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Abstract 

 
This master thesis aims to employ Long Short-Term Memory (LSTM) neural networks for one-step 

and multi-step time series forecasts. For this endeavor, a software stack, including a deep learning 

framework is selected and different machine learning- and statistical models are implemented. The 

performance of the LSTM approaches is compared to carefully chosen benchmark methods on an 

exemplary real-world problem and the experiments are run on powerful, cloud-based machines. To 

provide a methodological framework for time series forecasting projects, a seven-phase process 

model is elaborated. Further, to allow for model selection of computationally intensive deep learning 

methods under limited resources, a modified form of blocked cross-validation, together with a multi-

stage Bayesian hyperparameter optimization approach is proposed. The proof of concept of the pro-

posed methodology is conducted on the real-world problem in the domain of electricity demand 

forecasting. The implemented LSTM model clearly outperformed the benchmark models on all per-

formance measures in the one-step walk forward out-of-sample test and showed a roughly 10% low-

er root-mean square error than the second-best model which utilized double seasonal Holt-Winters 

exponential smoothing. Inspired by work in the area of natural language processing, for the multi-

step scenario, an encoder-decoder LSTM neural network was implemented, as simpler architectures 

showed disappointing results. Also, the multi-step LSTM forecaster proofed to be a competitive ap-

proach, but the purely statistical model had the lead. However, due to resource constraints, it was 

not possible to retrieve statements on the same validity level as for the one-step case. By comparing 

the LSTM-forecaster to the predictive performance of simple recurrent neural networks, the added 

value of the more complex, gated cell architecture of the LSTM has been indicated. A downside of 

LSTM neural networks is the relatively long training time which can be a problem for exhaustive hy-

perparameter searches. On the other hand, LSTM neural networks showed to have good generaliza-

tion ability and needed comparably infrequent retraining. 
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Kurzfassung 

 
Das Ziel dieser Masterarbeit ist es, neuronale Netze, mit sogenannten Long Short-Term Memory 

(LSTM) – Blöcken, für Ein- und Mehrschritt- Zeitreihenprognosen anzuwenden und deren Perfor-

mance im Vergleich zu sorgfältig ausgewählten Benchmark-Methoden anhand von Daten eines aus-

gesuchten Problemfeldes, exemplarisch zu evaluieren. Für dieses Vorhaben wird ein Software-Stack 

selektiert und verschiedene maschinelle Lernverfahren, sowie ein statistisches Vorhersagemodell 

implementiert werden. Ein siebenphasiges Prozessmodel zur Durchführung und Evaluierung von 

Projekten zur Zeitreihenvorhersage wurde konzipiert und im empirischen Teil dieser Arbeit ange-

wandt. Des Weiteren wurde eine Methode entwickelt, um aufwendige Modellselektionen mit vielen 

verschiedenen, zu optimierenden Hyperparametern unter begrenzten Ressourcen durchzuführen. 

Dafür wird eine modifizierte Form einer geblockten Kreuzvalidierung, mit einer mehrstufigen, 

Bayesschen Hyperparameteroptimierung kombiniert. Die vorgestellte Methodik wurde im empiri-

schen Teil mit Hilfe von Daten aus dem Bereich der Elektrizitätsverbrauchsvorhersage validiert. 

Das implementierte neuronale LSTM- Einschrittvorhersagemodell lieferte im walk forward out-of-

sample Test eindeutig die besten Ergebnisse betreffend aller angewandten Metriken. So konnte et-

wa ein um 10,3% geringerer Root Mean Square Error (RMSE) als beim zweitbesten Modell, einem 

doppel-saisonalen, exponentiellen Glättungsverfahren nach Holt-Winters, erzielt werden.   Inspiriert 

durch Fortschritte auf dem Gebiet der maschinellen Sprachverarbeitung, wurde für das Mehrschritt- 

Szenario ein neuronales LSTM-Encoder-Decoder-Netzwerk implementiert, da einfachere Architektu-

ren unbefriedigende Resultate lieferten. Auch die Mehrschrittprognose mittels neuronalem LSTM-

Encoder-Decoder-Netzwerks erwies sich als vielversprechender Ansatz, jedoch lieferte das statisti-

sche Modell die genauesten Vorhersagen. Aufgrund von Ressourcenbeschränkungen war es jedoch 

nicht möglich, diese Experimente mit derselben Aussagekraft wie für die Einschrittprognosen durch-

zuführen. Durch Vergleich der Güte von Prognosen mittels neuronaler LSTM-Netze einfacherer,  re-

kurrenter neuronaler Netzwerke wurde der Mehrwert der komplexeren, Architektur der LSTM ange-

zeigt. Ein Nachteil von neuronalen LSTM-Netzen ist die relativ lange Trainingszeit, welche ein Hinder-

nis für ausgiebige Hyperparameteroptimierungen darstellen kann. Dagegen stellen die gute Genera-

lisierungsfähigkeit und das vergleichsweise selten benötigte Retraining einen klaren Vorteil dar. 
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1. Introduction 

1.1. Problem Statement and Objectives  
 

Being able to make precise time series forecasts is indispensable to many sectors such as medicine, 

demography, finance, energy, meteorology, and geodynamics, just to name a few. Furthermore, with 

the recent developments in the domain of Internet of Things (IoT) the amount of time series data gen-

erated by different sensory devices is growing fast and predictive solutions are gaining even more im-

portance. The prediction of time series is a regression problem, as regression deals with the estimation 

of the relation between a dependent output variable and one or more independent input variables 

which are also called predictors. There exist different approaches to perform a regression on time se-

ries data which can be roughly categorized in statistical and machine learning approaches. For a long 

time artificial neural networks (ANNs) were widely used in machine learning but some downsides such 

as the vanishing gradient problem and a long learning time when using backpropagation to train net-

works with many layers led to a shift to Support Vector Machines (SVM), which proofed to be suitable 

for many applications and could reduce the learning time significantly. The problem with the SVM is 

that it uses a fixed kernel function and is therefore not flexible regarding the input features. A possible 

countermeasure is to use expert knowledge about the input data to improve the kernel functions. [1]  

Recently, a type of machine learning models that also tackle the above-mentioned problems led to a 

renaissance of neural network models. These models are categorized under the term deep learning, 

which refers to a set of algorithms and architectural improvements that enhance a machine’s ability to 

learn complex coherences. Still, there is a lot of ambiguity when it comes to the terms machine learn-

ing, deep learning as well as other related concepts such as artificial intelligence and computational 

neuroscience, therefore a disambiguation and categorization is provided in the introduction of this 

thesis. However, deep learning models proofed to be superior over more conventional models in the 

areas of speech- and text processing, computer vision, and many others. Nevertheless, the majority of 

research in deep learning has been done on static data and less on time-dependent data (compare 

with [2], [3]). The type of deep learning models that will be used in this thesis are so-called Long Short-

Term Memory (LSTM) neural networks which are especially interesting for working with time series, as 

they have a special cell architecture that allows for retaining learned characteristics of a series for a 

long time. To further motivate the usage of LSTMs and to put deep learning into a historical context, 

the evolution from the first artificial neuron to the modern architectures is explained. 

In the empirical part, a state of the art hardware and software stack shall be used to conduct the ex-

periments. In the case of one-step-ahead predictions, already the last historical value can be a good 

estimate for the value to be predicted, and it is often not trivial to beat this naive forecasting approach. 

With an increased number of time steps to forecast, the uncertainty increases, making it more difficult 

to produce good forecasts. Therefore, the performance of the LSTM models is evaluated in a one-step- 

and a multi-step scenario. As a benchmark, other and simpler regression techniques will be used. This 

is an important point, since the comparison to computationally less expensive techniques sometimes 

seems to be forgotten in deep learning research. Further, especially in machine learning research in the 

time series forecasting domain, a lack of a clearly defined methodology for working through a forecast-

ing project and evaluating the outcomes seems to be prevalent, as it is also mentioned in a review by 

Hippert et al. [4]. Thus, a process model with a clearly defined methodology shall be elaborated for the 
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empirical part of this thesis. Moreover, when it comes to hyperparameter optimization and model 

selection, working with deep learning models and time series can be very resource intensive and often 

a minimalistic approach is chosen to optimize the parameters due to costly evaluation runs. Hence, 

another objective of this work is to develop an approach that reduces the amount of required re-

sources. 

 

1.2. Structure of the Work 
 

In this section, a short description of the thesis structure shall be given. 

 Chapter 1 gives an introduction to the thesis by stating the problem and defining the objec-

tives. The remainder of this chapter gives an overview of artificial neural networks and its bio-

logical sources of inspiration, to introduce the most important terminologies used in the sub-

sequent chapters. Further, a disambiguation and classification of terms like machine learning, 

artificial intelligence, deep learning and computational neuroscience will be conducted to es-

tablish a common understanding of these. 

 

 Chapter 2 outlines the development from the first artificial neuron models towards deep learn-

ing as known nowadays, based on a categorization into three development waves. Moreover, 

this chapter introduces the most important architectures such as feedforward and recurrent 

neural networks and contains the theory needed to understand the most important concepts 

for deep learning such as the backpropagation algorithm. This chapter concludes with a de-

scription of the latest advances in the field of deep learning such as Deep Belief Networks, 

Convolutional Neural Networks, and LSTM Recurrent Neural Networks.  



 Chapter 3 covers related work that was sighted during the literature research and describes 

the used methodological approaches and documents the outcomes. It concludes with an anal-

ysis of potential implications and research questions that are tackled within this study.

 

 Chapter 4 elaborates on the methodological approach that was used in this study. A process 

model for working through time series forecasting projects is developed and different aspects 

such as data partitioning, model selection, hyperparameter optimization, model evaluation 

and the chosen benchmark methods are documented in detail. 

 

 Chapter 5 contains the empirical part of this study. The forecasting problem is described, an 
exploratory data analysis is conducted and the necessary pre-processing steps are described. 
Further, the selection criteria for the soft- and hardware stack are listed and the chosen setups 
are presented. The experimental setup for the one-step and the multi-step scenario is ex-
plained and the process of hyperparameter optimization is documented. Finally, a thorough 
quantitative and qualitative analysis of the outcomes and comparison to the benchmark meth-
ods is provided by the means of carefully chosen performance measures. 



 Chapter 6 summarizes the outcomes, points out the limitations of this study and gives an out-

look for further research in this field. 
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1.3. Introduction to Artificial Neural Networks 

1.3.1. The biological neuron and biological neural networks 

Artificial neural networks are inspired by the functioning of the biological brain and its smallest building 

parts the biological neurons (see figure 1).  

 

Figure 1 A schematic figure of a biological neuron (a) and its artificial counterpart (b) [5] 

A biological neural network is a highly sophisticated web of neurons in which information is transmit-

ted via electrochemical signals. These signals are being received by dendrites which form the input 

wires to the neuron. On a high abstraction level, one can say that the cell body (soma) of a neuron will 

fire an output signal as soon as a certain threshold of activation through its dendrites is reached. The 

output signals travel through so called axons to synapses which can link an axon of one neuron to the 

dendrite of another neuron. 
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1.3.2. The artificial neuron 

 

The artificial counterpart to the biological neuron, depicted in figure 1, has one or more input links (x0 

…xn), which are weighted by the synaptic weights(w0..wn), and transforms the input signals to an out-

put signal y which describes the activation state of the neuron. The activation state is given by a trans-

fer function that is often a step or sigmoid function of the weighted sum of the inputs subtracted by a 

threshold. [6] One can imagine the synaptic weights as values that assign a relative importance to an 

input compared to the other inputs. In accordance, the threshold then sets a level of importance that 

has to be reached for the neuron to fire.    

 

1.3.3. Artificial neural networks and deep architectures 

 

An artificial neural network consists of a net of interconnected artificial neurons and usually, those 

networks have a 3-layer architecture as you can see in figure 2.  

 

Figure 2 Example of artificial neural network architecture 

The neurons in the both outer layers, the input and the output layer build the interface for processing 

input signals and supplying output signals respectively. The intelligence happens in the in-between 

layer, which is referred as hidden layer, since it is hidden from the outside. Now, the hidden layer can 

have more than one layer itself and broadly speaking, while networks with one hidden layer are shal-

low architectures by definition, all artificial neural networks with more than one hidden layer can be 

considered as deep neural networks. Nevertheless, a deep architecture and deep learning are not in-

terchangeable terms. As the term deep learning already suggests it is not only referring to a type of 

architecture but more to a set of algorithms and architectural improvements to facilitate learning. 

1.3.4. Classification of Neural Networks 

Supervised Learning, Unsupervised Learning 

As already explained in the previous section, the intelligence of artificial neural networks lies in the 

hidden layer, to be more precisely, in the allocation of the synaptic weights. Now, there are many dif-

ferent approaches how these weights can be learned during training, but generally one can differ be-

tween supervised- and unsupervised learning. 
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In supervised learning, the network is trained on input data and at the same time provided with the 

expected results regarding the shown inputs. The discrepancy between the input and the desired out-

put is then used to readjust the weights, to minimize the error. [7] A very famous representative of 

these types of algorithms is the backpropagation algorithm. This thesis will mostly deal with supervised 

learning in the empirical part, since for the training for regression problems the desired output (classes 

or historical values) are known. Supervised learning problems can further be categorized into classifica-

tion and regression problems: 

 Classification: Provides categorical outputs 

 Regression: The output is in real valued form 

In contrast, in settings with unsupervised learning, the network has to be trained on problems where 

no reference data of correct outputs can be provided. Thus, the neural network has to be self-

organizing and work on the input data without further guidance with the aim to model the underlying 

data structure/distribution to be able to conduct clustering or association[8]:  

 Clustering: Uncover inherent groupings in the data 

 Association:  The goal of association rule learning is to find rules that are highly distinguishing 

concerning the data. That means a good association rule distinguishes data with different 

characteristics as precisely as possible and at the same time is able to sum up large groups with 

similar characteristics. 

Lastly, there is also a third setting which is referred to as semi-supervised learning and as the name 

suggests, it is a mixture of both methods where in most cases an unsupervised learning phase is fol-

lowed by a supervised learning phase. This method proofed to be extremely powerful for big datasets 

where the majority of data is unlabeled and only a minor part can be used for supervised training. 

Deep Belief Networks, introduced in section 2.4.2, used for discrimination tasks are a very famous ex-

ample of successful models using that type of learning. 

Feedforward and Recurrent Neural Networks 

Artificial Neural Networks (ANNs) are often architecturally categorized by the way their neurons and 

layers are connected. The two most important categories are Feedforward Neural Networks (FNNs) 

and Recurrent Neural Networks (RNNs). For example, the network shown in figure 2 is a FNN. Thus, the 

information/signal flow is only directed forward from the input neurons in the direction of the output 

neurons. In section 2.3.1, these architectures are covered in more detail. In contrast, in RNNs there can 

be feedback loops, forming cycles within the network graph. These types of models will be covered in 

section 2.3.2 and further in the deep learning part, in section 2.4.3., with the so-called Long Short Term 

Memory Recurrent Nets. For this thesis, the RNNs are of special interest since they allow for incorpora-

tion of temporal dependencies.  

Activation Functions 

The neurons in a neural network can have different activation functions and in general, one can differ 

between linear and non-linear activation functions. However, a neural network consisting of only linear 

units has very limited learning capacity, since also a conglomerate of linear units can only grasp linear 

dependencies. Therefore, nearly all modern neural networks have some non-linearity in their activa-

tion functions. In the following figures, three graphs of very common activation functions, specifically 
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the ReLU-, sigmoid- and tanh function, are depicted. The choice of the activation function is very im-

portant and strongly depends on the task. A very important property of a good activation function is its 

differentiability. All three functions are differentiable but building the gradient of the tanh function is 

computationally less expensive than building it for the sigmoid function, further it tends to converge 

faster. However, the problem with both functions is that they get saturated for large activation values, 

which means that the gradient will be zero and for learning algorithms this can be a serious problem 

(see section 2.3.1 ). 

 

Figure 3 Rectified Linear Unit (ReLU) activation function 

 

Figure 4 Sigmoid activation function 

 

Figure 5 Tanh activation function 
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1.4. Classification of Terms 
 

1.4.1. Deep Learning, Artificial Intelligence and Machine Learning 

 

The terms artificial intelligence (AI), Machine learning, artificial neural networks and deep learning are 

often mixed up and used for referring to all kinds of systems, therefore in the following a disambigua-

tion shall be provided. The explanation will be based on the Venn diagram in figure 6 and the classifica-

tion in figure 7.  Artificial intelligence is the most general term and sums up all areas of computer sci-

ence where a machine has cognition abilities that allow for simulation of intelligent behavior such as 

learning and/or solving problems.   

