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Introduction

The purpose of the master thesis is to develop a joint spectral theorem for a tuple
of pairwise commuting definitizable self-adjoint operators on a Krein space, cf.
This is inspired by [5], where a functional calculus for normal
definitizable operators on Krein spaces is developed.

In the first section we start with a introduction to Krein spaces. Then we
will show that we can find a Hilbert space H and a injective and linear bounded
mapping T : H — K for every positive operator P on a Krein space K such
that 7T+ = P. Additionally, we define a meaningful concept of joint spectrum
for a tuple @ = (a;)!"_; in a commutative unital Banach algebra. This concept
will be extended to the unital Banach algebra of bounded and linear operators
on a Krein space Ly(K). We also show that the joint spectrum of a tuple is
non-empty. Moreover, we state the concept of a joint spectral measure for a
tuple of commuting self-adjoint operators on a Hilbert space.

In[Section 2| we will give a short introduction to linear relation. Furthermore
we will present the *-homomorphism © from [6]. This *-homomorphism drags
the Krein space setting into a Hilbert space setting.

In we present the joint spectral theorem for a tuple of pairwise
commuting definitizable self-adjoint operators on a Krein space. For every
definitizable A; we choose a real definitizing polynomial p;. According to the
first section there exists a Hilbert space H and a injective and linear bounded
T : H — K for the positive operator Y. | p;(A;) on the Krein space K such that
TT+ =3%"", pi(4;). We introduce a proper function class F4 for which we can
define the functional calculus ¢ — ¢(A). This will be done by decomposing ¢
into a polynomial s and a remainder g which vanishes at every critical point.
We then define ¢(A) = s(A) + Tf;({@(A)) gdET™, where F is the joint spec-
tral measure of ©(A). We will show that this constitutes a *-homomorphism.
Furthermore, we will endow the function class F4 with a norm and proof that
¢ — ¢(A) is continuous in ¢ with respect to this norm. Since every entry A;
in the tuple A has its own functional calculus, if we regard one entry as a one-
tuple, we will give a connections between the functional calculus of one entry
A; and the spectral calculus of the tuple A.

In we derive a spectral calculus for normal definitizing operators.
This will be done by splitting a normal operator N into its real and imaginary
part A; and Ay and using the spectral calculus for A = (44, As).



Notation

Symbol Meaning
N natural numbers starting with 1
Ny natural numbers starting with 0 (NU {0})
Z the set of all integers
[n, m]z {ke€eZ|in<k<m}
imaginary unit
Ly(M, X) Set of all bounded linear mappings f: M — X
Ly (X) Set of all bounded linear mappings f: X — X
BX(x open ball with center z and radius r in X
B, (z) open ball with center x and radius r if the space is clear
03,5 Kronecker delta (0; ; = 1 if i = j and 0 else)
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1 Preliminaries
1.1 Krein space

Definition 1.1.1. Let X be vector space over C. We call a mapping [.,.]x :
X x X — C, which fulfills

(a) [Mx+ py,zlx = ANz, z]x + uly, 2]x, (linerarity)
(b)) [z,ylx = [y, 7]x, (conjugate symmetry)

for x,y,z € X and A\, u € C an inner product and (X, [.,.]x) an inner product
space.

An element z € X is called positiv/negativ/neuvtral if the real number [z, z]x
is positiv/negativ/zero. A linear subspace Y of X is called positiv (semi)definite
if the equality [y,y]x > (=)0 holds for all 0 # y € Y. Accordingly, ¥ can be
negative (semi)definite or (neutral). The inner product is called positiv/negativ
(semi)definite if X < X has the corresponding property.

Two elements z,y € X are called orthogonal, if [z,y]x = 0, we will write
z[L]xy. Two subsets A, B of X are called orthogonal if [z,y]x =0forallz € A
and all y € B, this will be denoted by A[L]xB. For a subset A of X we set
Allx = {z € X : [z,y]x = 0 for all y € A}, and call AIXx the orthogonal
companion of A.

An element x € X is called isotropic if {z}[L]xX. By (X,[.,.]x)° we de-
note the set of all isotropic elements, called the isotropic part of (X, [.,.]x). If
(X, [ ]x)° # {0}, then we call the inner product degenerated, otherwise we
call it nondegenerated. We call (X, [.,.]x) degenerated, if its inner product is
degenerated. Accordingly, (X,[.,.]x) is nondegenerated if its inner product is
nondegenerated.

If M, N are orthogonal subspaces of X such that M N N = {0}, then we
denote the direct sum by M[+]x N and call it the direct and orthogonal sum.

If no confusions are possible we will write [.,.] instead of [.,.]x, X° instead
of (X,[.,.]x)°, [+] instead of [+]x, and [L] instead of [L]x or even just L.

Example 1.1.2. Let us regard the vector space X = C? endowed with

[z, 4] = 2101 — 2202.
It is straightforward to check that (X,[.,.]) is an inner product space. The
orthogonal companion of M := span { (i) } is again M. We want to recall that

in a Hilbert space (H, [.,.]%) we have H = U[+]»U** for a closed subspace U.
Contrary to these expectations, we neither have MNMH = {0} nor M+MH =
X.

Definition 1.1.3. Let (X, [.,.]) be a inner product space, X a positive definite
and X_ a negative definite subspace of X.
If we can express X as the direct and orthogonal sum

X = X [H XX

then we call (X, X_) fundamental decomposition of (X,].,.]). The space
(X,[.,.]) is called decomposable, if there exists a fundamental decomposition.
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The orthogonal projections P, along X_[+] X° onto X, and P_ along
X [+] X° onto X_ are called fundamental projections.

The linear mapping J := P, — P_ is called fundamental symmetry. Further-
more we set (x,y);y := [Jx,y] for z,y € X.

Facts 1.1.4. Let (X, [.,.]) be a decomposable inner product space, (X, X_) a
fundamental decomposition, P, P_ the corresponding fundamental projections,
and J the fundamental symmetry.

(X4,[.,.]) and (X_,—[.,.]) are a pre-Hilbert spaces.

For z,y € X, we have (x,y); = [z, 9]

For z,y € X_, we have (z,y); = —[z,y].

X4 and X_ are also orthogonal with respect to (.,.)s, i.e. X (L); X_.

Lemma 1.1.5. Let (X,[.,.]) be a decomposable inner product space with fun-
damental symmetry J. Then the following assertions hold true:

(i) [Jx,y] =[x, Ty, (Ja,y); = (=, Jy); for all v,y € X.

(i) [z,y] = (Jz,y)s for all z,y € X.

(iii) (.,.)s is a positive semidefinite inner product on X.

() If X is nondegenerated, then (.,.); induces the norm ||z||; := /(z,x);.
(v) If X is nondegenerated, J? = I.

(vi) If X is nondegenerated, XJ[FJ'] =X_ and X = X4

Proof. Since X is decomposable, every z € X can be written as © = Pyz +

P_x + g for some zg € X°. Since the isotropic part xy does not change the
value of the inner product, we have

[(Jz,y| = [Pyx,y| — [P-z,y] = [Py, Pyy + P-y| — [P-z, Pyy + P_y|
= [P+$7P+y] - [P_aj,P_y] = [(P-i- +P_)$, (P-i- - P—)y] = [l‘, Jy}

From the already shown, we obtain
(Jz,y)y = [J(Jz),y] = [Jz, Jy] = (=, Jy)s.
By the definition of the fundamental symmetry J, we have
J?= (P, - P )Py -P.)=P?-P,P_.—P_ P, +P>=P, +P_. (11

Again by writing « as Pyx + P_x + x¢ and mind that the isotropic part z¢ does
not change the value of the inner product, we have

(Jz,y)s = [JJz,y] = [Pyx+ P_x,y] = [Py + P_x + xo,y] = [, y].

The linearity of J yields that (.,.) is linear in the first argument. Moreover,
(.,.)s is even a inner product, since

(m7y)J = [Jxvy] = [y7 J.’E} = [Jyvx] = (yvx)J'
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By the definition of the fundamental projections, we obtain

(x,x); = [Pyx, Pyx] — [P_z, P_x] > 0.

>0 <0

Hence, (.,.) is a positive semidefinite inner product. Moreover, by the Cauchy-
Schwarz inequality (x,z); = 0, if and only if z € X°. Consequently, if X is
nondegenerated, (.,.); is positive definite and ||.||; is a norm on X.

If X is nondegenerated, then x = P,z + P_x and consequently (1.1]) implies
J? =1

By definition we have that X = X[+] X°[+] X_. If X is nondegenerated,

then it is easy to see that X_ C XJ[FJ‘]. Moreover, if 0 # z € X, then we have

[z,z] > 0. For = € XE_L] we obtain

0 =[x, Pyx]) = [Pyx + P_x, Pyx] = [Pyx, Pra).
This yields that PLx = 0 and in consequence z = P_x € X_. Hence, XE‘] -
X _.
a

Facts 1.1.6. Let (K, [.,.]) be a nondegenerated and decomposable inner product
space and (K4, K_) a fundamental decomposition. Furthermore, let P,, P_ be
the corresponding fundamental projections and J the fundamental symmetry.

e For 2 € K we have
1T\ = (Jw, Ja)y = (J L@, 2); = |l«[|5, and
=I
|Pra||’ = [J Py x, Pra] < £[Pyx, Pya] F [Pz, Pra] = [Jz,2] = ||z|3.
=P

Hence, J, Py, P_ are continuous with respect to ||.|| ;.

e The functions f, : x — [z,y] = (Jz,y); are linear and bounded. Hence,
for M C K

M = ﬂ ker f,
yeM

is closed with respect to ||| ;.

o Let (ICF,I@,) be an arbitrary fundamental decomposition. Since ICF =
K and K_ = IC[J:'], both K and K_ are closed with respect to [|.| ;.

Definition 1.1.7. An inner product space (K, [.,.]x) is called Krein space, if it
is nondegenerated and decomposable, such that (K4, [.,.]x) and (K_,—[., .]Jc)
are Hilbert spaces for a some fundamental decomposition (K, K_).

Remark 1.1.8. Every Hilbert space (H,[.,.]%) is also a Krein space.

Lemma 1.1.9. If (K,[.,.]c) is a Krein space and J denotes the fundamen-
tal symmetry of the fundamental decomposition (K4,K_), which justifies that
(K, 1., .Jc) is a Krein space, then (K, (.,.)s) is a Hilbert space.
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Proof. Clearly, (K, (.,.)s) is a pre-Hilbert space. By [Facts 1.1.4] we have
K=Ki(+)sK_.

Since (Ki,[.,.Jx) = (K4+,(,,.)s) and (K_,—[.,.]x) = (K_,(.,.)s) are Hilbert
spaces, (K, (.,.)s) is also complete.
Q

Theorem 1.1.10. Let (K, ]. be a Krein space, (K4, K_) the fundamental
decomposition from and (IC+, IC,) another fundamental decom-
position. Furthermore, let J be the fundamental symmetry of (K+,K_) and J
be the fundamental symmetry of (K4, K_). Then (K4.,[.,.]) and (K_,—][.,.]) are
also Hilbert spaces. Moreover ||.|| ; and ||.|| ; are equivalent.
Proof. Let J, Py, P_ denote the fundamental symmetry and the fundamen-
tal projections according to (K4, K_), and J ,PJ” P_ denote the fundamental
symmetry and the fundamental projections according to (I€+, IC_)

As a first step we will show that J , 15+,]5_ are continuous as mappings
from (K, (.,.)s) to (KC,(.,.)s). We will apply the closed graph theorem: Let
((xn,]:’+xn)) nen & sequence in the graph of P, which converges to (z;y) €

K x K. Since IC+ and K_ are closed and z,, — P+xn =Pz, € IC_, we have

(NS IC+ and z —y € K_. Hence, y = P+y = Pix. Consequently, the graph of
P+ is closed. In the same manner it can be shown that P_ is also continuous.
From J = P+ — P_, we conclude the continuity of J.

By the continuity of J and J, we obtain

2] = [z, 2] = (JTa,@)y < || T ||, |l2ll; < O [lll3
for some C' > 0. This proves
Izl ; < Cllzll,; (1.2)

As a next step we will show that the mapping IE’JF|KJr (K lHy) —

(K4, ||.Il ;) is bijective, bounded and boundedly invertible. For z € K., we
have

2 A S A A A A A 2
2|3 = [o,2] = [Pya, Pra] + [Pz, P_a] < [Pra, Pra] = || Pzl
This yields

< OIP| Nz, for e Ky

;<

Hence, ]5+’K+ is injective and (ran ]5+|K+, [.,.]) is a Hilbert space. In order to
show that P+‘,C+ is surjective, we assume that ran P+|)c+ # K4. Then there

exists a 0 # y € K4 such that y[L] ran Py |7<+' For an arbitrary x € K, we have
[2,y] = [Piw,y] + [P_z,y] = 0.
=0 =0

This yields y € IC[f] = K_ and consequently y € K_ ﬂICJr, which is only possible
for y = 0. This contradicts our assumption. Consequently, g

and (K, [.,.]) is a Hilbert space.

Ky 18 surjective
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By the same argument we can show that (IC,, —[,,.]) is also a Hilbert space.
Therefore, we have justified that we can switch the roles of (K4 ,K_) and
(K4+,K_-). Hence, (1.2)) gives us the equivalence of ||.|| ; and .| ;.

eorem 1.1.10|tells us that, if there exists one fundamental decomposition

which makes (K,[.,.]) a Krein space, then every fundamental decomposition
does so.
In the following we will equip every Krein space (K, [.,.]x) with the norm

topology of ||.||; for an arbitrary fundamental symmetry .J, if not other stated.

Lemma 1.1.11. Let (K, [.,.]) be a Krein space and M C K. Then M = A7

Proof. Let J be a arbitrary fundamental symmetry of (K, [.,.]). Since [z,y] =
(Jz,y)y = (z, Jy)s for z,y € K, we have

z[Ll]M & Jz(L)yM < 2x(L);JM.
Therefore, M = J(M™)7) = (JM)H7. This identity yields
M — (J(M(J-).J))[J-] — (JJ(M(J-)J))(J-)J — MLy = f
Q

Remark 1.1.12. If (K4, [., ]k, ) and (K2, [., .]Jx,) are Krein spaces, then we can
endow Ky x Ko with an inner product

[(z39), (w5 0)]ks xkcy = [ ulic, + [y vk,

and obtain the Krein space (K01 x Ko, [, i, xic,)- In fact, it is straightforward
to check that [.,.]ic; xk, is an inner product. Let (K, q1_) be a fundamental
decomposition of Ky and (K, ,K2_) be a fundamental decomposition of Ks.
Then (K14 x Koy, K1 xK2_) is a fundamental decomposition of K3 x Ky. Since
(K14, [ Jy) and (Kax, [, Jx,) are Hilbert spaces, (K1, x Ko, [, ]k, xk,) and
(K1 x Ka_, [, ]k, xK,) are also Hilbert spaces.

1.2 Operators on Krein spaces
For two Krein spaces (K1, [., .|k, ) and (K2, [., .|k, ) we can equip L, (K1, K2) with

the operator norm

_ [Az],,
[A[l == sup
zeci\foy [,

for Ae Lb(ICl,ICg),

where J; is a fundamental symmetry of ' and J5 is a fundamental symmetry of
Ko. If we choose different fundamental symmetries, then we obtain an equivalent
norm.

Lemma 1.2.1. Let (Ky,[, ]x,), (K2, [, ]Jk,) be Krein spaces, and let A €
Ly (K1,K2). Then there exists a unique operator AT € Ly,(Ka, K1), which satis-
fies

[Axvy]K:z = [$7A+y]l€1 fO?” HAES Khy € K:Q'

Moreover, we have ||A|| = ||AT]|. We will call the operator AT the Krein space
adjoint of A.
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Proof. Let J; and J3 be a fundamental symmetry of (K1, [., .|k, ) and (Ka, [, Jxc,)
respectively. Furthermore, let A* the Hilbert space adjoint of A, when Ky is
endowed with (.,.);, and Ks is endowed with (.,.)s,. Due to

[AxvybC2 = (A(E, JQy)Jz = (va*JZy)Jl = [!L‘7 JlA*JQ y]lCl
— A+

we can be certain of the existence of A*. Since J;, Jo are boundedly invertible,
the uniqueness follows from the uniqueness of A*. Since ||A*|| = || 4|, we obtain

[AF| = |7 A" Rl < [Tl 1A | Jll = A = [|A] (1.3)

The uniqueness of A" implies ATT = A. Hence, we can switch the roles of AT
and A in ((1.3) and obtain | A| = ||AT].
a

Remark 1.2.2. If (K4, [, ]x,), (K2, [, ]x,) are even Hilbert spaces, then the
Krein space adjoint coincides with the Hilbert space adjoint.

Facts 1.2.3. Let (K4,[, Jx,), (K2, [, k) and (K3, [, .]Jx,) be Krein spaces,
A,B S Lb(Kl,’Cz), and C € Lb(’CQ,Kg). Then

o (A+AB)t = A* + AB*,

o (CA)T =ATCH.
Definition 1.2.4. Let (K, [, .]x) be a Krein space and A € L,(K). Then we
call A

e normal, if it commutes with its adjoint AT,

o self-adjoint, if A = AT,

Remark 1.2.5. Clearly, every self-adjoint operator is normal.

Definition 1.2.6. Let (K, [.,.]x) be a Krein space. Then we call a self-adjoint
operator P € Ly (K) positive, if P satisfies

[Pz,z]c >0 forall xek.

Definition 1.2.7. Let (K, [.,.]x) be a Krein space and A € Ly (K) be a self-
adjoint Operator. We will call A definitizable if there exists a polynomial p €
Clx] \ {0} such that p(A) is a [positive operator} Any p € C[z] \ {0} which
satisfies this condition will be called a definitizing polynomial for A.

