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There is nothing like looking,
if you want to find something.

You certainly usually find something, if you look,
but it is not always quite the something you were after.

- Thorin Oakenshield, The Hobbit



Kurzfassung
Das Pauli-Prinzip ist ein fundamentales Gesetz in der Physik, welches das Verhal-
ten von fermionischen Teilchen bestimmt. Wegen seiner Wichtigkeit muss es so
präzise wie möglich getest werden. In einem bahnbrechendem Experiment haben
Ramberg und Snow einen elektrischen Strom durch ein Kupfertarget geleitet, und
haben nach Pauli-Prinzip verletzenden atomaren Übergängen von “neuen” Elek-
tronen des elektrischen Stroms gesucht. Da diese Übergänge nur erwartet wer-
den wenn der Strom an ist, kann man mit Hilfe der Differenz der Spektren mit
und ohne Strom ein oberes Limit für die Wahrscheinlichkeit einer Verletzung des
Pauli-Prinzips bestimmen. Das Experiment hat nach verbotenen Kα Übergän-
gen gesucht, welche eine etwas niedrigere Übergangsenergie aufweisen als normale
Übergänge. Dadurch können Photonen von diesen verbotenen Übergängen auf-
grund ihrer Energie identifiziert werden. Das VIP (VIolation of the Pauli Prinici-
ple) Experiment konnte mit dieser Methode ein verbessertes oberes Limit für die
Wahrscheinlichkeit der Verletzung des Pauli-Prinzips von 4.7 × 10−29 angeben.
Das VIP2 Experiment hat zum Ziel, diese Limit zu senken, indem wichtige Kom-
ponenten des Experiments verbessert werden.

Die zentrale Komponente des VIP2 Setups sind Silizium Drift Detektoren (SDDs),
welche Photonen von möglichen verbotenen Übergängen detektieren. Diese De-
tekoren wurden im Labor des Stefan-Meyer-Instituts getestet, zusammen mit der
für die Erzeugung der Betriebstemperatur der Detektoren von 100 K notwendi-
gen Argon Kühlung. Ihre Energie- und Zeitauflösung wurde während dieser Tests
bestimmt. Eine andere zentrale Komponente des Setups sind 32 Plastikszintil-
latoren, die jeweils von zwei Silizium Photoelektronenvervielfachern ausgelesen
werden. Die Zeitauflösung diese Systems wurde bestimmt. Die Plastikszintilla-
toren wurde um die SDDs montiert, um Events in den SDDs, welche von externer
Strahlung verursacht werden, aussortieren zu können. Die Detektionwahrschein-
lichkeit dieses aktiven Vetos für 500 MeV Elektronen wurde an der Beam Test
Facility am Laboratori Nazionali di Frascati (LNF) getestet. Ausserdem wurde
die Detektionwahrscheinlichkeit für kosmische Strahlung am Stefan-Meyer-Institut
untersucht.

Nach diesen Tests wurde das Setup in das Gran Sasso Untergrundlabor (LNGS)
in Italien gebracht. Dort wurden von Februar 2016 bis November 2017 Daten
genommen. Es wurden ungefähr 142 Tage ohne Strom und 81 Tage mit 100 A
Strom aufgenommen. Der Vergleich der Daten mit Geant4 Simulationen zeigte,
dass ein Großteil des Backgrounds durch γ Strahlung von radioaktiven Isotopen
aus dem Gestein der umgebenden Berge kommt. Die Energieauflösung der SDDs
um 8 keV, wo die Pauli-Prinzip verletzenden Übergänge erwartet werden, wurde



für die Spektren mit und ohne Strom gemessen. Verschiedene Analysetechniken
wurde angewendet, um die Wahrscheinlichkeit einer Verletzung des Pauli-Prinzips
aus der Differenz der Spektren mit und ohne Strom zu errechnen. Diese beinhalten
die Standard Technik des Subtraktion der Spektren, einen simultanen Fit der
beiden Spektren und Techniken aus der Bayes Statistik. Aus der Subtraktion der
Spektren im Energiebereich des verbotenen Übergangs folgt ein neues oberes Limit
für die Wahrscheinlichkeit einer Verletzung des Pauli-Prinzips für Elektronen von
1.87 × 10−29. Das ist eine Verbesserung im Vergleich mit dem VIP Experiment
um einen Faktor 2.5.



Abstract
The Pauli Exclusion Principle (PEP) is a fundamental principle in physics, gov-
erning the behavior of fermionic particles. Due to its importance, it needs to be
tested as precisely as possible. In a pioneering experiment, Ramberg and Snow
supplied an electric current to a Cu target, and searched for PEP violating atomic
transitions of “fresh” electrons from the current. As these transitions are only ex-
pected when the current is on, the difference between the spectra with and without
current can be used to set an upper limit for the probability for the violation of
the PEP. Specifically, the experiment searched for forbidden Kα transitions, which
have a slightly lower transition energy than the normal transitions. Photons from
these transitions can therefore be distinguished by their energy. The VIP (VIola-
tion of the Pauli Exclusion Principle) experiment could set this upper limit to 4.7
× 10−29 with the described method. The VIP2 experiment wants to improve this
limit by upgrading crucial components of the setup.

The central component of the VIP2 setup are the Silcion Drift Detectors (SDDs)
which record possible photons from PEP violating transitions. These detectors
were tested in the laboratory of the Stefan Meyer Institute together with argon
cooling, which keep the working temperature at around 100 K. Their energy and
time resolution were assessed during these tests. Another essential component
of the setup are the 32 plastic scintillator bars read out by two Silicon Photo
Multipliers each. The time resolution of this system was successfully tested. It
was installed to veto events in the SDDs caused by external ionizing radiation.
The detection probability of this active veto for 500 MeV electrons was tested at
the beam test facility at Labroratori Nazionali di Frascati (LNF). Furthermore,
the detection probability for cosmic radiation was assessed at the Stefan Meyer
Institute (SMI).

After exhaustive tests, the setup was transported to the underground laboratory
of Gran Sasso (LNGS). Data was taken from February 2016 until November 2017.
An amount of approximately 142 days of data without current and 81 days with
100 A current were taken. Comparison of the data to Geant4 simulations showed
that the majority of the background is induced by γ radiation originating from
radioactive isotopes of the rocks of the mountain. The energy resolution around 8
keV, where events from the PEP-violating transition are expected, was measured
for the spectra with and without current. Several analysis techniques for inves-
tigating the difference of the two energy spectra, and calculating the probability
for a violation of the Pauli Exclusion Principle, were applied. These include the
standard technique of spectral subtraction, a simultaneous fit of both spectra and
methods using Bayesian statistics. The standard analysis of subtraction of the



spectra in a region of interest defined around the expected energy of the forbidden
transition yields a new upper limit of 1.87 × 10−29. This is an improvement to the
value set by the VIP experiment by a factor of 2.5.
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1. Introduction

The Pauli Exclusion Principle (PEP) is a fundamental principle in physics, valid
for identical-fermion systems. It was formulated in 1925 by the austrian physicist
Wolfgang Pauli. It states that two fermions (particles with half integer spin)
can not occupy the same quantum state simultaneously. Examples of fermionic
particles are elementary particles such as quarks, leptons (electron, muon and
tauon) and neutrinos. Composite particles can also be fermions (e.g. protons and
neutrons). Electrons, which make up the electronic shell of atoms, are fermions and
therefore obey the PEP. For the case of electronic shells, the PEP is equivalent to
the statement that two electrons cannot have the same principal quantum number
n, angular momentum quantum number l, magnetic quantum number ml and spin
quantum number ms at the same time. This means that two electrons can share
the quantum numbers n, l and ml, as long as they have different spin quantum
number ms (± ½).

The PEP forms the basis of the periodic table of elements, as it prevents all
electrons in a shell to condense into the ground state. Therefore, it is responsible
for the occupation of the electronic shells and the chemical properties of elements.
It also stabilizes neutron stars, as the neutron degeneracy pressure, which is caused
by the PEP, prevents them from collapsing under their own gravitational pressure.

Due to the fundamental place of the PEP in quantum field theory, many researches
were interested in testing it. In the year 1948, the PEP was tested by Goldhaber
and Scharff-Goldhaber [1]. Their experiment was designed to determine if the
particles making up β radiation were the same as electrons, but it was later in-
terpreted as a test of the Pauli Exclusion Principle. The experiment was done by
shining electrons from a β source onto a block of lead. The authors thought, if
these β particles were different from electrons, they could be captured by the lead
atoms and cascade down to the ground state without being subject to the PEP.
The non-existence of X-rays emitted during this cascading process was used to set
an upper bound for the probability that the PEP is violated. Another test was
conducted in 1988 by E. Ramberg and G. A. Snow [2]. They introduced a current
into a copper conductor. The electrons of the current then had a chance to be
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captured by the copper atoms and form a new quantum state. The experimenters
searched for states having a symmetric component in an otherwise antisymmetric
state. These states were identified by the X-rays they emitted during de-excitation
to the ground state. Photons from these forbidden transitions were identified by
their energy, which is slightly shifted with respect to normal transitions. The same
principle was later employed in the VIP experiment, which was able to set a new
upper limit for the probability for the violation of the Pauli Exclusion Principle
(parametrized in the literature by β2

2 ) of

β2

2 ≤ 4.7 ∗ 10−29

([3], [4]). The follow-up experiment VIP2 was taking data in the Laboratori
Nazionali del Gran Sasso (LNGS) from February 2016 until November 2017 and
is currently (February 2018) undergoing maintenance.

This thesis is organised in the following way. The next chapter 2 explains the
physics of the VIP2 experiment. It includes a short explanation of spin and
fermionic and bosonic statistics, as well as the indistinguishability of identical
particles and its consequences. Furthermore, theories for the violation of Spin-
Statistics will be presented and tests of the PEP will be categorized and explained.
In chapter 3, the VIP2 measurement setup will be explained in detail. This in-
cludes an explanation of the Silicon Drift Detectors (SDDs) as well as the active
shielding system. In chapter 4 follows an analysis of the results of Geant4 simula-
tions. Here, the expected background from γ radiation and from cosmic muons are
evaluated. Furthermore, the detection efficiency for photons from PEP-violating
transitions is calculated.

In chapter 5, the test measurements at Laboratori Nazionali di Frascati and at
the Stefan Meyer Institute are described. Results are presented for the energy and
time resolution of the SDDs and the detection probability of cosmic radiation of
the active shielding, among other things. The following chapter 6 gives details
about the data taking at LNGS and explains the procedure to arrive at the final
SDD energy spectra with and without current. Here, the core part is the energy
calibration procedure from ADC channels into electronvolts. Finally in chapter
7, four different methods are described for calculating a new upper limit for the
probability of a violation of the PEP from these spectra. In chapter 8, important
results are summed up and a short outlook is given.
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2. Physics of the VIP2 experiment

2.1. Physics Basics

2.1.1. The Pauli Exclusion Principle

To explain the spectra of alkali atoms recorded with a magnetic field (Zeemann
effect), Wolfgang Pauli postulated a 4th quantum number for electrons in the early
1920s. The new quantum number was an addition to the quantum numbers already
known at that time, which are nowadays called the principal quantum number n,
the angular momentum quantum number l and the magnetic quantum number ml.
He named it a “two-valuedness not describable classically” [5]. This 4th quantum
number was later called the electron’s spin. Another problem he was working on at
that time was the series of integer numbers 2, 8, 18, 32, etc., which was determining
the lengths of the lines in what we call the periodic table of elements. Furthermore,
it was known to him that the number of electronic energy levels in an alkali atom
were the same as the number of electrons in the closed shell of the rare gas with
the same principal quantum number. He used this information to formulate the
Pauli Exclusion Principle: The number of electrons in closed subgroups can be
reduced to one, if the division of the groups (by giving them values of the four
quantum numbers) is carried so far that every degeneracy is removed. An entirely
non-degenerate level is closed, if it is occupied by a single electron [5]. This is
equivalent to saying that every state corresponding to a set of quantum numbers
n, l, ml and ms can only be occupied by one electron. Wolfgang Pauli won the
Nobel Prize in physics for the formulation of the Pauli Exclusion Principle in 1945.
It was first formulated for electrons, but later on extended to all fermions.

2.1.2. Quantum Mechanical Angular Momenta

From a classical point of view, angular momentum is defined as: ~L = ~r× ~p, where
~L is the angular momentum, ~r is the vector to the particle from the origin and ~p
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is the momentum of the particle. The magnetic moment of a particle with charge
q moving in a circle with radius r is defined as µ = I A. Here µ is the magnetic
moment, A = r2π is the area that the particle’s movement is encircling and I is
the current. The current the particle generates can be written as

I = q

T
= q

2rπ
v

= qv

2rπ , (2.1)

where v is the particle’s velocity and T is the time it needs for one full circle. The
magnetic moment can be written as

µ = IA = qv

2rπr
2π = qvr

2 = q

2mrvm = q

2mL, (2.2)

where q
2m = µ

L
is called the gyromagnetic ratio. For electrons formula 2.2 is often

rewritten in the form

µe = gµB
L

~
with µB = e~

2me

, ~ = 1.054571800(13)× 10−34[m
2 kg

rad s ], (2.3)

where µe is the magnetic moment of the electron, me is the electron mass and
µB is the Bohr magneton. The Bohr magneton is the expected ratio between the
magnetic moment µe and the dimensionless value L

~ . The g-factor parametrizes
deviations from the expected value g = 1, which could arise if, for example for an
arbitrary distribution of electrons, the charge density distribution is different from
the mass density distribution.

In analogy to classical mechanics, the angular momentum can be written in quan-
tum mechanics as a cross product of the position operator x̂ and the momentum
operator p̂: L̂ = x̂× p̂. In position basis this can be written as

L̂ = x̂× p̂ = ~
ı
(~x× ~∇) with ~∇ =


∂
∂x
∂
∂y
∂
∂z

 . (2.4)

In index notation, this operator can be written as follows: L̂i = εijkx̂j p̂k with εijk
being the antisymmetric Levi-Civita tensor. The indices i, j, k correspond to the
three spatial dimensions. L̂i and L̂j do not commute as

[L̂i, L̂j] = ı~εijkL̂k with [X̂, Ŷ ] = X̂Ŷ − Ŷ X̂. (2.5)

Here [X̂, Ŷ ] denotes the commutator of X̂ and Ŷ . For readability, the hats of
operators will be omitted from now on. The entries Li of the angular momentum
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operator commute with the rotationally invariant form L2 = L2
x + L2

y + L2
z. This

operator is the squared norm of the angular momentum. Since Li and L2 commute,
they can be measured simultaneously. This also means that

[Li, L2] = 0. (2.6)

For any given system, the following relations for the eigenvalues of these operators
hold:

Li |φ〉 = ~ml |φ〉 ml ∈ ...− 2,−1, 0, 1, 2, ... , (2.7)

L2 |φ〉 = ~2l(l + 1) |φ〉 l ∈ 0, 1, 2, ... (2.8)

with |ml|≤ l. Considering particles without spin and a Hamiltonian symmetric
under rotations of the form H = p2

2m + V (r) (like the hydrogen atom), the angular
momentum is conserved and commutes with the Hamiltonian

[H,Li] = [H,L2] = [Li, L2] = 0. (2.9)

Therefore, Li and L2 are conserved quantities. For systems without spin, H, L2

and Li form a complete set of commuting observables with the corresponding
quantum numbers n (principal quantum number), l (angular momentum quan-
tum number) and ml (magnetic quantum number). Introducing the rotationally
invariant Coulomb potential V(r) of a positive point charge q

V (r) = 1
4πε0

q

r
, (2.10)

one finds that angular momentum quantum number l always needs to be smaller
than the principal quantum number n (l < n). Only considering a pure Coulomb
interaction, the eigenstates with principal quantum number n belonging to the
eigenvalue En are n2-fold degenerate.

2.1.3. The Spin

The spin is an intrinsic type of angular momentum carried by most elementary
particles. It has a definitive and non-modifiable magnitude for each particle type.
This is in contrast to the section 2.1.2, where the angular momenta, described by
the quantum number l, could change in magnitude. Wolfgang Pauli was the first to
propose the concept of a “two-valuedness not describable classically”, which would
later be identified as spin. Analogous to the relation between angular momentum
and magnetic moment 2.3, the relation between spin and magnetic moment can
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be written as
µs = gµB

S

~
with µB = e~

2m, (2.11)

where µs is the magnetic moment of a particle due to its spin and S is the mag-
nitude of this spin. Unlike for angular momenta described in 2.1.2, the value for g
6= 1. From the Dirac equation, a value of g = 2 can be obtained. Corrections for
example from Quantum Electrodynamics further alter this value on the %-level.

Analogous to equations 2.5 and 2.6, commutation relations can be derived for the
spin:

[Si, Sj] = ı~εijkSk, (2.12)

[Si, S2] = 0, (2.13)

where Si are the spin components in the three spatial directions and S2 is the
squared norm of the spin. Furthermore, analogous to equations 2.7 and 2.8, the
following relations hold for the spin:

S2 |φ〉 = ~2s(s+ 1) |φ〉 s ∈ 0, 1
2 , 1, ... , (2.14)

Si |φ〉 = ~ms |φ〉 | ms |≤ s, (2.15)

where s is the spin quantum number and ms is the spin projection quantum num-
ber. The big difference between s and its analogue l from section 2.1.2 is that s
can also take half-integer values. Another difference is, that s, unlike l, cannot
be changed and is intrinsic for each particle type. Particles with half-integer spin
quantum number are called fermions, and particles with integer spin are called
bosons. In particular leptons, such as electrons, have s = 1

2 and therefore ms can
take the values ± 1

2 . For a system containing particles with spin, n, l, ml and ms

form a complete set of commuting observables. The total angular momentum ~J
can be defined as the sum of the orbital angular momentum and spin ~J = ~L + ~S.
Analogous expressions to equations 2.5 - 2.9 hold for the total angular momentum
~J in systems containing particles with spin.

Considering a particle with s = 1
2 . The basis in which S2 and Sz are diagonal

consists of two states |s,ms〉 = |12 ,±
1
2〉. These states can be identified with the

basis vectors e1 =
(

1
0

)
and e2 =

(
0
1

)
and are often referred to as “spin-up” and

“spin-down” relative to a defined z-direction. The action of operators on these
states is as

S2 |12 ,±
1
2〉 = ~2 1

2(1
2 + 1) |12 ,±

1
2〉 , (2.16)
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Sz |
1
2 ,

1
2〉 = ~

1
2 |

1
2 ,

1
2〉 , (2.17)

Sz |
1
2 ,−

1
2〉 = −~1

2 |
1
2 ,−

1
2〉 , (2.18)

S+ |
1
2 ,

1
2〉 = 0 S− |

1
2 ,

1
2〉 = ~ |12 ,−

1
2〉 , (2.19)

S+ |
1
2 ,−

1
2〉 = ~ |12 ,

1
2〉 S− |

1
2 ,−

1
2〉 = 0. (2.20)

The ladder operators (S±) were used in equations 2.19 and 2.20. A ladder operator
increases (S+) or decreases (S−) the quantum numberms of a state. For an angular
momentum ~J with quantum numbers j and mj it is defined as

J± |j,mj〉 = ~
√

(j ∓mj)(j ±mj + 1) |j,mj ± 1〉 . (2.21)

In the mentioned basis, the operators Sx, Sy and Sz can be written as

Sx = ~
2

(
0 1
1 0

)
, Sy = ~

2

(
0 −ı
ı 0

)
, Sz = ~

2

(
1 0
0 −1

)
. (2.22)

These are the so called Pauli matrices.

2.1.4. Indistinguishability, Symmetrization Postulate and
Superselection Rule

The following section is loosely based on [6]. Considering a state φ = φ(1, 2,..,
i,..., j,...N), where the variables 1,2,... denote the spatial and the spin degrees of
freedom of N particles. The action of the permutation operator Pi,j on this state
is defined as

Pi,jφ(1, 2, .., i, ..., j, ...N) = φ(1, 2, .., j, ..., i, ...N). (2.23)

The indistinguishability of identical particles implies that states that differ only by
a permutation of identical particles can not be distinguished by any measurement.
In quantum mechanics, a measurement is expressed as the expectation value of a
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hermitian 1 operator A. This statement can be expressed for a state φ as

〈φ|A|φ〉 = 〈φ|P †AP |φ〉 . (2.24)

It follows, that the permutation operator commutes with every observable, as it
holds for every state φ and it follows that P †AP = A. Therefore, PA = AP which
implies that the two operators commute. Specifically, the energy of a quantum
mechanical system must not depend on the permutation of identical particles.
From above considerations it follows that

[P,H] = 0, (2.25)

where H is the Hamiltonian.

An infinitesimal time evolution δt of a state is given by the Schrödinger equation

∂t |φ(t)〉 = 1
ı~
H |φ(t)〉 ⇒ |φ(t+ δt)〉 = (1 + δt

ı~
H +O(δt2)) |φ(t)〉 . (2.26)

For a time-independent Hamiltonian H, n→∞ infinitesimal time steps between a
start time t0 and time t give the time evolution operator U(t− t0):

|φ(t)〉 = U(t− t0) |φ(t0)〉 with U(t− t0) = e−
ı
~ (t−t0)H (2.27)

As the permutation operator commutes with the Hamiltonian, it also commutes
with the time evolution operator U :

[P,U ] = 0, (2.28)

because of equation 2.27. Therefore, the permutation symmetry of a state is
conserved. This is called the Messiah-Greenberg (MG) superselection rule. It
is important to note that the above considerations are only viable for systems
where the number of particles is conserved and that the permutation symmetry
of a system is not necessarily preserved in systems with a non-constant particle
number (see for example [7]).

Considering a system of two particles, in which the state φ(1, 2) is a solution of
the Schrödinger equation

H |φ(1, 2)〉 = E |φ(1, 2)〉 . (2.29)

1A hermitian or self-adjoint operator is an operator for which the relation A† = A holds.
The hermitian conjugation † corresponds to transposition combined with complex conjugation. A
hermitian operator has real eigenvalues and eigenvectors for different eigenvalues are orthogonal.
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As the Hamiltonian commutes with the permutation operator, P12 |φ(1, 2)〉 =
|φ(2, 1)〉 is also a solution to this equation with the same Hamiltonian H and
the same eigenvalue E. All linear combinations of these two functions are also
solutions of the equation. The linear combinations |Φ〉 = |φ(1, 2)〉 ± |φ(2, 1)〉 rep-
resent solutions corresponding to positive (+) and negative (-) symmetry with
respect to particle exchange.

The situation is a bit more complex for a system with three particles. Given the
state |φ(1, 2, 3)〉 solves the Schrödinger equation, the linear combination

|φ(1, 2, 3)〉+ |φ(1, 3, 2)〉 − |φ(3, 2, 1)〉 (2.30)

also solves the Schrödinger equation. For an exchange of particles 1 and 2, this
state becomes

|φ(2, 1, 3)〉+ |φ(2, 3, 1)〉 − |φ(3, 1, 2)〉 . (2.31)

The state is not an eigenstate of the permutation operator P12, as it is not the
same as the one given in 2.30. Therefore, not all solutions of the Schrödinger
equation need to be eigenfunctions of the permutation operator. A special case
are the linear combinations with negative

|φ(1, 2, 3)〉−|φ(1, 3, 2)〉−|φ(2, 1, 3)〉+ |φ(2, 3, 1)〉+ |φ(3, 1, 2)〉−|φ(3, 2, 1)〉 (2.32)

and positive

|φ(1, 2, 3)〉+ |φ(1, 3, 2)〉+ |φ(2, 1, 3)〉+ |φ(2, 3, 1)〉+ |φ(3, 1, 2)〉+ |φ(3, 2, 1)〉 (2.33)

symmetry with respect to particle exchange. These linear combinations are called
completely antisymmetric (equation 2.32) and symmetric (equation 2.33). This
means that an application of the permutation operator for any pair of particles
gives a negative or positive sign for the state P |Φ〉 = ± |Φ〉.

For a general system of N particles, the symmetry of different linear combinations
of wave functions are described by Young diagrams (see e.g. [8]). A Young diagram
represents an irreducible representation of the permutation group 2. Examples of
such diagrams of the S3 group are shown in figure 2.1. Each box of a Young
diagram symbolizes a particle and the spatial relation of two boxes symbolizes the
permutation symmetry of the state with respect to the exchange of the particles
in the boxes. Two boxes arranged vertically represent an antisymmetric exchange
symmetry and two boxes aligned horizontally correspond to symmetric exchange

2The permutation group SN is a group whose elements are the permutations of a set with
N elements.
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Figure 2.1.: Young diagrams of the S3 permutation group for antisymmetric (left),
mixed (middle) and symmetric (right) permutation symmetry.

symmetry. From the description of this kind it follows that all states described by a
Young diagram are eigenstates of the permutation operator. In figure 2.1 different
exchange symmetries for systems with three particles are shown. It is important
to note that there is not only the completely (anti-)symmetric exchange symmetry
(left/right side), but also the state with a positive symmetry for the exchange of
one pair of particles and negative symmetry for another pair. This state is called
a mixed-symmetry state.

