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Abstract

Over the years, more and more buildings got equipped with a building automation system
(BAS) which provides the ability to automate building services, like heating, cooling,
ventilation, air conditioning, shading, lighting, alarming, safety and security systems.
Furthermore, an additional aim of a BAS is to optimize such services automatically.
Such optimizations can have different purposes, e.g., to make the building more energy
efficient, raise the comfort of the users, or just to make them more maintainable. For most
optimization tasks, it is essential to know the future behavior of a building. Forecasts
of different sensors in the building can generate this knowledge. Therefore, this thesis
evaluated different algorithms to forecast such sensor data. The algorithms under
investigation are autoregressive integrated moving average (ARIMA), artificial neural
network (ANN) and support vector machine (SVM). The evaluation was divided into
five categories related to different types of sensors in a building. These types of sensors
were electricity, district heating, humidity, temperature, and photovoltaic production.
Furthermore, the algorithms were evaluated at different seasons to ensure the accuracy of
the algorithms throughout the year. This approach ended in a comprehensive performance
evaluation where the ANN algorithm was superior to the others. Finally, the ANN
algorithm with its elaborated network structure was implemented in a JAVA library for
further development and reuse.
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Kurzfassung

Im Laufe der Jahre wurden immer mehr Gebäude mit einem Gebäudeautomationssystem
ausgestattet. Dieses automatisiert verschiedenste Gebäudedienste, wie Heizung, Kühlung,
Lüftung, Klimatisierung, Beschattung, Beleuchtung, Alarmierung und Sicherheitssysteme.
Darüber hinaus ist ein weiteres Ziel des Gebäudeautomationssystems, solche Dienste
automatisch zu optimieren. Optimierungen können verschiedene Zwecke haben, z.B. um
das Gebäude energieeffizienter zu machen, den Komfort der Nutzer zu erhöhen oder
einfach nur um es wartungsfreundlicher zu machen. Für die meisten Optimierungsaufga-
ben ist es unerlässlich, das zukünftige Verhalten eines Gebäudes zu kennen. Prognosen
verschiedener Sensoren im Gebäude können dieses Wissen generieren. Daher hat die-
se Arbeit verschiedene Algorithmen zur Vorhersage solcher Sensordaten evaluiert. Die
untersuchten Algorithmen waren Autoregressive Integrated Moving Average (ARIMA),
Artificial Neural Network (ANN) und Support Vector Machine (SVM). Die Bewertung
wurde in fünf Kategorien eingeteilt, die sich auf verschiedene Arten von Sensoren im
Gebäude beziehen. Diese Arten von Sensoren waren Elektrizität, Fernwärme, Feuchtigkeit,
Temperatur und Photovoltaik-Produktion. Darüber hinaus wurden die Algorithmen zu
verschiedenen Jahreszeiten ausgewertet, um die Genauigkeit der Algorithmen über das
ganze Jahr zu untersuchen. Die Auswertung endete in einer umfassenden Leistungsbe-
wertung, bei der der ANN-Algorithmus den anderen überlegen war. Schließlich wurde
der ANN-Algorithmus mit der erarbeiteten Netzwerkstruktur in einer JAVA-Bibliothek
zur weiteren Entwicklung und Wiederverwendung implementiert.
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CHAPTER 1
Introduction

1.1 Motivation

The number of buildings equipped with automation systems increased in the past few
years. Apart from the positive aspects of this development, e.g., higher user comfort or
easier monitoring, there is an inherent problem with the growing amount of generated
sensor data. Due to the complexity of such systems, most sensor data are not evaluated
or even used, neither are the connections and dependencies analyzed and used to optimize
building efficiency. However, many statistical or economic evaluations can be performed
on these data, like energy performance evaluation, cost estimation, or failure analysis.
This results in an unused potential, where historical data can be used for trend estimation,
to predict future failures of devices, or validation of taken actions. Also, the prediction
of sensor data, so-called forecasting, is an important issue in many decision-making
applications or planning processes. Thereby, forecasts of sensor data can be used by
an automation and management system to react to upcoming events. For example, the
prior knowledge of the temperature behavior can be used to optimize the control loop of
a heating or cooling system to achieve less temperature overshooting or undershooting
compared to the setpoint. Furthermore, forecasts can be used to generate schedules for
task execution. Prior knowledge of building process behavior is essential for demand-side
management as cost-intensive tasks can be scheduled and optimized to reduce energy
costs or to minimize the risk of an overload in the grid. In general, data forecasts can
be used in a building automation system (BAS) to better satisfy comfort needs of the
users and inhabitants while optimizing the building efficiency. However, such forecasts
are very complex and not always straightforward. The complexity is a result of the
different configurations of buildings. For each building, a prediction model is generated
and actively maintained in order to react to changes in the process behavior. Experts
are needed to generate and maintain such a model, which is expensive and error-prone.
In this context, the focus of this thesis is the use of historical data to generate reliable
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1. Introduction

forecasts automatically, to limit the manual effort.

1.2 Problem statement
Modern buildings, especially in the commercial sector, are more and more equipped with
a BAS. Such a system provides the ability to control and monitor building services like
heating, cooling, ventilation, air conditioning, shading, lighting, alarming, safety, and
security systems [1]. With the growing amount of photovoltaic power, battery storage,
and electrical powered transport vehicles, new tasks arise for the BAS.

One major task is named energy demand management or demand-side management.
The concept of demand-side management is used by the electricity industry for years to
shift the time of energy consumption [2]. There are several techniques to achieve this
like, e.g., Peak Clipping, Valley Filling, or Load Shifting [2]. Possible implementations of
these techniques are the Market Demand Response and Physical Demand Response [3].
Market Demand Response tries to control the energy consumption by variable prices while
Physical Demand Response provides direct emergency signals. Therefore, the energy
market is changing from a rigid price model to variable prices [4]. This means periods
with high demand are getting more expensive than periods with less or no demand. An
example for high demand is, in the afternoon when many people come home and would
like to charge their electric cars at the same time. Combined with renewable energies
like sun or wind, there are also situations where a lot of sun or wind power is available,
but the demand is stable, and thereby the energy gets cheaper. In the same way, as the
market is changing, also a BAS has to change. This means, an efficient BAS will take
future events like sunshine, wind or changing prices into account. Therefore a BAS can
store data, so that any command, event, or state transition of a device can be recorded
in a temporary or permanent way [1]. Sensor data like energy consumption, temperature,
humidity, or CO2 can easily be stored. After a period the recorded data forms a database.
Such a database can be used by experts to improve or evaluate the efficiency of a building
by discovering an unwanted or unintended behavior of the BAS. Depending on the
experience of the expert, decisions can be optimal or even counterproductive.

By further development, such experts could be replaced in the future by an optimiza-
tion service within the BAS. Such a service tries to make an optimal schedule for every
controllable device by estimating, for example, the user behavior, energy demand, weather
conditions, or solar radiation. Such estimations are done by forecasts. Similar to the
experts, also the optimization service uses the recorded data as a database. Depending on
the length of a forecast, there is a distinction between short-term and long-term forecasts.
Usually, a forecast is called short-term if the forecast period is bounded up to months
and long-term for periods of years [5]. Within this thesis, only short-term forecasts are
of interest, because they are suitable for operations management [5].

The focus of this thesis is to determine which algorithms are capable of producing
reliable forecasts based on sensor data in a BAS. For this purpose, historical data
records on energy and heat consumption, photovoltaic production, indoor and outdoor
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1.3. Aim of this work

temperature, as well as indoor and outdoor humidity are used. For these sensors, a
forecast of one week ahead should provide a reasonable basis for any optimization service.
To work out a meaningful answer to this problem statement, several minor questions
have to be answered:

• Do sensors correlate with others in the same building?
• Can sensor correlation data enhance the forecast?
• Which forecasting methods are appropriate?

1.3 Aim of this work

The primary objective of this thesis is to compare the existing approaches autoregressive
integrated moving average (ARIMA), artificial neural network (ANN), and support
vector machine (SVM) to develop a system for reliable short-term forecasts of energy
and heat consumption, photovoltaic production, and temperature and humidity behavior
for applications in the field of building automation. To get a better understanding of the
relationship between different sensors and time intervals the correlation and dependencies
are analyzed and the outcomes are used to improve the forecasts. Moreover, trends and
seasonality are identified and considered by the forecast. Irregularities and wrong data
values are corrected or interpolated. It should be possible to forecast the data up to one
week with a granularity of one hour. The performance of the system is analyzed by the
use of the following error metrics: mean absolute error (MAE), symmetric mean absolute
percentage error (SMAPE), mean absolute scaled error (MASE). The approach with the
best performance is implemented in JAVA to provide an open API for further use.

The overall aim is to provide an approach were the operator do not need to know
the building characteristics or the user behavior to forecast the mentioned sensors. Such
forecasts should also be used as inputs for fully automated optimization services to, e.g.,
reduce the energy costs or improve the comfort within the building.

1.4 Methodological approach

The methodological approach to achieve the expected result contains the following steps:

First, an extensive literature review of currently available technologies to predict
sensor data will be performed. Following approaches are significant: linear regression
models, statistical methods like the ARIMA model, or machine learning methods like
ANNs and SVMs. In particular, the combination of methods should be intensively
reviewed regarding mutual effects and benefits.

As a second step, the test data should be analyzed to find dependencies between
different sensors, detect trends and seasonality. One primary task will be to determine
whether the underlying statistical process is stationary or not. Moreover, it will be
explored how to divide the provided data into a training and test set to prevent underfitting
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1. Introduction

or overfitting of the trained model. In the case of ANN and SVM, it should be checked if
a continuous learning algorithm has an advantage over a one-time training algorithm.

Following the literature review and preparation of the test data, the most promising
forecast models, i.e., ARIMA, ANN, and SVM, will be implemented and tested with
MATLAB [6]. An iterative approach will be used, to find the best parameters for each
model. After every iteration, the MAE, SMAPE, and MASE of the model will be
calculated and compared with the previous iteration. According to the outcome, the
parameters will be adjusted, so that the performance of each model increases with every
iteration. This process will be repeated with various partitions between the training
set and test set. Therefore, the sample data set gets partitioned into a training and
test set, whereas various partitions, will be evaluated. In the end, it results in extensive
cross-validation.

To evaluate the individual methods, following performance measures will be used:
MAE, SMAPE, and MASE. The MAE is simple to calculate, but it has a major dis-
advantage as it is not free of scale. This means that it is impossible to compare the
performance of a temperature forecast with a power consumption forecast. For this case,
there are scale-free performance measures, like SMAPE or MASE. The latter will be used
to compare the performance of a selected forecast model with different time series.

After the evaluation of the MATLAB models, the best performing method will be
implemented in JAVA. The purpose is to provide an open API for further applications.

1.5 Related work
In the research area of forecasting the following three methods are mainly used: ARIMA,
ANN, and SVM. The ARIMA method is often used in statistics or econometrics to
predict sales numbers and other interesting indicators in business life. Further research
showed that this method is also useful in the field of time series analysis. The ANN
and the SVM method is a machine learning approach which is widely used for pattern
recognition tasks. Besides the classification tasks it can also solve regression problems.
The following paragraph summarizes related work where these three algorithms are used
to predict sensors in the field of building automation, like the energy consumption or the
cooling capacity.

Sapankevych and Sankar [7] published a survey on SVMs in the field of time series
prediction. “The underlying motivation for using SVMs is the ability of this methodology
to accurately forecast time series data when the underlying system processes are typically
nonlinear, non-stationary and not defined a-priori” [7, p. 25]. The main challenges are to
select the right kernel function, the right parameters and the tradeoff between complexity
and technical advantages. They concluded that SVMs provide a good method to predict
and forecast time series data for a wide range of applications.

Lixing, Jinhu, Xuemei, et al. [8] discussed a one-hour ahead load forecasting approach
for building cooling using a SVM. Therefore they used the ant colony algorithm to optimize
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three parameters of the support vector regression (SVR), namely the regularization term
C, the loss function ε and the kernel function ϕ.

Son and Kim [9] used a SVM to provide a precise model to forecast the electricity
demand in the residential sector. They used fuzzy-rough feature selection with particle
swarm optimization to find, 10 out of 19 important variables that may influence the
electricity demand. After that, they used the 10 variables as input for the SVM. The
benefit of this approach is that the feature selection is unsupervised.

Xuemei, Lixing, Yuyuan, et al. [10] built a hybrid model to forecast the building
cooling load. They used an SVM and ARIMA model to improve the accuracy. They
started with building an ARIMA model. In the next step, they fed the residual error
into an SVM to improve the accuracy of the ARIMA model. Basically, they tried to
estimate the prediction error and used it to improve the forecast. This method resulted
in an improvement over the individual algorithms. Qu, Chen, and Liu [11] also described
a hybrid forecast model to predict the building cooling load. Instead of using an SVM,
they used an ANN with a radial basis transfer function.

Jinhu, Xuemei, Lixing, et al. [12] used the principle component analysis to transform
the high dimensional data to a lower dimension and fed it to a weighted SVM to predict the
cooling load of a building. They concluded that the approach has a better generalization
then a regular SVM.

Hunter, Yu, Pukish III, et al. [13] showed the difficulty in selecting the right neural
network architecture, i.e., multilayer perceptron (MLP), bridged multilayer perceptron
(BMLP), fully connected cascade (FCC), and selecting the proper number of neurons.
Furthermore, they investigated how many patterns and the which training algorithm,
i.e., error backpropagation algorithm (EBP), Levenberg-Marquardt algorithm (LM), or
neuron by neuron (NBN), should be used for training.

Escrivá-Escrivá, Álvarez-Bel, Roldán-Blay, et al. [14] presented “an artificial neural
network (ANN) method for short-term prediction of total power consumption in buildings
with several independent processes” [14, p. 3112]. The used input features for the neural
network were the maximum, minimum, and average temperature of the day of prediction
and the average temperature of the day before.

Mandal, Senjyu, Urasaki, et al. [15] presented a method for short-term load forecasting
using an ANN combined with a similar days approach. The forecast accuracy was
evaluated in different seasons, i.e., summer, winter, spring, and autumn. They concluded
that the ANN-based approach provides a reliable forecast for several-hour-ahead load
forecasts.

Cui and Peng [16] presented an improved autoregressive integrated moving average
with exogenous inputs (ARIMAX) model which uses the temperature data to predict the
short-term city energy load. The approach was evaluated against an autoregressive (AR)
model of order 1, an autoregressive moving average (ARMA) model of order (3,2), and
an ANN. For the evaluation, several days in August were predicted.
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1. Introduction

1.6 Structure of this work
Chapter 2 starts with a general introduction of basic definitions for time series analysis.
The definitions for the terms time series, stationary, trend, seasonality, and correlation
are presented.

Chapter 3 introduces linear models for time series forecasting. It starts with a short
historical introduction followed by presenting the AR and moving average (MA) model.
The chapter ends with the ARIMA model by Box, Jenkins, Reinsel, et al. [17].

Chapter 4 presents non-linear models, especially ANN and SVM. It starts with
defining basic terms, like supervised and unsupervised learning, followed by the sections,
Neural Network Section 4.1 and Support Vector Machine Section 4.2. Section 4.1 begins
with a summary and the basic definition of a perceptron followed by the feedforward-
network and recurrent-network. For every network, an appropriate training algorithm is
presented. Section 4.2 starts with a brief introduction followed by the definition of an
SVM for a linear decision decision boundary. Furthermore, the definition is enhanced by
the kernel trick to solve arbitrary problems. It also describes how to find the optimal
weight vector.

Chapter 5 deals with the analysis of historical data. It describes in Section 5.1 the
used datasets and defines five different types of time series. It starts with presenting
ways to preprocess the historical data to handle incorrect data, trends, and seasonality.
Furthermore in Section 5.2, different sensors in the same building are analyzed if there
exists a correlation between them. In Section 5.3, the reader gets a deep introduction
into feature extraction and generation of ANN and SVR.

After the general theory presented in the previous chapters, Chapter 6 presents the
modifications and adjustments made to the state-of-the-art methods, i.e., ARIMA, ANN,
and SVM to forecast sensor data. Furthermore, the performance of these methods is
evaluated by the presented error metrics MAE, SMAPE, and MASE. At the end of the
chapter, the best forecast method gets implemented in JAVA.

The thesis ends with a brief summary of the presented approach, in Chapter 7. It
further presents possible future extensions or optimizations to the presented approach.
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CHAPTER 2
Definitions for time series analysis

Time series analysis investigates the behavior of a phenomenon over time. Such a
phenomenon can be, for example, the number of monthly sales, daily temperature, or
hourly electricity consumption. The mathematical description of such a phenomenon is
called a random process x. All random processes have a common property: They are
measurable over time. This property leads us to the definition of the principal term time
series.

Definition (time series). A time series is a discrete ordered set of samples, indexed by
time and taken from a random process [5] [17].

Equation 2.1 presents a more mathematical notation of a time series, where x denotes
the time series, and xt is a single observation at time t.

x = {x0, x1, · · · , xt}, t ∈ Z (2.1)

Usually, each sample taken from a random process is equally distributed over time,
e.g., every minute, every 10 minutes, or every hour. If this is not the case, preprocessing of
the data is required (see Chapter 5 for more details). For further analysis and simplicity,
every sample is taken in an equal time interval. Figure 2.1 illustrates a time series of the
outdoor temperature of a building.

Because of natural law, it is impossible to capture samples in the future. Thus, the
time t of the samples is bounded up to the current time of observation. Any sample
predicted beyond the time t up to time t+ l is called forecast [5]. The time interval from
t to t+ l is called the forecast horizon [5] or lead time [17], where l ∈ Z.

Mathematical models can be used to get a better understanding of a time series.
Some models can be derived from physical laws so that the output is always deterministic.
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Figure 2.1: Sample time series

In many cases, it is too complicated to get a perfect deterministic model, like for the
ambient temperature behavior. There are numerous factors, which would affect the
model. Thus, it is impossible to estimate all of these factors. However, it is possible to
calculate the probability that future values are within specific limits; these models are
called stochastic models [17].

Furthermore, we have to distinguish between a stochastic model and a random
process. The stochastic model is the precise description of the probability structure of
an observed random process and a time series is one random realization of a random
process. Depending on the statistical properties of a random process it can be stationary
or non-stationary. For common stochastic models, a mandatory requirement is that the
underlying process is at least wide-sense stationary.