Lemma 1.2.8. If (K,[.,.]x) is a Krein space and A € L,(K) is definitizable,
then there exists a definitizing polynomial p € R[z]\ {0}.
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Proof. Let q € C[z] \ {0} be a definitizing polynomial for A. Then we define

q#(2) == q(Z) € C[z] and p(z) := ¢#(2) + q(2). Clearly, we have p € R[z]. Since
q(A) is self-adjoint, we have

q(A) = q(A)T = g% (4),

and therefore the operator p(A4) = 2¢(A) is positive. If p # 0, then we are done.
For p = 0 we conclude that —g(z) = ¢*(z) and that the coefficients of ¢ are
purely imaginary. Hence,

—q(A) = ¢ (A) = q(A)T = q(A),

and in consequence q(A4) = 0 = ig(A). Since ¢’s coefficients are purely imaginary,
ig is a definitizing polynomial for A in R[z] \ {0}.
a

According to the previous Lemma we will always choose definitizing poly-
nomials in R[z] \ {0}.

Lemma 1.2.9. Let (Ky,[.,.]x,) and (Ko, ], .]xc,) be Krein spaces. For every
A € Ly(Kq,Ks) we have

(ran A)Hrs = ker AT,

Proof. By definition we can write the orthogonal companion of ran A as

(ran A)Hr2 = {2 € Ky : [z, Ay]x, =0 for all y € K}
={r € Ky: AT, Y|, =0forally € K;}.

Since ever Krein space is nondegenerated, we have
(ran A)Hrs = {z € Ky : ATz =0} =ker AT,
a

Lemma 1.2.10. Let (K,[.,.]c) be a Krein space and P € Ly(K) a positive
Operator. Then there exists a Hilbert space (H,].,.]%) and an injective and
bounded linear mapping T : H — K such that TTT = P.

Proof. Since P is positive (.,.) := [P., .| defines a positive semidefinite inner
product on K. Factorizing K by its isotropic part K(° relating to (.,.) we obtain
the pre-Hilbert space K/ ¢! with the canonical projection

LK = KK/t
Lz o= oz K,

and the scalar product (z + K¢, y4+K()) := (z,y). We define H as the Hilbert
space completion of /K(°). We can regard ¢ as a mapping into H. From

lez||* = (2, 02) = [P, 2l < |PI| ||,

we conclude the continuity of ¢. Therefore, we can define T : H — K as T := ++.
Since ¢ is bounded, T is also bounded. Due to the continuity of the inner product
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(ran:)* = (tanz)t. Hence, the density of ran. in H implies ker:™ = {0} and

consequently the injectivity of 7. By definition, for z,y € K we have
[T 2, yle = (TF2, TTy) = (w,y) = (z,y) = [Pz, ylc

and consequently 77+ = P.
a

Remark 1.2.11. It is possible that the Hilbert space H in the previous Lemma
is the zero-dimensional space {0}. This will happen, if and only if P = 0.

Corollary 1.2.12. Let K be a Krein space and A € Ly(K) self-adjoint and
definitizable. Then there exists a Hilbert space H and an injective and bounded
linear mapping T : H — K such that TTT = p(A).

Proof. Let p € C[z] be a definitizing polynomial for A. By definition p(A) is a

positive operator. will do the rest.
a

1.3 Gelfand space

Definition 1.3.1. Let A # {0} be a vector space over C.
(i) If A is equipped with a bilinear mapping

AxA — A,
(a,b) +— ab,

which is additionally associative, i.e.
a(bec) = (ab)e for all a,b,c € A,

then we will call A an algebra over C. This mapping is called the multi-
plication in A.

(i4) An algebra A is said to be commutative, if

ab="ba forall a,be€ A.

(#it) A subalgebra B of an algebra A is a linear subspace of A such that
abe B for a,beB.

(iv) An element e € A is called unit element of A, if
ea=ae=a forall ac€ A

If A contains a unit element, A is said to be unital. In the following we
will denote the unit element always by e.

(v) An element a in a unital algebra A is said to be invertible if there exists
an element b € A, such that

ab = ba = e,

where e is the unit element. The set of all invertible elements of A will be
denoted by Inv(A)
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(vi) For every a in a unital algebra A the set
pala):={AeC:(a—Xe) €Inv(A)}
is called the resolvent set of a. The set

gala) :=C\pla) ={A € C:(a— Ae) ¢ Inv(A)}

is called the spectrum of a. We will just write o(a), p(a) if no confusions
about the algebra is possible.

(vii) If A is equipped with a norm ||.||, such that ||.|| is submultiplicative, i.e.
llabl| < |la|l - ||b]] for all a,b€ A,

then A is a normed algebra. If A equipped with ||.| additionally is a
Banach space, then we call A a Banach algebra.

(viti) If a normed algebra A contains a unital element e, then e is said to be
normed if ||e|]] = 1. If A additionally is a Banach algebra and contains a
normed unital element, we call A a unital Banach algebra.

(iz) If there is a mapping

such that
o (\a+ ub)* = \a* + mb*,
. @) =q
o (ab)* =b*a*,

then we call A a x-algebra.

Lemma 1.3.2. Let X be unital Banach algebra. Then the set Inv(X) is open
and the mapping a + a~' is continuous on Inv(X).

Proof. As first step we will show that if ||a]| < 1 for an a € X, then e —a €
Inv(X) and (e —a)™* =307 ;a™: Since ||a"|| < [|a]|" we have

Z la"] < Z lall" || <

n=0 n=0

Hence, >~ ,a™ converges absolutely. The continuity of ¢ — cb yields

oo oo oo
(e —a) E a":E a"—g a"=a’ =e. (1.4)
n=0 n=0 n=1

In the same way » - a"(e —a) = e can be shown. Hence, (e —a) is invertible.

Let a € Inv(X) and ||b]| < ﬁ Then we can write a + b = a(e — a~*(—b))
where Ha‘l(—b)H < 1. Hence, (e —a~!(=b)) is invertible by the first step.
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Consequently a + b has (e — a=!(—b))"ta™! as its inverse. We showed that
(a)=a+B_1_(0) CInv(X) Wthh 1mphes that Inv(X) is open.

1
fla=t1l fla=t1l

Let again a € Inv(X) and ||b]| < Ha - By the already shown we have

oo -t = ot S o

- Sy a7 a0l la *1||
< ||a 1H Z Ha 1b” T [a—10]| < 1 [ja—10]] ol -
i=1

Therefore, ||(a +b)~! —a™!|| converges to 0, if ||b] — 0. Consequently, the

mapping @ — a~ ! is continuous.
a

Lemma 1.3.3. Let X be a unital Banach algebra and o € X. Then p(a) is
open subset of C and the mapping

R(.>(a)¢{ p(a; = o

is continuous. Moreover, lim|y o || Rx(a)|| = 0.

Proof. Consider the mapping ® : C — X, A — a — Ae. This mapping is clearly
continuous. Hence, p(a) is open as the preimage of the open set Inv X. Since
we have Ry(a) = (@‘p(a)(x\))_l, we conclude that R()(a) is a composition of

continuous mappings.
If |<| < ﬁ we can calculate the inverse of (e —(a) as we did in (1.4]). Hence,

L -1 n,.n = n+1l_n
R%(a>=(a—ge) = —((e—<¢a)” =—<Z< :—Zjoc an,
Since the series on the right-hand-side converges uniformly for |¢| < STl We
obtain
hm R = lim HR, a‘ = lim H ntlgn
(@] = im0 = im [32¢
<3 dim [[¢*Har| <o,
— <=
a

Theorem 1.3.4. (Liouville) Let ¢ : C — C be holomorphic. If ¢ is bounded,
then ¢ has to be constant.

Theorem 1.3.5. Let X be a unital Banach algebra and x € X. Then o(z) # 0.
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Proof. Let us assume that x — Ae is invertible for every A € C, i.e. o(z) = 0.
For «, B € C such that a # 5 we have

(z —ae) (o= B)(z—Be)™! = (v —ae) "' ((z — fe) — (z — ae)) (z — fe) !

=(r—ae)™' — (z— Be)t.
Applying any f € A’ (continuous dual space of A) on this equation yields

flz—ae)™h) — f((z = Be)™)
a—p

Since the limit on the right hand side exists for &« — 3, the limit on the left
hand side also exists. Hence, a — f((z —ae)™1) is a holomorphic function with
domain C. Since limjy|o0 ||(z — ae) 7| = 0 and f((z — ce)™!) is bounded for
@ in a compact set, we conclude by Liouville that o + f((z — ae)™!) has to be
constant 0. The seperating property of A’ yields (r — ae)™! = 0 which is not
possible for an invertible element.

= f((x —ae) Nz - ﬁe)_l).

a

Theorem 1.3.6. (Gelfand-Mazur) Let X be a unital Banach algebra. If
Inv(X) = X \ {0}, then X is one-dimensional.

Proof. By [Theorem 1.3.5|for every o € X there exists a A\, € o(x). Since 0 is

the only not invertible element we conclude that x — A\, e = 0 and consequently
x = A\ze. Hence, {e} spans X.
a

Definition 1.3.7. Let A be an algebra over C.

e A subalgebra I of A is called ideal, if ai,ia € I for all a € A and i € I. If
additionally I # A, we call I a proper ideal.

e A proper ideal [ is called mazimal ideal if there is no proper ideal J such
that I C J (i.e I CJ and I # J).

e A linear functional m : A — C is said to be multiplicative if m # 0 and

m(ab) = m(a)m(b) for all a,be A.

Lemma 1.3.8. Let A be a unital algebra.
~ A proper ideal does not contain any invertible elements.
~ Fvery proper ideal is contained in a maximal ideal.
~ FEver ideal with codimension one is a mazimal ideal.
~ If A is a normed algebra, then the closure of an ideal is again an ideal.

~ If A is a unital Banach algebra, then every maximal ideal is closed.

Proof.
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~ If a € INInv(A), then e = a~'a € I. Hence, A = eA C I, which is a
contradiction.

~» Let I be a proper ideal and Z the set of all proper ideals J satisfying
I C J. Let J be an arbitrary chain (totally ordered subset) of Z with
respect to C. It is easy to check that

U
JeTg

is also an ideal. Furthermore, it is a proper ideal since no J € J contains
the unit element e.

By the Lemma of Zorn Z has a maximal element, which is a maximal ideal
containing 1.

~> Let I be an ideal with codimension one. Then it certainly is a hyperspace.
Hence, [ is a proper ideal. Since every strictly greater subspace has to be
already A, I is a maximal ideal.

~s If I is an ideal, then I is a subspace of A. By the submultiplicativity of
the norm it is easy to check that the mapping (a,b) — ab is continuous in

the second argument. Hence, we have that al C (aI) C I. Analogously,
we obtain Ia = I. Consequently, I is an ideal.

~~ Let I be a maximal ideal in the unital Banach algebra A. By the first

statement of the present Lemma I C Inv(A)“. By |Lemma 1.3.2|the subset

Inv(A) is closed. Hence, I C Inv(A) C A. By the fourth statement of
this Lemma I is a proper ideal. Since I is a maximal ideal, we conclude
I=1.

a

Lemma 1.3.9. Let A be a commutative unital algebra. Then a € A is invertible,
if and only if a € A is not contained in any mazimal ideal.

Proof. 1If a € A is invertible, then a is by the first statement of
not contained in any proper ideal.

Since A is commutative the set aA := {ab € A : b € A} is an ideal. If a is
not invertible, then e ¢ aA. Consequently, aA is a proper ideal. By the second
statement of there exists a maximal ideal J such that aA C J.

a

Definition 1.3.10. Let A, B be algebras. We call a mapping ® : A — B an
algebra homomorphism, if it satisfies

o O(Aa+ ub) = A®(a) + pd(b),
o O(ab) = P(a)P(b),

for all a,b € A and A\, p € C. If ® is additionally bijective, then we call it an
algebra isomorphism.

If A, B are even x-algebras, then we call an algebra homomoporphism ®
x-homomorphism, if it additionally satisfies

®(a*) =P(a)" forall ae€ A
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Lemma 1.3.11. Let I be an ideal of an algebra A. Then the mapping
((a+1D),b+1)— (a+1)(b+1I):=(ab+ 1) (1.5)

is well-defined and satisfies all condition of |Definition 1.3.1| (), i.e A/I is an

algebra. Moreover the canonical projection w41 : A — A/l,a — a+ 1 is an
algebra homomorphism.
If A is a unital algebra, then A/I is also one.

Proof. Let ay+1=as+ 1 and by +1 = by + I. Then

a1b1 - a2b2 = a1b1 - (a1 +2)(b1 +j) =0- alj - bl’L - ’Lj
N————’
el

implies a1b1 + I = a2b2 + I. Hence, the mapping in is well-defined. The
bilinearity and associativity can be in a straightforward manner derived from
the corresponding properties of (a,b) — ab.

If e is the unit element of A, then it can easily be seen that e + I is the unit
element of A/I.

It is also straightforward to check that 74,; is compatible with all algebra
operation. We will exemplarily show the compatibility with the multiplication:

Tasr(ab) =ab+1=(a+I1)(b+1)=ma/(a)ma(b).
Q

Corollary 1.3.12. Let A be a unital Algebra and I an ideal with codimension
one. Then the mapping Br : X — Xe + I is an isomorphism from C to A/I.
Moreover the mapping my := 6;1 omasr + A — C is multiplicative functional
with kermyp = 1.

Proof.  Since A/I is by assumption one-dimensional and e + I is not the 0
element in A/I, the set {e 4+ I} is a basis of A/I. Consequently the mapping
Br: A= Ae+1)= e+ 1 is bijective. It is straightforward to show that S is
even a homomorphism and therefore an isomorphism.
As a composition of homomorphisms the mapping m; is also a homomor-
phism and homomorphisms into C are multiplicative functionals.
a

Proposition 1.3.13. Let (X, ||.||) be a Banach space and N a closed subspace
of X. Then X/N equipped with

N = inf
Iz + Nllx/n = inf fla+ 2]

is also a Banach space

Proof. Let xz,y € X and 21,22 € N.

I+ N)+ @+ Nlixn < llzt+y+ 2+ 2 <zt + [y + 2|
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Since z1, 22 € N were arbitrary, we obtain the triangular inequality for ||.| N
For A € C\ {0} we have that AN = N. We will apply inf,cn on the following
equation

Az +z] = A[s+ A"z z€eN

on both sides in a different order. This yields

Az + Nl < A [l2 + A7 A+ 2l = A o+ Nl
Az + Nlix/n < [Alllz + N/ Az + Nlix/n = Az + N/
and in consequence |[Az+ N|y,ny = [Al[z+ N| /- This is even true for

A=0. Clearly 0 < ||0+ N||X/N <[J0+0|| =0. If ||l + N||X/N = 0, then there
exists a sequence (z)nen such that z, € N for all n € N and ||z + z,|| — 0.
This means that lim,ecnyz2, = —z and —x € N, since N is closed. Hence,
x4+ N=0+N.

Let (x,, + N)nen be a Cauchy-sequence in X/N. We choose a subsequence

(Zn, + N)ken such that ||(zy,,, + N) — (zn, + N)HX/N < 27%. We will recur-
sively define yy, € (2, + N) such that ||yri1 — yi| < 27%:

We set y1 := x,,. Let y1,...,yr have the claimed properties. Then by

27" > H(x”kJrl +N) = (2, + N)HX/N = Hmnkﬂ — Yk T NHX/N

= Zlgjfv Hz"kﬂ Ukt ZH

there exists a z, € N such that H(acn,c+1 + 2E) — ka < 27%. Hence, we set
Yk+1 = Tpyyy T 2k
If [ < m, then

[Ym —wll =

m—1
Z (Ye+1 — Yk)
k=l

implies that (yx)ren is Cauchy-sequence in X. Since X is Banach space there
exists a y € X such that yr — y. By

m—1 00
<D Mgk —wwll <Y 27k <27
k=l k=l

[y +N) = (@, + N = Iy + N) = (e + N)| < lly =il =0

we conclude that z,, + N converges to y + N and since x,, + N is a Cauchy-
sequence, T,, + IV has the same limit.
a

Proposition 1.3.14. Let X be a commutative unital Banach algebra. Then
every mazimal ideal I of X has codimension one.

Proof. Let I be a maximal ideal of X. Then I is closed and, by
1.3.13] X/I equipped with the factor norm is a Banach space. By |[Lemma 1.3.11}

X/I is also an algebra. From

ey + Dllx/r < lley + iz + gy +ij | = (@ +5)(y + DIl < llz+ 41l ly +él,
I
S
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we conclude [[(z + I)(y + 1)l x/; < [l# + Il x/; [ly + Illx,;- Clearly e + I is the
unit element in X/I and 0 < [le+I[|x,; < [le+0[| = 1. On the other hand
le+Illx,; = llte+ e+ Dy < le+1[%,;, which gives us the missing
inequality for |le + I||y,; = 1. Hence, X/I is also a commutative unital Banach
algebra.

Let y+ I # 04 I and J be an arbitrary ideal of X/I containing y + I. Fur-
thermore, let 7x,; denote the projection x +— x + I. Then it is straightforward
to show that K := W)_(}I(J) is an ideal of X. Clearly I = w)_(}l({OJrI}) C K and
x € K\ I, where x € X is such that mx,;(z) = y+1. Since I is a maximal ideal,
we conclude that K = X and J = X/I. Therefore, there exists no proper ideal
of X/I that contains y + I. By [Lemma 1.3.9]every element of (X/I)\ {0+1} is
invertible. By |Theorem 1.3.6| (Gelfand-Mazur) X/I is one-dimensional. Hence,
the codimension of I is one.

a

Definition 1.3.15. Let X be a commutative unital Banach algebra. Then we
will call the set Mx of all multiplicative functionals on X the Gelfand space of
X.

