	4	luminous	

efficacy	models .................................................................... 73	



References	

	 89	

Figure	0-1.	North	side	of	the	observatory	station	of	BPI,	TU	Wien ............................. 92	



Glossary	

	 90	

Glossary	

	

𝑘",	 	 clearness	index,	ratio	of	global	horizontal	

irradiance	over	extraterrestrial	horizontal	

irradiance	

𝐼'(	 	 global	horizontal	irradiance	(W/m2)	

𝐼)*"	 	 extraterrestrial	irradiance	(W/m2)	

𝛼	 	 solar	altitude	(degrees)	

𝐼0(	 	 diffuse	horizontal	irradiance	(W/m2)	

𝐼0�	 	 direct	normal	irradiance	(W/m2)	

𝐸�	 	 direct	normal	illuminance	

𝑘0	 	 diffuse	 fraction,	 ratio	 of	 diffuse	 horizontal	

irradiance	over	global	horizontal	irradiance	

Ta	 	 ambient	temperature	

ϕ	 	 relative	humidity	

𝑇0	 	 dew	point	temperature	

σ3	 	 variability	index	

𝜌	 	 clear	sky	index	

ψ	 	 persistence	index	

𝐴𝑆𝑇	 	 apparent	solar	time	

𝑚l��	 	 air	mass	

𝐾"�	 	 adjusted	clearness	index	

𝑍�	 	 solar	zenith	angle	
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∆𝐾"�	 	 stability	index	

𝑊	 	 atmospheric	precipitable	water	

𝑟	 	 pearson	moment	correlation	index	

SS	 	 sun	state	

𝑀�	 	 measurement	instance	

𝑆�	 	 simulation	instance	

Lr	 	 relative	sky	luminance	

	 𝜉	 	 angular	 distance	 between	 the	 sky	 element	 and	

the	sun	disk	

𝑍	 	 zenith	angle	of	considered	sky	element	

Δ	 	 brightness	index	

ϵ	 	 sky	clearness	

Lz	 	 zenith	luminance	(cd/m2.sr)	

𝜂	 	 sun	disc	diameter	angle	

𝐸'(	 	 global	horizontal	illuminance	(lux)	

𝛺�	 	 patch	solid	angle	

𝛽	 	 vertical	plane	normal	angle	

𝜗	 	 patch	vertical	transformation	function	

𝜆�	 	 patch	azimuth	angle	

𝐾'	 	 global	luminous	efficacy		
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	Appendix	A	–	BPI	Weather	station	

The	 microclimatic	 observatory	 weather	 station	 of	 Building	 physics	 and	

building	 ecology	 department	 is	 located	 on	 the	 rooftop	 of	 Technical	

university	of	Vienna,	at	 the	heart	of	Vienna	city,	Austria	 (see	Figure	0-1).	

Some	of	 the	specifications	of	 the	equipment	have	been	demonstrated	 in	

Table	0-1.	

	

Figure	0-1.	North	side	of	the	observatory	station	of	BPI,	TU	Wien	

Table	0-1.	Instruments	specifications	

Weather	station	 Specifications	

	

Outdoor	 air	 temperature:	 Absolute	
Error:	 <	 0.3	 K;	 Temperature	 range:	 -30	
to	+70	°	C;	Response	time	<	20	s	 (≥	1.5	
m/s)	

Outdoor	 relative	 humidity:	 Absolute	
Error	<	±2%;	Humidity	range	0	to	100	%;	
Response	time	<	10	s	(≥	1.5	m/s)	
Wind	speed:	Absolute	Error:	<1%;	Wind	
speed	range	0	-	75	m.s-1	

Sunshine	Pyranometer	(SPN1)	 Specifications	
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Global	and	Diffuse	irradiance	(Sunshine	
Pyranometer	 SPN1):	 Overall	 accuracy	
±5%;	 Daily	 integrals	 ±5%	 ±10	 W.m-2;	
Hourly	 averages	 ±8%	 ±10	 W.m-2;	
Resolution	0.6	W.	m-2=0.6	mV;	Range	0	
to	 >	 2000	 W.m-2;	 Analogue	 output	
sensitivity	 1mv=	 1	 W.m-2;	 Analogue	
output	 range:	 0-2500	mV;	 Temperature	
range	 -20	 to	 +70	 °	 C;	 Accuracy	 Cosine	
Correction	 ±2%	 of	 incoming	 radiation	
over	0-90°	zenith	angle.	

Ahlborn	FLA	613-GS	&	VLM	 Specifications	

	

GS:	 range	 0-1200	 W.m-2;	 spectral	
sensitivity	 400nm	 to	 1100nm;	 signal	
output	0V	 to	2V;	absolute	error	<10%;	
operating	temperature	-20°	to	+60°	

VLM:	 range:	 0-170	 klux;	 spectral	
sensitivity	 360nm	 to	 760nm;	 signal	
output	0V	 to	2V;	absolute	error	<10%;	
operating	temperature	-20°	to	+60°	

Sky	scanner	(MS321LR)	 Specifications	

	
http://eko-usa.com/	

Luminance:	 Sensitivity	 50	 kcd.m-2;	
Resolution	 15	 cd.m-2;	 Entire	 sky	
scanning	 time:	 4	 min/145	 points,	
resolution	 (angle):	 0.0036°,	 accuracy	
(angle):	0.2°	

Radiance:	 sensitivity:	 300	 W.m-2.sr-1	 ,	
resolution:	 1.0	 W.m-2.sr-1	 ,	 entire	 sky	
scanning	 time:	 4	 min/145	 points	 ,	
resolution	 (angle):	 0.0036°,	 accuracy	
(angle):	0.2°	

Fisheye	camera		(LMK	98-4)	 Specifications	

	

Luminance:	Standard	resolution	1380	x	
1030	 Pixel;	 Higher	 resolution	 2448	 x	
2050	 Pixel,	 4008	 x	 2672	 Pixel,	 4008	 x	
4008	Pixel;	Resolution	(dynamic)	Single	
picture	 measurement:	 1:1100	 (~	 61	
dB);	 Multi	 picture	 measurement:	
1:3600	 (~	 71	 dB);	 	 High	 Dynamic	
measurement	 1:10000000	 (~140	 dB);	
A/D	 conversion	 12/14	 Bit;	
Measurement	time	from	1	to	15	sec	for	
different	 luminance	 values	 depending	
on	 adjusted	 exposure	 time;	 Accuracy:	
DL	 <	 3	 %	 (for	 standard	 illuminant	 A);	
Dx,y	<	0.0020	(for	standard	illuminant	A)	

 

Table	0-2.	Recorded	climate	data	for	Vienna	city	from	1971	to	2000	
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Appendix	B	–	Perez	Look-up	table	

Perez	look-up	table	consists	of	252	rows	and	6	columns,	where	each	array	

is	a	coefficient	to	be	multiplied	by	Maxwell	DISC	beam	irradiance.	In	order	

to	 derive	 the	 coefficient	 for	 each	 time	 step,	 four	 insolation	 condition	

parameters	must	 be	 calculated,	which	 are	 adjusted	 Clearness	 index	(KR�)	

that	 represents	 meteorologically	 similar	 conditions	 irrespective	 of	 the	

position	of	the	sun.	Z	 is	the	solar	zenith	angle,	∆KR� 	stability	 index	and	 	W	

as	atmospheric	precipitable	water	(See	Table	3-2).	