A type of AI systems are knowledge bases, which were invented at the Stanford University in an ap-

proach to implement the Dendral expert system. This system helped in finding new organic molecules 

by incorporation of their mass spectra and inferring conclusions from chemistry knowledge. [5] So 

what those systems basically do is trying to mimic a human expert by drawing conclusions from a da-

tabase that contains the knowledge of experts in the regarding field with as much precision as possible. 

The next, narrower term, is machine learning (ML) - in contrast to a knowledge base as a representa-

tive of AI systems that are not capable of learning, those systems can learn from the data they are 

shown and gain experience in the course of training. What discerns them from the more advanced 

representation learning systems is the lack of automated feature engineering. That means that the 

inputs to those models are handcrafted features. Finally, deep learning levels the automated feature 

engineering capabilities of AI-systems to new grounds by making use of different abstraction levels. 

Those abstractions make use of complex representations which are built out of simpler representa-

tions, which also explains why deep learning is a subcategory of representation learning.[9] 
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Figure 6 Venn diagram for sorting the terms around deep learning [9] 



1. Introduction 

9 
 

 

Figure 7 Difference between Rule- based systems, machine learning and representation learning. The grey 
shaded boxes indicate which steps of the feature mapping and engineering part are conducted automatically 
by the respective systems. [9] Rule-based approaches for expert systems like knowledge bases draw their intel-
ligence completely from a human-defined set of rules which produce the output. In classic machine learning 
systems, features are extracted manually from the input which is often a very tedious task and automation is 
limited to the feature mapping. In systems inhibiting representation learning, also the feature engineering part 
is automated, which reduces the need for human interaction significantly and, even more for deep learning, 
often leads to superior models. 
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1.4.2. Deep Learning and Computational Neuroscience 

 
As shown in the next chapter, deep learning originated from models that are inspired by biological 

neurons and biological brains, nevertheless the functioning of the biological brain is to a large extent 

still unknown and therefore it can’t be used as a blueprint for the development of artificial neural net-

works. On the other hand, artificial neural networks can also help to gain more knowledge of the func-

tioning of the biological counterparts, since with computational neuroscience experiments in a bottom 

up approach can deliver useful insights.  

Hereto Goodfellow et al. write “The field of deep learning is primarily concerned with how to build 

computer systems that are able to successfully solve tasks requiring intelligence, while the field of 

computational neuroscience is primarily concerned with building more accurate models of how the 

brain actually works.” And further they define deep learning very precisely like in the following:  

“The modern term “deep learning” goes beyond the neuroscientific perspective on the current breed 

of machine learning models. It appeals to a more general principle of learning multiple levels of compo-

sition, which can be applied in machine learning frameworks that are not necessarily neurally in-

spired.”[9] 
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2. Development of Deep Learning 

 
As shown in figure 8 Goodfellow et al. sort the development of neural networks into three waves which 

finally emerged to deep learning: 

 

Figure 8 Three waves of development - Cybernetics, Connectionism, Deep Learning   

 

Cybernetics, 1940-1960: A transdisciplinary research field that Norbert Wiener defined as "the scien-

tific study of control and communication in the animal and the machine”. [10] In this era the simplest 

and though till nowadays highly relevant architectures that resemble biological neurons were pro-

posed by Mc Culloch and Pitts [11]. However, those structures were not capable of learning in the 

common sense. In 1949 the psychologist Donald O. Hebb published his book “Organization of Behav-

ior” in which he described the process of learning in the biological brain as a process of modification of 

synapses and electrochemical signals [12]. Inspired by the work of Hebb, in the late 1950s, Frank Ros-

enblatt developed the perceptron [13] which was the first neural structure that was capable of learning 

artificial synaptic weights.  

In 1969 the momentum in artificial neural networks rapidly slowed down as a consequence of a book 

published by Marvin Minsky and Papert [14]. In this book, he demonstrated the systematically imma-

nent downside of the perceptron, as it can only learn linear functions and thus fails to solve problems 

which are non-linearly separable. 

A famous example for this is the XOR-function which is a two dimensional problem, but there does not 

exist a linear separation for the solution, thus a third dimension is needed to be able to draw a linear 

separation hyperplane. The third dimension can be introduced by an additional layer to the percep-

tron. Minsky and Papert also were aware of that fact but the Perceptron learning algorithm introduced 

in section 2.2 was not able to learn the connection weights in a multilayer setting and Minsky and Pa-

pert did not believe in the possibility of finding a general rule for this problem.[15] 

By academia, their findings were falsely generalized as an insuperable obstacle for artificial neural sci-
ences. As a consequence, the development of artificial neural networks came to a halt and it took till 
the 1980s to gain momentum again, also because “negative opinions of eminent AI authorities caused 
limited financing of research into neural networks” [5].  
At this place, a very interesting historical fact from the book “Artificial Intelligence – A Modern Ap-

proach” by Russel and Norvig [16] shall be cited : “Marvin Minsky and Dean Edmonds, built the first 

neural network computer in 1951. The SNARC, as it was called, used 3000 vacuum tubes and a surplus 

1940-1960 

•Cybernetics 

1980-1995 

•Connectionism 

2006 - Ongoing  

•Deep Learning 
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automatic pilot mechanism from a B-24 bomber to simulate a network of 40 neurons. Minsky's Ph.D. 

committee was skeptical whether this kind of work should be considered mathematics, but von Neu-

mann was on the committee and reportedly said, "If it isn't now it will be someday." Ironically, Minsky 

was later to prove theorems that contributed to the demise of much of neural network research during 

the 1970s.” 

This quote nicely shows how much Von Neumann, already at this early stage, was an advocate of neu-

ral computing because he saw the potential of introducing stochastics into computing and he reported-

ly defended his stance several times against resistance of the mainstream (Boolean-branch) computer 

scientists.  

 

Connectionsim, 1980-1995: A subfield of cognitive science which deals with complex, emergent phe-

nomena that occur by the interplay of interconnected, simple units. The term itself was already intro-

duced by Hebb in the 1940s [17]. During this period, the power of interconnecting the simple struc-

tures already discovered in the cybernetics-era was employed to learn more complex, nonlinear func-

tions via interconnected artificial neurons. Two important pioneers in this area are Rumelhart and 

McClelland who, together with other famous researchers such as Geoffrey Hinton, formed the Parallel 

Distributed Processing Research Group and published their much-recognized work under the title 

“Parallel-Distributed Processing: Explorations in the Microstructure of Cognition”[18].  In their book, 

Goodfellow et al. point out some of the key concepts that were discovered at this time which remain 

relevant also in modern deep learning research such as distributed representation and the backpropa-

gation algorithm.  

The concept of distributed representation boils down to the idea that different neurons in the hidden 

layer have very specialized abilities (for example the recognition of the color red) and with this granu-

larity of specialization there comes the ability of generalization. That means that a neuron in the hid-

den layer can make valuable cognition for many different input features. Goodfellow et al. give the 

example of the neuron with the recognition of the color together with neurons which each can identify 

one simple object. In an undistributed representation, the number of neurons in the hidden layer 

would equal to a single neuron for every different object, times the number of colors each object can 

have. In contrast, in a distributed representation one would have only one neuron for every color and 

one neuron for every object, so the color neurons represent general knowledge that can be used for 

many different objects. This shows that the effectivity of the concept of distributed representations 

comes from the power of generalization through specialization. 

Another important contribution of the research on artificial neural networks dating back to this time is 

the backpropagation algorithm which is used to train a neural network with more than one layer and 

will be covered in more detail, since it is so essential to all further developments and is still one of the 

predominant algorithms used for learning. Nevertheless, algorithms as like backpropagation have 

downsides such as the vanishing gradient problem and a long learning time for many-layered net-

works, which make the usage for these computationally unfeasible.  Together with the progress made 

in other areas of machine learning such as Support Vector Machines (SVMs), Goodfellow et al. state 

that unrealistically high expectations led to a sinking popularity of ANN-research: “Ventures based on 

neural networks and other AI technologies began to make unrealistically ambitious claims while seek-

ing investments. When AI research did not fulfill these unreasonable expectations, investors were dis-

appointed.” [9]. 
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Deep Learning, 2006 – Ongoing: As already mentioned, also SVMs have their downsides due to the 

fixed kernel function that limits the flexibility of such models since manual feature engineering and 

optimization of the kernel function is necessary. Further, although the backpropagation algorithm al-

lows for training of multi-layered networks, Mo [1] sums up the most significant, remaining downsides 

of multilayer – neural networks prevalent in the connectionism era: 

1. Lack of training unlabeled data: The ability to train on unlabeled data is extremely important 

for problems that require unsupervised learning. 

2. Backpropagation of the correcting signal through many layers causes its weakening (vanishing 

gradient problem) 

3. Unfeasible learning time for multi-layer networks 

4. Backpropagation algorithm can get stuck in poor local optima 

 

In 2006, Hinton et al. published their work on Deep Belief Networks (DBNs) to tackle the problems 

listed above. The main difference to previous training algorithms is a greedy, layerwise training proce-

dure and the layers itself are built from stacked Restricted Boltzmann Machines instead of stacked 

autoencoders [19]. Other very prominent representatives of deep learning models are Convolutional 

Neural Networks (CNNs) and Long-short term memory neural networks (LSTMs). 

 

2.1. The neuron model of McCulloch-Pitts 
 

In 1943, in the Bulletin of Mathematical Biophysics, the neuroscientist Warren S. McCulloch and the 

logician Walter Pitts published their paper "A logical calculus of the ideas immanent in nervous activi-

ty" where they proposed the first mathematical model of a neuron. The inputs and outputs of the 

McCulloch-Pitts neuron are binary only. In an analogy to biological neural cells, they have a threshold 

and additionally an inhibitory input. The input signals are summed up and compared to the threshold 

value. As shown in equation (2.1), if the arithmetic sum of the input signals is greater than the thresh-

old and there is no inhibitory signal, then the neuron’s binary output equals to 1 otherwise it is 0. An 

important thing to mention is that the weights are all the same for the excitatory inputs, nevertheless, 

an input can be fed into the neuron more than once so through this method the weight can take the 

value of every positive integer. In any case, the McCulloch-Pitts neuron is not able to learn those 

weights, so they have to be set manually. [20] [21] 

The inputs to the McCulloch-Pitts neuron can be seen as the truth values of propositions and the neu-

ron itself combines those to inputs to calculate the truth value of another proposition.[22] 
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Figure 9 Mc Culloch-Pitts Neuron [21] 

 

 

2.2. The Perceptron 
 

In 1958 Frank Rosenblatt published a paper in which he introduced the perceptron. The major differ-

ence to the previous neuron models was the ability to learn the weights of the Perceptron with the so-

called delta rule. In contrast to the McCulloch-Pitts neuron, the perceptron has now different weights 

per-se and they can be positive or negative.  

 

Figure 10 The Perceptron model by Frank Rosenblatt [21] 

 

Below, figure 10 is described mathematically by defining the input- and the weight vector as well as the 

input function which is the scalar product of the input and output vector and the output function. The 

threshold is simply treated as a synaptic weight to an activated synapse. 

 1Input: ( 1, ,..., )o nx x x x    (2.2) 

 1Weight: ( , ,..., ),o nw w w w bias       (2.3) 
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  (2.5) 

As already mentioned, the biggest advance of the Perceptron is its ability to learn a set of weights by 

the delta rule. The delta rule can be derived quite intuitively starting from the error function E as the 

squared residuals summed over all training cases, multiplied by ½ (simplifies the term after the deriva-

tive): [22] 

 2

    

1
( )

2

n n

n training

E t y


    (2.6) 

 To obtain the error derivatives for the weights, it is only needed to calculate the partial derivative of 

the error E with respect to the weights under the usage of the chain rule. The chain rule says that the 

error will change with respect to a weight change like the output changes with respect to this weight 

change times the change of the error when the output changes. 
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As we build the sum of the errors over all training cases (n) we get in equation (2.8) as a result the so-

called batch delta rule, since the set of training cases is also referred to as a batch. The symbol ε stands 

for the learning rate which determines how fast the algorithm learns and can take any real number 

between 0 and 1.The correct choice of the learning rate is crucial, as a high learning rate can lead to 

oscillation and therefore not finding the optimum solution, whilst a very low learning rate may lead to 

extremely slow learning. Commonly, the learning rate will be chosen by empirical tests. 

 ( )n n n

i i

ni

E
w x t y

w


 


       (2.8) 

2.3. Classical Neural Network Architectures 

2.3.1. Feedforward Neural Network  (stacked Autoencoders) 

 

The most widespread artificial neural network architecture is the feedforward neural network (see 

figure 12 for a schematic depiction of the architecture). Roughly speaking, different hidden layers work 

on different levels of abstraction and transform the input until the data reaches the output transfor-

mation. One can imagine the transformations in a way, considering image classification, that in the first 

layers very simple geometrical forms are recognized from the input pixels – like lines and edges. In the 

next layers some neurons may infer shapes from those lines and edges and in the upper most layers 

the neurons are for example able to decide, based on the representation delivered by the previous 

layer, whether an image shows a landscape or a technical apparatus.  
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Figure 11 A feedforward neural network with one input layer, several hidden layers and one output layer [23]  

 

Backpropagation 

As already mentioned a very famous algorithm for deriving the weights in a neural network with more 

than one hidden layer is backpropagation. Since this algorithm widely used, it will be derived in the 

following. Again, like in the case of the delta-rule, the starting point is the quadratic error term E: 

 2

  

1
 ( )

2
j j

j output

E t y


    (2.9) 

Then the error derivatives with respect to the output of the output nodes yj , j∈ output are built. We 

have to use the error derivatives of the output units since we don’t know what the target values within 

the hidden units should be. 

 ( )j j

j

E
t y

y




     (2.10) 

The core idea to backpropagation is that the error derivatives in the output layer are propagated one 

layer downwards (back) and used to compute the error derivatives in this layer. This procedure recur-

sively follows till the algorithm reaches the first network layer. 

In figure 12, a schematic neural network is depicted where the node j is a node in the output layer and 

yj refers to the output of node j, the same nomenclature goes for node i and its output. The sum of all 

the inputs that come into the node j from the preceding layer is zj.  
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Figure 12 Schematic neural network for explanation of backpropagation adapted from [22]  

By making use of the chain rule, in equation (2.11) we can obtain the following expression for the par-

tial derivative of E with respect to the input to node j: 

 (1 )
j

j j

j j j j

dyE E E
y y

z dz y y

  

  
     (2.11) 

To calculate the change in the error with respect to a change in the output of unit i, one has to consid-

er all the connections that link the neuron i to the neurons in the layer above. Thus, this derivative can 

be written as the sum of all the connections from unit i to the above layer in the form of the multiplica-

tion between the derivative of the total input to the neurons in the above layer with respect to the 

output of neuron i and the partial error derivative with respect to the total input to the respective neu-

rons of the above layer. Since the first term of the multiplication simply evaluates to the respective 

neural connection weights of neuron i to the neural units of the above layer, the result of equation 

(2.12) is quite intuitive: 
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Finally, the missing key to being able to perform the backpropagation algorithm to find a good set of 

weights for a multilayer neural network is the calculation of the error derivative with respect to the 

connection weights. Again, via applying the chain rule, it can be computed with the expression in equa-

tion (2.13), that boils down to a multiplication of the output of the neuron i, namely yi, and the expres-

sion calculated in equation number (2.11).  
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    (2.13) 

In conclusion, that means that with the help of equation number (2.12) it is possible to compute the 

error changes with respect to the output of a neuron, not only in the layer below the output layer but 
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in virtually any layer, which allows the evaluation of the formula in equation (2.11). So finally, by back-

propagation of the error derivative from the very top layer, we can calculate the error derivatives w.r.t. 

the weights. 

