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Kurzfassung

Logische Auswertungsspiele stellen eine alternative Beschreibung von Wahrheit zu Tarskise-
mantik dar. Wahrheit aus der Perspektive formaler Spieltheorie zu betrachten führte zu eini-
gen interessanten Erweiterungen klassischer Logik, wie beispielsweise Independence-Friendly
Logic von Hintikka, die Wahrheitswertermittlung zu einem Spiel unvollständiger Information
macht. Auswertungsspiele nach Hintikka sind zu einem Standardwerkzeug zur Analyse neuer
Logiken geworden.

Mathematische Fuzzy Logik ist ein System, um vage Aussagen zu modellieren. Ihr Ursprung
liegt in den Werken von Łukasiewicz und Gödel. In der zweiten Hälfte des zwanzigsten Jahr-
hunderts wurde der Begriff Fuzzy Logic von Zadeh für einen Formalismus in der Steuerungsau-
tomation geprägt. Diese zwei Ansätze wurden durch Hájek zusammengeführt und sind seither
ein lebendiges Forschungsgebiet.

Es werden Beschreibungen von Auswertungsspielen, sowohl für klassische als auch für pro-
minente Fuzzy Logiken, mit Definition aus formaler Spieltheorie verglichen. Es zeigen sich
Diskrepanzen zwischen den Auswertungsspielen und den formalen Definitionen von Spielen in
extensiver Form vollständiger Information. Durch die Darstellung der Regel für Negation als
regulären Zug einEr SpielerIn werden die Definitionen unifiziert. Die präzisen Definitionen für
zwei Spiele: je eines für klassische und eines für Zadehs Fuzzy Logik, mit Äquivalenzbeweisen
zur Standardsemantik, sind ein zentrales Resultat dieser Diplomarbeit.

Die Analyse spieltheoretischer Konzepte mit Hilfe formaler Logik, insbesondere Modal-
logik, stellt ein verhältnismäßig neues Gebiet dar. Sie hat sehr ausdrucksstarke Formalismen,
wie beispielsweise Game Logic hervorgebracht, mit welcher die Effektivität von SpielerInnen
untersucht werden kann. Die hier vorgenommene Untersuchung der Unschärfen führt zu einer
prägnanten Weiterführung der Formalisierung der Spiele: Eine Axiomatisierung der Spielbäu-
me mit Modallogik wird erstellt, welche die Bäume als Kripke-Strukturen auffasst. Ausführliche
Beweise, die belegen, dass die Axiome die Bäume tatsächlich beschreiben, werden erarbeitet.
Eine gründliche Analyse von Prädikatenmodallogik und modaler Korrespondenztheorie dient
als Basis, um möglichst viele Eigenschaften syntaktisch zu beschreiben.

Die vorliegende Axiomatisierung stellt eine mögliche Grundlage dar, um die Klasse der
logischen Auswertungsspiele in ausdrucksstärkeren Formalismen zu untersuchen.
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Abstract

Logical evaluation games are an alternative characterization of truth to standard Tarskian se-
mantics. Analyzing truth with the apparatus of formal game theory has led to some interesting
generalizations of classical logic, like Independence-friendly logic by Hintikka, based on mak-
ing evaluation a game of imperfect information. Hintikka-style evaluation games have become
standard means of analyzing new logics.

Mathematical fuzzy logic provides a formalism for reasoning about vague statements. Its
roots can be traced back to works by Łukasiewicz and Gödel. In the second half of the twentieth
century Zadeh coined the term fuzzy logic for a formalism used in automation. The approaches
were unified in Hájek’s framework and have been an active research topic since.

A close alignment of evaluation games, for classical and prominent fuzzy logics, with for-
mal game theory reveals a gap between the presentation of logical evaluation games and formal
definitions of extensive games of perfect information. This work joins the two notions by pro-
viding an explicit game rule of negation as an in-game move and aligning the definitions. The
two resulting games, one for classical logic and one for Zadeh’s fuzzy logic, along with corre-
spondence proofs to standard semantics are a central result of this thesis.

The direction of analyzing game theoretic concepts with formal logic, especially modal logic
is a comparatively new field and has yielded highly expressive formalisms, like Game Logic, for
reasoning about players’ powers for certain game situations. Examining the minor imprecisions
in evaluation game definitions in literature led us to the idea of formalizing the games a dis-
tinctive step further: we construct modal axiomatizations of the game trees, by viewing them
as Kripke structures and carry out extensive formal proofs showing that those axioms describe
the games. A thorough analysis of first-order modal logic and modal correspondence theory is
carried out in order to capture as many aspects as possible syntactically.

The provided axiomatization may serve as a base for concretely analyzing the class of logical
evaluation games in richer formal systems.
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CHAPTER 1
Introduction

1.1 Motivation

The connection between logic and games can be traced back to Aristotle [Hod13]. It was redis-
covered and led to a very fruitful exchange between the fields of game theory and formal logic
since the middle of the twentieth century, starting with the work of Lorenzen in 1955 [Kei11].
Initially interest was focused on analyzing logic notions with game theory:

Many logical notions can be cast very naturally as two-player games. Ex-
amples are argumentation between a defender and critic of a claim (Lorenzen
games), model comparison between people disputing an analogy (Ehrenfeucht-
Fraïssé games), and perhaps most basically of all, semantical evaluation of asser-
tions made with respect to some given situation. . . . [vB03]

The shift of perspective can lead to a better intuitive understanding of results in logic. For
instance, the fact that propositional modal logic is the fragment of first-order logic, that is invari-
ant for bisimulation [BvBW07] is more evident when the difference is expressed as what object
a player picks when playing an evaluation game — an accessible world in the modal logic case,
and an object of an arbitrary domain for first-order logic [vB03].

The other direction of looking at formal games with the formalisms of logic is a compara-
tively recent development and presents us with a wide field for studying new results. Especially
the link with modal logic has led to exciting insights by describing Nash equilibria and players’
powers with multi-modal logics [HMvdHW03], or using epistemic logics to characterize games
of imperfect information [BvBW07].
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1.2 Problem Statement and Aim of the Work

Originally this thesis set out to analyze several logical evaluation games1 with the framework of
game logic as introduced by van Benthem, Parikh and Pauly [vB02, Par85, PP03].

During the initial investigation, we encountered a few minor imprecisions, in the presenta-
tions of the evaluation games, that needed addressing and a resolution. This led to our current
exploration of joining the original presentations of the games with the formal definitions of basic
game theory. Additionally we took the formalization one distinctive step further, by axiomatiz-
ing the game rules for our version of the evaluation games in modal logic.

We provide mathematical proofs for the correspondence theorems between the extensive
games introduced and the standard notion of truth. Additionally we formally show that our
modal axiomatizations describe the evaluation game trees.

1.3 Methodological Approach

This thesis has a strong theoretical focus and is rooted in the fields of mathematical fuzzy logic,
game theory and modal logic as a formalization tool.

The nature of the work as a refinement of the definitions of logical evaluation games com-
pels us to pay particular attention to the formal presentation of notions and their accuracy and
adequateness.

A challenge with this approach lies in not losing track of, or artificially hiding the intuitive
ideas we base the work on. We address the challenge by providing instructive examples with
ample explanations on the one hand, and visual representations for clarification on the other
hand.

Addressing the issue of gender neutral language, we fully agree with Osborne’s view laid
out in the preface of A Course in Game Theory [OR94], that no language is neutral, and would
prefer to use ‘she’ as generic pronoun. In accordance with regulatory requirements, however, the
thesis uses ‘they’ as generic pronoun, apart from the descriptions used to talk about two player
games. Player 1 will be addressed as ‘she’ and player 2 as ‘he’.

1.4 Outline

The thesis is structured into four main chapters and aims to be self-contained for readers with an
undergraduate background in mathematical logic.

In chapter 2 we introduce the two fields this worked is aligned between: logic and game
theory. We start by presenting all formal logics used in a structured manner, by first presenting
the logic on a propositional level, and augmenting to first-order level, where needed. Apart
from providing the necessary information, this composition serves to unify the notation found
in seminal works and textbooks, that we use as a starting point.

1Hintikka’s original game for classical logic, a version extended to fuzzy logic in the broad sense and ultimately
an evaluation game for Łukasiewicz logic
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The second part of the chapter contains the necessary background in game theory to describe
the main focus of our treatment: logical evaluation games. A summary of central works on
logical evaluation games completes the chapter.

Chapter 3 describes and formally defines two logical evaluation games: H -game for classical
propositional logic and H -mv-game for weak Łukasiewicz logic. The definitions are in accor-
dance, with the basic game-theoretical notions introduced in chapter 2, and additionally provide
a novel intuition behind the game rule for negation. The equivalence of the games to standard
Tarski style semantics is shown for both games. Additionally the formalization is accompanied
by graphical depictions to aid intuition.

The game trees introduced are taken as base for Kripke frames, and a modal logic axioma-
tization of the games in chapter 4. The correspondence between abstract logical axiomatization
and formal game trees is proved, while reflecting on the implicit assumptions present in the
formal game trees.

Finally chapter 5 summarizes the central results of this thesis, and presents input for further
research in this area.
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CHAPTER 2
State of the Art

This work connects the presentation of logical evaluation games in the literature to the principal
definitions of basic game theory. Additionally it models the game trees with modal logic axioms.

This chapter serves two main purposes: On the one hand it gives a thorough introduction
to the logics used throughout this work and defines central notions of our topic along with their
formal notation. On the other hand we provide an overview of previous work in the field of
logical evaluation games.

We use logic on two distinct levels in what follows. First the evaluation games have logical
formulas as their objects of discourse. Second we use first-order modal logic to model the game
trees of these games. Logics are introduced in their propositional version and extended to their
first-order counterpart where needed.

The second part of this chapter introduces game theory, with a focus on extensive games of
perfect information, the class that our logical evaluation games belong to.

Finally the chapter provides an overview of landmark publications in the field of logical
evaluation games.

2.1 Classical Logic

2.1.1 Propositional Classical Logic

One common aspect in most definitions of logic, is that it deals with language [Sha13, BvBW07],
be it informal or formal. We start with the syntax, the language, of propositional logic. The
central objects of logic are formulas that, in the propositional case, consist of propositional
variables (p, q, p1, p2, . . .), of two propositional constants (>, ⊥), and of logical connectives
→,¬,↔,∨,∧, & , representing implication, negation, equivalence, disjunction and two forms
of conjunction respectively1. Additionally we use auxiliary symbols like parentheses.

1In some non-classical logics, like linear logic or fuzzy logic, there is more than one variant of conjunction and
disjunction, which is reflected by the exclusion of (some of) the structural rules in their calculi. One of the connectives
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Definition 2.1.1 (syntax of propositional logic). The set of all propositional formulas Prop is
inductively defined as follows:

• Propositional variables p, q, p1, p2, . . . and constants >,⊥ are propositional formulas.

• Let ϕ and ψ be propositional formulas, then (ϕ→ ψ), (¬ϕ), (ϕ↔ ψ), (ϕ∨ψ), (ϕ∧ψ),
(ϕ & ψ) are propositional formulas.

• These are all propositional formulas.

We may omit the parentheses, if it is possible to do so unambiguously, according to the usual
conventions regarding priority and associativity of the connectives2

If a formula is a propositional variable or constant, we call it an atomic formula , or propo-
sitional atom. A formula is compound, only if it contains at least one connective. The set of
atomic propositional formulas is denoted by Atom , the set of arbitrary propositional formulas
by Prop. We denote atomic formulas by a, a1, a2, . . ., if we want them to possibly include the
constants >,⊥.

Some proofs in this work use induction on the number of connectives occurring in a formula.
We call this measure the complexity or depth of the formula. The term depth is best understood
in a visual context — if we draw the formula as a tree its complexity equals the depth of the tree.

Definition 2.1.2 (complexity of a formula). Given a formula ϕ we inductively define its com-
plexity comp(ϕ) as follows:

• If ϕ ∈ Atom : comp(ϕ) = 0

• ϕ = ¬ψ: comp(ϕ) = 1 + comp(ψ)

• ϕ = ψ1 ◦ ψ2 for ◦ ∈ {∧, & ,∨,→,↔}: comp(ϕ) = 1 + max(comp(ψ1), comp(ψ2))

Two terms for syntactic concepts, seldom used explicitly for propositional logic, are signa-
ture and language. We introduce them formally, to highlight what they correspond to for the
syntactically more complex logics we discuss later.

Definition 2.1.3 (signature and language). The set of syntactically correct formulas is called the
language.

A particular set of propositional variables p, q, p1, q1, . . . fixed in a specific context is called
a signature. Given a signature, we refer to all correct formulas, using only atoms from that
signature as the language over the signature.

For propositional logic, without any restriction on the propositional variables, this is Prop.

is idempotent, while the other one is in general not, thus for instance the classical equivalence ϕ&ϕ ↔ ϕ does not
hold in most fuzzy logics; see section 3.1 of [CHN11] — in classical logic they coincide.

2Negation has precedence over conjunction and disjunction, which have precedence over implication, which
has precedence over equivalence. Conjunction and disjunction are left-associative, implication and equivalence are
right-associative.
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The propositional variables represent statements, that can identified with a truth value, like
for example “Vienna is the capital of Austria”, or “Two is the only even prime number”. In clas-
sical logic we assign the two absolute truth values true and false to propositions. The truth values
are often identified with 1 and 0 respectively. Propositional logic analyzes the composition of
such atomic propositions through logical connectives; it has a focus on tautologies, satisfiable
formulas and contradictions — meaning statements which are always true, sometimes true or
never true, depending on the truth values of the contained atoms. A valuation assigns truth
values to formulas. The function assigning truth values to atomic formulas is called an atomic
valuation. We make two choices for our atomic valuation:

• We include the truth constants>,⊥ in it, with> and⊥ always evaluating to true and false
respectively.

• We make a notational distinction between the atomic valuation νCL, and the one for com-
pound formulas ν∗CL.

This deviates from most definitions of the topic where the propositional constants are introduced
as 0-ary connectives.

Definition 2.1.4 (classical valuation). An atomic classical valuation νCL is a mapping from
Atom to {0, 1}, s.t.

• νCL(⊥) = 0

• νCL(>) = 1

• νCL(p) ∈ {0, 1}, for propositional variables p

We call p true (under νCL) if νCL(p) = 1 and false if νCL(p) = 0.
For giving arbitrary formulas their value we extended νCL to a valuation for compound

formulas ν∗CL, in the following way:

• ν∗CL(ϕ) = νCL(ϕ), iff ϕ ∈ Atom

• ν∗CL(ϕ ∧ ψ) = 1, iff ν∗CL(ϕ) = 1 and ν∗CL(ψ) = 1

• ν∗CL(ϕ ∨ ψ) = 1, iff ν∗CL(ϕ) = 1 or ν∗CL(ψ) = 1

• ν∗CL(¬ϕ) = 1, iff ν∗CL(ϕ) = 0

• ν∗CL(ϕ→ ψ) = 1, iff ν∗CL(ϕ) = 0 or ν∗CL(ψ) = 1

• ν∗CL(ϕ↔ ψ) = 1, iff ν∗CL(ϕ) = ν∗CL(ψ)

In general atomic (νCL) and compound (ν∗CL) valuations are not defined separately. In this
work however it is instructive to make this distinction, since logical evaluation games are an
alternative characterization of the truth functions for the connectives. Both refer to a νCL for
evaluating a formula. We explicitly distinguish between νCL and ν∗CL when dealing with the

7



evaluation games, but take some liberties in the used notation where the distinction is not fun-
damental. The compound valuation is replaced by the evaluation games. This is the reason for
including > and ⊥ in the atomic valuation.

Observe that in the definition of ν∗CL, the right hand sides only refer to the evaluations of
the subformulas — the truth value of a compound formula depends only on the truth value
of its subformulas. This principle is referred to as truth-functionality, since truth-functional
connectives are in fact functions.

This is best visualized by the use of truth tables for defining the semantics of classical
connectives. Given that their domain is {0, 1}, truth tables are an exhaustive definition of a
function. An example is the truth table for implication in Table 2.1.

ϕ ψ ϕ→ ψ

0 0 1
0 1 1
1 0 0
1 1 1

Table 2.1: Truth table for implication

The propositional language with seven connectives above, is tailored towards expressing
various semantic relations between propositions succinctly. When reasoning formally we want
to be able to express concepts like conjunctions, disjunctions, and, probably above all, impli-
cations in a direct way. This makes the language redundant: all possible functions on the two
classical truth-values may be expressed with a subset of the connectives defined above3. Each
subset which can express all functions for a given logic is called functionally complete for this
logic. For example the fragment of the propositional language only using ¬,∧,∨, which we
work with in our games is functionally complete for classical propositional logic. Just observe
that ϕ→ ψ and ¬ϕ ∨ ψ, are logically equivalent, and that both constants can be expressed by a
tautology and a contradiction.

Actually only one of ∧ or ∨ is needed in addition to ¬, when taking into account De Mor-
gan’s laws. Using both in the evaluation game, serves as an example of both players making
moves, akin to the way they choose objects from the domain when considering the quantifier
rules in the first-order case, which is analogous to expressing existential quantification as (pos-
sibly infinitely) iterated disjunction, and universal quantification as iterated conjunction.

2.1.2 First-Order Classical Logic

Propositional logic lacks structure [Háj98]. In many situations it is an inadequately coarse tool
for modeling. We want to talk about properties and relations of objects of our world, without
introducing a propositional variable for each such statement. The notion of a predicate — a
function from the domain of discourse to a truth value — is the generalization, that leads us to
first-order logic. Properties of objects are unary predicates, relations between k objects are k-ary

3There are connectives, like nand and nor, which by themselves are functionally complete
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predicates. Our example from above: “Two is the only even prime number”, could be modeled
with two unary predicates: P and Q representing the properties “is an even number” and “is
prime” respectively. The statement ∃x(P (x) ∧ Q(x)) then states: “There is an even number
which is also prime”. In order to express the statement from above, we additionally need equality
for saying that there is only one such number: ∀x∀y((P (x)∧Q(x))∧(P (y)∧Q(y))→ x = y).

What follows is a basic presentation of first-order logic with equality, as can be found in most
text books on the subject. This particular version is primarily inspired by Leitsch’s textbook on
the resolution calculus [Lei97], the book on first-order modal logic by Fitting and Mendelsohn
[FM98], and, to a lesser degree, by the Handbook of Modal Logic [BvBW07].

We assume that we are given countably infinite sets of variables VS , function symbols FS
and predicate symbols PS . FS =

⋃∞
k=0 FSk and PS =

⋃∞
k=0 PSk. Each FSk and PSk are sets

of k-ary function and predicate symbols respectively. We call 0-ary function symbols constants
and 0-ary predicate symbols propositions. We denote variables by x, y, z, x1, . . ., k-ary function
symbols by fk, gk, fk1 , . . . and k-ary predicate symbols by P k, Qk, P k1 ,. . . . We omit the arities
of function or predicate symbols, if they are clear from the context.

In the first-order case the signature (Definition 2.1.3) refers to a set of atomic predicates,
including their arity. In addition it also determines the used function symbols.

On the syntactic level objects from the domain are represented by terms:

Definition 2.1.5 (term). The set of all terms T is defined inductively by:

• VS ∈ T

• If t1, . . . , tn ∈ T and f ∈ FSn then f(t1, . . . , tn) ∈ T

A term t ∈ T is called ground iff it contains no variables.

In order to facilitate comparison of the various logics we present in this work we introduce
their syntax with the following recursive notation:

Definition 2.1.6 (syntax of first-order logic).

ϕ := P (t1, . . . , tn) | t = s | > | ⊥ | ¬ϕ | (ϕ ◦ ψ) | ∀xϕ | ∃xϕ

with ◦ ∈ {∧,∨,→,↔}, P ∈ PSn , t, s, t1, . . . , tn ∈ T , and x ∈ VS

Variables are classified, according to whether they are bound by a quantifier, or whether they
are free — in the formula ∀xP (x, y), x is bound and y is free:

Definition 2.1.7 (free and bound occurrences of variables). The set of free variables in a formula
ϕ is denoted by FV (ϕ) and defined as follows:

• ϕ is atomic, i.e. of the form P (t1, . . . , tn): FV (ϕ) contains all variables in (t1, . . . , tn).

• ¬ϕ: FV (¬ϕ)=FV (ϕ).

• ϕ ◦ ψ, for ◦ ∈ {∧,∨,→,↔}: FV (ϕ ◦ ψ)= FV (ϕ) ∪ FV (ψ).

9



• ∀xϕ: FV (∀xϕ)= FV (ϕ)\{x}.

• ∃xϕ: FV (∃xϕ)= FV (ϕ)\{x}.

A formula without free variables is called sentence or closed formula. If we call a formula,
with free variables a sentence, we mean the universal closure of that formula, i.e. for the formula
ϕ with FV (ϕ) = {x1, . . . , xn} we mean the formula ∀x1, . . . ,∀xnϕ.

On the semantic side we need to assign truth-values to atomic formulas like P (x) Thus we
need to know what P stands for and what x could represent. The structure, which links syntactic
predicate and function symbols, as well as providing objects to be represented by variables in a
given context is called a model:

Definition 2.1.8 (first-order model). A first-order model is a pair M = 〈D,V 〉, where:

1. D is a non-empty set, called the domain.

2. V , called the interpretation4, is a mapping defined on FS ∪ PS s.t.:

• For f ∈ FSk, V (f) is a k-ary function over D — V (f) : Dk → D.

• For P ∈ PSk, V (P ) is a k-ary predicate or relation overD — V (P ) : Dk → {0, 1}.

In general5 both D and V are needed to analyze whether a first-order formula is true or false
w.r.t. to them. Take for example the formula ϕ as ¬∃xP (x): assume we set D = N, and let
V (P ) be “is less then 0”. In this model ϕ evaluates to true. However if we changeD to represent
all integers, the formula is false.

There are several ways to approach equality in first-order logic. Usually it is treated as a
special predicate symbol. In most calculi rules are added for the reflexivity of equality x =
x and a version of the substitution principle as a schema: x = y → (ϕ(x) ↔ ϕ(y)) (ϕ
standing for an arbitrary formula). From these two principles the symmetry and transitivity of
equality can be deduced, however we can not force the = symbol to be the equality relation.
We get an equivalence relation where each equivalence class contains objects which cannot be
distinguished by the predicates in the given signature. For example two predicates identifying
their arguments as plants and animals, say P (x) and A(x) cannot distinguish between different
plants — if we define equality by the rules above a tulip would be equal to a tree. Another detail
is that the axiomatization of equality is not finite, since the substitution principle is expressed by
an axiom schema. Equality is finitely axiomatizable in second-order logic by the single formula
x = y ↔ ∀X(X(x) ↔ X(y)). To bypass the specifics of equality in first-order logic, its
definition is made on the semantic side. A normal model is a model in which = is interpreted
as true equality, the equivalence relation, where every class consists of a single element. All
models in used in this work are normal models, unless stated otherwise.

In order to arrive at a definition of truth for first-order logic, it is first necessary to give a
semantic meaning to variables and terms. Clearly we want them to designate objects from the
domain:

4The generalization of a basic valuation νCL on the propositional level (Definition 2.1.4)
5of course there are formulas which are true or false in any model, e.g. A(x) ∨ ¬A(x) and A(x) ∧ ¬A(x)

respectively.
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Definition 2.1.9 (variable valuation). Given a first-order model M = 〈D,V 〉 a variable valua-
tion I is a mapping that assigns to each x ∈ VS an element of the domain: I : VS → D.

Definition 2.1.10 (variable variant). Let I be a variable valuation. By I[x 7→ d] we mean the
variable valuation, which is identical to I , save possibly for the value of x, which is d:

I[x 7→ d](y) =
{
d if y = x

I(y) if y 6= x

When comparing two given variable valuations I and J , which differ only on x we call J an
x-variant of I (and vice versa) and write I ∼x J .

Since terms contain both function symbols (including constants), and variables, both the
interpretation of the model as well as the variable valuation partake in semantically interpreting
them:

Definition 2.1.11 (term valuation). Given a model M = 〈D,V 〉 and a variable valuation I , we
define the term valuation function TV : T → D recursively as follows:

1. If x ∈ VS , then TV (x) = I(x)

2. If f(t1, . . . , tn) ∈ T , then TV (f(t1, . . . , tn)) = V (f)(TV (t1), . . . , TV (tn))

The term valuation of constants c ∈ FS0, as a special case of function symbols, is written as
TV (c) = V (c).