With	all	these	information,	the	index	of	Perez	coefficient	within	the	matrix	

can	be	calculated	with	the	suggested	formula:	

𝐵𝑖𝑛_KR�=	number	of	bin	in	the	Table	3-2	for	the	range	of	KR� 	

Bin_Z=	number	of	bin	in	the	Table	3-2	for	the	range	of	Z	

𝐵𝑖𝑛_∆KR�=	number	of	bin	in	the	Table	3-2	for	the	range	of	∆KR� 	

Bin_𝑊	=	number	of	bin	in	the	Table	3-2	for	the	range	of	W	

Finally:	

Row‘s	number	=	((Bin_Z	-1)*6+𝐵𝑖𝑛_KR�)*6+𝐵𝑖𝑛_∆KR� 	

Column’s	number	=	𝐵𝑖𝑛_𝑊		

	

Table	0-1.	Perez	Look-up	Table	

Row	
number	
↓	

Column	
number→	 1	 2	 3	 4	 5	

1	 1	 0.38523	 0.38523	 0.38523	 0.46288	 0.31744	
2	 2	 0.33839	 0.33839	 0.22127	 0.31673	 0.50365	
3	 3	 0.23568	 0.23568	 0.24128	 0.15783	 0.26944	
4	 4	 0.83013	 0.83013	 0.17197	 0.84107	 0.45737	
5	 5	 0.54801	 0.54801	 0.478	 0.96688	 1.03637	
6	 6	 0.54801	 0.54801	 1	 3.01237	 1.97654	
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7	 7	 0.58269	 0.58269	 0.22972	 0.89271	 0.56995	
	
8	 1	 0.13128	 0.13128	 0.38546	 0.51107	 0.12794	
9	 2	 0.22371	 0.22371	 0.19356	 0.30456	 0.19394	
10	 3	 0.22997	 0.22997	 0.27502	 0.31273	 0.24461	
11	 4	 0.0901	 0.18458	 0.2605	 0.68748	 0.57944	
12	 5	 0.13153	 0.13153	 0.37019	 1.38035	 1.05227	
13	 6	 1.11625	 1.11625	 0.92803	 3.52549	 2.31692	
14	 7	 0.0901	 0.237	 0.30004	 0.81247	 0.66497	
	
15	 1	 0.58751	 0.13	 0.4	 0.53721	 0.83249	
16	 2	 0.30621	 0.12983	 0.20446	 0.5	 0.68164	
17	 3	 0.22402	 0.26062	 0.33408	 0.50104	 0.35047	
18	 4	 0.42154	 0.75397	 0.75066	 3.70684	 0.98379	
19	 5	 0.70668	 0.37353	 1.24567	 0.86486	 1.99263	
20	 6	 4.8644	 0.11739	 0.26518	 0.35918	 3.31082	
21	 7	 0.39208	 0.49329	 0.65156	 1.93278	 0.89873	
	
22	 1	 0.12697	 0.12697	 0.12697	 0.12697	 0.12697	
23	 2	 0.81082	 0.81082	 0.81082	 0.81082	 0.81082	
24	 3	 3.24168	 2.5	 2.29144	 2.29144	 2.29144	
25	 4	 4	 3	 2	 0.97543	 1.96557	
26	 5	 12.49417	 12.49417	 8	 5.08352	 8.79239	
27	 6	 21.74424	 21.74424	 21.74424	 21.74424	 21.74424	
28	 7	 3.24168	 12.49417	 1.62076	 1.37525	 2.33162	
	
29	 1	 0.12697	 0.12697	 0.12697	 0.12697	 0.12697	
30	 2	 0.81082	 0.81082	 0.81082	 0.81082	 0.81082	
31	 3	 3.24168	 2.5	 2.29144	 2.29144	 2.29144	
32	 4	 4	 3	 2	 0.97543	 1.96557	
33	 5	 12.49417	 12.49417	 8	 5.08352	 8.79239	
34	 6	 21.74424	 21.74424	 21.74424	 21.74424	 21.74424	
35	 7	 3.24168	 12.49417	 1.62076	 1.37525	 2.33162	
	
36	 1	 0.12697	 0.12697	 0.12697	 0.12697	 0.12697	
37	 2	 0.81082	 0.81082	 0.81082	 0.81082	 0.81082	
38	 3	 3.24168	 2.5	 2.29144	 2.29144	 2.29144	
39	 4	 4	 3	 2	 0.97543	 1.96557	
40	 5	 12.49417	 12.49417	 8	 5.08352	 8.79239	
41	 6	 21.74424	 21.74424	 21.74424	 21.74424	 21.74424	
42	 7	 3.24168	 12.49417	 1.62076	 1.37525	 2.33162	
	
43	 1	 0.33744	 0.33744	 0.96911	 1.09719	 1.11608	
44	 2	 0.33744	 0.33744	 0.96911	 1.11603	 0.6239	
45	 3	 0.33744	 0.33744	 1.53059	 1.02442	 0.90848	
46	 4	 0.58404	 0.58404	 0.84725	 0.91494	 1.2893	
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47	 5	 0.33744	 0.33744	 0.31024	 1.43502	 1.85283	
48	 6	 0.33744	 0.33744	 1.01501	 1.09719	 2.11723	
49	 7	 0.33744	 0.33744	 0.96911	 1.14573	 1.4764	
	
50	 1	 0.3	 0.3	 0.7	 1.1	 0.79694	
51	 2	 0.21987	 0.21987	 0.52653	 0.80961	 0.6493	
52	 3	 0.38665	 0.38665	 0.11932	 0.57612	 0.68546	
53	 4	 0.74673	 0.39983	 0.47097	 0.98653	 0.78537	
54	 5	 0.57542	 0.9367	 1.6492	 1.49584	 1.33559	
55	 6	 1.31967	 4.00257	 1.27639	 2.64455	 2.51867	
56	 7	 0.66519	 0.67891	 1.01236	 1.19994	 0.98658	
	
57	 1	 0.37887	 0.97406	 0.5	 0.49188	 0.66529	
58	 2	 0.10521	 0.26347	 0.40704	 0.55346	 0.58259	
59	 3	 0.3129	 0.34524	 1.14418	 0.85479	 0.61228	
60	 4	 0.11907	 0.36512	 0.56052	 0.79372	 0.8026	
61	 5	 0.78161	 0.83739	 1.27042	 1.53798	 1.29295	
62	 6	 1.15229	 1.15229	 1.49208	 1.24537	 2.1771	
63	 7	 0.42466	 0.52955	 0.96691	 1.03346	 0.95873	
	