As already mentioned in the sections above, one of the most severe problems with backpropagation is 

that the gradients at one layer can be seen as the product of the gradients of the previous layer and 

therefore, if gradients in the product are smaller than 1, the result can get very small. This problem is 

called vanishing gradients, whereas the opposite, when the gradients are big and tend to blow up, it is 

called exploding gradients. Since general feedforward neural networks, usually have different connec-

tion weights at each layer, there are ways to cope with that problem. Though, for Recurrent Neural 

Networks (RNNs), which are introduced in the next section, this is a serious issue.[9]  

      

2.3.2. Simple Recurrent Neural Networks (RNNs) 

 

Recurrent ANN architectures are extremely important for modeling time series and will therefore, in 

more elaborate forms, be very prominent in the practical part of this thesis. More general, recurrent 

neural networks are the architecture of choice when it comes to processing sequential data, which not 

necessarily is time-dependent. Such time invariant sequences are character sequences and hand-

writing and regarding the character sequences an important field of research is character generation 

from an input sequence, where one feeds a text into the net and the output shall be a readable text 

with, in the best case, grammatical and even contextual fit. [9] 

The architecture differs from feedforward networks in the way that there exist loops, forming directed 
cycles in the connection graph. Those loops can form a feedback on a neuron itself, within the neurons 
of the hidden layers as well as between the neurons of the output layer and the neurons of the hidden 
layers. 
 
Bianchini et al. state that the recursive dynamics, coming with these internal loops also allow for de-

layed activation dependencies between the neurons. The possibility to encode information not only 

locally distributed by the activation state of different neurons, but also temporally distributed via their 

time-varying activation, also lets RNNs be known as spatiotemporal Networks.[24] 

Both, the feedforward and the recurrent neural networks have some kind of memory. The feedforward 

network produces a static model of the data from which it has learnt the weights and it outputs solely 

a function of its input and the weights. Through the feedback loops, the recurrent neural network’s 

memory is more of dynamic nature since its output is a function of the weights, the input, and the pre-

vious state. [25] 

A very important idea for the understanding of recurrent neural networks is parameter sharing. In or-

dinary feedforward neural networks, the network would learn the set of parameters for every time 

step /position of the sequence and thus the ability to generalize for sequences of various length and 

other time indices is not given. [9] 

Figure 13 shows an example of a possible RNN architecture. The variable x stands for the input se-

quence, while the variable U is the matrix which parametrizes the connection weights to the hidden 

units h. The connections within the hidden layer are parametrized by the weight matrix W and the 

weights from the hidden neurons to the output neurons o, by matrix V, respectively. 
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Figure 13 An example of a recurrent neural network architecture as a computational graph (right), unfolded from a circuit 
diagram (left) [9] 

By unfolding the recurrent structure, the following equation can be used to define the state of the hid-

den units h, depending on time t: 

 ( ) ( ) ( ) ( 1) ( 2) (2) (1)( , , ,..., , )t t t t th g x x x x x    (2.14) 

The function g(t) takes the current input and all past inputs and builds the current hidden state h(t) , by 

recursive reformulation the next equation is yielded. 

 ( ) ( 1) ( )( , ; )t t th f h x    (2.15) 

The unfolding of the recurrent architecture results in a model always having the same input size, 

regardless of the input sequence, since it is driven by state transitions – one to another- (from h(t-1) to 

h(t)) and not by inputs of different lengths of historical sequences. The formulation of equation (2.15) 

allows using the identical transition function f with the identical parameter Θ for every time 

step/position in the sequence (=parameter sharing). Further, Goodfellow et al. point out that in 

prediction scenarios, the recurrent neural network “learns to use h(t) as a kind of lossy summary of the 

task-relevant aspects of the past sequence of inputs up to t”. This comes from the fact that h(t) is a 

fixed length vector, while the input to the neural network can be of any length, thus by keeping im-

portant details of the past and leaving less important ones aside, a summary is achieved.[9] 

The training of an RNN can again be done with a slightly modified version of backpropagation namely 

backpropagation through time. This boils down to unfolding the recurrent architecture so that we have 

a normal feedforward architecture which can be trained with backpropagation. The thing is that recur-

rent architectures can get very deep and the deeper the neural network, the more likely one has to 

deal with the vanishing/exploding gradients problem. This is even more an issue for RNNs since they 

share the same weights for every layer, through one cycle of backpropagation. 

RNNs have the ability to remember information in the hidden state for a long time. However, as ex-

plained for the reasons above, it is very difficult to train them in the way to be able to make use of 

that. [22]  So only the most recent types of RNNs have these capabilities and will be described in the 

section about Long- Short-Term Memory Networks.   
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2.4. Deep Architectures 

2.4.1. Deep Belief Networks (DBNs) 

 

Deep Belief Nets overcome well-known issues that come up when applying backpropagation to many-

layered neural networks: The need for a big labeled data set, long learning times and poor local mini-

ma.[26] As one of the first models they allowed training of deep architectures, without using convolu-

tion techniques and their introduction in 2006 led to the rise of deep learning.[9] Therefore, this sec-

tion will explain some of the ideas in a little more detail. 
 
Deep Belief nets are a type of so-called energy-based models which by their nature are probabilistic 

generative models. The neural networks introduced in the previous sections are of discriminative na-

ture, which means that they can model the dependence of an unobserved variable (a label) on an ob-

served variable. More precisely, after training, a discriminative model can estimate 

P(Label|Observation). Generative models, in contrast, model a joint probability distribution over the 

observable and unobservable data, thus allowing to estimate P(Label|Observation) as well as 

P(Observation|Label). This also explains why this class of models is named generative models, since 

they can generate observations, given a label, based on the joint probability gathered during the train-

ing phase.  

Hinton explains the benefits of a generative model over a solely discriminative model with the fact that 

for example, training with backpropagation only results in models which inhibit how the output de-

pends on the input, but information about the structure of the input is neglected. He further states 

that this is in particular a weak point if the output can potentially be better modeled by features that 

capture the structure of the input than by only providing the raw, highly structured input data.[27] 

To explain the function of Deep Belief networks it is necessary to understand the building blocks of 

energy-based models. A very simple energy-based model is the Hopfield network. This neural net is 

formed by the recurrent interconnection of binary threshold units. The binary threshold units are neu-

rons with a nonlinear activation function that can be in one of two states (mostly -1 and 1). Recurrent 

networks composed of nonlinear units can either settle to a stable state or end up in inconvenient 

states such as oscillation or chaotic behavior. John Hopfield discovered that making the connections 

between the units symmetric, one can overcome this inconvenience and further, the network’s state 

can be easily calculated by what is called a global energy function. That means all possible binary states 

of the neurons in the network are assigned an energy and these energies sum up to the global energy 

of the network. Moreover, by a clever choice of the energy function, by conducting the binary thresh-

old decision rule, the network will settle to an energy minimum. Hopfield found out that the binary 

configurations in an energy minimum can be used to store memories by utilization of a very simple 

learning rule for the weights, where the weight increment is determined by the product of the binary 

states of the connected neurons. Further Hopfield noted that this architecture gives a content ad-

dressable memory, which can also restore memories by having only partial information about it.[22] 

Though I wanted to mention these interesting facts about the properties of a Hopfield net, at this 

point, the learning rule for the weights will not be further explained, since the theory of the Hopfield 

net shall mainly be provided for introducing the energy function. 
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Equation (2.16) shows a possible energy function of a Hopfield neural network. It consists of the sum of 

the products of the bias terms bi with the state si of the neuron i and the sum of the product of the 

states (si and sj) of every two interconnected neurons i and j weighted by their connection weight wij.  

 i i i j ij

i i j

E s b s s w


      (2.16) 

The lower the energy, the better, and the binary threshold decision rule can be seen from the view-

point of calculating the so-called energy gap ∆Ei in equation (2.17) which is nothing else than the dif-

ference between the global energy when a neuron (i) is in its on-state and when the same neuron is in 

its off-state. So the quadratic global energy function allows a neuron to locally compute if turning 

on/off will cause the global energy to fall or to rise and thus to set its global energy minimizing state. 

 ( 0) ( 1)i i i i j ij

j

E E s E s b s w         (2.17) 

An issue with Hopfield nets is that they can get trapped in poor local minima which differ from the 

global minimum. This comes from the fact that due to its energy minimizing decision rule it won’t be 

able for example in figure 14 to escape from the local energy minimum in point A and find the global 

minimum B. 

 

Figure 14 Local and global energy minima[22] 

The solution to the local minima trap is to add some random noise to the system which allows jumping 

out of such traps. Therefore, the binary threshold units are replaced by stochastic binary threshold 

units. This means that the state of a neuron is now stochastically determined by equation (2.18), where 

the temperature T controls how much noise is added. By gradually reducing the amount of noise the 

network will settle in a global minimum. This method is inspired by physics and is referred to as simu-

lated annealing. 
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  (2.18) 

[22] 

Another way to utilize Hopfield nets, besides storing memories, is to let the net create interpretations 

of input shown to the net. This can be done by adding a layer of visible units in front of the network 

(input layer) and connecting these with the hidden layer neurons which then, after learning, represent 

the interpretation of the inputs. Stochastic Hopfield nets with hidden units are often referred as 

Boltzmann machines. But as Goodfellow et al. point out, all energy-based models that follow a Boltz-

mann probability distribution can be called Boltzmann machines.[9]  

Further, for the following examinations, the temperature will be constantly set to 1, which equals to 

thermal equilibrium, which boils down to the settlement of the probability distribution over the model 

to the stationary distribution. Nevertheless, the model is still of stochastic nature since the probability 
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with which a neuron turns on is following the Boltzmann distribution, thus allowing the model to es-

cape from local minima.[28]  

Instead of further explaining general Boltzmann machines, I directly want to come to Restricted Boltz-

mann machines (see figure 15), as they are the key components of Deep Belief Networks. They differ 

from general Boltzmann machines in the way that neurons in the same layer have no connections 

amongst each other. This leads to nicer mathematical properties which allow for easier computation 

during learning (see Goodfellow et al.[9]). 

 

Figure 15 Restricted Boltzmann machines have only one hidden layer behind the visible layer and their interconnections 
form a bipartite undirected graph, meaning that there are no connections between units of the same layer. Usually, every 
hidden unit is connected to all visible units and vice versa but as for example for convolutional RBMs, they can also be 
sparsely connected.[9]  

So for restricted Boltzmann machines the energy function looks like in equation (2.19), where the vari-

able vi denotes the i-th neuron of the visible layer while the variable hk denotes the k-th element of the 

hidden layer and accordingly, wik stands for the connection weight between the i-th visible and the k-th 

hidden neuron [22]: 
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 
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The probability that the vector v of a configuration of visible units and the vector h of hidden units 

occur in a joint configuration, can be expressed by the energy of that joint configuration in relation to 

the sum of all other possible joint configurations. The sum in the denominator is known under the 

name partition function. 
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As easily follows, the probability to get a certain configuration of the visible units (vector v), is then 

given by the sum of all joint configurations that have v in it, again divided by the partition function. 
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  (2.21) 

At this point, it is necessary to have a closer look how a restricted Boltzmann machine performs learn-

ing.The goal of this machine is to construct an interpretation of the input, more precisely to grasp its 

probability distribution. Therefore the learning algorithm has to find a way to maximize the probabili-

ties that the Boltzmann machine assigns to the vectors in the training set. As already seen in previous 

sections, learning in neural networks is always done through changing the connection weights and as it 

turns out, there is a very simple learning rule for restricted Boltzmann machines. By differentiation of 
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the log-probability of p(v) in equation (2.21), as Hinton[22] shows, one yields the simple update rule 

written down in equation (2.22).  

 
data modelij i j i jw s s s s     (2.22) 

 So the weight update boils down to the difference of two correlations which quantify how often two 

neurons are simultaneously in the on-state under two different circumstances. These circumstances 

are a) when a data vector is clamped to the visible units and b) when there is no data vector clamped 

to the visible units, which are in equation (2.22) referred to as data- and model state respectively. Hin-

ton gives an intuitive explanation of this equation, in a way that the first term (data) strengthens con-

nections between neurons according to the Hebbian learning rule (fire together wire together) and the 

second term makes sure that these connections don’t get too strong since otherwise no learning and 

escaping of spurious minima would be possible. 

Now, what really makes restricted Boltzmann machines so much preferable to general Boltzmann ma-

chines is that Geoffrey Hinton found out that the collection of the correlation statistics can be per-

formed in a one-step manner in restricted Boltzmann machines whereas in general ones, a lot of steps 

had to be conducted. The algorithm that allows for efficient computation of the learning rule is called 

persistent contrastive divergence. 

In figure 16, the idea for the contrastive divergence algorithm is depicted: It divides into two phases, 

namely the positive and the negative phase. In the positive phase, the data vectors of the training set 

(data) are clamped to the visible units (one after another) and the hidden units are updated according 

to the weights and their update rules, all in parallel (which can be done since there are no inter-layer 

connections, thus implying independence between two units of the same layer). The correlation statis-

tics are collected by simply averaging over the number of simultaneous activations the neurons of the 

hidden and the visible layer have together, through the whole set of training vectors. In the negative 

phase, the states of the of the hidden units after the positive phase are used to reconstruct the state of 

the visible units and again, the correlation statistics are measured similar to the positive phase (com-

pare [22]). 

 

 

Figure 16 Contrastive Divergence for Restricted Boltzmann machines [22] 

After examining the basic theory of energy based models and restricted Boltzmann machines, the mo-

tivation to Deep Belief nets shall be provided. Like in many developments of machine learning, Geof-

frey Hinton again had a leading role in discovering the potential of Deep Belief Nets. He stacked up 

restricted Boltzmann machines so that the hidden layer of the first machine is the visible layer of the 

second one and so on.  

The idea behind it is, that the output of  Boltzmann machines extracts features and models correlations 

within the input data in an unsupervised manner and by using these features as input to the next layer 
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of another restricted Boltzmann machine, the system is able to learn higher order features and correla-

tions.[26] [29] 

Though DBNs can be constructed in a way that they work as purely generative models, generating data 

according to the observed training data, in the following, an architecture is considered, involving dis-

criminative learning, which proofed to be useful in classification tasks. For this purpose, on top of the 

network, a final layer of neurons with a so-called softmax activation function is added, which allows for 

discrimination between classes if class-labels are provided for training (the same final layer is often 

used for classification tasks in traditional artificial neural networks). The stacked-up restricted Boltz-

mann machines are pre-trained in a greedy, layer-wise unsupervised manner, using contrastive diver-

gence as explained above. Then after pre-training the weights in the network get fine-tuned using 

backpropagation by utilizing the labeled data. So the model learns in an unsupervised manner with an 

usually large unlabeled dataset during pre-training and gets fine-tuned on much less labeled data dur-

ing supervised learning.  

That means in pre-training good representations for the unlabeled data are learnt which boost the 

ability to solve the supervised learning task.[9]  

Raina et al. give a very nice example for this [30]: The pixels of unlabeled images are fed as input vec-

tors to the DBN and in the unsupervised pre-training phase, correlations between rows of pixels are 

detected, which learns the DBN that most pictures consist of lots of edges. This allows the network to 

represent images as constructs of edges than as sole conglomerates of pixel intensity values. Further, 

Raina et al. state that using the learnt abstraction together with the labeled data, yields in a higher 

level representation of the labeled data too, which finally results in a less complex supervised learning 

task. 

The combination of unsupervised pre-training and supervised fine-tuning is referred to as semi-

supervised learning. Goodfellow et al. sum up some of the reasons why this type of learning can be 

very beneficial [9]: 

 Supervised learning on a relatively small labeled data set compared to a big unlabeled data set 

may lead to overfitting, which can often be significantly reduced by incorporating the unla-

beled data 

 Initializing the parameters of a DBN by unsupervised learning, can have a regularizing effect on 

the model and may be explained in a way that pretraining helps to find features that “relate to 

the underlying causes that generate the observed data”[9] and “separate features or directions 

in feature space corresponding to different causes, so that the representation disentangles the 

causes from one another.”[9] 

 Another, already mentioned point in the paragraphs above is that information about the input 

distribution can be used to generate better input- to output mappings. 