While it is possible to express the valuation for first-order logic as a function from formulas
to truth values, like ν∗CL for propositional logic, it is customary to define first-order satisfiability
in a model by a relation |=, from models and variable valuations to formulas. If a formula ϕ is
true in a model M with a variable valuation I , the relation holds — we write M, I |= ϕ:

Definition 2.1.12 (first-order satisfiability). Let ϕ,ψ be first-order formulas, t1, . . . , tn ∈ T ,
P ∈ PSn, M = 〈D,V 〉 a first-order model, I a variable valuation and TV the term valuation
function. We define the first-order satisfiability relation |= as:

1. M, I |= P (t1, . . . , tn) , iff V (P )(TV (t1), . . . , TV (tn)) = 1

2. M, I |= s = t , iff TV (s) = TV (t)

3. M, I |= ∀xϕ , iff for all d′ ∈ D M, I[x 7→ d′] |= ϕ

4. M, I |= ∃xϕ , iff there exists a d′ ∈ D, s.t. M, I[x 7→ d′] |= ϕ

5. M, I |= >

6. M, I 6|= ⊥ 6

6We write the negation of |= as 6|=
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7. M, I |= ¬ϕ , iff M, I 6|= ϕ

8. M, I |= ϕ ∧ ψ , iff M, I |= ϕ and M, I |= ψ

9. M, I |= ϕ ∨ ψ , iff M, I |= ϕ or M, I |= ψ

10. M, I |= ϕ→ ψ , iff M, I 6|= ϕ or M, I |= ψ

11. M, I |= ϕ↔ ψ , iff M, I |= ϕ→ ψ and M, I |= ψ → ϕ7

Note that the variable valuation plays only a role for evaluating free variables. For variables,
that are quantified over, |= refers to variants of the given variable valuation: for existential
quantification, a variant which makes the formula true has to exist, for universal quantification
all possible variants have to make the formula true. For a sentence this means that we never refer
to the particular domain elements which are mapped to the variables. In case we do not refer to
a particular valuation we may omit I in the satisfiability relation and write M |= ∀xP (x).

2.2 Fuzzy Logics

Where first-order classical logic provides us with an apparatus to reason about various domains
of discourse, fuzzy logic can be used as a tool to model and reason about vague or imprecise
statements, which frequently occur in natural language. The last sentence is already a good
example of this: what does it mean when we say that imprecise statements occur frequently? —
in a classical setting we would only have the choice of saying that the statement is absolutely
true or false, however, it stands to reason, that the frequency of “imprecise” statements depends
very much on context (who states those statements, in which context are they stated). If we
want to assign a singular truth value to such a global sentence, we would say that it is neither
absolutely true nor absolutely false – it is true to a certain degree. we have already identified the
absolute truth values true and false with 0 and 1, making values from the real unit-interval [0, 1]
an obvious choice for intermediate truths.

We restrict our attention to a treatment of propositional fuzzy logics in this work for the
extension to a first-order setting see Metamathematics of Fuzzy Logic [Háj98].

It is instructive to take a look at the differences between “mainstream” fuzzy logic as we use
it here and probability theory 8:

The statement: “This water is poisoned to a degree of 0.5” is substantially different from
the statement: “This water is poisoned with a probability of 0.5”. In the former case a person
drinking the water would get stomachache and would not feel to well for a few days, in the latter
case the equivalent of a coin-toss would decide whether the person wakes up the next day9.

One of the defining requirements for mainstream fuzzy logic is that the connectives behave
truth-functionally. The compound statement: “Barbara is working in a very responsible position

7Compare this to ν∗CL from Definition 2.1.4
8There has been quite some research on the field of probability and logic and their possible combinations – see

[HGE13] for example, however this is beyond the scope of this thesis
9This is the distinction between a degree of truth in the fuzzy setting, and a degree of belief in the probability

setting.
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and Barbara earns a very good salary” should only depend on the degree of truth assigned to
each conjunct.

This is another distinction from probability theory, where the probability of two events oc-
curring simultaneously, i.e. their conjunction occurring, is, in general, not solely dependent on
their individual probabilities, but also on the dependent probabilities of one event with respect
to the other.

Using the real unit-interval also presents us with the natural linear and dense order of its
members, making the truth degrees comparable.

Given that some statements are crisp and have an absolute truth value, and that mathematical
fuzzy logic is an extension to classical logic, we want the semantics to behave like in classical
logic on the extreme values 0 and 1.

The field of fuzzy logic can be roughly divided into two subfields. On the one hand there
is “fuzzy logic in the broad sense” [Zad94, Háj11, CFN17, Háj98], which is also referred to
as fuzzy set theory and fuzzy control. Originally introduced by Zadeh in 1965, addressing
the problems arising when modeling “. . . complex input–output relations in an environment of
imprecision and uncertainty.” [Zad94], it has found a large range of applications from the control
of washing machines to analysis of natural language and the field of soft computing.

Fuzzy logic in the broad sense is studied in the fields of engineering, applied computer
engineering and applied sciences. A thorough introduction to the subject from this perspective
can be found in the textbook by Nguyen and Walker [NW05].

Arguably the logic identified as fuzzy logic in literature focused on fuzzy set theory, e.g. in
chapter four of [NW05], or in work predating [Háj98]10, can be identified as the logic containing
only the weak conjunction and disjunction11 as well as negation of Łukasiewicz logic.

Originally introduced by Zadeh in the seminal article on Fuzzy Sets in 1965 [Zad65] as fuzzy
logic, the obtained system coincides with the equational logic of Kleene Algebras [AGM09].

For these two historic roots we call the logic synonymously KZ-logic (Kleene-Zadeh logic)
or Łw (for weak Łukasiewicz logic), following more recent work in the field, e.g. [FM15, FR12,
Fer14].

On the other hand there is the field of mathematical fuzzy logic as laid out in Hájek’s defining
monograph Metamathematics of Fuzzy Logic [Háj98]. Nowadays it has become a well estab-
lished discipline within formal logic. It is frequently identified with Zadeh’s notion of “fuzzy
logic in the narrow sense” [Háj98, CHN11, CFN17]. As such it addresses the questions asked in
the field of formal logic: “. . . syntax, model theoretic semantics, proof systems, completeness,
etc.” [CFN17]. The term t-norm based fuzzy logics is used synonymously, since a triangular
norm or t-norm serves as the truth function for strong conjunction.

2.2.1 KZ-Logic or Łw

One of the main results of this work provides a formal modeling of evaluation games for KZ-
logic. We picked this particular logic from the field of fuzzy logics, because it has a few very
pleasant properties when it comes to formalizing its semantics as a Hintikka style evaluation

10For example a paper by Novak [Nov87]
11also referred to as lattice connectives or min conjunction and max disjunction
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game: its conjunction and disjunction being idempotent, its negation involutive, we need not
consider keeping track of multisets of all occurring subformulas, as is needed for Giles’ game
for full Łukasiewicz logic [FM09, Gil77].

The game obtained needs only to consider the (sub)formula currently analyzed, the only
change from the classical version, is that the outcome of the game has to be represented by a
real payoff value, instead of a win or loss for the players.

Definition 2.2.1 (KZ syntax). The syntax of KZ-logic is the syntax of classical propositional
logic (Definition 2.1.1), restricted to the three connectives ¬,∧,∨:

ϕ := a | ¬ϕ | (ϕ ∧ ψ) | (ϕ ∨ ψ)

with a ∈ Atom .

The truth functions in KZ-logic for conjunctions, disjunction and negation as minimum,
maximum and 1 − x respectively, are suitable candidates, when considering the constraints on
connectives for fuzzy-logic (truth-functionality and classical behavior on absolute values).

As for classical propositional logic, we introduce atomic and compound valuations for KZ-
logic.

Definition 2.2.2 (KZ valuation). An atomic valuation for KZ-logic νKZ is a mapping from Atom
to the real unit-interval [0, 1]: νKZ : Atom → [0, 1], with νKZ (>) = 1 and νKZ (⊥) = 0. We
say a evaluates to r, if νKZ (a) = r. The valuation for compound formulas ν∗KZ is defined
inductively:

• ν∗KZ (ϕ) = νKZ (ϕ), iff ϕ ∈ Atom

• ν∗KZ (ϕ ∧ ψ) = min(ν∗KZ (ϕ), ν∗KZ (ψ))

• ν∗KZ (ϕ ∨ ψ) = max(ν∗KZ (ϕ), ν∗KZ (ψ))

• ν∗KZ (¬ϕ) = 1− ν∗KZ (ϕ)12

The simple structure of KZ-logic comes at the price of its restricted expressiveness: the lack
of implication as the syntactic connective capturing semantic consequence is a downside to our
intention of using logic for reasoning. The definition of implication via negation and disjunction
(ϕ → ψ ⇔ ¬φ ∨ ψ) does not translate well to KZ-logic, because ϕ → ϕ is not a tautology
anymore.

The equivalence between the set of all valid classical formulas and those formulas, which
have a value of 0.5 in all KZ-valuations was shown quite elegantly by Goldstern in the two papers
[Gol97, Gol13]. This suggests that valid formulas in KZ need to make use of truth constants on
a very essential level [Fer14].

12Note, that, if we restrict our attention only to the extreme values of the interval 0 and 1, this definition coincides
with the one for classical valuations (Definition 2.1.4)
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2.2.2 T-Norm Based Fuzzy Logics

A very fruitful approach, both for addressing with the shortcomings in KZ-logic, and unifying
historical treatments of many-valued logics — most prominently Łukasiewicz’s three valued
logic introduced in [Łuk20], and the system developed by Gödel in [Göd32] for analyzing in-
tuitionistic logic — results from the use of a triangular norm13 as the truth function for strong
conjunction.

The resulting system is called Basic Logic (BL) and by adding one single axiom to its set of
axioms (Definition 2.2.6) systems for the prominent fuzzy logics are obtained. See Figure 2.1
for a visual description of the logics, w.r.t. to their expressive strength.

CL

G Π Ł

IL BL

KZ

Figure 2.1: The mathematical fuzzy logics discussed in this thesis, in relation to intuitionistic
logic (IL) and classical logic (CL), ordered from bottom to top according to their expressive
strength. (inspired by [CHN11])

2.2.3 Basic Logic

We follow Hájek’s monograph in initially presenting Basic Logic (BL) as the system resulting
from taking a continuous t-norm as function for strong conjunction, followed by showing the
three prominent logics (Łukasiewicz logic, Gödel logic and product logic), corresponding to the
three primitive t-norms respectively.

Definition 2.2.3 (t-norm). A binary function ∗ : [0, 1]2 → [0, 1] is called a t-norm if it fulfills
the following conditions for x, y, z ∈ [0, 1]:

1. x ∗ y = y ∗ x

2. (x ∗ y) ∗ z = x ∗ (y ∗ z)
13A thorough examination of t-norms can be found in [KMP00]
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3. y ≤ z ⇒ (x ∗ y) ≤ (x ∗ z)

4. x ∗ 1 = x

Thus ∗ is a commutative monoid with 1 as its unit element. Furthermore ∗ is monotone in both
arguments.

This definition fulfills our requirements for the connectives — it is truth-functional, has the
real unit-interval as its range and does behave like classical conjunction on 0 and 1.

Additionally Hajek and others [Háj98, CHN11] have named two further conditions or design
choices, for truth function of conjunction: First a large truth degree of ϕ & ψ should imply a
large truth degree of both conjuncts. Second the function should be continuous14.

There exist uncountably many operations on [0, 1], which fulfill the conditions of Defini-
tion 2.2.3 [KMP00]. Due to the Mostert-Shields theorem all t-norms can be represented as
ordinal sums of three fundamental t-norms [CHN11]:

Definition 2.2.4 (Fundamental continuous t-norms). The following are referred to as fundamen-
tal t-norms (see Figure 2.2 for a graphical presentation):

• The Łukasiewicz t-norm: x ∗Ł y = max(x+ y − 1, 0) (Figure 2.2a)

• The minimal or Gödel t-norm: x ∗G y = min(x, y) (Figure 2.2b)

• The product on the reals: x ∗Π y = x · y (Figure 2.2c)

Each continuous t-norm ∗ induces a unique binary operation⇒∗ on [0, 1], s.t. for x, y, z ∈
[0, 1] we have z ∗ x ≤ y iff z ≤ x ⇒∗ y, called its residuum, which is a suitable candidate for
the truth function for implication.

Definition 2.2.5 (Residua of the fundamental t-norms). The residua of the fundamental t-norms
are (see Figure 2.3): for x ≤ y, x⇒∗ y = 1, else

• Łukasiewicz residuum: x⇒∗Ł y = 1− x+ y (Figure 2.3a)

• Gödel residuum: x⇒∗G y = y (Figure 2.3b)

• product residuum: x⇒∗Π y = x/y (Figure 2.3c)

The operations of minimum and maximum are definable by a t-norm and its residuum, which
makes the structure: 〈[0, 1],∧,∨,≤, 0, 1〉 a linear and commutative lattice 15.

This fact is reflected in the possibility to define ∧,∨,¬, from & ,→,⊥16:

• ϕ ∧ ψ ⇔ ϕ & (ϕ→ ψ)

• ϕ ∨ ψ ⇔ ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ)
14As put in [CHN11]: “The condition of continuity formalizes the intuitive idea that an infinitesimal change of

the truth value of a conjunct should not radically change the truth value of the conjunction.”
15Which explains why the connectives of KZ-logic are called as lattice connectives.
16This makes the set & ,→,⊥ functionally complete
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(a) The Łukasiewicz t-norm (b) The Gödel t-norm

(c) The Product t-norm

Figure 2.2: The three fundamental t-norms

• ¬ϕ⇔ ϕ→ ⊥

• > ⇔ ¬⊥

Instead of defining a logic either in terms of its standard semantics, as we did for classical
propositional logic in Definition 2.1.4, or through its consequence relation, as was done for
classical first-order logic in Definition 2.1.12 it is also possible to identify a logic with a syntactic
proof-system, consisting of sets of axioms and deduction rules. Arguably one of the central
questions for a logic is whether there is a correspondence, between syntactic provability and
semantic truth17.

We choose this syntactic approach for basic fuzzy logic, since it facilitates its comparison to
the prominent fuzzy logics. They are obtained by adding one further axiom to the set for BL, that
reflects their respective increased expressiveness compared to BL and their mutual difference in
a visual way.

17Actually there are the two questions of soundness (provability implying truth) and completeness (truth implying
provability).
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(a) The residuum of the Łukasiewicz t-norm (b) The residuum of the Gödel t-norm

(c) The residuum of the Product t-norm

Figure 2.3: Residua of the three fundamental t-norms

Definition 2.2.6 (Axioms of BL). The following is a minimal set of axioms for Basic Logic

(BL-1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))

(BL-2) ϕ & (ϕ→ ψ)→ ψ & (ψ → ϕ)

(BL-3) (ϕ & ψ → χ)→ (ϕ→ (ψ → χ))

(BL-4) (ϕ→ (ψ → χ))→ (ϕ & ψ → χ)

(BL-5) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)

(BL-6) ⊥ → ϕ

Taking modus ponens — from ϕ and ϕ → ψ infer ψ — as the sole deduction rule yields a
complete proof system for Basic Logic.
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2.2.4 Łukasiewicz Logic

Originally invented by Łukasiewicz in 1920 as a three valued logic, for analyzing modal con-
cepts — the third truth value represented something being possibly true — Łukasiewicz logic as
we present it here is arguably the most prominent and best-studied mathematical fuzzy logic. In
literature, e.g. an article by Novak [Nov87], it is often identified with fuzzy logic or many valued
logic

Logically it offers a few nice properties, that are lacking in other fuzzy logics: negation
defined through implication is involutive — thus the double negation law holds. Furthermore the
residuum of the Łukasiewicz t-norm is continuous. Propositional Łukasiewicz logic is obtained
from Basic Logic by the following axiom, reflecting the involutive negation:

(Ł) ¬¬ϕ→ ϕ

2.2.5 Gödel Logic

Gödel or Gödel-Dummet logic historically stems from Gödel’s examination of Intutionism in
[Göd32]. Dummet proved the completeness for infinitely valued Gödel-Dummet logic of a
propositional set of Axioms in his paper from 1959 [Dum59]. Using minimum as a t-norm
makes the two conjunctions coincide. The axiom needed for Gödel logic reflects that strong
conjunction is idempotent:

(G) ϕ→ (ϕ & ϕ)

2.2.6 Product Logic

Product logic has only been the focus of scientific investigations comparatively recently. Its first
axiomatization was obtained in 1996 by Hájek, Godo and Esteva in [HGE96]. Their starting
point was using the product, being the third fundamental t-norm, as a candidate for conjunction.
Adding the following axiom to Basic Logic yields a complete axiomatization for propositional
product logic:

(Π) ¬ϕ ∨ ((ϕ→ ϕ & ψ)→ ψ)

2.3 Modal Logics

Having its roots in philosophy, where it still is an active topic of research, modal logic has found
rich interaction with the fields of mathematics, computer science, game theory and linguistics
[BvBW07]. A modal qualifies the truth of a logical statement. Statements can be “necessarily
true” and “possibly true” in addition to just being true. Historically the notion of modality
entered philosophical discussion for addressing problems with material implication18 by Lewis
in the end of the nineteenth century. On the symbolic level modalities appear as non-truth-
functional operators: for example we write �ϕ for “ϕ is necessary”. Possibility is dual to

18The equivalence of ϕ→ ψ ⇔ ¬ϕ ∨ ψ
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necessity — saying that something is not necessarily not true, amounts to it being possibly
true19 — it is denoted as ♦ϕ.

Apart from necessity, that is also referred to as deontic modality, modal logic is a suited tool
for many other areas as well: time, knowledge, computation, obligation and action, to name a
few.

From a computer-science perspective the area of computer aided verification has found a
rich and expressive formalism in computation tree logic (CTL), and linear temporal logic (LTL),
used to reason about properties, for example the absence of dead-locks,of programs.

A concept, tightly linked to modal logic, are possible world semantics, also known as Kripke
semantics , in reference to Kripke, who presented them in 1963 in his paper [Kri63]. The central
idea is that the meaning of ϕ being necessarily true, is translated to ϕ being true in all possible
worlds, and ϕ being possibly true, meaning it being true in at least one possible world. Each
possible worlds has a valuation (see Definition 2.1.4), that may be different in different worlds.
The most natural way of representing Kripke structures is a directed graph, with the nodes
representing the possible worlds, and the edges describing the possible transitions between those
worlds. A typical visual representation of a Kripke model with those propositional variables, that
are true written below the worlds can be seen in Figure 2.4.

u

p,q

w

p,r

v

q,r

Figure 2.4: An example Kripke structure

In our work we use a multi-modal logic20 to formally describe the game-trees of logical eval-
uation games. The worlds correspond to the nodes of the game tree, the accessibility relations
represent the moves at each history and the signature captures the labels of the tree.

2.3.1 Propositional Modal Logics

Like for classical logic we introduce the formal definitions for modal logic, by starting with a
propositional version, that is expanded to a first-order logic.

Definition 2.3.1 (signature of propositional modal logic). In addition to propositional variables
(see Definition 2.1.3) a modal signature contains a set of modalities: Mod as well.

19A similar duality as with the first-order quantifiers: ∃xP (x)⇔ ¬∀x¬P (x)
20A logic with more than one modality
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Definition 2.3.2 (syntax of propositional modal logic).

ϕ := a | ¬ϕ | (ϕ ∧ ψ) | (ϕ ∨ ψ) | (ϕ→ ψ) | (ϕ↔ ψ) | 〈m〉ϕ | [m]ϕ

with a ∈ Atom and m ∈ Mod . If we talk about a logic with only one modality we sometimes
denote the modalities as � and ♦ instead of [m], 〈m〉.

Definition 2.3.3 (Kripke model). A Kripke model is a triple K = 〈W, {Rm}m∈Mod , V 〉, where

• W is a non-empty set of worlds.

• Each Rm is a binary relation on W : the accessibility relation for m.

• V is a mapping for each propositional variable p to a subset of worlds, where p is true,
viz. V (p) = X : X ⊆W .

The pair 〈W, {Rm}m∈Mod 〉 of a Kripke model, i.e. the Kripke model without the valuation, is
called a Kripke frame or just frame.

We refer to the worlds synonymously as states or points.

Truth in modal logics refers is evaluated with respect to a world, thus the satisfiability rela-
tion (see Definition 2.1.12) here refers to a evaluation in a particular world:

Definition 2.3.4 (modal satisfiability and validity). Let K = 〈W, {Rm}m∈Mod , V 〉 be a Kripke
model, w ∈ W , m ∈ Mod and ϕ,ψ formulas. We define modal satisfiability as a relation from
K and a world w to a formula:

• K,w |= p, iff w ∈ V (p)

• K,w |= 〈m〉ϕ, iff ∃v ∈W s.t. (w, v) ∈ Rm and K, v |= ϕ

• K,w |= [m]ϕ, iff ∀v ∈W s.t. (w, v) ∈ Rm, we have K, v |= ϕ

• The clauses for the connectives remain, with the addition of w, as in Definition 2.1.12
items 5–11.

A formula ϕ is said to be globally satisfied in K, iff it is true for all w ∈ W and valid if it is
globally satisfied in all Kripke models.

Take the Kripke model from Figure 2.4 as an example. There the following satisfiabilities
hold:

• K,w |= p

• K,w |= ♦p

• K,w 6|= �p

• K,u |= �(q ∧ r)

• K, v |= �⊥

• K,w |= ¬q ∧�q

Propositional modal logic has an interesting connection to classical logic. While it can be
seen as propositional classic logic with added modalities, another, quite fruitful, view is seeing
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it as a fragment of first-order logic, with the domain of quantification being the worlds. Each
accessibility relation is translated to a binary predicate symbol, and each propositional vari-
able to a unary predicate symbol. This is called the standard translation of modal logic. The
modal formula �p → q then translates to ∀y(R(x, y) → P (x)) → Q(x), with R represent-
ing the accessibility relation of the single modality and P and Q being the predicate symbols
for p, q respectively. The formula has one free variable, and evaluates to true, with a world w
assigned to x, iff the original modal formula is true in w. The standard translation provides us
with properties like Compactness or the Löwenheim-Skolem property for propositional modal
logic. Being a strict fragment of first-order logic is reflected in the facts that most proposi-
tional modal logics are decidable, and that they exhibit the finite model property — there is no
formula having only infinite models. In classical first-order logic there are such formulas, like
∀x(¬R(x, x)) ∧ ∀x∀y∀z(R(x, y) ∧ R(y, z) → R(x, z)) ∧ ∀x∃y(Rx, y). Proofs of the above
results and further details of the interaction of both logics can be found in the book Modal Logic
and Classical Logic by van Benthem [vB83] and in the first chapter of the Handbook of Modal
logic [BvBW07].

2.3.2 First-Order Modal Logics

While it might look like First-order modal logic is a direct combination of classical first-order
logic and propositional modal logic, the topic raises many questions with respect to the inter-
actions between quantifiers and modalities. Although their fine points go beyond the scope of
this work, we have to take them into consideration and justify our particular choices regarding
their resolution. The interested reader is referred to the very accessible treatment of the subject
in First-Order Modal Logic by Fitting and Mendelsohn [FM98], which serves as a basis for our
treatment as well. As phrased in the foreword to the book:

Classically, first-order issues like constant and function symbols, equality, quan-
tification, and definite descriptions, have straightforward formal treatments that
have been standard items for long time. Modally, each of these items needs re-
thinking. First-order modal logic, most decidedly, is not just propositional modal
logic plus classical quantifier machinery.

Take the statement “The number of planets is necessarily even” as a motivating example: we
could translate it either into ∃x�(P (x)∧Q(x)) or into �∃x(P (x)∧Q(x)), and evaluate it in a
model where the interpretation of P is “is even” and the one for Q is “is the number of planets”.
The former is true, since the number of planets is 8, which is an even number. The latter on
the other hand is arguably wrong, as people remembering the definition of planets in our solar
system until 2006, back then including Pluto, do know a world where the number of planets is
odd21. The two formalization of the statements correspond to what is known as the de re and the
de dicto reading of the statements respectively.

Syntactically these problems are of no concern: first-order modal logic uses the same basic
objects as first-order logic (predicate and function symbols and variables) in addition to modal
operators.

21The same example was used in [FM98] with “the number of planets is necessarily odd”.
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As in the propositional case the notion of signature from first-order logic is augmented by
the used modalities.

Definition 2.3.5 (signature of first-order modal logic). The signature of a first-order modal logic
consists of:

• a set of predicate symbols of a given arity

• a set of function symbols of a given arity

• a set of modalities

The concept of a term (see Definition 2.1.5) remains unchanged. Summing up we define the
complete syntax as a combination of first-order logic and propositional modal logic.

Definition 2.3.6 (syntax of first-order modal logic).

ϕ := P (t1, . . . , tn) | t = s | ¬ϕ | (ϕ ◦ ψ) | 〈m〉ϕ | [m]ϕ | ∀xϕ | ∃xϕ

with ◦ ∈ {∧,∨,→,↔}, P ∈ PSn, t, s, t1, . . . , tn ∈ T , m ∈ Mod , and x ∈ VS .

Definition 2.3.7 (free and bound occurrences of variables). Starting from Definition 2.1.7, we
add the following clause stating that modalities do not change the binding of variables:

• ◦ϕ, for ◦ ∈ {〈m〉, [m]}: FV (◦ϕ)= FV (ϕ).

Semantically the combination of quantifiers and modalities has a few peculiarities. On the
propositional level every world has its own valuation for propositional variables, which trans-
lates in first-order to every predicate symbol and function symbol being possibly interpreted
differently in each world. The question remains, of whether the domain should be interpreted
locally in each world, or whether there should be a global one for the whole model. Arguably the
first version seems more natural, for instance when considering temporal modalities — neither
does everything that will exist at some point in the future already exist, nor will everything, that
exists now, exist in the future. This leads to situations where a bound variable occurring in scope
of a modality quantifies over objects which do not exist when the formula is evaluated22. Thus
neither �(P (x) ∨ ¬P (x)) nor ∀xP (x)→ P (x) are globally satisfiable in this case.

