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Kurzfassung

Durch erhöhte Lebenserwartung, sowie die wachsende Weltbevölkerung steigt die Zahl
der älteren Erwachsenen. Erhöhtes Alter bringt Herausforderungen, wie Verschlechterung
kognitiver und physischer Fähigkeiten, mit sich, die sich in Gebrechlichkeit äußern können.
Gebrechlichkeit ist ein Syndrom, welches durch geringere Resistenz gegenüber Stress,
Krankheiten und anderen exogenen Einflüssen charakterisiert wird. Gebrechlichkeit
ist reversibel und verhinderbar, wenn es früh genug erkannt wird, dadurch werden
Methoden zur Erkennung von Gebrechlichkeit benötigt. Durch die Korrelation zwischen
Gebrechlichkeit und körperlicher Leistungsfähigkeit, gibt es Tests, um die Mobilität einer
Person, und in weiterer Folge das damit verbundene Gebrechlichkeits-Risiko, bewerten
zu können. Die dadurch entstehende Prüfungssituation bewirkt allerdings, dass getestete
Personen ihr Verhalten ändern, wodurch sich die Ergebnisse von den Leistungen im Alltag
unterscheiden.

In dieser Arbeit wird das Fitnessniveau automatisch eingeschätzt, basierend auf
der Messung von Gang-Parametern als zusammenfassenden Indikator des Gesundheits-
zustandes und Aufsteh-Leistung als Prädiktor für Balance-Defizite und Stürze. Für
beide Messungen werden durch Tiefensensoren aufgezeichnete Bewegungsverläufe ver-
wendet. Tiefensensoren ermöglichen unaufdringliche, Privatsphäre schützende Erfassung
von Bewegungen in habitueller Geschwindigkeit. Die zugrundeliegende Methode zur
Bewegungsverfolgung von Personen benötigt keine Konfiguration, wodurch eine einfache
Installation in Wohnungen ermöglicht wird. Für die Evaluierung der vorgeschlagenen
Mess-Ansätze wurden zwei Datensets aufgenommen und manuell annotiert. Das STS
Datenset beinhaltet 137 Aufsteh-Sequenzen in Kombination mit alltäglichen Aktivitäten.
Das 4-Paths Datenset enthält Gang-Sequenzen von 10 Personen auf 4 vordefinierten
Pfaden.

Die erste Messmethode analysiert den Gang bezüglich Geh-Geschwindigkeit, Distanz,
und Dauer. Weiters werden zwei Vorgehensweisen zur Bestimmung von Gang-Ereignissen
verglichen. Eine verwendet Literatur-basierte scale-space Filterung, die andere verwendet
maschinelles Lernen um die Gang-Ereignisse zu bestimmen und in weiterer Folge Kompo-
nenten des Gang-Zyklus abzuschätzen: Schrittzeit, Gangzeit, Schrittfrequenz, einfache
Stütze, doppelte Stütze, Standphase. Für das Training des Lern-Algorithmus und die
Evaluierung der gemessenen Parameter wird das 4-Paths Datenset verwendet. In diesem
Datenset sind die Fersen-Auftritte und Zehen-Abhebungen manuell annotiert und die
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Pfad-Distanzen sowie die Gang-Zeiten mittels Laser-Messung und Stoppuhr erfasst, um
räumlich-zeitliche Evaluierung der gemessenen Gang-Parameter zu ermöglichen. Der Ver-
gleich zeigt bessere Ergebnisse für den Maschinenlern-Ansatz und, dass die Bestimmung
von Komponenten des Gang-Zyklus vergleichbar mit State of the Art Messungen mittels
tragbaren Sensoren ist.

Die zweite Messmethode ist in zwei Probleme unterteilt: die Erkennung einer
Aufsteh-Bewegung und die Messung der Aufsteh-Dauer. Zur Erkennung wird ein Literatur-
basierter Schwellwert-Ansatz mit Maschinenlern-Ansätzen verglichen. Die Zeitmessung
wird mittels Kurvendiskussion durchgeführt, um den steilsten Höhenanstieg in der de-
tektierten Aufstehsequenz zu identifizieren. Die Maschinenlern-Algorithmen werden mit
Aufsteh-Sequenzen des STS Datensets trainiert, in dem jeweils Beginn und Ende von
Aufsteh-Bewegungen manuell annotiert sind. Das ermöglicht die Evaluierung des Detek-
tierungsansatzes sowie der Zeitmessung. Die Aufsteh-Erkennung erzielt beste Ergebnisse
mit einem Random-Forest-Algorithmus, die Ergebnisse der Zeitmessung sind vergleichbar
mit State of the Art Ergebnissen.

Ein ganzheitliches System wird vorgestellt, welches die Messmethoden kombiniert
und in Wohnungen von älteren Erwachsenen installiert werden kann, um Gang-Parameter
und Aufsteh-Leistung zu messen. Die akquirierten Informationen werden aggregiert und
für die weitere Verwendung durch z.B. medizinische Fachkräfte zur Verfügung gestellt.
Das System wurde in einem 8-wöchigen Feldexperiment mit 4 älteren Erwachsenen
getestet und mit Messungen einer Physiotherapeutin verglichen. Die Evaluierung zeigt
einen klaren Unterschied zwischen habituellen Bewegungen zuhause im Vergleich zu
den Leistungen in den Bewertungstests, was die Verhaltensänderung in Testsituationen
aufzeigt, wie es auch in der Literatur demonstriert wird.



Abstract

Due to increased life expectancy and growing world population, there is an increase
in older adults. With increased age, challenges like cognitive and physical decline are
more likely to occur and involve the age-related frailty syndrome, which is characterized
by lower resistance against stress, diseases, and other exogenous influences. Frail older
adults have an enhanced need of health care utilization, are more likely to fall and be
hospitalized due to reduced cognitive and physical capabilities. Frailty is reversible and
preventable, if detected early enough, thus methods to identify frailty are required. Due
to correlation between frailty and physical fitness, there are physical performance tests,
to assess a person’s mobility, and the associated risk to become frail. However, the test
situation causes tested persons to change their behavior which leads to different results
compared to persons’ performance in daily life.

In this thesis, the fitness level is automatically assessed based on measurement of
gait parameters as summarizing health indicator, as well as sit-to-stand performance as
predictor for falls and balance deficits. For both measurements, person tracking data
from depth sensors are utilized, which allows non-intrusive, privacy protecting capturing
of motion at habitual speed in the homes of older persons. The underlying person
tracking method allows plug and play, which enables easy installation in apartments. For
evaluation of the proposed measurement approaches, two datasets have been recorded
and manually annotated. The STS dataset contains 137 sequences of persons performing
sit-to-stand transitions in combination with activities of daily living. The 4-Paths dataset
contains gait sequences of 10 persons walking on 4 predefined paths.

The first measurement method analyses human gait for walking velocity, distance,
and duration. Further, two approaches for gait event demarcation are compared. One
uses literature-based scale-space filtering, the other approach uses machine learning to
determine gait events, which are further used to estimate gait cycle components: step time,
stride time, cadence, single support, double support, stance phase. For training of the
machine learning algorithms, and for evaluation of the measured parameters, the 4-Paths
dataset is used. In this dataset heel strike and toe off events are manually annotated
and the walking distances and durations were acquired using laser measurement and a
stop watch, which allows spatio-temporal evaluation of the measured gait parameters.
The comparison shows better results for the machine-learning approach, and gait cycle
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component estimation comparable to state-of-the-art measurements using wearable
accelerometers.

The second measurement method is split into two problems: the detection of
sit-to-stand movements and the measurement of sit-to-stand transition durations. For
detection, a literature-based threshold approach is compared to different machine-learning
algorithms. The duration measurement is approached using curve-sketching to identify
the steepest height increase in the sequence where the stand-up is detected. The machine
learning algorithms are trained using stand-up sequences of the STS dataset, where start
and end of sit-to-stand transitions are manually labeled. This enables the evaluation
of the detection approaches, as well as the duration measurement. Stand-up detection
achieves best results using a random-forest algorithm, the duration measurement achieves
results comparable to state-of-the-art methods.

A holistic system combining the measurement methods is presented, which is instal-
lable in the homes of older adults to measure gait parameters and stand-up performance.
The acquired information is aggregated and provided for further usage by e.g. health
professionals. This system was tested in an 8-week field trial with 4 older adults and
compared to measurements conducted by a physiotherapist. The evaluation shows a
clear difference between habitual in-home movements to the performance in the con-
ducted assessment tests, showing the behavior change in test situations, which is also
demonstrated in literature.
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CHAPTER 1
Introduction

Due to advantages in medicine, life expectancy is increasing [1], together with the growing
world population, there is an increase of people over 60 years, as shown in Figure 1.1 [2].
Increased age involves challenges like cognitive and physical decline, chronic diseases and
age-related limitations, such as impairments in hearing and vision [3]. This raises the
demand on health care systems to adapt to the requirements of a growing amount of
elderly persons [3]. Hence, services and devices are developed to support the independence
of older adults. These systems are called active and assisted living technologies and aim
at construction of (connected) environments that assist older adults in their homes [4, 5].
The number of information and communication technologies supporting (self-)monitoring
of health conditions and providing alert functionality is increasing [6, 7], leading to a
change of traditional care processes in the direction of patient self-care and the possibility
for older adults to remain independent and to age in their own homes [5, 6, 8].

1.1 Problem Definition

With increased age the risk to become frail is higher [9–11]. Frailty is a medical syndrome
caused by multiple contributors [12] and has diversified indicators, such as weight loss,
decline in physical activity, or decreased walking speed [13]. Frail older adults have an
enhanced need of health care utilization, which leads to higher costs due to therapy,
medication, and need for health professionals. Additionally, frail people are more likely
to fall and be hospitalized due to reduced cognitive and physical fitness [11]. Since frailty
can be reversible, if detected early enough [12], there is a demand for reliable and valid
methods to identify frailty on the one hand, but also to detect pre-frailty on the other
hand [10] in order to prevent further increase of frailty and set appropriate counteractions,
like certain diets, cognitive and physical activity [14,15]. The main objectives of frailty
prevention are improved health at an advanced age as well as decreased demand on the
health system [15]. Since there is a correlation between physical performance and the
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1. Introduction

Figure 1.1: The United Nations prospects of world population show an increase in people
of age 60 and above [2].

overall frailty level [16], there are physical tests for assessment of a person’s physical
fitness indicating whether a person is frail [17]. For example, the Timed Up and Go Test
(TUGT) [18] measures the time a person needs to stand-up, walk 3m, turn around, walk
back to the chair and sit down again. This test estimates balance and gait performance,
which are used to distinguishing features between non-frail, pre-frail, and frail persons [19]
and increased fall risk [20]. Although the assessment of mobility only is not sufficient
to define a person as frail, it is a reliable indicator [10, 16]. Due to the test situation,
tested persons change their behavior which leads to different results compared to persons’
performance in daily life [21]. There are tests conducted in the home of test persons
(e.g. [19,22]), which attenuates the test persons’ behavior adaption, but there is still a
difference to habitual behavior [23]. However, passive observations without supervision
by e.g. physiotherapists, allows to obtain activities at habitual speed, which is considered
to mediate the inverse correlation of cognitive decline and age emerging during functional
tests [23]. In order to measure habitual movement of persons at home without supervision,
wearable devices are used (e.g. [24]). These devices, however, are intrusive as they change
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1.2. Contributions

Figure 1.2: Visualization of depth information obtained from a 3D sensor as gray values:
the closer the object the darker the representation. The person’s face is not visible.

persons’ everyday life, sensors have to be placed correctly [25], and people forget to
attach them [26]. 3D sensors offer an unobtrusive way to capture habitual movements,
when stationary mounted in certain rooms [25]. By the use of depth data only, no texture
details, such as faces, are visible when visualizing the depth information as shown in
Figure 1.2, which preserves persons’ privacy in comparison to [27].

1.2 Contributions
The possibility of unobtrusive and unsupervised measurement enables monitoring of
health-related parameters in the homes of persons [25]. Gait is a summarizing vitality
indicator, since it requires the interaction of multiple organic systems [28]. The execution
of Sit-To-Stand (STS) transitions provides information about balance and lower body
musculature, which correlates with the risk of falling [29, 30]. Hence, gait and STS
transitions are analyzed in this thesis to obtain information about a person’s fitness
level. Using movement trajectories provided by a depth-based person tracking method,
following approaches are developed and described:

• An approach for measurement of walking velocity, distance, and duration is devel-
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1. Introduction

oped, additionally two approaches for gait event demarcation are compared. One
uses literature-based scale-space filtering, the other approach uses machine learning
to determine gait events, which are further used to estimate gait cycle components:
step time, stride time, cadence, single support, double support, stance phase.

• Before measuring STS durations, a literature-based threshold approach is com-
pared to different machine-learning algorithms to detect stand-ups. The duration
measurement is approached using curve-sketching to identify the steepest height
increase in the sequence where the stand-up is detected.

• A system combining the described measurement approaches is presented, which is
installable in the homes of older adults to measure gait parameters and stand-up
performance. The acquired information is aggregated and provided for further
usage by e.g. health professionals.

1.3 Structure
This thesis is structured as follows. Chapter 2 focuses on frailty and its correlation with
mobility parameters and fall risk. Due to this correlation, tests to assess persons’ mobility
and fall risk are described and compared. Additionally, mobility assessment tests advanced
by technological assistance using state-of-the-art wearable and non-wearable technologies
are presented. Studies using these technologies to examine functional parameters, such
as gait velocity, and stand-up velocity, in supervised and unsupervised settings are shown.
In addition, person tracking based on depth data is explained.

