
Dynamic Log File Analysis: An
Unsupervised Cluster Evolution
Approach for Anomaly Detection

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Business Informatics

eingereicht von

Max Landauer, BSc
Matrikelnummer 01228830

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.-Prof. Dipl.-Ing. Dr.techn. Peter Filzmoser
Mitwirkung: Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Dr.rer.soc.oec. Florian Skopik

Dipl.-Ing. Markus Wurzenberger

Wien, 12. Februar 2018
Max Landauer Peter Filzmoser

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Dynamic Log File Analysis: An
Unsupervised Cluster Evolution
Approach for Anomaly Detection

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Business Informatics

by

Max Landauer, BSc
Registration Number 01228830

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Peter Filzmoser
Assistance: Mag.rer.soc.oec. Dipl.-Ing. Dr.techn. Dr.rer.soc.oec. Florian Skopik

Dipl.-Ing. Markus Wurzenberger

Vienna, 12th February, 2018
Max Landauer Peter Filzmoser

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Max Landauer, BSc
Hauptplatz 5, 7503 Großpetersdorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. Februar 2018
Max Landauer

v

Acknowledgements

I am very grateful that I had the possibility to write this thesis in cooperation with the
Austrian Institute of Technology (AIT). In particular I would like to thank Florian Skopik
for giving me the opportunity to carry out the research over the course of an internship
and providing me with the necessary insights and expertise for completing this project.
Moreover, I would like to sincerely thank Markus Wurzenberger for his continuous advice
and without whose support and ideas this thesis could not have been written. I also
thank Giuseppe Settanni for helping me setting up the evaluation environment. I would
like to thank all my colleagues at AIT for the excellent collaboration in the last months.

I would like to thank my academic advisor Prof. Peter Filzmoser for his helpful ideas
and comments.

Furthermore, I thank my aunt Anneliese Steiner for proof-reading this thesis.

Last but not least I would like to sincerely thank my family and friends for always
supporting me throughout my life.

vii

Kurzfassung

Technologische Fortschritte und die zunehmende Vernetzung von Computersystemen
haben zu einer erhöhten Gefahr durch vormals unbekannte Bedrohungen und Eindrin-
gungen über komplexe Angriffsvektoren geführt. Im Bereich von Cyber Security werden
aus diesem Grund Intrusion Detection Systems zur Echtzeit-Überwachung von kontinu-
ierlich generierten Logzeilen verwendet um Systeme vor Angriffen zu schützen. Solche
existierenden Ansätze verwenden Clustering-Methoden die auf String-Metriken basieren
um ähnliche Logzeilen ohne die Notwendigkeit von Parsern zu gruppieren. Dabei werden
ungewöhnliche Logzeilen unabhängig von der zugrundeliegenden Syntax oder Semantik
der Logdatei als Ausreißer erkannt. Diese Ansätze erzeugen jedoch nur eine statische
Sicht auf die Daten und berücksichtigen die dynamische Natur von Protokollzeilen nicht
ausreichend. Änderungen in der Systemumgebung oder der technologischen Infrastruktur
erfordern daher häufig eine Neuformung der bestehenden Gruppen. Darüber hinaus
sind solche Ansätze nicht für die Erkennung von Anomalien bezüglich der Frequenz,
Änderungen des periodischen Verhaltens oder Abhängigkeiten von Logzeilen geeignet.

Um diesen Problemen entgegenzuwirken wird in dieser Arbeit eine Methode zur Erkennung
von dynamischen Anomalien in Logdateien vorgestellt. Das Verfahren gruppiert ähnliche
Logzeilen innerhalb vordefinierter Zeitfenster unter Verwendung eines inkrementellen
Clustering-Algorithmus. Dabei werden durch den neuartigen Clustering-Mechanismus
Verbindungen zwischen den ansonsten isolierten Ansammlungen von Gruppen hergestellt.
Diese Verbindungen zwischen zwei benachbarten Zeitfenstern werden unter Zuhilfenahme
von Cluster-Evolutionstechniken analysiert um Übergänge, wie etwa Teilungen oder
Fusionen, zu bestimmen. Ein selbstlernender Algorithmus erkennt anschließend Anoma-
lien im zeitlichen Verhalten dieser evolutionären Gruppen indem Metriken aus deren
Entwicklungen abgeleitet und analysiert werden.

Ein Prototyp für die oben genannte Methodik wurde im Rahmen dieser Arbeit entwickelt
und anhand einer Logdatei mit bekannten Anomalien in einem illustrativen Szenario
angewandt. Die Ergebnisse der Evaluierung wurden bezüglich der Einflüsse bestimmter
Parameter auf die Anomalieerkennungsfähigkeit sowie die Laufzeit analysiert. Die Evalu-
ierung des Szenarios zeigte, dass die Methodik 61.8% der dynamischen Änderungen der
Logzeilen-Cluster korrekt identifizieren konnte, wobei die Fehlalarmrate nur 0.7% betrug.
Ein effizientes Erkennen solcher Anomalien und die Fähigkeit der Selbstanpassung bei
technologischen Änderungen begründen die Anwendbarkeit des vorgestellten Ansatzes.

ix

Abstract

Technological advances and the increased interconnectivity of computer systems have
led to a higher risk of previously unknown threats and intrusions through diverse attack
vectors. Cyber security therefore employs Intrusion Detection Systems that monitor
continuously generated log lines in real-time in order to protect systems from such
attacks. Existing approaches use clustering techniques based on string metrics in order
to group similar log lines into clusters without any need for parsers. Thereby, dissimilar
lines are detected as outliers independent from the syntax and semantics of the log file.
However, such methods only produce a static view on the data and do not sufficiently
incorporate the dynamic nature of computer logs. Changes of the system environment or
technological infrastructure therefore frequently require cluster reformations. Moreover,
such approaches are not suited for detecting anomalies related to frequencies, periodic
alterations and interdependencies of log lines.

In order to overcome these issues, a dynamic log file anomaly detection methodology is
introduced in this thesis. The procedure employs an incremental clustering algorithm
that groups similar log lines within predefined time windows. Thereby, a novel clustering
mechanism establishes a link between the otherwise isolated collections of clusters. Cluster
evolution techniques are employed to analyze the connections between clusters from
neighboring time windows and determine transitions such as splits or merges. A self-
learning algorithm then detects anomalies in the temporal behavior of these evolving
clusters by analyzing metrics that are derived from their developments.

A prototype that incorporates the aforementioned methodology was developed in the
course of this thesis and applied in an illustrative scenario consisting of a log file containing
known anomalies. The results of the evaluation were analyzed in order to identify the
influences of certain parameters on the ability of detecting anomalies as well as the
required runtime. The evaluation of this scenario showed that 61.8% of the dynamic
changes of log line clusters were correctly identified, while the false alarm rate was
only 0.7%. The ability of efficiently detecting these anomalies while self-adjusting to
technological changes suggests the applicability of the introduced approach.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Aim of the Work . 6
1.4 Methodological Approach . 7
1.5 Structure of the Work . 7

2 State of the Art 9
2.1 Anomaly Detection . 11
2.2 Cluster Evolution . 17

3 Clustering 23
3.1 Requirements . 23
3.2 Word-based Matching . 25
3.3 Alignment-based Matching . 26
3.4 Algorithm . 29

4 Cluster Evolution 33
4.1 Cluster Tracking . 35
4.2 Cluster Transitions . 39
4.3 Evolution Metrics . 43
4.4 Examples . 49

5 Time-series Analysis 63
5.1 Models . 63
5.2 Forecasting . 67
5.3 Correlation . 71
5.4 Robust Filtering . 74

xiii

5.5 Multivariate Outlier Detection . 76
5.6 Algorithm . 78
5.7 Aggregated Detection . 82

6 Evaluation 87
6.1 Log Data . 87
6.2 Evaluation Environment . 90
6.3 Results . 90
6.4 Aggregated Detection . 109
6.5 Application on Real Log Data . 111

7 Conclusion and Future Work 115

List of Figures 117

Bibliography 121

CHAPTER 1
Introduction

1.1 Motivation
The modern world relies on the functioning of computer systems. Within only a few
decades, digital networks have spread all over the globe, thereby disrupting existing
technologies and permanently affecting economical and social structures. Nowadays,
digital systems that exist in all kinds of forms and scales are omnipresent. They comprise
the building blocks of the Internet and are thus deeply rooted in enabling and supporting
communication between humans as well as machines. For this, dispersed webservers
and other devices allow information to be accessed remotely by anyone connected to
this global network. Moreover, microprocessors and sensors have recently been in the
spotlight for being able to contribute to what is known as the Internet of Things (IoT),
a concept that refers to the increased connectivity and interconnectivity of everyday
objects. Also companies have long understood the potential benefits encompassed by
these technologies. Integrating IoT in their business processes is an essential step for
staying competitive within the so-called Industry 4.0.

Despite all of the highly promising benefits that can be drawn from such an interconnected
world with ever expanding networks, it is important to recognize the dangers that follow
along this trend. First of all, it is a difficult task to analyze and reason about the
enormous amount of generated information due to limited computational power or the
lack of overview required to filter out relevant pieces. Furthermore, larger and more
complex networks entail the emergence of threats and novel attack vectors. Not just the
amount of potential entry points becomes larger in a growing network, there is also a
substantial increase of the attack surface when more complex technologies are present.
This allows an attacker to infiltrate the system in more diverse ways. Additionally, the
actions taken by a single individual stay easily unnoticed in the vastness of information,
connections, executed operations and commands that are sent and received within the
network.

1

1. Introduction

Threats to computer systems appear on any scale. In the past, private or home networks
as well as large company networks have often posed the target of cyber attacks. The
aims thereby reach from espionage and stealing of data to more severe interceptions
such as the destruction of both software and hardware. Exploits sometimes appear very
immediate with consequences showing not before the system is already compromised.
On the other hand, some attacks persist over a longer duration in order to infiltrate the
system as deep as possible and spread the malicious piece of software to multiple systems.
An example for such an advanced persistent threat is the worm Stuxnet (Mitchell and
Chen, 2014) that infiltrated multiple industrial plants in 2010.

The motivation behind those attacks can be just as diverse, reaching from political
or economical goals to the self-administered justice of a disgruntled employee or have
no purpose at all besides the personal entertainment of the attacker. Especially the
threat of an employee or another authorized person attacking a system while accessing it
with their privileged accounts is difficult to mitigate. This malicious activity is usually
called an insider threat (Spitzner, 2003). Cybercriminals typically operate on a more
professional level and have the required experience and knowledge to circumvent existing
security measures, allowing them to gain unauthorized access to networks and overtake
control systems. Also attacks that are not mainly targeted at the destruction of hardware
or physical properties may have negative side effects, such as the malfunction of vital
processes in industrial plants. Targeted attacks that are intentionally aimed at the failure
of such physical systems in order to evoke life-threatening situations, e.g., a power supply
breakdown or critical failures in nuclear power plants, are regarded as acts of terrorism
and have impacts far beyond the scope of a single company and its employees. Finally,
there have also been several accusations of national espionage and system penetration by
secret governmental agencies having technological resources at their disposal that exceeds
the possibilities of individuals or groups (Cardenas et al., 2009).

Although attacks on computer systems have been existing for just as long as computers
themselves, recent technological advancements and the dependencies of humans on the
functioning of networks and digital devices have led to a higher severity of impact
connected with each threat. As a result, the field of cyber security emerged that
encompasses subfields such as cryptography, protection and legal issues. This thesis
focuses on the detection of attacks on computer systems, also known as intrusion detection.

A detected attack, failure or any other problem occurring within a computer system in
an industrial production site usually results in immediate action by people responsible for
tracing the root of the problem in order to ensure the safety of the system and prevent
further damage from occurring. Even more important, appropriate countermeasures
should be introduced after proper forensic analysis in order to prevent the problem from
occurring again in the future. A computer system may offer several tools to aid this
procedure of finding the cause of the problem, however many of them do not dig deep
enough to uncover the actual commands that were sent through the system that may
give a specialist the informations that are required to thoroughly understand the incident
that caused the issue.

2

1.2. Problem Statement

Fortunately, the low-level console log exists for almost every system and keeps track
of every single event that is carried out. Due to the fact that these console logs are
designed to be human-readable, they usually contain text messages and give information
about parameters and other values related to the currently running processes (Xu et al.,
2009). It should be noted at this point that attempts have been made to standardize log
files in order to counteract the problems that occur when logs are automatically read or
parsed by a program. One of the more popular standards is the Common Log Format1

used for web servers. Each line contains the credentials of the remote user, the request
being sent, its status, the length of the transferred document and an optional date, all
separated by spaces and in a specific order. Other norms describe the expected behavior
of communication protocols such as the TCP/IP syslog protocol2 that is less restrictive
and allows valid log lines to take highly different forms, thereby impeding proper parsing.

Besides from debug output during software development, logs obviously aim at creating
a permanent documentation of information system operations. Technicians are able to
consult the historic records for reconstructing the past. For security reasons and due to the
fact that pure text-based logs can be compressed and stored very memory-efficient, logs
are also rarely deleted and therefore contain large amounts of information gathered over a
long time. As a result, logs are frequently used for auditing purposes and their generation,
preservation and protection may underlie legal regulations in specific circumstances (Kent
and Souppaya, 2006). It is very likely that the source of the problem can be found when
following the hints that are derived from log records related to the issue, even though this
means that massive amounts of lines need to be analyzed manually. Clearly, if the log files
contain all the relevant information that is required to forensically investigate a problem
that happened in the past, it is also possible to monitor the log lines in real-time in order
to detect any occurring problems instantaneously. Automatically triggering immediate
actions after an anomaly has been detected may be able to protect the system from any
adverse consequences that follow up. This is a seemingly impossible task for humans due
to the high frequency in which log lines have to be processed and the cognitive abilities
required for keeping track and analyzing the data. However, machine learning may fit
perfectly for this task.

1.2 Problem Statement
Whenever machine learning methods are considered, the type, structure, quality and
quantity of the input data immediately restricts the range of usable algorithms as most
of them require the data to exhibit certain features, e.g., numeric values. Furthermore it
is commonly known that machine learning is most successful if the parameters of the
applied methods are optimized and fitted for the specific case at hand, but the very same
settings may fail to reproduce results of a similar quality on any other input dataset. The

1Common Log Format by World Wide Web Consortium (W3C) available at https://www.w3.org/
Daemon/User/Config/Logging.html#common-logfile-format, accessed 25-September-2017

2The BSD syslog protocol by C. Lonvick (Cisco Systems) available at https://www.ietf.org/
rfc/rfc3164.txt, accessed 25-September-2017

3

https://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format
https://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format
https://www.ietf.org/rfc/rfc3164.txt
https://www.ietf.org/rfc/rfc3164.txt

1. Introduction

largely text-based and diverse contents of log files therefore make any analysis difficult.
There are uncountable different ways how log files are structured in practice and the
contents of most real-world log files exhibit highly different features as they depend on
the type of application, configurations defining what type of messages are logged (e.g.,
informative messages, errors or debug output), the verbosity of the log lines, what kind
of components are placed in the system and in which way they are writing their messages
to the log file.

This kind of content diversity apparent in many existing applications renders an automated
analysis impossible and thus requires learning methods that provide a more flexible way of
extracting relevant data out of the logs. Moreover, locating lines that contain significant
words like “error” is also not enough for a thorough analysis of the system and neither
is the presence or absence of certain lines sufficient to indicate problems, but rather
the dynamic relationships and correlations between lines have to be considered when
performing anomaly detection (Xu et al., 2009).

As previously mentioned, knowledge about the logging standard is obviously advantageous
for designing an anomaly detection technique. However, this also requires the creation
of a parser specifically for every type of log line and will not be able to work with lines
that do not cohere with any of the predefined standards. There is therefore a need for a
universal solution that is not limited to only a specific log format or logs created by a
specific device such as a web server, but rather operates on any type of log file.

There exist several approaches that fulfill this requirement by employing unsupervised or
semi-supervised text clustering approaches that operate independent from the structure
of the log file at hand. These methods group similar log lines into a collection of clusters,
i.e., a cluster map. However, the cluster maps resulting from these algorithms usually only
give a static view of the data and mostly neglect any dynamic features. Wurzenberger
et al. (2017) create such a static cluster map in an initial training phase and observe
log line allocations to these clusters over time, however do not sufficiently take into
account that a static cluster map cannot be used as a permanent template for a computer
system. This is due to the fact that any system generating log lines is constantly subject
to changes and therefore cluster maps generated during a specific time window often
turn out to consist of highly different structures. It is therefore necessary to incorporate
dynamic features into the static cluster maps.

This task is known as cluster evolution analysis. Figure 1.1 shows an example of three
cluster maps generated in three different time windows. In the first time window, the
cluster map consists only of a single cluster. This cluster contains a set of log lines
displayed as points and is defined by a representative, i.e., a specific element marked by
a star that represents the content of the cluster. In the second time window, two clusters
exist, but only one of them is a descendant of the cluster from the first time window.
This relationship between the clusters is marked by the arrow pointing from the original
to the resulting cluster. In the third time window, three clusters exist, but two of them
originate from a single cluster, thereby forming a split. It is non-trivial to determine
such transitions between clusters due to the fact that log lines are non-recurring objects,

4

1.2. Problem Statement

Figure 1.1: Example of cluster evolutions spanning over 3 time windows.

i.e., a log line occurs exactly at one single point in time and is never observed again
due to time stamps, IDs and other artifacts in the strings. In other words, static cluster
maps generated from different sets of log lines do not share any common elements and
therefore render existing cluster evolution techniques useless.

Anomaly detection always relies on some kind of metric that determines whether a
specific instance such as a log line, group of log lines or point in time is anomalous or
not. Predefined limits are frequently used to trigger alarms for these metrics, however
are not always an appropriate solution in an unsupervised setting. This is due to the fact
that different systems usually show highly different behavior and also the behavior of a
single system changes over time. A self-learning procedure should therefore be able to
dynamically adjust to any environment it is placed into and adapt the limits for triggering
alarms on its own.

Finally, an anomaly detection system that deals with all the previously mentioned issues
must also exhibit a reasonable computational complexity regarding runtime and memory
consumption. Due to the fact that online anomaly detection is supposed to take place
in real-time, the algorithm needs to be efficient enough to process log lines faster than
they appear. Furthermore, it must be ensured that the used methods are suited for the
processing of streams, i.e., the runtime should scale linearly with the number of log lines
and there must not be a constant growth of the required memory.

The aforementioned issues raise several questions that are relevant for performing anomaly
detection based on the evolution of cluster maps. Among these are the following:

1. How can the evolution of log line clusters be mapped over time, i.e., how is it
possible to find relations between two or multiple consecutive cluster maps?

2. What is an appropriate cluster representation that supports the tracking of clusters
over time?

5

1. Introduction

3. How is the tracking of clusters influenced by advanced transitions such as splits or
merges?

4. What are appropriate measures that can be derived from the dynamic development
of the clusters that give insight into the current status of the system and can be
used for the detection of abnormal behavior?

5. What are suitable metrics that indicate that a new cluster map needs to be created?

6. How can appropriate values for the parameters used in clustering be estimated?

This thesis focuses on questions (1)-(4) and a thorough investigation on the remaining
questions is considered out of scope. However, the findings of this work should give an
idea about the relevance of the open issues by pointing out their influence on the results.
Thereby it should be possible to choose reasonable parameters for practical applications
and further support future work that is based on the topics of this thesis.

1.3 Aim of the Work
The research carried out in this thesis introduces the definition of a dynamic anomaly
detection methodology for log files and continuous log streams. Furthermore, the theo-
retical concepts and the established models are implemented in a functioning prototype.
The methodology encompasses the following contributions:

1. a clustering model that is able to connect log line clusters from a sequence of
static cluster maps and thereby supports the detection of transitions between these
clusters,

2. the definition of metrics that are derived from aforementioned transitions between
clusters,

3. an anomaly detection approach that displays the security-relevant metrics as time-
series and employs forecasting models in order to detect deviations from expected
behavior,

4. a concept with linear runtime scalability and limited memory requirements of the
whole procedure in order to ensure online processing capability and

5. an evaluation of the introduced methodology by deploying the prototype in a
realistic scenario.

The main feature of the introduced approach is that contextual anomalies, i.e., log line
types that do not cohere to previously gained knowledge about their average frequency
of occurrence, periodicity and correlation, are detected. This extends the ability of static
clustering approaches that detect highly dissimilar lines which occur only once as outliers

6

1.4. Methodological Approach

rather than temporal anomalies which are observed as system behavior changes over time.
Moreover, the introduced approach is self-learning and does not require any previous
knowledge about the structure and content of the log data. This allows the handling of
complex log lines from any number of processes and components in arbitrarily formats
and appearances following different standards or no standards at all.

1.4 Methodological Approach
In the first step, an in-depth investigation of existing anomaly detection methodologies
is carried out. Thereby, the particular focus lies on techniques that process textual or
log data from computer systems. Especially dynamic anomaly detection techniques that
take temporal dependencies of the input data into account are of relevance for the topic
of this thesis. This state of the art research aims at identifying key concepts that are
relevant for the introduced dynamic log file analysis methodology that is based on cluster
evolution techniques, i.e., methods that determine and measure the transitions between
clusters. Important aspects therefore include clustering mechanisms for grouping textual
data, cluster evolution methods and security metrics derived from these evolving clusters
as well as prediction models for anomaly detection.

Based on the insights gained from the investigations of existing techniques, a novel anomaly
detection mechanism is designed. The main part of this thesis focuses on a theoretical
discussion of the used concepts and a critical reflection about their characteristics relevant
for anomaly detection. These explanations are accompanied by representative examples
that highlight the main aspects of the employed methods and contribute to a more intuitive
understanding of the anomaly detection methodology that is introduced stepwise.

Finally, the prepared methodology is realized as a prototype that is applied in an
illustrative scenario. The evaluation is carried out using a semi-synthetic data set
that allows the computation of rates that measure the performance of the approach.
Together with measures regarding runtime and scalability, these metrics should then
indicate the overall effectiveness and determine whether the introduced anomaly detection
methodology is of practical use in real-world applications.

1.5 Structure of the Work
The remainder of this thesis is organized as follows: Chapter 2 surveys existing approaches
for anomaly detection. Most of the works are related to log file analysis or in other ways
share a relevance with system security. Furthermore, some works that introduce the topic
of cluster evolution and provide the basis for the methods and algorithms developed over
the course of this thesis are outlined. Chapter 3 goes into detail about the incremental
clustering algorithm that is used to efficiently create the static cluster maps for a specific
set of log lines. Chapter 4 then extends on the clustering algorithm by introducing a
clustering model that supports cluster evolution techniques. Moreover, an algorithm
for detecting cluster transitions and the computation of security-relevant metrics are

7

1. Introduction

explained in detail. These sequences of values are then used for time-series prediction
in Chapter 5, where the detection of anomalies based on the forecasts as well as the
correlation between time-series is investigated. The mostly theoretically discussed models
are then applied within a realistic scenario in Chapter 6. This chapter also includes an
in-depth evaluation that points out the effects of certain parameters and influences of
the input data on the quality of the results. Finally, Chapter 7 concludes the thesis and
further states suggestions and ideas for future research in this topic.

8

CHAPTER 2
State of the Art

The high risk posed by cyber threats has led to a massive interest in securing computer
systems. Accordingly, a vast amount of research in the field of cyber security has been
carried out and there exist numerous works focusing on highly diverse aspects of security.
For the purpose of this thesis, the wide area of this research field is narrowed down to
the subfield of intrusion detection techniques.

Intrusion Detection Systems (IDSs) are programs responsible for systematically monitoring
the current state of a computer system and are used to analyze the retrieved values in
order to detect indicators for potentially dangerous events taking place. They do this
by observing all network traffic and raise or report alarms to the responsible human
administrator in the case of a registered anomaly.

Intrusion Prevention Systems (IPSs) are more sophisticated mechanisms that usually
include an IDS but are also able to take actions that are appropriate for keeping the
system in a safe state during and after an imminent attack. These actions include closing
connections that might have been infiltrated or stopping the execution of a detected
malicious process.

Scarfone and Mell (2007) define three different methodologies that are used for the
detection of incidents that are further specified for IDSs by Liao et al. (2013) and IoT
devices such as cyber-physical systems (CPSs) by Mitchell and Chen (2014):

1. Signature-based Detection: Also known as knowledge-based detection in the
field of CPSs, signature-based intrusion detection aims at identifying predefined
patterns of malicious behavior. Assuming that most of the possible attacks are
known and stored in an attack dictionary, this method is highly effective as it usually
raises false alarms very rarely. However, as previously mentioned, the possibilities
of attacks are unfortunately very diverse and novel attack scenarios may appear
with changing technologies that can impossibly be foreseen at design time. If the

9

2. State of the Art

dictionary is known to the attacker, it is also possible that the intruders circumvent
the attack vectors by adapting their methods accordingly. Maintaining the attack
dictionary is therefore an essential but also time-consuming task. Furthermore,
signature-based methods typically do not consider the current state of the system
which could be important as most events are only posing a threat at specific times or
occurring in certain combinations. Because of these issues, signature-based detection
alone is generally not sufficient for a long-term threat prevention mechanism in
most large-scale practical applications.

An example for such a rule-based intrusion detection system is SNORT (Roesch,
1999). SNORT works similar to a sniffer as it inspects network packet payloads and
compares the content with a set of predefined rules. If there is a match with one of
the rules, an anomaly is detected and an alarm is raised. Despite the previously
mentioned shortcomings of signature-based detection, SNORT gained widespread
popularity as it was designed to be lightweight, meaning that it operates on all
kinds of systems without large installation effort and allows rules to be established
very easily.

2. Anomaly-based Detection: Also known as behavior-based detection, anomaly
detection is an unsupervised approach that learns the normal system behavior over
time and is able to identify anomalies that do not cohere to the observed patterns.
Contrary to signature-based detection methods, there is generally a higher amount
of false alarms as outliers occur naturally from time to time without actually being
caused by a malicious event. Anomaly-based detection techniques are the main
focus of this work and different approaches as well as examples will be thoroughly
examined in the following parts of this thesis.

3. Stateful Protocol Analysis: Generally speaking, this technique is based on
comparing current system behavior with a predefined profile that describes universal
behavior and is usually provided by the vendor of a product. Analogously, behavior-
specification-based detection for CPSs requires that normal behavior of a system is
defined as a model by an expert. Deviations of any kind from that expert model
are reported as abnormal behavior. With signature-based detection representing a
blacklist-approach that specifies all actions that are not legitimate, stateful protocol
analysis is a whitelist approach and is thus able to detect attacks that do not
necessarily have to be known in advance. Furthermore, this approach does not
require any training phase in order to learn the normal behavior, but rather is able
to operate from the point of installation. This approach is therefore highly effective.
However, specifying and regularly updating a model that covers all allowed actions
is a non-trivial task and requires high effort and expertise. Furthermore, the ability
to keep track of the current state of the system that is required for an advanced
detection of deviations is sometimes computationally extensive. Finally, there
always remains a chance that malicious behavior is conduced within the limits of
the profile and can thus not be detected.

10

2.1. Anomaly Detection

2.1 Anomaly Detection
For the scope of this thesis, anomaly-based detection is the most relevant technique.
Not all anomaly detection algorithms can be used for any problem at hand. Usually,
the structure of the data narrows down the possible choices. For example, textual data
cannot be used with numeric machine learning algorithms without prior processing, data
with large sample sizes may exceed computational limitations of algorithms which scale
quadratically with the amount of samples, and data without labels cannot be used with
algorithms that build a model of all possible anomaly classes during a so-called training
phase. Especially the latter distinction is commonly used to separate anomaly detection
algorithms in the following types (Chandola et al., 2009; Goldstein and Uchida, 2016):

• Supervised algorithms require a set of labeled training data in order to build
a model that is then used to classify new data based on the previously gained
knowledge. Algorithms exist for both the discrete case, where data points are
elements that can be allocated into one or more classes (e.g., K-Nearest Neighbors,
Decision Trees or Support Vector Machines), and the continuous case, where the
target value is numeric (e.g., Regression). As supervised algorithms always require
labeled input data, evaluation of the resulting classification is generally very easy
and can be carried out by using a fraction of the input data as a test set where the
predicted classes are compared with the known actual classes of the samples. The
output of this evaluation process is the accuracy of the model for the given test
set that represents the percentage of correctly classified test samples. Furthermore,
it is possible to split up the input data into an additional validation set that is
used to enhance the quality of the classification by optimizing parameters. This
also includes the prevention of overfitting, i.e., the situation where the accuracy
of the model decreases in the general case caused by a too specific adjustment
on the training data. More advanced techniques include k-fold cross-validation, a
procedure where the input data is split up into k smaller parts, each of which is
used once as the validation set.
A drawback of this method is that anomalies only make up a small fraction of the
input data in most real-world scenarios and this imbalance of class instances can
be problematic for some supervised algorithms. Moreover, labeled data can be very
difficult and expensive to gather in practice, thus often preventing the application
of supervised algorithms. Especially for log files, the large number of lines that
needs to be labeled contribute to the difficulties when creating or gathering suitable
data.

• Unsupervised algorithms do not require any kind of labeled samples and are
typically used for clustering large amounts of data. The approaches often aim
at grouping similar objects based on their distribution, distance, density or any
other measurable property. There exist several popular algorithms, e.g., K-Means
or Self-Organizing Maps. As no labeled training data is required, unsupervised
algorithms are widely applicable. In addition, unsupervised algorithms implicitly

11

2. State of the Art

assume that outliers only make up a small part of the input data, which makes
them very well fitted for anomaly detection. Drawbacks of unsupervised algorithms
include difficulties regarding both parameter optimization and evaluation which
may require iterative manual work due to the lack of labels that could be used for
comparisons and estimations of cluster quality.

• Semi-Supervised algorithms contain labels only for some samples of the training
data, for example, only one discrete class is labeled and all the other classes are
unknown. This case is likely to occur in a real-world scenario and thus semi-
supervised algorithms are essential in practice. While for system analysis there
could be a possibility to gather training data in a secured environment that is
assumed to be anomaly free and can thus be classified as “normal”, there is typically
hardly any data that contains known anomalous behavior and classes corresponding
to the type of anomaly. Nevertheless, this starting position is often sufficient for
anomaly detection in system security, due to the fact that it is only important to
identify that an anomaly occurred rather than determining its exact type. However,
due to the fact that systems change over time, data that is known to be anomaly-free
would have to be gathered regularly in order to update the data base provided for
the machine learning algorithms. This is a time-consuming task and thus difficult
to apply in practice.

Anomaly detection bases its functioning on the fact that any malicious event manifests
itself in an observable or measurable way. As it is unusual that attacks occur, this
manifestation is expected to stand out from the normal system behavior. Such suspicious
events that do not cohere with the overall behavior indicate anomalies. The following
types of anomalies are differentiated (Chandola et al., 2009):

1. Point Anomaly: This is the simplest form of anomaly. A point anomaly is
a single object that does not follow the overall structure of the data, i.e., it is
highly different to all the other data points. When representing the data in an
appropriately dimensioned space, this point is located far off the other points in
one or more dimensions and thus point anomalies are also called outliers. In cluster
analysis, a point anomaly would not be allocated to any existing group due to its
high distance to all the other samples and would thus form its own cluster where it
remains alone.

2. Contextual Anomaly: An instance that is only considered anomalous if it appears
in a specific context is called contextual or conditional anomaly. The context could
be defined by parameters or the state of the system which indicate what kinds
of log messages can be considered normal or anomalous. Also the current time
can be used to detect contextual anomalies, e.g., a high frequency of recorded
network connections within a company can be considered normal during daytime
but the same amount may be suspicious if it occurs in the middle of the night. By

12

2.1. Anomaly Detection

implication, time-series analysis is a popular methodology used for the detection of
contextual anomalies.

3. Collective Anomaly: An anomalous group of related instances is called a col-
lective anomaly. It should be noted that the instances forming the group are
not necessarily abnormal themselves, but only the group as a whole is considered
anomalous. When considering system security, attacks are typically performed in a
sequence of steps that all manifest themselves in the system’s log. While each single
of these lines may not be especially suspicious, the combination and particular
order of them can be a clear indicator for an attack. Correlating all events with
each other in an efficient and effective way is usually a non-trivial but necessary
task in order to detect collective anomalies.

