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Kurzfassung

Für mobile Roboter, die sich in Umgebungen mit Menschen bewegen, ist es wichtig, die
Position von Personen in ihrer Umgebung wahrzunehmen, sodass sich ein Roboter sicher
bewegen kann. Um die Position einer Person stabil schätzen zu können, ist es erforderlich,
sie nicht nur mit Sensoren wie Kameras oder Laserscannern zu erfassen, sondern auch
Messungen verschiedener Sensoren über die Zeit zu kombinieren. Diese Diplomarbeit
beschäftigt sich mit solchen Schätzungen für mehrere Personen.
Um die Position einer Person unter der Einbeziehung von Detektionen verschiedener
Sensoren zu schätzen wird ein Partikel-Filter verwendet. Im Gegensatz zu Kalman
Filter haben Partikel-Filter den Vorteil, dass diese auch beliebige, multimodale Wahr-
scheinlichkeitsverteilungen repräsentieren können. Das Filter benötigt ein menschliches
Bewegungsmodell, um die Bewegung einer Person zu schätzen. In dieser Arbeit stellen wir
einen neuen Ansatz basierend auf statischen Karten und historischen Daten vor, um die
Qualität der Vorhersage im Gegensatz zu typischen, bisher verwendeten State-of-the-Art
Ansätzen wie Constant-Velocity und Coordinated-Turn zu verbessern.
Um den Ansatz auf mehrere Personen zu erweitern, wird die Nearest-Neighbor-Data-
Association Strategie verwendet, welche Detektionen zu existierenden Tracks zuordnet.
Für das Initialisieren neuen Tracks auf Basis neu detektierter Personen beziehungsweise
für das Löschen von veralteten Tracks werden gängige Lösungen aus der Literatur ver-
wendet.
Um den Ansatz auszuwerten, wurde zunächst die Vorhersage-Qualität des vorgestellten
Bewegungsmodells mit dem Constant-Velocity und dem Coordinated-Turn Bewegungsmo-
dell in bestimmten Szenarien verglichen. Die Ergebnisse legen nahe, dass das vorgestellte
Bewegungsmodell wesentlich bessere Vorhersagen liefert. Darüber hinaus wurden zwei
reale People-Tracking-Szenarien getestet, um die allgemeine Tracking-Qualität zu be-
urteilen. Zu diesem Zweck wurden wieder die drei oben genannten Bewegungsmodelle
verglichen. Die Ergebnisse zeigen, dass bei ausreichend hoher Frequenz and Detektionen
das Bewegungsmodell einen relativ geringen Einfluss auf die Tracking Qualität hat,
jedoch kann das vorgestellte Bewegungsmodell durch die genauere Vorhersage fehlende
Detektionen besser ausgleichen.
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Abstract

For mobile robots moving in environments alongside humans, it is crucial to perceive the
location of people in their surroundings, such that a robot can move safely around them.
In order to keep a stable estimate of a person’s position it is required to not only detect
them with sensors such as cameras or laser scanners, but also to combine measurements
of different sensors over time. This thesis is concerned with such estimates for multiple
people.
To estimate the position of a single person over time, incorporating detections acquired
from different sensors, we apply particle filtering for state estimation. Particle filtering
holds the advantage to be able to represent arbitrary multi-modal probability distributions
in comparison with Kalman filtering. The filter requires a human motion model in order
to forward predict the movement of a person. In this work, a novel approach based on
static maps and historical data is introduced, in order to improve the prediction quality in
contrast to typical state of the art approaches applying constant velocity or coordinated
turn motion models.
To extend to multiple persons, well known nearest neighbor data association is applied
which assigns received detections to existing tracks. In order to initialize tracks for
newly observed people, as well as to delete obsolete tracks we apply common techniques
proposed in literature.
To evaluate the approach we first compared forward prediction behavior of the proposed
motion model with constant velocity and coordinated turn models in specific map
scenarios, suggesting that the proposed motion model provides significantly better
forward prediction. Furthermore, we tested two real world people tracking scenarios
to assess overall tracking performance. We again compared the three motion models
mentioned above, which show that if detections occur frequently enough, the motion
model has a small influence on tracking quality, however using a more accurate model
enables the filter to compensate for missing detections.
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CHAPTER 1
Introduction

Mobile robotics is currently a very active field of research and engineering with a broad
range of applications. Besides autonomous cars [Thr10], smaller mobile robots for tasks
like transportation of goods1, guidance or in home care assistance [FEP+16] increase in
popularity. A significant factor for the success of such vehicles is the ability to complete
their task in populated areas, alongside humans or in collaboration. To achieve this,
a robot has to keep track of people in its surroundings. This work is concerned with
an approach for tracking people near the robots location incorporating detections from
different sensors.

1.1 Problem Statement

An autonomous vehicle in human environments requires the vehicle to be aware of people
and adjust its behavior in order to move safely around humans or interact with them
[KPAK13]. This awareness can be split into two parts, namely detection and tracking.
The detection itself uses algorithms to identify people in sensor data e.g. from laser range
finders [AMB07] or cameras [DT05, ML12]. After the detection process, the robot is only
aware that there is a person at a certain position during the time of the sensor readings.
However, the robot does not know whether the detected person is the same as in previous
detections independent of whether he/she moved or not, furthermore every detector gives
an estimate by itself ignoring possible other detections of the same person. This is where
the tracking algorithm comes into play. It merges single detections of the same person,
of several detectors, over time into a track. A track is therefore the current state (e.g.
position and velocity) of a person based on its previous state estimates and the current
detections. Therefore, as illustrated in Figure 1.1 the tracking algorithm receives several
detector outputs as an input and provides a combined estimate of a all persons in the

1https://www2.ffg.at/verkehr/projekte.php?id=1423
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1. Introduction

robots vicinity based on the detections and information from previous time steps. In this
thesis we are mainly concerned with the tracking part assuming that the detections are
provided as an input. The tracking procedure can be split into four parts:

• Forward prediction:
Predict next track state using a human motion model.

• Data association:
Match received detections with existing tracks.

• Detection integration:
Correct the predicted state incorporating the assigned detections.

• Track management:
Create new tracks, if no existing tracks match with detections. Delete tracks for
which no matching detections are received.

The track itself evolves over time using a model representing the human motion. Since
the robot does not know the persons intentions, it is reasonable for the motion model to
be of probabilistic nature to predict his/her next steps. Typically, a probabilistic filter is
used to incorporate forward prediction and detection integration. In addition, applying
sensor fusion, detections of multiple sensors can be integrated enabling the tracker to
compensate for faulty detections from single detectors providing a more reliable result.
Since fields of view differ for each sensor, sensor fusion can also enable the robot to
observe a larger portion of the environment. For data association, one has to define a
metric e.g. nearest neighbor data association as applied in [BH10], matching detections
and tracks. On that basis, it can then be decided which forward predicted tracks should
be corrected by which detection and furthermore, whether new tracks should be created
or existing ones should be deleted by the track management.

1.2 Aim of the Work
This work proposes a novel approach to people tracking on a mobile robot, incorporating
an advanced human motion model. In contrast to previously proposed people tracking
implementations using a simple constant velocity model, or similar, for human motion
(see Section 3.3), an advanced map based human motion model incorporating statistical
data is developed and used for forward prediction of tracks. The model uses a grid map
to accumulate previously observed human detections in a histogram. From this, we get
probabilities of where the person will likely be in the next step. Since this type of model
does not necessarily lead to Gaussian distributions, nor linear motion, Kalman filtering is
only applicable through linearization, which leads to the choice of particle filtering in this
work. We intend to show that this type of model improves forward prediction accuracy
and hence also improves the overall tracking performance. To compare our approach to
existing ones, the tracker is implemented C++. Additionally, it is wrapped into a node
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detector 0

detector 1

...

detector n

People Tracking
tracked people

Figure 1.1: The people tracker integrates several detection algorithms to give a good
estimate of a person’s current position and velocity in the environment.

for the Robot Operating System (ROS)2 such that it can easily use detections provided
by other ROS nodes.

1.3 Methodological Approach

In a first step a literature review is deducted, discussing state of the art approaches
to people tracking and corresponding people detection approaches. Furthermore, an
approach to people tracking is developed and implemented. Finally, a comparison between
different motion models is conducted. We also assess tracking performance compared to
the existing SPENCER people tracking framework [LBLA16] using the CLEAR MOT
metrics [BS08].

• Review of used algorithms and state of the art
First, we review state of the art approaches to people tracking including current
detection techniques and their limitations. Furthermore, we discuss the theoretical
foundations of the data association and filtering methods adopted in the thesis.

• Creation of a human motion model based on statistical maps
Using recorded data of people, we create grid maps containing values of how many
people have been observed at a certain location, in the following referred to as heat

2http://www.ros.org
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1. Introduction

maps. From those maps we predict a person’s movement based on the surroundings
in the local neighborhood of his / her current position.

• Implementation of the people tracker using particle filters
The tracker implementation is split into three parts:

– Filtering approach for track representation: The tracks themselves are
implemented as particle filters using integrating detections assigned to them by
the data association and the human motion model to forward predict particle
movement representing a possible human position and velocity.

– Data association: In literature, several data association approaches are
proposed. We implement a rather simple nearest neighbor strategy to test our
overall implementation. In [LGA15] the authors show that nearest neighbor
data association can compete with more sophisticated approaches while being
less resource hungry.

– Track Management: Furthermore, we implement a strategy for creating
new tracks based on received detections that do not correspond to any of
the current tracks and deleting obsolete tracks for which no corresponding
detection is received.

• Comparison of forward prediction for different human motion models
To compare the performance of the proposed human motion model, to other typically
used models we choose specific map scenarios and record the particle distributions
of the forward prediction without incorporating any measurements.

• Comparison of tracking performance
We test the overall tracking performance of our approach utilizing the CLEAR
MOT metrics [BS08]. For comparison we use a prerecorded dataset and apply
our tracking approach with different motion models in use. The CLEAR MOT
evaluation enables comparison of the overall tracking performance with existing
work as proposed in papers [LBLA16] and [ML12].

1.4 Structure of the Work
The thesis is structured as follows. In Chapter 2 we discuss state of the art approaches
to people tracking, including an overview of commonly used detection algorithms. After-
wards, Chapter 3 discusses basic concepts later used in the introduced people tracking
approach. The concepts discussed include basics in probability theory, Bayesian filtering,
especially particle filtering, and commonly used motion models in people tracking. Fur-
thermore, we discuss the assignment problem solved by the Kuhn Munkres algorithm
[Kuh55] [Mun57] which is later used for data association. In addition, we introduce
the CLEAR MOT metrics [BS08] which are used to evaluate tracking performance. In
Chapter 4 we propose our approach to people tracking, including the construction of the
heat maps for the proposed motion model. Chapter 5 gives an overview of the mobile
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robot used to conduct our experiments and furthermore provides an overview of the
ROS packages implemented. The results for the motion model comparison and tracking
performance comparison conducted are presented and discussed in Chapter 6. Finally,
Chapter 7 concludes the thesis with a summary and an outlook on future work.
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CHAPTER 2
State of the Art

Several forms of people tracking can be distinguished. For example one might be inter-
ested in tracking a single person or multiple persons. In addition, one can track specific
movement patterns in 3D for gesture recognition or simply track 2D locations of people
on the ground plane. Furthermore, it can be necessary to explicitly identify a person in
scenarios in which the robot has to follow a specific person or interact with him / her.
Here, we consider people tracking where it is not necessary to identify a specific person
or movement pattern, but rather utilizing detections which provide the location of people
we keep track of their trajectories in 2D on the ground plane. Additionally the state of
the art review is restricted to tracking approaches based on Bayesian filtering.

Even though detection and tracking are not completely independent, we focus on state
of the art people tracking approaches which do not directly depend on the detection
methods used. Nevertheless, we give a brief review of detection approaches commonly
used in people tracking.

2.1 People Detection
People detection can be categorized based on the underlying sensor used. Commonly
used are 2D laser range finders, since they are already used for self localization, RGB
cameras or cameras with additional depth information including RGB-D cameras, e.g.
the Microsoft Kinect, or stereo cameras. In the following we will review state of the art
approaches to people detection based on those sensors. Furthermore, we discuss positive
and negative attributes of the particular approaches.

2.1.1 Laser Range Finder

Laser range finders obtain distance measurements using triangulation or time of flight
principles. Typically the output of a laser range finder is a 2D scan of the environment

7



2. State of the Art

Figure 2.1: This Figure shows a detected person using a leg detector based on [AMB07].
In red one can see the laser scan. The yellow dot marks a detected person with the 99%
covariance matrix visualized by the circle.

parallel to the ground plane, obtaining distance measurements within a field of view
of about 270°. Their accuracy and range are strong arguments for laser range finders.
Also lasers are more robust towards ambient conditions than cameras. Due to their 2D
scan, typically obtained at a small distance from the ground plane, lasers are commonly
used for detecting legs. An example visualization of legs detected in a scan is given in
Figure 2.1. Several publications [FHM02], [KLF+02], [SMC04], [TC05] detect legs by
identifying blobs of adjacent measurement beams. Those blobs are then classified as legs
depending on their shape and size. Arras et al. [AMB07] use a similar approach, but
apply machine learning techniques to train a classifier based on the features extracted
from the laser scan. To detect legs they first segment the scan through jump distances,
i.e. a set of beams is split if two adjacent beams are further away than a threshold.
To decide whether a set of beams corresponds to a leg, a boosted classifier of 14 single
feature classifiers is used. Examples of the features used are the radius of the cycle fitted
into the segment or the standard deviation of the points in the segment. Laser based
leg detection has several advantages. Lasers provide a wide field of view and both near
and far measurements. Typically laser based leg detectors provide a high detection rate
with the drawback of many false positives in environments with cylindric objects, such
as tables or chairs which can incorrectly be classified as legs.

2.1.2 RGB Cameras

To detect people in RGB images a histogram of oriented gradients (HOG) detector
proposed by Dalal and Triggs [DT05] is widely used. The basic idea is to divide the
image into small regions and accumulate a histogram of intensity gradient orientations.
Using a normalized version of the histograms in a larger spatial block serves as the
descriptor. Then a window size is defined and slid over the image while computing
descriptors and concatenating them into one feature vector. A SVM (Support Vector

8



2.1. People Detection

Figure 2.2: This Figure shows a person detected in an image by a deep learning based
pedestrian detector.

Machine) classifier is used to decide whether the feature vector corresponds to a person
or not. The HOG detector reached a miss rate of 0.1 in their own INRIA dataset at
10−4 false positives per window. Since the HOG detector computes features for the
whole human body, its detection rate decreases with occlusion scenarios like close range
detection. Due to the sliding window approach the HOG approach is computationally
expensive. Hence, practical implementations typically utilize a GPU. Prisacariu and Reid
present a GPU implementation, using the NVIDIA CUDA framework, called fastHOG
in [PR09] with the goal to be as close as possible to the sequential version in [DT05],
however increasing speed through parallelization. Hence, they assume that miss rate
and false positives are similar to the original algorithm in [DT05]. In [SL11] another
GPU based implementation is proposed, performing similarly on the INRIA dataset from
[DT05]. Additionally the authors propose geometric constraints to the image space based
on ground plane estimation. This way regions of interest can be identified leading to
significant speed up of the HOG detector.

Another approach to people detection in RGB images is the use of neural networks. An

9
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Figure 2.3: This Figure shows shows a color image on the left with its corresponding
depth map on the right obtained using an Intel RealSense ZR300 camera. In the depth
image the closer an object is to the camera, the brighter it appears.

example detection is shown in Figure 2.2 visualizing the detected bounding box. Recent
developments in object detection neural networks enable real-time object detections
[RDGF15], [RF16] turning them into a considerable option for people detection on mobile
robots. Of course neural networks solutions also depend on the availability of a modern
GPU like HOG detectors.

2.1.3 Depth Cameras

Figure 2.3 shows an example for RGB-D data providing an RGB color image as well as
the corresponding depth data, which is typically visualized as a gray scale image. In the
image closer objects appear brighter. RGB-D cameras are quite limited in range, as one
can also spot in the image since a lot of data points appear black. However, the depth
data obtained is rather accurate.

Spinello et al. [SA11] propose an approach utilizing depth orientation from RGB-D data
for a so called histogram of oriented depths (HOD), similar to the HOG detector which
works with intensity gradient orientation. The computation pipeline is equivalent to the
HOG detector, except for using oriented depth gradients. Additionally, they propose a
hybrid detector fusing RGB based HOG detections and their depth based HOD detector.
This approach is more robust towards illumination due to the depth data. In their
experiments HOD and the combined detector both outperform the traditional HOG
detector. Munaro et al. propose another RGB-D detection scheme in [MBM12]. They
remove the ground plane from the point cloud data received from the RGB-D camera
and cluster the remaining points. Those clusters are then filtered based on the result of
a HOG detector applied to the RGB image. The remaining clusters then correspond to
detected persons.

In [ML12] and [JML14] a depth based upper-body detector is proposed intended for close
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range detection. They utilize a learned depth template based on annotated upper body
examples. Using a sliding window approach, a similarity measure between the window
and the template is established. On that basis it can be decided whether their is a human
present in the current region. To increase performance they do not consider the whole
image but identify regions of interest by projecting the depth points onto the ground
plane and identifying connected components. There evaluation gives a recall of 0.8 with
0.4 false positives per image at a range of up to 7 meters. Lower range results in higher
recall, whereas it decreases towards higher ranges.

2.2 People Tracking

Many approaches to people tracking based on Bayesian filtering for movement prediction
and measurement integration use concepts originating in radar target tracking. Basic
techniques can be found in [BSLK04]. Also the survey series by Li and Jilkov provide
valuable information on target tracking, for example describing common motion models
[LJ03] and observation models [LJ01] used in target tracking which also occur in work
on people tracking.

