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Introduction

The purpose of the master thesis is to develop a joint spectral theorem for a tuple
of pairwise commuting definitizable self-adjoint operators on a Krein space, cf.
Theorem 3.4.6. This is inspired by [5], where a functional calculus for normal
definitizable operators on Krein spaces is developed.

In the first section we start with a introduction to Krein spaces. Then we
will show that we can find a Hilbert space H and a injective and linear bounded
mapping T : H → K for every positive operator P on a Krein space K such
that TT+ = P . Additionally, we define a meaningful concept of joint spectrum
for a tuple a = (ai)

n
i=1 in a commutative unital Banach algebra. This concept

will be extended to the unital Banach algebra of bounded and linear operators
on a Krein space Lb(K). We also show that the joint spectrum of a tuple is
non-empty. Moreover, we state the concept of a joint spectral measure for a
tuple of commuting self-adjoint operators on a Hilbert space.

In Section 2 we will give a short introduction to linear relation. Furthermore
we will present the ∗-homomorphism Θ from [6]. This ∗-homomorphism drags
the Krein space setting into a Hilbert space setting.

In Section 3 we present the joint spectral theorem for a tuple of pairwise
commuting definitizable self-adjoint operators on a Krein space. For every
definitizable Ai we choose a real definitizing polynomial pi. According to the
first section there exists a Hilbert space H and a injective and linear bounded
T : H → K for the positive operator

∑n
i=1 pi(Ai) on the Krein space K such that

TT+ =
∑n
i=1 pi(Ai). We introduce a proper function class FA for which we can

define the functional calculus φ 7→ φ(A). This will be done by decomposing φ
into a polynomial s and a remainder g which vanishes at every critical point.

We then define φ(A) = s(A) + T
∫R
σ(Θ(A))

g dE T+, where E is the joint spec-

tral measure of Θ(A). We will show that this constitutes a ∗-homomorphism.
Furthermore, we will endow the function class FA with a norm and proof that
φ 7→ φ(A) is continuous in φ with respect to this norm. Since every entry Ai
in the tuple A has its own functional calculus, if we regard one entry as a one-
tuple, we will give a connections between the functional calculus of one entry
Ai and the spectral calculus of the tuple A.

In Section 4 we derive a spectral calculus for normal definitizing operators.
This will be done by splitting a normal operator N into its real and imaginary
part A1 and A2 and using the spectral calculus for A = (A1, A2).
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Notation

Symbol Meaning

N natural numbers starting with 1

N0 natural numbers starting with 0 (N ∪ {0})
Z the set of all integers

[n,m]Z {k ∈ Z |n ≤ k ≤ m}
i imaginary unit

Lb(M,X) Set of all bounded linear mappings f : M → X

Lb(X) Set of all bounded linear mappings f : X → X

BXr (x) open ball with center x and radius r in X

Br(x) open ball with center x and radius r if the space is clear

δi,j Kronecker delta (δi,j = 1 if i = j and 0 else)

2
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1 Preliminaries

1.1 Krein space

Definition 1.1.1. Let X be vector space over C. We call a mapping [., .]X :
X ×X → C, which fulfills

(a) [λx+ µy, z]X = λ[x, z]X + µ[y, z]X , (linerarity)

(b) [x, y]X = [y, x]X , (conjugate symmetry)

for x, y, z ∈ X and λ, µ ∈ C an inner product and (X, [., .]X) an inner product
space.

An element x ∈ X is called positiv/negativ/neutral if the real number [x, x]X
is positiv/negativ/zero. A linear subspace Y of X is called positiv (semi)definite
if the equality [y, y]X > (≥)0 holds for all 0 6= y ∈ Y . Accordingly, Y can be
negative (semi)definite or (neutral). The inner product is called positiv/negativ
(semi)definite if X ≤ X has the corresponding property.

Two elements x, y ∈ X are called orthogonal, if [x, y]X = 0, we will write
x[⊥]Xy. Two subsets A,B of X are called orthogonal if [x, y]X = 0 for all x ∈ A
and all y ∈ B, this will be denoted by A[⊥]XB. For a subset A of X we set
A[⊥]X := {x ∈ X : [x, y]X = 0 for all y ∈ A}, and call A[⊥]X the orthogonal
companion of A.

An element x ∈ X is called isotropic if {x}[⊥]XX. By (X, [., .]X)◦ we de-
note the set of all isotropic elements, called the isotropic part of (X, [., .]X). If
(X, [., .]X)◦ 6= {0}, then we call the inner product degenerated, otherwise we
call it nondegenerated. We call (X, [., .]X) degenerated, if its inner product is
degenerated. Accordingly, (X, [., .]X) is nondegenerated if its inner product is
nondegenerated.

If M,N are orthogonal subspaces of X such that M ∩ N = {0}, then we
denote the direct sum by M [+̇]XN and call it the direct and orthogonal sum.

If no confusions are possible we will write [., .] instead of [., .]X , X◦ instead
of (X, [., .]X)◦, [+̇] instead of [+̇]X , and [⊥] instead of [⊥]X or even just ⊥.

Example 1.1.2. Let us regard the vector space X = C2 endowed with

[x, y] = x1y1 − x2y2.

It is straightforward to check that (X, [., .]) is an inner product space. The

orthogonal companion of M := span

{(
1
1

)}
is again M . We want to recall that

in a Hilbert space (H, [., .]H) we have H = U [+̇]HU
[⊥]H for a closed subspace U .

Contrary to these expectations, we neither have M∩M [⊥] = {0} nor M+M [⊥] =
X.

Definition 1.1.3. Let (X, [., .]) be a inner product space, X+ a positive definite
and X− a negative definite subspace of X.

If we can express X as the direct and orthogonal sum

X = X+[+̇]X◦[+̇]X−,

then we call (X+, X−) fundamental decomposition of (X, [., .]). The space
(X, [., .]) is called decomposable, if there exists a fundamental decomposition.
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The orthogonal projections P+ along X−[+̇]X◦ onto X+ and P− along
X+[+̇]X◦ onto X− are called fundamental projections.

The linear mapping J := P+−P− is called fundamental symmetry. Further-
more we set (x, y)J := [Jx, y] for x, y ∈ X.

Facts 1.1.4. Let (X, [., .]) be a decomposable inner product space, (X+, X−) a
fundamental decomposition, P+, P− the corresponding fundamental projections,
and J the fundamental symmetry.

• (X+, [., .]) and (X−,−[., .]) are a pre-Hilbert spaces.

• For x, y ∈ X+, we have (x, y)J = [x, y].

• For x, y ∈ X−, we have (x, y)J = −[x, y].

• X+ and X− are also orthogonal with respect to (., .)J , i.e. X+(⊥)J X−.

Lemma 1.1.5. Let (X, [., .]) be a decomposable inner product space with fun-
damental symmetry J . Then the following assertions hold true:

(i) [Jx, y] = [x, Jy], (Jx, y)J = (x, Jy)J for all x, y ∈ X.

(ii) [x, y] = (Jx, y)J for all x, y ∈ X.

(iii) (., .)J is a positive semidefinite inner product on X.

(iv) If X is nondegenerated, then (., .)J induces the norm ‖x‖J :=
√

(x, x)J .

(v) If X is nondegenerated, J2 = I.

(vi) If X is nondegenerated, X
[⊥]
+ = X− and X

[⊥]
− = X+.

Proof. Since X is decomposable, every x ∈ X can be written as x = P+x +
P−x + x0 for some x0 ∈ X◦. Since the isotropic part x0 does not change the
value of the inner product, we have

[Jx, y] = [P+x, y]− [P−x, y] = [P+x, P+y + P−y]− [P−x, P+y + P−y]

= [P+x, P+y]− [P−x, P−y] = [(P+ + P−)x, (P+ − P−)y] = [x, Jy].

From the already shown, we obtain

(Jx, y)J = [J(Jx), y] = [Jx, Jy] = (x, Jy)J .

By the definition of the fundamental symmetry J , we have

J2 = (P+ − P−)(P+ − P−) = P 2
+ − P+P− − P−P+ + P 2

− = P+ + P−. (1.1)

Again by writing x as P+x+P−x+x0 and mind that the isotropic part x0 does
not change the value of the inner product, we have

(Jx, y)J = [JJx, y] = [P+x+ P−x, y] = [P+x+ P−x+ x0, y] = [x, y].

The linearity of J yields that (., .)J is linear in the first argument. Moreover,
(., .)J is even a inner product, since

(x, y)J = [Jx, y] = [y, Jx] = [Jy, x] = (y, x)J .
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By the definition of the fundamental projections, we obtain

(x, x)J = [P+x, P+x]︸ ︷︷ ︸
≥0

− [P−x, P−x]︸ ︷︷ ︸
≤0

≥ 0.

Hence, (., .)J is a positive semidefinite inner product. Moreover, by the Cauchy-
Schwarz inequality (x, x)J = 0, if and only if x ∈ X◦. Consequently, if X is
nondegenerated, (., .)J is positive definite and ‖.‖J is a norm on X.

If X is nondegenerated, then x = P+x+P−x and consequently (1.1) implies
J2 = I.

By definition we have that X = X+[+̇]X◦[+̇]X−. If X is nondegenerated,

then it is easy to see that X− ⊆ X
[⊥]
+ . Moreover, if 0 6= x ∈ X+, then we have

[x, x] > 0. For x ∈ X [⊥]
+ we obtain

0 = [x, P+x] = [P+x+ P−x, P+x] = [P+x, P+x].

This yields that P+x = 0 and in consequence x = P−x ∈ X−. Hence, X
[⊥]
+ ⊆

X−.
q

Facts 1.1.6. Let (K, [., .]) be a nondegenerated and decomposable inner product
space and (K+,K−) a fundamental decomposition. Furthermore, let P+, P− be
the corresponding fundamental projections and J the fundamental symmetry.

• For x ∈ K we have

‖Jx‖2J = (Jx, Jx)J = ( JJ︸︷︷︸
=I

x, x)J = ‖x‖2J , and

‖P±x‖2J = [JP±︸︷︷︸
=P±

x, P±x] ≤ ±[P±x, P±x]∓ [P∓x, P∓x] = [Jx, x] = ‖x‖2J .

Hence, J, P+, P− are continuous with respect to ‖.‖J .

• The functions fy : x 7→ [x, y] = (Jx, y)J are linear and bounded. Hence,
for M ⊆ K

M [⊥] =
⋂
y∈M

ker fy

is closed with respect to ‖.‖J .

• Let (K̂+, K̂−) be an arbitrary fundamental decomposition. Since K̂+ =

K̂[⊥]
− and K̂− = K̂[⊥]

+ , both K̂+ and K̂− are closed with respect to ‖.‖J .

Definition 1.1.7. An inner product space (K, [., .]K) is called Krein space, if it
is nondegenerated and decomposable, such that (K+, [., .]K) and (K−,−[., .]K)
are Hilbert spaces for a some fundamental decomposition (K+,K−).

Remark 1.1.8. Every Hilbert space (H, [., .]H) is also a Krein space.

Lemma 1.1.9. If (K, [., .]K) is a Krein space and J denotes the fundamen-
tal symmetry of the fundamental decomposition (K+,K−), which justifies that
(K, [., .]K) is a Krein space, then (K, (., .)J) is a Hilbert space.
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Proof. Clearly, (K, (., .)J) is a pre-Hilbert space. By Facts 1.1.4, we have

K = K+(+̇)J K−.

Since (K+, [., .]K) = (K+, (., .)J) and (K−,−[., .]K) = (K−, (., .)J) are Hilbert
spaces, (K, (., .)J) is also complete.

q

Theorem 1.1.10. Let (K, [., .]K) be a Krein space, (K+,K−) the fundamental
decomposition from Definition 1.1.7, and (K̂+, K̂−) another fundamental decom-
position. Furthermore, let J be the fundamental symmetry of (K+,K−) and Ĵ
be the fundamental symmetry of (K̂+, K̂−). Then (K̂+, [., .]) and (K̂−,−[., .]) are
also Hilbert spaces. Moreover ‖.‖J and ‖.‖Ĵ are equivalent.

Proof. Let J, P+, P− denote the fundamental symmetry and the fundamen-
tal projections according to (K+,K−), and Ĵ , P̂+, P̂− denote the fundamental
symmetry and the fundamental projections according to (K̂+, K̂−).

As a first step we will show that Ĵ , P̂+, P̂− are continuous as mappings
from (K, (., .)J) to (K, (., .)J). We will apply the closed graph theorem: Let(
(xn; P̂+xn)

)
n∈N a sequence in the graph of P̂+ which converges to (x; y) ∈

K × K. Since K̂+ and K̂− are closed and xn − P̂+xn = P̂−xn ∈ K̂−, we have
y ∈ K̂+ and x − y ∈ K̂−. Hence, y = P̂+y = P̂+x. Consequently, the graph of
P̂+ is closed. In the same manner it can be shown that P̂− is also continuous.
From Ĵ = P̂+ − P̂−, we conclude the continuity of Ĵ .

By the continuity of Ĵ and J , we obtain

‖x‖2Ĵ = [Ĵx, x] = (JĴx, x)J ≤ ‖JĴx‖J ‖x‖J ≤ C
2 ‖x‖2J

for some C > 0. This proves

‖x‖Ĵ ≤ C ‖x‖J (1.2)

As a next step we will show that the mapping P̂+

∣∣
K+

: (K+, ‖.‖J) →
(K̂+, ‖.‖Ĵ) is bijective, bounded and boundedly invertible. For x ∈ K+, we
have

‖x‖2J = [x, x] = [P̂+x, P̂+x] + [P̂−x, P̂−x] ≤ [P̂+x, P̂+x] =
∥∥P̂+x

∥∥2

Ĵ
.

This yields

‖x‖J ≤
∥∥P̂+x

∥∥
Ĵ

(1.2)

≤ C
∥∥P̂+x

∥∥
J
≤ C‖P̂+‖ ‖x‖J for x ∈ K+.

Hence, P̂+

∣∣
K+

is injective and (ran P̂+

∣∣
K+
, [., .]) is a Hilbert space. In order to

show that P̂+

∣∣
K+

is surjective, we assume that ran P̂+

∣∣
K+
6= K̂+. Then there

exists a 0 6= y ∈ K̂+ such that y[⊥] ran P̂+

∣∣
K+

. For an arbitrary x ∈ K+ we have

[x, y] = [P̂+x, y]︸ ︷︷ ︸
=0

+ [P̂−x, y]︸ ︷︷ ︸
=0

= 0.

This yields y ∈ K[⊥]
+ = K− and consequently y ∈ K−∩K̂+, which is only possible

for y = 0. This contradicts our assumption. Consequently, P̂+

∣∣
K+

is surjective

and (K̂+, [., .]) is a Hilbert space.
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By the same argument we can show that (K̂−,−[., .]) is also a Hilbert space.
Therefore, we have justified that we can switch the roles of (K+,K−) and
(K̂+, K̂−). Hence, (1.2) gives us the equivalence of ‖.‖J and ‖.‖Ĵ .

q

Theorem 1.1.10 tells us that, if there exists one fundamental decomposition
which makes (K, [., .]) a Krein space, then every fundamental decomposition
does so.

In the following we will equip every Krein space (K, [., .]K) with the norm
topology of ‖.‖J for an arbitrary fundamental symmetry J , if not other stated.

Lemma 1.1.11. Let (K, [., .]) be a Krein space and M ⊆ K. Then M [⊥][⊥] = M .

Proof. Let J be a arbitrary fundamental symmetry of (K, [., .]). Since [x, y] =
(Jx, y)J = (x, Jy)J for x, y ∈ K, we have

x[⊥]M ⇔ Jx(⊥)JM ⇔ x(⊥)JJM.

Therefore, M [⊥] = J(M (⊥)J ) = (JM)(⊥)J . This identity yields

M [⊥][⊥] = (J(M (⊥)J ))[⊥] = (JJ(M (⊥)J ))(⊥)J = M (⊥)J (⊥)J = M.

q

Remark 1.1.12. If (K1, [., .]K1) and (K2, [., .]K2) are Krein spaces, then we can
endow K1 ×K2 with an inner product

[(x; y), (u; v)]K1×K2
:= [x, u]K1

+ [y, v]K2

and obtain the Krein space (K1 × K2, [., .]K1×K2
). In fact, it is straightforward

to check that [., .]K1×K2
is an inner product. Let (K1+,K1−) be a fundamental

decomposition of K1 and (K2+,K2−) be a fundamental decomposition of K2.
Then (K1+×K2+,K1−×K2−) is a fundamental decomposition of K1×K2. Since
(K1±, [., .]K1) and (K2±, [., .]K2) are Hilbert spaces, (K1+×K2+, [., .]K1×K2) and
(K1− ×K2−, [., .]K1×K2

) are also Hilbert spaces.

1.2 Operators on Krein spaces

For two Krein spaces (K1, [., .]K1
) and (K2, [., .]K2

) we can equip Lb(K1,K2) with
the operator norm

‖A‖ := sup
x∈K1\{0}

‖Ax‖J2
‖x‖J1

for A ∈ Lb(K1,K2),

where J1 is a fundamental symmetry of K1 and J2 is a fundamental symmetry of
K2. If we choose different fundamental symmetries, then we obtain an equivalent
norm.

Lemma 1.2.1. Let (K1, [., .]K1), (K2, [., .]K2) be Krein spaces, and let A ∈
Lb(K1,K2). Then there exists a unique operator A+ ∈ Lb(K2,K1), which satis-
fies

[Ax, y]K2
= [x,A+y]K1

for x ∈ K1, y ∈ K2.

Moreover, we have ‖A‖ = ‖A+‖. We will call the operator A+ the Krein space
adjoint of A.
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Proof. Let J1 and J2 be a fundamental symmetry of (K1, [., .]K1
) and (K2, [., .]K2

)
respectively. Furthermore, let A∗ the Hilbert space adjoint of A, when K1 is
endowed with (., .)J1 and K2 is endowed with (., .)J2 . Due to

[Ax, y]K2
= (Ax, J2y)J2 = (x,A∗J2y)J1 = [x, J1A

∗J2︸ ︷︷ ︸
=:A+

y]K1

we can be certain of the existence of A+. Since J1, J2 are boundedly invertible,
the uniqueness follows from the uniqueness of A∗. Since ‖A∗‖ = ‖A‖, we obtain∥∥A+

∥∥ = ‖J1A
∗J2‖ ≤ ‖J1‖ ‖A∗‖ ‖J2‖ = ‖A∗‖ = ‖A‖ (1.3)

The uniqueness of A+ implies A++ = A. Hence, we can switch the roles of A+

and A in (1.3) and obtain ‖A‖ = ‖A+‖.
q

Remark 1.2.2. If (K1, [., .]K1), (K2, [., .]K2) are even Hilbert spaces, then the
Krein space adjoint coincides with the Hilbert space adjoint.

Facts 1.2.3. Let (K1, [., .]K1
), (K2, [., .]K2

) and (K3, [., .]K3
) be Krein spaces,

A,B ∈ Lb(K1,K2), and C ∈ Lb(K2,K3). Then

• (A+ λB)+ = A+ + λB+,

• (CA)+ = A+C+.

Definition 1.2.4. Let (K, [., .]K) be a Krein space and A ∈ Lb(K). Then we
call A

• normal, if it commutes with its adjoint A+,

• self-adjoint, if A = A+.

Remark 1.2.5. Clearly, every self-adjoint operator is normal.

Definition 1.2.6. Let (K, [., .]K) be a Krein space. Then we call a self-adjoint
operator P ∈ Lb(K) positive, if P satisfies

[Px, x]K ≥ 0 for all x ∈ K.

Definition 1.2.7. Let (K, [., .]K) be a Krein space and A ∈ Lb(K) be a self-
adjoint Operator. We will call A definitizable if there exists a polynomial p ∈
C[x] \ {0} such that p(A) is a positive operator. Any p ∈ C[x] \ {0} which
satisfies this condition will be called a definitizing polynomial for A.

Lemma 1.2.8. If (K, [., .]K) is a Krein space and A ∈ Lb(K) is definitizable,
then there exists a definitizing polynomial p ∈ R[z] \ {0}.
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Proof. Let q ∈ C[z] \ {0} be a definitizing polynomial for A. Then we define
q#(z) := q(z) ∈ C[z] and p(z) := q#(z) + q(z). Clearly, we have p ∈ R[z]. Since
q(A) is self-adjoint, we have

q(A) = q(A)+ = q#(A),

and therefore the operator p(A) = 2q(A) is positive. If p 6= 0, then we are done.
For p = 0 we conclude that −q(z) = q#(z) and that the coefficients of q are

purely imaginary. Hence,

−q(A) = q#(A) = q(A)+ = q(A),

and in consequence q(A) = 0 = iq(A). Since q’s coefficients are purely imaginary,
iq is a definitizing polynomial for A in R[z] \ {0}.

q

According to the previous Lemma we will always choose definitizing poly-
nomials in R[z] \ {0}.

Lemma 1.2.9. Let (K1, [., .]K1
) and (K2, [., .]K2

) be Krein spaces. For every
A ∈ Lb(K1,K2) we have

(ranA)[⊥]K2 = kerA+.

Proof. By definition we can write the orthogonal companion of ranA as

(ranA)[⊥]K2 = {x ∈ K2 : [x,Ay]K2
= 0 for all y ∈ K1}

= {x ∈ K2 : [A+x, y]K2 = 0 for all y ∈ K1}.

Since ever Krein space is nondegenerated, we have

(ranA)[⊥]K2 = {x ∈ K2 : A+x = 0} = kerA+.

q

Lemma 1.2.10. Let (K, [., .]K) be a Krein space and P ∈ Lb(K) a positive
Operator. Then there exists a Hilbert space (H, [., .]H) and an injective and
bounded linear mapping T : H → K such that TT+ = P .