Definition (stationary). Stationary means that the properties of a random process are
unaffected by a change in the time origin. Furthermore, the joint probability distribution
is the same for any chosen interval in time. A random process is wide-sense stationary if
the the mean is constant and autocorrelation depends only on the time lag.[5] [17]

In reality, many time series reveals some patterns, such as in Figure 2.2. Such
patterns violate the conditions for stationary processes. Figure 2.2 visualizes the power
consumption of a building for two weeks. The data was recorded by an electricity meter.
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Without any mathematical calculation, it is obvious that the underlying random process
is not stationary. As the time series is increasing over time, the mean cannot be constant,
which violates the definition of a stationary process. There are two phenomena visible in
Figure 2.2. First, the time series has a trend and second it has a seasonal component.
The trend component is a result of the way how electricity consumption is metered. It
is the cumulated sum of the energy used up to a point in time. Therefore the number
is increasing. For further information, how to detrend a time series, see Chapter 5.
Furthermore, there are different seasonality patterns for weekend and weekday, or day
and night visible.

Definition (trend). In this case, a trend means there exists an underlying, mostly linear,
component in the time series, which defines a direction of further development.

Definition (seasonality). The term seasonality describes a recurring pattern after a
certain period in the time series, for example, every hour or every day.
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Figure 2.2: Illustration of a time series with trend and seasonality

The similarity between two random processes can be measured by the cross-correlation.
It is essential to know the random model to calculate the cross-correlation. In many
cases, the random process is unknown, and only a time series is available. Instead of
using the cross-correlation, the available time series can be used to calculate a sample
cross-correlation. For the sake of simplicity, the term cross-correlation is used for both,
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2. Definitions for time series analysis

cross-correlation and sample cross-correlation. The meaning should be evident from the
context.

Definition (correlation coefficient). The correlation coefficient (also known as Pearson
correlation coefficient) rxy is a metric to rate the similarity between two random processes.
The value of the correlation coefficient is between −1 and 1, where −1 indicates a negative
correlation, 0 no correlation, and +1 a strong correlation.

The co-variance cxy of two random processes x and y divided by the standard deviation
sx of x times the standard deviation sy of y is the correlation coefficient rxy. Equation
2.2 shows the sample co-variance, where T is the number of observations, and x̄, ȳ are
the sample means of x respectively y. The standard deviation is the square root of the
variance, see Equations 2.3 and 2.4. Equation 2.5 shows the sample cross-correlation.

cxy = 1
T − 1

T∑
t=1

(xt − x̄)(yt − ȳ) (2.2)

sx =
√
cxx =

√
V ar(x) (2.3)

sy = √cyy =
√
V ar(y) (2.4)

rxy = cxy
sxsy

(2.5)

In most cases, it is of particular interest to see how a time series correlate with another
time series shifted in time. Therefore the lag variable k is introduced, which represents
the time offset. The Equations 2.2 and 2.5 can be extended with the lag variable to the
Equations 2.6 and 2.7. Equation 2.7 is called the cross-correlation.

cxy(k) =
{ 1
T−1

∑T−k
t=1 (xt − x̄)(yt+k − ȳ), k = 0, 1, 2, · · · ,K

1
T−1

∑T+k
t=1 (xt − x̄)(yt−k − ȳ), k = −1,−2, · · · ,−K

(2.6)

rxy(k) = cxy(k)
sxsy

,−T ≤ k ≤ T (2.7)

Definition (cross-correlation). The cross-correlation measures the similarity between
two random processes at different time offsets (lags). The result is a set of correlation
coefficients for every lag k ∈ Z and −T ≤ k ≤ T .

10



On the other hand, the autocorrelation is used to identify the seasonality in a time
series. The autocorrelation is a particular case of the cross-correlation, where a single
random process is correlated with itself at different lags k ∈ N0. The autocorrelation is
the covariance cx(k) at lag k of a random process x divided by the variance of x. Equation
2.8 shows the sample autocorrelation. Which provides a meaningful output if there are
at least 50 observations in the time series. The lag should be calculated up to T/4 [5].

rx(k) = cx(k)
s2
x

(2.8)

Definition (autocorrelation). The autocorrelation measures the similarity between a
random process and itself shifted at different time offsets (lags).

The autocorrelation can be used to identify the seasonality and to estimate the
recurring time span. Figure 2.3 shows the autocorrelation of the trend and seasonality
sample of Figure 2.2. An alternating pattern with precisely 24 lags between positive peak
correlations is visible. This interval represents the 24 hours of a day and is caused by the
hourly samples of the time series. Furthermore, every week (i.e., 168 lags) there is a high
correlation, marked by the red square, which is in the following referred to as a weekly
pattern. A weekly pattern means that successive weeks correlate with each other.
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Figure 2.3: Autocorrelation of the trend and seasonality sample in Figure 2.2.
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2. Definitions for time series analysis

Definition (partial autocorrelation). The partial autocorrelation is the conditional
autocorrelation adjusted by the variables between xt and xt+k. [17]

12



CHAPTER 3
Linear models

As by Box, Jenkins, Reinsel, et al. [17] presented, linear stationary and non-stationary
models can be used to represent a random process mathematically. In the following
sections, the linear filter, AR, MA, ARMA, and ARIMA model are presented. These
models are used in the following books and papers to predict the future of a time series:
Cui and Peng [16] analyzed the relationship between temperature and electricity demand
for the case of short-term forecasting. They used an improved ARIMAX model for
predicting the short-term electric load under the influence of some exogenous inputs.
They discovered an improvement over traditional time series models. Andrews, Dean,
Swain, et al. [18] used the ARIMA and ARIMAX model to predict the long-term disability
application rates in the public and private sectors. They discovered that both ARIMA
and ARIMAX have the ability to deliver accurate four quarter forecasts.

The following simple operators are defined to be consistent with the literature [5] [17].
This operators are extensivly employed by Box, Jenkins, Reinsel, et al. [17] for linear
filter, AR, MA, ARMA, and ARIMA.

Definition (simple operators). Backward shift operator B : Bxt = xt−1, hence Bmxt =
xt−m. Forward shift operator F : F = B−1, Fxt = xt+1, hence Fmxt = xt+m. Backward
difference operator ∇, ∇xt = xt − xt−1 = (1−B)xt. [17]

3.1 Linear filter model

The linear filter model was introduced by Yule [19]. The basic idea is that every time
series x can be modeled through a transformed white noise time series a. Figure 3.1
illustrates the transformation. White noise is a random process generated through a
series of independent shocks with an identical distribution. In general, it is normally
distributed with zero mean and variance σ2

a. The transformation is realized with a linear

13



3. Linear models

filter Ψ(B). Therefore the current white noise value at is added to a weighted sum of all
previous noise values (see Equation 3.1).

Linear filter

Ψ(B)
White noise

at xt

Figure 3.1: Linear filter model, adapted from [17, p. 8]

xt = µ+ at + Ψ1at−1 + Ψ2at−2 + · · ·

= µ+ at +
t∑
i=1

Ψiat−i

= µ+ Ψ(B)at (3.1)

In Equation 3.1 µ represents the level of the random process x and Ψ(B) is the
transfer function of the presented filter [17].

Ψ(B) = 1 + Ψ1B + Ψ2B
2 + · · · (3.2)

The set of weights Ψ1,Ψ2, · · · can either be finite or infinite. The linear filter is
stable if the weights are finite, or infinite and the sum of the absolute weights is less
than infinite (see Equation 3.3). If the linear filter is stable then the random process x
is weakly stationary. Based on this definition, some essential stochastic models can be
derived, like the AR or MA model.

∞∑
i=0
|Ψi| <∞ (3.3)

3.2 Autoregressive model
An important stochastic model to represent a random process is the autoregressive (AR)
model. It is a special case of a linear filter. Assuming that the values are equally sampled
over time t, t−1, t−2, · · · , then the current value xt is represented by a linear combination
of previous values xt−1, xt−2, · · · , xt−p and a random shock at [17, p. 9]. Equation 3.4
represents the mathematical definition of an AR model, whereas µ represents the level. If
a random process corresponds to this model, it is called an AR process of order p. Such
a model is very flexible depending on the choice of the weights ψ [20].

xt = µ+ at + ψ1xt−1 + ψ2xt−2 + · · ·+ ψpxt−p (3.4)

14



3.3. Moving average model

For further simplicity, the random process is centered x̃t = xt − µ. Thus, Equation
3.4 is simplified to

x̃t = at +
p∑
i=1

ψix̃t−i (3.5)

x̃t −
p∑
i=1

ψix̃t−i = at (3.6)

x̃t − ψ1x̃t−1 − ψ2x̃t−2 − · · · − ψpx̃t−p = at (3.7)
B0x̃t − ψ1B

1x̃t − ψ2B
2x̃t − · · · − ψpBpx̃t = at (3.8)

After rearranging Equation 3.5 and using the backward shift operator the AR transfer
function ψ(B) is defined as follows

ψ(B) = 1− ψ1B − ψ2B
2 − · · · − ψpBp (3.9)

So that Equation 3.8 can be simplified to

ψ(B)x̃t = at (3.10)

The AR model has p + 2 unknown parameters, µ, ψ1, ψ2, · · · , ψp, σ2
a, which can be

estimated from a time series [17]. The short notation for AR model of order p is AR(p).
An AR model of order p can be stationary or non-stationary. It is stationary if the roots
of ψ(B), ψ(B) = 0, are greater than 1 in absolute value, this means that all roots lie
outside the unit circle. The partial autocorrelation is used to estimate the order p of the
AR model. It measures the linear relationship between a random variable xt and xt+k by
eliminating the linear dependence of the intermediate variables.

Figure 3.2 visualizes an example of an AR process of order 1 with the associated partial
autocorrelation diagram. Typical for an AR process is that the partial autocorrelation
ideally cuts off to 0 after p lags. In a real-world application the AR time series will be
near 0 and within the confidence interval (black dashed lines) after p lags.

3.3 Moving average model
Similar to the AR model, the moving average (MA) model is an important model to
describe a random process. Unlike the AR model, the MA model is a linear combination
of a finite number of random shocks at,∀t ∈ Z, see Equation 3.11.

x̃t = at − θ1at−1 − θ2at−2 − · · · − θqat−q (3.11)
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3. Linear models
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Figure 3.2: Autocorrelation and partial autocorrelation functions for the realizations of
an AR time series, xt = 40 + at + 0.8xt−1, σ2

a = 2

A random process is called an MA process of order q if it can be represented by
Equation 3.11. Every MA process is stationary because it is the sum of a finite number q
of stationary white noise processes at.

θ(B) = 1− θ1B − θ2B
2 − · · · − θqBq (3.12)

Equation 3.12 defines the MA transfer function θ(B), so that Equation 3.11 can be
simplified to

x̃t = θ(B)at (3.13)

In order to solve the Equation 3.13, there are q+2 unknown parameters, µ, θ1, θ2, · · · , σ2
a

, to estimate [17]. As in the AR, model these parameters can be estimated from a real-
ization of the MA process. The short notation for a MA model with order q is MA(q).
For estimating the order q of the MA model, the autocorrelation can be used. In an
MA process, the autocorrelation ideally cuts off to 0 after q lags. Figure 3.3 visualizes
an MA(1) process. In a real-world application, the MA time series will be near 0 and
within the confidence interval (black dashed lines) after q lags.
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3.4. Autoregressive moving average model
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Figure 3.3: Autocorrelation and partial autocorrelation functions for the realizations of a
MA time series, xt = 40− at − 0.8at−1, σ2

a = 2

3.4 Autoregressive moving average model
Many random processes in the real world do not strictly correspond to either AR or MA
models, but they are more or less a combination of both models. Equation 3.14 shows
the combined model, which is also called the autoregressive moving average (ARMA)
model.

x̃t = ψ1x̃t−1 + ψ2x̃t−2 + · · ·+ ψpx̃t−p + at − θ1at−1 − θ2at−2 − · · · − θqat−q (3.14)

Such a model is well suited to model nearly every stationary process in the real world,
with p and q not greater than 2 [17]. Simplifying Equation 3.14 with the use of 3.10 and
3.13 leads to

ψ(B)x̃t = θ(B)at (3.15)

The number of unknown parameters is the sum of unknown parameters of the AR
and MA model, so that p+ q+ 2 unknown parameters, µ, ψ1, · · · , ψp, θ1, · · · , θq, σ2

a, needs
to be estimated. The short notation for a ARMA model with order (p, q) is ARMA(p, q).
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3. Linear models

An ARMA model can be transformed to an AR or MA model by either setting q = 0 or
p = 0.

3.5 Autoregressive integrated moving average model
As mentioned in Section 3.4, the ARMA model works well for stationary processes but
not for non-stationary processes. A random process is non-stationary if the mean is not
constant and the autocorrelation depends not only on the time lag, which implies that
the statistical properties differs over time. Many real-world time series are non-stationary
as most of them have a trend or seasonality. To deal with a trend component in a random
process, the autoregressive integrated moving average (ARIMA) model was introduced
by Box, Jenkins, Reinsel, et al. [17]. If an ARMA process is non-stationary, either the
AR or MA process must be non-stationary. As in Section 3.3 described an MA process
is always stationary, which implies that the AR process of the ARMA process must be
non-stationary. As mentioned in Section 3.2, an AR process is stationary if the roots of
the AR transfer function ψ(B) = 0 are greater then 1 in absolute value. The roots lie
outside the unit circle. If a random process is non-stationary, then there is at least one
root that lies inside the unit circle. The number of roots inside the unit circle is denoted
with d. There are several ways to transform a non-stationary process to a stationary
process, furthermore in Chapter 5, one possible way is to differentiate the time series.
The ARIMA model uses the difference operator ∇xt = (1−B)xt to differentiate the time
series. It depends on the random process, how often the difference operator has to be
applied. The number of roots inside the unit circle d denotes how often the difference
operator has to be applied. Applying the difference operator to equation 3.15 leads to

ψ(B)∇dxt = θ(B)at (3.16)

A process that can be described by this model is called autoregressive integrated
moving average (ARIMA) process of order (p, d, q) or short ARIMA(p, d, q). Furthermore,
the ARIMA model can be extended to support seasonality. For this purpose a second
ARIMA model with a seasonality parameter s is multiplied with the base ARIMA model,
in short SARIMA(p, d, q)× (P,D,Q)s. The corresponding seasonal difference operator
is defined as ∇Ds xt = (1−BD)xt = xt − xt−D.

ψp(B)ΨP (Bs)∇d∇Ds xt = θq(B)ΘQ(Bs)at (3.17)
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CHAPTER 4
Nonlinear models

In the previous chapter, raw statistical algorithms were presented, where an expert
has to analyze the data of the time series and needs to select an appropriate model
and parameters. If the underlying random process changes over time, the parameters
must be manually adjusted. This adjustment is a massive effort because this requires
a permanent monitoring and performance evaluation. Machine learning is an entirely
different approach. It is a collection of algorithms which do not rely on an expert. The
method tries to learn all necessary parameters from the data itself. There are two
fundamentally different approaches in the way of presenting the training data to the
machine learning algorithm: supervised learning and unsupervised learning.

Definition (supervised learning). “In supervised learning, a teacher, provides a category
label or cost for each pattern in a training set, and we seek to reduce the sum of the
costs for these patterns.” [21, p. 16]

Definition (unsupervised learning). “In unsupervised learning or clustering there is
no explicit teacher, and the system forms clusters or “natural groupings” of the input
patterns. “Natural” is always defined explicitly or implicitly in the clustering system itself,
and given a particular set of patterns or cost function, different clustering algorithms
lead to different clusters.” [21, p. 17]

Furthermore, a distinction must be made between classification and regression prob-
lems. The latter is in the focus of this thesis. In classification theory, a machine learning
algorithm tries to separate two or more classes by a discrete set of discriminate features.
In regression theory, the machine learning algorithm tries to approximate the presented
time series. This approximation can be used to predict the future behavior of the time
series based on historical data.

In the following sections two supervised learning algorithms are presented, namely
ANN and SVM.
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4. Nonlinear models

4.1 Artificial neural network
The concept of neural networks is based on the biological brain. Therefore, in the early
days the science of neural networks was called “brain theory”. A neural network consists of
a massive number of neurons, which are connected to a complicated structure, where many
excitatory and inhibitory inputs are received. In the theory of artificial neural network
(ANN), only one neuron is specified, the perceptron in contrast to biology where many
different neurons exist. In ANN, the neuron is an abstraction of the biological neuron and
can be cascaded to form different structures of neural networks, for example, feedforward
neural network (FFNN) or recurrent neural network (RNN). Even a single neuron can
form a network. The limit for such a structure is the ability to train the network. If it is
not possible to train all the weights of the neural network, it is useless. A widely used
supervised training technique is the backpropagation training that is explained in the
next sections. Neural networks, in contrast to statistical models like ARMA, can be used
to model stationary and non-stationary random processes. Furthermore, they can be
used to model non-linear behavior.

The following symbols are introduced for the following subsections:

• n is the index of input nodes/weights and N is the number of input nodes/weights
• m is the index of hidden nodes, and M is the number of hidden nodes
• r is the index of output nodes, and R is the number of output nodes
• p is the index of training patterns, and P is the number of patterns

4.1.1 The perceptron

A perceptron is a mathematical representation of a biological neuron that was introduced
by Rosenblatt [22]. Unlike the biological neuron, where continuous “trains” of impulses
are fed into it. The perceptron takes discrete values as input: x1, · · · , xN and the bias
b. These inputs are multiplied with the weight vector w = w0, · · · , wN and summed up.
The sum is the input for the activation function h. The output of the perceptron y is
the result of the activation function. Figure 4.1 visualizes a perceptron. The number
of inputs to the perceptron is variable, but must be a finite number N . The Equations
4.1 and 4.2 show the mathematical representation of Figure 4.1, where x0 represents the
bias b, x1, · · · , xN the inputs, h the activation function and y the output.