In [BH10], Bellotto and Hu give a comparison of filtering techniques for people tracking
with a mobile robot. The tracker gets detection measurements from a laser based leg
detector and a face recognition algorithm for RGB images. For the prediction a constant
velocity model with zero-mean, Gaussian noise is used. To keep computational com-
plexity low, they employ nearest-neighbor data association depending on the expected
measurement of a track. New tracks are generated for three consecutive measurements
on a possible human path which do not match with any existing track. If a track is not
updated by measurements for a certain time, or its covariance reaches a certain limit
it is deleted. Their results show that given their detection models and the constant
velocity motion model an unscented Kalman filter (UKF) performs similarly well as the
particle filter. In [DBJH15], a similar approach is implemented with the extension of
nearest-neighbor joint probability data association (NNJPDA). The NNJPDA [BSDH09]
is an approach to compute an estimate of the probability that a certain measurement
corresponds to a certain object under the condition that the remaining measurements
are assigned to specific other objects, assuming that the number of objects is known.
The NNJPDA gives more reliable results under the cost of computational efficiency. The
authors of [SBFC03] propose to use particle filters instead of Kalman filters in a sample
based approach, arguing that particle filters provide better density estimates, since they
are not restricted to Gaussian distributions. As a motion model they assume that a person
adjusts his/her velocity and direction based on Gaussian distributions. To determine
the number of tracks, the maximum likelihood given the number of measurements is
estimated based on a learned distribution during test runs. Arras et al. [AGLB08] apply
multi-hypothesis tracking [Rei78], [CH96] (MHT). Analogously to other implementations,
they employ Kalman filters and a constant velocity human motion model. The difference
lies in the multi-hypothesis data association strategy which also takes care of track

11



2. State of the Art

creation and deletion. As implied by the name, each track is represented by several
possible hypotheses matching measurements to tracks, obviously leading to higher com-
plexity depending on the number of hypotheses kept per track. In the European research
project SPENCER, Linder et al. introduced a people tracking framework [LBLA16] for
ROS [Fou17] implementing and comparing several tracking approaches. They compared
two nearest-neighbor tracking approaches [DBJH15] [LGA15] and a multi-hypothesis
tracker [AGLB08]. Their findings suggest that using a more simple data association
technique in nearest-neighbor data association with advanced logic for track creation and
deletion is not only computationally inexpensive but also performs best in most scenarios.
The authors of [MBM12] also rely on nearest neighbor data association based on the
implementations of Munkres algorithm in [KUS03]. For the cost of assigning a detection
to a track they do not simply rely on Euclidean or Mahalanobis distance, but additionally
utilize an online color classifier for every track and the likelihood obtained from a detector.
The color classifier helps to distinguish people standing next to each other and to separate
a person from the background clutter. To perform forward prediction and measurement
integration an unscented Kalman filter is applied with a constant velocity motion model.

The previous people tracking approaches have in common that they all rely on a constant
velocity motion model for forward prediction. The assumption of constant velocity is
often violated by humans which for example cross into a room or quickly adjust their
direction to avoid bumping into one another. In [OTWD04] Oh et al. suggest to use
map based priors in Bayesian filtering to utilize known locations in a map where humans
are more likely to move towards. Their results show that such priors improve tracking
performance if sensor readings are unreliable at times. Similarly graphs generated from
maps modeling the environment are used in [LFH+03] and [AM15]. Another approach is
to learn human motion as Hidden Markov Models (HMM) from observed trajectories
using expectation maximization (EM) as done by Bennewitz et al. in [BBCT05] or
recurrent neural networks [AGR+16]. Influence of the environment can also be modeled
by forces pushing humans away from each other or from static objects. In [AS08] the
authors propose to use different kinds of force fields based on static obstacles, more
frequent paths and crowd behavior around an individual. Luber et al. [LSTA10] also
consider forces influencing the motion of people. Their work is based on a social force
model [HFMV02] which incorporates both, humans and static objects in the vicinity of a
person.

2.3 Summary

In this Chapter we discussed state of the art approaches to both people detection and
people tracking. A lot of work has been done in order to detect people using different
sensors and algorithms. Considering the drawbacks each sensor inherits to the detection
algorithms, it makes sense to combine one approach from each category such that they
compensate each other.

12



2.3. Summary

In people tracking we saw that most approaches [AGLB08], [MBM12], [LGA15], [DBJH15]
focus on Kalman filter, respectively nonlinear extensions, based state estimation for people
tracking utilizing a constant velocity motion model. However, results of [SBFC03] suggest
that particle filters provide more accurate posterior density estimation. Furthermore,
works on more advanced motion models such as [OTWD04] or [LSTA10] encourage the
use of improved motion priors to improve tracking performance. Hence, the approach
in this thesis focuses on particle filtering and proposes a novel motion model based on
maps and historical data, while incorporating several detectors to compensate for their
individual weaknesses.

In the following Chapter, theoretical background knowledge needed for the introduced
people tracking approach, as well as the notation used throughout the thesis will be
established.

13





CHAPTER 3
Background

In this chapter we discuss general concepts underlying the introduced approach to people
tracking. We consider essential material in probability theory in Section 3.1 to provide
common terminology. In order to later introduce a probabilistic model for people tracking
we cover Bayesian filtering and specifically particle filtering in Section 3.2. Furthermore,
typically used models for human motion, without knowing the persons intentions are
provided in Section 3.3 which we will use for comparison with the model later introduced
in this thesis. In order to apply nearest neighbor data association in the proposed
people tracking algorithm and receive the best possible assignment one needs to solve
the assignment problem which is described in Section 3.4 featuring the Kuhn Munkres
algorithm as a solution. Finally, the CLEAR multi object tracking (MOT) metrics [BS08]
are introduced in Section 3.5 which are used to evaluate the overall tracking performance
of the proposed approach.

3.1 Probability Theory
In this section basic concepts in probability theory needed for the notion of Bayesian
filtering are introduced. Since notation differs throughout literature, it is convenient to
define common terminology and equations used in the rest of the thesis. The following is
based on [HM14] and [Gri17].

First we define random variables. A random variable is defined as a function assigning
real values to outcomes of a random experiment, i.e. x : Ω 7→ R where Ω is the set off all
possible outcomes. The set Ω is also called the certain event, since the outcome of the
experiment is always an element of Ω. The probability of an event A ⊆ Ω is then defined
by the Kolmogorov axioms:

1. The probability of an event is always non-negative P{A} ≥ 0
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3. Background

2. The probability of the certain event is one: P{Ω} = 1

3. If Ai for i ∈ N are mutually exclusive events, i.e. disjoint sets Ai ∩ Aj = ∅, i 6= j

then P{
⋃
i∈N
Ai} =

∑
i∈N

P{Ai}

Subsequently, we will denote random vectors in bold font containing several scalar
random variables x = [x1, x2, . . . , xN]. Furthermore, deterministic vectors and variables
are denoted as x = [x1, x2, . . . , xN ]ᵀ. In the following we will focus on the more general
case of random vectors, since we will work with vectors and matrices. Now we can define
the cumulative distribution function (cdf) for a vector of random variables:

Fx(x) = P{
N⋂
i=1

(xi ≤ xi)} (3.1)

Cumulative distribution functions are always monotonically increasing in any argument
and bounded by the range [0, 1]. The probability density function (pdf) of a random
vector for differentiable cdfs is then defined as:

fx(x) = d

dx
Fx(x) = ∂

∂x1

∂

∂x2
. . .

∂

∂xN
Fx(x) (3.2)

The pdf of a random vector is always nonnegative. Furthermore, its integral over the
whole N-dimensional space RN is one.

∫
RN

fx(x)dx = 1 (3.3)

Using the pdf one can define the expectation operator for one random variable, which
gives the mean or expected value of the variable, and consequently a vector of random
variables as follows:

µx = E{x} =
∫ ∞
−∞

xfx(x)dx (3.4)

µx = E{x} = [E{x1},E{x2}, . . . ,E{xN}]ᵀ (3.5)

µx = E{x} =
∫ ∞
−∞

xfx(x)dx (3.6)

The expectation operator is a linear operator, i.e. E{ax + by} = aE{x}+ bE{y}, which
immediately follows from the linearity of integration. Besides the mean we additionally
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3.1. Probability Theory

define the N × N covariance matrix Cx as an important measure of random vectors.
The entries of the covariance matrix are given by the pairwise covariance of the random
variables in the vector Cxi,xj . In the special case where i = j the entries correspondent to
the variance σ2

xi . Here fxixj(xi, xj) is the marginal pdf obtained by integrating over the
subset containing all random variables except xi and xj.

Cxi,xj = E{(xi − µxi)(xj − µxj)} (3.7)

=
∫ ∞
−∞

∫ ∞
−∞

(xi − µxi)(xj − µxj)fxixj(xixj)dxidxj

Cx = E{(x− µx)(x− µx)ᵀ} (3.8)

=
∫
RN

(x− µx)(x− µx)ᵀfx(x)dx (3.9)

The variance of a single random variable describes how far a set of randomly drawn
samples of the distribution is spread around the mean. The covariance between two
distinct random variables in the vector is a measure of whether they show similar behavior.
A positive covariance value means if one variable has a large value the other one does
so too. Contrarily if the covariance is negative, large values of one variable imply small
values of the other one.
Similarly, one can define the correlation matrix:

Rx = E{xxᵀ} (3.10)

=
∫
RN
xxᵀfx(x)dx (3.11)

The correlation matrix is related to the covariance matrix through the mean:

Rx = Cx + µxµ
ᵀ
x (3.12)

To talk about statistical dependence lets consider two disjoint random vectors x1 of
length N1 and x2 of length N2. If x1 is statistically dependent on x2, it is interesting to
consider the probability of an event given that we already know the value of x2 = x2.
This leads to the notion of conditional probability. Let R1 be an arbitrary region in RN1 .
Then the conditional probability of x1 being in the region R1 given x2 = x2, under the
condition that fx2(x2) > 0, is:

P{x1 ∈ R1|x2 = x2} =
∫
R1
fx1,x2(x1,x2)dx1

fx2(x2) (3.13)

This result can be obtained using a limit argument where x2 ≤ x2 ≤ (x2 + ∆x2) and
∆x2 → 0. Here fx1,x2(x1,x2) is the joint pdf of x1 and x2, i.e. fx(x) where x is a random
vector containing both x1 and x2. From (3.13) we get the conditional pdf of x1 given x2.

fx1|x2(x1|x2) = fx1,x2(x1,x2)
fx2(x2) (3.14)
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3. Background

The conditional pdf for x2 is analogously obtained as:

fx2|x1(x2|x1) = fx1,x2(x1,x2)
fx1(x1) (3.15)

From equations (3.14) and (3.15) it follows that:

fx1,x2(x1,x2) = fx1|x2(x1|x2)fx2(x2) = fx2|x1(x2|x1)fx1(x1) (3.16)

With the notion of conditional pdfs we are able to define two important theorems,
namely Bayes theorem and the total probability theorem. Bayes theorem is obtained by
rearranging Equation 3.16:

fx1|x2(x1|x2) = fx2|x1(x2|x1)fx1(x1)
fx2(x2) (3.17)

This relation is the key concept used in Bayes filtering. It allows to interchange condition-
ing, which is used in probabilistic inference. We discuss its application in Section 3.2. As
a remark please note that Bayes rule can be conditioned on arbitrary additional random
variables:

fx1|x2,y(x1|x2,y) = fx2|x1,y(x2|x1,y)
fx1|y(x1|y)
fx2|y(x2|y) (3.18)

This can easily be shown by using the definitions of conditional pdfs. Note that since we
use random vectors of arbitrary length, one can easily split a vector into two parts or
add another one. Therefore, given the conditional pdfs as:

fx1|x2,y(x1|x2,y) = fx1,x2,y(x1,x2,y)
fx2,y(x2,y) (3.19)

fx2|x1,y(x2|x1,y) = fx1,x2,y(x1,x2,y)
fx1,y(x1,y) (3.20)

fx1|y(x1|y) = fx1,y(x1,y)
fy(y) (3.21)

fx2|y(x2|y) = fx2,y(x2,y)
fy(y) (3.22)

We get a similar relation to Equation (3.16):

fx1,x2,y(x1,x2,y) = fx1|x2,y(x1|x2,y)fx2|y(x2|y) = fx2|x1,y(x2|x1,y)fx1|y(x1|y) (3.23)

Leading to the more general Bayes theorem:

fx1|x2,y(x1|x2,y) = fx2|x1,y(x2|x1,y)
fx1|y(x1|y)
fx2|y(x2|y) (3.24)
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Figure 3.1: Example of 2D Gaussian pdf

The total probability theorem also directly follows from (3.16) and relates the marginal
pdf to the conditional pdf stating that if you consider all possible values of the conditional
random variable you get the unconditional marginal pdf.

fx1(x1) =
∫
RN2

fx1|x2(x1|x2)fx2(x2)dx2 (3.25)

In case x1 and x2 are statistically independent, the conditional pdf is equivalent to the
marginal pdf:

fx1|x2(x1|x2) = fx1(x1) (3.26)
fx2|x1(x2|x1) = fx2(x2) (3.27)

One of the conditions in Equation (3.26) is sufficient since they imply each other. In
addition, it follows from (3.16) that the joint pdf can be obtained by multiplying the
marginals:

fx1,x2(x1,x2) = fx1(x1)fx2(x2) (3.28)

As an example distribution of random vectors we consider the multivariate Gaussian (or
normal) distribution commonly used to model noise in Bayesian filtering applications. It
is defined given a mean µx and a covariance matrix Cx and denoted as x ∼ N (µx,Cx).
The pdf is given as:

fx(x) = 1√
(2π)Ndet(Cx)

exp
(
−1

2(x− µx)ᵀC−1
x (x− µx)

)
(3.29)

Figure 3.1 shows an example of a multivariate Gaussian pdf with N = 2, µx1 = 1, µx2 = 2,
σ2

x1 = 4, σ2
x2 = 9 and a correlation coefficient ρx1,x2 = Cx1,x2

σx1 ,σx2
= 0.5. One can see that

the probability, defined by the volume under the curve, of the random variable x being
around the mean is high while it gets lower towards the borders of the plot. The right
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3. Background

plot in Figure 3.1 shows cuts of the 3D curve which are often utilized to visualize the
confidence, in the sense that one defines a fixed probability, i.e. 99% meaning x is inside
this ellipse with a probability of 0.99, which is more spread if the confidence is low.
Note that the major and minor axis of the ellipse are defined by the eigenvalues and
eigenvectors of the covariance matrix.

In this Section we focused on continuous random variables, nevertheless most of the
concepts introduced are also applicable to discrete random variables. The pdf of a discrete
random variable can be defined using the Dirac delta function δ(x):

fx(x) =
∑

x(i)∈X
px(x(i))δ(x− x(i)) (3.30)

Where px(x) is the probability mass function (pmf) of x for a finite or countably infinite
set X defined as:

px(x) =
{

P{x = x(i)}, x = x(i)

undefined, x /∈ X
(3.31)

In addition, we will not explicitly distinguish between discrete and continuous random
variables in the following sections since conceptually it does not make a difference.

3.2 Bayesian Filtering
In this section we introduce Bayesian filtering using the probabilistic concepts from
the previous Section 3.1. In general a Bayes filter estimates the conditional probability
distribution fxk|z1:k(xk|z1:k) of a state vector xk at time k under the condition of noisy
measurements from time 1 up to k z1:k, i.e. z1:k = z1, z2, ..., zk. This state is often called
belief state [TBF05]. Please note that we intentionally drop the input vector uk typically
involed in state estimation [TBF05], [RN16], due to unknown system inputs in object
tracking. In the context of people tracking one would like to know the current position
and velocity of a person at time k described by its state vector xk. The measurements
are received in form of detections using sensor data. Since detections are not always
accurate the state of a person can not be directly observed. The state evolution is
modeled by a dynamic Bayesian network (DBN). A Bayesian network is a directed
acyclic graph which models several random vectors, represented by the vertices, and their
conditional dependencies given by the edges. If there is an edge from x to z, x is a parent
of z. The probability distribution of a random vector is then conditioned on its parents.
Considering the previous example one would get fz|x(z|x). In the dynamic case these
relationships can change over time. The DBN modeling state estimation from uncertain
measurements is given in Figure 3.2. Estimation starts in the initial state x0 where no
measurement is present, and then evolves over time. Using this model it is assumed that
the random process of the state fulfills a first order Markov property. This means the
current state xk only depends on its immediate predecessor xk−1. The measurement zk
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only depends on the current state xk. As stated before we would like to estimate the
probability distribution of the current state observing the measurement:

fxk|z1:k(xk|z1:k) (3.32)

In the following we derive a recursive way of updating our belief state (3.32) as given
in [TBF05]. First Bayes theorem (3.24) is applied to calculate the belief state using the
measurement pdf assuming the state is known.

fxk|z1:k(xk|z1:k) = η fzk|xk,z1:k−1(zk|xk, z1:k−1)fxk|z1:k−1(xk|z1:k−1) (3.33)

η = 1
fzk|z1:k−1(xk|z1:k−1) (3.34)

Using that a node in a Bayesian network is conditionally independent of all other
predecessors given its parents [RN16] zk does not depend on any previous measurement
given the current state xk. Therefore we further simplify equation (3.33) to:

fxk|z1:k(xk|z1:k) = η fzk|xk
(zk|xk)fxk|z1:k−1(xk|z1:k−1) (3.35)

Then we use the total probability theorem (3.25) to introduce the recursion. Furthermore,
we again use conditional independence to simplify.

fxk|z1:k(xk|z1:k) = η fzk|xk
(zk|xk)

∫
RN

fxk|xk−1,z1:k−1(xk|xk−1, z1:k−1) (3.36)

fxk−1|z1:k−1(xk−1|zk−1)dxk−1

= η fzk|xk
(zk|xk)

∫
RN

fxk|xk−1(xk|xk−1) (3.37)

fxk−1|z1:k−1(xk−1|zk−1)dxk−1

Equation (3.37) now defines the recursive update incorporating the previous belief state
fxk−1|z1:k−1(xk−1|zk−1) and the measurement probability fzk|xk

(zk|xk). This recursion is
commonly split into two steps, namely a prediction step, forward predicting the state
and a correction step including the new measurement. Hence, the two steps are given as:

bel(xk) =
∫
RN

fxk|xk−1(xk|xk−1)bel(xk−1)dxk−1 (3.38)

bel(xk) = η fzk|xk
(zk|xk)bel(xk) (3.39)

3.2.1 Particle Filter

In this section we discuss a sampling based approximation for Bayesian filtering called
particle filtering or sequential Monte Carlo [DdFG01]. Due to the sample based rep-
resentation, particle filters are able to estimate nonlinear and non Gaussian posterior
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x0 . . . xk−1 xk xk+1 . . .

zk−1 zk zk+1

Figure 3.2: Dynamic Bayesian Network for Filtering

distributions in contrast to Kalman filters. However, depending on the complexity of the
posterior a large number of samples can be required, which results in high computational
complexity. Not relying on Gaussian distributions enables the key property to represent
multi-modal distributions, i.e. probability distributions with several maxima. In the
context of people tracking this means that the particle filter can represent belief states
giving locations of several people at the same time. Similarly, if a previously tracked
person is occluded or leaves the field of view of the robot, the multi-modal distribution
can represent several likely locations for that particular person.