A fundamental difference of anomaly detection algorithms is whether the time dimension
is included in the learning process, i.e., whether the temporal development of relationships
between events are considered to be a potential indicator of dangerous behavior or whether
the system is analyzed in every time step independent of what happened in the past or
will happen in the future. In the following, an overview about current approaches for
both possibilities is given.

2.1.1 Static Anomaly Detection Techniques

Given that determining whether an occurring event is malicious or not is typically a
decision under uncertainty, a natural approach is to apply appropriate statistical methods
to this problem. Kruegel and Vigna (2003) analyzed log files containing HTTP queries
by computing probability values for several attributes that are regarded as indicators
for anomalous behavior, for example, attribute presence, length, order and structure.
Another highly popular way of including probabilities to a decision problem is by utilizing
the Bayes Theorem, a powerful method that takes the conditional probabilities of elements
such as textual words being present or absent from certain classes into consideration.
This approach proved itself highly successful when applied for spam filters in the past
(Metsis et al., 2006). Similarly, Bayesian statistics are used for the detection of anomalies
or attacks in network traffic protocols of computer systems. The Bayesian approach has
been carried out by Amor et al. (2004) and its performance was compared to that of a
decision tree classifier. It was found that while both approaches show competitive results
and their respective abilities of detecting anomalous behavior largely depends on the
type of attack at hand, the computation time of Bayesian methods is generally lower.
Furthermore, the effectiveness of a Bayesian classifier was enhanced using a preceding
K-means clustering by Yassin et al. (2013). Data integrity attacks on a CPS were
also detected by utilizing the more complex method of learning Bayesian networks. As
shown by Krishnamurthy et al. (2014), this approach does not only successfully identify
anomalous events in network data, but is also able to track the anomaly to its source,
thus determining whether it was an attack or a physical breakdown that raised the alarm.

13

2. State of the Art

The hosts and connections of computer systems can be seen as the nodes and edges
of a graph. Akoglu et al. (2014) point out several advantages of anomaly detection
using graphs, including their natural way of approximating real-world networks and their
ability to capture long-range correlations between nodes. Graph-based anomaly detection
aims at identifying abnormal nodes, edges or substructures and can be based on several
measures, including global metrics like the distance and distribution of nodes, the depth
of the graph, node-centric measures such as the in- and out degree or neighborhood-based
metrics. In another example, Noble and Cook (2003) make use of an algorithm called
Subdue that is able to iteratively discover and replace patterns in a graph, thus revealing
infrequent and potentially anomalous substructures. A problem that arises when trying
to apply graph-based anomaly detection on textual or log data is the high complexity, as
edges between any of the text fragments can be computed, thus exponentially increasing
the required computation time. Graph-based methods should therefore be favored in
cases where each node only has connections to a small fraction of the total amount of
nodes, e.g., in the case where connections between hosts are observed.

Many popular text classification methods are focusing on creating patterns or signatures
of anomalous events and log lines that are then used to group similar or related attacks
together. As stated by Vaarandi (2003), log files usually have no standardized format and
thus many association rule algorithms fail to work. As a solution, the authors introduce
the clustering algorithm SLCT that is able to generate patterns by observing frequent
words and their respective positions in each line by a single run through the log file. By
allocating the lines to the generated patterns in a second run through the log file, SLCT
identifies outliers that do not match any of the previously created rules and detects them
as anomalies. Even though SLCT is known to terminate very fast even for large input
data, the quality of the results largely depend on the often highly sensitive parameter
settings (Stearley, 2004) that easily cause the detection of an overwhelming number of
false positives. Furthermore, all the cluster templates must be stored for the second run,
which possibly raises memory problems for large log files. Another rule-based approach
was introduced by Breier and Branišová (2015), where log lines are transformed into
a binary format and compared with predefined patterns of normal behavior. Outliers
that do not match any of the rules are then reported as anomalies. This approach uses
parallel processing and employs MapReduce in order to keep the runtime at a minimum.

A well-known way of measuring the distance between strings from an unstructured text
file is comparing their respective n-grams. Juvonen et al. (2015) therefore projected
log lines according to their common n-grams in a high dimensional space and identified
outliers as lines that deviate too much from the computed average. In order to tackle
the curse of dimensionality, i.e., the problem of sparsity occurring when data points
are placed in high dimensional spaces, three different dimension reduction techniques
were used for experiments and it was found that both Random Projection and Diffusion
Maps should be favored to Principal Component Analysis. It must be noted that the
temporal correlations inherent to log file lines can negatively influence the results of
anomaly detection techniques based on dimension reduction (Brauckhoff et al., 2009).

14

2.1. Anomaly Detection

2.1.2 Dynamic Anomaly Detection Techniques

Although the order of the input data may have an influence on the results of a static
anomaly detection technique, many of the algorithms do not fully make use of the
temporal dimension, e.g., by simply ignoring the timestamp attached to each log line.
However, by integrating this information in the anomaly detection process it is possible
to derive new insights such as long-term trends and correlations between clusters that
would otherwise remain hidden. For example, a special type of log line that is observed
once precisely at the start of every hour over a long period of time is most probably
generated by a scheduled task and it could thus be predicted at what time the line should
appear again in the future. If the line however is delayed, suddenly skips one of those
scheduled points in time or changes its periodicity to a different interval than one hour,
an alarm should be triggered as this may indicate anomalous system behavior. More
sophisticated timing restrictions include log lines that consistently appear after some
time when a specific event occurs. However, such delayed relationships can easily be
overseen when dealing with a large number of log lines that occur with varying frequencies.
Especially when the root of some problem needs to be detected, knowledge about these
temporal correlations and causal relationships is essential to rapidly detect the origin
of the problem. The causal relationships can also be deeply nested and there is the
possibility that multiple sources contribute to the outcome of a specific log line which
increases the difficulty of detecting the cause of a problem (Rouillard, 2004).

Obviously it is always possible to carry out any static Anomaly Detection technique in
every possible time step in order to obtain results that are based on the elapsed time.
However, the nature of log data counteracts such a procedure for several reasons. Firstly,
time stamps of most logs contain seconds or even more precise measurements, thereby
causing that an enormous amount of steps has to be taken into account. Algorithms such
as cluster analysis are typically complex methods that require high computational effort
and therefore cannot be carried out for every single time step. Secondly, the fact that
events generally do not appear in regular intervals has to be considered, meaning that
there could be some period of time where log lines are generated at a much higher rate
than at other times. Finally, it can be assumed that adding one single line or only a few
lines to the current clustering does not have a large influence on the formation of the
clusters, and it is therefore not necessary to completely repeat the clustering procedure
from the start, but rather incrementally add the newly arriving data points to the existing
clusters and observe the features of the clusters over time.

It is important to differentiate between two cases where the term incremental clustering
is used in literature. On the one hand, this term is used to describe a sequential data
flow that is continuously clustered. Log lines form such a stream of incoming strings
and hence this thesis will only focus on that kind of clustering. On the other hand,
incremental clustering is also used to describe the scenario where the same objects are
observed over multiple time steps (Xu et al., 2014). It was already mentioned that log
lines are non-recurrent objects and are thus not suited for such methods.

15

2. State of the Art

When features are measured over time, ordered sequences of values are generated. A
popular way of describing these time-series is the combination of autoregressive (AR)
and moving average (MA) models into so-called ARMA models. Further extensions
exist, such as ARIMA models for non-stationary time series or SARIMA models that
also include a seasonal component. A related but less complex modeling technique that
also adds trends and seasonal changes to the predictions is the Holt-Winters model.
Outlier detection is realized by forecasting the values of a time series and computing
the deviations from the actually measured data, where deviations that exceed a certain
threshold indicate anomalous behavior.

The already mentioned graph-based anomaly detection is not limited to static networks.
Pincombe (2005) uses an ARMA process for modeling the temporal behavior of the graph
consisting of TCP/IP connections between users. The author optimized the ARMA
model for several different graph distance metrics and discovered that only some of those
metrics appropriately detected the known anomalies in the data. Bilgin and Yener (2006)
add that one metric is usually not sufficient to describe the graph as a whole and anomaly
detection algorithms should therefore be based on a combination of several features.

Neural networks are a popular choice for learning patterns in data. Cortez et al. (2012)
compare an ensemble of multilayer perceptrons with ARIMA and Holt-Winters time
series models. They found that neural networks show comparable results and are able to
surpass the time series models regarding the runtime. Another comparison study by Hill
and Minsker (2010) also uses a multilayer perceptron, an AR model as well as a modified
k-Nearest Neighbors classifier for investigating the influence of detected outliers. It was
found that leaving the outliers in the data may have a negative influence on the following
forecasts, especially for predictors that place a high weight on the recent data points.
There is therefore a need to mitigate the influence of these points and it is suggested to
replace the anomalies with the values predicted by the model.

A more complex neural network is the Long Short Term Memory Recurrent Neural
Networks (LSTM-RNN) which is able to learn temporal dependencies of the input data.
Goh et al. (2017) simulate a CPS attack by injecting wrong sensor information into the
system for different time durations. The neural network was trained with normal system
behavior and was able to detect a high number of simulated attacks even when they were
targeted to different processes of the CPS. Fiore et al. (2013) use a special type of neural
network called Restricted Boltzmann Machine to experiment on how differences between
the datasets used for training and testing affect the quality of the results. It was shown
that using a different network for training is likely to decrease the effectiveness of the
anomaly detection on the test set.

In a similar manner to a rule-based approach, Fu et al. (2009) extract the log keys of each
log line by omitting parameters so that only the non-variable parts of the log line remain.
Contrary to SLCT, clustering of the lines is then carried out by comparing string metrics
rather than pattern matching. A finite state automaton is created and deviations of both
the transit time from one state to another as well as the circulation number for all the
loops are considered as measures to detect anomalous behavior. A similar approach for

16

2.2. Cluster Evolution

retrieving information from log files was carried out by Xu et al. (2009), where templates
for most of the lines were created by applying static source code analysis to the program
generating the log lines. The state transitions within a time window were observed using
the subspace method and the results of the outlier detection were enhanced by TF-IDF
weighting of the message counts.

He et al. (2016) introduce an algorithm that also creates log line templates and clusters
the lines within time windows. For each window, an event count matrix is filled that
keeps track of the amount of occurred log line types. The authors experiment with
different machine learning techniques that learn expected behavior from such an event
count matrix and are able to detect anomalies by comparing the learned model with event
count matrices generated from the currently processed lines. Additional to experimenting
with time windows of a fixed length, a sliding window approach and session identifiers
were used to split up the log file. A system that changes its behavior over time requires
that the learned model is updated by regenerating the templates regularly.

A more generic approach that does not create templates is introduced by Andreasson and
Geijer (2015). Instead of matching the patterns of some generated rules, this approach
considers string metrics and n-gram matching for grouping similar types of lines together.
The log files are analyzed and summarized by message counts and word occurrences for
every hour, thus creating a convenient and not overwhelming summary about the system
behavior over time. A normal distribution of those retrieved statistics is assumed and
high deviations far outside of the Gaussian curve are reported as anomalies during the
detection phase.

Finally, there also exist several commercial solutions that offer log file analysis. Besides
allowing visualization and providing the ability to search through log files, Logentries1

also applies real-time anomaly detection on logs. The program generates a profile as
a baseline of normal behavior and raises alarms if deviations from that profile occur.
Furthermore, anomalies are raised when log lines corresponding to scheduled events do
not take place as expected. However, similar to other previously mentioned approaches,
Logentries requires the definition of parsers for all line types in order to extract numeric
values that are then compared with predefined thresholds.

2.2 Cluster Evolution

While a large amount of research has been carried out in the field of time series analysis
and its subfields clustering (Silva et al., 2013; Esling and Agon, 2012; Khalilian and
Mustapha, 2010) and anomaly detection (Sperotto et al., 2008; Thottan and Ji, 2003;
Chin et al., 2005; Gupta et al., 2014) in time series, many of those approaches are not
directly applicable on cluster evolution analysis as they focus on input data that consists
of one or more features that are measured over time, i.e., for every feature there exists a
value in every discrete time step. Though being a promising start as, for example, the

1Logentries available at https://logentries.com/, accessed 25-September-2017

17

https://logentries.com/

2. State of the Art

sizes of log message clusters can be seen as features that are observed over time, a more
sophisticated analysis of the clusters is required in order to keep track over their temporal
changes. Hence, the field of cluster evolution specifically aims at identifying trends in
cluster developments, which can in turn be used to detect abnormal cluster behavior.

The purpose and possible insights that can be derived from a clustering were already
explained previously. In general, clustering algorithms are designed for a static view of
the underlying data, i.e., a set of data points is considered to generate the cluster map
for a specific time span. Although the ordering of those data points can have an influence
on the number and structures of the resulting clustering, most cluster techniques are
not specifically designed to support dynamic changes that are caused when inserting
new data points to an existing cluster map, but rather require a complete reformation of
all clusters by starting the algorithm all over again. As a solution, incremental cluster
methods are able to dynamically add any number of incoming data points by either
allocating them to one of the existing clusters or declaring them as outliers if the distance
to the nearest cluster exceeds a certain threshold.

The incremental approach has been applied for log file analysis on systems with a highly
predictable behavior and a large number of repeating sequences. It was found that the
methods are able to successfully cluster the log lines that are generated by normal system
behavior while detecting outliers that potentially represent anomalies (Wurzenberger
et al., 2017). However, for modern computer systems and networks the assumption about
a steady system behavior is not necessarily valid due to several reasons. Any component
within a network that contributes to the generation of log lines is subject to modifications
or replacement. These actions can change the format or content of the logged lines that
will then not be clustered into the same group anymore, causing alarms to be raised as
all of the lines will be detected as outliers although representing normal system behavior.
This also causes that no more lines will be allocated to the original cluster which should
also be detected as an abnormal behavior that should trigger some kind of alarm. In a
more complex case it could also be possible that only a fraction of the lines that would
be allocated to a cluster fall outside of that group and become outliers. These and even
more complex scenarios that will be investigated in detail in the following chapters of this
thesis could easily be imagined within a large-scale network that involves large numbers
of users and programs. Furthermore, static cluster analyses generally have no way of
reacting to periodical changes that almost always occur in real-world networks. As a
simple example, it can be assumed that network traffic and server accesses are much
higher during the day than during the night as most people are working on daytimes
in their offices, while only some automatically scheduled programs operate non-stop.
Another example is the decrease of human network accesses on the weekends compared
to weekdays.

The issues that arise when performing cluster evolution analysis are manifold and most
works focus only on a certain aspect of cluster evolution. Given two cluster maps from
two different time windows, it is usually the essential first step to identify which cluster
from the former map transformed into a corresponding cluster from the later map. This

18

2.2. Cluster Evolution

task is referred to as cluster tracking and obviously has to cope with changes in cluster
composition, e.g., the allocated members are not necessarily identical in both time
windows. In the next step, cluster transitions that are based on the changed cluster
structure have to be identified. They are usually divided into external transitions that
include emergences, disappearances, splits and merges and internal transitions that include
changes in size, spread and location (Spiliopoulou et al., 2006). Finally, appropriate
evolution metrics have to be designed that allow a representative quantification of the
ongoing cluster dynamics and form time-series that are applicable for anomaly detection.
The detected anomalies may include any unexpected behavior of the time-series, such as
rapid changes in size, sudden disappearances or deviations from long-term trends.

Especially short-term anomalies likely influence the quality of the cluster map in the
following time step as objects could be compared with outliers that are not representing
the systems normal state correctly. In order to overcome this issue, smoothing can be
applied to the evolution of the clusters in order to maintain a steady and non-noisy cluster
development. Chi et al. (2009) combine the snapshot cost which captures the quality of
the current snapshot with the temporal cost which captures the alignment with previous
snapshots from historic data. They introduce two frameworks which optimize this value
by either focusing on preserving cluster quality or preserving cluster memberships and
use both K-Means and spectral clustering as underlying algorithms. Xu et al. (2014)
build upon this approach and apply an evolutionary clustering algorithm in order to
approximate the distance matrix of all data points.

Any kind of clustering technique may be used for the application of cluster evolution,
however, some methods may be better suited than others. Chakrabarti et al. (2006) point
out that clustering algorithms should take historical data, i.e., the results of clusterings
from previous time steps, into account in order to ensure that the differences between
cluster maps are kept at a minimum. Otherwise, even very similar data can lead to
highly diverse cluster maps, thereby impairing the quality of the cluster evolution analysis
results. Moreover, the time window is required to be chosen appropriately in order
to ensure that the generated clusters actually represent the system consistently. As a
solution, a hierarchical approach as well as an algorithm based on K-Means that both put
emphasis on alignment with historical cluster maps and snapshot quality are introduced
in that work.

Tracking clusters of a set of points moving on a usually low-dimensional coordinate system
finds several important applications such as GPS and is closely related to cluster evolution
techniques. Jensen et al. (2007) introduce a dissimilarity metric based on the movements
of objects and a cluster feature allowing incremental updates and compact summarizations
of cluster properties regarding size, location and movement. By employing their cluster
feature it is possible to track any number of moving clusters and also determine splits and
merges that may emerge. When a Gaussian model is assumed for each cluster, Bayesian
methods are able to capture the movements of an evolving Gaussian mixture model over
time (Carmi et al., 2009). As in the case of log lines it is generally neither possible to
assume a Gaussian distribution nor that clusters continuously move around in patterns

19

2. State of the Art

or constant velocity, but rather that clusters normally remain stable and any deviation
from their typical state is an exception. Therefore these approaches are not perfectly
suited for the purpose of cluster evolution in the context of log file analysis.

It should be noted that an alternative approach could make use of sliding window
functions that may allow a more sensitive analysis of the cluster properties. However, such
approaches typically require more complex mathematical formulations and procedures. A
sliding window technique for cluster evolution analysis is introduced by Zhou et al. (2008)
where a data structure called Exponential Histogram of Cluster Features stores and
updates the cluster properties over time. There also exist incremental methods that are
able to dynamically update location and spread of clusters when new samples are added
and further support merging and splitting of clusters (Lughofer and Sayed-Mouchaweh,
2015).

While the goal of outlier detection in standard cluster analysis is to find single lines that
do not fit into one of the formed clusters, outlier detection based on cluster evolution seeks
groupings in data that exhibit trends in their properties such as their size which could
indicate anomalies. Taking this one step further, it could be interesting to observe the
behavior of the objects that form a community within that cluster. The term community
in this context is generally used when cluster analysis is performed on data based on
social networks and related fields. Gupta et al. (2014) differentiate between Evolutionary
Community Outliers where objects swap their surrounding community and Community
Trend Outliers where objects do not follow the trend of their community and suggest
algorithms for detecting both of these types.

An overwhelming amount of literature focuses on graph-based cluster evolution and
analysis (Chan et al., 2008; Bilgin and Yener, 2006; Asur et al., 2009; Lee et al., 2014;
Bródka et al., 2013; Falkowski et al., 2006). Graph theory has a strong theoretical basis
and although some ideas could be transferred to a more general spatio-temporal data
analysis, most of these works cannot be directly applied to cluster evolution using log files
as an input stream. While for graphs, the appearance and disappearance of connections
between nodes pose the essence of the analytical models, log file cluster evolution mainly
focuses on the distance between clusters and objects. Furthermore, all log lines can be
related to each other via some kind of similarity metric, meaning that graph-based models
would always have to deal with a complete graph. This can obviously cause an issue
in computational complexity due to the exponential growth of edges for an increased
amount of nodes. As a solution, all the edges that represent a connection between two
log lines can be removed if the distance exceeds a certain threshold, i.e., if the lines are
not similar enough. In addition, the weights of the remaining edges could be omitted,
leaving a binary graph behind that would allow the application of graph-based models in
an efficient way. The influence of these simplifications on the quality of a clustering and
community evolution analysis has not been investigated so far. A large fraction of the
applications in this area focuses on dynamic social networks that consist of people and
their relationships to each other as those networks can adequately be represented as a
graph.

20

2.2. Cluster Evolution

While all the mentioned algorithms only take properties based on the location of the
data points into account, clusters that were created using log lines do not only consist of
their members but also have additional properties that can be used to track them from
one time step to the other. For example, when applying incremental clustering, one line
is used as the representative of that cluster. While it is not guaranteed that a line with
the very same content is selected as the representative again when the subsequent cluster
map is generated, it is likely that the line is somewhat related and a similarity score can
support the identification of the correct cluster. Other clustering algorithms like SLCT
may generate a pattern for each cluster that can be employed for cluster generation
and evolution analysis analogously, although it should be noted that pattern matching
typically does not return a numeric similarity score but rather a boolean that indicates
whether the line matches the pattern or not.

Creating visualizations of cluster evolution is a non-trivial task and only few appropriate
solutions exist. A rather simple possibility is to display an ordered set of static images,
each representing a specific state in time. A more sophisticated technique that was
developed for spatio-temporal data is the space-time cube (Andrienko et al., 2003). In
this method, a 2-dimensional field is complemented with an additional time dimension
that shows the trajectories of the observed objects. For smaller networks that contain
only few clusters, Vehlow et al. (2015) suggest so-called Alluvial Diagrams that are able to
display transitions such as splits and merges by connecting ordered graphical summaries
of the clusters at each time step with flow-like links. The sizes of the flows allow fast
comprehension of the amount of objects that were split or absorbed from each cluster
and color-coding aids the traceability of each cluster. A different approach to dynamic
cluster visualization is animation. The tool GapMinder has become a popular way of
displaying cluster data as it is able to dynamically depict several features at once by
employing two numerical axes as well as the sizes and colors of the clusters and their
respective changes over time (Rosling and Zhang, 2011). The advantage of this technique
is that data is interpolated between the time steps, allowing a viewer to track single
clusters in a continuous movement as well as to observe overall emergent phenomena, e.g.
common trends of clusters or interdependencies within groups of clusters.

21

CHAPTER 3
Clustering

There exist enormous amounts of machine learning algorithms that are deployed in highly
diverse application areas. This makes it difficult to maintain an overview of clustering
algorithms that are suitable for the problem at hand. With most techniques only having
minimal requirements on the data that is fed into the algorithms, it may be tempting
to use the unprocessed data on the first available algorithm in order to solve a specific
task. Not surprisingly, while the output of the algorithm may be somewhat predictable,
the results are usually far from perfect and for that reason data scientists spend a lot of
time optimizing the results by parameter tuning and comparing alternative approaches.
Applying machine learning in order to solve a problem is not only a tedious task that
requires detailed expert knowledge about the problem domain and machine learning
itself, but also takes several rounds of iterative development and enhancement until an
ideal solution has been found. Knowledge about the benefits and drawbacks of different
types of algorithms is thus essential for initially choosing a correct learning model.

3.1 Requirements
In the case of log line clustering, several crucial characteristics need to be considered
before a clustering algorithm can be employed or developed. The most important of
these features are the following:

1. String metrics: Many machine learning techniques are centered on numbers and
especially clustering almost always requires numeric values, probabilities or real-
space coordinates. The reason for this is that it is much easier for a computer to find
patterns or similarities in numbers than in other types of attributes. While most
measurable data can be expressed numerically and many other pieces of information
such as images or audio files can be converted to a collection of numbers, the strings
appearing in log files usually cannot easily be transformed into a real-space. Clearly,

23

3. Clustering

the numeric ASCII values could be chosen to represent each character in the string
as a vector. However, computing the similarity between these vectors may not give
an appropriate result as there is no reason to assume that characters closely located
in the ASCII table, e.g., “A” and “B”, are more similar than characters far apart,
e.g., “A” and “z”. A solution to this problem can be found in string metrics that
are able to numerically assess the similarity or distance between two strings. An
in-depth description of the mechanics behind string metrics will be given in the
following sections.

2. Incremental capability: Many machine learning algorithms are only used with
fixed-size datasets. This means that there is a finite amount of samples in these
datasets and that the algorithm terminates once all elements have either been used
for training or were classified during the evaluation phase. Practical applications of
log line clustering algorithms however typically require an incremental procedure
that is able to handle a stream of data containing potentially infinite incoming
lines.

3. Linear computational complexity: Related to the problem of an endless stream
of incoming data is the requirement for a linear complexity. There exist cluster
algorithms that are based on comparing each element from the dataset with each
other element in order to find similarities that are then used to form groups.
Procedures with a complexity that exceeds linear scalability with respect to the
number of lines however can impossibly be employed as the time required for the
computations would ever increase, up to a point where the lines cannot be processed
in real-time anymore. Due to physically limited resources it is usually not possible
to upgrade the available computational power to arbitrarily high levels and thus
such approaches are practically not feasible for log file anomaly detection.

4. Limited memory storage: Some algorithms may require to store all samples
in-memory during clustering. Due to the immense amount of log lines and the
previously mentioned continuous stream of incoming data, only a part of the total
number of lines can be held in memory at a time. For most applications of data
stream clustering, the most recent data is considered more important as it represents
the most current known system behavior. Therefore, historic values that exceed a
certain age should be removed from the in-memory storage and possibly saved on a
hard disk in order to keep records of the conducted operations.

5. High-performance: The rate at which log lines are written to the log file is
strongly depending on the system at hand and the number of components and
programs contributing to the log file. In some practical applications, the average
rate at which log lines are produced can be enormous and the algorithm must be
able to keep up with that in order to ensure real-time detection capability. As long
as the complexity only scales linearly with respect to the number of processed log
lines, increases of average occurring frequencies can usually be compensated by
increasing the computational power.

24

3.2. Word-based Matching

In order to tackle these issues, the used clustering algorithm relies on several components
that allow the comparison of strings and pay attention to scalability and the overall
performance. These tools comprising the algorithm will be explained in the following.

3.2 Word-based Matching
One way to determine the similarity of any two given strings is by computing the number
of words that they have in common. Rather than splitting up strings at special characters
such as spaces, it is possible to split them in regular intervals forming identical-sized word
fragments. Each fragment consists of a sequence of consecutive characters of a predefined
length n and is thus known as n-gram or shingle. For example, the word “string” consists
of the 2-grams “st”, “tr”, “ri”, “in” and “ng” and of the 3-grams “str”, “tri”, “rin” and
“ing”. With |s| denoting the length of string s, the number of n-grams that can be formed
from s is |s| − n+ 1. It should be noted that characters appearing in the middle of the
string appear in more n-grams than characters at the beginning or the end, e.g., the
character “r” appeared in the 3-grams “str”, “tri” and “rin” in the previous example,
while the letter “s” only appeared in “str”. If this behavior is not desirable, n−1 identical
characters can be inserted before and after the string. The mentioned example would
therefore be transformed into “##string##” and would result in the 3-grams “##s”,
“#st”, “str”, “tri”, “rin”, “ing”, “ng#” and “g##”, where every character appears with
the same frequency. For convenience, this feature is omitted from following examples.

The Dice coefficient is an index that measures the similarity of two strings a and b by
counting the amount of n-grams shared by the strings and divides this number by the
total amount of n-grams in both strings. With Tn(s) representing the set of all n-grams
of string s, the Dice coefficient dice ∈ [0, 1] is expressed as

dice = 2 · |Tn(a) ∩ Tn(b)|
|Tn(a)|+ |Tn(b)| (3.1)

It is pointed out by Kondrak (2005) that not all similar strings necessarily share a high
number of n-grams which can lead to a disproportionate low score. Furthermore, the
Dice coefficient does not take the position of the n-grams into account, therefore also
strings with many matching n-grams that are however in completely different order will
lead to a rather high similarity score.

Short Word Filters (SWFs) are a more sophisticated approach that employ n-gram
matching and define a threshold Θ of required n-grams that must be identical in both
strings a and b in order to consider them as similar. For a given threshold δ ∈ [0, 1] that
defines the percentage of desired similarity, the threshold of required matching n-grams
is defined as

Θ = min(|a|, |b|)− n+ 1− (1− δ) · n ·min(|a|, |b|) (3.2)

Note that as already mentioned before, min(|a|, |b|) − n + 1 is the amount of possible
n-grams in the shorter string. A detailed proof of the expression is stated by Ghodsi et al.

25

3. Clustering

(2011). Two strings a and b are thus considered similar if the number of shared n-grams
including duplicates is not smaller than the computed threshold, i.e., |Tn(a) ∩ Tn(b)| ≥ Θ.

Considering 2-gram matching with δ = 0.8 for the example strings “string” and “strain”,
the required amount of matching n-grams is Θ = 6− 2 + 1− (1− 0.8) · 2 · 6 = 2.6, i.e.,
there have to be 3 matching 2-grams to fulfill the requirement. With the shared 2-grams
“st”, “tr” and “in”, this requirement is met and thus the strings are considered a match.
The procedure can be carried out analogously for any n and any δ with different results.

SWFs have successfully been used for clustering large amounts of biological sequences
such as genomes or proteins (Huang et al., 2010; Li et al., 2001, 2002). Their advantage is
that determining whether short sequences of characters are identical is much faster than
comparing two very long strings. This effectively reduces overall computation time by
filtering out strings that most probably do not match before applying a computationally
intensive method for precisely determining the similarity between the strings.

3.3 Alignment-based Matching

Other than word-based approaches, alignment-based methods allow a more precise
computation of the similarity between two strings. Computing the similarity based on
the alignment avoids the previously mentioned problems of n-gram matching, i.e., issues
related to the lack of order when intersecting sets of n-grams. This is accomplished by
working on single characters rather than sequences of characters. The aim of alignment-
based matching is to count the number of operations that are required to transform one
string into the other. Existing metrics typically consider up to four different operations.
These are:

1. Insertion: Adds one character at any position in one of the strings.

2. Deletion: Removes one character at any position in one of the strings.

3. Substitution: Replaces one character by any other character in one of the strings.

4. Transposition: Swaps two adjacent characters in one of the strings.

There also exist a number of string metrics that consider all or some of these operations,
but weigh them differently. One of the most basic metrics is the Hamming distance that
only takes substitutions into account. As no characters are added or removed, it is a
requirement that both strings have the same length in order to be reasonably compared.
Each substitution has a cost of 1 and the sum of all costs required to transform one string
into the other is the Hamming distance. For example, transforming string “string” into
“strain” requires substituting the last three characters, thus the Hamming distance is 3.

A more sophisticated and wide-spread string metric is the Levenshtein distance that is
also frequently known as Edit distance and supports insertion, deletion and substitution.

26

3.3. Alignment-based Matching

The metric weighs all of them equally so that each applied operation increases the total
cost by 1. Considering the strings “string” and “strain” as an example, the following
sequence of operations transform one string into the other:

1. “string” → “straing” (insert “a” between positions 3 and 4)

2. “straing” → “strain” (delete “g” from the last position)

As only two operations are required, the Levenshtein distance is 2. Note that there usually
exist multiple ways to successfully carry out the transformation, but only the sequences
of operations that minimize the total distance are relevant. In the case of the strings
“string” and “strain”, there is no other possibility to transform one string into the other
using less than 2 operations. In general, the Levensthein distance Lev(a, b) = lev(|a|, |b|)
between the two strings a and b is computed iteratively according to the following rules
(Hyyrö, 2003):

lev(i, 0) = i

lev(0, j) = j

lev(i, j) = min

lev(i− 1, j) + 1
lev(i, j − 1) + 1
lev(i− 1, j − 1) + I(ai 6= bj)

(3.3)

where I(ai 6= bj) is the indicator function that is 0 if ai, the i-th character of a and bj ,
the j-th character of b match, and 1 otherwise. Note that the choices in the minimum
correspond to the operations, i.e., lev(i − 1, j) + 1 corresponds to a deletion from a,
lev(i, j−1)+1 corresponds to an insertion in a and lev(i−1, j−1)+I(ai 6= bj) corresponds
to a substitution if the characters mismatch and no operation otherwise. This formula
also shows that each occurring operation increments the total cost by 1.

For a better understanding, this recursive procedure is often displayed as a (|a|+1)×(|b|+1)
matrix D that is filled out row-wise. Following the formula, the first row and first
column are set to Di,0 = i and D0,j = j independent from the content of the strings.
The remaining fields are then computed by Di,j = Di−1,j−1 if ai = bj and Di,j =
1 +min(Di,j−1, Di−1,j , Di−1,j−1) otherwise. The resulting Levenshtein distance is found
in the bottom-right corner of the matrix. The filled-out matrix for the two example
strings is shown in Figure 3.1 1. The path of least cost is marked with yellow and leads
to the resulting distance of 2.