Proof. Since P is positive 〈., .〉 := [P., .]K defines a positive semidefinite inner
product on K. Factorizing K by its isotropic part K〈◦〉 relating to 〈., .〉 we obtain
the pre-Hilbert space K/K〈◦〉 with the canonical projection

ι :

{
K → K/K〈◦〉,
x 7→ x+K〈◦〉,

and the scalar product 〈x+K〈◦〉, y+K〈◦〉〉 := 〈x, y〉. We define H as the Hilbert
space completion of K/K〈◦〉. We can regard ι as a mapping into H. From

‖ιx‖2 = 〈ιx, ιx〉 = [Px, x]K ≤ ‖P‖ ‖x‖2 ,

we conclude the continuity of ι. Therefore, we can define T : H → K as T := ι+.
Since ι is bounded, T is also bounded. Due to the continuity of the inner product
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(ran ι)⊥ = (ran ι)⊥. Hence, the density of ran ι in H implies ker ι+ = {0} and
consequently the injectivity of T . By definition, for x, y ∈ K we have

[TT+x, y]K = 〈T+x, T+y〉 = 〈ιx, ιy〉 = 〈x, y〉 = [Px, y]K

and consequently TT+ = P .
q

Remark 1.2.11. It is possible that the Hilbert space H in the previous Lemma
is the zero-dimensional space {0}. This will happen, if and only if P = 0.

Corollary 1.2.12. Let K be a Krein space and A ∈ Lb(K) self-adjoint and
definitizable. Then there exists a Hilbert space H and an injective and bounded
linear mapping T : H → K such that TT+ = p(A).

Proof. Let p ∈ C[x] be a definitizing polynomial for A. By definition p(A) is a
positive operator. Lemma 1.2.10 will do the rest.

q

1.3 Gelfand space

Definition 1.3.1. Let A 6= {0} be a vector space over C.

(i) If A is equipped with a bilinear mapping{
A×A → A,
(a, b) 7→ ab,

which is additionally associative, i.e.

a(bc) = (ab)c for all a, b, c ∈ A,

then we will call A an algebra over C. This mapping is called the multi-
plication in A.

(ii) An algebra A is said to be commutative, if

ab = ba for all a, b ∈ A.

(iii) A subalgebra B of an algebra A is a linear subspace of A such that

ab ∈ B for a, b ∈ B.

(iv) An element e ∈ A is called unit element of A, if

ea = ae = a for all a ∈ A.

If A contains a unit element, A is said to be unital. In the following we
will denote the unit element always by e.

(v) An element a in a unital algebra A is said to be invertible if there exists
an element b ∈ A, such that

ab = ba = e,

where e is the unit element. The set of all invertible elements of A will be
denoted by Inv(A)
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(vi) For every a in a unital algebra A the set

ρA(a) := {λ ∈ C : (a− λe) ∈ Inv(A)}

is called the resolvent set of a. The set

σA(a) := C \ ρ(a) = {λ ∈ C : (a− λe) /∈ Inv(A)}

is called the spectrum of a. We will just write σ(a) , ρ(a) if no confusions
about the algebra is possible.

(vii) If A is equipped with a norm ‖.‖, such that ‖.‖ is submultiplicative, i.e.

‖ab‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A,

then A is a normed algebra. If A equipped with ‖.‖ additionally is a
Banach space, then we call A a Banach algebra.

(viii) If a normed algebra A contains a unital element e, then e is said to be
normed if ‖e‖ = 1. If A additionally is a Banach algebra and contains a
normed unital element, we call A a unital Banach algebra.

(ix) If there is a mapping

(.)∗ :

{
A → A,
a 7→ a∗,

such that

• (λa+ µb)∗ = λa∗ + µb∗,

• (a∗)∗ = a,

• (ab)∗ = b∗a∗,

then we call A a ∗-algebra.

Lemma 1.3.2. Let X be unital Banach algebra. Then the set Inv(X) is open
and the mapping a 7→ a−1 is continuous on Inv(X).

Proof. As first step we will show that if ‖a‖ < 1 for an a ∈ X, then e − a ∈
Inv(X) and (e− a)−1 =

∑∞
n=0 a

n: Since ‖an‖ ≤ ‖a‖n we have

∞∑
n=0

‖an‖ ≤
∞∑
n=0

‖a‖n =
1

1− ‖a‖
< +∞.

Hence,
∑∞
n=0 a

n converges absolutely. The continuity of c 7→ cb yields

(e− a)

∞∑
n=0

an =

∞∑
n=0

an −
∞∑
n=1

an = a0 = e. (1.4)

In the same way
∑∞
n=0 a

n(e− a) = e can be shown. Hence, (e− a) is invertible.

Let a ∈ Inv(X) and ‖b‖ ≤ 1
‖a−1‖ . Then we can write a + b = a(e − a−1(−b))

where
∥∥a−1(−b)

∥∥ < 1. Hence, (e − a−1(−b)) is invertible by the first step.
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Consequently a + b has (e − a−1(−b))−1a−1 as its inverse. We showed that
B 1

‖a−1‖
(a) = a+B 1

‖a−1‖
(0) ⊆ Inv(X) which implies that Inv(X) is open.

Let again a ∈ Inv(X) and ‖b‖ ≤ 1
‖a−1‖ . By the already shown we have

∥∥(a+ b)−1 − a−1
∥∥ =

∥∥∥ ∞∑
i=0

(
a−1(−b)

)n
a−1 − a−1

∥∥∥ =
∥∥∥ ∞∑
i=0

(
a−1(−b)

)n
a−1

∥∥∥
≤
∥∥a−1

∥∥ ∞∑
i=1

∥∥a−1b
∥∥n =

∥∥a−1
∥∥ ∥∥a−1b

∥∥
1− ‖a−1b‖

≤
∥∥a−1

∥∥2

1− ‖a−1b‖
‖b‖ .

Therefore,
∥∥(a+ b)−1 − a−1

∥∥ converges to 0, if ‖b‖ → 0. Consequently, the

mapping a 7→ a−1 is continuous.
q

Lemma 1.3.3. Let X be a unital Banach algebra and a ∈ X. Then ρ(a) is
open subset of C and the mapping

R(.)(a) :

{
ρ(a) → X,
λ 7→ (a− λe)−1.

is continuous. Moreover, lim|λ|→∞ ‖Rλ(a)‖ = 0.

Proof. Consider the mapping Φ : C→ X,λ 7→ a− λe. This mapping is clearly
continuous. Hence, ρ(a) is open as the preimage of the open set InvX. Since

we have Rλ(a) =
(
Φ
∣∣
ρ(a)

(λ)
)−1

, we conclude that R(.)(a) is a composition of

continuous mappings.
If |ζ| < 1

‖a‖ we can calculate the inverse of (e−ζa) as we did in (1.4). Hence,

R 1
ζ
(a) =

(
a− 1

ζ
e
)−1

= −ζ(e− ζa)−1 = −ζ
∞∑
n=0

ζnan = −
∞∑
n=0

ζn+1an.

Since the series on the right-hand-side converges uniformly for |ζ| ≤ 1
2‖a‖ , we

obtain

lim
|λ|→∞

‖Rλ(a)‖ = lim
|ζ|→0

∥∥∥R 1
ζ
(a)
∥∥∥ = lim

|ζ|→0

∥∥∥ ∞∑
n=0

ζn+1an
∥∥∥

≤
∞∑
n=0

lim
|ζ|→0

∥∥ζn+1an
∥∥ = 0.

q

Theorem 1.3.4. (Liouville) Let φ : C → C be holomorphic. If φ is bounded,
then φ has to be constant.

Theorem 1.3.5. Let X be a unital Banach algebra and x ∈ X. Then σ(x) 6= ∅.
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Proof. Let us assume that x − λe is invertible for every λ ∈ C, i.e. σ(x) = ∅.
For α, β ∈ C such that α 6= β we have

(x− αe)−1(α− β)(x− βe)−1 = (x− αe)−1
(
(x− βe)− (x− αe)

)
(x− βe)−1

= (x− αe)−1 − (x− βe)−1.

Applying any f ∈ A′ (continuous dual space of A) on this equation yields

f((x− αe)−1)− f((x− βe)−1)

α− β
= f

(
(x− αe)−1(x− βe)−1

)
.

Since the limit on the right hand side exists for α → β, the limit on the left
hand side also exists. Hence, α 7→ f((x−αe)−1) is a holomorphic function with
domain C. Since lim|α|→∞

∥∥(x− αe)−1
∥∥ = 0 and f((x− αe)−1) is bounded for

α in a compact set, we conclude by Liouville that α 7→ f((x− αe)−1) has to be
constant 0. The seperating property of A′ yields (x − αe)−1 = 0 which is not
possible for an invertible element.

q

Theorem 1.3.6. (Gelfand-Mazur) Let X be a unital Banach algebra. If
Inv(X) = X \ {0}, then X is one-dimensional.

Proof. By Theorem 1.3.5 for every x ∈ X there exists a λx ∈ σ(x). Since 0 is
the only not invertible element we conclude that x− λxe = 0 and consequently
x = λxe. Hence, {e} spans X.

q

Definition 1.3.7. Let A be an algebra over C.

• A subalgebra I of A is called ideal, if ai, ia ∈ I for all a ∈ A and i ∈ I. If
additionally I 6= A, we call I a proper ideal.

• A proper ideal I is called maximal ideal if there is no proper ideal J such
that I ( J (i.e I ⊆ J and I 6= J).

• A linear functional m : A→ C is said to be multiplicative if m 6= 0 and

m(ab) = m(a)m(b) for all a, b ∈ A.

Lemma 1.3.8. Let A be a unital algebra.

 A proper ideal does not contain any invertible elements.

 Every proper ideal is contained in a maximal ideal.

 Ever ideal with codimension one is a maximal ideal.

 If A is a normed algebra, then the closure of an ideal is again an ideal.

 If A is a unital Banach algebra, then every maximal ideal is closed.

Proof.
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 If a ∈ I ∩ Inv(A), then e = a−1a ∈ I. Hence, A = eA ⊆ I, which is a
contradiction.

 Let I be a proper ideal and I the set of all proper ideals J satisfying
I ⊆ J . Let J be an arbitrary chain (totally ordered subset) of I with
respect to ⊆. It is easy to check that⋃

J∈J
J

is also an ideal. Furthermore, it is a proper ideal since no J ∈ J contains
the unit element e.

By the Lemma of Zorn I has a maximal element, which is a maximal ideal
containing I.

 Let I be an ideal with codimension one. Then it certainly is a hyperspace.
Hence, I is a proper ideal. Since every strictly greater subspace has to be
already A, I is a maximal ideal.

 If I is an ideal, then I is a subspace of A. By the submultiplicativity of
the norm it is easy to check that the mapping (a, b) 7→ ab is continuous in
the second argument. Hence, we have that aI ⊆ (aI) ⊆ I. Analogously,
we obtain Ia = I. Consequently, I is an ideal.

 Let I be a maximal ideal in the unital Banach algebra A. By the first
statement of the present Lemma I ⊆ Inv(A)

c
. By Lemma 1.3.2 the subset

Inv(A)
c

is closed. Hence, I ⊆ Inv(A)
c ( A. By the fourth statement of

this Lemma I is a proper ideal. Since I is a maximal ideal, we conclude
I = I.

q

Lemma 1.3.9. Let A be a commutative unital algebra. Then a ∈ A is invertible,
if and only if a ∈ A is not contained in any maximal ideal.

Proof. If a ∈ A is invertible, then a is by the first statement of Lemma 1.3.8
not contained in any proper ideal.

Since A is commutative the set aA := {ab ∈ A : b ∈ A} is an ideal. If a is
not invertible, then e /∈ aA. Consequently, aA is a proper ideal. By the second
statement of Lemma 1.3.8 there exists a maximal ideal J such that aA ⊆ J .

q

Definition 1.3.10. Let A,B be algebras. We call a mapping Φ : A → B an
algebra homomorphism, if it satisfies

• Φ(λa+ µb) = λΦ(a) + µΦ(b),

• Φ(ab) = Φ(a)Φ(b),

for all a, b ∈ A and λ, µ ∈ C. If Φ is additionally bijective, then we call it an
algebra isomorphism.

If A,B are even ∗-algebras, then we call an algebra homomoporphism Φ
∗-homomorphism, if it additionally satisfies

Φ(a∗) = Φ(a)∗ for all a ∈ A.
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Lemma 1.3.11. Let I be an ideal of an algebra A. Then the mapping

((a+ I), (b+ I)) 7→ (a+ I)(b+ I) := (ab+ I) (1.5)

is well-defined and satisfies all condition of Definition 1.3.1 (i), i.e A/I is an
algebra. Moreover the canonical projection πA/I : A → A/I, a 7→ a + I is an
algebra homomorphism.

If A is a unital algebra, then A/I is also one.

Proof. Let a1 + I = a2 + I and b1 + I = b2 + I. Then

a1b1 − a2b2 = a1b1 − (a1 + i)(b1 + j) = 0− a1j − b1i− ij︸ ︷︷ ︸
∈I

implies a1b1 + I = a2b2 + I. Hence, the mapping in (1.5) is well-defined. The
bilinearity and associativity can be in a straightforward manner derived from
the corresponding properties of (a, b) 7→ ab.

If e is the unit element of A, then it can easily be seen that e+ I is the unit
element of A/I.

It is also straightforward to check that πA/I is compatible with all algebra
operation. We will exemplarily show the compatibility with the multiplication:

πA/I(ab) = ab+ I = (a+ I)(b+ I) = πA/I(a)πA/I(b).

q

Corollary 1.3.12. Let A be a unital Algebra and I an ideal with codimension
one. Then the mapping βI : λ 7→ λe + I is an isomorphism from C to A/I.
Moreover the mapping mI := β−1

I ◦ πA/I : A → C is multiplicative functional
with kermI = I.

Proof. Since A/I is by assumption one-dimensional and e + I is not the 0
element in A/I, the set {e + I} is a basis of A/I. Consequently the mapping
βI : λ 7→ λ(e+ I) = λe+ I is bijective. It is straightforward to show that βI is
even a homomorphism and therefore an isomorphism.

As a composition of homomorphisms the mapping mI is also a homomor-
phism and homomorphisms into C are multiplicative functionals.

q

Proposition 1.3.13. Let (X, ‖.‖) be a Banach space and N a closed subspace
of X. Then X/N equipped with

‖x+N‖X/N := inf
z∈N
‖x+ z‖

is also a Banach space

Proof. Let x, y ∈ X and z1, z2 ∈ N .

‖(x+N) + (y +N)‖X/N ≤ ‖x+ y + z1 + z2‖ ≤ ‖x+ z1‖ + ‖y + z2‖
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Since z1, z2 ∈ N were arbitrary, we obtain the triangular inequality for ‖.‖X/N .

For λ ∈ C \ {0} we have that λN = N . We will apply infz∈N on the following
equation

‖λx+ z‖ = |λ|
∥∥x+ λ−1z

∥∥ z ∈ N

on both sides in a different order. This yields

‖λx+N‖X/N ≤ |λ|
∥∥x+ λ−1z

∥∥
‖λx+N‖X/N ≤ |λ| ‖x+N‖X/N

‖λx+ z‖ ≥ |λ| ‖x+N‖X/N
‖λx+N‖X/N ≥ |λ| ‖x+N‖X/N

and in consequence ‖λx+N‖X/N = |λ| ‖x+N‖X/N . This is even true for

λ = 0. Clearly 0 ≤ ‖0 +N‖X/N ≤ ‖0 + 0‖ = 0. If ‖x+N‖X/N = 0, then there

exists a sequence (zn)n∈N such that zn ∈ N for all n ∈ N and ‖x+ zn‖ → 0.
This means that limn∈N zn = −x and −x ∈ N , since N is closed. Hence,
x+N = 0 +N .

Let (xn + N)n∈N be a Cauchy-sequence in X/N . We choose a subsequence
(xnk +N)k∈N such that

∥∥(xnk+1
+N)− (xnk +N)

∥∥
X/N

≤ 2−k. We will recur-

sively define yk ∈ (xnk +N) such that ‖yk+1 − yk‖ < 2−k:

We set y1 := xn1
. Let y1, . . . , yk have the claimed properties. Then by

2−k >
∥∥(xnk+1

+N)− (xnk +N)
∥∥
X/N

=
∥∥xnk+1

− yk +N
∥∥
X/N

= inf
z∈N

∥∥xnk+1
− yk + z

∥∥
there exists a zk ∈ N such that

∥∥(xnk+1
+ zk)− yk

∥∥ < 2−k. Hence, we set
yk+1 := xnk+1

+ zk.

If l ≤ m, then

‖ym − yl‖ =

∥∥∥∥∥
m−1∑
k=l

(yk+1 − yk)

∥∥∥∥∥ ≤
m−1∑
k=l

‖yk+1 − yk‖ ≤
∞∑
k=l

2−k ≤ 2−l+1

implies that (yk)k∈N is Cauchy-sequence in X. Since X is Banach space there
exists a y ∈ X such that yk → y. By

‖(y +N)− (xnk +N)‖ = ‖(y +N)− (yk +N)‖ ≤ ‖y − yk‖ → 0

we conclude that xnk + N converges to y + N and since xn + N is a Cauchy-
sequence, xn +N has the same limit.

q

Proposition 1.3.14. Let X be a commutative unital Banach algebra. Then
every maximal ideal I of X has codimension one.

Proof. Let I be a maximal ideal of X. Then I is closed and, by Proposition
1.3.13, X/I equipped with the factor norm is a Banach space. By Lemma 1.3.11,
X/I is also an algebra. From

‖(xy + I)‖X/I ≤ ‖xy + ix+ jy + ij︸ ︷︷ ︸
∈I

‖ = ‖(x+ j)(y + i)‖ ≤ ‖x+ j‖ ‖y + i‖ ,
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we conclude ‖(x+ I)(y + I)‖X/I ≤ ‖x+ I‖X/I ‖y + I‖X/I . Clearly e+ I is the

unit element in X/I and 0 < ‖e+ I‖X/I ≤ ‖e+ 0‖ = 1. On the other hand

‖e+ I‖X/I = ‖(e+ I)(e+ I)‖X/I ≤ ‖e+ I‖2X/I , which gives us the missing

inequality for ‖e+ I‖X/I = 1. Hence, X/I is also a commutative unital Banach
algebra.

Let y+ I 6= 0 + I and J be an arbitrary ideal of X/I containing y+ I. Fur-
thermore, let πX/I denote the projection x 7→ x+ I. Then it is straightforward

to show that K := π−1
X/I(J) is an ideal of X. Clearly I = π−1

X/I({0+I}) ⊆ K and

x ∈ K \I, where x ∈ X is such that πX/I(x) = y+I. Since I is a maximal ideal,
we conclude that K = X and J = X/I. Therefore, there exists no proper ideal
of X/I that contains y+ I. By Lemma 1.3.9 every element of (X/I) \ {0 + I} is
invertible. By Theorem 1.3.6 (Gelfand-Mazur) X/I is one-dimensional. Hence,
the codimension of I is one.

q

Definition 1.3.15. Let X be a commutative unital Banach algebra. Then we
will call the set MX of all multiplicative functionals on X the Gelfand space of
X.

Theorem 1.3.16. If X is a commutative unital Banach algebra, then the
Gelfand space MX is non-empty.

Proof. If X \ {0} does not contain any not invertible elements, then due to
Theorem 1.3.6 (Gelfand-Mazur) we have Ce = X. Hence, for every element
x ∈ X there exists a unique λx ∈ C such that x = λxe. Consequently, the
mapping

m :

{
X → C,
x 7→ λx,

is as an element of MX .
If X \{0} contains an element x which is not invertible, then by Lemma 1.3.9

x is contained in a maximal ideal J . By Proposition 1.3.14 J has codimension
one. Hence, the mapping mJ from Corollary 1.3.12 is an element of MX .

q

Definition 1.3.17. Let X be a commutative unital Banach algebra and a =
(ai)

n
i=1 ∈ Xn a n-tuple.

• Then a is said to be invertible, if there exists a b ∈ Xn such that

a · b :=

n∑
i=1

aibi = e.

The set of all invertible elements of Xn will be denoted by Inv(Xn).

• We will interpret a λ ∈ Cn as an element of Xn by λ = (λie)
n
i=1 ∈ Xn.

• We will call the set

ρX(a) :=
{
λ ∈ Cn : (a− λ) ∈ Inv(Xn)

}
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the resolvent set of a, where a − b := (ai − bi)
n
i=1. When we want to

emphasize that we are talking about the resolvent set of a tuple, we will
use the term joint resolvent set. We will just write ρ(a) if no confusions
about the algebra is possible.

• We will call the set

σX(a) := Cn \ ρX(a) =
{
λ ∈ Cn : (a− λ) /∈ Inv(Xn)

}
spectrum of a. When we want to emphasize that we are talking about
the spectrum of a tuple, we will use the term joint spectrum. We will just
write σ(a) if no confusions about the algebra is possible.

• Let Y be a commutative unital Banach algebra and ψ : X → Y an algebra
homomorphism. Then we set

ψ(a) := (ψ(ai))
n
i=1.

Remark 1.3.18. If there exists an entry aj in a = (ai)
n
i=1, such that aj is

invertible, then a is also invertible.

Proposition 1.3.19. Let X be a commutative unital Banach algebra, a =
(ai)

n
i=1 ∈ Xn and λ ∈ Cn. Then the following statements are equivalent

(i) (a− λ) is not invertible.

(ii) I :=
{

(a− λ) · b : b ∈ Xn
}

is a proper ideal of X.

(iii) λ ∈ {φ(a) : φ ∈MX}.

Proof. It is straightforward to check that in any case I is an ideal of X.
(i) ⇔ (ii): The fact that I is a proper ideal is equivalent to e /∈ I which is

equivalent to (a− λ) being not invertible.
(ii)⇒ (iii): If I is a proper ideal, it is contained in a maximal ideal J which

has codimension one. Therefore, I ⊆ kermJ where mJ ∈ MX is the mapping
from Corollary 1.3.12. If we choose b = (δi,ke)

n
i=1, then

mJ(ak − λk) = mJ((a− λ) · b) = 0.