Formally the situation is addressed, either by having a single domain, which is used for quan-
tification in all worlds, or additionally having a function, which assigns subsets of the domain23,
to each world. The approaches are known as constant domain semantics and varying domain
semantics respectively. Both semantics can be translated into each other and have the same ex-
pressive power. Constant domain semantics are the special case of varying domain semantics,

22One approach for resolving this, is adding a third truth value and thus combining modal logics with a many-
valued logic, like Łukasiewicz’ original system; see page 231 of [FM98], another one is to make the quantified
formula false in these cases.

23Alternatively this can be read as each world having its own domain, and referring to the domain of the model
as the union of the world domains.
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where the domain-function assigns the whole domain to every world. The other direction needs
equality and adds predicates, which reflect the existence of objects in each world.

In constant domain semantics the two schemas ∀x�ϕ→ �∀xϕ and �∀xϕ→ ∀x�ϕ hold.
They are known as Barcan formula and Converse Barcan formula respectively. The Barcan
formula holds in decreasing frames, where the domain of a world is a superset of the domains for
all reachable worlds. The Converse Barcan formula similarly holds in increasing frames. Before
the introduction of Kripke semantics modal logics were mostly analyzed by axiom schemas, and
many debated axiom schemas syntactically describe intuitive conditions on the class of Kripke
models they are valid in. The Barcan formulas are an example for this and reflect that quantifiers
and modalities are interchangeable.

For our purposes constant domain semantics are sufficient and provide a better behaving
system. We quantify over propositional formulas and reals, and can safely assume that they do
not cease to exist after game moves are performed.

Definition 2.3.8 (first-order constant domain Kripke model). A first-order constant domain
Kripke model is a tuple K = 〈W, {Rm}m∈Mod , D, V 〉, where:

1. 〈W, {Rm}m∈Mod 〉 is a Kripke frame

2. D is the domain.

3. V , the interpretation as in Definition 2.1.8, takes a world as an additional argument. It is
thus a mapping defined on W × (PS ∪ FS) s.t.:

• V (w, f) : Dk → D, for f ∈ FSk.

• V (w,P ) : Dk → {0, 1}, for P ∈ PSk.

Where convenient we identify the interpretation of a k-place predicate symbol, at a world w,
V (w,P ), with the characteristic function of a set of k+ 1-tuples, V (P ), where the first element
is w and the remaining k are the domain-elements denoted by the given arguments — for w ∈
W,di ∈ D we have:

(w, d1, . . . , dk) ∈ V (P ) , iff V (w,P )(d1, . . . , dk) = 1.

We sometimes do not mention the constant domain explicitly and refer to the model simply as
first-order Kripke model or just Kripke model.

The definition of variable valuations (Definition 2.1.9) and variable variants (Defini-
tion 2.1.10) remain unchanged, since variable valuations are stable across worlds and are al-
ways well defined in constant domain semantics. The term valuation (Definition 2.1.11) is lifted
analogously to the interpretation to include a particular world.

The interpretation of function and constant symbols being local to a world seems like a nat-
ural extension of the propositional case. A closer look is advisable to understand the interesting
properties of first-order modal logic. The sentence: “Soon there will be computers, that are ten
times faster than the fastest computer.” serves as an example — If we formalize this sentence
in a temporal modal logic, we would designate “the fastest computer” by a constant symbol c,
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and the phrase “Soon there will be” by �, we would write it as: P (c) → �∃x(Q(c, x)), with
P representing the predicate “is the fastest computer”, and Q representing “is ten times faster
than”. Suppose we evaluate the formula at a world w representing the current time. Then c is the
currently fastest computer, but if interpreted in a world v, with (w, v) ∈ R�, c would designate
a different computer, the fastest computer in v, which would make ∃x(Q(c, x)) false. Yet the
sentence we stated makes sense to us in a temporal setting. It is true, if we let c be read as “the
fastest computer in w”. The latter reading of c is referred to as a rigid designator in [FM98].
The problem in this example is due to a syntactic ambiguity of the modal language and is inher-
ently linked to the non-truth-functionality of modalities. In literature the problem is addressed
by introducing predicate abstractions, with a syntax borrowing from the λ-calculus, making
it possible to distinguish the two formulas 〈λx.�P (x)〉 and �〈λx.P (x)〉 [FM98, BvBW07].
They both coincide in our language as �P (x). The formalism removes the syntactic ambiguity,
in these cases.

The term rigid designator goes back to a series of lectures by Kripke, published as Naming
and Necessity [Kri80], and describes terms, that designate the same objects in every world of a
model. It also introduces the additional term strong designator, for a rigid designator, that refers
to a existing object. An interpretation, assigning the same objects to terms in all worlds is called
a rigid interpretation.

The different treatment of terms and variables lies in the difference of how they get inter-
preted — functions and constants get their interpretation in the context of a particular world,
whereas variables get their value through the variable valuation, which is global for a model.

For our purposes all constants and terms are rigid. Having decided on constant domain
semantics and rigid interpretations we define the modal first-order satisfiability relation.

Definition 2.3.9 (modal first-order satisfiability). The satisfiability relation for first-order modal
logic is the combination of satisfiability in propositional modal logic (Definition 2.3.4), and the
satisfiability in first-order logic (Definition 2.1.12), when taking into account that predicates and
terms are evaluated, with reference to a given world.

2.3.3 Correspondence Theory

As indicated above with the Barcan and Converse Barcan formulas, it is possible to express
qualities of models, within the modal language.

Apart from being able to force the domain of a model to be the same for every world, many
other conditions of the frame can be expressed even in propositional modal logic. The topic of
this interaction is called (modal) correspondence theory and has been discussed in an identically
named article by van Benthem [vB01].

Historically the concern was the expressibility of certain axioms, and whether their seman-
tics are applicable in a certain modal context. The question, whether something that is necessary
is necessarily necessary, for example, can be expressed as �ϕ → ��ϕ, and is valid in all
frames, where the accessibility relation is transitive. The axioms were discussed as additions
to an early modal system introduced by Lewis, called S1 and were named S2, S3, S4 or S5 for
example. It still is customary to name certain axioms according to the system, to which they
correspond. �ϕ → ��ϕ is referred to as 4, since it defines increase in expressive strength of
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S4 in contrast to the basic modal system K. A few well-known axioms along with their names,
and the conditions they impose on frames, can be seen in Table 2.2 and in most introductions to
modal logics [FM98, BvBW07, Bal17, Gar16].

The basic modal system K extends classical propositional logic with �(ϕ→ ψ)→ (�ϕ→
�ψ) as additional axiom, and modal necessitation as additional rule. Modal logics which extend
it are called normal modal logics.

Name Axiom Frame condition (u, v, w ∈W ) Condition name
T �ϕ→ ϕ ∀u(R(u, u) reflexive
4 �ϕ→ ��ϕ ∀u∀v∀w(R(u, v) ∧R(v, w)→ R(u,w)) transitive
5 ♦ϕ→ �♦ϕ ∀u∀v∀w(R(u, v) ∧R(u,w)→ R(v, w)) euclidean
B ϕ→ �♦ϕ ∀u∀v(R(u, v)→ R(v, u)) symmetric

�⊥ ∀u(¬R(u, u)) irreflexive points
D �ϕ→ ♦ϕ ∀u∃v(R(u, v)) serial

♦ϕ→ �ϕ ∀u∀v∀w(R(u, v) ∧R(u,w)→ v = w partial functionality
♦ϕ↔ �ϕ ∀u(∃v(R(u, v) ∧ ∀w(R(u,w)→ v = w) functionality

Table 2.2: Modal axioms with their historic names and the conditions they impose on frames

Not every condition imposed on a frame can be expressed by adding axioms to the basic
system K, and there is no concise characterization of those conditions that can be defined through
axioms. One way of obtaining results about the non-undefinability of a certain condition is
observing that the definable frames need to be robust against the formation of the disjoint union
of models within that class, or the generation of subframes. Thus for example it is not possible
to qualify frames, which contain some irreflexive points by an axiom. Any subframe, without
irreflexive point could not become a model for the formula. A more detailed treatment of modal
correspondence theory is presented in more detail in [vB01].

From the perspective of the evaluation games, that we want to model, some of the desired
properties can be expressed syntactically, while we need to state the other restrictions on a se-
mantic level. The game-trees are irreflexive, however they are connected and thus the axiom in
Table 2.2 cannot be used to express the desired property. A system used to reason about provabil-
ity, called GL is classified by the axiom �(�ϕ → ϕ) → �ϕ. Its models are based on frames,
which are transitive, finite and irreflexive [BvBW07, Gar16]. However our game trees are not
transitive, therefore we cannot use instances of this axiom for our modalities to characterize the
game trees.

One condition we need for our game trees is partial functionality, as expressed in Table 2.2,
at every history, if a move is possible, we want it to lead to exactly one next state.

It is instructive to take a closer look at the difference between the axioms for partial func-
tionality and functionality — for total functionality the direction �ϕ→ ♦ϕ holds in addition to
the axiom for partial functionality. In general this direction holds, after all, if a formula is true in
all reachable worlds, it should be true in a particular one. However �⊥ → ♦⊥ is not true in the
case, where there is no reachable world — In that case �⊥ is trivially true by Definition 2.3.4,
whereas ♦⊥ is not. Therefore a formula of the form �⊥ for any particular modality holds ex-
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actly at those worlds where no world is accessible. Axiom D is the converse implication and it
does indeed express that every world has a successor.

2.4 Game-Theoretic Preliminaries

Games, whether the ones we play for pleasure, like Monopoly, Tic-Tac-Toe, Backgammon,
Poker or Chess, or their formal counterpart generally have players take turns making decisions.
When we want to analyze the decisions made at every given turn a decision tree provides us
with a quite natural representation: every turn is a node and the possible actions are edges
connecting the turns. This model is known in game theory as the extensive form of a game.
Take Backgammon as a first motivating example: two players throw two dice and move their
pieces around afterwards. Given a placement of the pieces on the board, assume a player, has
n possible ways to move their pieces around. The node in the decision tree then represents
the current board layout and it has n outgoing edges with the n possible resulting game boards
after making the move. At first sight it seems natural to consider the two players as the only
ones making decisions. However the dice are missing in this approach. We have a few ways to
model the dice: One would be to incorporate the outcome of the next throw into the resulting
game board after a move. Then, after a given throw with n different possible moves, we would
have 36 ∗ n successor states24: one for each possible move and outcome of the throw. This
modeling suggests that a player has an influence on the result of a dice-throw. Another approach
in modeling Backgammon would be to think of the dice as a third player who decides, which
outcome a dice-throw yields, after each move. This is referred to as a game with chance moves.

Poker on the other hand has a different element, that makes it a game worth playing and
worth analyzing from a game-theoretic point of view. Chance plays a role only initially when
the cards a dealt, afterwards the outcome of the game is only dependent on the strategies the
players follow. The element which is probably the most interesting when playing poker, is the
lack of information each player has. Would all cards lie open on the table, the winner would be
certain from the very beginning, and bluffing would be impossible, or at least not a very wise
choice. It is the expectation a player has about the hand of her opponents, which makes poker
interesting. In game theory Poker is called a game of imperfect information.

For the games we occupy ourselves with in this work, those considerations need not be made:
chance plays no role in evaluating the truth value of a formula under a given truth valuation.
Furthermore the two players, know everything by knowing the formula and the given valuation.
The games belong to the class of extensive games of perfect information.

2.4.1 Extensive Games of Perfect Information

We took two standard text-books as a starting point for our treatment of game theory: A course in
game theory by Osborne and Rubinstein [OR94] — especially chapter 6 on extensive games with
perfect information — and Fun and games by Binmore [Bin92], where many ideas regarding
zerosum games, and Zermelo’s algorithm were explained in a very comprehensible way. The
following definitions are based mainly on those two, with some additions taken from the chapter

24symmetric throws aside
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on Modal logic for Games and Information in the Handbook of Modal Logic [BvBW07]. The
explicit tree representation was inspired by two papers on game logic by van Benthem [vB03,
vB02].

Definition 2.4.1 (extensive game form of perfect information). An extensive game form of per-
fect information is a triple 〈Pl,H, Tu〉, where:

• Pl is a set of players. We use variables i, j to denote players. By −i we mean the set of
all players except i: −i = {j|j ∈ Pl , j 6= i}.

• H is a set of sequences (finite or infinite), over a set A of moves or actions. h ∈ H, ai ∈
A : h = (a1, . . .). We write h|k to denote the initial subsequence of length k (h|k =
(a1, . . . , ak)), and (h, a) to denote the sequence of length k+ 1, where h ∈ H is of length
k and a ∈ A. Likewise we denote the concatenation of two sequences h1 and h2 by
(h1, h2).

H satisfies the following conditions:

1. the empty sequence () ∈ H
2. if (ak)k=1,...,K ∈ H (where K may be infinite), and L < K then (ak)k=1,...,L ∈ H
3. if (ak)∞k=1 satisfies that (ak)k=1,...,L ∈ H for every L > 0, then (ak)∞k=1 ∈ H

We call h ∈ H a history, and its components a ∈ A actions. A history h is terminal, if
it is infinite, or if there is a k s.t. h = h|k. We denote the set of terminal histories with
Z ⊆ H .

• Tu is a function Tu : H\Z → Pl, that assigns to each non-terminal history the player
whose turn it is — the turn function. By active player at a given history h we mean the
player whose turn it is: Tu(h).

We say that a game form is finite if H is finite, we say it has finite horizon if the longest h ∈ H
is finite.

Note that having a finite horizon is a weaker concept than being finite. If a game has an
infinite history h, it would contain the infinitely many initial subsequences of h. A game having
infinitely many actions available at a finite history is has finite horizon, but is not finite. The
game displayed in Figure 2.5 is an example. It has only one intermediate node, but infinitely
many actions — one for each d ∈ [0, 200].

The one thing lacking to obtain a extensive game from a game form is something modeling
players’ wishes and preferences:

Definition 2.4.2 (extensive game of perfect information). An extensive game of perfect infor-
mation G is a tuple G = 〈Pl,H, Tu, {%i}i∈Pl〉, where:

• 〈Pl,H, Tu〉 is an extensive game form of perfect information

• each %i is a preference relation on the terminal histories for player i: %i ⊆ Z × Z.
h1 %i h2 means that player i prefers terminal history h1 over h2.
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Figure 2.5: Cake Splitting game — infinite constant-sum game with finite horizon

We write h1 ∼i h2, iff h1 %i h2 and h2 %i h1. If h1 %i h2 and not h1 ∼i h2 we write
h1 �i h2. We may use payoff functions ui : Z → R assigning payoffs for players i to a given
terminal history h. The payoff function defines the preference relation: h1 %i h2 ⇔ ui(h1) ≥
ui(h2), making %i linear. When talking about the payoffs of all players we collect them into a
payoff vector (ui(h))i∈Pl.

Introducing extensive game forms separately from extensive games, as usually done, em-
phasizes that the utilities enter the game only at the end of each run. For our logical evaluation
games this provides the link with the given atomic valuation: for a given formula the set of his-
tories is always the same, no matter which truth value an atom has. The valuation only plays a
role at the terminal histories, saying if, or how much, a player has won. Each formula has only
one game form, but, possibly infinitely, many games — one for each valuation.

Properties of the preference relations can be used to classify games. A generic game has a
strict preference relation — no two histories are equally liked by any player. A typical example
would be a coin toss — the game has two terminal histories, heads and tails, the player betting
on heads prefers heads to tails, the other player prefers tails, and these preferences are strict.

Definition 2.4.3 (generic game). We call a extensive game of perfect information (Defini-
tion 2.4.2) generic, iff no player is indifferent between any two outcomes of the game:

∀i ∈ Pl, ∀h, h′ ∈ Z : ui(h) = ui(h′)⇒ h = h′

Tic-Tac-Toe is an example of a non-generic game: a player that wins is completely indiffer-
ent, whether the three crosses are in a row, a column or a diagonal. Logical evaluation games are
non-generic as well — a player defending a formula only cares about ending up in a leaf where
the atomic formula evaluates to true, but does not care which leaf.

2.4.2 Game Trees

Extensive games are usually depicted through a rooted labeled tree, where each history corre-
sponds to a node, or rather the branch of the tree from the root to this node. Note that there is a
one-to-one correspondence between nodes and the path from the root to them in a tree, assuming
the shadow25 of the tree is acyclic. Each action is represented by an edge in the tree — just like
every action transforms one history into another. Our work extensively uses these game trees for
reasoning, hence we define them formally.

25The undirected graph resulting from a graph, where each edge goes in both directions
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Definition 2.4.4 (graph). A graph is a pair 〈N,E〉, of nodes N and edges E, were E ⊆ N2.
We call 〈N ′, E′〉, with N ′ ⊆ N and E′ ⊆ E a subgraph of 〈N,E〉.

Definition 2.4.5 (node-degree). Given a node v in a graph 〈N,E〉, we define its in-degree d+(v)
as the number of edges ending in v, and its out-degree d−(v) as the number of edges originating
in it:

d+(v) = |{(u, v)|u ∈ N, (u, v) ∈ E}|

d−(v) = |{(v, u)|u ∈ N, (u, v) ∈ E}|

The sum of in-degree and out-degree is referred to as the degree d(v) of a node v.
The width of a graph is defined as the maximum out-degree of all of its nodes:

max
v∈N

(d+(v))

Definition 2.4.6 (labeled graph). A labeled graph is a graph with, possibly multiple labels or
annotations in its nodes, edges or both.

A labeling function l for a label t associates nodes or edges with labels from a set L: lt :
N → L or lt : E → L.

Definition 2.4.7 (path). A path in a graph is a connection between two nodes via one or more
edges. For u, v ∈ N we write u  v, iff (u, v) ∈ E∗, where E∗ denotes the transitive closure
of E. If u v we say that u and v are connected or that there is a path connecting u and v.

Unless stating otherwise we exclude paths of length zero from u to itself.
By a path in a subgraph 〈N ′, E′〉, u  E′ v, we mean a path, where {u, v} ∈ N ′ and all

edges along the path are in E′: (u, v) ∈ E′∗.

Definition 2.4.8 (tree). A tree is an acyclic graph, i.e. one where the transitive closure of the
relation E is acyclic, viz. 6 ∃n ∈ N : n n.

It is called rooted, iff exactly one node has r has in-degree 0 (i.e. 6 ∃n ∈ N : (n, r) ∈ E). r
is referred to as its root.

A rooted tree is called connected, iff there is a path, from the root to all nodes: ∀n ∈ N :
r  n. Here we include the path with length 0 from r to itself.

Definition 2.4.9 (tree-node names). Nodes in a tree are classified, according to their position in
the tree: We call a node:

• A leaf or terminal node l, if it has out-degree 0 (i.e. 6 ∃n ∈ N : (l, n) ∈ E). The set of
leafs for a graph 〈N,E〉 is denoted by N0.

• A non-terminal or intermediate node n if it is not a leaf. n ∈ N\N0

• If (u, v) ∈ E, u is called the parent-node or simply parent of v, and v is a child-node or
child of u.

Definition 2.4.10 (subtree). A subtree is a subgraph of a tree. Given a rooted connected tree
〈N,E〉, we mean by the subtree of 〈N,E〉 rooted at u, the rooted connected subtree where u is
the new root.
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With the presented notation and concepts about graphs and trees we turn back to game
theory.

Definition 2.4.11 (game tree). A game tree is a labeled rooted tree 〈N,E〉 having at least the
following labels:

• lturn : N\N0 → Pl — the turn-labeling function, which indicates for each intermediate
node, which players’ turn it is.

• lmove : E → A — A label associating with each edge, the action it represents.

• lpayoff : N0 → R|Pl| — A label associating with each terminal history the payoff vector:
lpayoff (h) = (ui(h))i∈Pl

We do not restrict the labels to those three, because we may add other, specific, labels for
each game we consider. For example the formula currently played.

2.4.3 Strategies and Equilibria

Definition 2.4.12 (strategy). Let A(h) denote the set of actions possible after an initial history
h, A(h) = {a | a ∈ A, (h, a) ∈ H}, and let Tu−1 denote the pre-image of the turn function,
assigning to each player i the set of histories h where Tu(h) = i.

We define a (pure) strategy for a player i as a function σi : Tu−1(i)→ A, such that σi(h) ∈
A(h). We use lower case Greek letters σi, τi to denote strategies. In the tree representation we
identify with a strategy for player i in the game tree 〈N,E〉 a subtree 〈N,Eσi〉, with

(u, v) ∈ Eσi ⇔
{
lturn(u) 6= i

lturn(u) = i, and σi(u) = v

For a given strategy tree 〈N,Eσi〉 let N0,σi denote the set of terminal nodes in 〈N,Eσi〉,
which are still connected to the root i.e. N0,σi = {v|v ∈ N0, r  Eσi v}.

We denote the set of all strategies for player i in a game by Σi.
We say that player i plays action a at a given history h, if she is active at h and σi(h) = a.

The term pure strategy is used to distinguish strategies as defined here from mixed strategies.
A pure strategy is a concrete plan for one run of the game. Mixed strategy, being a probability
distribution over the set of pure strategies, express that a player i chooses to play a strategy τi
with the associated probability. They are needed to capture optimal plans for players in games
of imperfect information, and for games in strategic from. Games of perfect information, have
the property of having an equilibrium over pure strategies.

It is instructive to contrast our definition for a strategy of player i in the tree representation,
to the one only taking the edges from nodes nwith Tu(n) = i, and excluding the moves of other
players26. In our definition, all reachable terminal histories, if i plays σi, are still connected to
the root. For an example see Figure 2.7. There is a bijection between the two presented choices
for Eσi .

26This would be a more literal translation of the definition
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Definition 2.4.13 (strategy profile). A strategy profile is a tuple σ = 〈σi〉i∈Pl of strategies for
each player. By o(σ) ∈ Z we denote the history, that results if each i ∈ Pl plays their strategy
in σ. A strategy profile is a branch from the root to a leaf in the tree representation, which is
o(σ).

When we want to talk about the strategy of one specific player iwe use the notation 〈σi, σ−i〉
or 〈σ−i, σi〉. The tree corresponding to a strategy profile 〈σi〉i∈Pl is simply 〈N,

⋂
i∈PlEσi〉

A fundamental question of game theory is that of the solution to a game: given a game tree,
preference relations for players and possible strategies, which strategy should players choose,
which one serves their interests best? A greedy approach would be choosing a strategy, having
the highest possible payoff in all its leafs. This is a too simple approach, because it does not take
into consideration the other players wishes. If the best terminal history for player i yields a bad
outcome for player j, and j can make a move, resulting in a better payoff for j, and the worst
payoff for i, i should settle for an outcome with lower payoff, that j likes as well.

Outcomes of strategy profiles, where all players play optimally considering their opponents
strategies as well are called equilibria in game theory:

Definition 2.4.14 (Nash equilibrium). A strategy profile (Definition 2.4.13) σ = 〈σi, σ−i〉 for a
extensive game of perfect information (Definition 2.4.2) G = 〈Pl,H, Tu, {%i}i∈Pl〉 is a Nash
equilibrium, iff

∀i ∈ Pl o(〈σi, σ−i〉) %i o(〈τi, σ−i〉)

.

Nash introduced the notion of equilibria in his dissertation in 1950. They are usually applied
to games in strategic form, where all decisions are made in the beginning, whereas games in
extensive form have players decide each time they take a turn. This makes Nash equilibria
problematic as solutions to extensive games.

The example game in Figure 2.6 has an implausible Nash equilibrium. The intermediate
nodes show the active player A or B, the leafs contain the payoff vector, with A’s payoff first. If
A takes the action l, B has to choose between actions C and D. A strategy for player i contains
an action for every node, where i is active. Here this is one action for each player. Strategy
profiles for this game are represented by a pair — the first component is A’s action, the second
is B’s. According to Definition 2.4.14, both 〈l,D〉 and 〈r, C〉 constitute Nash equilibria of the
game, but 〈r, C〉 is not a state, where the game would end. By choosing l A gets the highest
outcome possible, since B would take move D. However we have o(〈r, C〉) �A o(〈l, C〉), and
〈r, C〉 ∼B 〈r,D〉, making 〈r, C〉 a Nash equilibrium. The problem here is that C should not be
considered a good strategy for B: if the game consisted only of the subtree where B moves, the
action would be D and not C.

This leads to subgames and subgame perfect equilibria, as a better concept for analyzing
games in extensive form.

A more intuitive perspective on subgame perfect equilibria can be found in Fun and Games:
a subgame perfect equilibrium contains the best strategy for each player, even if their oppo-
nent makes a mistake and the game arrives at a point it would not have, if the players were
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following their strategies [Bin92]. A Nash equilibrium is indifferent to these situations, since it
only focuses on the payoffs in the terminal node of the strategy profile. Tic-Tac-Toe is a sim-
ple example — if both players play optimally the game always ends in a draw. However if a
player erroneously marks the wrong box, the opponent suddenly could win the game by chang-
ing strategies, whereas the original strategy would still result in a draw. — The player should
change to an optimal strategy from the new game state’s perspective.

A

(1,2)B

(2,1)(0,0)

C D

l r

Figure 2.6: A game with implausible Nash equilibria — taken from [OR94]

Definition 2.4.15 (subgame). The subgame of an extensive game G = 〈Pl,H, Tu, {%i}i∈Pl〉
that follows history h is the extensive game G(h) = 〈Pl,H|h, Tu|h, {%i}i∈Pl|h〉, where

• H|h is the set of sequences possible after initial history h: h′ ∈ H|h ⇔ (h, h′) ∈ H .