It is further noteworthy that the recursive formulation of lev(i, j) also represents the
distance between the substrings a1a2...ai and b1b2...bj . This division of the problem into
multiple subproblems is used in dynamic programming. In its basic formulation, the
complexity in both memory and time for computing the Levenshtein distance lies within

1Table created using the Levenshtein Demo accessible at http://www.let.rug.nl/kleiweg/
lev/, accessed 20-December-2017

27

http://www.let.rug.nl/kleiweg/lev/
http://www.let.rug.nl/kleiweg/lev/

3. Clustering

Figure 3.1: Example for the computation of the Levenshtein distance between two sample
strings.

O(|a| · |b|). However, there exist numerous optimizations that aim at reducing the required
amount of memory storage or the computational runtime. For example, Hirschberg’s
algorithm takes advantage of the fact that the i-th row of D is only depending from the
(i − 1)-th row that was just computed before and is thus able to reduce the required
memory by a large amount (Masek and Paterson, 1980).

In general, a function d(a, b) that returns the distance between two strings a and b is
called a metric if it possesses the following properties (Li et al., 2004):

1. Non-negativity: The distance between any two strings a and b must not be
negative, i.e., d(a, b) ≥ 0.

2. Identity: Two strings a and b yield a distance of 0 if they are identical, i.e.,
d(a, b) = 0 if a = b.

3. Symmetry: The distance from string a to b is identical to the distance from b to
a, i.e., d(a, b) = d(b, a).

4. Triangle Inequality: The distance between two strings a and b is shorter or
equal to the sum of the distances from a and b to any other string c, i.e., d(a, b) ≤
d(a, c) + d(b, c).

The Levenshtein distance follows these properties and is thus considered a metric. While
two identical strings yield a Levenshtein distance of 0, in the case of two completely
mismatching strings the Levenshtein distance will result in the length of the longer string.
This property is used to normalize the distance function to the interval [0, 1] which is a
more comparable metric as it shows the similarity of any two strings independent from
their lengths (Yu et al., 2016). The expression for computing the normalized Levenshtein
distance is

dLev = Lev(a, b)
max(|a|, |b|) (3.4)

28

3.4. Algorithm

A perfect match of two strings using the normalized function results in a distance of 0
and a total mismatch yields 1. Some applications may require a similarity metric rather
than a distance metric, i.e., 0 representing a mismatch and 1 representing a match of
two strings. A normalized distance function can always be converted into a normalized
similarity function by

sLev = 1− dLev (3.5)

An extension to the Levenshtein distance that also takes transpositions between two
neighbored characters into account is the Damerau-Levenshtein distance (Hyyrö, 2003).
The computation of the metric is again solved by a dynamic programming matrix that
follows an extended set of rules. Just as for the Levenshtein metric, the first column
and row is set to a fixed value Di,0 = i and D0,j = j and matching characters require
no cost, i.e., Di,j = Di−1,j−1 if ai = bj . The cost for two consecutive characters ai−1ai
or bj−1bj that are swapped in a or b is only counted as a cost of 1 instead of the cost
2 that would be created by two mismatches. If there is a swap of the characters, i.e.,
ai−1 = bj and ai = bj−1, and further the previous characters were not swapped already,
i.e., Di−1,j−2 > Di−2,j−2, then the cost for the transposition was already covered by
the mismatch of the previous characters and thus Di,j = Di−1,j−1. In every other case
the same rule Di,j = 1 + min(Di,j−1, Di−1,j , Di−1,j−1) that is already known from the
Levenshtein method is applied. The normalized distance as well as the normalized
similarity are computed identically as it was done with the Levenshtein metric.

3.4 Algorithm
The algorithm used for incrementally generating cluster maps was first published by
Wurzenberger et al. (2017) and is in the following explained in detail. Figure 3.2 displays
the overall structure of the clustering procedure. At first, the log file is read from hard
disk one line after the other and it is assumed that there is a potentially endless amount
of incoming lines, i.e., every time a line is printed to the log file it is queued as an input
to the algorithm. In the case that there is no new line printed and all the available lines
were already processed, the program waits at this point until a new line is available.

Some sample log lines are displayed in Fig. 3.3. As it can be seen, some of the lines
show high similarities or are identical while others largely vary in length and content.
Computing and utilizing these similarities is the basis for grouping the lines into a cluster.
As already mentioned, there are no assumptions made on the structure of the log lines
except that there is a time stamp attached that will be used for further time-series
analysis. The time stamps can remain unprocessed if it is assumed that the strings are
sufficiently long so that the influence on the overall similarity between the lines is small
enough to be negligible. However, a better option is to remove the time stamps as they
do not convey any information related to the content of the log messages and therefore
would only distort the true similarity score between the lines. The same reasoning is
applied to characters such as additional spaces and other style-related appendages that
should be trimmed from the strings.

29

3. Clustering

Read input file line by line

Preprocessing: Remove time stamp,
sanitize strings

Log file

Cluster
descriptor

exists?

Filter for clusters with similar
descriptor line length

Filter for clusters with similar n-grams
(Short Word Filter)

Identify cluster with minimal string
distance metric

Distance <
threshold?

Create new clusterAdd line to existing
cluster

Yes

Yes

No

Figure 3.2: Incremental clustering procedure employing a stack of filters for increased
performance.

30

3.4. Algorithm

Figure 3.3: Excerpt from a log file.

For the next step it is assumed that there is a cluster map C that holds all clusters C ∈ C,
each of which is represented by the log line that generated it. When the first log line is
read from the log file, no cluster exists, i.e., the cluster map is empty. As a consequence,
the first line always causes the creation of a new cluster with that line as its cluster
representative.

Assuming that at least one cluster exists in the cluster map, every newly incoming
line s undergoes the following phases: At first it is checked whether a cluster with a
representative r identical to s exists. If such a cluster is found, the line is immediately
added to the existing cluster by referencing the line via a unique identifier such as the
line number. In case that the number of the line from the text file cannot be determined,
a running ID that is incremented by 1 for each new line serves the same purpose. With
clusters stored in a hash table, this step can be carried out in O(1) time. In the case
that no fitting cluster was found, the relative differences between the length of the line
and the length of each cluster representatives are computed. All clusters where this ratio
exceeds a certain similarity threshold t ∈ [0, 1], i.e., min(|s|,|r|)

max(|s|,|r|) > t, are added to a list
of cluster candidates Cc. With |C| being the number of clusters in the map, the time
complexity for this step lies in O(|C|). As the amount of clusters is growing very fast
right at the start of the program but only slowly increasing in the later stages, this cost
is considered as more or less constant in long term runs. It is common that occasionally
outliers appear, i.e., clusters that only hold very few or only a single line over a long
time. If the number of outlier clusters keeps increasing rapidly and checking all cluster
representatives becomes too expensive after some time, there is the possibility to remove
clusters whose member count does not exceed a certain limit from the cluster map in
regular intervals. This is an important step to ensure that the algorithm scales linearly
with the number of log lines, as a higher number of lines causes more outliers to appear
and thus the computational time would ever increase. It should be noted that this issue
will be automatically solved when a new cluster map is generated after each time window
has finished. The details about this procedure will be explained in depth in the respective
chapters.

31

3. Clustering

In the next phase, the list of cluster candidates is reduced by removing all clusters which
representatives are not considered similar to the currently processed log line according
to the Short Word Filter criterion that was already explained in detail in the previous
section. For simplicity, the same threshold parameter t is used as before. This check is
done for every cluster candidate and there is the possibility to enhance the precision of
the filter by stacking a combination of N Short Word Filters, each dealing with differently
sized n-grams. Clearly, this increases the runtime of this phase, however can reduce
the overall runtime in the case that many clusters are successfully eliminated from the
candidates list. In practice, the runtime will almost always be faster than the worst case
where every exact amount of shared n-grams has to be computed for every representative
of Cc as it is often possible to prematurely determine whether a string will be similar
or not, e.g., once one of the N SWFs reports that the required minimum threshold Θ
has not been reached it is not necessary to additionally consider the remaining SWFs.
Moreover, once Θ of matching n-grams has been reached for one specific n there is no
need to continue the computation as it is not necessary to determine the exact amount
of matching n-grams. In addition, the n-grams of the representatives of the candidate
clusters Cc are regularly used for comparisons and should therefore be stored in a list
rather than computed every time they are needed.

The cluster candidates that remain in Cc are then used for the final comparison step. The
normalized Levenshtein distances between the log line and each of the representatives of
the cluster candidates are computed and the cluster with the minimal distance is selected
as the best fitting cluster. If the similarity with the representative r of this cluster exceeds
the threshold t, i.e., sLev(s, r) > t, the log line is added to the cluster, otherwise a new
cluster is created and the log line s is set as the first member and representative of the
cluster. The algorithm then jumps back to the start and processes the following log line.
Any normalized string distance function can be used for this phase and other metrics
may be favorable due to a faster runtime. In general, the Levenshtein distance function
has a runtime complexity of O(|s| · |r|). Due to the length of the strings and the fact
that it is likely that the string distance has to be computed multiple times for every
incoming log line, this time complexity clearly dominates the whole algorithm. However,
the purpose of the prior steps was to reduce the number of cluster candidates in Cc so
that the distance metric has to be computed as few times as possible, thereby saving a
tremendous amount of time.

32

CHAPTER 4
Cluster Evolution

An algorithm for clustering log lines was introduced in the previous chapter. This
algorithm is able to operate on a continuous data stream without any fixed end, i.e, the
cluster map keeps expanding until the algorithm is manually terminated or until the
memory used for storing the references to each line runs out. Several interesting features
can be extracted from that procedure, for example, the log line types that are responsible
for the largest clusters or outliers that indicate unusual log lines. Unfortunately, most
features about the dynamic behaviors of the log line types are lost or difficult to extract
from the clusters, although they are highly important for security-relevant analyses.
Moreover, all clusters and references to all lines need to be held in memory throughout
the run of the algorithm. These problems are solved by generating several smaller cluster
maps rather than only one single large map. After a specific amount of time, the features
of a cluster map are extracted and then a new empty map is used in the following interval.
These periods are called time windows, and it is a non-trivial task to retrieve dynamic
information about the clusters from one time window to the other. The aim of cluster
evolution is to relate the clusters to each other and to learn about their development.

An illustrative example that gives an overview about the procedure that leads up to the
cluster evolution analysis is given in Figure 4.1. In the first step marked with number
1, the incoming log lines are displayed with preceding time stamps. Note that at this
point every line is considered equal to all the other lines and the colors and marks were
only added for a better visualization of the groupings that will be determined in the
clustering step. In this example, three processes ©, 4 and � produce specific types of
log lines, i.e., process © logs user file accesses that appear in random intervals, process
4 logs an automated backup procedure that generates lines in regular intervals and �
logs failed login attempts. In step 2, the occurrences of the lines are displayed on a time
axis, where t0, t1, t2, t3 represent the boundaries of the time windows considered for each
cluster map. Step 3 then clusters the lines by using any given clustering algorithm and
according to any given similarity metric. This results in the three cluster maps C, C′, C′′

33

4. Cluster Evolution

Figure 4.1: Illustrative example of cluster evolution showing a split as well as changes in
size, distance and compactness.

from three different time windows. As it can be seen, while in the first two time windows
only 3 clusters were found, the cluster map of the final time window consists of 4 clusters.
Without cluster evolution it would be hardly possible at this point to determine how the
formation of those 4 clusters was accomplished or how any of the clusters from different
time windows relate to each other. However, the graphical display of the result of a
cluster evolution shown in step 4 gives several useful insights: Not only is it possible
to track the clusters over all time steps, it can be seen that cluster C© splits up in the
last time step. Moreover, cluster C4 increased its distance to the other clusters in C′
and further became more diffuse in C′′ which is represented by the diameter of the circle.
Finally, it can be seen that C�, which represented an outlier in C and C′, i.e., the line
could not be allocated to any other group of messages and thus remained alone in its own
cluster, increased its size in C′′. All of these effects are indicators for abnormal behavior,
for example, the increase of lines that lie inside the ’login failed’ cluster may be caused
by an attempt to break into a user account by a brute force attack. There are many
more possible scenarios for transitions that affect the clusters or long-term trends, all of
which are relevant for anomaly detection.

It can therefore be concluded that not only single log lines that do not match any of the
existing clusters are of relevance when searching for abnormal system behavior, but also
that the properties of the clusters themselves viewed over time are highly important for
a thorough anomaly detection. Although it is possible to observe how many samples are

34

4.1. Cluster Tracking

allocated to each cluster when performing the clustering in an incremental fashion, the
previously mentioned examples should make clear that information about the evolution
of the clusters themselves is still lost. Therefore, there is a need to recluster the data once
it is suspected that the clusters do not represent the generated log lines in an appropriate
way anymore. Due to restrictions in computational capacity, these reclusterings cannot be
made in arbitrarily small time steps (e.g., for every newly arriving log line) and can also
not be performed with arbitrarily many data points (e.g., all log lines from the beginning
of the recording), but rather need to be started at specific points in time and for a
specific time window. This procedure is usually referred to as snapshot analysis where
the cluster maps of two distinct points in time are compared to each other, although the
snapshot represents a time span during which log lines were generated. Intuitively, the
time window can be chosen from the most recent sample to the last sample that was not
included in the previous time window. However, it could also be reasonable to include
more data points in order to increase the quality of the results, i.e., by allowing an overlap
of time windows. It is crucial to determine appropriate values for these parameters based
on reasonable metrics in order to continuously ensure a representative clustering of the
current behavior of the system while keeping the required computational resources at a
minimum.

4.1 Cluster Tracking

Once appropriate values for the required parameters regarding time points and window
sizes were chosen and two consecutive cluster maps in the two time windows with their
respective sets of clusters C and C′ are known, it is a non-trivial task to figure out how
the set C transformed into set C′. In order to determine whether a cluster C ∈ C, for
any i, has transformed into cluster C ′ ∈ C′, a similarity metric is required. An intuitive
approach is to assume that the two clusters C and C ′ were generated by the same
underlying data source if the distance between the majority of the objects contained in
C ′ would have been allocated to cluster C if they had been used for the generation of
cluster map C. Greene et al. (2010) employ the following similarity metric that is based
on the Jaccard coefficient for binary sets and measures the ratio of common data points
in order to determine the overlap:

overlap = |C ∩ C
′|

|C ∪ C ′|
(4.1)

They then compare the overlap with a threshold θ ∈ [0, 1] to determine whether the
clusters match, i.e., whether it can be assumed that C ′ originates from C. There exist also
alternate forms for computing the overlap which use the maximum (Takaffoli et al., 2011)
or the minimum (Greene and Cunningham, 2009) of the two set sizes in the denominator
and there is also the possibility to use the Hungarian Method, the Max-Flow approach
or a linear programming algorithm in order to find the optimal correspondences between
clusters of different time steps (Goldberg et al., 2010). In addition, there are variants for

35

4. Cluster Evolution

determining whether a transition occurred based on measuring the percentage of change
for each cluster (Asur et al., 2009).

It is however problematic to make use of this measure in log file analysis as it is usually a
difficult task to determine whether objects that were allocated to two clusters in different
time windows are identical, which is a requirement to reasonably perform set operations
such as the union and intersection. This is due to the fact that log lines are just strings
that can only reliably be tracked by their line number and equality (i.e., an identical
sequence of characters) and continuously changing IDs or timestamps contained in the
lines could easily cause that highly similar lines from the sets C and C ′ are not matched
due to a single diverging character. The result of this would be that the intersection of
the two sets is incorrectly sparse or even empty due to the lack of identical strings.

In order to overcome the previously mentioned problems regarding set operations on
log lines, the following strategy was pursued: At first, for reasons regarding memory
storage and convenience, each log line is stored and identified by its line number once it
is allocated to a cluster. This does not only effectively reduce the amount of required
memory as numbers generally require way less storage space than strings, but also ensures
that it is precisely known which line is added to the cluster. It is guaranteed that each
line is associated with a unique line number, thereby ensuring that the mathematical
restrictions regarding identical members in sets is fulfilled. Secondly, the key aspect of
this procedure is that the log lines occurring during a certain time window are not only
used for creating the cluster map of that time step, but are also allocated to the clusters
from the cluster maps preceding and succeeding that map. The two phases are called
construction phase and allocation phase respectively. In the construction phase, the
cluster maps are generated solely by the log lines that actually occur within that time
window. On the other hand, the allocation phase always deals with log lines that are
clustered into existing cluster maps from different time windows that lie either before or
ahead. For clarification, it should be noted that during the allocation phase the lines do
not have any influence on the existing clusters and also do not induce the generation of
new clusters in these maps, but are only stored by their line number in the clusters they
are allocated to. While a line that does not fall into any existing cluster would form a
new one during the construction phase, it is simply omitted if it does not fit into any
existing cluster of another map.

An illustrative scenario of this procedure is given in Fig. 4.2. Please note that the
colorings in this illustration are again used for an easier differentiation between the
clusters and their members and that at the start of the tracking procedure, it is not
known that cluster C ′4 originates from cluster C4 and that cluster C ′© originates from
C©. In this simple example, a log file consisting of 11 lines that are identified with their
line numbers is assumed to be the base of the clustering. The log lines {s1, s2, ..., s5} are
occurring during the first time window and are forming two clusters C4, C© ∈ C. As
these are the lines used for the creation of the cluster map in this time window, they are
seen as the current members of the respective clusters they belong to. They are therefore
stored in the sets of references R4curr = {s1, s2, s3} and R©curr = {s4, s5}. Analogously

36

4.1. Cluster Tracking

Figure 4.2: Illustrative example how lines are allocated to two different clusters from two
consecutive time steps.

for the following time step and the log lines {s6, s7, ..., s11} occurring during that window,
the clusters C ′4, C ′© ∈ C′ were formed from these lines and thus R′4curr = {s6, s7, s8, s9}
and R′©curr = {s10, s11}. The cluster maps are generated and the required references to
the generating lines are stored. Thus, the construction phase is finished for this example.

As previously explained, once the two consecutive cluster mappings are established, the
allocation phase clusters the lines from each time window into the maps from neighboring
time steps. First considering the lines {s1, s2, ..., s5} from the former time window being
clustered into the map C′ of the later time step, it can be seen that the allocations lead
to the sets of references R′4prev = {s1, s2} and R′©prev = {s3, s4} stored in the clusters.
Analogously, the lines from the later time window were allocated to the clusters from the
former time step resulting in the references R4next = {s6, s7, s8} and R©next = {s10, s11}.
It should be noted that line s3 was clustered into C4 in the former time step but into C ′©
in the later time step. A reason for this could be that s3 has the necessary characteristics
to fit into both of the clusters, but due to small deviations in cluster representatives in
both time steps the line was not allocated into cluster C ′4 unlike the lines s1 and s2. In
a similar manner, the reason why both s5 and s9 were not allocated to any cluster from
the map of the neighboring time step could be traced to different cluster representatives.
These effects are shown on a calculated example using real log lines in Section 4.4.1.

Furthermore, it should be clear that there is an arbitrarily large number of time steps
following and that lines have to be clustered accordingly. For example, assuming that
there would be a third time step with a cluster map C′′ and its clusters C ′′4 and C ′′©, their
line allocations would be stored in the references R′′4curr and R′′©curr. Also, the lines of
the second time window would additionally have to be clustered in C′′ forming R′′4prev
and R′′©prev. These connections are not displayed in the figure for simplicity. Finally, the
lines of the third time window have to be clustered in C′ forming R′4next and R′©next. At

37

4. Cluster Evolution

the end of the allocation phase, references to all the lines from neighboring time windows
are stored in each cluster map.

Using this kind of cluster allocations, the rule for finding matches between clusters stated
in Eq. (4.1) is adapted to fit the purpose of log line clustering. Using the line references
as explained before, the following formula computes the overlap between any two clusters
C and C ′ of two neighboring maps:

overlap(C,C ′) =

∣∣∣(R′curr ∪R′prev) ∩ (Rnext ∪Rcurr)
∣∣∣∣∣∣R′curr ∪R′prev ∪Rnext ∪Rcurr∣∣∣ (4.2)

Note that by the distributive law and making use of the fact that R′curr ∩Rnext = ∅ and
R′prev ∩Rnext = ∅, this is equivalent to

overlap(C,C ′) =

∣∣∣(Rcurr ∩R′prev) ∪ (Rnext ∩R′curr)
∣∣∣∣∣∣R′curr ∪R′prev ∪Rnext ∪Rcurr∣∣∣ (4.3)

which could allow a more efficient implementation as the intersection is carried out on
smaller sets. Furthermore, this representation also shows more clearly that the sets Rcurr
and R′prev both contain log lines that were used in the former time step which was also
used to create the cluster map C, while both Rnext and R′curr contain log lines from
cluster map C′, thus showing that the intersections are applied reasonably. Dividing the
union of these two intersected sets by the union of all sets means that the resulting value
is in the interval [0, 1], with 1 indicating a perfect match (i.e., all lines that were clustered
into C were also clustered into C ′ and vice versa) and 0 indicating a total mismatch.

A more sophisticated clustering model that not only allocates the log lines from a certain
time window into the cluster maps of its directly neighboring time windows but also
into the ones following after that is able to compute an aggregated overlap over multiple
time windows. This means that the overlap from a specific cluster, say C1 ∈ C1, through
another cluster C2 ∈ C2 to a third cluster C3 ∈ C3 is computed by not only incorporating
the already used references R1

next and R2
prev between C1 and C2 as well as R2

next and R3
prev

between C2 and C3, but also the references between C1 and C3. These references are
called R1

next,2 and R3
prev,2, where the additional subscript 2 indicates the distance between

the two cluster maps, i.e., cluster map C2 was skipped. Following this terminology, the
references between two directly neighboring cluster maps are called R1

next,1, R2
prev,1, etc.

Analogously, the references between clusters Ci and Ci+m that are m steps apart are
called Rinext,m and Ri+mprev,m. The overlap between a sequence of N clusters C1, C2, ..., CN

is then defined as

overlap(C1, C2, ..., CN) =
∑N−1
j=1

∑N−j
i=1

∣∣∣(Ricurr ∩Ri+jprev,j

)
∪
(
Rinext,j ∩Ri+jcurr

)∣∣∣∑N−1
j=1

∑N−j
i=1

∣∣∣Ri+jcurr ∪Ri+jprev,j ∪Rinext,j ∪Ricurr
∣∣∣ (4.4)

Due to the increased complexity of the sophisticated clustering model, the simple overlap
metric is used in the following and thus the additional index specifying the distance
between the cluster maps is omitted.

38

4.2. Cluster Transitions

Applying the overlap metric to the illustrative example from Fig. 4.2 allows determining
the likelihood that each cluster from the former time step transformed into any other
cluster from the later time step. The predefined threshold θ that can arbitrarily be
chosen in the range [0, 1] is set to 0.5 for this example. The overlap between clusters C4
and C ′4 is computed as

overlap(C4, C ′4) = |({s6, s7, s8, s9} ∪ {s1, s2}) ∩ ({s6, s7, s8} ∪ {s1, s2, s3})|
|{s6, s7, s8, s9} ∪ {s1, s2} ∪ {s6, s7, s8} ∪ {s1, s2, s3}|

= |{s1, s2, s6, s7, s8, s9} ∩ {s1, s2, s3, s6, s7, s8}|
|{s1, s2, s3, s6, s7, s8, s9}|

= |{s1, s2, s6, s7, s8}|
|{s1, s2, s3, s6, s7, s8, s9}|

= 5
7 ≈ 0.714

and thus shows a match between the clusters as 0.714 > θ. The overlaps between
the remaining combinations of clusters are computed in a similar fashion: The overlap
between C© and C ′© is 0.6 and is thus also a match, the overlap between C4 and C ′©
is only 0.111 and thus not a match and the overlap between C© and C ′4 results in 0
and is therefore also not a match. According to these results, it can be concluded that
cluster C4 transformed into C ′4 and cluster C© transformed into C ′©. However, clusters
do not necessarily have to have exactly one predecessor and one successor, but can be
the product of multiple clusters that merged together or be a part of a larger cluster
that split up. In the following, a method for the identification of these transformations is
given.

4.2 Cluster Transitions
The detection of cluster transitions depends on the formulation of the used overlap
measure. Existing algorithms therefore cannot be directly applied to the overlap metric
defined in Eq. (4.2), but have to be adapted according to its characteristics. Spiliopoulou
et al. (2006) employ a related overlap metric that obviously does not make use of the
previously explained clustering model and therefore clusters do not contain references
to neighboring elements such as Rnext, but only references to their generating elements.
Adapting the notation of the formula to the previously used terminology, their overlap
metric is defined as

overlapSpiliopoulou = Rcurr ∩R′curr
Rcurr

(4.5)

Using this metric, the authors then propose an algorithm to detect the following important
external cluster transitions between the clusters C ∈ C and C ′ ∈ C′:

1. Survival: The cluster C survives and transforms into C ′ if C ′ matches C and does
not match any other cluster Ci ∈ C, where C 6= Ci.

2. Split: The cluster C splits into p multiple clusters C ′1, C ′2, ..., C ′p if each individual
C ′j matches C for all j and the union of C ′j matches C for all j and there exists no

39

4. Cluster Evolution

other cluster C ′i ∈ C′ that matches C, with C 6= Ci. It should be noted that the
separated parts are generally not able to overlap their original cluster and thus a
lower threshold θpart < θ is used for determining the match of C ′j with C.

3. Absorption: The p clusters C1, C2, ..., Cp are absorbed by C ′ if C ′ matches Cj for
all j.

4. Disappearance: The cluster C disappears if none of the above cases hold true for
C.

5. Emergence: A new cluster C ′ appears if it cannot be matched with any Ci ∈ C.

Note that the measure used for matching in this algorithm is non-symmetric as it
computes the relative shared amount from a cluster in the former time step to another
cluster in the later time step, while the overlap measure defined in the previous section
is symmetric as it is based on the amount of members that the clusters share in both
directions. Even though the threshold for matching is restricted to the range [0.5, 1], a
non-symmetric measure allows that the overlap between a cluster from the later time
step and multiple clusters from the former time step fulfills the matching criterion. This
property is used when identifying absorptions and hence there is no need to compare the
overlap with θpart as it is done for the detection of splits.

However, non-symmetric measures do not have this property as the sum of all overlaps
between a specific cluster and all clusters from the preceding time window as well as
the sum of all overlaps between a specific cluster and all clusters from the succeeding
time window never exceeds 1. For this reason, the concept for identifying splits has to be
transferred to that of detecting absorptions, i.e., an overlap between two clusters that
exceeds θpart is stored as an absorption candidate and finally identified as an absorption if
also the overlap between the union of the absorbed cluster candidates and their resulting
cluster exceeds θ.

Using the overlap metric as defined in Eq. (4.2), the resulting enumeration of possible
cluster transitions and their characteristics is thus as follows:

1. Survival: A cluster C survives and transforms into C ′ if overlap(C,C ′) > θ and
there exists no other cluster Ci ∈ C or C ′i ∈ C′ so that overlap(Ci, C ′) > θpart or
overlap(C,C ′i) > θpart.

2. Split: A cluster C splits into the parts C ′1, C ′2, ..., C ′p if all individual parts share
a minimum amount of similarity with the original cluster, i.e., overlap(C,C ′j) >
θpart, ∀j, and the union of all parts matches the original cluster, i.e., overlap(C,

⋃
C ′j) >

θ. There must not exist any other cluster that yields an overlap larger than θpart
with any of the clusters involved.

3. Absorption: The group of clusters C1, C2, ..., Cp merge into a larger cluster C ′ if
all individual parts share a minimum amount of similarity with the resulting cluster,

40

4.2. Cluster Transitions

i.e., overlap(Cj , C ′) > θpart, ∀j, and the union of all parts matches the resulting
cluster, i.e., overlap(

⋃
Cj , C

′) > θ. Again, there must not exist any other cluster
that yields an overlap larger than θpart with any of the clusters involved.

4. Disappearance: A cluster C disappears if there exists no C ′i ∈ C′ so that
overlap(C,C ′i) > θpart.

5. Emergence: A cluster C ′ emerges if there exists no Ci ∈ C so that overlap(Ci, C ′) >
θpart.

The complete procedure for identifying external cluster transitions is shown in pseudo-
code in Algorithm 4.1. Line 1 initializes the empty list of all transitions represented as
pairs of clusters that are connected over two time steps that will be returned at the end
of the algorithm. Line 2 initializes an array that holds a list of all predecessor candidates
that can be accessed by a cluster from the later time step, i.e., any C ′. Line 3 initializes
another array that holds the summed overlaps for those predecessor candidates and can
be accessed identically. Analogously, Lines 5-6 initialize those arrays for successors that
can be accessed by a cluster from the former time step, i.e., any C. If the overlap between
any combination of clusters from different time steps computed in Line 8 exceeds θpart
in Line 9, the arrays are updated with this potential connection between the currently
processed clusters. In Line 16 it is checked whether the accumulated overlap is larger
than θ and only then the connection between a cluster from the former time window
and all its successors is added to the list of transitions. Analogously, Line 21 checks the
accumulated overlap between a cluster from the later time step and all its predecessors
and updates the list of transitions accordingly.

In addition to external transitions, any cluster is subject to undergoing internal transitions
regarding one of the following properties:

1. Size: The cluster grows in size if C ′ contains more data points than C, shrinks if
C ′ contains less data points than C and does not change in size otherwise. The
size of a cluster C is usually denoted as |C|.

2. Compactness: With σ denoting the standard deviation of the distance of the
cluster members to the representative of cluster C, the cluster becomes more
compact if σ′ < σ, becomes more diffuse if σ′ > σ and does not change in
compactness otherwise.

3. Location: Clusters are often defined with coordinates in an arbitrary dimensional
space, and therefore it is reasonable to compute the absolute differences between
each of the coordinates of C and C ′ in order to determine whether the cluster
moved or remained at the same location. In the field of log line clustering however,
distances can only be computed relative to other clusters and this procedure may
therefore not be appropriate. However, the average distance to all the other cluster
centers may be a reasonable alternative to this metric.

41

4. Cluster Evolution

Algorithm 4.1: Determining external cluster transitions between two time steps
Data: cluster maps C, C′
Result: list of transitions between pairs of clusters

1 transitions = List();
2 predecessorsCandidates = [List()];
3 predecessorsOverlaps = [];
4 for C ∈ C do
5 successorsCandidates = List();
6 successorsOverlap = 0.0;
7 for C ′ ∈ C′ do
8 overlap = computeOverlap(C, C ′);
9 if overlap > θpart then

10 successorsCandidates += C ′;
11 successorsOverlap += overlap;
12 predecessorsCandidates[C ′] += C;
13 predecessorsOverlaps[C ′] += overlap;
14 end
15 end
16 if successorsOverlap > θ then
17 transitions += {C, successorsCandidates};
18 end
19 end
20 for C ′ ∈ C′ do
21 if predecessorsOverlaps[C ′] > θ then
22 transitions += {predecessorsCandidates[C ′], C ′};
23 end
24 end

4. Skewness: The skewness γ measures the asymmetry between the cluster members
and the cluster representative. The skewness of cluster C decreases if γ′ < γ,
increases if γ′ > γ and remains constant otherwise.

When tracking a cluster through time, it might be of interest to assign some kind
of continuous identifier to the evolving cluster in order to easily retrieve the cluster
properties in every time window. This identifier is required to be robust to changes in
cluster structure due to external and internal transitions. While internal transitions pose
less of a problem as the cluster itself remains the same, especially splits and merges make
it difficult to allocate such an identifier to the clusters as there should not exist more
than one cluster with the same identifier. The most simple solution would be to create a
new identifier whenever one of these external transitions occur, however this might not
be favorable as it would frequently cut the connection during the dynamic developments

42

4.3. Evolution Metrics

of the clusters resulting in short sequences of values that are retrieved for any evolving
cluster.