 
From these findings, Goodfellow et al. infer that unsupervised pretraining enhances the model most 

likely when the unlabeled dataset is big and the initial, raw data representation leaves a lot of space for 

improvement. [9]  
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2.4.2. Convolutional Neural Networks (CNNs) 

 
Convolutional Neural Networks are a type of Feedforward Neural Networks with sparsely connected 

layers. They are now widely used for tasks like classifying images and processing speech. More general, 

they are especially favorable when the data shows a grid-form like 2D images. The name of the net-

work comes from the mathematical term convolution since CNNs apply convolution instead of a matrix 

multiplication in some layers. For example with images it is an important observation that there is a 

high correlation between neighbored pixels, meaning there is a spatial relationship that can be exploit-

ed to construct more efficient learning architectures.   [9] CNNs incorporate these observations into 

their architecture by forcing “the extraction of local features by restricting the receptive fields of hidden units 

to be local” [31] 

Further, LeCun et al. state that one of the biggest issues of traditional neural networks for processing 

speech and images is the lack of built-in invariance to local distortions of the input. This is especially a 

problem since, in the course of input normalization, which is needed so that the neural network can 

work with the input data, some errors can be caused. [31] 

Goodfellow et al. sum up the three concepts that allow CNNs to overcome some of the limitations 

quoted above:  

1. Sparse interactions 

2. Parameter sharing 

3. Equivariant representations 

With the help of the block diagram of a Convolutional Neural Network shown in figure 17, in the fol-

lowing those concepts will be explained.  A convolutional layer typically consists out of three stages: A 

convolution stage, a detector stage, and a pooling stage. For simplification, the pixel vector of a 2D-

image will be considered as the input vector and the task is to classify the image into categories.  

 

In figure 18, the process inside the convolution stage is depicted, where the input vector gets con-

volved with a trainable set of filters. One can think of those filters as feature detectors and convolution 

extracts the information whether a certain pattern is present or not.  One and the same filter is applied 

to every position in the input and may take a small region around this position to detect the feature in 

question. The result of this stage is a set of convolutions, with the same dimensions as the initial image 

but instead an image it is now a map that shows to which extent different areas of the input image 

conform to a certain pattern. 

To allow for parallel processing, the architecture looks like indicated in figure 19, showing locally con-

nected feature detectors. So there are many copies of the same feature detector, all with the same 

weights, connected to different fields of pixels. This stage creates a set of linear activations by combin-

ing two of the above-listed principles, namely sparse interaction by locally connected feature detectors 

and parameter sharing between those, the third principle is a direct way of the described way of pa-

rameter sharing: Equivariant representation means that if the input changes (for example due to a shift 

of pixels in the image), there will be a change of the same magnitude in the output.  

The next stage, the detector stage, is needed for normalization to simplify learning and for that, the 

linear activations of the first layer are transformed by a non-linear activation function like rectified 

linear activation function (gets rid of negative values).  



2. Development of Deep Learning 

26 
 

The third and last stage utilizes a very clever trick called Pooling: It is a type of subsampling where the 

elements of a window of a certain width and height (often2x2) is transformed for example by the MAX- 

function so that only the maximal value that means the area with the highest conformity to the filter 

pattern gets into the reduced feature map, which has then roughly only one quarter of the original 

size. This procedure not only allows for a much less resource intensive further processing than with the 

original size, but also leads to the nice property, that for recognition or classification tasks, the network 

is not as sensitive to the exact location of a pixel, which is for example very helpful for handwriting 

recognition.  

Now, after all the three main stages of a convolutional layer are run through, the feature maps can be 

further reduced and abstracted by passing them through a stack of subsequent convolutional layers. 

Finally, having gone through all convolutional layers, the elements of the feature maps are the inputs 

to a fully connected neural network. If we consider again an image classification task of two classes- a 

technical apparatus and a landscape, then there are some features like certain features that speak 

more for the apparatus and others that make an image of a landscape more likely to be the original 

input image. However, this neural network gets trained by backpropagation and in the end of the train-

ing process, the knowledge learnt about the discriminative power of the extracted features is incorpo-

rated into the weights of the neural network. [9] [26] [31] [32] 

 

 
Figure 17 Block diagram of a CNN [9] 
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Figure 18 Process diagram of a CNN 

 
Figure 19 Feature detectors in a CNN [32] 

 

2.4.3. LSTM Recurrent Neural Network 

 

As introduced in the previous sections, it is very difficult to impossible to train general RNNs to work 

well with sequence predictions where it is needed to look back a lot of timesteps. Goodfellow et al. 

write to that: “Specifically, whenever the model is able to represent long-term dependencies, the gra-

dient of a long-term interaction has exponentially smaller magnitude than the gradient of a short-term 

interaction. It does not mean that it is impossible to learn, but that it might take a very long time to 

learn long-term dependencies because the signal about these dependencies will tend to be hidden by 

the smallest fluctuations arising from short-term dependencies.”[9] 

Long-Short Term Memory Recurrent Neural Networks are an approach to solve the problem of re-

membering and learning from information that occurred a long time ago. For that in the LSTM archi-

tecture, the simple hidden units of RNN are replaced by more complex units, also called LSTM memory 

blocks, which are equipped with a memory cell, which state is controlled by multiplicative gates. In 

figure 20, a LSTM block is shown: It basically consists of 3 different gates, namely the input-, forget- 

and the output gate (the black circles indicate multiplicative joints), one input neuron and the memory 

cell with a linear feedback loop containing the current state. The gates are usually neurons with a non-

linear sigmoid activation function, with their input weights controlling their output. So for example, the 

input gate has a logistic sigmoid activation function, thus its activations vary between zero (gate com-
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pletely closed)  and one (gate open), controlling to which extent new information that is fed in via the 

input neuron shall be gated through and considered for computing the current state of the cell. Ac-

cordingly, the forget gate controls whether the state of the cell shall be completely retained, modified 

or completely overwritten with the newly gated input. Finally, the output gate decides which parts 

(considering a vector) or with what intensity the state of the cell shall be propagated to the next cell. 

[33] [32] [34] 

In figure 21 an inside view of the mathematical operations within an LSTM layer is given. Equation 

(2.23) describes the function of the forget gate ft which has sigmoid activation and takes into consider-

ation the last hidden state ht-1, which was propagated by the preceding layer, and the input, both 

weighted with the weights in Wf, as well as a bias bf.  

 

 1( [ , ] )t f t t ff W h x b      (2.23) 

The two other gate functions (the input-gate (2.24) and the output gate (2.25)) are formed analogous-

ly: 

 
1( [ , ] )t i t t ii W h x b      (2.24) 

 
1( [ , ] )t o t t oo W h x b      (2.25) 

The update candidate for the cell state gets calculated with a tanh activation function as shown in 

equation (2.26): 

 1tanh( [ , ] ]t C t t CC W h x b     (2.26) 

Equation (2.27) is very important, since it shows that the current state is built by a linear operation, in 

particular, the sum of the parts of the previous cell state that shall remain (as decided by the forget 

gate) and the parts of the update candidate that are considered as relevant by the input gate. Without 

further going into the mathematical details, realizing the propagation of information through time with 

a linear operation is a main reason for the success of LSTMs.[9] 

 1 tt t t tC f C i C      (2.27) 

Finally, as described above, the hidden state which is propagated to the next cell is determined by the 

product of the result of the output gate function with the output of the tanh-unit that is fed with the 

current cell state Ct: 

 tanh( )t t th o C    (2.28) 

    

  



2. Development of Deep Learning 

29 
 

Cell f

h

f

f

g
Block

Output Gate

Forget Gate

Input Gate

 

Figure 20 Diagram of an LSTM cell block adapted from [33] 

 

 

Figure 21 Recurrently connected cell-layers of an LSTM [35] 
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3. Related Work 
 

The initial search for the related work literature was conducted via Google Scholar given the following 

search terms:  

Forecasting literature with machine learning approaches: 
 

- “Deep Learning for Time Series Forecasting/Prediction” 

- “LSTM/Long Short Term Memory time series forecasting/prediction” 

State-of-the-art assessment in electricity demand forecasting: 

- “LSTM electricity/energy demand forecasting” 

- “Electricity /energy demand forecasting” 

- “Demand forecasting” 

The articles were retrieved from the respective journal databases and considered for research given 
the following criteria: 

- Relevance to the topic: 
o Time series or sequence prediction related research 
o Deep Learning / machine learning approach or statistical model that incorporates mul-

tiple seasonalities 
- Quantitative Studies 
- Peer Reviewed 

 
Gers and Schmidhuber [36] state that LSTM’s are able to outperform more traditional approaches on 

complex time series but fail to do so when applied to simpler problems, like the Mackey-Glass series or 

a chaotic laser data set from a contest at the Santa Fe Institute. They treat the LSTM as a solely auto-

regressive model with only the very last time-step as input at every time step in a walk forward predic-

tion scenario. In contrast, they train and test the competing models e.g. a multilayer perceptron with a 

time window, thus letting them directly access several past time-steps for prediction. Further, they 

evaluate stepwise versus iterated training and prediction. Gers and Schmidhuber explain that the auto-

regressive LSTM approach is inferior to the time window approaches since it cannot access historical 

data as part of its inputs but instead has to learn the extraction and representation of a Markov state. 

  

In the paper of Qiu et al.[37] an ensemble model of deep belief networks is proposed for regression 

and time series forecasting. Amongst other datasets, they compare the one-step-ahead prediction 

performance of the ensemble model on an electricity load dataset and the Mackey-Glass time series. 

The competitor models consisted out of Support Vector Regression (SVR), a Feedforward Neural Net-

work(FNN), a conventional Deep Belief Network and an ensemble model of FNNs. The findings induced 

that the ensemble models have an edge on the non-ensemble models and that deep networks outper-

form the more shallow architectures, as well as the SVR on the Mackey-Glass time series. For both 

datasets, they chose a train-to-test split of three to one. The performance measures used to compare 

the results were the RMSE and the MASE. Regarding the load demand dataset, findings where not so 

clear as the SVR performed significantly better than the neural network models, only the proposed 

DBN-ensemble model could beat the SVR. For the energy load dataset half-hourly time steps were 
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used with a time window approach, considering the last 24 hours as input and the single next time step 

as output.  In their outlook, they also state that more advanced optimization algorithms for parameter 

selection have to be developed to yield better results. 

  

Another evaluation of deep learning methods in the area of short-term load forecasting was conducted 

by Busseti et al. [38]. Hourly data and a not clearly specified input time-window for predicting the next 

hour was used. Their empirical analysis resulted in deep recurrent neural networks showing the best 

performance with regards to the benchmark models used and the RMSE as error measure. 

 
Cinar et al.[39] employed sequence-to-sequence prediction with content attention LSTM networks for 

univariate and multivariate time series forecasting. The content attention is a modification to the nor-

mal LSTM and shall improve the LSTM’s ability to reuse input sequences for the output prediction by 

learning attention weights that let the LSTM focus on the most promising parts of the input history for 

predicting the output. In this paper the methodology is very well documented and Cinar et al. use six 

different datasets of univariate and multivariate nature. The use of a training-validation-test split is 

described and 75% of the data is used for training-validation and the last 25% are used for testing. 

Within the training-validation set, again a fraction of three quarters is used for training and the remain-

ing quarter for validation.   

They concentrate on short-term forecasts up to 7 time steps at the given sample rate into the future. 

They do a grid search over several LSTM parameters over a not closely defined grid and do not opti-

mize the architecture besides the number of neurons in their work. 

 

Bianchi et al.[24] performed a comparative study amongst various Recurrent Neural Network- architec-

tures (Simple RNNs ,Echo State Networks, LSTMs, Gated Recurrent Units, Nonlinear AutoRegressive 

with eXogenous inputs ). They conduct the analysis on 3 artificial datasets and 3 real-world datasets for 

short-term load forecasting, two of them comprising out of electricity demand series. Bianchi et al. 

provided a quite clear description of their methodology which shall be presented with the time series 

describing the electricity demand of Rome and neighboring regions at a resolution of 10 minutes. They 

train the RNNs to predict 24 hours ahead, which resolves to 144 time steps at the given sampling rate. 

They conducted minimal preprocessing of the data by differencing the series by the daily period and 

standardized the series’ values. They use four months of data for training and hyperparameter optimi-

zation (three for training and one month for validation) After finding the best hyperparameter settings 

they use these four months to train the final models and compare the performance on the fifth month. 

The training approach was not clearly specified (e.g. window size, method). The prediction accuracy 

was evaluated on basis of the Normalized Root Mean Squared Error. Summed up, their analysis 

showed that depending on the time series, different methods have the lead. Their experiments further 

showed that the more complex RNNs like the LSTM did not show significantly better performance than 

the basic RNN architecture. In the conclusion, they theorize that gated RNNs like LSTM and GRUs are 

excelling in settings “where temporal dependencies are more irregular than in the dynamical systems 

underlying the load time series”. [24] 

 

In the book “Modeling and Forecasting Electricity Loads and Prices”, Weron et al. review papers pub-

lished and consider both, statistical and machine learning approaches. Further, a case-study on the 
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usage of statistical methods is given on the example of load time series. They noted that the reviewed 

literature delivered contradictory results on the usefulness of Artificial Neural Networks in time series 

forecasting: While Hippert et al.[40] find that the large feedforward neural network had the best out-

of-sample performance compared to more conventional methods, like exponential smoothing or re-

gression, Taylor et al.[41] found a simple statistical method (Double Seasonal Holt-Winters (DSHW) / 

Double Exponential Smoothing ) to outperform the neural network model. 

 
The above-mentioned paper by Taylor et al.[41] from 2006, is especially interesting since it compares 

widely used univariate methods for forecasting electricity demand up to a day ahead. Regarding the 

choice of univariate methods for forecasting they write “In the short run, the load is mainly influenced 

by meteorological conditions, seasonal effects (daily and weekly cycles, calendar holidays) and special 

events. Weather-related variation is certainly critical in predicting electricity demand for lead times 

beyond a day-ahead… when the interest is in shorter lead times, a univariate model will be sufficient. 

Indeed, univariate models are the norm for lead times up to about six hours ahead, and, due to the 

lack of readily available weather forecasts, they are sometimes used for longer lead times.” A very nice 

aspect of this work is that it uses the Naive forecast(with and without error model) as a benchmark. 

Other methods considered besides the neural network and DSHW, were Seasonal ARMA and Regres-

sion with Principal Component Analysis. The two load time series used for the forecaster evaluation are 

30 weeks of hourly electricity demand data for Rio and half-hourly demand data for England and 

Wales. For both, the first 20 weeks were used for parameter estimation and the test-set consisted out 

of the remaining 10 weeks. The forecast-accuracy up to 24 hours ahead was reported in terms of the 

MAPE. 

 
Concluding the literature research, the available literature for time series forecasting with deep learn-

ing seems to indicate an improved performance compared to the benchmarks in the evaluation. The 

research of Taylor et al. considered a single layer feedforward neural network for forecasting, which 

makes curious about the outcomes if one used an RNN or an LSTM. Load time series forecasting is a 

popular field of research, not only for its practical relevance but seemingly also for the reason that 

such data is easily accessible and publicly available. This is also the reason why, in the empirical part of 

this thesis, also a load time series is used for the demonstration of the methodological approach and 

the performance evaluation. 

Considering the paper of Gers and Schmidhuber[36], an analysis of LSTM’s trained with a time-window 

approach is of interest, as also the benchmark methods get trained in this way. There are lots of prom-

ising results in the literature for applications of sequence-to-sequence recurrent neural networks (see 

Cinar et al.[39], Lipton et al.[42], Graves et al.[43] ) and the training in a time-window approach with a 

multistep-forecast is a comparable problem. Thus, in this thesis, a time-window approach will be used 

for training, as explained in chapter 4. 

As reported, Qiu et al. [37] state that more advanced optimization algorithms for parameter selection 

have to be developed to yield better results. Regarding the parameter tuning in general, in several 

papers, it is not how exactly the optimization has been conducted and if the optimization of the pa-

rameters of the selected benchmark methods has been done with the same efforts as for the deep 

learning methods. Further, for the parameter search the computational burden seems to be still quite 

high, which often results in a relatively narrow parameter grid for the search. As a result of the litera-

ture research, this thesis lays importance on a methodological and objective way to tune the parame-
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ters of the deep learning methods as well as the conventional approaches. Moreover, not only the 

conventional model parameters shall be tuned but also the number of layers, which is rarely done in 

the sighted literature. 

Regarding the used benchmark methods, considering energy demand forecasting, it seems that often 

better benchmarks than the applied could have been used, as often ARIMA is used as a benchmark but 

as also the studies of Taylor et al.[41] show, that often double seasonal exponential smoothing seems 

to be better suited for forecasting this type of time series. Further, it would be valuable to have the 

naive forecast as a standard benchmark for the one-step-ahead forecasts, since its creation is easily 

understood by non-experts and is extremely simple to produce (see  4.5.1 - Naive Forecast). 