Based on the evaluation of physical assessment tests and state-of-the-art algorithms,
approaches are developed for the measurement of human gait parameters and STS
performance. These are described in Chapter 3. Walks are analyzed in order to extract
average velocity, duration, and distance of walks, as well as gait cycle components, like
stride and step length. Methods to detect STS sequences are described and used as
starting point for stand-up duration measurement. Further, a holistic system is shown,
that combines the presented algorithms and generates a mobility model that can be used
to access the aggregated information.

In Chapter 4 the performance of the gait and STS movement analysis methods
are evaluated and the respective results compared to related work based on the Mean
Average Error (MAE). Additionally, the evaluation of the holistic system in an 8-week
field trial is presented. Chapter 5 closes the work with a conclusion and a view on future
work.
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CHAPTER 2
Related Work

Modern society faces economic and social challenges caused by population aging: higher
age increases the possibility to be frail, including impaired mobility and cognitive decline,
which causes Activities of Daily Living (ADL) to become a challenge and increases the
need for assistance [9–11]. The probability to become hospitalized is four times higher for
frail people and twice as high for pre-frail than for healthy people [11]. The recognition
of frailty and pre-frailty is of particular importance since the progress of frailty can be
damped or even reversed by application of appropriate treatment [12]. This chapter
describes frailty itself and tools to assess it, as well as its correlation with mobility.
Ways to assess a person’s mobility status are explained and how these measurements are
supported by technology using sensors and automated analysis methods.

2.1 Definition of Frailty

Until 2013 there existed no consensus definition of frailty [31–33], but various individual
descriptions have emerged: Lang et al. [34] describe frailty as lengthy process with
increased vulnerability and predisposition to functional decline that may lead to death.
According to Sales [35] frailty represents multiple co-morbidities over time and Fried et
al. [36] describe frailty as the reduced resistance to stressors. In 2013 a consensus group
of major international societies defined physical frailty as medical syndrome caused by
multiple contributors and characterized by reduced endurance, strength, and physiologic
function resulting in increased vulnerability to develop dependency or death [12]. They
define frailty further as indicator for a higher vulnerability to stressors than non-frail
persons, causing adverse health issues and functional deterioration, however, it might
be reversible due to interventions [12]. Frail people are restricted in executing ADL or
have limited mobility; they show higher fall risks and hospitalization probabilities [13].
Adults older than 65 years have a higher probability to become frail as Bandeen-Roche et
al. [11] show evaluating 7,439 non-nursing home persons. 15.3% of the persons analyzed
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2. Related Work

were frail and 45.5% pre-frail [11]. The vulnerability of a frail person in comparison
to a healthy person is illustrated in Figure 2.1, showing the impact of a minor health
problem on healthy and frail elderly persons. The event has more effect on the health
state of frail persons, which may cause that this person becomes dependent, immobile,
or delirious [10]. Since frailty can be prevented or delayed [12, 37], it is necessary to
identify the risk of frailty for early application of preventive interventions, which leads to
a demand for methods to detect frailty in a valid and reliable manner [10, 37]. There
are two major assessment tools, which have emerged in the past decade [31,32,38]: the
frailty phenotype of Fried et al. [13], and the frailty index of Searle et al. [39].

Figure 2.1: Vulnerability of elderly people to minor health problems: red line shows a
frail elderly person becoming dependent due to this event, whereas the same event has
less effect on a healthy person. (Image from [10])

2.1.1 Physical Frailty Phenotype

Fried et al. [13] investigate frailty in a cohort-study of 5,317 community-dwelling adults of
65 years and older. In their study frailty is operationalized as clinical syndrome based on
five criteria: 1) weight loss: unintentional loss of more than 4.5kg (or 5% of body mass)
in preceding year, 2) exhaustion: the person reports having low energy and being easily
exhausted, 3) low physical activity: no recent physical activities nor walks for exercise,
4) weakness: grip strength is below or at 20% baseline, adjusted for body mass index and
gender, and 5) slow walking speed: time required to walk 4.6m, baseline is defined as the
slowest 20% of the population considering age and gender. A person is considered frail if
three or more of these criteria are present, pre-frail if one or two criteria are met and
robust if none are present. Fried et al. [13] distinguish between frailty, disability, and
co-morbidity, which are all predictors for adverse health outcomes [32]. If frail persons
suffer from impairments in ADL, they are identified as disabled, while impairments in
ADL only do not identify a person as frail [32]. For example, an older person suffering
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2.1. Definition of Frailty

from disability after an accident maintaining functions in other physiological systems,
is not considered frail [32]. Further, co-morbidity - the presence of multiple chronic
diseases - does not automatically identify a person as frail, but worsening of these diseases,
inappropriate treatment, or additional diseases constitute a higher risk to become frail [40].
The relation between frailty, co-morbidity, and disability in the study of Fried et al. [13]
is illustrated in a Venn diagram shown in Figure 2.2. Bandeen-Roche et al. [41] verify
the validity of the physical phenotype in a study with women between 70 and 80 years,
and confirm the occurrence of the five criteria, which supports the characterization of
frailty as clinical syndrome with manifestations as frail, pre-frail and nonfrail [13, 32].

Figure 2.2: Frailty syndrome, disability, and co-morbidity as predictors for adverse health
outcomes have to be distinguished. *At least two of following diseases: angina, arthritis,
cancer, claudication, congestive heart failure, COPD, diabetes, hypertension, myocardial
infarction. (Image from [13])

2.1.2 Frailty Index

Searle et al. [39] describe an index to measure frailty, which is based on social factors,
physical, and psychological parameters. The Frailty Index combines multiple clinical
state variables into a single number, which quantifies the possibility of adverse events [16].
It is defined by Searle et al. [42] as

Frailty Index = number of deficits
number of considered variables .

The chosen variables are not predefined but must follow five criteria: 1) chosen variables
have to be health-related, 2) their prevalence has to increase with age, 3) they should not
saturate too early (e.g. age-related eye lens change), 4) the variables must cover a range
to ensure a general frailty index (otherwise it is only e.g. a cognitive index), 5) if several
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2. Related Work

people are tested with the same index, the variables are required to remain the same [42].
The higher the number of deficits, the higher is a person’s frailty index. Following list
shows suggestions for deficit variables from Searle et al. [39]: need help getting in/out of
chair, need help with housework, need help walking around house, walk outside, lost more
than 4.5kg in last year, feel everything is an effort, had heart attack, has arthritis. The
number of considered variables should range from 13 to 100, although the optimal number
lies between 40 and 50 variables as Davis et al. [16] investigated. Davis et al. [43] describe
the construction of a Frailty Index based on the Comprehensive Geriatric Assessment [44],
which allows to use variables obtained routinely by geriatricians and are reliable for risk
stratification of possible adverse events. Due to the inclusion of deficits with relationship
to adverse events, the Frailty Index is considered to be more sensitive as predictor for
adverse health issues [45].

2.1.3 Comparison

Due to different characteristics, the Frailty Phenotype and the Frailty Index are not
substitutable but considered to be of complementary use as Cesari et al. [38] describe by
comparing these instruments. An overview of the differences based on the observations
of Cesari et al. [38] is given in Table 2.1. While the Frailty Phenotype is applicable
to immediately identify the possibility of adverse events for non-disabled older adults,
the Frailty Index gives a deficit summary by accumulating results of a comprehensive
geriatric assessment [38].

Table 2.1: Characteristics of the Frailty Index and the Frailty Phenotype [38]

Frailty Phenotype Frailty Index
Investigates symptoms and indications ADL, diseases, clinical test

results

Application before clinical tests after comprehensive
clinical tests

Variable types categorical, predefined continuous, unspecified
following criteria

Frailty considered
as

pre-disability syndrome accumulated deficits

Significant results primarily for non-disabled
older adults

independent of age or
functional status

2.1.4 Correlation With Mobility Parameters

As shown by these assessment instruments, multiple variables and criteria, such as
diseases, mobility decline, or impairments in ADL, have to be observed in order to
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2.1. Definition of Frailty

identify a person as frail. However, covered variables show high correlation with frailty
in general: Davis et al. [16] evaluate 1,295 people of 70 years and above having a Frailty
Index between 0 and 51% to investigate the relation between frailty and mobility. They
created 5 classes of 259 persons each, with ascending frailty indices: Q1) 0-8%, Q2),
8-12%, Q3) 12-17%, Q4) 17-23%, and Q5) 23-51%. In Q5 37% showed difficulties with
mobility, while none of Q1 had mobility impairments. Davis et al. [16] state that although
mobility impairment only is not sufficient to classify a person as frail, it is a predictor for
frailty due to its correlation. Delbaere et al. [46] also show a correlation between mobility
and frailty: the avoidance of activities due to fear of falling increases physical frailty. By
reducing the ADL and outdoor activities, the muscle strength is reduced, which increases
the risk of falling and slows the speed of walking [46]. The correlation between falls and
frailty is also shown by Davis et al. [16]: persons of Q5 reported 3 times more falls than
those in Q1. This corresponds with the results of Bandeen-Roche et al. [11], who describe
that the fall risk is three times higher for frail people than for non-frail people.

Montero-Odasso et al. [47] define gait speed below 0.8m/s as pathological and show
a correlation between this slow walking speed and the occurrence of falls: persons (70+
years) with pathological gait speed fall twice as much as persons with normal gait speed.
Studenski et al. [28] describe a correlation between gait speed and mortality at a certain
age, based on nine cohort studies with data of 34,485 individuals. Figure 2.3 shows the
relation between age, gait speed and life expectancy. The lower the walking velocity,
the higher the risk of early mortality [28]. Reasons for that are the need for energy
and movement control during walking [28]. Further, walking requires interaction of
multiple organ systems in the body, e.g. lungs, heart, circulatory, nervous system, and
muscles [28]. Damages in those systems can result in slow gait speed, hence gait velocity
is a summarizing indicator for vitality [28].

Figure 2.3: Median life expectancy in relation to age and gait speed of men and women.
(Image from [28])

A significant association between gait velocity and persons’ balance is reported by
Montero-Odasso et al. [47]: 79% of 92 observed persons with pathological gait speed had
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problems maintaining balance on one leg, while only 40% of persons with normal gait
speed had these problems. Balance deficits indicate decreased power of the lower body
muscles, which correlates with higher fall risk and results in problems when standing
up [29, 30]. Cheng et al. [29] examine the stand-up duration of 105 persons (young,
non-fallers, fallers) and show that the time required to stabilize oneself after a STS
movement is 0.83s longer on average for fallers than for non-fallers, and hence, also the
average of the total STS duration is 2.13s longer [29].

Zhang et al. [48] examine STS times of 948 adults (60+ years) using the 5 times
Sit-To-Stand test (5tSTS), which consists of 5 successive stand-ups without use of upper
extremities. They conducted further a 3-year follow-up showing following results: For
persons incapable of performing the 5tSTS the probability of falling was 4.22 times higher
at the follow-up than those having the fastest stand-up times (<11.2s). The probability
to fall was 1.09 times higher for the slowest group able to perform the test (>16.6s) than
the fastest group. Further, persons not able to perform the test showed 24.70 times higher
probability to develop impairments performing ADL, than the fastest group. Hence,
problems performing STS movements are a significant predictor for ADL-related disability
and increased fall risk [48].

2.2 Mobility Assessment
Mobility parameters and fall risk correlate with a person’s frailty state [10,49] and are
thus used as predictors for frailty [16,48]. In medicine, mobility is measured using mobility
assessment tests [50]. There exist technology assisted versions of theses tests as shown in
the next Section. Six examples of the medical assessment tests are described in Table 2.2.
The tests are selected since they require no special equipment, and their conduction
requires only short time (<30min) [50]. In the TUGT [18] and the Six-metre-walk test [51]
the test persons are told to conduct the test at “habitual speed”, instead of “as fast
as possible”, which means performing the movements like in everyday life. Performing
geriatric tests at habitual speed partially mediates the inverse function between disability
of elders and cognitive function [23]. Further, there is a significant correlation between
changes in habitual walking velocity and cognitive decline [52]. Persons still change their
behavior and do not execute the movements at habitual speed as in daily life, due to the
created test situation [21].

Table 2.2: Examples of mobility assessment tests

Test Description Reference Values
TUGT [18] The subject has to stand-up without

assistance, walk 3m, turn around,
walk back and sit down. The time
needed is measured. Examines: gait
velocity, balance, lower extremity.

• 60 - 99 years: 9.4s [53]

Continued on following page
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Table 2.2, continued

Test Description Reference Values

Half turn
test [54]

The subject walks a few steps, then
has to turn 180◦ around. The num-
ber of steps needed to turn around
is counted. Examines: mobility, bal-
ance.

• 74 - 98 years: 4.5s [50]

Alternate-
step
test [54]

The subject has to place both feet
on a step, beginning with left and
right alternating. The time needed
to complete 5 steps is measured. Ex-
amines: lateral stability.

• 74 - 98 years: 10.8s [50]

5tSTS
test [55]

The subject has to perform five
stand-ups and sit-downs consecu-
tively from a chair without arm
rest. A variation of this test is the
STS 1, where the subject has to
stand-up only once [50]. The total
time needed is measured. Examines:
lower limb strength.