The activation function of the perceptron can be any differentiable function. Table
4.1 provides a list of commonly used activation functions. Except for the linear function,
the output of the activation function is in the range between −1 and 1 or 0 and 1. This
means that the input of the perceptron should also be in this range (see Chapter 5).

net =
N∑
n=0

xnwn (4.1)

y = h (net) (4.2)
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4.1. Artificial neural network
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Figure 4.1: Perceptron

Table 4.1: Commonly used activation functions for perceptrons

activation function formula value range
linear function h(x) = x -

step function h(x) =
{

0, x < 0
1, x ≥ 0

0, 1

tanh function h(x) = tanh(x) −1 . . . 1

With a single perceptron and a linear activation function, linear regression tasks can
be solved. For example, a perceptron is fed with two inputs x1 and x2, and the activation
function is linear. Then, the perceptron represents a linear equation, see Equation 4.3.

y = w0 + x1w1 + x2w2 (4.3)

To approximate any arbitrary function, either the activation function can be varied,
or multiple perceptrons can be cascaded to a network. Two basic types of neural networks
are feedforward and recurrent neural networks.

There are several learning methods to find a suitable weight vector w, that minimizes
the loss (error) l. The loss for a given input vector x and a weight vector w is the
difference between the desired value t, also called target, and the output of the perceptron
y (see Equation 4.4).

l(x,w, t) = t− y = t− h
(

N∑
n=0

xnwn

)
(4.4)

Given a training set {(x1, t1), (x2, t2), · · · , (xP , tP )}, the overall loss L(w) is the sum
of squared differences of each sample (see Equation 4.5).
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4. Nonlinear models

L(w) = 1
2

P∑
p=1

l(xp,w, tp)2 (4.5)

The EBP (gradient descent) training algorithm, proposed by Rumelhart, Hinton, and
Williams [23], is a simple training algorithm for perceptrons. It is a first-order method,
which means it calculates the gradient g of the total loss function, to find a minimal error
(see Equation 4.6).

g = ∂L(w)
∂w

= ∇w (4.6)

Algorithm 4.1 shows the pseudo-code. After every iteration k of the training data,
the gradient g is calculated, and the weight update rule is applied (see Equation 4.7).
Then wk+1 is the new weight vector for the next iteration k + 1 and α is the learning
constant.

wk+1 = wk − αgk (4.7)

Algorithm 4.1: EBP training algorithm
1 initialize w, α;
2 for k ← 1 to K do
3 for p← 1 to P do
4 yp = h

(∑N
n=0 xnwn

)
;

5 L← L+ 1
2 (tp − yp)2;

6 end
7 g ← ∂L

∂w ;
8 w ← w − αg;
9 end

Usually, the learning constant α is a fixed value, but it can also be a more sophisticated
variable value. If the value is too big, the algorithm will not find a minimum. If it is too
small, the algorithm will slowly converge against the minimum.

4.1.2 Feedforward neural network

A feedforward neural network (FFNN) is characterized by its layered design and the
direction of the information flow [21] [24]. Every layer consists of a discrete number of
perceptrons, called nodes, and is connected to another layer. Every node of a layer is fully
connected to the nodes of the following layer, but not among each other. There are at
least three layers: the input, hidden and the output layer. The information is propagated
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4.1. Artificial neural network

from the input to the output layer without any feedback or recurrent loops. The input
layer consists of input nodes, which are passive nodes. Thus, they only propagate the
input further to the hidden layer, without any computation. Equation 4.8 illustrates the
mathematical representation for one node m of the hidden layer, where xn is the output
of the input layer, wn,m the according weights and ym is the output of the hidden node.

ym = hy

(
N∑
n=0

xnwn,m

)
(4.8)

The hidden layer has several nodes, and there can be more than one hidden layer.
The exact number depends on the application. If there is more than one hidden layer
with a huge number of nodes, the network is called deep or deep neural network [13].

The output of the last hidden layer ym is fed as input to the output nodes, to generate
the network output (see Equation 4.9). Figure 4.2 visualizes an example feedforward
network, where the input nodes are green (solid), the hidden nodes are blue (dashed),
and the output nodes are yellow (dotted).

or = ho

(
M∑
m=0

ymwm,r

)
(4.9)

For the hidden and output layer, the activation function can be chosen individually
depending on the actual application. In general, every node of one layer has the same
activation function according to related literature.

x1

x2

o1

HiddenInput Output

Figure 4.2: Exemplary FFNN with two input nodes, three hidden nodes and one output
node

FFNNs can be trained with several algorithms. Most of the algorithms are related to
the EBP algorithm. There are some extensions to this algorithm like Newton’s method,
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4. Nonlinear models

the Gauss-Newton algorithm, and the LM. For this reason, the loss function must be
extended so that the loss can be calculated for more than one output node, and the
overall loss function as well. Therefore the Equation 4.10 and Equation 4.11 is extended
by the subscript r and the overall loss functions sums over all output nodes.

l(xp,w, tp,r) = tp,r − or (4.10)

L(w) = 1/2
P∑
p=1

R∑
r=1

l (xp,w, tp,r)2 (4.11)

Newton’s Method

One significant drawback of the EBP algorithm is that it converges very slowly to a
minimum. To speed it up, the Newton method uses the first and second derivative of the
loss function. The second derivative is grouped in the Hessian matrix H. The gradient
is defined as following

− g = H∇w (4.12)

By rearranging it follows

∇w = −H−1g (4.13)

Therefore the update rule for Newton’s method is

wk+1 = wk −H−1
k gk (4.14)

This method converges faster but does not always find a minimum. A second drawback
is that the computation of the Hessian matrix is computational expensive [25].

Gauss-Newton Algorithm

The Gauss-Newton algorithm is an improved version of Newton’s method. It avoids the
computation of the Hessian matrix by using an approximation. Therefore the Jacobian
matrix J is used (see Equation 4.15).
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J =



∂l(x1,w,t1,1)
∂w1

∂l(x1,w,t1,1)
∂w2

· · · ∂l(x1,w,t1,1)
∂wN

∂l(x1,w,t1,2)
∂w1

∂l(x1,w,t1,2)
∂w2

· · · ∂l(x1,w,t1,2)
∂wN...

...
...

...
∂l(x1,w,t1,R)

∂w1

∂l(x1,w,t1,R)
∂w2

· · · ∂l(x1,w,t1,R)
∂wN...

...
...

...
∂l(xP ,w,tP,1)

∂w1

∂l(xP ,w,tP,1)
∂w2

· · · ∂l(xP ,w,tP,1)
∂wN

∂l(xP ,w,tP,2)
∂w1

∂l(xP ,w,tP,2)
∂w2

· · · ∂l(xP ,w,tP,2)
∂wN...

...
...

...
∂l(xP ,w,tP,R)

∂w1

∂l(xP ,w,tP,R)
∂w2

· · · ∂l(xP ,w,tP,R)
∂wN



(4.15)

The gradient g is defined as

g = Jl (4.16)

where the vector l is defined as

l =



l(x1,w, t1,1)
l(x1,w, t1,2)

...
l(x1,w, t1,R)

...
l(xP ,w, tP,1)
l(xP ,w, tP,2)

...
l(xP ,w, tP,R)



(4.17)

The Hessian matrix is approximated by the product of the transposed Jacobian
matrix with itself.

H ≈ JTJ (4.18)

By using Equation 4.16 and 4.18 in Equation 4.14, the weight update rule for the
Gauss-Newton algorithm results.

wk+1 = wk − (JT
k Jk)−1Jklk (4.19)

The algorithm is, similar to the Newton’s method, unstable to find a minimum in the
error space. The reason is that the matrix JTJ is not always invertible [25].
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Levenberg-Marquardt Algorithm

As the Gauss-Newton algorithm, the Levenberg-Marquardt algorithm (LM) is an extension
of Newton’s method [26]. The approximation for the Hessian matrix is

H ≈ JTJ + µI (4.20)

where µ is always positive and I is the identity matrix. Both together ensure that the
approximated Hessian matrix H is positive definite [27]. Thus, the matrix H is always
invertible [25]. Inserting Equation 4.20 into 4.14 leads to

wk+1 = wk −
(
JT
k Jk + µI

)−1
Jklk (4.21)

which is the update rule for the LM. The LM algorithm updates the parameter µ
depending on the total squared loss L. This means if L is increased after an iteration,
µ is multiplied by some factor β. If L is reduced after an iteration, µ is divided by β.
When the parameter µ is large, the algorithm becomes EBP with step size 1/µ. If µ is
small, the algorithm approximates to the Gauss-Newton algorithm[25] [26].

4.1.3 Recurrent neural network

Similar to the FFNN, the recurrent neural network (RNN) can have multiple layers, i.e.,
input, hidden and output layer. Each layer consists of a discrete number of nodes and
can have a different activation function. Compared to a FFNN, where the information
flow is always from the input to the output layer, a RNN has at least one feedback loop,
also called recurrent loop. Such a loop acts as a memory or delay unit. In FFNNs, every
presented input is treated as new information. In RNN, past values can be fed as input
to the network, through the feedback loop. RNN can be used to build nonlinear AR
models. There are several different implementations of the concept of recurrent neural
networks, like Jordan or Elman networks.

Jordan network

The Jordan network was introduced by Jordan [28]. He claimed that any human behavior
reveals a certain set of serially ordered action sequence [28]. Therefore, he evaluated a
way to represent serially ordered action sequences with neural networks. Such a single
action in the sequence depends highly on the action before, so that they have a high
correlation. He extended an FFNN by adding context nodes, such that recurrent loops
act as memory cells. These context nodes propagate the output of the network without
any further computation but with a time delay to the hidden layer. The context nodes
enhance an FFNN to represent time constraints within the network. Figure 4.3 presents
an exemplary Jordan neural network. The context nodes are red (loosely dashed). The
number of context nodes depends only on the number of outputs of the neural network.
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4.1. Artificial neural network

xp op

Figure 4.3: Jordan neural network

A basic example of a Jordan neural network is to predict the next state op of a process.
Every process depends on some input variables xp and the previous state op−1.

A Jordan neural network can easily be transformed to a FFNN by unrolling the
recurrent loop as visualized in Figure 4.4. Therefore, the recurrent node is transformed
to an input node, such that the new input vector is x = {xp, op−1}. Such a network can
be trained with any algorithm suitable for FFNN.

xp

op−1

op

Figure 4.4: Unrolled Jordan neural network

Elman network

Elman described an approach, where the time is modeled implicitly within a network,
rather than explicitly by an input feature [29]. The Elman neural network is, as the
Jordan network, a type of recurrent neural network. The difference to a Jordan network
is that the output of the network is not fed back to the hidden layer. Instead, the output
of the hidden layer is fed back. Similar to a Jordan network, context nodes are used
to delay the information flow. Figure 4.5 visualizes an example Elman neural network,
where the context node is red (loosely dashed). The number of context nodes is equal to
the number of hidden nodes. Similar to a Jordan network, an Elman network can be
unrolled to a FFNN as well (see Figure 4.6). Such a network can be trained with any
training algorithm for FFNN.
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xp op

Figure 4.5: Elman neural network

xp

yp−1

op

Figure 4.6: Unrolled Elman neural network

4.2 Support vector machine

The theory behind the support vector machine (SVM) is called statistical learning theory
or VC theory developed by Vapnik and Chervanenkis [30]. Based on this theory, the
SVM was developed at the AT&T Bell Laboratories by Vapnik and his co-workers [31].
The SVM is used for many classification and regression tasks, like object classification
or time series prediction [7]. For example, an SVM can be used to classify two different
objects. Therefore, discriminant properties of the objects are used as inputs. In the
training process for the SVM, a linear boundary between the two classes is sought.

When an SVM is used to solve a regression task, it is called support vector regression
(SVR). In the linear case, the SVR tries to estimate a linear function based on some given
sample points. In contrast to ARIMA, there is no need to estimate certain parameters.
Equation 4.22 shows the mathematical definition for a linear SVR, where f(x) is the
outcome of the SVR applied to the input vector x with w as weight vector and b as
threshold.

f(x) = wTx + b (4.22)

Solving non-linear tasks with SVR, Equation 4.22 must be enhanced by the kernel
trick. The basic idea is that a kernel k maps the input space to a higher dimensional
feature space, where the problem is a linear function or linearly separable [7]. Such a
mapping is defined as ϕ : X → F , where X is the input space and F is the feature space.
Using the mapping the kernel is defined as
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4.2. Support vector machine

k(x,x′) = ϕ(x)Tϕ(x′) (4.23)

so that if Equation 4.22 and Equation 4.23 are combined, it follows

f(x) = wTk(x,x′) + b (4.24)

Table 4.2 shows commonly used kernel functions.

Table 4.2: Common kernels for SVM
kernel formula
linear k(x,x′) = xTx′

polynomial k(x,x′) =
(
xTx′ + c

)d
radial basis function k(x,x′) = exp

(
− ||x−x′||2

2σ2

)
sigmoid k(x,x′) = tanh

(
γxTx′ + c

)
There are different strategies to find the optimal weight vector w, e.g., ν-SVR or

ε-SVR. They differ mostly in the way how to tolerate values that lie outside of a margin
around the linear border. In this thesis, the ε-SVR is used, in later sections, called SVR.
The ε-SVR tries to find a function f(x), where the deviation from the real obtained
targets y is at most ε for all training data. At the same time, is as flat as possible [31]
[32]. Empirical risk management can achieve this. The Euclidean norm can measure the
flatness of the weights (min ||w||).

Equation 4.25 is minimized with subject to Equation 4.26, where C is a positive
numeric value, which is a regularization term. It controls the penalty for outliers of
the ε-margin, which prevents overfitting. The value of C also depends on the tradeoff
between the flatness of f(x) and the toleration of outliers of the ε-margin. As stated
before, the ε-SVR tries to find a linear solution where all presented data points are within
the ε-margin. Sometimes, it is not possible to find such a solution because there are some
outliers in the presented data. For this case, the parameter ξ defines a slack variable so
that errors up to the value of ξ are tolerated. This is similar to the concept of soft margin
in SVM classification. Figure 4.7 visualizes the connection between the data points, the
ε margin and the slack variables ξ and ξ∗.

1
2 ||w||

2 + C
P∑
p=1

(
ξp + ξ∗p

)
(4.25)

subject to


tp −wTk(xp,x′p)− b ≤ ε+ ξp

wTk(xp,x′p) + b− tp ≤ ε+ ξ∗p
ξp ≥ 0
ξ∗p ≥ 0

(4.26)
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Figure 4.7: Linear SVM, soft margin visualization, adapted from [31]

Equation 4.27 shows the loss function for an ε-SVR. This means that all losses, where
points are within an ε-margin, are ignored, and all others were counted.

Lε =
{

0, if |y − f(x)| ≤ ε
|y − f(x)| − ε, otherwise

(4.27)

The presented minimization is called primal formula [32] or primal objective func-
tion [31]. A major drawback of this method is the high computational effort to solve
the minimization problem. The problem can be simpler solved in its Lagrange dual
formulation, which is a quadratic programming optimization problem. Another efficient
solver is the sequential minimal optimization (SMO) algorithm it is primarily as the
quadratic programming algorithm, but instead of trying to solve one large quadratic
programming problem, it breaks the big problem into a series of small problems. The
algorithm was invented by Platt in the year 1998 at Microsoft Research. The main
difference between these two approaches is that, previously, the quadratic programming
problem is numerically solved, whereas SMO uses analytical steps. [33]
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CHAPTER 5
Data preparation and

preprocessing

For most buildings, there exists no exact model, which can predict future behavior, e.g.,
energy consumption, heating, or temperature in the building. These models are very
expensive to create and maintain due to the changing conditions inside and outside of
the building. Therefore, approaches were searched which can create a model without
any user interaction and detailed knowledge of the building. After extensive literature
research, there were two classes of approaches which can achieve this goal. First, the
ARIMA approach is widely used in econometrics to predict sales figures, but it is also
capable of predicting any given time series. Therefore the time series needs preprocessing
to ensure proper accuracy. Different from the ARIMA approach, the ANN and SVM
were two machine learning approaches. These approaches try to build a model out of
the historical data by themselves. The difference between an ANN and an SVM is that
the first uses a dedicated network structure to predict future values, whereas the SVM
uses a transformation to model the forecasting problem as a linear regression. Both
approaches were trained with input features, which were generated out of the historical
data. All three approaches need significantly less effort than a concrete mathematical
building model to either create and maintain. Therefore, these approaches were further
investigated in this thesis. This chapter presents ways to prepare the historical data so
that a forecasting algorithm can be applied.

5.1 Data selection and preparation

This thesis uses three different types of data sources. Every data source is a building and
provides different sensor data. All buildings are located in Austria and have following
characteristics:
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5. Data preparation and preprocessing

• Building 1 is an office building that is constructed according to the passive house
standard. It was built in 2008 and offers 7500m2 of office space. It was specially
constructed to meet the goals of energy efficiency, user comfort, and use of renewable
energy.

• Building 2 is an office building and was built in 2010 with a focus on energy
efficiency, intelligent BAS, and sustainable construction.

• Building 3 is a modern and intelligent residential complex built in 2012.

In general, every building provides different types of sensors, like energy, district
heating, cooling, temperature, humidity, and CO2. The length of the provided historical
data is between one and three years, and the sampling interval is between 15 minutes
and one hour. Every data entry consists of a timestamp and the corresponding value.

As mentioned in the problem statement in Section 1.2, a future BAS should provide
an optimization service. This service should optimize the building regarding different
aims, like energy efficiency, user comfort, or cost efficiency. Therefore, many building
services need to work together coordinated by an optimization service. This service should
predict future development, e.g., photovoltaic energy production, heat consumption, or
temperatures to make the right decision so that the aims chosen by the operator are
reached. Therefore, the following types of sensors are relevant: electricity, district heating,
humidity, temperature, and photovoltaic. Forecasts of the electricity and photovoltaic
production can be used for demand side management, where either the energy costs
or the stability of the network is optimized. Furthermore, the use of district heating,
temperature, and humidity forecasts can help to ensure user comfort. Figure 5.1 visualizes
an example times series of each type. A further assumption is that the data of the type
electricity and district heating can be handled the same since both types are energy
meters and have the same unit.

First, a representative number of sensors was selected. From every category six
sensors were selected, to get a meaningful result at the performance evaluation. They
were chosen based on following criteria:

• many historical records
• few anomalies and missing data
• similar behavior compared to other sensors of the same category

The selection was based on a visual inspection of the data. The sensors with the
best matching on the above criteria were shortlisted. In this step, the number of sensors
was reduced from approximately 200 to 60. In a second round, these 60 sensors were
evaluated regarding similar time ranges and information value. The records of electricity
and district heating were taken from Building 2. All other records were taken from
Building 1. No sensors were selected from Building 3 because the lengths of the time
series were to short. At the time of writing this thesis, only a limited number of historical
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Figure 5.1: Example of the different types of data used in the thesis

data was available. The records for Building 1 started in January 2015 and ended in
April 2016, and for Building 2 data ranges from January 2011 to June 2014.