64	 1	 0.31059	 0.71441	 0.25245	 0.5	 0.6076	
65	 2	 0.97519	 0.36342	 0.5	 0.4	 0.5028	
66	 3	 0.17558	 0.19625	 0.47636	 1.07247	 0.49051	
67	 4	 0.71928	 0.69862	 0.65777	 1.19084	 0.68111	
68	 5	 0.42624	 1.46484	 0.67855	 1.15773	 0.97843	
69	 6	 2.50112	 1.78913	 1.38709	 2.39418	 2.39418	
70	 7	 0.49164	 0.67761	 0.68561	 1.0824	 0.73541	
	
71	 1	 0.597	 0.5	 0.3	 0.31005	 0.41351	
72	 2	 0.31479	 0.33631	 0.4	 0.4	 0.44246	
73	 3	 0.16651	 0.46044	 0.55257	 1	 0.46161	
74	 4	 0.40102	 0.55911	 0.40363	 1.01671	 0.67149	
75	 5	 0.40036	 0.75083	 0.84264	 1.8026	 1.02383	
76	 6	 3.3153	 1.51038	 2.44365	 1.63882	 2.13399	
77	 7	 0.53079	 0.74585	 0.69305	 1.45804	 0.8045	
	
78	 1	 0.597	 0.5	 0.3	 0.31005	 0.80092	
79	 2	 0.31479	 0.33631	 0.4	 0.4	 0.23704	
80	 3	 0.16651	 0.46044	 0.55257	 1	 0.58199	
81	 4	 0.40102	 0.55911	 0.40363	 1.01671	 0.89857	
82	 5	 0.40036	 0.75083	 0.84264	 1.8026	 3.40039	
83	 6	 3.3153	 1.51038	 2.44365	 1.63882	 2.50878	
84	 7	 0.20434	 1.15774	 2.00308	 2.62208	 1.40938	
	
85	 1	 1.24221	 1.24221	 1.24221	 1.24221	 1.24221	
86	 2	 0.05698	 0.05698	 0.65699	 0.65699	 0.92516	
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87	 3	 0.08909	 0.08909	 1.04043	 1.23248	 1.2053	
88	 4	 1.05385	 1.05385	 1.39969	 1.08464	 1.23334	
89	 5	 1.15154	 1.15154	 1.11829	 1.53164	 1.41184	
90	 6	 1.49498	 1.49498	 1.7	 1.80081	 1.6716	
91	 7	 1.01845	 1.01845	 1.1536	 1.32189	 1.29467	
	
92	 1	 0.7	 0.7	 1.02346	 0.7	 0.94583	
93	 2	 0.8863	 0.8863	 1.33362	 0.8	 1.06662	
94	 3	 0.90218	 0.90218	 0.95433	 1.12669	 1.09731	
95	 4	 1.0953	 1.07506	 1.17649	 1.13947	 1.09611	
96	 5	 1.20166	 1.20166	 1.4382	 1.25628	 1.19806	
97	 6	 1.52585	 1.52585	 1.86916	 1.98541	 1.91159	
98	 7	 1.28822	 1.08281	 1.28637	 1.16617	 1.11933	
	
99	 1	 0.6	 1.02991	 0.85989	 0.55	 0.8136	
100	 2	 0.60445	 1.02991	 0.85989	 0.6567	 0.92884	
101	 3	 0.45585	 0.75058	 0.80493	 0.823	 0.911	
102	 4	 0.52658	 0.93231	 0.90862	 0.98352	 0.98809	
103	 5	 1.03611	 1.10069	 0.84838	 1.03527	 1.04238	
104	 6	 1.04844	 1.65272	 0.9	 2.35041	 1.08295	
105	 7	 0.81741	 0.97616	 0.8613	 0.97478	 1.00458	
	
106	 1	 0.78211	 0.56428	 0.6	 0.6	 0.66574	
107	 2	 0.89448	 0.68073	 0.54199	 0.8	 0.66914	
108	 3	 0.48746	 0.81895	 0.84183	 0.87254	 0.70904	
109	 4	 0.70931	 0.87278	 0.90848	 0.95329	 0.84435	
110	 5	 0.86392	 0.94777	 0.87622	 1.07875	 0.93691	
111	 6	 1.28035	 0.86672	 0.76979	 1.07875	 0.97513	
112	 7	 0.72542	 0.86997	 0.86881	 0.95119	 0.82922	
	
113	 1	 0.79175	 0.65404	 0.48317	 0.409	 0.59718	
114	 2	 0.56614	 0.94899	 0.97182	 0.65357	 0.71855	
115	 3	 0.64871	 0.63773	 0.87051	 0.8606	 0.6943	
116	 4	 0.63763	 0.76761	 0.92567	 0.99031	 0.84767	
117	 5	 0.73638	 0.94606	 1.11759	 1.02934	 0.94702	
118	 6	 1.18097	 0.85	 1.05	 0.95	 0.88858	
119	 7	 0.70056	 0.80144	 0.96197	 0.90614	 0.82388	
	
120	 1	 0.5	 0.5	 0.58677	 0.47055	 0.62979	
121	 2	 0.5	 0.5	 1.05622	 1.26014	 0.65814	
122	 3	 0.5	 0.5	 0.63183	 0.84262	 0.58278	
123	 4	 0.55471	 0.73473	 0.98582	 0.91564	 0.89826	
124	 5	 0.71251	 1.20599	 0.90951	 1.07826	 0.88561	
125	 6	 1.89926	 1.55971	 1	 1.15	 1.12039	
126	 7	 0.65388	 0.79312	 0.90332	 0.94407	 0.79613	
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127	 1	 1	 1	 1.05	 1.17038	 1.17809	
128	 2	 0.96058	 0.96058	 1.05953	 1.17903	 1.13169	
129	 3	 0.87147	 0.87147	 0.99586	 1.14191	 1.1146	
130	 4	 1.20159	 1.20159	 0.99361	 1.10938	 1.12632	
131	 5	 1.06501	 1.06501	 0.82866	 0.93997	 1.01793	
132	 6	 1.06501	 1.06501	 0.62369	 1.11962	 1.13226	
133	 7	 1.07157	 1.07157	 0.95807	 1.11413	 1.12711	
	
134	 1	 0.95	 0.97339	 0.85252	 1.0922	 1.09659	
135	 2	 0.80412	 0.91387	 0.98099	 1.09458	 1.04242	
136	 3	 0.73754	 0.93597	 0.99994	 1.05649	 1.05006	
137	 4	 1.03298	 1.03454	 0.96846	 1.03208	 1.01578	
138	 5	 0.9	 0.97721	 0.94596	 1.00884	 0.96996	
139	 6	 0.6	 0.75	 0.75	 0.84471	 0.8991	
140	 7	 0.9268	 0.96503	 0.96852	 1.04491	 1.03231	
	
141	 1	 0.85	 1.02971	 0.9611	 1.05567	 1.0097	
142	 2	 0.81853	 0.96001	 0.99645	 1.08197	 1.03647	
143	 3	 0.76538	 0.9535	 0.94826	 1.05211	 1.00014	
144	 4	 0.77561	 0.90961	 0.9278	 0.9878	 0.9521	
145	 5	 1.00099	 0.88188	 0.87595	 0.9491	 0.89369	
146	 6	 0.90237	 0.87596	 0.80799	 0.94241	 0.91792	
147	 7	 0.85658	 0.92827	 0.94682	 1.03226	 0.97299	
	