• Tu|h(h′) = Tu((h, h′)), for each h′ ∈ H|h

• h′ %i |h h′′ ⇔ (h, h′) %i (h, h′′), for h′, h′′ ∈ H|h

Strategies and strategy profiles are likewise restricted to a subgame following h: σi|h(h′) =
σi(h, h′), and σ|h = 〈σi|h〉.

A subgame tree following node n equates a subtree rooted at n (Definition 2.4.10) and is
denoted by 〈N |n, E|n〉, subgame strategy trees by 〈N |n, Eσi |n〉.

Definition 2.4.16 (subgame perfect equilibrium). A strategy profile σ (of a game G) is a sub-
game perfect (Nash) equilibrium, iff for every non-terminal history h, the restriction of σ to h is
a Nash equilibrium of the subgame following h, viz.

∀h ∈ H\Z, ∀i ∈ Pl s.t. Tu(h) = i : o|h(〈σi|h, σ−i|h〉) %i |h o|h(〈τi|h, σ−i|h〉)

Compare this definition to the one for Nash equilibrium — a subgame perfect equilibrium
is a specialization of Nash equilibrium: not only does the outcome have to be optimal for each
player, it has to be optimal for each player at every possible state of the game, not only at the
initial history. Consider our example of an implausible equilibrium above (Figure 2.6). Only
after the initial history l, player B makes a choice between C and D. Playing rationally he
would pick D, thus eliminating 〈r, C〉 as a candidate for a subgame perfect equilibrium and
leaving us only with the desired 〈l,D〉 as equilibrium of the game.
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The existence of a subgame perfect equilibrium, is not only present in this toy example,
it is a general property of extensive games of perfect information. Every game has such an
equilibrium, and its payoff is unique:

Theorem 2.4.1 (Kuhn). Every finite extensive game of perfect information (see Definition 2.4.2)
has a subgame perfect equilibrium. In each generic game (Definition 2.4.3) this equilibrium is
unique.

The method used to prove Theorem 2.4.1 is known as backwards induction. We do not
provide a formal proof, since similar techniques are used for showing the equivalence of our
evaluation games to the standard definitions of truth. However a short sketch of the backwards
induction provides valuable insights: The argument is an induction on the length len of the
longest branch in the game tree. If len = 0 the whole game tree consists of a single terminal
node, without any actions, and with the payoff vector for the game. Let len = n+ 1, and let the
root of the tree have i as active player. By the induction hypothesis we have the optimal payoff
vectors, and corresponding strategies, for all subgames starting in a child-node of the root. Now
simply let i choose the action/edge which leads to the subgame which yields the highest payoff
for i. The players build up their strategy by starting at the end positions and choosing the action
leading to the path with the best outcome for them. Hence the name backwards induction.

Backward induction provides us with a constructive procedure for actually finding the exist-
ing equilibrium. Furthermore it also is a natural method, as expressed in [OR94]:

Part of the appeal of the notion of subgame perfect equilibrium derives from
the fact that the algorithm describes what appears to be a natural way for players to
analyze such a game so long as the horizon is relatively short.

The method illustrates why the uniqueness of the equilibrium can only be guaranteed for
generic games (Definition 2.4.3). If two paths lead to the same payoff for a player, they are
indifferent, which one they take. However the actual payoff value is unique, when using payoff
functions: The preference relation is the usual order on R: we have x ≤ y and y ≤ x⇒x = y.
As long as we are only interested in the outcome of the game and not which path in the game
tree lead to it, we can safely assume that the outcome is unique.

2.4.4 Zerosum Games

The games we analyze in this work fall into the class of finite two-player zerosum games —
Hintikka’s evaluation game for classical propositional logic is a win-lose game, and the many-
valued version we provide for KZ-logic is a constant-sum game.

Definition 2.4.17 (two-player zerosum game). A two-player game for players {1, 2}, where we
have h1 %1 h2 ⇔ h2 %2 h1, for any two terminal histories h1, h2 ∈ Z, is called a strictly
competitive game or zerosum game.

If %i are given in form of payoff-functions we have u1(h) + u2(h) = 0. In case the payoff
is ui(h) ∈ {−1, 1}, a player either wins or loses the game and we call it a win-lose game.
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The class of finite two-player zerosum games has some pleasant properties. Theorem 2.4.1
provides us with the existence of an unique payoff, and through backwards induction we have a
constructive procedure to obtain one of the branches in the game tree with this payoff.

The additional information that the two players interests are diametrically opposed, addi-
tionally simplifies the search for this result: We can focus on payoff of one of the two players. If
1’s payoff u1(h), 2’s payoff is simply −u1(h). Assuming perfectly rational players, who try to
maximize their respective payoff, we can paraphrase the choices of player 2: Maximizing their
payoff amounts to them trying to minimize 1’s payoff.

The payoff vector of a terminal history in a zerosum game can therefore be represented by a
single real number u — the value of this terminal history or run of the game.

The subgame perfect equilibrium defines the value of the game. It is obtained by considering
those strategies, where player 1 tries to maximize u, and player 2 tries to minimize it. This
strategy, where a player tries to maximize her own profit, while expecting that their opponent
tries to minimize it is known in the literature as min-max strategy [FR12], or a maxminimizer
[OR94, Bin92].

Our Definition 2.4.12 of a strategy tree provides benefits in understanding the idea behind
min-max strategies, as exemplified by the two strategy trees drawn in Figure 2.7 and Figure 2.8.
The two game trees, have each leaf representing the value of the zerosum game. They represent
the two strategies A and B for player 1, corresponding to the single choice of a or b by green
arrows. The question is which of the two actions should 1 choose, in order to get the best result?
The highest payoff value would be 0.7, following actions (b, L), but this would be the lowest
payoff for player 2 (−0.7), and after 1 chooses b it is player 2’s choice which ofR,M , L to take.
Playing to maximize the payoff, 2 would choose M , since this yields a payoff of 1.0 for 2 and
−1.0 for player 1. So, expecting player 2 to maximize their own profit, player 1 considers the
other strategy (Figure 2.7): the maximal payoff for 1 is only 0.5, but player 2, having to choose
between C and D, yielding−0.3 and−0.5 respectively, would choose C. So the rational choice
for player 1 is to choose strategy A. Strategy B would leave 1 with −1.0 as payoff. Strategy
A corresponds to the subgame perfect equilibrium (a,C) for the game, and thus fixes its value
v = 0.3. Furthermore it explains the notion of a min-max strategy (Definition 2.4.18): it is the
strategy having the highest minimal payoff value. In this example the minimal payoffs reachable
in the two strategies are −1.0 and 0.3, and the maximal of those is 0.3.

1

2

-0.2-1.00.7

L
M

R
2

0.50.3

C D

a b

Figure 2.7: strategy A (green arrows) for
player 1 for a two-player zerosum game of
perfect information

1

2

-0.2-1.00.7

L
M

R
2

0.50.3

C D

a b

Figure 2.8: strategy B (green arrows) for
player 1 for a two-player zerosum game of
perfect information
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Definition 2.4.18 (min-max strategy). Given a two-player zerosum game tree 〈N,E〉, min-max
strategy for player i is a strategy which satisfies the following condition:

max
σi∈Σi

min
n∈N0,σi

(lpayoff (n))

The unique value lpayoff (n) resulting by a player i playing her min-max strategy is called
the value of the game v, or the enforceable payoff for player i.

A class of games, seeming like a generalization of zerosum games are constant-sum games,
where the players’ utilities add up to some constant c. They are treated in Binmore’s textbook
[Bin92]. Take two people dividing a cake fairly with the “you cut”, “I choose” procedure27 as
an example. Assume the cake weighs 200 g, and that player 1 makes the cut. The procedure
can be formalized as a game with infinitely many moves — we represent the whole cake by
the real interval [0, 200] and each move splits it into two sub-intervals ([0, d] and (d, 200]).
Player 2 has the choice of taking d g cake or 200 − d g cake. Assuming that both players
want the greatest amount of cake for themselves the subgame perfect equilibrium is reached
if player 1 chooses d = 100. The game is displayed in Figure 2.5. By using d as utility
function, u1(h) 6= −u2(h), which would be required. However This can easily be repaired by
subtracting c from one player’s utility function. In our example we have at half the terminal
histories u1(h) = d and u2(h) = 200 − d. Observing that c = 200 we get the new utility
function for player 2 as u2(h) = 200− d− 200 = −d and thus a zerosum game.

We mention constant-sum games, because the evaluation game for KZ-logic, we introduce,
is most naturally seen as a constant-sum game with c = 1. The cake in those games is the truth.

As a special case of zerosum games win-lose games have been historically the focus of many
early works on game theory. This is probably mostly due to the fact, that many actually existing
games, like chess and Tic-Tac-Toe belong to this category. A player either wins, loses or draws
at a specific run of those games, however the actual payoff is of no importance. A widely quoted
result of those early treatments of win-lose games is accredited to Zermelo [OR94, BvBW07,
vB03]:

Corollary 2.4.2 (Zermelo). Every finite two-player win-lose game is determined, i.e. one of the
players has a winning strategy.

This precise statement differs somewhat from the result actually established by Zermelo,
namely that at a given game of chess both players have strategies which result at least in a
draw. The context of the work where the version above (Corollary 2.4.2) was postulated, mainly
deals with evaluation games for classical logic, which are games where no draw is possible — a
formula is either true or it is false under a given valuation [BvBW07, vB03, vB02].

We introduce Zermelo’s theorem as a corollary to Kuhn’s theorem (Theorem 2.4.1), because
it is the same result for the special case of win-lose games. The former proves the existence of
a certain strategy profile with a specific outcome, the latter deals with a strategy for one of two

27This procedure generalized to n players is used in an article by Pauly and Parikh, where it is used to motivate
game logic [PP03].
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players. Both agree on the outcome: a winning strategy for player i is a strategy ensuring that
all strategy profiles it is part of end in a state, where i wins.

The logical evaluation games for classical logic are with win-lose games, reflecting the law
of excluded middle. We slightly change the labeling of the game trees (Definition 2.4.11), and
provide a formal definition of a winning strategy.

Definition 2.4.19 (win-lose game tree). A win-lose game tree is a game tree (Definition 2.4.11)
for a two-player win-lose game, where lpayoff is replaced by two labeling functions for the two
players respectively:

• lwin1 : N0 → {win, lose}

• lwin2 : N0 → {win, lose}

having the following properties:

• lwin1 (n) = win ⇔ lwin2 (n) = lose,

• lwin1 (n) = lose ⇔ lwin2 (n) = win,

Note that, this is only a matter of presentation, and does not entail any fundamental changes
on the formal level: our win-lose games still can quite easily be transformed into standard zero-
sum games: just consider that lwin1 (n) = win ⇔ lpayoff (n) = 1.

The concept of a winning strategy should be clear: in a win-lose game the min-max strategy,
for each player, is optimal. We say that player 1 has a winning strategy, iff the strategy guarantees
that, no matter what her opponent plays, she wins. In the tree representation this is a strategy
tree where all leaf-nodes, which are still connected to the root, have lwin1 (n) = win.

Definition 2.4.20 (winning strategy). A winning strategy tree 〈N,Eσi〉 (Definition 2.4.12) for
player i is a strategy tree where all terminal nodes connected to the root are winning nodes for
i: ∀n ∈ N0,σi : lwini (n) = win

2.5 Logical Evaluation Games

In [Hin73b] Hintikka presented an alternative characterization, to the Tarskian notion of truth:
what does it mean for a first-order formula to be true in a given model. Instead of semantically
analyzing the formula to arrive at a truth value one can construct a two-person zerosum extensive
game of perfect information for a given formula and a given model. While the merit of such an
alternative presentation may not be obvious at first glance — after all there already is a precise
definition of the notion of truth — there is much to be gained from taking this alternative view.

Originally Henkin used an informal game as a way to argue, that certain infinite formulas
can be understood intuitively, although the standard definition only deals with formulas of finite
length [Hod13, Hin73a].

Hintikka showed that the game can be formalized as a zero-sum game of perfect information,
which opened the possibility to look at the semantics of classical logic through the rich and well-
developed apparatus of formal game theory.
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From this perspective questions, like: “What if it were a game of imperfect information”,
pose themselves naturally. This particular question led to research in logics with branching
quantifiers. For example a formula ∀x∃(y/x)(R(x, y), represents the statement, for all x there
exists a y, not depending on x, such that R(x, y). Although the step seems small the resulting
independence friendly logic or IF-logic is stronger and closer to second-order logic with standard
semantics than to first-order logic in terms of expressiveness [Hin82].

The law of excluded middle translates to determinism in game theoretic terms, a quality of
games, which is highly non-trivial, raising the question of the outcome of dropping the require-
ment of determinism.

Another important gain of the game-theoretic approach lies in its intuitivity — it helps in
understanding the concepts of quantification, when you see it as choosing objects, to either help
your argument, or to make your opponents argument invalid. As described in [Hod13], there
were at least two implementations of these games, which proved very effective as a means to
teach first-order semantics. one developed in Stanford, and the second developed independently
for a school of gifted children in Omsk.

Hintikka calls his game, a game of seeking and finding objects, in order to make a certain
formula true or false. He argues that semantic games from this perspective are very well suited
to give a non self-referential meaning to logical quantifiers and connectives. Tarskian truth
conditions cannot provide a genuinely new understanding for both, in order to understand what
it means for the statement ϕ ∧ ψ to be true, they refer to the word “and” in the meta-language.
That the verbs seek and find indeed capture the meaning of quantifiers is exemplified in [Hin73a]
by restating the sentence: “All swans are white” as “No swan can be found that is not white”.

The game has the elegant peculiarity of completely characterizing a game state by the for-
mula and an assignment of domain objects to variables in the first-order case.

We reproduce Hintikka’s presentation of his games, which he gave mainly through the rules
for the two players, called me and Nature by him.

2.5.1 Hintikka’s Evaluation Game for Classical Logic

In 1968 Hintikka’s article Language-Games for Quantifiers [Hin73a]28 introduces the game as
an extension to an idea of Henkin, who only analyzed formulas in prenex normal form29. There
connectives are also explained via game rules:

. . . My aim is to end up with a true atomic sentence. The rules for quantifiers
remain the same. Disjunction now marks my move: I have to choose a disjunct
with reference to which the game is continued. Conjunction marks a move by my
opponent: he chooses a conjunct with reference to which the game is continued.
Negation ∼F has the effect of changing the roles of the players, after which the
game continues with reference to F .

The rules are explicitly listed in Quantifiers, Language-Games and Transcendental Argu-
ments [Hin73c]. We adapt the symbols for the connectives and quantifiers to our notation, for

28Reprinted in [Hin73b]
29All quantifiers occur only in the beginning and are followed by a quantifier free part, referred to as the matrix.
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example writing ¬ instead of ∼, and using ϕ and ψ to denote formulas, leaving the remaining
formulation as in the original.

Definition 2.5.1 (Hintikka’s rules for his original semantic games). Given a domain D and a
formula ϕ the rules of the game are as follows

G.∃ If ϕ is of the form ∃xψ, I choose a member of D, give it a name, say ’n’ (if it did not have
one before). The game is continued with respect to ψ[x 7→ n]. Here of course ψ[x 7→ n]
is the result of substituting n for x in ψ.

G.∀ If ϕ is of the form ∀xψ, Nature likewise chooses a member of D.

G.∨ If ϕ is of the form ψ1∨ψ2, I choose ψ1 or ψ2, and the game is continued with respect to it.

G.∧ If ϕ is of the form ψ1 ∧ ψ2, Nature likewise chooses ψ1 or ψ2.

G.¬ If ϕ is of the form ¬ψ the game is continued with respect to ψ with the roles of the two
players interchanged.

In a finite number of moves, an expression A of the form P (n1, n2, . . . , nk) will be reached,
where P is a k-adic predicate defined on D. since n1, n2, . . . , nk are members of D, A is either
true or false. If it is true, I have won and Nature has lost; otherwise Nature has won and I have
lost.

A game in extensive form as a tree can be seen in Figure 2.9. The nodes describe which
player is to choose the conjunct or disjunct at a given state, and the colors indicate how often the
roles of the players were interchanged, due to a negation. In the blue nodes I would win, if the
asserted formula is true, in the red nodes Nature would win.

Comparing the rules as given by Hintikka, to the formal requirements for a game in our
sense, some issues can be identified. Especially the rule for negation does not fit into the standard
definitions. Hintikka recognized this and addresses it, by saying that the negation rule, or the
exchange of labels is not necessary, since any formula can be transformed into an equivalent
one in negation normal form [Hin73c]. However he also points out that the rule for universal
quantification and conjunction seems a bit unnatural, in having Nature actively choosing objects.
This can be avoided by dropping the universal quantifier and defining it in terms of the existential
quantifier: ∀xϕ ⇔ ¬∃x¬ϕ, which in turn makes the role change essential for the game. The
problem of Nature having to play an active role after a role change is not addressed directly.

2.5.2 Hintikka Games for Many-Valued Logics

Semantic characterizations of mathematical fuzzy logic through game theory have been exam-
ined in literature quite extensively, focusing primarily on Łukasiewicz logic as the most promi-
nent fuzzy logic. [Fer14, FR12, MC09, FM09, Gil77].

One common aspect of all treatments is that they lose the elegant minimal game states of
Hintikka’s original game being defined just by the formula under consideration.

Transforming Hintikka’s game for classical logic to a fuzzy setting for evaluating formulas
in full Łukasiewicz logic cannot be achieved in a straight-forward manner, as was captured in an
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¬(p ∧ ¬q) ∧ ¬(q ∧ ¬p)
Nature

¬(q ∧ ¬p)

q ∧ ¬p
I

¬p

p
I

q
Nature

¬(p ∧ ¬q)

p ∧ ¬q
I

¬q

q
I

p
Nature

Figure 2.9: Hintikka evaluation game for ¬(p ∧ ¬q) ∧ ¬(q ∧ ¬p) – the labels indicate which
player chooses the subformula, the colors show which player wins if the atom is true: blue for
my win, red for Nature’s win

article by Fermüller [Fer14]. The problem is rooted in the semantics of the strong connectives.
A rule for evaluating strong conjunction, disjunction or implication cannot only refer to one of
its subformulas.

However, if we restrict ourselves to the weaker subset formed by KZ-logic the fundamentals
of the game need only slight adaptation, as was shown in the article by Fermüller and Roschger
[FR12]. The rules for the logical connectives remain unchanged. Only the rule for the atomic
case needs reevaluation. In KZ-logic we are dealing with real-valued values for (atomic) formu-
las, so a direct game characterization of KZ formulas is best modeled with real-valued payoffs
r ∈ [0, 1]

The most fitting notion from game theory for these games is the constant-sum game: the
value r of a particular terminal node in the game tree then simply is the evaluation of the atom
asserted in that node r = νKZ (a). This leads us to a formulation of a rule for the atomic case:

Definition 2.5.2 (game rules for atomic KZ formulas). :

RAtomKZ If ϕ is atomic, and evaluates to r in the given valuation, the game ends with a value of
r for me.

2.5.3 Evaluation Games for Full Łukasiewicz Logic

We want to highlight two approaches for giving game-theoretic semantics to full Łukasiewicz
logic. On the one hand we have the evaluation games introduced by Cintula and Majer [MC09],
oriented at extending Hintikka’s game-theoretic semantics to fuzzy logic. The games are initially
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still formulated as win-lose games, with the two players betting that the considered formula has
a certain value r. If the atomic formula evaluates to a truth value ≥ r the current verifier wins,
else the falsifier wins. Additionally there is a dedicated rule if r is 0, making it a win for the
verifier. The rules for the lattice connectives remain classical — they do not change the value
r. The strong connective rules and the quantifier rules do modify r, reflecting the need for the
more complicated game states.

On the other hand there is the approach first introduced by Giles in 1977, motivating the
use of non-classical logics in physics [Gil77]. This was linked to fuzzy proof theory by Fer-
müller and Metcalfe [FM09]. While referring to dialogue games by Lorenzen, used originally
to describe validity in intuitionistic logic, the formulation actually characterizes an evaluation
game, referring to a given valuation[FR12]. Giles’ games consist of two separate phases — one
for decomposing a formula, and one for betting on “elementary experiments” (corresponding
to atomic formulas). Game states are represented by multisets for both players, reflecting the
sub-structural aspect of Łukasiewicz logic.
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CHAPTER 3
Formalizing Logic Games

This chapter introduces two Hintikka-style evaluation games: H -game for classical proposi-
tional logic, and H -mv-game for KZ-logic1. In our definition of the games we address certain
ambiguities found in the original presentations of the games, when viewed from a basic game-
theoretic perspective.

We align the games with Hintikka’s original games, in choosing conjunction, disjunction
and negation as set of connectives. In the many-valued case this corresponds to KZ-logic and
enables us to keep the characterization of a game state simple, since it only needs to refer to the
formula currently considered and to the player trying to verify it.

Our focus is restricted to propositional logic in accordance with our aim of describing the
game trees by logic axioms, without the need of tracking the chosen domain elements for the
quantifier rules. This simplifies the winning condition from Definition 2.5.1, to “In a finite
number of moves, an expression a ∈ Atom will be reached. a is either true or false. If it is true,
I have won and Nature has lost; otherwise Nature has won and I have lost.”

The rules for the game stated by Hintikka intuitively describe a extensive game of perfect
information. Given a formula and an atomic valuation it should be possible to construct a win-
lose game tree according to Definition 2.4.19, and set the win labels, according to an atomic
valuation.

However, the rule for negation R¬, does not state explicitly, whose turn it is and the concept
of exchanging roles of two players does not fit game-theoretic terms either.

A more formal description of the concept of role-exchanging can be found in [vB03]: if the
outermost connective is a negation the game tree is dualized — the win-lose markings and the
turn indicators are reversed, the current formula is syntactically dualized, by exchanging ∧ and
∨, and inversing the polarity of atomic formulas.

This characterization is more explicit in the working of negation as an action, but still has
the disadvantage of dealing with it on a meta level — rewriting the game tree below a negated
formula by dualizing cannot be a single move.

1The naming of H -game and H -mv-game was taken from [FR12] and [Fer14].
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3.1 Adapting the Game Rules

We address the mismatch between precise game theoretic notions and the rules for logical eval-
uation games by shifting the view on the games. In addition to letting the two players seek and
find certain objects — elements of the domain in the first-order case, the right conjunct or dis-
junct in the propositional case — we give the players a role. At each game state, a player is either
an asserter, or an attacker of the current formula. We use defender as a synonym for asserter
and asserting, defending, attacking in this sense. Players can change roles between states.

This makes negation as the outermost connective a simple role change. To make this an
action of one player, we arbitrarily define this to be a move by the player asserting the negated
formula. Appealing to intuition we say that the asserter gives the formula to their opponent. For
this reason we choose to name the players you and me instead of Nature and me.

This concept is known from another class of logical games, the dialogue games intro-
duced by Lorenzen and Lorenz, and used extensively by Giles in his game for Łukasiewicz
logic [Gil77]. These games are used to show the validity of a formula, irrespective of a given
valuation, a change we are not adopting.

Our game has three actions available in the respective states: {R,L,Neg}. R and L indi-
cate that the active player chooses the right or left subformula of a disjunction or conjunction,
and Neg is indicating a role change. The game tree in Figure 3.1 exemplifies the changes to
Hintikka’s original presentation; the levels introduced in Figure 2.9 are not necessary anymore,
since negation is a regular move.

¬(p ∧ ¬q) ∧ ¬(q ∧ ¬p)
you

¬(q ∧ ¬p)
me

q ∧ ¬p
me

¬p
you

p
me

Neg

q
me

L R

Neg

¬(p ∧ ¬q)
me

p ∧ ¬q
me

¬q
you

q
me

Neg

p
you

L R

Neg

L R

Figure 3.1: Evaluation game with negation as action for the Hintikka game in Figure 2.9.
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3.2 H -game for Classical Logic

The following presentation is inspired by [vB02] and [FM09]. We add some labeling functions
to the ones for turns, moves and the outcome to our Definition 2.4.11 of game trees, representing
the central components of evaluation games: the roles of the two players and the currently
asserted formulas.

The role exchange implies that our definition needs to be formulated agnostic of a particular
player and their dual player or opponent. We write d to represent a player d ∈ {you,me}, and
d′ for the dual player: if d = you, d′ = me, and if d = me, d′ = you.

We arrive at a formal definition of the game tree for a given formula and valuation:

Definition 3.2.1 (H -game on formula ϕ over classical valuation νCL). Given an initial defender
d ∈ {you,me} the game tree Gϕ,νCL,d = 〈N,E〉 is defined inductively over the structure of ϕ.
We write rϕ for the root of the game tree and omit νCL and d if they are clear from the context.

We use five node labeling functions and one edge labeling function:

• lform : N → Prop

• lturn : N\N0 → {you,me}

• lassert : N → {you,me}

• lwinme : N0 → {win, lose}

• lwinyou : N0 → {win, lose}

• lmove : E → {L,R,Neg}

1. ϕ is an Atom a: Ga,νCL,d consists of a single leaf ra with:

• lform(ra) = a

• lassert(ra) = d

• lwind (ra) =
{

win iff νCL(a) = 1
lose iff νCL(a) = 0

• lwind′ (ra) =
{

lose iff νCL(a) = 1
win iff νCL(a) = 0

2. ϕ = ψ1 ∨ ψ2: given game trees Gψ1,νCL,d and Gψ2,νCL,d the tree for ϕ = ψ1 ∨ ψ2 is
constructed from a new root rϕ with:

• lform(rϕ) = ϕ = ψ1 ∨ ψ2

• lassert(rϕ) = d

• lturn(rϕ) = d

and two edges to the two subtrees for ψ1 and ψ2 respectively:
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• lmove((rϕ, rψ1)) = L

• lmove((rϕ, rψ2)) = R.