The posterior is approximated by a set of weighted samples called particles, where
each one represents a possible state configuration. For an increasing number of particles,
the approximation gets closer to the actual distribution. By the nature of this approxima-
tion we work with discrete time probability distributions in form of their probability mass
function (pmf). For simplicity we still denote the pmf of x by fx(x) as in the continuous
case for the pdf. A formal argument for why the particle filter actually approximates the
belief state bel(xk) is given in [RN16] and its mathematical derivation in [Thr02].

In the following we describe the particle filter algorithm as depicted in [Thr02], referred
to as Bootstrap filter or recursive sampling importance resampling (SIR) in literature
[DdFG01] [Ber99] [AMGC02]. First we define the set of N particles at time step k as
Xk = {x0

k,x
1
k, . . .x

N−1
k } where the superscript denotes the index of the particles ranging

from 0 to N − 1. Algorithm 3.1 shows the pseudo code as described in [Thr02]. Please
note that we do not consider any system input here, since it is typically not available in
tracking applications. Before actually applying Algorithm 3.1 one has to first draw a
set of particles from the initial distribution. The initial distribution can be chosen as
uniform over the whole state space if there is no knowledge beforehand. Since in people
tracking, filters typically get initialized from a detection, one can choose a distribution
centered around that detection e.g. a Gaussian distribution. Starting from the initial
set of particles, Algorithm 3.1 can be applied at each time step. First, the algorithm
iterates through the set of all particles from the previous time step and samples new
ones from the state transition probability distribution (line 3). This corresponds to the
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Algorithm 3.1: General Particle Filter Algorithm as in [Thr02]
Input: Xk−1, zk
Output: Xk

1 X̄k = Xk = ∅;
2 for n = 0 to N − 1 do
3 sample xnk ∼ fxk|xk−1(xk|xnk−1);
4 wnk = fzk|xk

(zk|xnk);
5 X̄k = X̄k ∪ (xnk , wnk );
6 end
7 for n = 0 to N − 1 do
8 draw xik with probability ∝ wik from X̄k;
9 Xk = Xk ∪ xik;

10 end
11 return Xk

prediction step in the Bayes filter leading to bel(xk). Furthermore, the loop calculates
weights for each particle drawn based on the conditional pmf of the measurement given
the predicted particle xnk (line 4). The weighting essential for the particle filter to work,
applying the principle of importance sampling. Importance sampling enables one to
sample from a distribution, from which it is easy to draw samples, called the proposal
distribution and still approximating a different target distribution by accounting for the
difference through the weights. In the case of the particle filter one samples from the state
transition probability distribution typically modeled by a motion model and accounts for
the prediction error through the likelihood of a measurement given the predicted state.
Now each pair of particle and weight is added to the temporary set X̄k (line 5). In the
second for-loop the calculation of bel(xk) takes place, actually incorporating the observed
measurements. The loop draws N particles from the set X̄k with a probability according
to their weight (line 8) and adds them to the final set of particles Xk (line 9). This step
is called resampling, which makes sure that state configurations with higher probability
are represented by more particles. It avoids degeneracy of the particle set, i.e. containing
a single particle with high weight and a lot of particles with low weight not contributing
much to the posterior approximation.

There are several issues with the Bootstrap particle filter algorithm mostly caused
by the low number of particles used in a feasible implementation, that have to be ad-
dressed. First, due to sampling variance the distribution represented by the particles can
largely differ from the true distribution. This difference obviously lessens as the number
of samples increases. Here, the previously mentioned trade-off between an accurate
representation of the belief state and computational power comes into play to get a better
estimate. Another issue arises from the resampling step. Resampling reduces diversity in
particles by design to avoid degeneracy of the particle set. However, this loss in diversity
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introduces the problem of sample impoverishment [AMGC02]. Sample impoverishment
is most present in the case of low noise in forward prediction. In that case the particle
set degenerates into a set of equivalent particles after a few iterations which means the
whole distribution is represented by a single particle. Two common counter measures
as stated in [Thr02] are first to only resample if necessary, i.e. if the variance of the
particle set is low, resampling should not be applied and second to apply low variance
resampling. The low variance sampling algorithm as described in [Thr02] is stated in

Algorithm 3.2: Low Variance Sampling Algorithm as in [Thr02]
Input: Xk, Wk

Output: X̄k
1 X̄k = ∅;
2 r = rand(0;N−1);
3 c = w0

k;
4 i = 0;
5 for n = 0 to N − 1 do
6 U = r + n ∗N−1;
7 while U > c do
8 i = i+ 1;
9 c = c+ wik;

10 end
11 X̄k = X̄k ∪ xik;
12 end
13 return X̄k

Algorithm 3.2. The idea is to not randomly draw each particle proportionally to its
weight by itself, but rather draw all particles at once based on a single random number
r drawn uniform from the interval [0, N−1]. To do this, the algorithm repeatedly adds
N−1 to the initial random number (line 6) calculating U . Through the while loop (lines
7 to 10) the algorithm calculates the index of the next particle drawn by comparing
whether U exceeds the current weight sum in c. This makes sure that particles are drawn
proportional to their weight. The key advantage of the low variance sampling is that
if all weights are equal, the returned set X̄k is equal to the initial set of particles Xk.
Furthermore, the low variance sampling algorithm has an upper bound complexity of
O(N) instead of O(N log N) of individually drawing each particle on its own, which
requires drawing N random numbers and a search for the corresponding particle.

3.3 Motion Models for People Tracking

Applying Bayesian filtering to people tracking requires a motion model to predict future
steps of the tracked target. In case of particle filtering we utilize the motion models as
prior distribution to sample from. In this section we introduce commonly used motion
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models applied in people tracking. In contrast to state estimation in robot localization,
the models used naturally do not have a control input. The following sections are based
on the description in [LJ03] which is a survey of motion models used in target tracking
and the book of Bar-Shalom et al. [BSLK04].

Since the tracking approach taken in this thesis assumes that people move on the
floor, i.e. z = 0, we define the state of a person representing their 2D position and
velocity as x = [x, y, ẋ, ẏ]ᵀ. Please also note that we neglect the shape of a person and
only track his/her center point. Even though our tracking approach using particle filters
is not restricted to linear models, the commonly used continuous models presented in this
section are in fact linear. Hence, we define the general continuous linear, time-invariant
(LTI) state model of a person as:

ẋ(t) = Ax(t) +Bw(t), x(t0) = x0 (3.40)

With the state vector at time t x(t), the possibly time variant state transition matrix
A(t) , the additive noise sequence w(t) = [wx, wy]ᵀ and the corresponding gain matrix
and B(t). The noise w(t) is typically modeled as zero mean Gaussian with covariance
Q(t). Such a linear continuous systems has the following solution:

x(t) = F (t− t0)x0 +
∫ t

t0
F (t− τ) +Bw(τ)dτ, x(t0) = x0 (3.41)

F (t) =
( ∞∑
i=0
Ai t

i

i!

)
x0 = exp(At) (3.42)

This result can be easily proven using Picard’s method of successive approximation for the
homogeneous part of the linear ordinary differential equation and variation of parameters
for the inhomogeneous part.

To use the model in an implementation it has to be discretized to the following general
form:

xk+1 = Fkxk +wk (3.43)

Where xk+1 and xk represent the state at discrete time k + 1 and k respectively. The
matrix Fk is a possibly time variant state transition matrix and wk represents additive
noise process with covariance Qk.

3.3.1 Nearly Constant Velocity Model

The nearly constant velocity (NCV) motion model assumes, that the tracked person
moves at a certain velocity influenced by small acceleration modeled by a white noise
process i.e. ẋ(t) = w(t) ≈ 0. For simplicity the NCV model is often also referred to as
constant velocity (CV) model in literature. In the following we will use NCV and CV
interchangeably throughout the thesis and also occasionally omit the the "nearly" prefix
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in subsequent models introduced in the following sections. According to the equations of
motion the matrices for the model in Equation (3.40) are given by:

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 B =


0 0
0 0
1 0
0 1

 Q =
[
σ2
x 0

0 σ2
y

]
(3.44)

To get the discrete time model, one has to sample from the solution of the continuous
model with some sampling time T . Furthermore, note that we directly integrate the
continuous noise gain B into the discrete random vector wk. This leads to the following
matrices for Equation (3.43):

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 Q =


T 3

3 σ
2
x 0 T 2

2 σ
2
x 0

0 T 3

3 σ
2
y 0 T 2

2 σ
2
y

T 2

2 σ
2
x 0 Tσ2

x 0
0 T 2

2 σ
2
y 0 Tσ2

y

 (3.45)

In addition to the discretized model it is also possible to define the discrete model directly
which leads to a different covariance matrix of the noise vector. In this case the model is
defined by Equation (3.46) where Gk is the noise gain similarly to B(t) in continuous
time. The model directly states that wk is random discrete acceleration influencing
position and velocity according to the equations of motion. Again we consider Q as the
covariance of Gkwk i.e. the covariance of the random vector and its gain.

xk+1 = Fkxk +Gkwk (3.46)

With matrices:

F =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 G =


T 2

2 0
0 T 2

2
T 0
0 T

 Q =


T 4

4 σ
2
x 0 T 3

2 σ
2
x 0

0 T 4

4 σ
2
y 0 T 3

2 σ
2
y

T 3

2 σ
2
x 0 T 2σ2

x 0
0 T 3

2 σ
2
y 0 T 2σ2

y

 (3.47)

The nearly CV model is a common choice in people tracking implementation e.g. [BH10],
[LGA15], [DBJH15] due to its simplicity. Assuming CV implies the assumption of
smooth human motion which is not fulfilled during high acceleration or turns in general.
Nevertheless, it often provides sufficiently good forward prediction if correcting detections
are frequent enough.

3.3.2 Nearly Constant Acceleration Model

Another popular and rather simple model is the nearly constant acceleration (NCA)
model. Similar to the NCV acceleration is assumed to undergo small changes modeled as
a Wiener process, hence the model is also called Wiener process acceleration model. To
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define the model we first augment the state by the acceleration in x and y direction, i.e.
x = [x, y, ẋ, ẏ, ẍ, ÿ]ᵀ. Now we can again state the matrices for Equation (3.40) according
to the equations of motion where the noise vector w(t) models the change in acceleration
called jerk:

A =



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


B =



0 0
0 0
0 0
0 0
1 0
0 1


Q =

[
σ2
x 0

0 σ2
y

]
(3.48)

Discretization to a model of form 3.43 gives the following matrices:

F =



1 0 T 0 T 2

2 0
0 1 0 T 0 T 2

2
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1


Q =



T 5 σ2
x

20 0 T 4 σ2
x

8 0 T 3 σ2
x

6 0
0 T 5 σ2

y

20 0 T 4 σ2
y

8 0 T 3 σ2
y

6
T 4 σ2

x
8 0 T 3 σ2

x
3 0 T 2 σ2

x
2 0

0 T 4 σ2
y

8 0 T 3 σ2
y

3 0 T 2 σ2
y

2
T 3 σ2

x
6 0 T 2 σ2

x
2 0 T σ2

x 0
0 T 3 σ2

y

6 0 T 2 σ2
y

2 0 T σ2
y


(3.49)

Again one can also define the discrete model given in Equation (3.46) directly where wk

is the acceleration increment at time step k modeled by a discrete time Wiener process.

F =



1 0 T 0 T 2

2 0
0 1 0 T 0 T 2

2
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1


G =



T 2

2 0
0 T 2

2
T 0
0 T
1 0
0 1


(3.50)

Q =



T 4 σ2
x

4 0 T 3 σ2
x

2 0 T 2 σ2
x

2 0
0 T 4 σ2

y

4 0 T 3 σ2
y

2 0 T 2 σ2
y

2
T 3 σ2

x
2 0 T 2 σ2

x 0 T σ2
x 0

0 T 3 σ2
y

2 0 T 2 σ2
y 0 T σ2

y
T 2 σ2

x
2 0 T σ2

x 0 σ2
x 0

0 T 2 σ2
y

2 0 T σ2
y 0 σ2

y


(3.51)

The NCA model is still a very simple model but compared to the constant velocity it
is not limited to nosy straight forward motion. It can also model constant change of
velocity appearing as speed increase or change in direction.
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3.3.3 Nearly Coordinated Turn Model

A coordinated turn is defined as a turn with constant speed, i.e. the magnitude of the
velocity vector v(t) = v and constant angular velocity ω(t) = ω. Then the equations of
motion are given as:

ẋ = v cos θ (3.52)
ẏ = v sin θ (3.53)
ẍ = −ωv sin θ = −ωẏ (3.54)
ÿ = ωv cos θ = ωẋ (3.55)

One can define the nearly coordinated turn model (NCT) according to Equation (3.40)
using the state x(t) = [x, y, ẋ, ẏ]ᵀ with the matrices:

A =


0 0 1 0
0 0 0 1
0 0 0 −ω
0 0 ω 0

 B =


0 0
0 0
1 0
0 1

 (3.56)

The authors in [BSLK04] suggest to model the noise vector w(t) as zero-mean white
Gaussian noise and its covariance Q is a design parameter. Considering that we will
work with a discrete time model anyway we choose to define it directly using the solution
of ẋ(t) = Ax(t) i.e. x(t) = exp(At). Since we do not know the value of ω we add it
to the state xk = [x, y, ẋ, ẏ, ω]ᵀ and the noise vector wk = [wx, wy, wω]ᵀ. Then we can
define the discrete nearly coordinated turn model according to Equation (3.46) as:

F =


1 0 sinT ω

ω
cosT ω−1

ω 0
0 1 − cosT ω−1

ω
sinT ω
ω 0

0 0 cosT ω − sinT ω 0
0 0 sinT ω cosT ω 0
0 0 0 0 1

 G =


T 2

2 0 0
0 T 2

2 0
T 0 0
0 T 0
0 0 T

 (3.57)

Q =



T 4 σ2
x

4 0 T 3 σ2
x

2 0 0
0 T 4 σ2

y

4 0 T 3 σ2
y

2 0
T 3 σ2

x
2 0 T 2 σ2

x 0 0
0 T 3 σ2

y

2 0 T 2 σ2
y 0

0 0 0 0 T 2 σ2
ω


(3.58)

One has to be careful since ω can actually be zero and divisions by ω occur in the state
transition matrix F . Therefore, it is required to use the limit of F where ω approaches
zero. One can immediately infer from the coordinated turn assumptions, that this limit
corresponds to the NCV model transition matrix in Equation (3.45) augmented with the
state transition for ω. The NCT model specifically models turns i.e. motion on circular
arcs which for example makes it useful for people tracking at positions where a person is
likely to turn right / left into a room from the hallway.
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3.4 The Assignment Problem for Data Association
In this section we will discuss the assignment problem and an algorithm commonly used
to solve it. The solution to the assignment problem is later used in Section 4.2.4 to assign
observed detections to tracked persons, i.e. data association. In general the assignment
problem deals with one to one assignment between two sets of equal size where each
assignment holds a certain value or cost. The goal is to maximize the sum of values or
minimize the overall cost while assigning all elements in the sets.

The description of the assignment problem in this section is based on the descrip-
tion in [PS98]. Formally, the assignment problem can be outlined as follows. We consider
two sets S = {s0, . . . , sn−1} and T = {t0, . . . , tn−1} with n elements each and S ∩ T = ∅.
Now we define the value (cost) of assigning a node si ∈ S to a node tj ∈ T by cij . In the
following we assume that all costs are positive integers including zero. Additionally, we
define variables xij where xij = 1 if si is assigned to sj and xij = 0 otherwise. Requiring
that no element is assigned more than once leads to the following two constraints:

n−1∑
i=0

xij = 1, ∀i ∈ {0, . . . , n− 1} (3.59)

n−1∑
j=0

xij = 1, ∀j ∈ {0, . . . , n− 1} (3.60)

The cost of all assignments is then given as:

n−1∑
i=0

n−1∑
j=0

cijxij (3.61)

Therefore, to get an optimal assignment one has to maximize (or minimize) Equa-
tion (3.61). From this point on we will only consider the case of maximization. It is easy
to transform a minimization problem into a maximization problem by subtracting the
individual cost from the maximum cost:

cmax = max
ij

cminij (3.62)

cmaxij = cmax − cminij (3.63)

There are two equal modeling approaches. One in terms of matrices cijn×n and xijn×n
and another in terms of bipartite graphs with disjoint vertex sets S and T . Here, we will
consider the approach utilizing bipartite graphs.