The symmetrization postulate states that from the three different permutation
symmetries in figure 2.1, only the left and the right ones are realised in nature
[7]. Due to their form they are called the one-dimensional representation of the
permutation group. The usual proof of this postulate is as follows:

From the indistinguishability of identical particles follows that a permutation of
two particles should only multiply the wave function by an insignificant phase
factor eıα with α being a real constant:

P12 |φ(1, 2)〉 = |φ(2, 1)〉 = eıα |φ(1, 2)〉 . (2.34)

One more application of the permutation operator gives

P12P12 |φ(1, 2)〉 = |φ(1, 2)〉 = eıαeıα |φ(1, 2)〉 = e2ıα |φ(1, 2)〉 , (2.35)

or
e2ıα = 1⇒ eıα = ±1. (2.36)

This proof is incorrect, as it is shown in [8]. One argument against this proof is
that the indistinguishability of identical particles only requires the squared norm
of the wave function to be invariant under permutations:

P12 | |φ(1, 2)〉 |2=| |φ(1, 2)〉 |2 . (2.37)

For a function to satisfy this relation it is sufficient that it changes under permu-
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tations as
P12 |φ(1, 2)〉 = eıα(1,2) |φ(1, 2)〉 , (2.38)

where 1 and 2 are the space and the spin coordinates of the two particles. Thus,
the phase factor can be a function of the permutation and of the coordinates.
Therefore, in general, equations 2.35 and 2.36 do not hold. Consequently, the sym-
metrization postulate corresponds to the fact, that only the one-dimensional rep-
resentations of the permutation group, meaning the fully (anti-)symmetric states,
have yet been observed in nature. Nevertheless, the solution of the Schrödinger
equation can belong to any representation of the permutation group, not only the
one-dimensional ones.

2.1.5. Fermions, Bosons and the Spin-Statistics Connection

As mentioned in section 2.1.3, different particle types have different intrinsic spin,
which cannot be altered. As was shown in 1940 by Wolfgang Pauli [9], the spin of
a particle determines which of the two possible representations of the permutation
group it belongs to.

Particles with integer spin (s = 0,1,2, ...) have symmetric wave functions with re-
spect to particle exchange. These particles are called bosons (after Indian physicist
Satyendra Nath Bose). Their corresponding Young diagram is of the type on the
right side of figure 2.1. Elementary bosonic particles are, for example, the force
carrier particles of the strong, weak and electromagnetic interactions: the gluon,
the W and Z bosons and the photon. Another example of an elementary boson is
the Higgs particle. Composite bosons can be made up out of particles with half
integer or with integer spin. An example of a composite boson are mesons, which
are made up out of a quark and an antiquark with s = 1

2 each.

The occupation number of bosons follows the Bose-Einstein statistics. The ex-
pected number of particles in an energy state is in this case:

N(E) = 1
e
E−µ
kT − 1

, (2.39)

where E is the energy of the state, µ is the chemical potential, k is the Boltzmann
constant and T is the absolute temperature. A consequence of this statistics is
that more than one bosonic particle can occupy the same quantum state. The
commutation relations of creation (a†) and annihilation (a) operators for bosonic
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particles in states X and Y are:

[aX , aY ] = 0, [a†X , a
†
Y ] = 0, [aX , a†Y ] = δX,Y . (2.40)

Particles with half-integer spin (s = 1
2 ,

3
2 , ...) have antisymmetric wave functions

with respect to particle exchange. Therefore, changing the position of two particles
multiplies the wave function with a minus sign. These particles are called fermions
(after the italian physicist Enrico Fermi). Their corresponding Young diagram is
of the type on the left side of figure 2.1. Fermions can be elementary particles
like quarks and leptons (e.g. electrons), but also composite particles like neutrons,
protons or even atoms.

The occupation number of fermions follows the Fermi-Dirac statistics. The ex-
pected number of particles in an energy state is in this case:

N(E) = 1
e
E−µ
kT + 1

. (2.41)

As the exponential function is always positive, the expected occupation number
is always smaller or equal to one. This means that any energy state can only be
occupied by one fermion. This is known as the Pauli Exclusion Principle (see also
section 2.1.1).

Furthermore, it can be seen that particles with purely fermionic exchange symme-
try cannot be in the same state by considering a system consisting of two fermionic
particles with two possible states. The unnormalized antisymmetric wave function
is:

|Φa〉 = |φ(1, 2)〉 − |φ(2, 1)〉 . (2.42)

The wave function for the two fermionic particles being in the same state is (in
this case in state 1):

|Φa〉 = |φ(1, 1)〉 − |φ(1, 1)〉 = 0. (2.43)

So the antisymmetric wave function of two particles being in the same state is
equal to zero. Therefore, two fermionic particles can not be in the same state.

The anticommutation relations of creation (a†) and annihilation (a) operators for
fermionic particles in states X and Y are:

{aX , aY } = 0, {a†X , a
†
Y } = 0, {aX , a†Y } = δX,Y . (2.44)

From 2.44 it can be seen that adding or removing two particles from a state results
in zero (as for example {aX , aY } = aXaY + aY aX = 0). Consequently, not more
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than one particle can be in a given state for fermions. The action of these operators
for fermionic particles on the unoccupied vacuum state |0〉 and the state occupied
by one particle |1〉 can be written as

a |0〉 = 0, a |1〉 = |0〉 , a† |0〉 = |1〉 , a† |1〉 = 0. (2.45)

The relation described above between a particle’s spin and its statistics is called
the Spin-Statistics connection.

In the literature many proofs for the Spin-Statistic connection exist (e.g. [9], [10]).
A clear set of assumptions for this proof was presented by Lüders and Zumino in
[11]. The authors present five postulates plus gauge invariance as a foundation of
their proof:

• Invariance with respect to the proper inhomogeneous Lorentz group (which
contains translations, but no reflections)

• Locality: two operators of the same field separated by a spacelike interval
either commute or anticommute

• The vacuum is the state of the lowest energy

• The metric of the Hilbert space is positive definite

• The vacuum is not identically annihilated by a field

It is worth noting that the mentioned proof also holds for interacting fields. An-
other interesting point is that the Spin-Statistics connection does not hold for two
spatial dimensions. The concept of anyons, a class of particles which does not
follow bosonic or fermionic statistics, was presented in [12] in this context.

2.2. Theories of Violation of Spin-Statistics

There have been many attempts to find a theory of quantum mechanics which is
consistent with a violation of Spin-Statistics. Some of the most important ones
will be discussed in the following section.
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2.2.1. Parastatistics

The first proper quantum statistical generalization of Fermi and Bose statistics
was done by Green [13], [14]. He noticed that the commutator of the occupation
number operator of the state X, defined as NX = a†XaX with the annihilation and
creation operators is the same for fermions and bosons:

[NX , a
†
Y ] = δX,Y a

†
Y . (2.46)

As a result, the number operator can be written as

NX = 1
2[a†X , aX ]± + const. (2.47)

The ± sign denotes the (anti-)commutator for the (bosonic) fermionic case. The
expression for the transition operator NX,Y , which annihilates a particle in state
Y and creates a particle in state X, leads to the trilinear commutation relation 3

for parabose and parafermi statistics:

[[a†X , aY ]±, a†Z ] = 2 δY,Z a†X . (2.48)

These relations have an infinite set of solutions, each of them corresponding to an
integer p. The integer p is the order of the parastatistics and gives the number of
particles that can be in an antisymmetric state in the case of parabosons and the
number of particles that can be in a symmetric state in case of parafermions. The
case p = 1 corresponds to normal fermionic or bosonic statistics. It was shown
that the squares of all norms are positive for states satisfying Green’s trilinear
commutation relation. Nevertheless, the violations introduced by these statistics
is large and no precision experiments are needed to rule them out.

2.2.2. The Ignatiev and Kuzmin Model and Parons

In 1987, A. Ignatiev and V. Kuzmin constructed a model of one oscillator with
three possible states: a vacuum state with no occupancy, a one particle state and,
with a small amplitude parametrized by β, a state occupied by two particles [15].
The creation and annihilation operators connect these three states (analogous to
2.45) as:

a |0〉 = 0, a |1〉 = |0〉 , a |2〉 = β |1〉 , (2.49)

3A trilinear form is a function of three arguments, in which every argument enters only to
first order.
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a† |0〉 = |1〉 , a† |1〉 = β |2〉 , a† |2〉 = 0. (2.50)

They were able to give trilinear commutation relations for these oscillators. It is
worth noting that the authors calculated that the oscillations violating the PEP
are suppressed by a factor proportional to β2 compared to oscillations that do
not violate the PEP. These oscillations vanish for β = 0. Following these ideas,
Mohapatra and Greenberg ([14]) described this model as a modified version of the
order-two Green ansatz. They introduced a parameter β giving a deformation of
Green’s trilinear commutators (see 2.48). For β → 1 the relations reduce to those
of the p = 2 parafermi field. For β → 0 on the other hand, double occupancy is
completely suppressed and Fermi theory is obtained. Particles described by this
theory were called parons. A state of two paronic electrons has the probability to
be in a double occupancy state of β2

2 . This model is the origin of the convention
in the literature to parametrize a violation of the PEP by β2

2 . It was shown by
A. Govorkov in [16] that every alteration of Green’s commutation relation (like
the one discussed here) must have states with negative squared norms. Thus, the
model of Igantiev and Kuzmin cannot be extended to become a true field theory
[6].

2.2.3. Quons

The idea of a class of particles violating the Spin-Statistics relation called quons
was described by O. W. Greenberg [17]. The commutator algebra of quons can be
obtained as the convex sum of the Fermi and Bose commutator algebras

1 + q

2 [aX , a†Y ] + 1− q
2 {aX , a†Y } = δX,Y , (2.51)

or
aXa

†
Y − qa

†
Y aX = δX,Y . (2.52)

In equations 2.51 and 2.52 the parameter q was introduced, which interpolates
between a fermionic (q = -1) and a bosonic (q = 1) commutation relation. For
the quonic states to have positive squared norms, this parameter needs to be
within -1≤ q ≤ 1. For q deviating from ± 1, the multidimensional representations
of the permutation group, which correspond to Young diagrams with more than
one row/column, smoothly become more heavily weighted and have a non-zero
probability of being realised. That means that for a state with two particles, for
which only completely symmetric and antisymmetric wave functions are possible,
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a density matrix 4 can be given to represent the mixture of the possible states in
the form:

ρ = 1 + q

2 |φs〉 〈φs|+
1− q

2 |φa〉 〈φa| . (2.53)

For fermionic quons, the factor q would be close to and slightly larger than -1. For
bosonic quons, the factor q would be close to and slightly smaller than 1. When
the theory of quonic fermions is related to paronic fermions, where the probability
of a state with double occupancy is β2

2 , it follows that

β2

2 = 1 + qF
2 ⇒ qF = β2 − 1. (2.54)

Quonic particles clearly violate the Spin-Statistics connection. It is worth noting
nevertheless, that several properties of relativistic theories do hold, like the CPT
theorem for example. But as the Spin-Statistics connection does hold for relativis-
tic theories with the usual properties (see section 2.1.5), some property has to fail.
This is the property of locality. It turns out that in this framework, observables
separated by spacelike separation 5, do not commute.

2.3. Tests of the Pauli Exclusion Principle

2.3.1. Remarks on Testing the Pauli Exclusion Principle

Why should the PEP and thereby the Spin-Statistics connection be tested, if it
can not be violated in a relativistic theory with the usual properties given in [11].
O. W. Greenberg gives in [14] several “external motivations” which could lead to
a possible violation of Spin-Statistics, namely:

• violation of CPT

• violation of locality

• violation of Lorentz invariance

• extra space dimensions

4A density matrix describes a statistical ensemble of several quantum states. This is in
contrast to a quantum mechanical mixture of a pure state, described by a state vector.

5Points with spacelike separation are not connected by a lightcone and are therefore not
causally connected.
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• discrete space and/or time

• noncommutative spacetime

As these items are objects of active research, it is natural to experimentally test
the Spin-Statistics connection. A model for CPT and Lorentz invariance violation
is for example presented in [18]. In the framework of superstring theory, which
includes more than three spatial dimensions, a possible violation of Spin-Statistics
was described in [19]. In quantum-gravity models decoherence effects can lead
to intrinsic CPT violation and to a tiny violation of the PEP [20]. The level of
a possible violation, if it is occurring, is presently unknown. Another important
point when testing the PEP is that one does not search for fermions which are
“a bit” different. If this kind of slightly different fermions would exist, the lowest
order pair production cross section would double [14]. This is clearly ruled out by
experiments. Because of the indistinguishability of identical particles, all fermions
should have the same possibility for an admixture of a symmetric state. This is
reflected in the use of the density matrix for the description of states in the case
of quons.

2.3.2. Experiments for Testing the Pauli Exclusion Principle

According to S. R. Elliott, the various experiments testing the Pauli Exclusion
Principle can be grouped into three classes [21], with respect to the kind of
fermionic interaction they are investigating:

• Type 1: interactions between a system of fermions and a fermion that has
not yet interacted with any other fermion

• Type 2: interactions between a system of fermions and a fermion that has
not yet interacted with this given system

• Type 3: interactions between a system of fermions and a fermion within this
system

These distinctions between different types of interactions are necessary due to
the MG superselection rule (see also section 2.1.4). This rule forbids changes of
the permutation symmetry of a quantum state in a system where the number of
particles is constant. The important difference among these classes is that in a type
3 interaction, the superselection rule forbids a change in permutation symmetry as
the investigated fermions already have a defined permutation symmetry with the
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surrounding system and the number of particles in the system does not change.
Therefore, the outcome of experiments of type 1 and type 2 can not be compared to
the outcome of type 3 experiments. Subsequently the different types of experiments
will be discussed and some examples will be given:

Type 1 experiments:

The typical experiment of this type uses newly created fermions and lets them
interact with the system under investigation. In 1948 Goldhaber and Scharff-
Goldhaber [1] used new electrons from a β source and let them be captured on Pb
atoms. The idea of the authors was that if the particles from the β source are not
subject to the PEP in the electron shell of the Pb atoms, they could cascade to the
ground state and thereby emit photons which would be detected. The lack of these
photons was later used to set an upper limit on the probability for the violation of
the PEP. The fundamental point is that the electrons from the β source have not
yet interacted with any system and are therefore new to the electronic system of
the Pb atoms. As they are new to this system, they do form new quantum states
with the Pb atoms. Forming states with a symmetric admixture is not forbidden
by the MG superselection rule in this case. This is also true if the electronic state of
the atom has previously been in a completely antisymmetric state. Other sources
of recently produced fermions can also be pair-production processes and nuclear
reactions.

Type 2 experiments:

In these experiments, fermions are brought from outside a system to interact with
it. The typical experiment is the one conducted by Ramberg and Snow [2]. In this
experiment, electrons were introduced to a copper conductor via a current. These
current electrons had no previous interactions with the atoms in the conductor and
are considered as “new” to them. Therefore, the same arguments apply as for the
type 1 experiments and the formation of a state with an admixture of symmetric
exchange symmetry between the atoms of the conductor and a conduction band
electron is not forbidden by the MG superselection rule.

In the case of a symmetric admixture in a quantum state formed between an atom
in the conductor and the current electrons, the current electron could cascade to
the 1s ground state, resulting in three electrons in this state. During the cascading
process, photons would be emitted. The lack of detected photons is used to set an
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upper limit on the probability for the violation of the PEP. An interesting point
is the precise origin of the electrons in the conduction band. In an optimal setup,
they are coming from a battery. This would guarantee the newness of the electrons.
The drawback is that a high current is hard to maintain in this way. If the power
of the current source comes from an AC grid the electrons in the conduction band
of the conductor will comprise electrons from the conductor itself and the circuitry
connecting it to the power supply.

An interesting idea was put forward by E. Corinaldesi [22], who suggested that the
PEP is not a kinematic principle but rather a time-dependent effect of interactions
and that newly formed systems may undergo PEP violating transitions, whose rate
decreases with time. This suggestion could be tested with a type 2 experiment.
In [23] it was suggested that this hypothesis can be tested by crossing an electron
and a Ne+ ion beam, and by monitoring potential photons from PEP violating
transitions.

Type 3 experiments:

A type 3 experiment searches for a PEP violating transition in a stable fermionic
system where the number of particles is constant. Notably, the considered systems
need to change their permutation symmetry in order to undergo these transitions.
Therefore, type 3 experiments violate the MG superselection rule and their out-
come can not be compared to type 1 and type 2 experiments.

Nevertheless, many experiments of this kind have been conducted. Pioneers in this
kind of experiment were Reines and Sobel [24]. They were looking for transitions of
L-shell electrons to the already occupied K-shell in iodine atoms. The DAMA/LI-
BRA experiment conducted an analysis of their data regarding the same process
[25]. Nuclear processes were also investigated regarding PEP-violating transitions,
for example in [26] by the Borexino collaboration. The experimenters were looking
for non-Paulian transitions of nucleons from the 1p to the 1s nuclear shell.

Anomalous Structure

Another type of experiment is to look for anomalous nuclear and atomic structures.
In [27] an experiment is reported where atomic states with three electrons in the
K-shell are searched. Non-Paulian atomic states of Be are explored in [28].

Some limits on the probability of a violation of the PEP are summed up in ta-
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Process Type β2

2 limit Reference
anomalous atomic transition 1 3 ×10−2 [1]
anomalous atomic transition 2 4.7 ×10−29 [4]
anomalous atomic transitions 3 1.28 ×10−47 [25]
anomalous nuclear transitions 3 2.2 ×10−57 [26]
anomalous atomic structure Anomalous Structure 2 ×10−21 [27]

Table 2.1.: Limits on the PEP violation probability from different experiments.

ble 2.1.

The most stringent limit prior to the VIP2 experiment in a system circumventing
the MG superselection rule (type 1 + 2 experiments) is set by the VIP experiment
[4]. It has to be stressed again, that the experiments of type 3 can not be compared
with other experiments, as they search for transitions which are not in accordance
with the MG superselection rule. The experimental method of the VIP and VIP2
experiments will be described in the next section.

2.4. The VIP2 Experimental Method

As mentioned in section 2.3.2, the change of the permutation symmetry of a quan-
tum state is not forbidden by the MG superselection rule, when a fermion, which
is new to the studied system (e.g. atom, nucleus), interacts with it. These types
of experiments were classified as type 1 and type 2. To the best of our knowledge,
the most feasible way to introduce a large number of fermions into a system is
by introducing a current into a conductor. The number of electrons introduced
in this way is for 1 A ∼ 1019 per second. While moving through the conductor
with a velocity influenced by the applied electric potential, these electrons have a
certain probability to interact with the atoms in the conductor. Due to this in-
teraction, the electrons from the conduction band can form a new quantum state
with the electrons in the atoms. It is important to mention that the electrons in
the conduction band did not have a defined symmetry with respect to the atomic
electrons before this interaction happens, as they come from the current source
outside of the conductor. The formation of a new quantum state is the reason why
this kind of experiment does not violate the MG superselection rule. After the
formation of a new state, the former current electron can have symmetric permu-
tation symmetry with respect to particle exchange with the other electrons in the
electron shell if the PEP can be violated. This electron sees all the states occupied
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by the atomic electrons as empty and can occupy them. Therefore, it will cascade
down into the 1s ground state of the atom, emitting photons as it loses energy.

Photons, possibly from PEP-violating transitions, are collected for some time close
to the conductor with and without a current flowing through this conductor. As
there are no new electrons introduced to the system during the measurement with-
out current, there are also no photons from PEP-violating transitions expected in
this time. This measurement is used to determine the background in the energy
spectrum. From the difference between the energy spectra in the energy regions
where photons from the PEP violating transitions are expected, the probability
for a violation of the Pauli Exclusion Principle can be calculated, or upper bounds
for this probability can be set.

For the VIP2 experiment the conducting material is copper (Cu). It has the
atomic number 29 and is part of the group 11 in the periodic table of elements,
together with for example silver (atomic number 47) and gold (atomic number
79). A common feature of these elements is that they are good conductors for
electrical currents. Copper has a resistivity at room temperature of 1.68 ×10−8

Ω m, silver has 1.59 ×10−8 Ω m and gold has 2.44 ×10−8 Ω m, making silver the
best conductor of them. Copper was the obvious choice for this experiment, as the
SDD detectors are sensible to X-rays in the energy region of the Cu Kα transition,
which is not true for silver and gold. The mentioned elements are good conductors
due to the unpaired electron in the outermost s-shell. The electronic configuration
for copper for example is [Ar] 3d104s1. The Fermi energy 6 overlaps the 4s orbital
[29]. It is a broad band 7 which resembles the dispersion relation of free electrons.
At finite temperature the electrons of the 4s orbital can move freely in this band
(i.e. change their momentum) and be the carrier of the current.

The energies of the PEP violating cascading process were calculated for copper
atoms in [30] using a self-consistent multiconfiguration Dirac-Fock (MCDF) ap-
proach. In this case self-consistent is best explained with the help of figure 2.2.
It means after calculating the potential from a charge density at any step and
solving the Schrödinger equation with it, the charge density calculated from the
Schrödinger equation needs to be the same as the initial charge density. The term
“multiconfiguration” comes from the fact that the total wave function is described
as a linear combination of configuration state functions, which are related to a
specific configuration of electrons. Using the Dirac-Fock approach as opposed to

6The Fermi energy is the energy of the highest occupied energy state of a system at a
temperature of 0 K.

7An energy band in a solid is a region of allowed states in a E(~k) diagram. Here E is the
energy and ~k is the wave vector.
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Figure 2.2.: A self-consistent algorithm for calculating the energy of atomic states.

the Hartree-Fock means that relativistic effects are accounted for. The relativistic
Breit-Dirac Hamiltonian is used, which takes into account all electromagnetic in-
teractions of spin 1

2 particles, including spin-orbit coupling and retardation effects.
Furthermore, the Lamb shift and radiative corrections (vacuum polarization and
self-energy) are included. In the whole procedure the “no pair” approximation is
applied which explicitly excludes electron positron pairs.

The original code for this calculation, which was later adapted for the use of the
VIP2 experiment, was described in [31]. The code is available on the website [32].
It calculates the energies of atomic states in an electronic shell in which all but one
electron have antisymmetric exchange symmetry. These states violate the PEP.
The working principle of the calculation was described as a three step process in
[33]:

• Step 1: The functional form of the wave function is selected and defined
as a linear combination (using a number of parameters) of certain functions
(mostly hydrogen-like wave functions).

• Step 2: An expression for the total energy is derived in terms of these func-
tions and parameters.

• Step 3: The variational principle is applied and equations are derived for the
valid solutions that are the functions that leave the total energy stationary.
In this step self-consistency is checked.

The total wave function must then also obey the Hartree-Fock assumptions, mean-
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ing that the wave function is antisymmetric, with the exception of the one electron
which has a symmetric exchange symmetry. Furthermore, the total wave function
needs to be an eigenfunction of the L2, Lz, S

2 and Sz operators. The main uncer-
tainty in the calculation is not the atomic calculation itself, but effects from the
environment of solid state copper. The results of these calculations for copper are
summed up in table 2.2.

Transition
Transition

energy - PEP
violating (eV)

Transition
energy -
normal
(eV)

Radiative
transition
rate (s−1)

Energy
Difference

(eV)

2p 3
2
→ 1s 1

2
(Kα1)

7747 8048 2.64 ×1014 301

2p 1
2
→ 1s 1

2
(Kα2)

7729 8028 2.57 ×1014 299

3p 3
2
→ 1s 1

2
(Kβ1)

8532 8905 2.68 ×1013 373

Table 2.2.: Transition rate and energies for PEP violating transitions in copper
calculated with the MCDF algorithm [30]. In the last column, the
calculated energy difference between normal and PEP-violating transi-
tions is shown.

It is interesting to note, that the rate of forbidden transitions is highest for the
Kα1 transition, similar to the rate of normal transitions, even though the difference
is not as high. This is why for future calculations the energy value of the PEP
forbidden Kα1 line of 7747 eV will be used. Furthermore, as the transition rate of
the Kβ is lower by one order of magnitude, the primary focus of the analysis will
be on the Kα transitions. Due to the angular momentum selection rules 8, the 2s
- 1s transition is forbidden, which also holds true for PEP forbidden transitions.