3. ϕ = ψ1 ∧ ψ2: given game trees Gψ1,νCL,d and Gψ2,νCL,d the tree for ϕ = ψ1 ∧ ψ2 is
constructed from a new root rϕ with:

• lform(rϕ) = ϕ = ψ1 ∧ ψ2

• lassert(rϕ) = d

• lturn(rϕ) = d′

and two edges to the two subtrees for ψ1 and ψ2 respectively:

• lmove((rϕ, rψ1)) = L

• lmove((rϕ, rψ2)) = R.

4. ϕ = ¬ψ: given Gψ,νCL,d′ , with rψ as its root, the tree for ϕ = ¬ψ is constructed from a
new root rϕ with:

• lform(rϕ) = ϕ = ¬ψ
• lassert(rϕ) = d

• lturn(rϕ) = d

and an edge to the subtree for ψ:

• lmove((rϕ, rψ)) = Neg

A game node is uniquely determined by the formula asserted in lform . We refer to subgames
(see Definition 2.4.15) by writing 〈N |ϕ, E|ϕ〉, for the subgame rooted at n, with lform(n) = ϕ.

The game is a win-lose game according to Definition 2.4.19.
An example game tree G¬(p∧¬q)∧¬(q∧¬p),νCL,me, with νCL(p) = 1 and νCL(q) = 1, can be

seen in Figure 3.22: the node labels are written inside the squares representing the nodes, and
the move labels are written next to the edges. In the root node the outermost connective is a
conjunction, making you the active player. Both child nodes have a negation at the root position,
resulting in a swap of the assert label in their children respectively.

The valuation νCL plays a role only in the leaf nodes, where the win-labels are assigned
based on the current defender and the value of the atom considered. The left-most terminal node
in Figure 3.2 has you as assert label, and p as atom, which is true in νCL, thus making you the
winner in this state, and me the loser.

Observing that ¬(p∧¬q)∧¬(q ∧¬p) is equivalent to p↔ q, the formula evaluates to true,
iff p and q have the same truth value, like in the given νCL. By Hintikka’s theorem, there has to
be a winning strategy for me as initial asserter in G¬(p∧¬q)∧¬(q∧¬p),νCL,me.

2The fully formalized game tree from Figure 3.1
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form: ¬(p ∧ ¬q) ∧ ¬(q ∧ ¬p)
assert: me
turn: you

form: ¬(q ∧ ¬p)
assert: me
turn: me

form: q ∧ ¬p
assert: you
turn: me

form: ¬p
assert: you
turn: you

form: p
assert: me

winme: win
winyou: lose

Neg

form: q
assert: you
winme: lose
winyou: win

L R

Neg

form: ¬(p ∧ ¬q)
assert: me
turn: me

form: p ∧ ¬q
assert: you
turn: me

form: ¬q
assert: you
turn: you

form: q
assert: me

winme: win
winyou: lose

Neg

form: p
assert: you
winme: lose
winyou: win

L R

Neg

L R

Figure 3.2: Hintikka evaluation game G¬(p∧¬q)∧¬(q∧¬p),νCL,me from Figure 2.9 as a decorated
tree according to Definition 3.2.1 for νCL(p) = 1, νCL(q) = 1

We have illustrated one (and in this case the only) winning strategy for me in Figure 3.3,
indicated by the green arrows in the game tree. The indicated subtree is indeed a strategy for
me. The only states with an actual choice for me are the nodes p ∧ ¬q and q ∧ ¬p, both having
you as a defender. My interest is picking an action leading to a subgame, where the asserted
formula is false — ¬p and ¬q respectively. In both subgames you have to give me the atom,
because of the negation, leaving me in two terminal states, defending a true atom — a win for
me. From an outside point of view, the strategy is a winning strategy, because all leaves, still
connected to the root of the game tree are winning positions for me (see Definition 2.4.20).

The game just defined is sufficiently different from the original presentation, and we need to
prove that our version still has the property, that it connects truth in a valuation for a formula ϕ
with a winning strategy in the game:

Lemma 3.2.1. Iff ν∗CL(ϕ) = 1, then the initial defender d has a winning strategy 〈N,Eσd〉 (see
Definition 2.4.20) for the H -game on ϕ over νCL Gϕ,νCL,d = 〈N,E〉.
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form: ¬(p ∧ ¬q) ∧ ¬(q ∧ ¬p)
assert: me
turn: you

form: ¬(q ∧ ¬p)
assert: me
turn: me

form: q ∧ ¬p
assert: you
turn: me

form: ¬p
assert: you
turn: you

form: p
assert: me

winme: win
winyou: lose

Neg

form: q
assert: you
winme: lose
winyou: win

L R

Neg

form: ¬(p ∧ ¬q)
assert: me
turn: you

form: p ∧ ¬q
assert: you
turn: me

form: ¬q
assert: you
turn: you

form: q
assert: me

winme: win
winyou: lose

Neg

form: p
assert: you
winme: lose
winyou: win

L R

Neg

L R

Figure 3.3: Winning strategy for me in the game from Figure 3.2, indicated by the green edges.

Proof. We show that d has a winning strategy, if ν∗CL(ϕ) = 1 and that d does not have one if
ν∗CL(ϕ) = 0 simultaneously, by structural induction on the number of connectives in ϕ. Assume
d = me, the case for d = you is symmetric.

Base case: ϕ = a ∈ Atom .

• νCL(a) = 1: Ga,νCL,me consists only of a leaf-node ra with lassert(ra) = me and
lwinme(ra) = win, thus the only, trivial, winning strategy (Definition 2.4.12) consists
of a single winning node for me.

• νCL(a) = 0 and lassert(ra) = me. This implies lwinme = lose, which is a losing strategy
for me.

In both cases my formal strategy tree is 〈{ra}, ∅〉.
For the inductive step assume that d has a winning strategy σd in all H -games Gϕ,νCL,d, if

ν∗CL(ϕ) = 1 and that d does not have a winning strategy if ν∗CL(ϕ) = 0, where comp(ϕ) = k
(Definition 2.1.2). We have to distinguish 3 cases, each with two sub-cases for comp(ϕ) = k+1:
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• ϕ = ψ1 ∨ ψ2:

– ν∗CL(ψ1 ∨ ψ2) = 1: either ν∗CL(ψ1) = 1, or ν∗CL(ψ2) = 1, or both. comp(ψ1) ≤ k
and comp(ψ2) ≤ k.
If ν∗CL(ψ1) = 1, I have a winning strategy σme = 〈N |ψ1 , Eσme |ψ1〉 in Gψ1,νCL,me by
the induction hypothesis . By playing L, I arrive at rψ1 and win if I continue playing
according to this winning strategy.
My winning strategy in Gϕ,νCL,me is the tree σme = 〈N,Eσme |ψ1 ∪ {(rϕ, rψ1)}〉.
The case ν∗CL(ψ2) = 1 is symmetric with my choice of playing R.
In case both ν∗CL(ψ1) = 1 and ν∗CL(ψ2) = 1 I may chose arbitrarily between the
winning strategies for both subgames.

– ν∗CL(ψ1 ∨ ψ2) = 0: both ν∗CL(ψ1) = 0 and ν∗CL(ψ2) = 0. By the induction hypoth-
esis neither do I have a winning strategy in Gψ1,νCL,me nor in Gψ2,νCL,me.
No matter what I play, we end up in a game where I lose.

• ϕ = ψ1 ∧ ψ2:

– ν∗CL(ψ1 ∧ ψ2) = 1: the asserted formula being a conjunction makes you the active
player. In order to win the game, I have to have winning strategies for both your
possible actions.
From ν∗CL(ψ1 ∧ ψ2) = 1, we have that both ν∗CL(ψ1) = 1 and ν∗CL(ψ2) = 1.
Given that both comp(ψ1) ≤ k and comp(ψ2) ≤ k, by the induction hypothesis
I have winning strategies for both subgames Gψ1,νCL,me (σme = 〈N |ψ1 , Eσme |ψ1〉)
and Gψ2,νCL,me (σme = 〈N |ψ2 , Eσme |ψ2〉), just as required.
Formally my strategy tree is 〈N,Eσme |ψ1 ∪ Eσme |ψ2 ∪ {(rϕ, rψ1), (rϕ, rψ2)}〉.

– ν∗CL(ψ1 ∧ ψ2) = 0: at least one of ν∗CL(ψ1) = 0 or ν∗CL(ψ2) = 0. Assume
ν∗CL(ψ1) = 0. You play L, since this leads us to the game Gψ1,νCL,me, where I
do not have a winning strategy by the induction hypothesis.
The case ν∗CL(ψ2) = 0 is symmetric with you playing R. If both ν∗CL(ψ1) = 0
and ν∗CL(ψ2) = 0, you may choose arbitrarily between R and L, because you have
winning strategies for both subgames.

• ϕ = ¬ψ:

– ν∗CL(¬ψ) = 1: the asserted formula being a negation means that we switch roles,
and the game continues with you being the defender of ψ. We have ν∗CL(ψ) = 0 and
comp(ψ) = k.
By the induction hypothesis you do not have a winning strategy forGψ,νCL,you . Since
the game is a win-lose game, I have a winning strategy σme = 〈N |ψ, Eσme |ψ〉 for
Gψ,νCL,you .
By playing Neg I arrive at a game, which I win if I play according to 〈N |ψ, Eσme |ψ〉.
Formally my winning strategy tree is σme = 〈N,Eσme |ψ ∪ {(rϕ, rψ}〉.

49



– ν∗CL(¬ψ) = 0: I have no choice but to play Neg, through which we switch roles, and
you defend ψ, with ν∗CL(ψ) = 1.
By the induction hypothesis you have a winning strategy in Gψ,νCL,you and thus I
lose the game as required.

We have established the connection between truth of a propositional formula under a given
classical valuation and the existence of a winning strategy for the player defending that formula,
in our H -games.

This is Hintikka’s well-known result:

Corollary 3.2.2 (Hintikka). From Lemma 3.2.1 we deduce that the following two statements
are equivalent:

• νCL(ϕ) = 1

• I have a winning strategy in Gϕ,νCL,I .

3.3 H -mv-game for KZ-Logic

As indicated above in subsection 2.5.2 Hintikka-style evaluation games can readily be extended
to a fuzzy setting, if we restrict ourselves to KZ-logic, by changing the game rule for the atomic
case, and transforming the win-lose game into a constant-sum game. We adapt our H -games to
H -mv-games and prove their adequateness for KZ-logics:

Definition 3.3.1 (H -mv-game on formula ϕ over many-valued valuation νKZ ). The labeling
functions for H -mv-games , are the same as those for classical H -games (Definition 3.2.1), with
the exception that lwinme and lwinyou are replaced by two payoff labels:

lpayoff me , lpayoff you : N0 → [0, 1]

The game tree Gϕ,νKZ ,d is defined as:

1. ϕ is an Atom a : Ga,νKZ ,d is a single leaf ra with:

• lform(ra) = a

• lassert(ra) = d

• lpayoff d (ra) = νKZ (a)
• lpayoff d′ (ra) = 1− νKZ (a)

2. The clauses for compound formulas remain as in Definition 3.2.1, items: 2 – 4

Even though it is technically not necessary to give the payoff values for both players explic-
itly3, and we deviate from Definition 2.4.11 in representing the payoffs as two separate labels,

3In a constant-sum two player game, one player’s payoff defines the other’s.
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instead of one label with a vector of reals, it is evident, that the game presented is a constant-sum
game.

H -mv-games characterize KZ-logic analogously to the way H -games characterize classical
propositional logic: the initial defender has an r-valued strategy for a game on ϕ over νKZ ,
iff ν∗KZ (ϕ) = r. We present an explicit proof for the result, since it is a generalization of
Corollary 3.2.2.

Theorem 3.3.1. A formula ϕ evaluates to r in a KZ valuation νKZ , iff the H -mv-game on ϕ
over νKZ Gϕ,νKZ ,d = 〈N,E〉 has value r for the initial defender d.

Proof. The argument proceeds by induction on comp(ϕ): Assume ν∗KZ (ϕ) = r and d = me
(the case d = you is symmetric).

If ϕ = a ∈ Atom , then Ga,νKZ ,me = 〈{ra}, ∅〉. By definition we have lpayoff me = r, which
constitutes the value of Ga,νKZ ,me. My r-valued strategy is σme = 〈ra, ∅〉.

For the inductive step assume that for each ϕ, s.t. comp(ϕ) ≤ k and ν∗KZ (ϕ) = r, d has a
strategy (the min-max strategy from Definition 2.4.18) for Gϕ,νKZ ,d, with the value of Gϕ,νKZ ,d

being r. We have to consider three cases:

1. ϕ = (ψ1 ∨ ψ2): we have max(ν∗KZ (ψ1), ν∗KZ (ψ2)) = r, since ν∗KZ (ψ1 ∨ ψ2) = r.
Assume ν∗KZ (ψ1) = r ≥ ν∗KZ (ψ2). Given a choice, I will play L to maximize my payoff.
By the induction hypothesis I have a strategy σme = 〈N |ψ1 , Eσme |ψ1〉 in Gψ1,νKZ ,me, s.t.
o(σ) = o(σme, σyou) = r. By playing L followed by σme I can force the game to have a
value of r for myself. My formal strategy is 〈N,Eσme |ψ1 ∪ {(rϕ, rψ1)}〉.
In case ν∗KZ (ψ2) = r, I would similarly maximize my payoff to a value of r, by playing
R, resulting in σme = 〈N,Eσme |ψ2 ∪ {(rϕ, rψ2)}〉.
Should we have ν∗KZ (ψ1) = ν∗KZ (ψ2) = r, I can choose arbitrarily between L and R, and
both of my strategies would yield a value of r.

2. ϕ = (ψ1 ∧ ψ2): at rϕ you are to move and my strategy tree contains both edges (rϕ, rψ1)
and (rϕ, rψ2). From ν∗KZ (ψ1 ∧ ψ2) = min(ν∗KZ (ψ1), ν∗KZ (ψ2)) = r we know that
ν∗KZ (ψ1) ≥ r and ν∗KZ (ψ2) ≥ r. Then, by the induction hypothesis, I have strategies
〈N |ψ1 , Eσme |ψ1〉 and 〈N |ψ2 , Eσme |ψ2〉 yielding a payoff of at least r for me4 inGψ1,νKZ ,me
and Gψ2,νKZ ,me respectively.

My formal strategy is σme = 〈N,Eσme |ψ1 ∪ Eσme |ψ2 ∪ {(rϕ, rψ1), (rϕ, rψ2)}〉.

3. ϕ = ¬ψ: at the root r¬ψ of G¬ψ,νKZ ,me, my only move is playing Neg, leading to the root
of Gψ,νKZ ,you . By the induction hypothesis you have a strategy σyou = 〈N |ψ, Eσyou |ψ〉
in Gψ,νKZ ,you with value 1 − r, since ν∗KZ (ψ) = 1 − r. However then my payoff in
Gψ,νKZ ,you is 1− (1− r) = r, and with σme = 〈N,Eσyou ∪ {(rφ, rψ)}〉5 I have a strategy
with payoff r for myself in G¬ψ,νKZ ,me as required.

We have shown that the initial defender d in Gϕ,νKZ ,d has an r-valued strategy, iff ν∗KZ (ϕ) =
r.

4At least one of the subgames’ values will be r, and you would play the move leading to it.
5Note that, due to Theorem 2.4.1, the two players’ strategies mutually define each other
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CHAPTER 4
Modal Axiomatization of Evaluation

Game Trees

4.1 Capturing Classical H -game Trees with Modal Axioms

The idea behind our formal modeling of H -games is pretty straight-forward: the games are
representable by trees and these trees can be seen as Kripke models. The interpretation at each
world contains information about the respective game-state. Some game tree labels, like who is
active at a state, or whether a terminal state is a win for a player are expressed by a proposition.

Other components like the asserted formula are best modeled by a first-order predicate: the
formula becomes a term. We use two predicate symbols (assert1me and assert1you) representing the
asserted formula and the current asserter.

Arguments to predicates are terms, not formulas. Keeping the levels of meta-language and
of the object language strictly separated, while not artificially hiding the intended semantics con-
stitutes an important part of the task at hand. As customary we use different sets of symbols for
formulas and terms on the different levels: lower-case Greek letters ϕ,ψ, ϕ1, . . . are elements
of the domain. Their counterpart on the syntactic level, the terms, are marked by small cor-
ners, pϕq, pψq, . . .. For this chapter we use upper-case Greek letters Γ,∆,Γ1, . . . for schematic
formula variables, deviating from our use of ϕ, . . . until now.

4.1.1 Syntax Used

We fix the used signature for our modeling.

Definition 4.1.1 (functional signature). The functional signature consists of two binary and one
unary function symbols:

• f2
∧

• f2
∨
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• f1
¬

In order to keep the reading more natural we use the following infix notation for the function
symbols: p· ∧ ·q for f∧(·, ·), p· ∨ ·q for f∨(·, ·) and p¬ ·q for f¬(·)

The terms represent propositional formulas. The interpretation of f∧, f∨ and f¬ constructs
the conjunction, disjunction or negation of their arguments respectively1.

Definition 4.1.2 (representabilty of formulas). A term pϕq is said to represent a formula ϕ, if
the formula has the same syntactic structure as pϕq: TV (w, pϕq) = ϕ for w ∈W

Definition 4.1.3 (Modalities for H -games). We use three modalities in the modeling:

• R

• L

• Neg

Definition 4.1.4 (Atomic formulas for H -games). The following propositions and monadic
predicate symbols (Definition 2.1.6) are used for the modeling:

• turn0
me

• turn0
you

• win0
me

• win0
you

• terminal0

• assert1me

• assert1you

• true1

• false1

The names chosen hint at the intended meaning, e.g. turnme and turnyou reflect the active
player at a given world and the terminal proposition is true in leaf worlds.

This particular choice for the used predicate symbols is the result of various experiments
with transferring the concepts from H -games to a formal syntactic level. For instance the idea
of combining the asserted formula with its defender into assertme and assertyou, seems like the
best trade-off between literally transferring the H -game tree labels and bloating the set of axioms
with redundant clauses.

Definition 4.1.5 (language for H -games LHG). We call the language over the functional, modal
and predicate signature from Definition 4.1.1, Definition 4.1.3 and Definition 4.1.4 respectively
the language for H -games LHG.

1A concept familiar from classical first-order logic as Herbrand model [Lei97]

54



4.1.2 Modal Axioms

In order to avoid redundancy we use variables i, j for the players me and you with i 6= j in what
follows. For example the formula

∀x∀y(asserti(px ∧ yq)→ turnj)

actually stands for the two formulas

∀x∀y(assertme(px ∧ yq)→ turnyou)
∀x∀y(assertyou(px ∧ yq)→ turnme)

The axioms will model H -games, and can be broadly categorized into three categories: ax-
ioms to describe the decomposition of the asserted formula, using modalities, axioms capturing
general rules of games and those needed to represent winning conditions, referring to an atomic
valuation.

We list all necessary axioms, shortly describing their purpose informally.
Not all conditions on the game tree are representable by formulas from modal correspon-

dence theory, one condition, that can be ensured is partial functionality for all modalities (see
Table 2.2): if there is a world reachable in a particular transition relation, it is the only one in
this relation.

(HL-1) 〈R〉Γ→ [R]Γ

(HL-2) 〈L〉Γ→ [L]Γ

(HL-3) 〈Neg〉Γ→ [Neg]Γ

The modalities are not independent of each other: in the case the asserted term represents a
conjunction or disjunction, there should be exactly two transitions, one in RR and one in RL.
For negations we want a RNeg transition to be the only one. We additionally require that there
are no transitions from leaf worlds.

(HL-4) 〈L〉> ↔ 〈R〉>

(HL-5) 〈L〉> → [Neg]⊥

(HL-6) 〈Neg〉> → [L]⊥

(HL-7) terminal→ [R]⊥

(HL-8) terminal→ [L]⊥

(HL-9) terminal→ [Neg]⊥

(HL-10) ([L]⊥ ∧ [R]⊥ ∧ [Neg]⊥)→ terminal

Players take turns only at non-terminal histories and only one player takes a turn at each
state.
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(HL-11) ¬terminal↔ (turni ↔ ¬turnj)

(HL-12) terminal→ ¬turni

In leafs only atomic formulas are asserted, thus the term representing the asserted formula,
cannot have a function symbol at its root position.

(HL-13) ∀x∀y(terminal→ ¬asserti(px ∧ yq))

(HL-14) ∀x∀y(terminal→ ¬asserti(px ∨ yq))

(HL-15) ∀x(terminal→ ¬asserti(p¬xq))

The first three axioms below express that the outermost connective determines, which player
is to move at a given game-state. The remaining axioms ensure that a left or right choice of
a player indeed yields the left or right subformula, and that a negation really results in a role-
change of the two players, with the new formula being the formula without the outermost nega-
tion.

(HL-16) ∀x∀y(asserti(px ∨ yq)→ turni)

(HL-17) ∀x∀y(asserti(px ∧ yq)→ turnj)

(HL-18) ∀x(asserti(p¬xq)→ turni)

(HL-19) ∀x∀y(asserti(px ∨ yq)→ 〈L〉asserti(x))

(HL-20) ∀x∀y(asserti(px ∨ yq)→ 〈R〉asserti(y))

(HL-21) ∀x∀y(asserti(px ∧ yq)→ 〈L〉asserti(x))

(HL-22) ∀x∀y(asserti(px ∧ yq)→ 〈R〉asserti(y))

(HL-23) ∀x(asserti(p¬xq)→ 〈Neg〉assertj(x))

Conversely an existing transition also tells us what the outermost connective of the formula
asserted possibly is. This is needed to show the direction that an H -game model corresponds to
an H -game:

(HL-24) ∃x∃y(〈L〉> → (asserti(px ∧ yq) ∨ asserti(px ∨ yq) ∨ assertj(px ∧ yq) ∨ assertj(px ∨ yq)))

(HL-25) ∃x(〈Neg〉> → asserti(p¬xq) ∨ assertj(p¬xq))

Exactly one formula is under consideration at any given world, and only one player is de-
fending it.

(HL-26) ∀x∀y¬(asserti(x) ∧ assertj(y))

(HL-27) ∀x∀y(asserti(x) ∧ asserti(y)→ x = y)
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(HL-28) ∃x(asserti(x) ∨ assertj(x))

The defender wins in a terminal state, iff the asserted atom is true, and loses iff it is false.
Furthermore if the defender wins the attacker loses.

(HL-29) wini → terminal

(HL-30) ∀x(terminal→ ((asserti(x) ∧ true(x))→ wini))

(HL-31) ∀x(terminal→ ((asserti(x) ∧ false(x))→ winj))

Definition 4.1.6 (H -game axioms). The set consisting of axioms (HL-1) – (HL-31) is called
H -game axioms.

4.1.3 H -game Models

The modeling is achieved through a multi-modal logic with three modalities.
Since Kripke models cannot be restricted to the needed tree-like structure, solely by adding

corresponding axioms, characterization of some of those properties remains on the semantic
side.

Definition 4.1.7 (H -game model). A Kripke model K = 〈W,wr, {RR, RL, RNeg}, D, V 〉 over
the language for H -games, is called a H -game model, if:

• the graph 〈W,RR ∪RL ∪RNeg〉 is a finite rooted tree, with wr as its root. We call it the
underlying tree of K, TK .

• D = Prop, the set of propositional formulas

• V assigns for ϕ,ψ ∈ D uniformly in all w ∈W to f∧, f∨ and f¬:

– V (w, f∧)(ϕ,ψ) = ϕ ∧ ψ
– V (w, f∨)(ϕ,ψ) = ϕ ∨ ψ
– V (w, f¬)(ϕ) = ¬ϕ

• The interpretation of the predicate symbols and propositions is restricted by the axioms
and dependent on a concrete game represented by the model.

Let I be a first-order variable valuation, νCL a classical valuation and TV (w, pϕq) = ϕ . We
say that K reflects νCL, if:

• K, I, w |= true(pϕq)⇔ νCL(ϕ) = 1

• K, I, w |= false(pϕq)⇔ νCL(ϕ) = 0

hold for all w ∈W .
Furthermore we say that K is for ϕ with initial defender d ∈ {you,me}, if:

K, I, wr |= assertd(pϕq)

where TV (w, pϕq) = ϕ.
We call an H -game model adequate if it makes the H -game axioms true.
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4.2 Adequateness of the Modeling

Towards our goal of finding a suitable set of axioms that capture H -games, we have defined a
suitable candidate in Definition 4.1.6, and restricted the admissible Kripke models on the se-
mantic side where necessary in Definition 4.1.7. In the remainder of this section we show that
our axioms restrict the possible models to those which represent valid H -games (see Defini-
tion 3.2.1), and that every H -game has a corresponding model.

This entails that any theorem derived from the H -game axioms, is actually a valid statement
about H -games.

It is instructive to observe that our definition of an H -game model (see (Definition 4.1.7)
permits many Kripke models which would not represent valid H -games, however those H -game
models which are models of the H -game axioms, all represent valid H -games.

