
Negative Voltage Fault Injection
Attacks on Microcontrollers

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Hardware and Software Security

eingereicht von

Christian Kudera, BSc.
Matrikelnummer 0926721

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Mitwirkung: Dipl.-Ing. Dr.techn. Markus Kammerstetter, BSc.

Wien, 20. Februar 2018
Christian Kudera Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Negative Voltage Fault Injection
Attacks on Microcontrollers

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Hardware and Software Security

by

Christian Kudera, BSc.
Registration Number 0926721

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Assistance: Dipl.-Ing. Dr.techn. Markus Kammerstetter, BSc.

Vienna, 20th February, 2018
Christian Kudera Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Christian Kudera, BSc.
Altgasse 3/24, 1130 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. Februar 2018
Christian Kudera

v

Danksagung

Ganz besonders möchte ich Herrn Prof. Wolfgang Kastner für die Betreuung und die
Möglichkeit zur Erstellung der Arbeit danken.

Ein besonderer Dank gilt meinen Freunden und Kollegen am Vienna Seclab. Allen voran
Dr. Markus Kammerstetter, der mich bei der Erstellung der Arbeit maßgeblich begleitet
hat und mir immer mit Rat zur Seite stand. Daniel Burian, Markus Müllner und Viktor
Ullmann, die immer ein offenes Ohr für meine Probleme hatten und mich mit viel Geduld
unterstützt haben.

Ein großer Dank gebührt Daniel A. Maierhofer, der mit seinem Fachwissen im Bereich
der Elektrotechnik eine große Unterstützung im analogen Schaltungsdesign war.

Der größte Dank gebührt aber meinen Eltern Edith und Paul Kudera, die mich von
früher Kindheit an bei allen meinen Vorhaben unterstützt und begleitet haben.

vii

Acknowledgements

I would particularly like to thank Prof. Wolfgang Kastner for the support and the
opportunity to create this master thesis.

Special thanks to my friends and colleagues at the Vienna Seclab. Above all, Dr. Markus
Kammerstetter, who was instrumental in the creation of the work and was always on
hand with advice. Daniel Burian, Markus Müllner and Viktor Ullmann, who always had
an open ear for my problems and supported me with a lot of patience.

Many thanks go to Daniel A. Maierhofer, who was a great supporter of analogue circuit
design with his expertise in the field of electrical engineering.

The biggest thanks deserve my parents Edith and Paul Kudera, who have supported and
accompanied me since my early childhood.

ix

Kurzfassung

Fault Angriffe sind eine wohl bekannte Angriffsform im Bereich der Hardware Security.
Eine verbreitete Art der Fault Injection ist das kurzfristige Variieren der Versorgungs-
spannung, wodurch ein dafür anfälliger Prozessor Instruktionen falsch interpretiert oder
überspringt. Glücklicherweise erkennen immer mehr Hersteller von Mikrocontrollern die
Wichtigkeit von gehärteter Hardware und implementieren Gegenmaßnahmen gegen Fault
Angriffe. In dieser Arbeit wird eine neue Methode der Fault Injection Angriffe vorgestellt.
Während die Spannungsversorgung bei herkömmlichen Angriffen lediglich in Richtung
GND gezogen wird, wird bei der neuen Methode auch der negative Spannungsbereich
ausgenutzt. Die Hypothese dieser Arbeit ist, dass dadurch kürzere Glitches und eine
schnellere kapazitive Entladung erreicht werden. Durch die Nutzung von negativen
Spannungen wird eine höhere Flankensteilheit erwartet, da Schaltungsimplementierungen
innerhalb und außerhalb von Mikrocontrollern schneller entladen werden können. Im
Rahmen der Arbeit wurde ein Prototyp für die neue Methode implementiert und evaluiert,
um diese Hypothese zu überprüfen. Die Ergebisse zeigen, dass insbesondere in Gegenwart
von höheren kapazitiven Lasten Fault Angriffe nicht nur vereinfacht, sondern überhaupt
erst ermöglicht werden. Gegenüber klassischen Angriffen konnten zudem kürzere Glitches
erreicht werden, sodass auch Controller mit höheren Taktraten angegriffen werden können.

xi

Abstract

Fault attacks are a well known physical attack type in the area of hardware security. A
common fault injection technique is a short term variation of the supply voltage causing
a vulnerable processor to misinterpret or skip instructions. Fortunately, an increasing
number of microcontroller manufacturers recognize the importance of hardened hardware
and implement countermeasures against fault attacks into their products. In this work,
we present a new fault injection attack method. While conventional attacks pull the
power supply rail to GND, in the new method we pull into the negative voltage supply
range instead. The hypothesis of this work is that negative voltage fault injection
attacks provide advantages over their conventional counterparts with respect to shorter
glitch durations in presence of capacitive charges. Utilizing negative voltage during the
generation of a fault, we expect higher slew rates due to faster discharging of the circuit
implementations outside and within microcontrollers. Within this work, we implemented
and evaluated a negative voltage fault injection prototype to test this hypothesis. The
results show that especially in presence of higher capacitive loads, fault injection attacks
are not only simplified, but they become feasible in the first place. In contrast to classical
attacks, shorter glitches were achieved opening the attack vector even to controllers with
higher clock rates.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 State of the Art . 2
1.3 Problem Statement . 2
1.4 Methodology . 3
1.5 Outline . 3

2 Microcontrollers 5
2.1 Overview . 5
2.2 Semiconductors . 5

2.2.1 MOSFET . 6
2.2.2 Floating-Gate MOSFET . 6
2.2.3 CMOS . 7

2.3 Components . 8
2.3.1 Processor Core . 8
2.3.2 Memory . 17
2.3.3 Other Features . 20

2.4 Architectures . 21
2.4.1 Complexity of Instruction Set . 21
2.4.2 Linkage of the Processor and Data Memory 22

2.5 Software Development . 23
2.5.1 Programming . 23
2.5.2 Download . 23
2.5.3 Debugging . 24

2.6 Protection Mechanisms . 24

3 Fault Injection Attacks 27
3.1 Clock Glitching . 28

xv

3.2 Voltage Glitching . 28

4 Negative Voltage Fault Injection Attacks 31
4.1 Basic Terms of Voltage Fault Injection Attacks 31
4.2 Limitations of Conventional Voltage Fault Injection Attacks 33
4.3 Expected Results of Negative Voltage Fault Injection Attacks 35

5 Negative Voltage Fault Injection Hardware 39
5.1 Hardware Requirements . 39
5.2 Design Approaches . 40

5.2.1 Design Approach 1: Extended Conventional Circuit 40
5.2.2 Design Approach 2: NMOS-PMOS circuit 40
5.2.3 Design Approach 3: NMOS circuit 42
5.2.4 Selection of Design Approach . 45

5.3 Implementation of Prototype . 45
5.4 Evaluation of Prototype . 49

6 Evaluation 51
6.1 Test Setup . 51

6.1.1 Target . 52
6.1.2 Voltage Fault Injection Hardware Prototype 55
6.1.3 ChipWhisperer . 55
6.1.4 Digital Storage Oscilloscope . 56
6.1.5 PC . 56

6.2 Evaluation 1: ATmega Target without Decoupling Capacitor 58
6.3 Evaluation 2: ATmega Target with Decoupling Capacitor 60

7 Results 61
7.1 Evaluation 1: ATmega Target without Decoupling Capacitor 61

7.1.1 Deactivated Brownout Protection 61
7.1.2 Brownout: 2.7 Volt . 65
7.1.3 Brownout: 1.8 Volt . 68

7.2 Evaluation 2: ATmega Target with Decoupling Capacitor 69
7.2.1 Deactivated Brownout Protection 69
7.2.2 Brownout: 2.7 Volt . 72
7.2.3 Brownout: 1.8 Volt . 74

8 Summary and Conclusion 77

9 Further Work 79

A Printed Circuit Boards 81
A.1 Voltage Fault Injection Hardware Prototype 81
A.2 ATmega Target . 83

B Source Code 85
B.1 Evaluation Software . 85

B.1.1 capture.py . 85
B.1.2 database.py . 89
B.1.3 models.py . 91
B.1.4 cwuserscript.py . 92
B.1.5 oscilloscope.py . 94

B.2 Glitch Software . 95
B.2.1 glitch.py . 95

B.3 Plot Software 2D . 96
B.3.1 plot2d.py . 96

B.4 Plot Software 3D . 98
B.4.1 plot3d.py . 98

B.5 Oscilloscope to CSV . 100
B.5.1 osci2csv.py . 100

B.6 ATmega328P Target Firmware . 101
B.6.1 main.c . 101

C MySQL Database 105
C.1 Database glitcher . 105

List of Figures 109

List of Tables 111

Glossary 113

Acronyms 115

Bibliography 117

CHAPTER 1
Introduction

1.1 Motivation

Today, microcontrollers are essential to our way of life and they are used in a wide range
of embedded systems. Gartner, Inc. forecasts that 20.8 billion connected things will be
in worldwide use in 2020 [1]. Data in embedded devices is often highly confidential and
sensitive, so privacy and security expectations must be fulfilled. Furthermore, the highly
distributed nature of embedded devices allows malicious attackers physical access to the
systems. As a result, they must be hardened against any kind of physical attacks just
the same.

Fault attacks are well known physical attacks in the area of hardware security. One of
the most common fault injection technique is a short term variation in supply voltage,
which may cause a processor to misinterpret or skip instructions [2].

Unfortunately, many manufacturers of embedded devices do not consider fault attacks
during system development, although the dangers of fault attacks have been known for
over 15 years. The first academic fault attack [3] was published in 2001 and describes a
number of methods for attacking public key algorithms. A more recent real-world attack
was the Xbox360 reset glitch attack [4] in 2012. The focus of the attack was to execute
unsigned code to circumvent Microsoft’s security concept. In a nutshell, the processor of
the console was attacked by sending a short reset pulse that changed the behavior of the
memcmp function. In presence of the fault attack, the function memcmp, used to check
the bootloader SHA hash digest against a stored one, returned with the result that there
was no difference. The attack thus circumvented the copy protection of the game console
and made playing pirated games possible. The attack was impemented in the form of so
called mod chips to be useable for everyday consumers. Mod chips are a mass market
today.

1

1. Introduction

Fortunately, more and more microcontroller manufacturers recognize the importance of
hardened hardware and implement countermeasures into their products. However, since
microcontrollers with countermeasures against fault attacks are more expensive in compar-
ison to their unprotected counterparts, fault attacks are still feasible on many embedded
devices. On these devices, fault injection attacks can also be utilized by independent
security researchers to obtain the firmware in the presence of readout protections such as
security fuses or bootloader protections. Without access to the firmware, independent
in-depth security audits are not feasible and thus increase security-by-obscurity scenarios
where security critical firmware can not be scrutinized for vulnerabilities.

1.2 State of the Art
Recently, two commercial solutions for voltage fault injection attacks have been released:
The VC Glitcher [5] including the Glitch Amplifier [6] by Riscure1 and the ChipWhisperer
[7] with the VC Glitch add-on by NewAE Technology Inc.2. While the Riscure solution
allows negative voltages to some extent, both approaches primarily focus on conventional
voltage fault injection attacks.

In 2000, Sergei P. Skorobogatov released a summary [8] of possible attack vectors on
common microcontrollers. Even though the summary was released over a decade ago,
most of the microcontrollers covered are still in use today. Voltage glitching was one of
the described attack vectors, but negative voltage fault attacks are not covered.

In 2006, Bar-El et al. described different fault injection attacks on cryptographic imple-
mentations in their paper [2]. However, negative voltage fault attacks are not mentioned
in their publication.

In 2014, Carpi et al. published a paper [9] which summarized a novel methodology
for choosing multiple parameters required for effective faults on smart cards. Since
their search space for the glitch voltage was between -5.0 V and -0.05 V, they handled
negative voltage fault injection attacks, but only for low power smart cards and not for
microcontrollers or larger controllers in general.

In the same year, Zussa et al. released a paper [10] where they analyzed positive
and negative voltage fault attacks on Field Programmable Gate Arrays (FPGAs) with
an on-chip voltmeter. Although they used negative voltage to inject the glitch, they
didn’t compare conventional voltage fault injection attacks against negative voltage fault
injection attacks.

1.3 Problem Statement
The hypothesis of this work is that negative voltage fault injection attacks provide
advantages over their conventional counterparts with respect to shorter glitch durations

1https://www.riscure.com
2https://newae.com/

2

https://www.riscure.com
https://newae.com/

1.4. Methodology

in presence of capacitive and inductive charges. Utilizing negative voltage during the
generation of a fault, higher slew rates are expected due to the faster discharging of the
circuit implementations outside and within microcontrollers. The aim of this work is
thus to design and implement a negative voltage fault injection prototype to generate
and evaluate these attacks against their conventional counterparts.

1.4 Methodology

The methodological approach consists of three steps.

In the first step, a literature survey is conducted to obtain background knowledge on
fault injection attacks. In existing work, different fault injection methods are identified
and analyzed with regard to their usability for negative voltage fault injection attacks.

In the second step, different approaches and ideas for negative voltage glitch generation
are explored and evaluated in Simulation Program with Integrated Circuit Emphasis
(SPICE) simulations. Based on the results of these simulations, the requirements for
electronic components are specified and a hardware prototype for negative voltage
fault injection attacks is implemented. During prototyping, printed circuit boards are
constructed, manufactured and assembled. Measurements conducted with the prototype
are subsequently compared with the simulation results and circuit improvements are be
conducted if necessary.

In the third step, the prototype and the negative fault injection approach are compre-
hensively evaluated on a real-world microcontroller in different configurations. During
the evaluation, both conventional and negative voltage fault injection attacks are tested
on the printed circuit prototype. The obtained results are then compared to determine
whether negative voltage fault injection attacks provide advantages over conventional
voltage fault injection attacks with respect to glitch duration, voltages and success rates.

1.5 Outline

This work is structured as follows. Chapter 2 describes the fundamentals of microcon-
trollers to understand how fault injection attacks work in general. Chapter 3 provides an
overview of voltage fault injection attacks and introduces the two well-known non-invasive
glitching techniques clock glitching and voltage glitching. Chapter 4 highlights the limi-
tations of conventional voltage fault injection attacks. Furthermore, the hypothesis of
negative voltage fault injection attacks is provided. Chapter 5 presents the hardware
prototype implementation. In a first step, the requirements are specified. Different
approaches and ideas for negative voltage glitch generation are explored and evaluated in
electronic SPICE simulations. Based on the results of these simulations, the requirements
for electronic components are specified and hardware prototypes for negative voltage fault
injection attacks are implemented. The different prototypes are evaluated and the most
promising approach is selected. Chapter 6 describes the evaluation process and utilized

3

1. Introduction

test setups to validate the hypothesis of this work. Chapter 7 presents and discusses the
results of the evaluation. Chapter 8 summarizes the findings and presents a conclusion of
the results. Finally, we provide an outlook and ideas for further work in Chapter 9.

4

CHAPTER 2
Microcontrollers

This chapter describes the fundamentals of microcontrollers, which are important to
understand how fault injection attacks work.

2.1 Overview
Microcontrollers are integrated circuits containing a CPU, memories and accompanying
peripherals within a single chip. According to Stan Augarten [11], the TMS 1000 was
the fist microcontroller, which became commercially available in 1974. It combined a
processor, a clock and memory on one chip and was targeted towards embedded systems.
Today, there are countless different types of microcontrollers on the market. They are
typically customized to their area of application to minimize costs and required space.
For example, the Atmel ATtiny4 [12] comes in a SOT-23 package with only 6 pins
where, depending on the configuration, each pin except VCC and GND can be used for
multiple functions. This specific type is low-cost, requires little space and has a low power
consumption. At the same time, a compromise is made between performance and usability.
In contrast, there are highly integrated microcontrollers with more than 200 pins and
the border between microcontrollers and Systems-on-Chips (SoCs) becomes increasingly
blurred. The larger controller types can be used for a wide range of applications and it is
not uncommon that a full blown operating system such as Linux is used on them. The
Raspberry Pi is a well known example for that, although it utilizes external non-volatile
memory and, hence, no longer falls into the microcontroller definition where internal
memory is used instead.

2.2 Semiconductors
Semiconductors are a group of chemical elements with an electrical conductivity value
between that of electrical conductors and that of non-conductors. By introducing foreign

5

2. Microcontrollers

elements (doping) into a semiconductor compound material, the conductivity and the
conduction characteristics (electron and hole conduction) can be specifically influenced.
The combination of differently doped regions (i.e., with a lack of electrons (p-type) or
an excess of free electrons (n-type)), for example in the case of a p-n junction, allows
electronic components with a direction-dependent conductivity (e.g., a diode) or with a
switching function (e.g., a transistor) [13].

2.2.1 MOSFET

p
n n

Source
Gate

Drain

Oxide

Figure 2.1: Cross Section of an n-type MOSFET

Metal–oxide–semiconductor field-effect transistors (MOSFETs) are field-effect transistors
(FETs) with an insulated gate. They can be either enhancement mode MOSFETs,
meaning that they are OFF at zero gate-source voltage, or depletion mode MOSFETs,
where they are ON at zero gate-source voltage. Due to the relevance for complementary
metal-oxide-semiconductor (CMOS) technology, enhancement mode MOSFETs will be
further discussed in Section 2.2.3.

MOSFETs can be distinguished in n-type and p-type MOSFETs. Figure 2.1 shows a
cross section of a n-type MOSFET. Source and drain are n regions and the body is a p
region. If the voltage UGS between gate and source is lower the threshold UT H , drain
and source are not connected. If the voltage UGS between gate and source is positive and
higher as the threshold UT H (UT H > 0V), a channel between drain and source forms due
to electrostatic attraction of n-carriers and current can flow from drain to source.

In contrast, in p-type MOSFETs, source and drain are p regions and the body is an n
region. If the voltage UGS between gate and source is negative and lower as the threshold
UT H (UT H < 0V), current can flow from source to drain [14, 13].

2.2.2 Floating-Gate MOSFET

A floating-gate MOSFET (FGMOS) (Figure 2.2) is a MOSFET with a electrically isolated
gate (floating-gate) and a secondary gate (control gate) deposited above the floating-gate.
The floating-gate is surrounded by highly resistive, dielectric material (oxide) so that
the contained charge remains stored even if the FGMOS is not biased. The floating-gate
can be charged by applying a high voltage to control gate and drain, while source is
connected to the ground. In modern FGMOS, the floating-gate is positioned over the
n-channel of the drain. The charge can be discharged by applying high voltage to the

6

2.2. Semiconductors

p
n n

Source

Control gate

Drain

Oxide Floating gate

Figure 2.2: Cross Section of a Floating-Gate MOSFET

drain, while the control gate and source are connected to ground. In older FGMOS
types, the electrical discharge was often not feasible. If there is no charge stored in the
floating-gate, the behavior is similar to a normal MOSFET. However, if there is charge
stored in the floating-gate, the transistor is effectively blocked since the charge in the
floating-gate prevents the formation of a channel between drain and source [15]. Due to
this property, the FGMOS can be used to store a bit. FGMOSs are thus utilized to form
non-volatile memories which are described in more detail in Section 2.3.2.

2.2.3 CMOS

Complementary metal-oxide-semiconductor (CMOS) is a term for semiconductor devices
where both n-type MOSFETs and p-type MOSFETs are used on a common substrate. It
has a high noise immunity, a low static power consumption and the operating voltage
can be between 0.75 V and 15.0 V. CMOS is the most widely used technology in
microprocessors, microcontrollers, memory devices and other digital logic circuits [14].

VDD

VSS

in out

p-type
MOSFET

n-type
MOSFET

Figure 2.3: CMOS Inverter

7

2. Microcontrollers

Figure 2.3 shows a CMOS inverter, which outputs a voltage representing the opposite
logic-level to its input. If the p-type MOSFET is active and the n-type MOSFET is
inactive, the output is connected to VDD. Vice versa, if the p-type MOSFET is inactive
and the n-type MOSFET is active, the output is connected to VSS [14].

Table 2.1 provides an overview of typical logic levels at 5 V operating voltage. It should
be noted that although the acceptable input logic level voltage range is relatively wide,
the output level always resides in a small voltage range.

Input Output
LOW 0.0 V – 1.5 V 0.0 V – 0.05 V
HIGH 3.5 V – 5.0 V 4.95 V – 5.0 V

Table 2.1: CMOS Logic Levels for 5 V Operating Voltage [14]

Table 2.2 provides an overview on different CMOS technologies and their characteristics.
Among other factors, the speed of microcontrollers is primarily limited by the gate delay.

Technology Abbr. Power loss per gate Processing time per gate
Standard CMOS C 0.3 µW 90 ns
High speed CMOS HC 0.5 µW 10 ns
Advanced CMOS AC 0.8 µW 3 ns

Table 2.2: CMOS Characteristics [14]

2.3 Components
This section explains the central components within a microcontroller. Since the imple-
mentation details of microcontrollers differ significantly between manufacturers, only a
rough overview is provided.

2.3.1 Processor Core

The processor core executes a program by processing instructions (e.g., logic, arithmetic,
control and input/output instructions). The components of the core are explained on the
basis of the Micro16 educational reference architecture introduced by Schildt et al. [16].

Registers

A register is a circuit comprising several flip-flop gates and stores a certain number of bits.
Typically, the size of a standard register is equally large as the bus width within the core.
In general, there are different types of registers depending on their application. Data
registers hold data values such as integers and are used to store operands or the results
of calculations. Address registers are used to address memory areas. Status registers
(also known as status flags) are used to store truth values such as whether the result of a

8

2.3. Components

previous calculation was zero (zero flag). In addition, there are special purpose registers
which are explained in the following.

0e1e2e3e

3a 2a 1a 0a

Clear
Clock

D

R

D

R

D

R

D

R

Figure 2.4: A 4-bit Register [16]

Figure 2.4 illustrates a 4-bit register built from four flip-flops. A flip-flop is a basic logic
circuit storing one bit of data and it is typically manufactured in CMOS technology. The
illustrated flip-flops have a data (D), a clock (>) and a reset (R) input and a one output.
The register comprises 4 flip-flops and can thus store a 4-bit word. By holding R low for
one clock cycle, the register is erased. When e3 and e1 are high and e2 and e0 are held
low for one clock cycle, the word (1010) is stored. The current value of the register can
be accessed through the outputs of the register.

Arithmetic Logic Unit (ALU)

An ALU performs the arithmetic and logic operations. The Micro16 ALU visible in
Figure 2.5 supports the following functions:

• Map a 16-bit data word received from register A to an output register without
changing the value.

• Addition of two 16-bit data words received from registers A and B. The results are
written to the output data and flag registers.

• Bitwise AND operation of two 16-bit data words received from registers A and B.
The results are written to the output data and flag registers.

• Bitwise NOT operation of one 16-bit data word received from register A. The
results are written to the output data and flag registers.

Additionally, the result of the four functions can be bitwise shifted to the left or to
the right. The Micro16 ALU has a 2-bit control input (F0F1) to select which function
should be executed and a 2-bit control input (S0S1) to select whether the result should
be shifted (either left or right) or not. Furthermore, there are the status flags ZERO (Z)
and NEGATIVE (N) which are set if the result of the operation is either zero or negative.

9

2. Microcontrollers

F0

A
15 0

B
015

Shifter

F1

S0

S1

ALU

16

16 16

N

Z

16 16

16

4
15 0

Figure 2.5: The Micro16 ALU [16]

micro in-
struction
(F0F1S0S1) symbolic

(0000) A
(0001) lsh(A)
(0010) rsh(A)
(0100) A+B
(0101) lsh(A+B)
(0110) rsh(A+B)

micro in-
struction
(F0F1S0S1) symbolic

(1000) A ∧ B
(1001) lsh(A ∧ B)
(1010) rsh(A ∧ B)
(1100) ¬A
(1101) lsh(¬A)
(1110) rsh(¬A)

Table 2.3: Micro Instructions of the Micro16 ALU [16]

Table 2.3 shows the possible micro instructions and corresponding functions of the
Micro16 architecture.

Overall, the registers A and B are connected to thirteen data registers (R0 . . . R12) and
three read-only data registers, containing the constants 0, - 1 , + 1. The registers are
connected via buses that are described in the following section.

Bus

A bus is an electrical connection between several components of a system and is used
to share information between them. There are three types of buses: The data bus, the
address bus and the control bus. The transmission of the bits can either be in parallel
(e.g., simultaneously) or in serial (e.g., one bit after another). In the Micro16 architecture,
the transmission is implemented in parallel so that a distinct bus wire is required for

10

2.3. Components

each bit.

+ 1

0

−

R

F

C2
C1

1

R0

R1

R10

R11

R12

2

2

decoder

decoder

decoder

A−

−Bus

B−Bus

B

A

ALU

A B

load

16

16

4

4

enable

enable

16

4

Shifter

R−
B

us
13

B−BusA−Bus

en
ab

le

en
ab

le

N
Z

C4

S

Bus

R

Figure 2.6: Micro16 ALU with Registers and Buses [16]

Figure 2.6 illustrates the bus connections within the Micro16 architecture. The thirteen
registers (R0 . . . R12) can write a value to buses A and B and they can read a value from
bus R into the corresponding register. The three constant registers (0, - 1, + 1) can
only write their static value to the buses A and B. Each register thus has either two or
three enable inputs. To minimize the length of the micro instructions, the selection of
the register is encoded in 4-bits and must be decoded in a bus decoder. For instance, to
enable writing from register R0 to bus A, the value (0100)2 is transmitted to the A-bus
decoder. Furthermore, the ALU registers A and B each have an input enabling reading
from the buses A or B. The figure shows the timing signals C1, C2, C4 as well. These
signals are used to coordinate the proper behavior of the processor core and they are be

11

2. Microcontrollers

explained in more detail in the following sections.

Memory Connection

To access the memory, the Micro16 architecture has two registers: The Memory Address
Register (MAR) and the Memory Buffer Register (MBR) (Figure 2.7). The MAR
addresses the location of the memory and is connected to an address bus. The MBR
buffers data before it is written to the memory or after it is read from the memory. The
MBR is connected to the data bus and can be switched between read and write mode
via a read/write signal. The memory select signal triggers the memory to read or write a
value from or to the MBR. Since the MAR is 16-bit long, addresses from 0 to 216 − 1 can
be addressed.