The difference in the transition energies between the normal K-lines and the PEP
forbidden K-lines listed in table 2.2 can be illustrated with figure 2.3. On the left
side of the figure a normal 2p to 1s transition is shown. In this transition an electron
from the 2p shell fills a vacancy in the 1s ground state, thereby losing 8048 eV of

8The conservation of angular momentum demands |Ji − Jf | ≤ λ ≤ Ji + Jf , where Ji,f are
the initial and final total angular momenta and λ is the photons angular momentum. λ =
0,1,2,.. for electric and magnetic monopole, dipole, quadrupole, ... transitions. The change of
parity for electric transitions is (-1)λ and for magnetic transitions it is (-1)λ+1, which ensures
the conservation of overall parity. The parity of a state is (-1)L, so it does not change from 2s to
1s. As for electric dipole transitions the parity needs to change, it is electric dipole forbidden.
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Figure 2.3.: Scheme of normal 2p to 1s transition (left) and a 2p to 1s transition
which is violating the PEP (right).

energy in the form of a photon. On the right side the corresponding PEP violating
transition is shown. The electron undergoing the transition cascades down from
the 2p into the 1s shell, but in this case, the 1s shell is occupied with two electrons.
This is only possible because of the symmetric admixture in the symmetry of the
wave function. The two electrons in the 1s ground state shield the core potential
more than the one electron in the case of the normal transition. Thereby they
reduce the effective nuclear charge, which causes the transition energy to be lower
for this transition. In the case of the Kα transition for copper, the difference in
energy is around 300 eV.
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3. The VIP2 Measurement Setup

As mentioned in chapter 2, the core functionality of the VIP2 experiment is to
measure energy spectra in the energy region where the PEP violating Kα transi-
tion is expected. For this purpose Silicon Drift Detectors are used. They offer an
energy resolution good enough to separate the possible PEP-violating Kα tran-
sitions from the normal transitions, which are 300 eV more energetic in copper.
Furthermore, the SDDs offer a time resolution < 1 µs, which allows the use of an
active shielding system, consisting of 32 plastic scintillator bars arranged around
the copper target and the SDDs. The scintillation light output is read out by
Silicon Photomultipliers. The working temperature of the SDDs is around 100 K.
Their temperature is kept constant by a system composed of a helium compressor
liquefying argon, which in turn cools the detectors. A data acquisition and a slow
monitor system are in place to collect data and monitor crucial parameters of the
experiment. The SDDs and the active shielding system are mounted inside a 55
cm × 40 cm × 32.8 cm vacuum chamber made out of 15 mm thick AlMg4,5Mn.
A schematic drawing of the experiment is shown in figure 3.1. All the components
of the setup will be described in detail in the following sections.

Figure 3.1.: Schematic drawing of the VIP2 experiment.
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3.1. Silicon Drift Detectors and Copper Target

Silicon Drift Detectors are used in the VIP2 experiment as X-ray detectors. They
are mounted as close as 5 mm away from the Cu target in the setup, to maximise
solid angle coverage.

The Cu target consists of two strips with a length of 7.1 cm, a width of 2 cm and a
thickness of 50 µm. The strips are connected to a current supply via Cu connectors.
Between the two strips runs a water cooling line made out of stainless steel (supply
tubes) and aluminum (cooling pad) to keep them at a constant temperature even
with a high current flowing through them. The water cooling pad is attached
to the Cu strips by non-conductive thermal glue. One SDD array with three
individual cells is mounted on each side of the target strips. The SDDs detect
possible photons from PEP violating transitions in the Cu target introduced by
the high current flowing through this target.

3.1.1. Working Principle

The working principle of Silicon Drift Detectors is based on sideward depletion,
which was first introduced in [34]. A schematic drawing of an SDD used for the
VIP2 experiment is shown in figure 3.2. On a cylindrical n-type 1 silicon wafer

Figure 3.2.: Scheme of a Silicon Drift Detector [35].
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circular p+-type silicon contacts are implanted on one flat surface. These contacts
are used to apply an increasing reverse bias in order to fully deplete the wafer. The
radiation entrance window is on the opposite side of the concentric contacts and
consists of a homogeneous shallow junction, which gives homogeneous sensitivity
over the whole surface. When photons or charged particles hit the silicon wafer,
electron-hole pairs are generated. The free electrons fall to the lowest point of the
potential produced by the concentric electrodes. This lowest point is the anode
consisting of a ring close to the middle of the wafer. The amount of electrons
generated in the wafer and collected by the anode is proportional to the energy
of the radiation. By measuring the amount of charge collected this energy can be
determined. The small size of the anode ensures a small anode capacitance, which
is almost independent of the size of the detector [36] and only proportional to the
anode’s size. As some sources of noise are proportional to the capacitance [37],
this reduces the noise and allows shorter shaping times 2, which in turn allows
high count rates. As a first stage of amplification, a field effect transistor (FET) 3

is integrated in the chip and connected to the anode by a metal strip. Thereby the
capacitance between detector and amplifier is minimised and electric pickup noise
is mostly avoided. The anode is discharged continuously. This avoids regular dead
times of the detector by a repeating reset mechanism.

3.1.2. SDD Specifications for the VIP2 Experiment

The manufacturer of the employed detectors (PNSensors) produced a manual, from
which the information in this section is reported [35]. The SDDs employed in the
VIP2 experiment consist of two arrays with three detector cells each. Each cell
has an active area of 1 cm2 shaped like a “rounded square” with a diameter of 10.3
mm and a corner radius of 2 mm. The maximum drift path length for electrons
originating in a corner is 6.4 mm. The cells have a thickness of 450 µm, which
ensures an absorption of ∼ 99 % of 8 keV (Cu Kα line) X-rays. The three cells
in an array share a common outermost strip (Rx), a common bulk contact (outer
substrate - Os) and common guard ring systems on both sides of the chips. Each
cell has a readout structure in its center and individual back contact (Bc) and
separation mesh (back frame, Bf) contacts. The bonding and the way the voltages

1n-type semiconductors are doped with elements that are pentavalent, like phosphorus. This
results in an excess of electrons. p-type semiconductors are doped with trivalent elements like
boron, which results in an excess of holes.

2Long shaping times can be used in order to cancel out noise.
3A field effect transistor controls the conductivity between the source (S) and the drain (D)

via an electric field between the body and the gate (G) of the device.
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were adjustable were modified slightly for the VIP2 experiment, with respect to
the scheme reported in [35]. The important contacts and the way the respective
voltages are adjustable (all SDDs common, all SDDs in an array, each individual
SDD cell) are shown in table 3.1. Plots of the front and the back side of the arrays
are shown in 3.3 and 3.4. There is a total number of 74 concentric electrodes,

Figure 3.3.: Front side of the SDD array of the VIP2 experiment [35].

Figure 3.4.: Back side of the SDD array of the VIP2 experiment [35].

where the innermost 23 are circular and the ones closer to the outside are linear in
vertical and horizontal direction with rounded edges. The first and the last ring
are biased externally, the others are connected via a resistive voltage divider.

The detectors are mounted on a ceramic material made out of aluminum oxide
for bonding. This material has low electrical and a high thermal conductivity.
The mounting frame is made out of aluminum. As the transition energy of a Kα
transition in aluminum is around 1.5 keV, X-rays in the energy region around 8
keV which is interesting for VIP2 can be avoided by this choice of the material.
The SDDs together with their support structure, readout and cooling are shown
in figure 3.7.
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Contact Name Abbreviation Bonding Nominal Value [35]
Outermost strip Rx Common -240 V
Innermost strip R1 Common -15 V
Outer substrate Os Common GND
Inner substrate Is Common GND

Entrance Window Bc Cell -120 V
Separation Mesh Bf Array -140 V

Table 3.1.: Some important contacts of the Silicon Drift Detectors used for the
VIP2 experiment.

3.1.3. Silicon Drift Detectors Performance Characteristics

The energy and time resolution, as well as scale linearity, are crucial factors in the
performance of the SDDs. The possibility of a high event rate would be another
point to consider, but as this is not an issue for the VIP2 experiment with count
rates of ∼2 Hz, this point will not be discussed.

The detector linearity is the ratio between produced electron-hole pairs and de-
posited energy, as a function of energy. If the whole energy of the incident ra-
diation is deposited in the detector and no losses occur during the charge trans-
port, the number of electrons arriving at the anode only depends on the energy.
Consequently, the detector response should be perfectly linear, assuming a linear
response of the readout system.

An advantage of semiconductor detectors with respect to gaseous detectors is the
lower energy needed to create an electron-hole pair. At 77 K, this energy is 3.81
eV [37] for silicon, which is independent of the type and energy of the incident
radiation. The amount of charge carriers produced by the same radiation will
therefore be one order of magnitude higher than in gaseous detectors. Therefore,
semiconductors provide a greatly enhanced energy resolution. On the other side,
the energy resolution is limited by noise. One part is the so-called Fano noise. It
results from a non-constant amount of electron-hole pairs produced for different
events with the same energy. The Fano factor F is defined as:

F = σ2

µ
(3.1)

Here σ2 is the variance of the number of produced electron-hole pairs and µ is the
average of the number of electron-hole pairs. It is not dependent on energy and for
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silicon the value is estimated to be F = 0.12 [37]. Another source of noise is the
leakage current, which is a small fluctuating current flowing through semiconductor
junctions in case of an applied voltage. The fluctuation in the current appears as
noise in the detector. One source of leakage current are thermally created electron-
hole pairs originating from recombination and trapping centers in the depletion
region. These centers result from impurities in the crystal. This part of the noise
can be suppressed by lowering the temperature. Another source of leakage current
are surface currents.

In order to have the possibility of an in-situ energy calibration, a 10 µCi (3.7 ×
105 Bq - measured in 2005) Fe-55 source 4 is installed in the VIP2 setup. The
photons from the source hit the SDDs directly and also induce Kα transitions
in a titanium foil, which is located between the source and the detector. These
two photon sources enable continuous calibration of the energy scale and thereby
minimize peak drift effects and optimize the energy resolution.

The time resolution of the SDDs is determined by the drift time of the electrons
from their origin to the anode. In [35] the maximum drift time at 150 K for the
type of detector used in the VIP2 experiment is estimated to be 600 ns. Due
to the temperature dependence of the electron mobility (e.g. increased phonon
scattering), the time resolution generally deteriorates with rising temperature. The
measured performance characteristics of the SDDs used in the VIP2 experiment
will be discussed in chapter 5.

3.2. Active Shielding

The active shielding system has the purpose of rejecting SDD events caused by
external radiation (e.g. from cosmic radiation). This means that whenever a
signal in the SDDs is in coincidence with a signal from the scintillators, it can be
rejected. The active shielding consists of 32 scintillators read out by two Silicon
Photomultipliers (SiPMs) each, which are assembled around the copper target and
the SDDs. A render of the setup including the active shielding system enclosing
the target is shown in figure 3.5.

4An Fe nucleus with 26 protons and 29 neutrons decays via electron capture to Mn-55 with
a half-life of 2.737 years. This results in the emission of a photon or an Auger electron.
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Figure 3.5.: Render of the active shielding system of the VIP2 experiment consist-
ing of 32 scintillators (left). The scintillators can be grouped into an
“outer” and an “inner” layer of 16 scintillators each (right).

3.2.1. Scintillators

Scintillators are materials that emit photons after they are hit by ionizing radi-
ation. The scintillators used in the VIP2 experiment are plastic scintillator bars
of the type EJ-200 produced by Eljen Technologies. Their dimensions are 38 mm
× 40 mm × 250 mm. The base polymer is polyvinyl toluene and the flour is
anthracene [38]. When ionizing radiation passes through the scintillator, electrons
in the valence band in so-called molecular orbits are excited [37]. Subsequently
the excited states loose their energy via the emission of a photon, typically in the
UV range. A flour is suspended in the polymer matrix to absorb the UV radiation
and re-emit it at visible wavelengths. The wavelength of maximum emission for
the scintillators used in VIP2 is 425 nm (blue light) and their pulse width is 2.5 ns
(FWHM) [38]. The scintillation material has a refractive index of 1.58, meaning
that total internal reflection can occur for photons with a flat impact on the sur-
face. Nevertheless light can also escape the scintillator if the impact angle is too
steep. To increase the light collection on the SiPMs, the scintillators were wrapped
in reflective aluminum foil to reflect stray photons back into the scintillator, while
leaving a small air gap in between the foil and the scintillator. To minimize the
influence of photons from the environment (i.e. ambient light) hitting the SiPMs,
a layer of black tape was wrapped around the aluminum foil.

31



3.2.2. Silicon Photomultipliers

A Silicon Photomulitplier consists of an array of semiconductor pn junctions work-
ing in reverse bias mode. For the VIP2 experiment, we use the 3 × 3 mm2 ASD-
SiPM3S-P50 SiPMs manufactured by AdvanSiD. On one end of each scintillator
bar, two SiPMs are attached with optical glue and connected in series. As the
probability of correlated dark counts in both SiPMs is suppressed compared to
reading a single detector, the signal to noise ratio can be improved in this way.
One SiPM consists of 3600 sequentially connected Silicon avalanche photodiodes
(APD) with an area of 50 × 50 µm each. All of them are operated in Geiger mode
(an analogy to the Geiger counter), meaning that the reverse bias voltage is higher
than the breakdown voltage 5. In this mode, the generation of one charge carrier
causes an avalanche of charge carriers due to impact ionization. The first charge
carrier can be produced by an incident photon undergoing the photoelectric effect.
In the case of the VIP2 experiment, this photon comes from the scintillator. The
energy of the optical photons from the scintillator (425 nm ∼ 2.9 eV) is enough
to generate an electron-hole pair. The spectral response range for the SiPMs used
for VIP2 is 350 nm - 900 nm [39], overlapping with the photon spectrum of the
scintillator.

The time resolution of a system of a scintillator read out by SiPMs is typically on
the order of a few ns. This means that it is small compared to the time resolution
of the SDDs, which is in the order of a few 100 ns.

3.3. Cooling System

The Silicon Drift Detectors used for the VIP2 experiment have a working tem-
perature of around 150 K [35] or lower. To reach this temperature, a system of
a helium compressor coupled to a pulse-tube refrigerator is used with helium gas
as working medium. The cooling power produced by this system liquefies argon,
which evaporates and cools the detectors down.

A CNA-21A helium compressor from SHI (Sumitomo Heavy Industries) cryogenics
is used. This compressor receives ∼ 9.8 bar helium gas at room temperature from
the cold head. This gas is then compressed to ∼ 22 bar and cooled back down
to room temperature after it was heated due to the compression. The compressor

5The breakdown voltage of a diode is the minimum reverse bias voltage to make the diode
conductive.
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is air-cooled meaning the helium gas flows through a heat exchanger after com-
pression which is cooled with ambient air. The high pressure helium gas at room
temperature is then supplied to a pulse tube refrigerator. The working principle of
this type of refrigerator is shown in figure 3.6. The high pressure helium gas is con-

Figure 3.6.: Schematic drawing of a pulse tube refrigerator [40].

nected to the RP-2620A coldhead which is also manufactured by SHI - cryogenics.
The cold head has a valve on its side close to the helium compressor. This valve
connects the refrigerator to the high and the low pressure side of the compressor
in an alternating way. Coming from the high pressure side of the compressor,
the gas first hits a regenerator at a high temperature (∼ room temperature) TH .
After the regenerator, there is a heat contact XL to the medium to be cooled at
the lower temperature TL. Subsequently the pulse tube follows where the gas is
thermally isolated (adiabatic) and therefore the temperature of the gas depends
on its pressure. After the pulse tube a thermal contact to the surroundings is
installed. The pulse tube is coupled to a gas reservoir via a flow resistive valve.
The heat exchangers, the regenerator and the pulse tube are suspended in vacuum
of ∼ 10−5 - 10−6 mbar.

When the high pressure helium gas flows through the regenerator, it is cooled
down to TL, thereby transferring heat to the regenerator. The gas enters the pulse
tube at TL. Then the pressure is switched to the low pressure side of the helium
compressor, which is around 10 bar in our case, and the gas flows out of the tube.
But due to the lower pressure, the temperature in the tube is now lower than
TL. The gas now flows through the thermal contact XL. It cools the contact and
thereby effectively cools the argon gas, with which XL is in thermal contact. The
helium gas then flows through the regenerator at TL, whereby it transfers the heat
that was stored in the regenerator back to the gas. The opposite effect occurs
at the temperature TH at X3, where heat is dissipated to the environment. The
coefficient of performance (ratio between cooling power and compressor power) for
an ideal pulse tube refrigerator is TL

TH
, which is lower than the one of a Carnot

process TL
TH−TL

due to losses in the valve [40].

The cooling power of the pulse tube refrigerator at XL is used to cool down an
aluminum target through which the argon gas flows. The argon condensates and
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flows down a pipe which runs past the SDDs, cooling them to their working tem-
perature. Thereby the argon evaporates. Afterwards it is cooled again by the
pulse tube refrigerator. A picture of the SDDs with the argon cooling line and a
readout board is shown in figure 3.7.

Figure 3.7.: The SDDs with the argon cooling line and the readout board.

The cooling of the pulse tube refrigerator is counteracted by a heating wire con-
trolled by a LakeShore 331 temperature controller. This is done in order to be able
to control the temperature of the argon by adapting the heating power. Changes
in argon temperature can in this way be compensated with the PID (Proportional
Integral Differential) control of the LakeShore 331 on a very short timescale. The
vacuum needed to maintain the necessary cryogenic temperatures is maintained
by two turbo pumps connected to a common prepump.

3.4. Data Acquisition and Slow Control Systems

3.4.1. Signal Readout and Data Acquisition

After a first stage of amplification in the preamplifier board in the vacuum cham-
ber, the signals of the six SDDs go into a programmable CAEN 568B spectroscopy
amplifier. The fast “FOUT” signal of the amplifier goes to a discriminator to make
a trigger. An OR of all six discriminated SDD signals is going to a CAEN V1190B
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TDC (Time to Digital Converter), which stores the arrival time of this signal. The
“OUT” output of the amplifier, which has adjustable gain, is used for spectroscopic
signal analysis. The spectroscopic signal is fed into a CAEN V785 peak sensing
ADC (Analog to Digital Converter) for digitalizing the signal. This ADC stores a
value proportional to the peak height of the incoming signal.

The signal from the two SiPMs from each of the 32 scintillators is amplified in a
preamplifier board in the vacuum chamber. The analog signal is split thereafter,
with one part going to a programmable Constant Fraction Discriminator (CFD) to
make a timing signal in the TDC and to make the the trigger, and the other going
to a CAEN V792 QDC (Charge to Digital Converter). The QDC integrates the
signal in each channel and stores a value proportional to this integrated charge.
Referring to figure 3.5, the 32 scintillators can be grouped into one “outer” and
one “inner” layer, and more specifically into eight sub-layers with the indication
of their position relative to the target (e.g. “top outer” layer indicates the eight
scintillators above the target, which are closer to the setup box). A signal of one
of these layers is an OR of all the discriminated SiPM signals in this layer. The
discriminated signal of each of these eight sub-layers and an AND of the outer and
inner layer is sent to the TDC.

The digital signal from the discriminators is used to make a trigger for the TDC,
ADC and QDC modules. The trigger logic is shown in figure 3.8. It consists of
the OR of all six SDDs making an OR with the inner AND outer scintillator layer.
The AND of the inner and outer scintillator layer is designed to trigger mainly

Figure 3.8.: Trigger definition of the VIP2 experiment.

on cosmic radiation, but also on any other radiation which produces a detectable
signal in both of these layers. The OR of the SDD signals includes every SDD event
above an energy threshold of approximately 1-2 keV, depending on the SDD. From
the arrival times of the signals from the SDDs and the scintillators in the TDC,
the time correlation of both of these systems can be examined.

The data from ADC, QDC and TDC are read out via a CAEN V2718 VME - PCI
bridge to a CAEN A2818 PCI controller. A LabView program is communicating
with this controller to record and store the data in binary form.
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The stored data therefore includes information about the signal amplitudes of
all six SDDs (from the ADC) and all 32 scintillators (from the QDC) as well as
the arrival times of the signals of all eight scintillator layers, the AND of inner
and outer scintillator layer and the OR of all six SDDs (from the TDC). Further
information that is stored is the current trigger rate and the time and date of the
event. The complete DAQ layout is shown in the appendix in figure B.1.

3.4.2. Slow Control

The slow control is the system which monitors and controls important parameters
of the experiment. A schematic drawing of its layout is shown in figure 3.9. The

Figure 3.9.: A schematic layout of the slow control system of the VIP2 experiment.

central point of the system is a PC running a Visual C++ program which com-
municates with the different sensors and devices via a GPIB and a USB interface,
storing and manipulating values of different parameters. The PC can be accessed
remotely to control parameters and transfer the stored data. The USB interface
is on the one hand connected to a LakeShore 331 temperature controller which
regulates the heating of a resistor which counteracts the cooling of the cold head
and thereby regulates the argon temperature. On the other hand it is connected
to an Agilent 5761A current supply which provides the current through the cop-
per target. The GPIB interface is connected to a National Instruments (NI) PXI
1031 chassis with a NI PXI 4351 board. This is then connected via GPIB to a
NI TBX-68T screwblock which receives analog signals from several sources, which
correspond to pressure and temperature at different points in the setup. Tempera-
ture information comes from Pt-100 resistance thermometers and pressure readings
come from a cold cathode 6 for vacuum pressure (on the order of 10−5 mbar) and

6A cold cathode generates electrons via the discharge of a high voltage. The electrons ionize
the gas and the number of produced ions is proportional to the gas pressure.
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piezoresistive sensors 7 for the pressure of the argon gas (on the order of 1 bar). A
list of all parameters that can be measured and controlled with the slow control
system can be found in table 3.2.

All the values listed in this table are stored periodically. An emergency system
is in place which periodically checks the values recorded by the slow control. In
case specific values (like the vacuum pressure and the SDD temperature) exceed
set thresholds, crucial systems like the turbomolecular pumps and the SDDs are
turned off automatically. This is done by the communication with an Energenie
EG-PM2-LAN plug which allows the automatic power shutdown of these devices
which are attached to it.

3.5. X-ray Tube

During the measurements at the LNGS underground laboratory, an XTF-5011
X-ray tube is mounted on the setup for the possibility of a quick calibration of
the SDDs. In our X-ray tube, electrons emitted from the cathode are accelerated
by a high voltage of about 22 kV and subsequently impact on a tungsten anode.
There they produce bremsstrahlung and possibly characteristic radiation of the
tungsten anode. The photons, with a maximum energy of 22 keV, are shining onto
the SDDs through a slit in the scintillators. On their way to the detectors, the
photons are passing a titanium and a zirconium calibration foil, where they can
excite a photon emission from these two elements. The emitted K-lines can then
be used for a calibration of the energy scale.

Due to technical difficulties, the tube was only rarely turned on and can not be
used for a regular calibration. Instead, the calibration is conducted with the Fe-55
source, which is permanently mounted inside the setup, as described in section
3.1.

7The piezoresistive effect causes the resistance of a material to change under mechanical
strain.
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Value to measure /
control

Measured /
Controlled by Primary readout device Adjustable

Room temperature Pt-100 NI PXI 4351 No
Copper bar external

temperature Pt-100 NI PXI 4351 No

Copper bar internal
temperature Pt-100 NI PXI 4351 No

Water cooling pad
temperature Pt-100 NI PXI 4351 No

PCB board 1
temperature Pt-100 NI PXI 4351 No

PCB board 2
temperature Pt-100 NI PXI 4351 No

SDD 1 temperature Pt-100 NI PXI 4351 No
SDD 2 temperature Pt-100 NI PXI 4351 No
Argon upper line

temperature Pt-100 NI PXI 4351 No

Argon lower line
temperature Pt-100 NI PXI 4351 No

Argon target
temperature Pt-100 NI PXI 4351 No

Argon gas
temperature Pt-100 NI PXI 4351 No

Vacuum pressure Balzers IKR 050
cold cathode Balzers TPR-010 No

Argon gas pressure Keller
PAA-21-10 GIA 1000 NS No

Heater output power LakeShore 331 LakeShore 331 No
Heater PID settings LakeShore 331 LakeShore 331 Yes

Argon gas set
temperature LakeShore 331 LakeShore 331 Yes

Current through
copper Agilent 5761A Agilent 5761A Yes

Table 3.2.: Summary of parameters measured and controlled by the slow control
system.
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4. Monte Carlo Simulations

For the purpose of evaluating and verifying several experimental parameters, the
complete setup has been modeled in the Geant4 framework [41]. The utilized ver-
sion of the framework is Geant4.10.2 . All components of the setup were considered
in the simulations including the SDDs with metal frames, the copper target and
the copper current supply bars, the scintillators and the calibration foils as well
as the aluminum vacuum box. The PENELOPE (PENetration and Energy LOss
of Positrons and Electrons) model was chosen for electromagnetic processes. As
atomic de-excitation processes were important, fluorescence, auger electron emis-
sion and PIXE (Particle induced X-ray emission) were turned on. The simulations
were conducted by Dr. Hexi Shi, a member of the VIP2 collaboration. A render
of the setup is shown in figure 4.1.