148	 1	 0.75	 0.85793	 0.9838	 1.05654	 0.98024	
149	 2	 0.75	 0.98701	 1.01373	 1.13378	 1.03825	
150	 3	 0.8	 0.94738	 1.01238	 1.09127	 0.99984	
151	 4	 0.8	 0.91455	 0.90857	 0.99919	 0.91523	
152	 5	 0.77854	 0.80059	 0.79907	 0.90218	 0.85156	
153	 6	 0.68019	 0.31741	 0.50768	 0.38891	 0.64671	
154	 7	 0.79492	 0.91278	 0.96083	 1.05711	 0.94795	
	
155	 1	 0.75	 0.83389	 0.86753	 1.05989	 0.93284	
156	 2	 0.9797	 0.97147	 0.99551	 1.06849	 1.03015	
157	 3	 0.85885	 0.98792	 1.04322	 1.1087	 1.0449	
158	 4	 0.8024	 0.95511	 0.91166	 1.04507	 0.94447	
159	 5	 0.88489	 0.76621	 0.88539	 0.85907	 0.81819	
160	 6	 0.61568	 0.7	 0.85	 0.62462	 0.6693	
161	 7	 0.83557	 0.94615	 0.97709	 1.04935	 0.97997	
	
162	 1	 0.68922	 0.8096	 0.9	 0.7895	 0.85399	
163	 2	 0.85466	 0.85284	 0.9382	 0.92311	 0.95501	
164	 3	 0.9386	 0.93298	 1.01039	 1.04395	 1.04164	
165	 4	 0.84362	 0.9813	 0.95159	 0.9461	 0.96633	
166	 5	 0.69474	 0.81469	 0.57265	 0.4	 0.72683	



Appendix	B	–	Perez	Look-up	table	

	 100	

167	 6	 0.21137	 0.67178	 0.41634	 0.29729	 0.49805	
168	 7	 0.84354	 0.88233	 0.91176	 0.89842	 0.96021	
	
169	 1	 1.05488	 1.07521	 1.06846	 1.15337	 1.06922	
170	 2	 1	 1.06222	 1.01347	 1.08817	 1.0462	
171	 3	 0.88509	 0.99353	 0.94259	 1.05499	 1.01274	
172	 4	 0.92	 0.95	 0.97872	 1.02028	 0.98444	
173	 5	 0.85	 0.9085	 0.83994	 0.98557	 0.96218	
174	 6	 0.8	 0.8	 0.81008	 0.95	 0.96155	
175	 7	 1.03859	 1.0632	 1.03444	 1.11278	 1.0378	
	
176	 1	 1.01761	 1.02836	 1.05896	 1.13318	 1.04562	
177	 2	 0.92	 0.99897	 1.03359	 1.08903	 1.02206	
178	 3	 0.91237	 0.94993	 0.97977	 1.02042	 0.98177	
179	 4	 0.84716	 0.9353	 0.93054	 0.95505	 0.94656	
180	 5	 0.88026	 0.86711	 0.87413	 0.97265	 0.88342	
181	 6	 0.62715	 0.62715	 0.7	 0.77407	 0.84513	
182	 7	 0.9737	 1.00624	 1.02619	 1.07196	 1.01724	
	
183	 1	 1.02871	 1.01757	 1.0259	 1.08179	 1.02424	
184	 2	 0.92498	 0.9855	 1.0141	 1.09221	 0.99961	
185	 3	 0.82857	 0.93492	 0.99495	 1.02459	 0.94971	
186	 4	 0.90081	 0.90133	 0.92883	 0.97957	 0.9131	
187	 5	 0.76103	 0.84515	 0.80536	 0.93679	 0.85346	
188	 6	 0.6264	 0.54675	 0.7305	 0.85	 0.68905	
189	 7	 0.95763	 0.98548	 0.99179	 1.05022	 0.9879	
	
190	 1	 0.99273	 0.99388	 1.01715	 1.05912	 1.01745	
191	 2	 0.97561	 0.98716	 1.02682	 1.07544	 1.00725	
192	 3	 0.87109	 0.93319	 0.97469	 0.97984	 0.95273	
193	 4	 0.82875	 0.86809	 0.83492	 0.90551	 0.87153	
194	 5	 0.78154	 0.78247	 0.76791	 0.76414	 0.79589	
195	 6	 0.74346	 0.69339	 0.51487	 0.63015	 0.71566	
196	 7	 0.93476	 0.95787	 0.95964	 0.97251	 0.98164	
	
197	 1	 0.96584	 0.94124	 0.9871	 1.02254	 1.01116	
198	 2	 0.98863	 0.99477	 0.97659	 0.95	 1.03484	
199	 3	 0.9582	 1.01808	 0.97448	 0.92	 0.98987	
200	 4	 0.81172	 0.86909	 0.81202	 0.85	 0.82105	
201	 5	 0.68203	 0.67948	 0.63245	 0.74658	 0.73855	
202	 6	 0.66829	 0.44586	 0.5	 0.67892	 0.69651	
203	 7	 0.92694	 0.95335	 0.95905	 0.87621	 0.99149	
	
204	 1	 0.94894	 0.99776	 0.85	 0.82652	 0.99847	
205	 2	 1.01786	 0.97	 0.85	 0.7	 0.98856	
206	 3	 1	 0.95	 0.85	 0.60624	 0.94726	
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207	 4	 1	 0.74614	 0.75174	 0.59839	 0.72523	
208	 5	 0.92221	 0.5	 0.3768	 0.51711	 0.54863	
209	 6	 0.5	 0.45	 0.42997	 0.40449	 0.53994	
210	 7	 0.96043	 0.88163	 0.77564	 0.59635	 0.93768	
	
211	 1	 1.03	 1.04	 1	 1	 1.04951	
212	 2	 1.05	 0.99	 0.99	 0.95	 0.99653	
213	 3	 1.05	 0.99	 0.99	 0.82	 0.97194	
214	 4	 1.05	 0.79	 0.88	 0.82	 0.95184	
215	 5	 1	 0.53	 0.44	 0.71	 0.92873	
216	 6	 0.54	 0.47	 0.5	 0.55	 0.77395	
217	 7	 1.03827	 0.92018	 0.91093	 0.82114	 1.03456	
	
218	 1	 1.04102	 0.99752	 0.9616	 1	 1.03578	
219	 2	 0.94803	 0.98	 0.9	 0.95036	 0.97746	
220	 3	 0.95	 0.97725	 0.86927	 0.8	 0.95168	
221	 4	 0.95187	 0.85	 0.74877	 0.7	 0.88385	
222	 5	 0.9	 0.82319	 0.72745	 0.6	 0.83987	
223	 6	 0.85	 0.80502	 0.69231	 0.5	 0.78841	
224	 7	 1.01009	 0.89527	 0.77303	 0.81628	 1.01168	
	