12

2.3. Components

The reading process is divided into the following steps:

1. The address of the memory cell is written to MAR and the signals read/write and
memory select are asserted.

2. The memory access time has to pass.

3. The MBR can read the value from the data bus into the register.

MAR

MBR
load

address

data in
data out

memory select
read/write

15 0
address bus

data bus to memory

Figure 2.7: Micro16 Memory Connection [16]

Similarly, the writing process is divided into the following steps:

1. The address of the memory cell is written to MAR and the signal memory select is
activated.

2. The memory reads the value from the MBR and writes it to the address defined in
the MAR.

Figure 2.8 illustrates how the buses are connected to the MBR and MAR. With the
signal A0, a multiplexer switches the A input of the ALU between bus A and the MBR.
Since the micro instruction function (0000) maps a 16-bit data word from the ALU input
to the output, the value of the MBR can be saved in each data register. The MAR is
connected to bus B, so that the memory address can be stored in the data registers. The
output of the ALU is written to the MBR, which is required at the writing process.

Program Memory and Micro Sequence Logic

Figure 2.10 shows the Micro16 architecture including new components that are described
in the following. The program is stored in a 256x32 sized program memory. Since all
micro instructions of the Micro16 architecture are 32-bits long, a program can have up
to 256 instructions at most. The address of the current instruction is stored in the Micro
Instruction Counter (MIC) also known as program counter in other architectures. The
Micro Instruction Register (MIR) contains the current micro instruction.

The micro sequence logic, which enables conditional and unconditional jumps to an
arbitrary position in the program, is connected to the MIC and to the status flags of
the ALU. The micro instruction is extended by eight bit (ADR for address) representing

13

2. Microcontrollers

ALU

A-MUX

A B

Shifter

MAR

MBR

A0

R

Figure 2.8: Micro16 ALU, Buses and Memory Connection [16]

the destination of the jump. In addition, the micro instruction is extended by two bits
(COND for condition) to select the jump type. The type can be one of the following:

• (00)2: Do nothing

• (01)2: Jump, if the status flag N is one

• (10)2: Jump, if the staugs flag Z is one

• (11)2: Jump without any condition

Control Unit

c1

c2

c3

c4
1 cycle

Figure 2.9: Micro16 Clock Timing Diagram

The control unit is a integrated logic block contained within the processor core. It
coordinates the execution of a program by interpreting the instructions to provide timing
and control signals for the other processor core units such as the ALU and the memory
block. One important part is the clock component (4 phase clock). Based on a reference
clock signal provided by an external crystal or an internal oscillator, it generates four
successive clock signals (i.e., clock cycles) (Figure 2.9). The following describes functions
of each clock cycle:

14

2.3. Components

• C1: The micro instruction in the MIR is executed. The A-Mux multiplexer either
selects the MBR or the A register as input for the ALU. The behavior of the micro
sequence logic is selected and the ALU function is chosen. The MBR and MAR are
either enabled or not. If the memory select bit is set, the memory is enabled and
according to the RD/WR signal the function is selected. Values are written to the
buses A and B. If the ENR bit is set the register, which will store the value from
the R bus in C4, is selected.

• C2: The registers A and B read the current value from the buses A and B.

• C3: The MAR and MBR are enabled.

• C4: The ALU result is stored in the selected register. The next micro instruction
is selected by the MIC.

15

2. Microcontrollers

A
-M

U
X

B

de
co

de
r

de
co

de
r

B
-B

us

de
co

de
r

A
-B

us

4 3 2 1

1613 16

25
6

x
32

 B
itc

on
tr

ol
 s

to
re

Pr
og

ra
m

 m
em

or
y

re
ad

/w
ri

te

A
L

U

A

Sh
if

te
r

M
B

R

M
A

R
M

IR

m
em

or
y

se
le

ct

da
ta

 b
us

ad
dr

es
s

bu
s

-B
us

2

ZN

4
ph

as
e

cl
oc

k
cl

oc
k

in

32

M
IC

8

7
0 8

A-MUX

C
O

N
D

A
L

U
SH

MBR
MAR

RD/WR
MS
ENR

-B
U

S
B

-B
U

S
A

-B
U

S
A

D
R

m
ic

ro
se

qu
en

.
lo

gi
c

2

4 4 4

R
eg

s.
16

A
-B

us
B

-B
us

R
-B

us

R

R

Figure 2.10: Complete Micro16 Architecture [16]

16

2.3. Components

2.3.2 Memory

Semiconductor memory types

Non-volatile memories Volatile memories

ROM NVRAM SRAM DRAM

Figure 2.11: Different Types of Semiconductor Memory

Memory is used to store data and is implemented in microcontrollers as integrated circuit
logic block. Figure 2.11 provides an overview of different memory types. In general,
memory can be divided into volatile and non-volatile types [17]. Volatile memory loses
the stored data if the power is turned off. In contrast, stored data can be retrieved
from non-volatile memory even if the supply voltage has been turned off and back on
again. Non-volatile memory can be further divided into read-only memory (ROM) and
non-volatile random-access memory (NVRAM) while volatile memory can be divided into
static random-access memory (SRAM) and dynamic random-access memory (DRAM).

3

2

1

0

0 1 2 3 4 5 6 7

Word line

Memory cell

Bit line

Row decoder

C
o
lu

m
n
 d

e
co

d
e
r

Sense amplifier

Memory address

VRef

Output buffer

Figure 2.12: Typical Memory Layout

Although there are different types of memory, their fundamental on-chip design (Figure
2.12) is similar. A single bit is stored in a memory cell. Memory cells are laid out in an
array on the surface of the chip, where each row represents a data word. Horizontally
there are the word lines and vertically there are the bit lines. Usually, the two basic

17

2. Microcontrollers

operations performed by a memory are read, where a data word is read from the memory,
and write, where a data word is written to a memory. The data word is accessed by the
memory address, which is divided into a column and a row part. The memory address is
decoded by a column decoder and a row decoder to select the proper data word. Since
due to physical memory technology properties, the memory is typically not operating on
the same logic levels, a sense amplifier is required [18]. The sense amplifier shifts the
charge of each bit to a range which is comprehensible for the rest of the microcontroller.
To decide whether a sensed charge level represents a 0 or a 1 bit, a voltage reference VRef
is required for comparison purposes. After the sense amplifier, the addressed data word
is finally stored in an output buffer. The following sections provide an overview of the
different types of memory.

Static random-access memory (SRAM)

VDD

M6M5

M2 M4

M3M1

WL

BLBL

Q
Q

Figure 2.13: Circuit Diagram of an SRAM Cell, Built With Six MOSFETs [19]

An SRAM is a volatile memory that uses a bistable latching circuit to store a bit in
a memory cell. The term static means that the SRAM does not need to be refreshed
periodically to hold its content.

A typical SRAM memory cell, illustrated in Figure 2.13, is made up of six MOSFETs,
known as 6T SRAM cell. The MOSFETs M1, M2, M3 and M4 form two cross-coupled
inverters. Therefore, the memory cell has two stable states to store a bit. The MOSFETs
M5 and M6 are used to control the access during read and write operations.

The advantages of SRAMs are low power consumption, no need of a refresh circuit and
fast access time. However, the disadvantage is the required space due to the high amount
of transistors. For that reason, SRAM is mainly used for areas where fast access time
are important (e.g., caches).

18

2.3. Components

Dynamic random-access memory (DRAM)

A DRAM is a volatile memory storing each bit of data in a capacitor within an memory
cell. However, the capacitor looses its charge over time so that the memory cell must
be refreshed periodically. The advantages of the DRAM are fast access time, structural
simplicity, low space requirements and low manufacturing costs. On the other hand, due
to its dynamic nature, DRAM consumes large amounts of power and it requires logic for
refreshing.

Read-only memory (ROM)

A ROM is a non-volatile memory type. Depending on whether the ROM is repro-
grammable, once programmed memory content can be re-programmed at a later point of
time. In microcontrollers, a ROM is mainly used to store the firmware and bootloader
code. In the following, the different types are described, whereby the chronological order
reflects the time of development.

Mask ROM (MROM): In MROMs, the content of the memory is hardwired in the circuit
layout of the integrated circuit. For a memory cell which should contain a logical 1, the
word line is connected to the bit line, otherwise they are not connected and the memory
cell contains a logical 0. The connection can be realized with a diode or a transistor. The
advantage of MROMs is that they need less space compared to other ROM technologies
and they are feasible at low cost for mass production. However, the content can not be
modified and the ROM type is only cost efficient at high quantities.

Programmable ROM (PROM): A PROM can be programmed by a user with a PROM
programmer only once. Each memory cell contains a connection between the word line
and the bit line. The connection is achieved with a diode and a fuse or a floating-gate
MOSFET, where the charge of the floating-gate can not be discharged. The programmer
addresses the memory cells which should contain a logic 0. By applying high voltage to
the addressed memory cells, the fuses are burned or the floating-gates of the floating-gate
MOSFETs are charged as described in Section 2.2.2. As a result, for the addressed memory
cells, the connections between word lines and bit lines are destroyed. The advantage of
PROMs is that they can be programmed after chip fabrication. The disadvantage is that
the PROM needs more space compared to the MROM and, hence, it is more expensive
to manufacture.

Erasable programmable ROM (EPROM): The EPROM can be programmed and erased
by the user a limited number of times. The structure of the EPROM is similar to the
PROM. However, the connection in the memory cells is solely achieved with floating-
gate MOSFETs where the charge of the floating-gates can not be discharged with high
voltage. The programming works in the same manner as for PROMs. To erase the
content of the memory cells, the memory gets exposed to strong ultraviolet light that
discharges the floating-gates. The package of the memory thus contains a quartz window
that is transparent to ultraviolet light. The advantage of EPROMs is that they can

19

2. Microcontrollers

be programmed and erased, but the the number of reprogramming is limited and the
package of the memory needs a quartz window, which increases the manufacture costs.

Electrical erasable programmable ROM (EEPROM): Today, EEPROMs, which can be
programmed and erased by the user up to 104 – 106 times, have a great significance
in the semiconductor technology [20]. The structure of the EEPROM is similar to the
EPROM, but the floating-gate MOSFET can be erased with high voltage, as described in
Section 2.2.2. A special variant of EEPROM is flash memory. Flash memory cells differ
from EEPROM memory cells in the thickness of the surrounding floating-gate oxide.
Since the oxide is thinner, a lower voltage is required for programming and erasing the
memory cells. Therefore, the voltage converter and programming logic can be contained
in microcontrollers. Considering write operations, typical EEPROM implementations
allow individual addressing of words whereas Flash memories only allow addressing in
blocks to achieve higher memory densities.

Non-volatile random-access memory (NVRAM)

NVRAMs combine the advantages of SRAMs and ROMs. They contain an SRAM to
achieve fast access times and they contain an EEPROM, where the data is stored if the
power is turned off. The disadvantages are high manufacturing costs and large space
requirements.

2.3.3 Other Features

Reset

In a microcontroller, the reset sets all peripherals including the CPU to a predefined
initial state. Once the microcontroller’s CPU is ready to execute instructions, execution
starts at a hard-coded start address in the memory. This location is commonly known as
reset vector.

The reset can be triggered by the following scenarios:

• External reset through an electrical signal at the reset pin

• Power-on reset (PoR), which generates a reset signal if power is applied to a
microcontroller to ensure that the microcontroller starts operating in a known state

• Internal reset if a error is detected by the logic of the microcontroller

• Internal reset triggered by a program

Bootloader

A bootloader handles the booting process after the reset procedure has finished. It
extends the reset procedure and simplifies tasks such as firmware updates, loading a
program from an external source into the DRAM or SRAM or encrypting and decrypting

20

2.4. Architectures

the user program. In general, there are two types of bootloaders. The first type is
implemented by the manufacturer (“Mask-ROM bootloader”) and is not available on all
microcontrollers. It can not be modified by the user and gets directly executed after the
reset procedure. The second type is a user bootloader that is implemented by the user
and stored in the program memory. It gets executed either directly after the reset or
after the execution of the manufacturer bootloader.

2.4 Architectures

The architecture of a microcontroller can be distinguished by the complexity of their
instruction set or by the linkage of the instruction memory and data memory to the
processor core. This following section provides an overview of these concepts.

2.4.1 Complexity of Instruction Set

Reduced Instruction Set Computer (RISC)

In comparison to the Complex Instruction Set Computer (CISC) architecture, the RISC
architecture has fewer and only rudimentary instructions that typically only need a single
clock cycle to execute. The advantage of the RISC architecture is that the execution of
instructions is very fast, but at the same time the disadvantage is that the instruction
set is rather simple and hence the amount of necessary instructions to solve a complex
task becomes larger. The software for a microcontroller is typically written in high-level
programming languages and compiled through a compiler. As a result, the high level
programming language abstracts the simplified instruction set from the developer. Mainly
due to faster execution times per instruction and less ALU implementation complexity,
the RISC architecture is widely used in microcontroller architectures [14].

RISC systems have a large on-chip register file. Due to the high number of registers,
operands intermediate results and data can be kept in the registers. As a result, the
traffic between the memory and the processor is reduced, which increases the speed of
operation. However, a large register file requires a more complicated decoding logic,
which increases the access time to any register.

Due to the small number of instructions, the RISC architecture is normally a load/store
architecture. A load/store architecture is a computer architecture whose instruction set
allows data memory accesses only with special load and store instructions.

Complex Instruction Set Computer (CISC)

In comparison to RISC, the CISC architecture has a more complex instruction set. To
avoid ALU implementation complexities, many implementations internally make use of
microcode where a CISC instruction is represented by a number of less complex RISC
instructions. Due to the internal microcode architecture, it is common for an instruction
to take multiple clock cycles to execute. Hence, in comparison to RISC, the CISC

21

2. Microcontrollers

architecture has a more powerful instruction set resulting in less code size, but at the
cost of more execution cycles per instruction [14].

Since the instructions at the CISC architecture can directly operate on memory, a small
number of general purpose registers is required. Therefore, the register file is typically
small at this architecture. However, the architecture is characterized by several special
purpose registers for the stack pointer, interrupt handling, and so on.

2.4.2 Linkage of the Processor and Data Memory

Von Neumann Architecture

Processor
Main

memory

Figure 2.14: Von Neumann Architecture

In the Von Neumann architecture, instructions and data are stored in the same memory
(Figure 2.14) and, as a result, only one bus between the processor and the memory
is required. While the advantage is that less hardware is needed, the disadvantage is
that data and instructions can not be accessed at the same time and processing delays
(“hazards”) might be introduced [14].

Harvard Architecture

Processor

Instruction
memory

Data
memory

Figure 2.15: Harvard Architecture

In the Harvard architecture, the instructions and data are stored in separate memories
(Figure 2.15). Although two buses are required, the architecture is used more frequently
due to its advantage that there are no additional delays when accessing instructions or
data in memory at the same time [14].

22

2.5. Software Development

2.5 Software Development

This section explains the fundamentals of software development for microcontrollers. The
first part describes how a program is developed, followed by a description of how the
program is downloaded into the microcontroller. Different programming and debugging
standards are mentioned as well.

2.5.1 Programming

As described in Section 2.3.1, micro instructions are defined sequences of bits that control
the data flow and instruction execution of the processor core. A machine instruction is
either directly mapped to a micro instruction or to a series of micro instructions. For
instance, the Micro16 architecture contains a left shift micro instruction. Therefore, a left
shift machine instruction can directly use this micro instruction. However, the architecture
does not contain a multiply micro instruction so that it can be only implemented as
a series of micro instructions. An instruction set, with its instruction set architecture
(ISA), is the interface between a microcontroller’s software and its hardware. It defines
the valid machine instructions the microcontroller can execute. The assembly language is
a low-level programming language with a one-to-one mapping between the language and
the instruction set. To simplify the programming, the assembly language uses mnemonic
codes to refer to the machine instructions rather than using the instructions numeric
values (opcodes) directly. The assembly program has to be translated to a binary form,
also called object file, first. The result contains the machine code (text segment) and
data such as global variables that typically reside in the (data segment). The translation
itself from the mnemonic representation to the binary opcodes is done by the assembler.
Normally, a program consists not only of one object file but of several object files and
additional libraries. For this reason, the so-called linker merges the individual object
files and libraries into a program. One of the disadvantages of the assembly language is
that it has no abstraction from the instruction set. Hence, a developer has to know the
assembly language for the specific architecture he is working on. For typical developers it
is thus more convenient to a high-level programming language with a strong abstraction
from the actual instruction set architecture instead. To translate a program written
in a high-level programming language to a low-level assembler program, a compiler is
used. The compiler needs to know the target architecture to generate the assembly code.
Subsequently, the assembler can transform the generated assembly code into its binary
opcode form.

2.5.2 Download

After a program has been assembled, the resulting binary must be downloaded into
the microcontroller’s memory. On the host computer side, this is usually done via
the serial, parallel or usb interface. On the microcontroller side both standard and
manufacturer proprietary programming interfaces exist. However, even though there
are some standards such as JTAG [21] or SWD [22], the programming interfaces are

23

2. Microcontrollers

often proprietary solutions developed by the microcontroller manufacturers. Another
possibility is the usage of a bootloader, which was described in Section 2.3.3.

Programming Interfaces

As described above, there are different programming interface types. As an example, the
Atmel ATmega in-system programming (ISP) standard is described in the following.

In-system means, that the microcontroller can be programmed while it is already mounted
to a printed circuit board. The programming wiring must fulfill the requirements defined
in the respective datasheet [23]. The six microcontroller pins MISO, SCK, RESET, MOSI,
+5V, GND are connected to a pin header. A programming adapter is connected to the
pin header and on the other side, it is typically connected to the host computer via a
USB interface. The adapter is controlled from the computer with a programming software.
To enable the programming mode, the programmer pulls the RESET pin to low and
transmits a “programming enable” command over the MOSI pin. If the programming
mode is entered, the microcontroller responds with an acknowledge message over the
MISO pin. Once the programming mode has been entered, further instructions like
“write to program memory”, “erase program memory” and “read program memory” are
available. After programming is finished, the reset pin is released.

2.5.3 Debugging

A debugger can be used to search for errors in the developed program. State-of-the-art
debuggers offers at least the following features:

• Breakpoints: Defined points in the code where the program execution should be
stopped. After the stop, the values of the memory, variables and registers can be
inspected.

• Single Stepping: One instruction is executed at a time. The execution is paused
afterwards.

• Programming: Since the debugger has access to the program memory, it can be
used to program the microcontroller as well.

To debug a microcontroller, the debugger program is executed on the host computer.
There are different debugging interface standards. The most common ones are Joint Test
Action Group (JTAG) and Serial Wire Debug (SWD).

2.6 Protection Mechanisms
Microcontrollers provide different protection mechanism to protect the program code from
unauthorized readouts. Although the implementation of the mechanisms depend on the

24

2.6. Protection Mechanisms

manufacturer, the common key concepts are either the use of locking bits or bootloader
passwords and/or keys. The basic idea of a locking bit (also known as security fuse bit) is
to disable reading the memory through the programming interface. If the protection bit
is disabled, the memory is erased as well. With bootloader protections, the functionality
to read the memory via bootloader functions is protected either with a cryptographic
key, a signature or a password. If the user does not have the necessary credentials,
the respective bootloader functions are not available. The big difference between those
protection mechanism types is that security fuse bits are commonly implemented in
hardware while the bootloader protection is implemented in software (i.e., the bootloader
comprises of instructions that are executed by the same CPU that also executes the
user’s program).

25

CHAPTER 3
Fault Injection Attacks

A fault injection attack is a procedure to intentionally introduce an error in a system to
alter its execution to the attackers advantage. Fault injection effects have been known
for a long time.

In 1978, May et al. published a paper [24] which describes accidental faults caused by
radioactive particles produced by elements naturally present in IC packaging material.
These particles caused bit flips in sensitive chip areas and hence led to undesired errors.

According to Bar-El et al. [2], faults can be divided into provisional faults, where the
system recovers itself after a reset or when the fault’s stimulus ceases, and destructive
faults, where the system is permanently affected or even destroyed. For fault injection
attacks, only the first type is of interest.

A special form of fault attacks are glitch attacks, where a pulse outside the normal
operating specification is injected into the system. Glitches can be divided into instruction
glitches, data glitches and clock-signal glitches [2, 25].

The aim of instruction glitches is to replace a single critical machine instruction like
conditional jumps or the test instruction preceding them to another one. They can
be used to extend the runtime of loops, for example in serial output routines to see
more of the memory after the output buffer [26]. Anderson et al. described an attack
on a cryptographic cipher function, where the rounds of the cipher were reduced to a
single-round [27]. The aim of data glitching is to modify the data values that are used
by the processor during program execution. Clock-signal glitches temporarily increase
the clock frequency for one or more half cycles. As a consequence, some flipflops in the
register-transfer-logic (RTL) sample their input before the new state has actually reached
them. Logic blocks with low complexity may thus operate normally while more complex
blocks do not finish in time and either output their previous or an intermediate state.

27

3. Fault Injection Attacks

In general, there are two well-known non-invasive glitching techniques for creating reliable
faults: clock glitching and voltage glitching. The following sections give an overview over
the two techniques.

3.1 Clock Glitching

Since most common microcontrollers are based on synchronous logic, they require a
system clock (see Section 2.3.1). To perform a clock glitch, the clock frequency is
temporarily increased for one or more half cycles as illustrated in Figure 3.1.

In 2011, Balasch et al. published a paper [28] in which they analyzed how clock glitches
affect commercial low-cost microcontrollers. They divided their results into effects of clock
glitching on the program flow and effects of clock glitching on the data flow. According
to the authors, the fetching of the next opcode can be affected such that it is replaced by
another instruction. Skipping an instruction, which is sometimes mentioned in analyses
of fault models, was not possible. The best and most stable results for effects on the data
flow were obtained for multi-cycle instructions with memory access. Depending on the
glitch period, the authors were able to prevent a given number of bits on the data bus
from flipping.

Glitch

Figure 3.1: Glitch in the Clock Signal

However, non-invasive clock glitching attacks can only be applied to microcontrollers
that use an external clock signal. In contrast, many of today’s microcontrollers rely on
an internal RC oscillator instead so that non-invasive clock glitching is often not feasible.

3.2 Voltage Glitching

Variations in supply voltage during execution may causes a processor to misinterpret or
skip instructions [2]. This attack is known as voltage glitching.

The use of voltage glitching has been extensively reported over the last decade [29, 30, 31].
However, only a few papers have investigated the underlying fault injection mechanisms.
In 2006, Djellid-Ouar et al. published a paper [32] which summarized the effects of
voltage glitches on CMOS circuits. They showed that voltage fault injection attacks
cannot induce faults into flip-flops. Furthermore, they showed that faults occur because
of timing constraint violations, which are caused by an increase of the combinatorial
logic propagation delays. However, the results described by Djellid-Ouar et al. were only
achieved by simulations. Consecutively, Zussa et al. contributed an experimental proof

28

3.2. Voltage Glitching

[33] that voltage fault injection attacks lead to timing constraint violations in a similar
way as clock glitches do.

R1

R2

C1

Q1

Target power supply

Glitch signal

Target

Figure 3.2: Method to Create a Glitch in the Power Supply Line of a Target

One of the easiest methods to create a glitch in the power supply line of a target is
illustrated in Figure 3.2. NewAE Technology Inc.1 uses this method [7, 34] in their
commercial solution. If the logical glitch signal is high, the MOSFET Q1 shorts the power
supply line of the target to GND. The capacitor C1 and resistor R2 build an equivalent
circuit diagram for a microcontroller. The resistor R1 is required to prevent a short
circuit between the power supply and GND.

1https://www.newae.com/

29

https://www.newae.com/

CHAPTER 4
Negative Voltage Fault Injection

Attacks

While Section 3.2 provided an overview of voltage fault injection attacks that are
hereafter referred to as conventional voltage faults attacks or conventional voltage glitching,
this chapter highlights the limitations of conventional voltage fault injection attacks.
Furthermore, the hypothesis of negative voltage fault injection attacks is described.

4.1 Basic Terms of Voltage Fault Injection Attacks
In this section, we first define a few basic terms to better understand and describe voltage
fault injection attacks. Figure 4.1 provides an overview of a typical voltage glitch signal.
The dotted waveform shows the logical glitch signal (i.e., the trigger for the glitch). If
the logic level is high, a glitch should be inserted in the power supply line of a target.
The second waveform illustrates the power supply line of a target with an inserted glitch.

The voltage levels and time periods are explained in the following.

• Glitch Signal Voltage High (VGSHigh
): High logic level of the glitch signal.

• Glitch Signal Voltage Low (VGSLow
): Low logic level of the glitch signal.

• Glitch Signal Width (GSW idth): The time period of the rectangular pulsed glitch
signal from the moment it rises from VGSLow

until reaching VGSLow
again.

• Glitch Signal Rise Time (GSRise): The time period needed to rise from VGSLow
to

VGSHigh
.

• Glitch Signal Fall Time (GSF all): The time period needed to fall from VGSHigh
to

VGSLow
.

31

4. Negative Voltage Fault Injection Attacks

0 5 10 15 20 25 30 35 40
−0.5

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5

time [ns]

VGSHigh

VGSLow

VGHigh

VGLow

GSWidth

vo
lt
ag
e
[V
]

GSRise GSFall

GSOn

GFall

GWidth

GRise

GOffset

Figure 4.1: Glitch Signal (Dotted Waveform) and Power Supply Line of a Target with
Inserted Glitch

• Glitch Signal On Time (GSOn): The time period how long the rectangular pulsed
glitch signal is at VGSHigh

.

• Glitch Voltage High (VGHigh
): Voltage level when no glitch is inserted. Normally,

this voltage is the required power supply line voltage of a target according to its
datasheet.

• Glitch Voltage Low (VGLow
): The lowest voltage level of an inserted glitch.

• Glitch Offset (GOffset): The time period between the moment the glitch signal
rises from VGSLow

to the moment the voltage level of the power supply line voltage
falls from VGHigh

.

• Glitch Width (GW idth): The time period of the inserted glitch from the moment
the voltage falls from VGHigh

until the moment it reaches VGHigh
again.

• Glitch Fall Time (GF all): The time period needed to fall from VGHigh
to VGLow

.

• Glitch Rise Time (GRise): The time period needed to rise from VGLow
to VGHigh

.

32

4.2. Limitations of Conventional Voltage Fault Injection Attacks

4.2 Limitations of Conventional Voltage Fault Injection
Attacks

The limitations of the conventional voltage fault injection attacks are explained in this
section. Several scientific publications have shown that the success of a glitch depends on
the glitch duration GW idth and the glitch depth VGLow

[35, 36]. It may even be necessary
that the glitch duration GW idth should not be longer than one clock period. Especially
with faster microcontrollers at higher clock speeds, the necessarily shorter glitch durations
are becoming increasingly challenging. For a successful glitch, the parameters glitch
duration GW idth and glitch depth VGLow

must therefore be as freely adjustable as possible.