An exact formulation of a set of rules for allocating identifiers to evolving clusters may
depend on the desired outcome of the cluster evolution analysis, the data at hand and
the application area. One possibility is based on the assumption that larger cluster sizes
indicate more important clusters, while smaller clusters often contain outliers and are
of less relevance for anomaly detection. In this setting, new identifiers are only created
for clusters that have just emerged or for smaller clusters that separate themselves from
existing clusters, with their larger sibling clusters obtaining the identifier from their
predecessor. Similarly, the cluster resulting from a merge will retain the identifier from
the largest of its predecessors. This makes sure that most of the relevant clusters holding
high number of members are tracked successfully, while smaller clusters do not interfere
with the overall picture.

Another possibility is the focus on the amount of time windows that the preceding cluster
can be tracked back, i.e., its time of existence. It is reasonable to assume that clusters
that have already been existing for a longer amount of time are more stable and therefore
a better representation of the system. Furthermore, building upon longer existing clusters
results in longer time-series that are better fitted for anomaly detection.

Finally, the achieved overlap is another appropriate choice as a higher overlap suggests
that the “correct” clusters are connected. This implies that clusters always retain
the identifier from the predecessor with the highest overlap and pass the identifier to
the successor with the highest overlap. This approach was used when evaluating the
experiments carried out in this thesis. In the case that there exist multiple connections
that achieve the same overlap score, the identifier could either be transferred randomly
or based on another metric. Moreover, a weighted combination of some or all of the
previously mentioned metrics could be used to determine the rules for tracking individual
clusters.

4.3 Evolution Metrics

It is possible to perform anomaly detection on simple cluster features such as the size.
However, the cluster size alone does not always give a complete view about the ongoings
of the clusters. For example, a cluster that is the result of a merge does not necessarily
change in size, but the fact that a transition is taking place may still be a sign of an
anomaly. On the other hand, omitting any information about the advanced transitions
may hide that a change of size is caused by a merge. The reaction to such cases may be
depending on the application area and the aim of the cluster evolution analysis, but is
in any way important to consider in order to understand and capture the interactions
between all clusters.

Therefore, measures that represent features of individual clusters, combinations of clusters
or the whole cluster map are required. In the following, it is assumed that the sets of

43

4. Cluster Evolution

clusters were correctly tracked from one time step to the other so that it is possible to
retrieve the references to the log lines that were allocated into each cluster map and
for each cluster. A metric that is continuously updated and approximates the current
status of the distribution of the cluster members is able to indicate abnormal behavior of
members within clusters. However, standard statistical measures like the sample mean
and variance cannot be applied directly as they require a fixed and limited set of values
rather than a continuous stream. In order to avoid storing all the distances for each line
in each cluster until the end of each time window, the online versions of the sample mean
and variance introduced in Welford (1962) are used:

1. Mean distance to cluster representative: The average distance to the cluster
representative is able to provide information about the members of the cluster.
For example, the online distance mean remaining 0 means that all lines allocated
to this cluster are identical to the representative, while an increase indicates that
lines different to the representative have been added to the cluster. Observing
the mean thus also provides information about the appropriateness of the chosen
distance thresholds, as it should not be the case that all clusters have a mean of
0 due to natural and random noise in the data usually caused by unique IDs and
time-dependent variables in the lines. Using any string distance metric d(r, a) that
takes the cluster representative r and the currently processed line a as parameters,
the sample mean is initialized with m1 = d(r, a) and updated by

mk = mk−1 + d(r, a)−mk−1
k

, (4.6)

where k is increased for every line allocated to that cluster. It should be noted that
recent values have more influence on the current value of the online mean.

2. Distance variance: Statistical measures of the mean usually also require consid-
eration of the variance in order to obtain a proper picture of the distribution of the
cluster members. Building upon the equation for the mean, the sample variance is
initialized with s2

1 = 0 and continuously updated by

Tk = Tk−1 + (d(r, a)−mk−1) · (d(r, a)−mk) (4.7)

The variance is then retrieved for any k by s2
k = Tk

k−1 .

While the mean and variance can be measured continuously in each time stamp, there
are metrics that take advantage of the fact that the cluster maps are created within a
time window and only the final cluster maps retrieved at the end of two consecutive time
windows are used for the computation. Toyoda and Kitsuregawa (2003) state several
metrics that measure how cluster C changes after its transformation into C ′. Note that
in the following enumeration the cluster C represents the set of all its contained objects
for simplified notation:

44

4.3. Evolution Metrics

1. Growth rate: Represents the increase of cluster members per unit time and is
able to identify the clusters that are exposed large growing or shrinking effects.

Rgrowth = |C
′| − |C|
t2 − t1

(4.8)

2. Stability rate: Represents the amount of appeared, disappeared, merged and split
members per unit time and is thus able to identify clusters that are subject to high
changes in population. A stability rate of 0 indicates that the population of the
cluster remained the same.

Rstability = |C|+ |C
′| − 2 · |C ∩ C ′|
t2 − t1

(4.9)

3. Novelty rate: Represents the amount of newly appeared members per unit time.

Rnovelty = |C
′ \ C|

t2 − t1
(4.10)

4. Disappearance rate: Represents the amount of disappeared members per unit
time.

Rdisappearance = |C \ C
′|

t2 − t1
(4.11)

5. Merge rate: Represents the amount of members that were absorbed by other
clusters per unit time.

Rmerge =

∣∣∣∣∣
(
C ′ ∩

⋃
Ci∈C

Ci

)
\ C

∣∣∣∣∣
t2 − t1

(4.12)

6. Split rate: Represents the amount of members that were split from C per unit
time.

Rsplit =

∣∣∣∣∣
(
C ∩

⋃
C′i∈C′

C ′i

)
\ C ′

∣∣∣∣∣
t2 − t1

(4.13)

A similar issue with set operations on cluster members occurs that was already pointed
out for the computation of the overlap, i.e., the assumption that identical objects are
clustered in two time windows does not hold true for log lines. Furthermore, all strings
need to be kept in memory in order to make this comparison. The growth rate poses
an exception as it only requires storing the size of the clusters and can thus always be
computed efficiently.

In order to overcome the mentioned issues, the advantages of the bidirectional clustering
method that was shown to be successful for computing the overlap are utilized again. In

45

4. Cluster Evolution

short, for each cluster map the log lines of the preceding and the succeeding time window
have to be clustered into that map and vice versa, as only then the sets of common and
different lines can be computed. The metrics given in Eq. (4.8) – (4.13) are therefore
adapted and extended for the purpose of log line cluster evolution. A list of these metrics
is given in the following:

1. Absolute growth rate: Measures the absolute difference between the member
sizes of cluster C in two consecutive time steps. Observing this value over time
gives a clear overview about growing, shrinking and constant development of the
cluster size. It should be clear that resulting growth rates can only be reasonably
interpreted if the time windows are of equal length, as a lower or higher amount of
lines will be allocated to any cluster if the time window is shortened or prolonged.

Growthabsolute =
∣∣R′curr∣∣− |Rcurr| (4.14)

2. Relative growth rate: Measures the relative difference between the member sizes
of cluster C in two consecutive time steps with respect to the total number of
lines that were clustered in the former time step. Other than the absolute growth,
this value takes into account that a lower or higher number of lines occurring in a
given time window will also cause the cluster sizes to shrink or grow. This effect
is compensated by dividing through the total number of lines from the former
time step and is similarly handled for other metrics requiring normalization in the
following.

Growthrelative = |R
′
curr| − |Rcurr|∣∣∣∣∣ ⋃Ci∈CRcurr

∣∣∣∣∣
(4.15)

3. Former change rate: Measures the relative difference between the cluster alloca-
tions of the lines from the former time step with respect to the total number of lines
that were processed in the corresponding time window. It should be noted that
other than the relative growth rate, this metric only takes lines from the former
time step into account.

Changeformer =

∣∣∣R′prev∣∣∣− |Rcurr|∣∣∣∣∣ ⋃Ci∈CRcurr
∣∣∣∣∣

(4.16)

4. Later change rate: Measures the difference between the cluster allocations of the
lines from the later time step with respect to the total number of lines that were
processed in the corresponding time window. Analogously to the former change
rate, it is noteworthy that this metric only takes lines from the later time window
into account.

Changelater = |R
′
curr| − |Rnext|∣∣∣∣∣ ⋃C′i∈C′R′curr

∣∣∣∣∣
(4.17)

46

4.3. Evolution Metrics

5. Average change rate: Measures the average relative difference between line
allocations from both time steps. Combining both the changes measured on the
lines from the former and the later time windows, this metric quantifies the amount
of log lines that were allocated to the same cluster but in a different time window.
Therefore the change rate is able to express how the role of the cluster changed
within the cluster maps, i.e., whether its representative changed.

Changeaverage = Changeformer + Changelater
2 (4.18)

6. Stability rate: Measures the fraction of appeared, disappeared, merged and split
members between two consecutive time steps. Analogously to previous metrics, this
measure is divided into a part only taking the lines from the former time window
and another part only taking the lines from the later time window into account.
As for all following metrics, both the former and later part are normalized in the
range [0, 1] in order to make clusters of different size comparable and to obtain a
measure that is comparable with a relative threshold. Note that 0 indicates that all
log lines that were allocated to this cluster in one time step were also allocated to
this cluster in the other time step and thus the cluster is considered as stable, while
1 indicates that none of the allocations coincided with the other time step and thus
the cluster is instable. The average value is again computed in order to incorporate
the influences of both time windows into a metric representing the transition from
one time step to another.

Stabilityformer =

∣∣∣R′prev∣∣∣+ |Rcurr| − 2 ·
∣∣∣R′prev ∩Rcurr∣∣∣∣∣∣R′prev∣∣∣+ |Rcurr|

Stabilitylater = |R
′
curr|+ |Rnext| − 2 · |R′curr ∩Rnext|

|R′curr|+ |Rnext|

Stabilityaverage = Stabilityformer + Stabilitylater
2 (4.19)

7. Novelty rate: Measures the fraction of newly appeared members between two
consecutive time steps. Rather than measuring simple increases in size from one
time step to another like the growth rate, the novelty rate focuses on the lines that
should have been allocated to a different cluster in the neighboring cluster map but
were allocated to this cluster. This also means size changes positively affecting the
growth rate do not necessarily lead to a novelty rate different from 0.

Noveltyformer =

∣∣∣R′prev \Rcurr∣∣∣∣∣∣R′prev∣∣∣
Noveltylater = |R

′
curr \Rnext|
|R′curr|

Noveltyaverage = Noveltyformer +Noveltylater
2 (4.20)

47

4. Cluster Evolution

8. Disappearance rate: Measures the fraction of disappeared members between
two consecutive time steps. Similar to the novelty rate this measure must not be
confused with a simple decrease in cluster size, but again focuses on the lines that
should have been allocated to this clusters in the neighboring cluster maps but
were either allocated to another cluster or no cluster at all.

Disappearanceformer =

∣∣∣Rcurr \R′prev∣∣∣
|Rcurr|

Disappearancelater = |Rnext \R
′
curr|

|Rnext|

Disappearanceaverage = Disappearanceformer +Disappearancelater
2 (4.21)

9. Merge rate: Measures the fraction of members that were absorbed by other
clusters between two consecutive time steps. Note that contrary to the novelty
rate, the later set of lines is intersected with the union of the same lines all being
clustered in the former cluster map in Mergeformer and the former set of lines is
intersected with the union of the same lines all being clustered in the later cluster
map in Mergelater. Therefore, if all the lines would be successfully allocated to
clusters in the maps of the neighboring time steps, then

R′prev ⊆
⋃
Ci∈C

Rcurr

and

R′curr ⊆
⋃
Ci∈C

Rnext

This would lead to the left side of the intersection always being the result of the
intersection and thus the merge rate would simplify to the novelty rate. However, if
due to changes in cluster representatives some of the log lines cannot be allocated to
clusters in the maps of neighboring time steps, those lines would not be contained
in the unions and thus be missing from the intersections, thereby providing different
information than the novelty rate.

Mergeformer =

∣∣∣∣∣
(
R′prev ∩

⋃
Ci∈C

Rcurr

)
\Rcurr

∣∣∣∣∣∣∣∣R′prev∣∣∣
Mergelater =

∣∣∣∣∣
(
R′curr ∩

⋃
Ci∈C

Rnext

)
\Rnext

∣∣∣∣∣
|R′curr|

Mergeaverage = Mergeformer +Mergelater
2 (4.22)

48

4.4. Examples

10. Split rate: Measures the fraction of members that were split from C between two
consecutive time steps. The very same phenomenon that was already explained for
the merge rate occurs also for the split rate, i.e., successful allocation of all lines
into cluster maps of neighboring time steps cause that the split rate degenerates to
the disappearance rate. Only lines that are not successfully clustered into these
neighboring maps, i.e., lines that are considered outliers from the perspective of
the neighboring time step, are causing a different result.

Splitformer =

∣∣∣∣∣
(
Rcurr ∩

⋃
C′i∈C′

R′prev

)
\R′prev

∣∣∣∣∣
|Rcurr|

Splitlater =

∣∣∣∣∣
(
Rnext ∩

⋃
C′i∈C′

R′curr

)
\R′curr

∣∣∣∣∣
|Rnext|

Splitaverage = Splitformer + Splitlater
2 (4.23)

It must be noted that in addition to the separation between previous, current and next
cluster members, the time difference that was used as a scaling factor in Eq. (4.8) –
(4.13) was omitted as it is assumed that time windows are chosen in regular intervals and
that the metrics are only computed between two consecutive cluster maps. Moreover,
the stated equations only take exactly two clusters from neighboring time windows into
account. There is no obvious answer on how to incorporate the fact that each cluster
possibly originates from multiple clusters due to absorption or transforms into multiple
clusters due to splitting. It may be the most intuitive approach to take any cluster C ′ ∈ C′
and create the union of all its p identified directly preceding clusters C1, C2, ..., Cp ∈ C
for computing the metrics. This can be done analogously for splits. Another possibility
would be to compute the metrics for any cluster with every of its preceding or succeeding
clusters individually, which would however result in a larger amount of metrics. These
metrics could then be combined into a single measure by any aggregation method such
as averaging.

4.4 Examples

Besides an illustrative example that spanned over two time windows, the previous chapters
mostly established a theoretic understanding for the cluster evolution procedure. This
section aims at validating the introduced concepts in a more practical way. In the
following, the calculations behind some important aspects are shown in a step-by-step
demonstration. In addition, a simulation study on synthetic data uses a large-scale data
set in order to point out the characteristics of the evolution metrics.

49

4. Cluster Evolution

4.4.1 Calculated Example

In order to demonstrate the computation of relevant values in some specific cases, a
more complex sample data set was developed. Figure 4.3 shows the created log lines that
were designed to form a reasonable amount of clusters. The occurrences of lines span
over a period of 6 minutes and a time window of 1 minute was chosen for the following
calculations. In the following, the log lines s0 to s74 are referenced by their line ID. The
lines are typical Apache log lines that were manually adapted in order to exhibit certain
features that are desired for the following demonstrations. There exist three types of log
lines that are marked in the following as: (©) a successful file access over HTTP, (4) an
error log caused by an authentication failure and (�) an error caused by a malformed
host header.

A short look on the data set should immediately show that log lines belonging to the
same type result in a high string similarity as they have most of their content in common,
except for some minor differences such as IP addresses and filenames. The Levenshtein
metric was used for computing the string similarity. For example, log line s0 achieves a
high similarity score of 0.98 to the similar line s1, however only a low similarity score
of 0.15 to the line s2. The similarity threshold for clustering was set to 0.9 in this
demonstration.

Figure 4.4 gives an overview of the cluster maps C1, ..., C6 that were formed in each
time window. The elements displayed in each cluster refer to the amount of log lines
contained in that cluster. In the first time window that lies within t0 and t1, two
clusters corresponding to 4 and© are formed by the lines s0, ..., s8. Cluster C1

4 contains
R1
4curr = {s2, s5, s7, s8} and Cluster C1

© contains R1
©curr = {s0, s1, s3, s4, s6}. The first

elements contained in the sets of referenced lines of the current time windows are treated
as the representatives of these clusters. The next time window establishes a cluster map
based on the lines s9, ..., s17. Lines s9 and s10 only achieve a similarity score of 0.88,
which is smaller than the predefined minimum similarity threshold. Line s10 is therefore
not added to the cluster formed by s9, but rather generates a new cluster. This means
that there exist two clusters originating from © in this time window. All the clusters
from C2 and their referenced members are therefore: C2

4 with R2
4curr = {s11, s16, s17},

C2
©1

with R2
©1curr

= {s10, s12, s13, s15} and C2
©2

with R2
©2curr

= {s9, s14}.

As required by the cluster model, the log lines that generated C2 are also allocated to
the clusters in C1. This yields the following additional references: Cluster C1

4 obtains
R1
4next = {s11, s16, s17} and C1

© obtains R1
©next = {s9, s10, s12, s13, s15}. Then, the

allocation in the other direction is performed, i.e., the log lines from C1 are allocated into
C2. This yields the following additional references: C2

4 obtains R2
4prev = {s2, s5, s7, s8},

C2
©1

obtains R2
©1prev

= {s0, s1, s3, s4, s6} and C2
©2

obtains R2
©2prev

= ∅.

With these values it is possible to determine the transitions between clusters from C1 to
C2. For this, the overlap metric is computed for all possible connections between clusters.

50

4.4. Examples

Figure 4.3: Sample log lines used for the demonstration of a calculated example.

51

4. Cluster Evolution

Figure 4.4: Exemplary cluster evolutions over a total of 6 time windows.

The overlap between C1
4 and C2

4 is

overlap(C1
4, C

2
4) =

∣∣∣(R1
4curr ∩R2

4prev

)
∪
(
R1
4next ∩R2

4curr

)∣∣∣∣∣∣R2
4curr ∪R2

4prev ∪R1
4next ∪R1

4curr

∣∣∣ (4.24)

= |({s2, s5, s7, s8} ∩ {s2, s5, s7, s8}) ∪ ({s16, s17, s11} ∩ {s16, s17, s11})|
|{s16, s17, s11} ∪ {s2, s5, s7, s8} ∪ {s16, s17, s11} ∪ {s2, s5, s7, s8}|

= |{s2, s5, s7, s8} ∪ {s16, s17, s11}|
|{s2, s5, s7, s8, s16, s17, s11}|

= |{s2, s5, s7, s8, s16, s17, s11}|
|{s2, s5, s7, s8, s16, s17, s11}|

= 8
8 = 1

According to the transition detection algorithm, the overlap between two clusters must
be at least θpart in order to be considered a candidate for a split or merge and the
overall overlap must be at least θ in order to be added to the set of transitions. In this
demonstration, the thresholds are set to θpart = 0.2 and θ = 0.7. The clusters C1

4 and
C2
4 reach the highest possible overlap score of 1, i.e., all log lines that were clustered into

C1
4 were allocated to C2

4 and vice versa. Therefore, the link between these two clusters
is immediately established.

All the other combinations of clusters from two neighboring cluster maps are computed

52

4.4. Examples

analogously. Two clusters that do not yield a perfect overlap score are C1
© and C2

©1
:

overlap(C1
©, C

2
©1) =

∣∣∣(R1
©curr ∩R2

©1prev

)
∪
(
R1
©next ∩R2

©1curr

)∣∣∣∣∣∣R2
©1curr

∪R2
©1prev

∪R1
©next ∪R1

©curr

∣∣∣ (4.25)

= |({s0, s1, s3, s4, s6} ∩ {s0, s1, s3, s4, s6}) ∪ ({s9, s10, s12, s13, s15} ∩ {s10, s12, s13, s15})|
|{s10, s12, s13, s15} ∪ {s0, s1, s3, s4, s6} ∪ {s9, s10, s12, s13, s15} ∪ {s10, s12, s13, s15}|

= |{s0, s1, s3, s4, s6} ∪ {s10, s12, s13, s15}|
|{s0, s1, s3, s4, s6, s9, s10, s12, s13, s15}|

= |{s0, s1, s3, s4, s6, s10, s12, s13, s15}|
|{s0, s1, s3, s4, s6, s9, s10, s12, s13, s15}|

= 9
10 = 0.9

Again this overlap is high enough so that the connection between C1
© and C2

©1
is

established immediately. The reason why no perfect overlap of 1 was achieved in this
case is that line s9 was clustered into C2

©2
rather than C2

©1
and is thereby missing in

the intersection. Finally, the last relevant overlap between C1
© and C2

©2
is

overlap(C1
©, C

2
©2) = |{s9}|

|{s0, s1, s3, s4, s6, s9, s10, s12, s13, s14, s15}|
= 1

11 ≈ 0.09 (4.26)

and therefore not high enough to be considered as a candidate for a transition as it
does not exceed θpart. The reason for this result is twofold. Firstly, line s14 contained
in cluster C2

©2
was not allocated into R1

©next due to a too low similarity to the clusters
representative and thus formed an outlier, i.e., was not allocated to any cluster. Secondly,
none of the log lines from cluster C1

© were allocated to R2
©2prev

. All the remaining
combinations of clusters result in overlap scores of 0.

The same calculations are carried out between cluster maps C2 and C3. While the overlap
between C2

4 and C3
4 is again 1, the transitions between C2

©1
, C2
©2

and C3
© form a

merge. At first, overlap(C2
©1
, C3
©) ≈ 0.73 > θ establishes a connection between these

two clusters. However, overlap(C2
©2
, C3
©) ≈ 0.27 > θpart suggests that cluster C2

©2

contributes to the resulting cluster C3
© and is therefore also added as an additional

transition.

It was already mentioned that splits and merges pose a problem for tracking individual
clusters. By applying the rule that the highest overlap should be followed, the development
of cluster C3

© refers to cluster C2
©1

rather than C2
©2

when tracking log line type ©. For
this reason, the connections with lower overlaps are displayed as dashed lines in Fig. 4.4.

Besides the appearance of a new cluster C4
� and the disappearance of C5

4 in the fol-
lowing time window, one more important event occurs between C4 and C5: Cluster C4

©
splits into the two clusters C5

©1
and C5

©2
. Different to the overlaps of the previously

discussed merge where one overlap exceeded θ, both overlap(C4
©, C

5
©1

) ≈ 0.46 < θ and
overlap(C4

©, C
5
©2

) ≈ 0.38 < θ. This means that none of the overlaps alone would be

53

4. Cluster Evolution

1 2 3 4 5 6

0
2

4
6

8
10

Cluster Size Developments

Time step

C
lu

st
er

 S
iz

e

Figure 4.5: Cluster sizes plotted as time-series. Blue: 4, Green: ©, Red: �.

sufficiently high to establish a connection. However, both overlaps exceed θpart and are
therefore handled as candidates for the split. Furthermore, the sum of the overlaps
exceeds θ and both connections are therefore added to the set of transitions. Again,
the path with the higher overlap (i.e., the link between C4

© and C5
©1

) is followed when
tracking the cluster corresponding to ©.

All the clusters that exist in at least 3 consecutive time windows were tracked. Their
sizes are retrieved after every time window and plotted in Figure 4.5. Cluster sizes of 0
are not displayed in the plot as this means that the corresponding clusters do not exist
in the respective time windows.

This demonstrative scenario is also appropriate for computing evolution metrics. For
example, the relative growth rate of cluster 4 between time steps 3 and 4 is calculated
by

Growthrelative =

∣∣∣R4
4curr

∣∣∣− ∣∣∣R3
4curr

∣∣∣∣∣∣∣∣ ⋃Ci∈C3
RCicurr

∣∣∣∣∣
(4.27)

= |{s33, s34, s36, s40, s41, s42, s28, s30}| − |{s20, s21, s23, s26}|
|{s18, s19, s20, s21, s22, s23, s24, s25, s26}|

= 8− 4
9 = 4

9 ≈ 0.44

This indicates a rather high growth that can also be seen in Fig. 4.5. Other rates and
metrics are calculated analogously.

54

4.4. Examples

4.4.2 Simulation Study

The techniques and metrics explained in the previous chapters are complemented with
the results of an exemplary simulation that should both ascertain the validity and proper
functioning of the introduced approach and also improve the understanding of the abilities
and properties of the measures. For the experiment, synthetic log data that contains
known anomalies has been created. For simplicity, each type of log line consists only of a
sequence of identical characters, e.g., “aaaa...”, “bbbb...”, etc. In order to incorporate a
certain degree of randomness that increases the difficulty for the clustering algorithm
to successfully group similar lines together and also approximates real-world data more
appropriately, random noise is added to the lines. This is done by occasionally replacing
some characters in the strings and randomly altering the length of the lines. In general
however, the randomness factor is set to a value that allows the clustering algorithm to
allocate most of the lines that are produced by a certain process correctly, otherwise no
reasonable evaluation is possible and no conclusions regarding the evolution metrics can
be drawn. The processes generating each type of lines were programmed with different
behaviors that change over time, including changes in the printing rate or randomness of
log line content. In the following, the processes are denoted by the type of log lines they
produce, e.g., the process that creates the line “aaaa...” is named “A”, etc. The following
processes will be investigated in detail:

• “A”: The rate in which log lines are produced increases and decreases over time,
thereby creating a periodic behavior. The changes are short-term and one period
consists of 24 hours, thus simulating a daily task that is frequently occurring in
many real-world scenarios.

• “B”: The rate is progressing according to a sinusoidal curve. Other than the
short-term intervals of process “A”, the period of the sinusoidal curve spans over
multiple days and is thus simulating an automated task that is not bound to a daily
schedule but rather continuously operates in its own and independent interval.

• “C”: The rate in which log lines are produced decreases in steps. Eventually, no
more log lines of this type are produced at all. This simulates the disappearance of
a cluster.

• “D”: This process does not produce any log lines at the beginning. Only after some
time, the printing rate is increased stepwise from 0. This simulates the emergence
of a new cluster and an increase in size.

• “E”: No changes, but is affected by process “F”.

• “F”: At first, log lines are identical to the log lines produced by process “E”, i.e.,
they consist only of the strings “eeee...” and it is not possible to differentiate
whether process “E” or “F” produced these lines. However, over time an increasing
amount of characters in the lines produced by process “F” are replaced with the

55

4. Cluster Evolution

character “f”, so that eventually process “F” only produces the strings “ffff...”. This
behavior simulates process “F” splitting up from process “E”.

• “G”: No changes, but affected by process “H”.

• “H”: At first, this process generates the lines “hhhh...” as it could be expected.
After some time, an increasing amount of characters is replaced by the character
“g”, until eventually process “H” produces identical log lines as process “G”, i.e.,
both processes produce only “gggg...” and it is not possible to trace from which
process the line originates from by analyzing the log file. This simulates process
“H” merging into process “G”.

• “I”: The random noise regarding the content of the lines produced by this process
is increased in steps. This simulates an increase in spread of cluster members.

It should be noted that other processes exist, but do not exhibit any additional charac-
teristics other than the ones mentioned above and are solely used for a more realistic
scenario with a larger amount of clusters, a higher degree of randomness and an increased
likelihood of occasional misclassifications.

The data was simulated to cover a period of 2 weeks and was clustered on an hourly
basis as explained in Section 3. This means that 336 cluster maps were generated in
total. Following the procedure elucidated in this chapter, each log line was not only
clustered into the maps in which they occurred, but also in the preceding and succeeding
map, except for the lines from the first and last time step where only one neighboring
cluster map existed. Once the complete graph representing the dynamic development
and dependencies of each cluster was computed, it is possible to trace single clusters and
display their properties as a function of time. Figure 4.6 shows the amount of elements
allocated into the cluster containing log lines originated by process “A”. Although it is
possible that also another process contributes to that cluster due to the content diversity
inherent to the generation of log lines, it can be assumed that in this exemplary simulation
with a controlled amount of randomness almost all log lines from this cluster originate
from process “A”. As it can be seen, the generation of log lines follows a short-term cycle
of 24 hours which manifests itself in the plot of the cluster size. On the right-hand side,
the absolute growth rate in each time step is displayed. While it is difficult to make
out any patterns from this plot, it is interesting to notice that there is a spike at the
beginning indicating a large growth and corresponding to the creation of the cluster and
that the remaining values are centered around 0. This means that the amount of added
and removed elements remains more or less the same and thus showing that there is no
constant long-term trend of the cluster size.

The cluster size plot of process “B” that can be seen at the left-hand side in Fig. 4.7
again shows a periodic behavior with a lower frequency than process “A”. Furthermore
the plot of the relative growth rate of this cluster is displayed. As the total amount
of produced lines of all processes remained almost constant, the relative growth rate

56

4.4. Examples

0 50 100 150 200 250 300

14
0

18
0

22
0

26
0

Cluster Size A

Time step

C
lu

st
er

 s
iz

e

0 50 100 150 200 250 300

−
50

0
50

10
0

15
0

Abs. Growth Rate A

Time step

A
bs

ol
ut

e
gr

ow
th

Figure 4.6: Cluster size and absolute growth rate over time of log lines produced by
short-term periodic process “A”.

0 50 100 150 200 250 300

10
0

20
0

30
0

40
0

50
0

Cluster Size B

Time step

C
lu

st
er

 s
iz

e

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

Rel. Growth Rate B

Time step

R
el

at
iv

e
gr

ow
th

Figure 4.7: Cluster size and relative growth rate over time of log lines produced by
long-term periodic process “B”.

shows the same features as the absolute growth rate, only differing in the scale of the
y-axis. Due to the low frequency of the curve, the growth rate shows a slight wave-like
structure that corresponds to the intervals where the size is increasing or decreasing.
Moreover, when the cluster size is at its lowest point, there is less divergence in growth
which corresponds to the fewer fluctuations of the growth rate during that phase.

The plots of process “C” can be seen in Fig. 4.8. The size decreases stepwise and the
cluster completely disappears eventually. Again the absolute growth rate is shown in the
plot on the right-hand side. While the plot is again centered around 0, some downward
spikes can be observed that correspond to the loss of elements from the left-hand plot.

Contrary to the decrease in size shown in the previous plot, Fig. 4.9 shows the emergence
of a new cluster and its increase in size over time. The relative growth rate correctly
shows spikes indicating these events, where the first spike corresponds to the creation
and initial filling of the cluster. It should be noted again that the absolute growth rate

57

4. Cluster Evolution

0 50 100 150 200 250 300

10
0

20
0

30
0

40
0

Cluster Size C

Time step

C
lu

st
er

 s
iz

e

0 50 100 150 200 250 300

−
10

0
0

10
0

20
0

30
0

40
0

Abs. Growth Rate C

Time step

A
bs

ol
ut

e
gr

ow
th

Figure 4.8: Cluster size and absolute growth rate over time of stepwise decreasing log
lines produced by process “C”.

0 50 100 150 200 250 300

10
0

20
0

30
0

40
0

Cluster Size D

Time step

C
lu

st
er

 s
iz

e

0 50 100 150 200 250 300

−
0.

01
0.

01
0.

03

Rel. Growth Rate D

Time step

R
el

at
iv

e
gr

ow
th

Figure 4.9: Cluster size and relative growth rate over time of stepwise increasing log lines
produced by process “D”.

does not show any differences in the overall structure due to the more or less constant
total amount of log lines being produced.

For all of the previously shown plots, none of the metrics regarding changes, stability,
novelties, disappearances, merges or splits were displayed as they do not show any
interesting features and would only deviate from 0 due to random misallocations. This is
due to the fact that only the rates in which log lines are printed were changed, however
the content of the lines mostly remained the same and thus the clustering algorithm
almost always allocated the lines to the same cluster in different time steps. In the case
displayed in Fig. 4.10 however, a common cluster containing lines from processes “E”
and “F” split apart and thus a large amount of misallocations occur due to the high
similarity of cluster representatives in the critical splitting phase. In the top-left plot, the
developments of the cluster sizes of log lines created by processes “E” and “F” are shown.
As it can be seen, around time step 75 the cluster “E” randomly loses and gains high

58

4.4. Examples

0 50 100 150 200 250 300

10
0

20
0

30
0

40
0

50
0

Cluster Size E and F

Time step

C
lu

st
er

 s
iz

e

0 50 100 150 200 250 300

0.
0

0.
1

0.
2

0.
3

0.
4

Split Rate E and F

Time step

S
pl

it
ra

te

0 50 100 150 200 250 300

−
0.