• > 60 years: 11.4s
• > 70 years: 12.6s
• > 80 years: 14.8s [53]

Six-metre-
walk
test [51]

The subject has to walk at normal
walking speed for 10m in total, 2m
before and after the 6m walk to en-
sure a constant speed. The time
needed for the distance is measured
to calculate the velocity. Examines:
gait velocity, fall risk

• > 60 years: 1.36±0.21m/s
(men)
• > 70 years: 1.33±0.2m/s
(men)
• > 60 years: 1.30±0.21m/s
(women)
• > 70 years: 1.27±0.21m/s
(women) [56]
Continued on following page
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Table 2.2, continued

Test Description Reference Values

Short
Physical
Perfor-
mance
Battery
(SPPB)
[57]

The subject has to perform certain
standing positions for 10s each. Fur-
ther, either a 2.44, 3 or 4m walk
has to be done twice, as well as five
STS transfers. The durations to
hold the positions, to walk the pre-
defined path, and to perform the
stand-up are measured and individ-
ually scored from 0 to 4 (12 points
in total). Examines: balance, gait
velocity, lower body strength, over-
all physical fitness.

• > 70 years: 8.4±2.7
points [58]

2.2.1 Human Gait Analysis

As an indicator of a person’s health condition, human gait is analyzed for diagnosis and
monitoring, as well as rehabilitation [59]. One way to analyze gait is visual observation
by a human of a person walking or running, and for repeated viewing without exhausting
the patient, video recordings of the walk are recorded. This method depends highly on
the subjective rating and personal experience of the observing clinician. Spatio-temporal
measures (e.g. gait velocity) allow to obtain quantitative parameters [60]. In order to
perform objective gait analysis, spatio-temporal parameters of gait cycles have to be
obtained and analyzed [61]. Figure 2.4 illustrates a gait cycle of a healthy adult, which
is defined as the interval between two consecutive floor contacts of one foot partitioned
into two main phases: stance and swing. During stance phase the foot is in constant
contact with the floor beginning with the heel, followed by the flat foot and ending with
the push off from the ground, which itself starts from the heel to the toes. During swing
phase the foot is brought to the front, while the other foot is in stance phase. When
the toes are pushed off, the other foot regains floor contact which causes both feet to
touch the floor at the same time, called double support. The event when a foot touches
the floor is defined as Heel Strike (HS) and the event when the foot leaves the floor as
Toe Off (TO). Other gait parameters are derived from these gait events: from HS to the
second following TO (the TO event of the same foot) represents a stance phase. The
duration between two consecutive HS events is defined as the step time. The stride time
is the duration between an HS event and the next HS event of the same foot, which
corresponds to the total gait cycle duration [62]. The phase of both feet touching the
ground is defined as double support, while single support defines the phase of only one
foot being in contact with the floor.
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Figure 2.4: The gait cycle consists of two main phases: stance phase where the foot has
permanent contact to the ground, and the swing phase where the foot is brought forward
to begin the next step.1

2.2.2 Sit-To-Stand Analysis

STS transitions consist of three phases, which are depicted in Figure 2.5: I) weight shift
and begin of trunk flexion, II) knee extension and end of trunk flexion, III) lifting the
weight, extension of the trunk flexion and full extension to standing position [63]. The
performance of STS movements is determined by an interaction of multiple physiological
and psychological factors: knee extension and flexion, dorsiflexion strength of the ankle,
foot reaction time, body weight, sway of posture, reported pain, sensitivity to visual
contrast, proprioception of lower limb, anxiety, and general vitality [64]. STS performance
is further influenced by the chair height, position of the feet, as well as the use of
armrests [65]. Examination of the stand-up performance by recording the required
duration is used in mobility tests, as described in Table 2.2: TUGT [18], sit-to-stand
test [55], and SPPB [57]. These tests have in common, that the measurement begins,
when the subject is advised to start, which includes the person’s reaction time. Depending
on the evaluation method, there exist different reference values for stand-up durations in
literature ranging from 1.51s to 2.42s on average for healthy young adults [29,66–68] and
1.56s to 2.54s for healthy older adults [67, 69–71]. Pathologic durations for STS transfers
are specified from 2.73±1.19s to 4.32±2.22s [29,68,72]. In contrast to the STS movement,
the Sit-To-Walk (STW) transition is partitioned into four phases: 1) initiation: forward
movement of the center of mass, 2) seat-off and peak of vertical velocity: body rises,
lower limb joints and trunk are extended, 3) initialization of the gait and swing phase:
unloading, weight shift, 4) stance phase: end of swing phase, walk [73]. The center of
gravity moves higher but less forward in STS than in STW movements. To perform an
STW motion, a forward impulse has to be created using the upper body (head, trunk,

1Image adapted from https://www.physio-pedia.com/File:Gait-Cycle.jpg (accessed 03-
2018), Copyright 2011 Wolters Kluwer Health | Lippincott Williams and Wilkins, usage permitted for
non-commercial and/or educational purposes.
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Figure 2.5: Phases of the STS transition. (Image from [63])

and arms) resulting in a higher horizontal velocity. The STW movement requires more
advanced motoric control than the transition from sitting to standing [74]. Especially
the momentum created in the third phase, when the transition to walking takes place,
requires balance control [75].

2.2.3 Fall Risk Assessment

Falls represent a serious obstruction for elderly to live independently and are the major
reason for injury related deaths for adults of the age 79 and above [76]. The inability
to stay upright while standing or walking is the result of a complex system failure. To
maintain balance, interaction of multiple muscles is required and controlled by commands
from the motor cortex reacting to sensory signals from the spinal neurons. This activity
is coordinated from the central nervous system, which reacts to the respective terrain
conditions. Maintaining balance is a cognitively challenging task and confrontation
with additional cognitive load results in higher fall probabilities also for healthy, young
persons as shown by Templer and Conell [77]. Hence, frail persons suffering from multiple
physiological impairments and vulnerable to stressors are prone to falling when exposed
to exogenous stress and having no physical assistance available in their vicinity [12,78,79].
Table 2.3 shows an overview of assessment tests, which are used to determine a person’s
fall risk [80].
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Table 2.3: Examples of fall risk assessment tests

Test Description Reference Values
Get-up
and go [81]

The subject has to stand up from a
chair and walk a short distance (e.g.
3m), turn around, walk back to the
chair and sit down again. Observers
rate the subject’s performance on a
5-point scale. Examines: gait and
balance.

• Gait abnormalities: ataxia,
apraxia, shuffle
• require arms for stand-up
• require assistive devices [80]

TUGT [18] The subject has to stand-up without
assistance, walk 3m, turn around,
walk back and sit down. The time
needed is measured. Examines: gait
velocity, balance, lower extremity.

• ≥ 13.5s: increased fall
risk [82]

extended
TUGT [83]

The subject has to perform the
TUGT with a 10m walking path.
The durations of multiple compo-
nents are measured individually:
stand-up, gait initiation, walk to
turning point, turn, walk to start-
ing point, sit-down. Examines: gait
velocity, balance, lower extremity as
in TUGT but more sensitive.

• first walk is most sensitive
• 70 - 79 years: 1.18±0.15m/s
(men)
• 70 - 79 years: 1.11±0.13m/s
(women) [83,84]

Functional
reach
test [85]

The subject has to stretch the arms
out frontward and lean as far for-
ward as possible without losing bal-
ance. The maximum possible dis-
tance is measured. Examines: bal-
ance.

• < 0.15m: 4 times higher fall
risk in succeeding half year
• 0.15 - 0.25m: 2 times higher
fall risk in succeeding half
year [86]

Morse fall
scale [87]

The scale consists of six variables,
which are rated using scores. The
variables are assessed by observer(s):
history of falls, number of medi-
cal diagnoses, ambulatory aids (e.g.
wheelchair), application of intra-
venous therapy, gait, and mental
status. Examines: fall risk on three-
level scale (no, low, and high risk).

• 45 - 55 points (and above):
increased fall risk [88]
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2.3 Technology Supported Assessment

Based on the described medical assessment tests, instrumented and automated versions
are developed, assisting the acquisition of functional parameters, such as gait velocity
or STS duration. The use of technology to automate the analysis of persons’ mobility
allows increased measurement efficiency and objective evaluation [89]. Additionally to
the application in supervised tests, the application of automated measurement technology
is used for passive observation either in laboratory or in-home settings [19,22]. Passive
observation without direct supervision of clinicians enables the obtainment of activities at
habitual speed, without behavior change of the tested persons [21]. The sensors utilized
to measure mobility metrics are classified into wearable and non-wearable [89, 90]:
while former consist of devices attached to a person’s body or garment, the latter are
integrated into the infrastructure of residences or a person’s environment [91].

2.3.1 Wearable Sensors

Wearable sensors are placed at certain parts of the body, e.g. knees, ankles, but also inside
of clothes, belts, watches or shoes [89,90]. In order to obtain mobility parameters uni- or
multiaxial accelerometers, gyroscopes, and magnetometers are used either solely or in
combination to track spatio-temporal motion information and are called inertial sensors.
Pedometers for step counting, electromyography-sensors to obtain muscle nerve activity,
goniometers to record angles, and force sensors are additional examples for wearable
sensors used to measure mobility metrics [92–94]. Figure 2.6 shows inertial sensors
attached to certain parts of the body for kinematic measurement. The benefits of wearable
sensors include that they are not restricted to a certain test environment or a Field Of
View (FOV), further, the direct measurement allows elimination of errors in velocity
data [95]. In order to obtain objective and additional quantitative measures, wearable
sensors are used to support mobility assessments evident by instrumented versions of
assessment tests: instrumented Timed Up and Go Test (iTUGT) [96], instrumented
5tSTS [97].

Supervised Assessments

Salarian et al. [98] present an instrumented version of the TUGT using seven inertial
sensors on forearms, legs, and sternum. Analysis of yaw angular velocity from the sternum
gyroscope allows detection of turns which enables automatic separation in subcomponents.
Gait is analyzed for temporal measures (the amount of steps per minute - cadence, gait
cycle parts), lower and upper limb performance, as well as trunk performance. STS
motion detection is performed searching the peak angular velocity and analyzed for
average angular velocity, duration and range of motion of the trunk. They evaluate this
approach with 24 persons split into two groups - twelve with Parkinson’s Disease (PD),
twelve as control group - resulting in full detection of all turns. Gait measurement shows
more reliability in the test-retest than STS measurement with an intraclass correlation
of ρ=0.94 for cadence, and ρ=0.78 for stride velocity, while stand-up duration received
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Figure 2.6: Example for wearable sensors placed on various body parts. Correct placement
before every usage disqualifies them from everyday usage [25]. (Image from [89])

ρ=−0.42. This is associated with different stand-up strategies of the subjects. Salarian et
al. [98] state that the instrumented version is not limited to subjects suffering from PD,
but any persons with impairments of gait or balance. The test is further validated by
Kleiner et al. [99] with 30 subjects to compare the instrumented results with Stop-Watch
(SW) measurement. The mean total duration obtained by the instrumented measurement
is 20.8s±14.3s, while the SW approach recorded a mean of 19.9s±14.9s, with a mean
difference of −1.048. Besides this result Kleiner et al. [99] describe that the instrumented
approach allows for more detailed assessment by measuring subcomponents than the SW
method, and further removes subjectivity in the measures. Mellone et al. [100] conduct
the iTUGT utilizing the accelerometer of a smart phone and compare it with the results
of a tri-axial accelerometer, both worn in an elastic belt on the lower back. For evaluation
49 subjects performed the TUGT with 7m walking path. The means of the total duration
showed the same outcome of 18.46s for the smart phone and the accelerometer, which
shows that wearable sensors are replaceable by a smart phone in order to conduct the
iTUGT.

Van Lummel et al. [22] describe a variation of the 5tSTS using three accelerometers
embedded in a flexible belt attached around the waist. The test is conducted as part of
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the SPPB and the STS phases are automatically detected and measured by identification
of upward followed by downward motion, which completes an STS cycle. For evaluation
the results of 63 elders performing the 5tSTS - manually and instrumented measured
- are split into a fast and a slow group by median split and compared with the health
status which is assessed using the European Quality of Life questionnaire [101]. This
questionnaire comprises self-care, usual activities, mobility, pain, and anxiety. For
the comparison the the Mann-Whitney U-test [102, 103] is used with a p-value <0.05
considered as statistically significant. It shows significant correlation between the health
status and the instrumented measurements (p=0.009), while the manually measurements
show no significant association (p=0.457). Van Lummel et al. [22] explain these results
with more accurate measurements of the dynamic phases of the STS transitions using
the accelerometers. The manually recorded time fully includes static phases (standing,
sitting), which are described to be clinically less relevant than the dynamic phases
containing the actual motion.

Schwenk et al. [19] describe the use of inertial sensors to assess the frailty status of
125 older adults, visited by clinicians in their own homes. The participants are grouped
into frail, pre-frail and non-frail groups using the definition of Fried et al. [13] and
wore tri-axial accelerometers, gyroscopes, and magnetometers placed on the legs and
the lower back in order to obtain gait and balance parameters. The participants were
recorded walking a distance of 4.6m at self-selected velocity for extraction of following
gait parameters: velocity, stride length and time, proportion of double support from
stride time, and gait variability. To evaluate the balance, the sway was obtained while
the participants had to stay 15s with legs and eyes closed. The results are compared
using the Games-Howell test due to unequal class sizes. The gait velocity evaluation
shows best relationship to the respective frailty group and significant association with
p-values of <0.001 between non-frail and frail, as well as non-frail and pre-frail, and
0.033 between pre-frail and frail persons. The average gait speed of non-frail people
results in 1.17m/s±0.15m/s, 0.94m/s±0.23m/s for pre-frail, and 0.71m/s±0.36m/s for
frail persons. Also the balance assessment (hip sway) is able to distinguish between
non-frail and pre-frail (p=0.004), but not between frail and pre-frail (p=0.999).