In the following, we show that the selection of glitch parameters for the conventional glitch
generation method is significantly limited through capacitive charging and discharging
effects in the glitch target device. Taking the exemplary schematic for the conventional
method (Figure 3.2), the limitations and the resulting tradeoff can be described as follows.
Resistor R1 is necessary to avoid a short-circuit during glitch generation. The glitch
target device includes capacitive effects so that during a glitch, the target device needs to
be charged or discharged until it reaches the glitch voltage (VGLow

). If a low resistance
is chosen for R1, pulling down the voltage will lead to a high current flow where the
MOSFET and the resistor build a voltage divider. The advantage of using a low resistance
at R1 is the higher supply current that can be used to reach VGHigh

after a glitch. The
necessary discharging (GF all) and charging time (GRise) is thus reduced. Unfortunately,
this advantage comes at the cost that due to the voltage divider, the achievable glitch
voltage (VGLow

) will be significantly higher. In the worst case, the lowest possible glitch
voltage will not be sufficient to produce a successful glitch. On the other hand, if a high
resistance is chosen for R1, the achievable glitch voltage (VGLow

) will be lower but at the
cost of a significantly longer charging time (GRise). The minimum length of the glitch
(GW idth) is thus significantly limited. In the worst case, the achievable glitch length will
be longer than a clock period and hence a single instruction can no longer be targeted
with a glitch. For this reason, obtaining a short glitch (GW idth) and a low glitch voltage
(VGLow

) at the same time is not feasible in presence of capacitive effects. Instead, the
relationship between these parameters is a tradeoff and the attacker can only optimize
one of those parameters at a time.

To demonstrate this tradeoff, we conducted two SPICE simulations with the LTSpice1

tool: Simulation A represents the case where a higher resistance is chosen for R1 so
that a lower glitch voltage (VGLow

) can be reached at the cost of a higher charging time
(GRise). In contrast, in Simulation B a lower resistance is chosen for R1 to achieve a
faster charging time at the cost of a higher glitch voltage (VGLow

). Table 4.1 provides an
overview of the used components and their values for these two test cases.

In Figure 4.2, the solid waveform shows the simulation results for Simulation A with an
R1 value of 0.5 Ω while the dotted waveform shows the results of Simulation B with a

1http://www.linear.com/designtools/software/

33

http://www.linear.com/designtools/software/

4. Negative Voltage Fault Injection Attacks

Component Simulation A Simulation B
Resistor R1 0.5 Ω 0.1 Ω
Resistor R2 10 kΩ 10 kΩ
Capacitor C1 560 pF 560 pF
MOSFET Q1 IRF7821 [37] IRF7821 [37]
Power supply voltage level 3.3 V 3.3 V
Glitch signal voltage level high 3.3 V 3.3 V
Glitch signal voltage level low 0.0 V 0.0 V
Glitch signal turn on time 20 ns 20 ns
Glitch signal rise time 5 ns 5 ns
Glitch signal fall time 5 ns 5 ns
Glitch signal on time 10 ns 10 ns

Table 4.1: Components and Values used for the Conventional Method LTSpice Simulations
A and B

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

time [ns]

vo
lt
ag
e
[V

]

Figure 4.2: Comparison between Simulation A (solid) and Simulation B (dotted)

lower R1 value of 0.1 Ω instead. The capacitance of the capacitor C1 is intentionally
chosen high, so that the limitations can be easier illustrated. The described tradeoff
between the lowest possible glitch voltage (VGLow

) and the shortest possible glitch time
(GW idth) can be easily seen. For a successful attack, the slew rate (i.e., the glitch falling
time GF all as well as the glitch rising time GRise) has to be improved in presence of the
capacitance and the following limitations.

34

4.3. Expected Results of Negative Voltage Fault Injection Attacks

4.3 Expected Results of Negative Voltage Fault Injection
Attacks

The hypothesis of this work is that negative voltage fault injection attacks provide advan-
tages over their conventional counterparts with respect to higher slew rates and shorter
glitch durations in presence of capacitive and inductive charges within microcontrollers.
Utilizing negative voltage during the generation of a fault, higher slew rates are expected
due to the faster discharging of the circuit implementations within microcontrollers.

R1

R2

C1

Q1

Target power supply

Glitch signal

Target

Negative voltage supply

Figure 4.3: Extended Conventional Glitch Generation Method

To consider negative glitch voltages, we extend the conventional glitch generation method
with a negative voltage supply as illustrated in Figure 4.3. Similar to Simulation B in the
previous section, the current limitation is minimized by using a very small resistance for
R1. Although this minimization leads to an idealized very high current flow that is not
feasible in practice (see Section 5.2.1 for details), the model allows to highlight the key
concepts of negative voltage faults. In contrast to the conventional method, the source of
MOSFET Q1 is not connected to GND, but to a variable negative voltage supply instead.

To compare the conventional voltage fault injection method with negative voltage fault
injections, we conducted two simulations with different glitch signal on times (GSOn).
In Simulation C, we use a glitch signal on time of 10 ns while Simulation D uses a
significantly shorter time of 2.1 ns. The components and values used in the simulations
are illustrated in Table 4.2.

Simulation C is visible in Figure 4.4. The solid waveform shows the effect of the negative
voltage glitch. Similarly to the conventional voltage fault injection, the resistor R1 and
the MOSFET build a voltage divider so that the voltage VGLow

does not reach the
negative supply voltage level. However by choosing the negative supply voltage level
accordingly, we can arbitrarily select VGLow

. The high voltage differential between the
power supply voltage level VGHigh

and the glitch voltage VGLow
causes a low fall time

GF all. After the glitch, a low rise time (GRise) is achieved due to the low resistance of
R1. In contrast, the dotted and dot-dashed waveforms show the results of the simulation

35

4. Negative Voltage Fault Injection Attacks

Component Simulation C Simulation D
Resistor R1 0.1 Ω 0.1 Ω
Resistor R2 10 kΩ 10 kΩ
Capacitor C1 560 pF 560 pF
MOSFET Q1 IRF7821 [37] IRF7821 [37]
Power supply voltage level 3.3 V 3.3 V
Negative supply voltage level -2.0 V -2.0 V
Glitch signal voltage level high 3.3 V 3.3 V
Glitch signal voltage level low 0.0 V 0.0 V
Glitch signal turn on time 20 ns 20 ns
Glitch signal rise time 5 ns 5 ns
Glitch signal fall time 5 ns 5 ns
Glitch signal on time 10 ns 2.1 ns

Table 4.2: Components and Values used for the Negative Voltage Fault Injection Method
Simulations C and D

with the conventional voltage fault injection method that pulls the supply voltage to
GND instead. The dotted waveform represents Simulation A with a high resistance at R1
whereas the dot-dashed waveform represents Simulation B with a low R1 resistance. Even
though Simulations A, B and C use the same GSOn time of 10 ns, the limitations of the
conventional method voltage fault injection are visible: Simulation A reaches sufficiently
low glitch voltage VGLow

but suffers from the long rise time. Similarly, Simulation B has
a fast rise time but suffers from the high glitch voltage VGLow

.
Furthermore, the figure shows that the glitch duration of Simulation C (GW idth) lays
between the glitch duration of Simulations A and B. However, the time spend on glitch
voltage low (VGLow

) is significantly longer compared to Simulations A and B. In a next
step we show that the the glitch voltage low (VGLow

) can be arbitrarily selected with the
glitch signal on time GSOn.

Simulation D is visible in Figure 4.5. The solid waveform shows the effect of the negative
voltage glitch. In contrast to Simulation C, the glitch signal on time GSOn is much
shorter, which results in a short glitch duration (GW idth). Apart from that, the same
values and parameters as in Simulation C are used. Due to the shortened glitch signal
on time GSOn, the glitch voltage low VGLow

is approximately 0.2 V. The slew rate for
the falling and the rising edge is the same as for Simulation C. The dotted waveform
represents Simulation A and the dot-dashed waveform represents Simulation B. Both of
them use the same values and parameters as described for Figure 4.4. The comparison of
Simulation A, B and D shows that negative fault injection can eliminate the disadvantage
of conventional voltage fault injection. Although a low resistance for R1 is chosen to
reach a low rise time (GRise), the glitch voltage low (VGLow

) can be arbitrarily selected.
As a consequence, for the negative voltage fault injection a short glitch (GW idth) and
a low glitch voltage (VGLow

) at the same time is not a tradeoff different than for the

36

4.3. Expected Results of Negative Voltage Fault Injection Attacks

conventional voltage fault injection.

0 50 100 150 200 250 300
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

time [ns]

vo
lt
ag
e
[V

]

Figure 4.4: Comparison between Simulation A (dotted), Simulation B (dot-dashed) and
Simulation C (solid)

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

time [ns]

vo
lt
ag
e
[V

]

Figure 4.5: Comparison between Simulation A (dotted), Simulation B (dot-dashed) and
Simulation D (solid)

37

CHAPTER 5
Negative Voltage Fault Injection

Hardware

This chapter describes the hardware prototype implementation. In a first step, the
requirements are specified. Different approaches and ideas for negative voltage glitch
generation are explored and evaluated in electronic SPICE simulations. Based on the
results of these simulations, the requirements for electronic components are specified and
hardware prototypes for negative voltage fault injection attacks are implemented. During
prototyping, printed circuit boards have been constructed, manufactured and assembled.
We evaluated the different prototypes and selected the most promising approach.

5.1 Hardware Requirements
The hardware requirements are based on the simulation results from the previous chapter.
The most important requirement is to increase the slew rate and thus to minimize
the glitch fall time (GF all) as well as the glitch rise time (GRise). Another important
requirement is that the glitch width (GW idth) needs to be controlled via the glitch
signal width (GSW idth). The glitch width (GW idth) should be variably selectable. It
should be at least 31.25 ns long so that microcontrollers up to 32 MHz can be tested.
Furthermore, it should be possible to insert a series of glitches in short intervals. The
glitch voltage high (VGHigh

) should be 3.3 V, which is the default power supply voltage
for modern microcontrollers [38]. The glitch voltage low (VGLow

) should be variably
selectable between 0.0 V and -6.0 V. The incoming logical glitch trigger signal has a low
level (VGSLow

) of 0.0 V and a high level (VGSHigh
) of 3.3 V. The hardware has to be able

to interpret this signal correctly. Moreover, the hardware should use a galvanic isolation
to operate the target with a different ground level than the hardware that generates the
incoming glitch trigger signal. This provides the advantage that during operation it is
not necessary to pay attention to different ground potentials. As a result, the incoming

39

5. Negative Voltage Fault Injection Hardware

glitch trigger signal as well as the different voltage levels, either produced internally or
with an external power supply, must be isolated.

5.2 Design Approaches

5.2.1 Design Approach 1: Extended Conventional Circuit

This design approach was introduced in Section 4.3. The schematic is illustrated in
Figure 4.3. The target is powered with an external power supply. Parallel to the target,
MOSFET Q1 is placed. Between the power supply and the target, resistor R1 is required
to prevent a short circuit between the power supply and GND. If the logical glitch signal
is high, the MOSFET Q1 drives the power supply line of the target to GND.

In Section 4.3, a peak current of 48.2 A could be measured for Simulation C with a glitch
signal on time (GSOn) of 10 ns and a resulting glitch width (GW idth) of 105.21 ns. In
contrast, for Simulation D with a glitch signal on time (GSOn) of 2.1 ns and a resulting
glitch width (GW idth) of 69.85 ns, a peak current of 43.7 A could be measured.

For both simulations, the required glitch width of 31.25 ns, as defined in Section 5.1,
couldn’t be fulfilled.

Furthermore, due to the necessary minimization of resistor R1 to 0.1 Ω, the idealized high
current flow is infeasible in practice. Typical MOSFETs with fast switching characteristics
have a far lower continuous drain current of approximately 15 A. For instance, the Infineon
IRF7821 [37] MOSFET has a continuous drain current of 13.6 A. Since we want to meet
the hardware requirement that the glitch width (GW idth) should be at least 31.25 ns long
(see Section 5.1), we need fast MOSFETs.

5.2.2 Design Approach 2: NMOS-PMOS circuit

Figure 5.1: NMOS-PMOS Circuit for the Second Design Approach.

40

5.2. Design Approaches

The idea of the second approach is to switch between two voltage sources. The first one
provides the operating voltage required by the target. The second one can be arbitrarily
adjusted between -6.0 V and 0.0 V. To insert a glitch, the power source is switched from
the first one to the second one for an arbitrary amount of time. Figure 5.1 illustrates
this design approach. An n-type and a p-type MOSFET, hereinafter described as NMOS
and PMOS, are used to switch between the two voltage sources. As long as no glitch is
injected, the NMOS isn’t active and the PMOS provides the operating supply voltage. If
a glitch is injected into the supply voltage, the PMOS is switched off and the NMOS is
switched on to inject the glitch. MOSFET drivers are used to produce high-current drive
input for the gates to ensure high slew rates [39].

For the transistors, the Infineon BSD235C [40] type is used. It provides a rise time of
5.0 ns for the PMOS and a rise time of 3.6 ns for the NMOS. The Linear Technology
LTC1693-5 [41] and LTC1693-3 [42] are used as PMOS and NMOS drivers, respectively.
As illustrated, both drivers have different pins. The pin IN (Pin 1) is a driver input
independent from VCC . The glitch signal is connected to this pin. The VCC pin (Pin 8)
is the power supply input. It must be between 4.5 V and 13.2 V. The output pin (Pin 7)
is the driver output. When the logic signal is low, the voltage at the output is equal to
the GND voltage. If the logic signal is high, the voltage at the output is equal to the
VCC voltage. Since the PHASE pin (Pin 3) is not used, it is connected to the VCC pin
as recommended in the datasheet. The current between the MOSFET drivers and the
transistor gates is limited by the resistors R1 and R3 to protect the gates.

As explained in Section 2.2.1, in n-type MOSFETs the current between drain and source
can only flow if the voltage UGS between gate and source is positive and higher as the
threshold UT H (UT H > 0V). In p-type MOSFETs, if the voltage UGS between gate and
source is negative and lower as the threshold UT H (UT H < 0V), current can flow from
source to drain. According to the datasheet, the threshold UT H for the NMOS is 0.95 V
and for the PMOS it is -0.9 V. In the following, the boundary values for this design
approach are calculated to check if the approach is technically feasible.

The terms UGSLow
and UGSHigh

are used below. UGSLow
is the gate source voltage of a

MOSFET if no glitch is injected, and UGSHigh
is the gate source voltage of a MOSFET if

a glitch is injected.

For the PMOS, the cases of an active and non-active glitch signal need to be considered
where 3.3 V are applied at their respective source inputs. Since UGSLow

is negative
(UGSLow

= 0 − 3.3 = −3.3 V) and lower as the threshold UT H (-3.3 V < -0.9 V), the
PMOS is active and the target is supplied with the voltage from power supply V3. In
comparison, UGSHigh

is positive (UGSHigh
= 6− 3.3 = 2.7 V) and therefore the PMOS is

not active if a glitch is injected. The PMOS would thus work as expected.

Since the voltage of the negative voltage source can be between -6.0 V and 0.0 V, there
are two scenarios that need to be analyzed individually. For both scenarios, the case of
an active and non-active glitch signal needs to be considered. First, we observe the case
where -6.0 V is applied at the source of the MOSFET. Since UGSLow

= −6.0−−6.0 = 0.0

41

5. Negative Voltage Fault Injection Hardware

V is lower as the threshold UT H (0.0 V < 0.95 V), the NMOS is not active. In comparison,
UGSHigh

is positive (UGSHigh
= 0−−6.0 = 6.0 V) and higher as the threshold UT H (6.0

V > 0.95 V). As a consequence if a glitch is injected, the NMOS is active and provides
the voltage of the negative voltage supply to the target.
In our second case, 0.0 V is applied at the source of the MOSFET. Since UGSLow

is
negative (UGSLow

= −6.0− 0.0 = −6.0 V), the NMOS is not active if no glitch is injected.
However, UGSHigh

is positive (UGSHigh
= 0 − 0.0 = 0.0 V) and lower as the threshold

UT H (0.0 V < 0.95 V). As a result, the NMOS is not active if a glitch is injected. The
target would thus float since it is neither supplied with the positive nor with the negative
voltage source. In order for the MOSFET to be active, in this scenario the voltage at the
source would at least have to be at a lower voltage as −UT H . However, this violates the
requirement of a variable negative voltage source between -6.0 V and 0.0 V as defined in
section Section 5.1. The design approach is thus not feasible.

5.2.3 Design Approach 3: NMOS circuit

Figure 5.2: NMOS circuit for the third design approach.

Similarly to the previous approach, the general idea of this approach is to switch between
two voltage sources. The first supply provides the operating voltage required by the
target. The second voltage can be arbitrarily adjusted between -6.0 V and 0.0 V. To
insert a glitch, the power source is switched from the first one to the second one for an
arbitrary amount of time. Figure 5.2 illustrates the design approach.

Instead of a p-type and an n-type MOSFET, this design uses two identical n-type
MOSFETs IRF7821 [37]. As long as no glitch is injected, NMOS Q1 is active and NMOS
Q2 is inactive. As a consequence, the voltage source V6 provides 3.3 V to the target. If a
glitch is injected, NMOS Q1 is inactive and NMOS Q2 is active. The active NMOS thus
connects the negative voltage source V5 to the target. This MOSFET switching behavior
is achieved by the LM5134 [43] MOSFET drivers U1 and U2. They are equipped with a

42

5.2. Design Approaches

noninverting and inverting signal input. If the input signal is applied to the IN pin while
the INB Pin is connected to VSS , the OUT pin is low if no glitch is inserted and high if
a glitch is inserted. In contrast, when the input signal is applied to the INB pin while
the IN pin is connected to VDD, the OUT pin is high if no glitch is inserted and low if a
glitch is inserted. To achieve high slew rates, the output (OUT pin) high signal of the
the drivers U1 and U2 is equal to 12.0 V relative to the GND of the drivers. Since the
applied voltage at the source of NMOS Q2 must be arbitrary selectable and the GND
of MOSFET driver U2 is connected to the source of NMOS Q2, the GND of the driver
U2 is shifted to the voltage level of the negative voltage source V5. The current between
the MOSFET drivers and the transistor gates is limited by the resistors R1 and R2 to
protect the gates.
As explained in Section 2.2.1, in n-type MOSFETs current between drain and source
can only flow if the voltage UGS between gate and source is positive and higher as the
threshold UT H (UT H > 0V). According to the IRF7821 datasheet [37], the threshold UT H

is 1.0 V. In the following, the boundary values for this design approach are calculated to
determine if the approach is feasible in practice.
First, we consider the case where no glitch is injected. In this case, the output of the
driver U1 is 12.0 V and U2 is 0.0 V relative to V5. For Q1, UGSLow

= 12.0− 3.3 = 8.7 V
is always positive and higher as the threshold UT H . For Q2: If V5 is -6.0 V UGSLow

=
−6.0−−6.0 = 0.0 V. In the other case, if V5 is 0.0 V, UGSLow

= 0.0−0.0 = 0.0 V. UGSLow

is for both cases 0.0 V, since the gate driver voltage is referenced to source instead of
GND. As a result, Q2 is not active and Q1 is active, supplying the target with 3.3 V.
Second, we consider the the case where a glitch is injected. In this case, the output of
the driver U1 is 0.0 V and U2 is 12.0 V relative to V5. We assume the voltage on source
Q1 is 3.3 V. Since UGSHigh

= 0.0− 3.3 = −3.3 V is negative and lower as the treshhold
UT H , Q1 is not active. For Q2: If V5 is -6.0 V, UGSHigh

= 6.0−−6.0 = 12.0 V. In the
other case, if V5 is 0.0 V UGSHigh

= 12.0− 0.0 = 12.0 V. UGSHigh
is for both cases 12.0 V

since the gate driver voltage is referenced to source instead of GND. As a result, Q2 is
active, pulling the target to the negative voltage source V5. From the theoretical view,
the design approach would thus work as expected.
To test the behavior of the design approach and to measure the peak currents, we
conducted SPICE Simulations E and F. Table 5.1 provides an overview of the used
components and their values. In both simulations the same values and components are
used. The only exception is that Simulation E is simulated with a negative supply voltage
level (V5) of 0.0 V, while Simulation F uses a negative supply voltage level (V5) of -6.0 V.
The results of the simulations are visible in Figure 5.1. The solid waveform represents the
glitch signal for both simulations, the dotted waveform shows the result of Simulation
E and the dot-dashed waveform illustrates the result of Simulation F. As in previous
simulations, the target is simulated with a 10 kΩ resistor R3 and a 560 pF capacitor C1
in parallel.
For both simulations, the measured currents are within the maximum ratings specified in
the IRF7821 datasheet [37]. In the following, the results of Simulation E are described.

43

5. Negative Voltage Fault Injection Hardware

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

time [ns]

vo
lt
a
ge

[V
]

Figure 5.3: NMOS Design Approach Simulation: Glitch Signal (solid), Simulation E
(dotted) and Simulation F (dot-dashed)

The glitch offset (GOffset) (i.e. the time period between the moment the glitch signal
rises from VGSLow

and the moment the voltage level of the power supply line voltage falls
from VGHigh

) is 18.76 ns. After 11.09 ns, a VGSLow
voltage drop to 0.79 V is achieved.

The short time of 10 ns GSOn is not sufficient to reach the negative supply voltage level
V5. Thereafter, the supply voltage is pulled to VGHigh

within 13.31 ns. This results in a
glitch width (GW idth) of 24.40 ns.
In contrast, the following values can be measured for Simulation F: As in Simulation E,
the glitch offset(GOffset) is 18.76 ns. For the glitch fall time (GF all), a value of 9.19 ns
can be measured. The glitch rise time (GRise) is 13.62 ns. This results in a glitch width
(GW idth) of 22.81 ns. The glitch voltage low (VGLow

) is -1.37 V due to the glitch signal
on time (GSOn) of 10 ns being too short to reach the negative power supply voltage level
V5 of -6.0 V.
In summary, the two simulations show that the third design approach works as expected
and that the hardware requirements specified in Section 5.1 can be fulfilled.

44

5.3. Implementation of Prototype

Component Simulation E Simulation F
Resistor R1 10 Ω 10 Ω
Resistor R2 10 Ω 10 Ω
Resistor R3 10 kΩ 10 kΩ
Capacitor C1 560 pF 560 pF
MOSFET Q1 IRF7821 [37] IRF7821 [37]
MOSFET Q2 IRF7821 [37] IRF7821 [37]
MOSFET Driver U1 LM5134 [43] LM5134 [43]
MOSFET Driver U2 LM5134 [43] LM5134 [43]
Power supply voltage level V6 3.3 V 3.3 V
Negative supply voltage level V5 0.0 V -6.0 V
Glitch signal voltage level high 3.3 V 3.3 V
Glitch signal voltage level low 0.0 V 0.0 V
Glitch signal turn on time 20 ns 20 ns
Glitch signal rise time 5 ns 5 ns
Glitch signal fall time 5 ns 5 ns
Glitch signal on time 10 ns 10 ns

Table 5.1: Components and Values used for the third Design Approach Simulations E
and F

5.2.4 Selection of Design Approach

While the first design approach (Section 5.2.1) is suitable to understand the key concepts
of negative voltage fault injection, it is only a theoretical design approach that is not
feasible in practice. As indicated, the glitch width and the maximum currents are
significant limitations.

The second design approach (Section 5.2.2) is also not feasible, since the negative voltage
can not freely be adjusted between -6.0 V and 0.0 V.

No limitations were found for the third design approach (Section 5.2.3). The theoretical
view as well as the simulations showed that the hardware requirements, specified in
Section 5.1, can be fulfilled with this approach.

5.3 Implementation of Prototype
Figure 5.4 illustrates the prototype implementation. The glitch signal is inserted externally
via an SMA connector. The ADuM1100 [44] digital isolators U1 and U2 are used to
shift the logic level of the glitch signal to the level required by the MOSFET drivers. In
addition, the isolators fulfill the hardware requirement that the glitch signal is galvanically
isolated (Section 5.1). The isolators transfer the incoming logic signal IN with the voltage
level V DD1 to the outgoing logic signal OUT with the voltage level V DD2. Since the
incoming glitch signal is equal to 3.3 V, the voltage supply V DD1 must also be 3.3 V.

45

5. Negative Voltage Fault Injection Hardware

Figure 5.4: Schematic of the Prototype

This voltage is provided by the signal +3.3V_isolated which is generated by a linear
voltage regulator. Actually, only the isolator U2 would be necessary, since the glitch
signal for the MOSFET driver of the MOSFET Q1 does not have to be transferred.
However, the glitch signal must arrive at both drivers as concurrently as possible. To
achieve an approximately equal delay, isolator U1 is necessary. For that reason, the
voltage V_ADUM is 3.3 V. For the MOSFET driver of MOSFET Q2, the glitch signal
must be transferred to 3.3 volts relative to GNDA. This is achieved with the voltage
V_ADUM_REL provided to V DD2 of isolator U2. GNDA can be adjusted between
-6.0 V and 0.0 V by means of a potentiometer. Thus, the requirement of the arbitrary
negative voltage source (see Section 5.1) is achieved. The capacitors C1, C2, C3 and C4
with a capacitance of 100 nF are used as recommended by the data sheet [44]. In order to
leave open the possibility to test different MOSFET drivers, the drivers are not directly
placed on the prototype PCB. Instead, they are placed on adapter boards A1 and A2.
The adapter boards are connected to the prototype via pin headers. The input of the
adapter boards is connected to the output of the isolators, and the output of the adapter
boards is connected to the gates of the MOSFETs. Furthermore, the adapter boards
are supplied with a supply voltage and the corresponding GND level. The adapters are
explained in detail after the description of the prototype. The two NMOS Q1 and Q2
are alternately active and supply the target through the SMA connector sma_target

46

5.3. Implementation of Prototype

(P1). The target is thus supplied either with 3.3 V (V_TARGET) or with a negative
voltage between -6.0 V and 0.0 V (GNDA). In contrast to design approach 3 (Section
5.2.3), for the prototype the decoupling capacitors C5−10 are used to prevent ringing on
the supply voltage of the target at the moment a glitch is inserted. The values for the
decoupling capacitors were chosen according to best practice recommendations [45]. To
test the prototype, test points W1 and W2 are provided with a special mount for the
probes of an oscilloscope.