A solution to the assignment problem in polynomial time can be obtained by the
Kuhn Munkres algorithm based on the papers by Harold W. Kuhn [Kuh55] and James
Munkres [Mun57]. It is also commonly referred to as the Hungarian Method since Harold
W. Kuhn based his paper on the work of two Hungarians D. Kőnig and J. Egerváry. In

29



3. Background

the following we will base the outline of the algorithm in terms of bipartite graphs as
provided in the lecture notes of Subhash Suri1.

First, we define the weighted bipartite graph G = (V,E) with the vertex set V = S ∪ T
consisting of the two disjoint sets S and T and the set of edges E. Furthermore, we
establish that G is complete, which means that for every si ∈ S and every tj ∈ T there
is an edge (si, tj) ∈ E with weight cij . This is easily met since we assume that every
pairing is possible. Although, it might add a value of zero, i.e. cij = 0 for some i and
j. To develop the algorithm we need some definitions regarding bipartite graphs. A
matching M is defined as a set of edges where it holds that no two edges contain the
same vertex. In the assignment problem we are interested in a weighted perfect matching
involving all vertices and therefore containing exactly n edges, where its weight is given
by ∑(si,tj)∈M cij . Hence, to solve the assignment problem we intend to find a matching
with maximum weight. We refer to edges e ∈ M as matched and otherwise as free.
Additionally, vertices of matched edges are also matched and otherwise exposed. A path
P = e1, e2, . . . , ek−1, ek in M is called alternating if matched and free edges alternate.
Furthermore, if both the first vertex and the last one are exposed the alternating path
P is called augmenting. This is due to the fact that M ′ = M∆P , where ∆ denotes the
symmetric difference i.e. M∆P = M \P ∪P \M , leads to a larger matching |M ′| > |M |.
In addition to alternating paths, we also define alternating trees, which are trees with an
exposed vertex as the root and where every path in the tree is an alternating path.

For the solution of the assignment problem we also consider the dual of the assign-
ment problem as outlined in [Kuh55]. For this purpose we define vertex labels by a
labeling function l : V 7→ N. A labeling is called feasible if it satisfies the following
constraint:

l(si) + l(tj) ≥ cij , ∀i, j ∈ {0, . . . , n− 1} (3.64)

The dual problem to the assignment problem is then to find labels such that their sum is
minimized under the constraint given in (3.64). Using the vertex labeling, one can define
a subgraph containing only edges e = (si, tj) where the sum of the vertex labels equals
the weight of the edge exactly. Gl = (V,El) where:

El = {(si, tj) | l(si) + l(tj) = cij} (3.65)

This definition leads to the following key theorem for the Hungarian Method:

Theorem 1. If l is a feasible labeling following condition (3.64) and M is a perfect
matching in Gl then M is also a maximum weight matching.

Proof. Let M ′ be an arbitrary perfect matching in G and l a feasible labeling. Since by
definition of a perfect matching every v ∈ V is covered exactly once and the weight of

1http://www.cs.ucsb.edu/~suri/cs231/Matching.pdf
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M ′ is given as: ∑
(si,tj)∈M ′

cij ≤
∑

(si,tj)∈M ′
l(si) + l(tj) =

∑
v∈V

l(v) (3.66)

Hence, the sum of weights in a perfect matching is bound by the sum of all vertex labels.
Now let M be a perfect matching in Gl then:∑

(si,tj)∈M
cij =

∑
v∈V

l(v) (3.67)

From this it follows that: ∑
(si,tj)∈M ′

cij ≤
∑

(si,tj)∈M
cij (3.68)

Therefore, the weight of all edges in M is the maximum achievable, and hence M a
maximum weight matching.

Due to this fact one can omit the weights and instead of searching for a maximum weight
matching, search for a perfect matching in Gl. Since we utilize the graph Gl, which
depends on the choice of a feasible labeling, a perfect matching in Gl might not be
possible due to the lack of available edges. Hence, an approach is needed to improve
the labeling l while keeping it feasible. By improving the labeling we mean that the
improved labeling function l′ should lead to a larger set of edges, i.e. El ⊂ El′ . To do
this we consider a subset of vertices S′ ⊆ S and its neighborhood N(S′) = ⋃

s′∈S′ N(s′)
where N(s′) = {t′ | (s′, t′) ∈ El}. Additionally, we required that N(S′) 6= T because in
that case El would already hold enough edges for a perfect matching and improving the
labeling would not be necessary. For convenience we define the function w(si, tj) = cij
which gives the weight of the edge between nodes si and tj . Then the new labels are
computed as follows:

α = min
s′∈S′, t′∈T\N(S′)

l(s′) + l(t′)− w(s′, t′) (3.69)

l′(v) =


l(v)− α if v ∈ S′
l(v) + α if v ∈ N(S′)
l(v) otherwise

(3.70)

What this does is that we first find the value α which gives the smallest difference in
edge weight and corresponding vertex label sum for nodes that do not yet have an edge
in El. Then we evenly add on one side and subtract on the other which ensures that
edges from El are still present in El′ . Due to the value of α this also ensures that El′
will have at least one additional edge and hence El ⊂ El′ .

To apply the Kuhn-Munkres algorithm we first need to compute an initial matching
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Algorithm 3.3: Initialize
// compute initial feasible labeling

1 ∀s ∈ S : l(s) = 0;
2 for s ∈ S do
3 for t ∈ T do
4 l(s) = max(l(s), w(s, t));
5 l(t) = 0;
6 end
7 end
// initially nothing is matched

8 M = ∅;

Algorithm 3.4: Compute Slack
1 for t ∈ T do
2 slack = l(u) + l(t)− w(u, t);
3 if slack < slack(t) then
4 slack(t) = slack;
5 end
6 end

and vertex labeling. Initialization is given in Algorithm 3.3. We start with an empty
matching and compute a feasible labeling by assigning the maximum edge weight to
each vertex in S and a label of zero to each vertex in T . The pseudo code to solve the
assignment problem is then given in Algorithm 3.6. The outermost while loop ensures
that the algorithm iterates as long as the matching is not perfect, i.e. the number of
edges in M is equal to the number of vertices in either of the bipartite vertex sets. In
the loop we utilize a queue to search for an augmenting path in Gl in a breath first
fashion to increase the matching. We start at a free vertex s′ which serves as a root of
an alternating tree. The sets S′ and T ′ represent the vertices in the alternating tree.
Since we start with a vertex s′ ∈ S we initialize S′ = {s′} and T ′ = ∅ (line 3). To
be able to reconstruct the path we keep track of every nodes parent. Until we find an
augmenting path we dequeue a node p from Q in every iteration. Starting from p we
consider all its neighbors with respect to the graph Gl excluding the vertices which are
already in the alternating tree (line 9). If the considered neighbor v is not part of a
matching we found an augmenting path since we always start with a free vertex, and
can therefore augment the matching M . Otherwise we extend the augmenting tree by
the vertex v and its matched vertex u (line 23). Additionally, u is added to the queue
to continue the search from there (line 21). As discussed before we might not be able
to improve the matching in Gl while it is still not perfect in G because of the labeling.
Hence, the labeling has to be improved. We do this using the Algorithms 3.4 and 3.5
to calculate slack and update the labels respectively. Utilizing the slack variables we
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Algorithm 3.5: Update Labels
1 α =∞;
2 for t ∈ T \ T ′ do
3 α = min(α, slack(t));
4 end
5 for v ∈ V do
6 if v ∈ S′ then
7 l(v) = l(v)− α;
8 end
9 if v ∈ T ′ then

10 l(v) = l(v) + α;
11 else
12 slack(v) = slack(v)− α;
13 end
14 end

can incrementally compute α by updating it for a single node u ∈ S′ every time a new
one is added to S′ (line 24). The label update is then similar to the formula given in
Equation (3.69) but uses the slack variable to compute α. Furthermore, for variables
not in T ′ the slack has to be updated as well since its counterpart gets a label increase of α.

The complexity of Algorithm 3.6 can be given in terms of the number of nodes n =
|S| = |T |. First consider the outermost loop. We start with |M | = 0 and increase the
size of the matching by one every iteration since the augmenting path always gives one
additional edge, hence the loop is executed n times. Slack computation in Algorithm 3.4
as well as the label updates in Algorithm 3.5 are obviously also bounded by O(n). The
for loop, in the worst case, considers every neighbor of S′ which is bound by the size of T
and hence the for loop is also O(n). In summary the for loop is of complexity O(n) and
gets executed O(n) times due to the inner while loop, which in turn is executed O(n)
times by the outer while loop, hence giving an overall complexity of O(n3).
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Algorithm 3.6: Kuhn-Munkres Algorithm
Input: G = (S ∪ T,E), C
Output: Perfect Matching M

1 while |M | 6= |S| do
2 pick s′ ∈ S s.t. s′ is free;
3 S′ = {s′}, T ′ = ∅;
4 Q.enqueue(s′), Parent(s′) = null;
5 ∀t ∈ T : slack(t) =∞, computeSlack(s′);
6 not_found = true;
7 while Q.size > 0 && not_found do
8 p = Q.dequeue();
9 for v ∈ Nl(S′) \ T ′ do

10 Parent(v) = p;
11 if v is free then
12 x = v;
13 while Parent(x) 6= null do
14 P = P ∪ (x,Parent(x));
15 x = Parent(x);
16 end
17 M = M∆P ;
18 not_found = false;
19 break;
20 else

// v is matched to u
21 Q.enqueue(u);
22 Parent(u) = v;
23 S′ = S′ ∪ {u}, T ′ = T ′ ∪ {v};
24 computeSlack(u);
25 end
26 end
27 end
28 updateLabels();
29 end
30 return M

3.5 CLEAR MOT Metrics

To compare different approaches to tracking multiple people a performance criteria has to
be established. In [BS08] multiple object tracking metrics are proposed, called CLEAR
MOT, providing criteria for tracking accuracy and precision. Those metrics are for
example used in [LBLA16] or [MBM12] which are approaches we indent to compare with.
In this section we give a quick reference for those metrics which will be later used to
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evaluate the implemented people tracker.

The multiple object tracking precision (MOTP) is defined as follows:

MOTP =
∑
i,t d

i
t∑

t ct
(3.71)

Here the distances dit describe how far off the tracker hypothesis of object i is from the
ground truth at time t. In our case of tracking people in 3D space, however assuming
that they move on the ground plane since our robot is restricted to a flat surface as well,
the distances dit are euclidean distances between person centers. The values ct correspond
to the overall number of matches found by the tracker at time t. Therefore, the MOTP
actually gives a mean error estimate in meters. The intention of the metric is to give a
measure of how precise the tracker estimates positions. A low MOTP hence, corresponds
to high precision because if the tracker is accurate the distances dit between tracked
persons and the ground truth are low.

To consider the ability of keeping track of all objects with correct data association
the multiple object tracking accuracy (MOTA) is also introduced. Equation (3.72) states
how to calculate the MOTA.

MOTA = 1−
∑
tmt + fpt +mmet∑

t gt
(3.72)

The MOTA consists of three different failure cases. The number of completely missed
objects mt, the number of false positives fpt and the number of mismatches mmet all at
time t weighted by the total number of objects present at t annotated by gt. We count
a person as missed if there is a ground truth track but no corresponding one from the
tracking algorithm. In the evaluation the Kuhn Munkres algorithm, described in the
previous Section, is used to match ground truth tracks and hypothesis tracks from the
tracking algorithm. One then has to describe a threshold distance at which tracks are
considered valid matches, and otherwise misses. A false positive on the other hand, is
a track hypothesis with no matching ground truth track. For example if there are two
tracks matched by the Kuhn Munkres algorithm but they are farther away than the
threshold, the track hypothesis is considered a false positive whereas the ground truth
track leads to a miss. The third failure case are mismatches, which typically occur if two
persons are walking near by and the tracking algorithm mistakenly switches the track
ids between the persons at some point in time. Those failure cases can be calculated
separately to show weaknesses of a certain approach in specific area. Nevertheless, the
MOTA gives a good idea of how precise the tracker is overall.

Obviously one has to establish ground truth object correspondences in a dataset first
to apply MOTP and MOTA metrics. For real world scenarios one typically has to do
this by hand if it is not possible to place special markers on each person. Hence, ground
truth annotations might not always be correct as well, but nevertheless it gives a good
enough estimate and enables comparison between different tracking approaches.
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3.6 Summary
To summarize, we introduced the necessary probability theory needed for Bayesian
filtering and particle filtering, as well as those algorithms themselves. In addition, we
provided the formal definitions of three commonly used motion models, namely the NCV,
NCA and NCT models. In order to later on assign detections to their corresponding per-
sons, we covered the assignment problem and its solution, the Kuhn Munkres algorithm.
Furthermore, we introduced the CLEAR MOT metrics from [BS08] in order to establish
a criteria to assess the proposed people tracking approach.

In the following chapter we use the fundamental concepts introduced here to outline our
approach to people tracking.
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CHAPTER 4
Approach

This chapter contains the main contribution of this thesis, namely the particle filter based
people tracking approach and a map based motion model. First, the probabilistic model
used in the tracking algorithm incorporating several detectors is outlined in Section
4.1. Based on this model the needed components for the people tracking algorithm, i.e.
filtering, data association and tracking management, are developed in Section 4.2.

4.1 Probabilistic Model for People Tracking
In this Section we will establish a probabilistic model for the people tracking problem
estimating the position of several persons in a 2D map, given detections within the field
of view of the robot. For now, we consider estimating the states of T persons given M
detections, similar as done in [RN16] for tracking multiple objects with T = M . This
means that first we assume there are as many persons to track as detections. Dealing with
a different number of persons to track and detections will be discussed later. We denote
the state of a person i at time k by the random vector xik. Furthermore, detection j at
time k is modeled by the random vector zjk. For simplicity we restrict the illustrations
of the model to T = M = 2 persons and detections, but it can be easily generalized to
arbitrary T and M . The people tracking problem for T = M = 2 can be modeled as
a dynamic Bayesian network shown in Figure 4.1. It is assumed that the state of each
person xik evolves over time independently of every other persons state. This assumption
might not be true since people often move in groups or at least move in awareness of
others. However, in this work we do not consider groups or movement of people relative
to each other, hence sticking to this assumption. In addition, as in Bayesian filtering we
assume that the state of a person fulfills a first order Markov property, i.e. it depends
only on the state at the previous time step. This assumption is not always valid because
it requires the state to be complete, meaning it has to incorporate all relevant information
of the past which is not always possible e.g. through motion dynamics not considered in
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the model. However, Bayesian filtering is typically robust towards such violations [Thr02],
which we will apply later on. Due to ambiguity in data association it is not known
which detection corresponds to which person, hence both detections depend on both
person states. From the DBN we can immediately state the pdf of the joint probability
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0 . . . x0

k−1 x0
k x0

k+1 . . .

x1
0 . . . x1

k−1 x1
k x1

k+1 . . .

z0
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k z0
k+1z1

k−1 z1
k z1

k+1

Figure 4.1: Dynamic Bayesian Network for People Tracking
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Where fx0
0
(x0

0) and fx1
0
(x1

0) are priors of the state. The main problem here is to calculate
the conditional probability density of the detections, since there are M ! ways to assign
detections to persons for T = M persons at each time step and hence, (M !)K possible
assignments for K time steps [RN16]. A common approach to work around this issue is to
predetermine the detection assignments by a data association algorithm which is not ideal
but can reduce complexity significantly to make people tracking feasible. Using a data
association algorithm, assigning detections to specific persons at each time step one can
factor the conditional probability density of the detections. This way the DBN reduces
to two instances of the one already discussed in Section 3.2 for state estimation. Without
loss of generality we assume detection i is assigned to person i by the data association
algorithm which can be easily accomplished by labeling the detections accordingly. Then
we get:

fz0
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Now, for people tracking on a mobile robot we are not interested in the overall joint
probability distribution but rather on estimating the state of people given the detec-
tions. This means we would like to estimate the conditional pdfs fx0

k
|z0

1:k
(x0

k|z0
1:k) and

fx1
k
|z1

1:k
(x1

k|z1
1:k). Hence, we have a Bayesian filtering problem for each person to track as

introduced in Section 3.2.

4.1.1 Detection Sensor Fusion

As depicted in the state of the art review in Chapter 2 there are several detectors available
to detect people with different sensors. It is possible to include several detections to
correct the belief state estimation of a single person in various ways. The most straight
forward approach would be to include all associated detections in the measurement vector
zk. However, this imposes practical issues, namely, one has to dynamically adjust the
measurement vector and therefore also the measurement model when adding or removing
detectors. Furthermore, detector outputs have to be synchronized and the special case
when a person is detected by one detector and not by another handled explicitly in the
measurement model. As an alternative, we extend the model to incorporate multiple
detections individually, per person tracked. Still, we retain the assumption that all
detections are assigned to a person, meaning that if there are T persons to be tracked
and D detectors we have TD detections and each tracked person is assigned D detections
by the data association. As an example consider the DBN in Figure 4.2 representing
a single person detected by two separate detectors. Using this network one can easily

x0 . . . xk−1 xk xk+1 . . .

z0
k−1 z0

k z0
k+1z1

k−1 z1
k z1

k+1

Figure 4.2: Dynamic Bayesian Network representing a single person detected by two
detectors

derive the prediction and update step for the Bayes filter similar to Section 3.2. This
time Bayes theorem (3.24) has to be applied twice in order to use both measurement
pdfs. When generalizing to D detections it simply has to be applied D times.
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Again utilizing conditional independence in the DBN and introducing the recursion using
the total probability theorem (3.25) we get:
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Leading to the recursive prediction and correction steps in equations (4.5) and (4.6).

bel(xk) =
∫
RN

fxk|xk−1(xk|xk−1)bel(xk−1)dxk−1 (4.5)

bel(xk) = η′ fz0
k
|xk

(z0
k|xk)fz1

k
|xk

(z1
k|xk)bel(xk) (4.6)

Therefore, using several detections of a single person can be simply fused using a
Bayes filter by incorporating both multiplicatively in the correction step. Please note
asynchronously arriving detections can be correctly dealt with using equation 4.6 in this
approach. In particular, if only one of the detections arrives, only one density is considered
and the other one can simply be replaced by a multiplication with 1.0, meaning it has no
influence on the belief state at this time step. Also the detection probability densities can
be specified individually depending on the detector characteristics. Hence, this approach
gives more freedom in terms of implementation contrary to the measurement vector
extension.