Figure 4.1.: View of the the VIP2 setup modeled in a Geant4 MC simulation.
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4.1. Detection Efficiency of PEP-violating
Transitions

One objective of the simulations was to determine the detection efficiency of the
setup. The efficiency is in our case defined as the probability for an X-ray com-
ing from a PEP violating transition (i.e. a photon with an energy of 7.7 keV)
originating in one of the two target strips to be detected in an SDD. Two factors
contribute to the efficiency. On the one hand the solid angle coverage of the copper
target by the SDDs is limiting the efficiency. Taking into account the fact that
the aluminum pad for water cooling between the two copper foils absorbs ∼100 %
of these photons, the solid angle can be estimated to be ∼ 10 % (from the ratio
between the area of the target and the area of the SDDs). On the other hand
some photons can be absorbed inside the 50 µm Cu target. Here photoabsorption
contributes most to this loss. This contribution can be estimated with the attenu-
ation of photons going through half of the target (25 µm) which is approximately
25 %. This gives an estimation for the whole efficiency of approximately 2.5 %.

To determine the efficiency with a simulation, 106 photons with 7.7 keV were
simulated with their starting positions randomly selected inside the copper target
and their starting directions randomized over 4π solid angle. The result of the
simulation is shown in figure 4.2. In the figure all original vertices in one copper
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Figure 4.2.: Starting (brown) and end (purple) points of photons originating from
the Cu target and hitting the SDDs generated by MC simulations.

target strip (starting points - brown) of photons which deposit all their energy in
the SDDs are shown. The last vertices (end point of the track - purple) where the
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photons lose their energy in the SDDs are also shown. Only photons which deposit
all their energy of 7.7 keV in the SDDs are counted. It is evident from the figure,
that most photons which are detected by the SDDs originate in the part of the 7.1
cm long target closer (“beneath” in the figure) to the SDDs. This can be explained
by the larger solid angle under which these photons see the detector. Only one
side of the simulation result is shown in the figure, as the setup is symmetric and
the other side gives the same result.

From the 106 photons starting from the target, 18,200 were detected by the SDDs.
This results in an efficiency of 1.82 %, which is close to the estimation of 2.5 %
and therefore a realistic result.

4.2. Background from Cosmic Radiation

Cosmic radiation seen at the surface of the earth primarily consists of muons [42].
The origin of this radiation is so-called primary cosmic radiation consisting of
nuclei which are part of the stellar power generation such as hydrogen and helium
nuclei. These particles hit earth’s atmosphere mainly generating mesons, which
then decay into the cosmic radiation seen at the surface of the earth (e.g. muons).
The rate of muons on the surface of the earth integrated over the whole solid angle
is ∼ 1 cm−2 min−1 [42]. For the simulation, 107 muons were generated in an area
of 50 cm × 35 cm, which was located 20 cm above to the target. The primary
particle energy was 270 GeV and the particle directions were randomized in the
lower half-sphere. This energy was chosen as it was reported as the mean energy
of the muon spectrum at LNGS in [43], and can also be used to estimate the
contribution of muons to the detected events above ground. With the mentioned
rate this corresponds to the background of ∼ 4 days. This part of the background
is important in measurements above ground, but is reduced at the underground
laboratory LNGS by approximately six orders of magnitude. The goal of these
simulations was to estimate the probability of the rejection of muons by scintillator
veto and to estimate the signal rate from this source in the scintillators and SDDs.

The energy deposit in each scintillator summed up over all scintillators is shown
in figure 4.3. A pronounced peak at ∼ 8 MeV deposited energy is visible. With
a scintillator thickness of 4 cm, this corresponds to an energy loss of 2 MeV

cm
.

Furthermore, the trigger rate of the scintillators can be estimated from the rate
of 1 cm−2 min−1 to be ∼ 1.67 Hz per scintillator or 10 Hz for all scintillators
combined.
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Figure 4.3.: Energy deposit of 270 GeV muons in plastic scintillators in MC simu-
lations.

The energy deposit in the SDDs is shown in figure 4.4. The peak of deposited
energy is in this case at around 300 keV. In all six SDDs combined there were
7896 hits in 7744 different events. This equals a rate of 0.0224 Hz or 1 event
approximately every 45 seconds. The energy range of the SDDs is divided into
a subrange of 1 keV - 30 keV and the energy > 30 keV, as everything above this
value is in the overflow bin of the ADC. Therefore, it makes sense to calculate the
rates for these two energy ranges. Approximately 4 % of the hits are in the lower
subrange, 96 % are in the SDD overflow.

From the 7896 SDD hits, 7859 events have an energy deposit of more than 100 keV
in the inner and the outer scintillator layer. A signal in both layers is the condition
for a rejection. The threshold of 100 keV will be justified in chapter 5, whereas a
threshold of 200 keV is suggested in section 6.5. This means, the background from
cosmic rays can be rejected to ∼ 99.5 % for a 100 keV threshold. This value does
not change for a threshold of 200 keV. An energy spectrum of the SDDs with and
without scintillator veto is shown in figure 4.4.

The underground laboratory LNGS lies at 3800 m water equivalent depth, where
the cosmic muon flux is reduced to 3.41 × 10−4 m−2 s−1 [44]. Compared to 1.67
× 102 m−2 s−1 given in [42] for the surface of the earth, which corresponds to a
reduction to 2 × 10−6 times this value. The expected event rates due to cosmic
muons calculated in the previous section scale accordingly. The hit rate for each
scintillator is then ∼ 3.4 × 10−6 Hz or ∼ 1 event every 3 days and ∼ 2 events
per day for all scintillators. The expected event rate for all six SDDs is ∼ 1 event
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Figure 4.4.: The complete simulated spectrum (red) introduced in the SDDs in 4
days above ground by cosmic muons for two different energy ranges.
The part that can be rejected by scintillator veto is also shown (blue).
The two spectra are for the most part identical, meaning strong rejec-
tion power.

every 260 days, i. e. negligible.

4.3. Background from γ Radiation

The background consisting of γ rays is the dominant background in the under-
ground laboratory LNGS, as cosmic radiation is reduced by almost six orders of
magnitude. The origin of the γ radiation at LNGS are long-lived γ emitting pri-
mordial isotopes. They are part of the rocks of the Gran Sasso mountains and
the concrete used to stabilize the cavity. The dominant isotopes of this kind are
238U, 232Th and 40K [45] and their decay products. For the simulation 2.5 × 109

γ photons were generated on a surface of 0.945 m2, which completely enclosed
the setup. The energy distribution of the particles followed the one reported in
[46] in the dominant energy range from 40 - 500 keV, which was modeled by a
Landau distribution with a mode at 120 keV. The directions of the particles were
randomized in the half sphere towards the setup. In [45] an integral flux of 0.33 γ
cm−2 s−1 = 2.85 × 108 γ m−2 day−1 was reported, whereas in [46] a flux of 6.3 ×
108 γ m−2 day−1 was given. For now the data from [46] will be used and later the
result of this assumption will be compared with the measured data. In this case
the simulated 2.5 × 109 particles correspond to a data taking time of 4.2 days.

The interaction of the photons with the scintillators takes place almost exclusively
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via inelastic Compton scattering, meaning the photons do not deposit their com-
plete energy. The deposited energy can be as high as 500 keV. A plot of the energy
detected by the scintillators from high energy photon radiation is shown in figure
4.5. In the 4.2 days of the simulated data, there were 184,380 events with an
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Figure 4.5.: Energy spectrum of γ radiation deposited in the scintillators in MC
simulations corresponding to 4.2 days of data at LNGS (left). Mea-
sured photon spectrum at LNGS, from which the dominant part from
40-500 keV served as input for these simulations (right) [46].

energy deposit in the inner and outer scintillator layer larger than 100 keV. As
this is the trigger condition, the trigger rate from these events is 0.51 Hz or ∼ 1
event every 2 seconds in all scintillators. The scintillator hit rate for any detector
receiving 100 keV or more would be around 8 Hz.

The energy spectrum in the range from 1 keV - 30 keV deposited in the SDDs is
shown in figure 4.6. In the figure the Cu Kα and Kβ lines are visible at 8 - 9 keV as
well as the Zr Kα and Kβ lines at 16 - 18 keV. The Cu lines are caused by photons
from the Cu target and the Zr lines come from photons from the Zr calibration foil.
This foil is mounted in the setup for the possibility to conduct an energy calibration
of the detectors with an X-ray tube. In the 4.2 days of simulated data, there were
57,617 events in all SDDs with an energy deposit > 1 keV, corresponding to a rate
of 0.16 Hz or ∼ 1 event every 6 seconds in all SDDs. From these events, around
50 % are in the range between 1 keV - 30 keV. Comparing these rates to the ones
induced by cosmic muons at LNGS, it is obvious that γ radiation is the dominant
source of background.

From the 57,617 events in all SDDs with an energy deposit > 1 keV, 604 events
have an energy deposit in the inner and outer scintillator layer and can therefore be
rejected. The rejection ratio is therefore ∼ 1 %. For an energy deposition threshold
of 200 keV at the scintillators, the rejection rate is around 0.02 %. A plot of the
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Figure 4.6.: The complete simulated spectrum (red) introduced in the SDDs in 4.2
days at LNGS by γ radiation for two different energy ranges. The part
that can be rejected by scintillator veto is also shown (blue). The Cu
and Zr lines are visible at 8 keV and 16 keV respectively.

full energy spectrum seen by the SDDs with the part that can be rejected with a
100 keV threshold is shown in figure 4.6.

This rejection rate might not be as high as expected, nevertheless the scintillators
also represent a passive shielding for low energy γ radiation and X-rays with at
least 8 cm of plastic scintillators in between the source of the radiation, which is
outside of the setup, and the SDDs. Furthermore, a passive shielding consisting
of lead and copper bricks will be installed around the measurement setup in the
future. This will reduce the background from γ radiation possibly to a level, where
it becomes comparable to the background from cosmic radiation. In this case the
active shielding would reduce the background by a larger fraction and improve the
result of the experiment.
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5. Test Measurements

5.1. Test Measurements at LNF

First measurements with the scintillators read out by SiPMs were done at the Beam
Test Facility (BTF) at Laboratori Nazionali di Frascati (LNF). This facility is
connected to the linear accelerator of the DAΦNE collider and provides a 500 MeV
electron or positron beam. The test setup is shown in figure 5.1, The scintillators

Figure 5.1.: The setup for testing the plastic scintillators with SiPM readout at
the Beam Test Facility.

were the ones later on used in the VIP2 experiment, namely plastic scintillator bars
of 25 cm × 4 cm × 3.8 cm. The trigger is defined as signal in the calorimeter AND
a signal in the entrance detector, for which another scintillator was used. In case
both of these detectors show a signal, both scintillators also need to show a signal
because the triggering particle necessarily passes through them. The detection
efficiency for any of the two scintillators is defined as the fraction of total triggers,
for which each scintillator produces a signal over threshold. Furthermore, three
different beam positions relative to the SiPM readout have been set, as shown
in figure 5.2. The detection efficiency was larger than 98 % for all the beam hit
position. No dependence of the detection efficiency on the hit position could be
found. For each measurement the analog data from the SiPMs was converted to
a digital signal in a QDC. The distribution of this signal in each case followed a
Landau distribution. The most probable value of this distribution was dependent
on the beam hit position and it was decreasing with increasing distance between
the hit position in the readout. This means the scintillation light losses over the
length of the scintillator have a measurable effect. Due to the 16 cm difference in
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Figure 5.2.: 3 different beam positions for the tests of the scintillators at the Beam
Test Facility.

beam hit position, the signal was decreased further away from the SiPM readout to
93 % and 87 % for the two scintillators. The signals from the SiPMs were converted
into time stamps by a TDC. By comparing these time stamps to a reference time
stamp from the trigger, a time resolution of 2.6 ns (FWHM) could be estimated.

5.2. Test Measurements at SMI

After first tests at LNF, the setup box as well as the scintillators and the two SDD
arrays which originally belonged to the SIDDHARTA experiment were transported
to the Stefan Meyer Institute in Vienna in summer 2014. Tests were done with
the SDDs in a smaller setup, but due to problems induced by Wi-Fi signals, which
were most likely picked up due to the similarity of Wi-Fi wavelength (∼ 12 cm)
and setup geometry, these tests were abandoned.

Subsequently, SDD tests were conducted with an adapted readout board in the
final setup box, which was larger and therefore less likely to pick up Wi-Fi signals.
The final argon cooling system for the SDDs was assembled and taken into oper-
ation. The Cu target was mounted together with its water cooling system. The
scintillators were wrapped in aluminum foil and black tape and two SiPMs were
attached to a surface with optical glue and read out in series. The slow control
was set up including the current supply, the temperature controller, the Pt-100
temperature sensors and pressure sensors, as described in 3.4.2. The PID values
of the LakeShore331 temperature controller were adjusted to ensure stable oper-
ation. The data acquisition system was set up and connected to the signals from
the SDDs and the SiPMs. The gain and shaping time of each SDD channel was
was adjusted in the CEAN 568B spectroscopy amplifier.

After all these parts were tested individually, they were assembled and long term
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tests were conducted which will be described subsequently. These test in the final
experiment configuration were crucial in order to test and determine performance
characteristics of the subsystems and to ensure long term stability of the operation
of the experiment.

5.2.1. Water Cooling of Cu Target

The water cooling was tested to ensure adequate temperature of the Cu target also
in the case of a high current. The cooling of the target is done by water flowing
through the cooling pad between the two copper target foils. The temperature
was measured on each foil with a Pt-100 temperature sensor. Two different mea-
surements with a high current were done, one time with water cooling and once
without water cooling. The outcome is shown in figure 5.3.
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Figure 5.3.: The temperature of the two Cu target foils (red and blue) with a high
current without water cooling (left) and with water cooling (right).

The left figure shows the temperatures without the water cooling with a current
of 40 A (starting at ∼ 10:30) and a current of 80 A (starting at ∼ 11:15). The
temperature rises to ∼ 45 °C, well above room temperature. As an even higher
current of 100 A is projected, it is not an option not to use water cooling. On
the right picture the temperature of the Cu target with water cooling is shown.
In this case the current was varied gradually from 80 A (starting at ∼ 13:00) to
180 A (starting at ∼ 16:00). In this case the temperature can be stabilized below
room temperature even for a current as high as 180 A. Consequently, similar
temperatures of the target can be achieved for data taking with and without
current.
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5.2.2. Argon Cooling of Silicon Drift Detectors

The argon cooling of the SDDs was tested in many test runs at the Stefan Meyer
Institute. The Pt-100 temperature sensors were mounted on the aluminum support
structure of the SDDs, which is in thermal contact with the detectors. During these
data taking periods, the temperature of the detectors could be kept constant at
around -170 ◦C, except for short periods of higher temperature, with a duration
of a few minutes typically. The reason for these sudden temperature changes is
still unclear. The temperature for both SDD arrays during 1 day of data taking is
shown in figure 5.4. As the scheduled operation temperature is 150 K [35] (∼ -120
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Figure 5.4.: Temperature of the two SDD arrays during one day of data taking at
the Stefan Meyer Institute.

◦C), which is still higher than during the periods with higher temperature, the
performance characteristics of the detectors are not not affected by these changes.
But nevertheless this problem was solved in the measurement at the Gran Sasso
National Laboratory by adding a bit more argon to the cooling system, which
ensured stable data taking conditions at an SDD temperature of around 100 K.

5.2.3. Scintillator Energy Deposition Trigger Threshold

To estimate the minimum energy that needs to be deposited in the scintillators
by ionizing radiation in order for the event to be detectable, we used a Caesium-
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137 1 source shining directly into plastic scintillators used in the VIP2 experiment
parallel to their length axis. A 2 mm aluminum plate was mounted between the
source and the scintillator in order to shield the β radiation from the source. The
scintillators were read out by two serially connected SiPMs on the opposite side
of the source. The pulse-height spectrum of the SiPMs was recorded with an
oscilloscope. The setup was modeled in the Geant4 framework and the energy
deposited in the scintillator was recorded. The deposited energy was smeared in
the simulation by 10 % to account for the finite resolution of the detection system.
The pulse-height spectrum from the oscilloscope and the MC-spectrum are shown
in figure 5.5. The pulse-height spectrum was recorded once with and once without
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Figure 5.5.: The energy spectrum from a Cs-137 source deposited in the scintillator
from MC simulations (left) and the pulse-height spectrum recorded
with an oscilloscope (right). The part of the pulse-height spectrum
below approximately 180 mV is cut off due to the trigger settings of
the oscilloscope.

the source. The subtracted spectrum was calculated in order to get the isolated
spectrum from the source without events from external radiation. This subtracted
spectrum is shown in the plot.

In the energy region of ∼ 80 keV - ∼ 4 MeV (which includes the photons from
the Cs-137 source) the dominant energy-loss mechanism for photons in a plastic
scintillator is the Compton effect [37]. Therefore, not the whole energy of the
photons is deposited in the detector. The falloff in the MC-spectrum corresponds

1Cs-137 decays to a metastable Barium-137 state via β− decay with a half-life of approxi-
mately 30 years. This state then decays into a stable state via emission of a 662 keV photon.
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to the Compton edge 2. The single Compton edge of 662 keV photons is at 478
keV, higher energies in the MC-spectrum come from Multi-Compton processes and
from the smeared energy resolution.

The falloff in the pulse height spectrum at ∼ 200 mV corresponds to this Compton
edge. The part below ∼ 180 mV is partly cut from the spectrum due to the trigger
settings of the oscilloscope and does not have any physical meaning. From this
measurement a relation between deposited energy and output pulse height of:

Energy
Pulse Height ≈

500 keV
200 mV = 2.5keVmV . (5.1)

Furthermore, the threshold settings in the experiment at LNGS were set to ap-
proximately 40 mV. They could not be set lower than this, as at lower thresholds
the rate of dark counts rises and this needs to be avoided. With 2.5 keV

mV a thresh-
old of 40 mV corresponds to a deposited energy of 100 keV. This energy is used
as a threshold for MC simulations, which were discussed in chapter 4. For the
measurements at SMI the SiPM thresholds were set higher, as at this point the
goal was to detect events induced by cosmic radiation, which have a typical energy
deposit of a few MeV.

There are a few assumptions going into this calculation, as for example the linearity
of the relation between deposited energy and output pulse height. Therefore, the
value of 100 keV energy deposition threshold at LNGS should be viewed as an
estimation rather than a fixed value.

5.2.4. SDD Energy Resolution

The following tests of the functionality of all parts are extracted from a data
taking period from 23. October 2015 - 27. October 2015 at SMI, corresponding
to 4 days of data taking time. There was no current flowing through the copper
target during this data taking period.

To achieve the optimal energy resolution, the voltage values for the photon entrance
window (Bc) and the separation mesh (Bf) (see chapter 3.1) were adjusted before
this data taking period, starting from the values used in the SIDDHARTA setup

2When a photon scatters on a charged particle, the energy it transfers to the charged particle
depends on the angle between incoming and outgoing photon. The maximum energy is transfered
when the photon changes direction by 180◦. As a photon can not deposit more energy in a single
process, this energy marks an “edge” in the detected spectrum.

51



for these SDD cells. The values used are summed up in tables 5.1 and 5.2.

Rx R1 Bf (SDDs: 1,2,3) Bf (SDDs: 4,5,6)
-250 V -16 V -137 V -144 V

Table 5.1.: Voltages for outer and inner SDD rings as well as for the separation
meshs of the two SDD arrays.

Bc1 Bc2 Bc3 Bc4 Bc5 Bc6
-134 V -121 V -143 V -133 V -137 V -144 V

Table 5.2.: Voltages for the photon entrance windows for SDDs 1-6.

After optimizing the voltage settings, the energy resolution was determined from
the the data taking period in October 2015. The results are shown in table 5.3.
The analysis technique used to find the energy scale and the energy resolution will
be described in detail in section 6.2. The typical statistical error of the Full Width

SDD 1 SDD 2 SDD 3 SDD 4 SDD 5 SDD 6
FWHM @

6 keV 148 eV 150 eV 147 eV 147 eV 156 eV 158 eV

Table 5.3.: Energy resolution (FWHM) of the SDDs at 6 keV.

Half Maximum (FWHM) energy resolution is 1-2 eV for this amount of data for
one SDD. These energy resolutions are close to the design resolution of 150 eV
(FWHM) at 6 keV given in [35]. The summed up energy spectrum is shown in
figure 5.6.

For in-situ calibration, an Fe-55 source creates two sources of calibration (see also
section 3.1). On the one hand, the photons from the source directly hit the SDDs
and on the other hand, they excite photons from a 25 µm thick titanium calibration
foil, which is placed in between the source and the detector. The Mn Kα and Kβ
lines (5.9 keV and 6.5 keV) from the Fe-55 source and the Ti Kα and Kβ lines (4.5
keV and 4.9 keV) from the Ti calibration foil are visible in the figure. The Mn
Kα and Ti Kα lines are used to find the energy scale. Details to the calibration
procedure will be given in chapter 6. Furthermore, the silicon Kα escape peak 3

of the Ti Kα line is visible 1.7 keV below its main peak at around 2.8 keV. The
Cu Kα line at 8 keV is caused by external radiation hitting the Cu parts and

3A Si Kα photon escapes the detector. Its energy is therefore not converted into electron/
hole pairs and is missing in the spectrum.
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Figure 5.6.: Energy spectrum corresponding to 4 days of data taken at SMI.

creating vacancies in the 1s shell which are subsequently filled by electrons from
the 2p shell. As the thermal energy at room temperature (∼ 25 meV) is orders of
magnitude smaller than the gap between the 1s and the 2p shell (∼ 8 keV), the
creation of a vacancy in the 1s shell is reliant on an external energy source. All
the expected peaks are therefore visible in the spectrum and the functionality of
all six SDDs could be established.

5.2.5. SDD Time Resolution

For the measurement of the time resolution of the Silicon Drift Detectors, the
arrival times of the digitized signals from the SDD “OR” and the “AND” of inner
and outer scintillator layer at the TDC were compared. For details about the DAQ
system see figure B.1 or section 3.4. As mentioned in 3.2, the time resolution of the
scintillators read out by SiPMs is smaller than the one of the SDDs by around two
orders of magnitude and is neglected here. The events in which both SDDs and
and scintillators produce a signal are mainly caused by charged particles which
first hit the scintillators and then either directly hit the SDDs or cause secondary
radiation (e.g. bremsstrahlung in the scintillators), which in turn hits the SDDs.
In either case the time difference of the actual hits of the radiation in scintillators
and SDDs is also negligible compared to the time resolution of the SDDs. The
difference in arrival times at the TDC between the two signals are shown in figure
5.7. The plot corresponds to all events with scintillator and SDD coincidence for
the data taking period of 4 days at SMI. The time resolution was found to be
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around 380 ns (FWHM). This is in agreement with the specification of a time
resolution ≤ 1 µs given in [35]. Furthermore, the mean delay of the arrival of the
SDD signal is 290 ns and the maximum drift time is approximately 1 µs.
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Figure 5.7.: Arrival time of the signal of Silicon Drift Detectors relative to the
signal from the SiPMs corresponding to a time resolution of ∼ 380 ns
(FWHM).

5.2.6. Scintillator plus SiPM Time Resolution

For the mentioned 4 day data taking period, the difference in arrival times of signals
from the adjoining “bottom inner” and “bottom outer” layer are shown in figure
5.8. The distribution of the difference of the arrival times can approximately be
modeled by a Gaussian distribution with a σ = 1.33 ns (3.13 ns FWHM). Assuming
the time resolution is the same for both of these layers, this results in a σ = 0.94
ns (2.2 ns FWHM) for each layer and therefore also for each scintillator plus SiPM
readout system.