The sensors of the category electricity measure the electricity consumption in kWh.
There was no further information available to identify the part of the building or devices
which are metered. The same holds for the district heating sensors. Only the general
information of the building was available. The humidity sensors recorded the relative
humidity measured as a percentage value and following additional information about the
selected sensors are available:
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5. Data preparation and preprocessing

Table 5.1: Used sensors for performance evaluation.

electricity district heating humidity temperature photovoltaic
E-1 DH-1 RH-3 PT-1 PV-1
E-2 DH-2 FH-1 PT-2 PV-2
E-3 DH-3 FH-2 OT-1 PV-3
E-4 DH-4 RH-1 RT-3 PV-4
E-5 DH-5 RH-2 RT-1-M PV-5
E-6 DH-6 OH-1 RT-4 PV-6

RH-3 The sensor RH-3 measured the humidity of the used air at the office located
in the west part of the third floor on the south side.

FH-1 The sensor FH-1 measured the inside ambient humidity on the west side of
the third floor, sensor 1.

FH-2 The sensor FH-2 measured the inside ambient humidity on the west side of
the third floor, sensor 2.

RH-1 The sensor RH-1 measured the humidity of the room R1, which is located on
the third floor on the outer corner of the west and north side of the building.
On the eastern side there is an adjoining room, and on the southern side, there
is a corridor.

RH-2 The sensor RH-2 measured the humidity of the room R2, which is located on
the third floor on the north side. On the west and eastern side there is an
adjoining room, and on the southern side, there is a corridor.

OH-1 The sensor OH-1 monitors the outside humidity of the building.

The temperature was recorded in degree Celsius, and the following information about
the sensors are available:

PT-1 The sensor PT-1 measured the temperature of a photovoltaic panel mounted
at the top row in the fourth floor, and the sensor PV-1 is the corresponding
electricity meter of this grid.

PT-2 The sensor PT-2 measured the temperature of a photovoltaic panel mounted at
the bottom row in the fourth floor, and the sensor PV-2 is the corresponding
electricity meter of this grid.

OT-1 The sensor OT-1 measured the outside temperature of the building.

RT-3 The sensor RT-3 measured the indoor ambient temperature of the third floor
on the west side.
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5.1. Data selection and preparation

RT-1-M The sensor RT-1-M measured the temperature of the room R1, which is located
on the third floor on the outer corner of the west and north side of the building.
On the eastern side there is an adjoining room, and on the southern side, there
is a corridor.

RT-4 The sensor RT-4 measured the temperature of the room R2, which is located
on the third floor on the north side. On the west and eastern side there is an
adjoining room, and on the southern side, there is a corridor.

The photovoltaic sensors are energy meters, which record how much energy was
transferred into the electricity network of the building. This corresponds to the production
in Watts at one particular moment in time. All the panels are mounted at the facade of
the building and not at the rooftop. There was no further information on the photovoltaic
panels like the brand, size, or technology.

PV-1 The sensor PV-1 measured the actual production of an inverter connected to
two strings, and both are mounted at the facade in the fourth floor on the left
side.

PV-2 The sensor PV-2 measured the actual production of an inverter connected to
two strings, and both are mounted at the facade in the fourth floor on the
right side.

PV-3 The sensor PV-3 measured the actual production of an inverter connected to
a series of strings, and the strings are mounted on a test bench. The panels
are also mounted at the facade in the second floor.

PV-4 The sensor PV-4 measured the actual production of an inverter connected to
a series of strings, and the strings are mounted on a test bench. The panels
are also mounted at the facade in the second floor.

PV-5 The sensor PV-5 measured the actual production of an inverter connected to
a series of strings, and the strings are mounted on a test bench. The panels
are also mounted at the facade in the third floor.

PV-6 The sensor PV-6 measured the actual production of an inverter connected to
a series of strings, and the strings are mounted on a test bench. The panels
are also mounted at the facade in the third floor.

Before any prediction can be made, the selected sensors were analyzed. In the first
place, the recorded data is filtered for anomalies, like spikes or invalid data. Further-
more, the data needs to be equally spaced in time. Therefore, missing sample points
are reconstructed out of existing ones (interpolation), or sample points are grouped
(downsampling). These steps are done by preprocessing the data.
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There are different types of faults which affect the temporal behavior of a sensor. Such
faults can be permanent, transient, intermittent, noise, or drift [34]. Without knowing
when and if repairs have been carried out, it is not possible to assign the individual faults
to a specific type. However, following anomalies were identified by visual inspection of
the sensor data:

(a) the sensor value got stuck at the last valid value
(b) the sensor value was outside of possible bounds
(c) the sensor value was constantly zero
(d) no sensor value was available for the time

The anomalies of the types (a) and (c) were found with the use of the MATLAB
function findpeaks. This function can either be used to identify sudden drops to zero
as well as constant values before a drop. Furthermore, it can be configured to find points
in a time series where the values are not constantly increasing. In this thesis, anomalies
of the types (a), (b), and (c) were deleted such that all anomalies were reduced to type
(d). Then the missing data were interpolated using a shape-preserving piecewise cubic
interpolation (pchip) algorithm of MATLAB. In the same step, the historical data was
resampled such that for every hour one data point was generated. As an example, Figure
5.2 shows a time series of an electricity meter. The blue crosses visualize the raw data,
and the solid green line shows the time series after interpolating missing data points.
There are three points highlighted with a red circle. At these points, the sensor started
providing wrong data. The first two failures are short time failures, but the last one was
over a long period. Here the sensor value stuck at a certain value till its fall to zero. Such
failures would have a negative impact on the training of the forecasting algorithms.

After removing outliers and interpolating the missing data, the time series was tested
if it is stationary, has a trend, or any seasonality pattern. Therefore, several test methods
exist. In this thesis, the augmented Dickey-Fuller test was used to indicate if the time
series are stationary or not. Box, Jenkins, Reinsel, et al. [17] proposed that it is also
possible to check if the time series is stationary by calculating the autocorrelation function,
the partial autocorrelation function, and plotting the time series. Table 5.2 shows the
results of the augmented Dickey-Fuller test applied to the data presented in Figure 5.1.
Thereby, the result 0 indicates non-stationary and 1 stationary. Not surprisingly, the data
of the type electricity and district heating are non-stationary. As described in Chapter 2,
stationary means that the statistical properties are invariant in time, which is violated
by the sensors of the type electricity and district heating.

There are two ways to remove the trend in an unknown time series. First, a linear
regression model, which describes the trend component, is fitted to the time series. This
generated model can be subtracted from the initial time series, and therefore the trend is
removed [5]. Another approach is to differentiate the time series, which is useful if the
sensor reading is cumulative, e.g., energy meter. These two strategies can also be used to
remove seasonality. For this purpose, the linear regression model has to be replaced by a
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Figure 5.2: Example for invalid data and sensor faults.

Table 5.2: Results of the augmented Dickey-Fuller test applied to the sample data
presented in Figure 5.1

ADF-Test
electricity 0

district heating 0
humidity 1

temperature 1
photovoltaic 1

sine wave model which is fitted to the seasonality pattern. In the case of differentiating
the time series, the seasonal difference is computed, this means, e.g., in case of a weekly
seasonality, that the actual value at time t is computed by subtracting the value at time
t− 168. By removing the trend and seasonality, the time series becomes stationary, and
as mentioned before this is necessary for further computation.

5.2 Correlation analysis

Correlation of sensors is a good indicator of dependency between them. This dependency
can be used to get a better understanding of the behavior of a building. For a BAS, this
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behavior information can be useful, for example, knowledge about the correlation of the
energy consumption among the same days of the week. An optimization service in a BAS
can automatically generate this correlation and adjust parameters for better performance.
Furthermore, the information that two time-series correlate with each other can be used
as a feature which may improve a forecast. However, sometimes data correlate, but the
outcome of the correlation has no sense as mentioned by Yule [35]. He claimed that it
is not uncommon that two different time series are highly correlated, but there is no
physical or logical explanation why this is the case. Therefore the correlation has no
sense. Furthermore, preprocessing a time series is essential so that potential trend or
seasonality is recognized and appropriately handled. If this is not the case, Figure 5.3
shows exemplary the difference regarding the correlation between a time series with and
without a trend. Therefore, two random AR(1) (xt = 20 + at + 0.8xt−1, σ2

a = 2) time
series are generated, see upper left box. Below is the corresponding cross-correlation
and scatter plot to visualize that these two time-series are uncorrelated. The two AR(1)
time series are uncorrelated because they are generated from independent identically
distributed (iid) random shocks. In the upper right box, two different trend components
(x1,trend = 0.5x1, x2,trend = 0.8x2 + 1) are added to the time series. Below them, the
cross-correlation and scatter plots are visualized. If the scatter-plot indicates a diagonal
arrangement of the points, it indicates correlation. It can be observed that by adding a
trend, the two time-series correlate at lag 0. The statement of this outcome does not
provide any information, and it is not useful. It indicates only a common trend.
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Figure 5.3: Example for misleading interpretation of the correlation.
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Figure 5.4: Correlation-Experiment 1

There are two important types of correlations analyzed in this thesis. First, there is
the correlation between different sensors, and second, there is the correlation between
different days/months/years. Using the data from Building 1, the correlation between
different sensors was investigated. Following experiments were made to test the correlation
between sensors:

• The first experiment investigates the correlation between the humidity of two
distinct rooms R1 and R2 on the same floor with the general floor humidity. The
general humidity is measured by two sensors, FH1 and FH2. Figure 5.4 shows in the
top two charts the signals overlapped separated for the rooms R1 and R2. Without
further calculation, by viewing the plot, it is evident that there is some correlation
between the presented time series. The strength of the correlation is evident by the
cross-correlation. In the lower four boxes of Figure 5.4, the cross-correlations are
visualized. As assumed, the correlation is high, ranging from 0.76 to 0.83. This high
correlation leads to the result that in the long term the humidity among different
rooms behaves equally to the general humidity at the same floor.

• Experiment 2 investigates if the temperature (RT-1-middle) and the humidity
(RH-1) of room R1 correlate. Figure 5.5 shows the correlation and the visualization
of the two input signals. It leads to the result that the humidity and temperature
are not highly correlated. The highest correlation is at lag 0 with 0.58357. Also,
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Figure 5.5: Correlation-Experiment 2

the scatter-plot of temperature and humidity shows a low correlation, as the data
points do not form a straight line. This result is unexpected and can only be
explained by the HVAC system of the building. In general temperature and the
relative humidity have a negative correlation.

• Experiment 3 investigates if the north wall temperatures (bottom, middle, top)
of room R3 (RT-2-bottom, RT-2-middle, RT-2-top) are equal in value and if
there is a correlation. Figure 5.6 visualizes the three input signals in the upper
box. Furthermore, it can be seen that the three signals are common in scale
and magnitude. They also behave very similar over time. Both cross-correlations
(middle and lower left boxes) show high correlations between the sensors. Besides
the high correlation, a daily pattern is revealed.

• Experiment 4 investigates if the temperatures RT1 (north, middle and south) in the
room R1 correlate. In the upper box of Figure 5.7 the three signals are visualized.
The three signals are very similar in behavior. The correlation diagram shows that
the temperatures correlate very high and that these time series have a seasonal
pattern. The high correlation leads to the conclusion that the temperature changes
are similar over time and independent of the position.

• Experiment 5 investigates if the relative outside humidity (OH-1) correlates with
the outdoor temperature (OT-1). Figure 5.8 shows in the upper box, the two
signals, on the bottom left side the associated cross-correlation, and on the right
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Figure 5.6: Correlation-Experiment 3
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Figure 5.7: Correlation-Experiment 4
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Figure 5.8: Correlation-Experiment 5

side the scatter plot. The cross-correlation shows a weak negative correlation at
lag 0, which is expected. This weak negative correlation is the case because the
relative humidity is decreasing with rising temperature and the other way around.
Furthermore, it reveals a daily pattern, which is the result of the day-night cycle,
i.e. there is a daily routine.

The results of the above correlation experiments were used to find additional features
for the machine learning algorithms. For example, the temperature in room R1 should be
predicted, therefore the temperature of the nearby room R2 was added to the input vector
of an ANN, before training. To evaluate the trained network, the future temperature of
room R2 is needed as input. Nevertheless, the future room temperature is unknown and
must, therefore, be predicted. Such a forecast is not free of failures, which have a negative
impact on the forecast of the temperature in room R1. It showed that this approach does
not result in more accurate forecasts. The results of this correlation analysis delivered
further understanding of the used data. After the calculation and visualization it was
evident that nearby sensors cannot directly provide additional information to a forecast.
As shortly described before, this would result in a situation were future data of the
correlated sensor is needed. On a wide view, this can be done by an additional forecast,
but forecast is also error prone, which will increase the error in the actual forecast.

As described before, the correlation between different days, months, and years can
contain important information. Since all provided data are from office buildings, it is
expectable that individual workdays will correlate, and weekends will be significantly
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different from weekdays. Therefore, the electricity meter E-7 from the Building 2 dataset
is chosen and plotted. Figure 5.9 shows for this meter all days of the year 2015 grouped
by weekdays. Furthermore, the mean value for every weekday is calculated (solid red line)
and the standard deviation (blue dashed line). As expected, the electricity consumption
is relatively similar from Monday to Friday. The weekend (Saturday and Sunday) is
significantly different from the weekdays. The last plot in Figure 5.9 shows the national
holidays for Austria in the year 2015. In the first moment, the data look very similar
to a weekday but the energy consumption is much less. If not noted in a different way,
holidays are treated as weekends. For individual days, most data is within the boundaries
of the standard deviation. This suggests that data, which is outside of these boundaries
can either be an anomaly or a special day. This information can be used to filter out such
data to improve the training process of a forecast. The next section uses this knowledge
to point out meaningful features for the machine learning algorithms.

5.3 Feature selection
This section deals with the problem, how to generate or select useful features for an
ANN or an SVM. The performance of both methods relies highly on the quality of the
provided input features as well as on the amount of training data. In the average case,
more input features or more training data will not necessarily tend to provide better
results, but the computational effort will rise. Therefore, feature selection is used to
find the most relevant inputs to improve the performance and the training time of an
ANN or an SVM by eliminating irrelevant information. In this context, results of the
correlation analysis of Section 5.2 were used. The previous section encountered sensors
with correlation to other sensors. This information is conditionally useful as a feature.
For the sake of completeness of this section, it is mentioned that these sensors can provide
valuable input features. A good example is the outdoor temperature which influences the
energy demand of the heating system. As mentioned in the previous section, the exact
future outdoor temperature cannot be easily computed, due to its complexity. Therefore
the minimum and maximum values are used. As described in the papers [14] and [15],
the minimum and maximum outdoor temperature were used as an input feature for the
neural network. These values can be obtained from a weather service and provide good
accuracy.

Furthermore, it is proposed by [36] and [21] to scale or normalize the input data.
Normalizing should prevent that features with a high magnitude in the value penalize
other features with a much lower magnitude. Therefore, there are several algorithms for
normalization available. In the case of an ANN, the right algorithm highly depends on
the expected value range of the transfer function of the layers. For example, if the transfer
function of the hidden-layer is tanh, the input value should be in the range of [−1; 1] for
all features. Equation 5.1 shows the min-max normalization as proposed by [36], where
the feature value is mapped to the range defined by the upper bound variable bu, and
lower bound variable bl. Crone, Guajardo, and Weber [36] concluded that scaling the
features to the range of [−0.5; 0.5] with a sigmoid activation function yields to a better
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Figure 5.9: Electricity consumption grouped by the weekday for the sensor E-7 in the
year 2015 from the Building 2 dataset. The red line shows the mean of the day, and the
dashed blue lines the standard deviation of the day. In the plot Holidays, only national
holidays of Austria are included.
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5.3. Feature selection

performance than a [−1; 1] scaling. Furthermore, it is vital to remove features without
any information. This is the case if the values of this feature are constant. Removing a
constant feature does not reduce the performance of the ANN or SVM, but it reduces
the computational time for the training.

xnorm,i = bl + xi − xmin
xmax − xmin

(bu − bl) (5.1)

As described in Chapter 2, a time series is a chain of ordered time and value pairs
so that the first two features are the timestamp and the value. An ANN or an SVM
cannot process a timestamp because it is a complex value. As described before the input
of an ANN or an SVM should be normalized to get better performance, thus the value
must be numerical. If the timestamp is represented in seconds, then the resulting time
series is an increasing series and would not provide any further information. Therefore,
the timestamp is split into individual components, e.g., hour, minute, day, month, year,
and week of the year. Except for the year component, the components are recurring so
that the algorithm can learn, e.g., that every day at a specific time a pump starts, and
therefore the energy consumption rises. Depending on the length of the training data,
the year component is not always useful, e.g., the time series is within one year. These
recurring features are also called periodic variables [24, p. 105] and can be transformed
to polar coordinates. The advantage of doing this transformation is that the distance
between the last and the first value is the same as for two values in between. Equation
5.2 shows the transformation, where a feature x is transformed into x1 and x2 while S is
the total number of time slices, e.g., 24 for the feature hour. For better differentiation
between the transformed and real-valued feature, they are marked with the word cyclic.

[x1, x2] = T (x) =
[
sin
(2πx
S

)
, cos

(2πx
S

)]
(5.2)

Furthermore, the weekdays were analyzed to identify similarities. Figure 5.9 shows
that weekends and holidays behave differently then weekdays. This different behavior
is represented by the feature is holiday, which is a boolean flag. This feature depends
on the public holidays of the country and the holidays of the individual company. This
thesis uses the Austrian holidays. The next feature indicates weekends as a boolean flag,
it is called is weekend. The presented features should ensure that the algorithms will
learn patterns for days, weeks or months.