Since this is true for k ∈ [1, n]Z, we obtain mJ(a) = λ.
(iii) ⇒ (ii): If φ ∈ MX is such that φ(a) = λ, then φ(ak − λk) = 0 for all

k ∈ [1, n]Z. Hence, I ⊆ kerφ and consequently I cannot contain e.
q

Corollary 1.3.20. Let X be a commutative unital Banach algebra and a =
(ai)

n
i=1 ∈ Xn. Then the spectrum σ(a) is not empty.

Proof. By Theorem 1.3.16 the Gelfand space MX is not empty. Hence, there
exists a φ ∈MX . By Proposition 1.3.19 (a− φ(a)) is not invertible and conse-
quently φ(a) ∈ σ(a).

q
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1.4 Joint Spectrum in Krein spaces

We already defined the term joint spectrum for a tuple of elements in commu-
tative unital Banach algebra. Unfortunately, the space Lb(K) is just a unital
Banach algebra, but not commutative.

Definition 1.4.1. Let A be an algebra and C ⊆ A. Then we define the
commutant C ′ of C by

C ′ := {a ∈ A : ac = ca for all c ∈ C}.

If a ∈ An, then we set a′ := {ai : i ∈ [1, n]Z}′. The set C ′′ := (C ′)
′

will be
called the bicommutant of C.

Facts 1.4.2.

1. C ′ is the intersection of the kernels of the linear mappings ψc, c ∈ C,
where

ψc :

{
A → A,
x 7→ xc− cx.

Hence, C ′ is linear subspace of A. If x, y ∈ C ′ and c ∈ C, then

(xy)c = x(yc) = x(cy) = (xc)y = (cx)y = c(xy),

and consequently xy ∈ C ′. Hence, C ′ is a subalgebra of A.

2. If A is normed algebra then all ψc are continuous. Hence, C ′ is closed as
intersection of closed sets.

3. If C1 ⊂ C2, then C1
′ ⊇ C2

′.

4. Since xc = cx for all x ∈ C ′ and all c ∈ C, we conclude C ⊆ C ′′.

5. From C ⊆ C ′′ we derive from Statement 3, C ′ ⊇ (C ′′)
′
. On the other

hand Statement 4 combined with Statement 3 yields C ′ ⊆ (C ′)
′′
. Hence,

C ′ = C ′′′ and C ′′ = C ′′′′.

6. C ⊆ C ′ means nothing else than cd = dc for all c, d ∈ C. This implies by
Statement 3, C ′ ⊇ C ′′. Since C ′ = C ′′′, we have C ′′ ⊆ C ′′′. Therefore, C ′′

is a commutative algebra.

7. If A contains a unit element e, then e ∈ C ′. Furthermore for c ∈ C∩Inv(A)
we conclude from xc = cx for all x ∈ C ′, that also xc−1 = c−1x for all
x ∈ C ′ holds true. Hence, c−1 ∈ C ′′.

Proposition 1.4.3. Let X be a unital Banach algebra and C ⊆ X be such that
xy = xy for all x, y ∈ C. Then C ′′ is a commutative unital Banach algebra.
Moreover, Inv(C ′′) = Inv(X) ∩ C ′′ and σC′′(x) = σX(x).

Proof. By Facts 1.4.2, C ′′ is commutative unital Banach algebra. If x ∈
C ′′ ∩ Inv(X), then x−1 ∈ C ′′′′ = C ′′. Therefore, Inv(C ′′) = Inv(X) ∩ C ′′, and
in turn σC′′(x) = σX(x) for x ∈ C ′′.

q

Definition 1.4.4. LetA = (Ai)
n
i=1 be a n-tuple of normal commuting operators

in Lb(K) where (K, [., .]K) is a Krein space.
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(i) We call A invertible if A is invertible as an element of the commutative
unital algebra A′′ in the sense of Definition 1.3.17.

(ii) The spectrum σ(A) is defined by σA′′(A) and the resolvent set ρ(A) is
defined by ρA′′(A)

Corollary 1.4.5. If A = (Ai)
n
i=1 is a n-tuple of normal commuting operators

in Lb(K), where (K, [., .]K) is a Krein space, then the spectrum σ(A) is not
empty.

Proof. This follows directly from Corollary 1.3.20.
q

1.5 Spectral theory in Hilbert spaces

In Hilbert spaces we can find for every self-adjoint operator A a spectral measure
E, which gives us the functional calculus

f(A) =

∫
f dE,

where f is measurable and bounded on σ(A). In [1] the authors introduce a prod-
uct spectral measure for commuting spectral measure (Ei)

n
i=1 (i.e.

Ei(∆i)Ej(∆j) = Ej(∆j)Ei(∆i)). As a consequence it is possible to construct
a joint spectral measure for a tuple A = (Ai)

n
i=1 of pairwise commuting self-

adjoint operators. The following theorem from [1, Theorem 6.5.1] explains how
this joint spectral measure has to be understood.

Theorem 1.5.1. Let A = (Ai)
n
i=1 be a tuple of self-adjoint commuting opera-

tors in Lb(H) where (H, [., .]H) is a Hilbert space. Then there exists a unique
spectral measure E on the Borel sets of Rn, such that

Ai =

∫
πi dE,

where πi : Rn → R is the projection on the i-th coordinate. We will call E the
joint spectral measure of A.

Remark 1.5.2. We can and will regard every spectral measure E on the Borel
sets of Rn as a measure on the Borel sets of Cn, if we set

E(A) = E(A ∩ Rn).

For the next theorem recall the definition of the support of a spectral measure
E:

suppE := {x ∈ Cn : ε > 0⇒ E(Bε(x)) 6= 0}.

Theorem 1.5.3. Let A = (Ai)
n
i=1 be a tuple of pairwise communting self-

adjoint operators in Lb(H) where (H, [., .]H) is a Hilbert space and let E denote
the joint spectral measure of A. Then

σ(A) = suppE.
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Proof. If λ ∈ suppE, then E(Bε(λ)) 6= 0 for every ε > 0. Hence, for every
ε > 0 there exists a fε ∈ ranE(Bε(λ)) such that ‖fε‖ = 1. We obtain

‖(Ai − λi)fε‖2 =

∫
|xi − λi|2 d(E(x)fε, fε) =

∫
Bε(λ)

|xi − λi|2 d(E(x)fε, fε)

≤ ε2 ‖fε‖2

for all i ∈ [1, n]Z. Let us assume that A − λ is invertible. Then there exists a
tuple B such that B · (A− λ) = I, and in turn

‖fε‖ =

∥∥∥∥ n∑
i=1

Bi(Ai − λi)︸ ︷︷ ︸
=I

fε

∥∥∥∥ ≤ n∑
i=1

‖Bi‖ ‖(Ai − λi)fε‖ ≤ ε ‖fε‖
n∑
i=1

‖Bi‖ .

Hence,

1 ≤ ε
n∑
i=1

‖Bi‖ ,

which gives us a contradiction for ε < 1∑n
i=1‖Bi‖

. Consequently, A − λ in not

invertible and λ ∈ σ(A).
On the other hand if λ ∈ Cn \ suppE, then we can define

B :=

∫
suppE

1

‖x− λ‖22
(x− λ) dE =

(∫
suppE

1

‖x− λ‖22
(xi − λi) dE

)n
i=1

,

because 1
‖x−λ‖22

is bounded on suppE. The following calculation verifies that

λ belongs to ρ(A) = Cn \ σ(A):

(A− λ) ·B =

∫
(x− λ) dE ·

∫
1

‖x− λ‖22
(x− λ) dE

=

n∑
i=1

∫
(xi − λi) dE

∫
1

‖x− λ‖22
(xi − λi) dE

=

∫
1

‖x− λ‖22
(x− λ) · (x− λ) dE =

∫
1 dE = I.

q

Remark 1.5.4. We want to recall the polarization identity for a symmetric
sesquilinear form:

[Ax, y] =
1

4

(
[A(x+ y), x+ y]− [A(x− y), x− y]

+ i[A(x+ iy), x+ iy]− i[A(x+ iy), x+ iy]
)
.

Lemma 1.5.5. Let (Ω,S) and (Υ,A) be measurable spaces, (H, [., .]H) a Hilbert
space and E be a spectral measure on (Ω,S,H). If T : Ω → Υ is measurable
mapping, then ET (∆) := (E ◦ T−1)(∆) is a spectral measure on (Υ,A,H) and∫

∆

φdET =

∫
T−1(∆)

φ ◦ T dE
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for all bounded and measurable φ.

Proof. It is straightforward to check that ET is a spectral measure.
For arbitrary f, g ∈ H we have that (ET )f,g = (Ef,g)

T . Since Ef,f is a
non-negative measure on S, The general transformation theorem for measures
yields ∫

∆

φd(ET )f,f =

∫
∆

φd(Ef,f )T =

∫
T−1(∆)

φ ◦ T dEf,f

for all f ∈ H and for all ∆ ∈ A. By the polarization identity we also have∫
∆
φd(ET )f,g =

∫
T−1(∆)

φ ◦ T dEf,g. Hence,∫
∆

φdET =

∫
T−1(∆)

φ ◦ T dE

holds true.
q

Corollary 1.5.6. Let A = (Ai)
n
i=1 be tuple of pairwise commuting self-adjoint

operators in Lb(H), where (H, [., .]H) is a Hilbert space. Furthermore, let Ei
denote the spectral measure corresponding to Ei for fixed i ∈ [1, n]Z and let E
denote the joint spectral measure of A. Then Ei = Eπi and∫

∆

φ dEi =

∫
π−1
i (∆)

φ ◦ πi dE, (1.6)

where πi : Rn 7→ R is the projection on the i-th coordinate, ∆ is a Borel set of
R and φ is measurable function.

Proof. By Theorem 1.5.1 and Lemma 1.5.5 Eπi is a spectral measure of A.
Since the spectral measure of A is unique, Eπi coincides with Ei. Hence,∫

∆

φdEi =

∫
∆

φdEπi =

∫
π−1
i (∆)

φ ◦ πi dE.

q
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2 Diagonal Transform of Linear Relations

2.1 Linear Relations

Definition 2.1.1. Let X,Y be two vector spaces over the same scalar field.
Then we will call a subspace T of X ×Y a linear relation between X and Y . A
linear relation between X and X will be called a linear relation on X.

Remark 2.1.2. Every linear operator T : X → Y can be identified by a linear
relation by considering the graph of T . In fact, if we consider mappings from
X to Y as subsets of X × Y then T is already a linear relation. On the other
hand not every linear relation comes from an operator as {0}×Y demonstrates
the most degenerated example.

Definition 2.1.3. For a linear relation T between the vector spaces X and Y
we define

• domT := {x ∈ X : ∃ y ∈ Y such that (x; y) ∈ T} the domain of T ,

• ranT := {y ∈ Y : ∃x ∈ X such that (x; y) ∈ T} the range of T ,

• kerT := {x ∈ X : (x; 0) ∈ T} the kernel of T ,

• mulT := {y ∈ Y : (0; y) ∈ T} the multi-value-part of T .

Remark 2.1.4. Every linear relation T which satisfies mulT = {0} can be
regarded as a linear mapping T on domT , where Tx = y is well defined by
(x; y) ∈ T .

Definition 2.1.5. Let X,Y, Z vector spaces and S, T linear relations between
X and Y , and R a linear relation between Y and Z.

• S + T := {(x; y1 + y2) ∈ X × Y : (x; y1) ∈ S and (x; y2) ∈ T},

• λT := {(x;λy)} ∈ X × Y : (x; y) ∈ T},

• T−1 := {(y;x) ∈ Y ×X : (x; y) ∈ T},

• RS := {(x; z) ∈ X × Z : ∃ y ∈ Y such that (x; y) ∈ S and (y; z) ∈ R}.

It is easy to check that the sets defined in the previous definition are also
linear relations.

Definition 2.1.6. For a Banach space (X, ‖.‖) and a linear relation A on X,
we define

• ρ(A) := {λ ∈ C ∪ {∞} : (A− λ)−1 ∈ Lb(X)} as the resolvent set,

• σ(A) := (C ∪ {∞}) \ ρ(A) as the spectrum,

• σp(A) := {λ ∈ C ∪ {∞} : ker(A− λ)−1 6= {0}} as point spectrum, and

• r(A) := {λ ∈ C∪{∞} : (A−λ)−1 ∈ Lb(dom(A))} as the points of regular
type,
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where we set (T −∞)−1 := T and dom(T −∞)−1 := domT .

Definition 2.1.7. Let X be a vector space over C and M =
(
α β
γ δ

)
∈ C2×2,

then we define the mapping τM : X ×X → X ×X by

τM (x; y) :=

(
δI γI
βI αI

)
(x; y) := (δx+ γy;βx+ αy).

Facts 2.1.8. For M,N ∈ C2×2 we have τMτN = τMN and therefore, for
invertible M also τM−1 = τM

−1.

Lemma 2.1.9. Let A be a linear relation on a vector space X and M =(
α β
γ δ

)
∈ C2×2. If mulA = {0}, then

τM (A) = (αA+ βI)(γA+ δI)−1.

Proof. Let (a; b) ∈ τM (A). Then there exists a (x; y) ∈ A such that (a; b) =
(δx+ γy;βx+αy). By Definition of the addition and multiplication by a scalar
for linear relations we have (x;αy+βx) ∈ (αA+βI), (x; γy+δx) ∈ (γA+I) and
therefore (γy+δx;x) ∈ (γA+I)−1. Consequently (a; b) ∈ (αA+βI)(γA+δI)−1.

On the other hand let (a; b) ∈ (αA + βI)(γA + δI)−1. Then there exists a
x ∈ domA such that (a;x) ∈ (γA+δI)−1 and (x; b) ∈ (αA+βI). Since mulA =
{0}, there exists a unique y ∈ X such that (x; y) ∈ A. Hence, a = γy + δx and
b = αy + βx and consequently (a; b) ∈ τM (A).

q

Remark 2.1.10. For M =
(
α β
γ δ

)
∈ C2×2 with detM 6= 0 we have the Möbius

transformation

φM (z) =
αz + β

γz + δ
= (αz + β)(γz + δ)−1.

By Lemma 2.1.9, we can see that φM (A) := (αA + β)(γA + δ)−1 = τM (A) for
any linear relation A with mulA = {0}.

2.2 Linear Relations on Krein spaces

Definition 2.2.1. Let (K1, [., .]K1
) and (K2, [., .]K2

) be a Krein spaces and A a
linear relation between them. Then the adjoint linear relation is defined by

A+ := {(x; y) ∈ K2 ×K1 : [x, v]K2
= [y, u]K1

for all (u; v) ∈ A}. (2.1)

Remark 2.2.2. If A ∈ Lb(K1,K2) then the Krein space adjoint A+ from
Lemma 1.2.1 coincides with the adjoint linear relation of A. This justifies the
same notation.
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For the following Lemma we will extend the mapping τM for M =
(

0 −1
1 0

)
to K1 ×K2 ∪ K2 ×K1 by

τM (x; y) = (y;−x) for all (x, y) ∈ K1 ×K2 ∪ K2 ×K1.

Lemma 2.2.3. Let (K1, [., .]K1
),(K2, [., .]K2

) be Krein spaces, A ≤ K1 × K2 a
linear relation between them and M =

(
0 −1
1 0

)
. Then we can write the adjoint

of A by

A+ = τM (A[⊥]K1×K2 ) = τM (A)[⊥]K2×K1 ,

where [⊥]K1×K2
will denote orthogonal complement in (K1×K2, [., .]K1×K2

) and
[⊥]K2×K1 the orthogonal complement in (K2×K1, [., .]K2×K1). Furthermore, A+

is closed.

Proof. Let (x; y) ∈ K2 × K1, (u; v) ∈ K1 × K2. Then we have the following
equivalences.

[x, v]K1
= [y, u]K2

⇔ [y, u]K1
− [x, v]K2

= 0 ⇔ [(y;−x), (u; v)]K1×K2
= 0

⇔ [τM (x; y), (u; v)]K1×K2
= 0 ⇔ τM (x; y)[⊥]K1×K2

(u; v).

On the other hand we have the equivalences

[x, v]K1
= [y, u]K2

⇔ [x, v]K2
+ [y,−u]K1

= 0 ⇔ [(x; y), τM (u; v)]K2×K1
= 0

⇔ [(x; y), τM (u; v)]K2×K1
= 0 ⇔ (x; y)[⊥]K2×K1

τM (u; v).

Hence, we conclude that the following sets coincides.

A+ = {(x; y) ∈ K2 ×K1 : [x, v]K2
= [y, u]K1

for all (u; v) ∈ A}
= {(x; y) ∈ K2 ×K1 : τM (x; y)[⊥]K1×K2

(u; v) for all (u; v) ∈ A}
= {(x; y) ∈ K2 ×K1 : (x; y)[⊥]K2×K1

τM (u; v); for all (u; v) ∈ A}.

As a linear subspace of K2 × K1 the set A[⊥]K1×K2 is a linear relation between
K2 and K1. Since τ−1

M (B) = τM (B) holds true for every linear relation B, we
conclude

A+ = τM (A[⊥]K1×K2 ) = τM (A)[⊥]K2×K1 .

The closedness of A+ follows immediately.
q

Lemma 2.2.4. Let (K1, [., .]K1
), (K2, [., .]K2

) and (K3, [., .]K3
) Krein spaces and

A ≤ K1 ×K2 a linear relation between K1 and K2. Then

(i) mulA+ = (domA)⊥, kerA+ = (ranA)⊥,

(ii) (BA)+ ⊇ A+B+ for all linear relations B ≤ K2 ×K3,

(iii) (BA)+ = A+B+ for all operators B ∈ Lb(K2,K3),

(iv) A++ = A

Proof.
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(i) By the definition of A+ (2.1), we have

mulA+ = {y ∈ K1 : [0, v]K2
= [y, u]K1

for all (u; v) ∈ A} = (domA)⊥,

kerA+ = {x ∈ K1 : [x, v]K2
= [0, u]K1

for all (u; v) ∈ A} = (ranA)⊥.

(ii) If (x; y) ∈ A+B+, then there exist a z ∈ K2 such that (x; z) ∈ B+ and
(z; y) ∈ A+. Moreover,

[x,w]K3
= [z, v]K2

for all (v;w) ∈ B,
[z, v]K2

= [y, u]K1
for all (u; v) ∈ A.

Hence, [x,w]K3 = [y, u]K1 for all (u;w) ∈ BA and consequently (x; y) ∈
(BA)+.

(iii) Since B is an everywhere defined operator, we can write BA = {(u;Bv) :
(u; v) ∈ A}. Therefore,

(BA)+ = {(x; y) ∈ K3 ×K1 : [x,Bv]K3
= [y, u]K1

for all (u; v) ∈ A}.

If (x; y) ∈ (BA)+, then

[(x;Bv)]K3
= [B+x, v]K2

= [y, u]K1
for all (u; v) ∈ A,

and in turn (B+x; y) ∈ A+. Clearly, we also have (x;B+x) ∈ B+. Hence
(x; y) ∈ A+B+.

(iv) By Lemma 2.2.3 and Lemma 1.1.11 we have

A++ = τM (τM (A)[⊥]K2×K1 )[⊥]K1×K2 = τM (τM (A))[⊥]K1×K2
[⊥]K1×K2

= A[⊥]K1×K2
[⊥]K1×K2 = A.

q

Definition 2.2.5. Let (K, [., .]K) be a Krein space and A a linear relation on
K. We call A symmetric, if A ⊆ A+ and self-adjoint, if A = A+.

2.3 Diagonal Transform

Definition 2.3.1. Let T : X → Y be a linear operator between the vector
spaces X and Y . We define the mapping

T × T :

{
X ×X → Y × Y,

(a; b) 7→ (Ta;Tb).

Facts 2.3.2. Let T : X → Y be a linear operator between the vector spaces X
and Y , A a linear relation on Y , and B a linear relation on X. Then

(i) T × T is a linear mapping.

(ii) (T × T )(B) = {(Tu;Tv) : (u; v) ∈ B} is a linear relation.
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(iii) (T × T )−1(A) = {(u; v) : (Tu;Tv) ∈ A} is a linear relation. If T is
additionally continuous and A is closed, then (T ×T )−1(A) is also closed.

Lemma 2.3.3. Let T : X → Y a linear operator, B be a linear relation on X
and A be a linear relation on Y . Then

(T × T )(B) = TBT−1 and (T × T )−1(A) = T−1AT.

Proof. If (a; b) ∈ (T × T )(B), then there exists a pair (x; y) ∈ B such that
(a; b) = (Tx;Ty). Since (Tx;x) ∈ T−1 and (y;Ty) ∈ T we have

(Tx;x)︸ ︷︷ ︸
∈T−1

, (x; y)︸ ︷︷ ︸
∈B

, (y;Ty)︸ ︷︷ ︸
∈T

.

By the definition of the multiplication of linear relations we conclude that
(a; b) = (Tx;Ty) ∈ TBT−1.

On the other hand if (a; b) ∈ TBT−1, then there are x, y ∈ X such that
(a;x) ∈ T−1, (x; y) ∈ B and (y; b) ∈ T . Since T is an operator we have that
a = Tx and b = Ty and consequently (a; b) = (Tx;Ty) for (x; y) ∈ B which is
the condition for (a; b) ∈ (T × T )(B).

Let (x; y) ∈ (T × T )−1(A) then (Tx;Ty) ∈ A and clearly (x;Tx) ∈ T and
(Ty; y) ∈ T−1 which gives us

(x;Tx)︸ ︷︷ ︸
∈T

, (Tx;Ty)︸ ︷︷ ︸
∈A

, (Ty; y)︸ ︷︷ ︸
∈T−1

.

By the definition of the multiplication of linear relations we conclude that
(x; y) ∈ T−1AT .