Figure 5.5: Schematic of the Inverted Adapter

In the following, the adapters mentioned above are explained. Both adapters use the
MOSFET driver LM5134 [43]. At the first adapter, the input signal is connected to the
inverted input (INB). For this reason, the first adapter is an inverted adapter while the
second one is a normal (non inverted) adapter.

Figure 5.5 shows the schematic for the inverted adapter. The driver U1 is powered by
the supply voltage LM5134_INVERTED_VDD. The decoupling capacitors C1−5 ensure
a stabilization of the voltage. The glitch signal, which is already shifted to the required
logic level, is inserted at input INB. As a result, if the level of the glitch signal is low
(e.g., no glitch is injected), the output (OUT) is equal to LM5134_INVERTED_VDD. If
the level of the glitch signal is high (e.g., a glitch is injected), the output (OUT) is equal
to LM5134_INVERTED_GND. The current between the driver U1 and the MOSFET
gate is limited by the resistor R1 to protect the gate.

Figure 5.6: Schematic of the Normal Adapter

Figure 5.6 shows the schematic for the normal (non inverting) adapter. The driver U1 is
powered by the supply voltage LM5134_NORMAL_VDD. The decoupling capacitors
C1−5 ensure a stabilization of the voltage. The glitch signal, which is already shifted to

47

5. Negative Voltage Fault Injection Hardware

the required logic level, is inserted at input IN. As a result, if the level of the glitch signal is
low (e.g., no glitch is injected), the output (OUT) is equal to LM5134_NORMAL_GND.
If the level of the glitch signal is high (e.g., a glitch is injected), the output (OUT) is equal
to LM5134_NORMAL_VDD. Similarly to the inverted adapter, the current between
the driver U1 and the MOSFET gate is limited by the resistor R1 to protect the gate.

Figure 5.7: Image of the Final Prototype

We designed the printed circuit boards for the prototype and the adapters with KiCad1,
a well known electronic computer-aided design (ECAD) suite. The PCB footprints are
attached in Appendix A.1. We have commissioned the production of the printed circuit
boards to the PCB manufacturer PCB-POOL2. After receiving the printed circuit boards
and all required components, the prototype was assembled. The final prototype can be
seen in Figure 5.7.

1http://kicad-pcb.org/
2http://www.pcb-pool.com/

48

http://kicad-pcb.org/
http://www.pcb-pool.com/

5.4. Evaluation of Prototype

5.4 Evaluation of Prototype

Figure 5.8: Prototype Evaluation Test Setup

To verify the functionality of the prototype, we used the test setup illustrated in Figure
5.8. A signal generator generates a pulsed signal with a GSRise time of 5 ns, a GSOn

time of 10 ns and a GSF all time of 5 ns. This signal is used as reference glitch trigger
signal and it is thus connected to the glitch signal input of the prototype. The output of
the prototype is connected to a resistor and a capacitor in parallel. To check the behavior
of the prototype, the glitch signal and the output of the prototype are connected to a
digital storage oscilloscope.

0 50 100 150 200 250 300 350 400 450 500
−4
−3
−2
−1
0
1
2
3
4
5
6
7
8
9
10
11

Glitch

Glitch Signal

time [ns]

vo
lt
ag

e
[V

]

Figure 5.9: Result of the Protoype Test
with a GNDA of 0.0 V

0 50 100 150 200 250 300 350 400 450 500
−4
−3
−2
−1
0
1
2
3
4
5
6
7
8
9
10
11

Glitch

Glitch Signal

time [ns]

vo
lt
ag

e
[V

]

Figure 5.10: Result of the Protoype Test
with a GNDA of -6.0 V

Figure 5.9 illustrates the result of the prototype test with a GNDA of 0.0 V. The blue
waveform shows the glitch signal generated by the signal generator. The glitch signal
width (GSW idth) is about 20 ns. The red waveform shows the output of the prototype
with the injected glitch. The glitch width (GW idth) is about 35 ns. The oscillation of the
glitch it due to the Gibbs phenomenon [46] and can not be avoided. The glitch reaches a
VGLow

of 0.0 V.

Figure 5.10 illustrates the result of the prototype test with a GNDA of -6.0 V. The blue
waveform shows the glitch signal generated by the signal generator. The glitch signal

49

5. Negative Voltage Fault Injection Hardware

width (GSW idth) is about 20 ns. The red waveform shows the output of the prototype
with the injected glitch. The glitch width (GW idth) is about 30 ns. The glitch reaches a
VGLow

of -2.5 V.

The results of the prototype test are comparable to the results of simulations E and F
(see Section 5.2.3). Therefore, we can derive that the prototype fulfills the requirements
specified in Section 5.1.

50

CHAPTER 6
Evaluation

As described in Section 4.3, the hypothesis of this work is that negative voltage fault
injection attacks provide advantages over their conventional counterparts with respect
to higher slew rates and shorter glitch durations in presence of capacitive and inductive
charges within microcontrollers. This chapter describes the evaluation process to validate
the hypothesis. The first part of the chapter explains the test setup. Thereafter, the
individual test cases are described.

6.1 Test Setup

Figure 6.1: Evaluation Test Setup

Figure 6.1 shows the test setup for the evaluation. Each component of the test setup is
shown as a block, with the name of the component at its center. For all components,
incoming signals or voltages are located on the left side of the block whereas outgoing
signals or voltages are located on the right side. In the following, each component is
explained in detail.

51

6. Evaluation

6.1.1 Target

Hardware

For the evaluation, the selection of a common microcontroller is crucial. For this reason,
we selected the ATmega328P [47]. It is used in the open-source electronic prototyping
platform Arduino1 [48]. Furthermore, it is a well known target for voltage fault attacks, it
is covered in multiple scientific publications [49, 50, 51] and it thus allows the comparison
of our evaluation results with previous work.

Figure 6.2: Image of the ATmega328P Target

Figure 6.2 shows an image of the ATmega328P microcontroller and its periphery assembled
on a self-designed printed circuit board. Figure 6.3 illustrates the corresponding schematic.
The footprint of the printed circuit board is attached in Appendix A.2.

The microcontroller is powered by the SMA socket P7. To be able to observe the voltage
drop during a glitch, the test point W1 is provided with a special mount for the probe of
an oscilloscope. Between the power supply and the GND rail, the decoupling capacitor C1
is installed as recommended in the data sheet [47]. However during the evaluation, some
tests were performed with the decoupling capacitor removed C1 as the added capacitance
generally hinders voltage fault injection attacks and, in general, it is beneficial to remove
the decoupling capacitors if possible [52].

The connections to the pins of the microcontroller are available via the pin headers P2,
P3 and P4. In addition, the programming pins (MISO, MOSI, SCK, RESET1, +3.3V
and GND) are connected to the pin header P6. According to the datasheet [47], the
microcontroller can be reset if the RESET1 pin is tied to GND. This is achieved with
push button SW1. The pull-up resistor R2 prevents the RESET1 signal from floating.

1https://www.arduino.cc/

52

https://www.arduino.cc/

6.1. Test Setup

Figure 6.3: Schematic of the ATmega328P Target

Furthermore, the target board contains Light-emitting diodes(LEDs) D1 and D2 with
the associated current limiting resistors R3 and R4.

In the test setup, the power supply SMA socket P7 is connected to the voltage fault
injection hardware prototype. The Clock, Reset, Trigger and UART_Tx signals are
connected to the ChipWhisperer and are explained in the following sections.

Firmware

This section explains firmware parts relevant for the evaluation. The code snippets have
been simplified to highlight their key concepts. The complete firmware is attached in
Appendix B.6.

int main (void) {
in i t_uar t () ;
t r i gge r_se tup () ;

uart_puts (" h e l l o ") ;

while (1) {
g l i t c h 1 () ;

}

return 1 ;
}

Listing 6.1: Firmware – main Function

53

6. Evaluation

void g l i t c h 1 (void) {
volat i le uint8_t a = 0 ;

putch (’A ’) ;

t r i gge r_h igh () ;
t r igger_low () ;

while (a != 2) {
;
}

uart_puts (" 1234 ") ;
}

Listing 6.2: Firmware – glitch1 Function

Listing 6.1 contains the simplified main function of the firmware. In a first step the
Universal Asynchronous Receiver Transmitter (UART) is initialized. The ATmega328P
target can thus send American Standard Code for Information Interchange (ASCII)
characters to the ChipWhisperer via the UART_Tx connection as illustrated in Figure
6.1. Afterwards, the trigger pin is initialized. The trigger signal, which is low per default,
is used to signal the Chipwhisperer that a particular location in the firmware has been
reached. Subsequently, the message “hello” is sent to the ChipWhisperer via the UART
connection and the function glitch1 is executed. Since the called function enters an
infinite loop, the end of the main function is never reached.

Listing 6.2 shows the simplified glitch1 function. At the beginning of the function,
the variable a is initiated with the value 0. The volatile keyword ensures that the
compiler does not remove the infinite loop (while(a != 2)) during code optimization.
Afterwards, the character “A” is transmitted to the ChipWhisperer. Hereafter, the trigger
signal is raised for one clock cycle. This signals the ChipWhisperer that the infinite loop
will be executed in the next step. Thereafter, the infinite loop is executed. In every loop
iteration, the value of variable a is validated against the constant value 2. If the result of
the validation is true, the code after the loop is executed. This can only happen if the
value of variable a is changed to 2 by a successful glitch. To inform the ChipWhisperer
about the successful glitch, the message “1234” is sent.

Fuse Configuration

The ATmega328P microcontroller stores its configuration in a series of so called fuse
bits. They are organized in the three fuse bytes low, high and extended. For each fuse
bit, default values are defined and documented in the data sheet [47]. Except for the
changes described below, these default values are used during the evaluation. Instead
of the internal 8 MHz oscillator, the use of an external clock is configured. This clock
is generated by the ChipWhisperer. As a consequence, the generated glitch can be

54

6.1. Test Setup

synchronized to the target clock rate. Furthermore, the ATmega328P has a so-called
brownout detection. The brownout detection resets the chip if the power supply voltage
drops below a defined threshold. The brownout detection can either be deactivated
or activated. If enabled, either 2.7 V or 1.8 V can be set for the threshold. During
evaluation, tests with deactivated and activated brownout detections are performed.

6.1.2 Voltage Fault Injection Hardware Prototype

The voltage fault injection hardware prototype is equivalent to the prototype developed
in Section 5.3. The prototype is connected to the ChipWhisperer and the ATmega328P
target. If the glitch signal is logical high, a glitch is injected to the power supply of the
target. In contrast, if the glitch signal is logical low, the target is supplied with 3.3 V.
During evaluation, GNDA (described in Section 5.3) is either adjusted to 0 V, -2 V, -4 V
or -6 V.

6.1.3 ChipWhisperer

To conduct the evaluation, we need a system to create a glitch signal with the following
requirements. From the moment the trigger signal (see Section 6.1.1) is received, a freely
selectable wait time is required. This period is called offset. Thereafter, the glitch signal
should be pulled to logic high for a freely selectable period of time. This period of time is
called glitch signal width. Afterwards, the glitch signal should be pulled back to logic low.
Sometimes a series of glitches should be inserted. The number of glitch signal repetitions
is called repeat. The reason why the glitch signal width, offset and repeat must be freely
selectable is that the correct parameters to break out of the infinite loop (while(a
!= 2)) are not known in advance and they must be identified by using a brute force
approach. Since the offset and the glitch signal width periods are within a nanosecond
range, the hardware for generating the glitch signal must be sufficiently fast.

The ChipWhisperer [7] by NewAE Technology Inc.2 is a commercial solution for conven-
tional voltage fault injection attacks and side channel analysis. All described requirements
concerning the glitch signal generation hardware are fulfilled by the ChipWhisperer. Usu-
ally, the ChipWhisperer generates a glitch signal to drive a MOSFET. This glitch
generation method was described in Section 3.2 and was illustrated in Figure 3.2. To
conduct the evaluation, we desoldered the MOSFET Q1 and connected the glitch signal
to the glitch SMA socket of the ChipWhisperer. As a result, we can use the glitch signal
with our own prototype.

As mentioned above, the ATmega328P target uses an external clock generated by the
ChipWhisperer. For the evaluation, a clock rate of 7.37 MHz is used that corresponds
to a clock period of 136 ns. At the ChipWhisperer, the glitch signal width is specified
in percent relative to the clock period. A glitch signal width of 10% at a clock rate of
7.37 MHz corresponds to a glitch signal width of 13.6 ns. The offset is also specified in

2https://newae.com/

55

https://newae.com/

6. Evaluation

percent and can be either positive or negative within a range of -49.0% to 49.0%. A
positive offset indicates that the glitch signal is injected x ns (x = 1.36 ns * offset[%])
after the rising edge of the current clock cycle. In contrast, a negative offset indicates
that the glitch signal is injected x ns (x = 1.36 ns * offset[%]) before the rising edge of
the current clock cycle. The repeat value is given as positive integer.

The ChipWhisperer is connected to a PC via the USB interface. On one hand, the
connection is used to pass the ASCII characters received via the UART_Tx connection
to the PC. On the other hand, the connection is used to configure the parameters width,
offset and repeat. Besides, the ChipWhisperer can reset the ATmega328P target via the
reset connection.

6.1.4 Digital Storage Oscilloscope

We use the four channel digital storage oscilloscope MSOX4034A3 to observe the behavior
of the test setup. The glitch signal, the trigger signal and the supply voltage of the
ATmega328P target are connected to the oscilloscope. Furthermore, the oscilloscope is
connected to the PC via a USB interface so that we can access the storage buffer of the
oscilloscope from the PC.

6.1.5 PC

Both the ChipWhisperer and the oscilloscope are controlled from the PC. The ChipWhis-
perer has its own Python API4 and the oscilloscope can be controlled via the PyVISA5

Python framework.

As explained above, different parameters for width, offset and repeat have to be tried
within a brute force approach to find parameters that cause a jump out of the infinite
loop (while(a != 2)) at the ATmega328P target. For this reason, we developed a
program that automatically tests all possible parameters and writes the results of the
glitches to a database. Important code snippets are explained below, with the snippets
simplified for a better understanding. The complete program is attached in Appendix
B.1. The structure of the database can be found in Appendix C.1.

Listing 6.3 contains the main function of the evaluation program. In a first step, a list
of all values to be tested is created for each of the three parameters width, offset and
repeat. For each parameter, the lower and upper bounds as well as the step width are
specified. Subsequently, the lists are created with the function create_np_array and
the function do_glitch is called for all possible permutations of the three lists.

Listing 6.3 contains the do_glitch function of the evaluation program. In a first step,
the ChipWhisperer is initialized with the three glitch parameters width, offset and repeat.
The second code line performs the current test. The ChipWhisperer resets the target and

3https://www.keysight.com/en/pdx-x201944-pn-MSOX4034A/
4https://wiki.newae.com/Making_Scripts
5https://pyvisa.readthedocs.io/en/stable/

56

https://www.keysight.com/en/pdx-x201944-pn-MSOX4034A/
https://wiki.newae.com/Making_Scripts
https://pyvisa.readthedocs.io/en/stable/

6.1. Test Setup

def create_np_array (s ta r t , stop , s tep) :
return np . arange (s ta r t , stop + step , s tep)

i f __name__ == "__main__" :
g l i t c h _ o f f s e t = create_np_array (Decimal (−49.0) ,

Decimal (4 9 . 0) ,
Decimal (0 . 2))

g l i tch_width = create_np_array (Decimal (4 . 0) ,
Decimal (6 . 0) ,
Decimal (0 . 0 5))

g l i t ch_repea t = create_np_array (1 , 5 , 1)

for o f f s e t in g l i t c h _ o f f s e t :
for width in gl i tch_width :

for repeat in g l i t ch_repea t :
do_gl i tch (o f f s e t , width , r epeat)

Listing 6.3: Evaluation Software – main Function

def do_gl i tch (o f f s e t , width , r epeat) :
CWBroker . g e t In s tance () . set_gl i tch_parameter (o f f s e t , width , repeat)
s e l f . cw . runSc r ip tC la s s (CWUserScript)
re sponse = CWBroker . g e t In s tance () . get_response ()

i f " 1234 " in re sponse :
s t a t u s = " s u c c e s s "

e l i f re sponse . count (" h e l l o ") > 1 :
s t a t u s = " r e s e t "

else :
s t a t u s = " normal "

g l i t c h = Gl i tch (datet ime . datet ime . now () , s tatus , response ,
o f f s e t , width , repeat)

s e l f . db . i n s e r t (g l i t c h)

Listing 6.4: Evaluation Software – do_glitch Function

waits for the trigger. When the trigger is fired, a glitch is injected into the supply voltage
of the target. After the glitch, the ChipWhisperer waits for 250 ms, so that the behavior
of the target can be recorded. During the test, we record all ASCII characters transmitted
from the ATmega328P target to the ChipWhisperer via the UART_Tx connection. After
the test, all received characters are stored as string in the variable response. For each
test, we distinguish between three possible states. A glitch is successful (success) if the
string “1234” is included in the response. If the string “hello” is included more than once,
the glitch has resulted in a reset. If neither the success nor the reset status apply, we
assume that the glitch had no effect on the target. This status is called normal. At the
end of the function, the result is stored in the database.

For the evaluation, not only the test status is relevant, but also the behavior during

57

6. Evaluation

the test. For this reason, we developed a program that activates the single shot mode
of the oscilloscope and waits for the appearance of a glitch. Thereafter, the recorded
waveforms are extracted from the oscilloscope memory and the values are written to a
Comma-separated values (CSV) file. The program is attached in Appendix B.5. However,
since the recording and extraction to the PC takes about 10 s, the methodology was
not feasible for all test cases. As a result, we had to limit the recording of waveforms
to chosen glitches only. In Chapter 7, we describe which glitches are recorded with the
oscilloscope and why we chose them.

6.2 Evaluation 1: ATmega Target without Decoupling
Capacitor

At the Black Hat Europe conference in 2015, Brett Giller gave a talk on voltage fault
injection attacks including the recommendation to remove all of the power decoupling
capacitors during voltage fault injection attacks [52]. To allow comparison, we operate
the ATmega328P target without decoupling capacitor C1 (see Section 6.1.1) in our first
evaluation.

For the evaluation, we limited the lower and upper bounds of the parameters width, offset
and repeat to reasonable ranges. According to Carpi et al. [9], there exists a lower bound
for the glitch width. If the glitch with is below this value, the target will not be affected
by the glitch resulting in a normal test status. In contrast, there exists an upper bound
for the glitch width as well. If the glitch width is higher than the upper bound, the
target will reset resulting in a reset test status. Unfortunately, the parameters offset and
repeat can not be limited in a similar way. For this reason, a lower bound of -49.0% and
an upper bound of 49.0% are chosen for the offset. We selected a step width of 0.2%,
which corresponds to a step width of 272 ps at a clock rate of 7.37 MHz. In comparison
to the clock period, the step width was small enough to achieve good results within the
evaluation. For the parameter repeat, we set the lower bound to 1 and the upper bound
to 5. The identification of the bounds for the width parameter is described after the
explanation of the test cases.

Table 6.1 gives an overview over the scheduled test cases. Each row except the table
header characterizes one test case. The first column contains a unique identifier for each
test case. The second and third columns contain the lower and upper bounds of the
offset parameter. The fourth column states the step with for the offset parameter. The
next three columns specify the lower bound, upper bound, and step size for the width
parameter. Similarly, columns 8-10 specify the repeat parameter ranges and step width.
The column “GNDA” indicates the voltage level of GNDA in the respective test case.
The following column describes if the brownout protection is activated and if so, the
threshold is provided. The last column indicates whether a decoupling capacitor is used
and what value it has. The table illustrates that 12 test cases are carried out for the first
evaluation. For each test case, 100655 tests (glitches) are performed. This results in a
total of 1207860 tests (glitches) for the first evaluation.

58

6.2. Evaluation 1: ATmega Target without Decoupling Capacitor

ID Offset Width Repeat GNDA Brownout
Protection

Decoupling
CapacitorFrom To Step From To Step From To Step

1.1.1 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 0.0 No No
1.1.2 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -2.0 No No
1.1.3 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -4.0 No No
1.1.4 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -6.0 No No
1.2.1 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 0.0 2.7 V No
1.2.2 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -2.0 2.7 V No
1.2.3 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -4.0 2.7 V No
1.2.4 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -6.0 2.7 V No
1.3.1 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 0.0 1.8 V No
1.3.2 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -2.0 1.8 V No
1.3.3 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -4.0 1.8 V No
1.3.4 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -6.0 1.8 V No

Table 6.1: Test Cases for Evaluation 1

def create_np_array (s ta r t , stop , s tep) :
return np . arange (s ta r t , stop + step , s tep)

TEST_WIDTH = Decimal (4 . 0)

g l i t c h _ o f f s e t = create_np_array (Decimal (−49) , Decimal (49) , Decimal (0 . 2))
g l i t ch_repea t = create_np_array (1 , 5 , 1)

for o f f s e t in g l i t c h _ o f f s e t :
for repeat in g l i t ch_repea t :

c a l l _ s t r = " python g l i t c h . py " + o f f s e t . to_eng_string () + " " \
+ TEST_WIDTH. to_eng_string () + " " + str (repeat)

subproces s . Popen (c a l l _ s t r , s h e l l=True)

Listing 6.5: Bound Search Script for width Parameter

We already discussed how we identified the bounds and step sizes for the parameters
offset and repeat. In the following, the lower and upper bound search strategy for the
width parameter is described. As mentioned above, there exists a lower bound for the
glitch width. If the glitch width is set to this value or lower, the target will ignore the
glitch. This lower bound must be examined for each of the test cases defined in Table 6.1.
Listing 6.5 contains the Python script we used to find the bounds of the width parameter.
The variable TEST_WIDTH stores the width to be tested. A list with all possible values
is created for both the offset and repeat parameters. The Python program glitch.py
(Appendix B.2) is called for all possible permutations of the two lists. It executes a glitch
with the given parameters and returns the resulting status. For the width, the value
stored in variable TEST_WIDTH is used. This way, a width can be identified where every
call of glitch.py barely returns the status normal. This process must be repeated for
each test case. The final lower bound is the lowest identified value. Similarly, the same
process is applied to identify the upper bound by means of the reset status. This way, we
identified a lower bound of 4.0% and an upper bound of 6.0% for the width parameter.

59

6. Evaluation

Due to the small distance between the upper and lower bound, we have chosen a step
width of 0.05%. At a clock rate of 7.37 MHz, this corresponds to a step size of 68 ps.

6.3 Evaluation 2: ATmega Target with Decoupling
Capacitor

Microcontrollers with a higher integration depth often include on-chip decoupling capaci-
tors [53, 54] that can not be removed during a voltage fault injection attack. For this
reason, in contrast to the first evaluation, we operated the ATmega328P target with a
100 nF decoupling capacitor in our second evaluation. Due to this intentionally chosen
high capacity, the idea of negative voltage fault injection attacks can be tested against a
target with a high capacitance.

Similar to the previous evaluation, the lower and upper bounds of the parameters width,
offset and repeat must be limited to reasonable values. Since the lower and upper bounds
of the offset cannot be limited, the lower bound is set to -49.0% and the upper bound is
set to 49.0%. Due to the high capacitance, we assumed that the distance between the
upper and lower bound of the width parameter is much larger in comparison to the first
evaluation. We thus increased the step size for the offset to 0.5% so that the number of
tests can be performed within a reasonable time frame. For the same reason, the repeat
parameter is limited to the value 1. The lower and upper bounds for the width parameter
are identified in the same way as described at the first evaluation. We identified a lower
bound of 8.0% and an upper bound of 49.0%, which is the maximum value possible at
the ChipWhisperer.

Table 6.2 gives an overview over the scheduled test cases. The table is structured the
same way as Table 6.1. The table illustrates that 12 test cases are carried out for the
second evaluation. For each test case, 16351 tests (glitches) are performed. This results
in a total of 196212 tests (glitches) for the second evaluation.

ID Offset Width Repeat GNDA Brownout
Protection

Decoupling
CapacitorFrom To Step From To Step From To Step

2.1.1 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 0.0 No 100 nF
2.1.2 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -2.0 No 100 nF
2.1.3 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -4.0 No 100 nF
2.1.4 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -6.0 No 100 nF
2.2.1 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 0.0 2.7 V 100 nF
2.2.2 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -2.0 2.7 V 100 nF
2.2.3 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -4.0 2.7 V 100 nF
2.2.4 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -6.0 2.7 V 100 nF
2.3.1 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 0.0 1.8 V 100 nF
2.3.2 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -2.0 1.8 V 100 nF
2.3.3 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -4.0 1.8 V 100 nF
2.3.4 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -6.0 1.8 V 100 nF

Table 6.2: Test Cases for Evaluation 2

60

CHAPTER 7
Results

7.1 Evaluation 1: ATmega Target without Decoupling
Capacitor

In this section, we present the results of the first evaluation. The results are divided
into three subsections that correspond to the chosen “Brownout Protection” setup. The
first subsection contains the results with a deactivated brownout protection while the
second and third subsections focus on activated brownout protection instead. The second
subsection contains the results for a brownout protection threshold of 2.7 V, and the
third subsection presents the results for a brownout protection threshold of 1.8 V. Due
to the division, the respective test cases in the subsections differ only in the value used
for parameter GNDA.

In addition to the results for the associated test cases, each subsection also contains
oscilloscope recordings of two successful related glitches. For the first recording, the
successful glitch with the lowest glitch signal width is selected. In contrast for the second
recording, the successful glitch with the highest glitch signal width is chosen.

7.1.1 Deactivated Brownout Protection

Table 7.1 gives an overview of the evaluation results for test cases 1.1.1, 1.1.2, 1.1.3 and
1.1.4. The table is structured similarly to Tables 6.1 and 6.2, but it is extended with
three columns. The column “Success” contains the number of successful glitches. In
column “Reset” the number of glitches are described that led to a reset of the target.
The last column documents the number of glitches that did not affect the target.

In the following, the results for each test case are discussed in detail. To illustrate which
values for parameters width, offset and repeat resulted in a successful glitch, a 3D plot
has been generated for each test case. In the plot, the parameter offset is shown on the

61

7. Results

X-axis, the parameter width is on the Y-axis and the parameter repeat is on the Z-axis.
The 3D plot was generated with the program attached in Appendix B.4.