Talking almost interchangeably about H -game trees on the one hand and the semantic struc-
tures introduced as H -game models on the other hand needs a formal definition:

Definition 4.2.1 (H -game tree-model mapping). Let Gϕ,νCL,d = 〈N,E〉 be an H -game tree on
ϕ, over νCL (Definition 3.2.1).

We construct an H -game model K = K(G) = 〈W,wr, {RR, RL, RNeg}, D, V 〉 for ϕ with
initial defender d reflecting a valuation νCL (Definition 4.1.7), based onG through the following
mapping:

TK = 〈N,E〉. The predicate interpretation is defined by the node labels of G, and the three
accessibility relations are disjunct subsets of E based on the edge labels, as follows:

• lmove((u, v)) = R, iff (u, v) ∈ RR

• lmove((u, v)) = L, iff (u, v) ∈ RL

• lmove((u, v)) = Neg, iff (u, v) ∈ RNeg

• lturn(u) = me, iff u ∈ V (turnme)

• lturn(u) = you, iff u ∈ V (turnyou)

• lwinme(u) = win, iff u ∈ V (winme)

• lwinyou (u) = lose, iff u ∈ V (winme)

• lwinme(u) = lose, iff u ∈ V (winyou)

• lwinyou (u) = win, iff u ∈ V (winyou)

• lassert(u) = me, iff (u, ϕ) ∈ V (assertme), for any ϕ

• lform(u) = ϕ, iff (u, ϕ) ∈ V (assertme), or (u, ϕ) ∈ V (assertyou)

• u ∈ N0, iff u ∈ V (terminal)

We say that G is interpreted as a model K, or vice versa, when one results from the other
according to this mapping.
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4.2.1 Every Adequate H -game Model is an H -game

We show that any adequate H -game model, when interpreted as an H -game, is valid according
to Definition 3.2.1.

The fact that only one formula is asserted by only one player at each world of an adequate
H -game model is needed more than once in the proof of Theorem 4.2.4, therefore we show it
separately:

Lemma 4.2.1. For every world w ∈ W of an adequate H -game model K there is exactly one
formula ϕ for which one of assertme or assertyou holds in w.

Proof. Since (HL-28) holds, we have K, I, w |= ∃x(assertme(x) ∨ assertyou(x)), there is a ϕ,
s.t. at least one of the following two hold:

K, I [x 7→ϕ], w |= assertme(x)

K, I [x 7→ϕ], w |= assertyou(x)

On the other hand we have (HL-26) K, I, w |= ∀x∀y¬(assertme(x) ∧ assertyou(y)), thus for all
pairs ϕ,ψ:

K, I [x 7→ϕ][y 7→ψ], w 6|= assertme(x) ∧ assertyou(y)

We conclude that there is no pair of formulas, ϕ,ψ, s.t. both V (w, assertme)(ϕ) = 1 and
V (w, assertyou)(ψ) = 1.

As a last step we need to verify that not more than one formula is asserted by the current
asserter: for any w ∈ W , we have at most one ϕ, s.t. V (w, assertme)(ϕ) = 1, the argument for
assertyou is identical:

From (HL-27) K, I, w |= ∀x∀y(assertme(x) ∧ assertme(y)→ x = y), we get that

K, I [x 7→ϕ][y 7→ψ], w |= assertme(x) ∧ assertme(y)→ x = y

for all ϕ,ψ. Therefore whenever we have K, I [x 7→ϕ][y 7→ψ], w |= assertme(x) ∧ assertme(y), we
also have that ϕ = ψ, concluding the proof.

Some of the H -game axioms impose certain restrictions on the form of the tree underlying
a given H -game model, TK . We defined the frame of an H -game model as a rooted finite tree.
every TK , where K is adequate already has the form of an H -game.

This restricts the possible forms of TK and our argument that every adequate H -game model
can be interpreted as an H -game relies on that fact.

The following two lemmas provide the formal argument for this:

Lemma 4.2.2. The underlying tree TK of an adequate H -game model K has a width (see Defi-
nition 2.4.4) of at most 2.

Proof. Due to the partial-functionality axioms — 〈R〉Γ → [R]Γ, 〈L〉Γ → [L]Γ and 〈Neg〉Γ →
[Neg]Γ (and due to those 3 being the only modalities), we know that from any world w ∈ W
there are at most 3 reachable worlds v1, v2, v3 ∈W :
Assume (w, v1) ∈ RR, (w, v2) ∈ RL and (w, v3) ∈ RNeg .
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To show that only 2 worlds can be reachable from w, we consider that K, I, w |= 〈L〉> →
[Neg]⊥ (HL-5): Assuming that v2 exists, we have K, I, w |= 〈L〉>, therefore via the definition
of implication:

K, I, w |= [Neg]⊥

However then v3 cannot exist, since we would have K, I, v3 |= ⊥, which is not possible. We
conclude that v2 and v3 cannot both be reachable from w, i.e. if there exists an L transition,
there cannot be a Neg transition and therefore any world w has at most two transitions to other
worlds.

This section deals with the semantic evaluation of the H -game axioms with respect to H -
game models. As can be seen in the proof of Lemma 4.2.1, this mainly consists of collecting
various assumptions we make, either because K satisfies the H -game axioms, or because of
some local property of the proof. These assumptions are in general of the form K, I, w |= Γ or
K, I, w |= Γ→ ∆ and are manipulated according to the definition of the semantic satisfiability
relation. For example concluding from the two assumptions above that K, I, w |= ∆.

To keep the proofs free from redundant clutter of the form “From x we conclude that y”,
we adopt a more terse representation of the semantic arguments: an Arabic numeral for later
reference, as well as justifications of the rules are written on the left, the semantic satisfiability
relation, or the final conclusion itself in the middle, and the right-hand side either contains the
symbol ⇒, or the word or, meaning implication or disjunction on the meta-level respectively.
⇒ is possibly subscripted with reference labels, referring to the line numbers of the proof. If⇒
has no subscript, the following line is a direct consequence. The justifications are abbreviated,
e.g. |=→ means: by the definition of the satisfiability relation for implication. We write |=Atom ,
for the truth condition of atomic first-order formulas. The above argument, that L and Neg
transitions cannot coincide, looks as follows in this presentation:

1 (w, v2) ∈ RL K, I, w |= 〈L〉>
2 (HL-5) K, I, w |= 〈L〉> → [Neg]⊥ ⇒

1,2

3 |=→ K, I, w |= [Neg]⊥ ⇒
4 (w, v3) ∈ RNeg, |=〈Neg〉 K, I, v3 |= ⊥ ⇒
contradiction to |=⊥ v2, v3 cannot exist simultaneously.

Lemma 4.2.3. The underlying tree TK of an adequate H -game model K is of one of the forms
illustrated in Figure 4.12.

Proof. From Lemma 4.2.2 we know that the width of the tree is at most two and have concluded
that no Neg transition can occur at the same time as an L transition.
It remains to show that:

1. a single world can be a model of the H -game axioms

2Technically it is possible for two worlds u, v ∈W to be inRL andRR at the same time: this may happen when
we have K, I, u |= asserti(pϕ ∧ ϕq) or K, I, u |= asserti(pϕ ∨ ϕq). However then K would still correspond to the
H -game.
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Figure 4.1: possible forms of H -game models — the triangles represent arbitrary subtrees of
one of those forms

2. R and L transitions cannot occur independently

3. a Neg transition can only occur by itself

For 1 we only need to consider those H -game axioms containing a modal operator. In addition
we can safely ignore axioms, where the modal subformulas are the premise of an implication
and not of the form [m]⊥, because the premise would evaluate to false and thus make the axiom
true. Let w be the single world of K. Since TK is a tree by assumption we have RR = RL =
RNeg = ∅:

1 RR = RL = RNeg = ∅ K, I, w |= [L]⊥ ∧ [R]⊥ ∧ [Neg]⊥
2 (HL-10) K, I, w |= ([L]⊥ ∧ [R]⊥ ∧ [Neg]⊥)→ terminal ⇒

1,2

3 |=→ K, I, w |= terminal ⇒
4 |=Atom V (w, terminal) = 1

The three axioms (HL-7) – (HL-9) are true in K because we have K, I, w |= terminal. We show
this for (HL-7):

1 V (w, terminal) = 1 K, I, w |= terminal

2 RR = ∅ K, I, w |= [R]⊥ ⇒
1,2

3 |=→, (HL-7) K, I, w |= terminal→ [R]⊥
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The only axioms, which we still have to consider are (HL-19) – (HL-23). The argument is
similar for all of them, therefore we only deal with (HL-19) and only with i = me explicitly:

1 V (w, terminal) = 1 K, I, w |= terminal
2 (HL-14) K, I, w |= ∀x∀y(terminal→ ¬assertme(px ∨ yq)) ⇒
3 |=∀, for all ψ1, ψ2 ∈ D K, I [x 7→ψ1][y 7→ψ2], w |= terminal→ ¬assertme(px ∨ yq) ⇒

1,3

4 |=→ K, I [x 7→ψ1][y 7→ψ2], w |= ¬assertme(px ∨ yq) ⇒
5 |=¬ K, I [x 7→ψ1][y 7→ψ2], w 6|= assertme(px ∨ yq) ⇒
6 |=→ the premise is false K, I [x 7→ψ1][y 7→ψ2], w |= assertme(px ∨ yq)→ 〈L〉assertme(x) ⇒

3,6

7 |=∀, (HL-19) K, I, w |= ∀x∀y(assertme(px ∨ yq)→ 〈L〉assertme(x))

The argument for point 2 is straightforward: assume that a world w has an R-accessible world
v:

1 (w, v) ∈ RR K, I, w |= 〈R〉>
2 (HL-4) K, I, w |= 〈L〉> ↔ 〈R〉> ⇒
3 |=↔ K, I, w |= 〈R〉> → 〈L〉> ⇒

1,3

4 |=→ K, I, w |= 〈L〉> ⇒
5 |=〈L〉, there has to be a u, s.t. (w, u) ∈ RL K, I, u |= >

We conclude that whenever there is an R transition, there also is an L transition.
For point 3 we just need to observe that R and L transitions cannot occur independently and

that it is impossible for an L transition to exist simultaneously with a Neg transition as shown in
Lemma 4.2.2.

Theorem 4.2.4. Every adequate H -game model K for a formula ϕ with initial defender d re-
flecting a valuation νCL corresponds to an H -game for ϕ over νCL Gϕ,νCL,d.

Proof. The argument proceeds by induction on the height of TK . Through Lemma 4.2.3 we
already know that TK has indeed the form of an H -game tree.

It remains to show that the predicates and modalities of K, interpreted as labels of TK (see
Definition 4.2.1) fulfill the requirements imposed on Gϕ,νCL,d.

Assume d = me. The argument for d = you is symmetric.
The base case is a single world w = wr, corresponding to an H -game for an atomic propo-

sition Ga,νCL,d. TK is 〈{w}, ∅〉, thus we have RR = RL = RNeg = ∅.
We have to show that:

a) The single3 formula ϕ having V (w, assertme)(ϕ) = 1 is atomic; we have lassert(w) = me
and lform(w) = ϕ for ϕ ∈ Atom .

b) If νCL(ϕ) = 1, then V (w,winme) = 1 resulting in lwinme(w) = win and lwinyou (w) =
lose.

3By Lemma 4.2.1 for each w ∈W either V (w, assertme) or V (w, assertyou) is true for exactly one ϕ ∈ Prop
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c) Conversely if νCL(ϕ) = 0 we have V (w,winyou) = 1 and therefore lwinme(w) = lose
and lwinyou (w) = win.

d) There is no turn label for w, i.e. V (w, turnme) = V (w, turnyou) = 0.

a) V (w, assertme)(ϕ) = 1, for exactly one ϕ ∈ Atom . Taking into account Lemma 4.2.1, it
remains to show that ϕ ∈ Atom . As already shown for Lemma 4.2.3, we have V (w, terminal) =
1, if the H -game model contains only w:

1 K is for ϕ, TV (pϕq) = ϕ K, I, w |= assertme(pϕq)
2 (HL-13) K, I, w |= ∀x∀y(terminal→ ¬assertme(px ∧ yq)) ⇒
3 |=∀ for all pairs ψ1, ψ2 ∈ Prop K, I [x 7→ψ1][y 7→ψ2], w |= terminal→ ¬assertme(px ∧ yq) ⇒
4 V (w, terminal) = 1, |=→, |=¬ K, I [x 7→ψ1][y 7→ψ2], w 6|= assertme(px ∧ yq) ⇒
5 V (w, f∧) = ∧, for all ψ1, ψ2 V (w, assertme)(ψ1 ∧ ψ2) = 0 ⇒

1,5

6 for any ψ1, ψ2 ∈ Prop ϕ 6=ψ1 ∧ ψ2

V (w, assertme) is false for the conjunction of any two propositional formulas. The reasoning for
disjunction and negation is similar using and the definition of V (w, f∨) = ∨4 and V (w, f¬) = ¬
and axioms (HL-14) and (HL-15).

Since ϕ can neither be a conjunction nor a disjunction, nor a negation ϕ has to be atomic.
b) From νCL(ϕ) = 1 we get V (w,winme) = 1, thus lwinme = win and lwinyou = lose

1 V (w, terminal) = 1 K, I, w |= terminal
2 K reflects νCL, TV (pϕq) = ϕ K, I, w |= true(pϕq)
3 K is for ϕ K, I, w |= assertme(pϕq)
4 (HL-30) K, I, w |= ∀x(terminal→

((assertme(x) ∧ true(x))→ winme)) ⇒
5 |=∀, for all ψ ∈ Prop K, I [x 7→ψ], w |= terminal→

(assertme(x) ∧ true(x))→ winme)) ⇒
1,5

6 particularly for ψ = ϕ, |=→ K, I [x 7→ϕ], w |= assertme(x) ∧ true(x)→ winme
⇒

2,3,6

7 |=∧, |=→ K, I [x 7→ϕ], w |= winme
⇒
2,7

V (w,winme) = 1

4Shorthand for V (w, f∨)(ϕ,ψ) = ϕ ∨ ψ
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c) From νCL(ϕ) = 0 we get V (w,winyou) = 1, thus lwinyou = win and lwinme = lose

1 V (w, terminal) = 1 K, I, w |= terminal
2 K reflects νCL, TV (pϕq) = ϕ K, I, w |= false(pϕq)
3 K is for ϕ K, I, w |= assertme(pϕq)
4 (HL-31) K, I, w |= ∀x(terminal→

((assertme(x) ∧ false(x))→ winyou)) ⇒
5 |=∀, for all ψ ∈ Prop K, I [x7→ψ], w |= terminal→

(assertme(x) ∧ false(x))→ winyou)) ⇒
1,5

6 particularly for ψ = ϕ, |=→ K, I [x 7→ϕ], w |= assertme(x) ∧ false(x)→ winyou
⇒

2,3,6

7 |=∧, |=→ K, I [x 7→ϕ], w |= winyou
⇒
2,7

V (w,winyou) = 1

d)

• V (w, turnme) = 0:

1 (HL-12) K, I, w |= terminal→ ¬turnme

2 V (w, terminal) = 1 K, I, w |= terminal ⇒
1,2

3 |=→, |=¬ K, I, w 6|= turnme ⇒
4 |=Atom V (w, turnme) = 0

• V (w, turnyou) = 0 is identical to above, with K, I, w |= terminal→ ¬turnyou.

This concludes the base case.
For the inductive step assume that every H -game model K(Gϕ,νCL,d), with an underlying

tree of depth≤ k corresponds to the H -game Gϕ,νCL,d. For depth k+1 we can restrict attention
to those models, where TK has one of the forms seen in Figure 4.15. We have two main cases:

1. wr has a single Neg transition to a world v. This entails that K, I, wr |= 〈Neg〉>.
We have to show that:

1.a) V (wr,winme) = V (wr,winyou) = 0: wr has no win label.

1.b) V (wr, assertme)(¬ψ) = 1 and V (v, assertyou)(ψ) = 1. For ψ ∈ Prop, being
a formula that, by the induction hypothesis, has a corresponding H -game model
K(Gψ,νCL,you), with root v and TK of depth k, where the node and edge labels are
as needed.

1.c) V (wr, turnme) = 1, and therefore lturn = me.

1.d) V (wr, turnyou) = 06.
5By Lemma 4.2.3
6The step from valuations of atomic predicates to game tree labels is a direct consequence of Definition 4.2.1,

i.e. V (wr, turnyou) implies lturn = you
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2. wr has two reachable worlds u and v, with (wr, u) ∈ RL and (wr, v) ∈ RR. We have
K, I, wr |= 〈L〉> and K, I, wr |= 〈R〉>. We have to show that:

2.a) V (wr,winme) = V (wr,winyou) = 0
2.b) V (wr, assertme)(ψ1 ∨ ψ2) = 1, or V (wr, assertme)(ψ1 ∧ ψ2) = 1 for ψ1, ψ2 ∈

Prop. By the induction hypothesis we have H -game models K1(Gψ1,νCL,me) and
K2(Gψ2,νCL,me) with roots u and v respectively. Both TK1 and TK2 have a depth
≤ k. In both cases, we have V (u, assertme)(ψ1) = 1 and V (v, assertme)(ψ2) = 1.

2.b.i) If V (wr, assertme)(ψ1∨ψ2) = 1, then V (wr, turnme) = 1 and V (wr, turnyou) =
0.

2.b.ii) If V (wr, assertme)(ψ1∧ψ2) = 1, then V (wr, turnyou) = 1 and V (wr, turnme) =
0.

In both cases 1 and 2 we have V (wr, terminal) = 0. For the negation case we show this:

1 (wr, v) ∈ RNeg K, I, wr |= 〈Neg〉>
2 (HL-3) K, I, wr |= 〈Neg〉> → [Neg]> ⇒

1,2

3 |=→ K, I, wr |= [Neg]> ⇒
4 |=[Neg] K, I, v |= > ⇒
5 |=>, |=⊥, |=[Neg] K, I, wr 6|= [Neg]⊥ ⇒
6 (HL-9) K, I, wr |= terminal→ [Neg]⊥ ⇒

5,6

7 |=→ K, I, wr 6|= terminal ⇒
8 |=Atom V (wr, terminal) = 0

The argument for 2 is almost identical using (HL-2) and (HL-8) instead of (HL-3) and (HL-9).
1.a) V (wr,winme) = V (w,winyou) = 0. We show explicitly that V (wr,winme) = 0:

1 (HL-29) K, I, wr |= winme → terminal

2 V (wr, terminal) = 0 K, I, wr 6|= terminal ⇒
1,2

3 |=→ K, I, wr 6|= winme ⇒
4 |=Atom V (wr,winme) = 0

The argument for V (w,winyou) = 0 is identical.
1.b) V (wr, assertme)(¬ψ) = 1:

1 (wr, v) ∈ RNeg K, I, wr |= 〈Neg〉>
2 (HL-25) K, I, wr |= ∃x(〈Neg〉> → assertme(p¬xq) ∨ assertyou(p¬xq)) ⇒
3 there is a ψ K, I [x 7→ψ], wr |= 〈Neg〉> → assertme(p¬xq) ∨ assertyou(p¬xq) ⇒

1,3

4 |=→ K, I [x 7→ψ], wr |= assertme(p¬xq) ∨ assertyou(p¬xq) ⇒
5 Lemma 4.2.1, d = me K, I [x 7→ψ], wr |= assertme(p¬xq)
6 V (wr, f¬) = ¬, |=Atom V (wr, assertme)(¬ψ) = 1

65



V (v, assertyou)(ψ) = 1:

1 from above K, I [x 7→ψ], wr |= assertme(p¬xq)
2 (HL-23) K, I, wr |= ∀x(assertme(p¬xq)→ 〈Neg〉assertyou(x)) ⇒
3 |=∀, especially for ψ K, I [x 7→ψ], wr |= assertme(p¬xq)→ 〈Neg〉assertyou(x) ⇒

1,3

4 |=→ K, I [x 7→ψ], wr |= 〈Neg〉assertyou(x) ⇒
5 |=〈Neg〉, (wr, v) ∈ RNeg K, I [x7→ψ], v |= assertyou(x) ⇒
6 |=Atom V (v, assertyou)(ψ) = 1

1.c) V (wr, turnme) = 1:

1 (HL-18) K, I, wr |= ∀x(assertme(p¬xq)→ turnme) ⇒
2 |=∀, particularly for ψ K, I[x 7→ ψ], wr |= assertme(p¬xq)→ turnme

3 from above K, I[x 7→ ψ], wr |= assertme(p¬xq) ⇒
2,3

4 |=→ K, I[x 7→ ψ], wr |= turnme

5 |=Atom V (wr, turnme) = 1

1.d) V (wr, turnyou) = 0:

1 (HL-11) K, I, wr |= ¬terminal↔ (turnme ↔ ¬turnyou)
2 V (wr, terminal) = 0, |=¬ K, I, wr |= ¬terminal ⇒

1,2

3 |=↔, |=→ K, I, wr |= turnme ↔ ¬turnyou

4 V (wr, turnme) = 1 K, I, wr |= turnme
⇒
3,4

5 |=↔, |=→ K, I, wr |= ¬turnyou ⇒
6 |=¬, |=Atom V (wr, turnyou) = 0

2.a) V (wr,winme) = V (w,winyou) = 0 — The argument is identical to 1.a).
2.b) V (wr, assertme)(ψ1 ∧ ψ2) = 1, or V (wr, assertme)(ψ1 ∨ ψ2) = 1:

1 (wr, u) ∈ RL K, I, wr |= 〈L〉>
2 (HL-24) K, I, wr |= ∃x∃y(〈L〉> → (assertme(px ∧ yq)∨

assertme(px ∨ yq) ∨ assertyou(px ∧ yq) ∨ assertyou(px ∨ yq))) ⇒
3 |=∃, there are ψ1, ψ2 K, I [x 7→ψ1][y 7→ψ2], wr |= 〈L〉> → (assertme(px ∧ yq)∨

assertme(px ∨ yq) ∨ assertyou(px ∧ yq) ∨ assertyou(px ∨ yq)) ⇒
1,3

4 |=→ K, I [x 7→ψ1][y 7→ψ2], wr |= assertme(px ∧ yq)∨
assertme(px ∨ yq) ∨ assertyou(px ∧ yq) ∨ assertyou(px ∨ yq) ⇒
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5 Lemma 4.2.1,
d = me K, I [x 7→ψ1][y 7→ψ2], wr |= assertme(px ∧ yq) ∨ assertme(px ∨ yq) ⇒

6 |=∨ K, I [x 7→ψ1][y 7→ψ2], wr |= assertme(px ∧ yq) or
K, I [x 7→ψ1][y 7→ψ2], wr |= assertme(px ∨ yq) ⇒

7 V (wr, f∧) = ∧
V (wr, f∨) = ∨
TV (x) = ψ1, V (wr, assertme)(ψ1 ∧ ψ2) = 1 or
TV (y) = ψ2 V (wr, assertme)(ψ1 ∨ ψ2) = 1

2.b.i) V (wr, assertme)(ψ1 ∨ ψ2) = 1:
V (u, assertme)(ψ1) = 1:

1 Assumption K, I [x 7→ψ1][y 7→ψ2], wr |= assertme(px ∨ yq)
2 (HL-19) K, I, wr |= ∀x∀y(assertme(px ∨ yq)→ 〈L〉assertme(x)) ⇒
3 |=∀, especially for ψ1, ψ2 K, I [x 7→ψ1][y 7→ψ2], wr |= assertme(px ∨ yq)→ 〈L〉assertme(x) ⇒

1,3

4 |=→ K, I [x 7→ψ1][y 7→ψ2], wr |= 〈L〉assertme(x) ⇒
5 |=〈L〉, (wr, u) ∈ RL K, I [x 7→ψ1][y 7→ψ2], u |= assertme(x) ⇒
6 |=Atom V (u, assertme)(ψ1) = 1

V (v, assertme)(ψ2) = 1:

1 Assumption K, I [x 7→ψ1][y 7→ψ2], wr |= assertme(px ∨ yq)
2 (HL-20) K, I, wr |= ∀x∀y(assertme(px ∨ yq)→ 〈R〉assertme(y)) ⇒
3 |=∀, especially for ψ1, ψ2 K, I [x 7→ψ1][y 7→ψ2], wr |= assertme(px ∨ yq)→ 〈R〉assertme(y) ⇒

1,3

4 |=→ K, I [x 7→ψ1][y 7→ψ2], wr |= 〈R〉assertme(y) ⇒
5 |=〈R〉, (wr, v) ∈ RR K, I [x 7→ψ1][y 7→ψ2], v |= assertme(y) ⇒
6 |=Atom V (v, assertme)(ψ2) = 1

V (wr, turnme) = 1 and V (wr, turnyou) = 0:

1 Assumption K, I [x7→ψ1][y 7→ψ2], wr |= assertme(px ∨ yq)
2 (HL-16) K, I, wr |= ∀x∀y(assertme(px ∨ yq)→ turnme) ⇒
3 |=∀, particularly for ψ1, ψ2 K, I [x7→ψ1][y 7→ψ2], wr |= assertme(px ∨ yq)→ turnme

⇒
1,3

4 |=→ K, I [x7→ψ1][y 7→ψ2], wr |= turnme ⇒
5 |=Atom V (wr, turnme) = 1

The argument for V (wr, turnyou) = 0 is as in case 1.d).
2.b.ii) V (wr, assertme)(ψ1 ∧ ψ2) = 1:

The arguments for V (u, assertme)(ψ1) = 1 and V (v, assertme)(ψ2) = 1 are similar to case
2.b.i) using (HL-21) and (HL-22) respectively.
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It remains to show that V (wr, turnyou) = 1:

1 Assumption K, I [x 7→ψ1][y 7→ψ2], wr |= assertme(px ∧ yq)
2 (HL-17) K, I, wr |= ∀x∀y(assertme(px ∧ yq)→ turnyou) ⇒
3 |=∀, particularly for ψ1, ψ2 K, I [x 7→ψ1][y 7→ψ2], wr |= assertme(px ∧ yq)→ turnyou

⇒
1,3

4 |=→ K, I [x 7→ψ1][y 7→ψ2], wr |= turnyou ⇒
5 |=Atom V (wr, turnyou) = 1

The argument for V (wr, turnme) = 0 is identical to 1.d), if we use the instance with me and you
swapped.