If (x; y) ∈ T−1AT , then there are a, b ∈ Y such that (x; a) ∈ T , (a; b) ∈ A
and (b; y) ∈ T−1. Since T is an operator we have a = Tx and b = Ty. Hence
(Tx;Ty) = (a; b) ∈ A which is the condition for (x, y) ∈ (T × T )−1(A).

q

Lemma 2.3.4. Let T : X → Y be a linear operator between the vector spaces
X and Y , A a linear relation on Y , and B a linear relation on X. Then the
following statements are equivalent

(i) (T × T )(B) ⊆ A.

(ii) B ⊆ (T × T )−1(A).

(iii) TB ⊆ AT .

If A and B are even everywhere defined operators, then all those statements are
equivalent to TB = AT .

Proof. The statements (i) and (ii) are clearly equivalent. Let us assume (ii):
B ⊆ (T × T )−1(A) = T−1AT . Because of TT−1 ⊆ I this yields

TB ⊆ TT−1AT ⊆ AT.
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Conversely, TB ⊆ AT implies B ⊆ T−1TB ⊆ T−1AT .
Let us assume statement (iii) for the following. If A and B are everywhere

defined operators, then domTB = domAT . Therefore, if (x; y) ∈ AT , then
there exists a z ∈ Y such that (x; z) ∈ TB. Since mulAT = {0}, we have that y
and z must be equal. Hence, (x; y) is also an element of TB and in consequence
AT = TB.

q

Lemma 2.3.5. Let T : X → Y be a linear operator between to vector spaces
X and Y , B a linear relation on X and A a linear relation on Y . For every
M ∈ C2×2 we have

τM
(
(T × T )(B)

)
= (T × T )(τM (B)).

If M is additionally invertible, then we have

τM
(
(T × T )−1(A)

)
= (T × T )−1(τM (A)).

Proof. Let M =
(
α β
γ δ

)
. Due to

τM
(
(T × T )(B)

)
= {(δTx+ γTy;βTx+ αTy) : (x; y) ∈ B}
= {(T (δx+ γy);T (βx+ αy)) : (x; y) ∈ B}
= (T × T )(τM (B)),

we obtain the first equality.
If (x; y) ∈ τM

(
(T × T )−1(A)

)
, then there exists a (a; b) ∈ X ×X such that

(Ta;Tb) ∈ A and (x; y) = (δa+ γb;βa+ αb). This leads to

(Tx, Ty) = (δTa+ γTb;βTa+ αTb) = τM ((Ta;Tb)) ∈ τM (A),

and furthermore to (x; y) ∈ (T × T )−1(τM (A)). Hence,

τM
(
(T × T )−1(A)

)
⊆ (T × T )−1(τM (A)). (2.2)

If M is invertible, we can substitute A with τM (A) and τM with τM−1 in (2.2).
Therefore,

τM−1

(
(T × T )−1(τM (A))

)
⊆ (T × T )−1(τM−1(τM (A))).

Applying τM on both sides yields

(T × T )−1(τM (A)) ⊆ τM
(
(T × T )−1(A)

)
. (2.3)

The combination of (2.2) and (2.3) completes the proof.
q

Lemma 2.3.6. Let T : X → Y be a linear operator between the vector spaces
X and Y , A1 and A2 linear relations on Y , and λ ∈ C \ {0}. Then we have

(T × T )−1(λA1) = λ(T × T )−1(A1),

(T × T )−1(A1 +A2) ⊇ (T × T )−1(A1) + (T × T )−1(A2),

(T × T )−1(A1A2) ⊇ (T × T )−1(A1)(T × T )−1(A2).
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Proof. Set M = ( λ 0
0 1 ), then Lemma 2.3.5 yields the first equation.

If (x; y) ∈ (T × T )−1(A1) + (T × T )−1(A2), then there exist u, v ∈ X such
that (Tx;Tu) ∈ A1, (Tx;Tv) ∈ A2 and u + v = y. Hence, Tu + Tv = Ty and
in turn (Tx, Ty) ∈ A1 +A2 which yields (x; y) ∈ (T × T )−1(A1 +A2).

Since TT−1 ⊆ I, we have

(T × T )−1(A1)(T × T )−1(A2) = T−1A1TT
−1A2T

⊆ T−1A1A2T = (T × T )−1(A1A2).

q

Lemma 2.3.7. Let (H, [., .]H) and (K, [., .]K) be Krein spaces. Then for a linear
relation A on K and a linear mapping T : H → K we have

ker
(
(T × T )−1(A)− λ

)
= T−1 ker(T − λ) for all λ ∈ C ∪ {∞}.

In particular, σp
(
(T × T )−1(A)

)
⊆ σp(A), if T is additionally injective.

Proof. First note that

y ∈ mul
(
(T × T )−1(A)

)
⇔ (0;Ty) ∈ A⇔ y ∈ T−1(mulA).

By definition, we have ker
(
(T × T )−1(A)− λ

)
= T−1 ker(T − λ) for λ =∞. It

is straightforward that every linear relation B satisfies kerB = mulB−1. For
λ ∈ C we set M = ( 0 1

1 λ ). Since τM (B) = (B − λ)−1, we conclude

ker(B − λ) = mul(B − λ)−1 = mul τM (B).

Hence,

ker
(
(T × T )−1(A)− λ

)
= mul τM

(
(T × T )−1(A)

)
= mul(T × T )−1(τM (A))

= T−1 mul τM (A) = T−1 ker(T − λ).

If T is injective, then T−1 ker(A − λ) 6= {0} implies ker(A − λ) 6= {0}.
Therefore, σp

(
(T × T )−1(A)

)
⊆ σp(A).

q

Lemma 2.3.8. Let R : K1 → K2 be a bounded linear mapping between the
Krein spaces (K1, [., .]K1

), (K2, [., .]K2
) and L ⊆ K2. Then we have

R+(L)[⊥]K1 = R−1(L[⊥]K2 ).

Proof. The varifaction of the stated equality follows from

R+(L)[⊥]K1 = {x ∈ K1 : [x,R+l] = 0 for all l ∈ L}
= {x ∈ K1 : [Rx, l] = 0 for all l ∈ L}
= {x ∈ K1 : Rx ∈ L[⊥]K2 }
= R−1(L[⊥]K2 ).

q
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Lemma 2.3.9. Let (H, [., .]H), (K, [., .]K) be Krein spaces and T : H → K be a
bounded linear mapping. For a linear relation A on K we have(

(T+ × T+)(A)
)+

= (T × T )−1(A+)

In particular
(
(T × T )−1(A+)

)+
is the closure of (T+ × T+)(A).

Proof. We regard T × T as a mapping from H × H to K × K where K × K
is equipped with [(x; y), (w; z)]K×K := [x,w]K + [y, z]K and H ×H is equipped
with the respective inner product. Hence, we can use Lemma 2.3.8 to obtain(

(T+ × T+)(A)
)[⊥]

= (T × T )−1(A[⊥]), (2.4)

where [⊥] denotes the orthogonal complement in K×K as well as in H×H. By
Lemma 2.2.3 we have(
(T+ × T+)(A)

)+
= τ( 0 −1

1 0

)(((T+ × T+)(A)
)[⊥]

)
(2.4)
= τ( 0 −1

1 0

)((T × T )−1(A[⊥])
)

= (T × T )−1

(
τ( 0 −1

1 0

)(A[⊥])

)
= (T × T )−1(A+).

By applying the adjoint + to both sides we obtain

(T+ × T+)(A) =
(
(T × T )−1(A+)

)+
.

q

Proposition 2.3.10. Let (H, [., .]H) , (K, [., .]K) be a Krein spaces and T :
H → K be a bounded linear mapping between these spaces. If A is a closed
linear relation on K, which satisfies

(TT+ × TT+)(A+) ⊆ A,

then the closure (T×T )−1(A)+ of (T+×T+)(A+) is a symmetric linear relation
on H.

In the special case that T is injective, that (H, [., .]H) is a Hilbert space
and that C \ σp(A) contains points from C+ and from C−, the linear relation
(T × T )−1(A) is self-adjoint.

Proof. The assumption (T × T )(T+ × T+)(A+) = (TT+ × TT+)(A+) ⊆ A
implies (T+ × T+)(A+) ⊆ (T × T )−1(A). By Lemma 2.3.9, (T × T )−1(A)+ is
the closure of (T+ × T+)(A+). Since (T × T )−1(A) is closed, we have

(T × T )−1(A)+ = (T+ × T+)(A+) ⊆ (T × T )−1(A) = (T × T )−1(A)++.

Hence, (T × T )−1(A)+ is symmetric.
If (H, [., .]H) is a Hilbert space, then (T ×T )−1(A)+ not being a self-adjoint

relation on H implies, that its defect indices are not both equal to zero. This
means

ran
(
(T × T )−1(A)+ − λ

)⊥
= ker

(
(T × T )−1(A)− λ

)
6= {0}
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for all λ ∈ C+ or for all λ ∈ C−. Hence the point spectrum of (T × T )−1(A)
contains all points from the upper half-plane or all points from the lower half-
plane. Due to Lemma 2.3.7 we have σp

(
(T × T )−1(A)

)
⊆ σp(A) which leads to

a contradiction to the assumption concerning C \ σp(A).
q

The following Lemma is a consequence of Loewner’s Theorem 2.2.6. How-
ever, in order to be more self-contained we will present a proof which uses the
spectral calculus for self-adjoint operators on Hilbert spaces.

Lemma 2.3.11. Let (H, [., .]H)be a Hilbert space and let A,C ∈ Lb(H) such
that C and AC are self-adjoint and such that C is positive. Then we have
|[ACx, x]H| ≤ ‖A‖ [Cx, x]H for all x ∈ H.

Proof. Since C is a positive operator we have σ(C) ⊆ [0,+∞). Consequently,
C + ε is boundedly invertible for ε > 0. The functional calculus for the self-

adjoint operator C yields that C(C + ε)−1 has norm supt∈σ(C)
t
t+ε =

‖C‖
‖C‖+ε .

Since for the spectral radius we have spr(FG) = spr(GF ) for all bounded
operators F,G, we conclude

spr((C + ε)−
1
2AC(C + ε)−

1
2 ) = spr(AC(C + ε)−1) ≤ ‖A‖

‖C‖
‖C‖ + ε

≤ ‖A‖ .

For self-adjoint operators spectral radius and norm coincide. Hence, due to the
Cauchy-Schwarz inequality,

|[ACx, x]H| =
∣∣[(C + ε)−

1
2AC(C + ε)−

1
2 (C + ε)

1
2x, (C + ε)

1
2x
]
H

∣∣
≤
∥∥(C + ε)−

1
2AC(C + ε)−

1
2

∥∥∥∥(C + ε)
1
2x
∥∥

≤ ‖A‖ [(C + ε)x, x]H
ε↘0−→ ‖A‖ [Cx, x]H.

q

Lemma 2.3.12. Let (H, [., .]H) be a Hilbert space, c ∈ [0,+∞) and let B be a
self-adjoint linear relation on H such that mulB = {0}. If |[y, x]H| ≤ c[x, x]H
for all (x; y) ∈ B, then B is a bounded linear operator on H such that ‖B‖ ≤ c.

Proof. By Remark 2.1.4, we regardB as a linear operator on domB. By Lemma
2.2.4, domB is dense in H and B = B∗ is closed, because B is self-adjoint and
mulB = {0}. Therefore, we can apply the spectral theorem for unbounded
self-adjoint operators on Hilbert spaces to obtain a spectral measure E on the
Borel sets of R; see [9, Theorem 13.30].

In the following we will use the following well-known result: An element
x ∈ H belongs to the domain of

∫
R φ dE if and only if

∫
R |φ|

2 dEx,x < +∞; see
[9, Lemma 13.23, Theorem 13.24].

For every n ∈ N consider the interval ∆n := [c + 1
n , c + n] in R. For x ∈

ranE(∆n), we have∫
R
|t|2 dEx,x(t) =

∫
∆n

|t|2 dEx,x(t) ≤ (c+ n)2 ‖x‖2 < +∞,
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which yields x ∈ domB. By our assumptions we have

c[x, x]H ≥ |[Bx, x]H| =
∣∣∣ ∫

∆n

tdEx,x(t)
∣∣∣ ≥ (c+

1

n

)
[E(∆nx, x)]H

=
(
c+

1

n

)
[x, x]H.

Consequently x can only be 0 and therefore E(∆n) = 0 for all n ∈ N. By
the σ-additivity we have that E

(
(c,+∞)

)
= E

(⋃
n∈N ∆n

)
= 0. Analogues,

we can show E
(
(−∞,−c)

)
= 0, which yields suppE ⊆ [−c, c]. We can write

B =
∫

[−c,c] tdE(t) which implies that B is a bounded linear operator on H with

‖B‖ ≤ supt∈[−c,c] |t| = c.
q

Theorem 2.3.13. Let (H, [., .]H) be a Hilbert space, (K, [., .]K) be a Krein space,
T : H → K be a bounded linear and injective mapping, and A ∈ Lb(K) such that
(TT+×TT+)(A+) ⊆ A. Then (T×T )−1(A) is a bounded linear and self-adjoint
operator on H with ∥∥(T × T )−1(A)

∥∥ ≤ ‖A‖ . (2.5)

On the right-hand-side ‖.‖ denotes the operator norm with respect to any fun-
damental symmetry J .

Proof. Since A is a bounded operator we have that σ(A) ⊆ B‖A‖ . In particular

C \ σp(A) contains points from C+ and C−. Therefore by Proposition 2.3.10
(T × T )−1(A) is self-adjoint and coincides with the closure of (T+ × T+)(A+).
By the injectivity of T , we have that mul(T × T )−1(A) = mulT−1AT = {0}.
Hence, (T × T )−1(A) is a self-adjoint operator on its domain.

Due to Lemma 2.3.4, we have TT+A+ = ATT+. Let J be any fundamental
symmetry and let A∗, T ∗ denote the Hilbert space adjoint of A, T , when we
endow K with (., .)J . Then T+ = T ∗J and A+ = JA∗J . Since JJ = I, we have

TT ∗A∗ = TT ∗JJA∗JJ = TT+A+J = ATT+J = ATT ∗.

Consequently (ATT ∗)∗ = TT ∗A∗ = ATT ∗ is self-adjoint on the Hilbert space
(K, (., .)J). For (x; y) ∈ (T+ × T+)(A+) ⊆ (T × T )−1(A) we have (Tx;Ty) ∈ A
and x = T+u for some u ∈ domA+. Hence,

|[y, x]H| = |[y, T+u]H| = |[Ty, u]K| = |[ATT+u, u]K| = |(ATT ∗Ju, Ju)J |.

Lemma 2.3.11 yields

|[y, x]H| ≤ ‖A‖ (TT ∗Ju, Ju)J = ‖A‖ [TT+u, u]K = ‖A‖ [x, x]H.

Since (T+×T+)(A+) is dense in (T ×T )−1(A) we have [y, x]H ≤ ‖A‖ [x, x]H for
all (x; y) ∈ (T × T )−1(A). By Lemma 2.3.12, (T × T )−1(A) is a linear operator
on H bounded by ‖A‖.

q

Lemma 2.3.14. Let T : H → K a bounded linear mapping. Then (TT+)
′

and
(T+T )

′
are closed ∗-subalgebras.
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Proof. For A,B ∈ (TT+)
′

and λ ∈ C we have

TT+(A+ λB) = TT+A+ TT+λB = ATT+ + λBTT+ = (A+ λB)TT+,

TT+AB = ATT+B = ABTT+,

TT+A+ = (ATT+)+ = (TT+A)+ = A+TT+.

Consequently, (TT+)
′

is ∗-subalgebra. If (An)n∈N is a sequence in (TT+)
′

that
converges to A ∈ Lb(K), then we have

TT+A = lim
n∈N

TT+An = lim
n∈N

AnTT
+ = ATT+.

Hence, (TT+)
′

is closed. Analogously, we can show that (T+T )
′

is also a closed
∗-subalgebra.

q

Theorem 2.3.15. Let (K, [., .]K) be a Krein space, (H, [., .]H) be a Hilbert space
and T : H → K be a bounded and injective linear mapping. Then

Θ :

{
(TT+)

′ → (T+T )
′
,

C 7→ (T × T )−1(C),

constitues a bounded ∗-homomorphism. Hereby, Θ(I) = I, Θ(TT+) = T+T ,
and

ker Θ = {C ∈ (TT+)
′

: ranC ⊆ kerT+}.

Moreover, (T+ × T+)(C) is densely contained in Θ(C) for all C ∈ (TT+)
′

and
we have T+C = Θ(C)T+.

Proof. Let C ∈ (TT+)
′

be a self-adjoint operator. Then we have by Lemma
2.3.4 that (TT+ × TT+)(C) ⊆ C and consequently

(TT+ × TT+)(C+) = (TT+ × TT+)(C) ⊆ C.

Theorem 2.3.13 implies that Θ(C) = (T × T )−1(C) is a bounded linear and
self-adjoint mapping on H containing (T+ × T+)(C) densely. Due to

(T+T × T+T )((T × T )−1(C)) ⊆ (T+ × T+)(C) ⊆ (T × T )−1(C)

and Lemma 2.3.4 we have (T × T )−1(C) ∈ (T+T )
′
.

Clearly Θ(I) = (T×T )−1(I) = T−1IT = I and Θ(TT+) = (T×T )−1(TT+) =
T−1TT+T = T+T .

Let C ∈ (TT+)
′

be arbitrary. Since (TT+)
′

a ∗-algebra, we also have C+ ∈
(TT+)

′
. We set

ReC =
C + C+

2
, ImC =

C − C+

2i
.

Both are self-adjoint operators in (TT+)
′

and we have C = ReC + i ImC,
C+ = ReC − i ImC. By Lemma 2.3.6

(T × T )−1(ReC + i ImC) ⊇ (T × T )−1(ReC) + i(T × T )−1(ImC),

(T × T )−1(ReC − i ImC) ⊇ (T × T )−1(ReC)− i(T × T )−1(ImC).
(2.6)
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Since T is injective, the multi-value-part is {0} on both sides of the inclusion.
Moreover, by the already proven the right-hand-sides are everywhere defined
operators. This yields that both sides must coincide and (T×T )−1(C) ∈ (T+T )

′
.

Furthermore we obtain from (2.6) that (T×T )−1(C+) = (T×T )−1(C)∗. Hence,
the mapping Θ is well-defined and satisfies Θ(C+) = Θ(C)∗.

Again by employing Lemma 2.3.6 and using that the right-hand-side of the
inclusion is a everywhere defined operator, we obtain that Θ is linear and mulit-
plicative.

Let J be a fundamental symmetry of (K, [., .]K). By

‖Θ(C)‖2 = sup
x∈H,‖x‖=1

[Θ(C)x,Θ(C)x]H = sup
x∈H,‖x‖=1

[Θ(C+C)x, x]H

≤
∥∥Θ(C+C)

∥∥ (2.5)

≤
∥∥C+C

∥∥ = ‖JC∗JC‖ ≤ ‖J‖2 ‖C‖2 ≤ ‖C‖2 ,

we conclude that Θ is bounded. Lemma 2.3.9 yields(
(T+ × T+)(C)

)∗
= (T × T )−1(C+) =

(
(T × T )−1(C)

)∗
.

This shows that (T+ × T+)(C) is densely contained in (T × T )−1(C). In par-
ticular, (T × T )−1(C) = Θ(C) = 0 is equivalent to the fact that (a; b) ∈
(T+ × T+)(C) always implies b = 0. Therefore, T+y = 0 for all (x; y) ∈ C,
which means ranC ⊆ kerT+.

From (T+u;T+Cu) ∈ (T+ × T+)(C) ⊆ Θ(C) and (T+u,Θ(C)T+u) ∈ Θ(C)
we conlcude that T+Cu = Θ(C)T+u for every u ∈ K.

q

Lemma 2.3.16. Let T : H → K be a bounded and injective linear mapping
from the Hilbert space (H, [., .]H) into the Krein space (K, [., .]K). Then

Ξ :

{
Lb(H) → Lb(K),

D 7→ TDT+,

is bounded linear and injective. Moreover, Ξ maps (T+T )
′ ⊆ Lb(H) into

(TT+)
′ ⊆ Lb(K) and satisfies for C ∈ (TT+)

′
and D,D1, D2 ∈ (T+T )

′

Ξ(D∗) = Ξ(D)+, Ξ(DΘ(C)) = Ξ(D)C, Ξ(Θ(C)D) = CΞ(D),

Ξ(D1D2T
+T ) = Ξ(D1)Ξ(D2), Ξ ◦Θ(C) = TT+C = CTT+.

Moreover, Ξ(D) commutes with all operators from (TT+)
′

if D commutes with
all operators from (T+T )

′
, i.e. Ξ((T+T )

′′
) ⊆ (TT+)

′′
.

Proof. The mapping Ξ(D) = TDT+ is clearly linear and bounded by ‖T‖ ‖T+‖.
Since T is injective and ranT+ is dense in H, we obtain the injectivity of Ξ. It
is easy to see that Ξ(D)+ = Ξ(D∗). Let C ∈ (TT+)

′
and D ∈ (T+T )

′
. Then

we have

Ξ(D)TT+ = TDT+TT+ = TT+TDT+ = TT+Ξ(D),

and in consequence Ξ(D) ∈ (TT+)
′
. For C ∈ (TT+)

′
, D ∈ (T+T )

′
, due to

T+C = Θ(C)T+ we have Ξ(DΘ(C)) = TDΘ(C)T+ = TDT+C = Ξ(D)C.
Applying this to C+, D∗ and taking adjoints yields Ξ(Θ(C)D) = CΞ(D).
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For D1, D2 ∈ (T+T )
′

we have

Ξ(D1D2T
+T ) = TD1D2T

+T+T = TD1T
+TD2T

+ = Ξ(D1)Ξ(D2).