10
0.

00
0.

05
0.

10

Later Change Rate E and F

Time step

La
te

r
ch

an
ge

 r
at

e

0 50 100 150 200 250 300

0.
00

0.
10

0.
20

0.
30

Stability Rate E and F

Time step

S
ta

bi
lit

y
ra

te

Figure 4.10: Cluster size, split rate, current change rate and stability rate over time of
log lines produced by process “F” (red line) splitting from process “E” (black line).

number of elements in every step due to the representatives and log lines only sometimes
matching each other so that the strings are correctly allocated to the cluster, while others
that do not show enough similarity to the cluster representative are either outliers or form
their own cluster that only exists for one or very few time steps. Only at the end of the
critical splitting phase, at the point where process “F” regularly produces log lines that
are different enough so that no more random misallocations occur, cluster “E” stabilizes
again. Moreover, cluster “F” emerges at the same point and continues to exist for the
remaining time of the simulation. The other plots of Fig. 4.10 show the developments of
the split rate, the later change rate and the stability rate for both process “E” and “F”.
All of them show that the clusters undergo a structural change caused by the frequent
exchange of elements with other clusters during the splitting phase. It should be noted
that also the merge rate would react to the splitting as all the log lines that could not be
allocated to cluster “E” in one time step may be correctly allocated in the following step,
thus corresponding to the merge of two clusters.

Figure 4.11 shows the merge of clusters “G” and “H”. The top-left plot again shows the
evolution of the cluster sizes, with cluster “H” spontaneously disappearing as soon as
it is starting to merge with cluster “G”. The merge causes the rapid increase in size of

59

4. Cluster Evolution

0 50 100 150 200 250 300

20
0

40
0

60
0

Cluster Size G and H

Time step

C
lu

st
er

 s
iz

e

0 50 100 150 200 250 300

0.
00

0.
10

0.
20

Merge Rate G

Time step

R
el

at
iv

e
m

er
ge

 r
at

e

0 50 100 150 200 250 300

−
0.

04
0.

00
0.

04

Former Change Rate G

Time step

F
or

m
er

 c
ha

ng
e

ra
te

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

Stability G

Time step

S
ta

bi
lit

y

Figure 4.11: Cluster size, merge rate, previous change rate and stability rate over time of
log lines produced by process “H” (red line) merging into process “G” (black line).

cluster “G” at time step 175. As for the split, the merging phase takes several time steps
until cluster “G” stabilizes and now contains both log lines from processes “G” and “H”.
This is due to the fact that the content of the lines was changed stepwise and in other
simulations or in real-world applications the merge could occur in a single step. The
remaining plots show the merge rate, the former change rate and the stability. The curves
appear similar to the curves created by the split as they also indicate the structural
changes of the clusters. Judging from the plots it is thus difficult to determine whether
a split or merge occurred and it is therefore usually necessary to consult the output of
the transition detection algorithm in order to extract the information which clusters
contributed to a split or merge.

Finally, Fig. 4.12 shows the effects of a cluster increasing in spread. The plot on the left
hand side shows the size of cluster “I” remaining more or less constant until time step
200. Then, many of the log lines generated by process “I” are too dissimilar in order to
be allocated to this evolving cluster in different time steps, thus causing the sudden drop
of cluster size. Only a few time steps later, the algorithm detecting the cluster transitions
was not able to further track this cluster as the lines were too different to form a common
cluster and thus the cluster disappears. While there was no way to observe this behavior

60

4.4. Examples

0 50 100 150 200 250 300

40
0

50
0

60
0

70
0

80
0

Cluster Size I

Time step

C
lu

st
er

 s
iz

e

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

0.
20

Online Mean I

Time step

M
ea

n

0 50 100 150 200 250 300

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

0.
00

30

Online Variance I

Time step

V
ar

ia
nc

e

Figure 4.12: Cluster size, mean and variance over time of log lines with stepwise increasing
spread produced by process “I”.

in the size plot before time step 200, both the mean and variance of the cluster members
that can be seen in the other two plots give a clear view of the stepwise increase of the
noise affecting the log lines. As there is no change in the allocation of cluster members,
the other rates that were previously considered do not show any interesting features.

61

CHAPTER 5
Time-series Analysis

Time-series analysis is not only a highly popular and well-researched topic, but also has
widespread application areas, among them being finance, econometrics and environment-
related fields. This is due to the fact that almost all of the data samples gathered in these
areas obtain an inherent dynamic property, i.e., each measurement or value is associated
with a specific point in time. The result of a feature being measured in intervals is a
sequence of values that is called a time-series. The reasons why time-series analysis is
employed are generally grouped into two use cases: First, an improved understanding
of historical values, i.e., the creation of models that support reasoning over specific
developments of the time-series including trends, fluctuations and spikes. Second, the
generation of forecasts of future values based on knowledge gained from the models. In
the most cases, forecasting requires a model that is extrapolated beyond its most recent
value. In the following, the generation of such a model is explained in detail.

5.1 Models
A time-series is a sequence of N values y1, y2, ..., yN where each of the yi was recorded
at a specific point in time. For convenience it is usually assumed that the interval
length between these time points is constant, i.e., that the measurements were taken
with a certain frequency. The resulting series of values exhibits numerous characteristics
describing the nature of the data. In order to obtain a better understanding of the
time-series, one of the first steps is usually to fit a model that approximates the data
well and to base all further interpretations, comparisons and predictions on this model.

A simple approach to fit a model is to assume that each value in the time-series is
depending on every other preceding point which is known as an autoregressive (AR)
process (Cryer and Chan, 2008). As it can be assumed that recent values have more
influence on the currently observed point and in order to keep the amount of terms
within a reasonable range, only the preceding p points are considered. This parameter is

63

5. Time-series Analysis

also called the order of the model and an AR model of order p is denoted as AR(p). In
mathematical terms, the dependency of point yt at time step t can thus be expressed as
follows:

yt = a+ φ1yt−1 + φ2yt−2 + ...+ φpyt−p + et, (5.1)

where a is the intercept term, φi is a coefficient that displays a weight for each term
that lags i steps behind and et is the error term that includes everything that cannot
be explained by the combination of previous values. The error is usually assumed to be
independent and equally distributed around a mean of 0.

Another way of describing a time series is by assuming that every value can be displayed
as a combination of a mean µ of all error values that occurred up to this point, i.e.,

yt = µ+ et − θ1et−1 − θ2et−2 − ...− θqet−q, (5.2)

where it is common to use negative signs in front of the weights θi. This kind of model is
called a moving-average (MA) process. Similar to the AR process, the terms are limited
to q lags behind the current data point and analogously the notation of a MA model
order q is MA(q).

For a given time-series y1, y2, ..., yN of length N that is subject to approximation by either
an AR or MA process, it is not obvious which model is superior over the other solely based
on the data. In order to be able to determine which approach is a better choice for modeling
the time-series, an additional measure should be consulted. Recalling that the AR
process assumed that the value of each data point is depending on every preceding point,
the correlation between the time-series and itself being lagged k steps behind, i.e., the
aggregated correlation between the pairs of values (yN , yN−k) , (yN−1, yN−k−1) , ..., (yk, y1),
is used as a measure to describe this dependency. Assuming stationarity, i.e., a constant
mean ȳ and constant variance over time, the so-called autocorrelation function (ACF)
that lies within the range [−1, 1] is defined for any lag k ≥ 0 as

ACFk =
∑N
t=k+1 (yt − ȳ) · (yt−k − ȳ)∑N

t=1 (yt − ȳ)2 (5.3)

An autocorrelation of 1 indicates that the time-series correlates perfectly with the lagged
version of itself, while an autocorrelation of −1 indicates a perfect negative correlation
and an autocorrelation of 0 indicates that there exists no correlation at all. For data that
can be represented as an AR process, ACFk will be large for small k and slowly decrease
with increasing lag as the correlations between the values decay the farther apart in time
the data points are located. On the contrary, due to the assumption that the data points
of a MA(1) model are not correlated with any previous values, it can be assumed that
the autocorrelations are zero for any k > 0. The autocorrelation for k = 0 is always 1 as
any time-series is perfectly correlated with itself. If however the MA model is of a higher
degree, i.e., q > 1, then the autocorrelation should be greater than zero for any k ≤ q
and then “cut off” to zero for any k > q. This means that inspecting the ACF allows

64

5.1. Models

AR and MA process

Time step

y

0 10 20 30 40 50 60

−
4

−
2

0
2

4
6

Figure 5.1: Red line: AR(2) process. Blue line: MA(2) process.

determining the degree q of an MA model by observing for which k the autocorrelation
drops to zero. In real-world time-series, due to randomness and noise in the data there is
typically a confidence value based on the standard error used for determining whether
the autocorrelation is small enough to be considered zero or not.

In order to obtain a function that allows the estimation of the degree p of an AR process,
it must first be noted that due to the correlations being transferred from yt to yt−1 and
from yt−1 to yt−2 and so on, the resulting correlation between yt and yt−k is influenced
by the data points lying in between. Therefore, the effect of the intervening variables
yt−1, yt−2, ..., yt−k+1 needs to be removed. This is accomplished by first fitting a linear
model β0+β1yt−1+β2yt−2+...+βk−1yt−k+1 that predicts yt and then fitting a linear model
γ0 + γyt−k+1 + γyt−k+2 + ...+ γk − 1yt−1 that predicts yt−k. The partial autocorrelation
function (PACF) is then defined as the correlation between the corresponding residuals,
i.e.,

PACFk = Corr(yt − β0 − β1yt−1 − β2yt−2 − ...− βk−1yt−k+1,

yt−k − γ0 − γ1yt−k+1 − γ2yt−k+2 − ...− γk−1yt−1) (5.4)

The resulting values will again lie in the interval [−1, 1]. The PACF shows opposite
behavior regarding AR and MA processes than the ACF. While the partial autocorrelation
values slowly decay for any MA process, partial autocorrelations of approximately zero
can be observed for all k > p when considering an AR(p) model. Again this behavior
can be used to determine the degree p of a model by observing the cutoff point. Note
that the partial autocorrelation for lag k = 0 is typically set to 1 by convention.

65

5. Time-series Analysis

0 5 10 15

−
0.

5
0.

5

Lag

A
C

F
ACF of AR(2) process

5 10 15

−
0.

8
0.

0

Lag

P
ar

tia
l A

C
F

PACF of AR(2) process

0 5 10 15

−
0.

5
0.

5

Lag

A
C

F

ACF of MA(2) process

5 10 15

−
0.

4
0.

0
Lag

P
ar

tia
l A

C
F

PACF of MA(2) process

Figure 5.2: ACF and PACF plots of AR(2) and MA(2) processes.

Considering the two sample time-series displayed in Fig. 5.1 that were created based on
AR(2) and MA(2) processes, it can be seen that there are no obvious characteristics that
make it easy to determine the type of process and its degree that best fits the values and
it is therefore necessary to consult ACF and PACF. It is common to plot these measures
as a function of k in order to aid the visual reasoning of the selection of a model and its
parameters, resulting in the so-called correlograms that are displayed in Fig. 5.2. The
previously described characteristics can now be observed in the correlograms, i.e., the
ACF of the AR process slowly decays and the PACF shows a cutoff for k > 2, the ACF
of the MA process also cuts off for k > 2 and the PACF slowly decays. As expected,
these observations correctly suggest the types of the respective processes as well as their
degree.

Neither AR nor MA processes are usually sufficient for an appropriate representation
of real-world time series if they are used alone. Combining both processes however
often results in a very general model that is able to approximate real data well. This
combination is denoted as an ARMA(p,q) model that can be expressed as

yt = a+ φ1yt−1 + φ2yt−2 + ...+ φpyt−p + et + µ− θ1et−1 − θ2et−2 − ...− θqet−q (5.5)

ARMA processes are centered around a constant mean and are thus called stationary.
However, actual time-series often exhibit some kind of trends or other non-stationary
behavior and therefore there is a need to incorporate non-deterministic influences into the
model. One way to do this is to find a way to eliminate the non-stationary effects from a

66

5.2. Forecasting

sequence of values so that the resulting time-series can appropriately be approximated
with an ARMA process. This can be achieved by differencing, i.e., replacing all yt with
yt − yt−1 for all t, resulting in

yt − yt−1 = a+ φ1 (yt−1 − yt−2) + φ2 (yt−2 − yt−3) + ...+ φp (yt−p − yt−p−1)
+ µ+ et − θ1et−1 − θ2et−2 − ...− θqet−q (5.6)

which is equivalent to

yt = a+ (1 + φ1) yt−1 + (φ2 − φ1) yt−2 + ...+ (φp − φp−1) yt−p − φpyt−p−1

+ µ+ et − θ1et−1 − θ2et−2 − ...− θqet−q (5.7)

Taking the first difference as shown above can be sufficient in many cases, but some time
series may require an even higher degree of differencing. For the second order difference,
(yt − yt−1)− (yt−1 − yt−2) which is equivalent to yt − 2yt−1 + yt−2 needs to be computed.
Higher order differencing can be realized analogously, although it is rarely necessary
in practice. The general model with a variable differencing degree d is denoted as an
autoregressive integrated moving-average model of orders p, d and q, or ARIMA(p,d,q)
in short.

Besides general trends, many real-world time-series exhibit seasonal effects which are a
special kind of non-stationary behavior. Similarly, seasonal influence can be eliminated by
differencing, however the periodicity with respect to the number of data points per season
needs to be known. With s measured data points per season, the difference yt − yt−s has
to be computed in order to reduce the seasonal effects. Combined with a regular ARIMA
process results in a multiplicative seasonal ARIMA process with non-seasonal orders p, d
and q and seasonality s with seasonal orders P , D and Q, or SARIMA(p,d,q)×(P ,D,Q)s
in short.

5.2 Forecasting
Once an appropriate model that successfully approximates the time-series up to a certain
point has been found, the properties of this model can be used to extrapolate over the
last recorded time step and thus create a forecast for upcoming values (Cryer and Chan,
2008). This procedure is known as one-step-ahead prediction as it aims at approximating
an unknown future value ŷt+1 that follows directly after the most recent point yt. This
can be achieved by increasing all variables t by 1, resulting in

ŷt+1 = a+ φ1yt + φ2yt−1 + ...+ φpyt−p+1 (5.8)

for a simple AR(p) process. Note that the error term is omitted from the formula, as
it was assumed that all error terms are independent from the previous measurements
and the expected value of an unknown error term is 0, i.e., et+1 = 0. In order to forecast
values that are multiple steps ahead of the last available data point, one-step-ahead

67

5. Time-series Analysis

prediction can be applied recursively so that in each step, the value computed in the
previous estimation is used as the final data point. Using a variable prediction horizon
called the lead time l the AR(p) forecasting model can therefore be expressed as the
more generalized model

ŷt+l = a+ φ1yt+l−1 + φ2yt+l−2 + ...+ φpyt+l−p (5.9)

Note that all yt+l−j are actually predicted values ŷt+l−j with et+l−j = 0 for l > j, but
are known values with any et+l−j from the available time-series for l ≤ j.

Analogous reasoning can be applied to forecasting of MA(q) processes. Again t is replaced
by t+ 1 to form an expression for a one-step-ahead prediction model, that is

ŷt+1 = µ− θ1et − θ2et−1 − ...− θqet−q+1 (5.10)

Note that et+1 = 0 and was thus omitted from the equation. Just as before, this can be
generalized to the following equation supporting a variable amount of lead time l :

ŷt+l = µ− θ1et+l−1 − θ2et+l−2 − ...− θqet+l−p, (5.11)

where again the errors of the predicted values are 0 due to et+l−j = 0 for l > j.

Combining the generalized formulations of the AR(p) and MA(q) prediction models for
an arbitrary lead time l results in the ARMA(p,q) prediction model

ŷt+l = a+φ1yt+l−1+φ2yt+l−2+...+φpyt+l−p+µ−θ1et+l−1−θ2et+l−2−...−θqet+l−p (5.12)

and its extension to the ARIMA(p,d,q) prediction model

ŷt+l = a+ (1 + φ1) yt+l−1 + (φ2 − φ1) yt+l−2 + ...+ (φp − φp−1) yt+l−p
− φpyt+l−p−1 + µ− θ1et+l−1 − θ2et+l−2 − ...− θqet+l−q, (5.13)

where just as before et+l−j = 0 for l > j.

These computations estimate the future mean value that is expected for any time-series.
However, a proper forecast usually requires an additional measure of spread that gives
information about the trust in these predictions. When dealing with random variables
that follow an unknown distribution, a normal distribution is typically used to assign a
variance to the parameter in order to express how much deviation can be expected for a
given confidence level. The result is a confidence interval that contains the unobservable
true parameter with the specified probability. The same idea can be applied to the
forecasts of time-series, however a crucial difference between confidence and prediction
intervals must be noted: Prediction intervals are associated with an unknown random
variable rather than a parameter of the distribution. The prediction interval that is used
in the following therefore contains the actual future value with the specified probability
(Hyndman, 2013).

68

5.2. Forecasting

At first, the error of one-step-ahead forecast is defined as

et+1 = yt+1 − ŷt+1 (5.14)

This formula is extended for an arbitrary lead time l by

et+l = (yt+1 − ŷt+1) + (yt+2 − ŷt+2) + ...+ (yt+l − ŷt+l) (5.15)

and further simplifies to
et+l = et+1 + et+2 + ...+ et+l (5.16)

which is proven by displaying the forecasting model as a MA(∞) process (Cryer and Chan,
2008). For a given prediction level α and assuming the errors to be independent and
normally distributed, the two-tailed standard normal distribution score Z1−α2 predicts
that the future value is expected to fall within the limits

ŷt+l ±Z1−α2

√
V ar(et+l) (5.17)

with (1− α) % confidence. Clearly V ar(et+l) is unknown as the future values yt+l are
not observed yet and thus the actual error values cannot be computed. However, the
variance is assumed to be constant over time and can thus be estimated from past values.

Checking whether a future value lies within the prediction interval is an effective method
for detecting contextual anomalies, i.e., data points that are anomalous with respect
to their local neighborhood. Especially when the one-step ahead prediction interval is
computed in every time step, the most recent measured actual value can be compared
with the interval from one step before. In short, yt is identified as an anomaly if

yt /∈
[
ŷt −Z1−α2

√
V ar(e), ŷt + Z1−α2

√
V ar(e)

]
(5.18)

5.2.1 Calculated Example

For a better understanding of the theoretically discussed models and the procedure that
leads to the detection of anomalies, a practical example is calculated in a step-by-step
manner. For this, a sample time-series shown in Fig. 5.3 is used. The figure shows the
measured value y (solid line) as well as the one-step ahead prediction limits that were
computed in each step (dashed lines). Furthermore, measured values that exceed the
prediction limits were marked by red circles as anomalies. Due to the one-step ahead
predictions, it can be seen that y always lags 1 step behind, e.g., the final value y25 is
used to make a prediction for the following value y26 that is unknown at that time.

As an example, the computations of the prediction limits for time step 17 are discussed.
This means that the cluster sizes from time steps 1, ..., 16 are considered for the forecast. At
first, an ARIMA model is fitted. Due to the simplicity of this time-series, no components
for periodic behavior are required and further AR = 0, I = 0 and MA = 0 yield the
best fit as this setting minimizes the Akaike Information Criterion (AIC = 130.52).

69

5. Time-series Analysis

0 5 10 15 20 25

15
60

15
80

16
00

16
20

16
40

16
60

Prediction Interval

Time step

y

Figure 5.3: A sample time-series. Solid line: Actual measured values. Dashed lines:
Computed upper and lower prediction limits. Red circles: Anomalies

This means that there are no autoregressive (AR), integrated (I) or moving average
(MA) terms that have to be considered and the prediction is simply the mean, i.e.,
ŷ17 = 1

16
∑16
i=1 yi = 1591.375. Furthermore, the variance of the time-series up to this

point is V ar(e) = 1
16−1

∑16
i=1 (yi − 1591.375)2 = 169.7167. These informations are used

to forecast the limits for a prediction level of 0.99, i.e., α = 0.01. This is done by

y17 ∈
[
ŷ17 −Z1−α2

√
V ar(e), ŷ17 + Z1−α2

√
V ar(e)

]
(5.19)

y17 ∈
[
1591.375−Z1− 0.01

2

√
169.7167, 1591.375 + Z1− 0.01

2

√
169.7167

]
y17 ∈

[
1591.375−Z0.995

√
169.7167, 1591.375 + Z0.995

√
169.7167

]
y17 ∈ [1591.375− 2.575829304 · 13.02753, 1591.375 + 2.575829304 · 13.02753]
y17 ∈ [1557.818, 1624.932]

However, the actual measured value turns out to be y17 = 1629 and therefore exceeds
the upper limit, creating an anomaly. Clearly, longer time-series are needed in order
to ensure that proper estimates for the model parameters are determined. Analogous
computations are carried out for any point of the time series, resulting in the “tube” that
follows the patterns of the cluster size. Fitting the ARIMA model for this example was
performed with the R command “auto.arima”, which tries to minimize either AIC or
BIC by varying the degrees of the AR, I and MA terms. It should be noted that the
found values for these terms may change in every time step.

70

5.3. Correlation

5.3 Correlation

For any given two time-series it can be of interest how they relate to each other and
whether they can be considered similar. There are clearly many different characteristics
that can be taken into account for that comparison and it usually depends on application-
specific purposes. For example, it could be required that the values of the two time-series
lie approximately in the same range and that adding or multiplying all values of one series
with a constant factor would thus decrease their similarity. On the other hand, it could
be of interest whether the same short-term events such as spikes and other prominent
features can be found in the place and correct order in both time-series. Furthermore,
the periodicity of the signals or the frequency of occurring events in the series can also be
indicators for similarity. Finally, long-term trends that are apparent in both time-series
can be taken into account as a measure to determine their similarity.

A common measure of similarity that incorporates several of the previously mentioned
characteristics is the correlation, which is frequently used in statistics to describe the
relationship between two random variables. In general, two variables correlate with each
other if their correlation coefficient is larger than 0 and they correlate perfectly if their
correlation coefficient is 1, i.e., a change of one variable in any direction indicates a
change of the other variable in the same direction. Analogously, for a negative correlation
the variables change in opposite directions and a correlation of 0 indicates that there is
no relationship between the variables. This principle can also be applied to time-series
rather than variables, leading to the cross-correlation function (CCF) (Cryer and Chan,
2008). In the basic case, the CCF can be used to check if the two time series follow a
common pattern, i.e., if the slopes from one step to another correspond in each series, if
they show an inverted behavior or if there is no relationship at all. In some real-world
scenarios, one of the time-series may lag behind the other and thus it needs to be shifted
in time in order to produce the correct correlation coefficient for a certain lag. The CCF
can be computed for the two time-series y1, y2, ..., yN and z1, z2, ..., zN and any lag k by

CCFk =

∑N

t=k+1(yt−ȳ)·(zt−k−z̄)√∑N

t=1(yt−ȳ)2
√∑N

t=1(zt−z̄)2
if k ≥ 0∑N+k

t=1 (yt−ȳ)·(zt−k−z̄)√∑N

t=1(yt−ȳ)2
√∑N

t=1(zt−z̄)2
if k < 0

(5.20)

The ACF from Eq. (5.3) is a special case of the CCF where zt = yt for all t, i.e., where
the correlation between a time-series and itself is computed. Note that it is not necessary
to define the ACF for k < 0, as a negative shift in time always leads to the same pairs of
values being used for the computation as a positive shift. This is due to the fact that the
order of the elements is not important for identical time-series, i.e. (yt, yt−k) = (yt−k, yt).
However, for two different processes the constellation between the compared pairs of
values is depending on which time-series lags behind and which one is leading, i.e.,
(yt, zt−k) 6= (yt−k, zt).

71

5. Time-series Analysis

0 20 40 60 80 100

−
2

−
1

0
1

2
Sine characteristics

x

y

−15 −10 −5 0 5 10 15

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

C
C

F

CCF of Base and Base

−15 −10 −5 0 5 10 15

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

C
C

F

CCF of Base and Amp

−15 −10 −5 0 5 10 15

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

C
C

F

CCF of Base and Shift

−15 −10 −5 0 5 10 15

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Lag

C
C

F

CCF of Base and Freq

−15 −10 −5 0 5 10 15

−
0.

5
0.

0
0.

5

Lag

C
C

F

CCF of Base and Phase

Figure 5.4: Sample sine waves that exhibit different characteristics and CCFs of a base
sine wave and its changes regarding amplitude, vertical shift, frequency and horizontal
phase-shift.

72

5.3. Correlation

At the beginning of this section, several properties that could be relevant for determining
the correlation are mentioned. In order to visually summarize the characteristics that
influence the CCF , the sample sine waves that can be seen in the top-left plot in
Fig. 5.4 are considered for an exemplary comparison. The sine waves exhibit the
following characteristics: Unchanged base for comparison (black), amplitude changed by
multiplication with constant value (red), vertically shifted with constant value (green),
increased frequency (blue) and horizontally phase-shifted with constant value (pink).
Similar to the ACF and PACF plots, the correlation is plotted for several values of
k, where also negative lags are considered. Each sine wave was correlated with the
unchanged base and the resulting CCFs for several lags can be seen in the remaining
plots of Fig. 5.4. In the top-right plot, the CCF of the base sine wave and itself is plotted
which shows that the sine waves achieve a perfect correlation score of 1 for k = 0, a
characteristic that every time-series that is correlated with itself exhibits. Note that this
plot is equivalent to an ACF plot but is mirrored around lag 0. As it can be seen in the
following plots, both changes in amplitude and vertical shift do not influence the CCF as
there is no difference in the correlation scores compared to the plot where the base sine
wave is correlated to itself. A change in frequency that can be seen in the bottom-left
plot drastically decreases the correlation coefficient as the slopes of the sine waves do not
fit together due to the compressed structure that the blue sine wave exhibits. Finally,
the change in phase that can be seen in the bottom-right plot causes that the perfect
correlation score of 1 is now reached for a lag different than 0, which can be explained by
the fact that the pink sine wave needs to be shifted either back or forth in time in order
to match the base sine wave.

5.3.1 Calculated Example

Again, a calculated example is provided for a practical demonstration. For this, two
sample time-series Y and Z are used. Figure 5.5 shows their respective progression. It is
visible that time-series Z correlates with time-series Y during time steps 1, ..., 10, even
though there is an offset and the slopes do not perfectly match in most of the steps.
Computing their respective means yields ȳ = 1587.6 for time-series Y and z̄ = 1620.5 for
time-series Z. For simplicity, correlation is only considered with lag k = 0 in this example.
The correlation is computed by

CCF0 =
∑10
t=1 (yt − ȳ) · (zt − z̄)√∑10

t=1 (yt − ȳ)2
√∑10

t=1 (zt − z̄)2
(5.21)

= (1591− ȳ) · (1630− z̄) + ...+ (1588− ȳ) · (1622− z̄)√
(1591− ȳ)2 + ...+ (1588− ȳ)2

√
(1630− z̄)2 + ...+ (1622− z̄)2

= 3.4 · 9.5 + ...+ 0.4 · 1.5√
3.42 + ...+ 0.42

√
9.52 + ...+ 1.52

= 691√
744.4

√
976.5

≈ 0.81

73

5. Time-series Analysis

0 5 10 15 20 25

15
50

16
00

16
50

17
00

Correlating Time−Series

Time step

y,
 z

Figure 5.5: Time-series Y (black line) and Z (red line) that correlate between time step
1, ..., 10 and stop correlating afterwards.

The correlation between time steps 11, ..., 20 is computed analogously. Note that the
respective means of the two time-series have to be computed again as well before computing
the correlation. The visualization already suggests that there is less correlation in this
interval, and accordingly the computed correlation is only around 0.34. It may be
suspicious that time-series that correlate for a long time stop correlating at one point.
The reduction of the correlation from 0.81 to 0.34 may therefore be detected as an
anomaly.

5.4 Robust Filtering

The issue of an often negative influence of outliers on the quality of forecasts has already
been mentioned in Section 2.2. It may therefore be beneficial to reduce the effect of
single outlying points on the prediction of future values. Methods that are able to handle
noisy data and still produce appropriate results that are mostly independent from the
amount and magnitude of the contained outliers are called robust. Examples of robust
methods can be found in simple statistical measures that operate on sets of values, for
example, the median which orders the input data by size and selects the central value is
not influenced by a single strongly deviating value of any magnitude and therefore poses a
robust alternative to the mean. The fraction of outliers that can be contained in the data
while still producing sensible results is an important characteristic and is usually known
as the breakdown point of an estimator. As already mentioned, the non-robust mean
has a breakdown point of 0 as adding a single value with a sufficiently large deviation
from the actual mean of a given set of values is able to arbitrarily alter the mean of the

74

5.4. Robust Filtering

combined values. In contrast to that, the median is able to achieve the highest possible
breakdown point of 0.5 which means that a reasonable result will be computed even if
half of the involved values consists of outliers.

These issues also play a role in the prediction of time-series models. When considering a
simple ARIMA model, it is clear that the appearance of an outlier has a drastic influence
on the forecast of the following value as the prediction will follow the direction of the
outlier and possibly overshoot the actual value occurring in the following time step. On
the other hand, the large error occuring in the time step of the outlier and possibly
succeeding steps will cause the variance to increase. It then becomes more likely that
the following actual values still lie within the prediction ranges even though they might
be anomalies that are rather far located from the previous data points. In any way it
is sufficient for practical purposes if the very first appearing outlier is reported as an
anomaly independent from whether all future values correctly follow the previous trend
as it would have been expected if the outlier had never occurred. Due to this necessity of
performing a manual inspection of the involved clusters in the case of a detected anomaly,
increasing the robustness of the ARIMA models is not of primary focus.

It can however be beneficial to additionally use a robust filter that operates on the
time-series as a whole and does not rely on one-step ahead forecasts. This filter is able
to identify outliers independent from the ARIMA prediction models and thereby detects
anomalies that lie within the prediction boundaries and are unnoticed by the ARIMA
models. Moreover, the robust method is able to confirm that the data points that lie
outside of the prediction limits by also detecting them as anomalous. Such a method
that is originally designed for monitoring medical data was introduced by Fried (2004).
In this work, a time window of fixed size ω = 2w+ 1, for any predefined w > 0, is created
for any point yt of the time-series which is approximated by a linear model with level µt
and slope βt via

ŷt+i = µt + iβt + Et+i + et+i, i = −w,−w + 1, ..., w, (5.22)

where Et+i is a random noise and et+i is the error of the approximation. If ω is supposed
to be even, the formula needs to be adapted accordingly as the time window would not
be symmetric around yt anymore and further the start and end of the time-series where
t − i < 1 and t + i > N need to be especially considered. The author suggests two
different estimators for computing µt and βt: The least median of squares estimator

TLMS = argmin
{

(µ, β) : median (yt+i − µ− iβ)2
}

(5.23)

and the repeated median estimator TRM = (µ̂t, β̂t) with

µ̂t = medi

(
medj 6=i

yt+i − yt+j
i− j

)
(5.24)

β̂t = medi
(
yt+i − iβ̂t

)
(5.25)

75

5. Time-series Analysis

Both of them have a breakdown point of bω/2c/ω = 0.5 which is optimal for time-series.
There also exist several methods for approximating the variance σt in a robust way, one
of the most simple is taking the median of the residuals ri = yt+i − ŷt − β̂ti, i.e.,

σ̂t = c ·med {|rt−w|, ..., |rt+w|} , (5.26)

where c is a constant that depends on the size of the time window. Similar to the outlier
detection in the ARIMA model, a simple extrapolation of each time window allows
computing an estimation of the future value which is in turn compared with the actual
value. The main difference is that this was done incrementally in the ARIMA model,
i.e, the prediction was stored until the cluster evolution process was carried out for the
next time step and only then the comparison with the actual value was possible. As
the robust filter method operates on a finite and known sequence of values the error is
computed between the incoming value and its estimation in the same step. Similar to
the comparison done in the ARIMA model, a prediction range based on the estimation
of the variance is computed. In detail, an outlier is found if |ri+1| > c0σ̂t, where c0 is a
predefined factor.