Unsupervised Assessments

Van Lummel et al. [22] tested their approach in everyday life for one week. With the
exception of activities where the sensors would get wet (e.g. shower) the subjects had
to wear the belt continuously and the activities are classified as standing, sitting, lying,
shuffling, and movement to calculate the respective durations. The results of the physical
activities are compared with the outcomes of the STS assessments: The slow group shows
longer mean sitting durations per day (slow: 486s, fast: 287s), and shorter mean standing
durations (slow: 123m, fast: 169m), which represents a significant association (p=0.001).
Due to the possibility that the belt can be worn beneath clothes, van Lummel et al. [22]
describe this wearable to be unobtrusive and suggest to use it to automate the assessment
of the health status.
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Schwenk et al. [19] tested the association of the frailty status to physical activities
in a 24-hour in-home assessment utilizing a shirt containing a tri-axial accelerometer and
distinguished between lying, sitting, walking, and lying. Using step detection, less than
three consecutive steps are considered standing otherwise walking; the other activities
are obtained by the postural gesture. The evaluation shows less physical activity with
increased frailty level, especially a decreased number of steps strongly correlates with
presence of (pre-)frailty compared to non-frailty with p=0.001 (p<0.001). The strongest
association between pre-frail and frail persons is shown by reduced walking durations
with a reduction of 53%, which is explained by increased exhaustion in frail persons [13].
However, the study lacks of a longer test period in order to compensate day-to-day
variability.

El-Gohary et al. [104] evaluate the use of a wearable inertial sensors in-home by
investigating turns during walks of 21 subjects suffering from PD and 19 healthy subjects
as control group which is used to identify fall risk. The participants wear the inertial
sensors for one week during daytime on both feet and on the hip; the measuring device
is a combination of tri-axial accelerometers, magnetometers, and gyroscopes. During
night-time the sensors have to be re-charged. Persons suffering from PD show difficulties
when turning and walking, which results in a higher fall risk of over 50% due to PD. Hence,
the walks and turns during the recording period are identified in order to analyze certain
turning characteristics: duration, frequency, jerk and rate of the rotation, number of steps
required to perform a turn. The results are compared to the outcomes of experiments
conducted in laboratory conditions resulting in slower turning rates at home (2.2s for
control group, 2.0s for PD group) than in the laboratory (1.4s). Except for the number
of turns (p=0.445), all other metrics show significant differences between the control and
PD group with p=0.001 and p=0.002, using a t-test with 5% level of significance. The
described technology is used by Mancini et al. [105] to monitor 35 persons over 77 years
classified in fallers and non-fallers for one week. The analysis of the turn metrics show
significant differences between fallers and recurrent fallers: mean turning duration is 0.3s
longer for recurrent fallers (p=0.01), more steps (+0.75 steps on average) are required
to perform a turn (p=0.004), and also the mean peak of the rotation velocity is slower
by 0.7 ◦/s (p=0.009). In a follow-up examination 6 months after the evaluation, those
participants who had higher variability in the number of steps required to perform turns
show one or more falls. Since the result has as significant correlation (p=0.01), this can
be used to predict falls.

Summary

Table 2.4 summarizes the characteristics of the described assessments using wearable
sensor and outlines the respective main outcome. The usage of wearable sensors enables
stronger correlations with health status than manual measurements, and discrimination
between non-frail and pre-frail persons. Additionally, the application of these sensors
allow the indication of increased fall risk.
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Table 2.4: Summary Wearable Assessments

Reference Assessment Sensors Outcome
Supervised

Salarian et al. [98] TUGT gyroscopes reliable estimation of gait and
turns, least reliable STS

Van Lummel et
al. [22]

5tSTS accelerome-
ters

stronger correlation with health
& functional status than manual
measurement

Schwenk et
al. [19]

frailty
status

accelerome-
ters

pre-frailty identified by gait &
balance

Unsupervised
Van Lummel et
al. [22]

5tSTS accelerome-
ters

stronger correlation with
physical activity than manual
measurement

Schwenk et
al. [19]

frailty
status

accelerome-
ters

non-frail/pre-frail best
discriminated analyzing walks

El-Gohary et
al. [98] & Mancini
et al. [105]

fall risk accelerome-
ters

high step variability when
turning indicates increased fall
risk

2.3.2 Non-Wearable Sensors

Wearable systems are intrusive as they change the everyday life of a person wearing
the sensors [25] and older adults perceive wearable sensors as invasive, inconvenient,
and obtrusive [8,106]. Further, they require correct placement before every usage [25].
Non-wearable sensors are installed in a person’s environment or placed in their vicinity
[90]. Examples to obtain mobility information include infrared sensors, audio recorders,
proximity sensors, vision-based sensors, and sensitive floors [107]. Sensitive floors or force
platforms are used to measure the force of steps which allows to analyze pressure patterns
and quantification of horizontal or shear components of gait [89]. Further, fall detection
is performed by estimation of a person’s posture and impact recognition by measuring
vibration [108,109]. Vision-based systems using RGB or depth cameras are utilized to
detect persons in their field of view, which allows to obtain gait information [89], estimate
a person’s pose [110], and detect falls [111, 112]. This thesis focuses on vision-based
depth sensors to assess mobility aspects in a non-wearable way due to their advantages:
no external light source required and thus robust to changes in ambient illumination
conditions, algorithms from computer vision of RGB cameras can be used, and privacy is
protected due to the procession of depth information only [113].
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Figure 2.7: Examples for non-wearable sensors: Force sensing element for sensitive floors2

(left), combination of RGB and depth camera for vision-based analysis3 (right).

Supervised Assessments

Instrumented assessments are also conducted using non-wearable sensors: Vernon et
al. [114] use a depth sensor (Microsoft Kinect4) to conduct the iTUGT. Due to the depth
sensor’s limited field of view of 3.8m maximum, the depth camera is placed to record the
stand-up from the chair and the walking path, except for the last meter and the turn area.
The installation height of the Kinect is not specified. In order to detect and track and
their respective joints and anatomical landmarks of persons within the field of view an
algorithm provided by Microsoft [115] is used. To perform measurements, certain events
are defined, which are used to extract information. The defined events are: start (frame
before trunk movement), stood-up (peak height of shoulders), first step and first stride
(heel strike), 2m distance to the depth sensor heading towards it, 2m distance heading to
the chair, end of the test (end of trunk movement when sitting). The extracted features
comprise peak velocity and peak angle of the trunk’s flexion when standing, length of
first step and stride, walking velocity, time to turn around as duration between both
2m events, as well as the duration required to complete the test. Visual inspection of
depth images and plots of the anatomical landmarks are used to obtain these variables.
Vernon et al. [114] evaluate the Kinect assisted TUGT with 30 subjects who had a stroke
and perform a re-test one week later. The test-retest intraclass correlation coefficients
show results between 0.93 and 0.99 for the extracted features except for the angle of
trunk flexion (0.73). Further, the results are compared SW measurement. The total
duration measured with the SW is 17.21s±9.89s and 18.70s±10.48s measured with the
depth sensor, which corresponds to p<0.001 (significant correlation at p<0.05).

A conduction of the 5tSTS with assistance of the Microsoft Kinect is described
2Image from http://www.amti.biz/fps-guide.aspx (accessed 03-2018)
3Image from https://www.xbox.com/de-AT/xbox-one/accessories/kinect (accessed 03-

2018)
4https://developer.microsoft.com/en-us/windows/kinect (accessed 03-2018)
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by Ejupi et al. [116]. The setup consists of the Kinect depth sensor which is placed
in front of a monitor or television at a height of 0.8m and 2m distance to the subject
performing the test. Start and end of the measurement are defined as the first increase
respectively the last decrease of height exceeding a threshold of 0.05m. STS phases are
partitioned into sitting, transition to standing, standing, transition to sitting. For analysis
of the participant’s performance, following features are automatically extracted: average
duration of standing and sitting, average vertical velocity of the transitions, and the
total duration required from start to end. 94 community-dwelling adults were classified
as fallers and non-fallers if they experienced a fall in the preceding year and conducted
the STS test, which is compared to SW measurement. The average velocity of the STS
transition is reported to be most discriminative in order to distinguish between the two
groups with p=0.019 (p<0.05 considered as significant). Overall duration measured by
SW results in an average duration of 16.8s±5.68s (p=0.028), while the depth sensor
measurement results in 15.33s±5.45s (p=0.034).

Gianaria et al. [17] describe automated frailty assessment by gait analysis based
on the Microsoft Kinect version 2, while participants perform the TUGT. The sensor
is set up at a height of 2m and 4m away from the chair, where the person starts the
test. To track the person during walks, the skeleton map of the Kinect software is used.
When the person is sitting, Gianaria et al. [17] report problems since the skeleton data
becomes unreliable due to the limited range. Hence, the total test duration is measured
manually and the depth sensor is only used to obtain features while the person walks. The
features comprise as follows: gait velocity, duration of swing phase and double support,
change in stride speed, average time and variability of walking sequences, and balance
features extracted from posture (whether the torso is tilted forward). For evaluation,
30 older adults and 6 young persons perform the test while recorded with the depth
sensor. There are visible differences in the results of the old and young adults: old adults
require an average total time of 11.42s±3.22s, young adults require 9.66s±2.09s; walking
time of older adults is 9.31s±3.11s on average, while younger adults walk 7.16s±1.66s on
average; average gait velocity of elders is slower (0.75m/s±0.19m/s) than the younger
participants (0.92m/s±0.07m/s). The older adults further answer the Tilburg Frailty
Indicator questionnaire [117] to assess their frailty level with following outcome: 17 frail
and 13 robust subjects. Gianaria et al. report that the Timed Up and Go (TUG) time
significantly correlates (p=0.012) with the Tilburg Frailty Indicator score. Except for
posture tilt, all automatically extracted features show significant correlation with the
Tilburg Frailty Indicator score: gait velocity p=0.009, walking duration p=0.025, swing
phase duration p=0.040, double support duration p=0.037.

Doppelbauer [118] describes mobility assessment based on gait analysis and an
automated version of the TUGT. For both approaches, he compares two sources from
the Microsoft Kinect version 2: depth data estimating the point cloud of the person
and skeleton data provided by the Kinect SDK. The extracted gait parameters comprise
gait speed, step and stride length, as well as step and stride time. For evaluation, three
pre-defined walking paths are defined: frontal, diagonal, and orthogonal. Performance on
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circular walks are not investigated. 13 subjects aged 24-77 years walk the paths multiple
times, summing to a total of 234 sequences. Doppelbauer [118] compares four methods to
estimate parts of the gait cycle: horizontal oscillation, vertical oscillation, feet distance,
and correlation coefficient. Using these methods, the gait parameters are estimated, while
the best results achieved measuring the gait speed, having MAE of 0.009m/s-0.0281m/s
using depth data and 0.0152m/s-0.0347m/s using skeleton data. The automated TUGT
is evaluated with 11 elderly persons. The MAE of the total TUG results in 0.29s for
depth data and 0.23s for skeleton data. Doppelbauer [118] concludes that depth data is
preferable when measuring gait parameters, while skeleton data is preferable for analysis
of the joints.

Unsupervised Assessments

Stone and Skubic [24] compare the TUG time to In-home Gait Speed (IGS) captured
with a Kinect. To this end, a Kinect is installed at a height of 2.7m in the living room of
an apartment and tracks persons within their field of view. Movements exceeding 1.2m
and 0.127m/s are identified as walks and used to extract height and velocity. Further,
stride parameters are extracted, but only when more than four steps are recognized to
reduce the impact of lower extremity occlusion. Since it can not be assured in real-world
installations that only one person is tracked, but also visitors and other residents, Stone
and Skubic describe a gaussian mixture model to cluster tracked persons [119]. The
features to fit this model comprise person height, gait velocity, as well as mean stride
time and length if available.

The system was installed in 14 apartments for a duration of 2 to 16 months capturing
15 participants of 68 years and above. This is possible by inclusion of one multiperson
household, others were excluded since the residents’ models were not distinguishable.
During this evaluation phase, monthly assessments were conducted, consisting of: 1)
Habitual Gait Speed (HGS) test: average of two times 3m walk, measured with SW,
2) TUGT. The average gait speed of the HGS test is 0.65m/s±0.18m/s and the mean
duration required to perform the TUGT is 19.5s±7.8s. The average IGS velocity equals
0.49m/s±0.12m/s. The Pearson correlations are used by Stone and Skubic [24] to
compare the association between HGS and TUGT resulting in r=0.82 (p<0.001), while
the correlation between IGS and TUGT results in r=0.91 (p<0.001), which suggests a
better association between TUGT to IGS than to HGS. In order to estimate a mapping
between TUG time and gait velocity, a non-linear neural network is used. The resulting
mapping is shown in Figure 2.8. The results of the TUGT are filtered using 95% confidence
boundaries to minimize intra-individual variation. The mapping shows an increase in
the required TUG time, when persons walk below 0.5m/s on average. Velocities above
0.5m/s map to a TUG time between 12 and 15s. According to Alexandre et al. [20],
TUG times above 12.5s are a predictor for fall risk in older adults. Hence, 0.5m/s IGS
can be used as cut-off value to classify an elderly person as prone to falling.

The recorded IGS is further used by Stone et al. [120] to create a weighted average as
metric for mobility and fall risk, called Average In-home Gait Speed (AIGS). The system
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Figure 2.8: Mapping of TUG time to IGS learned with a non-linear neural network using
leave-one-out cross validation (LOOCV). (Image from [24])

setup is identical to the setup in [24], and hence, also the extracted features describing a
walk are the same: gait velocity, person height, time and length of stride. To build the
AIGS the average velocity is weighted by the likelihood of the walk belonging to a certain
resident. This likelihood is given by the probabilistic model [119] generated from the walk
features of the preceding 8 weeks. This metric is compared to a set of clinical check-ups,
which are conducted monthly: 1) HGS, 2) TUGT, 3) SPPB, 4) multidirectional reach
test [121]: the person has to reach for- and backwards, as well as sideways, 5) short
form of the Berg balance scale [54]: 7 balance examinations measured with SW. Stone
et al. [120] use a neural network to analyze correlations between these tests and find
mappings among each other, as well as to the AIGS. The best mapping is obtained
between TUGT and AIGS with an intraclass correlation coefficient of 0.95, followed by
TUGT and HGS with 0.88, and sideway reach and AIGS with 0.86.