Due to T+C = Θ(C)T+ we conclude Ξ◦Θ(C) = TΘ(C)T+ = TT+C = CTT+.
Finally assume that D commutes with all operators from (T+T )

′
. Since

Θ(C) ∈ (T+T )
′

for C ∈ (TT+)
′
, we have

Ξ(D)C = Ξ(DΘ(C)) = Ξ(Θ(C)D) = CΞ(D).

q



3 JOINT SPECTRAL THEOREM 36

3 Joint Spectral Theorem

3.1 Multiple embeddings

Assumptions 3.1.1. In the present section we fix a Krein space (K, [., .]K),
a Hilbert space (H, [., .]H) and a number n ∈ N. For every i ∈ [1, n]Z let
(Hi, [., .]Hi) be a further Hilbert space. Moreover we assume that bounded
linear and injective mappings T : H → K and Ti : Hi → K for every i ∈ [1, n]Z
are given such that

TT+ =

n∑
i=1

TiT
+
i . (3.1)

Lemma 3.1.2. For every i ∈ [1, n]Z there exists a injective contraction Ri :
Hi → H such that Ti = TRi and

n∑
i=1

RiR
∗
i = I.

If (TiT
+
i )ni=1 is a tuple of pairwise commuting operators, then for fixed i ∈ [1, n]Z

the operator RiR
∗
i commutes with T+T and R∗iRi commutes with T+

i Ti.

Proof. For x ∈ K we have

∥∥T+x
∥∥2

H = [T+x, T+x]H = [TT+x, x]K
(3.1)
=

n∑
i=1

[TiT
+
i x, x]Ki

=

n∑
i=1

[T+
i x, T

+
i x]Hi =

n∑
i=1

∥∥T+
i x
∥∥2

Hi
≥
∥∥T+

k x
∥∥2

Hk

(3.2)

for every k ∈ [1, n]Z. This inequality guarantees that

Bk :

{
ranT+ → ranT+

k ,
T+x 7→ T+

k x

is a well-defined, linear and contractive mapping. Due to our assumptions T is
injective and therefore {0} = kerT = (ranT+)⊥. This leads to ranT+ being
dense inH the same counts for every Tk and the corresponding Hilbert spaceHk.
This justifies that we can uniquely extend Bk by continuity to Bk : H → Hk.
Clearly Bk is still a linear contractive map which has a dense range.

We define the desired mapping Ri : Hi → H by the adjoint of Bi i.e.
Ri = B

∗
i . Since kerRi = (ranR∗i )

⊥ = {0} and ‖Ri‖ = ‖R∗i ‖ we conclude that
Ri is injective and contractive. By definition we have R∗i T

+ = BiT
+ = T+

i ,
which leads to TRi = Ti.

The equation

T (I)T+ = TT+ (3.1)
=

n∑
i=1

TRi︸︷︷︸
=Ti

=T+
i︷ ︸︸ ︷

R∗i T
+ = T

( n∑
i=1

RiR
∗
i

)
T+
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H1

H2
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Hn−1
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Figure 1: Setting of Lemma 3.1.2

together with the injectivity of T and the density of ranT+ yields I =
∑n
i=1RiR

∗
i .

If (TiT
+
i )ni=1 is a commuting tuple, then by (3.1) every TiT

+
i commutes with

TT+. From

T (T+ TRi︸︷︷︸
=Ti

=T+
i︷ ︸︸ ︷

R∗i )T
+ = TT+TiT

+
i = TiT

+
i TT

+ = T (Ri︸ ︷︷ ︸
=Ti

=T+
i︷ ︸︸ ︷

R∗i T
+ T )T+.

and from T ′s injectivity and the density of ranT+ we conclude that RiR
∗
i and

T+T commute for every i ∈ [1, n]Z. Finally, we have

T+
i TiR

∗
iRi = R∗i (T

+︸ ︷︷ ︸
=T+

i

=Ti︷︸︸︷
TRiR

∗
i )Ri = R∗i (RiR

∗
i T

+︸ ︷︷ ︸
=T+

i

=Ti︷ ︸︸ ︷
T )Ri = R∗iRiT

+
i Ti.

q

We want to recall the ∗-algebra homomorphisms from Theorem 2.3.15 cor-
responding to a injective mapping T . We will define such a ∗-algebra homomor-
phisms for each Ti and Ri for i ∈ [1, n]Z.

Definition 3.1.3. Let T , Ti for i ∈ [1, n]Z be the mappings from Assumptions
3.1.1 and Ri the mappings from Lemma 3.1.2. Then we define Θ : (TT+)

′ →
(T+T )

′
and Θi : (TiT

+
i )
′ → (T+

i Ti)
′

by

Θ(C) = (T × T )−1(C) = T−1CT and Θi(C) = (Ti × Ti)−1(C) = T−1
i CT.

and Γi : (RiR
∗
i )
′ → (R∗iRi)

′
by

Γi(D) = (Ri ×Ri)−1(D) = R−1
i DRi
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for each i ∈ [1, n]Z.

Proposition 3.1.4. With Assumptions 3.1.1 and Definition 3.1.3, we have⋂n
i=1 (TiT

+
i )
′ ⊆ (TT+)

′
and Θ

(⋂n
i=1 (TiT

+
i )
′) ⊆ ⋂ni=1 (RiR

∗
i )
′ ∩ (T+T )

′
, where

Θ(C)RiR
∗
i = RiΘi(C)R∗i = RiR

∗
iΘ(C)

and

Θi(C) = Γi ◦Θ(C) for all C ∈
n⋂
i=1

(TiT
+
i )
′

(3.3)

Proof. From (3.1) we easily conclude
⋂n
i=1 (TiT

+
i )
′ ⊆ (TT+)

′
. According to

Theorem 2.3.15 we have Θ(C)T+ = T+C and Θi(C)T+
i = T+

i C for i ∈ [1, n]Z.
This leads to

T (RiΘi(C)R∗i )T
+ = TiΘi(C)T+

i = TiT
+
i C = TRiR

∗
i T

+C = T (RiR
∗
iΘ(C))T+.

From the injectivity of T and the density of ranT+ we obtain RiΘi(C)R∗i =
RiR

∗
iΘ(C). Applying this equation to C+ and taking adjoints yields

RiΘi(C
+)∗R∗i =

(
RiΘi(C

+)R∗i
)+

=
(
RiR

∗
iΘ(C+)

)+
= Θ(C+)∗RiR

∗
i .

Since Θ and Θi are ∗-homomorphisms we obtain RiΘi(C)R∗i = Θ(C)RiR
∗
i .

Combining these two equations yields Θ(C) ∈ (RiR
∗
i )
′
. This justifies the appli-

cation of Γi to Θ(C).

Γi ◦Θ(C) = R−1
i T−1CTRi = T−1

i CTi = Θi(C),

where R−1
i T−1 = (TRi)

−1 has to be understood in the sense of linear relations.
q

Corollary 3.1.5. Let us use Assumptions 3.1.1 and Definition 3.1.3, and
let N = (Nk)mk=1 be tuple of pairwise commuting, self-adjoint Operators in⋂n
i=1 (TiT

+
i )
′
.

Then Θ(N), Θi(N) are also tuples of pairwise commuting, self-adjoint Op-
erators in the Hilbert spaces (H, [., .]H), (Hi, [., .]Hi), repectively for i ∈ [1, n]Z.

If E (Ei) denotes the joint spectral measure for Θ(N) (Θi(N)), then E(∆) ∈⋂n
i=1 (RiR

∗
i )
′ ∩ (T+T )

′
and

Γ(E(∆)) = Ei(∆) ∈ (R∗iRi)
′ ∩ (T+

i Ti)
′

for all Borel subsets ∆ of Rm. Moreover
∫
hdE ∈

⋂n
i=1 (RiR

∗
i )
′ ∩ (T+T )

′
and

Γi

(∫
hdE

)
=

∫
hdEi ∈ (R∗iRi)

′ ∩ (T+
i Ti)

′
(3.4)

for any bounded and measurable h : σ(Θ(N))→ C.
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Proof. Since Θ and Θi are ∗-homomorphisms, the images of commuting opera-
tors commute as well. From Proposition 3.1.4 we obtain Θ(Nk) ∈

⋂n
i=1 (RiR

∗
i )
′∩

(T+T )
′

for every k ∈ [1,m]Z. Therefore E(∆) ∈
⋂n
i=1 (RiR

∗
i )
′ ∩ (T+T )

′
and,

in turn,
∫
hdE ∈

⋂n
i=1 (RiR

∗
i )
′ ∩ (T+T )

′
. This justifies the application of

Γi to E(∆) and
∫
hdE. Theorem 2.3.15 tells us that Γi(D)R∗i = R∗iD for

D ∈ (RiR
∗
i )
′
. For x ∈ H and y ∈ Hi we get

[Γi(E(∆))R∗i x, y]Hi = [R∗iE(∆)x, y]Hi = [E(∆)x,Riy]H

and in turn for and s ∈ C[z1, . . . , zm]∫
Rm

sd[Γi(E)R∗i x, y]Hi =

∫
Rm

sd[E(∆)x,Riy]H =
[
s (Θ(N))x,Riy

]
H

=
[
R∗i s (Θ(N))x, y

]
Hi

=
[
Γi (s (Θ(N)))R∗i x, y

]
Hi

Since Γi is a homomorphism, s is a polynom and s (Θ(N)) is in
⋂n
i=1 (TiT

+
i )
′

we can use (3.3) to conclude Γi (s (Θ(N))) = s (Θi(N)). According to this
equality we obtain∫

Rm

sd[Γi(E)R∗i x, y]Hi =
[
s (Θi(N))R∗i x, y

]
Hi

=

∫
Rm

sd[EiR∗i x, y]Hi .

We can choose a compactK ⊆ Rm such that E(Rm\K) = 0 and Ei(Rm\K) = 0.
Since C[z1, . . . , zm] is dense in C(K), Riesz’ Representation Theorem tells us
that the measures must coincide:

[Γi(E(∆))R∗i x, y]Hi = [Ei(∆)R∗i x, y]Hi for all x ∈ H, y ∈ Hi
and all Borel subsets ∆ of Rm. The density of ranR∗i gives us [Γi(E(∆))z, y]Hi =
[Ei(∆)z, y]Hi for all y, z ∈ Hi. Consequently Γi(E(∆)) = Ei(∆). The image of
Γi is contained in (R∗iRi)

′
. Therefore, Ei(∆) and

∫
hdEi is also contained in

(R∗iRi
′) for every bounded and measurable h.

Since Γi(E(∆)) = Ei(∆), we conclude suppEi ⊆ suppE and therefore
σ(Θi(N)) ⊆ σ(Θ(N))

Let h : σ(Θ(N))→ C be bounded and measurable. Clearly, also its restric-
tion to σ(Θi(N)) is bounded and measurable. From the already shown fact
that Ei(∆)R∗i = Γi(E(∆))R∗i = R∗iE(∆) we obtain[

Γi

(∫
hdE

)
R∗i x, y

]
Hi

=
[
R∗i

(∫
hdE

)
x, y
]
Hi

=
[( ∫

hdE
)
x,Riy

]
H

=

∫
hd[Ex,Riy]H =

∫
hd[EiR∗i x, y]Hi

=
[( ∫

hdEi
)
R∗i x, y

]
Hi
.

Again the density of ranR∗i yields the desired equation (3.4).
q

We will use Lemma 2.3.16 to introduce the mappings Ξ and Ξi for each
i ∈ [1, n]Z referring to T and Ti:

Ξ :

{
(T+T )

′ → (TT+)
′
,

Di 7→ TDT+,
Ξi :

{
(T+
i Ti)

′ → (TiT
+
i )
′
,

Di 7→ TiDiT
+
i .
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Again according to Lemma 2.3.16 we define

Λi :

{
(R∗iRi)

′ → (RiR
∗
i )
′
,

Di 7→ RiDiR
∗
i

and we conclude that

Ξi(Di) = TRiDiR
∗
i T

+ = Ξ ◦ Λi(Di) for Di ∈ (R∗iRi)
′ ∩ (T+

i Ti)
′
. (3.5)

According to Lemma 2.3.16 we have in our notation relating to Ri

Λi ◦ Γi(D) = DRiR
∗
i . (3.6)

Hence, using Corollary 3.1.5 and its notation we obtain

Ξi

(∫
hdEi

)
C3.1.5

= Ξi ◦ Γi

(∫
hdE

)
(3.5)
= Ξ ◦ Λi ◦ Γi

(∫
hdE

)
(3.6)
= Ξ

(
RiR

∗
i

∫
hdE

)
.

(3.7)

Finally, T−1TiT
+
i T = T−1TRiR

∗
i T

+T = RiR
∗
i T

+T . If (TiT
+
i )ni=1 is a tuple

of pairwise commuting operators, then we have TiT
+
i ∈ (TT+)

′
and the later

equality can be expressed as

Θ(TiT
+
i ) = RiR

∗
i T

+T for every i ∈ [1, n]Z. (3.8)

3.2 Setting

Assumptions 3.2.1. Let A = (Ai)
n
i=1 be a tuple of pairwise commuting, self-

adjoint and definitizable Operators in Lb(K). We denote a corresponding tuple
of definitizing polynomials by p = (pi)

n
i=1, i.e. pi is a definitizing polynomial

for Ai. For convenience we will choose each pi as a real polynomial; see Lemma
1.2.8.

According to Corollary 1.2.12 for each Ai there exists a Hilbert space
(Hi, [., .]Hi) and an injective and bounded linear mapping

Ti : Hi → K such that TiT
+
i = pi(Ai). (3.9)

Since
∑n
i=1 pi(Ai) is also a positiv Operator, we can apply Lemma 1.2.10 and

obtain a Hilbert space (H, [., .]H) and an injective and bounded linear mapping
T : H → K such that

TT+ =

n∑
i=1

pi(Ai) =

n∑
i=1

TiT
+
i .

Hence, the mappings T and (Ti)
n
i=1 fulfill the Assumptions 3.1.1. By Lemma

3.1.2 there exists a tuple of injective contractions R = (Ri)
n
i=1 such that Ri :

Hi → H and Ti = TRi.

Lemma 3.2.2. Let T ,Ti and Ri be as in Assumptions 3.2.1 and Θ the ∗-
homomorphism according to T ; see Definition 3.1.3. Then we have

pi(Θ(Ai)) = RiR
∗
i

n∑
k=1

pk(Θ(Ak)),

where RiR
∗
i commutes with

∑n
k=1 pk(Θ(Ak)) for all i ∈ [1, n]Z.
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Proof. By the definition of Θ (Theorem 2.3.15), we have

T+T = Θ(TT+)
(3.1)
= Θ

( n∑
k=1

TkT
+
k

)
(3.9)
=

n∑
k=1

Θ(pk(Ak)) =

n∑
k=1

pk(Θ(Ak)).

Lemma 3.1.2 guarantees that RiR
∗
i commutes with T+T and hence it does with∑n

k=1 pk(Θ(Ak)). We obtain

pi(Θ(Ai)) = Θ(pi(Ai)) = Θ(TiT
+
i )

(3.8)
= RiR

∗
i T

+T = RiR
∗
i

n∑
k=1

pk(Θ(Ak))

which completes the proof.
q

Lemma 3.2.3. Let A = (Ai)
n
i=1 be as in Assumptions 3.2.1. For i ∈ [1, n]Z we

then have {
z ∈ Rn : |pi(zi)| > ‖RiR∗i ‖ ·

∣∣∣ n∑
k=1

pk(zk)
∣∣∣} ⊆ ρ(Θ(A)).

In particular, the zeros of
∑n
k=1 pk(zk) are contained in

ρ(Θ(A)) ∪ {z ∈ Rn : pj(zj) = 0 for all j ∈ [1, n]Z}.

Proof. Let E be the spectral measure of Θ(A) as in Theorem 1.5.1. For a fixed
i ∈ [1, n]Z and an arbitrary m ∈ N we introduce the set

∆m :=

{
z ∈ Rn : |pi(zi)|2 >

1

m
+ ‖RiR∗i ‖

2
∣∣∣ n∑
k=1

pk(zk)
∣∣∣2}.

For x ∈ ranE(∆m) we have

‖pi(Θ(Ai))x‖2 = ‖pi(Θ(Ai))E(∆m)x‖2 =

∫
∆m

|pi(zi)|2 d[E(z)x, x]

≥
∫

∆m

1

m
d[E(z)x, x] + ‖RiR∗i ‖

2
∫

∆m

∣∣∣ n∑
k=1

pk(zk)
∣∣∣2 d[E(z)x, x]

≥ 1

m
‖x‖2 +

∥∥∥RiR∗i n∑
k=1

pk(Θ(Ak))︸ ︷︷ ︸
=pi(Θ(Ai))

x
∥∥∥2

.

This inequality can only hold true for x = 0. Hence, E(∆m) = 0. The fact that
∆m is open implies that ∆m ⊆ (suppE)

c
= σ(A)

c
= ρ(A). Since m ∈ N was

arbitrary, we finally obtain

ρ(A) ⊇
⋃
m∈N

∆m =

{
z ∈ Rn : |pi(zi)| > ‖RiR∗i ‖ ·

∣∣∣ n∑
k=1

pk(zk)
∣∣∣}.
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If
∑n
k=1 pk(zk) = 0 and z /∈ {w ∈ Rn : pi(wi) = 0 for all i ∈ [1, n]Z} then there

exists a j ∈ [1, n]Z such that |pj(zj)| > 0 =
∥∥RjR∗j∥∥ ∣∣∑n

k=1 pk(zk)
∣∣. From the

already shown we conclude that z ∈ ρ(A).
q

In order to be more self contained we will proof the following Lemma, which
will be needed for the next Corollary.

Lemma 3.2.4. Let (H, [., .]) be a Hilbert space and N : H → H be a normal

Operator then kerN = (ranN)
⊥

.

Proof. Since N is normal, we have

‖Nx‖2 = [Nx,Nx] = [N∗Nx, x] = [NN∗x, x] = [N∗x,N∗x] = ‖N∗x‖2 .

This leads to kerN = kerN∗. From the well-known result kerN∗ = (ranN)⊥

we conlcude the statement.
q

Corollary 3.2.5. With the notation and assumptions from Lemma 3.2.3 and
∆ := {z ∈ Rn : pk(zk) 6= 0 for some k ∈ [1, n]Z} we have

RiR
∗
iE(∆) =

∫
∆

pi(zi)∑n
k=1 pk(zk)

dE(z)

for every i ∈ [1, n]Z

Proof. By Lemma 3.2.3 we have |pi(zi)| ≤ ‖RiR∗i ‖
∣∣∑n

k=1 pk(zk)
∣∣ for every

z ∈ suppE. Hence, the integrand is bounded on suppE and consequently the
integral on right-hand-side exists.

Clearly, both sides vanish on the range of E(∆c). For

U := ranE(∆) =
(

ranE(∆c)
)⊥

we have that U⊥ = ranE(∆c) is contained in the kernel of the operator∫ n∑
k=1

pk(zk) dE(z) =

n∑
k=1

pk(Θ(Ak)).

By Lemma 3.2.3 all zeros of z 7→
∑n
k=1 pk(zk) which are also contained in

suppE can only be found in ∆c. For x ∈ U , x 6= 0 we have∥∥∥∥∫ n∑
k=1

pk(zk) dE(z)x

∥∥∥∥2

=

∥∥∥∥∫ n∑
k=1

pk(zk) dE(z)E(∆)x

∥∥∥∥2

=

∫
∆

∣∣∣ n∑
k=1

pk(zk)
∣∣∣2︸ ︷︷ ︸

>0 on ∆

d[E(z)x, x] > 0.

Therefore, ker
∫ ∑n

k=1 pk(zk) dE(z) = U⊥. Since
∑n
k=1 pk(Θ(Ak)) is normal,

we obtain from Lemma 3.2.4 that its range is dense in U . Let x be in this dense
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subspace. Then we can write x =
∑n
k=1 pk(Θ(Ak))y for some y ∈ U and obtain∫

∆

pi(zi)∑n
k=1 pk(zk)

dE(z)x =

∫
∆

pi(zi) dE(z)y = pi(Θ(Ai))y

= RiR
∗
i

n∑
k=1

pk(Θ(Ak))y = RiR
∗
i x.

By density every x ∈ U fulfills this equation.
q

3.3 Function class

Definition 3.3.1. For n ∈ N and α ∈ Nn we define the multi-index sets

Îα := {β ∈ Nn0 : βi < αi for all i ∈ [1, n]Z}
Iα := Îα ∪ {αiei : i ∈ [1, n]Z},

where ei = (δi,j)
n
j=1 and δi,j is the Kronecker delta. Furthermore we denote by

Aα the set of all

a = (aβ)β∈Iα such that aβ ∈ C,

and by Bα we denote the set of all a = (aβ)β∈Îα such that aβ ∈ C. There exists
a canonical addition, scalar multiplication and conjugate linear involution on
Aα:

a+ b := (aβ + bβ)β∈Iα for a, b ∈ Aα

λa := (λaβ)β∈Iα for λ ∈ C and a ∈ Aα

a := (aβ)β∈Iα for a ∈ Aα.

Analogously, we can define these operations on Bα. Additionally we can define
a multiplication on these sets by

a · b :=
( ∑
γ+δ=β

aγbδ

)
β∈Iα

and a · b :=
( ∑
γ+δ=β

aγbδ

)
β∈Îα

respectively.

Finally, we want to introduce the projection

πα :

{
Aα ∪Bα → Bα,

a 7→ (aβ)β∈Îα .

Remark 3.3.2. For a ∈ Bα the projection πα maps a on itself. For a ∈ Aα
the projection πα forgets all indices {αiei : i ∈ [1, n]Z}.

Example 3.3.3. For α = (n,m) we have Iα = [0, n − 1]Z × [0,m − 1]Z ∪
{(n, 0), (m, 0)}

Remark 3.3.4. The sets Aα and Bα endowed with the operations that are
presented in Definition 3.3.1 yield commutative unital ∗-algebras. The unit
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e = (eβ)β∈Iα in Aα is given by e0 = 1 and eβ = 0 if β 6= 0. Analogously,
e = (eβ)β∈Îα is the unit in Bα.