4.2.2 Every H -game Satisfies the H -game axioms

Having proved that every adequate H -game model represents a valid H -game tree, when inter-
preted as such, we now show the other direction: that every H -game tree interpreted as H -game
model satisfies the H -game axioms.

Theorem 4.2.5. Every H -game Gϕ,νCL,d = 〈N,E〉 on ϕ over a classical valuation νCL inter-
preted as an H -game model K = K(G) satisfies the H -game axioms (Definition 4.1.6).

Proof. Given that K(G) already is an H -game model by our mapping from Definition 4.2.1, it
remains to show that K satisfies all H -game axioms.

We group the axioms by expressive similarity and explicitly proof that one of the group
holds, since the arguments for the others in the group are analogous.

The symbol (∗) in the justifications marks the transition between H -game model and game.
Let w be an arbitrary world in K, and that lassert(w) = me7:

(HL-1) – (HL-3) K, I, w |= 〈R〉Γ→ [R]Γ:

1 Assumption K, I, w |= 〈R〉Γ ⇒
2 there exists u, s.t.(w, u) ∈ RR, |=〈R〉 K, I, u |= Γ ⇒
3 (∗), by Definition 4.2.1, lmove((w, u)) = R,

lform(w) = ϕ ◦ ψ, ◦ ∈ {∧,∨} ⇒
4 (∗)w has only one outgoing R-labeled edge , |=[R] K, I, w |= [R]Γ ⇒

1,4

5 |=→ K, I, w |= 〈R〉Γ→ [R]Γ

The last step of the proof, corresponds to an→-introduction, known from natural deduc-
tion calculi for various logics, as can be found in most introductory textbooks to logic, for
example Logic in Computer Science chapter 1 [HR04].

From now on we omit explicit explanations regarding the mapping between game tree and
H -game model and insert an Arabic numeral in boldface, for the respective clause of the
H -game definition Definition 3.2.1), in our justifications.

7All arguments are symmetric for lassert(w) = you
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(HL-4) K, I, w |= 〈L〉> ↔ 〈R〉>:

1 Assumption K, I, w |= 〈L〉> ⇒
2 (w, u) ∈ RL, |=〈L〉 K, I, u |= > ⇒
3 (∗), 2 or 3, there is also v, s.t. lmove((w, v)) = R K, I, v |= > ⇒
4 |=〈R〉 K, I, w |= 〈R〉> ⇒
5 |=→ K, I, w |= 〈L〉> → 〈R〉>

The direction 〈R〉> → 〈L〉> is analogous.

(HL-5), (HL-6) K, I, w |= 〈L〉> → [Neg]⊥ :

1 Assumption K, I, w |= 〈L〉> ⇒
2 (w, u) ∈ RL, |=〈L〉 K, I, u |= > ⇒
3 (∗), 2 or 3, there is no v, s.t. lmove((w, v)) = Neg K, I, w 6|= [Neg]> ⇒
4 |=[Neg], |=>, |=⊥ K, I, w |= [Neg]⊥ ⇒
5 |=→ K, I, w |= 〈L〉> → [Neg]⊥

The step from 3 to 4 is justified, by the fact that [Neg]⊥ is only satisfied in a world without
a Neg connection to another world as explained in subsection 2.3.3.

(HL-7) – (HL-9) K, I, w |= terminal→ [R]⊥:

1 Assumption K, I, w |= terminal ⇒
2 (∗), 1, w ∈ N0, there is no v, s.t. lmove((w, v)) = R K, I, w 6|= [R]> ⇒
3 |=[R], |=>, |=⊥ K, I, w |= [R]⊥ ⇒
4 |=→ K, I, w |= terminal→ [R]⊥

(HL-10) K, I, w |= ([L]⊥ ∧ [R]⊥ ∧ [Neg]⊥)→ terminal:

1 Assumption K, I, w |= [L]⊥ ∧ [R]⊥ ∧ [Neg]⊥ ⇒
2 (∗), 1, w ∈ N0 K, I, w |= terminal ⇒
3 |=→ K, I, w |= ([L]⊥ ∧ [R]⊥ ∧ [Neg]⊥)→ terminal ⇒
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(HL-11) K, I, w |= ¬terminal↔ (turnme ↔ ¬turnyou)

1 Assumption K, I, w |= ¬terminal ⇒
2 (∗), |=¬, 2 – 4, there is a u, s.t.(w, u) ∈ E
lform(w) ∈ {ψ1 ∨ ψ2,¬ψ} K, I, w |= turnme or
lform(w) = ψ1 ∧ ψ2 K, I, w |= turnyou ⇒
3 (∗), lturn(w) = me, |=¬ K, I, w |= ¬turnyou or

lturn(w) = you, |=¬ K, I, w |= ¬turnme
⇒
2,3

4 (∗), |=↔ K, I, w |= turnme ↔ ¬turnyou or

|=↔ K, I, w |= turnyou ↔ ¬turnme
⇒
1,4

5 (∗), |=↔ K, I, w |= terminal↔ (turnme ↔ ¬turnyou) or
|=↔ K, I, w |= terminal↔ (turnyou ↔ ¬turnme)

The argument for |=↔ in the last two steps, stems from the fact that there is only one lturn
per non-terminal node and is not purely logic consequence.

(HL-12) K, I, w |= terminal→ ¬turnme

1 Assumption K, I, w |= terminal ⇒
2 (∗), 1, w ∈ N0 K, I, w 6|= turnme

⇒
1,2

3 |=¬, |=→ K, I, w |= terminal→ ¬turnme

(HL-13) – (HL-15) : K, I, w |= ∀x∀y(terminal→ ¬assertme(px ∧ yq))

1 Assumption K, I, w |= terminal ⇒
2 (∗), 1, lform(w) ∈ Atom ,
there are no
ψ1, ψ2, s.t.
lform(w) = ψ1 ∧ ψ2,

V (w, f∧) = ∧ K, I [x 7→ψ1][y 7→ψ2], w 6|= assertme(px ∧ yq)) ⇒
1,2

3 |=¬, |=→ K, I [x 7→ψ1][y 7→ψ2], w |= terminal→ ¬assertme(px ∧ yq) ⇒
4 |=∀ K, I, w |= ∀x∀y(terminal→ ¬assertme(px ∧ yq))

(HL-16) – (HL-18) K, I, w |= ∀x∀y(assertme(px ∨ yq)→ turnme) :

1 Assumption K, I [x 7→ψ1][y 7→ψ2], w |= assertme(px ∨ yq) ⇒
2 (∗), V (w, f∨) = ∨,

2, lturn(w) = me K, I [x 7→ψ1][y 7→ψ2], w |= turnme
⇒
1,2

3 |=→ K, I [x 7→ψ1][y 7→ψ2], w |= assertme(px ∨ yq)→ turnme ⇒
4 V (w, assertme) =
{(ψ1 ∨ ψ2)}, |=∀ K, I, w |= ∀x∀y(assertme(px ∨ yq)→ turnme)

The justification for the last step, lies in the fact that ψ1 ∨ ψ2 is the only formula which
makes the premise true, for all other ϕ ∈ Prop the axiom holds trivially by |=→.
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(HL-19) – (HL-23) K, I, w |= ∀x(assertme(p¬xq)→ 〈Neg〉assertyou(x))

1 Assumption K, I [x 7→ψ], w |= assertme(p¬xq) ⇒
2 (∗), V (w, f¬) = ¬,

4, there is v, s.t.
lmove((w, v)) = Neg,
lform(v) = ψ K, I [x 7→ψ], v |= assertyou(x) ⇒

1,2

3 |=〈Neg〉 K, I [x 7→ψ], w |= 〈Neg〉assertyou(x) ⇒
1,3

4 |=→ K, I [x 7→ψ], w |= assertme(p¬xq)→ 〈Neg〉assertyou(x) ⇒
5 |=∀ K, I, w |= ∀x(assertme(p¬xq)→ 〈Neg〉assertyou(x))

(HL-24), (HL-25) K, I, w |= ∃x(〈Neg〉> → assertme(p¬xq) ∨ assertyou(p¬xq))

1 Assumption K, I, w |= 〈Neg〉> ⇒
2 (∗), lassert(w) = me,
4, there is v, s.t.
lmove((w, v)) = Neg,
lform(w) = ¬ψ,
V (w, f¬) = ¬ K, I [x7→ψ], w |= assertme(p¬xq) ⇒
3 |=∨ K, I [x7→ψ], w |= assertme(p¬xq) ∨ assertyou(p¬xq) ⇒

1,3

3 |=→ K, I [x7→ψ], w |= 〈Neg〉> → (assertme(p¬xq) ∨ assertyou(p¬xq) ⇒
4 ψ is a witness , |=∃ K, I, w |= ∃x(〈Neg〉> → assertme(p¬xq) ∨ assertyou(p¬xq))

(HL-26) K, I, w |= ∀x∀y¬(assertme(x) ∧ assertyou(y))

1 (∗), lassert(w) = me,
V (w, assertyou) = {}, for all ψ K, I [y 7→ψ], w 6|= assertyou(y) ⇒

1,2

2 |=∧, |=¬ K, I [y 7→ψ], w |= ¬(assertme(x) ∧ assertyou(y)) ⇒
3 |=∀ K, I, w |= ∀y¬(assertme(x) ∧ assertyou(y)) ⇒
4 |=∀ K, I, w |= ∀x∀y¬(assertme(x) ∧ assertyou(y))

The justification for the last step stems from the fact that the conjunction remains false,
independently of the value of x.

(HL-27) – (HL-28) K, I, w |= ∀x∀y(assertme(x) ∧ assertme(y)→ x = y)

1 Assumption K, I [x7→ψ1][y 7→ψ2], w |= assertme(x) ∧ assertme(y) ⇒
2 (∗), lform(w) = ψ,

V (w, assertme) = {ψ},
ψ1 = ψ2 = ψ K, I [x 7→ψ][y 7→ψ], w |= assertme(x) ∧ assertme(y) ⇒
3 |== K, I [x 7→ψ][y 7→ψ], w |= x = y

⇒
1,3

4 |=→ K, I [x 7→ψ][y 7→ψ], w |= assertme(x) ∧ assertme(y)→ x = y ⇒
5 |=∀ K, I, w |= ∀x∀y(assertme(x) ∧ assertme(y)→ x = y)
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(HL-29) K, I, w |= winme → terminal:

1 Assumption K, I, w |= winme ⇒
2 (∗), 1, w ∈ N0 K, I, w |= terminal ⇒

1,2

3 |=→ K, I, w |= winme → terminal

(HL-30) – (HL-31) K, I, w |= ∀x(terminal→ ((assertme(x) ∧ true(x))→ winme)):

1 Assumption K, I [x 7→ψ], w |= assertme(x) ∧ true(x)
2 Assumption K, I, w |= terminal ⇒

1,2

3 (∗), 1, w ∈ N0,

νCL(ψ) = 1,
lform(w) = ψ,

lwinme (w) = win K, I [x 7→ψ], w |= winme
⇒
1,3

4 |=→ K, I [x 7→ψ], w |= (assertme(x) ∧ true(x))→ winme
⇒
2,4

5 |=→ K, I [x 7→ψ], w |= terminal→ ((assertme(x) ∧ true(x))→ winme) ⇒
6 |=∀ K, I, w |= ∀x(terminal→ ((assertme(x) ∧ true(x))→ winme))

We have shown that every H -game can be interpreted as an adequate H -game model.

This concludes the proof. H -game axioms indeed capture all necessary conditions for H -
games. All theorems derived from them are automatically valid statements for H -games.

4.3 Adapting the Modeling to a Many-Valued Setting

Just as with the formalization of the evaluation game, the changes needed to expand our mod-
eling to a many-valued context happens in the clauses and axioms for atomic formulas, while
leaving most of the rules for decomposing a formula basically untouched.

One fundamental change, which needs to be expressed syntactically and semantically, is the
introduction of real truth values for formulas. In the classical case we did encode the truth values
into the two unary predicate symbols true1 and false1. This approach cannot be carried over to
a many-valued setting, since we would need to introduce uncountably many predicate symbols
for the truth values.

A more natural translation for the atomic valuation is using a binary predicate symbol
value(x, y) meaning that the interpretation of x as a formula yields the interpretation of y as
its value in the current valuation. This changes our models quite substantially — the domain is
not solely the set of propositional formulas anymore, we need to add the real unit-interval to it.
A system to formalize concepts which need to talk about multiple domains is many-sorted logic
— see the chapter by Manzano [Man93] for an overview and introduction.

In order to stay close to our modeling of the classical game we use the translation of a many-
sorted language (known as relativization of quantifiers) and structure (unification of domains)
into a single-sorted, or first-order language.
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4.3.1 Syntactic Adaptation

By introducing real values for propositional atoms, and explicitly expressing the payoff values
for both players, we need to encode subtraction from 1 into the functional part of our language.

Definition 4.3.1 (functional signature for LHmvG). We add a unary function symbol f1
1− to the

functional signature of LHG8 from Definition 4.1.1.

The modal signature remains identical to the classical case. The predicate signature on the
other hand needs adaptation, akin to the changes of the labeling functions between the classical
and the many-valued version of the game and we need to add the qualification predicates for the
two sorts of elements in our unified domain of reals and propositional formulas.

Definition 4.3.2 (predicate signature for LHmvG). The following unary and binary predicate
symbols are added to the predicate signature of LHG (see Definition 4.1.4):

• prop1

• real1

• value2

• payoff1
me

• payoff1
you.

While the following symbols are removed:

• win0
me

• win0
you

• true1

• false1.

The change from two unary predicates to a binary symbol for the for the possible truth
values, enables us to reason about a constant-sum game in a direct fashion.

We refer to the language over this adapted signature as LHmvG.

4.3.2 H -mv-game Models

Adapting our H -game model from Definition 4.1.7 to a many-valued setting is achieved by
fitting it to the syntactic changes introduced above:

Definition 4.3.3 (H -mv-game model). A Kripke model K = 〈W,wr, {RR, RL, RNeg}, D, V 〉
over LHmvG, is called a H -mv-game model, if:

• the graph 〈W,RR ∪RL ∪RNeg〉 is as defined in Definition 4.1.7.

• D = Prop∪ [0, 1], the union of the set of propositional formulas with the real unit-interval.

• V (w, f1
1−)(r) = 1 − r for all w ∈ W , in addition to the interpretation for the function

symbols from Definition 4.1.7.

8We use the infix notation with small corners on the syntactic level (p1− ·q) here as well.
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• The following clauses are added globally for all worlds to the predicate interpretation:

– V (w, prop)(ϕ) = 1, iff ϕ ∈ Prop, for all w ∈W
– V (w, real)(r) = 1, iff r ∈ [0, 1], for all w ∈W
– The interpretation of the remaining predicate symbols and propositions is restricted

by the axioms and dependent on a concrete game represented by the model.

Let νKZ be a KZ valuation, TV (w, pϕq) = ϕ and TV (w, prq) = r . We say that K reflects
νKZ , if:

K, I, w |= value(pϕq, prq)⇔ νKZ (ϕ) = r

hold for all w ∈W .
All other points from Definition 4.1.7 remain unchanged.

The formal definition of the mapping between H -game trees and H -game models (Defini-
tion 4.2.1) is directly adapted.

Definition 4.3.4 (H -mv-game tree-model mapping). Starting from the mapping for H -game
trees to models (Definition 4.2.1), we drop the items referring to lwinme(u) and lwinyou (u), and
add the following:

• lpayoff me(u) = r, iff (u, r) ∈ V (payoffme)

• lpayoff you (u) = r, iff (u, r) ∈ V (payoffyou)

Additionally references to the classical valuation νCL are replaced by ones for a KZ valuation
νKZ .

4.3.3 Aligning the Axioms

Modifying the H -game axioms is a two-fold process. On the one hand we need to replace the
axioms for the winning conditions by formulas, that capture the payoff for both players.

Therefore we drop axioms (HL-29) – (HL-31) and add the following three formulas:

(HmL-32) ∀x(payoffi(x)→ terminal)

(HmL-33) ∀x∀y((prop(x) ∧ real(y) ∧ terminal)→ ((asserti(x) ∧ value(x, y))→ payoffi(y)))

(HmL-34) ∀x∀y((prop(x) ∧ real(y) ∧ terminal)→ ((asserti(x) ∧ value(x, y))→ payoffj(p1−yq)))

On the other hand we need to modify most present axioms to deal with the extended domain
by binding the occurring variables to represent propositional formulas through the introduced
predicate symbol prop1. Formulas not containing any variables can be taken without modifica-
tion. Thus (HL-1) – (HL-12) are left unmodified. We keep the numbers and the order of the in-
dividual H -game axioms as they are. However, to emphasize the addition of the type-predicates
we refer to them with a HmL prefix. For instance:
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(HL-13) ∀x∀y(terminal→ ¬asserti(px ∧ yq)), becomes

(HmL-13) ∀x∀y(prop(x) ∧ prop(y))→ (terminal→ ¬asserti(px ∧ yq)).

Adding the type-predicates prop1 has to happen for all bound variables in each formula,
forcing them to be evaluated as propositional formulas as intended.

All H -game axioms are in prenex normal form, and all formulas only use either universal
or existential quantifiers. For each occurring variable we add the type-predicates joined with a
conjunction.

For universally quantified formulas we add the necessary type predicates as a premise of
an implication to the axiom, as was done in (HmL-13). Note that if the connective at the root
of an axiom is already an implication, equivalently the guard-clauses can be added as con-
juncts to the premises of the top-most implication. For instance (HmL-13) is equivalent to
∀x∀y((prop(x) ∧ prop(y) ∧ terminal)→ ¬asserti(px ∧ yq)). In the existentially quantified case
we use a conjunction to join the type predicates to the matrix.

Definition 4.3.5 (H -mv-game Axioms). We call the set obtained from (HmL-1) – (HmL-28) in
addition to (HmL-32) – (HmL-34), the set of H -mv-game axioms.

4.3.4 Adequateness Results for H -mv-games

The results obtained in Lemma 4.2.1, Lemma 4.2.2 and Lemma 4.2.3 can be directly transferred
to the many-valued setting. Lemma 4.2.2 is not referring to any axiom containing variables,
and thus the proof remains as is. For the other two it should be obvious that the proof can be
transferred with the changes needed to account for the type-predicates.

However we explicitly show the many-valued version of Lemma 4.2.1 in our introduced
terse representation, to formally show the insignificance of the type-predicates for the result:

Lemma 4.3.1. For every w ∈ W of an adequate H -mv-game model K there is exactly one
formula ϕ for which one of assertme or assertyou holds in w. We show that assertme holds for one
formula.

Proof.

1 ϕ ∈ Prop K, I [x 7→ϕ], w |= prop(x)
2 ψ ∈ Prop K, I [y 7→ψ], w |= prop(y) ⇒

1,2

3 |=∧ K, I [x 7→ϕ][y 7→ψ], w |= prop(x) ∧ prop(y)
4 (HmL-26) K, I, w |= ∀x∀y((prop(x) ∧ prop(y))→

¬(assertme(x) ∧ assertyou(y))) ⇒
5 |=∀ for all ψ1, ψ2 ∈ D K, I [x 7→ψ1][y 7→ψ2], w |= (prop(x) ∧ prop(y))→

¬(assertme(x) ∧ assertyou(y)) ⇒
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6 especially for K, I [x 7→ϕ][y 7→ψ], w |= (prop(x) ∧ prop(y))→
ψ1 = ϕ,ψ2 = ψ ¬(assertme(x) ∧ assertyou(y)) ⇒

3,6

7 |=→, |=¬ K, I [x 7→ϕ][y 7→ψ], w 6|= assertme(x) ∧ assertyou(y)
8 (HmL-28) K, I, w |= ∃x(prop(x) ∧ (assertme(x) ∨ assertyou(x))) ⇒
9 |=∃ there is ϕ ∈ D K, I [x7→ϕ], w |= prop(x) ∧ (assertme(x) ∨ assertyou(x)) ⇒

1,9

10 |=∧ weakening K, I [x7→ϕ], w |= assertme(x) ∨ assertyou(x) ⇒
7,10

11 either K, I [x7→ϕ], w |= assertme(x) or
12 K, I [x7→ϕ], w |= assertyou(x)
13 V (w, assertme)(ϕ) = 1 or V (w, assertyou)(ϕ) = 1, but not both

Only one of the two asserti atomic formulas can hold. Thus only one player is asserting at least
one formula in any given world. The argument, that it is exactly one is shown for i = me, while
referring to the deductions above:

3 ϕ,ψ arbitrary K, I [x 7→ϕ][y 7→ψ], w |= prop(x) ∧ prop(y)
11 K, I [x 7→ϕ], w |= assertme(x) ⇒

3,11

14 |=∧ K, I [x 7→ϕ][y 7→ψ], w |= prop(x) ∧ prop(y) ∧ assertme(x)
15 assume ϕ 6= ψ, |=¬ K, I [x 7→ϕ][y 7→ψ], w 6|= x = y

16 assume

V (w, assertme)(ψ) = 1 K, I [x 7→ϕ][y 7→ψ], w |= assertme(y) ⇒
14,16

17 |=∧ K, I [x 7→ϕ][y 7→ψ], w |= prop(x) ∧ prop(y) ∧ assertme(x) ∧ assertme(y) ⇒
15,17

18 |=→ K, I [x 7→ϕ][y 7→ψ], w 6|= (prop(x) ∧ prop(y) ∧ assertme(x)∧
assertme(y))→ x = y

19 (HmL-27) K, I, w |= ∀x∀y(prop(x) ∧ prop(y) ∧ assertme(x)∧
assertme(y))→ x = y

⇒
18,19

20 |=∀ contradiction to ϕ 6= ψ

As in the modeling of the classical case only one formula is asserted by only one player in each
state.

Theorem 4.3.2. Every adequate H -mv-game model K for a formula ϕ with initial defender d
reflecting a KZ-valuation νKZ corresponds to an H -mv-game for ϕ over νKZ Gϕ,νKZ ,d.

Proof. The argument proceeds by structural induction on the height of TK and is similar to the
proof for Theorem 4.2.4.

For the base case the main focus is showing that the altered labeling functions for the payoff
are as required. However we show all of the following points explicitly, to demonstrate that
the type-predicates do not introduce any fundamental difference. We show the case d = me,
d = you is symmetric:

a) The single formula ϕ for which we have V (w, assertme)(ϕ) = 1 is atomic.
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b) Assuming νKZ (ϕ) = r we have lpayoff me(w) = r and lpayoff you (w) = 1− r.

c) There is no turn label for w, i.e. V (w, turnme) = V (w, turnyou) = 0.

a) V (w, assertme)(ϕ) = 1, for ϕ ∈ Atom . As shown in Theorem 4.2.4 we have V (w, terminal) =
1.
By Definition 4.3.3, we have V (w, prop)(ϕ) = 1, for all ϕ ∈ Prop.

1 K is for ϕ, TV (pϕq) = ϕ K, I, w |= assertme(pϕq)
2 (HmL-13) K, I, w |= ∀x∀y((prop(x) ∧ prop(y))→

(terminal→ ¬assertme(px ∧ yq))) ⇒
3 |=∀ for all pairs ψ1, ψ2 ∈ Prop K, I [x 7→ψ1][y 7→ψ2], w |= (prop(x) ∧ prop(y))→

(terminal→ ¬assertme(px ∧ yq))
4 K is H -mv-game model,

ψ1, ψ2 ∈ Prop, |=∧ K, I [x 7→ψ1][y 7→ψ2], w |= prop(x) ∧ prop(y) ⇒
3,4

5 |=→ K, I [x 7→ψ1][y 7→ψ2], w |= (terminal→ ¬assertme(px ∧ yq)) ⇒
6 V (w, terminal) = 1, |=→, |=¬ K, I [x 7→ψ1][y 7→ψ2], w 6|= assertme(px ∧ yq) ⇒
7 V (w, f∧) = ∧, for all ψ1, ψ2 V (w, assertme)(ψ1 ∧ ψ2) = 0 ⇒

1,7

8 for any ψ1, ψ2 ∈ Prop TV (pϕq) = ϕ 6= ψ1 ∧ ψ2

The formula asserted in w cannot be a conjunction. Equivalent deductions can be made with
(HmL-14) and (HmL-15) to show that it is neither a disjunction nor a negation, leaving only an
atom as possible asserted function.