Hippert et al., who conducted an exhaustive study on conventional (no deep architectures) neural 

networks, observed two significant lacks in the academic literature that impact the credibility of the 

results and write to that: “First, most of the papers proposed NN architectures that seemed to be too 

large for the data samples they intended to model, i.e., there seemed to be too many parameters to be 

estimated from comparatively too few data points. These NNs apparently overfitted their data and one 

should, in principle, expect them to yield poor out-of-sample forecasts. Secondly, in most papers the 

models were not systematically tested, and the results of the tests were not always presented in an 

entirely satisfactory manner.” [4] While during the literature research for deep learning the first point 

of critique was at least not obvious, the second point of critique seems to still remain, especially re-

garding the methodology where they further criticize the use of benchmarks, seems to remain in mod-

ern literature. 
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4. Methodology 
 

4.1. Process Model 
 

In the following, the wider framework is developed as a hybrid model (figure 23) from Hyndman and 

Shmueli (figure 22). Starting with the process model after Hyndman, in the first stage the problem 

needs to be clearly defined, which is especially important if more than one person is working on the 

problem or the forecast is produced for one or more stakeholders. This step involves communication 

with stakeholders of the forecasting project and specification of the usage scenario of the forecast. 

Important details of the specification include the usage scenario, time horizon of the forecast, available 

data, forecast interval, time and resource constraints. 

The second stage addresses the data collection, which refers to the collection of the available data for 

feature selection and input for the forecasting method on the one side, and to the collection of the 

expertise of all stake holders on the other side. 

During the third step, the previously collected data has to be analyzed and characterized. Regarding 

time series, especially seasonality, trend, correlations between variables and explanatory power of 

variables, as well as outliers are of interest. 

Step four deals with model selection and model fitting. During the selection process, the parameters of 

different parameter sets of models and/or different models are fitted to the historical training data in 

the train-validation set and their performance is then validated on the validation data. Subsequently, 

the best performing model/ best performing parameter set is then selected for evaluation on the test 

data set in the next step.  

In the fifth and last step, the previously selected model and its parameter set is evaluated on the un-

seen test data with a set of selected performance measures. 

 

 

 
 

Figure 22 Left: The 5 Steps of a Forecasting Project adapted from Hyndman [44], Right: Time Series Forecasting Process in 8 
steps adapted from Shmueli [45] 
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In the process of Hyndman there is no step for data pre-processing and data partitioning into train-

valid and test dataset, as it is present in the 8-step process of Shmueli. Moreover, the Shmueli process 

model indicates by the backward errors that after initial data exploration it can occur that more data is 

needed. On the other hand, the Shmueli process model has no model fitting and selection step. Since 

the data pre-processing and the partitioning of the historical data into a train-validation set and a test 

data set are as important for this thesis as the model fitting and selection step, a hybrid model of the 

Hyndman and the Shmueli model is used as depicted in figure 23.  

 

 

Figure 23 Overall Time Series Forecasting Process in 7 steps used in this thesis 

The sixth step in the used process model in figure 23  is of special importance to this thesis since choos-

ing and fitting the model for deep learning methods in the time series forecasting domain is due to 

resource and time constraints not always an easy task since the parameter space that has to be 

searched for fitting the models can be very large and there is not much literature on model selection in 

this domain yet and this step is often not the focus of the available related literature in this area as 

outlined in chapter 4. 
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4.2. Data Partitioning  
 
The historical data gets partitioned into the train-valid-set and the test-set. The train-valid partition 

consists of the train- and the validation subset. The train-valid-set gets chosen for model selection as 

explained in the next section and the test-set is withheld for the evaluation of the winner model in the 

model selection phase. The nomenclature is not always clear in the literature but this seems to be the 

most consistent one and aligns, along with many other papers and books, with Ripley in [46] , as well 

as Russel & Norvig in [16]. 

For this thesis, the data is partitioned as specified here: 80% of the data is used for the train-valid-set 

and the remaining 20% of the data is used for final evaluation as test-set. Within the train-valid-set, the 

data is again partitioned for every block with 80% for the train-set and 20% of the valid-set (See modi-

fied blocked cross-validation in the next section).  

4.3. Model Selection 
 
The biggest challenge in the model selection and evaluation of deep learning models in the time series 

forecasting domain is that the models are computationally demanding to train and that the time series 

can be very long, which makes also the evaluation a resource-intensive task. In the next paragraphs, an 

approach to deal with these issues is presented.  

As already described in the previous chapter, in the model selection phase a set of one or models with 

different parameter sets gets evaluated against each other. In conventional machine learning scenari-

os, it is best practice to use cross-validation(CV) for model selection. Cross-validation (figure 25) has 

the advantage over the last block validation (figure 24) that the whole available data gets used for 

training and evaluation and the results of this method tend to be more robust than with last block vali-

dation. Also in the time series domain cross-validation gets used for evaluating auto regressions on 

time series. Bergmeier et al.[47] state, that in many cases standard cross-validation is not suitable for 

time series since it assumes that the data is independent and identically distributed, which is not the 

case if the training and validation sets are randomly chosen (as is common in CV) . Furthermore, they 

criticize, that time series might be the result of a process that evolves over time. According to Berg-

meier et al., last block validation would solve these issues but has the already mentioned downside of 

not utilizing the whole data set, which can be problematic in terms of robustness, limited validity, thus 

eventually leading to a model choice with little ability to generalize on unseen data.  

But even last block evaluation does not solve all data dependency issues, since data from the test set 

may depend up to a number of lags on the training data.  

A possible approach to deal with this form of dependency is not to use the part from the training set 

for training up to a distance at which independence for the test data is guaranteed.[48] In the study of 

Bergmeier et al. such approaches are referred to as non-dependent cross-validation. 

 

Another very important consideration that must be taken when dealing with time series is stationarity, 

which in the weak form can be broken down into a time series with constant mean and variance 

throughout the series. As one of the CV’s assumptions is the identical distribution of the data, the time 

series has to be stationary. Sometimes non-stationarity can be removed by differentiation and the 

Dickey-Fuller unit root test can be used for checking the series for stationarity.[47]  
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However, often non-stationarity cannot be removed and further, the Dickey-Fuller unit root test also 

has its limitations regarding computability with very long lags. 

For using CV on non-stationary datasets a reasonable approach is to train and validate the model on 

small enough subsets which are stationary (see [48]). 

 

 

 

 

Figure 25 Cross-Validation 

Bergmeier et al. have conducted an exhaustive study where they analyzed different CV strategies for 

time series predictor evaluation on stationary time series. The strategies investigated in this study 

were, amongst others, standard 5-fold cross-validation (data gets randomly partitioned into 5 sets), 

last block evaluation, non-dependent cross-validation and so-called blocked cross-validation. For 

blocked cross-validation, the data is not randomly partitioned but sequentially, to make use of all 

available data, the set is further partitioned in a canonical way (see figure 26).  

 

Figure 26 Canonical Blocked Cross-Validation 

4.3.1. Hyperparameter Optimization 

 
Machine learning models have various hyperparameters that need to be tuned to yield good prediction 

results. There are different approaches to tune these parameters, the most widely used are: 

 Manual Tuning: The model gets tested with a certain parameter set against different metrics, 

often also with the help of graphics such as a plot of the loss function and the prediction error. 

This can be a good method if an expert conducts this procedure since with the help of expert’s 

experience one can often significantly cut down the parameter space to a meaningful one that 

can then be evaluated in relatively little time.      

 Training Validation 

Figure 24 Last Block-Validation 
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 Grid search: With this procedure, the parameter space is defined by a search grid, which usual-

ly defines a value range and a step size for every parameter that shall be optimized. Subse-

quently, every possible parameter combination gets (usually not manually) evaluated against 

the given performance metrics. The biggest disadvantage of this method is that the search is 

the very resource intensive since an exhaustive search over the whole parameter space is con-

ducted. On the other hand, this exhaustive method is effective by nature in the sense that it 

finds the optimal solution for sure. Nevertheless, as with all methods, there is still expert 

knowledge necessary to provide the algorithm with a meaningful grid so that grid search can 

be done within the time constraints and the parameter grid is not too restrictive so a globally 

optimal solution can be found. 

 Random search: Tries to tackle the problem of the high resource demands of grid search by 

choosing parameter combinations from a random distribution. Many types of research have 

been done in this area and Bergstra and Bengio state “Granting random search the same com-

putational budget, random search finds better models by effectively searching a larger, less 

promising configuration space.”[49] 

Since the problem is that with long time series and deep learning the computational complexity gets 

high very quickly and this thesis has to be conducted within a reasonable time and with given resource 

constraints, it is problematic, that with random hyperparameter optimization, potentially a large frac-

tion of the time the search is executed in regions which are non-optimal and the search does not get 

more effective over time. 

Therefore, in this thesis, another approach is used, namely Bayesian Optimization (BO). The idea be-

hind BO is to estimate the parameter response surface, which tells how the objective function that 

shall be optimized reacts to different parameter settings and then go the directions that have the max-

imum likelihood to arrive at a global minimum/maximum of the objective function. There is no closed 

form of the objective function available but by trying different parameter settings one can get observa-

tions of it. To allow the algorithm to do a first estimation of the response surface, an initial number of 

runs with different hyperparameter settings 
1.... n  are evaluated and the yielded accuracies are rec-

orded. A probabilistic regression model is fit to recorded accuracies and the respective parameter set  

is learned and in the next steps used as a surrogate of the response surface. The probabilistic regres-

sion model, which is often a Gaussian Process, allows to systematically explore the parameter space 

and choose hyperparameter settings for the next evaluation that are likely to improve the ac-

curacy.[50] [51] 

Modified Blocked Cross-Validation 

With the canonical CV as illustrated in figure 26, the training set for fitting a parameter configuration 

gets consecutively larger, this is problematic since with increasing size of the training set also the time 

needed for training increases. Especially in the deep learning domain and with a myriad of parameter 

combinations, this type of training can create a significant bottleneck. 

To circumvent this issue and still being able to get a degree of generalizability by utilization of the 

whole available test data, a modified form of the above presented blocked CV is used: 

It works like depicted in figure 27, where the different train-valid sets are not ordered canonical but 

side by side, without any overlapping regions. The number of blocks and the block-size shall be chosen 

in a way that parallel hardware can be maximally exploited and that the training and validation time 
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stays feasible. The rationale behind this in simple words is that if a model performs very badly in com-

parison to other models on a smaller subset of the data, it is unlikely that it will outperform the others 

on a larger dataset. The core idea, namely that the evaluation results of a machine learning algorithm 

on a subset of a large dataset can be used to cut down the model runtime, is already reported to be 

useful by authors in other fields of research such as neural language processing and others (see [52] , 

[50]).  

 
 

 
Figure 27 Modified Blocked Cross-Validation 

 

4.4. Model Evaluation 
 

For the model evaluation of the deep learning models the three criteria described by Adya and Collo-

py[53] for evaluation of neural network models are used: 

1) Neural network forecasts have to be compared to well-accepted reference models 
2) The comparison has to be done on an out-of-sample set 
3) Enough predictions (at least 40) have to be done to make valuable conclusions. 
 
Further, the checklist which was developed by Armstrong[54] is cited in the following and is obeyed 
and referred to in the subsequent sections: 
 
Using reasonable alternatives  
• Compare reasonable forecasting methods  
Testing assumptions 
• Use objective tests of assumptions  
• Test assumptions for construct validity 
• Describe conditions  
• Match tests to the problem 
• Tailor analysis to the decision 
Testing data and methods  
• Describe potential biases 
• Assess reliability and validity of data 
• Provide easy access to data  
• Disclose details of methods 
• Find out whether clients understand the methods  
Replicating outputs  
• Use direct replication to identify mistakes  
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• Replicate studies to assess reliability  
• Extend studies to assess generalizability 
• Conduct extensions in realistic situations  
• Compare with forecasts obtained by different methods  
Assessing outputs  
• Examine all important criteria 
• Prespecify criteria  
• Assess face validity  
• Adjust error measures for scale 
• Ensure error measures are valid  
• Avoid error measures sensitive to degree of difficulty  
• Avoid biased error measures  
• Avoid sensitivity to outliers  
• Do not use R2to compare models  
• Do not use RMSE  
• Use multiple error measures  
• Use ex ante tests for accuracy  
• Use statistical significance only to test accuracy of reasonable models  
• Use ex post tests for policy effects 
• Obtain large samples of independent forecast errors 
• Conduct explicit cost/benefit analysis 
 

4.4.1. Out-of-Sample Testing 

 

The evaluation of the forecasting models in the hold-out test data is done in a fixed-size, rolling-

window walk-forward scenario as defined by Tashman [55].  The forecast rolls forward by the forecast-

ing horizon together with the rolling window at every forecasting step. That means, with progressing 

time more historical data becomes available and subsequently, this data gets into the rolling window 

which is a FIFO-Queue (First In - First Out), as the oldest data at the beginning of the window gets 

pushed out as newer data comes in. The forecast horizon can have one to multiple steps. The de-

scribed procedure is shown in figure 28. 

 

 
Figure 28 Rolling Window Forecast 
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4.4.2. Multistep Forecasting Strategies 

 
In this section, the used strategies for multistep forecasting are specified according to Bontempi et 

al.[56]. In essence, they are the recursive strategy and the Multi-Input-Multi-Output (MIMO) strategy. 

With the recursive strategy, the output of a one-step-ahead forecast is fed back as input, constituting 

the last element of the history window, for the next forecast. A disadvantage of this method is that the 

estimation error gets amplified, due to the feedback loop. 

In contrast, the MIMO strategy forecasts multiple steps at once and its biggest advantage is that it does 

not neglect the stochastic dependencies between the outputs and gets rid of the accumulation of er-

rors.[57]  

 

4.4.3. Performance Metrics 

 

The choice of performance metrics is a crucial task for a meaningful performance evaluation. According 

to the literature research in chapter 3 and Tofallis[58], two of the most widespread error measures 

(absolute and relative error measures) for time series forecasting are used, namely the Root Mean 

Squared Error (4.1) and the Mean Absolute Percentage Error (4.2).  Further, a relatively little-used per-

formance indicator, measuring the Mean Directional Accuracy (4.3) is applied, since it allows to intui-

tively compare the models regarding the ability to follow the direction of the trend and to predict di-

rectional changes. As Armstrong suggests, the RMSE shall not be used because it is a scale-dependent 

error measure. If forecasting models on several different time series are evaluated it is important to 

use scale independent performance measures for comparison only. In the case of this thesis all models 

are compared by evaluation on the same time series, therefore scale independency has not to be taken 

into consideration.   For the formulas listed below, the ŷ denotes the predicted value and y  the actual 

value. Though it is often done, using solely the MAPE alone as selection criteria is not advisable since it 

prefers forecasts that under-forecast as Tofallis describes in his analysis.[58] Nevertheless, the MAPE 

has become an industry standard in load forecasting since it is easily interpretable as it “captures the 

proportionality between the forecast error and the actual load”[41]. 

By using different error measures for evaluation, the procedure is in-line with Armstrongs’ checklist. 
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4.5. Benchmark Methods 
 

According to the checklist by Armstrong [54] and the evaluation criteria by Adya and Colopy [53], the 

benchmark methods need to be well-accepted and reasonable. Therefore, the selection of the bench-

mark methods was done by using methods that are used as benchmarks in deep learning research and 

methods that show top performance in the energy forecasting domain (see the related literature in 

chapter 3).  

4.5.1. Naive Forecast 

 
The naive forecast is the simplest form of forecasting method and its rationale is that the next data-

point (the one to be forecasted) will not be too far away from the very last datapoint. Thus, without 

any further knowledge incorporated this method uses the last datapoint as the forecast for the next 

time step. Though its simplicity, especially for one-step-ahead forecasts, for many problems this can 

actually be a very appropriate method and much more complex and resource intensive methods often 

have a hard time beating the naive forecast. Nevertheless, in most papers, this simplest form of a fore-

casting method is not considered as a comparison measure, although it is a very intuitive and valuable 

benchmark. As depicted in figure 29, the naive forecast for the one-step-ahead forecast is nothing but 

the time series to be predicted, shifted backward by one time step. 

 

Figure 29 Naive Forecast(Red) 
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4.5.2. Support Vector Regression 

 
Support Vector Regression is done with Support Vector Machines which theoretical foundation reaches 

back to the work of Vapnik in the 1960’s. Also due to the lack of computing power, it took around 30 

years till Vapnik and his colleagues presented the SVM in the form we know it today.  