Moreover it is easy to check that an element a of Aα (Bα) has a multiplicative
inverse in Aα (Bα) if and only if a0 6= 0.

Definition 3.3.5. We define for every polynomial q ∈ C[z] the function

dq :

{
C → N0,
z 7→ min{j ∈ N0 : q(j)(z) 6= 0}

For a tuple of polynomials q = (qi)
n
i=1 where qi ∈ C[z] and a vector z ∈ Cn we

employ the following notation

dq(z) :=
(
dqi(zi)

)n
i=1
∈ Nn0 .

Definition 3.3.6. Let p be polynomial in C[z] then we want to define the set
of all zeros of q and the set of all real zeros of q by

Zq := q−1{0} and ZR
q := Zq ∩ R

For a tuple of polynomials q = (qi)
n
i=1 where qi ∈ C[z] we define the set of joint

zeros, the set of joint real zeros and the set of joint complex zeros

Zq :=

n∏
i=1

Zqi , ZR
q := Zq ∩ Rn and Z i

q := Zq\Rn

as subsets of Cn.
Furthermore let p = (pi)

n
i=1 be a tuple of real definitizing polynomials cor-

responding to the tuple of operators A = (Ai)
n
i=1.

(i) Then we denote the space of all functions φ with domain(
σ(Θ(A)) ∪ ZR

p

)
∪̇Z i

p ⊆ Cn

such that φ(z) ∈ C(z), where

C(z) :=


C, if z ∈ σ(Θ(A)) \ZR

p ,

Adp(z), if z ∈ ZR
p ,

Bdp(z), if z ∈ Z i
p,

by MA. If A contains only one element A, we will write MA instead.

(ii) We endow MA with pointwise scalar multiplication, addition and multi-
plication, where the operations on Adp(z) or Bdp(z) are as in Definition

3.3.1. We also define a conjugate linear involution (.)# on MA by

φ#(z) = φ(z) for z ∈
(
σ(Θ(A)) ∪ ZR

p

)
∪̇Z i

p

This is well-defined, since p contains only real polynomials, which implies
z ∈ Z i

p is equivalent to z ∈ Z i
p and dp(z) = dp(z).
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(iii) ByRA we denote the set of all elements φ ∈MA such that πdp(w)(φ(w)) =
0 for all w ∈ Zp.

Remark 3.3.7. The function space MA is a commutative unital ∗-algebra
with the operations defined in Defintion 3.3.6. Moreover RA is an ideal ofMA.

Definition 3.3.8. For x = (xi)
n
i=1 ∈ Cn and β ∈ Nn0 we set

xβ :=

n∏
i=1

xβii , β! :=

n∏
i=1

βi! and |β| =
n∑
i=1

βi.

Definition 3.3.9. Let f : dom f → C be a function with(
σ(Θ(A)) ∪ ZR

p

)
∪̇Z i

p ⊆ dom f ⊆ Cn,

such that f is sufficiently smooth – more exactly, at least maxw∈ZR
p
|dp(w)|−n+1

times continuously differentiable – on an open neighborhood of ZR
p as subset of

Rn, and such that f is holomorphic on an open neighborhood of Z i
p as subset

of Cn.
Then f can be considered as an element fA of MA by setting

fA(z) :=



f(z), if z ∈ σ(Θ(A)) \ ZR
p ,(

1
β!D

βf(z)

)
β∈Idp(z)

, if z ∈ ZR
p ,(

1
β!D

βf(z)

)
β∈Îdp(z)

, if z ∈ Z i
p.

For z ∈ ZR
p the derivative should be understood in the sense of real derivation

and for z ∈ Z i
p it is a complex derivative.

Remark 3.3.10. Let f, g be functions which satisfy the conditions of Definition
3.3.9. For z ∈ ZR

p and β ∈ Idp(z) the Leibniz rule yields

(fg)A(z) =
1

β!
Dβ(fg)(z) =

1

β!

∑
γ+δ=β

β!

γ!δ!
Dγf(z)Dδg(z)

=
∑

γ+δ=β

1

γ!
Dγf(z)︸ ︷︷ ︸

=
(
fA(z)

)
γ

1

δ!
Dδg(z)︸ ︷︷ ︸

=
(
gA(z)

)
δ

=
(
fA(z) · gA(z)

)
β
.

Therefore, (fg)A(z) = fA(z) · gA(z). Analogously, we can show that this
equation holds for z ∈ Z i

p. Consequently,

(fg)A = fA · gA.

Moreover, it is easy to check that for λ, µ ∈ C

(λf + µg)A = λfA + µgA.
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Furthermore, we define the function f# by f#(z) = f(z) for z ∈ dom f . Then

(f#)A = (fA)#.

Example 3.3.11. Let i ∈ [1, n]Z be fixed and pi be a real definitizing polyno-
mial of Ai. Then we can regard pi also as an element of C[z1, . . . , zn] just by
setting pi(z) = pi(zi). Clearly, pi : Cn → C satisfies all conditions of Definition
3.3.9 and we can build piA. Since pi(z) is constant in every direction zk for
k 6= i, every derivative in these directions vanishes. Moreover, for z ∈ Zp

p
(l)
i (zi) = 0 if l < dpi(zi).

Thus, we can easily conclude that

• for z ∈ σ(Θ(A)) \ ZR
p we have piA(z) = pi(zi),

• for z ∈ Z i
p we have piA(z) = 0 ∈ Bdp(z) and

• for z ∈ ZR
p we have piA(z) = (piA(z)β)β∈Idp(z)

, where

(
piA(z)

)
β

=

{
0, if β 6= dpi(zi)ei,

1
dpi (zi)!

pdpi (zi)(zi), if β = dpi(zi)ei.

Furthermore, if we have a sufficiently smooth function f , then we can evaluate
(pif)A at z ∈ Zp(

(pif)A(z)
)
β

=
1

β!
(Dβpif)(z) =

{
0, if β 6= dpi(zi)ei,

1
dpi (zi)!

pdpi (zi)(zi)f(z), if β = dpi(zi)ei.

For
∑n
k=1 pkf we obtain

(( n∑
k=1

pkf
)
A

(z)
)
β

=

{
0, if ∀i ∈ [1, n]Z : β 6= dpi(zi)ei,

1
dpi (zi)!

pdpi (zi)(zi)f(z), if ∃i ∈ [1, n]Z : β = dpi(zi)ei.

Definition 3.3.12. Let q = (qi)
n
i=1 be a tuple of polynomials qi ∈ C[z] \ {0}

of positive degree deg qi. We will denote the space of all polynomials from
C[z1, . . . , zn] with zi-degree less than deg qi for all i ∈ [1, n]Z by Pq.

Lemma 3.3.13. Let q = (qi)
n
i=1 be a tuple of polynomials qi ∈ C[z] \ {0}

of positive degree mi for every i ∈ [1, n]Z, and set m =
∏n
i=1mi. By Zq we

denote the set of all joint zeros of q in Cn; see Definition 3.3.6. Then any
s ∈ C[z1, . . . , zn] can be written as

s(z) =

n∑
i=1

qi(zi)ui(z) + r(z)

with ui, r ∈ C[z1, . . . , zn] for all i ∈ [1, n]Z such that r ∈ Pq. Here ui, r can be
found in R[z1, . . . , zn] if qi ∈ R[z] and s ∈ R[z1, . . . , zn].
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Furthermore, for

$ :


C[z1, . . . , zn] → Cm,

s 7→
((

1
β!D

βs(z)
)
β∈Îdq(z)

)
z∈Zq

we have s ∈ ker$ if and only if s(z) =
∑n
i=1 qi(zi)ui(z) for some ui ∈

C[z1, . . . , zn] for i ∈ [1, n]Z. Moreover, $ restricted to Pq is bijective.

Proof. Applying the Euclidean algorithm to s ∈ C[z1, . . . , zn] and q1 we obtain
s(z) = q1(z1)u1(z) + r1(z) where u1, r1 ∈ C[z1, . . . , zn] such that the z1-degree
of r1 is less than m1. Let rk be the polynomial we obtain when we apply the
Euclidean algorithm to rk−1 and qk. Then we get rk−1(z) = qk(zk)uk(z)+rk(z),
where uk, rk ∈ C[z1, . . . , zn] such that for all i ∈ [1, k− 1]Z the zi-degree of rk is
less than the zi-degree of rk−1 and the zk-degree is less than mk.

By induction r := rn fulfills the desired properties and

s(z) =

n∑
i=1

qi(zi)ui(z) + r(z)

The resulting polynomials (ui)
n
i=1, (ri)

n
i=1 belong to R[z1, . . . , zn] if qi ∈ R[z]

and s ∈ R[z1, . . . , zn].
The Leibniz rule ensures that $(qiui) = 0 for all i ∈ [1, n]Z. Hence, $(s) =

$(r). Consequently, s ∈ ker$ if r = 0. On the other hand, if 0 = $(s) = $(r)
then we will show that r must be 0 by induction. At first we define the projection

πkl :

{
Cn → Ck−l+1,

(zi)
n
i=1 7→ (zi)

k
i=l

and the set Îkα := {β ∈ Îα : βi = 0 ∀i ∈ [1, k]Z}.
Induction hypothesis: For k ∈ N0, k ≤ n, for all (wi)

n
i=k+1 ∈ πnk+1(Zq), all

β ∈ Îkα and all (xi)
k
i=1 ∈ Ck we have

Dβr(x1, . . . , xk, wk+1, . . . , wn) = 0.

Induction start: For k = 0 the induction hypothesis is nothing else than
$(r) = 0.

Induction step: Assuming that the induction hypothesis is satisfied by k for
arbitrary (wi)

n
i=k+1 ∈ πnk+1(Zq), β ∈ Îk+1

α and (xi)
k
i=1 ∈ Ck the mapping

x 7→ Dβr(x1, . . . , xk, x, wk+2, . . . , wm)

has zeros at x ∈ Zqk+1
with multiplicity at least dqk+1

(x). Since this mapping
is a polynomial of degree less than mk+1 = deg qk+1 =

∑
x∈Zqk+1

dqk+1
(x),

it must be identically equal to zero. Hence k + 1 fulfills the induction hy-
pothesis.

This proves that r = 0.
Our discription of ker$ shows in particular that $ restricted to Pq is one-

to-one. Comparing dimensions shows that this restriction of $ is also onto.
q

Corollary 3.3.14. For every φ ∈ MA there exists an s ∈ C[z1, . . . , zn] such
that φ− sA ∈ RA
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Proof. The mapping $ from Lemma 3.3.13 is bijective. Hence there exists
an s ∈ C[z1, . . . , zn] such that $(s)w = πdp(w)(φ(w)) for every w ∈ Zp. As a
consequence we obtain φ− sA ∈ RA.

q

Example 3.3.15. Let f : Cn → C be a holomorphic function and assume that
ZR
p = {w}. Then we can write

f(z) =
∑
β∈Nn0

1

β!
Dβf(w)(z −w)β

=
∑

β∈Îdp(w)

1

β!
Dβf(w)(z −w)β

︸ ︷︷ ︸
=:s(z)

+
∑

β∈Îc
dp(w)

1

β!
Dβf(w)(z −w)β

It is easy to see that fA − sA ∈ RA. We can rewrite this equation as

f(z) = s(z) +

n∑
i=1

pi(zi)

∑
β∈Îc

dp(w)

1
β!D

βf(w)(z −w)β∑n
i=1 pi(zi)︸ ︷︷ ︸
=:g(z)

for z ∈ σ(Θ(A)) \ {w}. This representation is well-defined, since denominator
of g(z) can only be zero for z = w; see Lemma 3.2.3. If we could extent g to
{w}, we would have a useful decomposition of f . Unfortunately, in general this
is not possible, since limz→w g(z) may not exist. For example by L’Hôpital’s
rule we have

lim
t→0

g(w + tei) =
Ddpi(wi)eif(w)

p(dpi(wi))(wi)
=

dpi(wi)!fA(w)dpi(wi)ei

p(dpi(wi))(wi)

which does not coincide for every i ∈ [1, n]Z in general. If g(w) would exist,
then we could compute (fA − sA)(w)β , according to Example 3.3.11, in the
following way

(fA − sA)(w)β =
1

β
Dβ
( n∑
i=1

pig
)

(w)

=


0, if β 6= dpi(wi)ei,

pdpi(wi)(wi)

dpi(wi)!
g(w), if ∃i ∈ [1, n]Z : β = dpi(wi)ei.

This would lead us to the equations

1

dpi(wi)!
Ddpi(wi)eif(w) =

pdpi(wi)(wi)

dpi(wi)!
g(w) for all i ∈ [1, n]Z.

This motivates the following Remark

Remark 3.3.16. Recall from Lemma 3.2.3 that
∑n
i=1 pi(zi) = 0 with z ∈

σ(Θ(A)) implies pi(zi) = 0 for all i ∈ [1, n]Z, i.e. z ∈ ZR
p .
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If φ ∈ RA, then we find a function g on σ(Θ(A)) with

g(z) ∈

{
C, if z ∈ σ(Θ(A)) \ZR

p ,

Cn, if z ∈ σ(Θ(A)) ∩ ZR
p .

such that φ(z) =
∑n
i=1 piA(zi) · g(z) for z ∈ σ(Θ(A)), where the multiplication

is defined as the multiplication in C in the case that z ∈ σ(Θ(A)) \ZR
p , and as

( n∑
i=1

piA(zi) · g(z)
)
β

:=

{
0, if β ∈ Îdp(z),(
pjA(zj)

)
dpj(zj)ej

g(z)j , if β = dpj (zj)ej ,

otherwise. The desired function is defined by g(z) := φ(z)∑n
i=1 pi(zi)

for z ∈
σ(Θ(A)) \ZR

p and

g(z)i :=
dpi(zi)!φ(z)dpi(zi)ei

p
(dpi(zi))

i (zi)
for z ∈ σ(Θ(A)) ∩ ZR

p

for every i ∈ [1, n]Z.

Remark 3.3.17. If the tupleA contains only one single operator A (i.e. n = 1),
then Example 3.3.15 would work and Remark 3.3.16 would give a C-valued
function g.

Definition 3.3.18. With the notation from Definition 3.3.6 we denote by FA
the set of all φ ∈MA such that z 7→ φ(z) is Borel measurable and bounded on
σ(Θ(A)) \ZR

p , and such that for each w ∈ σ(Θ(A))∩ZR
p , which is not isolated

in σ(Θ(A))

φ(z)−
∑

β∈Îdp(w)

(
φ(w)

)
β
(z −w)β

max
k∈[1,n]Z

|zk − wk|dpk(wk)
(3.10)

is bounded for z ∈ σ(Θ(A)) ∩Br(w) \ {w}, where r > 0 is sufficiently small.

Example 3.3.19. Let w ∈ Zp be an isolated point of σ(Θ(A)) ∪ Zp, a ∈MA

and δw : σ(Θ(A)) ∪ Zp → C defined by

δw(z) :=

{
1, if z = w,

0, else.

Then δwa defined by δwa(z) := δw(z)a(z) is an element of FA. Cleary, every
element of Z i

p is isolated in σ(Θ(A)) ∪ Zp.

Example 3.3.20. Let h be defined on an open subset D of Rn with values in
C and let w ∈ D. Moreover assume that for α ∈ Nn the function h is |α|−n+1
times continuously differentiable. The Taylor Approximation Theorem from
multidimensional calculus yields [4, 10.2.10 and 10.2.13]

h(z) =
∑
β∈Nn0

|β|≤|α|−n

1

β!
Dβh(w)(z −w)β +O

(
‖z − w‖|α|−n+1

∞
)
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for z → w. Since αk ≥ 1 for all k ∈ [1, n]Z, we conclude that |α| − n + 1 ≥ αi
for every i ∈ [1, n]Z which leads to

‖z − w‖|α|−n+1
∞ = max

i∈[1,n]Z
|zi − wi||α|−n+1 = O

(
max
i∈[1,n]Z

|zi − wi|αi
)

If ‖z −w‖∞ ≤ 1 and if there exists a k ∈ [1, n]Z such that βk ≥ αk, then∣∣(z −w)β
∣∣ ≤ |zk − wk|βk ≤ |zk − wk|αk ≤ max

i∈[1,n]Z
|zi − wi|αi .

Hence, (z−w)β is also an O(maxi∈[1,n]Z |zi−wi|αi) if there exists an k ∈ [1, n]Z
such that βk ≥ αk. This yields

h(z) =
∑
β∈Îα

1

β!
Dβh(w)(z −w)β +O

(
max
i∈[1,n]Z

|zi − wi|αi
)
.

Lemma 3.3.21. Let f : dom f → C be a function with the properties mentioned
in Definition 3.3.9. Then fA belongs to FA.

Proof. For a fixed w ∈ σ(Θ(A)) ∩ ZR
p which is non-isolated and an arbitrary

z ∈ σ(Θ(A)) \ ZR
p by Example 3.3.20 the expression

fA(z)−
∑

β∈Îdp(w)

fA(w)β(z −w)β = f(z)−
∑

β∈Îdp(w)

1

β!
Dβf(w)(z −w)β

is an O(maxi∈[1,n]Z |zi − wi|αi) for z → w. Therefore, fA ∈ FA.
q

Lemma 3.3.22. If φ ∈ FA is such that φ(z) is invertible in C(z) for all
z ∈ (σ(Θ(A)) ∪ ZR

p ) ∪̇Z i
p and such that 0 does not belong to the closure of

φ(σ(Θ(A)) \ ZR
p ), then φ−1 : z 7→ φ(z)−1 also belongs to FA.

Proof. Since 0 is not in φ(σ(Θ(A)) \ZR
p ) the mapping z 7→ 1

φ(z) is bounded on

σ(Θ(A)) \ZR
p . By the first assumption φ−1 is a well-defined object belonging

toMA. Since φ is measurable on σ(Θ(A)) \ZR
p also z 7→ 1

φ(z) is measurable on

this set.
It remains to verify the boundedness of (3.10) on a certain neighborhood of

w for each w ∈ σ(Θ(A))∩ZR
p for φ−1, when w is non-isolated in σ(Θ(A)). For

z ∈ σ(Θ(A)) \ ZR
p we calculate

φ−1(z) −
∑

β∈Îdp(w)

(
φ−1(w)

)
β
(z −w)β

=
1

φ(z)
− 1∑

β∈Îdp(w)

(
φ(w)

)
β
(z −w)β

(3.11)

+
1∑

β∈Îdp(w)

(
φ(w)

)
β
(z −w)β

−
∑

β∈Îdp(w)

(
φ−1(w)

)
β
(z −w)β . (3.12)
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The term (3.11) can be written as

− 1

φ(z)
· 1∑

β∈Îdp(w)

(
φ(w)

)
β
(z −w)β

·
(
φ(z) −

∑
β∈Îdp(w)

(
φ(w)

)
β
(z −w)β

)
.

By assumption 1
φ(z) is bounded and φ(z) −

∑
β∈Îdp(w)

(
φ(w)

)
β
(z − w)β is an

O(maxi∈[1,n]Z |zi−wi|dpi(wi)). The invertibility of φ(w) guarantees
(
φ(w)−1

)
0
6=

0, which yields

1∑
β∈Îdp(w)

(
φ(w)

)
β
(z −w)β

= O(1)

for z → w. Thus, (3.11) is an O(maxi∈[1,n]Z |zi − wi|dpi(wi)).
Factoring out 1∑

β∈Îdp(w)
(φ(w))β(z−w)β

from (3.12) results in

1∑
β∈Îdp(w)

(
φ(w)

)
β
(z −w)β︸ ︷︷ ︸

=O(1)

(
1 −

∑
β∈Îdp(w)

∑
γ1+γ2=β

(
φ(w)

)
γ1

(
φ(w)−1

)
γ2︸ ︷︷ ︸

=eβ

(z −w)β

−
∑
β∈J

∑
γ1+γ2=β

(
φ(w)

)
γ1

(
φ(w)−1

)
γ2

(z −w)β︸ ︷︷ ︸
=O(maxi∈[1,n]Z |zi−wi|

dpi
(wi))

)

where J := {γ1 + γ2 ∈ Nn0 : γ1, γ2 ∈ Îdp(w) and γ1 + γ2 /∈ Îdp(w)} and e is the

multiplicative unit of Bdp(w). Since
∑
β∈Îdp(w)

eβ(z − w)β = 1, we see that

(3.12) is an O(maxi∈[1,n]Z |zi − wi|dpi(wi)). Consequently, φ−1 ∈ FA.
q

3.4 The Spectral Theorem

Lemma 3.4.1. For every φ ∈ FA there exists a polynomial s ∈ C[z1, . . . , zn]
and a function g on σ(Θ(A)) with values in C on σ(Θ(A)) \ZR

p and values in

Cn on σ(Θ(A)) ∩ ZR
p such that φ− sA ∈ RA, g is bounded and measurable on

σ(Θ(A)) \ZR
p , and

φ(z) = sA(z) +

n∑
i=1

piA(zi) · g(z) for z ∈ σ(Θ(A)) , (3.13)

where the multiplication has to be understood in the sense of Remark 3.3.16.
We will call such a pair s, g a decomposition of φ.

Proof. According to Corollary 3.3.14 there exists an s ∈ C[z1, . . . , zn] such that
φ− sA ∈ RA, and by Remark 3.3.16 we then find a function g such that (3.13)
holds true. The measurability of

g(z) =
φ(z)− s(z)∑n

i=1 pi(zi)
on σ(Θ(A)) \ZR

p
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follows from the assumption φ ∈ FA; in particular from the measurability of φ
itself.

In order to show g’s boundedness, first recall from Lemma 3.2.3 that

max
i∈[1,n]Z

|pi(zi)| ≤ max
i∈[1,n]Z

‖RiR∗i ‖
∣∣∣ n∑
i=1

pi(zi)
∣∣∣ for z ∈ σ(Θ(A)) .