4.2 People Tracking Algorithm
Based on the probabilistic model we can state our general approach for the people
tracking algorithm. From the model it is clear that the tracking algorithm needs three
things:

• A Bayesian filter for every person to track

• A data association approach to assign detections to tracks

• A track management to create new tracks and delete unnecessary ones

An overview of the architecture is shown in Figure 4.3. As one can see, the received
detections are first passed to a data association algorithm assigning detections to existing
tracks if possible. Then, based on those assignments the track management can decide
whether new tracks should be initialized or if obsolete tracks can be deleted. Assigned
detections are then passed to the Bayesian filters to update the state estimate of each
tracked person.

We first describe the overall algorithm and then go into detail on the individual parts. In
the following we use the term track representing the belief state of a person and some
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detector 0 detector 1 · · · detector D

Data Association

Track Management

track 0 track 1 · · · track T - 1

Figure 4.3: This Figure illustrates the general structure for the tracking algorithm.
Several detections are received as an input, which are passed through the data association
procedure. Based on the assignments, the track management block can decide to create
or delete tracks, as well as update existing tracks based on their assigned detections.

41



4. Approach

additional attributes discussed in later sections. As an input the algorithm needs an array
of tracks from the previous time step denoted as Tk−1. Every track in the array is a tuple
(ID,X, µ̂x, Ĉx,MC , DC , VC ,m,mv) with a unique identifier ID. The array X holds all
the particles representing the belief state of the track with µ̂x and Ĉx being the mean and
covariance of those particles. The variables MC , DC and VC are integer valued counters,
whereas m and mc are boolean flags needed for the track creation and deletion processes
discussed in Section 4.2.5. Besides tracks the algorithm gets possibly multiple arrays of
detections as an input, one for each detector attached, denoted as Z0

k−1, . . . ,Z
D−1
k−1 . The

pseudo code is given in Algorithm 4.1. At first the algorithm predicts the belief state
of every track from the previous time step to the current one (line 1-4). After forward
prediction mean and covariance also have to be updated (line 3) because they are needed
for data association. The forward predicted tracks are then used for data association
which assigns a detection from every detector to a certain track (lines 5-7). Although,
there does not always exist a detection from every detector for every track, it is still
possible to place either dummy tracks or dummy detections, depending on which array is
larger, such that every track is assigned a detection from each detector. Now that tracks
got matched with detections, a correction step can be applied on the belief state of the
tracks. The data association procedure provides a detection index for the detection array
with index i assigned to track index t represented by assignmenti[t] with a certain cost
assignment_costi[t]. How the cost is defined will be discussed later in Section 4.2.4.
For the moment the cost is a measure on how meaningful a certain assignment is. By
restricting the cost by a certain threshold Athres (line 12) only meaningful assignments
are used for the correction step (line 13). This procedure is referred to as gating. By
gating the assignments the possibly introduced dummy tracks or detections are also
filtered. If the track at index t with assigned detection assignmenti[t] passed the gate
Zua[assignmenti[t]] respectively Tua[t] can be set to −1 (lines 15 and 16). The values in
Zua and Tua marked with −1 are marked as used and are therefore not considered in
track creation or deletion. Otherwise they hold the index of a detection that is considered
for track creation (line 19) and the index of a track that is considered for deletion (line 21).
Note that it requires only one detection for a track to be corrected and hence only tracks
with no detection assigned from any detector are considered to be deleted. Therefore, the
same array Tua is used throughout all detection arrays. Mean and covariance are also
calculated here (line 14) since they provide improved estimates after the correction step.
In the following Sections we go into more detail of each procedure used in the people
tracking algorithm.
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Algorithm 4.1: People Tracking Algorithm
Input: array of tracks Tk−1, arrays of detections Z0

k , . . . ,Z
D−1
k

Output: array of tracks Tk
// forward predict every track

1 for i = 0 to |Tk−1| − 1 do
2 Tk[i].X = Prediction(Tk−1[i].X);
3 [Tk[i].µ̂x,Tk[i].Ĉx] = CalculateMeanAndCovariance(Tk[i].X);
4 end
// apply data association for every detection set

5 for i = 0 to |Zk| − 1 do
6 [assignmenti, assignment_costi] = DataAssociation(Tk, Zi

k);
7 end
// correction step for every track with assigned detections

8 Tua = {0, . . . , |Tk| − 1};
9 for i = 0 to |Tk| − 1 do

10 ZT ;
11 for j = 0 to |Zk| − 1 do
12 Zua = {0, . . . , |Zi

k| − 1};
// gating

13 if assignment_costj [i] < Athres then
14 append Zj

k[assignmentj [i]] to ZT ;
15 Zua[assignmentj [i]] = −1;
16 Tua[i] = −1;
17 UpdateTrackMaturity(Tk[i], Zj

k[assignmentj [i]]);
18 end

// track creation
19 CreateTracks(Zua);
20 end
21 Correction(Tk[t].X, ZT );
22 [Tk[i].µ̂x,Tk[i].Ĉx] = UpdateMeanAndCovariance(Tk[i].X);
23 end

// track deletion
24 DeleteTracks(Tua);
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4.2.1 Track Representation

As shown in Section 4.1 we can estimate the state of a person using Bayesian filtering
given the detections associated with them. In this work we choose to approximate the
Bayes filter with the particle filtering algorithm 3.1 introduced in Section 3.2. The choice
of particle filters in contrast to Kalman filters has two reasons. First, particle filters
enable the use of nonlinear models describing human motion. Although, in literature
[BH10] nonlinear versions of the Kalman filter, i.e. the extended Kalman filter or the
unscented Kalman filter have been used, due to the linearization they are by definition
not optimal for nonlinear models. Second, particle filters are not restricted to normal
distributions enabling the representation of multi-modal distributions. This enables
multiple likely locations of a person during forward prediction, for example if a person
can move straight ahead or turn into a room or in occlusion scenarios.

Formally, we define the state vector of a person at time k, as in the introduction of basic
motion models in Section 3.3, through the 2D position of the person on the floor and
his/her velocity split into components in both x and y directions as xk = [xk, yk, ẋk, ẏk]ᵀ
and the measurement vector for detection d at time k as zdk = [xdk, ydk]ᵀ containing the
2D position for the detection commonly obtained by a detector. As seen in the previous
Section 4.2 we need to split the particle filter algorithm introduced in Section 3.2 into a
prediction step and a correction step since the forward predicted belief state is required
for data association. Note that we use arrays instead of sets for particles to be closer to an
actual implementation. Forward prediction given in Algorithm 4.2 gets an array of state
vector, weight pairs (x, w) of the previous time k−1 Xk−1 as an input and computing the
array of predicted particle weight pairs for time k X̄k. However, low variance resampling
as introduced in Section 3.2 is applied first to forward predict as many high weight
particles as possible. The pdf, fxk|xk−1(xk|Xk−1[n].x) is the state transition probability
density defined by the motion model (see Sections 3.3 and 4.2.2) which gives the density
for a new particle xk given the particle Xk−1[n].x from the previous time step. Particle
weights in this step are only relevant if correction is not applied, otherwise they are
overwritten. For tracks that only require forward prediction we therefore assign equal
weights to all particles to stay consistent. The weight 1

N is chosen here such that the
weight of all particles sums up to one. The correction part including several detections is
stated in Algorithm 4.3. Here fz0

k
|xk

(z0
k|X̄k[n].xk) · . . . ·fzD−1

k
|xk

(zD−1
k |X̄k[n].xk) is defined

by detection probability density given by the detection model. How those distributions
are obtained is discussed in Section 4.2.2. The algorithm normalizes particle weights
such that they sum up to one (line 4 and 6-8). In addition the particles are sorted in a
descending fashion according to their weight (line 9) such that one can easily extract the
highest weight particle from the array.

To provide a single best estimate of the belief state of a person one can either use
the particle with the highest weight, or calculate a sample mean over all particles. High-
est weight particles represent the most likely location of the person according to recent
measurements but do not give very stable trajectories over time. Hence, the weighted
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Algorithm 4.2: Particle Filter Algorithm for People Tracking: Prediction
Input: Xk−1
Output: X̄k

1 Xk−1 = lowVarianceResampling(Xk−1);
2 for n = 0 to N − 1 do
3 sample X̄k[n].x ∼ fxk|xk−1(xk|Xk−1[n].x);
4 X̄k[n].w = 1

N ;
5 end

Algorithm 4.3: Particle Filter Algorithm for People Tracking: Correction
Input: X̄k, z0

1:k, . . . ,z
D−1
1:k

Output: Xk

1 η = 0;
2 for n = 0 to N − 1 do
3 X̄k[n].w = fz0

k
|xk

(z0
k|X̄k[n].xk) · . . . · fzD−1

k
|xk

(zD−1
k |X̄k[n].xk);

4 η = η + X̄k[n].w;
5 end
// normalization

6 for n = 0 to N − 1 do
7 X̄k[n].w = X̄k[n].w

η ;
8 end
9 sort particles descending accoding to their weight in X̄k;

10 Xk = X̄k;

sample mean approach combined with a covariance matrix provide better estimates for
further processing e.g. in a navigation algorithm. Mean and covariance for the particle
array Xk are calculated in Algorithm 4.4.

Algorithm 4.4: Calculate Mean and Covariance
Input: Xk

Output: µ̂xk
, Ĉk

1 µ̂xk
= ∑N−1

i=0 Xk[i].xkXk[i].wk;
2 Ĉk = 1

1−
∑N−1

i=0 (Xk[i].wk)2

∑N−1
i=0 Xk[i].wk(Xk[i].xk − µ̂xk

)(Xk[i].xk − µ̂xk
)ᵀ;

4.2.2 Heat Map Motion Model

To model the state transition probability density fxk|xk−1(xk|xk−1) we need to model
the human motion. Typically used models in literature have already been introduced
in Section 3.3 which rely on rather strong simplifications, e.g. that a person moves
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with nearly constant velocity or acceleration. We intend to give a more accurate model,
especially considering the static environment of the robot defined by the map. We assume
that the map is known which enables us to compute parts of the motion model in advance.
Furthermore, if the map is static it is possible to utilize historical data of where people
most likely move from their current position. Nevertheless, the approach in its essence is
also applicable if the robot constructs the map on-line through a simultaneous localization
and mapping (SLAM) algorithm, however historical data can obviously not be applied.

Heat Map Construction

(a) Initial grid map (b) Distance
transform

(c) Likelihood field (d) Inverse likelihood
field

Figure 4.4: This Figure visualizes the steps taken in order to construct an initial heat
map based on a grid map.

Consider the map of our lab in Figure 4.4a. In a first step we construct a likelihood field
of where people are likely to move on the map. We assume people can move on every cell
in the map that is not occupied by an object, i.e. the white part of the map. Furthermore,
we expect that the likelihood decreases towards a wall, whereas it is impossible to move
on pixels which are occupied, i.e. walls or locations outside of the map. The approach
taken here is just the opposite to the sensor likelihood field for range finders presented
in [TBF05], where it is most likely to measure something near an occupied cell in the
map. To construct the likelihood field we first calculate the distance of every pixel to
its nearest occupied pixel using a distance transform of the map image given in Figure
4.4b. Assuming that the distances are normal distributed with zero mean and a certain
variance σ we construct the likelihood field in Figure 4.4c. Note that the values are

Figure 4.5: Jet Color Map
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mapped to colors according to the Jet color map given in Figure 4.5 such that blue means
least likely and red most likely, similar to heat maps where hot regions are colored red
and cold regions blue. As stated before we need the inverse, hence we subtract all the
likelihood values from the maximum to obtain Figure 4.4d. In the following we will refer
to the inverse likelihood field as the initial heat map, since it serves as a starting point
for historical data. Obtaining the initial heat map is summarized in Algorithm 4.5.

Algorithm 4.5: Compute initial heat map
Input: map M , σ
Output: initial heat map H

1 D = distanceTransform(M);
2 max = 0;
3 for row = 0 to M.rows do
4 for col = 0 to M.cols do
5 H[row, col] = 1√

(2πσ2)
exp (−D[row,col]2

2σ2 );

6 if max < H[row, col] then
7 max = H[row, col];
8 end
9 end

10 end
11 for row = 0 to M.rows do
12 for col = 0 to M.cols do
13 H[row, col] = max−H[row, col];
14 end
15 end

Now if the robot is often situated in the same environment, it makes sense to incorporate
previously observed persons into the heat map. Furthermore, historical data can also be
obtained from pedestrian simulations using a microscopic model such as the one provided
in [See15]. We adapt the heat map model using the state estimates given by the tracks Tk
at time k. We adjust the values of the heat map along the linearly interpolated path each
track takes between time step k − 1 and k. Values are additively adjusted by a certain
value pw. The choice of pw depends on how important historical data is in comparison to
the initial likelihood field. In general, if historical data is recorded long enough, the initial
likelihood fades since the values are insignificantly small in comparison to the historical
data. To avoid this effect we record the historical data separately and incorporate a
normalized version into the initial heat map. Also, keeping the non-normalized version
gives the advantage that the historical data is easily extendable at a later point in time,
which can then be normalized each time an updated version of the heat map is generated.
In Figure 4.6a historical data for the Roblab map acquired using a pedestrian simulation
based on the models in [See15] is shown. One can see that most persons walk along the
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main hallway, as expected, and less pass towards the rooms. Since people do not always
use the exact same paths it makes sense to apply a Gaussian blur to the historical data.
Figure 4.6b shows the blurred version with a σ = x. Incorporating the data into the initial
heat map results in Figure 4.6c. One can see that for maps with narrow corridors the
initial heat map is a pretty good approximation considering local neighborhoods in the
map, which are in the following used for the motion model. Historical data aggregation is

(a) Recorded data (b) Blurred data (c) Integration into initial
heat map

Figure 4.6: Heat map historical data

given in Algorithm 4.6. The Algorithm finds corresponding tracks of time steps k− 1 and
k and increments the entries at the coordinates in between the two track observations
by pw (lines 11 to 13). Note that one has to convert real world track coordinates to the
corresponding pixel coordinates in the map (lines 5 to 8). Algorithm 4.7 shows how to
combine the initial heat map with the historical data. Before the maps are added they
have to be normalized to the same range of values.
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Algorithm 4.6: Aggregate historical data
Input: Tk−1, Tk, pw
Output: H

1 initialize all values in H to 0;
2 for i = 0 to |Tk| − 1 do
3 for j = 0 to |Tk−1| − 1 do
4 if Tk[i].ID == Tk−1[j].ID then
5 idxxk =convertToMapIndex(Tk[i].µ̂x.x);
6 idxyk =convertToMapIndex(Tk[i].µ̂x.y);
7 idxxk−1 =convertToMapIndex(Tk−1[j].µ̂x.x);
8 idxyk−1 =convertToMapIndex(Tk−1[j].µ̂x.y);
9 P0 = (idxxk−1, idx

y
k−1);

10 P1 = (idxxk, idx
y
k);

11 for (a, b) along line from P0 to P1 do
12 H[a, b] = H[a, b] + pw;
13 end
14 end
15 end
16 end

Algorithm 4.7: Combine historical data and initial heat map
Input: H, H ′
Output: H

1 normalize contents of H and H ′ to interval [0, 1];
2 H = H +H ′;

Motion Model

In order to predict the motion of a person from its current position and velocity, we utilize
the local neighborhood of the persons state estimate in the heat map. We consider the
next position reachable from the current position, given the current velocity estimate of
the person. Note, that we calculate the next position in meters instead of map coordinates
and then look up the corresponding cell in the grid map to be able to adapt to different
map granularities. Since the person might change its direction we not only consider the
position reachable with the current angle θ of the velocity vector, but also the change
in direction with a resolution of 2π

p , where p is the number of different directions. The
number of meaningful directions depends on the granularity of the grid map and also on
the persons velocity. Figure 4.7 shows an example, where we use the current velocity
magnitude r, but rotate it by an additional angle θ′. Hence, we obtain an angular velocity
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r

r′

r′

r′

r′
r′

r′

r′

θ
θ′

Figure 4.7: Given the current velocity vector r at an angle θ, we consider different
changes in direction θ′ to end up with a new velocity vector r′.

of ω = θ′

dt . Considering the additional rotation θ′ the possible next velocities are given by:

ẋnext = r cos(θ + ωdt) = r cos(θ + θ′) (4.7)
ẏnext = r sin(θ + ωdt) = r sin(θ + θ′) (4.8)

And the corresponding position by:

xnext = xcurr + r cos(θ + θ′)dt (4.9)
ynext = ycurr + r sin(θ + θ′)dt (4.10)

We then take the value of the heat map at the position (xnext, ynext), converted into map
coordinates, h(xnext, ynext) and define that the probability that the person moves to this
point in the map is proportional to this heat map value. Subsuming all of the possible
next state, heat map values we can define a discrete probability distribution formed by
those values normalized in the interval [0, 1], from which we can draw an angle increment
for the velocity vector. Using this angle increment we calculate the forward predicted
value of the particle. One important thing to consider here is that using this method the
prediction might get stuck in a local minimum if grid map cells in the local environment
have similar values. This can cause the prediction to basically spin in place. In order to
work around this issue we apply two countermeasures. First, we increase the value of dt
in the calculation of the next position in the heat map, such that the likelihood values
obtained represent moving in that direction for a longer time period. For simplicity, we
set dt = 1 giving:

xnext = xcurr + r cos(θ + θ′) (4.11)
ynext = ycurr + r sin(θ + θ′) (4.12)

Second, one can define a weight function for the direction probabilities. For example, it
is typically more likely that a person keeps its direction, and turning 180° is the least
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likely case. A natural way of doing this is to assume that the persons angular change
follows a normal distribution fθ′(θ′) ∼ N (0, σ2

θ′) which we use as a weight w(θ′) = fθ′(θ′),
i.e. we multiply the heat map value at (xnext, ynext) by the pdf value fθ′(θ′) at θ′. Hence,
we obtain that the state transition distribution from which we sample the next state for
each particle is defined as follows:

fxk|xk−1(xk|xk−1) = h(xnext, ynext)fθ′(θ′) (4.13)

Here, xnext and ynext are calculated from the previous state vector xk−1 using equations
(4.11) (4.12) substituting xk−1.x and xk−1.y for xprev and yprev respectively. Using this
weight function the model assumes, of course depending on the variance σ2

θ′ , that slight
changes in direction are the most likely, whereas very drastic changes are highly unlikely
but still possible.