225	 1	 1.02245	 1.0046	 0.98365	 1	 1.03294	
226	 2	 0.94396	 0.99924	 0.98392	 0.90599	 0.97815	
227	 3	 0.93624	 0.94648	 0.85	 0.85	 0.93032	
228	 4	 0.81642	 0.885	 0.64495	 0.81765	 0.86531	
229	 5	 0.74296	 0.76569	 0.56152	 0.7	 0.82714	
230	 6	 0.64387	 0.59671	 0.47446	 0.6	 0.6512	
231	 7	 0.97174	 0.94056	 0.71488	 0.86438	 1.00165	
	
232	 1	 0.99526	 0.97701	 1	 1	 1.03525	
233	 2	 0.93981	 0.97525	 0.93998	 0.95	 0.98255	
234	 3	 0.87687	 0.87944	 0.85	 0.9	 0.91781	
235	 4	 0.87348	 0.87345	 0.75147	 0.85	 0.86304	
236	 5	 0.76147	 0.70236	 0.63877	 0.75	 0.78312	
237	 6	 0.73408	 0.65	 0.6	 0.65	 0.71566	
238	 7	 0.94216	 0.9191	 0.77034	 0.73117	 0.99518	
	
239	 1	 0.95256	 0.91678	 0.92	 0.9	 1.00588	
240	 2	 0.92862	 0.99442	 0.9	 0.9	 0.98372	
241	 3	 0.91307	 0.85	 0.85	 0.8	 0.92428	
242	 4	 0.86809	 0.80717	 0.82355	 0.6	 0.84452	
243	 5	 0.76957	 0.71987	 0.65	 0.55	 0.7335	
244	 6	 0.58025	 0.65	 0.6	 0.5	 0.62885	
245	 7	 0.90477	 0.85265	 0.70837	 0.49373	 0.94903	
	
246	 1	 0.91197	 0.8	 0.8	 0.8	 0.95632	
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247	 2	 0.91262	 0.68261	 0.75	 0.7	 0.95011	
248	 3	 0.65345	 0.65933	 0.7	 0.6	 0.85611	
249	 4	 0.64844	 0.6	 0.64112	 0.5	 0.69578	
250	 5	 0.57	 0.55	 0.5988	 0.4	 0.56015	
251	 6	 0.47523	 0.5	 0.51864	 0.33997	 0.52023	
252	 7	 0.74344	 0.59219	 0.60306	 0.31693	 0.79439	
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NREL	sun	altitude	
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Appendix	D	–	Skyscanner.cal	

{RCSid $Id: Skyscanner.cal,v 1.1 2014/07/25 12:30:00 Vazifeh, E. & Mahdavi, A. 
} 

{ 

Clear Sky Radiance Distribution. 

Additional arguments required for calculation of skybright: 

 A1 till A145 - Radiance of the Patch 

 A146, A147, A148  - sun direction 

} 

{skybright = wmean((Dz+1.01)^10, intersky, (Dz+1.01)^-10, A1 ); 

wmean(a, x, b, y) = (a*x+b*y)/(a+b);} 

skybright = 1.5708*if(5.500-acos((Dx*-0.0000+Dy*-
0.9945+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2)* 

sqrt((-0.0000)^2+(-0.9945)^2+(0.1045)^2)))*180/PI,19.1116,if(5.500-acos((Dx*-
0.2068+Dy*-0.9728+Dz*0.1045) 

/(sqrt((Dx)^2+(Dy)^2+(Dz)^2)*sqrt((-0.2068)^2+(-
0.9728)^2+(0.1045)^2)))*180/PI,14.8160, 

if(5.500-acos((Dx*-0.4045+Dy*-0.9085+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.4045)^2+(-0.9085)^2+(0.1045)^2)))*180/PI,15.7091, 

if(5.500-acos((Dx*-0.5846+Dy*-0.8046+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.5846)^2+(-0.8046)^2+(0.1045)^2)))*180/PI,17.7006, 

if(5.500-acos((Dx*-0.7391+Dy*-0.6655+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.7391)^2+(-0.6655)^2+(0.1045)^2)))*180/PI,21.5319, 

if(5.500-acos((Dx*-0.8613+Dy*-0.4973+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.8613)^2+(-0.4973)^2+(0.1045)^2)))*180/PI,28.2388, 

if(5.500-acos((Dx*-0.9458+Dy*-0.3073+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.9458)^2+(-0.3073)^2+(0.1045)^2)))*180/PI,27.4350, 

if(5.500-acos((Dx*-0.9891+Dy*-0.1040+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.9891)^2+(-0.1040)^2+(0.1045)^2)))*180/PI,50.1279, 

if(5.500-acos((Dx*-0.9891+Dy*0.1040+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.9891)^2+(0.1040)^2+(0.1045)^2)))*180/PI,73.1154, 

if(5.500-acos((Dx*-0.9458+Dy*0.3073+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.9458)^2+(0.3073)^2+(0.1045)^2)))*180/PI,234.6089, 

if(5.500-acos((Dx*-0.8613+Dy*0.4973+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.8613)^2+(0.4973)^2+(0.1045)^2)))*180/PI,0.0000 

,if(5.500-acos((Dx*-0.7391+Dy*0.6655+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.7391)^2+(0.6655)^2+(0.1045)^2)))*180/PI,117.4473 

,if(5.500-acos((Dx*-0.5846+Dy*0.8046+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.5846)^2+(0.8046)^2+(0.1045)^2)))*180/PI,44.5730 
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,if(5.500-acos((Dx*-0.4045+Dy*0.9085+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.4045)^2+(0.9085)^2+(0.1045)^2)))*180/PI,38.3126 

,if(5.500-acos((Dx*-0.2068+Dy*0.9728+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.2068)^2+(0.9728)^2+(0.1045)^2)))*180/PI,30.9627 

,if(5.500-acos((Dx*-0.0000+Dy*0.9945+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.0000)^2+(0.9945)^2+(0.1045)^2)))*180/PI,25.1488 

,if(5.500-acos((Dx*0.2068+Dy*0.9728+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.2068)^2+(0.9728)^2+(0.1045)^2)))*180/PI,19.9690 

,if(5.500-acos((Dx*0.4045+Dy*0.9085+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.4045)^2+(0.9085)^2+(0.1045)^2)))*180/PI,17.1737 

,if(5.500-acos((Dx*0.5846+Dy*0.8046+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.5846)^2+(0.8046)^2+(0.1045)^2)))*180/PI,15.6912 

,if(5.500-acos((Dx*0.7391+Dy*0.6655+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.7391)^2+(0.6655)^2+(0.1045)^2)))*180/PI,15.4322 

,if(5.500-acos((Dx*0.8613+Dy*0.4973+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.8613)^2+(0.4973)^2+(0.1045)^2)))*180/PI,15.7269 

,if(5.500-acos((Dx*0.9458+Dy*0.3073+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.9458)^2+(0.3073)^2+(0.1045)^2)))*180/PI,17.8614 

,if(5.500-acos((Dx*0.9891+Dy*0.1040+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.9891)^2+(0.1040)^2+(0.1045)^2)))*180/PI,18.1382 

,if(5.500-acos((Dx*0.9891+Dy*-0.1040+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.9891)^2+(-0.1040)^2+(0.1045)^2)))*180/PI,20.0583 

,if(5.500-acos((Dx*0.9458+Dy*-0.3073+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.9458)^2+(-0.3073)^2+(0.1045)^2)))*180/PI,21.5587 