Ejupi et al. [116] evaluated their Kinect based version of the 5tSTS in the homes
of 18 test persons supervised and unsupervised with 10 participants. Compared to the
performance in laboratory setting (13.42s±5.3s), the subjects performing the supervised
version required a total duration of 11.01s±2.97s on average, which corresponds to
p=0.008. The persons performing the unsupervised version required 11.82s±2.04s in
laboratory and 11.82s±2.04s in-home, which corresponds to p<0.001. Ejupi et al. [116]
report that every phase of the test is correctly identified and the sit-to-stand velocity can
be used to classify fallers from non-fallers on retrospective fall reports: 0.78±0.20m/s for
fallers and 0.94±0.24m/s. Due to the strong correlation between laboratory and in-home
conditions (p<0.001), this can also be applied to unsupervised settings at home.
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Summary

In Table 2.5 the main characteristics and outcomes of the described non-wearable
assessments are listed. Although, the amount and health status of tested persons, as well
as the set-ups vary, tendencies are recognizable: automated estimation of TUG parts
is reliable, gait velocity and STS velocity are able to distinguish between fallers and
non-fallers.

Table 2.5: Summary Non-Wearable Assessments

Reference Assessment Sensor Outcome
Supervised

Vernon et
al. [114]

TUGT Kinect except trunk flexion, reliable
TUG part quantification

Ejupi et al. [116] 5tSTS Kinect average STS velocity best
discriminator between
fallers/non-fallers

Gianaria et
al. [17]

TUGT Kinect 2 except posture tilt, significant
correlation with Tilburg Frailty
Indicator

Doppelbauer [118] gait &
TUGT

Kinect 2 depth data preferable for gait
parameter measurement

Unsupervised
Stone and
Skubic [24]

TUGT Kinect higher correlation between
TUGT and IGS than HGS

Stone et al. [120] AIGS Kinect best mapping between TUGT &
AIGS, AIGS allows continuous
assessment

Ejupi et al. [116] 5tSTS Kinect STS velocity able to classify
fallers & non-fallers

2.4 Depth-Based Motion Tracking

The described approaches using vision-based depth measurement to obtain person move-
ment parameters utilize two versions of active optical depth acquisition methods: Struc-
tured Light (SL) and Time-Of-Flight (TOF). Both methods are active distance sensing
technologies as they emit light to obtain depth information of the scene, which provides
independence from external light sources and allows operation in darkness. Since sunlight
interferes with the emitted light, the usage is limited to indoor application [113, 122].
The parallel use of multiple sensors emitting infrared light can cause interference between
the systems [123]
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2.4.1 Sensor Operating Principles

In order to obtain 3-dimensional information, SL depth sensors project a certain known
light pattern onto the scene which is reflected by the objects of the scenery. A camera
observing the scene captures the reflected pattern from a different angle, which differs
from the original pattern due to deformation by the geometry of the scenery objects.
This principle is depicted in Figure 2.9a. To calculate distance d from the disparity m of
the reflected light pattern, the camera’s focal length f and the distance between camera
and projector (baseline b) have to be known, as shown in Equation 2.1 [123]. f and b are
intrinsic camera parameters, which are calculated by transforming the camera coordinates
of a 3D point to image coordinates. This method yields problems with reflective and
transparent/light-absorbing surfaces, as the light is either reflected non-deformed (the
spatial information is lost) or no light is reflected at all [89]. Further, sunlight illuminating
the scene covers the projected light pattern, hence the pattern is difficult or impossible to
capture [124], thus, outdoor installation and indoor environments where strong sunlight
shines into the room impairs the function of this sensor type.

dSL = f ∗ b
m

(2.1)

TOF systems measure distances using signal modulation. Similar to the structured
light method, the field of view is illuminated with modulated light and the reflected signal
is captured using a sensor matrix. The received signal has a phase shift in comparison
to the emitted signal, which is proportional to the traveled distance. The underlying
principle is depicted in Figure 2.9b. The phase shift is used to determine depth as shown
in Equation 2.2, where d corresponds to the distance, λ to the wavelength of the emitted
signal, and φ to the shift of phase in the signal [89, 125]. This method offers advantages
as it requires only one camera and allows acquisition of depth information. Due to the
superposition of the light on the individual pixels of the sensor matrix, it has aliasing
effects and lower image resolution compared to structured light systems [89]. Since it
uses infrared light, sunlight is as problematic as to the SL depth sensor.

dTOF = λ

2 ∗
φ

2π (2.2)

2.4.2 Person Tracking

In order to analyze motion patterns (e.g. gait) automatically, a way to detect persons
within the field of view is required, as well as a method to track them over time.
Pramerdorfer et al. [122] describe a person tracking method for fall detection using
depth data only, hereinafter called the Depth based Person Tracker (DPT). Since this
approach extracts motion features during tracking, it is also applicable for enhanced
motion analysis based on the generated features. The DPT uses an auto-calibration
algorithm: for self-calibration of the system, the sensor is required to face at least part of
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(a) SL: Certain light pattern is reflected by scene objects. Deformed
pattern is captured by the camera and analyzed to reconstruct scenery.
(Image from [123])

(b) TOF: The emitter projects modulated infrared light onto the scene;
the reflected signal shows a phase shift φ, which is direct proportional to
the distance dT OF . (Image adapted from [89])

Figure 2.9: Operating principles of SL and TOF depth sensor.

the floor. In order to find the ground plane, the depth values obtained from the sensor
are converted to a point cloud in camera coordinates. The RANSAC [126] algorithm,
which utilizes depth points for plane-fitting, results in several planes, whereas the plane
with the greatest distance to the origin corresponds to the ground floor, since the sensor’s
position is at the origin of the camera coordinate system. This plane is utilized to obtain
the extrinsics: height of the sensor and orientation. The depth map is further converted
to a point cloud in world coordinates, which is used to detect objects within the scene
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by classification of grouped points with a size of 0.3-0.9m. Due to the integration of
auto-calibration, the DPT supports plug-and-play, which enables to install the sensor
inside an apartment without further interaction.

In a second step a background model of the scenery is generated. To this end, the
pixel values of the first frame are used as background model, which represents the static
objects. Subsequently, frames are compared to the background model using subtraction;
the resulting differences correspond to moving voxels. Since the scenery may change
over time (e.g. a door is opened, a chair is moved), the background model generation is
conducted periodically. The scene is projected into a synthetic top-view using orthographic
projection [127]. This allows to store the scene geometry in a compact way, enabling
fast computation on low-end hardware according to Pramerdorfer et al. [122]. Further,
this representation allows to extract features invariant to the orientation and position
of the sensor, which is useful for person detection and tracking. In order to convert
foreground pixels to plan-view coordinates, they are projected to world coordinates,
followed by downsampling to the ground plane and discretization. This procedure results
in mapping multiple points to the same plan-view point; the number of points mapped
to the same plane-view pixel is encoded in an occupancy map, whereas the respective
highest occurred points are stored in a height map. The conversion from depth map to
plan-view is depicted in Figure 2.10.

Figure 2.10: After background subtraction, the depth map (left) obtained by the sensor
is converted into a point cloud (middle) followed by a projection to plan-view (right)
resulting in an occupancy map and a height map. (Image from [122])

For the purpose of person detection every frame is analyzed individually by thresh-
olding the height map generated in the preceding step to find connected components
(connected pixels with a height > 0). These regions are described by feature vectors
composed by the number of connected pixels, height of the object, density of the object,
and shape of the object. The resulting feature vectors are classified using a Random
Forest (RF) classifier [128] to predict whether the object is a person. In order to track
a person over time, n detected person regions of a frame have to be associated with m
person regions of the subsequent frame. Pramerdorfer et al. [122] define a cost function
considering proximity and similarity of the feature vector generated of a person region.
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For efficient calculation of this optimization problem, m is equated with n resulting in a
linear assignment problem. Since a person may enter or leave the scenery, m and n can
diverge; this is compensated by the introduction of dummy regions [129]. Pramerdorfer
et al. [122] extend their method by a fifth step performing fall detection using state
prediction to estimate whether the person is resting, active or fallen.

Based on medical assessment tests for estimation of persons’ mobility and fall risk,
approaches utilizing wearable and non-wearable sensors to assist the measurement of
these tests were developed. Due to the technological assistance, unsupervised assessments
are enabled, allowing measurement of movements at habitual speed in persons’ homes.
Habitual gait and STS movements are identified as main source of information for overall
fitness and fall risk. The application of non-intrusive, plug-and-play sensors facilitate the
measurement of these movements in the homes of older adults, which are described in
this work.
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CHAPTER 3
Methodology

In order to assess a person’s health and frailty status in a non-invasive way, approaches to
measure physical parameters correlating with overall fitness are developed. Stationary in-
home mounted depth sensors allow for non-intrusive, privacy protecting motion tracking
[25]. Based on captured depth information, person detection and movement tracking is
performed using the DPT [122]. This algorithm provides tracking information of moving
objects and persons - either online, when the system is installed in the apartment of older
adults, or offline using recorded depth streams. The output of the DPT is the input for
the proposed approaches in this work, as shown in Figure 3.1. The provided trajectories
are used for gait and STS transition analysis.

For every moving object the tracker provides a time stamp when the track began, a
time stamp when the track ended, and for every tracking point:

• x: x-coordinate of the tracked object’s Center Of Mass (COM) in cm
• y: y-coordinate (height) of the COM in cm
• z: z-coordinate of the COM in cm
• ẋ: x-velocity from the previous point in cm/s
• ẏ: y-velocity in cm/s
• ż: z-velocity in cm/s
• t: time stamp of current tracking point

Figure 3.2 shows the orientation of the tracker’s coordinate system. Although the depth
sensor has to be mounted at a height between 2 and 3m, the image coordinates are
converted to world coordinates and projected to plan-view (see Section 2.4.2), which
allows to perform calculations in real world distances. Every moving object is classified
by the tracker, if it is a person.
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Figure 3.1: Overview of the proposed approaches, the output of the DPT are used as
base for the gait and STS transition analysis. If the track is identified as walk or detected
as STS movement, further analysis is performed.

3.1 Gait Velocity, Distance, and Duration Analysis

Gait velocity is recognized as predictor for overall fitness [28], health [47], frailty [10],
and mortality [130]. Movement into the same direction for more than 1.2m with a
minimum of 0.127m/s is taken into account for gait measurement as described by Stone
and Skubic [119]. For this measurement the magnitude ||~vplanar|| of the horizontal velocity
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Figure 3.2: Orientation of the coordinate system after projection to plan view.

~vplanar is used since the movement is independent of direction. The calculation of the
planar velocity is shown in Equations 3.1 by multiplying the horizontal velocity vectors
(ẋ and ż). Equation 3.2 shows the calculation of the resulting vector’s magnitude.

~vplanar = ẋ ∗ ż (3.1)

||~vplanar|| =
√
ẋ2 + ż2 (3.2)

To ensure the person is moving into the same direction, the relative change of the active
person’s motion orientation is observed to detect if the person made a sharp turn. If the
orientation exceeds a certain threshold, the current walk ends. In order to obtain the
horizontal walking path, the x and z coordinates of three consecutive tracking points
need to be observed: A = (xi, zi), B = (xi+1, zi+1), and C = (xi+2, zi+2). Figure 3.3a
visualizes the coordinates and the connecting vectors in spatial representation. Since,
height information is not required for analysis of the walked path, the height information
y can be neglected. The person moves from point A to B to C and thus the walking
path forms the direction vectors ~AB = B −A and ~BC = C −B. The scalar product of
these vectors is equal to their length and the enclosed angle θ as shown in Equation 3.3.

~AB · ~BC = || ~AB|| || ~BC|| cos θ (3.3)

The angle θ can be obtained using substitution as shown in Equation 3.4.

θ = arccos
(

~AB · ~BC
|| ~AB|| || ~BC||

)
(3.4)

When a walk is recognized, following parameters are measured: 1) duration ∆t: begin of
movement until direction change, person inactive, or track ends, 2) distance d: during
walk as shown in Equation 3.5, and 3) average velocity v: as shown in Equation 3.6.

d =
n−1∑
i=1

√
(xi − xi+1)2 + (zi − zi+1)2 (3.5)
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(a) Planar walking path as projection of the
3D COM trajectory.

(b) Top view on the way points A, B, and
C, that form the walking path ~AB and ~BC.
The enclosed angle θ represents the relative
direction change.

Figure 3.3: Illustration of walking path and its enclosed angle to compute change of
direction.

v = 1
n

n∑
i=1
||~vplanari

|| (3.6)

3.2 Gait Event Analysis

Gait velocity and gait cycle components are shown to be predictors for falls [131]. In
functional assessment tests that examine human gait, persons have to walk a certain
distance into one direction (e.g. TUGT [18]: 3m; SPPB [57]: 2.44m). Thus, quantitative
gait parameters are a source of information to assess persons’ mobility.

3.2.1 Scale-Space Filtering Approach

In order to estimate temporal gait parameters, González et al. [132] describe an approach
based on a single three-dimensional accelerometer attached to the back at the height of
the second lumbar vertebra. This position is comparable to the position of the COM
provided by the DPT as shown in Figure 3.4a and 3.4b. The directional acceleration
values of a tracking point ẍi, z̈i, ÿi are calculated using the velocity difference of two
consecutive points as shown in Equation 3.7, where i ∈ N≥0 refers to the number of the
respective tracking point.