5.2.7. Detection Efficiency of Cosmic Radiation and Active
Shielding Test

The data used for this test is again from the 4 day data taking period in October
2015 at SMI. The test was done in order to determine the detection efficiency
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Figure 5.8.: Difference of arrival times of two different scintillator layers with Gaus-
sian fit function (σ = 1.33 ns).

of the active shielding system for particles from cosmic radiation going through
the scintillators. The energy calibration procedure, which is needed to determine
the energy of each SDD event, will be discussed in section 6.2. The first step
was to determine if any scintillator detected less events than other scintillators.
For this purpose the QDC spectra, which correspond to the charge deposited in
the scintillator in each event, of each scintillator were investigated. One of these
spectra with two different scales is shown in figure 5.9.
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Figure 5.9.: Spectrum of charge collected by the QDC for one scintillator once in
logarithmic scale (left) and once in linear scale (right).

The left figure shows a large peak on the left side. In these events the collected
charge was low so it can be deduced that no ionizing radiation hit the scintillator.
Starting from approximately channel 800 there is a bump in the spectrum. For
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these events the collected charge was high and it can be said that there was most
likely ionizing radiation hitting this scintillator. To approximately determine the
number of events in each scintillator, a threshold channel is introduced, above
which all events where counted as signal events. This channel was determined as
the 3σ deviation from the mean value of the “No-Signal” gaussian distribution. In
this case the threshold channel is 800. It is interesting to compare the collected
charge distribution to the distribution of energy deposited in the scintillators by
cosmic radiation, which is shown in figure 4.3. The peak in the QDC spectrum at
channel 2000 corresponds to a deposited energy of around 8 MeV.

The distribution of the counts determined in this way is shown in figure 5.10. The
histogram is filled at positions corresponding to the positions of the scintillators in
the setup, as they are shown in figure 3.5. One thing to note is that scintillators
on the edge of the setup have less counts on average. This is due to the fact that
for an event to be triggered, the inner and outer scintillator layer need to have a
signal. Taking into account the angular distribution of cosmic radiation which is
∝ cos2(θ) [42], there is a chance of particles hitting for example the scintillator in
column 1 and layer 5, but not hitting any other scintillator, thus not generating an
event. This effect is not important for more central scintillators, like for example
the one in column 3 and layer 4. For all these scintillators the number of hits is
approximately 380.000 on average, which corresponds to a rate of 1.1 Hz in each
scintillator. Comparing this rate to the 1.67 Hz extracted from [42], it is obvious
that the system of scintillators detects less events than expected. This might be
due to the shielding of the aluminum enclosure and the multistory building above
the setup. But from this plot one can say that all scintillators are working and
giving signals.

To evaluate the detection efficiency for ionizing radiation, events were investigated
in which at least 3 of the 4 scintillator layers with six scintillators (e.g. “top outer”)
had a signal. For these events the probability was measured that also the 4th layer
had a signal. It turned out to be ∼ 90 %. A reason for this number not being
higher might be that a part of the events are introduced by γ radiation, for which
the detection efficiency is very low as was mentioned in 4.3. This radiation could
introduce events in some scintillators, while in others it does not. Another factor
might be differences in gain settings of the SiPMs and trigger threshold settings for
the SiPM signals. These differences can again lead to radiation triggering signals
only in a part of the scintillators.

To ensure that the active shielding system is working as expected, it is interesting
to look at hit patterns. For this purpose all events for which one specific scintillator
has a signal are selected and then all events (from the previously selected events)
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Figure 5.10.: The number of signals in each scintillator for a data taking period of
4 days.

every other scintillator produces are counted. In figure 5.11 a hit pattern for the
scintillator in column 2 and layer 5 is shown. It can be seen that for most events
in this scintillator, the scintillator below also has an event, meaning most particles
go through the setup almost vertically. Other scintillators not being directly below
the specific scintillator get hit less often. The distribution resembles the cos2(θ)
distribution of cosmic radiation mentioned in [42]. As the hit patterns for all
scintillators look as expected, it can be assumed that all scintillators are connected
properly and working fine.

Another test was done comparing the SDD spectrum of the events rejected by
scintillator veto to the simulated spectrum introduced in the SDDs by cosmic
muons and rejected by scintillator veto, which was already shown in figure 4.4.
The expectation was, that these spectra should be similar as a big part of the
rejected events in the measurement are the ones introduced by muons. The two
spectra are shown in figure 5.12. One thing to note is that in the energy region
from about 15 - 25 keV the two spectra are quite similar with approximately 1-
2 counts per 100 eV. In the energy range where the scintillator veto is crucial,
the region of the forbidden Cu Kα transition below 15 keV, there are more SDD
hits rejected than there are predicted hits from cosmic radiation (consider the
logarithmic scale on the right figure). This most likely means that the scintillator
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Figure 5.11.: Hit pattern for scintillator in column 2 and layer 5.

veto can also reject at least a small part of the γ radiation which is present in the
laboratory. Consequently, the system is not only capable of what it was designed
for, namely detecting high energy ionizing radiation, but also detecting a part of
the γ radiation.

Finally it is interesting to look at the amount of hits in the SDDs which are in
coincidence with a scintillator signal. The spectrum together with the rejected
events is shown in figure 5.13. It is obvious that only a small fraction of the SDD
events can be rejected by scintillator veto. For example in the region of the the Cu
lines from 7 - 10 keV a fraction of ∼ 1 % of events is seen in the scintillators. This
rejection ratio means that the vast majority of counts in this energy region is caused
by external photons, which can only be rejected to a small part. For the part below
7 keV the Fe-55 source inside the setup contributes most of the counts, which can
not be rejected. Therefore, it does not make sense to calculate a rejection ratio for
this energy region. The higher the energy the higher the contribution of charged
particles, with a high detection efficiency in the scintillators, to the SDD events.
In the overflow bins of the SDDs, corresponding to an energy higher than around
30 keV, the rejection ratio is 6.5 %. The fact that the contribution of charged
particles to the background is proportional to the energy can be seen comparing
figures 4.4 and 4.6. While the peak contribution of charged particles is at around
300 keV, the contribution from external γ radiation is high from ∼ 0 - 70 keV,

58



Energy [eV]
5000 10000 15000 20000 25000

 2
00

 e
V

⁄
C

ou
nt

s 

0

2

4

6

8

10

12

14

Energy [eV]
5000 10000 15000 20000 25000

 2
00

 e
V

⁄
C

ou
nt

s 

1

10

210

Figure 5.12.: The energy spectrum corresponding to 4 days of data introduced by
cosmic radiation above ground from simulation (left) and measured
(right).

with a maximum on the low energy side.

Despite the rejection ratio, which might be smaller than expected, the scintillators
were kept inside the setup. On the one hand, they offer a passive shielding effect, as
they represent at least 8 cm of plastic scintillator between the source of a possible
background radiation outside of the setup and the SDDs. On the other hand, for
future measurements of the VIP2 experiment in the underground laboratory in
Gran Sasso, a passive shielding consisting of Cu and Pb blocks will be mounted
around the setup. This will possibly bring the background from γ radiation to a
level comparable to the background from cosmic radiation, which can be rejected.
In this case the active shielding will improve the result of the measurement.

The test of the active shielding system has shown that the detection of charged
particles works with > 90 % efficiency. All scintillators were found to work properly
and contribute to the rejection of external radiation. But as the main background
at SMI apparently comes from γ radiation, for which the scintillator detection
efficiency is low, the background rejection ratio is approximately 1 % in the energy
region of the forbidden transition.

As all tests mentioned above gave the expected results it can be concluded that all
detectors and parts of the data acquisition are working as expected. A summary
of the outcome of some of the tests discussed in this chapter can be found in table
8.1. Crucial parameters of the experimental setup like SDD scale linearity and
peak position stability will be discussed in the the following chapter.
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Figure 5.13.: The energy spectrum corresponding to 4 days of data at SMI (red)
and the part of the spectrum rejected by scintillator veto (blue).
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6. Data Taking at LNGS and Data
Preparation

After exhaustive tests at the Stefan Meyer Institute, the VIP2 experiment was
transported to the Laboratori Nazionali del Gran Sasso of INFN in November
2015. The laboratory is located beneath the Gran Sasso mountains in the Italian
Abruzzo region. The Apennine mountains above the laboratory provide a natural
shielding from cosmic radiation corresponding to 3800 m water equivalent depth
[44]. The flux of cosmic muons in the underground laboratory is reduced compared
to the flux above ground by approximately 6 orders of magnitude (see also chapter
4). The dominant background radiation for the experiment therefore does not come
from cosmic radiation, but from γ radiation originating from radioactive isotopes
like 238U, 232Th or 40K and their decay products. These isotopes are part of the
rocks and the concrete used to stabilize the cavity. The background reduction
due to the shielding of the mountains is crucial for improving the final limit on
the probability for the violation of the Pauli Exclusion Principle the experiment
is able to set, as this limit is proportional to the square root of the background.
A comparison of the spectra taken at Stefan Meyer Institute and at LNGS is
shown in figure 6.1. The counts in the energy region of the forbidden transition
at approximately 7.7 keV, just below the Cu Kα peak, are reduced by a factor
of 5. In the region below 7 keV, the counts do not change drastically, as in this
energy region most of the events are caused by X-rays from the Fe-55 source and
the titanium calibration foil. These counts are similar, as the source rate is the
same at SMI and LNGS (apart from a slight decrease in the rate of the source due
to its half-life of 2.7 years).

After some tests in November 2015 and a break over the Christmas holidays, the
first data without current was taken in February 2016 at LNGS. After a period of
further tests and maintenance and a data taking break in summer 2016, the first
data with current was taken in October 2016. Data taking continued with various
breaks for maintenance until November 2017. Until the end of July 2017, a total
of 116 days and 20 hours of data without current and 81 days and 10 hours of data
with a current of 100 A have been taken at LNGS, which are analysed in this work.
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Figure 6.1.: The complete spectra from SMI (red) and LNGS (blue) both scaled
to 1 day of data taking time. The data corresponds to 4 days for the
SMI data and to 198 days in the case of LNGS (hence the difference
in statistical errors in the single bins).

During this data taking campaign, periods with 100 A of current flowing through
the target were alternated with periods without current. The typical length of one
of these periods was one week. The current could be turned off and on remotely
as was described in section 3.4.2. It is also important to note that in upcoming
figures like 6.2, in which the x-axis corresponds to the time of the data taking
starting from February 2016 until July 2017, each data point corresponds to a
certain quantity (event rate, peak position, temperature and energy resolution)
averaged over one day of data.

6.1. Data Selection

The selection of events is important in the VIP2 experiment. First SDD events
were discarded which occurred in coincidence with an active veto signal. This will
be discussed in more detail in chapter 6.5.

Furthermore, events were neglected which occurred in a time of a higher than
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normal background rate. Excluding any possible source of background, which
causes events in the energy region of the forbidden Cu Kα transition, is important
as it complicates finding candidate events from this transition. Figure 6.2 shows
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Figure 6.2.: The rate of events with an energy deposit larger than 7 keV in any
SDD for the complete dataset (left) and for the cleaned dataset (right).
Data with current is shown in red, data without current is shown in
blue. 1σ and 2σ statistical uncertainties from the mean are shown in
green and yellow. Each data point corresponds to one day of data.
The x-axis spans a time from February 2016 until July 2017.

the rate of events with an energy deposit above 7 keV in any SDD. Each data point
in the figure corresponds to the rate of these events, averaged over a whole day.
The rate of events with an energy lower than 7 keV is dominated by events caused
by the Fe-55 source. The left picture corresponds to a dataset starting around the
11th of February 2016. A period of higher event rate by a factor of about two in the
time around the 11. February 2016 is visible. The reason for this increase is not
clear. These data were left out in the data analysis. The same event rate (any SDD
has a signal larger than 7 keV) without these data is shown in the right picture
of figure 6.2. The rate is stable throughout the whole period, within statistical
uncertainty. The 1σ and 2σ error bands are shown in the plot. As approximately
95 % of the data points lie within the 2σ statistical uncertainty, systematic effects
changing the background rate in subsets of data can be excluded (see for example
[47]). The statistical uncertainty was calculated from the assumption, that the
number of background events per day follows a Poissonian distribution, meaning
its error is the square root of its mean value. Systematic uncertainties are briefly
discussed in A.

It is interesting to look at the rate of events with an energy smaller than 7 keV,
which are caused mainly by the Fe-55 source. Due to its half-life, events from the
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Figure 6.3.: The rate of counts caused by the Fe-55 source for the data with current
(red) and without current (blue). Data points from these two datasets
are overlapping due to similar rate. The rate is decreasing due to the
half-life of Fe-55 of 2.7 years. Each data point corresponds to an
average over one day of data.

source decrease by a factor of approximately 0.65 in the course of the data taking
of 1 year and 5 months.

Events in the SDDs originating from a Pauli-forbidden transition are expected to
hit only one SDD as only one photon is produced in the course of this process.
Therefore, all events with a SDD hit multiplicity larger than one can be excluded
when looking for those photons. The vast majority of events has an ADC multi-
plicity of one, from which in turn the vast majority comes from the Fe-55 source.
Additionally there are events caused by the environmental γ radiation and possibly
events from non-Paulian transitions in the spectrum with 100 A current, which
also have a SDD hit multiplicity of one. All these are used for the analysis.

A possibility of signals in two SDDs is a hit on the border of one SDD, where
a part of the generated charge is transfered to the neighboring SDD. Events of
this kind can be illustrated with the energy correlation between SDDs, as shown
in figure 6.4. Here the charge generated by a photon either directly from the
Fe-55 source or the Ti foil is split and drifts to the anodes of two neighboring
SDDs. The energy equivalent to the total deposited charge equals the energy of
one of the calibration lines. Consequently, these lines run diagonally through the
figure. The probability of finding events with an energy deposit in two SDDs is
approximately 0.5 %, compared to events with a multiplicity of one. Events with
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Figure 6.4.: Energy correlation between two neighboring SDDs. The Ti and Mn
lines are visible on lines with a constant sum of energy due to charge
sharing between adjoining detectors. Low energy parts are cut from
the figure to enhance visibility.

SDD multiplicity 3, 4 and 5 do practically not occur. Nevertheless, there are events
with SDD multiplicity six, which are probably caused by noise. This noise might
be picked up from the environment (e.g. Wi-Fi, power grid).

The events that were not included in the analysis were the ones which:

• were in coincidence with scintillator veto

• had an SDD multiplicity higher than one

• were recorded in a time in which the background was higher than normal

6.2. Energy Calibration

As the goal of the VIP2 experiment is to count events in the energy region of the
Pauli-forbidden Cu Kα transition, the determination of the energy of each SDD
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hit is of utmost importance. Assigning for example an energy of 7.7 keV to an
event coming from a photon from a normal Cu Kα transition at 8.05 keV changes
the outcome of the experiment and has to be avoided. Furthermore, the energy
resolution should be kept as close as possible to the intrinsic energy resolution of
the detectors. A drift of the peak position is one of the effects that leads to a
deterioration of the energy resolution.

An energy calibration of the detector is the conversion from the primary spectrum
in ADC channels into energy in electron volt. For this purpose the position of the
Mn Kα and Ti Kα peak are determined in the primary ADC channel spectrum.
As the energies of these peaks are known, a linear relation between ADC channel
and energy can be inferred. This relation can for example be written as

E(i) = 4510.8 + 5898.8− 4510.8
i(MnKα1)− i(TiKα1) × (i− i(TiKα1)), (6.1)

where E is the energy in electronvolt to be calculated, i is the measured ADC
channel of a specific event, 4510.8 eV and 5898.8 eV are the known energies of the
Ti Kα1 and Mn Kα1 lines and i(TiKα1) is the ADC channel of the Ti Kα1 line.
The ADC channel of every event is then scaled according to this linear relation
into an energy. To determine the position of the peaks as precisely as possible, the
complete spectrum is fit, taking into account all features of a real detector. This
fit function will now be discussed.

In the fitting procedure, the relation for the energy resolution, which is only de-
pendent on Fano noise and constant noise is assumed (see also chapter 3.1):

σ(E) = ω

√
W 2 + FE

ω
, (6.2)

where ω is the energy needed to create an electron hole pair in silicon, which is 3.81
eV at 77 K [37]. W denotes the contribution to noise independent from energy
and F is the Fano factor.

Photons from a monoenergetic source cause a complex spectrum in a real detector.
For silicon detectors they were described for example in [48] and [49]. The main
feature is the Gaussian peak, corresponding to the case in which all electrons that
are produced by the incident photon are collected at the anode. The width of
this Gaussian is determined by the intrinsic detector resolution and the natural
linewidth. The natural line shape is a Lorentzian with a width of typically a few eV
FWHM [50]. The intrinsic detector resolution gives rise to a Gaussian line shape
with a width of approximately 100 - 200 eV FWHM, depending on the energy.
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The real line shape is then a convolution of these two shapes, which would be a
Voigt function. As the intrinsic detector resolution is by far larger than the natural
linewidth, the latter contribution is small and the shape can be approximated by
a Gaussian function. On the low energy side of the main Gaussian peak, there is
a structure in the spectrum which is caused by incomplete collection of the charge
generated by the detected radiation. The effects contributing to these structures
are summed up in [48]. Qualitatively they can be described by an exponential tail
energetically right below the main peak and a shelf extending from the main peak
to zero energy. A truncated shelf extending from the energy of the main peak to
smaller energy has also been described, but it was not used here. Furthermore,
when the primary photon excites one Si K-shell electron via the photoelectric
effect, the subsequent Si Kα photon may escape from the detector volume without
contributing to the electron-hole generation. Such events contribute to the so-
called escape peak 1.74 keV (Si Kα energy) below the main peak. Pile-Up effects
do not play a role as the SDD event rate is as low as approximately 1 Hz (for
six single channels) at LNGS. The mathematical structure of all the mentioned
components is shown in equations 6.3 - 6.6 and is similar to the one used in [49].
The number i denotes the number of the ADC channel.

Gaussian Peak (i) = Gain

σ
× exp(−(i− i0)2

2× σ2 ) (6.3)

Tail (i) = Gain× tR× tN × exp(i− (i0 − tSh)
σtail ∗ tSl

)× erf( 1√
2 ∗ tSl

+ i− (i0 − tSh)√
2 ∗ σtail

)
(6.4)

Escape Peak (i) = Gain× eR× 1
σE
× exp(−(i− (i0 − SiKα))2

2× σescape
) (6.5)

Shelf (i) = Gain× sR× 1
2 × erf( i− i0√

2× σ
) (6.6)

Here erf() denotes the error function. A schematic drawing of the structure of a
monoenergetic peak in the detected spectrum is shown in figure 6.5. The param-
eters used in equations 6.3 - 6.6 are described in detail in table 6.1.

The fits are performed using the CERN ROOT data analysis framework [51]. The
code of the fit function is listed in appendix C. To find the optimal parameters,
ROOT conducts a χ2 minimization using MINUIT. The MINOS technique is used
for better error estimation. The parameters are fit for the Mn Kα1, Kα2, Kβ and
for the Ti Kα1, Kα2, Kβ lines. The gain ratio of the Kα2 to Kα1 lines is fixed to
0.51 for Mn and to 0.5 for Ti. The distance between the Kα1 and Kα2 lines are
fixed to their physical values (converted into ADC channels). The gain and the
mean value for the Kβ lines are free. The sum of all the functions is fit to the data
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Figure 6.5.: Detected spectrum from monoenergetic incident radiation with a
structure described in the text [48].

in ADC channels together with a linear part representing the background. The
positions of the Mn Kα1 and Ti Kα1 are used to find the linear relation between
ADC channels and energy. When the amount of data is high enough, the Cu Kα1,
Kα2 and Kβ lines are fit in a similar way. Other lines shown in figures 6.16 and
6.17 are not taken into account in the fitting procedure. A typical fit with residuals
is shown in figure 6.6. The reduced χ2 of the shown fit is 1.3. From the fit the
linear relation between energy and ADC channel can be derived. It is shown in
figure 6.7.

6.3. Peak Stability and Data Splitting

The fitting procedure described in the section 6.2 can be used to find the peak
positions in ADC channels for the Mn and Ti peaks and determine their stability.
The data taken at LNGS was analyzed in this way. The result for one SDD is shown
in figure 6.8, where each data point represents approximately one day of data. The
peak position changes by approximately 20 ADC channels in the course of the data
taking. This is a typical value similar for all six SDDs. The drift in peak position
might be caused by small fluctuations of the high voltages applied to the SDDs or
fluctuations of the gain of the spectroscopy amplifier, which could be dependent
on the room temperature. As one ADC channel corresponds to approximately 9
eV in the final energy spectrum, the peak position changes by approximately 180
eV. In the case of the SDD for which the peak position is shown in the figure
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Parameter
Name Parameter Description Fit Parameter

Gain Gain of the main Gaussian peak Yes

σ
Detector energy resolution at the energy of

the Gaussian peak
calculated from Fano
and constant noise

σtail
Detector energy resolution at the energy of

the peak of the exponential tail
calculated from Fano
and constant noise

σescape
Detector energy resolution at the energy of

the escape peak
calculated from Fano
and constant noise

i0 ADC channel of the main peak Yes

tR Ratio of the exponential tail to the main
peak Yes

tN Norm of the exponential tail No

tSh Shift of the exponential tail to the low
energy side Yes

tSl Slope of the exponential tail Yes
eR Ratio of escape peak to the main peak Yes

SiKα Energy of the Si Kα transition (1.74 keV) No
sR Ratio of the shelf to the main peak Yes

Table 6.1.: Parameters going into the fit of a signal produced by monoenergetic
radiation.

(SDD 3), the energy resolution at 6 keV (FWHM) would change from 151 eV for
a small data set to 179 eV. This would be the resolution, in case the whole data
taking time shown in figure 6.8 would be summed up in ADC channels and scaled
to energy. As the energy resolution needs to be kept as good as possible in order
to determine possible events in the energy region of the Pauli-forbidden transition
as accurately as possible, the data needs to be divided into subsets for calibration.
As small enough subsets of data are not affected by this drift, doing so avoids the
problem of peak broadening in the final energy histogram due to scale drift. The
strategy for determining the energy of each event as well as possible is as follows:

Finding the optimal time for the subsets of data means to optimize the energy
determination uncertainty for a single event of approximately 8 keV, where the
non-Paulian transition is expected. It is important to keep in mind that this
calculation does not optimize how well the Cu Kα peak in the energy spectrum
can be determined for calibration, as for this to be done the number of events in the
Cu Kα line is not high enough. This calculation rather has the goal of optimizing
the energy determination of a single event with an energy around 8 keV.
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Figure 6.6.: Fit of data taken at SMI (blue) with the complete fit function (red).
Some of the constituents of the fit function are shown like Ti and
Mn Kα1 peaks (green), constant background (black, dashed), Ti Kα1
exponential tail (cyan) and the shelf functions of Ti and Mn Kα1 (blue,
dashed). Residuals divided by σ are shown below for each bin. The
reduced χ2 of this fit is 1.3.

There are two effects that need to be considered: Firstly, the intrinsic energy
resolution of the detector together with the drift of the energy scale with time gives
a large contribution to the energy determination uncertainty. This contribution
can be estimated with formula 6.2 and the measured resolutions from the Ti and
Mn lines. This effect will contribute less when the time of the data subset is low,
as the effect of the peak drift is then minimized, and the energy determination
uncertainty will be close to the intrinsic energy resolution. This can be seen
from the right image in figure 6.9, where the contribution is called σdet. The
second contribution to the uncertainty in the determination of energy of an event
around 8 keV comes from the statistical uncertainty of the peak position in ADC
channels of the Ti Kα1 and Mn Kα1 calibration lines given by the fit. Taking into
account the relation between ADC channels and energy (see equation 6.1) as well
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Figure 6.7.: The relation between ADC channel and energy for one SDD derived
from Ti Kα1 and Mn Kα1 ADC channel positions and their known
energies. The fitted positions of Ti Kβ, Mn Kβ as well as Cu Kα1 and
Kβ lines are also shown. Error bars are smaller than the data points.
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Figure 6.8.: The position of the Mn Kα1 peak for SDD 3 during the data taking
at LNGS without current (blue) and with current (red). Typical sta-
tistical error is 1 ADC channel. Each data point corresponds to one
day of data.

as these statistical errors, the energy uncertainty at 8 keV can be calculated with
error propagation. This contribution to the uncertainty increases with decreasing
data taking time, as the statistical error of the calibration lines increases in this
case. It is shown in the left image of figure 6.9, where this contribution is called
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σstat. The numbers in the figure correspond to an average over all six SDDs and
were calculated from a dataset of 30 days from LNGS without current, which
was divided into subsets of 0.1, 0.25, 0.5, 1, 2 and 4 days. The above mentioned
uncertainties were calculated for every subset and averaged. The Cu Kα line itself
can not be used for calibration due to its low event rate.
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Figure 6.9.: Energy determination uncertainty at 8 keV due to statistical error
of the position of the calibration lines as a function of data taking
time σstat (left). Energy determination uncertainty at 8 keV due to
intrinsic detector resolution, also taking peak drift effects into account
σdet (right).