Besides the timestamp, also the values have dependencies among each other. As
proposed in the papers [37] and [38], it is of advantage, especially for forecasting a time
series, to use not only the last value as input but also the last two or more values. Adding
these features empowers the algorithm to identify sequential dependencies. Figure 5.9
visualizes that every weekday behaves the same plus some deviation. Thus, the next
proposed feature is recurrent week. It is the value of the data point precisely 168 hours
(one week) before.
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5. Data preparation and preprocessing

All these information obtained by the correlation analysis was essential to gain a
better understanding of the observed time series and is used in the next section to setup
the different forecasting methods.
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CHAPTER 6
Implementation and evaluation

For the implementation and evaluation, the numerical computing environment MATLAB
[6] was used. The advantage of such an environment is that many algorithms are available
in form of toolboxes, which can be easily adapted or reused to solve new problems. In this
thesis, the Neural Network Toolbox, the Statistics and Machine Learning Toolbox, and
the Econometrics Toolbox of MATLAB were used. The Econometrics Toolbox provides
the ARIMA model, the Statistics and Machine Learning Toolbox provides an SVM
implementation, and the Neural Network Toolbox provides an FFNN implementation
with the LM training algorithm.

6.1 Performance measures

The performance of the individual algorithms is not a function of computational effort
but rather a function of the similarity between the measured and predicted time se-
ries. Therefore, following error metrics were chosen to evaluate the performance of the
individual forecasts:

MAE The Mean Absolute Error is a measure to quantify the distance between the
forecasts and actual values so that the MAE value has the same unit as the
real values. Therefore it can only be used to compare forecasts with the same
unit and magnitude. The MAE is calculated by computing the mean over
all sample points of the absolute difference between the predicted value and
the real value. Equation 6.1 shows the formula of the MAE, where yi is the
predicted value and xi is the real value of a sample point.

MAE = 1
n

n∑
i=1
|yi − xi| (6.1)
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6. Implementation and evaluation

The advantage of the MAE is the fast and straightforward computation,
and it is useful to compare individual forecasts on the same data set. A
disadvantage is that it is not a scale-independent measure.

SMAPE The Symmetric Mean Absolute Percentage Error is the percentage of the
error between forecast and real value. The SMAPE is calculated by taking the
mean of the absolute error divided by the sum of the forecast and real value
and scale it by 200 (see Equation 6.2). There are more than one possibilities
to calculate the SMAPE, the introduced one is recommended by Hyndman
and Koehler [39].

SMAPE = 1
n

n∑
i=1

200 |yi − xi|
xi + yi

(6.2)

The advantage of the SMAPE is its scale independence. Therefore it is
possible to compare the accuracy of different data sets. However, it is hard to
interpret the outcome of the measure. For example, indicates a SMAPE of the
value 10.2%, a good or bad accuracy? In theory the outcome of the SMAPE
can be in the range of [−∞;∞]. Therefore, the SMAPE is mostly used to
compare different forecasts and not judge a single forecast. The forecast with
the closest value to 0 is better than the other ones.

MASE The Mean Absolute Scaled Error is a scale independent error measure to
compare forecasts of different units proposed by Hyndman and Koehler [39].
Scale independent means that it can be used to compare the accuracy of
forecasts from different units and magnitude, e.g., to compare the accuracy
of an energy forecast with a temperature forecast. Equation 6.4 shows
the formula to calculate the MASE for seasonal forecasts. The variable qi
represents the scaled in-sample MAE. This means the error (yi− xi) is scaled
by the seasonal naïve forecast (see Equation 6.3), so that it is independent of
scale and magnitude. The variable s is the seasonal parameter which defines
the seasonal distance between the samples. The seasonal naïve forecast
approach uses the value in the same season as the next forecast value. The
MASE is defined as the absolute mean of the scaled in-sample MAE (see
Equation 6.4). If the value is greater than one, the forecast is worse than the
naïve forecast. If the value is less than 1, the forecast is better than the naïve
forecast computed on the training data.

qi = yi − xi
1

n−s
∑n
j=s+1 |xj − xj−s|

(6.3)

MASE = 1
n

n∑
i=1
|qi| (6.4)
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6.2. Model architecture

6.2 Model architecture

In this theses, there are three different types of forecasting algorithms used and compared.
The ARIMA model is a statistical way of modeling stationary random processes. The
ANN and SVM are machine learning algorithms, which try to find patterns in the data to
predict the future. Each of these algorithms has to be differently configured (as described
in the Chapter 3 and Chapter 4). The next three subsections describe the process of
finding a good setup for each presented algorithm. Thereby, every algorithm is separately
evaluated for every category of sensors shown in Figure 5.1. For the evaluation, the time
series of every category was divided into a training set and test set. The records of the
last week were used as test set and the previous four weeks were used as training set.
This approach should determine if it is necessary to use different configurations for every
category. The test set will be used to evaluate the accuracy of the forecasts using the
performance measures of Section 6.1.

6.2.1 ARIMA

The ARIMA model and the corresponding modelling process is proposed by Box, Jenkins,
Reinsel, et al. [17]. Figure 6.1 visualizes this iterative process. The model parameters
are evaluated by checking if the time series is stationary or not, and by visualizing the
autocorrelation and partial autocorrelation as described in Chapter 3. The Dickey-Fuller
test was used to verify if the presented time series is stationary. If the time series is not
stationary, it is differentiated and then checked again. The number of iterations specify
the model parameter d. The computation of the model parameter d was already done
in Section 5.1. The autocorrelation and the partial autocorrelation are calculated and
visualized to get a feeling of the time series and pre-assign proper model parameters.
Then an iterative process started where the model is evaluated and if necessary further
adjustments of the parameters are made. After every adjustment, the model is newly
evaluated. This process is repeated till no further improvement of the accuracy was
reached.

In order to estimate all parameters for the electricity time series from Figure 5.1, the
according autocorrelation and partial autocorrelation are computed and visualized in
Figure 6.2(a). It is used to estimate the parameters p, q, and the seasonality s. The
parameter p specifies the order of the AR part of the time series. Therefore the partial
autocorrelation was analyzed if the values cut off after some lags and stay then within
the confidence interval. After one lag, the partial autocorrelation is all most within the
boundaries. This behavior indicates that the parameter p is 1. In the next step, the
order q of the MA part of the time series was evaluated. Therefore, the autocorrelation
should cut off after a number of lags and stay then within the confidence interval. This
behavior is not shown in the Figure 6.2(a), therefore it is assumed that there is no MA
part in this time series and thus the parameter q is 0. After identifying the parameters
p, d, and q, the time series is analyzed to find seasonal indicators. The autocorrelation
shows a repeating pattern every 24 and 168 lags. The first pattern is not as strong as the
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Figure 6.1: Iterative model design, adapted from [17, p. 16]

second one. This result means that there is a weak repeating pattern every 24 hours and
a stronger pattern every 168 hours. The parameter s for the seasonal ARIMA model has
to be evaluated if it is 24 or 168 hours. For the seasonal ARIMA model the parameter P
is 1.

After all parameters have been estimated, the MATLAB function estimate was used
to evaluate the unknown variables of the polynomial representing the SARIMA(1, 1, 0)×
(1, 1, 0)s model. Therefore, the function uses the maximum likelihood to estimate the
unknown variables based on the given training set. Afterward, the next 168 hours were
predicted and compared to the test set. This was done either with a seasonality of 24
hours or 168 hours. The result was that a 168 hours seasonality worked better than
24 hours. Figure 6.2(b) shows the test set (blue) and the forecast (red). The forecast
accuracy was measured using the error metrics described in Section 6.1 and the following
accuracy was achieved:

• MAE: 27.188
• SMAPE: 0.016
• MASE: 0.384

The results confirm the observation from Figure 6.2(b) that the model performs well.
The total power consumption in the predicted week was 523.933 kWh, and the MAE
is 27.188 kWh, which is an acceptable result. Also, the MASE is smaller than 1 which
indicates a better prediction than the naïve forecasting approach.

This procedure was repeated for the remaining categories district heating, humidity,
temperature, and photovoltaic production. Therefore, the autocorrelation and partial
autocorrelation for every category was calculated as described in the previous paragraphs
and visualized in Figure 6.3. After analyzing the autocorrelation and partial autocorrela-
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Figure 6.2: The left figure shows the autocorrelation and partial autocorrelation plot,
and the right figure shows the one week evaluation forecast of the electricity time series
in Figure 5.1 for the ARIMA approach.

tion of the district heating time series in Figure 6.3(a), the following parameter values
were estimated: p = 1, q = 0, and s = 24. Contrary to the electricity, the autocorrelation
for the district heating time series revealed only a 24 hour pattern. This observation
indicates that the heat load of the building is mostly affected by the day-night cycle. For
the category humidity, Figure 6.3(b) visualizes the autocorrelation and partial autocorre-
lation. It shows a nearly weekly repeating pattern as well as a weak daily pattern. After
considering the result of the electricity parameter estimation where the autocorrelation
showed a similar behavior, the seasonality is set to s = 168. Furthermore, the remaining
parameters were set to p = 1 and q = 0. Analyzing the autocorrelation and partial
autocorrelation of the temperature time series in Figure 6.3(c), the following parameters
were estimated: p = 2, q = 0, and the seasonality s = 24. Figure 6.3(d) showed a very
steady repeating pattern at the autocorrelation diagram, so that the seasonality was set
to s = 24. The partial autocorrelation shows that the parameter p is 1 and due to the
steady seasonal pattern the parameter P is 24.

The estimated model parameters for the categories district heating, humidity, temper-
ature, and photovoltaic were tested by an one week forecast similar to electricity. Figure
6.4 shows the results of the forecasts and Table 6.1 shows the corresponding results of
the MAE, SMAPE, and MASE error metrics. In Figure 6.4, the measured time series is
blue and the predicted time series is red. Analyzing the forecast for the district heating
in Figure 6.4(a) a phenomenon, which is only present in this category, was revealed. This
phenomenon is a zero energy usage over a long period. Further observed time series of
the same category showed, that the district heating is turned off during the summer
time. Even though this event is hard to predict, it should be handled properly. Through
this event, the ARIMA approach was not accurate for the category district heating.
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Figure 6.3: Autocorrelation and partial autocorrelation for the categories: district heating,
humidity, temperature, and photovoltaic production

Comparing the MASE of the district heating with the MASE of the electricity forecast
it is clear that the forecast is not good. Figure 6.4(b) shows a good forecast for the
humidity time series. The algorithm was able to forecast the changes in the behavior of
the time series mostly very well. This results were supported by the results of the error
metrics in Table 6.1. Figure 6.4(c) shows that the ARIMA model can fit the day-night
pattern very well, but the allover fitment was not good. Figure 6.4(d) shows a good
forecast for days with normal sunshine. If the weather conditions were unstable, then
the model failed.

Table 6.2 summarizes the previously estimated model parameters for every category
of sensors. Surprisingly, a seasonality of 168 hours (1 week) worked better than 24 hours
for the electricity and humidity time series. These parameters were used in the evaluation
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Figure 6.4: One week evaluation forecast for the categories: district heating, humidity,
temperature, and photovoltaic production for the ARIMA approach

Table 6.1: Results of the parameter evaluation for the ARIMA approach.

Type MAE SMAPE MASE
electricity 27.188 0.016 0.384

district heating 25.215 0.013 56.205
humidity 1.040 2.745 1.007

temperature 2.015 48.455 1.472
photovoltaic 371.299 141.487 1.957
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Table 6.2: SARIMA model parameters for the categories defined in Figure 5.1.

Type p d q P Seasonality Q
electricity 1 1 0 1 168 0

district heating 1 1 0 0 24 0
humidity 1 0 0 0 168 0

temperature 2 0 0 0 24 0
photovoltaic 1 0 0 1 24 0

in Section 6.4 at the cross-validation.

6.2.2 Neural Network

This section describes the setup for an ANN to predict the next 168 hours of a time series.
Therefore, a RNN network is used. After the correlation experiment in Section 5.2 and
the evaluation of the autocorrelation in Section 6.2.1, it was clear that every category has
some sort of seasonality. The repeating pattern can be used in a RNN for the feedback
loop. The correlation experiments showed that individual days of consecutive weeks
correlate. This means that the same weekday, e.g., Monday, follows the same schema
plus/minus some deviation every week. The neural network can use this information to
predict future values. Furthermore the time of the day, and the two indicators for weekend
and holiday are used as input for the RNN. Figure 6.5 shows the unfolded presentation
of the chosen RNN. The input recurrent week is the output value of the network at time
t− 168. As mentioned by Hippert, Pedreira, and Souza [40], past values are often used
as inputs. Commonly the number of hidden layers is one, and only in special cases, it is
two [40]. In this thesis, one or two hidden layers with different numbers of nodes did not
perform well, so that the number of hidden layers was enlarged. After testing different
numbers of hidden layers, it resulted in five hidden layers with six or three nodes per
layer. This layout of the hidden layers is similar to the concept of an autoencoder for
ANN. The tanh function was chosen as activation function of the hidden layers, and
for the input/output-layer a linear function was set. The output of the network is the
value of the next hour. This means after training the network, every hour needs to be
evaluated separately. The input vector x for the unfolded FFNN is as follows:

• cyclic hour
• is holiday
• is weekend
• recurrent week

Before the training is started, the bias and the initial weights need to be set. Therefore,
the Nguyen-Widrow initialization algorithm was used [41]. It is a layer-based algorithm,
which initializes the weights and bias based on random values, but with the constraint that
every neuron of the layer is approximately evenly active. The benefit of this algorithm is
that fewer neurons are wasted, and therefore the training works faster [42].
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cyclic hour

is holiday

is weekend

recurrent week

Figure 6.5: FFNN used to forecast a time series of the category electricity. There are
four input nodes, 27 hidden nodes spread over five hidden layers, and one output node.

The neural network is trained with the LM algorithm as described in Section 4.1.2.
For this reason, the previously described training set is divided randomly into following
sets: the LM training set, the LM test set and LM validation set. The ratio between these
three sets is 75% for LM training set, 15% for LM test set and 15% for LM validation set.
The LM training set and LM test set are used to train the neural network, whereby the
LM validation set is used to measure the generalization of the neural network and stops
the training if the generalization is not getting better, or 1000 iterations are reached. The
LM test set is used to calculate the network performance during and after the training.
This network performance is calculated with sum of squared error (SSE) formula.

As in the previous section, this setup is applied to the sensors of the categories
electricity, district heating, humidity, temperature, and photovoltaic production. The
FFNN got trained, and afterwards, the next 168 hours were simulated. Figure 6.6 shows
the outcome of the simulation (red line) versus the real measured values (blue line)
for the categories: electricity, district heating, humidity, temperature, and photovoltaic
production. Table 6.3 shows the corresponding accuracy measures.

This approach was more accurate for the categories electricity, humidity, and photo-
voltaic than the ARIMA approach. Like the ARIMA approach also the ANN has problems
to predict the transition from summer to winter for the district heating. Therefore the
forecast was useless.
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Figure 6.6: Measured (blue) and predicted (red) time series for the categories electricity,
district heating, humidity, temperature, and photovoltaic production for the ANN
approach
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Table 6.3: Results of the ANN approach.

Type MAE SMAPE MASE
electricity 5.916 0.003 0.083

district heating 44.248 0.023 98.630
humidity 0.803 2.109 0.777

temperature 3.026 53.228 2.212
photovoltaic 230.062 141.744 1.213

6.2.3 Support Vector Machine

In this section, the setup for the SVM to solve a regression task is explained. An SVM
which solves regression Tasks is called SVR. As the ANN approach, the SVR is also a
machine learning approach. Therefore, it also uses an input vector x of features, which in
the best case provides all information so that the SVR can predict the future values of a
time series. Therefore, all findings of the previous sections regarding the feature selection
and analysis of the autocorrelation and partial autocorrelation were used. As described
in Section 5.3 a single historical data point could be split into different features. There
are two main components the time and the actual value. As for the ANN, the SVR uses
the data of the week before to enhance the accuracy of the forecast, and this feature was
called recurrent week. The following feature were used:

• cyclic hour
• is holiday
• is weekend
• recurrent week

This feature combination was derived from the autocorrelation and the correlation
experiments in Section 5.2. The output of the SVR is the predicted value for the given
time.

The ε-SVR model was chosen, because it is suitable for regression tasks, as mentioned
in Section 4.2, thus also for forecasting. The ε-SVR is configured to use a linear kernel,
and this is similar to an AR model [43]. The parameters C was set to 1 and the parameter
ε is estimated by a tenth of the standard deviation using the interquartile range of the
response variable [44]. The SMO solver was chosen, because of the fast calculation and
low resource requirements. To ensure that the solver terminates after a finite time, the
number of iterations was fixed to 1000. Fixing the number of iterations ensures that the
training time is bound to an acceptable level.

As in the previous sections, the SVR is applied to the sensors of the categories elec-
tricity, district heating, humidity, temperature, and photovoltaic production. Therefore,
the MATLAB function fitrsvm was used to generate the SVR model and to apply the
SMO solver. After the model was generated, the MATLAB function predict was used
to predict the future values. Figure 6.7 shows the estimated and the measured values for
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a one week (168 hours) forecast of the different categories, and Table 6.4 presents the
according results for the accuracy measures. Comparing the results to the ARIMA and
ANN approach, it shows that the SVR performed good for district heating, humidity,
temperature, and photovoltaic. Especially, the humidity forecast in Figure 6.7(c) shows
a good prediction of the time series behavior.

Table 6.4: Results of the SVM approach.

Type MAE SMAPE MASE
electricity 11.751 0.007 0.166

district heating 9.980 0.005 22.245
humidity 0.848 2.230 0.821

temperature 1.539 36.379 1.125
photovoltaic 157.651 12.474 0.831

6.3 Evaluation method
The previously developed forecasting models, i.e., ARIMA, ANN, and SVR were all
tested with the same data so that it ends in a comprehensive performance test. Therefore,
the 30 sensors from Section 5.1 were used. The algorithms were configured as described
in Section 6.2. Every algorithm was evaluated multiples times on the same data set to
ensure that the random components of the algorithms were discovered and visualized.
This procedure is essential to make a statement of the repeatability of an algorithm. In
the field of building automation, the time horizon of a forecast is between several hours
up to a week [8] [14] [15]. Therefore, a forecast horizon of one week was used to evaluate
the presented algorithms. This long forecast horizon should ensure that the developed
forecasting models can be used in any building-related task, which requires predicted
sensor data.