The procedure of the algorithm involves iteratively estimating the parameters µt, βt
and the error variance σt in order to detect outliers in every time window centered
around t. The variable t is thereby increased until the end of the time-series is reached.
The robustness of this method comes from replacing the outliers with an estimate
ŷt+i+1 = µ̂t + (i+ 1)σ̂t + c1sgn(ri+1)σ̂t where sgn(.) is the signum function and c1 is a
factor determining the influence an outlier has on the replacement.

Another feature of the algorithm proposed in the paper is the detection of level shifts
that is considered separately and also contributes to the robustness of the method. This
is done by determining the fraction of values on the right side of each time window
yt, yt+1, ..., yt+w that falls outside of a prediction boundary again defined by a constant
d2 in combination with the estimation of the variance. If this is the case for more than
half of the residuals, a level shift has been detected. In mathematical terms, the level
shift is detected if

w∑
j=−w

I{rj>d2σ̂} >
w∑

j=−w
I{rj≤d2σ̂} (5.27)

As only the second half of the time window is considered, the breakdown point is
(w/2)/ω ≈ 0.25. The level shift detection can also be implemented in the previously
mentioned algorithm that slides the time window over the time-series. For that, whenever
a level shift is detected, the trend before the shift is extrapolated right before the shift
and then the algorithm is restarted w steps after the shift so that more than half of the
values lie already on the new level.

5.5 Multivariate Outlier Detection
Several cluster features and evolution metrics have been mentioned in Sections 4.2 and
4.3. As each metric is only able to display information about a certain characteristic

76

5.5. Multivariate Outlier Detection

and it may not be possible to come to the same conclusions about cluster developments
judging from any other metric, it is desirable to involve as many of the metrics as possible
when detecting anomalies. All of them are suitable to be represented as a time-series
and can thus be used for fitting ARIMA models or performing a correlation analysis as
it was explained in the previous sections.

It is not clear whether an anomaly should be reported if it is occurring just in a single
metric but not in any of the others. This is due to the fact that the previously mentioned
techniques report anomalies based on predefined thresholds or probabilities, but they
do not offer a suitable way of combining the results of time-series from different metrics.
Furthermore it cannot be assumed that each metric is of equal importance when detecting
outliers and an appropriate weighting scheme would be required.

Therefore, instead of individually considering each of these additional time-series that can
be associated with single clusters, a multivariate approach is able to identify outliers in a
higher dimensional space by combining the influence of all features at the same time. This
combination reduces the amount of required thresholds that are necessary to determine
whether a point is an outlier or not due to the fact that each feature contributes to the
position of the point in space simultaneously. This means that while it is possible to
detect an anomaly if one of its features is highly anomalous, also the combined effect of
only smaller deviations that are present in multiple features is sufficient for identifying
this point as an outlier.

An efficient algorithm for outlier detection in high dimensions is introduced by Filzmoser
et al. (2008). The proposed approach emphasizes robustness by rescaling the N samples
using the median and MAD (median absolute deviation) and tackles the problem of expo-
nentially increasing computation time that is prevalent in other existing outlier detection
algorithms when operating in higher dimensions by applying a principal components
analysis (PCA). This not only effectively reduces the amount of dimensions from p to
p∗ while ensuring that the largest possible amount of information is contained in the
principal components, outliers are also likely to stick out even more due to the fact that
they increase the variance along their coordinate and are thus more likely to partially
determine the direction of the principal components. Another advantage of this method
is that the Euclidean norm computed in the principal component space is equivalent to
the Mahalanobis distance in the original space, but is easier to compute. Once the most
relevant principal components of the PCA-transformed data zij have been selected, a
robust kurtosis measure computed by

wj =
∣∣∣∣∣ 1
N

N∑
i=1

(zij −medizij)4

MAD (zij −medizij)4 − 3
∣∣∣∣∣ (5.28)

is used to weigh each component by the likelihood of revealing outliers. Moreover, a
measure of outlyingness is assigned to each sample by applying the translated biweight
function on the robust distances di that are transformed to fit a χ2

p∗ distribution. Using

c = median {d1, ..., dN}+ 2.5 ·MAD {d1, ..., dN} (5.29)

77

5. Time-series Analysis

and defining M as the 0.33 quantile of {d1, ..., dN} the outlyingness is then computed by

w1i =

0 if di ≥ c(

1−
(
di−M
c−M

)2
)2

if M < di < c

1 if di ≤M

(5.30)

where values closer to 0 indicate strong outliers regarding their location and values close
to 1 indicate normal data points. Furthermore, scatter outliers that possess a different
scatter matrix than the rest of the data are effectively detected in the previously described
principal component space when the kurtosis weighting scheme is omitted. For this, the
robust distances are again transformed to a χ2

p∗ distribution and the weights w2i for each
sample are computed by the translated biweight function as before, however setting M2

to the 0.25 quantile and c2 to the 0.99 quantile of a χ2
p∗ distribution. Finally, the weights

computed for location outliers and the weights computed for the scatter outliers are
combined into a final weight by

wi = (w1i + s) · (w2i + s)
(1 + s)2 (5.31)

where the scaling constant s = 0.25 ensures that wi 6= 0 if only one of the two weights is
0. Again, samples with a weight close to 0 indicate a high outlyingness and a threshold
is used to differentiate between outliers and normal data points.

5.6 Algorithm
In order to automate the anomaly detection procedure, an algorithm that involves a
specific sequence of steps was developed. This algorithm is based on the incremental
clustering approach that was already described in Section 3.4 and applies the cluster
evolution techniques described in Chapter 4 on the identified clusters. Then, the procedure
further incorporates the time-series analytics previously described in this chapter in order
to detect anomalies.

A detailed overview about the steps of the algorithm is given by the flowchart in Fig. 5.6.
As it can be seen, steps (1)-(4) describe the previously mentioned incremental clustering
algorithm. In step (1), the log lines are either read from a log file or received line by line
as a stream. They are initially preprocessed in step (2) in order to ensure that they do not
contain any special characters that cannot be represented or compared properly, i.e., all
characters outside of the range [32, 126] from the ASCII table are removed. Furthermore,
multiple consecutive spaces are reduced to a single space as they do not convey any
relevant information and would only increase the distance of otherwise identical lines.
Time-series analysis obviously requires the time stamps of the log lines to be extracted
in order to check that the processed line still lies within the current time window.

Step (3) describes the construction phase that takes place within each time window. The
algorithm iteratively processes the log lines and adds them to the current cluster map

78

5.6. Algorithm

(1) Read input file line by line

Log file

(2) Preprocessing: Extract time stamp,
sanitize strings

(3) Insert line into cluster map of
current time window

Time?

< time window

(5) Determine cluster transitions from
previous to current time window

(6) Compute cluster evolution metrics

(7) Approximate time-series model and
compute one-step ahead prediction

(8) Detect anomalies by comparing
previous prediction with actual value

(9) Find correlations between log lines
by clustering time-series

> time window

(4) Allocate line into cluster maps of
preceding and succeeding windows

Figure 5.6: Flowchart of the anomaly detection procedure. Steps (1)-(4) involve clustering,
steps (5)-(6) involve cluster evolution and steps (7)-(9) involve time-series analysis.

79

5. Time-series Analysis

following the incremental clustering approach that uses filters in order to efficiently detect
the most similar cluster for any incoming log line. In the following, the cluster map that
is established during a specific time window is seen as a static view of the data at that
point and is thus referred to as the cluster map of a specific time step rather than a
period of time. The ordered sequence of cluster maps can also be seen as static snapshots
of the system at specific points in time. However, in order to extract cluster-specific
informations from this sequence rather than only being able to consider the cluster maps
as a whole without any possibility to reliably find any nested connections between the
maps, cluster evolution techniques must be applied. This is accomplished by employing
the clustering model introduced in Section 4. According to the model, the allocation
phase in step (4) clusters all log lines into the already existing cluster maps from the
preceding and succeeding time windows.

Once a time window is completed, i.e., all log lines that occurred within that period are
allocated to a cluster in the cluster map, the log lines of that window have also been
allocated in the previous map and further the log lines of the previous time window have
also been allocated into the current map, step (5) computes the cluster transitions. This
is done by computing the overlap coefficient from Eq. (4.2) for any two clusters from
neighboring time steps. A high overlap indicates that the cluster from the former time
window transformed into the cluster from the later time window, i.e., both of the clusters
were generated by the same underlying process and should therefore be connected. More
sophisticated changes in cluster development, such as splits or merges, are detected using
Algorithm 4.1. After this step is completed, all the connections and relationships between
the clusters from the currently finished time step and its preceding time step are known.

In real-world log files time stamps do not necessarily have to be in the correct order,
i.e., appearing log lines may have time stamps that lie in the past. This can be caused
by components operating with an incorrect system time, wrongly adjusted time zones,
system errors, busy processes that take up all computational power or delays caused by
slow connections or distributed components. In the most cases, these delays lie within a
few seconds and are thus likely to have minor influence as they will still be contained in
the same time window, unless they occur precisely after a time window was finished. For
other cases where delays exceed a reasonable amount of time it can be difficult to adjust
the cluster maps that have already been completed in the past as this would influence
the overlaps that were computed. In the worst case, all the connections between clusters
from maps that occur later than the lagged time stamp would have to be recomputed as
it cannot be guaranteed that the same cluster evolutions would be identified. Due to the
fact that such artifacts only occur very rarely and they are likely to have minor influence
on the overall cluster evolution analysis as they only make up a small fraction of the
totality of log lines, it is suggested to simply overwrite the faulty time stamps with the
last correct time stamp that was read previously.

Given the set of cluster connections, step (6) uses this information for computing the
evolution metrics, including rates about growth, stability and other cluster features
mentioned in Section 4.3. After completing the cluster evolution techniques in steps

80

5.6. Algorithm

(5)-(6), the computed metrics and especially the development of the cluster sizes are then
analyzed by time-series analysis methods in steps (7)-(9). In step (7), the cluster sizes are
approximated by an ARIMA time-series model. There are different approaches on how
to determine the correct parameters of the model and efficiency may play an essential
role as each tracked cluster requires a fitted model that is recalculated in every time step.
According to the theory explained in this chapter, the models are then used to predict the
size of each cluster in the next time step. This is called a one-step ahead prediction as it
is performed in every time step and the forecasting horizon is always set to 1. Following
this logic, there exist a prediction and a confidence interval for every time step except
for the very first one where no preceding values could be processed. Anomalies are
detected in step (8) by checking whether the actual values from the currently processed
time window lies within the expected ranges estimated from the historic values of the
preceding time windows. In the case that the values lie outside of the predicted bounds,
an alarm is raised that gives information about the cluster and the time step where the
anomaly occurred. Due to the fact that an anomaly can appear at any point during a
time window, the average time until it is detected is half of the time window size.

Finally, step (9) describes the correlation analysis. The occurrences and frequencies
of some of the log line types correlate over time which means that the time-series of
the cluster size developments also correlate with each other. The correlation analysis
thus involves clustering together the time-series that share a high correlation coefficient.
In order to accomplish this in an efficient way, the clustering is performed in a similar
manner as the clustering of the log lines. For that, an initially empty list of sets that
contains groups of correlating clusters is created and gradually filled. The first time-series
being added to this list obviously forms a new group as there is no other time-series in
the list that it could correlate to. Every time-series that forms a new group immediately
becomes its representative that is used for the comparison with following time-series. For
any further time-series, the correlation between itself and all the representatives existing
at that point is computed and the time-series is added to the most similar group if the
correlation coefficient exceeds a predefined threshold. Eventually all the time-series are
contained in the list either as a representative or as a member of a group.

The correlation analysis in that form already gives interesting details about the rela-
tionships between clusters that were previously unnoticed. However, in order to detect
anomalies, at least two correlation analyses in different time steps need to be performed
as only the change in correlation is considered anomalous. For example, two time-series
that consistently correlated with each other over several time steps and spontaneously
stop correlating with each other or two time-series without any historic relationships
suddenly start correlating with each other indicate a change of the system behavior.
Note that it is possible to perform the correlation analysis and compare its results with
previous outcomes in every time step just as it was done with the ARIMA predictions.
However, due to performance reasons and as the time-series only change in the most
recent value that was added, it is generally reasonable that the correlation analysis is
only carried out in larger time intervals. The reason for this is that all the points in

81

5. Time-series Analysis

the time-series are of equal weight when computing the correlation, while for the value
predictions the most recent value had a higher influence on the value lying one-step ahead.
Therefore, as all points stay the same except for the most recent one being added and the
oldest one being removed, the correlation can be expected to change only insignificantly
over short periods.

5.7 Aggregated Detection

The previously explained algorithm specifically aims at detecting anomalies for a specific
cluster, i.e., each detected anomaly is associated with exactly one cluster. This clearly
has some advantages, e.g., the cluster representative or the cluster members immediately
give information about the exact type of log line that is affected by the anomaly and it
may therefore be easier to trace back the source of the problem.

However, the enormous amounts of clusters in combination with the probability-based
approach of the prediction limits naturally causes a rather high number of false alarms
that are raised in each time step. For example, if a prediction interval that contains the
actual value with 99% probability is computed for 100 clusters in each time step, 1 false
alarm is raised per time step on average. In practical applications it is therefore a tedious
task to react to every single alarm that is raised and there is a need for a more robust
measure.

An intuitive way to solve this problem is to aggregate the anomalies that occur in each
time step. On average, randomly occurring anomalies caused by natural fluctuations
and noise should occur uniformly distributed over time and are unlikely to collectively
occur in multiple clusters at a single point in time. Given that an actual anomaly usually
affects more than 1 cluster, counting the number of clusters that report anomalies is
therefore a reasonable start. However, this does not incorporate that an anomaly that
lies far outside of the prediction interval should be considered as more anomalous than
an anomaly that just barely exceeds the upper or lower limit. An aggregated measure
should therefore consider the following cases:

(a) No anomalies detected: In the case that no anomalies are detected in any of the
clusters, the aggregated anomaly score should be 0.

(b) Few clusters, small magnitudes: All anomalies occurring in a time step are only
reported from one or few clusters and further none of the anomalies lie far outside
of the prediction interval. Therefore, the anomaly score of this time step should be
low.

(c) Few clusters, large magnitudes: Only one or few clusters report an anomaly, however
one or more of these anomalies lie far outside of the prediction interval. The anomaly
score of this time step should be moderately high.

82

5.7. Aggregated Detection

(d) Many clusters, small magnitudes: Anomalies are reported from many clusters,
however none of the reported anomalies lie far outside of the prediction interval.
Again, the anomaly score of this time step should be moderately high.

(e) Many clusters, large magnitudes: Anomalies are reported from many clusters and
one or more of them lie far outside of the prediction interval. Clearly, this is
the most severe case and thus the corresponding time step should receive a high
anomaly score.

Furthermore, not all clusters should be equally weighted when considering the anomalies
that are detected in their developments. A cluster that has only recently emerged is
likely to report more false alarms due to the fact that too few historic values are available
to properly compute the prediction interval. On the other hand, clusters that have been
existing for a large number of time steps are more likely to exhibit stabilized features
and are therefore more trustworthy. Contributions to the anomaly score of a time step
should hence be weighted according to the respective durations that a cluster has already
been existing.

Before introducing such an aggregated anomaly score, a value st that mirrors anomalous
yt values that fall below the lower limit of the prediction interval to the upper side is
defined for convenience. With the upper prediction limit ut = ŷt + Z1−α2

√
V ar(e) and

the lower prediction limit lt = ŷt −Z1−α2

√
V ar(e), the mirrored value is defined as

st =
{
yt if yt > ut

2ŷt − yt if yt < lt
(5.32)

Note that the first case corresponds to yt lying above the prediction limit, meaning that
no action is necessary. The second case corresponds to yt lying below the prediction limit
causing that the point needs to be mirrored around the predicted value ŷt which is always
positioned in the center of the prediction interval. Therefore, the distance between yt
and the closest prediction limit will remain the same after mirroring. Furthermore, the
set of clusters containing an anomaly at time step t is defined as

CtA =
{
C ∈ Ct : yt > ut ∨ yt < lt

}
(5.33)

With these definitions and the duration τt that measures how many time steps a cluster
has already been existing, the anomaly score at at time step t is defined as

at =

0 if CtA = ∅

1−
∑

C∈Ct
A

(ut·log(τt))

|CtA|·
∑

C∈Ct
A

(st·log(τt))
otherwise

(5.34)

Both ut and st are multiplied with the same log (τt) in order to give clusters that have
been existing for a longer time more weight. The logarithm was used to dampen this
effect.

83

5. Time-series Analysis

Note that ut in the numerator defines the upper limit of the prediction interval and the
variable st in the denominator represents the actual value. It is known that st > ut due
to the fact that only clusters that contain an anomaly at time step t are considered in
the sum and actual values yt < lt have been mirrored to the upper side. As both terms
are weighted equally, the denominator must always be larger than the numerator and
therefore the division is guaranteed to be smaller than 1. Larger deviations from the
expected value, i.e., a higher value for st, hence cause that the division yields values
closer to 0.

Furthermore, including the term
∣∣CtA∣∣ in the denominator accounts for the impact of more

clusters reporting anomalies. Again, a higher amount of clusters reporting anomalies
draws the resulting value closer to 0. Finally, the result is subtracted from 1 in order to
have anomaly scores close to 0 indicating normal behavior while anomaly scores close to
1 indicate anomalous behavior. In practice, an alarm should be raised if the anomaly
score exceeds some predefined threshold.

The characteristics of this equation and the computation of the anomaly score are
demonstrated in an example. Figure 5.7 shows the developments of 3 measured features
from clusters A, B and C as well as the computed prediction intervals and anomalies
detected in each time-series. For this simple demonstration it is assumed that only 3
different types of log lines appear in the log file and thus these 3 cluster developments
appropriately describe the complete system behavior. The first anomaly occurring in the
second steps of every cluster development is ignored in the following as it is caused by
the already mentioned issues that appear when too few historic values are used in the
ARIMA model.

The remaining anomalies can be related to the previously mentioned cases regarding
magnitude and number of affected clusters. Only cluster A is affected by the anomaly
occurring at time step 6, which is corresponding to case (b). This is also true for the
anomaly detected in cluster C at time step 13, however here the magnitude of the
deviation is larger, thus corresponding to case (c). Finally, every cluster reports an
anomaly with rather low deviation in time step 19, which is corresponding to case (d).
No anomalies are detected in all the remaining time steps, thus corresponding to case
(a). Case (e) was omitted for this example. Furthermore, cluster C only emerges at time
step 6, meaning that its contribution to the anomaly score is weighted lower compared
to clusters A and B in every following time step.

At first, time step 6 is considered. The forecasted upper prediction limit of cluster A
computed in time step 5 is 5.81, however the actual value measured in the following time
step is 6. The actual value exceeding the upper limit raises an anomaly that is marked
in the figure with a red circle. At his point in time, the cluster has been existing since 6
time steps and the anomaly score is therefore computed as

a6 = 1− 5.81 · log(6)
1 · 6 · log(6) = 1− 0.97 = 0.03 (5.35)

84

5.7. Aggregated Detection

0 5 10 15 20 25

3
4

5
6

7
8

Cluster A

Time step

y

0 5 10 15 20 25

2
3

4
5

6
7

8

Cluster B

Time step

y

0 5 10 15 20 25

0
5

10
15

Cluster C

Time step

y

Figure 5.7: Developments of clusters A, B and C, including prediction limits and detected
anomalies.

As expected, this is a relatively low score. It is also noteworthy that the weighting
term always cancels out in the case that only one cluster is considered. This is also the
case when all clusters contained in CAt have been existing for the same amount of time.
Only if at least two clusters that report anomalies at time step t have been existing for
different amounts of time steps, the weighting affects their influence on the anomaly score
accordingly.

Next, the anomaly score of time step 13 is computed. The predicted upper limit of cluster
C at this time step is 6.49 and the actual value is 12. Furthermore, the cluster came into
existence 8 time steps ago. The anomaly score is thus

a13 = 1− 6.49 · log(8)
1 · 12 · log(8) = 1− 0.54 = 0.46 (5.36)

85

5. Time-series Analysis

5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Anomaly Score

Time step

S
co

re

Figure 5.8: Aggregated anomaly score of clusters A, B and C.

This is already a larger score due to the higher deviation from the expected value. The
computation of the anomaly score of time step 19 is more complicated as more clusters
are involved. Furthermore, the actual value of cluster A is 3 and therefore falls below
the lower prediction limit of 3.81, i.e., the second case of Eq. (5.32) holds true. Before
computing the anomaly score, the point first needs to be mirrored on the upper side
according to the stated equation. With the predicted value ŷt = 6, the new point is
st = 2 · 6− 3 = 9. Note that the upper prediction limit is 8.19 and thus the distance to
the closest prediction limit remains the same, i.e., |3 − 3.81| = |9 − 8.19| = 0.81. The
upper prediction limits of clusters B and C are 6.30 and 11.80 respectively as opposed to
their actual values, 7 and 12. Furthermore, while clusters A and B have been existing
since 19 time steps, cluster C has only been existing since 14 time steps. The weighting
term log(τt) ensures that the influence of cluster C on the resulting anomaly score is
lower compared to the influences of clusters A and B. This leads to the anomaly score

a19 = 1− 8.19 · log(19) + 6.30 · log(19) + 11.80 · log(14)
3 · (9 · log(19) + 7 · log(19) + 12 · log(14)) (5.37)

= 1− 73.81
3 · 78.78 = 1− 0.31 = 0.69

Due to the fact that the anomaly was recorded in three different clusters, the score is
higher than the score computed at time step 13. Finally, the anomaly scores of all time
steps where no anomalies are reported are set to 0. Figure 5.8 shows a visualization of
the computed anomaly scores that clearly shows the 3 time steps where anomalies occur.
As expected, the anomaly scores of time steps 13 and 19 are significantly larger than the
anomaly score of time step 6.

86

CHAPTER 6
Evaluation

As outlined in the introduction of this thesis, unsupervised methods are able to detect
anomalies on unlabeled data. As labeled data is rare, this is a beneficial setting when
applying such systems in practice. However, a proper evaluation should not solely consist
of a subjective and qualitative interpretation of results achieved on a largely unknown
data set. This is due to the fact that there is no way to tell whether detected anomalies
actually correspond to real anomalies that occurred in the system and whether most of
the anomalies in the data have actually been detected. While it would be easy to perform
the evaluation on synthetic log data as it was done in Section 4.4.2, one could criticize
that this kind of data does not resemble log data as it occurs in the real world and is
therefore not appropriate for a realistic evaluation. As a compromise, the evaluation is
carried out on a semi-synthetically created log file that only contains a specific amount
of anomalies that occur at known points in time. This combines the advantages of the
real world data by incorporating sufficient complexity and the advantages of synthetic
data by enabling the creation of a ground truth table, i.e., a complete set of anomalous
log line types that are known to exhibit certain characteristics at specific time steps.

6.1 Log Data

The generation of the log data was carried out by adapting the approach introduced by
Skopik et al. (2014). The setting consists of a MANTIS Bug Tracker System1 deployed
on an Apache web server. A screenshot of the MANTIS user interface can be seen in
Fig. 6.1. A variable amount of virtual users simulate real user behavior by navigating on
the website. The users perform actions just as real users would do, including reporting,
assigning and deleting issues as well as clicking on entries from the task menu and regularly
logging in and out. Although there is a script with predefined paths underlying the

1MANTIS Bug Tracker available at https://www.mantisbt.org/, accessed 08-November-2017

87

https://www.mantisbt.org/

6. Evaluation

Figure 6.1: Main Page of MANTIS Bug Tracker.

actions of the users, their behavior is highly complex due to random numbers determining
which paths are followed and what kind of selections are made in each step. Clicking on
a certain button therefore does not always generate an identical set of log lines, especially
because they frequently contain the current date or time, IDs as well as random selections,
numbers and strings. Therefore, clustering requires the fuzzy matching approach that
was explained in Chapter 3. Furthermore, some types of log lines (e.g., “Init DB” and
“Quit”) are produced for every single SQL query, while others only occur when a special
action is performed. This is an important characteristic as it implies that the caused
relative changes are of different magnitude in each cluster. In any way, an action always
leads to the generation of a set of log lines and therefore anomalies manifest themselves
in multiple clusters.

Logs are recorded from three components: The Web Server, the SQL database and the
reverse proxy. The logs therefore contain the accessed URLs, user-specific data such as
the MAC address as well as the executed SQL queries. Examples for such lines can be
seen in the sample log lines that have already been shown in Fig. 3.3.

With this setup, an illustrative attack scenario is introduced. The scenario takes place
over the course of 96 hours (4 days) and was simulated in real-time. Five virtual users
are involved in the creation of the logs. Three of them continuously produce normal
behavior, i.e., the likelihood of following certain paths in their script remains unchanged.
For any given time window that is large enough to cover a reasonable amount of actions,
it can therefore be assumed that these users produce a steady average size for all the
clusters. One of the remaining users simulates an automatized software or program that
operates only in the first 30 minutes in every hour. The actions carried out by this user
are also performed by the other users and result in a periodic behavior in the affected
clusters. The behavior of these users is considered to be anomaly-free, i.e., in the optimal

88

6.1. Log Data

Figure 6.2: Timeline of the attacks.

case there should be no alarms for any log line types or time steps. For this scenario, the
final user is assumed to be an intruder who gained unauthorized access to the system
after a social engineering attack. The frequencies of performed actions by this user do
not cohere to the overall behavior of the others. Over the course of the simulation, the
attacker performs the following anomalous actions:

1. Missing periodic event: After 17 hours, the intruder blocks the automatized
program for 1 hour from performing the scheduled event. The log lines corresponding
to the planned actions in this time window are therefore absent from the log file.
Afterwards, the program continues to work as usual.

2. Sudden frequency peak: After 35 hours, the attacker only clicks on a specific
button for 10 minutes. This produces a peak in the recorded frequency of the
corresponding log line types.

3. Long-term frequency increase: After 53 hours, the intruder clicks on another
button for the following 8 hours. This produces a plateau in the recorded frequency
of the corresponding log line types.

4. Gradual frequency increase: After 79 hours, the attacker clicks on a third
button until the end of the simulation. It is assumed for this case that the attacker
knows about the installed anomaly detection system and therefore tries to outsmart
the algorithm by changing the behavior gradually. This avoids rapid changes in
frequency that trigger alarms, while at the same time the learning effect of the
algorithm adapts to the malicious behavior. The future prediction intervals are
influenced by this behavior and after some time, the attacker is able to further
increase the clicking frequency. By continuing this pattern for a sufficient duration,
the attacker should be able to inject arbitrary large frequency changes.

Figure 6.2 shows these attacks on a timeline. Large gaps of several hours were intentionally
left between the injections in order to ensure that previous attacks do not affect the
likelihood of a future attack being detected.

In total, the generated log file consists of around 4 million log lines. The average length
of the log lines is around 246 characters in the raw form and around 218 characters after
removing consecutive white spaces during the preprocessing stage. More than 99.7% of
the preprocessed log lines have a length below 600 characters while the longest line has a
length of 72862 characters.

89

6. Evaluation

6.2 Evaluation Environment
The log data was generated on a general purpose workstation, with an Intel Xeon CPU
E5-1620 v2 at 3.70 GHz 8 cores and 16 GB memory, running Ubuntu 16.04 LTS operating
system. The workstation runs virtual servers for an Apache Web server hosting the
MANTIS Bug Tracker System, a MySQL database and a reverse proxy. The log messages
of these systems are aggregated using syslog.

The anomaly detection algorithm runs on a 64-bit Windows 7 machine, with an Intel
i7-3770 CPU at 3.4 GHz and 8 GB memory. The algorithm was implemented in Java
version 1.8.0.141.

6.3 Results
The evaluation results of an anomaly detection system are frequently dependent on several
factors. The log data at hand often requires fine-tuning of parameters that influence
the effectiveness and efficiency of the algorithm. Settings that optimize the result on a
specific data set may perform poorly on another.

Therefore, several parameter settings are tested and compared. This is supposed to show
the influence of the selected parameters on relevant characteristics, including the quality
of the results and the runtime. Insights gained by such experiments are expected to
generalize also on other data sets and aid the identification of appropriate parameter
ranges in practical applications. Important parameters and their default values are as
follows:

• Similarity threshold t: The threshold used for the incremental generation of the
static cluster maps within each time window. A higher threshold means that log
lines must be more similar in order to be grouped within the same cluster. This also
means that a higher threshold usually relates to a higher total amount of clusters.
Unless otherwise stated, t = 0.9.

• Overlap thresholds θ and θpart: The thresholds used within the transition detection
algorithm. A higher threshold θ means that clusters from different cluster maps
require a higher overlap in order to be connected. Furthermore, θpart specifies the
minimum overlap that is required for clusters that contribute to a transition, i.e.,
to be part of a merge or split. Unless otherwise stated, θ = 0.7 and θpart = 0.2.

• Time window size tw: The cluster maps are generated within each time window.
A larger time window size therefore means that more log lines are used for each
cluster map. Unless otherwise stated, tw = 15 minutes.

• Prediction level α: The prediction level influences the boundaries that are used for
determining whether a point is an anomaly or not. The boundaries form a tube
around the cluster feature and the prediction level specifies the thickness of that

90

6.3. Results

tube. A higher prediction level leads to a smaller size of the tube and therefore
increases the amount of detected anomalies. Unless otherwise stated, α = 0.01,
i.e., 1− α = 99% of the non-anomalous data points should be located within the
boundaries.

6.3.1 Operability

The introduced clustering model and the anomaly detection mechanism are designed to
only focus on dynamic changes that occur over multiple time windows rather than other
forms of anomalies that occur only in a single time window. Such other anomalies are for
example outliers, i.e., log lines that form their own cluster in the construction phase due
to their high dissimilarity to all the other lines and are also not allocated to clusters from
other time windows during the allocation phase. Clearly, there is no way to identify any
temporal changes from such lines as they simply do not exhibit any dynamic features.

While outliers are an extreme example, also clusters containing more than 1 element and
existing for several time steps cannot always be used for detection. Due to the fact that
the ARIMA model requires a number of historic data points before the prediction interval
is reasonably initialized, only anomalies detected in clusters that have been existing for
at least 5 time steps are considered. This is necessary to avoid the relatively high amount
of false alarms that occur in the first few time steps impairing the evaluation results.

There may therefore be a concern that only few log lines remain that are eventually
contained in the cluster evolution process. Such a situation would indicate a low credibility
and could also lead to a poor performance of the algorithm due to the fact that most of
the log lines are never considered for the anomaly detection procedure.

It is therefore important to understand the factors that influence the ability of forming
permanent and stable clusters that exist for at least the minimum amount of time steps
required for a proper anomaly detection. For a given data set, the functioning of the
clustering model in combination with the overlap coefficient determines whether clusters
are effectively mapped over time. The most relevant parameter is thus the similarity
threshold t used in the clustering process. Figure 6.3 shows the amount of log lines that
formed or contributed to evolving clusters which exist for at least 5 time steps plotted
against t. It can clearly be seen that low thresholds (t ≤ 0.5) cause that only 20%−30% of
the total amount of log lines end up in evolving clusters while large thresholds (especially
0.8 ≤ t ≤ 0.9) achieve a representation of more than 90% of all log lines. There is thus a
clear preference for larger thresholds.

The reason behind this tendency is as follows. Lower thresholds lead to fewer clusters in
each cluster map as well as wider ranges of log line types being grouped into the same
clusters. Due to the fact that there is always only one cluster representative responsible
for representing all the contained log lines, also largely dissimilar log lines are represented
by this initial line as only a small similarity is required. However, in other time steps it
is likely that very different cluster representatives are selected. This is because most of
the representatives are selected among the first few log lines occurring after the start of

91

6. Evaluation

a new time window. This behavior is independent from the threshold and caused by the
fact that many of these initial log lines do not match any of the representatives of the
few clusters existing at this point, thereby forming their own clusters. As there is no
proper ordering of log lines but many different types of log lines are grouped within the
same cluster, the selection of the cluster representatives is more or less random where
obviously more frequently occurring log lines are more likely to end up as representatives.
In other words, low similarity thresholds cause that the cluster representatives are not
appropriately representing the log lines allocated to this cluster.