,if(5.500-acos((Dx*0.8613+Dy*-0.4973+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.8613)^2+(-0.4973)^2+(0.1045)^2)))*180/PI,21.2997 

,if(5.500-acos((Dx*0.7391+Dy*-0.6655+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.7391)^2+(-0.6655)^2+(0.1045)^2)))*180/PI,19.6118 

,if(5.500-acos((Dx*0.5846+Dy*-0.8046+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.5846)^2+(-0.8046)^2+(0.1045)^2)))*180/PI,16.7361 

,if(5.500-acos((Dx*0.4045+Dy*-0.9085+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.4045)^2+(-0.9085)^2+(0.1045)^2)))*180/PI,16.3431 

,if(5.500-acos((Dx*0.2068+Dy*-0.9728+Dz*0.1045)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.2068)^2+(-0.9728)^2+(0.1045)^2)))*180/PI,15.9323 

,if(5.500-acos((Dx*0.1977+Dy*-0.9303+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.1977)^2+(-0.9303)^2+(0.3090)^2)))*180/PI,11.6188 

,if(5.500-acos((Dx*0.3868+Dy*-0.8688+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.3868)^2+(-0.8688)^2+(0.3090)^2)))*180/PI,12.3243 

,if(5.500-acos((Dx*0.5590+Dy*-0.7694+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.5590)^2+(-0.7694)^2+(0.3090)^2)))*180/PI,13.1370 

,if(5.500-acos((Dx*0.7068+Dy*-0.6364+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.7068)^2+(-0.6364)^2+(0.3090)^2)))*180/PI,13.7711 

,if(5.500-acos((Dx*0.8236+Dy*-0.4755+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.8236)^2+(-0.4755)^2+(0.3090)^2)))*180/PI,14.0569 
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,if(5.500-acos((Dx*0.9045+Dy*-0.2939+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.9045)^2+(-0.2939)^2+(0.3090)^2)))*180/PI,14.0658 

,if(5.500-acos((Dx*0.9458+Dy*-0.0994+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.9458)^2+(-0.0994)^2+(0.3090)^2)))*180/PI,13.5657 

,if(5.500-acos((Dx*0.9458+Dy*0.0994+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.9458)^2+(0.0994)^2+(0.3090)^2)))*180/PI,12.8691 

,if(5.500-acos((Dx*0.9045+Dy*0.2939+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.9045)^2+(0.2939)^2+(0.3090)^2)))*180/PI,12.1011 

,if(5.500-acos((Dx*0.8236+Dy*0.4755+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.8236)^2+(0.4755)^2+(0.3090)^2)))*180/PI,11.6188 

,if(5.500-acos((Dx*0.7068+Dy*0.6364+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.7068)^2+(0.6364)^2+(0.3090)^2)))*180/PI,11.1366 

,if(5.500-acos((Dx*0.5590+Dy*0.7694+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.5590)^2+(0.7694)^2+(0.3090)^2)))*180/PI,11.1366 

,if(5.500-acos((Dx*0.3868+Dy*0.8688+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.3868)^2+(0.8688)^2+(0.3090)^2)))*180/PI,12.0921 

,if(5.500-acos((Dx*0.1977+Dy*0.9303+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.1977)^2+(0.9303)^2+(0.3090)^2)))*180/PI,14.0658 

,if(5.500-acos((Dx*-0.0000+Dy*0.9511+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.0000)^2+(0.9511)^2+(0.3090)^2)))*180/PI,17.2541 

,if(5.500-acos((Dx*-0.1977+Dy*0.9303+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.1977)^2+(0.9303)^2+(0.3090)^2)))*180/PI,21.9069 

,if(5.500-acos((Dx*-0.3868+Dy*0.8688+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.3868)^2+(0.8688)^2+(0.3090)^2)))*180/PI,28.1674 

,if(5.500-acos((Dx*-0.5590+Dy*0.7694+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.5590)^2+(0.7694)^2+(0.3090)^2)))*180/PI,34.1956 

,if(5.500-acos((Dx*-0.7068+Dy*0.6364+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.7068)^2+(0.6364)^2+(0.3090)^2)))*180/PI,53.7180 

,if(5.500-acos((Dx*-0.8236+Dy*0.4755+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.8236)^2+(0.4755)^2+(0.3090)^2)))*180/PI,135.1658 

,if(5.500-acos((Dx*-0.9045+Dy*0.2939+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.9045)^2+(0.2939)^2+(0.3090)^2)))*180/PI,77.9469 

,if(5.500-acos((Dx*-0.9458+Dy*0.0994+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.9458)^2+(0.0994)^2+(0.3090)^2)))*180/PI,43.9300 

,if(5.500-acos((Dx*-0.9458+Dy*-0.0994+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.9458)^2+(-0.0994)^2+(0.3090)^2)))*180/PI,31.1859 

,if(5.500-acos((Dx*-0.9045+Dy*-0.2939+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.9045)^2+(-0.2939)^2+(0.3090)^2)))*180/PI,23.4698 

,if(5.500-acos((Dx*-0.8236+Dy*-0.4755+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.8236)^2+(-0.4755)^2+(0.3090)^2)))*180/PI,18.3168 

,if(5.500-acos((Dx*-0.7068+Dy*-0.6364+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.7068)^2+(-0.6364)^2+(0.3090)^2)))*180/PI,14.6910 

,if(5.500-acos((Dx*-0.5590+Dy*-0.7694+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.5590)^2+(-0.7694)^2+(0.3090)^2)))*180/PI,12.3779 
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,if(5.500-acos((Dx*-0.3868+Dy*-0.8688+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.3868)^2+(-0.8688)^2+(0.3090)^2)))*180/PI,11.2169 

,if(5.500-acos((Dx*-0.1977+Dy*-0.9303+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.1977)^2+(-0.9303)^2+(0.3090)^2)))*180/PI,10.9311 

,if(5.500-acos((Dx*-0.0000+Dy*-0.9511+Dz*0.3090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.0000)^2+(-0.9511)^2+(0.3090)^2)))*180/PI,12.0118 

,if(5.500-acos((Dx*-0.0000+Dy*-0.8660+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.0000)^2+(-0.8660)^2+(0.5000)^2)))*180/PI,8.7610 

,if(5.500-acos((Dx*-0.2241+Dy*-0.8365+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.2241)^2+(-0.8365)^2+(0.5000)^2)))*180/PI,8.5645 

,if(5.500-acos((Dx*-0.4330+Dy*-0.7500+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.4330)^2+(-0.7500)^2+(0.5000)^2)))*180/PI,9.1004 

,if(5.500-acos((Dx*-0.6124+Dy*-0.6124+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.6124)^2+(-0.6124)^2+(0.5000)^2)))*180/PI,10.6275 

,if(5.500-acos((Dx*-0.7500+Dy*-0.4330+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.7500)^2+(-0.4330)^2+(0.5000)^2)))*180/PI,13.6461 

,if(5.500-acos((Dx*-0.8365+Dy*-0.2241+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.8365)^2+(-0.2241)^2+(0.5000)^2)))*180/PI,18.0132 