Mandal, Senjyu, Urasaki, et al. proposed to evaluate a forecasting model at different
seasons of the year to ensure better accuracy [15]. Depending on the season of the year
the behavior of the measurand is different. The forecasting algorithms are tested if they
work regardless of the season in a year by choosing different time frames, e.g., spring,
summer, fall, and winter. This procedure should result in a cross-validation where, in
the best case, all seasons of a year are covered. The goal of the cross-validation was to
show that regardless of the season in a year the forecasting algorithm provides the same
performance. Since all selected sensors are located in Vienna, Austria, the seasons of the
year were the same for all sensors. They vary only from year to year. So that for every
season two timeframes were chosen, the first in the middle of the season and the second
on the transition to the following season. Regardless of the season, every timeframe was
split into two parts, the trainings set, and the test set, so that both sets are disjoint.
This approach is essential to ensure that the algorithms have no prior knowledge of
the forecast. The training set is used to train the network or to estimate the model
parameters, and the test set is used to evaluate the forecast accuracy [20]. The length of
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Figure 6.7: Measured (blue) and predicted (red) time series for the categories electricity,
district heating, humidity, temperature, and photovoltaic production for the SVM
approach
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the training set was one season (three months) and for the test set one week (seven days).
The granularity of the training set and test set was set to one hour. The test set was
only used to evaluate the performance of the algorithms. Table 6.5 shows the selected
periods of time. The timeframes were oriented on the meteorological seasons. So that
the months December, January, and February represent the winter season, March to May
the spring, June to August the summer season and September to November autumn.

Table 6.5: timeframes for the forecasting algorithm evaluation.

Training Test
Type Start End Start End

Electricity
District heating

01.12.2013 28.02.2014 01.03.2014 07.03.2014
01.03.2014 31.05.2014 01.06.2014 07.06.2014
01.06.2013 31.08.2013 01.09.2013 07.09.2013
01.09.2013 30.11.2013 01.12.2013 07.12.2013
15.10.2013 15.01.2014 16.01.2014 22.01.2014
15.01.2014 15.04.2014 16.04.2014 22.04.2014
15.04.2013 14.07.2013 16.07.2013 22.07.2013
15.07.2013 15.10.2013 16.10.2013 22.10.2013

Humidity
Temperature
Photovoltaic

02.01.2015 28.02.2015 01.03.2015 07.03.2015
01.03.2015 31.05.2015 01.06.2015 07.06.2015
01.06.2015 31.08.2015 01.09.2015 07.09.2015
01.09.2015 30.11.2015 01.12.2015 07.12.2015
15.01.2015 15.04.2015 16.04.2015 22.04.2015
15.04.2015 14.07.2015 16.07.2015 22.07.2015
15.07.2015 15.10.2015 16.10.2015 22.10.2015
15.10.2015 15.01.2016 16.01.2016 22.01.2016

The ANN uses a random initialization algorithm to set the initial weights before it is
trained. Depending on the weights the performance of the algorithm is not the same.
For reproducibility, the random seed could be fixed, so that every time the initialization
algorithm computes the same values. This procedure will not ensure that the optimal
weights were selected. For this reason, the random seed was not fixed, and the ANN was
executed several times in a row, and then the average output was computed. After some
testing, the number of retries was fixed to five. With this number, the mean output of
the ANN was nearly reproducible.

6.4 Results
As described in the previous section, all three algorithms were tested for the timeframes
defined in Table 6.5 to show the accuracy of the algorithm regardless of the time. For
better readability, the results were divided into individual parts and then presented. The
full detailed results of the evaluation can be found in the Appendix A. The results where
split into three tables, the MAE results (Table A.1), the SMAPE results (Table A.2), and
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the MASE results (Table A.3). The seasons with a * indicate a mid-season forecast and
otherwise the end of the season. Furthermore, the best algorithm with the smallest error
and therefore the best accuracy for a specific timeframe is marked light grey and called a
win. An algorithm is then superior to another one if in the majority of all timeframes
the algorithm has the smallest MAE and therefore the most wins. If two algorithms had
the same amount of wins, then both were counted. Table 6.6 shows the counted number
of wins per sensor type and algorithm.

Table 6.6: Overall results of the forecast accuracy, counted from the MAE result table
(see Table A.1)

ARIMA ANN SVM
Electricity 3 4 2
District heating 4 6 0
Humidity 0 6 0
Temperature 6 0 0
Phovotoltaic 1 5 1
Total 14 21 3

The most accurate algorithm was the ANN. It was in 21 timeframes superior or equal
to the other algorithms. After analyzing the results, it turned out that not a single
algorithm was superior in all seasons. Furthermore, the result table showed that the
SMAPE error metric resulted for the types electricity and district heating in unexpected
small values compared to the other types. The next three sections explain the detailed
results for every algorithm.

Electricity

The results in Table 6.6 showed that the ANN and the ARIMA algorithm were both
superior for this category. On a close look at the results in Table A.1 for the sensors of
the type Electricity (E-1 to E-6), it can be seen that the forecast for the meters E-1 to
E-4 in the season summer is worse than in the rest of the seasons. Mainly, the ARIMA
algorithm performed very poorly, the other two algorithms performed better but not as
good as in the other seasons. Further investigations have shown that in the case of the
summer season, either in season and at the end, the sensor had a malfunction. Due to
the malfunction, no real data was available so that the sensor data was interpolated, as
described in Section 5.1, and therefore the results are not accurate. Table 6.7 shows the
mean MAE over all seasons for the electricity sensors.

Surprisingly, for the majority of the electricity sensors, the ANN algorithm had the
smallest mean MAE grey marked values (see Table 6.7). Comparing this result to Table
6.6, it shows that in the mean the ANN algorithm is more accurate than the ARIMA
although the ARIMA and ANN had nearly the same amount of counted wins. Figure 6.8
shows two forecasts. On the right side a very accurate forecast with a MAE of 6.7 for
the ANN algorithm, and on the left side a bad forecast with a MAE of 72.5. From the
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Table 6.7: Mean MAE of the Electricity type of sensors for all seasons.

E-1 E-2 E-3 E-4 E-5 E-6
ARIMA 38.96 55.65 112.14 287.12 36.56 4.98
ANN 33.41 33.45 89.67 275.81 36.08 2.96
SVM 23.17 32.40 153.76 340.09 128.31 8.08
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Figure 6.8: Electricity forecasts for the sensor E-5 (left) in the season Winter and E-2
(right) in the season Autumn*.

figure, it can be concluded that even the bad forecast reveal information about the future
electricity behavior. The knowledge of the future behavior can be sufficient for further
processing. Looking at the results in Table A.2 and Table A.3 for the sensors E-1 to E-6,
it can be seen that the SMAPE and the MASE result leads to the same interpretation as
the MAE.

District heating

As by the sensors of category electricity, both the ARIMA and the ANN algorithm were
superior and led to a good result in a majority of sensors (see in Table 6.6). Furthermore,
a big difference between electricity and district heating is the fact that in the summer
the district heating is not used. Therefore, during the summer time, no consumption was
monitored so that the meter value was zero (see Figure 6.9(a)). The zero values caused
infinite values in Table A.3, especially for the season summer. Looking at Equation 6.3
it can be seen that if the measured value xj = 0,∀j, then the divisor is zero, and this
results in a division by zero. Matlab interprets a division by zero as infinite. This means
the MASE error metric is not useful in the case of periods with zero values. The heating
season in Austria usually starts in autumn. Table A.1 shows that the district heating
sensors (DH-1 to DH-6) did not perform well in the season Autumn. In average the
absolute MAE of the district heating sensors were higher than electricity sensors. Table
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Figure 6.9: Direct heating forecasts for the sensor DH-3 (left) in the season Summer and
DH-5 (right) in the season Winter.

6.8 shows the mean MAE calculated over all seasons for every sensor of the category
district heating. It can be seen that the ANN algorithm achieved the smallest mean MAE
for the majority of the sensors. Comparing this result with Table 6.6 it is clear that the
ANN algorithm is superior. Table A.2 shows the SMAPE results for the sensors DH-1 to
DH-6, the results were similar regarding wins per timeframe as for the MAE results.

Table 6.8: Mean MAE of the District Heating type of sensors.

DH-1 DH-2 DH-3 DH-4 DH-5 DH-6
ARIMA 116.97 559.36 2548.10 66.09 273.01 78.31
ANN 133.48 364.14 1462.5 146.97 90.40 113.15
SVM 249.40 797.21 3214.2 321.70 316.98 254.77

Humidity

The results in Table 6.6 for the humidity sensors show that the ANN algorithm performed
the best. Comparing the MAE values in Table A.1, it is shown for the humidity sensors
that the results were very close together. By further investigation of the MAE results,
it unveiled a poor performance in the seasons Spring and Autumn. The MASE results
in Table A.3 also showed a bad accuracy in the season Spring, Summer, and Autumn.
Despite the small MAE values for the humidity sensors, the performance was not accurate.
Figure 6.10 shows the best and the worst forecasts for the humidity sensors. Even the
best forecast is not accurate enough for further use. Table 6.9 shows the mean MAE over
all seasons for every humidity forecast.

It can be concluded, that additional features are necessary to forecast the humidity
in order to improve the accuracy. For indoor humidity sensors, the number of persons
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Table 6.9: Mean MAE of the Humidity type of sensors.

RH-3 FH-1 FH-2 RH-1 RH-2 OH-1
ARIMA 4.50 3.57 3.64 3.83 4.00 16.81
ANN 3.82 3.19 3.17 3.52 4.07 13.88
SVM 3.80 3.22 3.34 3.81 4.34 14.12

Mar 01 Mar 02 Mar 03 Mar 04 Mar 05 Mar 06 Mar 07 Mar 08

Time 2015 

30

32

34

36

38

40

42

44

46

48

H
um

id
ity

 (
%

R
H

)

Real
ARIMA
ANN
SVM

(a) Low MAE

Jun 01 Jun 02 Jun 03 Jun 04 Jun 05 Jun 06 Jun 07 Jun 08

Time 2015 

32

34

36

38

40

42

44

46

48

H
um

id
ity

 (
%

R
H

)

Real
ARIMA
ANN
SVM

(b) High MAE

Figure 6.10: Humidity forecasts for the sensor FH-1 (left) in the season Winter and RH-2
(right) in the season Spring.

in the room is a significant feature. In the case of outdoor humidity, there are better
forecasting models available.

Temperature

For the sensors of category temperature, Table 6.6 indicates that the ARIMA algorithm
performed the best. Analyzing Table A.1 and Table 6.10, it is shown that the sensors
PT-1, PT-2, and OT-1 had a significant deviation between the forecast value and the
measured value (see Figure 6.11(a)). These sensors are mainly influenced by the weather
conditions. For further research, the forecasts for the sensors PT-1 and PT-2 should be
enhanced by a sun position model to get better accuracy. The sensors RT-3, RT-1-M,
and RT-4 had small MAE values, but as for the sensors of the category humidity, this
did not indicate a reasonable accuracy (see Figure 6.11(b)). Comparing the MAE results
with the MASE results in Table A.3 it showed that most of the result values were greater
than one.

The results for the ANN and SVM indicate that the selected features are not proper.
It is assumed that feature recurrent week is not sufficient. This assumption means that
two successive weeks highly deviate from each other, and therefore the forecast gets
inaccurate.
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Table 6.10: Mean MAE of the Temperature type of sensors.

PT-1 PT-2 OT-1 RT-3 RT-1-M RT-4
ARIMA 6.72 6.74 5.45 1.17 0.29 0.32
ANN 8.28 8.63 6.55 1.44 0.45 0.37
SVM 8.35 8.26 6.13 1.54 0.44 0.38
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Figure 6.11: Temperature forecasts for the sensor PT-1 (left) in the season Autumn* and
RT-1-M (right) in the season Summer.

Photovoltaic

By analyzing the prediction accuracy of the sensors within the category photovoltaic,
it was possible to determine that the ANN algorithm worked the best, but the overall
performance was not good. Table 6.11 shows that the mean MAE over all timeframes is
in the range from 2 to 500 Watts. This result was not very satisfying only the sensor
PV-3 had accurate forecasts. Table A.1 shows that for the sensor PV-3, the MAE was
in the best case in the range between 0.8 and 3.8 Watts. Table A.3 shows the MASE
results of sensor PV-3. It can be seen that the majority of the timeframes is greater than
1, and this indicates a bad accuracy. Figure 6.12(a) shows the forecast of PV-3 for the
Winter season, despite of a MASE greater 1 the forecast showed a good approximation.
Analyzing the results of the sensors PV-1, PV-2, PV-4, PV-5, and PV-6 it was evident
that due to changing weather conditions the output of the photovoltaic panels was not
constant over time. This inconsistency cannot be predicted by the forecasting algorithms
so that the accuracy decreases. Figure 6.12 shows at the left figure the forecast of the
sensor PV-3 for the season Winter and on the right the sensor PV-4 for the season
Summer. The figure shows that if the energy production is stable over a period than the
algorithms predict the photovoltaic production well. If the energy production is unstable,
the forecasts are inaccurate.

These variations imply that further features are necessary to raise the forecast
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Table 6.11: Mean MAE of the Photovoltaic type of sensors.

PV-1 PV-2 PV-3 PV-4 PV-5 PV-6
ARIMA 490.89 193.00 3.32 302.99 359.67 371.94
ANN 357.69 182.09 2.45 295.96 330.87 312.38
SVM 362.48 186.09 2.40 305.72 319.30 295.90
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Figure 6.12: Photovoltaic production forecasts for the sensor PV-3 (left) in the season
Winter and PV-4 (right) in the season Summer.

accuracy. As stated before, the photovoltaic production depends on the solar radiation,
and therefore the sun position and the cloudiness are the main factors of influence.

6.5 Implementation

The last part of this thesis provides a library for easy integration of a forecasting service
into third-party applications. Such applications can be a BAS where a computer controls
the building. Furthermore, to avoid the high license cost of MATLAB the library was
implemented in JAVA. The library is built with the JDK 1.8 and the Encog Machine
Learning library [45] in version 3.3.0. The Encog Machine Learning library was chosen
because of the easy to use API and the ability to set up a custom configuration of an
FFNN and train it with the Levenberg-Marquardt Algorithm. The library is divided into
distinct namespaces, namely

• Pps.NeuralNetwork
• Pps.NeuralNetwork.Data
• Pps.NeuralNetwork.Features
• Pps.NeuralNetwork.Norm
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ForecastForecast

+Forecast()
+Train(training: DataSet, validation: DataSet)
+Simulate(test: DataSet)
-CreateFeedForwardNet(numberOfInputs: int, numberOfHiddenNeurons: int): BasicNetwork

BasicNetworkBasicNetwork LevenbergMarquardtTrainingLevenbergMarquardtTraining

-net-net -trainAlgo-trainAlgo

Figure 6.13: UML class diagram for the namespace Pps.NeuralNetwork

This partitioning of the namespaces ensures that it is easily extendable without the
need of recompiling. Therefore, new features can be created by deriving the abstract class
Feature. Likewise, the abstract class Normalizer can easily be derived and adapted
for new normalizers.

Pps.NeuralNetwork

The namespace Pps.NeuralNetwork is the interface between the Encog Machine Learning
Library and the third-party application. For the user of the library, it acts as a wrapper,
but behind the scenes, it completely initializes the neural network as described in Section
4.1. Figure 6.13 shows the class diagram of the namespace.

The function Train generates a new neural network and trains this with the given
data set. The performance of the validation set is used to stop the training as soon as
no increase is achieved. The function CreateFeedForwardNet generates a new empty
neural network. The function Simulate starts the forecast and the output of the function
is written directly to the test set.

Pps.NeuralNetwork.Data

The namespace Pps.NeuralNetwork.Data provides the data-structure for the neural net-
work. The main class in this namespace is the DataSet. It is designed to store a time
series and automatically generate features related to it. Every entry in the DataSet is rep-
resented by a DataSetRow. Every DataSetRow gets in the constructor a list of inputs, the
corresponding names, an output and a timestamp. Figure 6.14, shows the class diagram
of this namespace. With the functions addFeature and removeFeature features can be
dynamically added to a DataSet. The features are handed over to the DataSetRow class.
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The functions getTestSet, getTrainingSet and getValidationSet are splitting the
whole data set into three parts: the test set, the training set and the validation set.
First, at the function call getTestSet the number of days is specified for testing. After
this, the remaining data is split into validation and training set. Furthermore, the class
DataSet provides the methods to get the size, combine data sets, to sort or to filter the
data. Additionally, it implements the interface Iterable<T> so that it is easy to loop
through all elements. The features added to this class are not generated immediately, the
function call generateFeatureValues will generate the values in a batch. The class
Scaler provides the ability to scale the time series to hourly time slices. Therefore, the
function ScaleToHour is called. It can be either a start and end timestamp or without.
The start and end timestamp are used to truncate data which is not within the time
span automatically. The class DataSetRow implements the interface Comparable<T> to
compare two data-set-entries if they have the same timestamp. The class Normalizer is
a abstract helper class. It provides two functions Normalize and DeNormalize. These
two functions can be used to implement a custom class which can be used to normalize
or scale the value of each data row in the data set.

Pps.NeuralNetwork.Features

The namespace Pps.NeuralNetwork.Features provide a basic set of features. All classes
implement the abstract class Feature of the namespace Pps.NeuralNetwork.Data. Figure
6.15 shows the class diagram of this namespace.

The classes Year, Hour, DayOfMonth, and DayOfWeek are straight forward. The class
Holiday generates a boolean feature, which indicates whether the timestamp corresponds
to an Austrian holiday or not. The class Weekend provides a flag which indicates if
the day is within a weekend. The class Recurrent generates a feature which takes the
DataSetRow output value and delays it for a given day offset. The offset is set at the
constructor of this class. The class CyclicCosHour and CyclicSinHour generates the
cyclic hour feature presented in Section 5.3.

Pps.NeuralNetwork.Norm

The namespace Pps.NeuralNetwork.Norm provides two basic classes to normalize the
data set. All classes in this namespace are derived from the abstract class Normalizer
of the namespace Pps.NeuralNetwork.Data, see Figure 6.16.