ID Offset Width Repeat GNDA Brownout
Protection

Decoupling
Capacitor

Result
From To Step From To Step From To Step Success Reset Normal

1.1.1 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 0.0 No No 500 41824 58331
1.1.2 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -2.0 No No 27 41952 58676
1.1.3 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -4.0 No No 179 42371 58105
1.1.4 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -6.0 No No 88 42627 57940

Table 7.1: Test Cases with Deactivated Brownout Protection and without Decoupling
Capacitor

Figure 7.1: Test Case: 1.1.1, Brownout:
Not Activated, GNDA: 0.0 V, Success: 500

Figure 7.2: Test Case: 1.1.2, Brownout:
Not Activated, GNDA: -2.0 V, Success: 27

In test case 1.1.1, 500 successful glitches were recorded. In contrast, 41824 glitches
resulted in a reset of the target, and 58331 glitches did not cause an impact. Figure 7.1
shows a 3D plot of this test case. In total, 500 successful glitches are shown in the plot,
where each successful glitch is represented by a dot. For a repeat of 1, 212 successful
glitches were identified. Of those, the minimum offset is -47.8% and the maximum offset
is -40.4% while the width is between 4.9% and 5.65%. At a repeat of 2 with 112 successful
glitches, the offset is between -46.6% and -42.4% and the width is between 4.9% and
5.25%. In comparison, 75 successful glitches were found at a repeat of 3, with an offset
between -46.2% and -42.8% and a width between 4.9% and 5.25%. For a repeat of 4 with
63 successful glitches, the minimal offset is -46.2% and the maximum offset is -43.2%
while the width is between 4.9% and 5.25%. Finally, for a repeat of 5 with 38 successful
glitches, the offset is between -46.2% and -43.2% and the width is between 4.9% and
5.25%.
From the results of the first test case, four observations can be made:

1. The successful glitches are close to each other.

2. The most successful glitches were found at a repeat of 1.

62

7.1. Evaluation 1: ATmega Target without Decoupling Capacitor

3. At a repeat of 1, the width is between 4.9% and 5.65%. At a higher repeat, the with
is between 4.9% and 5.25%. The valid with area thus becomes smaller.

4. At a repeat of 1, the offset is between -47.8% and -40.4%. With increasing repeat,
the successful offset area becomes smaller. At a repeat of 5, the successful offset
area is between -46.2% and -43.2% only.

In test case 1.1.2, 27 successful glitches were recorded. In contrast, 41952 glitches resulted
in a reset of the target, and 58676 glitches did not cause an impact. Figure 7.2 shows a
3D plot of this test case. In total, 27 successful glitches are shown in the plot, where each
successful glitch is represented by a dot. For a repeat of 1, 15 successful glitches were
identified. Of those, the minimum offset is -43.6% and the maximum offset is -39.4%
while the width is between 4.55% and 5.25%. At a repeat of 2 with 4 successful glitches,
the offset is between -44.6% and -41.4% and the width is between 4.55% and 4.8%. In
comparison, 3 successful glitches were found at a repeat of 3, with an offset between
-43.0% and -42.6% and a width between 4.65% and 4.75%. For a repeat of 4 with 2
successful glitches, the minimal offset is -43.2% and the maximum offset is -41.8% while
the width is between 4.5% and 4.65%. Finally, for a repeat of 5 with 3 successful glitches,
the offset is between -43.8% and -42.2% and the width is between 4.5% and 4.85%.
In this test case it can be seen that only a small number of successful glitches were found.
The minimum width of 4.5% is significantly smaller than the minimum width of 4.9% in
test case 1.1.1. Likewise to test case 1.1.1, successful glitches are close to each other.

Figure 7.3: Test Case: 1.1.3, Brownout:
Not Activated, GNDA: -4.0 V, Success: 179

Figure 7.4: Test Case: 1.1.4, Brownout:
Not Activated, GNDA: -6.0 V, Success: 88

In test case 1.1.3, 179 successful glitches were recorded. In contrast, 42371 glitches
resulted in a reset of the target, and 58105 glitches did not cause an impact. Figure 7.3
shows a 3D plot of this test case. In total, 179 successful glitches are shown in the plot,
where each successful glitch is represented by a dot. For a repeat of 1, 153 successful
glitches were identified. Of those, the minimum offset is -45.8% and the maximum offset
is -38.2% while the width is between 4.5% and 4.85%. At a repeat of 2 with 17 successful

63

7. Results

glitches, the offset is between -44.4% and -40.0% and the width is between 4.5% and
4.85%. In comparison, 4 successful glitches were found at a repeat of 3, with an offset
between -42.4% and -39.8% and a width between 4.7% and 4.8%. For a repeat of 4 only 1
successful glitch with an offset of -43.4% and a width of 4.6% was identified. Finally, for
a repeat of 5 with 4 successful glitches, the offset is between -41.8% and -41.2% and the
width is between 4.5% and 4.7%.
While the majority of the successful glitches has a repeat of 1, successful glitches were
identified for each repeat. In general, the width area is significantly shorter in comparison
to the first two test cases. Similar to the previous test cases, successful glitches are close
to each other.

In the last test case 1.1.4, 88 successful glitches were recorded. In contrast, 42627 glitches
resulted in a reset of the target, and 57940 glitches did not cause an impact. Figure
7.4 shows a 3D plot of this test case. In total, 88 successful glitches are shown in the
plot, where each successful glitch is represented by a dot. For a repeat of 1, 68 successful
glitches were identified. Of those, the minimum offset is -46.0% and the maximum offset
is -37.0% while the width is between 4.5% and 4.85%. At a repeat of 2 with 8 successful
glitches, the offset is between -44.4% and -38.2% and the width is between 4.5% and
4.85%. In comparison, 4 successful glitches were found at a repeat of 3, with an offset
between -43.6% and -40.4% and a width between 4.5% and 4.7%. For a repeat of 4 with 3
successful glitches, the minimal offset is -44.0% and the maximum offset is -42.0% while
the width is between 4.55% and 4.85%. Finally, for a repeat of 5 with 5 successful glitches,
the offset is between -42.2% and -39.4% and the width is between 4.5% and 4.7%.
The last test case also fits into the pattern of the other test cases. The most successful
glitches are at a repeat of 1. Again, the successful glitches are close together. The values
for offset and width that result in a successful glitch are very similar to the values of test
case 1.1.3.

For each brownout detection configuration, we conducted oscilloscope measurements.
Figure 7.5 shows the successful glitch with the lowest width. The green waveform
(“Trigger”) shows the trigger signal, the blue waveform (“Glitch Signal”) shows the glitch
signal and the red waveform (“Glitch”) shows the power supply voltage of the target.
The time is shown on the X-Axis while the voltage is shown on the Y-axis. The glitch
was identified in test case 1.1.3. The offset is -41.2%, the width is 4.5% and the repeat is
5. For the glitch a VGLow

of 1.2 V, a glitch signal width (GSW idth) of 7 ns and a glitch
width (GW idth) of 38 ns can be measured.

In comparison, Figure 7.6 shows the successful glitch with the highest width. The glitch
was identified in test case 1.1.1. The offset is -40.8%, the width is 5.65% and the repeat
is 1. For the glitch a VGLow

of 1.2 V, a glitch signal width (GSW idth) of 8 ns and a glitch
width (GW idth) of 40 ns can be measured.

64

7.1. Evaluation 1: ATmega Target without Decoupling Capacitor

0 500 1000 1500 2000
−2

−1

0

1

2

3

4

5

Glitch

Trigger

Glitch Signal

time [ns]

v
ol
ta
ge

[V
]

Figure 7.5: Brownout: Not Activated,
GNDA: -4.0 V, Offset: -41.2, Width: 4.5,
Repeat: 5, VGLow

: 1.2 V, GSW idth: 7 ns,
GW idth: 38 ns

0 500 1000 1500 2000
−2

−1

0

1

2

3

4

5

Glitch

Trigger

Glitch Signal

time [ns]

v
ol
ta
ge

[V
]

Figure 7.6: Brownout: Not Activated,
GNDA: 0.0 V, Offset: -40.8, Width: 5.65,
Repeat: 1, VGLow

: 1.2 V, GSW idth: 8 ns,
GW idth: 40 ns

7.1.2 Brownout: 2.7 Volt

Table 7.2 gives an overview of the evaluation results for test cases 1.2.1, 1.2.2, 1.2.3 and
1.2.4. The table is structured in the same way as Table 7.1. In the following, the results
for each test case are discussed in detail. For this purpose, we conducted a 3D plot for
each test case as well.

ID Offset Width Repeat GNDA Brownout
Protection

Decoupling
Capacitor

Result
From To Step From To Step From To Step Success Reset Normal

1.2.1 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 0.0 2.7 V No 1409 40763 58483
1.2.2 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -2.0 2.7 V No 941 41134 58580
1.2.3 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -4.0 2.7 V No 468 41486 58701
1.2.4 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -6.0 2.7 V No 103 41897 58655

Table 7.2: Test Cases with 2.7 V Brownout Protection and without Decoupling Capacitor

In test case 1.2.1, 1409 successful glitches were recorded. In contrast, 40763 glitches
resulted in a reset of the target, and 58483 glitches did not cause an impact. Figure 7.7
shows a 3D plot of this test case. In total, 1409 successful glitches are shown in the plot,
where each successful glitch is represented by a dot. For a repeat of 1, 449 successful
glitches were identified. Of those, the minimum offset is -47.6% and the maximum offset
is -38.6% while the width is between 4.5% and 5.65%. At a repeat of 2 with 318 successful
glitches, the offset is between -47.4% and -40.2% and the width is between 4.5% and
5.25%. In comparison, 279 successful glitches were found at a repeat of 3, with an offset
between -47.0% and -40.4% and a width between 4.5% and 5.25%. For a repeat of 4 with
208 successful glitches, the minimal offset is -46.8% and the maximum offset is -40.2%
while the width is between 4.5% and 5.25%. Finally, for a repeat of 5 with 155 successful
glitches, the offset is between -46.6% and -40.6% and the width is between 4.5% and
5.25%.

65

7. Results

Figure 7.7: Test Case: 1.2.1, Brownout:
2.7 V, GNDA: 0.0 V, Success: 1409

Figure 7.8: Test Case: 1.2.2, Brownout:
2.7 V, GNDA: -2.0 V, Success: 941

Despite the activated brownout protection, in this test case significantly more successful
glitches were found in comparison to test case 1.1.1. Again, the successful glitches are
close to each other and at a repeat of 1, the most successful glitches can be found. For
a repeat of 1, the width is between 4.5% and 5.65%. At a higher repeat, the width is
between 4.5% and 5.25%. The upper bound of the width is the same as for test case 1.1.1.
In contrast, the lower bound is 4.5% in this test case and 4.9% in test case 1.1.1. In can
thus be seen that a smaller width is encouraged by the activated brownout protection
with a threshold of 2.7 V.

In test case 1.2.2, 941 successful glitches were recorded. In contrast, 41134 glitches
resulted in a reset of the target, and 58580 glitches did not cause an impact. Figure 7.8
shows a 3D plot of this test case. In total, 941 successful glitches are shown in the plot,
where each successful glitch is represented by a dot. For a repeat of 1, 194 successful
glitches were identified. Of those, the minimum offset is -46.4% and the maximum offset
is -38.0% while the width is between 4.5% and 5.25%. At a repeat of 2 with 199 successful
glitches, the offset is between -45.4% and -39.8% and the width is between 4.5% and
4.85%. In comparison, 184 successful glitches were found at a repeat of 3, with an offset
between -45.6% and -39.8% and a width between 4.2% and 4.85%. For a repeat of 4 with
187 successful glitches, the minimal offset is -45.4% and the maximum offset is -39.6%
while the width is between 4.4% and 4.85%. Finally, for a repeat of 5 with 177 successful
glitches, the offset is between -45.4% and -39.4% and the width is between 4.5% and
4.85%. In this test case, it is the first time that more successful glitches were found at a
repeat of 2 than for a repeat of 1. However, the number of successful glitches over the
repeats is evenly distributed. Apart from the four successful glitches that stand out, the
values for the offset and the width are uniform. The successful glitches are close to each
other once again.

In test case 1.2.3, 468 successful glitches were recorded. In contrast, 41486 glitches
resulted in a reset of the target, and 58701 glitches did not cause an impact. Figure 7.9

66

7.1. Evaluation 1: ATmega Target without Decoupling Capacitor

Figure 7.9: Test Case: 1.2.3, Brownout:
2.7 V, GNDA: -4.0 V, Success: 468

Figure 7.10: Test Case: 1.2.4, Brownout:
2.7 V, GNDA: -6.0 V, Success: 103

shows a 3D plot of this test case. In total, 468 successful glitches are shown in the plot,
where each successful glitch is represented by a dot. For a repeat of 1, 275 successful
glitches were identified. Of those, the minimum offset is -46.0% and the maximum offset
is -37.2% while the width is between 4.15% and 4.85%. At a repeat of 2 with 82 successful
glitches, the offset is between -44.6% and -37.8% and the width is between 4.15% and
x%. In comparison, 43 successful glitches were found at a repeat of 3, with an offset
between -45.0% and -37.8% and a width between 4.2% and 4.85%. For a repeat of 4 with
34 successful glitches, the minimal offset is -44.6% and the maximum offset is -38.0%
while the width is between 4.15% and 4.85%. Finally, for a repeat of 5 with 34 successful
glitches, the offset is between -44.0% and -38.2% and the width is between 4.15% and
4.85%.
Again, the successful glitches are close to each other and the most successful glitches
are at a repeat of 1. It is noticeable, that the width of 4.15% is very low. In general,
the repeat has no effect on the width, since the upper and lower bounds of the width are
nearly the same.

In test case 1.2.4, there were 103 successful glitches. In contrast, 41897 glitches resulted
in a reset of the target and 58655 glitches did not cause an impact. Figure 7.10 shows a
3D plot of this test case. In total, 103 successful glitches are shown in the plot, where
each successful glitch is represented by a dot. For a repeat of 1, 70 successful glitches were
identified. Of those, the minimum offset is -47.4% and the maximum offset is -37.2%
while the width is between 4.5% and 4.85%. At a repeat of 2 with 11 successful glitches,
the offset is between -45.4% and -38.6% and the width is between 4.4% and 4.85%. In
comparison, 7 successful glitches were found at a repeat of 3, with an offset between
-44.2% and -38.6% and a width between 4.55% and 4.85%. For a repeat of 4 with 8
successful glitches, the minimal offset is -45.4% and the maximum offset is -38.8% while
the width is between 4.5% and 4.85%. Finally, for a repeat of 5 with 7 successful glitches,
the offset is between -44.2% and -39.0% and the width is between 4.5% and 4.75%.

67

7. Results

Again, the most successful glitches are at a repeat of 1. For higher repeat values only a
few successful glitches were found.

0 500 1000 1500 2000
−2

−1

0

1

2

3

4

5

Glitch

Trigger

Glitch Signal

time [ns]

v
ol
ta
ge

[V
]

Figure 7.11: Brownout: 2.7 V, GNDA: -
4.0 V, Offset: -40.6, Width: 4.15, Repeat:
2, VGLow

: 1.75 V, GSW idth: 6 ns, GW idth:
38 ns

0 500 1000 1500 2000
−2

−1

0

1

2

3

4

5

Glitch

Trigger

Glitch Signal

time [ns]

v
ol
ta
ge

[V
]

Figure 7.12: Brownout: 2.7 V, GNDA:
0.0 V, Offset: -39.0, Width: 5.65, Repeat:
1, VGLow

: 1.28 V, GSW idth: 8 ns, GW idth:
44 ns

The oscilloscope measurement in Figure 7.11 shows the successful glitch with the lowest
width for an activated brownout protection with a brownout protection threshold of 2.7 V.
The glitch was identified in test case 1.2.3. The offset is -40.6%, the width is 4.15% and
the repeat is 2. For the glitch, a VGLow

of 1.75 V, a glitch signal width (GSW idth) of 6 ns
and a glitch width (GW idth) of 38 ns can be measured.

Figure 7.12 shows the successful glitch with the highest width for an activated brownout
protection with a brownout protection threshold of 2.7 V. The glitch was identified in
test case 1.2.1. The offset is -39.0%, the width is 5.65% and the repeat is 1. For the glitch
a VGLow

of 1.28 V, a glitch signal width (GSW idth) of 8 ns and a glitch width (GW idth) of
44 ns can be measured.

7.1.3 Brownout: 1.8 Volt

Table 7.3 gives an overview of the evaluation results for test cases 1.3.1, 1.3.2, 1.3.3 and
1.3.4. The table is structured in the same way as Table 7.1. As can be seen from the
table, no successful glitches were identified for the test cases with an activated brownout
protection and a brownout protection threshold of 1.8 V. Therefore, we cannot present
more results for this test case.

68

7.2. Evaluation 2: ATmega Target with Decoupling Capacitor

ID Offset Width Repeat GNDA Brownout
Protection

Decoupling
Capacitor

Result
From To Step From To Step From To Step Success Reset Normal

1.3.1 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 0.0 1.8 V No 0 41963 58692
1.3.2 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -2.0 1.8 V No 0 42187 58468
1.3.3 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -4.0 1.8 V No 0 42471 58184
1.3.4 -49.0 49.0 0.2 4.0 6.0 0.05 1 5 1 -6.0 1.8 V No 0 43322 57333

Table 7.3: Test Cases with 1.8 V Brownout Protection and without Decoupling Capacitor

7.2 Evaluation 2: ATmega Target with Decoupling
Capacitor

In this section, we present the results of the second evaluation. The results are divided
into three subsections that correspond to the chosen “Brownout Protection” setup. The
first subsection contains the results with a deactivated brownout protection while the
second and third subsections focus on activated brownout protection instead. The second
subsection contains the results for a brownout protection threshold of 2.7 V, and the
third subsection presents the results for a brownout protection threshold of 1.8 V. Due
to the division, the respective test cases in the subsections differ only in the value used
for parameter GNDA.

In addition to the results for the associated test cases, each subsection also contains
oscilloscope recordings of two successful related glitches. For the first recording the
successful glitch with the lowest glitch signal width is selected. In contrast for the second
recording, the successful glitch with the highest glitch signal width is chosen.

7.2.1 Deactivated Brownout Protection

Table 7.4 gives an overview about the evaluation results for test cases 2.1.1, 2.1.2, 2.1.3
and 2.1.4. The table is structured in the same way as Table 7.1. In the following, the
results for each test case are discussed in detail. Similar to the first evaluation, we
conducted plots to present the results. Since the repeat parameter is fixed to value 1 for
the second evaluation, this time we use a 2D plot instead. In the plot, the parameter
offset is shown on the X-axis and the parameter width is shown on the Y-axis. In contrast
to the first evaluation, the plot not only contains successful glitches, but is also contains
glitches that led to a reset of the target, and glitches that did not affect the target at all.
Each glitch is illustrated as dot: A successful glitch is shown as black dot, a glitch that
led to a reset is shown as gray dot, and a glitch that did not affect the target is shown as
white dot. We created the 2D plot with the program attached in Appendix B.3.

ID Offset Width Repeat GNDA Brownout
Protection

Decoupling
Capacitor

Result
From To Step From To Step From To Step Success Reset Normal

2.1.1 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 0.0 No 100 nF 0 2 16349
2.1.2 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -2.0 No 100 nF 496 2088 13767
2.1.3 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -4.0 No 100 nF 406 3319 12629
2.1.4 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -6.0 No 100 nF 271 4004 12076

Table 7.4: Test Cases with Deactivated Brownout Protection and with 100 nF Decoupling
Capacitor

69

7. Results

Figure 7.13: Test Case: 2.1.1, Brownout:
Not Activated, GNDA: 0.0 V

Figure 7.14: Test Case: 2.1.2, Brownout:
Not Activated, GNDA: -2.0 V

For test case 2.1.1, 0 successful glitches, 2 glitches resulting in a reset of the target, and
16349 glitches without an impact were identified. Figure 7.13 shows a 2D plot of this
test case. Due to the high capacitance of the decoupling capacitor, the power supply of
the target could not be pulled down far enough with a GNDA of 0.0 V. For that reason,
no successful glitch and only two resets were identified.

For test case 2.1.1, 496 successful glitches, 2088 glitches resulting in a reset of the target,
and 13767 glitches without an impact were identified. Figure 7.14 shows a 2D plot for
this test case. The minimal offset of a successful glitch is -43.5% and the maximum
offset is 18.0%. In contrast, the minimal width of a successful glitch is 11.5% and the
maximum width is 46.0%. As can be seen from the plot, the successful glitches are more
distributed in comparison to the first evaluation. However, they are still distributed in a
clear pattern. A significant number of successful glitches can be found in the upper left
corner including glitches with with a negative offset and a large width. The second part
of successful glitches is visible in the form of a line from bottom right to top left. The
absence of glitches in the middle of the plot is striking and the reasons are unclear at
this point.

For test case 2.1.3, 406 successful glitches, 3319 glitches resulting in a reset of the target,
and 12629 glitches without an impact were identified. Figure 7.15 shows a 2D plot for
this test case. The minimal offset for a successful glitch is -49.0% and the maximum
offset is 22.0%. In contrast, the minimal width for a successful glitch is 8.5% and the
maximum width is 42.0%. The plot is similar to the plot from test case 2.1.2. However,
it is visible that the required width for successful glitches is lower. This is the reason why
the plot looks as if the previous plot had just been moved downwards. Another anomaly
is the horizontal cut on the left side of the plot at a width of 35.0%.

For test case 2.1.4, 271 successful glitches, 4004 glitches resulting in a reset of the target,
and 12076 glitches without an impact were identified. Figure 7.16 shows a 2D plot for
this test case. The minimal offset for a successful glitch is -49.0% and the maximum

70

7.2. Evaluation 2: ATmega Target with Decoupling Capacitor

Figure 7.15: Test Case: 2.1.3, Brownout:
Not Activated, GNDA: -4.0 V

Figure 7.16: Test Case: 2.1.4, Brownout:
Not Activated, GNDA: -6.0 V

offset is 23.0%. In contrast, the minimal width for a successful glitch is 8.0% and the
maximum width is 38.5%. The plot is similar to the plot from test case 2.1.3. Once again,
it is visible that the required width for successful glitches is lower. The plot looks like
the previous plot had been moved downwards even more. Also, there is a horizontal cut
at a width of 35.0%.

0 1000 2000 3000 4000
−2

−1

0

1

2

3

4

5

Glitch

Trigger

Glitch Signal

time [ns]

v
o
lt
ag
e
[V

]

Figure 7.17: Brownout: Not Activated,
GNDA: -6.0 V, Offset: 21.5, Width: 8.0,
Repeat: 1, VGLow

: 2.75 V, GSW idth: 11 ns,
GW idth: 305 ns

0 1000 2000 3000 4000
−2

−1

0

1

2

3

4

5

Glitch

Trigger

Glitch Signal

time [ns]

v
o
lt
ag
e
[V

]

Figure 7.18: Brownout: Not Activated,
GNDA: -2.0 V, Offset: 40.5, Width: 46.0,
Repeat: 1, VGLow

: 1.35 V, GSW idth: 62 ns,
GW idth: 350 ns

The oscilloscope measurement in Figure 7.17 shows the successful glitch with the lowest
width for a deactivated brownout protection. The glitch was identified in test case 2.1.4.
The offset is 21.5% and the width is 8.0%. For the glitch, a VGLow

of 2.75 V, a glitch
signal width (GSW idth) of 11 ns and a glitch width (GW idth) of 305 ns can be measured.

71

7. Results

Figure 7.18 shows the successful glitch with the highest width for a deactivated brownout
protection. The glitch was identified in test case 2.1.2. The offset is 40.5% and the width
is 46.0%. For the glitch a VGLow

of 1.35 V, a glitch signal width (GSW idth) of 62 ns and
a glitch width (GW idth) of 350 ns can be measured.

7.2.2 Brownout: 2.7 Volt

ID Offset Width Repeat GNDA Brownout
Protection

Decoupling
Capacitor

Result
From To Step From To Step From To Step Success Reset Normal

2.2.1 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 0.0 2.7 V 100 nF 0 3 16348
2.2.2 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -2.0 2.7 V 100 nF 349 1175 14827
2.2.3 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -4.0 2.7 V 100 nF 542 2957 12852
2.2.4 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -6.0 2.7 V 100 nF 257 3956 12138

Table 7.5: Test Cases with 2.7 V Brownout Protection and with 100 nF Decoupling
Capacitor

Figure 7.19: Test Case: 2.2.1, Brownout:
2.7 V, GNDA: 0.0 V

Figure 7.20: Test Case: 2.2.2, Brownout:
2.7 V, GNDA: -2.0 V

For test case 2.2.1, 0 successful glitches, 3 glitches resulting in a reset of the target, and
16348 glitches without an impact were identified. Figure 7.19 shows a 2D plot for this
test case. Due to the high capacitance of the decoupling capacitor, the power supply of
the target cannot be pulled down far enough with a GNDA of 0.0 V. For that reason, no
successful glitch and only three resets are identified.

For test case 2.2.2, 349 successful glitches, 1175 glitches resulting in a reset of the target,
and 14827 glitches without an impact were identified. Figure 7.20 shows a 2D plot for this
test case. The minimal offset for a successful glitch is -49.0% and the maximum offset is
-1.0%. In contrast, the minimal width for a successful glitch is 31.5% and the maximum
width is 49.0%. Again, there are several groups of successful glitches in this test case.
The right group has the shape of a line and is similar to test case 2.1.2. However, the
line only goes down to a width of 30.0%. The successful glitches in the upper left corner
are distributed over an offset of -49.0% to -28.5%. This results in a significantly different
plot in comparison to test case 2.1.2.

72

7.2. Evaluation 2: ATmega Target with Decoupling Capacitor

Figure 7.21: Test Case: 2.2.3, Brownout:
2.7 V, GNDA: -4.0 V

Figure 7.22: Test Case: 2.2.4, Brownout:
2.7 V, GNDA: -6.0 V

For test case 2.2.3, 542 successful glitches, 2957 glitches resulting in a reset of the target,
and 12852 glitches without an impact were identified. Figure 7.21 shows a 2D plot for
this test case. The minimal offset for a successful glitch is -49.0% and the maximum
offset is 21.5%. In contrast, the minimal width for a successful glitch is 8.5% and the
maximum width is 43.5%. For this plot, large differences compared to the plot for test
case 2.2.2 can be seen. The maximum width is lower than in the previous plot. The
successful glitches on the right have the shape of a line and are continuous to the bottom
of the plot. As visible in the results for the deactivated brownout protection, there is a
horizontal cut on the left side of the plot at a width of 35.0%.