Algorithm 4.8: Generate Forward predicted sample
Input: particle xk−1, real time between step k − 1 and k dt, angle partitions p,

heat map H
Output: particle xk

1 angle_probabilities[p];
// person orientation from velocity

2 θ = atan2(xk−1.ẏ,xk−1.ẋ);
3 r =

√
xk−1.ẋ2 + xk−1.ẏ2;

4 for i = 0 to p− 1 do
5 θtar = θ + 2πi

p ;
6 xnext = xk−1.x+ r cos(θtar);
7 ynext = xk−1.y + r sin(θtar);
8 idxx = convertToMapIndex(xnext);
9 idxy = convertToMapIndex(ynext);

10 angle_probabilites[i] = w(2πi
p )H[idxx, idxy];

11 end
12 normalize angle_probabilities to [0, 1];
13 draw d from angle_probabilities;
14 θ′ = 2π

p d;
// wrap to range [−π, π]

15 θnext = θ + atan2(sin(θ′), cos(θ′))dt;
// sample acceleration from Gaussian Distributions

16 draw δx ∼ N (0, σ2
x);

17 draw δy ∼ N (0, σ2
y);

18 xk.x = xk−1.x+ xk−1.ẋdt+ 1
2δxdt

2;
19 xk.y = xk−1.y + xk−1.ẏdt+ 1

2δydt
2;

20 xk.ẋ = r cos(θnext) + δxdt;
21 xk.ẏ = r sin(θnext) + δydt;
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Generating a new particle according to the heat map motion model is described in
Algorithm 4.8. At first, we calculate polar coordinates from the persons velocity vector
(lines 2 and 3). Given the polar coordinates we calculate possible next states according
to the angular partitioning (lines 5 to 7) and then determine the angle probabilities using
the heat map values at the next state weighted according to the change in angle (line 10).
Afterwards, we normalize the angle probabilities such that they form a pmf (line 12). To
create a particle sample we draw a value from this pmf and calculate the corresponding
angle θ′ which is normalized such that we take the shortest possible path on the circle
(lines 14 to 21). Using the next state angle θnext given by the previous angle θ and the
change θ′ times dt (line 22) we can calculate the new particle state xk according to the
laws of motion (lines 25 to 28). Note that similar to the nearly constant velocity model
we model acceleration by zero mean Gaussian noise (lines 23 and 24) since we do not
have any information of how much a person accelerates at a given point in time.

4.2.3 Detection Models

The purpose of the detection model is to describe how a detection is generated from
the state of a person. Since a detector does not always perfectly capture the world, the
detection model is inherently probabilistic. In the case of people detection the detector
typically gives the 2D location of the person on the ground with the addition of zero
mean Gaussian noise modeling the possible error in position. Hence, a general discrete
time detection model can be described by the following equation:

zk = Hxk + vk (4.14)

Here xk is, as used before, the random variable describing the state of a person, zk
represents the detection, H is the observation matrix extracting the measurement from
the state and vk ∼ N (0,Czk

) is a noise vector. Since the 2D position of the person is
already part of its state it is sufficient to use a linear time invariant model with the
observation matrix:

H =
[
1 0 0 0
0 1 0 0

]
(4.15)

During the particle filter correction step in Algorithm 4.3 we utilize the likelihood of a
certain detection given the state of a particle to estimate the weight, i.e. the error in
sampling from the motion model prior, which is characterized by the pdf fzk|xk

(zk|xk).
Using the detection model we can predict a detection ẑk given the belief state xk of the
single particle with ẑk = Hxk. This is a realization, or sample, of the random variable
ẑk which we will use in the following for a consistent derivation. Furthermore, we know
that the received detection is normally distributed with covariance Czk

and mean µzk
.

An example is given in Figure 4.8 where the covariance is visualized as 99% ellipse. To
measure how far they are apart it is natural to utilize the Mahalanobis distance. The
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Figure 4.8: Predicted Detection ẑk and Observed Detection zk

Mahalanobis distance is defined as follows:

dẑk
=
√

(ẑk − µzk
)ᵀC−1

zk (ẑk − µzk
) (4.16)

The intuition behind the Mahalanobis distance is that it gives the distance in terms
of standard deviations along the eigenvectors, drawn as arrows in Figure 4.8, of the
covariance matrix Czk

from the mean µzk
. To compute the weights we need to give

the pdf of the distance values. The squared distances can be represented by a sum of
standard normal variables and hence are χ2 distributed.

Proof. First, we factor Czk
= AAᵀ using the Cholesky decomposition.

Furthermore, we substitute y = A−1(ẑk−µzk
) in the formula for the squared Mahalanobis

distance:

d2
ẑk

= (ẑk − µzk
)ᵀ(CCᵀ)−1(ẑk − µzk

)
= yᵀIy

The mean and covariance of y are calculated as follows:

µy = E{y}
= E{A−1(ẑk − µzk

)}
= A−1(E{ẑk} − µzk

)
= 0

Cy = E{yyᵀ}
= E{(A−1(ẑk − µzk

))(A−1(ẑk − µzk
))ᵀ}

= A−1E{(ẑk − µzk
))(ẑk − µzk

)ᵀ}(A−1)ᵀ

= A−1AAᵀ(A−1)ᵀ

= I
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Hence, the variables of y are standard normal distributed and d2
ẑk

= yᵀIy = ∑n−1
i=0 y2

i is
therefore χ2 distributed with n degrees of freedom.

So we can obtain the pdf for the squared distances between detection estimates from a
belief and a received detection through the χ2 distribution with two degrees of freedom.
Hence we obtain:

fzk|xk
(zk|xk) = fd2

ẑk

(d2
ẑk

) =

0 if d2
ẑk
< 0

1
2e
−

d2
ẑk
2 if d2

ẑk
≥ 0

(4.17)

A plot of the density is given in Figure 4.9. One can see that the density decreases as
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Figure 4.9: χ2 Distribution with two degrees of freedom for the squared Mahalanobis
distance

the Mahalanobis distance increases which is intuitively what we expect.

RGB Sensor Model

The sensor model for RGB camera based detectors differs from the general model since
RGB cameras do not provide any depth information and hence the detector cannot
provide a good estimate of the persons position. Nevertheless, one can utilize the inverse
camera matrix to obtain the ray on which the person can be found. In the following
we assume such a ray, projected onto the ground plane is provided by the detector. In
theory, one has to consider an infinite amount of possible positions along the direction
vector and compare those to the predicted measurement given by a particle. Using a
single distance measure, e.g., the normal distance of the particle position to the ray leads
to wrong results, namely as the particle distance from the camera origin increases the
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Figure 4.10: On the left, we compare angular and normal distance. Since n is considered
an infinite direction vector, angular distance is a better measure for matching detections
and tracks. On the right, we show a normalized versin of the direction vector and the
vector towards the detection in order to calculate θ.

normal distance also increases if the particle does not already lie on the ray itself. A
good measure of whether the predicted detection in form of a particle corresponds to
the observed detection is to consider the angular difference between the the ray and
a second ray given by the camera origin and the particle position. To illustrate this
consider Figure 4.10 where p0 and p1 represent particles and n represents the detection
ray, i.e. n has no specific end point. Regarding normal distance, p1 is closer to n than
p0, however this is not true anymore if we shift p1 towards p′

1 since the angle between p0
and n is actually smaller than between p1 and n. Hence, detections occurring closer to
the camera origin always have an advantage if the normal distance is utilized. Therefore,
we utilize the angle between the detection ray and the particle ray. Figure 4.10b shows
an example where n and p are normalized direction vectors for the detection and the
particle respectively. The angle θ can then be obtained from those vectors using the dot
product:

θ = arccos(n · p) (4.18)

For particle weighting we then assume that the angle is normal distributed with zero
mean θ ∼ N (0, σθ) and hence obtain the following density function for the RGB detector
model:

fzk|xk
(zk|xk) = fθ(θ) = 1√

2πσ2
θ

exp(− θ2

2σ2
θ

) (4.19)
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4.2.4 Data Association

In the beginning of Section 4.2 we mentioned that the tracking algorithm needs a data
association approach to assign detections to tracks. In general there exist approaches
that do not rely on a one to one assignment but can assign a detection to multiple
tracks in a probabilistic fashion as done with joint probability data association (JPDA)
[BSDH09] or consider multiple assignment scenarios through multi hypothesis tracking
(MHT) [Rei78][CH96], see also Chapter 2. All those approaches have in common that
they are computationally more complex than a one to one assignment obtained through
the Munkres algorithm discussed in Section 3.4 which can solve the assignment problem
in O(n3) where n is the number of pairs to match. Since particle filters are used in this
work which require significant resources we decided to stick to a one to one assignment
for data association to keep overall computational complexity in check. In the following
we describe the choice of cost, required by the Munkres algorithm, for assigning a specific
track to a certain detection.

Overall, the approach can be classified as a nearest neighbor approach assigning the
closest detection and track to one another. We consider two distance measures for the
cost of assigning a track to a detection. The most obvious choice is to use a simple
euclidean distance between the detection center and the single best estimate of the track
represented by its mean. The disadvantage of the euclidean distance is that it completely
neglects any statistical information about the tracks and detections. To work around
that one can utilize the Mahalanobis distance as we already did for the detection model
in Section 4.2.3. The Mahalanobis distance not only takes the track and detection mean
into account but also their covariances. Though, application of the Mahalanobis distance
assumes that the distributions of tracks and detections are fully characterized by their
mean and covariance and hence hypothesized as normal distributions which actually
might not be the case. Consider the example in Figure 4.11. On the left hand side
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Figure 4.11: Data Association Example
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track and detection means are drawn without covariances. Tracks are marked by boxes
and detections by dots. Considering euclidean distances one would match the following
pairs of tracks and detections: (0, 0), (1, 2), (2, 1). In contrast on the right hand side
considering covariances it makes more sense to match (0, 1) and (1, 0) while leaving
track 2 and detection 2 unmatched for further processing in the track management system.

In contrast to the application in the detection model, where weighting is performed
for each particle individually, meaning a particle is a single point in the distribution,
we consider the Gaussian estimate of the track belief before the weighting x̂ik = bel(xik)
based on all particles with mean µ̂xi

k
and covariance Ĉxi

k
. Therefore, instead of using the

detection covariance Czj
k
in the Mahalanobis distance calculation we need to calculate the

actual covariance of the difference between predicted detection ẑik and observed detection
zjk.

zjk = Hxik + vk (4.20)
ẑik = H x̂ik (4.21)
z̃ijk = (zjk − ẑik) (4.22)

= H(xik − x̂ik) + vk (4.23)

Note that it is assumed that the mean of z̃ijk is zero, meaning that it is expected that the
predicted detection matches the observed detection on average.

Cz̃ij
k

= E{(zjk − ẑik)(z
j
k − ẑik)ᵀ} (4.24)

= E{(H(xik − x̂ik) + vk)(H(xik − x̂ik) + vk)ᵀ} (4.25)
= HE{(xik − x̂ik)(xik − x̂ik)ᵀ}Hᵀ + E{vkvᵀk} (4.26)

+HE{(xik − x̂ik)v
ᵀ
k}+ E{vk(xik − x̂ik)ᵀ}Hᵀ

Since we assume that the detection noise is independent of the state prediction noise it
follows that both E{(xik − x̂ik)v

ᵀ
k} and E{vk(xik − x̂ik)ᵀ} are zero. Hence, we get:

Cz̃ij
k

= HĈxi
k
Hᵀ +Czj

k
(4.27)

Using this covariance we can define the Mahalanobis distance between the mean of a
track and a detection. We use the squared version here to penalize errors higher and to
later define a gate according to the χ2 distribution.

d2
z̃ij

k

= (ẑik − zjk)
ᵀC−1

z̃ij
k

(ẑik − zjk) (4.28)

For an optimal assignment we want to minimize the overall distance in matchings. Since
we described a maximum matching version of the Munkres algorithm in Section 3.4 we
convert the distances as follows and put them in a matrix U = (uij):

d2
max = max

ij
d2

z̃ij
k

(4.29)

uij = d2
max − d2

z̃ij
k

(4.30)
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Algorithm 4.9: Data Association
Input: T , Z
Output: assignment, assignment_cost

1 max = 0;
2 for i = 0 to |T | − 1 do
3 for j = 0 to |Z| − 1 do
4 ẑ = HT [i].µ̂x;
5 if Z.type == RGB then
6 construct normalized vector z from camera origin towards ẑ;
7 U [i, j] = arccos(n · z);
8 else
9 U [i, j] = (ẑ −Z[j].zjk)ᵀC

−1
z̃ij

k

(ẑ −Z[j].zjk);
10 end
11 if max < U [i, j] then
12 max = U [i, j];
13 end
14 end
15 end
16 for i = 0 to |T | − 1 do
17 for j = 0 to |Z| − 1 do
18 Umax[i, j] = max− U [i, j];
19 end
20 end
21 augment matrix to square size;
22 assignment = MaxCostAssignment(Umax[i, j]);
23 assignment_cost = U ;

As in Section 4.2.3 we again consider RGB camera based detectors as a special case.
However, in contrast to the measurement model we not only consider one particle but the
whole distribution. Similar to the detection model we construct a ray from the camera
origin through the predicted detection ẑik and calculate the angular difference θ serving
as the distance measure between predicted detection and received detection.

The data association procedure is then summarized in Algorithm 4.9 which is used in the
tracking algorithm. The algorithm takes an array of tracks and an array of detections.
First we compute the squared Mahalanobis distance (lines 2-10) and fill the matrix
U while computing the maximum. Then we transform the minimization problem into
a maximization one (lines 11-15) using the matrix Umax. This is then passed to the
Munkres algorithm (line 17) which computes maximum cost assignment. Note that we
return the matrix U as the assignment cost since we utilize the χ2 distribution of the
Mahalanobis distance for the gating. To define a gating threshold we first define that with
probability p a valid detection is inside the gate and hence valid detections fall outside of
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the gate with probability 1− p. Now consider that the cdf Fx(Athres) is the probability
that the random variable x is below the threshold Athres, i.e. x ≤ Athres. Therefore, the
inverse cdf Fx(p)−1 gives a value Athres for which x ≤ Athres with probability p. If we
choose p = 0.99 and by applying the corresponding gating threshold Athres 99% of true
detections are inside the gate.

4.2.5 Track Management

Previously, we assumed that there exists a certain amount of tracks in the system which
are mapped to detections through the data association. However, we neglected that if
there are more detections than tracks it can be the case that another person entered
the vicinity of the robot that needs to be tracked and hence a new track has to be
initialized. Contrary, there could be tracks that are not matched to any detection by
the data association, meaning that a person might have moved out of the robots field
of view. Obviously, since we are not dealing with perfect sensors, tracks should not
be deleted immediately if there are no detections associated with them in the current
cycle and likewise new tracks should not be created from every newly occurred detection
due to possible false positives. The track initiation and deletion logic here is based on
approaches taken in the publications [BH10] [LGA15].

In the people tracking algorithm 4.1 we use an array of tracks Tk which holds the
tracks of the current time step k. For track management we will make use of the variables
MC and DC in the track tuple (ID,X, µ̂x, Ĉx,MC , DC , VC ,m,mv).

Track Creation

First, we consider the creation of tracks from detections that are not assigned to an
existing track by the data association, i.e. they did not pass the gating threshold for any
track. The new track is created immediately from the detection, but considered immature
and hence not published by the tracking system. To create a track from a detection we
initialize a particle filter with particles distributed around the detection according to
the detection pdf fzk

(zk). We assume that the detection is normal distributed around
the value zk and the covariance Czk

given by the detector, hence zk ∼ N (zk, Czk
). Addi-

tionally, it is assumed that a detection vector zk = [xk, yk]ᵀ only holds the 2D position
which is the case for detectors used in this work. Therefore, we can only initialize the 2D
position of the state vector using the detection and set the velocities to noise sampled
from a zero mean normal distribution. The initialization is given in Algorithm 4.10. After
the initial particle set is created (lines 2-6), we also calculate the mean and covariance
(line 7) to get an initial estimate. Furthermore, the variables MC , DC VC are initialized
to zero (lines 8-10). Finally we add the newly created track to the track array Tk at the
current time step (line 11).