The class Derivation provides the ability to derive the data set once. The derivative
is taken by subtracting the value of time t − 1 from the value of time t. The class
MaxMinNormalizer provides the ability to normalize the data set, this is done by
applying the Formula 5.1.
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FeatureFeature

+getName(): String
+Generate(data: DataSet)
#GenerateFeatureValue(row: DataSetRow): double
#addFeatureToDataSetRow(row: DataSetRow, value: double)

+Feature(name: String)
+Feature()

NormalizerNormalizer

+Normalize(data: DataSet)
+DeNormalize(data: DataSet)

DataSetRowDataSetRow

+DataSetRow(input: double[], output: 
double, timestamp: Date, featureNames: 
List<String>)
+getTimestamp() : Date

<<Interface>>

Comparable<DataSetRow>

<<Interface>>

Comparable<DataSetRow>

+getInput(): double[]
+setInput(input: double[])
+getOutput(): double
+setOutput(value: double)
~addFeature(value: double)
~setFeature(idx: int, value: double)
+getFeature(name: String): double
-getFeatureNameIndex(name: String): int
~getFeature(idx: int)
+compareTo(e: DataSetRow): int

DataSetDataSet

+DataSet()
+DataSet(items: List<DataSetRow>, features: 
List<Feature>, featureNames: List<String>, 
targetName: String)

<<Interface>>

Iterable<DataSetRow>

<<Interface>>

Iterable<DataSetRow>

+size(): int
+addFeature(f: Feature)
+removeFeature(f: Feature)
+addRow(inputs: double[], target: double, 
timestamp: Date)
+addRow(row: DataSetRow)
+removeDataSetRow(index: int)
+getDataSetRow(index: int): DataSetRow
+getRows(): List<DataSetRow>
+getFirstRow(): DataSetRow
+getLastRow(): DataSetRow
+getFeatures(): List<Feature>
+numberofInputs(): int
+setTargetLabel(label: String)
+getTargetLabel(): String
+setInputLabel(label: String[])
+getInputLabel(): String[]
+generateFeatureValues()
+getTestSet(days: int): DataSet[]
+getTrainingsSet(): DataSet
+getValidationSet(percentage: int): DataSet
+filter(featureName: String, value: double): DataSet
+filter(featureName: String, start: double, value: 
double): DataSet
+filter(start: Date, end: Date): DataSet
+getFeatureNameIndex(name: String)
+combine(data: DataSet): DataSet

+sort()
+combine(a: DataSet, b: DataSet): DataSet

+iterator(): Iterator<DataSetRow>
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Figure 6.14: UML class diagram for the namespace Pps.NeuralNetwork.Data

Comparison of the MATLAB and JAVA implementation

This subsection compares the ANN approach implemented in MATLAB with the presented
JAVA implementation. Therefore, the same time series as in Section 6.2 were used to
evaluate the performance of the JAVA implementation. Figure 6.17 shows the outcome of
the evaluation. The forecast of the electricity time series in Figure 6.17(a) showed for the
first two days a good forecast but the following days were less accurately predicted. The
other forecasts showed an oscillating output, which leads to high and low peaks. These
peaks have a negative impact on the performance of the JAVA implementation. The
according error measures are illustrated in Table 6.12. Comparing the values to Table
6.3, it is evident that the JAVA implementation did not perform as well as the MATLAB
implementation. After further investigations of the neural network implementation in
MATLAB and in the Encog Machine Learning library, no difference in the used algorithms
could be found. Both use the Nguyen-Widrow weight initialization and the LM algorithm
to train the network. One difference between the MATLAB and the JAVA implementation

69



6. Implementation and evaluation

YearYear

+Year()
#GenerateFeatureValue(row: 
DataSetRow): double

DayOfMonthDayOfMonth

DayOfWeekDayOfWeek

HourHour

HolidayHoliday

RecurrentRecurrent

WeekendWeekend

#GenerateFeatureValue(row: 
DataSetRow): double

#GenerateFeatureValue(row: 
DataSetRow): double

#GenerateFeatureValue(row: 
DataSetRow): double

#GenerateFeatureValue(row: 
DataSetRow): double

#GenerateFeatureValue(row: 
DataSetRow): double

#GenerateFeatureValue(row: 
DataSetRow): double

+Recurrent(days: int)
+Generate(data: DataSet)

+Hour() +Weekend()

FeatureFeature

+DayOfMonth()

+DayOfWeek()

+Holiday()

CyclicSinHourCyclicSinHour

#GenerateFeatureValue(row: 
DataSetRow): double

+CyclicSinHour()

CyclicCosHourCyclicCosHour

#GenerateFeatureValue(row: 
DataSetRow): double

+CyclicSinHour()

Figure 6.15: UML class diagram for the namespace Pps.NeuralNetwork.Features
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Figure 6.16: UML class diagram for the namespace Pps.NeuralNetwork.Normalizer
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6.5. Implementation

is the random number generator. Random numbers are used either to get an initial
weight set for the Nguyen-Widrow algorithm and for choosing the LM training set and
the LM validation set. Further research and development is needed to make the output
of the JAVA implementation identical to MATLAB.

Table 6.12: Results of the JAVA implementation of the proposed ANN approach.

Type MAE SMAPE MASE
electricity 36.309 0.0 0.517

district heating 33.017 0.0 73.142
humidity 1.017 2.839 1.017

temperature 3.732 64.392 2.672
photovoltaic 397.559 124.756 2.041
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Figure 6.17: Comparison of the real measured, the MATLAB predicted, and the JAVA
predicted values.
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CHAPTER 7
Conclusion

7.1 Summary

This thesis investigates proper algorithms to reliable forecast sensor data for utilization in
BAS optimization and management tasks. After the literature research, three algorithms
were chosen for evaluation. The first presented forecasting algorithm was the ARIMA
algorithm, widely used in econometrics to forecasts sales statistics, followed by two
machine learning algorithms, namely ANN and SVM. These two algorithms are often
used in pattern recognition, but they are also capable to solve regression tasks. The three
algorithms were evaluated in a comprehensive performance test resulting in a definite
tendency to ANN as the most promising algorithm. Chapter 2 starts with an introduction
to time series analysis and related terms. Definitions are provided to understand the
behavior of the time series described in Chapter 5. In the next step, these time series were
preprocessed. Therefore, every time series is inspected to identify anomalies like missing
data, sensor malfunction, or irregularities. Anomalies were removed, and the pchip
algorithm interpolated the missing data. After the cleanup of the data, features were
generated and used as inputs for the machine learning algorithms. The features are either
time or value related. After the preparation of the time series, the best configurations
for the individual algorithms were evaluated, as described in Chapter 6. For the ARIMA
algorithm, the autocorrelation function and the partial autocorrelation function for a time
series were calculated, and then the optimal values for the parameters p, q, and d were
selected. In the machine learning approaches, special attention has been paid to the input
features. In contrast to the literature, where mostly yt is provided as input to predict
yt+1, this work used yt−167 as input. For the ANN algorithm, the number of hidden
layers as well as the number of neurons per layer was evaluated based on the publications
[13], [14] and [46], and through testing. Different to the literature where often one or
two layers are used, the ANN approach performed better with a many layer design.
Six hidden layers were used, and the number of nodes was similar to an autoencoder
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7. Conclusion

configuration. The SVM was configured to use a linear kernel and the SMO solver based
on [43]. Most of the related work tested the algorithms at a special timeframe and for
one specific time series. In this work, 30 sensors were selected from two buildings with at
least one year of historical data to get a meaningful statement. The sensors were grouped
into the categories electricity, district heating, humidity, temperature, and photovoltaic
production. Thus, every group consists of six sensors. For every sensor, eight different
forecasts were made, two at every season of the year. One forecast is in the middle of the
season and one at the end. To evaluate the performance of the algorithms, the MAE,
SMAPE, and MASE were calculated. The ANN algorithm was the most accurate in all
tested seasons. Finally, the ANN algorithm was implemented in JAVA for further reuse.
Therefore, a library was designed to import the historical data, generate all necessary
features, configure the ANN, train it, and forecast the data. The library uses the Encog
Machine Learning library [45], which provides the neural network and the appropriate
training algorithm. The presented thesis shows that it is possible to predict future values
without any expert knowledge of the building and its processes. Furthermore, it shows
that it is essential to evaluate the forecasting models at different seasons in the year,
because depending on the model some seasons were easier to predict than others. Some
results of the presented ANN approach and the seasonal testing were already used in a
conference paper [47].

7.2 Future work

This thesis offers a basis for further development of the ANN approach as different
components can be enhanced or improved. In a first step, the codebase should be
moved from MATLAB to the open source language Python1 for better performance
and more flexibility in adapting machine learning algorithms. Furthermore, the change
from MATLAB to Python should solve the issue that two codebases can deviate from
each other, despite the same algorithms were used. The next component to enhance
is the data acquisition and preparation. Therefore, more data is needed from various
buildings. This information should be used to generate additional unique features for
the ANN algorithm to support the training algorithm to find general relations between
the input and output of the network. Besides the data generated by the building also
weather data can help to improve the forecasts. Furthermore, particular attention should
be paid to the reliable collection of the sensor data. In this context, more research is
needed to detect sensor malfunctions and how to handle a breakdown. It turned out
that data preprocessing is as crucial as the network structure of the ANN to achieve a
high forecasting accuracy. Therefore, the ANN should be enhanced to a deep neural
network, and various configurations have to be tested. This testing should result in a
further understanding of the inner network structure of an ANN.

Moreover, the developed library is intended to be used with an optimization algorithm
to optimize the building efficiency. Possible usage is to optimize the energy consumption

1https://www.python.org
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7.2. Future work

of the building by scheduling dynamic loads in the building so that first the overall energy
consumption is lowered, and second the energy consumption is flattened.
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APPENDIX A
Detailed forecast results

Table A.1: MAE results for every sensor described in Section
6.3

Winter Spring Summer Autumn Winter* Spring* Summer* Autumn*
E-1

ARIMA 19.3 22.2 73.3 8.9 44.3 27.0 81.6 35.3
ANN 17.2 45.7 31.9 37.2 13.4 58.0 4.8 59.0
SVM 17.4 14.6 25.8 24.5 18.8 55.8 6.5 22.1

E-2
ARIMA 6.5 32.9 136.8 90.5 54.5 17.7 80.0 26.2
ANN 18.3 25.6 77.7 14.9 28.2 32.5 63.7 6.7
SVM 25.2 18.7 119.7 25.1 7.7 20.3 22.2 20.4

E-3
ARIMA 38.5 27.7 467.6 14.6 26.5 14.8 293.1 14.4
ANN 52.7 180.2 274.7 39.2 29.6 15.8 75.5 49.6
SVM 91.4 46.0 404.9 137.3 163.1 42.3 19.2 325.8

E-4
ARIMA 68.8 21.7 1014.1 199.0 34.4 341.9 528.4 88.7
ANN 227.1 48.7 853.9 181.6 175.4 377.6 309.4 32.7
SVM 297.7 148.0 749.8 302.2 126.0 496.8 274.3 326.0

E-5
ARIMA 44.6 11.3 39.4 60.5 31.8 24.1 57.1 23.7
ANN 72.5 17.6 48.6 82.9 9.9 23.3 17.1 17.0
SVM 151.0 71.9 177.6 213.1 36.8 69.2 109.0 197.9

E-6
ARIMA 3.5 1.6 10.9 3.2 5.3 4.4 10.0 1.0
ANN 2.0 0.4 2.5 4.0 3.4 7.1 1.5 2.8

Continued on next page
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A. Detailed forecast results

Table A.1 – Continued from previous page
Winter Spring Summer Autumn Winter* Spring* Summer* Autumn*

SVM 6.0 8.7 19.2 6.7 4.2 11.4 2.4 6.1
DH-1

ARIMA 77.8 37.7 18.4 83.5 80.0 475.3 9.0 154.4
ANN 358.8 121.9 9.2 157.0 168.6 142.3 15.0 95.2
SVM 359.7 29.7 24.9 200.3 559.3 221.2 8.4 591.6

DH-2
ARIMA 469.1 119.1 94.4 2195.2 327.4 845.7 58.6 365.4
ANN 400.7 636.5 270.5 375.5 303.1 391.9 309.6 225.4
SVM 1274.4 655.3 302.3 298.9 2604.8 818.4 34.5 389.1

DH-3
ARIMA 188.0 463.9 58.3 15551.9 1034.5 1797.4 154.3 1136.9
ANN 3368.7 283.3 142.2 3261.8 470.2 3002.2 501.7 669.5
SVM 5454.5 1921.4 10.3 6082.1 5973.4 1553.4 2.3 4715.9

DH-5
ARIMA 350.9 0.0 0.0 1224.8 546.6 28.0 11.0 22.7
ANN 29.0 17.0 0.2 205.9 232.0 193.5 12.2 33.4
SVM 66.6 2.4 8.0 1202.4 1173.9 52.0 8.4 22.2

DH-6
ARIMA 95.8 29.0 21.4 171.9 96.3 45.6 16.9 149.8
ANN 227.2 30.0 1.2 84.3 182.6 271.3 17.5 91.2
SVM 378.3 2.9 172.1 354.9 570.2 239.7 3.4 316.6

DH-4
ARIMA 139.8 39.6 29.1 72.3 71.2 59.3 31.5 85.9
ANN 538.5 11.0 8.0 137.5 55.4 284.0 81.0 60.3
SVM 592.1 1.5 16.2 340.4 471.6 362.2 3.9 785.7

RH-3
ARIMA 3.3 2.3 3.7 6.9 3.3 6.6 4.0 5.9
ANN 2.7 2.0 3.6 4.7 3.5 4.3 3.7 6.1
SVM 2.8 1.9 2.9 4.8 3.7 4.7 3.8 5.9

FH-1
ARIMA 2.2 2.5 2.9 5.6 2.2 6.3 3.0 3.8
ANN 1.7 2.0 3.3 2.6 1.7 5.6 3.9 4.8
SVM 2.0 1.7 2.6 3.6 1.8 5.8 3.3 4.8

FH-2
ARIMA 2.7 2.7 3.0 6.2 2.2 5.9 2.9 3.5
ANN 1.8 2.2 3.2 2.6 1.4 5.6 3.3 5.3
SVM 2.2 2.0 2.9 3.1 1.6 6.3 3.3 5.4

RH-1
ARIMA 1.3 5.4 4.3 4.0 2.7 8.3 1.7 3.0
ANN 1.5 4.0 3.7 1.2 1.8 8.0 4.2 3.8

Continued on next page
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Table A.1 – Continued from previous page
Winter Spring Summer Autumn Winter* Spring* Summer* Autumn*

SVM 1.5 4.4 2.8 2.2 2.1 8.8 3.8 4.9
RH-2

ARIMA 1.2 6.7 4.1 2.0 1.4 10.9 2.0 3.7
ANN 0.6 5.2 4.2 0.8 1.3 9.7 6.0 4.9
SVM 0.7 5.7 2.8 2.9 1.3 10.6 5.3 5.4

OH-1
ARIMA 17.0 11.5 23.3 21.3 11.2 18.8 15.4 16.1
ANN 14.1 10.1 11.0 16.6 21.0 11.5 14.5 12.1
SVM 14.2 8.5 12.5 17.0 19.0 9.3 17.2 15.3

PT-1
ARIMA 4.1 4.8 10.5 6.3 7.8 10.3 3.4 6.5
ANN 5.1 12.7 7.4 7.2 8.0 10.5 7.1 8.3
SVM 5.8 12.8 8.1 6.2 8.3 10.6 6.7 8.4

PT-2
ARIMA 4.1 4.6 10.3 6.4 8.4 10.3 3.5 6.3
ANN 4.8 12.7 7.3 7.3 7.9 10.9 9.9 8.2
SVM 5.9 12.5 8.2 6.3 8.0 10.4 6.5 8.3

OT-1
ARIMA 1.6 2.5 7.5 6.3 10.4 5.1 3.9 6.4
ANN 2.4 9.7 5.6 4.6 6.4 8.9 7.4 7.4
SVM 2.5 9.4 5.2 4.2 5.6 9.3 5.2 7.8

RT-3
ARIMA 0.6 0.8 2.7 0.7 0.7 1.8 0.5 1.5
ANN 0.8 2.4 1.1 1.5 1.3 1.7 1.4 1.4
SVM 1.0 2.4 1.2 1.3 1.4 1.7 1.8 1.5

RT-1-M
ARIMA 0.2 0.2 0.3 0.3 0.4 0.3 0.2 0.5
ANN 0.3 0.8 0.4 0.3 0.9 0.5 0.3 0.3
SVM 0.3 0.9 0.3 0.3 0.8 0.5 0.1 0.2

RT-4
ARIMA 0.3 0.4 0.3 0.4 0.3 0.3 0.2 0.5
ANN 0.2 0.8 0.3 0.4 0.6 0.2 0.3 0.2
SVM 0.3 0.7 0.3 0.4 0.6 0.2 0.4 0.2

PV-1
ARIMA 585.7 322.4 909.2 178.8 462.1 240.3 385.9 842.8
ANN 384.9 304.5 398.1 293.0 511.3 255.6 385.2 328.9
SVM 434.1 415.8 491.0 89.5 551.8 384.5 184.0 349.1

PV-2
ARIMA 219.4 161.0 450.2 94.4 229.0 122.8 120.8 146.3
ANN 177.8 208.9 232.8 136.0 220.2 138.5 168.2 174.5

Continued on next page
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Table A.1 – Continued from previous page
Winter Spring Summer Autumn Winter* Spring* Summer* Autumn*

SVM 209.8 183.9 385.8 60.8 225.3 155.0 92.4 175.8
PV-3

ARIMA 0.8 1.2 11.9 3.8 1.5 4.2 1.4 1.8
ANN 1.4 1.7 5.7 3.7 1.7 1.2 2.6 1.6
SVM 1.2 0.9 8.8 3.0 1.0 1.0 1.6 1.7

PV-4
ARIMA 378.5 347.7 459.5 163.3 386.3 217.8 208.4 262.5
ANN 315.9 349.8 317.1 228.5 417.5 218.0 262.0 258.8
SVM 385.8 335.5 443.0 125.9 390.6 293.9 157.5 313.6

PV-5
ARIMA 381.5 270.2 832.5 325.7 384.6 213.9 204.4 264.6
ANN 318.5 356.2 396.7 230.8 377.8 348.9 359.9 258.2
SVM 374.6 308.3 589.2 107.3 412.8 287.8 166.4 308.1