Theorem 1.3.16. If X is a commutative unital Banach algebra, then the
Gelfand space Mx is non-empty.

Proof. If X \ {0} does not contain any not invertible elements, then due to

Theorem 1.3.6| (Gelfand-Mazur) we have Ce = X. Hence, for every element

x € X there exists a unique A\, € C such that x = A\ e. Consequently, the
mapping

m_X—>(C,
B R = S Y

is as an element of Mx.

If X\ {0} contains an element = which is not invertible, then by [Lemma 1.3.9

x is contained in a maximal ideal J. By [Proposition 1.3.14] J has codimension

one. Hence, the mapping m; from is an element of M.

Qa

Definition 1.3.17. Let X be a commutative unital Banach algebra and a =
(a;)7—, € X™ a n-tuple.

e Then a is said to be invertible, if there exists a b € X™ such that

The set of all invertible elements of X™ will be denoted by Inv(X™).
e We will interpret a A € C™ as an element of X™ by A = (\;e); € X™.

e We will call the set

px(a):={AeC":(a—A) €Inv(X")}
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the resolvent set of a, where a — b := (a; — b;)]—;. When we want to
emphasize that we are talking about the resolvent set of a tuple, we will
use the term joint resolvent set. We will just write p(a) if no confusions
about the algebra is possible.

e We will call the set
ox(a):=C"\px(a)={AeC":(a—A) ¢ Inv(X")}

spectrum of a. When we want to emphasize that we are talking about
the spectrum of a tuple, we will use the term joint spectrum. We will just
write o(a) if no confusions about the algebra is possible.

e Let Y be a commutative unital Banach algebra and ¢ : X — Y an algebra
homomorphism. Then we set

Remark 1.3.18. If there exists an entry a; in @ = (a;)]—;, such that a; is
invertible, then a is also invertible.

Proposition 1.3.19. Let X be a commutative unital Banach algebra, a =
(a;)?-y € X™ and A € C". Then the following statements are equivalent

(i) (@ — A) is not invertible.
(i) I:={(a—X)-b:be X"} is a proper ideal of X.
(7i1) X e{¢p(a): ¢ € Mx}.

Proof. 1t is straightforward to check that in any case I is an ideal of X.

(i) < (i1): The fact that I is a proper ideal is equivalent to e ¢ I which is
equivalent to (@ — A) being not invertible.

(i) = (uit): If I is a proper ideal, it is contained in a maximal ideal J which
has codimension one. Therefore, I C kermj; where m; € Mx is the mapping

from |Corollary 1.3.12} If we choose b = (§; xe)}—;, then
mJ(ak - )\k) = mJ((a - )\) . b) =0.

Since this is true for k € [1,n]z, we obtain mj(a) = A.
(#i1) = (i1): If ¢ € Mx is such that ¢(a) = A, then ¢(ar, — Ar) = 0 for all
k € [1,n]z. Hence, I C ker ¢ and consequently I cannot contain e.
(]

Corollary 1.3.20. Let X be a commutative unital Banach algebra and a =
(a;)l_y € X™. Then the spectrum o(a) is not empty.

Proof. By [Theorem 1.3.16] the Gelfand space My is not empty. Hence, there
exists a ¢ € Mx. By [Proposition 1.3.19] (a — ¢(a)) is not invertible and conse-
quently ¢(a) € o(a).

a
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1.4 Joint Spectrum in Krein spaces

We already defined the term joint spectrum for a tuple of elements in commu-
tative unital Banach algebra. Unfortunately, the space Ly (K) is just a unital
Banach algebra, but not commutative.

Definition 1.4.1. Let A be an algebra and C C A. Then we define the
commutant C' of C by

C':={a€A:ac=ca forall ceC}.

If a € A", then we set @’ := {a; :i € [1,n]z}’. The set C” := (C’)" will be
called the bicommutant of C.

Facts 1.4.2.

1. C’ is the intersection of the kernels of the linear mappings ., ¢ € C,

where
A = A
o

r +— IC—CI.

Hence, C’ is linear subspace of A. If 2,y € C' and ¢ € C, then
(zy)e = z(yc) = x(cy) = (zc)y = (cx)y = c(zy),
and consequently xy € C’. Hence, C’ is a subalgebra of A.

2. If A is normed algebra then all 1. are continuous. Hence, C’ is closed as
intersection of closed sets.

3. If Cy C CQ, then Cll D) 02/.

4. Since zc = cx for all z € C’ and all ¢ € C, we conclude C C C”.

5. From C C C" we derive from [Statement 3| ¢’ D (C”)'. On the other
hand [Statement 4 combined with [Statement 3| yields C’ C (C’)". Hence,
C/ — C/// and C// — C////'

6. C' C C' means nothing else than cd = dc for all ¢,d € C. This implies by
C’' D C”". Since C' = C", we have C"” C C"'. Therefore, C"

is a commutative algebra.

7. If A contains a unit element e, then e € C’. Furthermore for ¢ € CNInv(A)
we conclude from zc = cx for all € C’, that also z¢™! = ¢ 1z for all
x € C’ holds true. Hence, ¢~ € C”.

Proposition 1.4.3. Let X be a unital Banach algebra and C C X be such that
xy = zy for all x,y € C. Then C” is a commutative unital Banach algebra.
Moreover, Inv(C") = Inv(X) N C" and oor(x) = ox(x).

Proof. By |[Facts 1.4.2] C” is commutative unital Banach algebra. If z €
C" NInv(X), then =1 € C"" = C". Therefore, Inv(C"”) = Inv(X) N C”, and

in turn ocr(x) = ox(x) for x € C”.
a

Definition 1.4.4. Let A = (A4;); be a n-tuple of normal commuting operators
in Ly (K) where (K, [., .]x) is a Krein space.



1 PRELIMINARIES 20

(1) We call A dnvertible if A is invertible as an element of the commutative
unital algebra A” in the sense of [Definition 1.3.17]

(#4) The spectrum o(A) is defined by o4/ (A) and the resolvent set p(A) is
defined by par~(A)

Corollary 1.4.5. If A = (A;), is a n-tuple of normal commuting operators
in Lp(K), where (K,[.,.]x) is a Krein space, then the spectrum o(A) is not
empty.

Proof. This follows directly from [Corollary 1.3.20

1.5 Spectral theory in Hilbert spaces

In Hilbert spaces we can find for every self-adjoint operator A a spectral measure
E, which gives us the functional calculus

f = [ ra.

where f is measurable and bounded on o(A). In [I] the authors introduce a prod-
uct spectral measure for commuting spectral measure (E;)"; (i.e.
E,(A)E;(Aj) = Ej(Aj)E;i(A;)). As a consequence it is possible to construct
a joint spectral measure for a tuple A = (A;)?; of pairwise commuting self-
adjoint operators. The following theorem from [I, Theorem 6.5.1] explains how
this joint spectral measure has to be understood.

Theorem 1.5.1. Let A = (4;)?, be a tuple of self-adjoint commuting opera-
tors in Ly(H) where (H,[.,.]3) is a Hilbert space. Then there exists a unique
spectral measure E on the Borel sets of R™, such that

Ai = /ﬂ'idE,

where m; : R™ — R s the projection on the i-th coordinate. We will call E the
joint spectral measure of A.

Remark 1.5.2. We can and will regard every spectral measure E on the Borel
sets of R™ as a measure on the Borel sets of C", if we set

E(A) = E(ANR™).

For the next theorem recall the definition of the support of a spectral measure
E:

suppE :={x € C" : ¢ > 0 = E(Bc(x)) # 0}.
Theorem 1.5.3. Let A = (4;)1, be a tuple of pairwise communting self-

adjoint operators in Ly,(H) where (H,[.,.Jn) is a Hilbert space and let E denote
the joint spectral measure of A. Then

o(A) =suppE.
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Proof. If A € supp E, then E(B.(\)) # 0 for every ¢ > 0. Hence, for every
€ > 0 there exists a f. € ran E(B(A)) such that || f]| = 1. We obtain

I(Ai = Xo) fel” = / lzi — Ail? d(E(@) fe, fo) = /B o |z — Nil* A(E () fe, fe)

2
< e lfell

for all ¢ € [1,n]z. Let us assume that A — A is invertible. Then there exists a
tuple B such that B - (A — A) = I, and in turn

[fell =

<D Bl (A = A fell < el fell Y 1Bl -
=1 i=1

Hence,

n
L<e) |IBill,
i=1

which gives us a contradiction for € < m Consequently, A — X in not
i=1 K

invertible and A € o(A).
On the other hand if A € C™ \ supp E, then we can define

R 1 —
B::/ 72(m—>\)dE:(/ 72(3%‘—)\0(1]5), )
supp E [|Z — All3 supp E || — All3 i=1

because = >\H2 is bounded on supp E. The following calculation verifies that

X belongs to p(A) =C"\ o(A):

(A—\)-B= /mf dE/”m)\Q z N dE
:Z/(“ /||;c—,\||2 ~hi)dE

/ ~A)-(x—N)dE = /1dE—I
IIw—AIIQ
0

Remark 1.5.4. We want to recall the polarization identity for a symmetric
sesquilinear form:

1
(z,y] = 1 (4@ + )2 +y] — [Al@ = y),x —y]
+i[A(x +1iy), z + iy] — i[A(x +1y),z + 1y])
Lemma 1.5.5. Let (Q,S) and (Y,2A) be measurable spaces, (H,|., .]u) a Hilbert

space and E be a spectral measure on (Q,&,H). If T : Q — T is measurable
mapping, then ET(A) := (EoT~1)(A) is a spectral measure on (¥,A,H) and

/¢dET=/ $oTdE
A T-1(A)
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for all bounded and measurable ¢.

Proof. It is straightforward to check that ET is a spectral measure.

For arbitrary f,g € H we have that (ET);, = (E;4)T. Since E;; is a
non-negative measure on &, The general transformation theorem for measures
yields

Ty _ T _ o
/Aqﬁd(E )f,f—/Aaﬁd(Ef,f) —/TI(A)¢ TdEyy

for all f € H and for all A € 2. By the polarization identity we also have
S0 d(ET) s = fT*l(A) ¢oTdEy,,. Hence,

/(;SdET:/ $oTdE
A T-1(A)

holds true.
Q

Corollary 1.5.6. Let A = (A;)"_, be tuple of pairwise commuting self-adjoint
operators in Ly(H), where (H,].,.]%) is a Hilbert space. Furthermore, let E;
denote the spectral measure corresponding to E; for fized i € [1,n]z and let E
denote the joint spectral measure of A. Then E; = E™ and

A T (A)

where m; : R™ — R is the projection on the i-th coordinate, A is a Borel set of
R and ¢ is measurable function.

Proof. By [Theorem 1.5.1] and [Lemma 1.5.5] E™ is a spectral measure of A.
Since the spectral measure of A is unique, E™ coincides with F;. Hence,

/¢dEi:/ ¢dE’”:/ ¢pomdE.
A A ;7 H(A)
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2 Diagonal Transform of Linear Relations
2.1 Linear Relations

Definition 2.1.1. Let X,Y be two vector spaces over the same scalar field.
Then we will call a subspace T of X x Y a linear relation between X and Y. A
linear relation between X and X will be called a linear relation on X.

Remark 2.1.2. Every linear operator 7' : X — Y can be identified by a linear
relation by considering the graph of T'. In fact, if we consider mappings from
X to Y as subsets of X x Y then T is already a linear relation. On the other
hand not every linear relation comes from an operator as {0} X Y demonstrates
the most degenerated example.

Definition 2.1.3. For a linear relation T between the vector spaces X and Y
we define

e dom7 :={z € X : 3y € Y such that (z;y) € T} the domain of T,
e ranT :={y € Y : 3z € X such that (z;y) € T} the range of T,
o kerT :={z € X : (x;0) € T} the kernel of T,
e mulT :={y €Y :(0;y) € T} the multi-value-part of T
Remark 2.1.4. Every linear relation 7' which satisfies mulT = {0} can be

regarded as a linear mapping 7" on domT, where Tx = y is well defined by
(z;y) €T.

Definition 2.1.5. Let X, Y, Z vector spaces and S, T linear relations between
X and Y, and R a linear relation between Y and Z.

o S+ T :={(zy1 +y2) €EX XY : (z;91) € Sand (z;2) € T'},

o« M= (B g)} € X XY - (53y) € T),

o T :={(y;2) €Y x X : (x;9) € T},

o RS :={(x;2) € X x Z: 3y € Y such that (x;y) € S and (y;2) € R}.

It is easy to check that the sets defined in the previous definition are also
linear relations.

Definition 2.1.6. For a Banach space (X, |.||) and a linear relation A on X,
we define

e p(A):={NeCU{oo}: (A— N1 € L,(X)} as the resolvent set,
e g(A) :=(CU{o0}) \ p(A) as the spectrum,
e 0,(A):={\e€CU{oo} : ker(A— N~ £ {0}} as point spectrum, and

e 7(A):={AeCU{x}: (A—N)"! € Ly(dom(A))} as the points of reqular
type,
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where we set (T — oo) ! := T and dom(7 — o0)~! := dom 7.

Definition 2.1.7. Let X be a vector space over C and M = (fy’ ?) € C2x2,

then we define the mapping 737 : X x X — X x X by

v (T3 y) = <g§- Zj-) (x59) := (6x + vy; Bx + ay).

Facts 2.1.8. For M,N € C?>*2 we have 7yy7y = 7amn and therefore, for

invertible M also Tp;-1 = a7 L.

Lemma 2.1.9. Let A be a linear relation on a vector space X and M =

(: ?) € C**2. If mul A = {0}, then

T (A) = (@A + BI)(yA +6I)7 L

Proof. Let (a;b) € 7ar(A). Then there exists a (z;y) € A such that (a;0) =
(6x + vy; Bx + ay). By Definition of the addition and multiplication by a scalar
for linear relations we have (x; ay+ fx) € (eA+BI), (x;yy+dx) € (YA+I) and
therefore (yy+dz;z) € (yA+I)~t. Consequently (a;b) € («A+BI)(yA+8I)~L.
On the other hand let (a;b) € (aA + BI)(yA + 6I)~!. Then there exists a
x € dom A such that (a;z) € (yA+6I)~! and (x;b) € (A+BI). Since mul A =
{0}, there exists a unique y € X such that (z;y) € A. Hence, a = vy + dz and
b = ay + Bz and consequently (a;b) € Tps(A).
(]

Remark 2.1.10. For M = (3 ?) € C2*2 with det M # 0 we have the M&bius

transformation

bi(2) = az+

=76 = (az—i—ﬂ)(fyz—i—&)_l.

By [Lemma 2.1.9] we can see that ¢ar(A) == (@A + B)(yA + 0)~! = Tar(A) for

any linear relation A with mul A = {0}.

2.2 Linear Relations on Krein spaces

Definition 2.2.1. Let (K1, [.,.]x,) and (Kq, [, .]Jx,) be a Krein spaces and A a
linear relation between them. Then the adjoint linear relation is defined by

AT = {(z;y) € Ko x K1 : [2,0]k, = [y, ulx, for all (u;v) € A}. (2.1)

Remark 2.2.2. If A € L,(K1,K3) then the Krein space adjoint A* from
coincides with the adjoint linear relation of A. This justifies the
same notation.
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For the following Lemma we will extend the mapping 7, for M = ((1) _01)
to K1 x Ko UKy x K1 by

Tm(z;y) = (y;—x) forall (z,y) € K1 x Ko UKy x K.

Lemma 2.2.3. Let (Ky,[., ]x,),(Ko, [, Jx,) be Krein spaces, A < K1 x K3 a
linear relation between them and M = ((1) _01). Then we can write the adjoint
of A by

AT = (AR ) = 7y (A) e

where [L]x, xk, will denote orthogonal complement in (IKC1 X Ko, [, Jicy xk,) and
[Llk,xic, the orthogonal complement in (Ko x K1, [., Jicaxic, ). Furthermore, A*
1s closed.

Proof. Let (z;y) € Ko x K1, (u;v) € K1 x Ko. Then we have the following
equivalences.

[CL‘ U} [y7 ] g [yJU]Kl - [$7’U]](2 =0« [(y7 _$)7 (u;v)]lcl xk, =0
< [rv(zy), (w3 0)]c xce =0 & v (z3y)[ L, <, (w5 v).
On the other hand we have the equivalences
[.13 U} [y’ ] And [‘r’ U]’Cz + [ZJ _u} =0 & [(JZ, y)7TM(u;U)])C2><K:1 =0
< (@), v (u;0)]ieaxie, =0 & (@39)[Llics i, Tar (05 0).
Hence, we conclude that the following sets coincides.
AT ={(2;9) € Ko x Ky 2 [2,v]x, = [y, ulx, for all (u;v) € A}

={(z;y) € Ko x K1 : 7 (x;y)[ L]k, xic, (w v) for all (u;v) € A}
={(z;y) € Ko x K1 : (x;y)[ L], xxc, Tar (u; v); for all (u;v) € A}

As a linear subspace of Ky x K; the set Akixx2 is a linear relation between
Ko and K;. Since 73, (B) = 7ar(B) holds true for every linear relation B, we
conclude

Y = (AR ) = gy ()R,

The closedness of A1 follows immediately.
a

Lemma 2.2.4. Let (Kq, [, .Jx,), (K2, [, ]x,) and (Ks, [, |x,) Krein spaces and
A < K1 x Ko a linear relation between K1 and Ko. Then

(i) mul At = (dom A)*, ker AT = (ran A)*,

(it) (BA)T D A*B* for all linear relations B < Ko x K3,
) (BA)T = AT B for all operators B € L,(Ka,K3),
) At =4

(i3

(iv

Proof.
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(z) By the definition of AT (2.1)), we have

mul A = {y € K1 : [0,v]x, = [y, u]x, for all (u;v) € A} = (dom A)™*,
ker AT = {z € Ky : [z,v]x, = [0,u]x, for all (u;v) € A} = (ran A)*.