All newly created tracks start as immature tracks, to reach maturity we distinguish
between two cases. First, a track becomes mature if it is matched with a detection in
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Algorithm 4.10: Create Tracks
Input: Zua, Zk, Tk

1 for i = 0 to |Zua| − 1 do
2 if Zua[i] 6= −1 then
3 create new track T ;
4 for n = 0 to N − 1 do
5 sample T.X[n].[x.x,x.y]ᵀ ∼ N (Zk[Zua[i]].µ̂z,Zk[Zua[i]].Ĉz);
6 T.X[n].x.ẋ = δẋ;
7 T.X[n].x.ẏ = δẏ;
8 end
9 [T.µ̂x, T.Ĉ] = CalculateMeanAndCovariance(T.X);

10 T.MC = 0;
11 T.DC = 0;
12 T.VC = 0;
13 T.m = false;
14 T.mv = false;
15 append T to Tk;
16 end
17 end

several cycles of the tracking algorithm. Those cycles are not necessarily consecutive, as
long as the track is not deleted in the meantime. The reason for this is that depending
on the frame rate of the detectors, detections of a certain person might not occur at
every cycle. This ensures that the track reached a certain stability before it is considered
to track a real person and can therefore be output by the tracking algorithm as a mature
track. To decide whether the track reached maturity we increase the value of MC every
time it is associated with a detection and call it mature if the counter reached a certain
threshold promotion_cycles.

The second case is that it is often beneficial to only consider visually confirmed tracks
if a camera is available, which means that the tracked person was detected through a
camera based detector, since laser based detection can lead to a lot of false positives
in cluttered environments (see Chapter 2). Visual confirmation is also modeled by a
counter VC which is increased if a camera based detection is associated with the track.
The track is said to be visually confirmed if the counter value is greater than zero, i.e.
VC > 0. In contrast to the maturity counter, the visual confirmation counter can also be
decreased in case a non-camera-based detection is matched with the track. This ensures
that false positives from a laser based detector are not visually confirmed forever if the
track is assigned a camera based detection once. To prevent that the track is immediately
removed from the mature set if a non-camera-based detection occurs directly after a
camera-based one, the counter is always increased by two and decreased by one. The
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procedure to decide maturity of tracks is stated in Algorithm 4.11.

Algorithm 4.11: Update Track Maturity
Input: T , z

1 if T [n].MC ≥ promotion_cycles then
2 T [n].m = true;
3 else
4 T [n].MC = T [n].MC + 1;
5 end
6 if z.type == visual then
7 T [n].VC = T [n].VC + 2;
8 else
9 T [n].VC = T [n].VC − 1;

10 end
11 if T [n].VC > 0 then
12 T [n].mv = true;
13 else
14 T [n].mv = false;
15 end

Track Deletion

Deletion of a track also depends on whether it is assigned a detection or not in several
cycles. We again employ a counter DC which is increased in every cycle a track does not
receive an update through an associated detection. Tracks are then deleted if this counter
reaches a certain threshold. For track deletion we distinguish between the threshold
for immature tracks deletion_cycles_im and mature tracks deletion_cycles_m, where
the threshold for immature tracks is typically smaller, i.e. deletion_cycles_im <
deletion_cycles_m. The deletion threshold parameter for mature tracks can also be
considered as the time for which occluded persons are still tracked. Keeping track of an
occluded person for a longer period of time enables the tracker to immediately match
the track again with a detection, if the person comes back into the field of view of the
robot, instead of creating a new track which has to reach maturity again. Track deletion
is summarized in Algorithm 4.12.
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Algorithm 4.12: Delete Tracks
Input: Tua, Tk

1 for i = 0 to |Tua| − 1 do
2 if Tua[i] 6= −1 then
3 if Tk[Tua[i]].m == true then
4 if Tk[Tua[i]].DC ≥ deletion_cycles_m then
5 delete Tk[Tua[i]];
6 else
7 Tk[Tua[i]].DC = Tk[Tua[i]].DC + 1;
8 end
9 else

10 if Tk[Tua[i]].DC ≥ deletion_cycles_im then
11 delete Tk[Tua[i]];
12 else
13 Tk[Tua[i]].DC = Tk[Tua[i]].DC + 1;
14 end
15 end
16 end
17 end

62



CHAPTER 5
Implementation

In order to evaluate the people tracking approach introduced in Chapter 4 we imple-
mented the tracking algorithm, including the motion models introduced in Section 3.3
and the heat map creation algorithm as ROS packages. ROS is a broad collection of
libraries and tools designed for robotics software used in robotics research. The benefit of
ROS is that it helps to encapsulate software for a specific purpose into a package, which
can then be used as a part of a larger application, enabling reuse of certain packages.
Packages in ROS typically contain one or more executables called nodes. In addition,
ROS defines interfaces between such nodes through messages. In the following we describe
the implementation of the tracking algorithm and the heat map creation algorithm as
ROS nodes in Section 5.1. Furthermore, we discuss ROS messages serving as an interface
between people detection ROS nodes and the tracking node. Afterwards, we discuss the
robot hardware setup used for our experiments, including sensors and people detection
packages in Section 5.3.

All implemented packages as well as auxiliary packages mentioned in this Chapter
are available on Github1.

5.1 People Tracking Package

The tuw_people_tracking contains the people tracking ROS node which serves as
an interface between the tracking algorithm and other ROS nodes, specifically people
detection nodes. It receives detections and publishes tracks. As a common interface
for detections and tracks we utilize the tuw_object_msgs package, which defines a
message for detected objects, ObjectDetection.msg. What follows is an overview of
the important message fields:

1https://github.com/tuw-robotics
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• header: Holds information about the time stamp of the detection and the coordi-
nate frame to which object poses are relative to.

• type: Holds the objects type, which are persons in our case.

• sensor_type: Holds the type of sensor used in the detection algorithm. This is
important to enable visual confirmation.

• objects: Holds an array of objects defined by their pose, i.e. position and orienta-
tion, their twist, i.e. linear and angular velocity, and the corresponding covariance
matrices.

A key thing to note here is that received detections have to be transformed into a
common coordinate frame such that they are comparable. In our case it is convenient
to transform all detections into the map frame, because representing tracks in the map
frame makes working with the heat map motion model easier. Furthermore, the people
tracking node enables the use of the rqt_reconfigure package to dynamically adjust
the tracking parameters. The people tracking node is implemented as a subclass of the
actual tracking implementation which is in contrast completely independent of ROS
such that it can in principle be used in another framework. Overall, the tracker is
implemented according to the Algorithms proposed in Section 2.2. For the heat map
representation we utilize the grid_map2 package which comes with a lot of convenient
functionality. For the Kuhn Munkres Algorithm used in data association we utilize the
implementation provided by the C++ library dlib3. For visualization of detections and
tracks we adapted the plugins for the ROS visualization tool called rviz provided by
the spencer_people_tracking 4 package. Persons can be visualized by the package
in multiple ways, for consistency we chose to use 3D bounding boxes with the addition
of 99% covariance ellipses and an arrow pointing in the direction of the persons linear
velocity. An example visualization is shown in Figure 5.1.

5.2 Heat Map Package
The tuw_tracking_heatmap implements the creation of an initial heat map and the
integration of historical data as described in Section 4.2.2. First, we utilize the conversion
functionality of the grid_map package to transform a map of the environment provided
by the map_server package into a grid map and furthermore into an OpenCV image5.
OpenCV provides convenient functionality to create the initial heat map using a distance
field transform on the map image. Furthermore, OpenCV is used for visualization of the
heat maps since it is less resource hungry than visualizing them through the grid_map
rviz plugin. To record historical data we also utilize the ObjectDetection.msg

2https://github.com/ethz-asl/grid_map
3http://dlib.net/
4https://github.com/spencer-project/spencer_people_tracking
5https://opencv.org/

64

https://github.com/ethz-asl/grid_map
http://dlib.net/
https://github.com/spencer-project/spencer_people_tracking
https://opencv.org/


5.3. Robot Setup

Figure 5.1: Example visualization showing a tracked person in our lab including the
underlying heat map on the left. The small red arrows below the person visual mark the
corresponding particles for the track. On the right one can see a person being detected
in an image annotated by a bounding box.

type such that the heat map node can subscribe to detected or tracked persons from
both, a simulation or the people tracking node. The received person positions are then
transformed into map coordinates and the corresponding cell in the grid map incremented
as described in Algorithm 4.6. The grid_map package enables the use of several layers
in one map, which is convenient to hold several versions of the heat map. Specifically,
we keep the initial likelihood field based heat map, the non blurred and non normalized
version of the heat map incorporating historical data and the whole heat map containing
the normalized addition of the initial map and the blurred historical data. In order to
save the heat map and use it in the tracking algorithm the heat map node exports the
heat map into a so called bag file, which saves the map as a ROS message. The people
tracking node then uses the heat map from the bag file for the heat map motion model.

5.3 Robot Setup

For the tracking experiments we use a Pioneer 3DX robot shown in Figure 5.2 equipped
with a Hokuyo laser scanner and an Intel RealSense ZR300 depth camera. Close-up
views of the camera and the laser scanner are shown in Figure 5.3. The laser scanner is
mounted 0.325 m above the ground such that it can observes the legs of walking people.
The Hokuyo laser scanner detects objects at distances ranging from 0.02 m up to 5.6 m.
The camera is placed at a height of 1.3 m from the ground intended to observe at least
the upper body of close persons. The ZR300 observes a field of view of 75° x 41.5° x 68°
for RGB imaging and 70° x 46° x 59° for depth images. The camera is operated with
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Figure 5.2: Pioneer 3DX robot evaluation platform

color resolution of 640 x 480 at 30 fps and depth resolution of 480 x 360 at 30 fps. The
robot is equipped with an NVIDIA Jetson TX2 developer board, which is capable of
running the tracking algorithm on the CPU and additionally provides a GPU utilized by
RGB based people detection algorithms.

5.3.1 Detectors

In terms of detection algorithms we use available ROS nodes adapted to publish object
detection messages. All detectors used provide only information about a persons location
including a covariance estimate, but do not provide velocity or orientation. To compensate
for the weaknesses of each sensor, mentioned in Section 2.1, we use three different detectors,
one based on monocular RGB images, one based on depth images and one based on data
from the laser scanner. The following detector packages are used:

• leg_detector6: This official ROS package implements a leg detector algorithm
based on 2D laser scans similar to what is described in [AMB07]. It clusters points
in the laser scan into blobs and identifies which such blobs correspond to legs.

6http://wiki.ros.org/leg_detector
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(a) Intel ZR300 Camera (b) Hokuyo Laser Scanner

Figure 5.3: Separate Figures showing the camera, on the left, and laser scanner, on the
right, used on the Pioneer 3DX robot.

Matched pairs of legs are published as persons. Since the leg detector relies on
laser scans the published people locations are pretty accurate. Although, the leg
detector is prone to false positives in office environments due to tables and chairs
being mistakenly classified as persons.

• ros_deep_learning: This package provides a ROS wrapper for a deep learning
pedestrian detector which is available as a pretrained model from NVIDIA7. The
detector outputs bounding boxes in the image, of which we use the lowest point
to compute the ray mentioned in Section 4.2.3. The detection is pretty accurate
from our experience, including people at further distances. However, due to the
monocular detection we do not obtain any depth information of how far away a
detected person actually is.

• realsense_people_detection8: Intel provides a people detection implemen-
tation for the ZR300 camera based on depth images which we wrapped into a ROS
node. Due to the depth range constraints this detector can only detect persons in
the range of 0.3 m to 3.0 m, but is very accurate.

7https://github.com/dusty-nv/jetson-inference
8https://github.com/IntelRealSense/realsense_samples_ros
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CHAPTER 6
Results

In this chapter we evaluate the prototype implementation of the people tracking approach
presented in this thesis. First, we compare commonly used motion models for people
tracking described in Section 3.3 with the introduced heat map motion model from
Section 4.2.2. We test pure forward prediction without any detections in different map
scenarios. Furthermore, we compare the overall approach including detections to state
of the art people tracking utilizing the CLEAR MOT metrics discussed in Section 3.5.
In Section 6.1 we discuss the conducted experiments and elaborate on our choice of
experiments. Results regarding the motion model comparison are discussed in Section 6.2
and results on overall tracking performance in Section 6.3 respectively.

6.1 Experimental Setup

The experiments discussed here are supposed to fulfill two purposes. First, we intend to
give the best motion model for pure forward prediction. Comparing forward prediction
performance and hence, prior distributions of particles, is important because one wants
to use the least amount of particles possible and therefore, not waste to many of them
representing unlikely belief states. Furthermore, a solid forward prediction implicitly
improves occlusion handling, since predicting a persons position even without obtaining
detections, due to the person being occluded, gets more accurate. Properly predicting the
location of occluded persons, for example positively influences human aware navigation
of the robot.

Secondly, we are of course interested in overall tracking performance. Good perfor-
mance is defined by minimizing the distance of the trackers belief state of a person to
the ground truth and furthermore, minimize the number of missed persons, the number
of false positives and the number of mismatches. The CLEAR MOT metrics cover all
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(a) Obstacle scenario (b) Crossing scenario

(c) Heat map for the obstacle scenario (d) Heat map for the crossing scenario

(e) Constructed path for the obstacle
scenario

(f) Constructed path for the crossing
scenario

Figure 6.1: Test maps for comparing motion model forward prediction

of those cases and are therefore used to assess the overall performance of the presented
people tracking approach.

6.1.1 Comparison of Forward Prediction

To compare forward prediction behavior of different motion models we created artificial
map scenarios. We consider forward prediction on a straight corridor with an obstacle
present in the center as shown in Figure 6.1a and crossing into another corridor given in
Figure 6.1b. The maps are chosen this way since we would like to show that keeping the
map in mind leads to a more meaningful distribution of particles, which can therefore
lead to a lower number of particles required. Furthermore, we want to emphasize that
without detections there are often multiple meaningful paths available for a person to
take. Hence, one expects that prior particle distributions cover all of those paths to a
certain degree while neglecting highly improbable locations like walls in the static map.
In the test setup we initialize a certain number of particles N , specified in the test case,
at the starting position and then let the particle filter forward predict the particle states
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in fixed time intervals dt. The particles are normally distributed with covariance matrix
Cinit where the initial velocities are completely determined by zero mean Gaussian noise.
To assess the heat map motion model we create a likelihood field based heat map for each
of the maps in Figure 6.1 according to Algorithm 4.5. In addition, we create heat maps
with constructed paths that are more likely to show that the motion model correctly
considers those as well.

6.1.2 Comparison of Tracking Performance

In order to assess overall tracking performance of our approach we record data into bag files
for certain scenarios. Using recorded data instead of live tracking serves the purpose that
annotating ground truth is easier and also results are reproducible, neglecting the inherent
randomness of the probabilistic approach. We also test the motion models considered in
the previous Section, i.e. constant velocity and coordinated turn. For the scenarios we
chose to include two sequences, one where the robot is static and people walk in and out
of its field of view and a second one where the robot drives along the corridor of our lab.
The heat map utilized here is the one shown in Figure 4.6c introduced in Section 4.2.2.
In the following we will refer to the scenarios as static robot scenario, which is about 70
sec long, containing eight tracks and moving robot scenario with similar length and 5
tracks. To annotate ground truth in both scenarios and to evaluate performance using the
CLEAR MOT metrics we use the tools provided in the spencer_people_tracking1

package, which gives the advantage that we can compare our results to the ones obtained
by the authors of [LBLA16] and [ML12], although their test data sets are not available
to us. In order to determine good parameter configurations we run the test cases with
different parameters and compare them according to their CLEAR MOT performance
values. In terms of detectors we use all three detectors described in Section 5.3 to capture
as much of the environment as possible. One thing to note is that, due to restrictions in
field of views and range, care must be taken in ground truth annotation to only consider
persons actually track-able by the robot.

6.2 Forward Prediction Comparison Results
In what follows we compare the forward prediction results on the maps given in Figure 6.1.
For the obstacle map in Figure 6.1a we chose to compare the heat map motion model to
the nearly constant velocity motion model, since the scenario is mostly straight forward
movement. In the other scenario featuring the crossing shown in Figure 6.1b the heat
map motion model is compared to the coordinated turn motion model, such that both
can take the possible turn into account. We refrain from comparison with the nearly
constant acceleration motion model since it does not give meaningful results in longer
forward predicting scenarios without detections. We use the parameters in Table 6.1 for
the comparison plots. Tracks are initialized at position (3.0, 1.0) in the test maps with ve-
locities sampled from N (0,Cinit). We forward predict 150 particles with a constant time

1https://github.com/spencer-project/spencer_people_tracking
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N σx σy Cinit p dt
150 0.1 0.1 diag(0.05) 8 0.25

Table 6.1: Particle Filter and Motion Model Parameters

step of dt = 0.25 and plot the particles in the map at times 0, 35dt, 70dt, 105dt and 140dt.