As the two contributions (σdet, σstat) are statistically independent, their variances
can be added to a total energy determination uncertainty at 8 keV σtot:

σtot =
√
σ2
det + σ2

stat , (6.7)

and the result is shown in figure 6.10. As the energy resolution at Cu Kα can not
be measured directly due to low statistics, but needs to be calculated from the
resolutions at the Mn and Ti lines, this is an estimation. The minimum energy
resolution was found for a data taking time of 0.25 days or 6 hours. Therefore,
the data taken at LNGS was divided into parts with 6 hours each. The 198 days
and 7 hours of data were divided into 618 parts. For every one of them each of
the six SDDs was calibrated separately and added up to two energy spectra, one
with and one without current.
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Figure 6.10.: The total uncertainty in the energy determination at 8 keV as a
function of the data taking time.

6.4. Scale Linearity and 2nd Order Correction

With the Ti and Mn Kα lines as two sources of calibration it is not possible
to determine if the relation between ADC channel and energy is linear over the
whole spectral range. But for cases in which the Cu Kα line has enough events to
determine the position of its peak, it is possible to investigate it. This is possible
for example for the 4 days of data taken at SMI, for which the spectrum of one
SDD is shown in figure 6.6. The relation between ADC channel and energy for this
fit is shown in figure 6.7. To determine the scale linearity, it is interesting to look at
the difference of the positions of the peaks determined by the fit to their positions
calculated from the position of the two calibration lines. This is the equivalent of
the distance between the red line (which runs through the Ti Kα1 and the Mn Kα1
peaks) and the data points corresponding to the fit positions of the peaks in figure
6.7. This plot is shown in figure 6.11. For a perfectly linear scale, the points should
all be at zero deviation. As the Ti and Mn Kα1 peaks are used for calibration,
their deviation from the expected position is zero by definition. It is important to
note that the fitted position of the Cu Kα1 peak deviates by approximately 1.5
channels from the position it should be according to the position of the calibration
lines and the known energies of the involved transitions. The same effect was
observed in the data taken at LNGS. This hints to a not perfectly linear scale and
the necessity to introduce 2nd order corrections into the linear relation of ADC
channel to energy calculated from the position of the two calibration peaks. The
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Figure 6.11.: The difference in ADC channels of the fitted position of the peaks to
the position calculated with the two calibration lines and the physical
position of the respective lines. The plot corresponds to 4 days of
data taken at SMI with one SDD. Other SDDs show a similar result.

formula for the 2nd order correction is shown in equation 6.8.

i(E) = C1 + C2 × E + C3 × E2, (6.8)

where C1 and C2 are the coefficients in the relation between ADC channel i and
energy E calculated from the two calibration lines. They can be found for example
by inverting equation 6.1. To calculate the coefficient C3 for the data from LNGS,
the whole data taken there was first scaled to energy with linear scaling like it
was described in chapters 6.2 and 6.3 for each SDD and all subsets of data were
summed up in energy. The peak position of the Cu Kα1 position was determined
in these spectra. C3 was then determined for each SDD so that the energy scale
was changed in such a way that this peak was at the correct energy. This had
to be done for the complete dataset at once, as the subsets of data mentioned
in chapter 6.3 do not have enough data to determine the position of the Cu Kα1
peak. The position of this peak with a linear scale and a 2nd order scale is shown
in tables 6.2 and 6.3. From the tables it can be seen that the peak position of
the Cu Kα1 peak is at its correct position of 8047.8 eV within statistical error.
Nevertheless, the possible systematic error of the energy determination due to the
discussed calibration procedure is mentioned in chapter A. The spectra acquired
by the steps described in the chapters 6.1 - 6.4 were used for calculating the upper
limit for the probability for a violation for the Pauli Exclusion Principle.
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Cu Kα1
position SDD 1 SDD 2 SDD 3 SDD 4 SDD 5 SDD 6 Sum

Linear
Scaling

8062.7
eV

8047.5
eV

8066.5
eV

8061.4
eV

8065.5
eV

8063.3
eV

8062.8
eV

2nd order
correction

8046.4
eV

8047.1
eV

8047.4
eV

8049.3
eV

8049.7
eV

8047.1
eV

8048.0
eV

Table 6.2.: Cu Kα1 peak position with linear scaling and with 2nd order scale
correction for the data without current. Statistical errors are around
2 eV for single SDDs and 1 eV for the sum of all six SDDs. The true
energy is at 8047.8 eV.

Cu Kα1
position SDD 1 SDD 2 SDD 3 SDD 4 SDD 5 SDD 6 Sum

Linear
Scaling

8068.6
eV

8052.7
eV

8058.9
eV

8063.4
eV

8068.5
eV

8063.9
eV

8064.6
eV

2nd order
correction

8046.9
eV

8047.2
eV

8048.0
eV

8049.7
eV

8048.9
eV

8047.2
eV

8048.0
eV

Table 6.3.: Cu Kα1 peak position with linear scaling and with 2nd order scale
correction for the data with current. Statistical errors are around 2 eV
for single SDDs and 1 eV for the sum of all six SDDs. The true energy
is at 8047.8 eV.

6.5. Comparison of Data and Simulations

To check if the data corresponds to the expectations, it is interesting to compare
it to the simulations discussed in chapter 4. The measured counts above 7 keV
together with the counts expected from simulations are shown in figure 6.12. The
basis for these simulations was the γ spectrum reported in [46] with 6.3 × 108

γ m−2 day−1. From the plot a good agreement between measurement and sim-
ulations can be observed in the constant part of the background. The constant
part is interesting for the analysis described in chapter 7. The good agreement
between the measured data and the simulation based on this result favors it over
the result reported in [45], where approximately half the γ flux was reported. This
also shows that by far the largest contribution to the counts in the region of the
Pauli-forbidden transition at 7.7 keV comes from the γ radiation originating in the
surrounding rocks of the underground laboratory. The agreement between data
and simulation furthermore shows, that systematic effects in determining the num-
ber of events in the ROI play a minor role. Systematic uncertainties are briefly
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Figure 6.12.: The simulated spectrum introduced by γ radiation (red) scaled to the
same data taking time (81 days 10 hours) as the data with current
(blue).

discussed in A.

The scintillator rejection rate of 1 % predicted by simulations can also be compared
to the measured data. The spectra taken with and without current are shown in
figure 6.13 together with the counts that can be rejected by scintillator veto. The
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Figure 6.13.: The spectrum without current (left) and with current (right) in red
taken at LNGS with the respective counts rejected by scintillator
veto in blue.

rejection ratio for the counts above 7 keV is 0.02 % for the data with and without
current. The two datasets were separated for this analysis in order to check for
noise effects that might be introduced by the 100 A current. These effects were
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not observed. Comparing this outcome to simulations, a rejection rate of 0.02 %
points to a minimum energy deposition of 200 keV in inner and outer scintillator
layer to produce a veto signal. This value of 200 keV is double the value of 100
keV estimated for this threshold in chapter 5. This value is an estimation rather
than a calculation, so 200 keV can be accepted as the threshold value, despite
this discrepancy. The trigger logic of inner AND outer scintillator layer instead of
triggering on any scintillator signal was kept in order to avoid triggers from SiPM
dark counts. As the trigger condition was an AND of the two layers, both layers
would need to have a dark count in order to produce a dark count trigger. As
these correlated dark counts are much more unlikely than single dark counts, they
can be suppressed in this way. Despite the low rejection rate of the active veto, it
was kept in the setup for two reasons, which were already discussed in section 4.3.
Firstly, the scintillators provide a passive shielding of the SDDs from γ radiation.
Secondly, once the passive shielding will be installed around the setup (see chapter
8), the γ background will possibly be reduced to a level were the background from
cosmic radiation, which can be rejected by the active veto, becomes relevant.

The rate of high energy charged particles impinging on the setup can be estimated
from the spectra of scintillator signals recorded by the QDC. Events with high
energy deposited in one scintillator can be attributed to these particles, as their
energy deposition is typically higher than the one from γ radiation. This is difficult
for two reasons: Firstly, the count rate of high energy charged particles is very low,
in the order of a few counts per week per scintillator. Secondly, the separation
between events caused by γ radiation and charged particles is not unambiguous.
Nevertheless a rate of 1 event per scintillator every 3 days can be estimated from
the data. This is in good agreement with the rate given in [44] of 3.41 × 10−4 m−2

s−1.

6.6. Effects of 100 A Current

The 100 A current flowing through the Cu conductor affects the measurements in
several ways. One effect is that the heat produced by the current in turn heats
the SDDs, which are mounted approximately 0.5 cm away from the Cu strips.
The temperature of the Cu strips is stabilized by a water cooling system and the
temperature of the SDDs is kept constant by argon cooling (see also chapter 3).
These cooling systems counteract any temperature change of the detectors. The
measured SDD temperatures are shown in figure 6.14. The x-axis of this and
similar plots spans a time from February 2016 until July 2017, as was already
mentioned. Each data point corresponds to the average over one day of data
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Figure 6.14.: Temperature measured on the aluminum frame of SDDs 1-3 (left)
and on the aluminum frame of SDDs 4-6 (right). Data points with
100 A current are shown in red and data points without current are
shown in blue. Each data point corresponds to the average over one
day of data.

taking time. From the figures it can be seen that the 100 A current only raises
the temperature of the metal frame of the SDDs by approximately 0.2 - 0.4 ◦C
compared to the measurements without current. The temperature of the detectors
themselves (and not their frames) might be affected more than shown in the plots,
but as there is no possibility to measure it directly it is impossible to be certain.
Nevertheless it shows that the SDD environment can be stabilized at cryogenic
temperature even with high currents. It is worth mentioning that the problems
with suddenly rising temperature of the SDDs (see also chapter 5) were overcome
during the measurements at LNGS by filling more argon gas into the system.

Another interesting effect of the 100 A current is that it influences the energy
resolution of the silicon detectors. A plot of the energy resolution of one SDD
at 6 keV for different times of measurement with and without current is shown
in figure 6.15. The resolution gets worse in times when the current is turned on
by approximately 20 eV (FWHM). This effect might be caused by the temper-
ature rise in the SDDs mentioned above. The dependence of energy resolution
on temperature was for example reported in [36]. The change in temperature of
the detectors would have to be higher than the 0.4 ◦C measured on their metal
holder. The same effect of peak broadening due to a current was also reported in
[21], where it was attributed to electronic noise introduced by the current. The
energy resolution at 6 keV measured at LNGS with and without current for the
complete data taking time are shown in table 6.4 for each single SDD and for the
spectrum resulting from the summation of all single SDDs. The energy resolution
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Figure 6.15.: Energy resolution (FWHM) at 6 keV for SDD 1 without current
(blue) and with current (red). The statistical uncertainty for the
amount of data in each measurement is approximately 0.5 eV. Each
data point corresponds to one day of data.

current SDD 1 SDD 2 SDD 3 SDD 4 SDD 5 SDD 6 Sum
0 A 159 eV 151 eV 151 eV 149 eV 157 eV 163 eV 155 eV
100 A 177 eV 165 eV 166 eV 155 eV 160 eV 169 eV 165 eV

Table 6.4.: Energy resolution (FWHM) of the single SDDs and their sum at 6 keV.
Typical statistical uncertainty for the amount of data going into this
calculation is 0.5 eV.

changes by approximately 10 eV at 6 keV when turning on the current for the
summed up spectrum. The same effect also occurs at an energy of 8 keV where
the Pauli-forbidden transition is expected.

6.7. Spectral Lines in the Energy Spectrum

The low background at LNGS gives the opportunity to study possible spectral lines
from elements occurring in the equipment surrounding the detectors. Conclusions
from this analysis might be used to improve future MC simulations of the setup.
The complete energy spectrum taken at LNGS corresponding to approximately
198 days of data is shown in figures 6.16 and 6.17.
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Figure 6.16.: Energy spectrum corresponding to 198 days of data taken at LNGS
with candidates for spectral lines.

The most prominent peaks are the Cu Kα and Cu Kβ peaks. The corresponding
photons originate from the Cu conductor next to the SDDs. Another peak of
certain origin is the Ni Kα peak at 7.5 keV. Nickel is for example used in stainless
steel, from which the tubes of the water and argon cooling systems are made of.
The Zirconium spectral lines come from a 15 µm thick Zirconium foil mounted
above the SDDs, which was initially mounted for calibration with an X-ray tube,
which was not performed. The anode of this tube is made out of tungsten (W),
from which the tungsten L-lines might be coming from. Several other lines are
drawn in the figure, which were suggested in [6]. As the two sources of calibration
are Ti Kα and Mn Kα at 4.5 keV and 5.9 keV respectively, the energy calibration
has a higher uncertainty for higher energies further away from these lines. This
effect limits the possibility to accurately determine the spectral lines with higher
energy.
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Figure 6.17.: Energy spectrum corresponding to 198 days of data taken at LNGS
with candidates for spectral lines. The drop at 28 keV is non-physical
as above this energy only the two SDDs, which are not in overflow
above this energy, are shown.
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7. Data Analysis

The data acquired with the procedures described in chapter 6 were analyzed using
several methods. These methods have in common, that they investigate the differ-
ence of the spectra taken with and without current in the energy region in which
the PEP violating transition is expected. These final spectra in the energy region
of the PEP-violating transition with and without current are shown together with
fit and residuals in figures 7.1 and 7.2. The Cu and Ni lines were fit like it was
described in section 6.2 for the calibration lines, which means taking into account
not only the Gaussian main peak, but also various other aspects of a spectrum in
a real detector. The energy of the events in the histograms shown in this chapter
were determined using techniques discussed in sections 6.1 - 6.4.

To better compare the data with and without current, a dataset of the data without
current (total 116 days 20 hours) was selected with the same data taking time as
the dataset with 100 A current (81 days 10 hours). In order to have the maximum
temporal overlap between the two datasets with and without current, the later
part of the data without current was chosen. The data without current analyzed
in this chapter spans a time from end of March 2016 (compared to beginning of
February for the full dataset) until April 2017. Systematic errors of the analysis
methods mentioned in this chapter will be discussed in A.

7.1. Spectral Subtraction Analysis

One approach to calculate the upper limit for the probability of the violation of the
PEP from two energy spectra recorded with and without current was described by
E. Ramberg and G. A. Snow in [2]. The basic principle is to look for an excess of
events in the energy region of the Pauli-forbidden transition in the spectrum taken
with current compared to the spectrum without current (see also chapter 2.4). If
the PEP can be violated, photons from this transition are expected to occur and
introduce this difference between the two spectra. From the difference or the lack
thereof, and experimental parameters, the probability for the violation of the PEP
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Figure 7.1.: Data taken with 100 A current together with fit. In the lower pad the
fit residuals divided by the square root of the fit function are shown.
The position of the PEP violating transition is marked in black.

or an upper limit for it can be calculated. This analysis was presented for a subset
of the data in [52].

Using the same notation as in the publications about the VIP2 experiment, the
number of possible detected events from PEP-violating transitions ∆Nx is related
to the probability that the PEP is violated in an atom β2

2 (see also chapter 2.2) as
shown in equation 7.1.

∆Nx ≥
β2

2 Nnew
Nint

10 (detection efficiency), (7.1)

where Nnew is the number of new electrons introduced by the current. It can be
calculated from the magnitude of the current I, the data taking time ∆t and the
electronic charge e as

Nnew = 1
e

∑
(I∆t). (7.2)

Furthermore, Nint is the number of scattering reactions a single electron undergoes
during the passage of the Cu target. It is of the order of D

µ
, where D is the length

of the target and µ is the mean free path length of electrons in Cu. The probability
for absorption of the electron into the 2p state in the case of a scattering is assumed
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Figure 7.2.: Data taken without current together with fit. In the lower pad the
fit residuals divided by the square root of the fit function are shown.
The position of the PEP violating transition is marked in black.

to be larger than 10 % [2], which introduces the factor 1
10 and the greater or equal

sign in the equation. The detection efficiency is the probability for a 7.7 keV
photon produced in the target to be detected. This probability includes photon
absorption in the target and the finite solid angle covered by the SDDs (see section
4.1). The equation can then be rewritten as

∆Nx ≥
β2

2
1
10
D
∑ (I∆t)
µe

(detection efficiency) (7.3)

or
β2

2 ≤
10µe

D
∑ (I∆t)

∆Nx

(detection efficiency) . (7.4)

The values for these parameters used in the analysis are summed up in table 7.1.
Inserting these values into equation 7.4, the relation between amount of counts

µ D I ∆t detection efficiency
3.91 × 10−6 cm[21] 7.1 cm 100 A 81 days 10 hours 1.82 %

Table 7.1.: Values for the experimental parameters for the analysis of the VIP2
data.
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from non-Paulian transitions and the probability for the violation of the PEP can
be obtained:

β2

2 ≤
∆Nx

1.46× 1031 . (7.5)

The number of detected counts ∆Nx needs to be determined from the energy
spectra with and without current. A dataset from the data without current was
selected with the same data taking time as the data with current (81 days 10
hours), as was mentioned earlier. ∆Nx was calculated as the difference in counts
in the region of interest (ROI) around the non-Paulian Cu Kα transition. As the
center of this region the energy of the forbidden Cu Kα1 transition of 7747 eV (see
chapter 2.4) is usually taken. As its width the FWHM of the Cu Kα line of the
spectrum with current is assumed. The energy resolutions at 8 keV for the spectra
of the sum of all six SDDs with and without current were determined by fitting
the Cu lines in the same way as it was done for the calibration lines of Ti and Mn
(see chapter 6.2). The fits of the spectra, from which the energy resolutions were
determined, are shown in figure 7.1 and 7.2. The results are shown in equations
7.6 and 7.7.

FWHM (8 keV) = 187.7± 1.87 eV with current (7.6)

FWHM (8 keV) = 176.9± 1.79 eV without current (7.7)

To account for a theoretical uncertainty of 10 eV of the energy of the PEP-violating
transition given in [53], the width of the ROI was chosen as 200 eV instead of 187.7
eV. It spans the energy range from 7647 eV - 7847 eV. The energy region around the
Pauli-forbidden transition of the two spectra consisting of the sum of all six SDDs
for the spectra with and without current are shown in figure 7.3. On the right side
of the figure the spectrum without current was subtracted from the spectrum with
current. No significant peak structure can be made out in this figure around the
7747 eV of the forbidden transition. From these spectra ∆Nx can be calculated
as the difference between the counts in the ROI in the spectrum with current and
the spectrum without current:

• with I = 100 A: NX = 4202 ± 65

• with I = 0 A: NX = 4105 ± 64

• for the subtracted spectrum: ∆NX = 97 ±
√
652 + 642 = 97 ± 91

The statistical error on the counts in the ROI in the spectra with and without
current are calculated as

√
N when N are the counts, as the number of events are

distributed according to a Poisson distribution with mean N . The statistical error
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Figure 7.3.: Spectrum with current (red) and without current (blue) around the
region of interest (gray) on the left. The subtracted spectrum is shown
on the right with error bars.

of ∆NX is the square root of the sum of variances of NX . As the deviation of ∆NX

from zero is only about 1σ, it is not enough to claim a discovery. Nevertheless, an
upper limit on the probability for a violation of the PEP can be set using 3σ as
the upper limit of ∆NX resulting in a 99.73 % C.L.:

β2

2 ≤
3× 91

1.46× 1031 = 1.87× 10−29. (7.8)

This value is an improvement by a factor of 2.5 compared to the results of the VIP
experiment of 4.7 × 10−29 given in [4].

7.2. Simultaneous Fit Analysis

Another approach for determining the upper limit on the probability for the vi-
olation of the PEP is the simultaneous fit of the signal (with current) and the
background (without current) spectrum. This method was applied in the analysis
of kaonic atom precision spectroscopy data in [54]. A global χ2 function was de-
fined for the fits of the two histograms of the energy spectra which was minimized
for both spectra at the same time. A Gaussian distribution was added to the
fit function of the signal histogram at 7747 eV, which represents the contribution
from non-Paulian transitions. Its position was fixed, its width was the same as the
one of the Cu Kα line of the signal histogram and its gain was a free parameter.

For the background function, a 1st order polynomial was chosen. The two param-
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eters for this function were free and common for the fits of both histograms. The
position of the Cu Kα, Cu Kβ and Ni Kα lines were kept fixed to their physical
values. All other parameters like the widths and the gain of these lines were free
parameters and independent for both histograms. With this method, the esti-
mated number of candidate events and its error can directly be obtained from the
parameters of the Gaussian function representing signal events in the converged
minimum χ2 fit. In this case the MINUIT package of the CERN ROOT software
framework with MINOS error estimation was used. Special care was taken that
the crucial error assessment was not perturbed by boundaries of fit parameter
ranges. The program code is shown in the appendix D. The results of this fit are
shown in figure 7.4. The fit corresponds to a reduced χ2 of 1.27. As the Gaussian
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Figure 7.4.: The fits obtained by a simultaneous fit of the signal histogram with
current (above) and the background histogram (below) with a few
common parameters.

function corresponding to photons from possible non-Paulian transitions is small
and impossible to see in this figure, it is drawn again in figure 7.5 together with a
1σ confidence interval.
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Figure 7.5.: Gaussian function corresponding to possible non-Paulian transitions
(black) with 1σ confidence interval (green), obtained from a simulta-
neous fit of the two spectra.

This method has a few advantages compared to the subtraction method described
in section 7.1. On the one hand the definition of a region of interest is not necessary.
In the simultaneous fit function this is not needed, as the fit makes use of a wide
energy range for the determination of the parameters of the global fit function, from
which the number of candidate PEP-violating events is calculated. On the other
hand the error of the gain of the Gaussian representing the forbidden transition
takes into account uncertainties of the other fit parameters. These uncertainties
are usually not evaluated using the subtraction method.

The fit result for the number of detected photons from PEP-violating transitions
was 119 ± 82. This is more than 1σ away from zero but not enough to claim a
discovery. This is why more data is needed to prove or disprove this excess. Nev-
ertheless, the error of the gain of the Gaussian can, in analogy to the subtraction
method, be used to set a 3σ upper limit at 99.73 % C.L. of detected photons from
PEP-violating transitions of 3 × 82. With formula 7.5 the upper limit for the
violation of the PEP can be calculated:

β2

2 ≤
3× 82

1.46× 1031 = 1.69× 10−29. (7.9)

88



7.3. Bayesian Count Based Analysis

This section represents the preliminary status of a data analysis using the Bayes
theorem. The Bayes theorem links the estimate of a parameter (a-priori distri-
bution, f0) with the probability to find the measured data given a certain value
for this parameter (likelihood function, L) to calculate the probability distribution
for this parameter given the measured data (a-posteriori distribution, f ). For a
measured quantity X and a parameter λ that shall be estimated from these data
it can be written as

f(λ|X) = L(X|λ)f0(λ)∫
L(X|λ)f0(λ)dλ. (7.10)

For a detailed discussion of the uses of this theorem in particle physics see for
example [47].

The model described in this section was discussed in more detail in [55]. In the case
of the VIP2 data the measured data can be interpreted as the number of counts
X in a certain energy region. X can be seen as drawn from a Poisson distribution
characterized by the unknown parameter λ:

L(X|λ) = λXe−λ

X! . (7.11)

This is the likelihood function of the number of counts X given a parameter λ.
The width of the energy region is arbitrary, as any two energy regions can be
combined and the sum of their counts will again be distributed according to a
Poisson distribution. As prior for λ a flat uniform distribution larger than zero
was chosen. This encodes the fact, that there can not be a negative amount of
events from PEP-violating transitions. The posterior for λ can be written with
the Bayes theorem as

f(λ|X) =
λXe−λ

X! f0(λ)∫∞
0

λXe−λ

X! f0(λ)dλ
. (7.12)

The integral over a Poisson distribution is one, so the normalization integral equals
one and the posterior for λ is

f(λ|X) = λXe−λ

X! . (7.13)

This is a Γ distribution 1 of the parameter λ characterized by the parameters a

1The Γ distribution depends on parameters a ≥ 0 and b ≥ 0, and has the PDF f(x) =
xa−1×exp

−x
b

ba×Γ(a) for x ≥ 0, with Γ(y) = (y − 1)× Γ(y − 1), y ≥ 0
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(shape parameter) = X + 1 and b (scale parameter) = 1. The mean of λ is equal
to ab = X + 1, the variance is ab2 = X + 1 and the mode is (a− 1)b = X.