The line types allocated to the different set of representatives also do not properly
correspond to any cluster that exists in another time step. When it comes to the
allocation phase, the log lines that established a cluster in one time step are therefore
likely to be allocated to several clusters from another time step and no clear connections
between single clusters are made. Due to the fact that the overlap metric measures
the strength of these connections, the minimum thresholds θ and θpart for establishing
transitions are not reached. Without transitions, no cluster evolution takes place and
hence there remain large clusters in every time step that do not have any correspondences
in the preceding or succeeding time windows and are thus unable to contribute to anomaly
detection. Reducing θ or θpart would increase the percentage of log lines represented by
evolving clusters, but is also not a reasonable solution due to the fact that rather dissimilar
clusters would be connected and the number of splits and merges would inappropriately
increase without actually representing the development of the system behavior.

On the other hand, large thresholds lead to the formation of many clusters, with most
of them containing highly similar log lines. This corresponds to a finer granularity
of clustering. In every time window, the cluster maps consist of clusters with similar
representatives and thus log lines from one cluster are correctly allocated to a specific
cluster in another time step during the allocation phase. Thereby, distinct connections
between clusters are established and the overlap metric successfully creates transitions
between the cluster maps. Furthermore, it can be assumed that the developments of
single clusters actually represent specific log line types, while random splits and merges
are kept at a minimum so that any changes are clear and comprehensible.

6.3.2 Cluster Evolution Visualizations

Visualizations of the time-series retrieved by cluster evolution techniques aid the un-
derstanding of the anomaly detection mechanism and show the functionality of the
introduced approach. Only taking evolving clusters that were tracked for at least 20 time
steps into account, over 300 such clusters were found. In the following, the plots of some
interesting clusters that exhibit representative features are shown.

There are log lines that appear more frequently than others, e.g., every set of SQL
queries belonging to a certain action always start with a log line stating “Init DB”.
All of the injected attacks involve the creation of SQL queries, therefore the cluster
corresponding to this line type is expected to display the effects of all attacks. Figure 6.4

92

6.3. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Pe
rc

en
ta

g
e

of
 R

ep
re

se
n
te

d
 L

og
 L

in
es

Threshold

Represented Log Lines by Evolving Clusters

Figure 6.3: Effectiveness of cluster evolution approach evaluated by the relative amount
of log lines that are represented by an evolving cluster that exists for at least 5 time
steps.

Figure 6.4: Development of cluster corresponding to log line “Init DB”. Solid black line:
Actual measured cluster size. Dashed blue line: One-step ahead prediction boundaries.
Red circles: Detected anomalies.

93

6. Evaluation

shows the development of the size of this cluster over time. Note that each time step
covers a 15 minute period of occurring log lines, thus the total amount of 384 time steps
corresponds to a time span of 96 hours. The actual measured cluster size (solid black
line) is approximated in every step in order to predict the boundaries (dashed blue lines)
for the following step. Whenever the actual size in the next step falls outside of the tube
that is formed around the curve, an anomaly is detected and marked with a red circle.
The figure shows the following features:

(a) A correctly detected anomaly, i.e., a true positive. This anomaly is corresponding
to the missing periodic event attack. The figure shows that the periodic behavior
is captured very well throughout the simulation as the position of the prediction
interval corresponds to the up-and-down movements of the cluster size. The time-
series model learns the correct period in less than 10 time steps and is further able
to keep the correct periodicity while adjusting to outliers (b), level shifts (c) and
changes in trend (e).

(b) Another correctly detected anomaly corresponding to the sudden increase in fre-
quency. Due to the fact that the duration of this attack is smaller than the length
of a time window, only one time step is affected.

(c) Another correctly detected anomaly corresponding to the start of the long-term
increase in frequency. Also the decrease of frequency at the end of the plateau is
detected correctly. The figure clearly shows that it only takes very few time steps
until the time-series model adapts to the new mean value as there are no anomalies
detected in between the start and the end of the plateau. This demonstrates the
self-learning ability of the time-series model to adapt to changing environments
without the need to manually interfere.

(d) An incorrectly detected anomaly, i.e, a false positive.

(e) An undetected anomaly, i.e., a false negative. This anomaly corresponds to the
gradual frequency increase. As expected, this anomaly is not detected by the
time-series model due to the fact that the frequency change is not rapid enough in
any time step so that the actual cluster size would fall outside of the tube.

All the other points that are not detected as anomalies are therefore correctly unde-
tected data points, i.e., true negatives. This visual evaluation already suggests that the
introduced anomaly detection methodology is successfully able to retrieve the temporal
development of log line frequencies and identify irregular behavior and rapid changes
while keeping the amount of false classifications at a minimum.

One of the main advantages of this anomaly detection methodology is that a high number
of evolving clusters is retrieved from the log file. Thereby, each cluster development may
exhibit some specific characteristics that would remain unnoticed when only considering
the log file as a whole. Some interesting cluster size developments corresponding to

94

6.3. Results

specific log line types are considered in the following. All of them describe differently
complex SQL SELECT statements.

Figure 6.5 shows a cluster that does not have a periodic component, i.e., the log line
representing this cluster is not part of the set of log lines that is created by the event
that is periodically triggered. Therefore, the curve appears smoother and the prediction
limits do not show any regular up-and-down movements.

The figure shows very well that the ARIMA model initially requires a number of time
steps until stable and appropriately sized prediction intervals are computed. After around
20 time steps, the tube flows around the cluster size with a constant width and no single
false positive anomaly is detected in the first 200 time steps. Clearly, neither the missing
periodic event anomaly nor the short-term frequency peak anomaly are detected in this
cluster size development due to the fact that the log lines generated by these events are
not contained in this evolving cluster.

The specificity of this cluster leads to a lower average amount of contained log lines which
makes it easier to detect the remaining anomalies. Although Fig. 6.4 already indicated
those anomalies as well, the magnitude of the change was rather low, i.e., the average
cluster size in each time step increased only by 25% from around 280 to 350 when the
long-term frequency increase anomaly occurred. The cluster size displayed in Fig. 6.5
however increases by 400% from around 20 to 80. Furthermore, this plot shows several
anomalies detected during the gradual frequency increase anomaly while no anomalies
were detected in the previous plot. Especially in the case where a higher prediction level
(i.e., a larger thickness of the tube) is used, anomalies possibly remain undetected in
larger clusters as their contributions to the overall sizes vanish compared to the totality
of contributions from other log lines, while they become clearly visible in smaller clusters.
It should now be apparent that it is necessary to consider all cluster size evolutions for
anomaly detection in order to ensure that anomalies which manifest themselves only in
very specific clusters are detected as well.

Figure 6.6 shows the development of a cluster size that mostly contains periodically
occurring log lines. Due to the fact that these lines appear very regularly and there
are no other log lines causing noise or other fluctuations, the ARIMA model is able to
approximate the curve very closely. This precise fitting of the prediction interval also
leads to several false positives that appear in the later time steps. As expected, several
anomalies are detected in the time step where the missing periodic event anomaly occurs.
The high frequency of the cycle compared to the rather long overall runtime makes it
difficult to see the influence of the anomaly on the cluster size in detail. Therefore, Fig.
6.7 shows the relevant segment of the time-series that contains the missing periodic event
around time step 70. The figure also shows that just one missing event is not sufficient for
the ARIMA model to unlearn the periodic pattern so that once the curve has returned to
its normal behavior the tube is already in an appropriate shape. Obviously, the ARIMA
model would also adjust to permanent changes in periodicity after several time steps
have passed.

95

6. Evaluation

0 100 200 300

0
20

40
60

80
10

0
12

0

Cluster Without Periodicities

Time step

C
lu

st
er

 s
iz

e

Figure 6.5: Development of a cluster size that corresponds to log lines affected by
anomalies regarding long-term frequency increase and the gradual frequency increase.

0 100 200 300

0
20

40
60

80
10

0

Cluster Only Periodicity

Time step

C
lu

st
er

 s
iz

e

Figure 6.6: Development of a cluster size that corresponds to periodically occurring log
lines. This allows the detection of the missing periodic event anomaly.

96

6.3. Results

40 50 60 70 80 90 100

0
20

40
60

80
10

0

Cluster Only Periodicity

Time step

C
lu

st
er

 s
iz

e

Figure 6.7: Detailed view on the segment where the missing periodic event anomaly
occurs.

Finally, Fig. 6.8 shows the size corresponding to a cluster that specifically contains the
log lines affected by the short-term frequency peak anomaly. The fact that this anomaly
manifests itself distinctly in the plot is due to the same reasons already mentioned for the
long-term frequency increase. This visualization also shows the influence of an anomaly
on the following forecasts of the prediction interval. As it can be seen, the interval
increases to an unexpectedly large thickness for around 50 time steps after the anomaly
occurs. This is the result of the large error computed between the anomalous value and
the estimated value increasing the range according to Eq. (5.18).

It was already mentioned before that anomalies occurring within a certain amount of time
steps after an attack are more unlikely to be detected and it would be an intuitive idea to
remove the errors generated by anomalies from the computations in order to avoid these
adverse effects. This would also include the errors generated by false positives. However,
these errors are essential for computing a correct prediction interval. For example, it
would be unjustified to remove the error from the false positives occurring around time
step 100 from the computations as this would result in too narrow prediction limits.

In an unsupervised setting there is no way for the algorithm to determine whether the
detected anomaly is a false positive or a true positive. Given that false positives usually
outnumber true positives it is therefore recommended to keep all the errors for the
computations, despite their influence on future predictions. In practical applications
however, a reasonable compromise would be to omit the errors from anomalous values
that have been confirmed as actual anomalies by a human system administrator.

97

6. Evaluation

0 100 200 300

0
10

20
30

40
50

60

Cluster Containing Spike

Time step

C
lu

st
er

 s
iz

e

Figure 6.8: Development of a cluster size that shows the short-term frequency peak
anomaly.

6.3.3 Rates

Quantitative metrics are required for an appropriate comparison of results achieved by
different parameter settings or different anomaly detection algorithms. Due to the fact
that the data set is known to be free of anomalies except for the four injected attacks,
it is possible to compute measures that assess the quality of the result in an objective
and replicative way. As already mentioned, a ground truth table containing both the
time steps and samples of log lines that were generated during the respective attacks
was assembled. An anomaly is detected by the algorithm at a specific detection time
step td and for a specific cluster with representative rd. Anomalies are only counted as
true positives (TP) if the ground truth table contains an entry with expected time step
te ∈ [td − 30min, td + 60min] and expected log line content re so that sLev(re, rd) ≥ t,
i.e., the similarity must be greater or equal to the threshold that was used for clustering.
Detected anomalies that do not fulfill one of these requirements are counted as false
positives (FP). Entries from the ground truth table that remain undetected are counted
as false negatives (FN), i.e., actually occurring anomalies that remained undetected.
Due to the fact that the ground truth table only contains anomalies but does not define
all the non-anomalous log lines and their respective time steps, the amount of true
negatives (TN) cannot simply be counted and has to be determined computationally.
TN is therefore computed by summing up all the time steps in every cluster that were
not detected as anomalies and subtract FN . Table 6.1 gives an overview about the
relationships of these values in a so-called confusion matrix.

98

6.3. Results

Actual State
Anomalous Normal

Detected
State

Anomalous TP FP
Normal FN TN

Table 6.1: Confusion matrix

It is common to compute rates based on these measures (Powers, 2008). The true positive
rate (TPR), also known as Recall (R) or sensitivity, represents the fraction of correctly
detected anomalies from the total amount of actually existing anomalies and is computed
by

TPR = R = TP

TP + FN
(6.1)

Clearly, TPR ∈ [0, 1] and a high TPR is favorable as it implies that many of the actually
existing anomalies have been detected. However, the TPR neglects the amount of FP
and is therefore on its own not an appropriate measure for determining the overall quality
of the detection.

In order to overcome this problem, the false positive rate (FPR) is frequently used in
combination with the TPR. The FPR represents the fraction of incorrectly detected
anomalies from the total amount of non-anomalous data points. The rate is computed by

FPR = FP

FP + TN
(6.2)

and again FPR ∈ [0, 1]. Anomaly detection techniques try to keep the amount of false
alarms at a minimum, hence a lower FPR is favorable.

A related metric that is often mentioned in combination with R is the Precision (P)
or confidence that measures the fraction of correctly detected anomalies from all the
detected anomalies. The Precision is computed by

P = TP

TP + FP
(6.3)

and again P ∈ [0, 1]. A higher P is favorable as it implies a lower amount of FP in
relation to the amount of TP .

6.3.4 ROC Analysis

The previously mentioned metrics are now used for creating the Receiver-Operator-
Characteristic (ROC). ROC plots are frequently used for comparing classifiers in machine
learning (Powers, 2008). In the ROC analysis, TPR on the y-axis is plotted against
FPR on the x-axis. Thereby, each classifier with a specific setting yields exactly one
point in the ROC plot. In general, the classifier that results in a point that is closest
to the top-left corner of the plot is seen as the best classifier. This is due to the fact

99

6. Evaluation

that the top-left corner of the plot represents TPR = 1 and FPR = 0 and thus the most
favorable result. Furthermore, the first median (TPR = FPR) shows the performance
of a random guesser. Any proper classifier should therefore yield a point which lies left
to the first median.

Clearly, different parameter settings affect TPR as well as FPR and therefore influence
the point that is yielded in the ROC plot. In order to visualize the influence of a
parameter, it may be desirable to connect these points with a line. The curve formed
by these lines should start at the bottom-left corner of the plot (TPR = 0, FPR = 0)
representing a very weak threshold where no anomalies are detected and end up at the
top-right corner of the plot (TPR = 1, FPR = 1) representing a very strict threshold
that leads to all data points being detected as anomalous. However, not all parameters
are fitted for this purpose. It is a requirement that with an increasing value for this
parameter, both TPR and FPR do not decrease, i.e., the resulting curve in the ROC
plot must always be directed towards the top-right corner of the plot. Such a parameter
is the prediction level α. A low value for α leads to a large prediction interval and
therefore only anomalies with extreme deviations are detected, i.e., the algorithm will
miss most of the anomalies but also exhibit a low false alarm rate (TPR ≈ 0, FPR ≈ 0).
On the other hand, a high value for α leads to a small prediction interval which will
lead to almost all data points being detected as anomalies, independent from whether
they actually are anomalies or not (TPR ≈ 1, FPR ≈ 1). Somewhere in between lies a
trade-off value that maximizes TPR and minimizes FPR. In the following, α is varied
from very low to very high values in order to compute the points necessary to plot the
curves and to identify this optimal value.

Choosing the value for the similarity threshold t is a crucial decision. Figure 6.9 shows
the ROC plot with a number of curves that represent the quality of the result for different
settings of t. Thresholds smaller than 0.5 were omitted as they do not represent a
sufficient amount of log lines so that their TPR and FPR are not necessarily valid for
other attacks or datasets. The displayed curves all lie left to the first median, thereby
showing that the algorithm is successfully able to detect anomalies in the correct clusters
and the correct time steps. Comparing the performances for different thresholds with
each other does not give a distinct trend as both large (t = 0.9) and small (t = 0.5)
thresholds are outperformed by t = 0.85 and t = 0.875. This mostly corresponds to the
insights gained in Section 6.3.1 as these thresholds also achieved the highest percentage
of log lines contained in evolving clusters. It can therefore be concluded that for an
appropriately good performance the selected threshold must fit the data well, i.e., be
large enough to correctly differentiate the occurring log line types while still being small
enough to avoid the creation of outliers due to IDs, time stamps or other artifacts in the
strings.

The previously mentioned trade-off between a high TPR and a low FPR can also be
seen in every curve. In practice, α should be set so that the resulting point lies at the
“bend” of the curve that is close to the top-left corner. It must be specifically noted at
this point that TPR = 1 would indicate that an anomaly was detected at the correct

100

6.3. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

T
PR

FPR

Threshold ROC Curve

1st median
0.9

0.875
0.85
0.8

0.75
0.7
0.6
0.5

Figure 6.9: ROC curves showing anomaly detection performance for different similarity
thresholds.

time step in every single cluster that is related to the action performed during the attack.
As false alarms are often regarded as adverse and it would already be sufficient to detect
every anomaly in at least one cluster in order to count the corresponding anomaly as
detected, it should not be the main priority to achieve the highest possible TPR but
rather to reasonably minimize FPR. E.g., for t = 0.875 a practically reasonable α would
be 0.001 as it achieves TPR = 0.618 and FPR = 0.007.

Similar to the threshold, the time window size tw is difficult to chose due to the fact that
an appropriate setting requires experiments or knowledge about the data. A small time
window size corresponds to a fine granularity, i.e., changes that occur in short periods
are more distinctly present. However, this also causes that there may be time windows
where certain types of infrequently appearing log lines are not present at all, which
would produce a cut in the time-series of an evolving cluster. On the other hand, large
window sizes have the advantage of producing less volatile time-series but also average
out short-term anomalies which are then less likely detected. Furthermore, large time
window sizes increase the detection time, i.e., the duration between an attack occurring
and this attack being detected. This is due to the fact that on average an attack occurs
uniformly distributed within any time window, however is only detected at the end of
that time window. The average detection time is therefore computed by tw

2 .

The anomalies occurring in the data set used in this scenario are differently affected by
the choice of tw. Both long-term attacks are less likely to remain undetected due to
the fact that their caused change in system behavior usually exceeds a reasonably sized

101

6. Evaluation

time window. On the other hand, the short-term frequency increase only takes place
during 10 minutes and may therefore be missed when large window sizes are used, e.g.,
the anomalous lines make up 2

3 of the time window when tw = 15 minutes but only make
up 1

6 of the time window when tw = 60 minutes. Furthermore, the time window size may
emphasize, distort or hide periodic behavior occurring in the data due to the fact that
the time window and the periodic interval are misaligned or the time window size exceeds
the period altogether. It is therefore difficult to predict how the selection of the time
window size influences the ability of detecting attacks related to the periodic behavior.

In order to investigate the influence of the data set, ROC plots were also produced
from the results of the anomaly detection processing a more complex data set. For
the generation of this data set, identical attacks were scheduled, i.e., the affected time
intervals and the absolute number of anomalous log lines are the same as before. However,
5 additional users constantly produce log lines corresponding to normal behavior, thereby
increasing the total number of log lines that are clustered in every time window. This
causes the effects of the anomalies to appear smaller due to the fact that there is a smaller
fraction of anomalous lines in every time window and hence it is more likely that the
algorithm misses actual anomalies.

Figure 6.10 shows the comparison between the ROC curves from the complex data set
displayed as solid lines and the previously computed ROC curves displayed as dashed
lines. As it could be expected, the curves from the complex data set mostly lie below the
original curves due to the previously mentioned issues, indicating a decline in performance.
Surprisingly, t = 0.7 poses an exception to this pattern as the results improved on the
complex data set. The reason for this is that only for this similarity threshold the
percentage of log lines contained in evolving clusters increased compared to the simple log
file, meaning that more evolving clusters could be used for performing anomaly detection.
This issue was already mentioned in Section 6.3.1 and is linked to the fact that even
though there are more users producing noise, the overall variability of the cluster sizes
recorded at the end of each time window decreases and thus better predictions can be
made. The decreased variability also means that it is less likely that the development of
an evolving cluster is interrupted due to randomly occurring non-representative log lines
within certain time windows.

Figure 6.11 shows the ROC curve for different settings of the time window size tw. Again,
all curves lie left of the first median. However, some of the curves perform worse than
others. Especially for a reasonably low false positive rate, e.g., FPR = 0.03, the small
time window sizes < 60 minutes clearly outperform the larger time window sizes. This is
due to the previously mentioned issues that appear when the time window size is larger
than the duration of the attacks. Furthermore, tw = 7 minutes causes a similarly poor
performance due to the fact that it does not properly align with the periodic behavior
that repeats every 60 minutes and thereby leads to highly sporadic cluster developments
in all clusters that are affected by the corresponding log lines. The best possible choices
that aim at a low FPR are therefore time windows that are factors of this interval, e.g.,
15 minutes or 30 minutes.

102

6.3. Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

T
PR

FPR

Complexity ROC Curve

1st median
0.85 simple

0.85 complex
0.8 simple

0.8 complex
0.7 simple

0.7 complex
0.6 simple

0.6 complex

Figure 6.10: ROC curves showing the influence of data complexity on the anomaly
detection performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

T
PR

FPR

Time window size ROC Curve

1st median
7min

10min
15min
20min
30min
45min
60min
90min

120min

Figure 6.11: ROC curves showing anomaly detection performance for different time
window sizes.

103

6. Evaluation

6.3.5 Precision-Recall Plots

In the scenario used for this evaluation the amount of non-anomalous data points largely
outweighs the amount of anomalous points and the data set is thus strongly imbalanced.
This is assumed to be generally valid for real-world log files and is a requirement for
anomaly detection based on unsupervised learning due to the fact that the algorithm
cannot differentiate between normal and abnormal behavior otherwise. However, Saito and
Rehmsmeier (2015) point out that ROC plots are often misleading whenever evaluation
is carried out on such imbalanced data sets. This is due to the fact that the precision
P is left out from the evaluation, even though it is usually an easy to interpret value
and an important criterion when ranking and selecting classifiers. Furthermore, the first
median that represents a baseline in the ROC plot does not change depending on the
balancedness of the data sets. The authors therefore recommend precision-recall (PR)
plots that use P rather than FPR and are able to dynamically adjust the baseline.

Figure 6.12 shows the PR plot for different thresholds. The TPR that was plotted on
the y-axis in the ROC curve is now plotted as recall R on the x-axis. Classifiers that
achieve a high recall (R = 1) and a high precision (P = 1) are favorable and yield points
that are close to the top-right corner of the plot. The selection of the prediction level
shows a similar trade-off that was already visible in the ROC plot: A large prediction
interval caused by a low α leads to a high P but only a low R. This is due to the fact that
only few data points are detected as anomalous, because most deviations do not exceed
the prediction limits, while the ones that are detected are very likely actual anomalies.
Resulting points therefore lie closer to the top-left corner of the plot. On the other hand,
a small prediction interval caused by a high α leads to a high R but only a low P due to
the fact that random noise is frequently misclassified as an anomaly. Again, reasonable
values that maximize both P and R are achieved by moderate prediction levels.

The baseline for the precision that represents the performance of a random guesser is
determined by the fraction of actual anomalies defined in the ground truth table from
the total amount of data points. However, due to the fact that the total amount of data
points changes when the threshold is changed, this baseline is different for every curve.
Furthermore, the average precision by a random guesser would only marginally exceed
0, because the total amount of data point heavily exceeds the amount of entries in the
ground truth table. For these reasons, the baselines were omitted from the plot.

The curves in the plot indeed give a different view of the results. Especially t = 0.6
yields P = 0.28 and R = 0.67 for α = 0.005 and thereby outperforms all other thresholds
for that α. Besides that, the threshold values t = 0.875 and t = 0.85 that have already
performed well in the ROC plot are again superior to all the other thresholds over a
broader range of the prediction level.

Figure 6.13 shows the PR plot for different time window sizes. A surprising observation
is that the highest P is reached by tw = 20 minutes. Nevertheless, tw = 30 minutes
appears to be the best choice as it maximizes both P and R. The bad performances of
time window sizes that exceed 60 minutes that were already visible in the ROC plot are

104

6.3. Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

Threshold PR Curve

0.9
0.875
0.85
0.8

0.75
0.7
0.6
0.5

Figure 6.12: Precision-recall plot showing anomaly detection performance for different
similarity thresholds.

confirmed again. The PR plot however shows much clearer that tw = 7 minutes is in no
way able to keep up with the other thresholds regarding the precision. Interestingly, the
precision of tw = 45 minutes contradicts the general trend and shows a declining precision
for low α values. The reason for this is that with an increasing prediction interval, more
correctly classified true positives fall inside the tube and are not reported as anomalies
anymore.

6.3.6 Runtime and Scalability

In the previous sections, the influences of the similarity threshold t and time window size
tw on the quality of the result were investigated and it became apparent that specific
ranges of values are clearly superior to others regarding TPR, FPR or P . It would
therefore be natural to select the values of the parameters solely on the performance
visible in the ROC or PR plot. However, anomaly detection is computationally intensive
and therefore also the runtime of the algorithm must be considered when choosing
parameter values.

Figure 6.14 shows the recorded runtime for different threshold values. From a runtime
perspective, moderate values around t = 0.6 are clearly favorable over extreme values close
to 0 or 1. The reason for this lies in the functional interaction of two main components of
the anomaly detection algorithm: The clustering and the fitting of ARIMA models. First
of all, it should be clear that the extreme case of t = 0 is not reasonable as this would
cause all log lines to be allocated into a single cluster, which is identical to skipping the

105

6. Evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

Time window size PR Curve

7min
10min
15min
20min
30min
45min
60min
90min

120min

Figure 6.13: Precision-recall plot showing anomaly detection performance for different
time window sizes.

clustering at all and just observing the total amount of log lines occurring in every time
window. In general, a smaller threshold results in less clusters and it is therefore logical
that less time needs to be spent with approximating and extrapolating ARIMA models.
Furthermore, there is a smaller number of clusters available that a line could be allocated
to. However, due to the small similarity threshold, most of these clusters are potential
candidates due to the fact that neither filtering for line length nor filtering according to
n-grams effectively eliminates cluster candidates. Therefore, the computationally complex
string distance metric has to be computed multiple times for every incoming log line in
order to determine the best fitting cluster. With increasing t, these filtering steps become
more effective and therefore the runtime decreases initially.

However, an increasing number of clusters also shows its effects once the critical point
around t = 0.6 is passed. Each evolving cluster corresponds to a time-series that needs
to be represented as an ARIMA model which is then used for prediction. This is a
time-consuming operation that dominates the runtime for larger thresholds. Especially
from t = 0.8 on the runtime grows at a very high rate and it was not possible to perform
any runs with t > 0.9 due to limitations in available processing power. Finally, setting
t = 1 is most probably not a reasonable choice as only completely identical lines are
grouped in clusters. Especially for data sets where all log lines are unique due to time
stamps or IDs, this would mean that no cluster evolution takes place. Although this
would reduce the runtime due to the fact that it is not necessary to create any ARIMA
models, there is obviously no way to detect dynamic anomalies with this setting.

106

6.3. Results

 380

 400

 420

 440

 460

 480

 500

 520

 0 0.2 0.4 0.6 0.8 1

R
u
n
ti
m

e
in

 M
in

u
te

s

Threshold

Threshold Runtimes

Figure 6.14: Total runtimes for different similarity thresholds.

The importance of the ability for online processing was emphasized multiple times
throughout this thesis. Although a reasonably sized runtime indicates that the computa-
tional requirements lie within a manageable scope, efficiency is only half of the story. In
order to ensure the ability to process data streams of arbitrary length, a linear scalability
is required, i.e., the runtime must only linearly depend on the number of log lines. In
other words, increasing the amount of log lines by a factor n should only increase the
required runtime by a factor smaller or equal to n. This characteristic was empirically
verified by measuring the elapsed time after each set of 50, 000 log lines. Figure 6.15
shows these cumulated times for different similarity thresholds that were retrieved when
performing anomaly detection on the scenario used in this evaluation. This means that
also the attacks are contained in the log data, however no significant changes in the
runtime can be observed at any point. As it can be seen, the runtimes exhibit a linear
behavior independent from the chosen threshold. The cumulated runtimes retrieved after
all log lines have been processed directly correspond to the total runtimes shown in the
previous plot and thus identical conclusions about the influence of the threshold on the
required runtime can be drawn.

Next, the influence of the time window size on the runtime is investigated. Figure 6.16
shows the total runtimes that were measured for different values of tw. It can immediately
be seen that there is an increase in runtime for large time windows (tw > 60 minutes),
while tw = 30 minutes and tw = 15 minutes show the lowest runtimes. Other than for
the threshold, the time required for fitting the ARIMA model is the major cause for the
different runtimes, while the time used for clustering is more or less independent from tw.

107

6. Evaluation

 0

 100

 200

 300

 400

 500

 600

0 1e+06 2e+06 3e+06

R
u
n
ti
m

e
in

 M
in

u
te

s

Processed Log Lines

Threshold Scalability

0.9
0.875
0.85
0.8

0.75
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Figure 6.15: Plot showing the continuously measured runtime that is required for
processing a certain amount of log lines. The runtime scales linearly for all considered
similarity thresholds.

The reason for this is that always a fixed number of data points from the past are stored,
independent from the selected time window size. For example, when 48 historic values
are stored for fitting the time-series model, the last 48 hours are used for computing the
prediction intervals when tw = 60 minutes, but only 12 hours are used when tw = 15
minutes. A smaller time window size therefore causes the algorithm to remove data
from the past earlier and anomalies in the historic data thus have less influence on the
predictions. It is also computationally faster to fit an ARIMA model on the anomaly-free
data, thereby leading to shorter runtimes for smaller time window sizes. It was already
mentioned that tw values that do not align with the periodic behavior of the data cause
the resulting curves to be more spurious. For example, the periodic interval in this
scenario consists of two consecutive 30 minute intervals and can therefore not be captured
properly with tw = 20 minutes, but rather tw = 15 minutes or tw = 30 minutes.

An alternative implementation could only store data points that lie within a fixed duration
in the past, e.g. the last 24 hours. This has some obvious implications regarding the
runtime. The smaller the time window size is selected, the more data points have to be
considered when fitting the ARIMA model. Therefore, the runtime is likely to increase
for short time windows and decrease for large time windows in this setting.

Finally, Figure 6.17 shows the scalability of the algorithm with respect to several time
window sizes. The interpretation is identical to the previous scalability plot that focused
on the threshold. Again, all curves exhibit a linear behavior and it can thus be concluded

108

6.4. Aggregated Detection

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 900

 0 20 40 60 80 100 120

R
u
n
ti
m

e
in

 M
in

u
te

s

Time window size

Timewindow Runtimes

Figure 6.16: Total runtimes for different time window sizes.

that the algorithm is able to ensure the processing of streams in real time, independent
from the selection of tw and under the assumption that the available computation power
is sufficient to process incoming log lines faster than they appear.

6.4 Aggregated Detection

Aggregating the detected outliers from all clusters gives an overview of the current state
of the whole system. The anomaly score introduced in Eq. (5.34) is a measure for the
deviation from the expected cluster sizes from all clusters that exist for at least 20 time
steps. Figure 6.18 shows the anomaly scores yielded in every time step using t = 0.875,
tw = 15 minutes and α = 0.00001. The value for α was chosen rather small in order to
minimize the influence of false positives while emphasizing the large deviations occurring
in specific clusters where the anomalies manifest themselves clearly. The intervals shaded
red indicate the appearances and durations of the injected anomalies.

The plot confirms the previous observations regarding the successful detection of the first
three anomalies. The anomaly relating to the long-term frequency increase once more
shows very distinctly that the algorithm only detects changes of the system behavior,
but immediately adjusts to shifts and trends. For that reason, almost no anomalies are
detected within the interval shaded red. Only when the system returns to the normal
behavior, the anomaly score again increases to an alarming level. There further exist a
few spikes outside of the shaded regions which are either false positives or artifacts from
previous anomalies, e.g., the small spikes around time step 250.

109

6. Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

0 1e+06 2e+06 3e+06

R
u
n
ti
m

e
in

 M
in

u
te

s

Processed Log Lines

Timewindow Scalability

7min
10min
15min
20min
30min
45min
60min
90min

120min

Figure 6.17: Plot showing the continuously measured runtime that is required for
processing a certain amount of log lines. The runtime scales linearly for all considered
time window sizes.

Figure 6.18: Anomaly score of every time step. The phases of occurring attacks are
shaded in red.