(it) If (x;y) € AT B*, then there exist a z € Ko such that (z;2) € BT and
(z;y) € AT. Moreover,

[z, W]k, = [2,v]k, forall (v;w) € B,
[2,v]K, = [y, uli, forall (u;v)e€ A.

Hence, [z, w]k, = [y, u]x, for all (u;w) € BA and consequently (z;y) €
(BA)*.

(794) Since B is an everywhere defined operator, we can write BA = {(u; Bv) :
(u;v) € A}. Therefore,

(BA)" = {(z;9) € K3 x K1 : [2, Bv|x, = [y,u]x, for all (u;v) € A}.
If (z;y) € (BA)T, then
[(x;Bv)]KIB - [B+$,U]K:2 = [y7u]K:1 for all (U,U) € Aa

and in turn (Btx;y) € AT. Clearly, we also have (x; Btx) € BT. Hence
(z;y) € ATBT.

(iv) By [Lemma 2.2.3[and [Lemma 1.1.11| we have

ATt = TM(TM(A)[J-]szKl )[J-])clx)CQ _ TM(TM(A))U']’Cl x KoLl xKyo

— A ks Hrixes — 4

Q
Definition 2.2.5. Let (K,[.,.]x) be a Krein space and A a linear relation on

K. We call A symmetric, if A C AT and self-adjoint, if A = AT,

2.3 Diagonal Transform

Definition 2.3.1. Let T : X — Y be a linear operator between the vector
spaces X and Y. We define the mapping

XxX — YxY,
TXT'{ (a:b) — (Ta;Th).

Facts 2.3.2. Let T': X — Y be a linear operator between the vector spaces X
and Y, A a linear relation on Y, and B a linear relation on X. Then

(i) T x T is a linear mapping.

(1) (T x T)(B) ={(Tu;Tv) : (u;v) € B} is a linear relation.
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(iii) (T x T)"1(A) = {(w;v) : (Tu;Tv) € A} is a linear relation. If T is
additionally continuous and A is closed, then (7' x T)~1(A) is also closed.

Lemma 2.3.3. Let T : X — Y a linear operator, B be a linear relation on X
and A be a linear relation on'Y. Then

(T xT)(B)=TBT™' and (T xT) '(A) =T 'AT.

Proof. It (a;b) € (T x T)(B), then there exists a pair (z;y) € B such that
(a;b) = (Tx; Ty). Since (Tz;z) € T~ and (y; Ty) € T we have

(Tz;x), (z3y), (y;Ty).
—— ~—— ——
erT-1 €B eT

By the definition of the multiplication of linear relations we conclude that
(a;b) = (Tx; Ty) € TBTL.

On the other hand if (a;b) € TBT !, then there are x,y € X such that
(a;2) € T71, (z;y) € B and (y;b) € T. Since T is an operator we have that
a =Tx and b = Ty and consequently (a;b) = (T'z;Ty) for (x;y) € B which is
the condition for (a;b) € (T x T)(B).

Let (z;y) € (T x T)"Y(A) then (Tx;Ty) € A and clearly (z;Tz) € T and
(Ty;y) € T~ which gives us

(¢;Tx), (Tz;Ty), (Ty;y).
—— — ——
eT cA cT-1

By the definition of the multiplication of linear relations we conclude that
(z;y) € TLAT.

If (x;y) € T~YAT, then there are a,b € Y such that (z;a) € T, (a;b) € A
and (b;y) € T~1. Since T is an operator we have a = Tz and b = Ty. Hence
(Tx; Ty) = (a;b) € A which is the condition for (z,y) € (T x T)~1(A).

a

Lemma 2.3.4. Let T : X — Y be a linear operator between the vector spaces
X and Y, A a linear relation on Y, and B a linear relation on X. Then the
following statements are equivalent

(i) (T x T)(B) C A.
(i) B C (T x T)"'(A).
(iii) TB C AT.

If A and B are even everywhere defined operators, then all those statements are
equivalent to TB = AT.

Proof. The statements (i) and (ii) are clearly equivalent. Let us assume (i7):
B C (T xT) ' (A) =T~1AT. Because of TT~! C I this yields

TB C TT AT C AT.
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Conversely, TB C AT implies BC T—'TB C T~ 'AT.

Let us assume statement (éii) for the following. If A and B are everywhere
defined operators, then domTB = dom AT. Therefore, if (z;y) € AT, then
there exists a z € Y such that (x; z) € TB. Since mul AT = {0}, we have that y
and z must be equal. Hence, (x;y) is also an element of T'B and in consequence
AT =TB.

a

Lemma 2.3.5. Let T : X — Y be a linear operator between to vector spaces
X and Y, B a linear relation on X and A a linear relation on Y. For every
M € C**2 we have

v ((T x T)(B)) = (T x T)(tm(B)).
If M is additionally invertible, then we have
(T x T)"'(A)) = (T x T) "' (rm(A)).

Proof. Let M = (f{‘g) Due to

TM((T X T)(B)) = {(6Tx +~Ty; BTz + oTy) : (z;y) € B}
{(T(0x +y); T(Bz + ay)) : (v;y) € B}
= (T x T)(tm(B)),

we obtain the first equality.
If (z;y) € T (T x T)71(A)), then there exists a (a;b) € X x X such that
(Ta;Tb) € A and (z;y) = (0a + vb; fa + ab). This leads to

(Tz,Ty) = (0Ta +~Tb; BTa + aTb) = Tar((Ta; Th)) € Tar(A),
and furthermore to (z;y) € (T x T)7(7ar(A)). Hence,
(T x T)"H(A)) € (T x T) " (rm(A)). (2.2)

If M is invertible, we can substitute A with 75;(A) and 7y with 7,1 in (2.2)).
Therefore,

a1 (T % T)"H(mar(A))) S (T % T) ™ (rar-1 (T (A4))).
Applying 75; on both sides yields
(T x T)" " rm(A)) € mar (T x T)7(A)). (2.3)

The combination of (2.2)) and (2.3) completes the proof.
a

Lemma 2.3.6. Let T : X — Y be a linear operator between the vector spaces
X and Y, Ay and As linear relations on' Y, and A\ € C\ {0}. Then we have

(T x T)"Y(AAL) = MNT x T)"}(Ay),
(T x T) YAy 4+ A2) D (T x T) (A + (T x T) " (Ay),
(T x T) Y (A1A3) D (T x T) (A (T x T)"(Ay).
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Proof. Set M = (3 9), then |[Lemma 2.3.5yields the first equation.

If (z;y) € (T x T)"Y(A;1) + (T x T)~1(Ay), then there exist u,v € X such
that (Ta;Tu) € Ay, (Tx;Tv) € Ay and w +v = y. Hence, Tu + Tv = Ty and
in turn (Tz, Ty) € Ay + As which yields (z;y) € (T x T)"Y(A1 + As).

Since TT~! C I, we have

(T x T) Y (AT x T) Y (Ag) = T YA TT 1 A, T
- T_lAlAQT = (T X T)_l(AlAg).
a

Lemma 2.3.7. Let (H,[., .]u) and (K,[.,.]x) be Krein spaces. Then for a linear
relation A on KC and a linear mapping T : H — K we have

ker (T x T)""(A) —X) =T 'ker(T'— ) for all A€ CU{cc}.
In particular, o,((T x T)™'(A)) C 0,(A), if T is additionally injective.
Proof. First note that
yemul (T'xT) '(4)) & (0;Ty) € Aeye T (mul A).

By definition, we have ker ((T'x T)"*(A) — A) = T ' ker(T — A) for A = oo. It
is straightforward that every linear relation B satisfies ker B = mul B~!. For
A€ Cweset M =(91). Since 7as(B) = (B —\)"!, we conclude

ker(B — \) = mul(B — \)~! = mul 7y (B).
Hence,
ker (T x T)""(A) = X) =mul7y (T x T)"(A)) = mul(T x T) "' (1ar(A))
=T 'mulry(A) = T L ker(T — N).
If T is injective, then T 'ker(A — \) # {0} implies ker(4 — \) # {0}.

Therefore, o, (T x T)7(A)) C 0,(A).
d

Lemma 2.3.8. Let R : K1 — K2 be a bounded linear mapping between the
Krein spaces (K1, [., k), (K2, [y Jic,) and L C Ky. Then we have

R*(L)M’Cl - Rfl(L[L}@)_

Proof. The varifaction of the stated equality follows from
RY (L) = {2 e Ky : [x,RT]) = 0for all | € L}
={zxeky:[Rz,l]=0foralll e L}
={z e Ky :Rxe Lt}
= RY(LHxz),
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Lemma 2.3.9. Let (H,[.,.]n), (K,[.,.]x) be Krein spaces and T : H — K be a
bounded linear mapping. For a linear relation A on I we have

(T x TH)(A))" = (T x T)~}(A*)

In particular (T x T)*l(AJF))+ is the closure of (T x TT)(A).

Proof. We regard T' x T as a mapping from H x H to K x K where K x K
is equipped with [(z;y), (w; 2)]kcxi = [, w] + [y, 2] and H x H is equipped
with the respective inner product. Hence, we can use to obtain

(TF x TH) (A = (7 x 7)1 (4lH), (2.4)

where [ L] denotes the orthogonal complement in K x K as well as in H x H. By

[Lemma 2.2.3 we have

(T x T A) = gy (< THA) )y (@ 1) (A1)

10 10

=(TxT)! <T(0 _1)(A[H>> = (T x T)"Y(A™).

10

By applying the adjoint * to both sides we obtain
(T x TH)(A) = (T x )" (4")) ™.
a

Proposition 2.3.10. Let (H,[.,.]x) , (K,[,,.]c) be a Krein spaces and T :
H — K be a bounded linear mapping between these spaces. If A is a closed
linear relation on K, which satisfies

(TT* x TTH)(A*) C A,

then the closure (T x T)™1(A)T of (T xT+)(A") is a symmetric linear relation
on H.

In the special case that T is injective, that (H,[.,.]n) is a Hilbert space
and that C\ o,(A) contains points from C* and from C~, the linear relation
(T x T)"Y(A) is self-adjoint.

Proof.  The assumption (T'x T)(TT x TT)(A"T) = (TTT x TTT)(At) C A

implies (T+ x TH)(A*) C (T x T)"'(A). By |[Lemma 2.3.9, (T x T)~}(A)* is
the closure of (T+ x T+)(A™). Since (T x T)~1(A) is closed, we have

(TxT) M AT =T+ xTH(AT) C (T xT) Y (A) = (T xT) ' (A)T.

Hence, (T x T)~}(A)* is symmetric.

If (H,[.,.]2) is a Hilbert space, then (7' x T)"1(A)* not being a self-adjoint
relation on H implies, that its defect indices are not both equal to zero. This
means

ran (T x T)"Y(A)* = A\)" = ker (T x T) "' (4) — X) # {0}
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for all A € C* or for all A € C~. Hence the point spectrum of (7' x T)~1(A)
contains all points from the upper half-plane or all points from the lower half-
plane. Due to we have 0, ((T x T)"*(A)) C 0, (A) which leads to

a contradiction to the assumption concerning C\ o,(A).
a

The following Lemma is a consequence of Loewner’s Theorem 2.2.6. How-
ever, in order to be more self-contained we will present a proof which uses the
spectral calculus for self-adjoint operators on Hilbert spaces.

Lemma 2.3.11. Let (H,][.,.]n)be a Hilbert space and let A,C € Ly(H) such
that C and AC are self-adjoint and such that C is positive. Then we have
[[ACx, x]y| < ||All [Cx, x]3 for all x € H.

Proof. Since C' is a positive operator we have o(C) C [0,400). Consequently,
C + € is boundedly invertible for ¢ > 0. The functional calculus for the self-

adjoint operator C' yields that C(C + ¢)~" has norm sup,c,c) i = %

Since for the spectral radius we have spr(F'G) = spr(GF') for all bounded
operators F, G, we conclude

1]l

pr((C+ ) THACIC + 97H) =spr(AC(C + 97 < Il 15

< [lAll-

For self-adjoint operators spectral radius and norm coincide. Hence, due to the
Cauchy-Schwarz inequality,

[ACz, ]3| = |[(C+ €) 2 AC(C + €)% (C + €)%z, (C + €)% x]
<|(C+e)7FAC(C + )72 || ||(C + ¢) 22|
< JA|l [(C + )z, aln =3 || A|| [C, ]

ul

a

Lemma 2.3.12. Let (H,].,.]%) be a Hilbert space, ¢ € [0,4+00) and let B be a
self-adjoint linear relation on H such that mul B = {0}. If |y, z]u| < c[z, z]u
for all (xz;y) € B, then B is a bounded linear operator on H such that ||B|| < c.

Proof. By|[Remark 2.1.4] we regard B as a linear operator on dom B. By|[Lemma
dom B is dense in H and B = B* is closed, because B is self-adjoint and
mul B = {0}. Therefore, we can apply the spectral theorem for unbounded
self-adjoint operators on Hilbert spaces to obtain a spectral measure £ on the
Borel sets of R; see [9, Theorem 13.30].

In the following we will use the following well-known result: An element
@ € H belongs to the domain of [, ¢dFE if and only if [; |¢[* dE, , < +oo; see
[9, Lemma 13.23, Theorem 13.24].

For every n € N consider the interval A, := [c+ +,c¢+n] in R. For z €
ran E(A,,), we have

/|t\2dEw,z(t):/ (£ A By o (t) < (c +n)? [12]]2 < oo,
R A'Vl
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which yields € dom B. By our assumptions we have

clx,x)y > |[Bx, x]n| = ‘/A tdEz’x(t)‘ > (c+ %)[E(Anm,x)]q.[

=(c+ %)[J;,m];.[

Consequently z can only be 0 and therefore F(A,) = 0 for all n € N. By
the o-additivity we have that E((c,400)) = E(U,eyAn) = 0. Analogues,
we can show E((—o0,—c)) = 0, which yields supp E C [—¢,c]. We can write
B = f[ tdE ) which implies that B is a bounded linear operator on H with
HB” < bupte [—e,c] |t‘ =cC.

Qa

Theorem 2.3.13. Let (H,[.,.]3) be a Hilbert space, (K, ., .]x) be a Krein space,
T :H — K be a bounded linear and injective mapping, and A € Ly (K) such that
(TTHXTT*)(A') C A. Then (T xT)~1(A) is a bounded linear and self-adjoint
operator on H with

(T xT)" (A < |IA]l- (2.5)

On the right-hand-side ||.| denotes the operator norm with respect to any fun-
damental symmetry J.

Proof. Since A is a bounded operator we have that o(A) C B 4). In particular

C\ 0,(A) contains points from C* and C~. Therefore by [Proposition 2.3.10|
(T x T)"1(A) is self-adjoint and coincides with the closure of (T x TT)(AT).
By the injectivity of T, we have that mul(7' x T)~*(A4) = mulT-'AT = {0}.
Hence, (T x T)~!(A) is a self-adjoint operator on its domain.

Due to we have TTTAT = ATT+. Let J be any fundamental
symmetry and let A*, T* denote the Hilbert space adjoint of A, T, when we
endow K with (.,.);. Then TT = T*J and A* = JA*J. Since JJ = I, we have

TT*A* =TT*JJA*JJ =TTYATJ = ATT+J = ATT*.

Consequently (ATT*)* = TT*A* = ATT* is self-adjoint on the Hilbert space
(K, (.,.)s). For (x;y) € (TT x TT)(A") C (T x T)"1(A) we have (Tx;Ty) € A
and z = TV u for some u € dom AT, Hence,

[y 2hsel = llgs T ulsal = [Ty, ule| = [ATT*u, ulx| = [(ATT" Ju, Ju).
[Cerima Z3.11) yields
[y sl < AN (T Ju, Ju)s = A [T u, ulx = A f2. 2l

Since (TF x T+)(A+) 1s dense in (T'xT)"'(A) we have [y7 ] < ||A|| [z, z]3 for
all (z;y) € (T x T)"'(A). By|[Lemma 2.3.12] (T' x T)~(A) is a linear operator
on H bounded by HA||

a

Lemma 2.3.14. Let T : H — K a bounded linear mapping. Then (TT*)/ and
(T*T) are closed %-subalgebras.
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Proof. For A,B € (TT+) and A € C we have
TT*(A+ AB) = TT* A + TT*AB = ATT* + ABTT* = (A + AB)TT™,
TT+AB = ATT* B = ABTT™,
TTHA* = (ATTH)* = (TTHA)" = AYTT+.

Consequently, (TT+)" is -subalgebra. If (A, )nen is a sequence in (TT)" that
converges to A € Ly(K), then we have

TTTA = lim TT* A,, = lim A, TT+ = ATT™.
neN neN

Hence, (TT") is closed. Analogously, we can show that (T7T) is also a closed

x-subalgebra.
Qa

Theorem 2.3.15. Let (K, ., .|xc) be a Krein space, (H,[.,.]3) be a Hilbert space
and T : H — K be a bounded and injective linear mapping. Then

f@Ty o (T,
@'{ C = (TxT)\(C),

constitues a bounded *-homomorphism. Hereby, ©(I) = I, ©(TT*) = T*T,
and

ker® = {C € (TT*) :ranC C ker T*}.
Moreover, (T x TT)(C) is densely contained in ©(C) for all C € (TT+) and
we have TTC = O(C)TT.