Hence, for z ∈ σ(Θ(A)) \ZR
p we have

maxi∈[1,n]Z |pi(zi)|∣∣∑n
i=1 pi(zi)

∣∣ ≤ max
i∈[1,n]Z

‖RiR∗i ‖ .

As φ ∈ FA for each w ∈ σ(Θ(A)) ∩ ZR
p which non-isolated in σ(Θ(A)) we

find an open neighborhood Brw(w) of w such that (3.10) is bounded for z ∈
Brw(w) \ {w}. Clearly, we can choose rw even smaller such that the family
of neighborhoods is pairwise disjoint. For w ∈ σ(Θ(A)) ∩ ZR

p and for each
i ∈ [1, n]Z the number wi is real and a zero of pi with multiplicity dpi(wi).
Therefore

|pi(zi)| =
∣∣∣adpi(wi)(zi − wi)dpi(wi) +O

(
(zi − wi)dpi(wi)+1

)∣∣∣ ≥ ci|zi − wi|dpi(wi)
for ci > 0 and z ∈ Brw(w). Hence,

maxi∈[1,n]Z |zi − wi|dpi(wi)

maxi∈[1,n]Z |pi(zi)|
≤ Cw

on σ(Θ(A)) ∩ Brw(w) \ {w} for some Cw > 0. Since s is holomorphic as a
polynomial and φ − sA ∈ RA implies φ(w)β = 1

β!D
βs(w) for w ∈ Zp and

β ∈ Îdp(w), we have

s(z) =
∑

β∈Îdp(w)

φ(w)β(z −w)β +O( max
i∈[1,n]Z

|zi − wi|dpi (wi))

and in consequence of the choice of Brw(w) \ {w} (see (3.10))

|φ(z)− s(z)|
maxi∈[1,n]Z |zi − wi|dpi(wi)

≤ Dw

for some Dw > 0 and z ∈ Brw(w) \ {w}. Altogether

|g(z)| =
maxi∈[1,n]Z |pi(zi)|∣∣∑n

i=1 pi(zi)
∣∣︸ ︷︷ ︸

≤maxi∈[1,n]Z‖RiR∗i ‖

maxi∈[1,n]Z |zi − wi|dpi(wi)

maxi∈[1,n]Z |pi(zi)|︸ ︷︷ ︸
≤Cw

|φ(z)− s(z)|
maxi∈[1,n]Z |zi − wi|dpi(wi)︸ ︷︷ ︸

≤Dw

.

This leads us to the boundedness of g on σ(Θ(A)) ∩
⋃
w∈ZR

p
Brw(w) \ {w}.

On σ(Θ(A)) \
⋃
w∈ZR

p
Brw(w) the boundedness is clear. Hence g is bounded on

σ(Θ(A)) \ZR
p .

q
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Definition 3.4.2. For every φ ∈ FA we define

φ(A) := s(A) + Ξ

(∫ R

σ(Θ(A))

g dE

)
where s, g is a decomposition of φ in the sense of Lemma 3.4.1, and where∫ R

σ(Θ(A))

g dE :=

∫
σ(Θ(A))\ZR

p

g dE +
∑

w∈σ(Θ(A))∩ZR
p

n∑
i=1

g(w)iRiR
∗
iE{w}

Remark 3.4.3. For a one-tuple A = (A) the corresponding mapping R fulfills
RR∗ = I. Moreover the function g of the decomposition has only C as range.
Hence, we can write

φ(A) = s(A) +

∫
σ(Θ(A))

g dE.

At first we have to guarantee that φ(A) is well-defined.

Theorem 3.4.4. Let φ ∈ FA, s, g and s̃, g̃ be decompositions of φ in the sense
of Lemma 3.4.1. Then

s(A) + Ξ

(∫ R

σ(Θ(A))

g dE

)
= s̃(A) + Ξ

(∫ R

σ(Θ(A))

g̃ dE

)

Proof. By assumption we have φ−sA, φ−s̃A ∈ RA. Subtracting these functions
yields s̃A − sA ∈ RA and consequently $(s̃A − sA) = 0 for $ as in Lemma
3.3.13. Since s̃A − sA ∈ ker$, this Lemma implies

s(z)− s̃(z) =

n∑
i=1

pi(zi)ui(z) (3.14)

for some (ui)
n
i=1 where ui ∈ C[z1, . . . , zn].

By Lemma 2.3.16 and TiT
+
i = pi(Ai) we have

Ξi(ui(Θi(A))) = Ξi(Θi(ui(A))) = pi(Ai)ui(A) (3.15)

for every i ∈ [1, n]Z. Recall the notation from Corollary 3.1.5 for the operator
tuple A. Since u(Θi(A)) =

∫
ui dEi, we obtain

Ξi(ui(Θi(A))) = Ξi

(∫
ui dEi

)
(3.7)
= Ξ

(
RiR

∗
i

∫
ui dE

)
. (3.16)

for all i ∈ [1, n]Z. This leads to

s̃(A)− s(A) =

n∑
i=1

pi(Ai)ui(A)
(3.15)

=

n∑
i=1

Ξi(ui(A))
(3.16)

= Ξ

( n∑
i=1

RiR
∗
i

∫
ui dE

)
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By Corollary 3.2.5, we have

s̃(A)− s(A) = (3.17)

Ξ

 ∫
σ(Θ(A))\ZR

p

∑n
i=1 pi(zi)ui(z)∑n

i=1 pi(zi)
dE(z) +

∑
w∈σ(Θ(A))∩ZR

p

n∑
i=1

RiR
∗
i ui(w)E{w}

 .

On the other hand, since both s, g and s̃, g̃ are decompositions of φ in sense of
Lemma 3.4.1 we have

(s̃A − sA)(z) =

n∑
i=1

piA(zi) · (g(z)− g̃(z)) for z ∈ σ(Θ(A)) (3.18)

In particular, for z ∈ σ(Θ(A)) \ZR
p

n∑
i=1

pi(zi)ui(z)
(3.14)

= s̃(z)− s(z) =

n∑
i=1

pi(zi)(g(z)− g̃(z))

and in turn

(g(z)− g̃(z)) =

∑n
i=1 pi(zi)ui(z)∑n

i=1 pi(zi)
.

Considering the entries with index dpi(zi)ei of (3.18) and (3.14) multiplied by
dpi(zi)! for z ∈ σ(Θ(A)) ∩ ZR

p , we obtain

p
(dpi (zi))

i (zi)ui(z) =
∂dpi (zi)

∂zdpi (zi)
(
s̃(z)− s(z)

)
= p

(dpi (zi))

i (zi)
(
g(z)i − g̃(z)i

)
,

where we used the general Leibniz rule for derivatives and the fact that zi is

a zero of pi with multiplicity dpi(zi) for the left-hand-side. Since p
(dpi (zi))

i (zi)
does not vanish, we conlcude ui(z) = g(z)i − g̃(z)i for i ∈ [1, n]Z. Therefore,
we can write (3.17) as

s̃(A)− s(A) = Ξ

(∫ R

σ(Θ(A))

(g − g̃) dE

)
and showing the asserted equality.

q

Lemma 3.4.5. Let φ1, φ2 ∈ FA, s1, g1 a decomposition of φ1 and s2, g2 a
decomposition of φ2 in the sense of Lemma 3.4.1. Then

s(z) = s1(z)s2(z),

g(z) = s1(z)g2(z) + s2(z)g1(z) +

n∑
i=1

pi(zi)g1(z)g2(z)

for z ∈ σ(Θ(A)) \ZR
p and

g(z)i = g1(z)is2(z) + g2(z)is1(z) for all i ∈ [1, n]Z

for z ∈ σ(Θ(A)) ∩ ZR
p , is a decomposition of φ1 · φ2.
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Proof. Clearly, g is bounded and measurable for z ∈ σ(Θ(A)) \ZR
p because g1

and g2 have these properties. Since RA is an ideal we obtain

φ1φ2 − s1As2A = (φ1 − s1A)φ2 + (φ2 − s2A)s1A ∈ RA

Since for k = 1, 2 the pair sk, gk is a decomposition of φk, we have

gk(z) =
φk(z)− sk(z)∑n

i=1 pi(zi)
for all z ∈ σ(Θ(A)) \ZR

p .

Therefore, we can rewrite g(z) for z ∈ σ(Θ(A)) \ZR
p as

s1(z)(φ2(z)−s2(z))∑n
i=1 pi(zi)

+
s2(z)(φ1(z)−s1(z))∑n

i=1 pi(zi)
+

(φ1(z)−s1(z))(φ2(z)−s2(z))∑n
i=1 pi(zi)

.

After expanding the terms, this simplifies to

g(z) =
(φ1φ2)(z)− (s1s2)(z)∑n

i=1 pi(zi)
.

For z ∈ σ(Θ(A)) ∩ ZR
p we have

gk(z)i =
dpi(zi)!(φk(z)− skA(z))dpi (zi)ei

p
(dpi (zi))

i (zi)
.

Let r = dpi(zi) and β = rei. Then we have

g(z)i =
r!

p
(r)
i (zi)

(
(φ1(z)− s1A(z))βs2(z) + (φ2(z)− s2A(z))βs1(z)

)
=

r!

p
(r)
i (zi)

(
φ1(z)βs2(z)− s1A(z)βs2(z) + φ2(z)βs1(z)− s2A(z)βs1(z)

)
.

Note that φk(z)0 = sk(z) = skA(z)0 for z ∈ σ(Θ(A)) ∩ ZR
p . Hence,

g(z)i =
r!

p
(r)
i (zi)

(
φ1(z)βφ2(z)0 + φ2(z)βφ1(z)0

− s1A(z)βs2A(z)0 − s2A(z)βs1A(z)0

)
.

Recall the definition of multiplication in Adp(z).

g(z)i =
r!

p
(r)
i (zi)

((
φ1(z) · φ2(z)

)
β
−
(
s1A(z) · s2A(z)

)
β

)
=

r!

p
(r)
i (zi)

(
(φ1 · φ2)(z)− sA(z)

)
β
.

This justifies that s, g is a decomposition of φ1 ·φ2 in the sense of Lemma 3.4.1.
q

Theorem 3.4.6. The mapping φ 7→ φ(A) defined in Definition 3.4.2 constitutes
a ∗-homomorphism from FA into A′′ ⊆ Lb(K) such that sA(A) = s(A) for
every polynomial s ∈ C[z1, . . . , zn].
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Proof. As sA = sA +
∑n
i=1 piA · 0 Theorem 3.4.4 yields sA(A) = s(A) for all

s ∈ C[z1, . . . , zn].
Let φ1, φ2 ∈ FA. According to Lemma 3.4.1 we find s1, s2 ∈ C[z1, . . . , zn]

and g1, g2 such that φk− skA ∈ R, gk is bounded and measurable on σ(Θ(A))\
ZR
p , and

φk(z) = skA(z) +

n∑
i=1

piA(zi) · gk(z) for z ∈ σ(Θ(A)) and k = 1, 2.

For λ, µ ∈ C Remark 3.3.10 guarantees (λs1 + µs2)A = λs1A + µs2A and
therefore

(λφ1 + µφ2)(z) = (λs1 + µs2)A(z) +

n∑
i=1

piA(zi) · (λg1 + µg2)(z)

for z ∈ σ(Θ(A)). It is easy to verify that λs1 +µs2, λg1 +µg2 is a decomposition
of λφ1 + µφ2 in the sense of Lemma 3.4.1. Since the definition of φ(A) in
Definition 3.4.2 depends linearly on s and g, we conclude from Theorem 3.4.4
that

(λφ1 + µφ2)(A) = λφ1(A) + µφ2(A).

As σ(Θ(A)) ⊆ Rn and since we chose pi ∈ R[z], we obtain φ#(z) = s1
#
A(z)+∑n

i=1 piA(zi) · g1(z) for all z ∈ σ(Θ(A)). φ#
1 − (s#

1 )A = (φ− s1A)# ∈ R holds
true due to the fact that z ∈ Z i

p ⇔ z ∈ Z i
p which is a consequence of pi ∈ R[z]

for all i ∈ [1, n]Z. Hence, s#
1 , g1 is a decomposition of φ#

1 in the sense of Lemma
3.4.1. On the hand we have

φ1(A)+ = s1(A)+ + Ξ

(∫ R

σ(Θ(A))

g1 dE

)+

= s#
1 (A) + Ξ

(∫ R

σ(Θ(A))

g1 dE

)
= φ#

1 (A)

where the last equality is derived from Theorem 3.4.4.
Let g be defined as in Lemma 3.4.5. By Theorem 3.4.4 we have

(φ1 · φ2)(A) = (s1s2)(A) + Ξ

(∫ R

σ(Θ(A))

g dE

)
On the other hand we obtain

φ1(A)φ2(A) =

[
s1(A) + Ξ

(∫ R

σ(Θ(A))

g1 dE

)][
s2(A) + Ξ

(∫ R

σ(Θ(A))

g2 dE

)]
= s1(A)s2(A) + s1(A)Ξ

(∫ R

σ(Θ(A))

g2 dE

)
+ Ξ

(∫ R

σ(Θ(A))

g1 dE

)
s2(A)︸ ︷︷ ︸

=:U

+ Ξ

(∫ R

σ(Θ(A))

g1 dE

)
Ξ

(∫ R

σ(Θ(A))

g2 dE

)
︸ ︷︷ ︸

=:V



3 JOINT SPECTRAL THEOREM 57

The identities CΞ(D) = Ξ(Θ(C)D) and Ξ(D)C = Ξ(DΘ(C)) from Lemma
2.3.16 can be used to expand the multiplication to

U = Ξ

(∫
σ(Θ(A))\ZR

p

(s1g2 + s2g1)︸ ︷︷ ︸
=g−

∑n
i=1 pig1g2

dE

+
∑

w∈σ(Θ(A))∩ZR
p

n∑
i=1

(s1(w)g2(w)i + s2(w)g1(w)i)︸ ︷︷ ︸
=g(w)i

RiR
∗
iE{w}

)
.

From Ξ(D1)Ξ(D2) = Ξ(D1D2TT
+) and Lemma 2.3.16 we derive

V = Ξ

(∫
σ(Θ(A))\ZR

p

n∑
i=1

pig1g2 dE

)
.

By linearity of Ξ and Definition 3.4.2 we can sum up the above terms and obtain

φ1(A)φ2(A) = (s1s2)(A) + Ξ

(∫ R

σ(Θ(A))\ZR
p

g dE

)
= (φ1 · φ2)(A),

which showes that the mapping φ 7→ φ(A) is compatible with multiplications.
Finally, we shall show that φ(A) ∈ A′′. Clearly, s(A) ∈ A′′ for s ∈

C[z1, . . . , zn]. If C ∈ A′ ⊆
⋂n
i=1 (TiT

+
i )
′
, then Θ(C) ∈ Θ(A)

′
because Θ is

a homomorphism. By the spectral theorem in Hilbert spaces Θ(C) commutes
with E(∆) for all Borel sets ∆ and by Proposition 3.1.4 Θ(C) commutes with
all RiR

∗
i for i ∈ [1, n]Z. Consequently, it commutes with

D :=

∫ R

σ(Θ(A))

g dE.

According to Lemma 2.3.16 we then obtain

Ξ(D)C = Ξ(DΘ(C)) = Ξ(Θ(C)D) = CΞ(D).

Hence, Ξ(D) ∈ A′′ and altogether φ(A) ∈ A′′.
q

Definition 3.4.7. Let B(w) for w ∈ ZR
p be pairwise disjoint balls in Rn ⊆ Cn.

We endow the vector space FA with the norm

‖φ‖FA
:= sup

z∈σ(Θ(A))\ZR
p

|φ(z)|+
∑
w∈ZR

p

max
α∈Idp(w)

|φ(w)α|+
∑
w∈Zi

p

max
α∈Îdp(w)

|φ(w)α|

+
∑
w∈ZR

p

w non isolated

sup
z∈B(w)

∣∣∣∣∣∣∣∣∣∣
φ(z)−

∑
β∈Îdp(w)

(
φ(w)

)
β
(z −w)β

max
k∈[1,n]Z

|zk − wk|dpk(wk)

∣∣∣∣∣∣∣∣∣∣
Remark 3.4.8. If we choose a different family of balls in Definition 3.4.7, we
would obtain an equivalent norm.
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Lemma 3.4.9. Let ε > 0, L := Bε(σ(Θ(A))∪ZR
p ) and m := maxw∈ZR

p
|dp(w)|−

n+ 1. Furthermore let f be a sufficiently smooth function as in Definition 3.3.9
such that

‖f‖ := max
β∈Nn0
|β|≤m

sup
z∈L
|Dβf(z)|

is bounded. Then the mapping f 7→ fA is continuous.

Proof. Let w ∈ σ(Θ(A)) ∩ ZR
p , B(w) the corresponding ball as in Definition

3.4.7 and z ∈ B(w) \ {w}. Then we have∣∣∣∣fA(z)−
∑

β∈Îdp(w)

(
fA(w)

)
β
(z −w)β

∣∣∣∣ =

∣∣∣∣f(z)−
∑

β∈Îdp(w)

1

β!
Dβf(w)(z −w)β

∣∣∣∣
=

∣∣∣∣∣f(z) −
∑
β∈Nn0

|β|≤|dp(w)|−n

1

β!
Dβf(w)(z −w)β +

∑
β/∈Îdp(w)

|β|≤|dp(w)|−n

1

β!
Dβf(w)(z −w)β

∣∣∣∣∣
≤ |R|dp(w)|−n(z)| +

∣∣∣∣∣ ∑
β/∈Îdp(w)

|β|≤|dp(w)|−n

1

β!
Dβf(w)(z −w)β

∣∣∣∣∣
where R|dp(w)|−n(z) is the remainder of the Taylor approximation. For z ∈
B(w) \ {w} we can bound the remainder by

|R|dp(w)|−n(z)| ≤ sup
u∈B(w)

|β|=|dp(w)|−n+1

|Dβf(u)| n|dp(w)|−n+1

(|dp(w)| − n+ 1)!
‖z −w‖|dp(w)|−n+1

∞

≤ ‖f‖ n|dp(w)|−n+1

(|dp(w)| − n+ 1)!
c1 max
i∈[1,n]Z

|zi − wi|dpi (wi),

for some c1 > 0, which is independent of f . For the second summand we will
use that |(z − w)β | is an O(maxi∈[1,n]Z |zi − wi|dpi (wi)) for β /∈ Îdp(w) like we
already did in Example 3.3.20:∣∣∣∣∣ ∑

β/∈Îdp(w)

|β|≤|dp(w)|−n

1

β!
Dβf(w)(z −w)β

∣∣∣∣∣ ≤ max
β/∈Îdp(w)

|β|≤|dp(w)|−n

|Dβf(w)|c2 max
i∈[1,n]Z

|zi − wi|dpi (wi)

for some c2 > 0, which does not depend on f .
Altogether, for some Cw > 0 we have∣∣∣∣∣fA(z)−

∑
β∈Îdp(w)

(
fA(w)

)
β
(z −w)β

maxi∈[1,n]Z |zi − wi|dpi(wi)

∣∣∣∣∣ ≤ Cw ‖f‖ .
Consequently, for C :=

∑
w∈ZR

p
Cw we have ‖fA‖FA

≤ (1 + |Zp|+ C) ‖f‖.
q

Theorem 3.4.10. The functional calculus φ 7→ φ(A) defined in Definition
3.4.2 from (FA, ‖.‖FA

) into (Lb(K), ‖.‖Lb(K)) is continuous.
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Proof. Since Theorem 3.4.4 states that the concrete decomposition does not
affect the functional calculus, we will use a distinct decomposition in the follow-
ing.

As a first step we define a mapping which provides us with a polynomial s
of a decomposition of φ. Consider,

πp :

{ FA → Cm,
φ 7→

((
φ(w)

)
β∈Îdp(w)

)
w∈Zp

,

where m =
∑
w∈Zp

∏n
i=1 dpi(wi). Recall the mapping $ : C[z1, . . . , zn] → Cm

from Lemma 3.3.13 according to p. The lemma also states that the restriction
of $ to Pp is bijective. Hence, we can compose

$
∣∣
Pp

−1 ◦ πp :

{
FA → Pp,
φ 7→ s.

It can be easily seen that ‖πp(φ)‖∞,Cm ≤ ‖φ‖FA
. Hence, πp is continuous

as a linear mapping. Since every norm on Cm is equivalent, the continuity of
πp is independent of the chosen norm. The linearity and the finite dimensional

domain of $
∣∣
Pp

−1
implies its continuity for every norm on Pp. Consequently, the

composition $
∣∣
Pp

−1 ◦ πp is continuous.

We want to endow Pp with the norm from Lemma 3.4.9, and denote it by
‖.‖Pp

. Then we have

‖s‖Pp
=
∥∥∥$∣∣Pp

−1 ◦ πp(φ)
∥∥∥
Pp

≤ C̃ ‖φ‖FA

for some C̃ > 0.
Since φ− sA ∈ RA, Remark 3.3.16 and Lemma 3.4.1 provide a g such that

s, g is a decomposition of φ. In order to show that φ 7→ g is continuous, we
introduce a norm on the space of all such g:

‖g‖ := max

{
sup

z∈σ(Θ(A))\ZR
p

|g(z)|
}
∪
{
‖g(w)‖∞,Cn : w ∈ σ(Θ(A)) ∩ ZR

p

}
.