For test case 2.2.4, 257 successful glitches, 3956 glitches resulting in a reset of the target,
and 12138 glitches without an impact were identified. Figure 7.22 shows a 2D plot for
this test case. The minimal offset for a successful glitch is -48.0% and the maximum
offset is 23.0%. In contrast, the minimal width for a successful glitch is 8.0% and the
maximum width is 38.0%. Compared to the plot of test case 2.2.3, the required width for
successful glitches is lower. Once again, there is a cut at a width of 35.0%.

The oscilloscope measurement in Figure 7.23 shows the successful glitch with the lowest
width for an activated brownout protection with a brownout protection threshold of 2.7 V.
The glitch was identified in test case 2.2.4. The offset is 23.0% and the width is 8.0%.
For the glitch a VGLow

of 2.75 V, a glitch signal width (GSW idth) of 11 ns and a glitch
width (GW idth) of 305 ns can be measured.

Figure 7.24 shows the successful glitch with the highest width for an activated brownout
protection with a brownout protection threshold of 2.7 V. The glitch was identified in
test case 2.2.2. The offset is -49.0% and the width is 49.0%. For the glitch, a VGLow

of
0.95 V, a glitch signal width (GSW idth) of 102 ns and a glitch width (GW idth) of 370 ns
can be measured.

73

7. Results

0 1000 2000 3000 4000
−2

−1

0

1

2

3

4

5

Glitch

Trigger

Glitch Signal

time [ns]

v
ol
ta
ge

[V
]

Figure 7.23: Brownout: 2.7 V, GNDA: -
6.0 V, Offset: 23.0, Width: 8.0, Repeat:
1, VGLow

: 2.75 V, GSW idth: 11 ns, GW idth:
305 ns

0 1000 2000 3000 4000
−2

−1

0

1

2

3

4

5

Glitch

Trigger

Glitch Signal

time [ns]

v
ol
ta
ge

[V
]

Figure 7.24: Brownout: 2.7 V, GNDA: -
2.0 V, Offset: -49.0, Width: 49.0, Repeat:
1, VGLow

: 0.95 V, GSW idth: 102 ns, GW idth:
370 ns

7.2.3 Brownout: 1.8 Volt

ID Offset Width Repeat GNDA Brownout
Protection

Decoupling
Capacitor

Result
From To Step From To Step From To Step Success Reset Normal

2.3.1 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 0.0 1.8 V 100 nF 0 0 16351
2.3.2 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -2.0 1.8 V 100 nF 415 1564 14372
2.3.3 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -4.0 1.8 V 100 nF 558 2775 13018
2.3.4 -49.0 49.0 0.5 8.0 49.0 0.5 1 1 0 -6.0 1.8 V 100 nF 302 3846 12203

Table 7.6: Test Cases with 1.8 V Brownout Protection and with 100 nF Decoupling
Capacitor

For test case 2.3.1, 0 successful glitches, 0 glitches resulting in a reset of the target, and
16351 glitches without an impact were identified. Figure 7.25 shows a 2D plot of this
test case. Due to the high capacitance of the decoupling capacitor, the power supply of
the target cannot pulled down far enough with a GNDA of 0.0 V. For that reason, no
successful glitch and no resets are identified.

For test case 2.3.2, 415 successful glitches, 1564 glitches resulting in a reset of the target,
and 14372 glitches without an impact were identified. Figure 7.26 shows a 2D plot of this
test case. The minimal offset for a successful glitch is -49.0% and the maximum offset is
0.5%. In contrast, the minimal width for a successful glitch is 31.0% and the maximum
width is 46.5%. Again, there are several groups of successful glitches in this test case.
The right group in the shape of a line is similar to the line of test case 2.2.2. The second
group is again in the upper left area.

For test case 2.3.3, 558 successful glitches, 2775 glitches resulting in a reset of the target,
and 13018 glitches without an impact were identified. Figure 7.27 shows a 2D plot of this
test case. The minimal offset for a successful glitch is -49.0% and the maximum offset

74

7.2. Evaluation 2: ATmega Target with Decoupling Capacitor

Figure 7.25: Test Case: 2.3.1, Brownout:
1.8 V, GNDA: 0.0 V

Figure 7.26: Test Case: 2.3.2, Brownout:
1.8 V, GNDA: -2.0 V

Figure 7.27: Test Case: 2.3.3, Brownout:
1.8 V, GNDA: -4.0 V

Figure 7.28: Test Case: 2.3.4, Brownout:
1.8 V, GNDA: -6.0 V

for a successful glitch is 22.0%. In contrast, the minimal width for a successful glitch is
8.5% and the maximum width is 45.0%. The maximum width is lower in comparison to
the last plot. Furthermore, the plot is similar to the plot of test case 2.2.3. Once again,
there is a horizontal cut at a width of 35.0%.

For test case 2.3.4, 302 successful glitches, 3846 glitches resulting in a reset of the target,
and 12203 glitches without an impact were identified. Figure 7.28 shows a 2D plot of this
test case. The minimal offset for a successful glitch is -49.0% and the maximum offset is
23.0%. In contrast, the minimal width for a successful glitch is 8.0% and the maximum
width is 38.5%. Comparable to the previous plot, there is the horizontal cut at a width of
35.0%. In addition, the maximum width is lower than in the last plot.

The oscilloscope measurement in Figure 7.29 shows the successful glitch with the lowest
width for an activated brownout protection with a brownout protection threshold of 1.8 V.

75

7. Results

0 1000 2000 3000 4000
−2

−1

0

1

2

3

4

5

Glitch

Trigger

Glitch Signal

time [ns]

v
ol
ta
ge

[V
]

Figure 7.29: Brownout: 1.8 V, GNDA: -
6.0 V, Offset: 23.0, Width: 8.0, Repeat:
1, VGLow

: 2.75 V, GSW idth: 11 ns, GW idth:
305 ns

0 1000 2000 3000 4000
−2

−1

0

1

2

3

4

5

Glitch

Trigger

Glitch Signal

time [ns]

v
ol
ta
ge

[V
]

Figure 7.30: Brownout: 1.8 V, GNDA: -
2.0 V, Offset: -49.0, Width: 46.5, Repeat:
1, VGLow

: 1.15 V, GSW idth: 64 ns, GW idth:
355 ns

The glitch was identified in test case 2.3.4. The offset is 23.0% and the width is 8.0%.
For the glitch a VGLow

of 2.75 V, a glitch signal width (GSW idth) of 11 ns and a glitch
width (GW idth) of 305 ns can be measured.

Figure 7.30 shows the successful glitch with the highest width for an activated brownout
protection with a brownout protection threshold of 1.8 V. The glitch was identified in
test case 2.3.2. The offset is -49.0% and the width is 46.5%. For the glitch a VGLow

of
1.15 V, a glitch signal width (GSW idth) of 64 ns and a glitch width (GW idth) of 355 ns
can be measured.

76

CHAPTER 8
Summary and Conclusion

After a short introduction in Chapter 1 and a description of the fundamentals of micro-
controllers in Chapter 2, we discussed the basics of conventional voltage fault injection
attacks in Chapter 3. In Chapter 4, we introduced the idea of negative voltage fault
injection attacks and defined the basic terms for a better understanding. Furthermore, we
showed the limitations of conventional voltage volt fault injection attacks through theo-
retical considerations and SPICE simulations. In Chapter 5, we defined the requirements
for a prototype and discussed several design approaches. For the most promising design
approach, we implemented and tested the final prototype. To evaluate our hypothesis on
the basis of the implemented prototype, we described the evaluation methodology and
the test cases in Chapter 6. Finally in Chapter 7, we discussed the results of the test
cases in detail.

The results of the first evaluation, where we removed the decoupling capacitor from the
target, showed that the width parameter can be minimized by negative voltage fault
injection attacks. For all tested configurations, the minimum width to find a successful
glitch was significantly lower with a negative GNDA in comparison to conventional
voltage fault injection attacks that merely pull to GNDA of 0.0 V. Even a low negative
GNDA voltage of -2.0 V has significantly shortened the minimum width required for a
successful glitch. However, it should be noted that most successful glitches were still
found at a GNDA of 0.0 V. We believe that a negative GNDA causes the target to reset
faster. We were surprised that the successful glitches in all test cases are very close
together. Prior to the evaluation, we assumed a greater dispersion. Furthermore, we
were surprised that for an activated brownout protection with a brownout protection
threshold of 2.7 V, the number of successful glitches was significantly higher than with
deactivated brownout protection. In contrast, with an activated brownout protection
with a lower brownout protection threshold of 1.8 V, it was not possible to find any
successful glitches at all.

77

8. Summary and Conclusion

The results of the second evaluation with a 100 nF decoupling capacitor have confirmed
the results of the first evaluation. If GNDA is chosen lower, this results in a lower required
width for a successful glitch. However, the maximum possible width for a successful glitch
has also decreased with the decrease of GNDA. Unlike to the first evaluation where the
successful glitches were distributed very locally, in the second evaluation the successful
glitches had a distributed shape. Nevertheless, the glitches were still distributed according
to a clear pattern. Due to the high capacitance of the decoupling capacitor, it was not
possible to pull down the power supply rail of the target far enough with a GNDA of
0.0 V. For that reason, no successful glitches were identified for test cases 2.1.1, 2.2.1 and
2.3.1. Since we were not able to identify successful glitches for an activated brownout
protection with a brownout threshold of 1.8 V in the first evaluation, we were surprised by
the fact that we found successful glitches for this configuration in the second evaluation.

The hypothesis of this work was that negative voltage fault injection attacks provide
advantages over their conventional counterparts with respect to higher slew rates and
shorter glitch durations in presence of capacitive and inductive charges within micro-
controllers. Our evaluation showed that negative voltage fault injection attacks indeed
provide advantages over their conventional counterparts. Especially in our second evalua-
tion, where we intentionally chose a high decoupling capacity to simulate targets with
on-chip decoupling technology, the advantages are obvious. With a GNDA of 0.0 V that
corresponds to conventional voltage fault injection attacks, it was infeasible to identify
any successful glitches at all. In contrast, with a -2.0 V, -4.0 V or -6.0 V negative
voltage for GNDA, a significant number of successful glitches could be identified. Both
evaluations showed that the width parameter can be minimized by negative voltage fault
injection attacks. We believe this result is especially significant for faster targets where
conventional voltage fault injection attacks are less applicable since the minimum width
of the voltage glitch is increasingly becoming longer than the period of the system clock.

78

CHAPTER 9
Further Work

This thesis showed that negative voltage fault injection attacks provide advantages over
their conventional counterparts. However, the attacks were performed on a microcontroller
that does not include countermeasures against fault injection attacks. In further work, it
should be tested if the countermeasures in those devices can be bypassed with negative
voltage fault injection attacks. In addition, we are looking forward to test microcontrollers
from different manufacturers as well.

The two evaluations also raised new questions that originally were not part of this
work. In the second evaluation, for all test cases with a GNDA of -4.0 V and -6.0 V,
a horizontal cut at a width of 35.0% was identified. At a higher width, glitches with
significantly lower offsets could be observed while at a lower width those glitches abruptly
disappear. This raises the questions why the glitches appear so abruptly and whether
this could be used for further attacks. In the first evaluation another question concerns
the brownout protection. With activated brownout detection at a detection threshold
of 2.7 V, significantly more successful glitches could be generated in comparison to a
deactivated brownout protection. However, with a lower brownout detection threshold of
1.8 V it was not possible to find a successful glitch at all. It is thus an open question why
the success rate benefits from one threshold and the other threshold prevents glitches
instead.

There are several ideas to improve the negative voltage fault injection attack hardware
within further work. Currently, the GNDA voltage is configured mechanically via
a potentiometer. The possibility to set up the voltage digitally would simplify the
configuration of GNDA. Besides, the current hardware implementation requires additional
hardware that generates the glitch signal. In that regard, the negative voltage fault
injection hardware could be extended by an FPGA to include the glitch signal generation
as well so that additional hardware is no longer necessary. Furthermore, additional
functionality such as clock synchronization and power analysis could be implemented

79

9. Further Work

within the FPGA so that glitches can be synchronized more easily to real world target
devices.

80

APPENDIX A
Printed Circuit Boards

A.1 Voltage Fault Injection Hardware Prototype

Figure A.1: Front Side of the Voltage Fault Injection Hardware Prototype

81

A. Printed Circuit Boards

Figure A.2: Back Side of the Voltage Fault Injection Hardware Prototype

Figure A.3: Front Side of the Voltage Fault Injection Hardware MOSFET Driver Adapters

Figure A.4: Back Side of the Voltage Fault Injection Hardware MOSFET Driver Adapters

82

A.2. ATmega Target

A.2 ATmega Target

Figure A.5: Left: Front Side of ATmega Target, Right: Back Side of ATmega Target

83

APPENDIX B
Source Code

B.1 Evaluation Software

B.1.1 capture.py

from database import Database
from models import Glitch, Waveform
#from oscilloscope import Oscilloscope
from cwuserscript import CWBroker, CWUserScript
from chipwhisperer.common.api.CWCoreAPI import CWCoreAPI
import configparser
import numpy as np
import logging
import datetime
import io
import signal
from decimal import Decimal, getcontext

STOPPED = False

def signal_handler(signal, frame):
global STOPPED
STOPPED = True

class GlitchNotRecordedException(Exception):
pass

class Capture():
def __init__(self, project_name, iteration_count, glitch_offset,

glitch_width, glitch_repeat, glitch_v_gs_low,
atmega_flags_low, atmega_flags_high, atmega_flags_extended,
enable_oscilloscope, fast_continue):

self.log = logging.getLogger(self.__class__.__name__)
self.log.setLevel(logging.INFO)

username, password, database = self.get_mysql_settings()
self.log.debug("init database")
self.db = Database(username, password, database)

self.project = self.db.get_or_create_project(project_name)

85

B. Source Code

offset_step, width_step, repeat_step = self.calculate_step_values(glitch_offset,
glitch_width,
glitch_repeat)

self.setup = self.db.get_or_create_setup(iteration_count,
glitch_offset[:1][0],
glitch_offset[-1:][0],
offset_step,
glitch_width[:1][0],
glitch_width[-1:][0],
width_step,
glitch_repeat[:1][0],
glitch_repeat[-1:][0],
repeat_step,
glitch_v_gs_low,
atmega_flags_low,
atmega_flags_high,
atmega_flags_extended)

self.iteration_count = iteration_count
self.glitch_offset = glitch_offset
self.glitch_width = glitch_width
self.glitch_repeat = glitch_repeat
self.counter = 1

self.glitch_count = self.calculate_glitch_count()

self.enable_oscilloscope = enable_oscilloscope
if self.enable_oscilloscope:

self.init_oscilloscope()

self.fast_continue = fast_continue

self.init_CW()

def calculate_step_values(self, glitch_offset, glitch_width, glitch_repeat):
if len(glitch_offset) > 1:

offset_step = glitch_offset[1] - glitch_offset[0]
else:

offset_step = 0

if len(glitch_width) > 1:
width_step = glitch_width[1] - glitch_width[0]

else:
width_step = 0

if len(glitch_repeat) > 1:
repeat_step = glitch_repeat[1] - glitch_repeat[0]

else:
repeat_step = 0

return offset_step, width_step, repeat_step

def init_CW(self):
self.cw = CWCoreAPI()
self.cw.runScriptClass(CWUserScript, funcName="init")

def init_oscilloscope(self):
self.osci = Oscilloscope()

Default Setup
self.osci.query(":system:preset")

Set horizontal scale and offset
self.osci.write(":timebase:scale 0.0000002")
self.osci.write(":timebase:position 0.0000008")

Configure channel 1
self.osci.write(":channel1:display ON")
self.osci.write(":channel1:scale 1.500")
self.osci.write(":channel1:offset 3.3000")

Configure channel 2

86

B.1. Evaluation Software

self.osci.write(":channel2:display ON")
self.osci.write(":channel2:scale 1.500")
self.osci.write(":channel2:offset 0.000")

Configure channel 3
self.osci.write(":channel3:display ON")
self.osci.write(":channel3:scale 1.500")
self.osci.write(":channel3:offset 0.000")

Configure channel 4
self.osci.write(":channel4:display ON")
self.osci.write(":channel4:scale 1.500")
self.osci.write(":channel4:offset 0.000")

Configure trigger
self.osci.write(":trigger:edge:source channel3")
self.osci.write(":trigger:edge:level 2.000")

def calculate_glitch_count(self):
return self.iteration_count * len(self.glitch_offset) \

* len(self.glitch_width) * len(self.glitch_repeat)

def capture(self):
global STOPPED

if fast_continue:
max_iteration = self.db.get_max(Glitch.iteration, [(Glitch.project_id, self.project.id),

(Glitch.setup_id, self.setup.id)])
max_offset = self.db.get_max(Glitch.offset, [(Glitch.project_id, self.project.id),

(Glitch.setup_id, self.setup.id),
(Glitch.iteration, max_iteration)])

if max_iteration is not None and max_offset is not None:
new_offset = create_np_array(max_offset, self.setup.offset_to, self.setup.offset_step)

count_todo = (self.iteration_count - max_iteration + 1) \

* len(new_offset) * len(self.glitch_width) * len(self.glitch_repeat)

self.glitch_offset = new_offset
self.counter = self.glitch_count - count_todo

else:
max_iteration = 1

for iteration in xrange(max_iteration, self.iteration_count + 1):
for offset in self.glitch_offset:

for width in self.glitch_width:
for repeat in self.glitch_repeat:

while True:
if self.do_glitch(iteration, offset, width, repeat):

break
self.counter += 1
if STOPPED:

return

def do_glitch(self, iteration, offset, width, repeat):
log_str = "glitch " + str(self.counter) + "/" + str(self.glitch_count) + ": "

if self.db.glitch_exists(iteration, offset, width, repeat,
self.project.id, self.setup.id):

self.log.info(log_str + "already in database, continuing")
return True

self.log.info(log_str + "iteration: %d, offset: %f, width: %f, repeat: %d, v_gs_low: %f" %
(iteration, offset, width, repeat, self.setup.v_gs_low))

CWBroker.getInstance().set_glitch_parameter(offset, width, repeat)

if self.enable_oscilloscope:
self.osci.query(":single")

self.cw.runScriptClass(CWUserScript)

response = CWBroker.getInstance().get_response()

87

B. Source Code

if response is "":
self.log.info(log_str + "error: empty response")
self.cw.runScriptClass(CWUserScript, funcName="init")

return False

if "1234" in response:
status = "success"

elif response.count("hello") > 1:
status = "reset"

else:
status = "normal"

self.log.info(log_str + "status: " + status + "\n\n")

if self.enable_oscilloscope:
if int(self.osci.query(":operegister:condition?")) & 0x08 == 8:

raise GlitchNotRecordedException("the glitch was not recorded")

glitch = Glitch(iteration, datetime.datetime.now(), status, response,
offset, width, repeat, self.project, self.setup)

self.db.insert(glitch)

if self.enable_oscilloscope:
channel_glitch = self.osci.get_waveform("channel1")
waveform_glitch_compressed = io.BytesIO()
np.savez_compressed(waveform_glitch_compressed, np.array(channel_glitch))
waveform_glitch = Waveform("Glitch", waveform_glitch_compressed.getvalue(), glitch)
self.db.insert(waveform_glitch)

channel_enable = self.osci.get_waveform("channel2")
waveform_enable_compressed = io.BytesIO()
np.savez_compressed(waveform_enable_compressed, np.array(channel_enable))
waveform_enable = Waveform("Enable", waveform_enable_compressed.getvalue(), glitch)
self.db.insert(waveform_enable)

channel_trigger = self.osci.get_waveform("channel3")
waveform_trigger_compressed = io.BytesIO()
np.savez_compressed(waveform_trigger_compressed, np.array(channel_trigger))
waveform_trigger = Waveform("Trigger", waveform_trigger_compressed.getvalue(), glitch)
self.db.insert(waveform_trigger)

channel_clock = self.osci.get_waveform("channel4")
waveform_clock_compressed = io.BytesIO()
np.savez_compressed(waveform_clock_compressed, np.array(channel_clock))
waveform_clock = Waveform("Clock", waveform_clock_compressed.getvalue(), glitch)
self.db.insert(waveform_clock)

return True

def get_mysql_settings(self):
config = configparser.ConfigParser()
config.read("settings.ini")

username = config["mysql"]["username"]
password = config["mysql"]["password"]
database = config["mysql"]["database"]

return username, password, database

def create_np_array(start, stop, step):
return np.arange(start, stop + step, step)

if __name__ == "__main__":
signal.signal(signal.SIGINT, signal_handler)

logging.basicConfig(level=logging.CRITICAL,
format="%(asctime)s:%(name)s:%(levelname)s:%(message)s",
datefmt="%Y-%m-%d %H:%M:%S")

getcontext().prec = 3

88

B.1. Evaluation Software

project_name = "atmega_capacitor_evaluation"
iteration_count = 1
glitch_offset = create_np_array(Decimal(-49.0), Decimal(49.0), Decimal(0.2))
glitch_width = create_np_array(Decimal(4.0), Decimal(6.0), Decimal(0.05))
glitch_repeat = create_np_array(1, 5, 1)
glitch_v_gs_low = 0.0
atmega_flags_low = 0xe0
atmega_flags_high = 0xd9
atmega_flags_extended = 0xfd

enable_oscilloscope = False
fast_continue = True

print len(glitch_offset) * len(glitch_width) * len(glitch_repeat)

capture = Capture(project_name, iteration_count, glitch_offset,
glitch_width, glitch_repeat, glitch_v_gs_low,
atmega_flags_low, atmega_flags_high, atmega_flags_extended,
enable_oscilloscope, fast_continue)

capture.capture()

B.1.2 database.py

from sqlalchemy import *
from sqlalchemy.orm import sessionmaker
from models import Project, Glitch, Setup
import logging

Session = sessionmaker()

class Database:
def __init__(self, username, password, database):

self.log = logging.getLogger(self.__class__.__name__)
self.log.setLevel(logging.INFO)

self.log.debug("connecting to database")
uri = "mysql://" + username + ":" + password + "@localhost/" + database
engine = create_engine(uri)

Session.configure(bind=engine)

self.session = Session()

def get_max(self, entity, filter_entities):
filter_list = []
for filter_entity in filter_entities:

filter_list.append(filter_entity[0] == filter_entity[1])

return self.session.query(func.max(entity)).filter(and_(*filter_list)).first()[0]

def insert(self, object):
self.session.add(object)
self.session.commit()

def get_success_glitches(self, project, setup):
and_statement = and_(Glitch.status == "success",

Glitch.project_id == project.id,
Glitch.setup_id == setup.id)

return self.session.query(Glitch).filter(and_statement).all()

def get_normal_glitches(self, project, setup):
and_statement = and_(Glitch.status == "normal",

Glitch.project_id == project.id,
Glitch.setup_id == setup.id)

return self.session.query(Glitch).filter(and_statement).all()

def get_reset_glitches(self, project, setup):

89

B. Source Code

and_statement = and_(Glitch.status == "reset",
Glitch.project_id == project.id,
Glitch.setup_id == setup.id)

return self.session.query(Glitch).filter(and_statement).all()

def get_or_create_project(self, name):
project = self.get_project(name)

if project is None:
self.log.debug("can’t find project \"" + name + "\", creating it")
project = Project(name)
self.insert(project)

return project

def get_projects(self):
return self.session.query(Project).all()

def get_project(self, name):
return self.session.query(Project).filter_by(name=name).first()

def get_or_create_setup(self, iteration_count, offset_from, offset_to, offset_step,
width_from, width_to, width_step, repeat_from, repeat_to,
repeat_step, v_gs_low, flags_low, flags_high, flags_extended):

setup = self.get_setup(iteration_count, offset_from, offset_to, offset_step,
width_from, width_to, width_step, repeat_from, repeat_to,
repeat_step, v_gs_low, flags_low, flags_high, flags_extended)

if setup is None:
self.log.debug("can’t find current setup, creating it")
setup = Setup(iteration_count, offset_from, offset_to, offset_step,

width_from, width_to, width_step, repeat_from, repeat_to,
repeat_step, v_gs_low, flags_low, flags_high, flags_extended)

self.insert(setup)

return setup

def get_setup(self, iteration_count, offset_from, offset_to, offset_step,
width_from, width_to, width_step, repeat_from, repeat_to,
repeat_step, v_gs_low, flags_low, flags_high, flags_extended):

and_statement = and_(Setup.iteration_count == iteration_count,
Setup.offset_from == offset_from,
Setup.offset_to == offset_to,
Setup.offset_step == offset_step,
Setup.width_from == width_from,
Setup.width_to == width_to,
Setup.width_step == width_step,
Setup.repeat_from == repeat_from,
Setup.repeat_to == repeat_to,
Setup.repeat_step == repeat_step,
Setup.v_gs_low == v_gs_low,
Setup.flags_low == flags_low,
Setup.flags_high == flags_high,
Setup.flags_extended == flags_extended)

return self.session.query(Setup).filter(and_statement).first()

def glitch_exists(self, iteration, offset, width, repeat,
project_id, setup_id):

and_statement = and_(Glitch.iteration == iteration,
Glitch.offset == offset,
Glitch.width == width,
Glitch.repeat == repeat,
Glitch.project_id == project_id,
Glitch.setup_id == setup_id)

glitch = self.session.query(Glitch).filter(and_statement).first()

if glitch is None:
return False

return True

def get_setups_by_project(self, project):

90

B.1. Evaluation Software

return self.session.query(Setup).join(Glitch, Setup.id == Glitch.setup_id) \
.join(Project, Glitch.project_id == Project.id).filter(Project.name == project.name) \
.distinct().all()

def get_setup_by_id(self, project_id):
return self.session.query(Setup).filter_by(id=project_id).first()