In the case of data without current and therefore with no signal, the only contribu-
tion to the number of events in the region of interest are background events, which
we now call Xbg with a distribution parameter λbg. For the histogram with current
there are two contributions to the number of events in the ROI Xs, namely from
background events and from signal events from the PEP-violating transition Xsg.
The number of counts from background events in the signal histogram is seen as
drawn from a Poisson distribution with the same parameter as the one from the
histogram without current λbg, and the amount of signal counts is drawn from a
distribution parametrized by λsg. The likelihood function for the signal histogram
is then

L(Xs|λsg, λbg) = (λsg + λbg)Xse−(λsg+λbg)

Xs!
. (7.14)

Applying Bayes’ theorem with a constant positive prior for λsg, the distribution
of this parameter as a function of Xs and λbg can be obtained:

f(λsg|Xs, λbg) = (λsg + λbg)Xse−λsg∫∞
0 (λsg + λbg)Xse−λsgdλsg

. (7.15)

The normalization integral does not reduce to one, as the integration variable is
λsg and not (λbg + λsg). The integral in equation 7.15 equals eλbgΓ(1 + Xs, λbg).
The distribution of λsg was calculated numerically by sampling λbg according to
its distribution obtained from Xbg, which is a Γ distribution with a = Xbg + 1 and
b = 1 (see equation 7.13). The Mathematica software framework was used [56].
The code is listed in E. Counts in the ROI with current Xs were equal to 4202 and
counts in the ROI without current Xbg were equal to 4105 (see also chapter 7.1).

The preliminary confidence interval corresponding to a 99.73 % C.L. spans 0 <
λsg < 349. With equation 7.5, the preliminary upper limit on the probability for
a violation of the PEP can be calculated:

β2

2 ≤
349

1.46× 1031 = 2.4× 10−29. (7.16)

The posterior probability density (P.P.D.) and the cumulative distribution function
(C.D.F.) of the posterior probability of the parameter λsg are shown in figure 7.6.
From the plot of the C.D.F. the upper limit for λsg at 99.73 % confidence level of
about 349 can be verified.
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Figure 7.6.: The preliminary probability density (left) and cumulative distribution
function (right) of λsg for a flat positive prior.

7.4. Bayesian Fit Based Analysis

This section represents the preliminary status of a data analysis method using
the Bayes theorem. The RooFit [57] and RooStats [58] frameworks were used to
calculate an estimation for the number of events from PEP-violating transitions
using not only the number of counts in the ROI, but the information from the
complete histogram. In a first step the histogram without current was fit. The
background level was extracted as a first order polynomial including its errors.
Then the histogram with current was fit with the parameters for the background
taken from the fit of the histogram without current and kept constant. The fit
of the histogram with current included a Gaussian function with a fixed mean of
7747 eV and the same width as the main Cu Kα peak. The outcome of this fit was
used as an input for a RooStats::BayesianCalculator. The number of signal events
at 7747 eV was the parameter of interest. The RooStats::BayesianCalculator cal-
culates a posterior probability density of the parameter of interest, taking into
account an a-priori distribution, which is adjustable by the user. A uniform dis-
tribution for values larger than zero was used as this a-priori distribution. The
two parameters of the first order polynomial of the background were treated as
the nuisance parameters (see for example [47]) and were marginalized using a MC
integration method. Parts of the code are shown in E. The posterior density for
the amount of signal events is shown in figure 7.7. The preliminary upper limit
of the parameter of interest corresponding to a 99.73 % confidence level is at 379
signal events. With formula 7.5, the preliminary upper limit for the probability
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for a violation of the PEP can be calculated:

β2

2 ≤
379

1.46× 1031 = 2.61× 10−29. (7.17)
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Figure 7.7.: The preliminary posterior probability density for the number of events
from PEP-violating transitions for a flat positive prior.
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8. Summary and Outlook

The goal of this work was to conduct the most stringent test of Spin-Statistics
and specifically of the Pauli Exclusion Principle for electrons in an experiment
circumventing the Messiah-Greenberg superselection rule. For this purpose the
VIP2 (Violation of the Pauli Principle) experimental setup was built and tested
at Stefan Meyer Institute and was later brought to the underground laboratory
LNGS in Italy for data taking. The predecessor experiment VIP set an upper
limit for the probability for the violation of the PEP of 4.7 ×10−29 [4]. A violation
of the PEP can be detected in the VIP2 experiment by searching for photons
from a Cu conductor, which are coming from Pauli-forbidden 2p to 1s transitions.
As these transitions are only expected when a current runs through it, 100 A
are circulated through the conductor. These transitions have a slightly lower
transitions energy than normal transitions, because there are two electrons in the
ground state already before the transition happens. The second electron increases
the shielding of the potential of the nucleus and thereby reduces the Kα transition
energy by around 300 eV. The limit on the PEP is calculated from an excess of
photons in this energy region in the histogram recorded with a current, compared
to the histogram without current.

The core part of the setup are Silicon Drift Detectors recording the photon spec-
trum from the Cu conductor. An active shielding system consisting of plastic
scintillators read out by Silicon Photomultipliers was installed around these de-
tectors to veto events caused by external ionizing radiation. These systems were
exhaustively tested first at LNF in Italy and at SMI together with the cooling
system of the SDDs and the slow control and data acquisition systems. The re-
sults are summed up in table 8.1. The argon cooling kept the temperature of the
SDDs at approximately 100 K. The functionality of the slow control and the data
acquisition systems was verified. A current through the Cu conductor of up to 180
A was tested and a stable target temperature of about 20 ◦C was verified under
these conditions. The data taken at SMI and LNGS corresponds to the results
predicted by Geant4 simulations in several aspects:

• The simulated SDD hit rate of cosmic radiation corresponds to the measured
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Active Shielding SDDs

Detection Efficiency Time
Resolution

Energy
Resolution

Time
Resolution

500 MeV
e−

Cosmic
Radiation

γ
Radiation FWHM FWHM @

6 keV FWHM

98 % > 90 % < 1 % 2.2 ns 150 eV 380 ns

Table 8.1.: Results of the test measurements at LNF and at SMI for the active
shielding and the SDDs.

rate of events rejected by scintillator veto at SMI. This indicates that the
detection of cosmic radiation with the active shielding works well.

• The scintillator hit rate of cosmic radiation estimated from simulations cor-
responds to the measured rate of events with high QDC values at LNGS.

• The constant part of the background spectrum measured at LNGS is equiva-
lent to the one obtained by simulations with the high energy photon spectrum
of LNGS as input.

The final analyzed data corresponds to 81 days and 10 hours with a 100 A current
and the same amount of data without current for all six SDDs. The upper limit
for the probability for a violation of the PEP was calculated from the difference in
the energy region of the PEP-forbidden transition at 7747 eV of these two spectra.
Several techniques were used to calculate the 99.73 % C.L. upper limit, which give
slightly different values:

1. Difference of counts in the region of interest of the two histograms. The
upper limit is calculated from the statistical error of this difference, assuming
a Poisson distribution for the number of counts in each energy bin.

2. Simultaneous fit of the two spectra, with an additional signal Gaussian func-
tion in the histogram with current. The upper limit is calculated from the
statistical error of the gain of this Gaussian.

3. Difference of counts in the region of interest of the two histograms using
Bayesian statistics. The upper limit is calculated from the posterior distri-
bution, which uses a flat positive prior distribution and a Poisson distribution
as likelihood function.

4. A fit of the histogram with current including a Gaussian function at the en-
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ergy of the PEP-forbidden transition is done, using the background function
obtained from the histogram without current. From the result of this fit and
the data a posterior distribution for the amount of signal counts is calculated
using a flat positive prior.

The results of these different methods are summed up in table 8.2. For comparison

1. Spectrum
Subtraction

2. Simultaneous
Fit

3. Bayesian
Subtraction

4. Bayesian
Fit

Upper Limit
β2

2
1.87 × 10−29 1.69 × 10−29 2.4 × 10−29 2.61 × 10−29

Table 8.2.: Results for the upper limit for the violation of the PEP using differ-
ent analysis techniques. The results coming from Bayesian statistics
(methods 3 + 4) are preliminary.

with other publications about this and related experiments, the limit from the
spectrum subtraction of

β2

2 ≤ 1.87× 10−29 (8.1)

can be used. This result represents an improvement on the limit set by the VIP
experiment by a factor of 2.5.

The VIP2 setup is currently (February 2018) at the Stefan Meyer Institute for
testing and mounting new SDDs with a larger active area (20.5 cm2). After the
work at SMI is finished, the setup will be transported to LNGS, where further data
will be taken with an additional passive shielding consisting of Pb and Cu blocks
of 5 cm thickness. After around three more years of data taking, the anticipated
new upper limit for the probability of the violation of the Pauli Exclusion Principle
will be on the order of 10−30- 10−31. Or else, a violation of the Pauli Exclusion
Principle will be discovered.
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A. Systematic Uncertainties

This section represents a preliminary analysis of systematic uncertainties in the
calculation of the upper limit on the probability for the violation of the PEP. Two
checks for systematic uncertainties have already been mentioned in the main text:
Firstly, in section 6.1, the rate of background as a function of data taking time
was analyzed. No deviation was found from the expected statistical fluctuation
around a mean value. Secondly, this mean value of the rate of background events
was compared to MC simulations (in section 6.5), where at least the constant part
of the spectrum (which is interesting for the analysis), is comparable. These two
checks exclude noise in the SDDs and other sources causing a fluctuation of the
background event rate as a potential source of systematic errors. As was suggested
in [59], this excluded potential source of systematics is not included in the total
systematic error.

The formula for calculating the upper limit of a PEP violation is (see also equation
7.4):

β2

2 ≤
10µe

D
∑ (I∆t)

∆Nx

(detection efficiency) . (A.1)

Errors can influence the final value for β2

2 on the one hand by changing the number
of possible detected counts ∆Nx from PEP-violating transitions, which is obtained
from the experimental data. On the other hand, systematic errors can influence
the other terms in the equation, which correspond to characteristics of the setup.

In table A.1, the uncertainties for different systematic effects on ∆Nx are listed.
The effect in the first line accounts for changes in binning. The value 3 × 3 in
the case of the simultaneous fit means that ∆Nx varies with σ = 3 counts when
changing the binning. Furthermore, the effect of a change in the peak position of
the PEP-violating transition is explored. This accounts for the uncertainty of 10
eV in its calculation given in [53] and the fact that there is another possible PEP-
forbidden transition at 7729 eV. Also this accounts for the effect that the energy
spectrum might be slightly shifted due to uncertainties in the energy calibration
(see for example table 6.3). The uncertainty in ∆Nx from the uncertainty in energy
resolution (see equation 7.7) is given in the third line. The last considered effect
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Spectrum
Subtraction

Simultaneous
Fit

Bayesian
Subtraction

Bayesian
Fit

Binning - 3 × 3 - 3 × 4
PEP-violating
Peak Position 3 × 10 3 × 9 3 × 10 3 × 10

Energy
Resolution 3 × 2 3 × 3 3 × 2 3 × 8

Tail
Components 3 × 4 - 3 × 6 -

Total
Systematic

Error
3 × 11 3 × 10 3 × 12 3 × 13

Change in
Upper Limit 2 / 0.7 % 1.8 / 0.7 % 1.8 / 0.5 % 2 / 0.5 %

Table A.1.: Preliminary calculations of the contribution of different systematic ef-
fects on ∆Nx. The effects are displayed as 3 × σsys of ∆Nx. The total
systematic error is calculated assuming uncorrelated individual errors.

deals with the influence of tails of the Cu Kα and Ni Kα, which one could subtract
from the events in the ROI, as they potentially introduce an artificial difference
between the histograms with and without current. Some analysis methods by
definition are not sensible to certain systematic effects, which is noted by a “-”
sign in the table. In particular, the spectrum subtraction method does not depend
on the binning of the histogram, as it counts events in a certain energy region.
Furthermore, fit methods do not depend on if tails are subtracted or not, as they
take into account all features of the spectrum by default, including the tails.

Comparing these values with the ones given in chapter 7 for the statistical errors,
it is obvious that the statistical errors are the dominant factor in the calculation
of an upper limit for ∆Nx. Adding the statistical and the systematic error in
quadrature to get the new upper limit for the spectral subtraction method gives

3×
√

912 + 112 = 275. (A.2)

This is a change from the pure statistical limit of 3 × 91 = 273 by only 0.7 %.
Similar results are obtained for the other analysis methods, which are given in the
table. This means that the inclusion of systematic effects on ∆Nx only changes
the upper limit by a small amount.

Contributions of systematic uncertainties from experimental parameters to the cal-
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culation of β2

2 are listed in table A.2 Firstly the statistical uncertainty of the MC

Detection
Efficiency

Number of
Scatterings

Systematic
Error 0.01 % possibly large

Table A.2.: Contribution of different systematic effects on experimental parame-
ters.

simulation of the detection efficiency is given (see chapter 4). With 106 particles
used in the simulation, the statistical uncertainty is 0.01 %. Therefore its contribu-
tion is minor. Another possible uncertainty comes from the amount of scattering
events, which is estimated to be on the order of D

µ
in equation A.1, where D is the

target length and µ is the mean free path length. Recent calculation given in [60],
which assume a random walk of the electron through the conductor, come to the
conclusion that the number of scatterings might be higher than that by orders of
magnitude. As this result is not yet published, it will not be further discussed.

As the analysis in this chapter is preliminary, it is not included in the main text.
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B. Data Acquisition Layout
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Figure B.1.: Layout of the data acquisition system for the VIP2 experiment
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C. Code for Fit Function

Double_t TiMnCuFullFitFunc(Double_t *x, Double_t *par)
{

Double_t timncu_function = 0.;
Double_t arg[33] = {0.};

Double_t slope = (par[9] - par[5])/(MnKa1 - TiKa1); // par[9] = init_mean_mn
↪→ ; par[5]=init_mean_ti; slope in ch / eV

Double_t mnka2m = par[9] - (MnKa1 - MnKa2) * slope; // mn ka2 start value
↪→ channel

Double_t mnka1e = par[9] - SiKa * slope; // channel with a mnka1 photon
↪→ absorbed by Si -> lost energy not recorded

Double_t mnka2e = mnka2m - SiKa * slope; // same for mn-ka2
Double_t mnkbe = par[11]- SiKa * slope; // par[11]=init_mean_mnkb, same for

↪→ mn-kb
Double_t tmnka1m = par[9] - par[14] * slope; // par[14]=Tail mean shift [eV]
Double_t tmnka2m = mnka2m - par[14] * slope; // same for mn-ka2
Double_t tmnkbm = par[11]- par[14] * slope; // same for mn-kb

Double_t sig_MnKa1 = sqrt( slope * par[9] * SiW * par[3] + par[4] * par[4] )
↪→ ;

Double_t sig_MnKa2 = sqrt( slope * mnka2m * SiW * par[3] + par[4] * par[4] )
↪→ ;

Double_t sig_MnKb = sqrt( slope * par[11]* SiW * par[3] + par[4] * par[4] );
Double_t sig_MnKa1e = sqrt( slope * mnka1e * SiW * par[3] + par[4] * par[4]

↪→ );
Double_t sig_MnKa2e = sqrt( slope * mnka2e * SiW * par[3] + par[4] * par[4]

↪→ );
Double_t sig_MnKbe = sqrt( slope * mnkbe * SiW * par[3] + par[4] * par[4] );
Double_t sig_tMnKa1 = sqrt( slope * tmnka1m* SiW * par[3] + par[4] * par[4]

↪→ );
Double_t sig_tMnKa2 = sqrt( slope * tmnka2m* SiW * par[3] + par[4] * par[4]

↪→ );
Double_t sig_tMnKb = sqrt( slope * tmnkbm * SiW * par[3] + par[4] * par[4] )

↪→ ;

Double_t tika2m = par[5] - (TiKa1 - TiKa2) * slope; // TiKa2 mean channel
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Double_t tika1e = par[5] - SiKa * slope;
Double_t tika2e = tika2m - SiKa * slope;
Double_t tikbe = par[7] - SiKa * slope; // par[7]=Ti-Kb channel
Double_t ttika1m = par[5] - par[14] * slope;
Double_t ttika2m = tika2m - par[14] * slope;
Double_t ttikbm = par[7] - par[14] * slope;

Double_t sig_TiKa1 = sqrt( slope * par[5] * SiW * par[3] + par[4] * par[4] )
↪→ ;

Double_t sig_TiKa2 = sqrt( slope * tika2m * SiW * par[3] + par[4] * par[4] )
↪→ ;

Double_t sig_TiKb = sqrt( slope * par[7] * SiW * par[3] + par[4] * par[4] );
Double_t sig_TiKa1e = sqrt( slope * tika1e * SiW * par[3] + par[4] * par[4]

↪→ );
Double_t sig_TiKa2e = sqrt( slope * tika2e * SiW * par[3] + par[4] * par[4]

↪→ );
Double_t sig_TiKbe = sqrt( slope * tikbe * SiW * par[3] + par[4] * par[4] );
Double_t sig_tTiKa1 = sqrt( slope * ttika1m* SiW * par[3] + par[4] * par[4]

↪→ );
Double_t sig_tTiKa2 = sqrt( slope * ttika2m* SiW * par[3] + par[4] * par[4]

↪→ );
Double_t sig_tTiKb = sqrt( slope * ttikbm * SiW * par[3] + par[4] * par[4] )

↪→ ;

Double_t cuka2m = par[22] - (CuKa1 - CuKa2) * slope; // cu ka2 start value
↪→ channel

Double_t cuka1e = par[22] - SiKa * slope; // channel with a cuka1 photon
↪→ absorbed by Si -> lost energy not recorded

Double_t cuka2e = cuka2m - SiKa * slope; // same for cu-ka2
Double_t cukbe = par[24]- SiKa * slope; // par[24]=init_mean_cukb, same for

↪→ cu-kb
Double_t tcuka1m = par[22] - par[14] * slope; // par[14]=Tail mean shift [eV

↪→ ]
Double_t tcuka2m = mnka2m - par[14] * slope; // same for cu-ka2
Double_t tcukbm = par[24]- par[14] * slope; // same for cu-kb

Double_t sig_CuKa1 = sqrt( slope * par[22] * SiW * par[3] + par[4] * par[4]
↪→ );

Double_t sig_CuKa2 = sqrt( slope * cuka2m * SiW * par[3] + par[4] * par[4] )
↪→ ;

Double_t sig_CuKb = sqrt( slope * par[24]* SiW * par[3] + par[4] * par[4] );
Double_t sig_CuKa1e = sqrt( slope * cuka1e * SiW * par[3] + par[4] * par[4]

↪→ );
Double_t sig_CuKa2e = sqrt( slope * cuka2e * SiW * par[3] + par[4] * par[4]

↪→ );
Double_t sig_CuKbe = sqrt( slope * cukbe * SiW * par[3] + par[4] * par[4] );

Double_t sig_tCuKa1 = sqrt( slope * tcuka1m* SiW * par[3] + par[4] * par[4]
↪→ );
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Double_t sig_tCuKa2 = sqrt( slope * tcuka2m* SiW * par[3] + par[4] * par[4]
↪→ );

Double_t sig_tCuKb = sqrt( slope * tcukbm * SiW * par[3] + par[4] * par[4] )
↪→ ;

if( sig_TiKa1 * sig_TiKa2 * sig_TiKb * sig_MnKa1 * sig_MnKa2 * sig_MnKb
* sig_CuKa1 * sig_CuKa2 * sig_CuKb
* sig_tTiKa1 * sig_tTiKa2 * sig_tTiKb * sig_tMnKa1 * sig_tMnKa2 *

↪→ sig_tMnKb
* sig_MnKa1e * sig_MnKa2e * sig_MnKbe * sig_TiKa1e * sig_TiKa2e *

↪→ sig_TiKbe
!= 0){

arg[0] = (x[0] - par[5])/sig_TiKa1;
arg[1] = (x[0] - tika2m)/sig_TiKa2;
arg[2] = (x[0] - par[7])/sig_TiKb;
arg[21] = (x[0] - tika1e)/sig_TiKa1e; // Escape peak
arg[22] = (x[0] - tika2e)/sig_TiKa2e;
arg[23] = (x[0] - tikbe)/sig_TiKbe;

arg[3] = (x[0] - par[9])/sig_MnKa1;
arg[4] = (x[0] - mnka2m)/sig_MnKa2;
arg[5] = (x[0] - par[11])/sig_MnKb;
arg[6] = (x[0] - mnka1e)/sig_MnKa1e; // Escape peak
arg[7] = (x[0] - mnka2e)/sig_MnKa2e;
arg[20] = (x[0] - mnkbe) /sig_MnKbe;

arg[24] = (x[0] - par[22])/sig_CuKa1; // cu ka1
arg[25] = (x[0] - cuka2m)/sig_CuKa2;
arg[26] = (x[0] - par[24])/sig_CuKb;
arg[27] = (x[0] - cuka1e)/sig_CuKa1e; // Escape peak
arg[28] = (x[0] - cuka2e)/sig_CuKa2e;
arg[29] = (x[0] - cukbe) /sig_CuKbe;

arg[11] = (x[0] - ttika1m)/sig_tTiKa1/SQRT2;
Double_t argtika1B1 = (x[0] - ttika1m)/sig_tTiKa1/par[19]; //par[19]=

↪→ tail beta slope
Double_t argtika1B2 = 1./par[19]/SQRT2;
Double_t argtika1B3 = 1./2./par[19]/par[19];
Double_t normtika1 = 1./2./sig_tTiKa1/par[19]*TMath::Exp(argtika1B3);
arg[12] = (x[0] - ttika2m)/sig_tTiKa2/SQRT2;
Double_t argtika2B1 = (x[0] - ttika2m)/sig_tTiKa2/par[19];
Double_t argtika2B2 = 1./par[19]/SQRT2;
Double_t argtika2B3 = 1./2./par[19]/par[19];
Double_t normtika2 = 1./2./sig_tTiKa2/par[19]*TMath::Exp(argtika2B3);
arg[13] = (x[0] - ttikbm) /sig_tTiKb/SQRT2;
Double_t argtikbB1 = (x[0] - ttikbm)/sig_tTiKb/par[19];
Double_t argtikbB2 = 1./par[19]/SQRT2;
Double_t argtikbB3 = 1./2./par[19]/par[19];
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Double_t normtikb = 1./2./sig_tTiKb/par[19]*TMath::Exp(argtikbB3);

arg[17] = (x[0] - tmnka1m)/sig_tMnKa1/SQRT2;
Double_t argmnka1B1 = (x[0] - tmnka1m)/sig_tMnKa1/par[20];
Double_t argmnka1B2 = 1./par[20]/SQRT2;
Double_t argmnka1B3 = 1./2./par[20]/par[20];
Double_t normmnka1 = 1./2./sig_tMnKa1/par[20]*TMath::Exp(argmnka1B3);
arg[18] = (x[0] - tmnka2m)/sig_tMnKa2/SQRT2;
Double_t argmnka2B1 = (x[0] - tmnka2m)/sig_tMnKa2/par[20];
Double_t argmnka2B2 = 1./par[20]/SQRT2;
Double_t argmnka2B3 = 1./2./par[20]/par[20];
Double_t normmnka2 = 1./2./sig_tMnKa2/par[20]*TMath::Exp(argmnka2B3);
arg[19] = (x[0] - tmnkbm) /sig_tMnKb/SQRT2;
Double_t argmnkbB1 = (x[0] - tmnkbm)/sig_tMnKb/par[20];
Double_t argmnkbB2 = 1./par[20]/SQRT2;
Double_t argmnkbB3 = 1./2./par[20]/par[20];
Double_t normmnkb = 1./2./sig_tMnKb/par[20]*TMath::Exp(argmnkbB3);

arg[30] = (x[0] - tcuka1m)/sig_tCuKa1/SQRT2;
Double_t argcuka1B1 = (x[0] - tcuka1m)/sig_tCuKa1/par[20];
Double_t argcuka1B2 = 1./par[20]/SQRT2;
Double_t argcuka1B3 = 1./2./par[20]/par[20];
Double_t normcuka1 = 1./2./sig_tCuKa1/par[20]*TMath::Exp(argcuka1B3);
arg[31] = (x[0] - tcuka2m)/sig_tCuKa2/SQRT2;
Double_t argcuka2B1 = (x[0] - tcuka2m)/sig_tCuKa2/par[20];
Double_t argcuka2B2 = 1./par[20]/SQRT2;
Double_t argcuka2B3 = 1./2./par[20]/par[20];
Double_t normcuka2 = 1./2./sig_tCuKa2/par[20]*TMath::Exp(argcuka2B3);
arg[32] = (x[0] - tcukbm) /sig_tCuKb/SQRT2;
Double_t argcukbB1 = (x[0] - tcukbm)/sig_tCuKb/par[20];
Double_t argcukbB2 = 1./par[20]/SQRT2;
Double_t argcukbB3 = 1./2./par[20]/par[20];
Double_t normcukb = 1./2./sig_tCuKb/par[20]*TMath::Exp(argcukbB3);

timncu_function = backFunc(x,par)
+ par[6] / sig_TiKa1* TMath::Exp(-0.5 * arg[0] * arg[0]) //par[6] =