Proof. Let C € (TT*)/ be a self-adjoint operator. Then we have by M
that (TT+ x TT*)(C) C C and consequently

(TT* x TT*)(CF) = (TT* x TT+)(C) C C.
Theorem 2.3.13| implies that ©(C) = (T x T)~!(C) is a bounded linear and

self-adjoint mapping on H containing (T x T+)(C) densely. Due to
(THT x T*T)(T x T)(C)) € (T x T+)(C) € (T x T)~1(C)

andwe have (T x T)~Y(C) € (T*T)'.

Clearly (1) = (TxT)"Y(I) =T YT =Tand O(TT") = (TxT)"Y(TT*) =
T-ITT*T =T7T.

Let C € (TTT) be arbitrary. Since (TT+)" a x-algebra, we also have C*
(TT+) . We set

+ o+
Rec = S o9
2 21

Both are self-adjoint operators in (TT+)/ and we have C = ReC 4+ ilmC,
Ct =ReC —ilmC. By |Lemma 2.3.6
(T xT) ' (ReC +iImC) D (T x T)"'(ReC) +i(T x T) 1 (Im C),

(T x T) " (ReC —iImC) ; (T xT)"Y(ReC) —i(T x T) " *(Im C). (26)
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Since T is injective, the multi-value-part is {0} on both sides of the inclusion.
Moreover, by the already proven the right-hand-sides are everywhere defined
operators. This yields that both sides must coincide and (T'xT)~1(C) € (T*T)'.
Furthermore we obtain from that (T'xT)~1(CT) = (T'xT)~1(C)*. Hence,
the mapping © is well-defined and satisfies ©(CT) = ©(C)*.

Again by employing and using that the right-hand-side of the
inclusion is a everywhere defined operator, we obtain that © is linear and mulit-
plicative.

Let J be a fundamental symmetry of (I, [., .]Jx). By

10> = suwp  [O(C)r,0(Claln = sup  [O(CHO)z, ]y

z€H,||z||=1 zE€H,||z||=1
<llecto) < [cte| = |Jerac| < |17 IC)® < Cl?,

we conclude that © is bounded. yields
(T xTH)(C)" = (T xT)"(CT) = (T xT)"(C))".

This shows that (T+ x T+)(C) is densely contained in (T' x T)~!(C). In par-
ticular, (T x T)"}(C) = ©(C) = 0 is equivalent to the fact that (a;b) €
(T x TT)(C) always implies b = 0. Therefore, Tty = 0 for all (z;y) € C,
which means ran C' C ker Tt.
From (THu; TTCu) € (TT x TT)(C) C O(C) and (T u,0(C)THu) € 6(C)
we conlcude that TTCu = ©(C)T u for every u € K.
d

Lemma 2.3.16. Let T : H — K be a bounded and injective linear mapping
from the Hilbert space (H,[.,.]3) into the Krein space (IC,[., k). Then

=. ] Lv(H) — Lu(K),
= D +— TDT*,

is bounded linear and injective. Moreover, Z maps (TTT) C Ly(H) into
/

(TT*) C Ly(K) and satisfies for C € (TTT) and D, Dy, Dy € (THT)

(1]

(D) =E(D)", E(DO(0))=E(D)C, E(O(C)D)=CE(D),
E(D1DoTHT) = E(D1)E(Ds), Z00(C) =TT C =CTT.

Moreover, Z2(D) commutes with all operators from (TT+)/ if D commutes with
all operators from (T+T)', i.e. 2(THT)") C (TT)".

Proof. The mapping 2(D) = T DT is clearly linear and bounded by ||T|| | T
Since T is injective and ran T is dense in H, we obtain the injectivity of Z. It
is easy to see that 2(D)T = E(D*). Let C € (I'T) and D € (T+T)". Then
we have

=(D)TT+ = TDTTT* = TT*TDT* = TT*E(D),
and in consequence Z(D) € (I'T1)'. For C e (I'Tt)', D e (T+T)', due to

TTC = ©(C)T* we have Z(DO(C)) = TDO(C)TT = TDT+TC = Z(D)C.
Applying this to CT, D* and taking adjoints yields Z(©(C')D) = CZ(D).
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For Dy, Dy € (T*T)" we have
S(DyDoTHT) = TDDyTHTHT = TD, THT DT = Z(Dy)E(Ds).
Due to TTC = ©(C)T™ we conclude 20 O(C) =TOC)Tt =TT+TC =CTT™.
Finally assume that D commutes with all operators from (7+7T)". Since

O(C) e (T+T) for C € (TT+)', we have

=(D)C = E(DO(C)) = Z(6(C)D) = CZ(D).
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3 Joint Spectral Theorem
3.1 Multiple embeddings

Assumptions 3.1.1. In the present section we fix a Krein space (K, [.,.]x),
a Hilbert space (H,[.,.]) and a number n € N. For every i € [1,n]z let
(Hi, [, ]n,) be a further Hilbert space. Moreover we assume that bounded

linear and injective mappings T : H — K and T; : H; — K for every i € [1,n]z
are given such that

TTT =Y T (3.1)

i=1

Lemma 3.1.2. For every i € [1,n]z there exists a injective contraction R; :

H; — H such that T; = TR; and

Xn: RiRf =1.
=1

If (T/T;7)™_, is a tuple of pairwise commuting operators, then for fized i € [1,n]z,
the operator R;R} commutes with T*T and R R; commutes with T, T;.

Proof. For x € K we have

|T*z|3, = [T, T*aly = [TT* 2, 2] Z [TT; 2, @)
N = (3.2)
DI z el 2 e,

for every k € [1,n|z. This inequality guarantees that

B, - ranTt — ranT},
b Ttx — Tlzx

is a well-defined, linear and contractive mapping. Due to our assumptions 7' is
injective and therefore {0} = ker T = (ran7%)*. This leads to ran T+ being
dense in H the same counts for every T and the corresponding Hilbert space Hy.
This justifies that we can uniquely extend By by continuity to By : H — Hy.
Clearly By, is still a linear contractive map which has a dense range.

We define the desired mapping R; : H; — H by the adjoint of B; i.e.
R; = B;. Since ker R; = (ran RY)* = {0} and ||R;|| = ||R}|| we conclude that
R; is injective and contractive. By definition we have RiT+ = B,T+ = T;',
which leads to TR; = T;.

The equation

=T;"
n —— n
1t =77 S TR, RITT = (SRR T
=1 1=1

=1 _T,
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H 7y

T

Ho Ry

Figure 1: Setting of

together with the injectivity of 7' and the density of ran T yields I = Y " | R;R}.
If (T;T;7)™, is a commuting tuple, then by (3.1) every T,7;" commutes with
TTY. From

=T; :T:r
— —~
T(T* TR; R)T* = TTTT,T," = T,T; TTH = T(R; RIT T)T+.

and from 7”s injectivity and the density of ranT+ we conclude that R;R} and
T*+T commute for every i € [1,n]z. Finally, we have

/T\l ~
T TiRIR; = R (TT TR, R)R; = R:(R; R*'T* T)R; = R R/T;'T;.
+ +
=T; =T;

a
We want to recall the x-algebra homomorphisms from [Theorem 2.3.15| cor-

responding to a injective mapping 1. We will define such a *-algebra homomor-
phisms for each T; and R; for i € [1,n]z.

Definition 3.1.3. Let T', T; for i € [1,n]yz be the mappings from
and R; the mappings from [Lemma 3.1.2| Then we define © : (TT*) —
(THT) and O, : (T,TH) — (TT;) by

OC)=(TxT)"(C)=T7'CT and ©,;(C)=(T; xT;)"*(C) =T, *CT.
and T'; : (R;R}) — (R:R;) by

Ty(D) = (R; x R;)"*(D) = R;'DR;
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for each i € [1,n]z.

Propositiorll 3.1.4. With |Assumptions 3.1.1 and |Definition 3.1.5, we have
Niey (LT S (TT) and O(iZy (TT})) € Mizy (RiR;) 0 (THT)', where

O(C)R.R; = Ri©:(C)R; = RiR:O(C)

and

0,(C)=T;00(C) forall Ce ﬁ (TZ-Tf)/ (3.3)
i=1

Proof.  From (3.1)) we easily conclude (i, (TiT;r)l C (TT+). According to
Theorem 2.3.15[ we have ©(C)T+ = T*C and ©,(C)T;" = T;7C for i € [1,n]z.
This leads to

T(R;0,(C)R)T = T,0,(C)T;" = T,T;"C = TR;R:T*C = T(R;R:©(C))T".

From the injectivity of T and the density of ranT" we obtain R;0;(C)R} =
R;RfO(C). Applying this equation to CT and taking adjoints yields

R;0,(CT)*R: = (R©;(CHR}) " = (R;R;O(CT))" = ©(CT)*R;R;.
Since © and ©; are *-homomorphisms we obtain R;0;(C)Rf = ©(C)R;R;}.
Combining these two equations yields O(C) € (R;R})". This justifies the appli-
cation of I'; to ©(C).

[,00(0)=R;'T'CTR, =T, 'CT; = 6;(C),

where R; 'T~! = (TR;)™" has to be understood in the sense of linear relations.
(]

Corollary 3.1.5. Let us use [Assumptions 3.1.1| and [Definition 3.1.5, and
let N = (Ng)ji, be tuple of pairwise commuting, self-adjoint Operators in
n /
Nicy (L)
Then ©(N), ©;(N) are also tuples of pairwise commuting, self-adjoint Op-
erators in the Hilbert spaces (H,[., Ju), (Hi, [, ]2, repectively for i € [1,n]z.

If E (E?) denotes the joint spectral measure for ©(N) (©;(IN)), then E(A) €
Niey (RiR;) N (THT)" and

P(BE(A) = B(A) € (RiR) 0 (T, T
for all Borel subsets A of R™. Moreover [ hdE € ([_, (R;R})' N(T*+T) and
ri(/th) = /thi € (R'R) N (TT) (3.4)

for any bounded and measurable h : 0(©(N)) — C.
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Proof. Since © and ©; are *-homomorphisms, the images of commuting opera-
tors commute as well. From Propositionwe obtain O(Ny,) € N, (R:R)'N
(T*+T) for every k € [1,m]z. Therefore E(A) € Ny (R;R}) N (T+T)" and,
in turn, [hdE € N, (R;R;)' N (T+T)". This justifies the application of
I'; to E(A) and [hdE. tells us that T;(D)R; = R:D for
D € (R;R;)". For x € H and y € H; we get

[Ci(E(A)) Riw,ylu, = [RFE(A)z, ylu, = [E(A)z, Riy]u

and in turn for and s € C[zy, ..., 2]

[ saviEIRiz e = [ Az, Rl = s ©(N) 2, Ray]
R™ B

— |Ris(O(N)) 2,y W i (s (O(N)) R, y] Ny
Since I'; is a homomorphism, s is a polynom and s (©(INV)) is in (), (Tin)/
we can use (3.3)) to conclude T'; (s (©(NN))) = s(©;(IN)). According to this
equality we obtain

[ sdriB) Rz, = [s@©(N) Rz = [ sdE R

Hi
RrR™ RrR™
We can choose a compact K C R™ such that E(R™\K) = 0 and E*(R™\K) = 0.
Since C[z1,...,2m] is dense in C(K), Riesz’ Representation Theorem tells us

that the measures must coincide:
[Ty (E(A) Rz, yly, = [E (AR z,yly, forallz € H, yeH;

and all Borel subsets A of R™. The density of ran R} gives us [I';(E(A))z, yly, =
[E(A)z,y]y, for all y, z € H;. Consequently I';(E(A)) = E*(A). The image of
T, is contained in (R}R;)". Therefore, E*(A) and [hdE’ is also contained in
(R R;") for every bounded and measurable h.

Since T;(E(A)) = EY(A), we conclude supp B C supp E and therefore
o(0:(N)) C 0(6(N))

Let h: 0(©(N)) — C be bounded and measurable. Clearly, also its restric-

tion to o(©;(IN)) is bounded and measurable. From the already shown fact
that E/(A)R; =T;(E(A))R; = RfE(A) we obtain

{Fi(/th)R;‘x,y}Hi: [R;‘(/th)x,y}% - [(/th)x,RiyL{

— [ halE, Rl = [ hdlE B,

- [(/thi)fo,y}Hi.

Again the density of ran R} yields the desired equation (3.4).
Q

We will use |Lemma 2.3.16| to introduce the mappings = and =; for each

i € [1,n|z referring to T" and T;:
_ [Tt - (T,
= D1 — TDTJr,
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Again according to [Lemma 2.3.16| we define

and we conclude that
2y(D;) = TR;D;RITT =20 Ay(D;) for D;e (R:R) N(TrT) . (3.5)
According to we have in our notation relating to R;
A oTy(D) = DR;R:. (3.6)
Hence, using and its notation we obtain

Ei(/thi) Eiofi(/th) EoAioFl(/th)
£ E(RiR; / th).

Finally, T~ T,T;"T = T-'TRR*T+T = R,R:THT. If (T;T;)7, is a tuple
of pairwise commuting operators, then we have T;T;" € (TT*)/ and the later
equality can be expressed as

O(TiT,") = RiR;TTT for every i€ [1,n]z. (3.8)

(3.7)

3.2 Setting

Assumptions 3.2.1. Let A = (A4;); be a tuple of pairwise commuting, self-
adjoint and definitizable Operators in Ly,(XC). We denote a corresponding tuple
of definitizing polynomials by p = (p;)_;, i.e. p; is a definitizing polynomial
for A;. For convenience we will choose each p; as a real polynomial; see [Lemmal
r23

According to [Corollary 1.2.12] for each A; there exists a Hilbert space
(Hi,[.,-]n,) and an injective and bounded linear mapping

T;:H; — K such that T, T;F = p;(A;). (3.9)

Since >" ; pi(A;) is also a positiv Operator, we can apply [Lemma 1.2.10] and

obtain a Hilbert space (H, [.,.]%) and an injective and bounded linear mapping
T :H — K such that

TT" = Xn:pi(Ai) = zn:Tsz
i=1 i=1

Hence, the mappings 7" and (7;)?_; fulfill the [Assumptions 3.1.1} By [Lemma]
there exists a tuple of injective contractions R = (R;)"_; such that R; :
H; — H and T; = TR;.

Lemma 3.2.2. Let T,T; and R; be as in |Assumptions 3.2.1| and © the *-
homomorphism according to T; see|Definition 3.1.5. Then we have

Pi(O(A)) = RiR} Y pi(O(Ar)),
k=1

where R; R} commutes with Y, _, pr(O(Ay)) for alli € [1,n]z.
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Proof. By the definition of © (Theorem 2.3.15)), we have

7 - o) D o( 311 ) B3 00 (4) - 3. m(OA).
k=1 k=1 k=1

Lemma 3.1.2{guarantees that R; R} commutes with 7F7T and hence it does with
Y re1 Pe(©(Ag)). We obtain

pi(B(A) = O(pi(4:) = O(TIT;") = R;R;T*T = R;R; ipk(G(Ak))
k=1

which completes the proof.
a

Lemma 3.2.3. Let A = (A;)?_, be as in|Assumptions 3.2.1 Fori € [1,n]z we
then have

{sex il > 11 S petan)] | < o)
k=1

In particular, the zeros of >y _, px(zk) are contained in

p(O(A)U{z e R" : pj(z;) =0 for all j € [1,n]z}.

Proof. Let E be the spectral measure of ©(A) as in[Theorem 1.5.1] For a fixed

i € [1,n]z and an arbitrary m € N we introduce the set
. n . 2 1 * 12 . 2
A= 12 € Rt pi(z) > — + | RifE}| ‘;pk(zk)’ .
For x € ran E(A,,) we have

Hpi(@(Ai))ﬁ?Hz = [|pi(0(A:))E(An)z

2= / 1pi()2 d[E(2)a 2]

m

> [ e BRI [ [Spe)] diB(E)e.al

A m m =1

> Lo | ey Yo petoan) o]
k=1

=pi(O(4;))

This inequality can only hold true for x = 0. Hence, E(A,,) = 0. The fact that
A,, is open implies that A,, C (supp E)° = 0(A)" = p(A). Since m € N was
arbitrary, we finally obtain

p)2 U 2n={zem el > Il [Y metan)|
k=1

meN



3 JOINT SPECTRAL THEOREM 42

If > pe(zr) =0and z ¢ {w € R" : p;(w;) =0 for all i € [1,n]z} then there
exists a j € [1,n]z such that |p;(z;)| >0 = HRjR;f | > i1 pr(zk)|- From the
already shown we conclude that z € p(A).

a

In order to be more self contained we will proof the following Lemma, which
will be needed for the next Corollary.

Lemma 3.2.4. Let (#H,].,.]) be a Hilbert space and N : H — H be a normal
Operator then ker N = (ran N)*

Proof. Since N is normal, we have

|Nz||* = [No, Nz] = [N*Nz,a] = [NN*z,2] = [N*z, N*z] = |[N*z|?.
This leads to ker N = ker N*. From the well-known result ker N* = (ran N)*
we conlcude the statement.

a

Corollary 3.2.5. With the notation and assumptions from [Lemma 3.2-3 and
A= {z € R" : pr(z) # 0 for some k € [1,n]z} we have

p* _ pi(zi)
R,R;E(A) = J SIEN dE(z)

for every i € [1,n]z

roof. v [Lemma 3.2.3| we have |p;(z;)| < iR _, pr(2x)| for every
P By |L 3.2.3 h < ||RiR;} 2_1 f

z € supp E. Hence, the integrand is bounded on supp E and consequently the
integral on right-hand-side exists.
Clearly, both sides vanish on the range of E(A€). For
U :=ran E(A) = (ran E(AC))L

we have that U1 = ran F(A°) is contained in the kernel of the operator

[ i) =3 nie
By [Lemma 3.2.3| all zeros of z — > ,_, pr(2zx) which are also contained in

supp E can only be found in A¢. For z € U, x # 0 we have

H/ZP’“ ) dE(z H/lek(zk)dE(Z)E(A)x
= /A ‘ ;pk(Zk)‘Q d[E(z)z,z] > 0.