,if(5.500-acos((Dx*-0.8660+Dy*0.0000+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.8660)^2+(0.0000)^2+(0.5000)^2)))*180/PI,23.5055 

,if(5.500-acos((Dx*-0.8365+Dy*0.2241+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.8365)^2+(0.2241)^2+(0.5000)^2)))*180/PI,31.4717 

,if(5.500-acos((Dx*-0.7500+Dy*0.4330+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.7500)^2+(0.4330)^2+(0.5000)^2)))*180/PI,35.4459 

,if(5.500-acos((Dx*-0.6124+Dy*0.6124+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.6124)^2+(0.6124)^2+(0.5000)^2)))*180/PI,29.4802 

,if(5.500-acos((Dx*-0.4330+Dy*0.7500+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.4330)^2+(0.7500)^2+(0.5000)^2)))*180/PI,16.5307 

,if(5.500-acos((Dx*-0.2241+Dy*0.8365+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.2241)^2+(0.8365)^2+(0.5000)^2)))*180/PI,16.1288 

,if(5.500-acos((Dx*-0.0000+Dy*0.8660+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.0000)^2+(0.8660)^2+(0.5000)^2)))*180/PI,12.5476 

,if(5.500-acos((Dx*0.2241+Dy*0.8365+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.2241)^2+(0.8365)^2+(0.5000)^2)))*180/PI,10.2613 

,if(5.500-acos((Dx*0.4330+Dy*0.7500+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.4330)^2+(0.7500)^2+(0.5000)^2)))*180/PI,8.8950 

,if(5.500-acos((Dx*0.6124+Dy*0.6124+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.6124)^2+(0.6124)^2+(0.5000)^2)))*180/PI,8.6895 

,if(5.500-acos((Dx*0.7500+Dy*0.4330+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.7500)^2+(0.4330)^2+(0.5000)^2)))*180/PI,8.9664 

,if(5.500-acos((Dx*0.8365+Dy*0.2241+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.8365)^2+(0.2241)^2+(0.5000)^2)))*180/PI,9.3861 

,if(5.500-acos((Dx*0.8660+Dy*-0.0000+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.8660)^2+(-0.0000)^2+(0.5000)^2)))*180/PI,9.9220 
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,if(5.500-acos((Dx*0.8365+Dy*-0.2241+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.8365)^2+(-0.2241)^2+(0.5000)^2)))*180/PI,10.3774 

,if(5.500-acos((Dx*0.7500+Dy*-0.4330+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.7500)^2+(-0.4330)^2+(0.5000)^2)))*180/PI,10.4042 

,if(5.500-acos((Dx*0.6124+Dy*-0.6124+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.6124)^2+(-0.6124)^2+(0.5000)^2)))*180/PI,10.1363 

,if(5.500-acos((Dx*0.4330+Dy*-0.7500+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.4330)^2+(-0.7500)^2+(0.5000)^2)))*180/PI,9.7255 

,if(5.500-acos((Dx*0.2241+Dy*-0.8365+Dz*0.5000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.2241)^2+(-0.8365)^2+(0.5000)^2)))*180/PI,9.0825 

,if(5.500-acos((Dx*0.1923+Dy*-0.7178+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.1923)^2+(-0.7178)^2+(0.6691)^2)))*180/PI,7.3946 

,if(5.500-acos((Dx*0.3716+Dy*-0.6436+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.3716)^2+(-0.6436)^2+(0.6691)^2)))*180/PI,7.7965 

,if(5.500-acos((Dx*0.5255+Dy*-0.5255+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.5255)^2+(-0.5255)^2+(0.6691)^2)))*180/PI,8.0376 

,if(5.500-acos((Dx*0.6436+Dy*-0.3716+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.6436)^2+(-0.3716)^2+(0.6691)^2)))*180/PI,8.1001 

,if(5.500-acos((Dx*0.7178+Dy*-0.1923+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.7178)^2+(-0.1923)^2+(0.6691)^2)))*180/PI,8.0912 

,if(5.500-acos((Dx*0.7431+Dy*-0.0000+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.7431)^2+(-0.0000)^2+(0.6691)^2)))*180/PI,7.9840 

,if(5.500-acos((Dx*0.7178+Dy*0.1923+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.7178)^2+(0.1923)^2+(0.6691)^2)))*180/PI,7.8143 

,if(5.500-acos((Dx*0.6436+Dy*0.3716+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.6436)^2+(0.3716)^2+(0.6691)^2)))*180/PI,7.5732 

,if(5.500-acos((Dx*0.5255+Dy*0.5255+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.5255)^2+(0.5255)^2+(0.6691)^2)))*180/PI,7.5554 

,if(5.500-acos((Dx*0.3716+Dy*0.6436+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.3716)^2+(0.6436)^2+(0.6691)^2)))*180/PI,7.8233 

,if(5.500-acos((Dx*0.1923+Dy*0.7178+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.1923)^2+(0.7178)^2+(0.6691)^2)))*180/PI,8.7699 

,if(5.500-acos((Dx*-0.0000+Dy*0.7431+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.0000)^2+(0.7431)^2+(0.6691)^2)))*180/PI,10.2167 

,if(5.500-acos((Dx*-0.1923+Dy*0.7178+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.1923)^2+(0.7178)^2+(0.6691)^2)))*180/PI,11.9671 

,if(5.500-acos((Dx*-0.3716+Dy*0.6436+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.3716)^2+(0.6436)^2+(0.6691)^2)))*180/PI,13.9229 

,if(5.500-acos((Dx*-0.5255+Dy*0.5255+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.5255)^2+(0.5255)^2+(0.6691)^2)))*180/PI,16.7807 

,if(5.500-acos((Dx*-0.6436+Dy*0.3716+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.6436)^2+(0.3716)^2+(0.6691)^2)))*180/PI,18.3436 

,if(5.500-acos((Dx*-0.7178+Dy*0.1923+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.7178)^2+(0.1923)^2+(0.6691)^2)))*180/PI,18.1471 
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,if(5.500-acos((Dx*-0.7431+Dy*0.0000+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.7431)^2+(0.0000)^2+(0.6691)^2)))*180/PI,15.7716 

,if(5.500-acos((Dx*-0.7178+Dy*-0.1923+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.7178)^2+(-0.1923)^2+(0.6691)^2)))*180/PI,13.3246 

,if(5.500-acos((Dx*-0.6436+Dy*-0.3716+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.6436)^2+(-0.3716)^2+(0.6691)^2)))*180/PI,11.0026 

,if(5.500-acos((Dx*-0.5255+Dy*-0.5255+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.5255)^2+(-0.5255)^2+(0.6691)^2)))*180/PI,9.2968 

,if(5.500-acos((Dx*-0.3716+Dy*-0.6436+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.3716)^2+(-0.6436)^2+(0.6691)^2)))*180/PI,8.2162 

,if(5.500-acos((Dx*-0.1923+Dy*-0.7178+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.1923)^2+(-0.7178)^2+(0.6691)^2)))*180/PI,7.7250 