We distinguish between three cases:

• g on σ(Θ(A)) ∩ ZR
p

‖g(w)‖∞ = max
i∈[1,n]Z

|g(w)i| = max
i∈[1,n]Z

∣∣∣∣dpi(wi)!(φ− sA)(w)dpi(wi)ei

p
(dpi(wi))

i (wi)

∣∣∣∣
= max
i∈[1,n]Z

∣∣∣∣dpi(wi)!φ(w)dpi(wi)ei −D
dpi(wi)eis(w)

p
(dpi(wi))

i (wi)

∣∣∣∣
≤ max
i∈[1,n]Z

∣∣∣∣∣ dpi(wi)!

p
(dpi(wi))

i (wi)

∣∣∣∣∣ ( ‖φ(w)‖∞ + ‖s‖Pp

)
≤ Cw ‖φ‖FA

for some Cw > 0. For C1 := maxw∈σ(Θ(A))∩ZR
p
Cw we obtain

max
w∈σ(Θ(A))∩ZR

p

‖g(w)‖ ≤ C1 ‖φ‖FA
.
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• g on a neighborhood of σ(Θ(A)) ∩ ZR
p . According to Lemma 3.2.3 for

z ∈ σ(Θ(A)) the inequality ‖RiR∗i ‖ |
∑n
k=1 pk(zk)| ≥ |pi(zi)| holds true.

Consequently,

max
i∈[1,n]Z

‖RiR∗i ‖
∣∣∣ n∑
k=1

pk(zk)
∣∣∣ ≥ max

i∈[1,n]Z
|pi(zi)|.

Furthermore, there exists a rw > 0 such that for z ∈ Brw(w) we have
|pi(zi)| ≥ ci|zi−wi|dpi (wi) for some ci > 0 for every i ∈ [1, n]Z. This leads
to ∣∣∣ n∑

k=1

pk(zk)
∣∣∣ ≥ Dw max

i∈[1,n]Z
|zi − wi|dpi (wi)

for a certain Dw > 0 and z ∈ Brw(w). Therefore,

|g(z)| =
∣∣∣∣φ(z)− s(z)∑n

i=1 pi(zi)

∣∣∣∣ ≤
∣∣∣∣∣ φ(z)− s(z)

Dw maxi∈[1,n]Z |zi − wi|dpi (wi)

∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣
φ(z)−

∑
β∈Îdp(w)

(
φ(w)

)
β
(z −w)β

Dw max
k∈[1,n]Z

|zk − wk|dpk(wk)

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
s(z)−

∑
β∈Îdp(w)

(
φ(w)

)
β
(z −w)β

Dw max
k∈[1,n]Z

|zk − wk|dpk(wk)

∣∣∣∣∣∣∣∣∣∣
≤ 1

Dw
‖φ‖FA

+
1

Dw
‖sA‖FA

.

By Lemma 3.4.9, we have ‖sA‖FA
≤ Ĉ ‖s‖Pp

≤ ĈC̃ ‖φ‖FA
. This yields

|g(z)| ≤ Cw,2 ‖φ‖FA
.

Since Cw,2 is independent of z ∈ Brw(w) \ {w}, the inequality holds true
for all these z. Taking the maximum C2 of all Cw,2 for w ∈ ZR

p yields

|g(z)| ≤ C2 ‖φ‖FA
for all z ∈

⋃
w∈ZR

p

Brw(w) \ {w}.

• g on σ(Θ(A)) \
⋃
w∈ZR

p
Brw(w). Since zeros of

∑n
i=1 pi(zi) can only be in

ZR
p , we have |

∑n
i=1 pi(zi)| > d for a d > 0. Hence,

|g(z)| =
∣∣∣∣φ(z)− s(z)∑n

i=1 pi(zi)

∣∣∣∣ ≤ 1

d
(|φ(z)|+ |s(z)|) ≤ C3 ‖φ‖FA

.

Taking these three inequalities into account yields

‖g‖ ≤ max{C1, C2, C3} ‖φ‖FA
.

Therefore, we proved the continuity of φ 7→ g and the continuity of φ 7→ (s, g).
It is left to show that

(s, g) 7→ s(A) +

∫ R

σ(Θ(A))

g dE
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is continuous. The continuity of s 7→ s(A) for s ∈ Pp follows from dimPp <∞.
By the spectral theorem in Hilbert spaces we know that g 7→

∫
σ(Θ(A))\ZR

p
g dE

is continuous. Since the remaining part of
∫R
σ(Θ(A))

g dE is a finite sum we can

find a C > 0 such that∥∥∥∥∥∥
∑

w∈σ(Θ(A))∩ZR
p

n∑
i=1

g(w)iRiR
∗
iE{w}

∥∥∥∥∥∥ ≤ C ‖g‖ .
Hence (s, g) 7→ s(A) +

∫R
σ(Θ(A))

g dE is continuous and consequently φ 7→ φ(A)

is also continuous as a composition of continuous mappings.
q

3.5 Compatibility of the Spectral Theorem

In this section we want to regard the spectral calculus of a tuple A = (Ai)
n
i=1

compared to the spectral calculus of a fixed entry Ai of A. More precisely, we
want to check, if

φ(Ai) = (φ ◦ πi)(A),

where on the left-hand-side we use the functional calculus of Ai and on the
right-hand-side we use the functional calculus of A.

At first we have to define what we exactly mean by φ ◦ πi.

Example 3.5.1. Let f : C→ C be a holomorphic function and πi : Cn → C be
the projection on the i-th coordinate. Then we want to take a look at (f ◦πi)A:(

(f ◦ πi)A(z)
)
β

=
1

β!
Dβ(f ◦ πi)(z).

Since the entries zj for j 6= i do not affect the function f ◦ πi, the derivative in
these directions vanish. If β = βiei where ei = (δi,j)

n
j=1, then we have

1

β!
Dβ(f ◦ πi)(z) =

1

βi!
f (βi)(zi) = (fAi(zi))βi .

Therefore,

(
(f ◦ πi)A(z)

)
β

=

{
0, if ∃j 6= i : βj 6= 0,

(fAi(zi))βi , if β = βiei.

In view of Example 3.5.1 we want define an adequate function composition.

Definition 3.5.2. Let φ ∈ FAi and πi : Cn → C be the projection on the i-th
coordinate. We set φ ◦ πi(z) = φ(zi) for z ∈ σ(Θ(A)) \ ZR

p and

(
(φ ◦ πi)(z)

)
β

=

{
0, if ∃j 6= i : βj 6= 0,

(φ(zi))βi , if β = βiei.

for z ∈
(
σ(Θ(A)) ∩ ZR

p

)
∪̇ Z i

p and dom(φ ◦ πi) := π−1(domφ).
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Remark 3.5.3. For a holomorphic function f : C→ C we obtain from Example
3.5.1 and Definition 3.5.2

(f ◦ πi)A = fAi ◦ πi.

Furthermore, the composition defined in Definition 3.5.2 is distributive, i.e. for
φ1, φ2 ∈ FAi we have

(φ1 + φ2) ◦ πi = (φ1 ◦ πi) + (φ2 ◦ πi),
(φ1 · φ2) ◦ πi = (φ1 ◦ πi) · (φ2 ◦ πi).

Lemma 3.5.4. Fix i ∈ [1, n]Z. If φ ∈ FAi then φ ◦ πi ∈ FA. For every
s ∈ C[z] such that φ− sAi ∈ RAi we have φ ◦ πi− (s ◦ πi)A ∈ RA. Moreover, if
φ = sAi + piAi · g is a decomposition for φ ∈ FAi in the sense of Lemma 3.4.1
then φ ◦πi = (s ◦πi)A+

∑n
k=1 pkA · ĝ is a decomposition for φ ◦πi ∈ FA, where

ĝ(z) =
pi(zi)∑n
k=1 pk(zk)

g(zi) for z ∈ σ(Θ(A)) \ ZR
p ,

and

ĝ(z)k =

{
g(zi), if k = i,

0, else,
for z ∈ σ(Θ(A)) ∩ ZR

p .

Proof. Recall that φ ◦ πi ∈ FA means nothing else but the fact that for every
ω ∈ ZR

p the term∣∣∣∣∣∣∣∣∣
φ ◦ πi(x)−

∑
β∈Idp(ω)

(
(φ ◦ πi)(ω)

)
β(x− ω)β

max
k∈[1,n]Z

|xk − ωk|dpk(ωk)

∣∣∣∣∣∣∣∣∣
is bounded for x ∈ Br(ω) \ {ω} ∩ σ(Θ(A)) for a sufficiently small r > 0. By
Definition 3.5.2,

(
(φ ◦ πi)(x)

)
β(x) = 0 if β 6= βiei. Hence, the sum can be

reduced to∣∣∣∣∣∣∣∣∣∣∣
φ(xi)−

dpi (ωi)∑
k=0

(
(φ)(ωi)

)
k(xk − ωk)k

max
k∈[1,n]Z

|xk − ωk|dpk(ωk)

∣∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣∣
φ(xi)−

dpi (ωi)∑
k=0

(
(φ)(ωi)

)
k(xk − ωk)k

|xi − ωi|dpi(ωi)

∣∣∣∣∣∣∣∣∣∣∣
.

Due to our assumption φ ∈ FAi there exists a r0 > 0 such that the right-hand-
side is bounded for xi ∈ Br0(ωi) \ {ωi} ∩ σ(Θi(Ai)). Consequently, the left-
hand-side is also bounded for x ∈ Br0(ω) \ {ω}∩σ(Θ(A)). Hence, φ ◦πi ∈ FA.

Let s ∈ C[z] be such that φ− sAi ∈ RAi . By definition

(φ ◦ πi(z)− (s ◦ πi)A(z))β =

{
0, if ∃j 6= i : βj 6= 0,

(φ(zi))βi − (sAi(zi))βi , if β = βiei.
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and consequently φ ◦ πi − sA ∈ RA.

Since s, g is a decomposition of φ, we have g(zi) = φ(zi)−s(zi)
pi(zi)

for zi ∈
σ(Θi(Ai)) \ ZR

pi ⊇ πi
(
σ(Θ(A)) \ ZR

p

)
. Lemma 3.2.3 guarantees that if z ∈

σ(Θ(A)) and pi(zi) = 0, then z ∈ ZR
p which justifies the definition

ĝ(z) =
pi(zi)∑n
k=1 pk(zk)

g(zi) =
pi(zi)∑n
k=1 pk(zk)

φ(zi)− s(zi)
pi(zi)

=
φ ◦ πi(z)− (s ◦ πi)(z)∑n

k=1 pk(zk)

for z ∈ σ(Θ(A))\ZR
p . Additionally we obtain from this equation that φ◦πi(z) =

sA(z) +
∑n
k=1 pkA(zk) · ĝ(z) holds true for z ∈ σ(Θ(A)) \ ZR

p .

For z ∈ σ(Θ(A)) ∩ ZR
p it is left to show

(φ ◦ πi − sA)(z)dpk(zk)ek =
p(dpk(zk))(zk)

dpk(zk)!
ĝ(z)k.

By definition for k 6= i both sides are equal to zero. For k = i

ĝ(z)i = g(zi) =
dpi(zi)!((φ(zi))dpi(zi)ei − (sAi(zi))dpi(zi)ei)

p(dpi(zi))(zi)

=
dpi(zi)!

p(dpi(zi))(zi)
(φ ◦ πi − (s ◦ πi)A)(z)dpi(zi)ei ,

which completes the proof.
q

Theorem 3.5.5. Let A = (Ai)
n
i=1 be a tuple of operators satisfying Assump-

tions 3.2.1, i ∈ [1, n]Z and φ ∈ FAi . Then

φ(Ai) = (φ ◦ πi)(A),

where both sides have to be understood in the sense of Definition 3.4.2 according
to the respective function class FAi and FA, and φ◦πi is defined as in Definition
3.5.2.

Proof. Let s, g be a decomposition of φ in the sense of Lemma 3.4.1. By
Lemma 3.5.4 we have s ◦ πi, ĝ as a decomposition for φ ◦ πi.

We will extend g to R by setting g(z) = 0 for all z ∈ R \ σ(Θi(Ai)). By
Remark 3.4.3, we obtain

φ(Ai) = s(Ai) + Ξi

(∫
R
g dEii

)
(1.6)
= s(Ai) + Ξi

(∫
Rn
g ◦ πi dEi

)
.

Applying the identity (3.7) yields

φ(Ai) = s(Ai) + Ξ
(
RiR

∗
i

∫
Rn
g ◦ πi dE

)
.

We can split up Rn in ZR
p ∪̇

(
Rn \ZR

p

)
and use the fact

∫
∆
f dE =

∫
∆
1∆f dE =

E(∆)
∫

∆
f dE in order to obtain

φ(Ai) = s(Ai) + Ξ

(
RiR

∗
iE
(
Rn \ ZR

p

) ∫
Rn\ZR

p

g ◦ πi dE +RiR
∗
i

∫
ZR

p

g ◦ πi dE

)
.
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By Corollary 3.2.5, we have RiR
∗
iE
(
Rn \ ZR

p

)
=
∫
Rn\ZR

p

pi∑n
k=1 pk

dE. Hence,

φ(Ai) = s(Ai) + Ξ

( ∫
Rn\ZR

p

pi∑n
k=1 pk

dE

∫
Rn\ZR

p

g ◦ πi dE +
∑

w∈σ(Θ(A))∩ZR
p

RiR
∗
iE({w})g(w)i

)
.

Using the compatibility with multiplications of the integral and the definition
of ĝ we obtain

φ(Ai) = s(Ai) + Ξ

(∫
Rn\ZR

p

ĝ dE +
∑

w∈σ(Θ(A))∩ZR
p

n∑
k=1

ĝ(w)kRkR
∗
kE({w})

)
,

which is by defintion nothing else but

φ(Ai) = s ◦ πi(A) +

∫ R

σ(Θ(A))

ĝ dE = (φ ◦ πi)(A).

q

3.6 Spectrum

In this section we will show that only the values of φ ∈ FA on σ(A) are essential
for our functional calculus. This means that if φ1, φ2 ∈ FA differ only on(
σ(Θ(A)) ∪ Zp

)
\ σ(A), then φ1(A) = φ2(A).

Remark 3.6.1. Let w ∈ Zp be an isolated point of σ(Θ(A)) ∪ Zp and let
e = 1A the multiplicative neutral element of FA. Then by Example 3.3.19, δwe
belongs to FA. Since δwe · δwe = δwe the corresponding operator δwe(A) is a
projection.

Furthermore let λ ∈ Cn \ {w} and s(z) := z − λ and si(z) := zi − λi for
all i ∈ [1, n]Z. Then there exists an i ∈ [1, n]Z such that si(w) 6= 0. For this
i ∈ [1, n]Z we have (siAδwe)(.) = δw(.)siA(w) where siA(w) is invertible in
C(w) because of siA(w)0 6= 0. Let b denote its inverse. Then we have

siAδwe · δwb = δwe.

We see that Ai
∣∣
ran δwe(A)

− λi has δwb(A)
∣∣
ran δwe(A)

as its inverse operator.

By Remark 1.3.18 also A
∣∣
ran δwe(A)

− λ is invertible, where A
∣∣
ran δwe(A)

:=(
Ai
∣∣
ran δwe(A)

)n
i=1

. Since λ was arbitrary in Cn\{w}, we conclude that the spec-

trum σ
(
A
∣∣
ran δwe(A)

)
can only contain w or in other words σ

(
A
∣∣
ran δwe(A)

)
⊆

{w}.

Lemma 3.6.2. Let φ ∈ FA. If φ(z) = 0 for all z ∈ σ(A), then φ(A) = 0.

Proof. As σ(Θ(A)) ⊆ σ(A) every w ∈ Zp \ σ(A) is an isolated point of
σ(Θ(A)) ∪ Zp. We can apply Remark 3.6.1. By assumption the operator tuple
A−w is invertible. This implies the invertibility ofA

∣∣
ran δwe(A)

−w. By Remark

3.6.1 w was the only possible candidate for a spectral point of A
∣∣
ran δwe(A)

.

Hence, we obtain σ
(
A
∣∣
ran δwe(A)

)
= ∅. By Corollary 1.4.5, this is only possible

if ran δwe(A) = {0}. Thus, δwe(A) = 0.
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By our assumptions φ can be written as
∑
w∈Zp\σ(A) δwφ(w) which implies

φ(A) =
∑

w∈Zp\σ(A)

δwφ(w)(A) =
∑

w∈Zp\σ(A)

φ(w)δwe(A) = 0

q

Since Lemma 3.6.2 tells us that φ(A) depends only on φ’s values on σ(A)
we can redefine the domain of the functions in FA.

Definition 3.6.3. We will redefine the set FA. In fact, let FA contain all
functions φ with domain σ(A) such that φ(z) ∈ C(z) – see Definition 3.3.6 –,
such that z 7→ φ(z) is measurable and bounded on σ(A) \ Zp and such that
(3.10) is locally bounded at w for all w ∈ σ(A) ∩ ZR

p , which are non-isolated.
We will also redefine fA. We reduce the conditions of Definition 3.3.9 to

σ(A) ⊆ dom f and the requested differentiability (holomorphy) is only necessary
for points of ZR

p (Z i
p) which also belong to σ(A). Hence, we define

fA(z) :=



f(z), if z ∈ σ(A) \ Zp,(
1
β!D

βf(z)

)
β∈Idp(z)

, if z ∈ σ(A) ∩ ZR
p ,(

1
β!D

βf(z)

)
β∈Îdp(z)

, if z ∈ σ(A) ∩ Z i
p.

Remark 3.6.4. In fact, the redefined FA contains all functions φ such that φ̂
defined by

φ̂(z) :=

{
φ(z), if z ∈ σ(A) ,

e, else,

is an element of the previous definition of FA – see Definition 3.3.18 – where e
is the neutral element of C(z).

Definition 3.6.5. For convenience we define φ(A) as φ̂(A), where φ̂ is the
mapping in Remark 3.6.4 and φ ∈ FA – Definition 3.6.3.

Remark 3.6.6. It is easy to check that the mapping φ 7→ φ̂ − 0̂ from the
new to the old definition of FA is a ∗-homomorphism. By Lemma 3.6.2 the
zero mapping 0 satisfies 0(A) := 0̂(A) = 0. This yields (φ̂− 0̂)(A) = φ̂(A) and

φ 7→ φ(A) is the composition of the ∗-homomorphisms φ 7→ φ̂−0̂ and φ̂ 7→ φ̂(A).
Hence, the functional calculus φ 7→ φ(A) is also a ∗-homomorphism.

Lemma 3.6.7. If φ is an element of the redefined set FA – Definition 3.6.3 –
such that φ(z) is invertible in C(z) for all z ∈ σ(A) and such that 0 does not
belong to the closure of φ(σ(A) \ ZR

p ), then φ(A) is invertible.

Proof. Let φ̂ be defined as in Remark 3.6.4. Then φ̂ satisfies all conditions of
Lemma 3.3.22 and therefore φ−1 = (φ̂)−1

∣∣
σ(A)

∈ FA. The functional calculus

yields

φ(A)φ−1(A) = φφ−1(A) = 1A(A) = I.

q



4 SPECTRAL THEOREM FOR NORMAL OPERATORS 66

4 Spectral Theorem for Normal Operators

In this section we will use the Spectral Calculus for families of definitizable self-
adjoint operators presented in Section 3.4 to introduce a Spectral Theorem for
definitizable normal operators.

4.1 Spectral Theorem

Definition 4.1.1. Let K be a Krein space. A normal operator N ∈ Lb(K) is

called definitizable if the self-adjoint operators A1 := N+N+

2 and A2 := N−N+

2i
are both definitizable.

Assumptions 4.1.2. Let N be a normal definitizable operator. We will define

A = (A1, A2) :=
(
N+N+

2 , N−N
+

2i

)
and p = (p1, p2) where pi is a definitizing

polynomial of Ai. Furthermore, we define the mapping ι : C2 → C, z 7→ z1+iz2.

Theorem 4.1.3. Let N be normal and definitizable operator in a Krein space
K and A1, A2 the corresponding real and imaginary part of N . Then we have

σ(N) = ι(σ(A)).

Proof. If λ /∈ σ(N), then T := (N − λ)−1 exists. For every λ ∈ C2 which
fulfills ι(λ) = λ we have

(A1 + iA2 − ι(λ))T = I.

Defining B := (T, iT ) we get

(A− λ) ·B = (A1 − λ1)T + (A2 − λ2)iT = (A1 + iA2 − (λ1 + iλ2)︸ ︷︷ ︸
=ι(λ)

)T

= (A1 + iA2 − λ)T = I.

Similarly, B · (A−λ) = I. Thus, (A−λ) is invertible. Therefore, we conclude
λ /∈ ι(σ(A)).

On the other hand let λ /∈ ι(σ(A)). Then f(z) := ι(z) − λ 6= 0 for z ∈ σ(A)
and fA belongs to FA. Therefore, fA has a multiplicative inverse (fA)−1 ∈ FA.
Since fA(N) = N − λ, we have

(fA)−1(N) = (N − λ)−1

and consequently λ /∈ σ(N).
q

Definition 4.1.4. Let f : D ⊆ C → C be a function such that σ(N) ⊆ D
and such that D contains an open neighborhood of ι(Zp). Furthermore let
f be maxw∈ZR

p
|dp(w)| − 1 times continuously real differentiable in an open
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neighborhood of ι(ZR
p ) and holomorphic in an open neighborhood of ι(Z i

p).
Then f can be considered as an element of fN of MA

fN (z) :=



f ◦ ι(z), if z ∈ σ(A) \ Zp,(
1
β!D

βf ◦ ι(z)

)
β∈Idp(z)

, if z ∈ ZR
p ,(

1
β!D

βf ◦ ι(z)

)
β∈Îdp(z)

, if z ∈ Z i
p,

For z ∈ ZR
p the derivative should be understood in the sense of real derivation

and for z ∈ Z i
p it is a complex derivative.

Lemma 4.1.5. If f satisfy all conditions of Definition 4.1.4, then fN ∈ FA.

Proof. By definition fN =
(
f ◦ ι

∣∣
ι−1(dom f)

)
A

and
(
f ◦ ι

∣∣
ι−1(dom f)

)
satisfies all

conditions of Lemma 3.3.21 which implies that fN =
(
f ◦ ι

∣∣
ι−1(dom f)

)
A
∈ FA.

q

Definition 4.1.6. Let N be normal definitizable operator, which fulfills As-
sumptions 4.1.2, and φ ∈ FA. We define

φ(N) := φ(A).
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