First, consider Figure 6.2 where we compare the constant velocity forward prediction on
the left, Figure 6.2a, and heat map forward prediction on the right, Figure 6.2b, using
the initial heat map in the obstacle scenario given in Figure 6.1c. One can observe that
starting in the second plot at 35dt the behavior is still pretty similar, although in the
constant velocity prediction a small number of particles already moves outside of the map.
As time increases it is obvious that in the heat map motion model case, particles are more
condensed and represent rather likely positions in the map, whereas the constant velocity
particles move forward keeping their direction as expected, and hence fail to represent
a meaningful distribution for a persons position after some time. Furthermore, using
the heat map motion model the static object in the middle of the map can successfully
be avoided by the forward prediction. Considering, that the constant velocity model
behaves similar during small time steps one can argue that frequently received detections
justify the use of such a prediction model. However, in scenarios where no detections are
available for some time the heat map model provides a more accurate representation of
the distribution. One disadvantage of the heat map motion model that can be observed in
the experiment is that if the starting position is already likely, a high amount of particles
floats around its local neighborhood. This behavior is due to the fact that the heat map
motion model considers changes in all directions. The counter measure to apply weights to
reward keeping the direction, which is already applied here as introduced in Section 4.2.2,
could in principle be changed to reward moving forward even more, however there is a
tradeoff in respecting heat map probabilities and ensuring forward movement. Another
thing to keep in mind here is that since there is no detection, the person can adjust
its velocity and therefore close-by-locations still have to be represented by the distribution.

Similar behavior can be observed in the crossing scenario comparing the coordinated
turn forward prediction with the heat map model shown in Figure 6.3. Even though the
coordinated turn model, plotted in Figure 6.3a, is able to predict some particles to move
in an arc towards the branch in the crossing, it still is by design not able to accurately
predict the long term path needed to either move towards the branch or stay on the
straight path. Contrary, due to respecting the underlying map, the heat map motion
model is able to predict particles along both paths, although as mentioned before there
are still more particles representing close-by-locations than locations further away from
the initial position.

Finally, consider the results for artificially created likely paths shown in Figures 6.1e
and 6.1f. Figure 6.4 gives the plotted particle distributions. One can observe that the
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majority of particles follows the introduced paths in both scenarios. In the obstacle
scenario, Figure 6.4a particles are more likely to pass under the obstacle as expected.
Considering the crossing scenario, Figure 6.4b clearly shows that from the start particles
move towards the likely path and take the branching path in the crossing. Since we did
not reduce the likelihood of other locations to zero, there are still some particles covering
them as expected.

In summary, we can say that if static map information is available, the heat map
motion model provided more accurate forward prediction than typically used constant
velocity or coordinated turn models. However, if detections are available frequently
enough, and occlusions are not likely to happen, the simple models are still a good
alternative.
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t = 0s

t = 8.75s

t = 17.5s

t = 26.25s

t = 35s

(a) Constant Velocity Forward Prediction

t = 0s

t = 8.75s

t = 17.5s

t = 26.25s

t = 35s

(b) Heat Map Forward Prediction

Figure 6.2: Constant Velocity motion model on the left in comparison with the heat map
motion model on the right in the obstacle scenario
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t = 0s

t = 8.75s

t = 17.5s

t = 26.25s

t = 35s

(a) Coordinated Turn Forward Prediction

t = 0s

t = 8.75s

t = 17.5s

t = 26.25s

t = 35s

(b) Heat Map Forward Prediction

Figure 6.3: Coordinated Turn motion model on the left in comparison with the heat map
motion model on the right in the crossing scenario
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t = 0s

t = 8.75s

t = 17.5s

t = 26.25s

t = 35s

(a) Obstacle scenario

t = 0s

t = 8.75s

t = 17.5s

t = 26.25s

t = 35s

(b) Crossing scenario

Figure 6.4: Heat map motion model forward prediction for both scenarios with constructed
paths
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6.3 Tracking Performance Comparison Results

In this section we show the results for overall tracking performance using three different
motion models, namely CV, CT and the proposed heat map motion model. An example
screenshot of the tracking visualization in rviz is shown in Figure 6.5.

Figure 6.5: Example screenshot of the tracking visualization in rviz

6.3.1 Tracking Performance with static Robot

We tested several parameter configurations for each motion model, of which some are
summarized in Table 6.2. We chose the configurations here, such that the best performing
configuration for each motion model is shown and additionally, the parameter influence
can be discussed. The parameters varied here are: the number of particles N, the
forward prediction time dt, the standard deviations σθ′ and σω for the heat map and CT
motion model respectively, the number of deletion cycles for mature and immature tracks
d.c.(m) and d.c.(im) after which a track with no corresponding detection is deleted, the
promotion cycles p.c. denoting the number of corresponding detections a track has to
receive to be considered mature and the gating threshold for data association Athres.
For Athres Table 6.2 holds two values, 3.22 which corresponds to 80% probability that a
true detection is inside the gate and 9.21 which corresponds to 99% probability. One
parameter that is fixed for all configurations is the standard deviation for linear motion
noise σx and σy because it turned out to be a reasonable value for all motion models
tested here. The corresponding results to Table 6.2 are given in Table 6.3. In addition,
Figure 6.6 shows the best MOTA results with its corresponding MOTP for each motion
model. As defined in Section 3.5 we consider the MOTA and the MOTP as tracking
metrics. Additionally, the tables states the individual failure rates which are part of the
MOTA criteria. Bold entries in the table mark the best value obtained for each motion
model. Note that except for the MOTA, lower values mean better performance. Also
keep in mind that the MOTP obtained is the euclidean distance between ground truth
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case N motion model dt σx, σy σθ′ / σω d.c.(m) d.c.(im) p.c. Athres

1 100 heat map 0.3 0.1 1.0 30 5 3 9.21
2 100 heat map 0.3 0.1 1.0 60 10 3 9.21
3 100 heat map 0.3 0.1 0.75 30 5 3 9.21
4 50 heat map 0.3 0.1 1.0 30 5 3 9.21
5 100 heat map 0.3 0.1 1.0 30 5 5 9.21
6 100 heat map 0.4 0.1 1.0 30 5 3 9.21
7 100 heat map 0.3 0.1 1.0 30 5 3 3.22
8 100 CV 0.3 0.1 - 30 5 3 3.22
9 100 CV 0.3 0.1 - 60 10 3 3.22
10 50 CV 0.3 0.1 - 30 5 3 3.22
11 100 CV 0.3 0.1 - 30 5 5 3.22
12 100 CV 0.4 0.1 - 30 5 3 3.22
13 100 CV 0.3 0.1 - 30 5 3 9.21
14 100 CT 0.4 0.1 0.1 30 5 3 3.22
15 100 CT 0.4 0.1 0.1 60 10 3 3.22
16 100 CT 0.4 0.1 0.05 30 5 3 3.22
17 50 CT 0.4 0.1 0.1 30 5 3 3.22
18 100 CT 0.4 0.1 0.1 30 5 5 3.22
19 100 CT 0.3 0.1 0.1 30 5 3 3.22
20 100 CT 0.4 0.1 0.1 30 5 3 9.21

Table 6.2: Test configurations for the static scenario

tracks and the matched track in meters. Through the bold entries one can immediately

MOTA

77.58%

74.43%

80.11%

heat map CV CT

MOTP

0.3076

0.2286

0.2493

heat map CV CT

Figure 6.6: Test result plots for the static scenario, showing the best case for each motion
model

see that there is not always a clear overall winner, except for the CT motion model,
which also overall performs best compared to the other motion models. Now we discuss
the influence of the individual parameters in comparison to the first and best performing
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case fp rate mismatch rate miss rate MOTA MOTP
1 8.43% 0.28% 13.70% 77.58% 0.3076
2 20.11% 0.36% 15.19% 64.34% 0.3349
3 6.93% 0.21% 17.26% 75.60% 0.2807
4 10.22% 0.21% 22.57% 67.00% 0.3280
5 8.63% 0.48% 20.81% 70.08% 0.3625
6 9.03% 0.65% 18.79% 71.53% 0.3579
7 6.91% 0.14% 16.60% 76.36% 0.2988
8 7.27% 0.14% 18.16% 74.43% 0.2286
9 15.37% 0.07% 15.65% 68.90% 0.2478
10 7.77% 0.27% 24.74% 67.22% 0.3032
11 7.91% 0.25% 26.23% 65.61% 0.2535
12 8.86% 0.47% 20.90% 69.77% 0.2846
13 10.21% 0.22% 27.10% 62.47% 0.2769
14 7.24% 0.07% 12.57% 80.11% 0.2493
15 16.06% 0.40% 19.44% 64.10% 0.3311
16 7.43% 0.14% 15.58% 76.84% 0.2713
17 10.77% 0.41% 29.05% 59.77% 0.3062
18 7.96% 0.35% 20.58% 71.11% 0.2748
19 5.85% 0.24% 20.47% 73.44% 0.3179
20 7.32% 0.33% 25.22% 67.13% 0.2993

Table 6.3: Test results for the static scenario

entry in terms of MOTA for each motion model.

First, consider the increase in deletion cycles, i.e. test cases 2, 9 and 15. For each
model the main impact is that it significantly increases the false positive rate. This is as
expected since a false positive occurs if there is a hypothesis track with no matching ground
truth track, which is often the case if we keep tracks without corresponding detections
alive for a higher number of tracking cycles. Here, one must be careful in accessing the
tracking performance because the increase in deletion cycles also helps to cope with a lack
of proper detections or occlusions. Hence, even though the increase in deletion cycles low-
ered the MOTA here, such a configuration might still generalize better to other situations.

The second parameter we consider is the standard deviation for the angular change
σθ′ in the heat map motion model occurring in test case 3. With σθ′ = 0.75 the forward
prediction of the heat map motion model is much more focused on very small angular
changes. Since the scenario is a narrow corridor where people do not heavily change
direction one would expect this model to perform better overall, which it does except for
the miss rate. An increased miss rate without an increase in false positives means that
there actually is no hypothesis at some point for a ground truth track. A possible reason
for that is a failed data association leading to early deletion of a track.
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Similarly, we examine the standard deviation change for the rotational velocity ω in the
CT model in test case 16. Here we can see that the peaked distribution leads to slightly
worse results overall, but again the miss rate is increased more than the false positive
rate, possibly for the same reason.

Reducing the number of particles to 50 affects the tracking performance for all mo-
tion model, which is exactly what one would expect. Interestingly, the CT motion model
seems to perform the worst with less particles. The main problem again seems to be
incorrect data association leading to a high miss rate for all three motion models, which
occurs more often if the motion model prior is not accurate enough.

The effect of the number of promotion cycles is fairly obvious for all motion mod-
els. Although, more promotion cycles lead to more stable tracks, it actually delays track
promotion and hence, leads to a higher miss rate.

Regarding the forward prediction time dt, our experiments showed that the best value
here is not equal for every motion model. While the heat map and the CV model both
perform best with dt = 0.3 s, the CT motion model benefits from a slightly higher
forward prediction time of dt = 0.4 s. Test cases 6, 12 and 19 show that a slight increase
or decrease respectively immediately leads to worse performance throughout.

Finally, we take a look at the gating threshold Athres, where again one value does
not perform equally good for all motion models tested. As one can observe, for the heat
map motion model a higher threshold value is preferred, whereas the CV and CT model
benefit from a lower threshold.

Overall, we can say that all three motion models performed similar, however both
the proposed heat map motion model and the CT model have an edge over the more
simple CV motion model. The CT motion model also outperformed the proposed heat
map motion model. If we compare our results to the ones in [LBLA16], the tracking
performance of our particle filter based approach is similar suggesting that the approach
taken is valid, however due to the difference in test scenarios and detectors used, care must
be taken in direct comparison. In comparison with the approach in [ML12] our MOTA
and false positives are slightly better than what they achieved on the RGB-D people
dataset [SA11], wheres our MOTA results are worse than what the authors reported for
their own datasets. One thing to keep in mind here is that such results heavily depend
not only on the dataset, but also on the detection algorithms used.

6.3.2 Tracking Performance with moving Robot

As mentioned previously, we did not only test the static tracking performance, but also
recorded a dynamic scenario where the robot is moving around. Since the general effect
of parameters does not change whether the robot is static or dynamic, we here only give
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results of one good performing set of parameters for each motion model. Parameters are
stated in Table 6.4. Corresponding results are given in Table 6.5. In addition, the MOTA
and MOTP are plotted in Figure 6.7. For the dynamic scenario, a bit of parameter

case N motion model dt σx, σy σθ′ / σω d.c.(m) d.c.(im) p.c. Athres

1 100 heat map 0.25 0.1 0.5 30 5 3 3.22
2 100 CV 0.3 0.1 - 30 5 3 3.22
3 100 CT 0.25 0.1 0.1 30 5 3 3.22

Table 6.4: Test configurations for the dynamic scenario

adjustment had to be done, especially concerning forward prediction time, because of the
moving robot. In case of the heat map motion model we also observed that a reduction
of the standard deviation σθ′ for the angular change resulted in quite a performance
improvement. As one can see from the results, the performance difference between

case fp rate mismatch rate miss rate MOTA MOTP
1 2.51% 0.00% 13.93% 83.56% 0.2595
2 1.93% 0.07% 13.30% 84.70% 0.2570
3 2.99% 0.07% 15.63% 81.32% 0.2854

Table 6.5: Test results for the dynamic scenario

MOTA

83.56%

84.7%

81.32%

heat map CV CT

MOTP

0.2595

0.257

0.2854

heat map CV CT

Figure 6.7: Test result plots for the dynamic scenario

motion models according to the CLEAR MOT metrics is pretty small. Interestingly, the
CV model provided the overall best performance here, although by quite a small margin.

As we have seen in Section 6.2 the heat map motion model has significantly better
forward prediction without the presence of detections. Hence, in order to test this effect
we repeat the tests for the dynamic scenarios and drop some of the detections. The
most accurate detections in terms of 3D locations are provided by the laser based leg
detector, therefore we decided to drop two out of three detection frames using the ROS
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drop tool. Furthermore, we only dropped one out of three detections for both camera
based detections since dropping two third resulted in mostly non existing tracks because
of the visual confirmation needed. In order to maintain the tracks and not delete them
between detections we increased the deletion cycles for mature and immature tracks
to 90 and 30 respectively. The results are given in Table 6.6. The MOTA and MOTP
for those results are plotted in Figure 6.8. As one can see, having a lower amount of

case fp rate mismatch rate miss rate MOTA MOTP
1 4.78% 0.07% 22.79% 72.36% 0.3165
2 38.71% 0.07% 30.97% 30.26% 0.2852
3 20.29% 0.07% 26.97% 52.67% 0.3577

Table 6.6: Test results for the dynamic scenario with a reduced number of detections

MOTA

72.36%

30.26%

52.67%

heat map CV CT

MOTP

0.3165

0.2852

0.3577

heat map CV CT

Figure 6.8: Test result plots for the dynamic scenario with a reduced number of detections

accurate detections results in worse tracking performance overall for all three motion
models. However, the heat map motion model is able to maintain significantly lower
false positive and miss rates due to its superior forward prediction. To conclude, we can
say that depending on the detection type, as well as detection frequency the heat map
motion model can be useful to maintain better tracking performance. Nonetheless, if
detections occur frequently enough, classic motion models lead to similar performance.
One more thing to note here is that, in case one intents to keep tracks alive for longer
outside of the robots field of view, for example to still consider them in the navigation
algorithm, the heat map motion model can also provides a more accurate representation
of the track.

6.4 Summary

In this chapter we presented the evaluation results of the proposed people tracking
approach, including heat map motion model. We established, that in comparison to
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the CV and CT motion model, the heat map model provides more accurate forward
prediction. Overall tracking performance was examined both with a static robot as well
as with the robot moving through the environment. Results show that, if detection rates
are small, the heat map motion model outperforms the CV and CT model, whereas high
detection rates lead to similar performances of all three models.

The next chapter concludes the thesis. We give a short summary of the thesis and
then discuss possible future work in order to improve the proposed approach.
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CHAPTER 7
Conclusion

This chapter concludes the thesis. We first give a summary of the people tracking approach,
including the heat map motion model proposed in this thesis and the experimental results.
In addition we provide some thoughts on possible future work to improve the tracking
approach and also in utilizing the capability of particle filters in representing multi modal
distributions to provide more information to navigation algorithms.

7.1 Summary

In this work we proposed a particle filter based approach to track people from a mobile
robot platform. We first discussed the general probabilistic model for including different
detectors. Then the tracking algorithm was described, including the modeling of detector
input, the nearest neighbor based data association strategy applied as well as our approach
to create new tracks and deleting obsolete tracks. In addition, a major focus was in
developing the heat map motion model, which incorporates static map information as
well as historical data of people observed in an environment. Our results first of all
show that forward prediction using the heat map motion model outperforms classic
approaches using CV or CT motion models. In case of overall tracking performance, we
saw that if ground truth annotation is done with respect to what the robot can actually
observe and therefore track, all three motion models perform similarly well, given that
detections come in frequently to correct forward prediction. When detection frequency
was reduced, the superior forward prediction quality of the heat map motion model lead
to much better tracking performance, showing the advantages of the proposed motion
model. We not only tested with a static robot, but also had the robot move around in
the environment tracking people. The results show, that the proposed tracking approach
performs similarly well if the robot is moving.
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7.2 Future Work
In the results we saw that wrong data association can cause a high number of track misses,
hence it seems worth to consider more advanced strategies such as MHT instead of the
simple nearest neighbor data association. Another improvement might be to incorporate
detections when sampling new particles in the motion model, similar to what is done
in FastSLAM 2.0 [MTKW03]. For detectors obtaining accurate world coordinates, like
RGB-D based approaches this might lead to more accurate posteriors and hence, more
accurate tracking. This can especially be worth for scenarios where people suddenly
accelerate and the motion model does not keep up, due to modeling acceleration through
small noise terms. Although, we used particle filters to represent people posteriors in this
work, we still only output mean and covariance, because common evaluation tools as well
as commonly used navigation approaches can only deal with single best estimates. Here,
one can make use of multi modal distributions to output several possible time locations
of people, especially in case of occlusion, to provide more data for safe navigation around
humans. One strategy could for example be to consider a certain amount of particles
with the highest weights and output them as possible persons that have to be considered.
Furthermore, it would be interesting to include our people tracking approach into a
navigation framework to investigate its impact on moving in populated environments.
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