SVMs are based on statistical learning theory “which characterizes properties of learning machines 

which enable them to generalize well on unseen data”. [59] 

To explain the origins of the name of an SVM, I refer to the more common task for SVMs than regres-

sion, which is clustering/classification. In figure 30 a problem is shown where the two clusters can be 

linearly separated by a line into the two clusters w1 and w2. The SVM’s goal is to find a separation line 

which has maximum distance to the two clusters and is equidistant to them. This separation line is 

shown as the solid line between the pair of dashed lines. The both dashed lines, also called support 

hyper-planes, are supported on the points marked with a circle around them, which are the points of 

their respective cluster which are closest to the other cluster. From the fact that the circled points are 

the feature vectors with which help the hyperplanes are constructed, they are called support vec-

tors.[5]  

 

Figure 30 Two clusters and their supporting vectors [5] 

Goodfellow et al. [9] state that for class prediction, the SVM uses a linear function in the form of equa-

tion (4.4), where x denotes the training examples and w the weight vector. It predicts the positive 

class, when f(x) is positive and the negative class, when f(x) is negative.  

 ( ) Tf x w x b    (4.4) 

An essential finding to SVM’s is that the function f(x) can be rewritten in the form of a dot product of x 

only, where α is a vector of coefficients and x(i) is a single training example: 

 ( )

1

m
i

i

i

w x b b x x 



     (4.5) 

Further, Goodfellow et al. show that by substitution of x in the above equation with the so-called ker-

nel k from equation (4.6), which replaces x with the output of a feature function  , one yields the for-

mula in (4.7) : 

 ( ) ( )( , ) ( ) ( )i T ik x x x x    (4.6) 
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f x b k x x    (4.7) 

Equation (4.7) allows the SVM to transform the input x with the nonlinear kernel function k into an m-

dimensional feature space, in which it creates a linear model. This procedure is referred to as kernel-

trick and for better insight I want to cite Goodfellow et al. explaining the effectiveness of the trick: 

”First, it allows us to learn models that are nonlinear as a function of x using convex optimization tech-

niques that are guaranteed to converge efficiently. This is possible because we consider φ fixed and 

optimize only α, i.e., the optimization algorithm can view the decision function as being linear in a dif-

ferent space. Second, the kernel function k often admits an implementation that is significantly more 

computationally efficient than naively constructing two φ(x) vectors and explicitly taking their dot 

product.”[9]  

Now, Support Vector Regression (SVR) works very similarly to the above-described case, with the dif-

ference that the outputs of f(x) are not distinct classes anymore but can take a value out of a continu-

ous value range. SVR tries to find a function that has at most a deviation of ε from the targets yi in the 

training data and is at the same time as flat as possible. Which means that the loss function (right side 

of figure 31) will ignore errors that are less than ε and only errors greater than this threshold will con-

tribute to the costs.[59] 

 

 

Figure 31 Linear SVM with soft margin loss function (also ε-insensitive loss function) [59] 

For the mathematical formulation, in order to give an intuitive explanation of Support Vector Regres-

sion, only the linear case is described as it is done by Smola et al. in [59] and summarized in the next 

paragraphs. To extend the following explanation to the nonlinear case, one would have to formulate it 

as a dual problem by means of the kernel function as shown in (4.7). For the linear case again, starting 

from equation (4.4), the term flatness can be explained as seeking for a small weight vector w, which 

can be obtained by minimizing its Euclidean norm 
2

w .  Including the restrictions for errors not to 

exceed ε, the following convex optimization problem can be stated (adopted from Smola et al. [59] to 

the notation of Goodfellow et al. [9] with f(xi)=yi  for the training examples) : 
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Since the there are problems where not all pairs (xi,yi) can be approximated with a function with a 

smaller error than  ε, or a bigger error than that should be tolerated, it is common to introduce so-

called slack variables (
i  and *

i ).[59] This leads to the SVR model that is developed in the original 

paper of Vapnik et al. [60]: 
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  (4.9) 

The formulation in (4.9) also introduces the, together with ε, most important parameter for para-

metrizing the SVR in the practical section. Namely, the constant C which can take values greater 0 and 

controls to which extent flatness is preferred over smaller deviations from ε. 

 

4.5.3. Double Seasonal Holt-Winters 

 
The Double Seasonal Holt-Winters (DSHW) method is an adaptation to the standard Holt-Winters 
method to allow for two seasonalities. As described in chapter 3, the DSHW forecasts have been identi-
fied as the best performing method in the univariate load forecasting scenario. Thus, it qualifies as a 
method to provide a reasonable benchmark.  
 

The following formulas show the Holt-Winters method as described by Winters [61]:  

The k-step ahead forecast in equation (4.13) has an additive trend component T and a multiplicative 

seasonal component as the series level L is multiplied by the seasonality index S. 

The trend’s local slope is estimated in equation (4.11) by smoothing the difference of the current level 

Lt (4.10) and the previous one (Lt-1) with the smoothing parameter γ. The local m-period seasonal 

index St (4.12) is the δ-smoothed ratio of the current observation Xt  to the current local level Lt. 

[62] 
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The above presented  Holt-Winters method was extended by Taylor[62] by a second seasonal compo-

nent, where the first component is denominated by D and the second one by W, whereas D could de-

note the within day - and W the within week seasonalities for example. 
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The level and trend component are calculated analogously to the standard Holt-Winters method (4.10) 

and (4.11). Sticking to the exemplary denomination of daily and weekly seasonalities,  the s1-period is 

the within-day seasonality of the local seasonal index Dt , which equals to the smoothed ratio of the 

current observation Xt, to the product of the local level ( Lt), and the within week seasonality Wt-s2  

(4.14). 

Accordingly, the within week seasonality is estimated in equation (4.15). The parameters for this model 

are commonly estimated by minimization of the sum of squared 1-step-ahead errors from an esti-

mation sample and an initial set of values for level, trend, and seasonalities. 
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4.5.4. Simple Recurrent Neural Networks 

 

The use of a simple recurrent network is of special interest since the LSTM’s as described in the previ-

ous chapters is used as the deep learning regressor and as explained earlier, it is an advanced form of a 

recurrent neural network itself. So the comparison of the LSTM to its simpler pendant can give insights 

to the added value of such networks in the time series domain. Comparing the simpler predecessors is 

with the more sophisticated approaches is a good rule in general and should be done in all deep learn-

ing research. For a detailed introduction to RNNs please refer to chapter 2.3.2. 
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5. Empirical Part 
 

5.1. Problem Description & Exploratory Analysis 
 
The empirical part of this thesis demonstrates the training, optimization and application of LSTM’s for 

time series prediction on a real-world example and exemplarily compares the performance to more 

traditional approaches. As motivated in the literature chapter, the short-term prediction of a univariate 

energy demand time series will be used for this case-study.  

The prediction horizon of short-term predictions in the energy sector ranges from  15 minutes up to a 

day ahead (compare [63]). In the industry, the short-term forecasts are essential for planning the gen-

eration unit commitment, energy transfer schedules, and load dispatch. Bunn and Farmer[64] have 

estimated that with a 1% higher forecasting error, the operating costs rise by £10 million and Pai et al. 

state on the importance of precise short-term forecasting methods: “Hence, over estimation [sic] of 

future load results in unnecessary spinning reserve and, furthermore, is not accepted by international 

energy networks owing to excess supply. In contrast, under estimation [sic] of load causes failure in 

providing sufficient reserve and implies high costs in the peaking unit. Because buying at the last mi-

nute from other suppliers is expensive, international electricity production cooperation requires accu-

rate forecasting of the needs of all participants. However, forecasting the electricity load is difficult, 

primarily due to the various influences, such as climate factors, social activities, and seasonal fac-

tors.”[65] 

 

In this study, the forecasting models predictive power will be assessed on one-step and multi-step 

forecasts, whereby a single step equals to 15 minutes and the multi-step forecasts are 96 step-ahead 

forecasts, which are equal to a one-day-ahead forecast. 

The data used for this endeavor is publicly available and is drawn from the data pool of swissgrid [66]. 

It consists out of 17372 observations of aggregated energy demand in kilowatt-hours (kwh) with a 

resolution of 15 minutes from 1.Januray 2017 00:00 till 1.July 2017 00:00. As can be seen in figure 32, 

the energy demand peaks in end of January and from then on it shows a clear downtrend till mid of 

April with overall lower weekly highs and lower weekly lows, then a break of the downtrend at the end 

of April is followed by relatively stable demand lows and highs till the end of June. So to sum up the big 

picture regarding the trending behavior, there is an upward trend in the first month, followed by a 

longer downtrend till the end of April and a more-or-less sideward trending, last period.   

As it can be inferred from the monthly mean and standard deviations (√𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒)  listed in table 1, the 

series is non-stationary according to the weak form of the stationary definition, which postulates that a 

time series is stationary, when it shows constant mean and variance throughout the time series. Also, 

the commonly used pre-processing step of first-order differencing did not remove the non-stationarity. 

 

Month Mean [Mwh] Standard Deviation [Mwh]  

January 1991.96 265.05 

February 1839.28 239.15 

March 1681.77 239.40 

April 1524.60 244.85 

May 1493.67 237.51 

June 1428.65 240.62 
Table 1 Monthly Mean and Standard Deviation for the assessment of stationarity 
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In figure 33 the various seasonalities that are apparent in this time series can be easily seen. The most 

important cycles are the weekly and the daily cycle. This is also obvious in the autocorrelation plots in 

figure 34 and figure 35, where the multiples of 96 (one day) and especially the value of the week be-

fore (672 time-steps) show high correlations.   

 

 
Figure 32 Electricity load time series in kwh of the Swiss energy sector from first of January till first of July 2017 (17372 time 
steps at a sample rate of 15 minutes) 

 
Figure 33 Magnification of the electricity load time series for the first month. The square highlights a week cycle with 5 
workdays with a higher energy demand and Saturday and Sunday with a lower overall demand. 
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Figure 34 Autocorrelations for all lags of the engergy demand time series, showing the significant lags exceeding the 95% 
confidence band 

 
Figure 35 Zoomed Autocorrelations for the first 10 days, indicating a higher correlation with the last day (96 time steps) and 
the value one week ago (672 time steps), with all lags that are multiples of 96 clearly exceeding the 95% confidence band 
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5.2. Pre-Processing 
 
The empirical part of this thesis tries to apply as few pre-processing steps as possible, as the experi-

ments shall also show to which extent the machine learning methods are capable of capturing patterns 

in the data with as less help from a human operator via introducing auxiliary variables or certain pre-

processing steps which could introduce a bias in favor for one or the other model.  

First-order differencing between consecutive time steps is a common approach for de-trending the 

time series and making it stationary. This would result in a series of absolute changes in electricity de-

mand on a 15 minutes basis. Since this pre-processing step could not remove non-stationarity and fur-

ther in some initial experiments neither showed to be helpful for the machine learning methods nor for 

the conventional methods, this pre-processing step was not applied.   

After inspection of the autocorrelations in figure 34 and figure 35, a reasonable pre-processing step 

could have been to apply seasonal differencing to reduce seasonality in the time series. 

Maimon and Rokach state that research has not agreed on the necessity of de-seasonalizing : “For ex-

ample, in modeling and forecasting seasonal time series, some researchers (Gorr, 1994) believe that 

data preprocessing is not necessary because the neural network is a universal approximator and is able 

to capture all of the underlying patterns well. Recent empirical studies (Nelson, Hill, Remus & 

O’Connor, 1999; Zhang and Qi, 2002), however, find that pre-deseasonalization of the data is critical in 

improving forecasting performance.” [67] 

 However, by differencing the series to remove for example the weekly cycle, the forecasting models 

“would be trained on the residuals of the load at the same time and day in two consecutive weeks and 

therefore could not learn the similarities in consecutive days at a particular time.”[68]  

Thus, by differencing some information granularity may be lost and therefore differencing was not 

used. 

Amongst many others, it has been shown by LeCun et al.[69] that the training of neural networks con-

verges faster, if the mean of the training data is close to zero.  Thus, the only pre-processing step that 

was carried out is data standardization  (5.1), which transforms the training data to a distribution with 

a zero mean and a standard deviation of 1.  

 

 
x mean

y
Var


   (5.1) 
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5.3. Software Stack 
 
In essence, the software stack consists out of a programming environment, a programming language, a 

deep learning framework, a low-level deep learning backend and different packages that allow the 

reuse of pre-implemented concepts in the area of machine learning and statistics. While the deep 

learning backend operates on a low level and defines, for example, different models of an artificial 

neuron and deals with the mathematics, the deep learning framework provides a higher level of ab-

straction and allows using pre-implemented architectures which can then be modified and para-

metrized. 

The software stack used for the empirical part of this thesis had to fulfill certain main requirements: 

 Wide-spread programming language for statistical and machine learning models  

 GPU-computation support 

 Reference implementations in the area of deep learning available 

 Good community support 

 A Development environment that can be run on a Linux-based server in the cloud 

Two of the most widespread programming languages for statistical computing and machine learning 

are R and Python. While R is a programming language with a strong focus on statistics, Python is more 

versatile and the evaluation of available deep learning libraries showed that Python clearly has the lead 

here over R. Since there is a well-documented and extensively tested package (forecast package by 

Roby Hyndman [70]) for R available that includes the double seasonal Holt-Winters (DSHW) method, R 

is chosen as the programming language for the purely statistical model and Python is used for the ma-

chine learning models. For the evaluation of the Support Vector Machine, the famous Python package 

scikit-learn has been used. The software stack that is further described in the following lines, is summa-

rized in figure 36. 

 

Different available open-source deep learning frameworks including Keras, Torch (Facebook), Microsoft 

Cognitive Toolkit (CNTK) and Caffee have been evaluated and the decision fell for Keras, since at the 

time of the evaluation (July 2017), this framework seemed to have the largest user-base and reference 

implementations regarding recurrent neural networks. Another important point for this choice was 

that the underlying deep learning backend could be switched between the Theano and the Tensorflow 

library and both had their pro’s and con’s at the time of the evaluation, such as Theano offered better 

capabilities of speeding computations up on the CPU by massive parallelization of instructions, where-

as the GPU- parallelization seemed to be better with Tensorflow. So, by choosing Keras, maximum 

flexibility in this matter could be achieved and the decision between the deep learning libraries could 

be postponed. Finally, during the first experiments within the empirical part of this thesis, it became 

clear that Tensorflow provided superior GPU-support over Theano and a more active community. Fur-

thermore, Yoshua Bengio (the father of Theano and a leading deep learning researcher), announced on 

Sept. 28, 2017 that Theano won’t be further maintained. Nevertheless, using Tensorflow was a good 

choice and is eagerly maintained by a team at Google and additionally the supporting and supported 

backends of Keras are growing as now it is possible to use the CNTK by Microsoft as a backend and 

Deeplearning4j. At the time of writing also some experiments with the CNTK have been conducted, but 

for the recurrent neural networks and especially for the stateful LSTM networks, Tensorflow is a step 

ahead. 
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Figure 36 Overview of the Software Stack used in the empirical part. On the left side, the Python-based stack is shown, 
whereas, on the right side, the R-based stack is depicted 

 

5.4. Hardware Stack 
 
All experiments were conducted on cloud-machines. Three different machines were used, the first one 

for the experiments with R, the second and most powerful machine for the optimizations of the ma-

chine learning algorithms, and the third one for the final evaluations with python. The different ma-

chines were mainly chosen for their cost-profile and the computing power needed for the respective 

task. The GPU capacity is needed in the case of the neural networks, where parallel data processing in 

batches can tremendously speed up training, by utilization of the parallel cores of the GPU. Each GPU 

allows for around 4,8 *1012 floating point operations per second (TFLOPS).   

 

Machine 
Type 

Task #CPUs 
CPU 
Freq 

RAM #GPUs 
GPU 

Memory 

Parallel 
GPU 

Cores 

GPU 
Type 

1 R-Computations 24 2,4 GHz 120 GB - - - - 

2 
Optimization of 

ML-Algos 
32 2,7 GHz 244 GB 2 16 GB 4096 

NVIDIA 
Tesla 
M60 

3 
Final Evaluation 

of ML-Algos 
16 2,7Ghz 122 GB 1 8 GB 2048 

NVIDIA 
Tesla 
M60 

Table 2 The three machine types used for the different tasks during the experiments 
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5.5. Experimental Setup and Hyperparameter Optimization 
 
As explained in chapter 4.2 – Model Selection, the data is separated into the train-valid set and the test 

set with 80% of the data constituting the train-valid set and the remaining 20% build the test data. The 

partitioning of the previously presented energy demand dataset, obtained from swissgrid is docu-

mented in table 3. 