ẍi = ẋi+1 − ẋi
ti+1 − ti

, z̈i = żi+1 − żi
ti+1 − ti

, ÿi = ẏi+1 − ẏi
ti+1 − ti

(3.7)

The main difference of this method compared to the approach of González et al. [132] is
the sampling rate: the depth sensor captures 30 frames per second and the DPT provides
information at 15 frames per second; the accelerometer used by González et al. [132]
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(a) The accelerometer is attached at the
lumbar spine (Image from [132])

(b) Position of the COM used by the DPT

Figure 3.4: Comparison of the signal origins: accelerometer mounted to the waist and
COM of person track

reaches a frequency of 70Hz. In order to estimate temporal gait parameters, González
et al. [132] begin with demarcation of HS and TO as relevant gait events using three
signals: I) the energy signal ei, which corresponds to the 3D acceleration’s magnitude
(Equation 3.8), II) the vertical acceleration ÿi, and III) the antero-posterior acceleration
ai. In order to calculate ai from the tracking points, it is assumed that the movement
of a walk is mainly forward. Hence the magnitude of the planar acceleration is used as
shown in Equation 3.9.

ei =
√
ẍ2
i + z̈2

i + ÿ2
i (3.8)

ai =
√
ẍ2
i + z̈2

i (3.9)

In a first step, e = {e0, e1, . . . , en−1} and ÿ = {ÿ0, ÿ1, . . . , ÿn−1}, which correspond to
the whole signals of the track with n ∈ N as the length of the track, are filtered with
Gaussian kernels of different sizes, which allows to emphasize high concentrations of
energy in these signals. A scale-space filter with three levels is used to filter the energy
e. The levels represent small, medium and large step sizes. They are determined from
gait cycle observations by González et al. [132] and define the σ of the kernels as follows:
small steps σ=125ms, medium steps σ=281ms, large steps σ=438ms. This corresponds
to 3.75, 8.43, 13.14 frames respectively. After filtering the signal, the product of the
resulting smoothed signals êσ=125, êσ=281, êσ=438 is obtained as shown in Equation 3.10.
The signal êσ=438 is subtracted from the product p resulting in signal s and used to
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detect peaks above a certain threshold of 0.13. Ps is the set containing these peaks.

p = êσ=125 × êσ=281 × êσ=438 (3.10)

ÿ is filtered with σ ∈ {50ms, 100ms} to generate the smoothed signals ŷσ=50 and ŷσ=100,
which emphasizes peaks corresponding to steps. The signals captured by González et
al. [132] are compared to those captured by the DPT in Figure 3.5. The smoothed
signals intersect between local minima and maxima and limit the area where HS events
can be found. After subtraction of ŷσ=100 from ŷσ=50, the resulting signal sŷ is used to

Figure 3.5: Vertical acceleration ÿ (blue), and the smoothed signals ŷσ=50 (red), ŷσ=100
(yellow). Top: Signals from González et al. [132]. Bottom: Signals of DPT.

find zero-crossing points Zsŷ
and peaks Psy . Only zero-crossing points next to peaks

of Psy and Ps are considered. An HS event corresponds to the highest peak in the
antero-posterior acceleration ai in the vicinity of the remaining zero-crossings and the
associated TO event to the subsequent valley in the signal. When HS and TO events are
identified, other temporal gait parameters can be calculated, as described in Section 2.2.1.

3.2.2 Machine Learning Approach

Based on the experiments of González et al. [132], the magnitude of all directional
acclerations e is used to generate a feature vector. In order to provide context information
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Figure 3.6: HS (cyan) and TO (green) events: annotated (solid) and predicted (dashed).

to the RF, a feature vector consists of 6 consecutive tracking points (=0.4s), hence
~X = {ei, ei+1, . . . , ei+5}. The RF is trained with vectors from three classes, containing
HS events, TO events, as well as NO events. Since a healthy gait cycle consists of only 2
HS and TO events, the classes of a track are unbalanced. The RF provides a probability
for each class of every vector fRF ( ~Xi) = (PiHS , PiT O , PiNO ), which sum to 1. Figure 3.6
shows the output of the classifier applied to every vector of a track. Since information
about the healthy sequence of a gait cycle is known, this information can be used to
optimize the outcome of the RF predictions. For example, an HS event is followed by
a TO event. Using the minimum (0.5s) and maximum (1.75s) length of a gait cycle
observed by González et al. [132], weight arrays for all classes are generated, with the
sum of elements at every index add up to 1. Since the duration of the double support
(HS to next TO occurrence) corresponds to 10% of the gait cycle, this equals 0.05-0.175s
or 1.5-5.25 frames. Within these boundaries the arrays are altered to generate a grid
with all possible event occurrences. Further alterations comprise repetitions of the gait
cycle and permutation of the events. The resulting grid is applied to the probabilities.
To that end, a loss function is defined as shown in Equation 3.11, i refers to the current
frame of the track, W is the current weight array. The loss for every weight array in the
weight grid is calculated and the array with the least loss is used to calculate temporal
gait parameters derived from HS and TO events.

L =
n∑
i=0

{
(1− PiHS ) ∗WiHS + (1− PiT O ) ∗WiT O + (1− PiNO ) ∗WiNO

}
(3.11)

3.3 Stand-Up Detection
Since the STS performance is determined by the lower body musculature, it is an indicator
for balance, and fall risk [29, 30]. Physical assessment tests, like the TUGT [18], the
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SPPB [57], or the STS test [55], use this for prediction of physical fitness and fall risk.
Hence, measuring the time required for an STS transfer, and the number of stand-
ups within a certain amount of time are valuable indicators for a person’s mobility.
Before measuring the STS transfer time, stand-ups have to be detected. For this, two
different approaches are described: one approach uses machine learning, the other uses a
thresholding technique.

3.3.1 Threshold Approach

This approach is based on the stand-up detection of Banerjee et al. [133], who detect
sitting and standing separately. Hence, the height of the COM (y) is used to distinguish
between sitting and standing, as well as the intermediate transition. The approach aims
to find all height differences in the track exceeding a certain threshold. Further, the
higher value has to occur later in the signal then the lower value, to exclude sit-downs.
To search for these values a time window 8 seconds is slided over the height values of
the track. This time window covers the maximum length specified in literature for STS
transfer times [72]. Every value higher/lower than the currently stored minimum and
maximum is replaced. A new minimum always resets the current maximum too, to
ensure a height increase. The difference between the current extrema is compared to the
threshold. If it exceeds the threshold, a stand-up is registered. A suppression ensures
the window is slided further for a certain amount of time to detect a possible higher
maximum. This approach depends highly on the height of a person, respectively the
COM of this person, since a tall person’s COM may increase more during stand-up, then
a small person’s COM, depending on the stand-up technique. Hence, the threshold is
selected dynamically as certain proportion of the maximum height value of the whole
track. To find the optimal values for the suppression time and threshold, a grid search
with following parameter space is conducted:

• suppression time: 0.5s, 1s, 1.5s, 2s, 2.5s, 3s
• threshold: 15 - 60% of max. COM

For the grid search a validation set consisting of 12,010 feature vectors (6,005 each class)
is used. Best results are obtained using a suppression of 2.5s and a threshold of 50% of
the maximum COM. Figure 3.7 shows an example of a height feature track, with detected
stand-up.

3.3.2 Machine Learning Approach

In order to detect STS transitions automatically, different sets of features in combination
with two Machine Learning (ML) techniques are used to identify which combination
achieves the best results. A Support Vector Machine (SVM) [134] and an RF [135] are
trained with following tracking sequences respectively: one time the classifiers are trained
on the whole STS transition, and one time on the start sequence and end sequence
separately. Allin and Mihailidis [30], who also use a decision tree as ML approach to
detect STS transfers use relative distances between head, torso, and ground as features.
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Figure 3.7: Height track with minimum (red mark) and maximum (green mark) of the
detected stand-up using the threshold approach.

However, these features are different from the tracking information obtained and provided
by the DPT and used to build feature vectors composed as follows:

• horizontal velocity magnitude ||~vplanar|| normalized between 0 and 1 with a maxi-
mum height of 2m/s

• height y normalized between 0 and 1 with a maximum height of 2m
• vertical velocity ẏ normalized between -1 and 1 with a maximum of 2m/s

The complete feature vector is composed of 8s to include the maximum STS transfer
duration [72]. This leads to a total feature vector length of 360:

8s ∗ 15 frames per second ∗ 3 features.

The vectors containing only the start/end sequences comprise a length of 90 (=2s) The
tracking information obtained from depth sequences is used to build these feature vectors
and split into training and test set at a ration of 80 to 20. As soon as a person is
considered active, the mentioned features are gathered to build a complete feature vector
of length 360. This is necessary due to training of the ML algorithms with feature vectors
of this size. When the length is reached, the current vector is used for prediction whether
it contains a stand-up. After the vector is tested for a stand-up, the next features are
added and the first ones are removed to ensure a fixed size of 360. If the current active
track ends before the size is reached, the vector is zero-padded.
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Figure 3.8: Beginnings (red marks) and endings (green marks) of feature vectors with
predicted stand-up, and actual stand-up (black vertical lines).

3.4 Stand-Up Duration Measurement
After positive stand-up prediction, it is known that there is a stand-up within a certain
time window, but not the duration of the actual STS transfer. Figure 3.8 depicts this
problem showing the respective begin (red marks) and end (green marks) of all feature
vectors, when a stand-up was predicted. To ensure the whole STS transfer is used for
measurement, the examined window is sliced from the first feature point of the first
feature vector the stand-up was detected to the last feature of the last vector the stand-up
was continuously detected. To measure the duration of an STS transfer, the steps shown
in Figure 3.9 are successively conducted.

In a first step the Savitzky-Golay filter [136] is used, which uses polynomial regression
for smoothing and considers high frequencies as well, and thus preserves local minima
and maxima. The filter is applied with

window size = slice length
2 ,

which corresponds to an intentional wide window. The wide window together with a
low polynomial degree of 2 results in strong smoothing which is required for the next
step. In order to perform calculations like curve sketching, the smoothed track has to be
polynomial fitted, which is done using a polynomial degree of 8 and results in a function
f(t). The results are shown in Figure 3.10. A key characteristic of a stand-up is the
steep height increase in phase III in comparison to the other phases [63]. Hence, curve
sketching is used to identify extreme values:
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3.4. Stand-Up Duration Measurement

Figure 3.9: Overview of the STS duration measurement steps.

Figure 3.10: The selected track slice is strongly smoothed from start (red line) to end
of last feature vector (green line). The smoothed track is polynomial fitted to enable
further analysis on the curve.

1. First of all, the three derivatives f ′, f ′′, f ′′′ are calculated.

2. To find the steepest increase, a maximum value in f ′ has to be found. Hence, f ′′
is equated to zero to find the roots indicating extrema (maxima or minima). The
results are real and complex roots, thus the latter are filtered out.

3. Substituting the result into f ′′′ shows whether the zero point is a maximum value.
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4. From the resulting maxima, the global maximum is chosen, indicating the steepest
part of the curve.

5. In the last step borders are set to the curve, thus the previous and following
inflection points are selected. These correspond to the previous and next maximum
of the global maximum. The result is shown in Figure 3.11.

Figure 3.11: First three derivatives with the global maximum of the first derivative
indicating the steepest increase. The red and green line mark the previous and next
extremum used as borders.

When projecting the resulting time window back to the normal track, it can be seen that
it approximates the actual stand-up in a narrow way. Figure 3.12 shows the projection
onto the initial track. The window containing the result of curve sketching, approximates
the actual stand-up already in a narrow way. However, performing a second iteration
of the steps from smoothing to back projection using the narrow window and other
parameters shows an even better approximation. This time the filter is applied using a
smaller window of

window size = newly obtained slice width
10

and a linear function. Polynomial fitting is conducted using a polynomial of degree 5.
The resulting curve fits the original track as can be seen in Figure 3.13, which also shows
the resulting time window (i.e. stand-up borders) of the second curve sketching.
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3.4. Stand-Up Duration Measurement

Figure 3.12: The inner dashed red and green line indicate the time window resulting
from curve sketching. The black lines show the actual stand-up.

Figure 3.13: The dashed lines show the beginning and ending of the second time window
(i.e. result of first iteration). The solid line shows the result of the second iteration (i.e.
measured STS transfer). The black lines indicate the actual stand-up.
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3.5 Implementation

The described algorithms are combined to a holistic system to analyze the tracking
data automatically. The extracted mobility parameters are aggregated and provided for
further use by e.g. clinicians or relatives. The setup consists of a Single Board Computer
(SBC) and a depth sensor attached to it. Figure 3.14 shows examples of the hardware
setup.

Figure 3.14: Hardware example: Single board computer Raspberry Pi 3 Model B5 (left)
and depth sensor Orbbec Astra6 right.

For best results of the DPT, the sensor is required to face at least part of the floor.
Additionally, to analyze a person’s gait, a straight walking path of minimum 2m has
to be within the FOV, as well as a sitting area, to measure STS movements. Since
there is no distinction between different persons, the system is required to be set up in a
one-person household or a single apartment of a nursing resident to work properly and
avoid ambiguities between persons’ mobility model. There is only one system installed
per apartment unit, thus it is important to cover an area, the person spends most of
the time (e.g. living room). On the SBC three main modules are deployed: I) Track
Storing Module, II) Analysis Module, and III) Interface Module. This modular design
allows individual activation of the respective modules, as well as replacement and/or
extension of the existing modules and adding new ones. Figure 3.15 shows this modular
architecture, consisting of the mentioned modules plus a local database, which holds the
tracking information temporarily and the aggregated movement parameters.