>0on A

2

Therefore, ker [ >} pr(zx) dE(z) = U+, Since >, _, pr(O(Ay)) is normal,
we obtain from [Cemma 3.2.4] that its range is dense in ¢. Let z be in this dense
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subspace. Then we can write z = > _, pr(©(Ay))y for some y € U and obtain

pl(Z’L)

A m dE(z)x = Api(zi) dE(z)y = p;(0(A))y

= RiR} > pr(0(Ar))y = R;R}x.
k=1

By density every x € U fulfills this equation.

3.3 Function class

Definition 3.3.1. For n € N and « € N we define the multi-index sets
I :={BeN}:B; <ajforallie[l,nlz}
Iy =1, U{oge; i€ [1,n]z},

where e; = (5@]')?:1 and §; ; is the Kronecker delta. Furthermore we denote by
A, the set of all

a = (ag)per, suchthat ageC,

and by B, we denote the set of all @ = (ag) 47 such that ag € C. There exists
a canonical addition, scalar multiplication and conjugate linear involution on
Ay

a+b:=(ag+bs)ser, for a,be Ay
Aa = (Aag)ger., for AeCandae€®,
@ := (ag)gel, for aeU,.

Analogously, we can define these operations on 9B,. Additionally we can define
a multiplication on these sets by

a'b::< ab) and a~b::( ab) respectively.
> Wbs) > Wbs) _;  respectively
Y+6=p y+6=8

Finally, we want to introduce the projection

{ A, UB, — B,
g *
a (aﬂ)ﬁefa'

Remark 3.3.2. For a € B, the projection 7, maps a on itself. For a € A,
the projection 7, forgets all indices {aue; : i € [1,n]z}.

Example 3.3.3. For o = (n,m) we have I, = [0,n — 1]z x [0,m — 1]z U

{(n,0), (m,0)}

Remark 3.3.4. The sets 2, and B, endowed with the operations that are
presented in Definition yield commutative unital x-algebras. The unit
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e = (eg)per, in Ay is given by eg = 1 and eg = 0 if § # 0. Analogously,
e = (eg)gej, 1s the unit in B,.

Moreover it is easy to check that an element @ of 2, (B, ) has a multiplicative
inverse in 2, (B, ) if and only if ag # 0.

Definition 3.3.5. We define for every polynomial ¢ € C[z] the function

2. C — Np,
77 2z — min{j € Ng:qW(z) #£0}

For a tuple of polynomials g = (¢g;)!"_; where ¢; € C[z] and a vector z € C" we
employ the following notation

0q(2) == (04, (21))_, € Ng.

Definition 3.3.6. Let p be polynomial in C[z] then we want to define the set
of all zeros of ¢ and the set of all real zeros of ¢ by

Zg=q {0} and Z;:=Z,NR
For a tuple of polynomials g = (¢;)"_; where g; € C[z] we define the set of joint
zeros, the set of joint real zeros and the set of joint complex zeros

Zg=|[%4, Zi=240R" and Zj = Z,\R"
i=1

as subsets of C™.
Furthermore let p = (p;)?_; be a tuple of real definitizing polynomials cor-
responding to the tuple of operators A = (A;);.

(i) Then we denote the space of all functions ¢ with domain
(a(@(A)) U 25) Uz ccr
such that ¢(z) € €(z), where

C, ifze€o(©(A)) \ZE,
€(z) = Ay (z), ifz € Z,
%ap(z)7 lfz S Z;,
by M. If A contains only one element A, we will write M 4 instead.

(i1) We endow M 4 with pointwise scalar multiplication, addition and multi-

plication, where the operations on 20,2y or By (- are as in
m We also define a conjugate linear involution (.)# on M4 by
*(2) = 6(7) for ze (a(@(A)) U Z},S) vz

This is well-defined, since p contains only real polynomials, which implies
z € Z,, is equivalent to Z € Z, and 0,(z) = 0,(2).
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(ii7) By Ra we denote the set of all elements ¢ € M 4 such that 7y () (¢(w)) =
0 for all w € Z,.

Remark 3.3.7. The function space M, is a commutative unital x-algebra

with the operations defined in [Defintion 3.3.6] Moreover R 4 is an ideal of M 4.

Definition 3.3.8. For « = (2;)?_; € C" and § € Ny we set

n

28— fol, Bl= ﬁﬁz' and 8] = iﬂl
i=1 i=1

i=1

Definition 3.3.9. Let f : dom f — C be a function with
(o(@(A)) U Z}f) UZi C dom f C C",

such that f is sufficiently smooth — more exactly, at least max,ye zz [0p(w)|—n+1

times continuously differentiable — on an open neighborhood of ZE as subset of
R™, and such that f is holomorphic on an open neighborhood of Zzi7 as subset
of C".

Then f can be considered as an element f4 of M4 by setting

f(2), if z € 7(6(A)) \ Z5,
fA(Z) = (Bl!DBf(Z)>ﬂeIa (z)’ H=e Zzﬂ.}’
(30712)) . iz
Belop (2

For z € ZE the derivative should be understood in the sense of real derivation
and for z € ZJ, it is a complex derivative.

Remark 3.3.10. Let f, g be functions which satisfy the conditions of
3.3.90 For z € ZE and (3 € I, (z) the Leibniz rule yields

1 1 g
(f9)a(z) = 5D (f9)(=) = 5 g;ﬁ D ED (=)
= 3 DR D () = (Fa2) - 9a(2)

YHI=B
=(fa®) =(9a),

Therefore, (fg)a(z) = fa(z) - ga(z). Analogously, we can show that this
equation holds for z € Z;?. Consequently,

(fg)a=fa-ga.
Moreover, it is easy to check that for A, u € C

(Af+png)a =Afa+pga.
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Furthermore, we define the function f# by f#(z) = f(%) for z € dom f. Then

(f*)a = (fa)*.

Example 3.3.11. Let i € [1,n]z be fixed and p; be a real definitizing polyno-
mial of A;. Then we can regard p; also as an element of C|zy,..., z,] just by

setting p;(z) = p;(z;). Clearly, p; : C" — C satisfies all conditions of
and we can build p; 4. Since p;(2z) is constant in every direction z for
k # 14, every derivative in these directions vanishes. Moreover, for z € Z,

pgl)(zi) =0 if 1<0,(2).
Thus, we can easily conclude that
o for z € 0(O(A))\ Z; we have p; o(2) = pi(z),
o for z € Z;, we have p; o(2) = 0 € By_(») and

e for z € Z we have p; 5(2) = (pia(2)s)ser, (., Where

B 0, if B # 0y, (Zi)ei7
(piA(z))ﬁ - 1 pDPi(zi)(Zi), 1f5 = Dpi (Zi)ei'

api (Zi)!

Furthermore, if we have a sufficiently smooth function f, then we can evaluate
(pif)a at z € Zp

_ 1
g B

if (zi)eq,
<D%Jxa={Q1 b7 onla)e

((pif)A(Z)) oo™ V() f (7). B =0y, (za)es.

For >°)_, pr.f we obtain
- _Jo i Vi € [1,n]z 1 8 # 0, (21)es,
((,;p’“f)A(ZDﬁ - {Wpapi(zi)(zi)f(z), i£3i € [Lnlz: B =0y, (z0)e:.

Definition 3.3.12. Let ¢ = (¢;)?; be a tuple of polynomials ¢; € C[z] \ {0}
of positive degree deggq;. We will denote the space of all polynomials from
Clz1, . - -, 2] with z;-degree less than degg; for all i € [1,n]z by Pq.

Lemma 3.3.13. Let ¢ = (¢;)?_; be a tuple of polynomials ¢; € C[z] \ {0}
of positive degree m; for every i € [1,n]z, and set m =[], m;. By Zgq we
denote the set of all joint zeros of q in C™; see |Definition 3.3.00 Then any
s € Clz1,...,2n] can be written as

s(z) = Z qi(z)ui(2) + (=)

with u;,r € Clz1,...,2,] for all i € [1,n]z such that r € Pq. Here u;,r can be
found in Rlz1,...,2,) if ¢ € R[z] and s € Rlz1,. .., 2,).
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Furthermore, for

Clz1y..-y2n] — C™,
w : 1 pB
s = ((5!D S(Z))Befaq(z>>z

we have s € kerw if and only if s(z) = >, qi(zi)ui(z) for some u; €
Clz1,...,2n] fori € [1,n]z. Moreover, w restricted to Pq is bijective.

€2,

Proof. Applying the Euclidean algorithm to s € C|zy, ..., 2,] and ¢; we obtain
s(z) = qu(z1)u1(z) + r1(z) where uy,r; € Clzy,. .., z,] such that the z;-degree
of ry is less than m;. Let r; be the polynomial we obtain when we apply the
Euclidean algorithm to r;_; and gx. Then we get r,—1(2) = qx(2x)ur(2)+71(2),
where ug, 7, € Clz1, ..., z,] such that for all ¢ € [1, k — 1]z the z;-degree of ry, is
less than the z;-degree of ry_; and the zi-degree is less than my.

By induction r := 7, fulfills the desired properties and

s(z) = Zqz'(zi)ui(z) +7(2)

The resulting polynomials (u;);, (r;)?_; belong to Rlz1,...,2,] if ¢; € R[z]
and s € Rlzq, ..., 2z,].

The Leibniz rule ensures that w(g;u;) = 0 for all ¢ € [1,n]z. Hence, w(s) =
w(r). Consequently, s € ker w if r = 0. On the other hand, if 0 = w(s) = w(r)
then we will show that » must be 0 by induction. At first we define the projection

" { cr - (CkflJrl,
o n
! (z)ier = (2
and the set 1% == {f eI, : B =0Vie[l,k|z}.
Induction hypothesis: For k € No, k < n, for all (w;)j, ., € 7}, ,(Zq), all
B e I¥ and all ()%, € C* we have

DPr(xy,. .. &g, Weat, ..., wy) = 0.

Induction start: For & = 0 the induction hypothesis is nothing else than
w(r) = 0.

Induction step: Assuming that the induction hypothesis is satisfied by k for
arbitrary (w;)j_; ., € T 1(Zq), B € I¥+1 and (z;)5_, € C* the mapping

T Dﬁr(xl,...,xk,x,wk+2,...,wm)

has zeros at « € Z,,,, with multiplicity at least 9, , , (¢). Since this mapping

is a polynomial of degree less than my11 = degqr+1 = ZIEZ% ) 0guir (),
it must be identically equal to zero. Hence k + 1 fulfills the induction hy-
pothesis.

This proves that r = 0.
Our discription of ker  shows in particular that w restricted to Pq is one-

to-one. Comparing dimensions shows that this restriction of w is also onto.
a

Corollary 3.3.14. For every ¢ € Ma there exists an s € Clzq, ..., z,] such
that  —sa € Ra
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Proof. The mapping w from [Lemma 3.3.13| is bijective. Hence there exists
an s € Clzy, ..., 2,] such that @(s)w = Ty, (w)(d(w)) for every w € Z,,. As a
consequence we obtain ¢ — s € Ra.

a

Example 3.3.15. Let f: C" — C be a holomorphic function and assume that
7§ = {w}. Then we can write

=% %Dﬂf(w(z—w)ﬁ

BeENy
1 1
= Z @Dﬂf(w)(z —w)’ + Z @Dﬁf(w)(z —w)’
Belo ) BeElS

=:5(2)
It is easy to see that fa —sa € Ra. We can rewrite this equation as

N Saer D f(w)(z — w)?

z) =5(z i\ %4 o
f(z) = s( >+;pz< i) ST pi(z0)

=:9(2)

for z € 0(©(A)) \ {w}. This representation is well-defined, since denominator
of g(z) can only be zero for z = w; see If we could extent g to
{w}, we would have a useful decomposition of f. Unfortunately, in general this
is not possible, since lim,_,,, g(2) may not exist. For example by L’Hopital’s
rule we have

DPpi(wi)es (W) fa(W)y (wi)e,
}Lﬂég(w+tei) =5 (w))f(w) _ P( ()vaéu(v)))bpl(wl)el
ptorit) (w;) plrii)) (wy;)

which does not coincide for every i € [1,n]z in general. If g(w) would exist,

then we could compute (fa — sa)(w)g, according to [Example 3.3.11] in the

following way

(fa = sa)w)s = 50°(Yops) (w)
=1
0, if B 7é Dpi (wi)ei,
= q o) (wy) (w), if i€ [l,n]z:f=0p(w)e
opl(wz)' g ) IRV — Up;\Wq)E45.

This would lead us to the equations

1 pam(wi) (wl)
Dpz(wl)l qu(wl)'

This motivates the following Remark

Remark 3.3.16. Recall from [Lemma 3.2.3| that > | pi(z;) = 0 with z €

o(0(A)) implies p;(z;) = 0 for all i € [1,n]z, .e. z € Zy.

D%i(wi)eif(w) = g(w) forall i€ [l,n]z.
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If € Ra, then we find a function g on ¢(©(A)) with

C, ifzeoa(B(A)) \Z;lf,
9(z) € {(cn, if z € 0(6(A)) N Z.

such that ¢(z) = Y i pia(z) - g(z) for z € 0(©(A)), where the multiplication
is defined as the multiplication in C in the case that z € 0(©(A))\Zy, and as

i ] . _ Oa lf/B € po(z)a
(;pzA(Zz) Q(Z))B = {(ij(zj))apj(Zj)ejg(z)j, if 8 =10,,(2;)e;,

otherwise. The desired function is defined by g(z) := % for z €

pi(zi
o(0(A))\Z5 and

05.(2)!0(2)0,, (21)e:
api Zi
priED ()

9(2)i =

for z€o(O(A)NZ,

for every i € [1,n]z.

Remark 3.3.17. If the tuple A contains only one single operator A (i.e. n = 1),
then [Example 3.3.15| would work and [Remark 3.3.16] would give a C-valued

function g.

Definition 3.3.18. With the notation from we denote by Fa
the set of all ¢ € M 4 such that z — ¢(z) is Borel measurable and bounded on
o(0(A))\ Z5, and such that for cach w € 0(0(A)) N Zy, which is not isolated
in 0(©(A))

oz)— 3 (9(w)),(z —w)?

BEfap(w)

1
max |z, — wy,|PPsWr) (3.10)
ke(l,n]z

is bounded for z € 0(0(A)) N B, (w) \ {w}, where r > 0 is sufficiently small.

Example 3.3.19. Let w € Z,, be an isolated point of 0(©(A)) U Zp, a € M4
and d,, : 0(0(A)) U Z, — C defined by

1, ifz=w,

Sw(2) ="
(2) {O, else.

Then d,a defined by dpa(2) := 04 (2)a(2z) is an element of F4. Cleary, every
element of Z,, is isolated in o(©(A)) U Zp.

Example 3.3.20. Let h be defined on an open subset D of R™ with values in
C and let w € D. Moreover assume that for « € N” the function h is |a| —n+1
times continuously differentiable. The Taylor Approximation Theorem from
multidimensional calculus yields [4, 10.2.10 and 10.2.13]

h(z) = Z %D'ﬁh('w)(z - w)ﬁ + O( |z — ,wHsz\fnJrl)
lmn
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for z — w. Since ay > 1 for all k € [1,n]z, we conclude that |a| —n +1 > «;
for every i € [1,n]z which leads to

|a|—n+1
oo

|z — wl| = max |z —w|l®l7" ! :O( max |zl—wl|°‘1>

i€[1,n]z i€[1,n]z
If ||z — w| . <1 and if there exists a k € [1,n]z such that 5 > oy, then
|

‘(z - w)6| <z — wi|?* < |z — wi]® < max |z — w;
iE[l,n]Z

Hence, (z —w)” is also an O(max;e(1,,), |2; —w;|*?) if there exists an k € [1,n]z
such that 8y > aj. This yields

1 o
hz) =3 @Dﬁh<w><z7w>ﬁ+0(iénu%|zi i),
ﬂeja

Lemma 3.3.21. Let f : dom f — C be a function with the properties mentioned
in|Definition 3.3.9 Then fa belongs to Fa.

Proof. For a fixed w € 0(©(A)) N Z which is non-isolated and an arbitrary

z € 0(0(A))\ Z5 by the expression
fa2) = Y fasz—w)’ = fz) - Y %Dﬁf(w)(z — w)’?

Befap(w) ﬁEiap(w)

is an O(max;e(y ), |2 — wi|*?) for z — w. Therefore, fa € Fa.

a

Lemma 3.3.22. If ¢ € Fa is such that ¢(z) is invertible in €(z) for all
z € (0(B(A) U ZE)UZ;, and such that 0 does not belong to the closure of

d(c(0(A))\ Z}f), then ¢~% : z v ¢(2z)~! also belongs to Fa.

Proof. Since 0 is not in ¢(c(0(A)) \Zg) the mapping z ﬁ is bounded on
o(0(A))\Z5. By the first assumption ¢! is a well-defined object belonging
to M 4. Since ¢ is measurable on o(0(A)) \Zy also z — ﬁ is measurable on
this set.