 
 % of total data Time steps Start date End date Total length 

Train-valid 80% 1-13897 01.01.2017 00:15 25.05.2017 19:15 13897 

Test 20% 13898-17372 25.05.2017 19:30 01.07.2017 00:00 3475 

Table 3 Partitioning of the energy demand dataset for the experiments 

5.5.1. One-Step Models 

 
For the neural networks the number of neurons, the number of layers, the learning rate, the optimizer, 

the batch-size and the number of training epochs were considered as hyper parameters to tune during 

the Bayesian optimization. The activation function for the hidden units was chosen as the tanh which is 

a reasonable choice and no big changes in performance can be expected by exchanging it against other 

common activation functions, like a logistic function, according to the survey paper of Gamboa et 

al.[32]. Thus, the activation function was not object to the optimization.  

The neural network is trained for a number of epochs and in each epoch it tries to improve its ability to 

forecast the next time-step (target) by considering a number of historical time-steps (source sequence 

with its length defined by the lookback-window). The training samples (source-target-pairs) for the 

one-step-ahead prediction are created with a rolling-window like it is depicted in figure 28. To speed 

up the training, a number of training examples can be shown to the network simultaneously and due 

to the large time series used in this study, such an approach is needed to allow for training in a feasible 

time. The number of examples that are shown to the neural network in parallel is defined by the batch-

size.  This results in a data matrix as it is exemplarily visualized in figure 37 for a lookback-window 

length of four and a batch-size of four. The sequences A to D are shown in parallel to the neural net-

work and temporal dependencies can only be exploited within a sequence within the batch. To exploit 

temporal dependencies that extend over the lookback-window, so-called stateful recurrent neural 

networks / LSTMs are employed. That means that at the beginning of every training epoch the cell 

state of the network at the end of the previous training epoch is used as its initial state. 

A difficulty that is often overseen, when using stateful networks, is that the input to the neural net-

work needs a special form, which can also be dependent on the deep learning framework used. The 

statefulness in Keras is implemented in the way that successive batches are treated as logical succes-

sive data junks. That means sequence A in batch 1 is the predecessor of sequence A in batch 2. This 

implies that the batches need to have all the same batch-size (length) and that the batch-size must 

equal to the length of the lookback-window. If this structure is filled with the data from a rolling-

window on a time-series, as it is shown in figure 37, this results in a Hankel-matrix, which is a square-

matrix where the elements of the main skew diagonals are constant. This also has the implication that 

the training data sometimes has to be cut so that it can be fit into batches of a fixed length. 

During the sighting of available reference implementations, it seemed that this pre-processing step is 

circumvented by training stateful architectures with a batch-size of one. This might be okay for single 

runs with small time-series, but for repeated runs with different hyperparameter settings and long 

time-series, this is computationally not feasible. 
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 Source (lookback-window) Target Batches 

Train
in

g - Se
q

u
e

n
ce

s
 

A 1 2 3 4 5 

Batch 1 
B 2 3 4 5 6 

C 3 4 5 6 7 

D 4 5 6 7 8 

A 5 6 7 8 9 

Batch 2 
B 6 7 8 9 10 

C 7 8 9 10 11 

D 8 9 10 11 12 

A 9 10 11 12 13 

Batch 3 
B 10 11 12 13 14 

C 11 12 13 14 15 

D 12 13 14 15 16 
Figure 37 Structure of the training data for the one-step neural-network forecasters: The network is trained in a way that it 
learns to transform the source sequence into the target value. The matrix within each source-batch has the structure of a 
Hankel-matrix (a square-matrix where elements of the main skew diagonals are equal). 

 
For the LSTM and the RNN a two-stage Bayesian Optimization approach has been chosen, where a 

wider range of hyperparameter settings get tested on smaller subsets of the training data and more 

promising parameter ranges are more closely evaluated in a follow-up stage to a first evaluation stage. 

Related approaches are already described by Swersky [52] and Wang [50]. 

 

In the first stage of this experiment, a wide parameter range was evaluated with Bayes hyperparame-

ter optimization, to allow for a more exhaustive parameter search in a more promising range with a 

narrowed parameter grid and extended training data during the second stage.  

For this endeavor, four blocked folds, each with a length of 3474 time-steps and a cutoff at 2500 with 

80% for training and 20% for validation were fed to the neural networks. The size of the cutoff was 

chosen in a way that the parameter combinations, which were likely to result in long training times 

(such as a small batch-size which results in less parallelization) could be trained within 2500 seconds 

(roughly 42 minutes). This was done to meet time and financial resource constraints, resulting in a 

maximum training and evaluation time below 48 hours for the 50 trials. Nevertheless, very early in the 

experiments, it was obvious that the factor which increases the training time the most, is the number 

of network layers – the more layers, the longer the training time. Since the literature suggests that 

mostly 2 layers are enough to estimate all types of functions[4] [32], the first stage was divided into 

two parallel sub-stages: One investigating the, according to the literature, more promising 1-to 3-layer 

neural networks and the other evaluating an extreme case with 6 layers (table 4). Therefore, two ma-

chines of type 2 were set-up, which each allowed for training the four folds in parallel. 

In the following, the search grids for the Bayesian hyperparameter optimization are documented. The 

values for these grids have been chosen by sighting related literature for common and promising pa-

rameter settings (see the related work in chapter 3) and some initial manual experiments with extreme 

values. This procedure may provide the Bayesian optimization with a starting point that is not too far-

off and thus allows for a relatively low number of trials. 
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First Stage 

Number of layers 1,2,3 6 

Number of neurons 10,20,50,100 10,20,50,100 

Optimizer Adam , Rmsprop Adam , Rmsprop 

Learn rate 0.0001, 
0.001,0.01,0.1,0.2,0.5 

0.0001, 
0.001,0.01,0.1,0.2,0.5 

Batch-size 64,96,256 64,96,256 

Number of epochs 100,200,400 100,200,400 

Number of folds 4 4 

Fold length 2500 2500 

Trials 50 50 
Table 4 Parameter grid for the first hyperparameter optimization Stage with two parallel runs, one with a maximum depth   
of one to three hidden layers, and the other with six hidden layers 

The experiments of the first stage clearly showed that one- and two-layer models are superior over 

three- and six-layer models, which also aligns with the literature (see [32] and [4]). The difference be-

tween one- and two-layer models was not so clear, therefore, these two architectures were also as-

sessed in the final stage. Moreover, smaller learning rates clearly showed better results than the larger 

ones and the maximum number of epochs showed to be sufficient with 100. In the second stage, the 

models were trained on folds without a cut-off to utilize all available training data, since, in this stage, 

the search is already conducted in promising parameter ranges. An exhaustive search would take 96 

trials with the given parameter grid in table 5. Again, with the Bayesian optimization, only a fraction of 

trials need to be evaluated to find nearly optimal results. To save resources and since the search is 

already conducted in a promising grid but with longer folds, the number of trials was reduced to 30.  

 

Final (Second) Stage 

Number of layers 1, 2 

Number of neurons 10,20,50,100 

Optimizer Adam, Rmsprop 

Learn rate 0.0001,0.001 

Batch-size 64,96,256 

Number of epochs 100 

Number of  folds 4 

Fold length 3474 

Trials 30 
 Table 5 Parameter grid for the second hyperparameter optimization stage for LSTM and RNN 

Finally, for both the LSTM and the RNN, the best performing setup showed to be a two-layer architec-

ture like shown in figure 38 with 100 neurons, a batch-size of 96, the Adam optimizer, and a maximum 

of 100 training epochs. 

 

 
 
 

Input 
Hidden 

Layer 1 

Hidden 

Layer 2 

Dense 

Layer 
Output 

Figure 38 Architecture of the LSTM and RNN for One-Step Predictions 
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For the SVM, the training samples were generated with a rolling window with step-size one, in the 

same way as for the neural network models. Also Bayesian hyperparameter tuning has been applied. 

The kernel function was not object to the optimization as  the radial bias function (rbf) chosen, since 

extensive research has been done on the choice of the kernel function and the rbf seems to be the best 

choice regarding accuracy and training time (compare [71] and [72] ). The rbf introduces the parameter 

γ which controls the smoothness of the support vector, where a higher value for γ implies a more so-

phisticated solution.[73] For a detailed explanation of the SVM and the parameter C please refer to 

section 4.5.2 – Support Vector Regression. In Table 6, the parameter grid for the Bayesian hyperpa-

rameter optimization is documented. Again, 4 folds were evaluated to achieve better generalization, 

since the training time of SVM’s with an rbf kernel was much lower than that of neural networks, the 

folds could use the whole available training data, without hurting time and resource restrictions. Fur-

ther, initial experiments have shown that the SVM is very sensitive to changes in the magnitude within 

the training data, thus a retraining of the SVM was executed every 200 time steps, which showed to be 

a good compromise between runtime and precision. 

 

SVM Hyperparameter Optimization 

Kernel rbf 

C Uniform(10,100) 

γ Uniform(0.001,0.01) 

lookback 48,64,96,128 

Number of folds 4 

Fold length 3474 
Table 6 Grid for the Bayesian hyperparameter optimization with the values for the parameter C and γ sampled from a 
uniform distribution  

The optimization led to a model with a lookback-length of 48 time steps, and values C=66 and γ= 

0.0036178.  

 

For the optimization of the DSHW model, the two main seasonal periods were identified with the auto-

correlation plot in figure 35 as the daily (96 time steps) and weekly (672 time steps) seasonality. Only 

the lookback size needed to be tuned since all other model parameters are estimated by the forecast 

package [70]  in R by minimization of the sum of squared 1-step-ahead errors (see section 4.5.3 – 

Double Seasonal Holt-Winters). The optimal lookback length showed to be around 2000 time 

steps. This seems reasonable, as DSHW is a purely statistical method and as explained in the ex-

ploratory analysis, the training and test data is non-stationary and if the parameters are estimated 

on a long historical fraction of the time series which has very different statistical properties than 

the more recent data, the results for the parameter estimation will be poor. The parameters for 

this model were, due to the computationally uncostly calculations, re-estimated after every time 

step. 
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5.5.2. Multi-Step Models 

 

In the multi-step scenario, the next 96 time-steps (24 hours) are predicted in a walk-forward manner, 

with a step size of one day. Regarding the neural network methods, the MIMO-(Multi-Input-Multi-

output) strategy was chosen (see section 4.4.2 - Multistep Forecasting Strategies) because in prelimi-

nary experiments the implementations with the recursive strategy showed to be inferior to MIMO-

implementations.  The first approach was to use the standard neural network architecture also used in 

the one-step scenario and instead of a single-valued target sequence for each training sample, the 

networks were trained on a multi-step target window of size 96, by applying a slightly changed archi-

tecture with a time-distributed dense layer as depicted in figure 39. The downside of this sequence-to-

sequence prediction approach, with the target sequence being longer than one, is that the source se-

quence length must equal the target sequence length. This results in a lookback with the length of 96 

time steps. A Bayesian hyperparameter optimization had been performed on the number of neurons, 

the number of layers, the learning rate, the optimizer, the batch-size and the number of training 

epochs. The out-of-sample prediction results of the optimized models were not very promising since 

they did not capture the characteristics of the time series and were more or less copying the last se-

quence, even though stateful neural networks were used. From these results, it was clear, that the 

networks needed longer input sequences for the training samples than only the last day to predict the 

next day. With the above-described restrictions for the source and target length, another architectural 

approach had to be used. Inspired by the research in the field of machine translation, the so-called 

encoder-decoder architecture, shown in figure 40 encoder-decoder architecture, was used. This archi-

tecture was proposed by Cho et al. and “consists of two recurrent neural networks (RNN) that act as an 

encoder and a decoder pair. The encoder maps a variable-length source sequence to a fixed-length 

vector, and the decoder maps the vector representation back to a variable-length target sequence. The 

two networks are trained jointly to maximize the conditional probability of the target sequence given a 

source sequence.”[74] Instead of a simple RNN, also LSTM’s can be used for the encoder-decoder 

model. 

 
 

 
Figure 39 Architecture for LSTM and RNN for multi-step predictions 

 
 

 
Figure 40 Encoder-Decoder Architecture 

Since using stateful neural networks did not show good performance in exhaustive initial experiments 

and due to the limitations of the input format along with the batch-size and increased training time 
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that come with stateful neural networks, stateless neural networks were used in the multistep scenar-

io. This allowed to use a batch size of 1024 and significantly reduced the training time. As already ex-

plained, the length of the target sequence equaled to one day (96 time steps) and the training data 

was generated by a rolling window with a step-size of one. 

The initial experiments with the encoder-decoder model showed promising results, but at the same 

time they indicated that a similar approach like with the standard architecture together with an exten-

sive hyperparameter search was not feasible with the resources available for this thesis: While in the 

one-step scenario and the multistep scenario with the standard architecture, the best results could 

already be yielded within the first 100 training epochs, in the case of multistep predictions, many hun-

dred training epochs were necessary to evaluate a single set of parameters. Moreover, the models 

were trained on the unfolded training data because the models showed to generalize badly when 

trained on smaller subsets, which also increased the time necessary to assess a parameter setup. 15 

experiments with manually chosen parameter sets have been conducted. As well as for the LSTM as 

the RNN, the following set of parameters yielded the best results during the manual hyperparameter 

tuning: 20 neurons in the encoder and in the decoder with a single hidden layer in both, a learning rate 

of 0.001 and a maximum of 500 training epochs. Alternative trials have been performed with differing 

values for the number of neurons in the hidden layers (10,30,50,100), the learning rate (0.0001,0.01) 

and the lookback period (96,192,288,672). An increase in the number of hidden layers was tested, 

which didn’t result in an increased performance but longer training times. 

In opposition to the neural network models, a single SVM does not have the ability to do MIMO-

forecasts, therefore the recursive strategy was used, where the output of a one-step-ahead forecast is 

fed back as input, constituting the last element of the history window, for the next forecast. Due to the 

SVM’s sensitivity to changing amplitudes in the data, like in the one-step case also in these experi-

ments, the SVM was retrained frequently (after every forecast / 96 time steps).   A major advantage of 

the SVMs is the short training time which allowed for an extensive Bayesian hyperparameter search, 

even in the multi-step scenario. For the optimization, the same search grid as in Table 6 has been used. 

The best results were obtained with a lookback-length of 384 time steps (4 days), C=91 and  

γ=0.01339945. Compared to the best solution for the one-step solution, it shows that for a multi-step 

forecast, for the SVM a longer lookback period is of advantage (which also coincides with the multi-

step forecasts with neural networks) and the higher value of C and γ indicate a more complex solution, 

which is also reasonable since also the target time series are longer and more complex. 

Also for the DSHW-method the iterative multi-step forecasting approach was implemented. The tuning 
for the DSHW did show similar as for the one-step scenario and the optimal lookback length lay at 
around 2000 time steps. The model’s parameters were re-estimated after every forecast (one day/ 96 
time steps).   
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5.6. Analysis of Forecasting Results 
 

5.6.1. One-Step Forecasts 

 
In table 7, the statistical error measures for the experiments are summarized. Due to the stochastic 

nature of the neural networks, the average of the 15 evaluations in table 8  is shown. The results sug-

gest that the LSTM has the overall best performance: 

The LSTM has a 10.33% lower RMSE, and shows an improvement by 4.75% in terms of MAPE and 

2,67% in terms of MDA compared to the second-best forecaster in this experiment, namely the DSHW. 

The DSHW benchmark was identified as the best performing univariate method for electricity load 

forecasting by Talyor et al.[41]. 

As demonstrated further below, the mean RMSE of the LSTM was tested as significantly smaller than 

the RMSE of the DSHW, with the RMSE of the latter as the comparison value in a one-tailed, one-

sample t-test. Regarding the other neural network forecaster (RNN), the LSTM clearly shows a lower 

standard deviation (s) and a lower mean RMSE. Further below, the procedure for the significance tests 

is documented exemplarily for the RMSE-values.   