The Track Storing Module interacts with the depth sensor and performs person
tracking using the DPT. Tracks of moving objects classified as persons are stored to a
local database on the SBC for later analysis. This module is kept lightweight, since it
should not influence the tracker by reserving an inappropriate amount of resources. The
Analysis Module analyzes the tracking information of a certain day to generate diurnal
statistics that can be used for further analysis (e.g. progress over several weeks). This

5Image from https://www.raspberrypi.org/products/raspberry-pi-3-model-b (ac-
cessed 03-2018)

6Image from https://orbbec3d.com/product-astra (accessed 03-2018)
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3.5. Implementation

Figure 3.15: Modular Architecture: The depth sensor is connected to the person tracker,
and the Storing Module decides which tracks to save. The Analysis Module extracts
movement parameters periodically and the obtained results are provided via the Interface
Module.

module integrates the analysis algorithms described in the previous sections. All tracks
of the day of interest are processed and analyzed for an active person. If the person
is active, the respective duration is measured and cumulated. Further, if the active
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person is considered walking, all gait statistics are measured and evaluated: temporal
gait parameters, distance, and velocity. Additionally, the features for stand-up detection
are generated and used for prediction. Detected stand-ups are counted and measured
for their respective duration. The obtained measurements are aggregated and composed
to a mobility model. This mobility model comprises the average and total values of
several measurements. Table 3.1 describes the obtained values of the mobility model. For
reliable estimation of habitual movements, Scheers et al. [137] propose a measurement
period of at least 3 days.

Table 3.1: Aggregation of measured values to a mobility model

Value Unit Description
Activity time in room s average time a person is active

within the FOV

Gait

velocity m/s average walking speed
duration s total time the person walked within

the FOV
distance m total distance the person walked
step time s average duration of steps
stride time s average time of a gait cycle
cadence steps/min average number of steps
single support % proportion to the total gait cycle of

one foot solely being on the ground
double support % proportion of both feet being on the

ground
stance phase % proportion of one foot being on the

ground

STS quantity number total number of stand-ups
move-
ment

duration s average time required to perform
STS movement

Hourly
data

data aggregated
per hour

hour all values described above are
aggregated per hour

The measurements are further aggregated per hour, which allows insights into the
day’s progress. An example of hourly aggregated data is shown in Figure 3.16. Since
these calculations are computationally intensive, they are not performed online during
tracking. They can either be executed offline, after the measuring period has ended
on an external (more powerful) device, or when interim computation is inevitable, in a
time, where lots of tracks are unlikely (e.g. during night). The Interface Module allows
to provide the obtained measurements. Fur this purpose, a lightweight CherryPy7 is

7http://cherrypy.org (accessed 03-2018)
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3.5. Implementation

Figure 3.16: Example of diurnal statistics hourly aggregated to examine the progress
over the day.

implemented, providing a REST interface via the wireless LAN access point of the SBC.
The connection is SSL encrypted and requires the accessing party to authorize with a
key. This ensures that only certain persons can access the obtained measurements of the
monitored person. The REST interface allows to export the mobility model for a certain
day, but also the aggregation of a number of models covering a wider timespan. Hence,
also the aggregation time span can be set using the interface.
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CHAPTER 4
Results and Discussion

In this chapter experiments are described to evaluate (i) the scale-space filtering and ML
approach for gait event detection and their respective estimation of gait cycle components,
(ii) the gait velocity, distance, and duration measurement, (iii) the threshold and ML
approaches for stand-up detection, and (iv) the stand-up duration measurement. In order
to evaluate the approaches, two datasets of persons performing stand-ups, ADL, and
walks is are recorded. The datasets are acquired to set up the sensor at the intended
height for the DPT and to obtain straight as well as angular walks, and stand-ups
combined with ADL. The achieved results are presented and compared to related work,
based on the MAE. The application to real world data is tested in an 8-week field trial
with 4 older adults. The aggregated measurements are compared to the outcome of
physiotherapeutic assessment tests.

4.1 Datasets
To train the ML models and test the proposed methods, data is acquired using a depth
sensor and a depth image recorder, obtaining 30 frames per second. The STS dataset
focuses mainly on STS transitions in combination with ADL, while the 4-Paths dataset
focuses on gait from different angles. Both datasets are acquired under laboratory
conditions to ensure reproducibility.

4.1.1 STS Dataset

This dataset8 depicts six different persons performing mainly STS transitions in combi-
nation with other activities as listed in Table 4.1, and contains 137 sequences in total.
Figure 4.1 shows an example sequence of an STS movement, which begins with trunk
flexion, continues with knee extension and ends with full trunk extension and an upright

8Due to confidentiality requirements, this dataset is not publicly available.
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position. In order to train and further evaluate ML algorithms, the start and end of
the STS movements are manually annotated. This is a challenging task, since the exact
frame, where the movement starts/ends, is hard to identify from visualized depth images
only. Further, the start is defined as the beginning of the trunk flexion [63], but since
the person also moves during sitting and does not sit straight all the time, there occur
fluent transitions between movements while sitting and the stand-up. The same problem
arises at the end of the movement, which is defined as full trunk extension and standing
position [63]: this is only valid, if the person stays still after performing the stand-up; if
the person starts to walk, there is either no full trunk extension, due to a forward tilt
while walking, or full extension occurs after the first stride phase or after a turn. This
phase is either included in the stand-up movement and hence, extends the duration of the
stand-up, or it is excluded to fit the STS transitions without walking. In this dataset, the
first stride phase of STW movements is excluded and the end of a stand-up is estimated
after the trunk is mainly extended before the stride phase begins. The person tracker is
applied to the recorded sequences to extract the corresponding movement features, which
leads to 151 person tracks. The number of tracks is higher than the amount of sequences,
since the tracker drops the track, if the person does not move for a lengthy period of
time, and creates a new track, when the person starts moving again.

Table 4.1: Sequences included in the STS dataset

Task Number of Sequences
Walking & stand-up 52

Stand-up using walking aid 14

Carrying chair & stand-up 29

Walking 23

Walking with walking aid 19

4.1.2 4-Paths Dataset

This dataset consists of persons walking at constant speed on 4 paths that were marked
on the floor. The paths are depicted in Figure 4.2. Path I is a straight walking path of
3.7m length and passes the depth sensor perpendicularly. Path II is a 3m straight path
and runs frontal towards the depth sensor. Path III is also straight, passes the depth
sensor diagonally and measures 3.9m. Path IV runs semicircular to the depth sensor
with a perimeter of 5.34m. In order to ensure constant passing velocity, the persons start
1m before and stop 1m after each path to avoid acceleration and deceleration, except
from path II due to space reasons. The sensor is mounted at a height of 2.1m. Laser
measurement is used to capture the length of each path. 10 persons conduct all 4 walks,
12 were recorded twice, summing up to a total of 52 recorded walks. The test persons
performing the walks have no known disabilities influencing their gait. The subjects
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Figure 4.1: Depth sequence showing a sit-to-stand transfer.

consisted of 2 female and 8 male persons with a mean age of 33.4±8.4 years. The DPT
is applied to all recordings to obtain motion information. To train the machine learning
algorithms and perform automated evaluation all tracks are manually annotated: HS and
TO events are marked using the depth sequences. Figure 4.3 shows a sequence of a gait
cycle. Additionally, the duration is measured using an SW, which allows for calculation
of the respective average gait velocity using the length of each path:

v̄Manual = dLaser
∆tSW

,

where dLaser is the path’s distance and ∆tSW is a person’s walking duration measured
by SW.

4.2 Gait Velocity, Distance, and Duration Evaluation
The 4-Paths dataset is also used for evaluation of the velocity, distance, and duration
measurement. The resulting average walking velocities are compared to the SW measured
values and the respective deviation is calculated. The Pearson’s correlation coefficient is
0.93, which shows a strong correlation between the manually annotated and predicted
values. The results can be seen in Table 4.2 for each of the 4 paths separately. As can
be seen, the difference of the averages amount to 2.19-5.58cm/s. Especially path IV
shows that the velocity estimation is robust to angular change while walking. Varsanik
et al. [138] describe a similar approach to measure gait velocity using a passive gait
non-wearable indoor system, utilizing a Kinect. They report a difference between human
measurement using SW and the automated approach of 9.7cm/s. Hence, the approach
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Figure 4.2: Diagram of acquisition setup for the 4-Paths dataset: The FOV covers the
measurement area including the walking paths. The dashed lines show the acceleration
and deceleration segment.
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Figure 4.3: Depth sequence of 4-Paths dataset showing part of a gait cycle.

described is comparable with state-of-the-art methods. It has to be noted, that SW
measurements of human timers show statistical significant variations [138]. Additionally,
the distance captured using the tracker is compared to the distance measured using
laser measurement. The result is shown in Table 4.2 for each walk. It can be seen,
that the angle of the depth sensor to the walking path has no significant influence.
Further, direction changes during walking (path IV) show no effect on the accuracy,
having a smaller deviation than the other (straight) paths. Table 4.2 shows further
the deviations of the duration measurement. Figure 4.4 depicts the deviations for each
walk. Doppelbauer [118] achieves a MAE of 0.9cm/s-2.81cm/s using depth data, and
1.52cm/s-3.47cm/s using skeleton data evaluating his gait speed measurement. Hence,
the results of Doppelbauer [118] are comparable to those achieved by the proposed
measurement method.

Table 4.2: Comparison of MAE of Velocity, Distance, and Duration Measurement

Path Velocity
Error [cm/s]

Distance
Error [cm]

Duration
Error [s]

Path I (Straight Orthogonal) 2.19 31.35 0.38

Path II (Straight Frontal) 3.04 25.93 0.41

Path III (Straight Diagonal) 5.58 15.74 0.01

Path IV (Semi Circular) 3.76 8.88 0.28

Mean Error 3.64 20.48 0.27
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Figure 4.4: Calculated average velocities (top), distances (middle), and durations (bottom)
compared to manual measurements.
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4.3 Gait Event Evaluation

For evaluation of the gait event identification algorithms, the 4-Paths dataset is used.
The subset applied for testing of the machine learning algorithm is also used to evaluate
the scale-space filtering approach for better comparison.

4.3.1 Scale-Space Filtering Evaluation

The gait event demarcation algorithm of González et al. [132] is applied to 10 tracks of
the 4-Paths dataset, but using the signal data from the DPT as input. The algorithm
detects on average 2 TO and HS events less than annotated. This effect might occur
due the manual annotation of gait events, where the person is partly occluded and thus
the person track starts later of stops earlier not including the corresponding event. The
MAE of predicted events to the nearest manually annotated event is 0.16s±0.08s for HS
and 0.13s±0.09s for TO events. The accuracies of gait parameters deduced from these
gait events are outlined in Table 4.3.

Table 4.3: Temporal Gait Parameters Obtained Using Scale-Space Approach

Gait Parameter Annotated Value Predicted Value MAE
Step Time [s] 0.61±0.03 0.41±0.23 0.26

Stride Time [s] 1.21±0.06 0.76±0.45 0.55

Cadence [#steps/min] 113.49±7.87 215.94±101.47 108.74

Single Support [%] 32.64±1.78 21.32±16.10 15.83

Double Support [%] 17.83±1.91 29.82±21.14 17.41

Stance Phase [%] 50.62±0.73 51.96±10.38 6.97

4.3.2 Machine Learning Approach

In order to train the RF, the annotated tracks of the 4-Paths dataset are randomly
partitioned into a train and test set at a ratio of 80% to 20%. The partitioning into
independent training and test sets allows for generalization and avoids that the classifier
knows every feature vector (overfitting). 20% of the training set are further used as
validation set to optimize the predictions of the ML algorithm. The test set contains 10
tracks, which corresponds to 1,252 feature vectors and is the same test set applied for
testing the scale-space filtering. The evaluation on the test set achieves an accuracy of
66.22% of correct predicted vectors. For further evaluation the manually labeled position
of events (HS and TO) within a track is compared to the predicted position, which results
in a deviation of 0.16s±0.20s for HS events and 0.16s±0.17s for TO events. However, not
all events are detected, which leads to an irregular gait sequence that requires further
optimization. After application of the optimization algorithm described in Section 3.2.2,
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following results are achieved: the average quantity of predicted HS occurrences per track
is -0.3±1.3 compared to the annotated events, the average quantity of TO occurrences
is -0.3±1.1. The deviation of the resulting regular gait sequences is 0.18s±0.19s for HS
and 0.18s±0.18s for TO events. The obtained gait events are used to derive additional
temporal gait parameters. Table 4.4 presents the achieved accuracies of the determined
temporal gait parameters. Although the deviation of predicted to labeled gait events is
comparable (HS: 0.16s and 0.18s, TO: 0.13s and 0.18s), the results show clearly, that the
ML approach performs better on estimation of the temporal gait parameters than the
scale-space filtering approach.