It remains to verify the boundedness of on a certain neighborhood of
w for each w € 0(O(A)) N ZF for ¢~', when w is non-isolated in ¢(©(A)). For
z € 0(0(A))\ Z; we calculate

62— Y (07N w),(z - w)’

BETo ()
1 1
TAED T S, ), —w) (40

1
+ defa,,(w) ((b(w))g(z —w)f

Yo (07 w)y(z —w)’. (3.12)

BEfap(w)
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The term (3.11) can be written as

B : . . z) — w z—w)?).
02 Tper, o (Bw),(z —w)? (¢<> > (@w))y( >)

op(w) ﬂefbp(w)

By assumption #z) is bounded and ¢(z) — zﬂefap(w)((b(w))ﬁ(z —w)? is an
O(max;e(y n, |2 —w;i|*?(¥9)). The invertibility of ¢(w) guarantees (gb(w)_l)o #
0, which yields
1
Zﬂe]ap(w) ( (’w))ﬂ(z —w)?

for z — w. Thus, |D is an O(max;e(1 ), [2i — w; [ (W),
1

Factoring out Eﬁéfap(w) 6@, (e—w)? from (3.12)) results in

=0(1)

1
1 - p(w)™) (z—w A
Zﬁefap(w>(¢(w)),3(z — ( Z Z ) )72( )

BETy () Y1 T72=P

=0(1) =eg

Y (w))., (¢<w>1>w<z—w>ﬁ>

BEJ y1+v2=8

:O(maxie[lvn]z |zi7wi|°m(w7‘,))

where J 1= {v1 +72 € NJ : 71,72 € Ly (w) and 71 + 72 ¢ I ()} and e is the
multiplicative unit of By (). Since Zﬁefn ( )65(2 —w)? = 1, we see that
P w

B12) is an O(masicy a2 — i), Consequently, 9! € Fa.
a

3.4 The Spectral Theorem

Lemma 3.4.1. For every ¢ € Fa there exists a polynomial s € Clzy,...,2,]
and a function g on o(©(A)) with values in C on o(©(A))\Zy and values in
C™ on o(©O(A)) N ZE such that ¢ —sa € Ra, g is bounded and measurable on

7(0(A))\Z;
o(z) =sa(z) + ZpZA zi)-g(z) for ze€o(©(A), (3.13)

where the multiplication has to be understood in the sense of [Remark 3.3.16,
We will call such a pair s,g a decomposition of ¢.

Proof.  According to|Corollary 3.3.14|there exists an s € Clz1, ..., z,] such that
¢ —sa € Ra, and by [Remark 3.3.16| we then find a function g such that (3.13)

holds true. The measurability of
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follows from the assumption ¢ € F4; in particular from the measurability of ¢
itself.

In order to show g’s boundedness, first recall from that

max |p;(z;)] < max ||R;R}|| ‘Zpl(zz) for ze€o(0(A)).
i=1

i€[1,n]z i€[1,n]z

Hence, for z € 0(O(A)) \Z; we have

max; n i\ %7
€Ll Ipi(z)| e R
|Zi=1 Pz(zz)’ i€l,n]z

As ¢ € Fa for each w € 0(©(A)) N Z which non-isolated in o(O(A)) we
find an open neighborhood B, (w) of w such that is bounded for z €
B, (w) \ {w}. Clearly, we can choose 1, even smaller such that the family
of neighborhoods is pairwise disjoint. For w € o(©(A)) N Z; and for each
i € [1,n]z the number w; is real and a zero of p; with multiplicity 9,,(w;).
Therefore

[pi(z0)| = |ao, () (2 — wi) ) + O((Zi - wi)a”’?(u”)ﬂ)‘ > |z — w;[*ri0)
for ¢; > 0 and z € B, (w). Hence,

0, (w;
MaXe1,n]; |2 — wi[ i)

maX;c[1,n)z ‘pi (ZZ)

< Cuw

on 0(6(A)) N B, (w) \ {w} for some C, > 0. Since s is holomorphic as a

polynomial and ¢ — s4 € R4 implies ¢p(w)g = éDﬂs(w) for w € Zp, and

B e fap(w), we have

()= Y, éw)s(z —w)” +O( max |z —wil*:)
ﬁefap(w) ’

and in consequence of the choice of B, (w) \ {w} (see (3.10))

Bz -5

Vp.(w;) —
max’ie[l,’n]z |ZZ —_ wll P'L( 1)

for some D,, >0 and z € B, (w) \ {w}. Altogether

maX;ec(1,n)z ‘pz(zz” maX;ec(1,n)z ‘ZZ - wi‘am(wi) |¢(z) - S(z)|

l9(2)| =

| > pilzi)| maxie(1,n), [Pi(2i)]  max;eq p, |2 — wilPr)

<Cuw <Dq

Smaxie[l,n]z| R; R}

This leads us to the boundedness of g on d(0(A)) N U, ze Br, (w) \ {w}.
On 0(©(A)) \Upezr Br., (w) the boundedness is clear. Hence g is bounded on
o(0(A)\Z}5.

a
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Definition 3.4.2. For every ¢ € Fa we define
R
o(A) :=s(A)+ E(/ ng)
o(0(A))
where s, g is a decomposition of ¢ in the sense of and where

R n
/ gdE = /ng+ > Y g(w)iRiR;E{w}

(©(4)) AO(AY\ZE wea(O(A))NZ} i=1

Remark 3.4.3. For a one-tuple A = (A) the corresponding mapping R fulfills
RR* = I. Moreover the function g of the decomposition has only C as range.
Hence, we can write

d(A) =s(A) + /(@(A)) gdE.

At first we have to guarantee that ¢(A) is well-defined.

Theorem 3.4.4. Let ¢ € Fa, s,g and §,g be decompositions of ¢ in the sense

of [Lemma 343, Then
R R
/ ng> §(A)+E</ ng>
a(©(A)) a(©(A))

Proof. By assumption we have ¢ —sa,9—54 € Ra. Subtracting these functions

yields §4 — sa € Ra and consequently w(54 — sa) = 0 for w as in
3.3.13] Since §4 — sa € ker w, this Lemma implies

n

s(z) —3(z) = Zpl(zl)ul(z) (3.14)
for some (u;)? ; where u; € Clz1,..., 2]
By and TZ-T;r = p;(A;) we have
Ei(ui(0:(A))) = Ei(Oi(ui(A))) = pi(Ai)ui(A) (3.15)

for every i € [1,n]z. Recall the notation from [Corollary 3.1.5| for the operator
tuple A. Since u(0;(A)) = [u; dE*, we obtain

= (ui(0:(A))) = E(/ dE’) (R R*/ui dE). (3.16)

for all ¢ € [1,n]z. This leads to

n

5(A) - s(4) = 3 pilA) !Z_:E !E<ZRR*/uidE>

i=1
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By we have
5(A) — s(A) = (3.17)

= Do Pilzi)ui(2) n )
= [ SRS Y Y AR w)Ew)
o(©(AN\Z3 = wE(O(A))NZE i=1

On the other hand, since both s, ¢ and §, g are decompositions of ¢ in sense of

[Cemma 3.4.7] we have
(34 —sa)(z) = ZpiA<Zi) (9(2) —g(z)) for ze€o(O(A)) (3.18)

In particular, for z € o(©(A)) \ZE

S pilzui(z) B 5(2) - s(2) = S pil) (9(2) — 3(2))
i=1 i=1

and in turn
> ie pilzi)ui(2) .
Z?:l pi(zi)

Considering the entries with index d,,(2;)e; of (3.18) and (3.14) multiplied by
0y, (29)! for z € 0(O(A)) N Zy, we obtain

(9(z) —9(2)) =

(2, (20)) i) (2, (20)) i
p; " (ZZ)UZ(Z) = W(S(Z) - S(Z)) =p; P (ZZ)(g(z)Z — g(z)i),
where we used the general Leibniz rule for derivatives and the fact that z; is

a zero of p; with multiplicity 9,,(z;) for the left-hand-side. Since piopi(zi))(zi)

does not vanish, we conlcude u;(2) = g(z); — §(z); for i € [1,n]z. Therefore,

we can write (3.17) as
R
sta) s ==( [ (g-ap)

(e(4))

and showing the asserted equality.
a

Lemma 3.4.5. Let ¢1,¢02 € Fa, s1,91 a decomposition of ¢1 and s2,92 a
decomposition of ¢o in the sense of [Lemma 3.7.1 Then

s(2) = s1(2)s2(2),

9(2) = 51(2)92(2) + 52(2)91(2) + Y _ pi(2i)91(2)g2(2)
i=1

for z € 0(0(A))\Zy and
9(2)i = g1(2)is2(2) + g2(2)is1(2)  for all i€ [l,n]y
for z € 0(O(A)) N Z&

p» 18 a decomposition of ¢1 - ¢a.
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Proof. Clearly, g is bounded and measurable for z € 0(©(A))\Z; because g
and go have these properties. Since R 4 is an ideal we obtain

192 — 514524 = (P1 — 514)02 + (P2 — 524)514 € Ra
Since for k£ = 1,2 the pair s, gx is a decomposition of ¢y, we have

_ Pr(z) — sk(2)
9e(2) =~

Therefore, we can rewrite g(z) for z € 0(0(A))\Zy as
51(2)(92(2) —52(2)) | 52(2)(01(2) =51(2)) | ($1(2) =51(2))(d2(2) —52(2))
>limy pilzi) Dz pilzi) >lim1 pil2i) .

After expanding the terms, this simplifies to

(9192)(2) — (s152)(2)
Yimapiz)

for all z € 0(O(A))\Z,.

9(2) =
For z € 0(©(A)) N Z5 we have

Op, (ZZ) (d)k( ) - SkA(z))Dpi(zi)ei
pz(‘api(Zi))<Zi)

gk(2)i =

Let r =0,,(%;) and 8 = re;. Then we have

7!
5”( )
@( ; (#1(2)952(2) = s1.4(2)p52(2) + d2(2)51(2) = s2a(2)s51(2))-

92)i = ——((61(2) = 514(2))52(2) + (62(2) — 52.4(2))351(2))

Note that ¢x(z)o = sk(2) = ska(z)o for z € 7(O(A)) N Z%. Hence,

9(=)i = (#1(=)502(2)0 + 62(2)501(2)o

(T)( 2)

~s14(2)s524(2)0 — s24(2)s514(2)o).

Recall the |definition of multiplication in %l )|

9(2)i = m( S ((61(2) 02(2)), = (51a(2) - :24(2)) )
m( S (000 = sal2)
This justifies that s, g is a decomposition of ¢; - ¢o in the sense of [Lemma 3.4.1]

a

Theorem 3.4.6. The mapping ¢ — ¢(A) defined in|Definition 3.4.4 constitutes
a x-homomorphism from Fa into A" C Ly,(K) such that sa(A) = s(A) for
every polynomial s € Clz1,. .., zy).
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Proof. As sa=sa+ Y., Dia-0[Theorem 3.4.4] yields sa(A) = s(A) for all
s €Clz1y. ..y 2n)

Let ¢1,¢2 € Fa. According to [Lemma 3.4.1| we find s1,s2 € Clz1,...,2,]

and ¢, g2 such that ¢ —sxa € R, gk is bounded and measurable on o(©(A))\
ZE, and

ok(2) = ska(z) + ZpiA(zi) cgr(z) for z€0(O(A)) and k=1,2.

=1

For A, u € C[Remark 3.3.10| guarantees (As; + pus2)a = As14 + usa4 and
therefore

(A1 + ng2)(2) = (As1 + ps2) a +sz zi) - (Ag1 + pg2)(2)

for z € 0(O(A)). It is easy to verify that Asy + psa, Ag1 + pge is a decomposition
of Ap1 + pgo in the sense of [Lemma 3.4.1] Since the definition of ¢(A) in

Definition 3.4.2] depends linearly on s and g, we conclude from
that

(A1 + pp2)(A) = Ap1(A) + pg2(A).

As 0(O(A)) C R™ and since we chose p; € R[z], we obtain ¢#(z) = 81ﬁ(z)+

Siiipia(z) Gu(2) for all 2 € 0(6(A)). o — (s7)a = (6 — 51.4)* € R holds
true due to the fact that z G Z;, < % € Z;, which is a consequence of p; € R[]

for all i € [1,7n)z. Hence, 57,7, is a decompos1t10n of 7 in the sense of [Lemmal
3.4l On the hand we have

R + R
oy —sar+z( [ gas) —stases( [ gap)
o(©(A)) a(©(A))
=67 (A)

where the last equality is derived from
Let g be defined as in |[Lemma 3.4.5| By [Theorem 3.4.4] we have

(61 92)(A) = (s152)(A) +E</R ng>

o(©(A))

R
Lamo )| [ e=( [ mar)]
o(6(A)) o(O(A))

:sl(A)SQ(A)—i-sl(A)E( /UR gng) 5( @(A))gldE>32(A)

(©(A))

R R
a(9(A)) o(©(A))

On the other hand we obtain

[

o1(A)0n(4) = [sn(4) +=(
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The identities CE(D) = E(6(C)D) and E(D)C =
2.3.16[ can be used to expand the multiplication to

= 5(/ (5192 + s291) dE
o(O(A)\ 25 ~———
= —Zl 1Pig192

[1]

(DO(C)) from

+ Z Z s1(w )i + s2(w )gl(w)i)RinE{w}).

wea(O(A))NZE i=1

=g(w);

From =(D1)=(D2) = E(D1D2TT) and [Lemma 2.3.16| we derive

V= 5(/ Pig192 dE>~
o(©(A)\ZE ;

By linearity of = and [Definition 3.4.2| we can sum up the above terms and obtain

/R ng) = (61 6)(A),

91(A)d2(A) = (s152)(A) + :( AOANZ

which showes that the mapping ¢ — ¢(A) is compatible with multiplications.

Finally, we shall show that ¢(A) € A”. Clearly, s(A) € A" for s €
Clzr, ..., 20). I C € A" C N, (LT, then O(C) € O(A) because O is
a homomorphism. By the spectral theorem in Hilbert spaces ©(C) commutes
with E(A) for all Borel sets A and by [Proposition 3.1.4| ©(C') commutes with
all R;R; for i € [1,n]z. Consequently, it commutes with

R
D := / gdFE
o(6(A))

According to [Lemma 2.3.16] we then obtain

=(D)C = E(DO(C)) = Z(6(C)D) = CZ(D).

Hence, Z(D) € A” and altogether ¢(A) € A”.
a

Definition 3.4.7. Let B(w) for w € Zj be pairwise disjoint balls in R" C C".
We endow the vector space F4 with the norm

160 = sup fo(=)]+ 30 max [p(whal+ Y max [sw)a]
z€0(0(A))\ZE weZE op(w) wezj, a€lyy, (w)
6= 3 (9w, (= - w)?
BELy ()
- Z z:;Fw) max |Zkf’wk|apk »)
"UGZE ke[l,n]z

w non isolated

Remark 3.4.8. If we choose a different family of balls in we
would obtain an equivalent norm.
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Lemma 3.4.9. Lete > 0, L := Bc(0(O(A))UZ) andm := max,,e 7z [0p(w)|—
n~+1. Furthermore let f be a sufficiently smooth function as in|Definition 3.5.9
such that

_ DB
£l == mmax su Supl f(2)]
[B]<m

is bounded. Then the mapping f — fa is continuous.

Proof. Let w € 0(©(A)) N Z5, B(w) the corresponding ball as in
and z € B(w) \ {w}. Then we have

14— X (alw))y (e~ 0| = |12) - 3 L0 fw)(z - w)|

ﬁEInp(w) 5Ef0p(w)

’ Z Dﬁf )z —w)? + Z %Dﬁf(w)(z—w)ﬁ

BENY B, (w)
B1<loa(o)|—n 1BI<[0p ()| —n

1
> @Dﬁf(w)(z —w)”
/3§Efap(w)
[B]<[op(w)|—n

< | Rpoy (w)|-n(2)] +

where R|ap(w)‘,n(z) is the remainder of the Taylor approximation. For z €
B(w) \ {w} we can bound the remainder by

low(w)|—nt1

Rjo,(w)|-n(2)] < sup DP f(u 2w \;p(w)\fnﬂ
Roywinl2)| < s (D)l e~ )

1B]=10p(w)[—n+1

[0p (w)|—n+1
n
<|I£ll

max |z; — w; a”z(w‘)
(op) = D1 sy, 12~

for some ¢ > 0, which is independent of f. For the second summand we will
use that |(z — w)?| is an O(max;e(1 ), |2i — w;[™: (W) for B ¢ I, (w) like we

already did in [Example 3.3.20

1

| > @Dﬁf(w)(z —w)’
5¢fap(w)

[B]<[op(w)|—n

< max IDP f(w)|ea max |z —w;|* (wi)
BE Lo (w) i€[l,n]z
1B1< 0p(w)|—n

for some co > 0, which does not depend on f.
Altogether, for some Cy, > 0 we have

fA(z) - Z[-}efap(w) (fA(w))g(Z - w)B

0y (w;
max;e(1 ], |2 — w;[7 ()

< Cuw || fII -

Consequently, for C' := ZwGZE Cw we have | fallz, < (1+[Zp|+C) | fl
a

Theorem 3.4.10. The functional calculus ¢ — ¢(A) defined in
from (Fa, |l-lz,) into (Lu(K), ||l 1, )) is continuous.
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Proof.  Since [Theorem 3.4.4] states that the concrete decomposition does not

affect the functional calculus, we will use a distinct decomposition in the follow-
ing.

As a first step we define a mapping which provides us with a polynomial s
of a decomposition of ¢. Consider,

Fa — Cm
Tp { ¢ — ((gzs(uj))ﬂéiap(w))wEZzD7

where m = %7 . ] 9, (w;). Recall the mapping @ : Clzy,...,2,] = C™
from [Lemma 3.3.13| according to p. The lemma also states that the restriction

of @ to Pp is bijective. Hence, we can compose
w| —1 A .IT"A — Pp,

Pp L ¢ = S.

It can be easily seen that [|7p(¢)|l cm < |4, Hence, 7 is continuous
as a linear mapping. Since every norm on C™ is equivalent, the continuity of
mp is independent of the chosen norm. The linearity and the finite dimensional

domain of w|P_1 implies its continuity for every norm on Pp. Consequently, the
P

.. -1 . .
composition w}P o 7p 1s continuous.
P

We want to endow Pp with the norm from and denote it by

[[-[lp,- Then we have

Isllp, =[5, e o0l < Clol,

for some C' > 0.