B.1.3 models.py

from sqlalchemy import Column, DateTime, Enum, ForeignKey, Integer, Numeric, String
from sqlalchemy.dialects.mysql.types import MEDIUMBLOB, TINYBLOB
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()
metadata = Base.metadata

class Glitch(Base):
__tablename__ = ’glitch’

id = Column(Integer, primary_key=True)
iteration = Column(Integer, nullable=False)
time = Column(DateTime, nullable=False)
status = Column(Enum(u’normal’, u’success’, u’reset’), nullable=False)
answer = Column(TINYBLOB, nullable=False)
offset = Column(Numeric(6, 3), nullable=False)
width = Column(Numeric(6, 3), nullable=False)
repeat = Column(Integer, nullable=False)
project_id = Column(ForeignKey(u’project.id’), nullable=False, index=True)
setup_id = Column(ForeignKey(u’setup.id’), nullable=False, index=True)

project = relationship(u’Project’)
setup = relationship(u’Setup’)

def __init__(self, iteration, time, status, answer, offset, width, repeat,
project, setup):

self.iteration = iteration
self.time = time
self.status = status
self.answer = answer
self.offset = offset
self.width = width
self.repeat = repeat
self.project = project
self.setup = setup

class Project(Base):
__tablename__ = ’project’

id = Column(Integer, primary_key=True)
name = Column(String(100), nullable=False, unique=True)

def __init__(self, name):
self.name = name

class Setup(Base):
__tablename__ = ’setup’

id = Column(Integer, primary_key=True)
iteration_count = Column(Integer, nullable=False)
offset_from = Column(Numeric(6, 3), nullable=False)
offset_to = Column(Numeric(6, 3), nullable=False)
offset_step = Column(Numeric(6, 3), nullable=False)
width_from = Column(Numeric(6, 3), nullable=False)
width_to = Column(Numeric(6, 3), nullable=False)
width_step = Column(Numeric(6, 3), nullable=False)

91

B. Source Code

repeat_from = Column(Integer, nullable=False)
repeat_to = Column(Integer, nullable=False)
repeat_step = Column(Integer, nullable=False)
v_gs_low = Column(Numeric(6, 3), nullable=False)
flags_low = Column(Integer, nullable=False)
flags_high = Column(Integer, nullable=False)
flags_extended = Column(Integer, nullable=False)

def __init__(self, iteration_count, offset_from, offset_to, offset_step,
width_from, width_to, width_step, repeat_from, repeat_to,
repeat_step, v_gs_low, flags_low, flags_high, flags_extended):

self.iteration_count = iteration_count
self.offset_from = offset_from
self.offset_to = offset_to
self.offset_step = offset_step
self.width_from = width_from
self.width_to = width_to
self.width_step = width_step
self.repeat_from = repeat_from
self.repeat_to = repeat_to
self.repeat_step = repeat_step
self.v_gs_low = v_gs_low
self.flags_low = flags_low
self.flags_high = flags_high
self.flags_extended = flags_extended

class Waveform(Base):
__tablename__ = ’waveform’

id = Column(Integer, primary_key=True)
label = Column(String(100), nullable=False)
data = Column(MEDIUMBLOB, nullable=False)
glitch_id = Column(ForeignKey(u’glitch.id’), nullable=False, index=True)

glitch = relationship(u’Glitch’)

def __init__(self, label, data, glitch):
self.label = label
self.data = data
self.glitch = glitch

B.1.4 cwuserscript.py

from chipwhisperer.common.scripts.base import UserScriptBase

class GlitchParametersNotNoneException(Exception):
pass

class GlitchParametersNoneException(Exception):
pass

class ResponseNotNoneException(Exception):
pass

class ResponseNoneException(Exception):
pass

class CWBroker:
__instance = None

@staticmethod
def getInstance():

if CWBroker.__instance is None:
CWBroker()

92

B.1. Evaluation Software

return CWBroker.__instance

def __init__(self):
self.__glitch_parameters = None
self.__response = None

if CWBroker.__instance is not None:
raise Exception("This class is a singleton!")

else:
CWBroker.__instance = self

def set_glitch_parameter(self, offset, width, repeat):
if self.__glitch_parameters is not None:

raise GlitchParametersNotNoneException("The glitch parameters are not none!")

self.__glitch_parameters = (offset, width, repeat)

def get_glitch_parameter(self):
if self.__glitch_parameters is None:

raise GlitchParametersNoneException("The glitch parameters are none!")

temp_glitch_parameters = self.__glitch_parameters
self.__glitch_parameters = None
return temp_glitch_parameters

def set_response(self, response):
if self.__response is not None:

raise ResponseNotNoneException("The response is not none!")

self.__response = response

def get_response(self):
if self.__response is None:

raise ResponseNoneException("The response is none!")

temp_response = self.__response
self.__response = None
return temp_response

class CWUserScript(UserScriptBase):
def __init__(self, api):

super(CWUserScript, self).__init__(api)

def init(self):
self.api.setParameter(["Generic Settings", "Scope Module", "ChipWhisperer/OpenADC"])
self.api.setParameter(["Generic Settings", "Target Module", "Simple Serial"])
self.api.setParameter(["Generic Settings", "Trace Format", "None"])
self.api.setParameter(["Generic Settings", "Auxiliary Module", "GPIO Toggle"])
self.api.setParameter(["Simple Serial", "Connection", "NewAE USB (CWLite/CW1200)"])
self.api.setParameter(["ChipWhisperer/OpenADC", "Connection", "NewAE USB (CWLite/CW1200)"])
self.api.setParameter(["Aux Settings", "GPIO Toggle", "GPIO Pin", "nRST"])
self.api.setParameter(["Aux Settings", "GPIO Toggle", "Standby State", "High"])
self.api.connect()

self.api.setParameter(["OpenADC", "Clock Setup", "CLKGEN Settings", "Desired Frequency", 7372800.0])
self.api.setParameter(["OpenADC", "Clock Setup", "ADC Clock", "Reset ADC DCM", None])
self.api.setParameter(["CW Extra Settings", "Target HS IO-Out", "CLKGEN"])

self.api.setParameter(["Glitch Module", "Clock Source", "CLKGEN"])
self.api.setParameter(["Glitch Module", "Glitch Trigger", "Ext Trigger:Single-Shot"])
self.api.setParameter(["Glitch Module", "Output Mode", "Glitch Only"])
self.api.setParameter(["CW Extra Settings", "HS-Glitch Out Enable (High Power)", 1])
self.api.setParameter(["Glitch Module", "Ext Trigger Offset", 0])

def run(self):
offset, width, repeat = CWBroker.getInstance().get_glitch_parameter()

self.serial = self.api.getTarget().ser
self.serial.terminal_flush()

self.api.setParameter(["Glitch Module", "Glitch Width (as % of period)", float(width)])
self.api.setParameter(["Glitch Module", "Glitch Offset (as % of period)", float(offset)])

93

B. Source Code

self.api.setParameter(["Glitch Module", "Repeat", int(repeat)])
self.api.capture1()

bavail = self.serial.terminal_inWaiting()
data = []
while bavail > 0:

data += self.serial.terminal_read(bavail)
bavail = self.serial.terminal_inWaiting()

response = ""
for symbol in data:

if symbol[0] == "in":
response += symbol[1]

CWBroker.getInstance().set_response(response)

B.1.5 oscilloscope.py

import visa
import struct

class OscilloscopeException(Exception):
pass

class Oscilloscope:
def __init__(self, idVendor=0x0957, idProduct=0x17a0):

rm = visa.ResourceManager("@py")

osci_str = None
for resource in rm.list_resources():

if str(idVendor) in resource and str(idProduct) in resource:
osci_str = resource

if osci_str is None:
raise OscilloscopeException("Error: Can’t find Oscilloscope!")

self.osci = rm.open_resource(osci_str)

def query(self, str):
while True:

try:
return self.osci.query(str)
break

except ValueError:
continue

def write(self, str):
while True:

try:
self.osci.write(str)
break

except ValueError:
continue

def get_waveform(self, source):
self.write(":waveform:points:mode normal")
self.write(":waveform:source %s" % source)
self.write(":waveform:format byte")

Read preamble
pre = self.query(":waveform:preamble?")
pre = pre.split(’,’)

format = int(pre[0])
type = int(pre[1])
xincrement = float(pre[4])
xorigin = float(pre[5])
xreference = int(float(pre[6]))
yincrement = float(pre[7])

94

B.2. Glitch Software

yorigin = float(pre[8])
yreference = int(float(pre[9]))

if type == 1:
raise Exception()

if format != 0:
raise Exception()

Read waveform data
sData = self.osci.query_binary_values(":waveform:data?",

datatype="s")[0]
values = struct.unpack("%dB" % len(sData), sData)

data = []
for i in xrange(0, len(values) - 1):

time_val = xorigin + (i - xreference) * xincrement
voltage = ((values[i] - yreference) * yincrement) + yorigin
data.append((time_val, voltage))

return data

B.2 Glitch Software

B.2.1 glitch.py

from cwuserscript import CWBroker, CWUserScript
from chipwhisperer.common.api.CWCoreAPI import CWCoreAPI
from decimal import Decimal, getcontext
import argparse

def glitch(offset, width, repeat, print_response, iterate):
cw = CWCoreAPI()
cw.runScriptClass(CWUserScript, funcName="init")

for i in xrange(1, iterate + 1):
CWBroker.getInstance().set_glitch_parameter(offset, width, repeat)
cw.runScriptClass(CWUserScript)
response = CWBroker.getInstance().get_response()

if response is "":
print "Error: empty response!"

if "1234" in response:
status = "success"

elif response.count("hello") > 1:
status = "reset"

else:
status = "normal"

if print_response:
print "Glitch status: " + status + "\tresponse: " + response.replace("\n", "")

else:
print "Glitch status: " + status

if __name__ == "__main__":
getcontext().prec = 3

parser = argparse.ArgumentParser()
parser.add_argument("offset", type=float)
parser.add_argument("width", type=float)
parser.add_argument("repeat", type=int)
parser.add_argument("--iterate", type=int)
parser.add_argument("--response", action="store_true")
parser.set_defaults(response=False)
parser.set_defaults(iterate=1)
args = parser.parse_args()

95

B. Source Code

glitch(Decimal(args.offset), Decimal(args.width), args.repeat, args.response, args.iterate)

B.3 Plot Software 2D

B.3.1 plot2d.py

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.legend as legend
import numpy as np
from decimal import *
from database import Database
import configparser
import sys
import argparse

def get_mysql_settings():
config = configparser.ConfigParser()
config.read("settings.ini")

username = config["mysql"]["username"]
password = config["mysql"]["password"]
database = config["mysql"]["database"]

return username, password, database

def create_plot(success_offsets, success_widths, reset_offsets, reset_widths,
normal_offsets, normal_widths):

fig = plt.figure()
ax = fig.add_subplot(111, projection="rectilinear")

ax.scatter(normal_offsets, normal_widths, c="white", marker=".")
ax.scatter(reset_offsets, reset_widths, c="gray", marker=".")
ax.scatter(success_offsets, success_widths, c="black", marker=".")

ax.set_xlim(left=-49.0, right=49.0)
ax.set_xticks(np.arange(-50.0, 60.0, 10.0))

ax.set_ylim(bottom=7.0, top=49.0)
ax.set_yticks(np.arange(7.0, 49.0, 5.0))

ax.set_xlabel("Offset")
ax.set_ylabel("Width")

title_str = "success: " + str(len(success_offsets)) + " (black)\n" \
"reset: " + str(len(reset_offsets)) + " (gray)\n" \
"normal: " + str(len(normal_offsets)) + " (white)"

leg = plt.legend([], [], loc="lower left", title=title_str)
leg.get_title().set_position((0, -5))
plt.show()

def run(project_name, setup_id, db):
project = db.get_project(project_name)

if project is None:
print "Error: can’t find project!"
sys.exit(1)

setup = db.get_setup_by_id(setup_id)

if setup is None:
print "Error: can’t find setup!"
sys.exit(1)

96

B.3. Plot Software 2D

success = db.get_success_glitches(project, setup)
reset = db.get_reset_glitches(project, setup)
normal = db.get_normal_glitches(project, setup)

brownout = get_brownout_str(setup.flags_extended)
print "setup id: " + str(setup.id) + "\t\tv_gs_low: " + str(setup.v_gs_low) \

+ "\t\tbrownout: " + brownout + "\t\tsuccess: " + str(len(success)) \
+ "\t\treset: " + str(len(reset)) + "\t\tnormal: " + str(len(normal))

success_offsets = []
success_widths = []

for glitch in success:
success_offsets.append(glitch.offset)
success_widths.append(glitch.width)

reset_offsets = []
reset_widths = []

for glitch in reset:
reset_offsets.append(glitch.offset)
reset_widths.append(glitch.width)

normal_offsets = []
normal_widths = []

for glitch in normal:
normal_offsets.append(glitch.offset)
normal_widths.append(glitch.width)

create_plot(success_offsets, success_widths, reset_offsets, reset_widths,
normal_offsets, normal_widths)

def get_brownout_str(flags_extended):
if flags_extended == 0xfd:

return "2.7 V"
elif flags_extended == 0xfe:

return "1.8 V"
else:

return "not activated"

def list_projects(db):
projects = db.get_projects()

for project in projects:
print project.name

def list_setups(project_name, db):
project = db.get_project(project_name)

if project is None:
print "Error: can’t find project!"
sys.exit(1)

for setup in db.get_setups_by_project(project):

brownout = get_brownout_str(setup.flags_extended)

v_gs_low_str = str(setup.v_gs_low)

if len(v_gs_low_str) == 5:
v_gs_low_str = " " + v_gs_low_str

print "setup id: " + str(setup.id) + "\t\tv_gs_low: " + v_gs_low_str + "\t\tbrownout: " + brownout

if __name__ == "__main__":
getcontext().prec = 3

97

B. Source Code

if len(sys.argv) <= 1:
sys.argv.append("-h")

parser = argparse.ArgumentParser()
parser.add_argument("--plot", nargs=2, metavar=("project_name", "setup_id"))
parser.add_argument("--list-projects", action="store_true")
parser.add_argument("--list-setups", type=str, metavar="project_name")
args = parser.parse_args()

if args.plot is not None:
try:

setup_id = int(args.plot[1])
except ValueError:

parser.error("setup_id must be an integer!")

username, password, database = get_mysql_settings()
db = Database(username, password, database)

if args.list_projects:
list_projects(db)

if args.list_setups is not None:
list_setups(args.list_setups, db)

if args.plot is not None:
run(args.plot[0], setup_id, db)

B.4 Plot Software 3D

B.4.1 plot3d.py

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
from decimal import *
from database import Database
import configparser
import sys
import argparse

def get_mysql_settings():
config = configparser.ConfigParser()
config.read("settings.ini")

username = config["mysql"]["username"]
password = config["mysql"]["password"]
database = config["mysql"]["database"]

return username, password, database

def create_plot(offsets, widths, repeats):
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")

ax.scatter(offsets, widths, repeats, c="b", marker="o")

ax.set_xlim(left=-49.0, right=49.0)
ax.set_xticks(np.arange(-50.0, 60.0, 10.0))

ax.set_ylim(bottom=4.0, top=6.0)
ax.set_yticks(np.arange(4.0, 6.25, 0.25))

ax.set_zlim(bottom=1, top=5)
ax.set_zticks([1, 2, 3, 4, 5])

ax.set_xlabel("Offset")

98

B.4. Plot Software 3D

ax.set_ylabel("Width")
ax.set_zlabel("Repeat")

plt.show()

def run(project_name, setup_id, db):
project = db.get_project(project_name)

if project is None:
print "Error: can’t find project!"
sys.exit(1)

setup = db.get_setup_by_id(setup_id)

if setup is None:
print "Error: can’t find setup!"
sys.exit(1)

glitches = db.get_success_glitches(project, setup)

brownout = get_brownout_str(setup.flags_extended)
print "setup id: " + str(setup.id) + "\t\tv_gs_low: " + str(setup.v_gs_low) \

+ "\t\tbrownout: " + brownout + "\t\tsuccess: " + str(len(glitches))

offsets = []
widths = []
repeats = []

for glitch in glitches:
offsets.append(glitch.offset)
widths.append(glitch.width)
repeats.append(glitch.repeat)

create_plot(offsets, widths, repeats)

def get_brownout_str(flags_extended):
if flags_extended == 0xfd:

return "2.7 V"
elif flags_extended == 0xfe:

return "1.8 V"
else:

return "not activated"

def list_projects(db):
projects = db.get_projects()

for project in projects:
print project.name

def list_setups(project_name, db):
project = db.get_project(project_name)

if project is None:
print "Error: can’t find project!"
sys.exit(1)

for setup in db.get_setups_by_project(project):

brownout = get_brownout_str(setup.flags_extended)

v_gs_low_str = str(setup.v_gs_low)

if len(v_gs_low_str) == 5:
v_gs_low_str = " " + v_gs_low_str

print "setup id: " + str(setup.id) + "\t\tv_gs_low: " + v_gs_low_str + "\t\tbrownout: " + brownout

if __name__ == "__main__":

99

B. Source Code

getcontext().prec = 3

if len(sys.argv) <= 1:
sys.argv.append("-h")

parser = argparse.ArgumentParser()
parser.add_argument("--plot", nargs=2, metavar=("project_name", "setup_id"))
parser.add_argument("--list-projects", action="store_true")
parser.add_argument("--list-setups", type=str, metavar="project_name")
args = parser.parse_args()

if args.plot is not None:
try:

setup_id = int(args.plot[1])
except ValueError:

parser.error("setup_id must be an integer!")

username, password, database = get_mysql_settings()
db = Database(username, password, database)

if args.list_projects:
list_projects(db)

if args.list_setups is not None:
list_setups(args.list_setups, db)

if args.plot is not None:
run(args.plot[0], setup_id, db)

B.5 Oscilloscope to CSV

B.5.1 osci2csv.py

from oscilloscope import Oscilloscope
import sys
import argparse
from decimal import Decimal

def run(channel1_name, channel2_name, channel3_name, channel4_name, filename, delimiter=","):
osci = Oscilloscope()
osci.query(":single")

while int(osci.query(":operegister:condition?")) & 0x08 == 8:
pass

master = None
csv = "time"

if channel1_name is not None:
channel1 = osci.get_waveform("channel1")
master = channel1
csv += delimiter + channel1_name

if channel2_name is not None:
channel2 = osci.get_waveform("channel2")
master = channel2
csv += delimiter + channel2_name

if channel3_name is not None:
channel3 = osci.get_waveform("channel3")
master = channel3
csv += delimiter + channel3_name

if channel4_name is not None:
channel4 = osci.get_waveform("channel4")
master = channel4
csv += delimiter + channel4_name

100

B.6. ATmega328P Target Firmware

csv += "\n"

starting_value = Decimal(master[0][0])
for i in xrange(1, len(master)):

time = Decimal(master[i][0]) - starting_value
csv += time.to_eng_string()

if channel1_name is not None:
csv += delimiter + str(channel1[i][1])

if channel2_name is not None:
csv += delimiter + str(channel2[i][1])

if channel3_name is not None:
csv += delimiter + str(channel3[i][1])

if channel4_name is not None:
csv += delimiter + str(channel4[i][1])

csv += "\n"

if filename is not None:
with open(filename, "w") as f:

f.write(csv)
else:

print csv

if __name__ == "__main__":
if len(sys.argv) <= 1:

sys.argv.append("-h")

parser = argparse.ArgumentParser()
parser.add_argument("--channel1", type=str, dest="channel1", metavar="name")
parser.add_argument("--channel2", type=str, dest="channel2", metavar="name")
parser.add_argument("--channel3", type=str, dest="channel3", metavar="name")
parser.add_argument("--channel4", type=str, dest="channel4", metavar="name")
parser.add_argument("-o", "--output", type=str, dest="filename", metavar="filename")
args = parser.parse_args()

if args.channel1 is None and args.channel2 is None and args.channel3 is None and args.channel4 is None:
parser.error("At least one channel is required!")

run(args.channel1, args.channel2, args.channel3, args.channel4, args.filename)

B.6 ATmega328P Target Firmware

B.6.1 main.c

#include <avr/io.h>
#include <stdio.h>

#define F_CPU 7372800UL // 7.37 MHz
#include <util/delay.h>

#define trigger_setup() DDRC |= 0x01
#define trigger_high() PORTC |= 0x01
#define trigger_low() PORTC &= ~(0x01)

#define BAUD_RATE 38400
#define BAUD_RATE_REG (unsigned int)(F_CPU / (16 * BAUD_RATE)) - 1

void init_uart() {
//turn on TX and RX
UCSR0B = (1<<RXEN0) | (1<<TXEN0);

//set up baud rate

101

B. Source Code

UBRR0H = (unsigned char)(BAUD_RATE_REG >> 8);
UBRR0L = (unsigned char)BAUD_RATE_REG;

}

void putch(char data) {
while (!(UCSR0A & (1<<UDRE0))) {

;
}

UDR0 = data;
return;

}

void uart_puts(char * s) {
while(*s) {

putch(*(s++));
}

}

void led_setup() {
DDRB |= 1 << PB0; // Set PB0 as output (red LED)
DDRB |= 1 << PB1; // Set PB1 as output (green LED)

}

void led_ok(uint8_t value) {
if(value == 1) {

PORTB &= ~(1 << PB1); // Turn on green LED
} else {

PORTB |= 1 << PB1; // Turn off green LED
}

}

void led_error(uint8_t value) {
if(value == 1) {

PORTB &= ~(1 << PB0); // Turn on red LED
} else {

PORTB |= 1 << PB0; // Turn off red LED
}

}

void glitch1(void) {
led_ok(1);
led_error(0);

//Some fake variable
volatile uint8_t a = 0;

putch(’A’);

//External trigger logic
trigger_high();
trigger_low();

//Should be an infinite loop
while(a != 2){
;
}

led_error(1);
led_error(1);
led_error(1);
led_error(1);
led_error(1);
led_error(1);
led_error(1);
led_error(1);
led_error(1);

uart_puts("1234");

led_error(1);
led_error(1);

102

B.6. ATmega328P Target Firmware

led_error(1);
led_error(1);
led_error(1);
led_error(1);
led_error(1);
led_error(1);

//Several loops in order to try and prevent restarting
while(1) {
;
}
while(1) {
;
}
while(1) {
;
}
while(1) {
;
}
while(1) {
;
}

}

int main(void) {
led_setup();
init_uart();
trigger_setup();

putch(’h’);
putch(’e’);
putch(’l’);
putch(’l’);
putch(’o’);
putch(’\n’);

while(1) {
glitch1();

}

return 1;
}

103

APPENDIX C
MySQL Database

C.1 Database glitcher
SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO";
SET AUTOCOMMIT = 0;
START TRANSACTION;
SET time_zone = "+00:00";

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8mb4 */;

--
-- Database: ‘glitcher‘
--

-- --

--
-- Table structure for table ‘glitch‘
--

CREATE TABLE ‘glitch‘ (
‘id‘ int(10) UNSIGNED NOT NULL,
‘iteration‘ tinyint(3) UNSIGNED NOT NULL,
‘time‘ datetime NOT NULL,
‘status‘ enum(’normal’,’success’,’reset’) NOT NULL,
‘answer‘ tinyblob NOT NULL,
‘offset‘ decimal(6,3) NOT NULL,
‘width‘ decimal(6,3) NOT NULL,
‘repeat‘ tinyint(3) UNSIGNED NOT NULL,
‘project_id‘ int(10) UNSIGNED NOT NULL,
‘setup_id‘ int(10) UNSIGNED NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table ‘project‘
--

CREATE TABLE ‘project‘ (
‘id‘ int(11) UNSIGNED NOT NULL,
‘name‘ varchar(100) NOT NULL

105

C. MySQL Database

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table ‘setup‘
--

CREATE TABLE ‘setup‘ (
‘id‘ int(10) UNSIGNED NOT NULL,
‘iteration_count‘ tinyint(3) UNSIGNED NOT NULL,
‘offset_from‘ decimal(6,3) NOT NULL,
‘offset_to‘ decimal(6,3) NOT NULL,
‘offset_step‘ decimal(6,3) NOT NULL,
‘width_from‘ decimal(6,3) NOT NULL,
‘width_to‘ decimal(6,3) NOT NULL,
‘width_step‘ decimal(6,3) NOT NULL,
‘repeat_from‘ tinyint(3) UNSIGNED NOT NULL,
‘repeat_to‘ tinyint(3) UNSIGNED NOT NULL,
‘repeat_step‘ tinyint(3) UNSIGNED NOT NULL,
‘v_gs_low‘ decimal(6,3) NOT NULL,
‘flags_low‘ tinyint(3) UNSIGNED NOT NULL,
‘flags_high‘ tinyint(3) UNSIGNED NOT NULL,
‘flags_extended‘ tinyint(3) UNSIGNED NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- --

--
-- Table structure for table ‘waveform‘
--

CREATE TABLE ‘waveform‘ (
‘id‘ int(10) UNSIGNED NOT NULL,
‘label‘ varchar(100) NOT NULL,
‘data‘ mediumblob NOT NULL,
‘glitch_id‘ int(10) UNSIGNED NOT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

--
-- Indexes for dumped tables
--

--
-- Indexes for table ‘glitch‘
--
ALTER TABLE ‘glitch‘
ADD PRIMARY KEY (‘id‘),
ADD KEY ‘project_id‘ (‘project_id‘),
ADD KEY ‘setup_id‘ (‘setup_id‘);

--
-- Indexes for table ‘project‘
--
ALTER TABLE ‘project‘
ADD PRIMARY KEY (‘id‘),
ADD UNIQUE KEY ‘name‘ (‘name‘);

--
-- Indexes for table ‘setup‘
--
ALTER TABLE ‘setup‘
ADD PRIMARY KEY (‘id‘);

--
-- Indexes for table ‘waveform‘
--
ALTER TABLE ‘waveform‘
ADD PRIMARY KEY (‘id‘),
ADD KEY ‘glitch_id‘ (‘glitch_id‘);

--
-- AUTO_INCREMENT for dumped tables

106

C.1. Database glitcher

--

--
-- AUTO_INCREMENT for table ‘glitch‘
--
ALTER TABLE ‘glitch‘
MODIFY ‘id‘ int(10) UNSIGNED NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=759308;

--
-- AUTO_INCREMENT for table ‘project‘
--
ALTER TABLE ‘project‘
MODIFY ‘id‘ int(11) UNSIGNED NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=6;

--
-- AUTO_INCREMENT for table ‘setup‘
--
ALTER TABLE ‘setup‘
MODIFY ‘id‘ int(10) UNSIGNED NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=76;

--
-- AUTO_INCREMENT for table ‘waveform‘
--
ALTER TABLE ‘waveform‘
MODIFY ‘id‘ int(10) UNSIGNED NOT NULL AUTO_INCREMENT;

--
-- Constraints for dumped tables
--

--
-- Constraints for table ‘glitch‘
--
ALTER TABLE ‘glitch‘
ADD CONSTRAINT ‘glitch_ibfk_1‘ FOREIGN KEY (‘project_id‘) REFERENCES ‘project‘ (‘id‘),
ADD CONSTRAINT ‘glitch_ibfk_2‘ FOREIGN KEY (‘setup_id‘) REFERENCES ‘setup‘ (‘id‘);