 

Method RMSE (s) [kwh] MAPE (s) [%] MDA (s) [%] 

LSTM 12884.39 (750.0029) 0.7233 (0.0389) 0.7541(0.0092) 

DSHW 14368.44 0.7708 0.7274 

RNN 14571.95  (4307.544) 0.827  (0.2305) 0.7317 (0.0226) 

SVM 15509.658 0.904 0.698 

Naive 24181.05 1.3299 0.6489 
Table 7 Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Directional Accuracy (MDA) 
of one-step-ahead forecasts for the LSTM and the four benchmark methods. The values in brackets are the empirical stand-
ard deviations (s) of the respective error measure. 

 LSTM RNN 

Run RMSE [kwh] MAPE [%] MDA [%] RMSE [kwh] MAPE [%] MDA [%] 

1 12191.641 0.697 76.0 13222.799 0.76 74.3 

2 13139.907 0.745 74.7 13853.402 0.788 74.4 

3 12540.587 0.706 76.3 13228.914 0.756 75.2 

4 11718.419 0.662 76.0 13833.385 0.783 74.2 

5 12261.432 0.689 76.1 13775.014 0.784 72.7 

6 13362.383 0.744 74.2 13491.6 0.768 73.6 

7 13866.4 0.74 74.0 13363.259 0.761 72.1 

8 12058.708 0.685 75.9 30105.982 1.658 65.6 

9 12668.46 0.702 75.1 13527.378 0.774 73.4 

10 14184.875 0.789 76.4 12973.98 0.741 74.2 

11 12893.651 0.728 74.5 13217.39 0.751 74.0 

12 13098.455 0.745 75.2 13547.036 0.781 73.0 

13 14030.112 0.8 74.9 13293.545 0.753 74.5 

14 13049.083 0.731 77.1 13992.908 0.797 72.5 

15 12201.796 0.686 74.7 13152.642 0.75 73.9 
Table 8 RMSE, MAPE,MDA for each of the 15-times repeated RNN and LSTM one-step forecasting experiments 
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Since one of the assumptions of the t-test is a normal distribution of the test sample, the Shapirow-

Wilkinson-test is used to assess, whether the null-hypothesis that the sample is drawn from a normal 

distribution has to be rejected. As shown in table 9, the p-value indicates that the null hypothesis can-

not be rejected at a 1%-significance level. With the restrictions that come with the small sample size 

and the power of the Shapirow-Wilkinson test, the assumption of normality for the t-test is to the best 

knowledge, not hurt, and the t-test can be performed. The hypotheses for this test are formulated 

relative to the RMSE of the second-best performing method (DSHW): 

H0: The results come from a normal distribution with the mean of 14368,44  

H1: The results come from a normal distribution with a mean significantly lower than 14368,44 

As documented in table 9, the null-hypothesis can be rejected on a 1% significance level, indicating, 

that the results of the LSTM are significantly better than the non-neural forecasters. 

 

Shapirow-Wilkinson One-tailed, one-sample t-test 

W p-value t p-value 

0.95492 0.605 -7.6613 1.129e-06 
Table 9 Test statistics for Shapirow-Wilkinson and t-test, with respect to LSTM and DSHW in the one-step scenario 

For the mean-comparison of the LSTM and the RNN, a variant of the t-test for unequal variances has to 

be performed, but checking the results of the 15 runs of the RNN with the Shapirow-Wilkinson-test led 

to a rejection of the null-hypothesis (W=0.34575 and p=2.524e-07). Thus, a normal distribution of the 

results of the RNN-runs cannot be assumed and the assumptions of the Welch-test are not met. How-

ever, if one removes the outlier (30105.982), with an RMSE double as big as the other 14 results, the 

standard deviation of the sample reduces to s=307.1852 and the mean equals to 13462.38 kwh. With 

the outlier-cleaned dataset, the null-hypothesis of the Shapiro-Wilkinson test cannot be rejected and a 

Welch-test may be performed (see Table 10):  

H0: True difference in means is equal to 0  

H1: True difference in means is not equal to 0 

 
Shapirow-Wilkinson Welch-test  

W p-value t p-value 

0.94747 0.5221 -2.7479 0.01286 
Table 10 Shapirow-Wilkinson-test for outlier-remove RNN-runs and Welch-test for comparison of the means of the LSTM-
runs and the outlier-removed RNN-runs 

The result of the Welch-test portends a significant lower mean RMSE of the 15 LSTM-runs compared to 

the 14, outlier-removed RNN-runs on a 1% significance level. 

 

Figure 41 visualizes a comparison between the training times needed to produce the forecasting re-

sults. More specific, the visualization incorporates not only the training times but also the times need-

ed to re-estimate the model parameters after the respective number of time steps for the DSHW and 

the SVM. A single parameter re-estimation for the DSHW is timely rather inexpensive with only 16 sec-

onds and for the SVM it amounts to as little as three seconds. 
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Figure 41 Time in seconds needed for the training-/parameter re-estimation for the different forecasting models in the one-
step-ahead out-of-sample forecasting scenario (LSTM: 2700s , RNN: 700s , SVM: 51s, DSHW: 2320s) 
 

In figure 42 and figure 43 a magnification of the out-of-sample forecasts for the DSHW,SVM,LSTM and 

RNN is depicted. The first magnifies the forecasts for the 200 time steps between 5th of June 5:15 and 

7th of June 7:15. The second one shows the 200 time steps between 13th of June 13:15 and 15th of June 

15:15. The visualizations do not differ too much from each other, which can be expected since the per-

formance metrics are not too far off from each other.  
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Figure 42 Out-of-sample one-step forecasts from 5.6.2017 5:15 – 7.6.2017 7:15 (time steps 1000-1200 of the test data) 
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Figure 43 Out-of-sample one-step forecasts from 13.6.2017 13:15 – 15.6.2017 15:15 (time steps 1000-1200 of the test data)  
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5.6.2. Multi-Step Forecasts 

 
In table 11, the performance measures for the different multi-step forecasters are reported. Like in the 

one-step case, also in the multi-step scenario the neural network forecasts were repeated 15 times 

(see table 12) to average over the stochastic results. The LSTM could not outperform the DSHW-

method. In terms of RMSE, the LSTM was the best performing machine learning method, but in-

terstingly, the SVM showed significantly better accuracy regarding the directional forecasts (MDA). 

Further below, the procedure for the significance tests is documented exemplarily for the RMSE-

values.   

 

Method RMSE (s) [kwh] MAPE (s) [%] MDA (s) [%] 

DSHW 123726.2 5.273001 79.70 

LSTM 134388.8 (10726.71) 7.516 (0.5055) 67.4867 (0. 86) 

SVM 150462.096 7.654 79.1 

RNN 272231.5 (8531.788) 17.94047 (0.6009) 17.9 (2.92) 
Table 11 Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and Mean Directional Accuracy (MDA) 
of 96-step-ahead forecasts for the LSTM and the benchmark methods. The values in brackets are the empirical standard 
deviations (s) of the respective error measure. 

 

 LSTM RNN 

Run RMSE [kwh] MAPE [%] MDA [%] RMSE [kwh] MAPE [%] MDA [%] 

1 154058.855 8.294 67.9 262828.887 17.386 18.2 

2 129112.164 7.335 66.8 280325.231 18.543 15.0 

3 127213.302 7.258 68.4 274881.773 18.037 15.9 

4 122214.392 7.008 66.8 267066.932 17.678 18.2 

5 157750.333 8.649 66.7 273035.95 17.681 17.1 

6 131003.143 7.144 68.3 272335.311 18.142 24.4 

7 136391.03 7.611 67.4 272876.742 17.978 21.7 

8 129172.855 7.319 68.2 273383.121 18.198 17.4 

9 125464.875 7.121 68.1 251658.433 16.431 22.1 

10 141093.501 7.967 66.6 262085.504 17.157 18.1 

11 142034.065 8.053 65.7 278340.603 18.376 18.6 

12 127621.628 7.141 67.3 278154.739 18.409 17.7 

13 135925.64 7.501 68.8 271231.934 17.932 15.1 

14 121150.567 6.928 67.2 280078.207 18.502 14.3 

15 135624.92 7.411 68.1 285189.0 18.657 14.7 
Table 12 RMSE, MAPE,MDA for each of the 15-times repeated RNN and LSTM multi-step forecasting experiments 
 

Again, before comparing the mean values of the LSTM and the DSHW, the normality assumption of the 

test sample for the t-test has to be assessed with the Shapirow-Wilkinson-test.  As shown in table 13, 

the p-value indicates that the null hypothesis cannot be rejected at a 1%-significance level. Thus, with 

an unrefuted normality assumption, the t-test can be performed with the following null (H0) - and al-

ternative (H1) hypothesis: 

 

H0: The results come from a normal distribution with the mean of 123726.2 
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H1: The results come from a normal distribution with a mean significantly greater than 123726.2 

 
As documented in table 13, the null-hypothesis has to be rejected, from which follows that the DSHW-

method is performing significantly better than the LSTM. 

 

Shapirow-Wilkinson One-tailed, one-sample t-test 

W p-value t p-value 

0.90529 0.1147 3.8498 0.0008841 
Table 13 Test statistics for Shapirow-Wilkinson and t-test, with respect to LSTM and DSHW in the multi-step scenario 

Table 14 summarizes the test statistics for the Shapirow-Wilkinson-test for the 15 RNN-runs and the 

Welch-test for the mean comparison between the LSTM and the RNN. The Shapirow-Wilkinson-test did 

not deliver a contraindication to the normality assumption at a 1% significance level. Therefore the 

Welch-test could be performed with the following null- and alternative hypothesis: 

H0: True difference in means is equal to 0  

H1: True difference in means is not equal to 0 

As expected, the Welch-Test showed that there is a significant difference of the mean-values of the 

LSTM and RNN runs and thus that the LSTM is performing significantly better than the RNN. 

 

Shapirow-Wilkinson Welch-Test 

W p-value t p-value 

0.93693 0.3453 -38.951 2.2e-16 
Table 14 Shapirow-Wilkinson-test for RNN-runs and Welch-test for comparison of the RMSE mean of the LSTM-runs and 
the outlier-removed RNN-runs 

 
Lastly, also a Welch-test was performed to compare the mean RMSE of the LSTM runs with the RMSE 

of the SVM and the LSTM with the hypothesis Ho and H1: 

H0: The results come from a normal distribution with the mean of 150462.096 

H1: The results come from a normal distribution with a mean significantly less than 150462.096 

In table 15, the small p-value is reported which led to a rejection of the null-hypothesis at a 1% signifi-

cance level. Thus, the mean RMSE of the LSTM can be assumed as significantly smaller than the RMSE 

produced with the SVM forecasts. 

 

Welch-Test 

t p-value 

-5.8034 2.288e-05 
Table 15 Welch test for mean comparison of the RMSE values of LSTM and SVM 

The total training- and re-estimation times needed for the out-of-sample forecasts are depicted in fig-

ure 44. A single re-estimation took about 14 seconds for the SVM and 16 seconds for the DSHW. The 

overall required training time increased for the LSTM by more than 76% compared to the single-step 

case, for the RNN the increase amounted to 114%. This increase in training time of the neural networks 

is due to the more sophisticated architecture (encoder-decoder-layers) and the larger lookback-

lengths. In case of the SVM, the nearly 10-fold training time resulted out of more frequent re-

estimations (after every day) and increased computational complexity due to a longer lookback period. 
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Only the statistical method, namely the DSHW, even decreased the time necessary for producing the 

forecasts in the multi-step scenario as against the single forecasts. This is because the re-estimations 

which are the time-intensive task with the DSHW-method, had to be done less frequently (daily instead 

on a 15 minutes basis). 

 

Figure 44 Time in seconds needed for the training-/parameter re-estimation for the different forecasting models in the 
multi-step-ahead out-of-sample forecasting scenario (LSTM: 4760s , RNN: 1500s , SVM: 507s , DSHW: 579s) 

 
 

In figure 45, the 96-step-ahead rolling-window forecasts are visualized for all four forecasting models. 

From a qualitative point of view, the statistical results from above can be confirmed as the DSHW-, 

SVM- and LSTM- forecasters seem to capture the characteristics of the original series to some extent. 

The only method that obviously fails to deliver useful predictions is the RNN-forecaster. This is interest-

ing as the RNN and the LSTM performed very similar in the hyperparameter tuning stage and delivered 

comparable RMSE scores when evaluated on the validation part of the train-valid data. By expanding 

the training set with the data used for validation during the hyperparameter optimization and evaluat-

ing the model on the withhold test data, the previously observed satisfying results vanished. A possible 

explanation for this behavior could be the regime shifts inherent in the energy demand dataset (down-

trend shifting to a short upwards/sideward trend), another explanation could be that the extended 

training set needs a much higher number of epochs (the performance with an additional maximum 

epoch add-on of 400 epochs was tested but did not improve the forecast). Further the visualization 

show that the SVM has less predictive power when it comes to demand changes from workdays to 

weekends and vice-versa. This is probably due to the chosen lookback period, which is below one week 

and for being able to predict these changes, at least a week of historical data for the lookback-window 

would be necessary. However, the chosen setup showed to deliver the highest accuracy regarding the 

chosen performance measures.   
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Figure 45 the 96-step-ahead rolling-window forecasts with DSHW,SVM, LSTM and RNN for the whole available test data
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6. Conclusion 
 

The applicability of Long Short-Term Memory (LSTM) neural networks for one- and multi-step time 

series forecasts was evaluated on an exemplary real world problem. 

To motivate the use of LSTM’s for time series forecasting, the historical development from the first 

artificial neuron until recent advances in deep learning have been outlined and a disambiguation and 

classification of related terms like artificial intelligence, machine learning, computational neuroscience 

and others has been provided.  

Time series forecasting with neural networks is, in many aspects, treated as an art - especially when it 

comes to the approach for conducting experiments. Therefore, a  seven-step process model for time 

series forecasting experiments has been evolved and a clear methodological approach that allows for 

efficient hyperparameter optimization  of machine learning forecasters through making use of a modi-

fied form of blocked cross validation and Bayesian hyperparameter optimization has been developed. 

Further, the performance of the LSTM was compared with machine learning and conventional bench-

mark models with carefully selected performance measures. An electricity demand dataset was used 

as the real world problem, since energy demand time series are popular in the forecasting literature 

for their interesting characteristics and public availableness. 

 

To sum up, the LSTM showed to be a competitive method for time series forecasts: It captured the 

characteristics of the electricity demand time series very well and proofed to be significantly more 

effective than simple recurrent neural networks. In the case of the one-step-ahead forecasting scenar-

io, the LSTM even outperformed the Double Seasonal Holt-Winters (DSHW) method which is frequent-

ly reported as top performer in comparable scenarios. Though, in the multi-step forecasting scenario 

the statistical method (DSHW) showed to be superior over all other approaches. However, the LSTM 

showed the best accuracy amongst the machine learning models in terms of most performance met-

rics. By comparing the LSTM-forecaster to the predictive performance of simple recurrent neural net-

works, the added value of the more complex, gated memory block architecture of the LSTM is indicat-

ed. A downside of LSTM neural networks is that they take the longest time for training which can be a 

problem for exhaustive hyperparameter searches with limited hardware resources. On the other side, 

unlike other forecasting approaches, LSTM nets need comparably infrequent retraining so that once 

the optimal hyperparameters are found, the long training times are not a problem.   

 

Limitations of this study 

 

The results obtained from the experiments in this thesis have only limited generalized to other, maybe 

even multivariate datasets, since solely univariate data has been the subject to the evaluation and dif-

ferent dataset can have totally different characteristics which could be learnt with more or less success 

than the ones inherent in the used electricity demand data. 

Another point is that due to the limited hardware, time and financial resources available for this thesis, 

a proof-of-concept of the developed approach for model search and hyperparameter optimization 

could be delivered by applying it to the one-step case but the resources were not sufficient to conduct 

the exhaustive parameter search in the multi-step scenario. Thus, it is likely that even better results for 

the neural network models could have been obtained. 
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Outlook 

 
The limitations of this study already give a linking point for further research such as an analysis in mul-

tivariate scenarios and in different problem domains. Then, increased resources would be necessary to 

allow for more profound assertions about the performance of deep learning methods for multi-step-

ahead time series forecasts. Further, it would be interesting to evaluate a wider range of modified ar-

chitectures and algorithms like LSTM’s with an attention mechanism as described in Cinar et al. [39] or 

with peephole connections as introduced by Gers et al.[75].    
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