Table 4.4: Temporal Gait Parameters Obtained Using Machine Learning Approach

Gait
Parameter

Annotated
Value

Predicted
Value MAE

Difference
Healthy/Pre-
Frail [132]

Step Time [s] 0.61±0.03 0.55±0.03 0.06 0.08

Stride Time [s] 1.21±0.06 1.11±0.05 0.10 0.11

Cadence
[#steps/min]

113.49±7.87 122.91±7.02 9.42 7.09

Single Support
[%]

32.64±1.78 37.22±4.42 4.58 2.8

Double Support
[%]

17.83±1.91 12.72±4.46 5.11 2.77

Stance Phase [%] 50.62±0.73 49.93±0.14 0.69 2.98

González et al. [139] describe an approach using lower extremity tracking with the
Kinect to measure gait parameters and compare the results to sensitive floor analysis.
They achieve a MAE of 0.22s±0.20s for step time and 0.27s±0.28s for stride time. Hence,
the deviation of 0.06s and 0.10s respectively of the presented solution achieves better
results. In [132], González et al. evaluate their method by comparing temporal gait
parameters of a young adult group to those of a pre-frail group and capture mean
differences between these groups as shown in Table 4.4. Although the differences of
single and double support are smaller than the errors of the proposed method, the other
parameters’ errors show that a distinction can be possible. Especially a distinction
between healthy adults and frail adults, which is shown to significantly correlate with gait
parameters [19], should be possible, but requires further evaluation. González et al. [132]
achieve more precise distinction due to the higher sampling rate (70Hz). Further, in
the DPT a Kalman filter [140] is applied, which smoothes the signal and hence removes
acceleration peaks important for gait analysis. Doppelbauer [118], who describes an
approach to estimate gait parameters using a Kinect, achieves MAE for step and stride
times of 0.04s-0.28s and 0.05s-0.33s respectively using depth data, as well as 0.08s-0.21s
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and 0.08s-0.25s using skeleton data. Hence the proposed approach based on the data of
the COM (0.06s and 0.1s) achieves comparable results.

4.4 Stand-Up Detection Evaluation

For evaluation of the stand-up recognition and measurement the STS dataset is used to
train the SVM and RF. The dataset is split into multiple training and test sets in order
to evaluate the different ML approaches. The feature vectors containing both start and
end of the STS phase consists of 360 features respectively (3 features * 8 seconds * 15
frames per second). The dataset is split into 18,534 training vectors equally partitioned
into two classes: no stand-up and stand-up contained. The according test set includes
4,660 vectors. The vectors containing the STS start sequence only, or the end sequence
only are shorter with a length of 90 (3 features * 2 seconds * 15 frames per second).
The vectors of these sequences sum up to 1,904 each, partitioned into both classes:
sequence contained (start/end) and no sequence contained. Figure 4.5 shows the Receiver
Operating Characteristic (ROC) curve for each of the trained ML algorithm. The ROC
curve shows the relation of the true positive to the false positive rate, the diagonal line
indicates equal amount of false positives and true positives. Hence, best results are
located in the top left corner. This shows, that the SVM classifier in general achieves
worse results compared to the RF. The best result is obtained by the RF containing
the whole STS sequence. The result indicates a perfect work efficiency of this classifier,
however this is achieved having no person occlusions in the scenes of the dataset and the
characteristics of the seating facility (height, softness, armrest, etc.) remain the same.
In practice, this is not always possible, since the installation environment varies from
apartment to apartment.

The result is compared to the outcome of the threshold approach, which is applied
to 3,002 vectors of the dataset, equally partitioned into both classes. The threshold
approach is applied with 2.5s suppression time and 50% of the maximum COM as
obtained by the grid search optimization. Due to the application of a sliding window,
the threshold approach has to be applied to a full track, whereas the ML algorithms can
be applied to extracted, shuffled feature vectors. Thus, the Confusion Matrix (CM) of
the threshold approach and the RF trained with the whole STS sequence are compared
in Figure 4.6. The CM contrasts the predictions of an algorithm to the true values, in
this case: stand-up and no stand-up. The CM shows, that both approaches have the
potential to detect stand-ups, but the ML method has a better true positive and true
negative rate and is hence superior to the threshold approach. Banerjee et al. [141]
describe an approach to detect stand-ups using fuzzy clustering of video data. Compared
to a marker-based system, their method achieves 94.6% accuracy. This is comparable to
the proposed method achieving 99.6% on the STS dataset. Although the dataset contains
unconstrained stand-ups, a performance in practice does not achieve these results, due to
occlusions and varying environments and sensor positions.
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Figure 4.5: ROC curve of all machine learning algorithms.

4.5 Stand-Up Measurement Evaluation

Since the stand-up measurement represents a different problem from stand-up detection,
all tracks of the STS dataset containing stand-ups can be used for evaluation, without
splitting into training and test set. In total, the amount of annotated stand-up sequences
used is 95. To obtain the accuracy of the measurement method, the predicted STS
duration is compared to the duration resulting from the annotated start and end points.
The MAE is 0.57s±0.33s, the distribution is depicted in Figure 4.7. In this Figure the
result is compared to the error rates obtained by Ejupi et al. [116] and Banerjee et
al. [133]. Ejupi et al. [116] compare their Kinect STS measurement approach to SW
measurement. They use a standardized setup for capturing the STS transitions of fallers
and non-fallers conducting the 5tSTS test, thus the obtained durations are divided by
5 to receive values comparable to the described method. The approach of Banerjee et
al. [133] measuring STS transfers using voxel height and ellipse fitting achieves average
errors of 0.45-0.75s compared to SW measurement depending on the camera angle. The
described method performs 0.07-0.13s worse than the method of Ejupi et al. [116], but
0.07-0.38s better than the method of Banerjee et al. [133]. This is an acceptable result,
considering the fact, that the sequences in the STS dataset are less constrained than the
sequences of Ejupi et al. [116], since it captures stand-up movements in combination with
other activities and the orientation of the test persons to the depth sensor varies.
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Figure 4.6: Comparison of the CM of RF (left) and threshold approach (right): RF shows
a higher true positive and true negative rate.

4.6 Field Test

In order to test the described methods in practice, a field trial has been conducted as
part of an ongoing Ambient Assisted Living Joint Programme9 project. In this evaluation
phase, 4 systems have been installed, each in the living room of an elderly person. The
persons, two female and two male test users, live alone and have no diagnosed cognitive
decline. They do not use assistive walking devices within their apartments and their age
ranges from 77 to 88 years. During the test period of 8 weeks, a physiotherapist visited
them to conduct physical assessments at the beginning (week 0), in the middle of the
test phase (week 4), and after the trial phase (week 8). The conducted tests include
a variation of the six-metre-walk test [51] using 3 meters, and a variation of the STS
test [55] with 3 consecutive stand-ups. Due to a technical problem impeding regular
reboot of the system, there was a data loss, which led to following amount of captured
days: user 1 - 26 days, user 2 - 37 days, user 3 - 15 days, user 4 - 43 days.

The results of this test phase averaged over the total testing time, presented in
Table 4.5, show slower gait velocity and longer stand-up durations when the persons are
alone in their homes in comparison to the measurements of the physiotherapist. Hence,
the unsupervised in-home movement is slower than the movement in supervised tests.
This reflects the users’ behavior change due to the test situation created during physical
assessments, although conducted in the homes of the persons [21,23], and corresponds
further to the difference between IGS and HGS as described by Stone and Skubic [24]:
The correlation of the average gait speed at home to the TUGT is higher in comparison to
measured gait velocity on a predefined path at home. In Figure 4.8, which depicts these
results, it can be seen, that the standard deviation between the physiotherapist’s tests
are larger than those obtained by the system. This signifies either measurement errors or

9http://www.aal-europe.eu (accessed 03-2018)
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Figure 4.7: MAE of predicted to manually annotated STS durations. Left: error range
on STS dataset, center: error range measuring non-fallers and fallers by Ejupi et al. [116],
right: range of error depending on camera angle evaluated by Banerjee et al. [133].

Table 4.5: Comparison of System Measurement to Physiotherapist’s Measurement

User System Physiotherapist MAE

Gait Velocity [m/s]

User 1 0.40±0.04 0.45±0.05 0.05
User 2 0.51±0.06 0.84±0.02 0.33
User 3 0.37±0.02 0.82±0.15 0.45
User 4 0.54±0.05 0.96±0.11 0.42

STS Duration [s]

User 1 2.55±0.27 2.41±0.40 0.14
User 2 2.45±0.27 1.78±0.14 0.67
User 3 2.31±0.27 1.27±0.76 1.04
User 4 2.43±0.27 1.45±0.81 0.98

high variations in user performance. The physiotherapist conducting the tests reported,
that especially user 3 and 4 misunderstood the instructions in the second and third
assessment: instead of performing the tests at habitual speed, they tried to perform best.
This behavior change while being actively tested is a known problem in research, called
attention bias [142]. Attention bias is a subtype of measurement bias and occurs, when
persons are aware that they are being tested, leading to increased performance [21, 142].
This explains the high variance in the physiotherapist’s measurement results of these
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4.6. Field Test

Figure 4.8: Gait velocity and STS duration results of field test: Habitual movement is
slower, than the values measured by the clinican.
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users and shows the influence of human elements, such as wording and understanding of
instructions.

The gait velocities are further averaged over 6 days in the temporal proximity of
the corresponding assessment test: for the first test, 6 days after the assessment are
aggregated; for the second test, 3 days before and 3 days after the test are combined;
for the last test, 6 days before the assessment are aggregated. The result is shown per
user in Figure 4.9. While the assessment tests constitute snapshots in the physiological
level of the test persons, the averaged values represent an aggregated time span. Hence,
the behavior change is also apparent in Figure 4.9: while the physiotherapist’s velocity
measurement of user 1 and 2 show only minor changes between the first and the other
two assessments (min: 0.01m/s, max: 0.09m/s), user 3 and 4 show an increase between
0.05m/s and 0.27m/s. Based on the cut-off value described by Stone and Skubic [24] of
0.5m/s, user 1 and user 3 are prone to falling. However, the physiotherapist assessed an
increased fall risk only for user 1. The low IGS of user 3 is explainable by the installation
environment: in the apartment of this user, there is a lot of furniture the user has to
avoid while walking, leading to decreased gait velocity, while for the physiotherapeutical
gait test, the furniture was re-arranged to enable the 3m walking test. This points
to a problem when installing in unconstrained environments, like apartments of users.
This is also reported by Stone and Skubic [119], who state that the furniture inside the
apartment as well as the position of sensor within the apartment influences the captured
movements and hence the analysis results.

The average STS duration is aggregated in the same way as the gait velocity around
the three assessment tests and shown in Figure 4.10. It can be seen, that the performance
of user 1 is comparable to the physiotherapeutical test, while the others perform better,
when tested by the physiotherapist. The physiotherapist reported, that the user tried to
perform better, but due to the physical condition, was not able. Further, there are high
standard deviations visible in the diagram, indicating that the persons’ stand-up behavior
varied. On the one hand, this occurs "normal" stand-ups compared to external influences
(e.g. door bell rings). On the other hand, the characteristics of the seating facility, such
as arm rests, softness, height, influence the STS movement performance [65]. Further, the
behavior change is again visible: the differences between the first and the other tests re-
sults in 0.08s-0.75s for user 1 and 2, while the difference of user 3 and 4 results in 1.04-1.50s.

The results show, that the proposed approaches are able to measure gait cycle
components more accurate than using vision-based lower extremity tracking and are
comparable to the results achieved with wearable accelerometers. The measurement of
the STS transition durations is comparable to vision-based state-of-the-art approaches.
The evaluation in practice shows higher accuracy for gait velocity than stand-up duration
estimation, and that the installation environment affects the results. This suggests,
that the progress of a person’s mobility parameters over time is preferable to the use of
snapshots for the assessment of the health level.
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Figure 4.9: Comparison of average gait velocity per user measured by physiotherapist
compared to aggregated system measurements (higher is better). The missing bars are
due to the occurred loss of data during the test.

63



4. Results and Discussion

Figure 4.10: Comparison of average STS duration per user measured by physiotherapist
compared to aggregated system measurements (lower is better).
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CHAPTER 5
Conclusion & Future Work

In this work, persons’ fitness level was measured by analyzing gait and STS performance.
The analysis was based on a non-intrusive tracking method, that allows plug-and-play for
installation in the homes of older adults and enables further the acquisition of habitual
in-home movement.

Two depth-datasets were acquired for training of the ML algorithm, and evaluation of
the described approaches. The STS dataset comprises 137 sequences of persons performing
STS transitions combined with ADL. The starts and endings of STS transition phases
were manually annotated. The 4-Paths dataset includes walks of 10 healthy adults,
walking on 4 predefined paths: orthogonal, diagonal, frontal, and semi-circular. All gait
events (HS, TO) were manually labeled.

The first approach focused on gait analysis and extracted following parameters:
gait velocity, distance, and duration. Especially, gait velocity shows robust estimation,
independent of the person’s orientation in respect to the 3D sensor. Additionally, a
scale-space filtering and a ML approach for gait event detection were compared, and
the gait events further used for estimation of gait cycle components. The results show,
that the ML approach in combination with an optimization algorithm performs better
when comparing the gait cycle components. The estimation of the gait cycle parts is
comparable to the estimation using a wearable accelerometer.

The second approach compared a thresholding to ML approaches for STS movement
detection and proposes a curve-fitting approach for measurement of the duration. The
evaluation shows best results using an RF for detection of stand-ups. The duration
measurement is comparable to state-of-the-art methods.

A holistic system including the described algorithms was presented and evaluated
in an 8-week field trial with 4 older adults. Compared to assessment tests conducted by
a physiotherapist, the test showed slower in-home movements, indicating that persons
change their behavior in the assessments due to the created test situation. Additionally,

65



5. Conclusion & Future Work

the trial revealed, that human factors, e.g. wording during test explanations, and the
test environment, such as furniture in the apartment, influence the results.

To sum up, mobility parameter estimation using solely the COM of person tracks is
possible and achieves robust results regarding the orientation of the person to the 3D
sensor. In order to allow more accurate estimation of gait cycle parts, future work will
focus on the integration of the DPT without the application of the Kalman filter [140].
In addition, access to the captured point cloud of a person allows the implementation of
algorithms able to distinguish between persons as suggested by Stone and Skubic [119].
This allows application of the system in multi-user environments, such as multi-person
households or senior residents.
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