--
-- Constraints for table ‘waveform‘
--
ALTER TABLE ‘waveform‘
ADD CONSTRAINT ‘waveform_ibfk_1‘ FOREIGN KEY (‘glitch_id‘) REFERENCES ‘glitch‘ (‘id‘);

COMMIT;

/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

107

List of Figures

2.1 Cross Section of an n-type MOSFET . 6
2.2 Cross Section of a Floating-Gate MOSFET 7
2.3 CMOS Inverter . 7
2.4 A 4-bit Register [16] . 9
2.5 The Micro16 ALU [16] . 10
2.6 Micro16 ALU with Registers and Buses [16] 11
2.7 Micro16 Memory Connection [16] . 13
2.8 Micro16 ALU, Buses and Memory Connection [16] 14
2.9 Micro16 Clock Timing Diagram . 14
2.10 Complete Micro16 Architecture [16] . 16
2.11 Different Types of Semiconductor Memory . 17
2.12 Typical Memory Layout . 17
2.13 Circuit Diagram of an SRAM Cell, Built With Six MOSFETs [19] 18
2.14 Von Neumann Architecture . 22
2.15 Harvard Architecture . 22

3.1 Glitch in the Clock Signal . 28
3.2 Method to Create a Glitch in the Power Supply Line of a Target 29

4.1 Glitch Signal (Dotted Waveform) and Power Supply Line of a Target with
Inserted Glitch . 32

4.2 Comparison between Simulation A (solid) and Simulation B (dotted) 34
4.3 Extended Conventional Glitch Generation Method 35
4.4 Comparison between Simulation A (dotted), Simulation B (dot-dashed) and

Simulation C (solid) . 37
4.5 Comparison between Simulation A (dotted), Simulation B (dot-dashed) and

Simulation D (solid) . 37

5.1 NMOS-PMOS Circuit for the Second Design Approach. 40
5.2 NMOS circuit for the third design approach. 42
5.3 NMOS Design Approach Simulation: Glitch Signal (solid), Simulation E

(dotted) and Simulation F (dot-dashed) . 44
5.4 Schematic of the Prototype . 46
5.5 Schematic of the Inverted Adapter . 47

109

5.6 Schematic of the Normal Adapter . 47
5.7 Image of the Final Prototype . 48
5.8 Prototype Evaluation Test Setup . 49
5.9 Result of the Protoype Test with a GNDA of 0.0 V 49
5.10 Result of the Protoype Test with a GNDA of -6.0 V 49

6.1 Evaluation Test Setup . 51
6.2 Image of the ATmega328P Target . 52
6.3 Schematic of the ATmega328P Target . 53

7.1 Test Case: 1.1.1, Brownout: Not Activated, GNDA: 0.0 V, Success: 500 . . . 62
7.2 Test Case: 1.1.2, Brownout: Not Activated, GNDA: -2.0 V, Success: 27 . . . 62
7.3 Test Case: 1.1.3, Brownout: Not Activated, GNDA: -4.0 V, Success: 179 . . . 63
7.4 Test Case: 1.1.4, Brownout: Not Activated, GNDA: -6.0 V, Success: 88 . . . 63
7.5 Brownout: Not Activated, GNDA: -4.0 V, Offset: -41.2, Width: 4.5, Repeat:

5, VGLow
: 1.2 V, GSW idth: 7 ns, GW idth: 38 ns 65

7.6 Brownout: Not Activated, GNDA: 0.0 V, Offset: -40.8, Width: 5.65, Repeat:
1, VGLow

: 1.2 V, GSW idth: 8 ns, GW idth: 40 ns 65
7.7 Test Case: 1.2.1, Brownout: 2.7 V, GNDA: 0.0 V, Success: 1409 66
7.8 Test Case: 1.2.2, Brownout: 2.7 V, GNDA: -2.0 V, Success: 941 66
7.9 Test Case: 1.2.3, Brownout: 2.7 V, GNDA: -4.0 V, Success: 468 67
7.10 Test Case: 1.2.4, Brownout: 2.7 V, GNDA: -6.0 V, Success: 103 67
7.11 Brownout: 2.7 V, GNDA: -4.0 V, Offset: -40.6, Width: 4.15, Repeat: 2,

VGLow
: 1.75 V, GSW idth: 6 ns, GW idth: 38 ns 68

7.12 Brownout: 2.7 V, GNDA: 0.0 V, Offset: -39.0, Width: 5.65, Repeat: 1, VGLow
:

1.28 V, GSW idth: 8 ns, GW idth: 44 ns . 68
7.13 Test Case: 2.1.1, Brownout: Not Activated, GNDA: 0.0 V 70
7.14 Test Case: 2.1.2, Brownout: Not Activated, GNDA: -2.0 V 70
7.15 Test Case: 2.1.3, Brownout: Not Activated, GNDA: -4.0 V 71
7.16 Test Case: 2.1.4, Brownout: Not Activated, GNDA: -6.0 V 71
7.17 Brownout: Not Activated, GNDA: -6.0 V, Offset: 21.5, Width: 8.0, Repeat:

1, VGLow
: 2.75 V, GSW idth: 11 ns, GW idth: 305 ns 71

7.18 Brownout: Not Activated, GNDA: -2.0 V, Offset: 40.5, Width: 46.0, Repeat:
1, VGLow

: 1.35 V, GSW idth: 62 ns, GW idth: 350 ns 71
7.19 Test Case: 2.2.1, Brownout: 2.7 V, GNDA: 0.0 V 72
7.20 Test Case: 2.2.2, Brownout: 2.7 V, GNDA: -2.0 V 72
7.21 Test Case: 2.2.3, Brownout: 2.7 V, GNDA: -4.0 V 73
7.22 Test Case: 2.2.4, Brownout: 2.7 V, GNDA: -6.0 V 73
7.23 Brownout: 2.7 V, GNDA: -6.0 V, Offset: 23.0, Width: 8.0, Repeat: 1, VGLow

:
2.75 V, GSW idth: 11 ns, GW idth: 305 ns . 74

7.24 Brownout: 2.7 V, GNDA: -2.0 V, Offset: -49.0, Width: 49.0, Repeat: 1,
VGLow

: 0.95 V, GSW idth: 102 ns, GW idth: 370 ns 74
7.25 Test Case: 2.3.1, Brownout: 1.8 V, GNDA: 0.0 V 75
7.26 Test Case: 2.3.2, Brownout: 1.8 V, GNDA: -2.0 V 75

110

7.27 Test Case: 2.3.3, Brownout: 1.8 V, GNDA: -4.0 V 75
7.28 Test Case: 2.3.4, Brownout: 1.8 V, GNDA: -6.0 V 75
7.29 Brownout: 1.8 V, GNDA: -6.0 V, Offset: 23.0, Width: 8.0, Repeat: 1, VGLow

:
2.75 V, GSW idth: 11 ns, GW idth: 305 ns . 76

7.30 Brownout: 1.8 V, GNDA: -2.0 V, Offset: -49.0, Width: 46.5, Repeat: 1,
VGLow

: 1.15 V, GSW idth: 64 ns, GW idth: 355 ns 76

A.1 Front Side of the Voltage Fault Injection Hardware Prototype 81
A.2 Back Side of the Voltage Fault Injection Hardware Prototype 82
A.3 Front Side of the Voltage Fault Injection Hardware MOSFET Driver Adapters 82
A.4 Back Side of the Voltage Fault Injection Hardware MOSFET Driver Adapters 82
A.5 Left: Front Side of ATmega Target, Right: Back Side of ATmega Target . . . 83

List of Tables

2.1 CMOS Logic Levels for 5 V Operating Voltage [14] 8
2.2 CMOS Characteristics [14] . 8
2.3 Micro Instructions of the Micro16 ALU [16] 10

4.1 Components and Values used for the Conventional Method LTSpice Simula-
tions A and B . 34

4.2 Components and Values used for the Negative Voltage Fault Injection Method
Simulations C and D . 36

5.1 Components and Values used for the third Design Approach Simulations E
and F . 45

6.1 Test Cases for Evaluation 1 . 59
6.2 Test Cases for Evaluation 2 . 60

7.1 Test Cases with Deactivated Brownout Protection and without Decoupling
Capacitor . 62

7.2 Test Cases with 2.7 V Brownout Protection and without Decoupling Capacitor 65
7.3 Test Cases with 1.8 V Brownout Protection and without Decoupling Capacitor 69
7.4 Test Cases with Deactivated Brownout Protection and with 100 nF Decoupling

Capacitor . 69

111

7.5 Test Cases with 2.7 V Brownout Protection and with 100 nF Decoupling
Capacitor . 72

7.6 Test Cases with 1.8 V Brownout Protection and with 100 nF Decoupling
Capacitor . 74

112

Glossary

hardware security Hardware security deals with physical attacks on hardware and
their countermeasures. 1

security-by-obscurity Security-by-obscurity is the belief that a system of any sort can
be secure so long as nobody outside of its implementation group is allowed to find
out anything about its internal mechanisms. 2

113

Acronyms

ALU Arithmetic Logic Unit. 9–11, 13–15, 109, 111

ASCII American Standard Code for Information Interchange. 54, 56, 57

CISC Complex Instruction Set Computer. 21, 22

CMOS complementary metal-oxide-semiconductor. 6–9, 28

CSV Comma-separated values. 58

DRAM dynamic random-access memory. 17, 19, 20

EEPROM electrical erasable programmable ROM. 20

EPROM erasable programmable ROM. 19, 20

FET field-effect transistor. 6

FGMOS floating-gate MOSFET. 6, 7

FPGA Field Programmable Gate Array. 2

ISA instruction set architecture. 23

ISP in-system programming. 24

JTAG Joint Test Action Group. 24

LED Light-emitting diode. 53

MAR Memory Address Register. 12, 13, 15

MBR Memory Buffer Register. 12, 13, 15

MIC Micro Instruction Counter. 13, 15

115

MIR Micro Instruction Register. 13, 15

MOSFET metal–oxide–semiconductor field-effect transistor. 6–8, 18–20, 40–43, 45–48,
55, 82, 109, 111

MROM mask ROM. 19

NVRAM non-volatile random-access memory. 17, 20

PoR power-on reset. 20

PROM programmable ROM. 19

RISC Reduced Instruction Set Computer. 21

ROM read-only memory. 17, 19, 20

SPICE Simulation Program with Integrated Circuit Emphasis. 3, 33, 39, 43, 77

SRAM static random-access memory. 17, 18, 20

SWD Serial Wire Debug. 24

UART Universal Asynchronous Receiver Transmitter. 54

116

Bibliography

[1] Rob van der Meulen. Gartner Says 6.4 Billion Connected "Things" Will Be in Use
in 2016, Up 30 Percent From 2015, November 2015. accessed 26 September 2017,
http://www.gartner.com/newsroom/id/3165317.

[2] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The Sorcerer’s
Apprentice Guide to Fault Attacks. Proceedings of the IEEE, 94(2):370–382, 2006.

[3] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance of
Checking Cryptographic Protocols for Faults, pages 37–51. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1997.

[4] E. DeBusschere and M. McCambridge. Modern game console exploitation. Technical
report, Department of Computer Science, University of Arizona, 2012.

[5] Riscure. VC Glitcher Datasheet. accessed 26 September 2017,
https://www.riscure.com/uploads/2017/07/datasheet_
vcglitcher.pdf.

[6] Riscure. Glitch Amplifier Datasheet. accessed 26 September 2017,
https://www.riscure.com/uploads/2017/07/datasheet_
glitchamplifier.pdf.

[7] Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: An Open-Source
Platform for Hardware Embedded Security Research, pages 243–260. Springer Inter-
national Publishing, Cham, 2014.

[8] Sergei P. Skorobogatov. Copy Protection in Modern Microcontrollers. Technical
report, Security Group, Computer Laboratory, University of Cambridge, 2000.
accessed 26 September 2017,
http://www.cl.cam.ac.uk/~sps32/mcu_lock.html.

[9] Rafael Boix Carpi, Stjepan Picek, Lejla Batina, Federico Menarini, Domagoj
Jakobovic, and Marin Golub. Glitch It If You Can: Parameter Search Strate-
gies for Successful Fault Injection, pages 236–252. Springer International Publishing,
Cham, 2014.

117

http://www.gartner.com/newsroom/id/3165317
https://www.riscure.com/uploads/2017/07/datasheet_vcglitcher.pdf
https://www.riscure.com/uploads/2017/07/datasheet_vcglitcher.pdf
https://www.riscure.com/uploads/2017/07/datasheet_glitchamplifier.pdf
https://www.riscure.com/uploads/2017/07/datasheet_glitchamplifier.pdf
http://www.cl.cam.ac.uk/~sps32/mcu_lock.html

[10] L. Zussa, J. M. Dutertre, J. Clediere, and B. Robisson. Analysis of the fault injection
mechanism related to negative and positive power supply glitches using an on-chip
voltmeter. In 2014 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pages 130–135, May 2014.

[11] Stan Augarten. The Most Widely Used Computer on a Chip: The TMS 1000.
Houghton Mifflin, 1983.

[12] Atmel. ATtiny4 / ATtiny5 / ATtiny9 / ATtiny10 Datasheet. accessed 10 October
2017,
https://www.microchip.com/wwwproducts/en/ATtiny4.

[13] Leonhard Stiny. Aktive elektronische Bauelemente: Aufbau, Struktur, Wirkungsweise,
Eigenschaften und praktischer Einsatz diskreter und integrierter Halbleiter-Bauteile.
Springer Fachmedien Wiesbaden, 2016.

[14] Klaus Wüst. Mikroprozessortechnik: Grundlagen, Architekturen, Schaltungstechnik
und Betrieb von Mikroprozessoren und Mikrocontrollern. Vieweg+Teubner Verlag,
2011.

[15] D. Kahng and S. M. Sze. A Floating Gate and Its Application to Memory Devices.
Bell System Technical Journal, 46(6):1288–1295, 1967.

[16] Gerhard Helge Schildt, Daniela Kahn, Christopher Kruegel, and Christian Moerz.
Einführung in die Technische Informatik. Springer Vienna, 2005.

[17] Brian Matas and Christian DeSubercausau. Memory, 1997: Complete Coverage of
DRAM, Sram, EPROM, and Flash Memory IC’s. Integrated Circuit Engineering
Corp., Scottsdale, AZ, USA, 1997.

[18] Liu Jiang, Wang Xueqiang, ge Qin, Wu Dong, Zhang Zhigang, Pan Liyang, and Liu
Ming. A low-voltage sense amplifier for high-performance embedded flash memory.
31, 11 2010.

[19] Inductiveload. SRAM Cell (6 Transistors), January 2009. accessed 09 February
2018,
https://commons.wikimedia.org/wiki/File:SRAM_Cell_(6_
Transistors).svg.

[20] J.M. Daga, C Papaix, M Merandat, Stephane Ricard, G Medulla, J Guichaoua, and
D Auvergne. Design Techniques for EEPROMs Embedded in Portable Systems on
Chips. 20:68 – 75, 02 2003.

[21] IEEE. IEEE Standard Test Access Port and Boundary Scan Architecture. IEEE
Std 1149.1-2001, pages 1–212, July 2001.

118

https://www.microchip.com/wwwproducts/en/ATtiny4
https://commons.wikimedia.org/wiki/File:SRAM_Cell_(6_Transistors).svg
https://commons.wikimedia.org/wiki/File:SRAM_Cell_(6_Transistors).svg

[22] ARM. ARM Debug Interface Architecture Specification ADIv5.0 to ADIv5.2.
accessed 12 January 2018,
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
ihi0031c/index.html.

[23] Atmel. AVR042: AVR Hardware Design Considerations. accessed 12 January 2018,
http://ww1.microchip.com/downloads/en/appnotes/
atmel-2521-avr-hardware-design-considerations_
applicationnote_avr042.pdf.

[24] Timothy C. May and Murray H. Woods. A New Physical Mechanism for Soft Errors
in Dynamic Memories. In 16th International Reliability Physics Symposium, pages
33–40, April 1978.

[25] Oliver Kömmerling and Markus G. Kuhn. Design Principles for Tamper-resistant
Smartcard Processors. In Proceedings of the USENIX Workshop on Smartcard
Technology on USENIX Workshop on Smartcard Technology, WOST’99, pages 2–2,
Berkeley, CA, USA, 1999. USENIX Association.

[26] Ross Anderson and Markus Kuhn. Tamper Resistance: A Cautionary Note. In
Proceedings of the 2Nd Conference on Proceedings of the Second USENIX Workshop
on Electronic Commerce - Volume 2, WOEC’96, pages 1–1, Berkeley, CA, USA,
1996. USENIX Association.

[27] Ross J. Anderson and Markus G. Kuhn. Low Cost Attacks on Tamper Resistant
Devices. In Proceedings of the 5th International Workshop on Security Protocols,
pages 125–136, London, UK, UK, 1998. Springer-Verlag.

[28] J. Balasch, B. Gierlichs, and I. Verbauwhede. An In-depth and Black-box Charac-
terization of the Effects of Clock Glitches on 8-bit MCUs. In 2011 Workshop on
Fault Diagnosis and Tolerance in Cryptography, pages 105–114, Sept 2011.

[29] Hamid Choukri and Michael Tunstall. Round Reduction Using Faults, pages 13–24.
Fault Diagnosis and Tolerance in Cryptography – FDTC 2005, 2005.

[30] P. Tummeltshammer and A. Steininger. On the role of the power supply as an
entry for common cause faults. In 12th International Symposium on Design and
Diagnostics of Electronic Circuits Systems, pages 152–157, April 2009.

[31] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache. Fault Injection Attacks on
Cryptographic Devices: Theory, Practice, and Countermeasures. Proceedings of the
IEEE, 100(11):3056–3076, Nov 2012.

[32] A. Djellid-Ouar, G. Cathebras, and F. Bancel. Supply voltage glitches effects on
CMOS circuits. In International Conference on Design and Test of Integrated
Systems in Nanoscale Technology, 2006. DTIS 2006., pages 257–261, Sept 2006.

119

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031c/index.html
http://ww1.microchip.com/downloads/en/appnotes/atmel-2521-avr-hardware-design-considerations_applicationnote_avr042.pdf
http://ww1.microchip.com/downloads/en/appnotes/atmel-2521-avr-hardware-design-considerations_applicationnote_avr042.pdf
http://ww1.microchip.com/downloads/en/appnotes/atmel-2521-avr-hardware-design-considerations_applicationnote_avr042.pdf

[33] L. Zussa, J. M. Dutertre, J. Clédière, and A. Tria. Power supply glitch induced
faults on FPGA: An in-depth analysis of the injection mechanism. In 2013 IEEE
19th International On-Line Testing Symposium (IOLTS), pages 110–115, July 2013.

[34] NewAE Technology Inc. Tutorial A3 VCC Glitch Attacks. accessed 15 December
2017,
https://wiki.newae.com/Tutorial_A3_VCC_Glitch_Attacks.

[35] T. Korak and M. Hoefler. On the Effects of Clock and Power Supply Tampering on
Two Microcontroller Platforms. In 2014 Workshop on Fault Diagnosis and Tolerance
in Cryptography, pages 8–17, Sept 2014.

[36] K. Gomina, J. B. Rigaud, P. Gendrier, P. Candelier, and A. Tria. Power supply glitch
attacks: Design and evaluation of detection circuits. In 2014 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), pages 136–141, May
2014.

[37] Infineon. IRF7821 N-Channel HEXFET Power MOSFET Datasheet. accessed 15
December 2017,
http://www.infineon.com/dgdl/irf7821pbf.pdf?fileId=
5546d462533600a401535608d7f31d06.

[38] JEDEC. Interface Standard for Nominal 3 V/3.3 V Supply Digital Integrated
Circuits. JESD8C.01, 2007.

[39] Linear Technology. Micropower High Side MOSFET Drivers. Application Note 53,
1993. accessed 16 January 2018,
http://cds.linear.com/docs/en/application-note/an53.pdf.

[40] Infineon. BSD235C OptiMOS2 + OptiMOS-P 2 Small Signal Transistor. accessed
22 December 2017,
http://www.infineon.com/dgdl/Infineon-BSD235C-DS-v02_04-EN.
pdf?fileId=db3a30433580b371013585a2d0d53326.

[41] Linear Technology. LTC1693-5 High Speed SingleP-Channel MOSFET Driver
Datasheet. accessed 22 December 2017,
http://cds.linear.com/docs/en/datasheet/16935f.pdf.

[42] Linear Technology. LTC1693-3 High Speed Single/DualN-Channel MOSFET Driver
Datasheet. accessed 22 December 2017,
http://cds.linear.com/docs/en/datasheet/1693fa.pdf.

[43] Texas Instruments. LM5134 Single7.6-A Peak Current Low-SideGate Driver With a
PILOT Output. accessed 22 December 2016,
http://www.ti.com/lit/ds/symlink/lm5134.pdf.

120

https://wiki.newae.com/Tutorial_A3_VCC_Glitch_Attacks
http://www.infineon.com/dgdl/irf7821pbf.pdf?fileId=5546d462533600a401535608d7f31d06
http://www.infineon.com/dgdl/irf7821pbf.pdf?fileId=5546d462533600a401535608d7f31d06
http://cds.linear.com/docs/en/application-note/an53.pdf
http://www.infineon.com/dgdl/Infineon-BSD235C-DS-v02_04-EN.pdf?fileId=db3a30433580b371013585a2d0d53326
http://www.infineon.com/dgdl/Infineon-BSD235C-DS-v02_04-EN.pdf?fileId=db3a30433580b371013585a2d0d53326
http://cds.linear.com/docs/en/datasheet/16935f.pdf
http://cds.linear.com/docs/en/datasheet/1693fa.pdf
http://www.ti.com/lit/ds/symlink/lm5134.pdf

[44] Analog Devices. ADuM 1100 Datasheet. accessed 31 January 2018,
http://www.analog.com/media/en/technical-documentation/
data-sheets/ADUM1100.pdf.

[45] P. Horowitz and W. Hill. The Art of Electronics. Cambridge University Press, 2015.

[46] Edwin Hewitt and Robert E. Hewitt. The Gibbs-Wilbraham phenomenon: An
episode in fourier analysis. Archive for History of Exact Sciences, 21(2):129–160,
Jun 1979.

[47] Atmel. ATmega328P Datasheet, October 2016. accessed 11 February 2018,
http://www.microchip.com/wwwproducts/en/ATmega328p.

[48] Arduino. Arduino Uno Rev3, 2018. accessed 11 February 2018,
https://store.arduino.cc/arduino-uno-rev3.

[49] Flawed. Glitching 101: modifying code execution paths using only voltage, January
2017. accessed 11 February 2018,
https://flawed.net.nz/2017/01/29/.

[50] NewAE Technology Inc. CW308T-AVR Target, October 2017. accessed 11 February
2018,
https://wiki.newae.com/CW308T-AVR.

[51] NewAE Technology Inc. CW301 Multi-Target, March 2017. accessed 11 February
2018,
https://wiki.newae.com/CW301_Multi-Target.

[52] Brett Giller. Implementing Practical Electrical Glitching Attacks. Black Hat Europe
2015, November 2015. accessed 11 February 2018,
https://www.blackhat.com/docs/eu-15/materials/
eu-15-Giller-Implementing-Electrical-Glitching-Attacks.pdf.

[53] M. Popovich, E. G. Friedman, R. M. Secareanu, and O. L. Hartin. Efficient placement
of distributed on-chip decoupling capacitors in nanoscale ICs. In 2007 IEEE/ACM
International Conference on Computer-Aided Design, pages 811–816, Nov 2007.

[54] T. Charania, A. Opal, and M. Sachdev. Analysis and Design of On-Chip Decoupling
Capacitors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
21(4):648–658, April 2013.

121

http://www.analog.com/media/en/technical-documentation/data-sheets/ADUM1100.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADUM1100.pdf
http://www.microchip.com/wwwproducts/en/ATmega328p
https://store.arduino.cc/arduino-uno-rev3
https://flawed.net.nz/2017/01/29/
https://wiki.newae.com/CW308T-AVR
https://wiki.newae.com/CW301_Multi-Target
https://www.blackhat.com/docs/eu-15/materials/eu-15-Giller-Implementing-Electrical-Glitching-Attacks.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Giller-Implementing-Electrical-Glitching-Attacks.pdf

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	State of the Art
	Problem Statement
	Methodology
	Outline

	Microcontrollers
	Overview
	Semiconductors
	MOSFET
	Floating-Gate MOSFET
	CMOS

	Components
	Processor Core
	Memory
	Other Features

	Architectures
	Complexity of Instruction Set
	Linkage of the Processor and Data Memory

	Software Development
	Programming
	Download
	Debugging

	Protection Mechanisms

	Fault Injection Attacks
	Clock Glitching
	Voltage Glitching

	Negative Voltage Fault Injection Attacks
	Basic Terms of Voltage Fault Injection Attacks
	Limitations of Conventional Voltage Fault Injection Attacks
	Expected Results of Negative Voltage Fault Injection Attacks

	Negative Voltage Fault Injection Hardware
	Hardware Requirements
	Design Approaches
	Design Approach 1: Extended Conventional Circuit
	Design Approach 2: NMOS-PMOS circuit
	Design Approach 3: NMOS circuit
	Selection of Design Approach

	Implementation of Prototype
	Evaluation of Prototype

	Evaluation
	Test Setup
	Target
	Voltage Fault Injection Hardware Prototype
	ChipWhisperer
	Digital Storage Oscilloscope
	PC

	Evaluation 1: ATmega Target without Decoupling Capacitor
	Evaluation 2: ATmega Target with Decoupling Capacitor

	Results
	Evaluation 1: ATmega Target without Decoupling Capacitor
	Deactivated Brownout Protection
	Brownout: 2.7 Volt
	Brownout: 1.8 Volt

	Evaluation 2: ATmega Target with Decoupling Capacitor
	Deactivated Brownout Protection
	Brownout: 2.7 Volt
	Brownout: 1.8 Volt

	Summary and Conclusion
	Further Work
	Printed Circuit Boards
	Voltage Fault Injection Hardware Prototype
	ATmega Target

	Source Code
	Evaluation Software
	capture.py
	database.py
	models.py
	cwuserscript.py
	oscilloscope.py

	Glitch Software
	glitch.py

	Plot Software 2D
	plot2d.py

	Plot Software 3D
	plot3d.py

	Oscilloscope to CSV
	osci2csv.py

	ATmega328P Target Firmware
	main.c

	MySQL Database
	Database glitcher

	List of Figures
	List of Tables
	Glossary
	Acronyms
	Bibliography