↪→ ti ka1 gain Ti ka1 gauss
+ TiKa2_RI/ TiKa1_RI * par[6] / sig_TiKa2 * TMath::Exp(-0.5 * arg[1]

↪→ * arg[1]) // 100/50 for ti
+ par[8] * par[6] / sig_TiKb * TMath::Exp(-0.5 * arg[2] * arg[2]) //

↪→ par[8]=ti kb to ka gain ratio
+ par[6] * par[15] * normtika1 * TMath::Exp(argtika1B1) * TMath::

↪→ Erfc(arg[11] + argtika1B2)// par[15]=ti tail gain ratio ka1
+ par[6] * par[15] * TiKa2_RI / TiKa1_RI * normtika2 * TMath::Exp(

↪→ argtika2B1) * TMath::Erfc(arg[12] + argtika2B2) // ka2
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+ par[6] * par[16] * par[8] * normtikb * TMath::Exp(argtikbB1) *
↪→ TMath::Erfc(arg[13] + argtikbB2) // kb

+ par[10] / sig_MnKa1* TMath::Exp(-0.5 * arg[3] * arg[3]) // par[10]
↪→ = mn ka1 gain

+ MnKa2_RI/ MnKa1_RI * par[10] / sig_MnKa2 * TMath::Exp(-0.5 * arg
↪→ [4] * arg[4])

+ par[12] * par[10] / sig_MnKb * TMath::Exp(-0.5 * arg[5] * arg[5])
↪→ // par[12]=mn kb to ka gain ratio (0.7 in one fit for lngs)

+ par[10] * par[17] * normmnka1 * TMath::Exp(argmnka1B1) * TMath::
↪→ Erfc(arg[17] + argmnka1B2)

+ par[10] * par[17] * MnKa2_RI / MnKa1_RI * normmnka2 * TMath::Exp(
↪→ argmnka2B1) * TMath::Erfc(arg[18] + argmnka2B2)

+ par[10] * par[18] * par[12] * normmnkb * TMath::Exp(argmnkbB1) *
↪→ TMath::Erfc(arg[19] + argmnkbB2)

+ par[23] / sig_CuKa1* TMath::Exp(-0.5 * arg[24] * arg[24]) // cu
↪→ ka1 peak

+ CuKa2_RI/ CuKa1_RI * par[23] / sig_CuKa2 * TMath::Exp(-0.5 * arg
↪→ [25] * arg[25]) // cu ka2

+ par[25] * par[23] / sig_CuKb * TMath::Exp(-0.5 * arg[26] * arg
↪→ [26]) // par[12]=mn kb to ka gain ratio (0.7 in one fit for
↪→ lngs) - cu kb

+ par[23] * par[26] * normcuka1 * TMath::Exp(argcuka1B1) * TMath::
↪→ Erfc(arg[30] + argcuka1B2) // cu ka1 tail

+ par[23] * par[26] * CuKa2_RI / CuKa1_RI * normcuka2 * TMath::Exp(
↪→ argcuka2B1) * TMath::Erfc(arg[31] + argcuka2B2) // cu ka2 tail

+ par[23] * par[25] * par[26] * normcukb * TMath::Exp(argcukbB1) *
↪→ TMath::Erfc(arg[32] + argcukbB2) // cu kb tail

+ par[13] * par[10] / sig_MnKa1e * TMath::Exp(-0.5 * arg[6] * arg
↪→ [6]) // Escape peak ... mn ka1

+ par[13] * par[10] / sig_MnKa2e * TMath::Exp(-0.5 * arg[7] * arg
↪→ [7]) // mn ka 2

+ par[13] * par[10] / sig_MnKbe * TMath::Exp(-0.5 * arg[20]* arg
↪→ [20]) // mn kb

+ par[13] * par[6] / sig_TiKa1e * TMath::Exp(-0.5 * arg[21] * arg
↪→ [21]) // escape peak ti ka1

+ par[13] * par[6] / sig_TiKa2e * TMath::Exp(-0.5 * arg[22] * arg
↪→ [22]) // ka2

+ par[13] * par[6] / sig_TiKbe * TMath::Exp(-0.5 * arg[23] * arg
↪→ [23]) // kb

+ par[21] * par[10] * (1./2) * TMath::Erfc( (x[0]-par[9])/(SQRT2*
↪→ sig_MnKa1) ) // mn ka1 shelf

+ par[21] * MnKa2_RI/ MnKa1_RI * par[10] * (1./2) * TMath::Erfc( (x
↪→ [0]-mnka2m)/(SQRT2*sig_MnKa2) ) // ka2

xxii



+ par[21] * par[12] * par[10] * (1./2) * TMath::Erfc( (x[0]-par[11])
↪→ /(SQRT2*sig_MnKb) ) // kb

+ par[21] * par[6] * (1./2) * TMath::Erfc( (x[0]-par[5])/(SQRT2*
↪→ sig_TiKa1) ) // ti ka1 shelf

+ par[21] * TiKa2_RI/ TiKa1_RI * par[6] * (1./2) * TMath::Erfc( (x
↪→ [0]-tika2m)/(SQRT2*sig_TiKa2) )

+ par[21] * par[8] * par[6] * (1./2) * TMath::Erfc( (x[0]-par[7])/(
↪→ SQRT2*sig_TiKb) );

}
return timncu_function;

}
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D. Code for Simultaneous Fit

Double_t funcBg(Double_t *x, Double_t *par){

// fit of the region of roi, nickel, and cu ka kb
// this is for fitting an already scaled histogram

Double_t xx = x[0];

//par[0] = background constant
//par[10] = background slope

Double_t back = par[0] + (xx - 7000) * par[10];

//par[1] = cu ka1 gain
//par[2] = cu ka1 mean
//par[3] = cu ka1 sigma

Double_t cuKa1 = par[1]/(sqrt(2*TMath::Pi())*par[3])*TMath::Exp(-((xx-par
↪→ [2])*(xx-par[2]))/(2*par[3]*par[3]));

Double_t cuKa2Gain = par[1] * 0.51;
Double_t cuKa2Mean = par[2] - 19.95;

Double_t cuKa2 = cuKa2Gain/(sqrt(2*TMath::Pi())*par[3])*TMath::Exp(-((xx-
↪→ cuKa2Mean)*(xx-cuKa2Mean))/(2*par[3]*par[3]));

//par[4] = cu kb gain
//par[5] = cu kb mean
//par[6] = cu kb sigma

Double_t cuKb = par[4]/(sqrt(2*TMath::Pi())*par[6])*TMath::Exp(-((xx-par[5])
↪→ *(xx-par[5]))/(2*par[6]*par[6]));

//par[7] = ni ka1 gain
//par[8] = ni ka1 mean
//par[9] = ni ka1 sigma
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Double_t niKa1 = par[7]/(sqrt(2*TMath::Pi())*par[9])*TMath::Exp(-((xx-par
↪→ [8])*(xx-par[8]))/(2*par[9]*par[9]));

Double_t niKa2Gain = par[7] * 0.51;
Double_t niKa2Mean = par[8] - 17.3;

Double_t niKa2 = niKa2Gain/(sqrt(2*TMath::Pi())*par[9])*TMath::Exp(-((xx-
↪→ niKa2Mean)*(xx-niKa2Mean))/(2*par[9]*par[9]));

Double_t roiCuFunc = back + cuKa1 + cuKa2 + cuKb + niKa1 + niKa2;

return roiCuFunc;
}

Double_t funcSigBg(Double_t *x, Double_t *par){

// fit of the region of roi, nickel, and cu ka kb
// this is for fitting an already scaled histogram

Double_t xx = x[0];

//par[0] = background constant
//par[10] = background slope

Double_t back = par[0] + (xx - 7000) * par[10];

//par[1] = cu ka1 gain
//par[2] = cu ka1 mean
//par[3] = cu ka1 sigma

Double_t cuKa1 = par[1]/(sqrt(2*TMath::Pi())*par[3])*TMath::Exp(-((xx-par
↪→ [2])*(xx-par[2]))/(2*par[3]*par[3]));

Double_t cuKa2Gain = par[1] * 0.51;
Double_t cuKa2Mean = par[2] - 19.95;

Double_t cuKa2 = cuKa2Gain/(sqrt(2*TMath::Pi())*par[3])*TMath::Exp(-((xx-
↪→ cuKa2Mean)*(xx-cuKa2Mean))/(2*par[3]*par[3]));

//par[4] = cu kb gain
//par[5] = cu kb mean
//par[6] = cu kb sigma

Double_t cuKb = par[4]/(sqrt(2*TMath::Pi())*par[6])*TMath::Exp(-((xx-par[5])
↪→ *(xx-par[5]))/(2*par[6]*par[6]));
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//par[7] = ni ka1 gain
//par[8] = ni ka1 mean
//par[9] = ni ka1 sigma

Double_t niKa1 = par[7]/(sqrt(2*TMath::Pi())*par[9])*TMath::Exp(-((xx-par
↪→ [8])*(xx-par[8]))/(2*par[9]*par[9]));

Double_t niKa2Gain = par[7] * 0.51;
Double_t niKa2Mean = par[8] - 17.3;

Double_t niKa2 = niKa2Gain/(sqrt(2*TMath::Pi())*par[9])*TMath::Exp(-((xx-
↪→ niKa2Mean)*(xx-niKa2Mean))/(2*par[9]*par[9]));

//par[11] = forbidden gauss gain
// mean of forbidden transition fixed at 7747 eV

Double_t forbGauss = par[11]/(sqrt(2*TMath::Pi())*par[3])*TMath::Exp(-((xx
↪→ -7747)*(xx-7747))/(2*par[3]*par[3]));

Double_t roiCuFunc = back + cuKa1 + cuKa2 + cuKb + niKa1 + niKa2 + forbGauss
↪→ ;

return roiCuFunc;
}

struct GlobalChi2 {
GlobalChi2( ROOT::Math::IMultiGenFunction & f1, ROOT::Math::

↪→ IMultiGenFunction & f2) :
fChi2_1(&f1), fChi2_2(&f2) {}

// parameter vector is first background (in common 1 and 2) and then is
↪→ signal (only in 2)

double operator() (const double *par) const {
double p1[11]; // p1 is for background = without current histogram
p1[0] = par[0]; // bg constant ..common parameter
p1[1] = par[1]; // cu ka1 gain ... free
p1[2] = par[2]; // cu ka1 mean ... fixed
p1[3] = par[3]; // cu ka1 sigma ... free
p1[4] = par[4]; // cu kb gain ... free
p1[5] = par[5]; // cu kb mean ... fixed
p1[6] = par[6]; // cu kb sigma ... free
p1[7] = par[7]; // ni ka1 gain ... free
p1[8] = par[8]; // ni ka1 mean ... fixed
p1[9] = par[9]; // ni ka1 sigma ... free
p1[10] = par[10]; // background slope ... common

double p2[12]; // parameters for the fit with signal with current
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p2[0] = par[0]; // bg constant ..common parameter
p2[1] = par[11]; // cu ka1 gain ... free
p2[2] = par[12]; // cu ka1 mean ... fixed
p2[3] = par[13]; // cu ka1 sigma ... free
p2[4] = par[14]; // cu kb gain ... free
p2[5] = par[15]; // cu kb mean ... fixed
p2[6] = par[16]; // cu kb sigma ... free
p2[7] = par[17]; // ni ka1 gain ... free
p2[8] = par[18]; // ni ka1 mean ... fixed
p2[9] = par[19]; // ni ka1 sigma ... free
p2[10] = par[10]; // background slope ... common
p2[11] = par[20]; // forbidden gauss gain ... free
return (*fChi2_1)(p1) + (*fChi2_2)(p2);

}

const ROOT::Math::IMultiGenFunction * fChi2_1;
const ROOT::Math::IMultiGenFunction * fChi2_2;

};

Double_t combinedFit(Int_t reBin) {

TFile *fIN = new TFile("energyHistograms.root");
Int_t nPar = 21;
Int_t lowerL = 7000;
Int_t upperL = 9500;

TH1F *hSB = (TH1F*)fIN->Get("withCurrentSum");
TH1F *hB = (TH1F*)fIN->Get("noCurrentSmallSum");

// setting the initial parameters for the fit
Double_t parInit[21] = { 510. * reBin/25 , 310000. * reBin/25 , 8047.78 , 75.

↪→ , 79000. * reBin/25 , 8905.29 , 80. , 14900. * reBin/25 , 7478.15 ,
↪→ 72. , -0.02 , 312000. * reBin/25 , 8047.78 , 80. , 78500. * reBin/25 ,
↪→ 8905.29 , 78. , 12000. * reBin/25 , 7478.15 , 71. , 0. };

hSB->Rebin(reBin);
hB->Rebin(reBin);

TF1 *fB = new TF1("fB", funcBg, lowerL, upperL, 11 );
TF1 *fSB = new TF1("fSB", funcSigBg, lowerL, upperL, 12 );

// perform global fit

ROOT::Math::WrappedMultiTF1 wfB(*fB,1);
ROOT::Math::WrappedMultiTF1 wfSB(*fSB,1);

xxvii



ROOT::Fit::DataOptions opt;
ROOT::Fit::DataRange rangeB;
rangeB.SetRange(lowerL,upperL);
ROOT::Fit::BinData dataB(opt,rangeB);
ROOT::Fit::FillData(dataB, hB);

ROOT::Fit::DataRange rangeSB;
rangeSB.SetRange(lowerL,upperL);
ROOT::Fit::BinData dataSB(opt,rangeSB);
ROOT::Fit::FillData(dataSB, hSB);

ROOT::Fit::Chi2Function chi2_B(dataB, wfB);
ROOT::Fit::Chi2Function chi2_SB(dataSB, wfSB);

GlobalChi2 globalChi2(chi2_B, chi2_SB);

ROOT::Fit::Fitter fitter;

// create before the parameter settings in order to fix or set range on them
fitter.Config().SetParamsSettings(21,parInit);
// fix some parameters
fitter.Config().ParSettings(2).Fix();
fitter.Config().ParSettings(5).Fix();
fitter.Config().ParSettings(8).Fix();
fitter.Config().ParSettings(12).Fix();
fitter.Config().ParSettings(15).Fix();
fitter.Config().ParSettings(18).Fix();

fitter.Config().ParSettings(0).SetName("Common Background Constant");
fitter.Config().ParSettings(1).SetName("Cu Ka1 Gain BG");
fitter.Config().ParSettings(2).SetName("Cu Ka1 Mean");
fitter.Config().ParSettings(3).SetName("Cu Ka1 Sigma BG");
fitter.Config().ParSettings(4).SetName("Cu Kb Gain BG");
fitter.Config().ParSettings(5).SetName("Cu Kb Mean");
fitter.Config().ParSettings(6).SetName("Cu Kb Sigma BG");
fitter.Config().ParSettings(7).SetName("Ni Ka1 Gain BG");
fitter.Config().ParSettings(8).SetName("Ni Ka1 Mean");
fitter.Config().ParSettings(9).SetName("Ni Ka1 Sigma BG");
fitter.Config().ParSettings(10).SetName("Common Background Slope");
fitter.Config().ParSettings(11).SetName("Cu Ka1 Gain SIG");
fitter.Config().ParSettings(12).SetName("Cu Ka1 Mean");
fitter.Config().ParSettings(13).SetName("Cu Ka1 Sigma SIG");
fitter.Config().ParSettings(14).SetName("Cu Kb Gain SIG");
fitter.Config().ParSettings(15).SetName("Cu Kb Mean");
fitter.Config().ParSettings(16).SetName("Cu Kb Sigma SIG");
fitter.Config().ParSettings(17).SetName("Ni Ka1 Gain SIG");
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fitter.Config().ParSettings(18).SetName("Ni Ka1 Mean");
fitter.Config().ParSettings(19).SetName("Ni Ka1 Sigma SIG");
fitter.Config().ParSettings(20).SetName("Forbidden Gauss Gain");

// set limits
fitter.Config().ParSettings(0).SetLimits(400. * reBin/25,600. * reBin/25);
fitter.Config().ParSettings(1).SetLimits(200000. * reBin/25,400000. * reBin

↪→ /25);

fitter.Config().ParSettings(3).SetLimits(72.,80.);
fitter.Config().ParSettings(4).SetLimits(70000. * reBin/25,90000. * reBin/25)

↪→ ;

fitter.Config().ParSettings(6).SetLimits(75.,85.);
fitter.Config().ParSettings(7).SetLimits(10000. * reBin/25,20000. * reBin/25)

↪→ ;

fitter.Config().ParSettings(9).SetLimits(60. ,85. );
fitter.Config().ParSettings(10).SetLimits(-0.05,0.05);
fitter.Config().ParSettings(11).SetLimits(200000. * reBin/25,400000. * reBin

↪→ /25);

fitter.Config().ParSettings(13).SetLimits(75.,85.);
fitter.Config().ParSettings(14).SetLimits(70000. * reBin/25,90000. * reBin

↪→ /25);

fitter.Config().ParSettings(16).SetLimits(75.,85.);
fitter.Config().ParSettings(17).SetLimits(10000. * reBin/25,15000. * reBin

↪→ /25);

fitter.Config().ParSettings(19).SetLimits(65.,75.);
//fitter.Config().ParSettings(20).SetLimits(0.,5000.); // no limits on

↪→ forbidden gauss gain

fitter.Config().SetMinosErrors();
fitter.Config().MinosErrors();
fitter.FitFCN(nPar,globalChi2,parInit,dataB.Size()+dataSB.Size());

ROOT::Fit::FitResult result = fitter.Result();
result.Print(std::cout);
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E. Code for Bayesian Analysis

E.1. Count Based Analysis

RndList = {};
xs = 4202;
xbg = 4105;
lbgList = {};
expect = xs - xbg;
xValList = Range[0, 700];
For[i = 1, i < 1000000, i++,
lbg = RandomVariate[GammaDistribution[xbg + 1, 1]];
probDist = ProbabilityDistribution[(lsg + lbg)^xs*Exp[-lsg]/
(Exp[lbg]* Gamma[1 + xs, lbg]), {lsg, 0, Infinity}];
yValList = {};
yValList = N[PDF[probDist, xValList]];
empDistTemp = EmpiricalDistribution[yValList -> xValList];
r = N[RandomVariate[empDistTemp]];
AppendTo[RndList, r];
AppendTo[lbgList, lbg];

]

E.2. Fit Based Analysis

RooRealVar backC("backC","number␣of␣bg␣events␣without␣current"
↪→ ,31838.4,10000.,50000.);

backC.setConstant(kTRUE);

RooRealVar backSl("backSl","slope␣of␣the␣bg␣without␣current",-0.05176,-1.,1.)
↪→ ;

backSl.setConstant(kTRUE);
// set the background parameters to the values from the fit without current
// set them also constant for the fit

//CuKa1
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RooRealVar meanCuKa1("meanCuKa1","mean␣of␣Cu␣Ka1␣gaussian"
↪→ ,8047.78,8040.,8080.);

RooRealVar sigmaCuKa("sigmaCuKa","width␣of␣Cu␣Ka1␣gaussian",75.,70.,90.);
RooGaussian gaussCuKa1("gaussCuKa1","Cu␣Ka1␣PDF",energy,meanCuKa1,sigmaCuKa);

RooRealVar cuKa1N("cuKa1N","cu␣Ka1␣Events",15000,0,100000);

//Cuka2

RooRealVar CuKa2Diff("CuKa2Diff","diff␣Ka1␣-␣Ka2",19.95,19.,20.);
RooRealVar CuKa2Ratio("CuKa2Ratio","ratio␣Ka1␣/␣Ka2",0.51,0.,1.);

RooGenericPdf meanCuKa2("meanCuKa2","diff␣Cu␣Ka1␣-␣Ka2␣␣PDF","meanCuKa1␣-␣
↪→ CuKa2Diff",RooArgSet(meanCuKa1,CuKa2Diff));

RooGaussian gaussCuKa2("gaussCuKa2","Cu␣Ka2␣PDF",energy,meanCuKa2,sigmaCuKa);

RooGenericPdf cuKa2N("CuPdfRatio","ratio␣Cu␣Ka1␣/␣Ka2␣␣PDF","cuKa1N*
↪→ CuKa2Ratio",RooArgSet(cuKa1N,CuKa2Ratio));

//NiKa1

RooRealVar meanNiKa1("meanNiKa1","mean␣of␣Ni␣Ka1␣gaussian"
↪→ ,7478.15,7470.,7500.);

RooRealVar sigmaNiKa("sigmaNiKa","width␣of␣Ni␣Ka1␣gaussian",70.,50.,90.);
RooGaussian gaussNiKa1("gaussNiKa1","Ni␣Ka1␣PDF",energy,meanNiKa1,sigmaNiKa);

RooRealVar niKa1N("niKa1N","Nickel␣Ka1␣Events",200,0,1000);

//Nika2

RooRealVar NiKa2Diff("NiKa2Diff","diff␣Ka1␣-␣Ka2",17.26,17.,18.);
RooRealVar NiKa2Ratio("NiKa2Ratio","ratio␣Ka1␣/␣Ka2",0.51,0.,1.);

RooGenericPdf meanNiKa2("meanNiKa2","diff␣Ni␣Ka1␣-␣Ka2␣␣PDF","meanNiKa1␣-␣
↪→ NiKa2Diff",RooArgSet(meanNiKa1,NiKa2Diff));

RooGaussian gaussNiKa2("gaussNiKa2","Cu␣Ka2␣PDF",energy,meanNiKa2,sigmaNiKa);

RooGenericPdf niKa2N("NiPdfRatio","ratio␣Ni␣Ka1␣/␣Ka2␣␣PDF","niKa1N*
↪→ NiKa2Ratio",RooArgSet(niKa1N,NiKa2Ratio));

//Background

//the variables for the background function are defined earlier

RooChebychev backgF("backgF","Background",energy,RooArgSet(backSl));

// PEP violating tranistion
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RooRealVar meanForbidden("meanForbidden","mean␣of␣the␣forbidden␣tranistion",
↪→ 7747, 7746.,7748.);

RooGaussian gaussForbidden("gaussForbidden","Forbidden␣pdf",energy,
↪→ meanForbidden,sigmaCuKa);

RooRealVar Nsig("Nsig","signal␣Events",10.,0.,500.);

RooAddPdf PDFtot_nuis("PDFtot_nuis","PDFtot_nuis",RooArgList(gaussCuKa1,
↪→ gaussCuKa2,gaussNiKa1,gaussNiKa2,backgF,gaussForbidden),RooArgList(
↪→ cuKa1N,cuKa2N,niKa1N,niKa2N,backC,Nsig));

CuKa2Diff.setConstant(kTRUE);
CuKa2Ratio.setConstant(kTRUE);
NiKa2Diff.setConstant(kTRUE);
NiKa2Ratio.setConstant(kTRUE);
meanForbidden.setConstant(kTRUE);
meanCuKa1.setConstant(kTRUE);
meanNiKa1.setConstant(kTRUE);

PDFtot_nuis.fitTo(*withAD); // fit to data with current

backC.setConstant(kFALSE);
// set Background to parameters without current
backC.setError(252.7);
backSl.setConstant(kFALSE);
backSl.setError(0.010902);

nuisW->import(PDFtot_nuis);
ModelConfig sbModel;
sbModel.SetWorkspace(*nuisW);
sbModel.SetPdf("PDFtot_nuis");
sbModel.SetName("S+B␣Model");
RooRealVar* poi = nuisW->var("Nsig");
poi->setRange(0.,500.);
sbModel.SetParametersOfInterest(*poi);
sbModel.SetNuisanceParameters(RooArgSet(backC,backSl));

nuisW->factory("Uniform::prior(Nsig)");
sbModel.SetPriorPdf(*nuisW->pdf("prior"));

//Construct the bayesian calculator
BayesianCalculator bc(*(wConst->data("withDH")), sbModel); // initialize with

↪→ data taken with current
bc.SetConfidenceLevel(0.997);
bc.SetLeftSideTailFraction(0.);
bc.SetIntegrationType("plain");
bc.SetNumIters(10000);
// set number of iterations (i.e. number of toys for MC integrations)
bc.SetScanOfPosterior(100);
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SimpleInterval* bcInt = bc.GetInterval();
RooPlot *bcPlot = bc.GetPosteriorPlot(true);
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