,if(5.500-acos((Dx*-0.0000+Dy*-0.7431+Dz*0.6691)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.0000)^2+(-0.7431)^2+(0.6691)^2)))*180/PI,7.6357 

,if(5.500-acos((Dx*-0.0000+Dy*-0.5878+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.0000)^2+(-0.5878)^2+(0.8090)^2)))*180/PI,6.8498 

,if(5.500-acos((Dx*-0.2010+Dy*-0.5523+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.2010)^2+(-0.5523)^2+(0.8090)^2)))*180/PI,7.1981 

,if(5.500-acos((Dx*-0.3778+Dy*-0.4503+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.3778)^2+(-0.4503)^2+(0.8090)^2)))*180/PI,7.8769 

,if(5.500-acos((Dx*-0.5090+Dy*-0.2939+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.5090)^2+(-0.2939)^2+(0.8090)^2)))*180/PI,9.0914 

,if(5.500-acos((Dx*-0.5789+Dy*-0.1021+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.5789)^2+(-0.1021)^2+(0.8090)^2)))*180/PI,10.7347 

,if(5.500-acos((Dx*-0.5789+Dy*0.1021+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.5789)^2+(0.1021)^2+(0.8090)^2)))*180/PI,11.9492 

,if(5.500-acos((Dx*-0.5090+Dy*0.2939+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.5090)^2+(0.2939)^2+(0.8090)^2)))*180/PI,12.1725 

,if(5.500-acos((Dx*-0.3778+Dy*0.4503+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.3778)^2+(0.4503)^2+(0.8090)^2)))*180/PI,11.4491 

,if(5.500-acos((Dx*-0.2010+Dy*0.5523+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.2010)^2+(0.5523)^2+(0.8090)^2)))*180/PI,10.1274 

,if(5.500-acos((Dx*-0.0000+Dy*0.5878+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.0000)^2+(0.5878)^2+(0.8090)^2)))*180/PI,8.6806 

,if(5.500-acos((Dx*0.2010+Dy*0.5523+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.2010)^2+(0.5523)^2+(0.8090)^2)))*180/PI,7.6804 

,if(5.500-acos((Dx*0.3778+Dy*0.4503+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.3778)^2+(0.4503)^2+(0.8090)^2)))*180/PI,7.1713 

,if(5.500-acos((Dx*0.5090+Dy*0.2939+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.5090)^2+(0.2939)^2+(0.8090)^2)))*180/PI,7.0463 

,if(5.500-acos((Dx*0.5789+Dy*0.1021+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.5789)^2+(0.1021)^2+(0.8090)^2)))*180/PI,7.0106 

,if(5.500-acos((Dx*0.5789+Dy*-0.1021+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.5789)^2+(-0.1021)^2+(0.8090)^2)))*180/PI,7.1535 
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,if(5.500-acos((Dx*0.5090+Dy*-0.2939+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.5090)^2+(-0.2939)^2+(0.8090)^2)))*180/PI,7.1267 

,if(5.500-acos((Dx*0.3778+Dy*-0.4503+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.3778)^2+(-0.4503)^2+(0.8090)^2)))*180/PI,7.0731 

,if(5.500-acos((Dx*0.2010+Dy*-0.5523+Dz*0.8090)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.2010)^2+(-0.5523)^2+(0.8090)^2)))*180/PI,6.9659 

,if(5.500-acos((Dx*0.2034+Dy*-0.3522+Dz*0.9135)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.2034)^2+(-0.3522)^2+(0.9135)^2)))*180/PI,6.5194 

,if(5.500-acos((Dx*0.3522+Dy*-0.2034+Dz*0.9135)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.3522)^2+(-0.2034)^2+(0.9135)^2)))*180/PI,6.5819 

,if(5.500-acos((Dx*0.4067+Dy*-0.0000+Dz*0.9135)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.4067)^2+(-0.0000)^2+(0.9135)^2)))*180/PI,6.4033 

,if(5.500-acos((Dx*0.3522+Dy*0.2034+Dz*0.9135)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.3522)^2+(0.2034)^2+(0.9135)^2)))*180/PI,6.6891 

,if(5.500-acos((Dx*0.2034+Dy*0.3522+Dz*0.9135)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.2034)^2+(0.3522)^2+(0.9135)^2)))*180/PI,7.2517 

,if(5.500-acos((Dx*-0.0000+Dy*0.4067+Dz*0.9135)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.0000)^2+(0.4067)^2+(0.9135)^2)))*180/PI,7.9572 

,if(5.500-acos((Dx*-0.2034+Dy*0.3522+Dz*0.9135)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.2034)^2+(0.3522)^2+(0.9135)^2)))*180/PI,8.8860 

,if(5.500-acos((Dx*-0.3522+Dy*0.2034+Dz*0.9135)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.3522)^2+(0.2034)^2+(0.9135)^2)))*180/PI,9.5290 

,if(5.500-acos((Dx*-0.4067+Dy*0.0000+Dz*0.9135)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.4067)^2+(0.0000)^2+(0.9135)^2)))*180/PI,9.1807 

,if(5.500-acos((Dx*-0.3522+Dy*-0.2034+Dz*0.9135)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.3522)^2+(-0.2034)^2+(0.9135)^2)))*180/PI,8.2966 

,if(5.500-acos((Dx*-0.2034+Dy*-0.3522+Dz*0.9135)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.2034)^2+(-0.3522)^2+(0.9135)^2)))*180/PI,7.3589 

,if(5.500-acos((Dx*-0.0000+Dy*-0.4067+Dz*0.9135)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.0000)^2+(-0.4067)^2+(0.9135)^2)))*180/PI,6.8856 

,if(5.500-acos((Dx*-0.0000+Dy*-0.2079+Dz*0.9781)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.0000)^2+(-0.2079)^2+(0.9781)^2)))*180/PI,6.6355 

,if(5.500-acos((Dx*-0.1801+Dy*-0.1040+Dz*0.9781)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.1801)^2+(-0.1040)^2+(0.9781)^2)))*180/PI,7.4750 

,if(5.500-acos((Dx*-0.1801+Dy*0.1040+Dz*0.9781)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.1801)^2+(0.1040)^2+(0.9781)^2)))*180/PI,7.8054 

,if(5.500-acos((Dx*-0.0000+Dy*0.2079+Dz*0.9781)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((-0.0000)^2+(0.2079)^2+(0.9781)^2)))*180/PI,7.4214 

,if(5.500-acos((Dx*0.1801+Dy*0.1040+Dz*0.9781)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.1801)^2+(0.1040)^2+(0.9781)^2)))*180/PI,6.5998 

,if(5.500-acos((Dx*0.1801+Dy*-0.1040+Dz*0.9781)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 

*sqrt((0.1801)^2+(-0.1040)^2+(0.9781)^2)))*180/PI,6.2604 

,if(5.500-acos((Dx*-0.0000+Dy*-0.0000+Dz*1.0000)/(sqrt((Dx)^2+(Dy)^2+(Dz)^2) 
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*sqrt((-0.0000)^2+(-
0.0000)^2+(1.0000)^2)))*180/PI,6.5730,0))))))))))))))))))))))))))))))))))))))))
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
)))))))))))))))))))))))))); 
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