This proof illustrates that the addition of the type-predicates introduces two further inference
steps — referring to the definition of H -mv-game models to show that V (w, prop)(ϕ) = 1 for
all ϕ ∈ Prop and using that to eliminate the premise of the root implication. It is clear that these
steps can be performed in all inferences used in the proof of Theorem 4.2.4.
b) Assume νKZ (ϕ) = r.

1 ϕ ∈ Prop, TV (pϕq) = ϕ K, I, w |= prop(pϕq)
2 r ∈ [0, 1], TV (prq) = r K, I, w |= real(prq)
3 V (w, terminal) = 1 K, I, w |= terminal ⇒

1,2,3

4 |=∧ K, I, w |= prop(pϕq) ∧ real(prq) ∧ terminal
5 K is for ϕ, TV (pϕq) = ϕ K, I, w |= assertme(pϕq)
6 K reflects νKZ , νKZ (ϕ) = r,

TV (prq) = r K, I, w |= value(pϕq, prq) ⇒
5,6

7 |=∧ K, I, w |= assertme(pϕq) ∧ value(pϕq, prq)
8 (HmL-33) K, I, w |= ∀x∀y((prop(x) ∧ real(y) ∧ terminal)→

((assertme(x) ∧ value(x, y))→ payoffme(y)))
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9 |=∀, for all ψ, r′ ∈ D K, I [x 7→ψ][y 7→r′], w |= (prop(x) ∧ real(y) ∧ terminal)→
((assertme(x) ∧ value(x, y))→ payoffme(y))

10 particularly for K, I [x 7→ϕ][y 7→r], w |= (prop(x) ∧ real(y) ∧ terminal)→
ψ = ϕ, r′ = r ((assertme(x) ∧ value(x, y))→ payoffme(y)) ⇒

4,10

11 TV (w, pϕq) = ϕ,

TV (w, prq) = r, |=→ K, I [x 7→ϕ][y 7→r], w |= (assertme(x) ∧ value(x, y))→
payoffme(y) ⇒

7,11

12 TV (w, pϕq) = ϕ,

TV (w, prq) = r, |=→ K, I [x 7→ϕ][y 7→r], w |= payoffme(y) ⇒
13 |=Atom V (w, payoffme)(r) = 1

Thus the payoff-label, and the value of the game, for me is r. Showing that the value for you is
1− r needs premises from above and refers to the derivation above:

14 (HmL-34) K, I, w |= ∀x∀y((prop(x) ∧ real(y) ∧ terminal)→
((assertme(x) ∧ value(x, y))→ payoffyou(p1− yq)))

15 |=∀, particularly for K, I [x7→ϕ][y 7→r], w |= (prop(x) ∧ real(y) ∧ terminal)→
ϕ, r ∈ D ((assertme(x) ∧ value(x, y))→ payoffyou(p1− yq)) ⇒

4,15

16 TV (w, pϕq) = ϕ,

TV (w, prq) = r, |=→ K, I [x 7→ϕ][y 7→r], w |= (assertme(x) ∧ value(x, y))→
payoffyou(p1− yq)) ⇒

7,16

17 TV (w, pϕq) = ϕ,

TV (w, prq) = r, |=→ K, I [x 7→ϕ][y 7→r], w |= payoffyou(p1− yq) ⇒
18 V (w, f1

1−)(r) = 1− r V (w, payoffyou)(1− r) = 1

The proof for point c) is identical to the one from the proof Theorem 4.2.4, since (HmL-12)
contains no variables.

Most of the argumentation for the inductive step can be readily adapted from the proof for
the classical H -game model.
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The only change, which needs to be shown explicitly is the non-existence of payoff labels
in intermediate worlds. We show it explicitly for negation being the root connective of the
asserted formula. The argument for ∧,∨ is identical: Assume the root-world wr has a single
Neg transition to a world v. This entails K, I, wr 6|= terminal.9

1 V (wr, terminal) = 0 K, I, wr 6|= terminal
2 (HmL-32) K, I, wr |= ∀x(payoffme(x))→ terminal ⇒
3 |=∀, for all r ∈ D K, I [x 7→r], wr |= (payoffme(x))→ terminal ⇒

1,3

4 |=→ K, I [x 7→r], wr 6|= payoffme(x) ⇒
5 |=¬, |=∀ K, I, wr |= ∀x¬payoffme(x) ⇒
6 for all r ∈ D V (wr, payoffme)(r) = 0

We conclude that every H -mv-game model for ϕ reflecting νKZ , which satisfies the H -mv-game
axioms, corresponds to an H -mv-game.

Showing that the many-valued H -mv-games do satisfy the H -mv-game axioms is the last
step missing towards our goal of proving that our axiomatization indeed captures formal evalu-
ation games for KZ-logic.

Theorem 4.3.3. Every H -mv-game Gϕ,νKZ ,d = 〈N,E〉 on ϕ over a KZ valuation νKZ inter-
preted as an H -mv-game model K = K(G) satisfies the H -mv-game axioms.

Proof. K(G) is, by our mapping from Definition 4.3.4, an H -mv-game model (Definition 4.3.3).
It remains to show that K satisfies all H -mv-game axioms.

The axioms (HmL-1) – (HmL-12) remain unchanged from the classical case.
We first show that the new axioms (HmL-32) – (HmL-34) hold, focusing on d = me. The

case d = you is symmetric.

(HmL-32) K, I, w |= ∀x payoffme(x)→ terminal

1 Assumption K, I [x7→r], w |= payoffme(x) ⇒
2 (∗), 1, w ∈ N0 K, I [x 7→r], w |= terminal ⇒

1,2

3 |=→ K, I [x 7→r], w |= payoffme(x))→ terminal ⇒
4 |=∀ K, I, w |= ∀x payoffme(x))→ terminal

The argument for the last inference step is that the implication holds for all domain ele-
ments with V (w, payoff)(d) = 0 by definition of |=→.

9Argument exactly like in item 1.a) in the proof of Theorem 4.2.4.

79



(HmL-33) K, I, w |= ∀x∀y((prop(x) ∧ real(y) ∧ terminal)→
((assertme(x) ∧ value(x, y))→ payoffme(y)))

1 Assumption K, I [x 7→ψ][y 7→r], w |= prop(x) ∧ real(y) ∧ terminal

2 Assumption K, I [x 7→ψ][y 7→r], w |= assertme(x) ∧ value(x, y) ⇒
1,2

3 (∗), 1, w ∈ N0,

r ∈ [0, 1], ψ ∈ Prop,
νKZ (ψ) = r,

lform(w) = ψ,

lassert(w) = me,
lpayoff me

(w) = r K, I [x 7→ψ][y 7→r], w |= payoffme(y) ⇒
2,3

4 |=→ K, I [x 7→ψ][y 7→r], w |= (assertme(x) ∧ value(x, y))→ payoffme(y) ⇒
1,4

5 |=→ K, I [x 7→ψ][y 7→r], w |= (prop(x) ∧ real(y) ∧ terminal)→
((assertme(x) ∧ value(x, y))→ payoffme(y)) ⇒

6 |=∀ K, I, w |= ∀x∀y(prop(x) ∧ real(y) ∧ terminal)→
((assertme(x) ∧ value(x, y))→ payoffme(y))

(HmL-34) K, I, w |= ∀x∀y((prop(x) ∧ real(y) ∧ terminal)→
((assertme(x) ∧ value(x, y))→ payoffyou(p1− yq)))

1 Assumption K, I [x 7→ψ][y 7→r], w |= prop(x) ∧ real(y) ∧ terminal

2 Assumption K, I [x 7→ψ][y 7→r], w |= assertme(x) ∧ value(x, y) ⇒
1,2

3 (∗), 1, w ∈ N0, r ∈ [0, 1],
ψ ∈ Prop, νKZ (ψ) = r,

lform(w) = ψ, lassert(w) = me,
V (w, f1−)(r) = 1− r,
lpayoff you

(w) = 1− r K, I [x 7→ψ][y 7→r], w |= payoffyou(p1− yq) ⇒
2,3

4 |=→, |=→, |=∀ K, I, w |= ∀x∀y(prop(x) ∧ real(y) ∧ terminal)→
((assertme(x) ∧ value(x, y))→ payoffyou(p1− yq))
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It remains to show that (HmL-13) – (HmL-28) are satisfied by an H -mv-game tree, when
interpreted as H -mv-game model:

(HmL-13) K, I, w |= ∀x∀y(prop(x) ∧ prop(y))→ (terminal→ ¬assertme(px ∧ yq))

1 Assumption K, I, w |= terminal ⇒
2 (∗), 1, lform(w) ∈ Atom ,
there are no ψ1, ψ2 ∈ Prop, s.t.
lform(w) = ψ1 ∧ ψ2,

V (w, f∧) = ∧ K, I [x 7→ψ1][y 7→ψ2], w 6|= assertme(px ∧ yq) ⇒
2,3

3 |=¬, |=→ K, I [x 7→ψ1][y 7→ψ2], w |= terminal→ ¬assertme(px ∧ yq)
4 lform(w) = ψ1 ∧ ψ2 ∈ Prop K, I [x 7→ψ1][y 7→ψ2], w |= prop(x) ∧ prop(y) ⇒

3,4

5 |=→ K, I [x 7→ψ1][y 7→ψ2], w |= (prop(x) ∧ prop(y))→
(terminal→ ¬assertme(px ∧ yq)) ⇒

6 |=∀ K, I, w |= ∀x∀y(prop(x) ∧ prop(y))→
(terminal→ ¬assertme(px ∧ yq))

(HmL-25) K, I, w |= ∃x(prop(x) ∧ (〈Neg〉> → assertme(p¬xq) ∨ assertyou(p¬xq)))

1 Assumption K, I, w |= 〈Neg〉> ⇒
2 (∗), lassert(w) = me, 4,
there is v, s.t.
lmove((w, v)) = Neg,
lform(w) = ¬ψ K, I [x 7→ψ], w |= assertme(p¬xq) ⇒
3 |=∨ K, I [x 7→ψ], w |= assertme(p¬xq) ∨ assertyou(p¬xq) ⇒

1,3

4 |=→ K, I [x 7→ψ], w |= 〈Neg〉> → (assertme(p¬xq) ∨ assertyou(p¬xq)
5 lform(w) = ψ ∈ Prop K, I [x 7→ψ], w |= prop(x) ⇒

4,5

6 |=∧ K, I [x 7→ψ], w |= prop(x) ∧ (〈Neg〉> →
assertme(p¬xq) ∨ assertyou(p¬xq)) ⇒

4 ψ is a witness , |=∃ K, I, w |= ∃x(prop(x) ∧ (〈Neg〉> →
assertme(p¬xq) ∨ assertyou(p¬xq)))

From the proof for the two axioms above, we see that the type predicates are satisfied
since the labeling function for the currently asserted formula has Prop as range. (lform :
N → Prop).

We omit explicitly giving proofs for the remaining axioms.

The axiomatization was extended in a straight-forward manner, and the equivalence results
are working just like in the classical setting.
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CHAPTER 5
Conclusion and Outlook

5.1 Reflection and Conclusion

This thesis was originally started in December 2011, the scope and expected main results were
defined and laid out before September 20121. In the time passed until completion, the compara-
tively young and highly active research in the intersection between mathematical fuzzy logic and
game theory, has proved to be very rewarding and has advanced considerably. It even has ma-
tured to a point of deserving a dedicated chapter in the third volume of the Handbook of Math-
ematical Fuzzy Logic [Fer16, CFN16]. We want to highlight the paper by Fermüller [Fer14],
which provides a well laid-out bridge between previous presentations of fuzzy evaluation games
and Giles’ Game along with several extensions. The characterization of the H -mv-game, in the
paper was instructive in closing a few minor gaps in the formalizations specified here.

Initially the work was planned to investigate three logical evaluation games with the appa-
ratus of Game Logic as defined in the Handbook of Modal Logic [BvBW07]. This proved too
broad as the scope of a Master’s thesis and additionally a few technical omissions in the previous
definitions of the evaluation games needed addressing in advance. The logical axiomatization of
the game trees as presented in chapter 4, which in turn resulted in the alignment of our H -games
and H -mv-games with game-theoretical primitives as introduced in chapter 3 is the result of
these adaptations.

The precise definition of the evaluation games as extensive games of perfect information,
along with accompanying notions of strategies, as developed here, is, to our best knowledge,
unique to this thesis, although they were discussed in a more abstract manner in previous work
[vB03, FR12, Fer14]. Introducing negation as a regular move of one player “giving” the for-
mula to the other, has been hinted at in other papers [MC09, Fer14], its definition in context of
formal game trees was accomplished here. The axiomatization of these trees with multi-modal
logic, might seem as a simple and trivial exercise on the first sight, but proved particularly useful
in finding those spots in the definitions, that needed further attention. The extensive and com-

1The author’s career advancements led to an unpredictable interruption for five years.
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prehensive proofs conducted in section 4.2 and subsection 4.3.4 constitutes a large amount of
diligent work. A necessary task, if we hope to generate new knowledge from our axiomatization
for which a master’s thesis provides an adequate setting.

The use of formal logic to get a very deep understanding of a topic, is probably the central
motivation for logic and in no way novel. However, axiomatizing evaluation game trees by using
modal logic along with semantic correspondence proofs is a contribution of this thesis.

The merit of a formal logical axiomatization is expressed very aptly by Pauly and Parikh:

At this point the reader may have the feeling, "If all that logic does is to tell us
a laborious way to find out something we already knew, then aren’t we better off
without logic?"

We offer an analogy to answer this charge which is fair. Suppose you are going
from your house to the nearby drugstore. You do not look at the ground because
you know the way. On arriving at the store you discover you no longer have your
wallet which you did take when you left the house. Now you will go back over the
same route, and you will look carefully at each step on the way. So logic may be
needed when something is lost, or when you need to make sure nothing will be lost.
And then the extra care and the extra labor are worth it.

Moreover, doing a logically correct proof, even an informal one, makes one
realize that objects we use in real life have logical properties and we use them to
ensure the correctness of algorithms. . . .

A logical analysis can reveal hidden assumptions and can put us on our guard
when these assumptions fail. [PP03]

Summarizing we think that this thesis presented us with a good opportunity to apply the
theoretical knowledge acquired during the master’s studies in an exciting field. Working in-
dependently and deciding freely on a concrete presentation of the work, gave insight into the
challenges encountered in theoretical work2. Challenges, that were far less evident during regu-
lar courses with a clear laid out path.

On a final note, we want to point out another very positive development that took place
during the past six years with respect to scientific research, and that probably is not so evident for
people working in science on a daily basis: the amount and quality of scientific resources readily
available on-line has increased significantly over the timespan. Searching for papers, textbooks
and other resources used to constitute a substantial part of the time spent on researching and led
to pay-walls and second-rate copies or long visits to libraries, if the material was available at all.
Nowadays most papers, chapters, or whole books, possibly in a pre-print version are among the
first hits of a web-search. This observation was a particularly pleasant surprise, noticed upon
starting to work on this thesis again.

2A minor example is our design choice of including > and ⊥ into the atomic valuation, since they cannot be
defined by the other connectives in KZ logic.
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5.2 Open Questions and Future Work

As noted above, and as evident in the extensive treatments of mathematical fuzzy logic and
modal logic in chapter 2, this thesis originally had a vaster scope, primarily focusing on game
logic. We use this section to shortly sketch and conjecture a few ideas, that we deem worth
investigating further.

5.2.1 Axiomatizing H -mv-games Using Many-sorted Logic

In the extension of the axiomatization from H -games to H -mv-games undertaken in section 4.3,
we aimed primarily for minimizing the changes to the classical axiomatization. This motivated
the use of type predicates to address the many-sorted nature of the game for KZ-logic. The
conservative approach has its downside in being verbose on the syntactic level, and thus hiding
the straight-forward intuition of having formulas and their values as two separate entities to
model.

A more concise and elegant axiomatization could be achieved by using a many-sorted lan-
guage for the axiomatization, modeling formulas and reals as separate sorts.

The use of many-sorted logic could either be restricted to indexing the quantifiers and the
predicate- and function symbols, preserving the first-order modal satisfiability relation with mi-
nor adaptations.

Alternatively it would also be possible to adapt the approach presented in the textbook Many-
sorted Logics and Its Applications [Man93], which defines truth-values on the meta-level as a
further sort. We feel that this approach would emphasize the difference between truth on the
object level of the evaluation games and truth on the meta level. However, great care needs to be
taken in the translation of the modal component into the many-sorted formalism.

5.2.2 Describing Solution Concepts with Modalities

The modal axiomatization in chapter 4 captures the logical evaluation games trees from chap-
ter 3. A logical axiomatization makes certain implicit assumptions explicit, but it does not
address many fundamental questions, that arise when looking at the games. The prime example
is that the current axiomatization is not expressive enough to reproduce the equivalence result of
the games to Tarski semantics.

The modeling lacks axioms for describing notions like strategies, strategy profiles and means
to compare them with respect to the utility functions. We cannot find the equilibria of the games
or succinctly define a winning strategy.

Two very promising approaches [Bon02, HMvdHW03] for augmenting our formalization
are described with unified notation in chapter 14 of the Handbook of Modal Logic, where the
results presented below are taken from. In both papers game theoretic concepts are directly
represented by modalities.

The first one [Bon02] introduces one modality Ri per player i, which connects a world w
where i is active to all worlds reachable from w. Additionally it has a recommendation modality
R∗ as primitive, used to model the backward-induction vector in a game tree, and thus the path
of the subgame perfect Nash equilibrium. R∗ is a subset of the transitive closure of the union of
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all players’ modalities: R∗ ⊆ RT 3. At each intermediate node a recommendation must be made,
and for (w, u) ∈ R∗ all other paths connecting w and u in RT need to be in R∗. Additionally
they use propositions to model outcomes of the game ui = pi and players preferences (q ≤ p).
With this interpretation the formula:

〈∗〉(ui = pi)→ [i](((ui = qi) ∨ 〈∗〉(ui = qi))→ qi ≤ pi)

describes a subgame perfect Nash equilibrium.
The second paper [HMvdHW03] takes preference relations [i] for each player i, strategy

profiles [σ] and strategy profiles, where one player deviates from a given recommendation [i, σ]
as first-class modalities. The system obtained is called Extensive Game Logic. For a model M
over these modalities a subgame perfect Nash equilibrium (σ) translates to4:

M |=
∧
i∈Pl

(〈i, σ〉[i]ϕ→ [σ]ϕ)

Combining the ideas of these approaches with our modeling seems very promising. For the
first one our axiomatization already provides the needed propositions for the turn indicators —
we need not define the modalities for the players externally. Additionally our signature contains
the predicates and propositions for the payoff of a game.

On the other hand we can also model the recommendation with logic. After all, our logical
evaluation games serve as alternative characterization to logical truth, which is present in the
satisfiability relation of the modal meta logic. In fact an early experiment for our classical
evaluation games already contained the following axioms:

VAL-1) ∀x(true(x)↔ ¬false(x))

VAL-2) ∀x∀y((true(x) ∨ true(y))→ true(px ∨ yq))

VAL-3) ∀x∀y((true(x) ∧ true(y))→ true(px ∧ yq))

VAL-4) ∀x(false(x)→ true(p¬xq))

These could be used to define the recommendation relation from [Bon02] directly within the
formal language. For the H -mv-games the valuation would need to be encoded with functions
symbols (min,max, 1−) instead.

Note that both papers consider only generic games. Logical evaluation games do not belong
to this category; in the game for the formula ϕ ∧ ϕ the players have no preference in which
leaf the game ends. This implies that, at least, the functionality axiom for the strategy profile
modalities needs to be relaxed to partial functionality.

3With RT being the transitive closure of
⋃
i∈PlRi

4M |= ϕ means that ϕ holds in all worlds.
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5.2.3 Axiomatizing Games for Stronger Languages

Our axiomatization were done for classical logic as a familiar field for initial experimentation,
and afterwards extended to KZ logic, due to the pleasant properties of its semantics, and due to
its vast scope of applications. However, Hájeks framework, imposes the question of extending
any result accomplished for KZ logic to a richer logic, or even the class of t-norm based fuzzy
logics.

As indicated in subsection 2.5.3 many approaches for providing game-theoretic semantics
to fuzzy logics exist, and Łukasiewicz logic usually provides the prime focus for the initial
discussion. The rules for the t-norm connectives: strong conjunction, implication, and strong
disjunction need to address the central point that evaluation in propositional Łukasiewicz logic
cannot be directly achieved solely by looking at one atomic subformula.

For the two approaches sketched in subsection 2.5.3, we feel that both should best be ad-
dressed in a many-sorted reformulation of the current axiomatization, although the Hintikka style
game introduced by Majer and Cintula [MC09], that contains a value in addition to a formula in
its states could be axiomatized in our current formulation. Giles Game on the other hand would
profit to a far greater extent from a many-sorted language, since the needed multisets would be
just another type in addition to real values and formulas.

Extending the axiomatization to one for games for first-order fuzzy logic on the other hand
cannot be done in a elegant way in our current first-order modal formalism and would profit
from a stronger typed language.

5.2.4 Implementing the Axiomatization in a Theorem Prover

One extension to the work presented here of particular interest to the author is the implementa-
tion of the axiomatization in chapter 4 in a appropriate tool for automated reasoning.

Since the start of this thesis the list of suitable tools has not only increased, additionally
some of the projects have matured to the state of being considered software packages rather than
a large playing field for experimentation and research5. Six years ago investigating possibilities
to implement the axiomatization presented here would have merited a master’s thesis by itself.
A short investigation carried out now suggests that a straight-forward implementation could be
achieved with significantly less effort.

Our preliminary research shows that modal logic has been implemented in various ways in
at least two renowned proof assistants: Coq6 [BWP15b, DS11] and Isabelle7 [BR13, BWP15a].

The approach of formalizing first-order and higher-order modal logic, by translating it
to higher-order classical logic in Coq as investigated by Benzmüller and Woltzenlogel Paleo
[BWP15b] seems particularly promising as a starting point.

5We were particularly surprised of reading about proving theorems in Coq as a hobby on a well-known CS and
IT news-site: https://www.stephanboyer.com/post/134/my-unusual-hobby.

6https://coq.inria.fr/
7https://isabelle.in.tum.de/
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5.2.5 Decidability Problems

Our axiomatization deals with finite models only, since the propositional formulas are of finite
length, and clearly evaluation of propositional formulas of the two logics is a decidable problem.
However, relating to automatically deducing theorems from our modeling we should consider
the expressiveness of the underlying logic formalism.

Using a normal multi-modal first-order logic for the axiomatization provides us with an
elegant way of expressing all necessary aspects of evaluation game trees. The elegance in ex-
pression comes at the cost of decidability, because most first-order modal logics are undecid-
able [WZ01, Ham16], [BvBW07, chapter 9]8.

Most decidable fragments of first-order classical logic, are not decidable in the modal setting:
the monadic fragment, and the fragment using only two distinct variables of most modal logics
is undecidable. The single variable fragment of some modal logics is decidable9 [WZ01].

Both axiomatizations in chapter 4 belong to fragments which are undecidable: both use
two variables, and only the axiomatization of the game for classical logic contains no binary
predicates.

Some undecidability results involve an interplay of modalities with free variables in a fun-
damental way. The article by Wolter and Zakharyaschev [WZ01] shows that restricting the lan-
guage in a way, that a modal operator has at most one variable in its scope, seems to improve the
situation. Our axiomatization of H -games belongs to this category, however the article analyzes
logic without equality or function symbols.

8Even logics like quantified S5, that has the same complexity as classical logic in the propositional case.
9It is also comparatively weak from a expressibility point of view - quantifiers in that case have the expressive

power of propositional variables and an S45 modality
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APPENDIX A
Notation used

G = 〈Pl,H, Tu, {�i}i∈Pl〉
extensive game of perfect information G, with Pl — the set of players, H as a set of
histories (h is an individual history, consisting of a sequence of actions a ∈ A), Z ⊆ H
are the terminal histories and Tu the turn-function Definition 2.4.2. �i are the preference
relations for each player, u(h) is a payoff function used in place of the preference relations.

σi, τi

strategies of player i in an extensive game σ denotes strategy profiles. o(σ) denotes the
history resulting from a strategy profile.

ϕ,ψ, . . .

arbitrary formulas.

Prop

The set of all syntactically valid propositional formulas.

Atom

The set of all syntactically valid propositional atomic formulas: propositional variables
p, q, p1, . . . and the two constants >,⊥.

νCL, νKZ

valuation for atomic formulas in classical and KZ logic respectively

ν∗CL, ν
∗
KZ

valuation for arbitrary formulas in classical and KZ logic respectively

K = 〈W, {R1, R2, . . .}, D, V 〉
constant domain, modal first-order Kripke-model K with modalities {1, 2, . . .}, domain
D and rigid interpretation V Definition 2.3.3
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I, J

first-order variable valuations Definition 2.1.9

TV

Term valuation function Definition 2.1.11.

Gϕ,νCL,d, Gϕ,νKZ ,d

H -game tree for ϕ over valuation νCL or H -mv-game tree for ϕ over valuation νKZ , with
d as the initial defender Definition 3.2.1.

Γ,∆, . . .
arbitrary formulas used in chapter 4 to distinguish them from elements of the domain.

pϕq, pψq, . . .

terms representing formulas in the axiomatization in chapter 4

lt : N → L / lt : E → L

labeling function for the label-type t with labels ∈ L Definition 2.4.6
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