PV-6
ARIMA 385.7 351.7 757.5 171.8 389.7 282.8 331.3 305.1
ANN 343.4 366.2 352.4 242.3 384.8 213.1 300.0 297.0
SVM 376.0 318.9 403.1 112.0 388.1 286.9 166.0 316.2

Table A.2: SMAPE results for every sensor described in
Section 6.3

Winter Spring Summer Autumn Winter* Spring* Summer* Autumn*
E-1

ARIMA 0.012 0.013 0.054 0.006 0.029 0.017 0.062 0.025
ANN 0.011 0.028 0.023 0.025 0.009 0.036 0.004 0.042
SVM 0.011 0.009 0.019 0.017 0.012 0.035 0.005 0.016

E-2
ARIMA 0.004 0.020 0.100 0.062 0.036 0.011 0.061 0.018
ANN 0.012 0.015 0.057 0.010 0.019 0.020 0.049 0.005
SVM 0.016 0.011 0.088 0.017 0.005 0.012 0.017 0.014

E-3
ARIMA 0.008 0.005 0.104 0.003 0.005 0.003 0.068 0.003
ANN 0.010 0.033 0.061 0.008 0.006 0.003 0.017 0.011
SVM 0.018 0.009 0.090 0.029 0.033 0.008 0.004 0.071

E-4
ARIMA 0.007 0.002 0.120 0.022 0.004 0.035 0.064 0.010
ANN 0.024 0.005 0.101 0.020 0.019 0.038 0.038 0.004
SVM 0.031 0.015 0.088 0.033 0.014 0.050 0.033 0.037

E-5
ARIMA 0.054 0.013 0.056 0.079 0.040 0.029 0.083 0.033

Continued on next page
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Table A.2 – Continued from previous page
Winter Spring Summer Autumn Winter* Spring* Summer* Autumn*

ANN 0.088 0.021 0.069 0.109 0.012 0.028 0.025 0.023
SVM 0.184 0.085 0.253 0.280 0.046 0.083 0.159 0.273

E-6
ARIMA 0.026 0.012 0.100 0.027 0.042 0.031 0.095 0.009
ANN 0.015 0.003 0.023 0.034 0.027 0.051 0.014 0.025
SVM 0.045 0.061 0.176 0.056 0.033 0.081 0.023 0.054

DH-1
ARIMA 0.023 0.011 0.007 0.028 0.025 0.136 0.003 0.055
ANN 0.105 0.035 0.003 0.053 0.053 0.041 0.006 0.034
SVM 0.105 0.008 0.009 0.068 0.175 0.063 0.003 0.212

DH-2
ARIMA 0.040 0.010 0.010 0.210 0.029 0.069 0.006 0.036
ANN 0.034 0.052 0.027 0.036 0.027 0.032 0.031 0.022
SVM 0.108 0.053 0.031 0.029 0.233 0.067 0.003 0.039

DH-3
ARIMA 0.004 0.010 0.002 0.422 0.026 0.041 0.004 0.032
ANN 0.079 0.006 0.004 0.088 0.012 0.069 0.014 0.019
SVM 0.128 0.043 0.000 0.165 0.150 0.035 0.000 0.133

DH-5
ARIMA 0.167 0.000 0.000 0.699 0.284 0.013 0.006 0.013
ANN 0.014 0.008 0.000 0.117 0.121 0.091 0.007 0.020
SVM 0.032 0.001 0.005 0.686 0.613 0.025 0.005 0.013

DH-6
ARIMA 0.021 0.006 0.005 0.042 0.022 0.010 0.004 0.038
ANN 0.050 0.007 0.000 0.021 0.042 0.059 0.004 0.023
SVM 0.084 0.001 0.044 0.087 0.132 0.052 0.001 0.080

DH-4
ARIMA 0.038 0.011 0.010 0.023 0.021 0.016 0.011 0.029
ANN 0.146 0.003 0.003 0.043 0.016 0.076 0.028 0.020
SVM 0.160 0.000 0.006 0.107 0.137 0.096 0.001 0.263

RH-3
ARIMA 8.674 6.042 8.547 19.050 9.857 15.640 10.271 19.198
ANN 7.208 5.075 8.178 12.179 10.324 9.991 9.433 19.806
SVM 7.327 4.837 6.650 12.439 10.827 10.911 9.713 19.089

FH-1
ARIMA 5.631 6.153 6.296 14.784 5.941 13.393 6.980 11.481
ANN 4.338 4.888 6.987 6.392 4.410 12.127 8.934 14.172
SVM 5.060 4.192 5.593 9.074 4.663 12.663 7.681 14.357

FH-2
ARIMA 6.992 6.543 6.432 16.654 5.764 12.419 6.700 10.902

Continued on next page
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Table A.2 – Continued from previous page
Winter Spring Summer Autumn Winter* Spring* Summer* Autumn*

ANN 4.722 5.287 6.778 6.657 3.453 12.077 7.451 15.635
SVM 5.796 4.730 6.096 7.811 3.970 13.663 7.418 15.903

RH-1
ARIMA 3.111 12.845 8.858 10.431 6.927 17.102 3.996 8.430
ANN 3.636 9.176 7.759 2.914 4.364 16.303 9.522 10.687
SVM 3.698 10.199 5.943 5.667 5.123 18.093 8.760 13.543

RH-2
ARIMA 3.076 16.018 8.220 5.269 3.557 22.480 5.100 11.494
ANN 1.502 12.056 8.446 2.124 3.199 19.384 13.621 15.013
SVM 1.812 13.505 5.769 7.895 3.140 21.611 12.237 16.554

OH-1
ARIMA 22.845 18.008 37.339 26.578 21.858 31.447 18.606 22.442
ANN 20.087 17.050 16.315 19.777 38.154 21.528 18.585 16.952
SVM 20.285 14.088 18.868 20.253 35.267 17.370 22.841 20.752

PT-1
ARIMA 186.435 16.359 36.258 79.850 43.849 30.119 28.213 -246.339
ANN 32.876 51.525 28.958 82.195 56.473 36.305 52.287 -986.753
SVM 92.964 52.188 32.373 80.559 56.702 35.907 47.711 -312.928

PT-2
ARIMA 52.069 15.021 34.525 73.468 42.270 29.330 26.717 624.534
ANN 81.575 49.670 27.959 76.117 50.382 34.990 62.663 453.838
SVM 73.962 49.192 31.302 73.051 51.038 34.029 44.037 -87.951

OT-1
ARIMA 39.435 10.975 34.168 76.743 61.935 18.833 37.026 195.332
ANN 68.477 53.525 27.779 64.900 60.332 37.597 60.399 536.460
SVM 62.999 52.181 25.993 60.907 51.507 39.746 46.082 866.816

RT-3
ARIMA 2.452 2.888 9.893 2.779 2.887 6.699 2.171 5.901
ANN 3.081 9.165 4.183 6.090 5.156 6.215 5.823 5.435
SVM 4.102 9.166 4.548 5.455 5.778 6.215 7.147 6.124

RT-1-M
ARIMA 0.910 0.867 1.224 1.218 1.518 1.162 0.975 2.022
ANN 1.280 3.174 1.471 1.221 3.859 1.845 1.142 1.214
SVM 1.444 3.808 1.381 1.160 3.541 2.107 0.525 1.013

RT-4
ARIMA 1.122 1.712 1.238 1.520 1.300 1.060 0.874 1.998
ANN 0.999 3.148 1.253 1.649 2.612 0.894 1.235 0.812
SVM 1.083 3.019 1.148 1.566 2.556 0.943 1.577 0.973

PV-1
ARIMA -61.724 -124.860 -134.390 49.409 117.204 51.246 -86.516 -179.090

Continued on next page
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Winter Spring Summer Autumn Winter* Spring* Summer* Autumn*

ANN 78.168 120.715 143.192 181.524 144.343 115.984 170.205 152.930
SVM 136.099 39.310 109.935 146.035 79.247 36.721 87.508 59.008

PV-2
ARIMA 43.563 35.747 -134.894 36.909 60.334 47.785 37.088 34.601
ANN 34.565 82.555 93.371 63.634 57.409 65.986 79.072 36.333
SVM 42.021 52.894 104.410 40.017 72.663 54.181 56.258 43.321

PV-3
ARIMA -70.194 -97.661 115.528 12.024 111.564 130.145 -60.794 -31.358
ANN 94.143 130.672 118.213 73.504 119.150 100.752 90.128 78.630
SVM 94.042 22.182 124.142 68.220 80.269 -22.417 -28.677 79.128

PV-4
ARIMA 37.382 63.843 -73.237 33.164 29.432 24.797 40.892 32.763
ANN 35.212 63.240 66.718 51.887 58.420 37.072 55.615 38.150
SVM 52.840 42.417 84.516 55.580 41.689 39.929 50.936 47.164

PV-5
ARIMA 112.746 -174.175 -135.341 173.769 100.552 7.211 -98.600 139.600
ANN 105.674 121.147 136.611 169.912 114.821 119.551 160.916 105.680
SVM 54.585 -5.879 120.263 -18.831 -12.338 14.978 41.858 508.121

PV-6
ARIMA 46.820 -8.490 -26.162 47.939 42.402 -16.154 108.086 132.007
ANN 56.490 116.381 132.587 80.027 75.676 101.260 107.437 62.130
SVM 47.302 82.404 114.377 84.736 56.529 30.073 266.261 56.520

Table A.3: MASE results for every sensor described in Section
6.3

Winter Spring Summer Autumn Winter* Spring* Summer* Autumn*
E-1

ARIMA 0.2 0.2 0.9 0.1 0.4 0.4 1.0 0.3
ANN 0.2 0.5 0.4 0.3 0.1 0.8 0.1 0.6
SVM 0.2 0.2 0.3 0.2 0.2 0.8 0.1 0.2

E-2
ARIMA 0.1 0.3 1.6 0.7 0.4 0.2 0.7 0.2
ANN 0.1 0.2 0.9 0.1 0.2 0.4 0.6 0.1
SVM 0.2 0.2 1.4 0.2 0.1 0.2 0.2 0.2

E-3
ARIMA 0.1 0.1 2.1 0.0 0.1 0.0 0.9 0.0
ANN 0.2 0.4 1.2 0.1 0.1 0.1 0.2 0.2
SVM 0.3 0.1 1.8 0.4 0.5 0.1 0.1 1.1

E-4
Continued on next page
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A. Detailed forecast results

Table A.3 – Continued from previous page
Winter Spring Summer Autumn Winter* Spring* Summer* Autumn*

ARIMA 0.1 0.0 3.2 0.3 0.1 0.9 1.2 0.2
ANN 0.4 0.1 2.7 0.3 0.3 1.0 0.7 0.1
SVM 0.5 0.3 2.4 0.4 0.2 1.3 0.6 0.6

E-5
ARIMA 0.8 0.5 0.8 0.8 0.4 1.1 2.3 0.4
ANN 1.2 0.8 0.9 1.0 0.1 1.1 0.7 0.3
SVM 2.6 3.1 3.5 2.6 0.5 3.2 4.4 3.6

E-6
ARIMA 0.2 0.3 1.0 0.2 0.3 0.4 1.4 0.1
ANN 0.1 0.1 0.2 0.3 0.2 0.7 0.2 0.3
SVM 0.4 1.5 1.7 0.5 0.2 1.1 0.3 0.5

DH-1
ARIMA 0.2 Inf 2.3 0.2 0.2 3.1 Inf 0.7
ANN 1.0 Inf 1.2 0.3 0.4 0.9 Inf 0.4
SVM 1.0 Inf 3.2 0.4 1.2 1.4 Inf 2.7

DH-2
ARIMA 0.4 Inf 0.9 1.7 0.2 1.2 Inf 0.8
ANN 0.3 Inf 2.7 0.3 0.2 0.5 Inf 0.5
SVM 1.0 Inf 3.0 0.2 1.8 1.1 Inf 0.8

DH-3
ARIMA 0.0 Inf 96.4 2.3 0.2 0.7 Inf 0.7
ANN 0.8 Inf 235.2 0.5 0.1 1.2 Inf 0.4
SVM 1.3 Inf 17.1 0.9 1.0 0.6 Inf 2.9

DH-5
ARIMA 1.2 Inf Inf 2.9 1.7 13.6 Inf 3.9
ANN 0.1 Inf Inf 0.5 0.7 93.8 Inf 5.7
SVM 0.2 Inf Inf 2.8 3.7 25.2 Inf 3.8

DH-6
ARIMA 0.3 Inf 352.9 0.3 0.2 Inf Inf 1.1
ANN 0.8 Inf 20.1 0.2 0.4 Inf Inf 0.7
SVM 1.3 Inf 2843.7 0.7 1.4 Inf Inf 2.4

DH-4
ARIMA 0.4 Inf 9.1 0.1 0.1 Inf Inf 0.3
ANN 1.5 Inf 2.5 0.2 0.1 Inf Inf 0.2
SVM 1.7 Inf 5.0 0.5 0.9 Inf Inf 2.7

RH-3
ARIMA 1.4 1.4 1.0 2.3 0.7 1.8 0.9 1.4
ANN 1.1 1.2 1.0 1.5 0.7 1.2 0.9 1.5
SVM 1.1 1.1 0.8 1.6 0.7 1.3 0.9 1.4

FH-1
Continued on next page
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Table A.3 – Continued from previous page
Winter Spring Summer Autumn Winter* Spring* Summer* Autumn*

ARIMA 1.4 1.9 0.9 4.4 1.2 2.5 1.4 1.5
ANN 1.1 1.5 1.0 2.0 0.9 2.2 1.8 1.9
SVM 1.3 1.3 0.8 2.8 1.0 2.3 1.5 1.9

FH-2
ARIMA 1.4 2.1 1.0 4.8 1.2 2.1 1.5 1.7
ANN 0.9 1.8 1.0 2.0 0.7 2.0 1.7 2.6
SVM 1.2 1.6 0.9 2.4 0.8 2.3 1.7 2.6

RH-1
ARIMA 1.1 3.1 1.5 4.3 1.5 2.9 1.2 4.0
ANN 1.3 2.2 1.3 1.3 0.9 2.8 3.1 5.1
SVM 1.3 2.5 1.0 2.4 1.1 3.0 2.8 6.5

RH-2
ARIMA 1.3 3.4 1.2 2.9 1.0 4.0 1.8 4.0
ANN 0.6 2.6 1.2 1.2 0.9 3.5 5.3 5.3
SVM 0.8 2.9 0.8 4.3 0.9 3.9 4.7 5.8

OH-1
ARIMA 1.6 1.4 1.7 2.0 0.8 2.0 1.3 1.9
ANN 1.3 1.2 0.8 1.6 1.4 1.3 1.2 1.5
SVM 1.3 1.0 0.9 1.6 1.3 1.0 1.4 1.8

PT-1
ARIMA 0.8 1.8 1.7 2.1 1.4 2.5 1.0 1.2
ANN 1.0 4.7 1.2 2.4 1.4 2.5 2.1 1.5
SVM 1.1 4.8 1.3 2.0 1.4 2.5 1.9 1.5

PT-2
ARIMA 0.8 1.9 1.7 2.1 1.5 2.6 1.0 1.2
ANN 0.9 5.3 1.2 2.3 1.4 2.7 2.9 1.5
SVM 1.1 5.2 1.3 2.0 1.4 2.6 1.9 1.6

OT-1
ARIMA 0.8 1.1 2.7 2.7 2.7 2.2 3.6 2.5
ANN 1.2 4.4 2.0 2.0 1.6 3.8 7.0 2.9
SVM 1.3 4.3 1.9 1.8 1.4 4.0 4.9 3.0

RT-3
ARIMA 0.7 1.1 3.0 1.4 1.2 2.3 0.8 1.0
ANN 0.9 3.4 1.2 3.1 2.1 2.1 2.2 0.9
SVM 1.2 3.4 1.3 2.8 2.3 2.1 2.7 1.0

RT-1-M
ARIMA 1.4 1.2 2.4 1.5 1.8 2.6 1.7 2.9
ANN 2.0 4.4 2.9 1.5 4.6 4.1 2.0 1.8
SVM 2.2 5.2 2.8 1.5 4.2 4.6 0.9 1.5

RT-4
Continued on next page
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A. Detailed forecast results

Table A.3 – Continued from previous page
Winter Spring Summer Autumn Winter* Spring* Summer* Autumn*

ARIMA 1.2 1.1 1.5 1.4 0.9 1.1 0.9 2.1
ANN 1.0 1.9 1.5 1.5 1.8 0.9 1.3 0.9
SVM 1.1 1.9 1.3 1.4 1.8 1.0 1.7 1.0

PV-1
ARIMA 1.2 4.2 2.1 2.1 1.2 1.1 1.8 2.3
ANN 0.8 4.0 0.9 3.5 1.3 1.2 1.8 0.9
SVM 0.9 5.4 1.1 1.1 1.5 1.8 0.9 1.0

PV-2
ARIMA 0.9 5.4 2.0 1.9 1.2 1.3 1.1 0.8
ANN 0.7 7.1 1.0 2.7 1.2 1.4 1.6 1.0
SVM 0.8 6.2 1.7 1.2 1.2 1.6 0.9 1.0

PV-3
ARIMA 2.0 34.8 9.4 1.6 3.2 8.7 1.7 3.1
ANN 3.4 49.1 4.5 1.6 3.8 2.4 3.2 2.8
SVM 2.8 26.2 7.0 1.3 2.2 2.1 2.0 3.0

PV-4
ARIMA 0.9 6.8 1.2 1.9 1.2 1.2 1.1 0.9
ANN 0.7 6.9 0.8 2.7 1.3 1.2 1.4 0.8
SVM 0.9 6.6 1.1 1.5 1.2 1.6 0.8 1.0

PV-5
ARIMA 0.9 6.3 2.2 3.9 1.2 1.2 1.1 0.9
ANN 0.7 8.2 1.0 2.8 1.2 2.0 2.0 0.8
SVM 0.9 7.1 1.5 1.3 1.3 1.7 0.9 1.0

PV-6
ARIMA 0.9 6.9 1.9 2.0 1.2 1.6 1.7 1.0
ANN 0.8 7.2 0.9 2.8 1.2 1.2 1.6 1.0
SVM 0.9 6.2 1.0 1.3 1.2 1.6 0.9 1.0
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