Since ¢ — sa € Ra,|Remark 3.3.16| and [Lemma 3.4.1| provide a g such that
s,g is a decomposition of ¢. In order to show that ¢ +— ¢ is continuous, we
introduce a norm on the space of all such g:

lgll = max{ sup |g<z>|} U {llg(w) ]l o cn : w € 0(O(A)) N ZE}.
2€0(O(A))\ 22

We distinguish between three cases:

e gono(B(A))N ZE

Dpi('w,- )ei

lg(w)loe = max |g(w);[ = max

0p, (w;)! ( - SA)(w
i€[1,n]z i€[1,n]z (

)
w;)
Op,(wi)!P(w)a,, (wi)e; — D%(“’")QS(’U}) ’

piam(wi)) (wz)

= max
iE[l,’n]Z

DIH (wl)
(Dp (wi)) ( )

Wi

< max
i€[1,n]z

(6wl + llsllp, ) < Cw 6] £,

for some Cy, > 0. For C; := MaXyeo(©(A))NZE Cy we obtain

<C .
weol S lg(w)ll < C1ll9ll £,
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e g on a neighborhood of 0(©(A)) N Z;. According to [Lemma 3.2.3| for
PilZ;

z € 0(0(A)) the inequality ||R;R;|| | > r_; pr(zk)| > |pi(2:)] holds true.
Consequently,
RiR;| | > iz
e | R Zpk 2)| 2 max [pi(z)].

Furthermore, there exists a ry, > 0 such that for z € B, (w) we have
pi(2:)] > cilzi — w;| (W) for some ¢; > 0 for every i € [1,n]z. This leads
to

n
’ZPk(Zk > Dy max |z; — w;|?i ()
=1 i€[1,n]z

for a certain Dy, > 0 and z € B, (w). Therefore,

$(2) — s(2) ¢(z) — s(z)

9(2)] = | == <
>oic1 Pilzi) | T | Dy maxeqr ), |20 — w09

$(z) = Y (s(w))y(z —w)? | |s(z) = Y (d(w)),(z —w)”

5€fap<w) Befap(w)
< +
D,, max |z fwk|°1’k(“”“) D,, max |z fwk|bpk »)
ke[l,n]z kell,n]z
1
H¢||fA Do — lsallz, -

By [Lemma 3.4.9, we have [[sal|z, < C Isllp, < ce 9l 7, This yields
19(2)] < Cu2 (|9l £, -

Since Cy 2 is independent of z € B, (w) \ {w}, the inequality holds true
for all these z. Taking the maximum C of all Cy, 2 for w € Z}f yields

9(2)] < C2||¢llz, forall ze |J By, (w)\{w}

weZE

e gono(O(A))\ Uwezﬁ B, (w). Since zeros of Y p;(z;) can only be in
Z¥, we have | Y7 pi(z;)] > d for a d > 0. Hence,

‘qﬁ s(2)

_pilz) | T é(laﬁ( 2)| +1s(2)) < G5 (19l 5, -

Taking these three inequalities into account yields

Hg” S maX{C1,C2703} ||¢H]:A :

Therefore, we proved the continuity of ¢ — g and the continuity of ¢ — (s, g).
It is left to show that

R

(s,9) — s(A) +/ gdE

(©(A))
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is continuous. The continuity of s — s(A) for s € Py, follows from dim P, < oo.
By the spectral theorem in Hilbert spaces we know that g — fa(@( A\ZE gdFE
is continuous. Since the remaining part of fgl({@( 4)) gdF is a finite sum we can
find a C' > 0 such that

> D gwhRiRE{w}|| < Clg] .

wea(O(A))NZE i=1

Hence (s,g) — s(A) + fcf@(A)) gdE is continuous and consequently ¢ — ¢(A)
is also continuous as a composition of continuous mappings.

a

3.5 Compatibility of the Spectral Theorem

In this section we want to regard the spectral calculus of a tuple A = (4;)7,
compared to the spectral calculus of a fixed entry A; of A. More precisely, we
want to check, if

P(Ai) = (pom)(A),

where on the left-hand-side we use the functional calculus of A; and on the
right-hand-side we use the functional calculus of A.
At first we have to define what we exactly mean by ¢ o ;.

Example 3.5.1. Let f : C — C be a holomorphic function and m; : C* — C be
the projection on the i-th coordinate. Then we want to take a look at (fom;)a:

((fom)a(=), = %Dﬁ(fom)(z).

Since the entries z; for j # i do not affect the function f o m;, the derivative in
these directions vanish. If 8 = 8;e; where e; = (51-7]-)?:1, then we have

1 1
G om)(z) = 51/ (=) = (fa, ().
Therefore,

0, if3j 44 : 8 #0,

((foﬂ—i)A(z))B - {(fA,i(Zi))ﬁw if B = Bie.

In view of we want define an adequate function composition.

Definition 3.5.2. Let ¢ € F4, and m; : C* — C be the projection on the i-th
coordinate. We set ¢ o m;(2) = ¢(z;) for z € 0(O(A)) \ Z and

(o m)()), = {O’ i3j i 2 40,

(6(2i))p;, if B = Bies.

for z € (0(©(A)) N Z%) U Z and dom(¢ o m;) := 7~ (dom ¢).



3 JOINT SPECTRAL THEOREM 62

Remark 3.5.3. For a holomorphic function f : C — C we obtain from [Example

[3.5.1] and [Definition 3.5.2
(fOTri)A = fAi O ;.

Furthermore, the composition defined in [Definition 3.5.2is distributive, i.e. for
@1, P2 € Fa, we have

(p1+ @2) o = (P1 0m;) + (P2 0 7y),
(¢1 - p2) omi = (1 0m;) - (h2 0Ty).

Lemma 3.5.4. Fizi € [1,n|z. If ¢ € Fa, then ¢ om; € Fa. For every
s € Clz] such that ¢ —sa, € Ra, we have pom; — (som;)a € Ra. Moreover, if

¢ =sa, +pia, g 18 a decomposition for ¢ € Fa, in the sense of|[Lemma 3.4.1]
then ¢pom; = (som;)a+ ZZ:1 Dk a - § s a decomposition for ¢pom; € Fa, where

N _ pi(zi) 5 or 2 Co R
i(2) = oo ese(a) for 2 € o(O(A)\ 2,

and

0, else,

9(2) = {g(zi)7 k=1 for zea(®(A)N fo.

Proof. Recall that ¢ o m; € F a4 means nothing else but the fact that for every
w € ZE the term

gom(@)— Y ((dom)(w))s(z - w)’

BETop (w)

max |z, — wy|o7sr)
ke[l,n]z

is bounded for € B, (w) \ {w} No(6O(A)) for a sufficiently small » > 0. By

Definition 3.5.2, ((¢ o m;)(x))g(x) = 0 if 3 # Bie;. Hence, the sum can be

reduced to
Dpi (Wl) t’pi (w.b)
dai) — Y () @))rlzr —w)* | [o@:) — Y (&) (wi))r(zs — wi)*
k=0 k=0

max |5Uk — wk|apk(wk) ‘xz _ wi|api(wi)

ke[l,n]z

Due to our assumption ¢ € F4, there exists a o > 0 such that the right-hand-

side is bounded for x; € By, (w;) \ {wi} N o(0;(4;)). Consequently, the left-

hand-side is also bounded for € B,,(w)\ {w}No(O(A)). Hence, pom; € Fa.
Let s € C[z] be such that ¢ — s4, € Ra,. By definition

0, if3j #£i B #0,

(pomi(z) —(som)a(z))s = {(05(2’1'))& — (s4,(2i))g,, i B = Bies.
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and consequently pom; —sa € Ra.
Since s,¢g is a decomposition of ¢, we have g(z;) = % for z; €
o(0:(A:) \ Zy. 2 mi(0(O(A)) \ Z5). [Lemma 3.2.3| guarantees that if z €

o(0(A)) and p;(z;) = 0, then z € Z} which justifies the definition

LN pi(zi) N — pi(zi) P(2i) — s(zi) _ pomi(z) — (somi)(2)
B s @ TS e w) ey
for z € 0(O(A))\ Z5. Additionally we obtain from this equation that gom;(z) =

sa(z) + Y p_1Pralzr) - §(2) holds true for z € 0(0(A)) \ Z.
For z € 0(O(A)) N Z¢ it is left to show

p(apk(zk))(zk) R
apk<zk)!
By definition for k # ¢ both sides are equal to zero. For k =1
3050 — (o) = SN OCDo, e = (54,2 )
¢ ¢ p(apf(zl))(zl)

_ alh(zt)'
= m(d) om —(so Wi)A)(Z)api(zl-)em

(¢O T — SA)(Z)Dpk(Zk)ek = Z)k-

which completes the proof.
a

Theorem 3.5.5. Let A = (A;)1_, be a tuple of operators satisfying [Assump
i€ [Ln]y and 6 € Fa. Then

P(A;) = (pom)(A),

where both sides have to be understood in the sense of|Definition 3.4.2 according
to the respective function class Fa, and Fa, and ¢pom; is defined as in[Definition]
[Z52

Proof. Let s,g be a decomposition of ¢ in the sense of By

we have s o m;, § as a decomposition for ¢ o ;.
We will extend g to R by setting g(z) = 0 for all z € R\ 0(0;(4;)). By

we obtain
S(A;) = s(A) +Ei</ngf) s(A) +5(/ gomdE').
R n
Applying the identity (3.7)) yields

¢(Ai):s(Ai)+E(RiR;‘/ gomdE).

n

We can split up R™ in Z U (R™\ Z) and use the fact [, fdE = [, IafdE =
E(A) [, fdE in order to obtain

d(A;) = s(A;) +E<RiR§E(R"\Z§) / gom; dE+RZ-R;‘/ gom; dE).

R\ ZZ% ZR
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By [Corollary 3.2.5) we have RZ-RZ‘E(R” \ Z]E) f]R"\ZR Z” dE Hence,

P(Ai) = s(A;) +E< / %d]ﬂ / gomdE + Z RiR;"E({w})g(w)l).

R\ ZE = R\ ZE 'wEO'(@(A))ﬂZi

Using the compatibility with multiplications of the integral and the definition
of § we obtain

o) =sa)+=( [ game S S st rE(w) )

wea(O(A)NZE k=1

which is by defintion nothing else but

R

o(A;) =som(A)+ /a(@(A)) gdE = (¢ om;)(A).

3.6 Spectrum

In this section we will show that only the values of ¢ € F4 on o(A) are essential
for our functional calculus. This means that if ¢q,¢s € Fa differ only on
(0(©(A) U Zp) \ 0(A), then ¢1(A) = ¢2(A).

Remark 3.6.1. Let w € Z, be an isolated point of 0(0(A)) U Z, and let
e = 14 the multiplicative neutral element of 4. Then by duwe
belongs to Fa. Since dye - dpe = dype the corresponding operator d,e(A) is a
projection.

Furthermore let A € C™ \ {w} and s(z) := z — X and s;(2) := z; — A; for
all i € [1,n]z. Then there exists an i € [1,n|z such that s;(w) # 0. For this
i € [1,n]z we have (s;40w€)(.) = uw(.)s; 4(w) where s;5(w) is invertible in
¢(w) because of s; 4(w)y # 0. Let b denote its inverse. Then we have

Si A0w€ * Owb = Oype.

We see that A; |ran5 o

By [Remark 1.3.18] also A\
(Ai ran 6we(A))i:1
trum U(A|
{w}.
Lemma 3.6.2. Let ¢ € Fa. If ¢(z) =0 for all z € 0(A), then ¢p(A) =

Proof. As 0(O(A)) C o(A) every w € Z, \ 0(A) is an isolated point of
0(©(A)) U Z,. We can apply [Remark 3.6.1] By assumption the operator tuple
A—wis 1nvert1ble This implies the invertibility of A}ran bue(A) W By

w was the only possible candidate for a spectral point of A|

— \; has Jwb(A)|ran5 e(A)

— A is invertible, where A’

as its inverse operator.

nde(A) ran d,e(A) =
. Since A was arbitrary in C™\ {w}, we conclude that the spec-

) can only contain w or in other words U(A|mn6 e(A)) C

ran d,e(A)

rand,e(A)°

= (). By |Corollary 1.4.5| this is only possible

Hence, we obtain U(A’rams E(A))
if ran d,pe(A) = {0}. Thus, de(A) =0.
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By our assumptions ¢ can be written as Zwezp\o(A) 0@ (w) which implies

$(A) = D Sws(w)(A)= Y (w)iue(A) =0

weZp\o(A) weZp\o(A)
Q
Since [Lemma 3.6.2| tells us that ¢(A) depends only on ¢’s values on o(A)

we can redefine the domain of the functions in F4.

Definition 3.6.3. We will redefine the set F4. In fact, let F4 contain all
functions ¢ with domain o(A) such that ¢(z) € €(z) — see -
such that z — ¢(z) is measurable and bounded on o(A) \ Z, and such that
is locally bounded at w for all w € 0(A) N Z, which are non-isolated.

We will also redefine f4. We reduce the conditions of to
0(A) C dom f and the requested differentiability (holomorphy) is only necessary
for points of Z3 (Z1) which also belong to o(A). Hence, we define

f(z), if 2 € 0(A)\ Zp,
= (#000) L wmcotanz,
(,;Dﬁf(z) , ifzeo(A)NZ.

Belop (o)

Remark 3.6.4. In fact, the redefined F 4 contains all functions ¢ such that é
defined by

(z) = {(b(z), ifzeo(A),

e, else,

is an element of the previous definition of F4 — see |Definition 3.3.18 — where e
is the neutral element of €(z).

Definition 3.6.5. For convenience we define ¢(A) as ¢(A), where ¢ is the
mapping in and ¢ € Fp -

Remark 3.6.6. It is easy to check that the mapping ¢ — qAﬁ—O from the
new to the old definition of F4 is a *-homomorphism. By the
zero mapping 0 satisfies 0(A) := 0(A) = 0. This yields (¢ — 0)(A) = $(A) and
¢ — ¢(A) is the composition of the x-homomorphisms ¢ — p—0and ¢ — giA)(A)
Hence, the functional calculus ¢ — ¢(A) is also a *-homomorphism.

Lemma 3.6.7. If ¢ is an element of the redefined set Fa —|Definition 3.6.5 —
such that ¢(z) is invertible in €(z) for all z € o(A) and such that 0 does not
belong to the closure of ¢(a(A)\ Z3), then ¢(A) is invertible.

Proof. Let ¢ be defined as in [Remark 3.6.4f Then é satisfies all conditions of
Lemma 3.3.22 and therefore ¢p—1 = (qb)*l’g(A) € Fa. The functional calculus
yields

Pp(A)p " (A) = ¢~ (A) =1a(A) = 1.
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4 Spectral Theorem for Normal Operators

In this section we will use the [Spectral Calculus for families of definitizable self-
[adjoint operators| presented in to introduce a Spectral Theorem for

definitizable normal operators.

4.1 Spectral Theorem

Definition 4.1.1. Let K be a Krein space. A normal operator N € L, (K) is
called definitizable if the self-adjoint operators A; := N+TN+ and Ay = X ’Qf\' i
are both definitizable.

Assumptions 4.1.2. Let N be a normal definitizable operator. We will define

A = (A, As) = (NJFQNJr, N’Q?ﬁ) and p = (p1,p2) where p; is a definitizing

polynomial of A;. Furthermore, we define the mapping ¢ : C2 — C, z + 2, +izs.

Theorem 4.1.3. Let N be normal and definitizable operator in a Krein space
K and Ay, Ay the corresponding real and imaginary part of N. Then we have

o(N) = (c(A)).

Proof. If A ¢ o(N), then T := (N — \)~! exists. For every A € C? which
fulfills ¢(X) = X\ we have

(Al + 1A2 - L(}\))T =1.
Defining B := (T,iT') we get

(A=X)-B = (A1 — \)T + (A — Mo)iT = (Ay +ids — (A1 + i) T
=u(N)

= (A +ids — NT = 1.

Similarly, B - (A — X) = I. Thus, (A — ) is invertible. Therefore, we conclude
A ¢ uo(A)).
On the other hand let A ¢ t(0(A)). Then f(z) :=t(z) — A # 0 for z € 0 (A)

and fa belongs to Fa. Therefore, f4 has a multiplicative inverse (fa)~! € Fa.
Since fa(N) = N — A, we have

(fa)TH(N) = (N =)~

and consequently A ¢ o (V).
Q

Definition 4.1.4. Let f : D C C — C be a function such that o(N) C D
and such that D contains an open neighborhood of «(Zp). Furthermore let
[ be maxy,ezr [0p(w)| — 1 times continuously real differentiable in an open
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neighborhood of «(Zy) and holomorphic in an open neighborhood of «(Z},).
Then f can be considered as an element of fy of M4

fouz), if ze€o(A)\ Zp,
1IDBfo L(z)) if z € Z%
= | ’ ’
fN(z) (5 Belﬁp(Z) ?
(g,Dﬁf ou(z) ) , ifze Z;),
BELy (=)

For z € ZE the derivative should be understood in the sense of real derivation
and for z € Zzi7 it is a complex derivative.

Lemma 4.1.5. If f satisfy all conditions of|Definition 4.1.4), then fn € Fa.
Proof. By definition fy = (fo L|L71(d0m f))A and (f o L|L,1(dom f)) satisfies all

conditions of [Lemma 3.3.21| which implies that fy = (f o L‘wl(dom f))A € Fa.

a

Definition 4.1.6. Let N be normal definitizable operator, which fulfills
sumptions 4.1.2] and ¢ € Fa. We define
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