110

6.5. Application on Real Log Data

In practice there may be a need for an alarm threshold that defines at what level the
aggregated anomaly score triggers a warning. In the case of this scenario, a threshold
around 0.4 would be reasonable as all the anomalies and only a single false positive would
raise alarms. Other settings such as a higher α however require a different threshold in
order to compensate that anomalies are detected more easily. Moreover, the intensity of
anomalous effects may change depending on the dataset and application area. Selecting
an appropriate alarm threshold thus remains an open question and should be decided
individually for each system by observation and empirical knowledge. Due to the fact that
the anomaly score again creates a time-series, it may stand to reason to employ time-series
analysis methods for detecting anomalous time steps. As periodic behavior is already
captured by the models used to approximate the developments of the individual clusters
and the anomaly score remains at 0 over long periods, one-step ahead prediction using
ARIMA does not appear to be an appropriate modeling technique. Most probably, filters
that involve outlier detection are a fitting choice for this task. A theoretical investigation
of such a filter is given in Section 5.4, but due to the wide-spread prominence and diversity
of these methods, no evaluation of such filters was carried out in the scope of this thesis.

6.5 Application on Real Log Data

As previously mentioned, real log data does not allow a proper evaluation because of
a missing ground truth table. Nevertheless, processing a real dataset gives additional
insights into the applicability of the methodology. Therefore, the anomaly detection
algorithm was applied using log data that was collected within the Austrian Institute of
Technology (AIT). Both automatized processes that operate with different periodicities
as well as erratic human behavior contribute to the captured logs. Due to data security
reasons, no details or samples of this dataset are given.

The logs were recorded over the course of 1 week without any interruptions. The following
parameters were selected: t = 0.8, tw = 30 minutes, θ = 0.7 and θpart = 0.2. With this
setting, more than 90% of the total amount of log lines are successfully represented by
evolving clusters that exist for at least 5 time steps. Figure 6.19 shows an exemplary
cluster size development that exhibits interesting characteristics. A time window size
of 30 minutes means that 1 day is represented by 48 time steps. The patterns that are
visible in the plot appear accordingly to this interval on the first, second, third and
seventh day. As expected, these plateaus are correctly identified as anomalies. The
ARIMA model was set up to recognize periodicities repeating within a maximum of 12
hours and this pattern is therefore not learned. In order to capture larger periodicities,
it is recommended to run the algorithm multiple times in parallel but with different
time window sizes. This avoids that too many historic data points have to be stored in
memory.

Other plots exhibited artifacts that corresponded to the displayed cluster size but differed
in shape and magnitude. Furthermore, some clusters captured the highly precise periodic
behavior of scheduled programs or the noisy behavior of randomly interfering events.

111

6. Evaluation

0 50 100 150 200 250 300

0
50

0
10

00
15

00
20

00

Evolving Cluster

Time step

C
lu

st
er

 s
iz

e

Figure 6.19: Development of a cluster size measured on real data.

Figure 6.20: Anomaly score computed on real data.

Figure 6.20 shows the aggregated anomaly score computed for all clusters that exist for
at least a total of 100 time steps. Due to the fact that the artifacts displayed in the
previous plot are of rather high magnitude and also appeared in other clusters, they
are also visible in the anomaly score plot. Furthermore, anomalies from other clusters
also yield a rather high anomaly score, e.g., at time step 150. It appears that the most
anomalies occurred during the third day and only few anomalies occurred on the fourth,
fifth and sixth day.

112

6.5. Application on Real Log Data

Obviously there was no known attack taking place during the time where the log was
captured and the detected anomalies only correspond to harmless events such as updates.
It is not surprising that the algorithm detects such events as anomalies due to the fact
that the attacks are assumed to manifest themselves in exactly the same way. There is
thus no simple way for an algorithm to differentiate between an anomaly corresponding
to an attack and an anomaly caused by regular events such as updates. This is an obvious
drawback that affects unsupervised self-learning anomaly detection methods in general.
Nevertheless, in critical systems the risk of frequent false alarms is accepted in order
to ensure that attacks that are difficult to detect for other methods are not overseen.
Furthermore, the knowledge of the human administrator about scheduled events that are
possibly detected as anomalies should be sufficient to dismiss many of the false positives
immediately. All in all, both the evaluation on semi-synthetic data as well as the results
retrieved from real data suggest the effectiveness of the introduced anomaly detection
methodology.

113

CHAPTER 7
Conclusion and Future Work

A methodology for dynamic anomaly detection in log files was introduced in this thesis.
This methodology comprises a sequence of steps that are carried out for every processed
log line. Within a time window of predefined length, all log lines occurring within that
window are incrementally grouped by similarity in order to establish a static cluster map.
Furthermore, the log lines are also allocated to the already existing cluster maps that
were created to the preceding and succeeding time windows. For any two neighboring
cluster maps in the resulting sequence, this clustering scheme establishes a connection
between individual clusters of two static cluster maps that previously did not share any
common elements. An overlap metric then measures the likelihood of a cluster from one
cluster map transforming into another cluster from the succeeding cluster map.

An algorithm then allows the detection of advanced transitions such as splits or merges.
In addition, metrics that give information about the state of the individual clusters,
their relationships and interdependencies were defined. These metrics as well as cluster
features such as the size conveniently form time-series that are effectively approximated by
ARIMA models. A one-step ahead forecast of these models in every time step then allows
the detection of anomalies in a fast and reliable manner. Due to an efficient clustering
algorithm and a time-series model that only requires a fixed set of preceding values, this
methodology allows online processing of data streams in real-world applications.

In order to demonstrate the applicability, a prototype that incorporates the anomaly
detection methodology was placed into an illustrative scenario. Within this scenario,
a semi-synthetically generated log file was used for evaluating the ability of detecting
certain types of known anomalies. Furthermore, the influence of important parameters
as well as the effects on the runtime and scalability of the algorithm were investigated.
Promising performances were achieved for most parameter values and fine-adjustments
could optimize the quality of the results. The anomaly detection applied on the devel-
opments of individual clusters as well as an anomaly score aggregated over all evolving
clusters showed clear peaks when the injected attacks affected the system behavior. When

115

7. Conclusion and Future Work

the algorithm was executed on a real log file, several relevant changes of system behavior
that corresponded to alterations of log frequencies could be observed.

The parameters that were changed in the evaluation obviously only make up for a small
part of the potential modifications that could positively influence the ability of detecting
certain types of anomalies or processing log files of a different composition. For example,
the incremental clustering algorithm could be replaced by any other machine learning
technique that is able to group similar strings in an unsupervised manner as long as
it is possible to separate a construction and an allocation phase that are required for
determining the evolution of the clusters. Despite higher computational requirements,
the mentioned overlap metric that takes multiple time windows into account when
determining the connections between clusters could result in more reliable evolutions.

Even more possibilities for enhancements exist for approximating time-series other than
ARIMA models that may be beneficial due to their robustness or ability to pick up
periodicities, e.g., Holt-Winters or ETS. Alternatively, filters that are usually applied for
smoothing time-series are also suited for detecting outliers on historic data without any
need for computing prediction intervals of future values. Such a robust filter was discussed
in Section 5.4. Moreover, methods that employ change point analysis are promising
solutions to detect anomalies that cause gradual and long-term changes. Especially the
fourth injected anomaly that remained undetected in many clusters could successfully be
identified by such techniques (Killick et al., 2012).

The evaluation focused on the size of the cluster as it directly represents the frequency of
the corresponding log line types in the respective time windows and was thus appropriate
to detect the injected attacks. However, many other useful metrics that were defined
in Sections 4.2 and 4.3 were left out from practical analysis, even though they could be
better fitted for special types of anomalies. Other than performing anomaly detection on
time-series created on each of these features alone there is also the possibility to combine
them and apply multivariate outlier detection as it was described in Section 5.5. This
could enhance the ability of the algorithm to identify otherwise undetected attacks.

A more fundamental problem arises when tracking individual clusters at split or merge
points. Several reasonable solutions were stated in the thesis, however all of them lead to
cutting away all but one evolving cluster from the plot displaying the development of a
certain feature. Rather than focusing only on one of the paths, a sophisticated technique
could be able to analyze the graph of evolving clusters as a whole. Both the detection of
anomalies in this graph as well as a visualization of the overall cluster developments pose
interesting research topics.

Finally, the problem of rather high amounts of false positives that all anomaly detection
techniques suffer from remains unsolved. It appears that every attempt to make the
algorithm more robust against such influences at the same time restricts its ability of
detecting certain types of anomalies. Trustworthy and up-to-date domain knowledge
about the specific use case would be required in order to additionally support the
self-learning methods in differentiating between normal behavior and an actual anomaly.

116

List of Figures

1.1 Example of cluster evolutions spanning over 3 time windows. 5

3.1 Example for the computation of the Levenshtein distance between two sample
strings. 28

3.2 Incremental clustering procedure employing a stack of filters for increased
performance. 30

3.3 Excerpt from a log file. 31

4.1 Illustrative example of cluster evolution showing a split as well as changes in
size, distance and compactness. 34

4.2 Illustrative example how lines are allocated to two different clusters from two
consecutive time steps. 37

4.3 Sample log lines used for the demonstration of a calculated example. 51
4.4 Exemplary cluster evolutions over a total of 6 time windows. 52
4.5 Cluster sizes plotted as time-series. Blue: 4, Green: ©, Red: �. 54
4.6 Cluster size and absolute growth rate over time of log lines produced by

short-term periodic process “A”. 57
4.7 Cluster size and relative growth rate over time of log lines produced by

long-term periodic process “B”. 57
4.8 Cluster size and absolute growth rate over time of stepwise decreasing log

lines produced by process “C”. 58
4.9 Cluster size and relative growth rate over time of stepwise increasing log lines

produced by process “D”. 58
4.10 Cluster size, split rate, current change rate and stability rate over time of log

lines produced by process “F” (red line) splitting from process “E” (black line). 59
4.11 Cluster size, merge rate, previous change rate and stability rate over time of

log lines produced by process “H” (red line) merging into process “G” (black
line). 60

4.12 Cluster size, mean and variance over time of log lines with stepwise increasing
spread produced by process “I”. 61

5.1 Red line: AR(2) process. Blue line: MA(2) process. 65
5.2 ACF and PACF plots of AR(2) and MA(2) processes. 66

117

5.3 A sample time-series. Solid line: Actual measured values. Dashed lines:
Computed upper and lower prediction limits. Red circles: Anomalies 70

5.4 Sample sine waves that exhibit different characteristics and CCFs of a base
sine wave and its changes regarding amplitude, vertical shift, frequency and
horizontal phase-shift. 72

5.5 Time-series Y (black line) and Z (red line) that correlate between time step
1, ..., 10 and stop correlating afterwards. 74

5.6 Flowchart of the anomaly detection procedure. Steps (1)-(4) involve clustering,
steps (5)-(6) involve cluster evolution and steps (7)-(9) involve time-series
analysis. 79

5.7 Developments of clusters A, B and C, including prediction limits and detected
anomalies. 85

5.8 Aggregated anomaly score of clusters A, B and C. 86

6.1 Main Page of MANTIS Bug Tracker. 88
6.2 Timeline of the attacks. 89
6.3 Effectiveness of cluster evolution approach evaluated by the relative amount

of log lines that are represented by an evolving cluster that exists for at least
5 time steps. 93

6.4 Development of cluster corresponding to log line “Init DB”. Solid black line:
Actual measured cluster size. Dashed blue line: One-step ahead prediction
boundaries. Red circles: Detected anomalies. 93

6.5 Development of a cluster size that corresponds to log lines affected by anomalies
regarding long-term frequency increase and the gradual frequency increase. . 96

6.6 Development of a cluster size that corresponds to periodically occurring log
lines. This allows the detection of the missing periodic event anomaly. 96

6.7 Detailed view on the segment where the missing periodic event anomaly occurs. 97
6.8 Development of a cluster size that shows the short-term frequency peak anomaly. 98
6.9 ROC curves showing anomaly detection performance for different similarity

thresholds. 101
6.10 ROC curves showing the influence of data complexity on the anomaly detection

performance. 103
6.11 ROC curves showing anomaly detection performance for different time window

sizes. 103
6.12 Precision-recall plot showing anomaly detection performance for different

similarity thresholds. 105
6.13 Precision-recall plot showing anomaly detection performance for different time

window sizes. 106
6.14 Total runtimes for different similarity thresholds. 107
6.15 Plot showing the continuously measured runtime that is required for processing

a certain amount of log lines. The runtime scales linearly for all considered
similarity thresholds. 108

6.16 Total runtimes for different time window sizes. 109

118

6.17 Plot showing the continuously measured runtime that is required for processing
a certain amount of log lines. The runtime scales linearly for all considered
time window sizes. 110

6.18 Anomaly score of every time step. The phases of occurring attacks are shaded
in red. 110

6.19 Development of a cluster size measured on real data. 112
6.20 Anomaly score computed on real data. 112

119

Bibliography

L. Akoglu, H. Tong, and D. Koutra. Graph-based anomaly detection and description: A
survey. CoRR, abs/1404.4679, 2014. URL http://arxiv.org/abs/1404.4679.

N. B. Amor, S. Benferhat, and Z. Elouedi. Naive bayes vs decision trees in intrusion
detection systems. In Proceedings of the 2004 ACM Symposium on Applied Computing,
SAC ’04, pages 420–424, New York, NY, USA, 2004. ACM. ISBN 1-58113-812-1. doi:
10.1145/967900.967989. URL http://doi.acm.org/10.1145/967900.967989.

J. Andreasson and C. Geijer. Log-based anomaly detection for system surveillance.
Master’s thesis, 2015.

N. Andrienko, G. Andrienko, and P. Gatalsky. Exploratory spatio-temporal visualization:
an analytical review. Journal of Visual Languages & Computing, 14(6):503–541, 2003.

S. Asur, S. Parthasarathy, and D. Ucar. An event-based framework for characterizing
the evolutionary behavior of interaction graphs. ACM Trans. Knowl. Discov. Data,
3(4):16:1–16:36, Dec. 2009. ISSN 1556-4681. doi: 10.1145/1631162.1631164. URL
http://doi.acm.org/10.1145/1631162.1631164.

C. C. Bilgin and B. Yener. Dynamic network evolution: Models, clustering, anomaly
detection. IEEE Networks, 2006.

D. Brauckhoff, K. Salamatian, and M. May. Applying pca for traffic anomaly detection:
Problems and solutions. In INFOCOM 2009, IEEE, pages 2866–2870. IEEE, 2009.

J. Breier and J. Branišová. Anomaly Detection from Log Files Using Data Mining
Techniques, pages 449–457. Springer, Berlin, Heidelberg, 2015. ISBN 978-3-662-46578-
3. doi: 10.1007/978-3-662-46578-3_53. URL http://dx.doi.org/10.1007/
978-3-662-46578-3_53.

P. Bródka, S. Saganowski, and P. Kazienko. Ged: the method for group evolution
discovery in social networks. Social Network Analysis and Mining, 3(1):1–14, Mar 2013.
ISSN 1869-5469. doi: 10.1007/s13278-012-0058-8. URL http://dx.doi.org/10.
1007/s13278-012-0058-8.

121

http://arxiv.org/abs/1404.4679
http://doi.acm.org/10.1145/967900.967989
http://doi.acm.org/10.1145/1631162.1631164
http://dx.doi.org/10.1007/978-3-662-46578-3_53
http://dx.doi.org/10.1007/978-3-662-46578-3_53
http://dx.doi.org/10.1007/s13278-012-0058-8
http://dx.doi.org/10.1007/s13278-012-0058-8

A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, and S. Sastry. Challenges for
securing cyber physical systems. In Workshop on future directions in cyber-physical
systems security, volume 5, 2009.

A. Carmi, F. Septier, and S. J. Godsill. The Gaussian mixture mcmc particle algorithm
for dynamic cluster tracking. In 2009 12th International Conference on Information
Fusion, pages 1179–1186, July 2009.

D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary clustering. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’06, pages 554–560, New York, NY, USA, 2006. ACM. ISBN
1-59593-339-5. doi: 10.1145/1150402.1150467. URL http://doi.acm.org/10.
1145/1150402.1150467.

J. Chan, J. Bailey, and C. Leckie. Discovering correlated spatio-temporal changes in evolv-
ing graphs. Knowl. Inf. Syst., 16(1):53–96, July 2008. ISSN 0219-1377. doi: 10.1007/
s10115-007-0117-z. URL http://dx.doi.org/10.1007/s10115-007-0117-z.

V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Comput.
Surv., 41(3):15:1–15:58, July 2009. ISSN 0360-0300. doi: 10.1145/1541880.1541882.
URL http://doi.acm.org/10.1145/1541880.1541882.

Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng. On evolutionary spectral cluster-
ing. ACM Trans. Knowl. Discov. Data, 3(4):17:1–17:30, Dec. 2009. ISSN 1556-4681.
doi: 10.1145/1631162.1631165. URL http://doi.acm.org/10.1145/1631162.
1631165.

S. C. Chin, A. Ray, and V. Rajagopalan. Symbolic time series analysis for anomaly
detection: A comparative evaluation. Signal Process., 85(9):1859–1868, Sept. 2005.
ISSN 0165-1684. doi: 10.1016/j.sigpro.2005.03.014. URL http://dx.doi.org/10.
1016/j.sigpro.2005.03.014.

P. Cortez, M. Rio, M. Rocha, and P. Sousa. Multi-scale internet traffic forecasting using
neural networks and time series methods. Expert Systems, 29(2):143–155, 2012. ISSN
1468-0394. doi: 10.1111/j.1468-0394.2010.00568.x. URL http://dx.doi.org/10.
1111/j.1468-0394.2010.00568.x.

J. Cryer and K. Chan. Time Series Analysis: With Applications in R. Springer
Texts in Statistics. Springer New York, 2008. ISBN 9780387759593. URL https:
//books.google.at/books?id=bHke2k-QYP4C.

P. Esling and C. Agon. Time-series data mining. ACM Comput. Surv., 45(1):12:1–
12:34, Dec. 2012. ISSN 0360-0300. doi: 10.1145/2379776.2379788. URL http:
//doi.acm.org/10.1145/2379776.2379788.

T. Falkowski, J. Bartelheimer, and M. Spiliopoulou. Mining and visualizing the evolution
of subgroups in social networks. In 2006 IEEE/WIC/ACM International Conference

122

http://doi.acm.org/10.1145/1150402.1150467
http://doi.acm.org/10.1145/1150402.1150467
http://dx.doi.org/10.1007/s10115-007-0117-z
http://doi.acm.org/10.1145/1541880.1541882
http://doi.acm.org/10.1145/1631162.1631165
http://doi.acm.org/10.1145/1631162.1631165
http://dx.doi.org/10.1016/j.sigpro.2005.03.014
http://dx.doi.org/10.1016/j.sigpro.2005.03.014
http://dx.doi.org/10.1111/j.1468-0394.2010.00568.x
http://dx.doi.org/10.1111/j.1468-0394.2010.00568.x
https://books.google.at/books?id=bHke2k-QYP4C
https://books.google.at/books?id=bHke2k-QYP4C
http://doi.acm.org/10.1145/2379776.2379788
http://doi.acm.org/10.1145/2379776.2379788

on Web Intelligence (WI 2006 Main Conference Proceedings)(WI’06), pages 52–58,
Dec 2006. doi: 10.1109/WI.2006.118.

P. Filzmoser, R. Maronna, and M. Werner. Outlier identification in high dimensions.
Comput. Stat. Data Anal., 52(3):1694–1711, Jan. 2008. ISSN 0167-9473. doi: 10.1016/j.
csda.2007.05.018. URL http://dx.doi.org/10.1016/j.csda.2007.05.018.

U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis. Network anomaly detection with
the restricted boltzmann machine. Neurocomput., 122:13–23, Dec. 2013. ISSN 0925-
2312. doi: 10.1016/j.neucom.2012.11.050. URL http://dx.doi.org/10.1016/j.
neucom.2012.11.050.

R. Fried. Robust filtering of time series with trends. Journal of Nonparametric Statistics,
16(3-4):313–328, 2004. doi: 10.1080/10485250410001656444. URL http://dx.doi.
org/10.1080/10485250410001656444.

Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution anomaly detection in distributed systems
through unstructured log analysis. In Proceedings of the 2009 Ninth IEEE International
Conference on Data Mining, ICDM ’09, pages 149–158, Washington, DC, USA, 2009.
IEEE Computer Society. ISBN 978-0-7695-3895-2. doi: 10.1109/ICDM.2009.60. URL
http://dx.doi.org/10.1109/ICDM.2009.60.

M. Ghodsi, B. Liu, and M. Pop. Dnaclust: accurate and efficient clustering of phylogenetic
marker genes. BMC Bioinformatics, 12, 2011.

J. Goh, S. Adepu, M. Tan, and Z. S. Lee. Anomaly detection in cyber physical systems
using recurrent neural networks. In 2017 IEEE 18th International Symposium on High
Assurance Systems Engineering (HASE), pages 140–145, Jan 2017. doi: 10.1109/HASE.
2017.36.

M. K. Goldberg, M. Hayvanovych, and M. Magdon-Ismail. Measuring similarity between
sets of overlapping clusters. In Proceedings of the 2010 IEEE Second International
Conference on Social Computing, SOCIALCOM ’10, pages 303–308, Washington, DC,
USA, 2010. IEEE Computer Society. ISBN 978-0-7695-4211-9. doi: 10.1109/SocialCom.
2010.50. URL http://dx.doi.org/10.1109/SocialCom.2010.50.

M. Goldstein and S. Uchida. A comparative evaluation of unsupervised anomaly detection
algorithms for multivariate data. PLOS ONE, 11(4):1–31, 04 2016. doi: 10.1371/journal.
pone.0152173. URL https://doi.org/10.1371/journal.pone.0152173.

D. Greene and P. Cunningham. Multi-view clustering for mining heterogeneous social
network data. In Paper presented at the Workshop on Information Retrieval over Social
Networks, 31st European Conference on Information Retrieval (ECIR’09), Toulouse,
France, April 6-9, 2009.

D. Greene, D. Doyle, and P. Cunningham. Tracking the evolution of communities in
dynamic social networks. In 2010 International Conference on Advances in Social

123

http://dx.doi.org/10.1016/j.csda.2007.05.018
http://dx.doi.org/10.1016/j.neucom.2012.11.050
http://dx.doi.org/10.1016/j.neucom.2012.11.050
http://dx.doi.org/10.1080/10485250410001656444
http://dx.doi.org/10.1080/10485250410001656444
http://dx.doi.org/10.1109/ICDM.2009.60
http://dx.doi.org/10.1109/SocialCom.2010.50
https://doi.org/10.1371/journal.pone.0152173

Networks Analysis and Mining, pages 176–183, Aug 2010. doi: 10.1109/ASONAM.
2010.17.

M. Gupta, J. Gao, C. Aggarwal, and J. Han. Outlier Detection for Temporal Data.
Morgan & Claypool Publishers, 2014. ISBN 1627053751, 9781627053754.

S. He, J. Zhu, P. He, and M. R. Lyu. Experience report: System log analysis for
anomaly detection. In 2016 IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE), pages 207–218, Oct 2016. doi: 10.1109/ISSRE.2016.21.

D. J. Hill and B. S. Minsker. Anomaly detection in streaming environmental sensor
data: A data-driven modeling approach. Environ. Model. Softw., 25(9):1014–1022,
Sept. 2010. ISSN 1364-8152. doi: 10.1016/j.envsoft.2009.08.010. URL http://dx.
doi.org/10.1016/j.envsoft.2009.08.010.

Y. Huang, B. Niu, Y. Gao, L. Fu, and W. Li. Cd-hit suite: a web server for
clustering and comparing biological sequences. Bioinformatics, 26(5):680–682,
2010. doi: 10.1093/bioinformatics/btq003. URL +http://dx.doi.org/10.1093/
bioinformatics/btq003.

R. J. Hyndman. The difference between prediction intervals and confidence intervals.
https://robjhyndman.com/hyndsight/intervals/, 2013. [Online; accessed
07-August-2017].

H. Hyyrö. A bit-vector algorithm for computing levenshtein and damerau edit distances.
Nordic J. of Computing, 10(1):29–39, Mar. 2003. ISSN 1236-6064. URL http:
//dl.acm.org/citation.cfm?id=846090.846095.

C. S. Jensen, D. Lin, and B. C. Ooi. Continuous clustering of moving objects. IEEE
Transactions on Knowledge and Data Engineering, 19(9):1161–1174, Sept 2007. ISSN
1041-4347. doi: 10.1109/TKDE.2007.1054.

A. Juvonen, T. Sipola, and T. Hämäläinen. Online anomaly detection using dimensionality
reduction techniques for http log analysis. Computer Networks, 91:46 – 56, 2015.
ISSN 1389-1286. doi: http://dx.doi.org/10.1016/j.comnet.2015.07.019. URL http:
//www.sciencedirect.com/science/article/pii/S1389128615002650.

K. Kent and M. P. Souppaya. Sp 800-92. guide to computer security log management.
Technical report, Gaithersburg, MD, United States, 2006.

M. Khalilian and N. Mustapha. Data stream clustering: Challenges and issues. CoRR,
abs/1006.5261, 2010. URL http://arxiv.org/abs/1006.5261.

R. Killick, P. Fearnhead, and I. A. Eckley. Optimal detection of changepoints with a
linear computational cost. Journal of the American Statistical Association, 107(500):
1590–1598, 2012.

124

http://dx.doi.org/10.1016/j.envsoft.2009.08.010
http://dx.doi.org/10.1016/j.envsoft.2009.08.010
+ http://dx.doi.org/10.1093/bioinformatics/btq003
+ http://dx.doi.org/10.1093/bioinformatics/btq003
https://robjhyndman.com/hyndsight/intervals/
http://dl.acm.org/citation.cfm?id=846090.846095
http://dl.acm.org/citation.cfm?id=846090.846095
http://www.sciencedirect.com/science/article/pii/S1389128615002650
http://www.sciencedirect.com/science/article/pii/S1389128615002650
http://arxiv.org/abs/1006.5261

G. Kondrak. N-Gram Similarity and Distance, pages 115–126. Springer, Berlin,
Heidelberg, 2005. ISBN 978-3-540-32241-2. doi: 10.1007/11575832_13. URL
https://doi.org/10.1007/11575832_13.

S. Krishnamurthy, S. Sarkar, and A. Tewari. Scalable anomaly detection and isolation
in cyber-physical systems using bayesian networks. In Dynamic Systems and Control
Conference, 2014. ISBN 978-0-7918-4619-3. doi: 10.1115/DSCC2014-6365. URL
http://dx.doi.org/10.1115/DSCC2014-6365.

C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. In Proceedings of the
10th ACM Conference on Computer and Communications Security, CCS ’03, pages
251–261, New York, NY, USA, 2003. ACM. ISBN 1-58113-738-9. doi: 10.1145/948109.
948144. URL http://doi.acm.org/10.1145/948109.948144.

P. Lee, L. V. S. Lakshmanan, and E. E. Milios. Incremental cluster evolution tracking
from highly dynamic network data. In 2014 IEEE 30th International Conference on
Data Engineering, pages 3–14, March 2014. doi: 10.1109/ICDE.2014.6816635.

M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitanyi. The similarity metric. IEEE
Transactions on Information Theory, 50(12):3250–3264, Dec 2004. ISSN 0018-9448.
doi: 10.1109/TIT.2004.838101.

W. Li, L. Jaroszewski, and A. Godzik. Clustering of highly homologous sequences to
reduce the size of large protein databases. Bioinformatics, 17 3:282–3, 2001.

W. Li, L. Jaroszewski, and A. Godzik. Sequence clustering strategies improve remote
homology recognitions while reducing search times. Protein Engineering, Design
and Selection, 15(8):643–649, 2002. doi: 10.1093/protein/15.8.643. URL +http:
//dx.doi.org/10.1093/protein/15.8.643.

H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung. Intrusion detection system: A
comprehensive review. Journal of Network and Computer Applications, 36(1):16–24,
2013.

E. Lughofer and M. Sayed-Mouchaweh. Autonomous data stream clustering imple-
menting split-and-merge concepts – towards a plug-and-play approach. Information
Sciences, 304:54 – 79, 2015. ISSN 0020-0255. doi: http://dx.doi.org/10.1016/j.ins.
2015.01.010. URL http://www.sciencedirect.com/science/article/pii/
S0020025515000328.

W. J. Masek and M. S. Paterson. A faster algorithm computing string edit dis-
tances. Journal of Computer and System Sciences, 20(1):18 – 31, 1980. ISSN
0022-0000. doi: http://dx.doi.org/10.1016/0022-0000(80)90002-1. URL http:
//www.sciencedirect.com/science/article/pii/0022000080900021.

V. Metsis, I. Androutsopoulos, and G. Paliouras. Spam filtering with naive Bayes-which
naive Bayes? In CEAS, volume 17, pages 28–69, 2006.

125

https://doi.org/10.1007/11575832_13
http://dx.doi.org/10.1115/DSCC2014-6365
http://doi.acm.org/10.1145/948109.948144
+ http://dx.doi.org/10.1093/protein/15.8.643
+ http://dx.doi.org/10.1093/protein/15.8.643
http://www.sciencedirect.com/science/article/pii/S0020025515000328
http://www.sciencedirect.com/science/article/pii/S0020025515000328
http://www.sciencedirect.com/science/article/pii/0022000080900021
http://www.sciencedirect.com/science/article/pii/0022000080900021

R. Mitchell and I.-R. Chen. A survey of intrusion detection techniques for cyber-physical
systems. ACM Comput. Surv., 46(4):55:1–55:29, Mar. 2014. ISSN 0360-0300. doi:
10.1145/2542049. URL http://doi.acm.org/10.1145/2542049.

C. C. Noble and D. J. Cook. Graph-based anomaly detection. In Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’03, pages 631–636, New York, NY, USA, 2003. ACM. ISBN 1-58113-737-0. doi:
10.1145/956750.956831. URL http://doi.acm.org/10.1145/956750.956831.

B. Pincombe. Anomaly detection in time series of graphs using arma processes. Asor
Bulletin, 24(4):2, 2005.

D. Powers. Evaluation: From precision, recall and F-factor to ROC, informedness,
markedness and correlation. 2, 01 2008.

M. Roesch. Snort - lightweight intrusion detection for networks. In Proceedings of the 13th
USENIX Conference on System Administration, LISA ’99, pages 229–238, Berkeley, CA,
USA, 1999. USENIX Association. URL http://dl.acm.org/citation.cfm?id=
1039834.1039864.

H. Rosling and Z. Zhang. Health advocacy with gapminder animated statistics. Journal
of Epidemiology and Global Health, 1(1):11 – 14, 2011. ISSN 2210-6006. doi: http:
//dx.doi.org/10.1016/j.jegh.2011.07.001. URL http://www.sciencedirect.com/
science/article/pii/S2210600611000074.

J. P. Rouillard. Refereed papers: Real-time log file analysis using the simple event
correlator (sec). In Proceedings of the 18th USENIX Conference on System Admin-
istration, LISA ’04, pages 133–150, Berkeley, CA, USA, 2004. USENIX Association.
URL http://dl.acm.org/citation.cfm?id=1052676.1052694.

T. Saito and M. Rehmsmeier. The precision-recall plot is more informative than the
roc plot when evaluating binary classifiers on imbalanced datasets. PLOS ONE, 10
(3):1–21, 03 2015. doi: 10.1371/journal.pone.0118432. URL https://doi.org/10.
1371/journal.pone.0118432.

K. A. Scarfone and P. M. Mell. Sp 800-94. guide to intrusion detection and prevention
systems (idps). Technical report, Gaithersburg, MD, United States, 2007.

J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. P. L. F. d. Carvalho,
and J. a. Gama. Data stream clustering: A survey. ACM Comput. Surv., 46(1):
13:1–13:31, July 2013. ISSN 0360-0300. doi: 10.1145/2522968.2522981. URL http:
//doi.acm.org/10.1145/2522968.2522981.

F. Skopik, G. Settanni, R. Fiedler, and I. Friedberg. Semi-synthetic data set generation
for security software evaluation. In 2014 Twelfth Annual International Conference on
Privacy, Security and Trust, pages 156–163, July 2014. doi: 10.1109/PST.2014.6890935.

126

http://doi.acm.org/10.1145/2542049
http://doi.acm.org/10.1145/956750.956831
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://dl.acm.org/citation.cfm?id=1039834.1039864
http://www.sciencedirect.com/science/article/pii/S2210600611000074
http://www.sciencedirect.com/science/article/pii/S2210600611000074
http://dl.acm.org/citation.cfm?id=1052676.1052694
https://doi.org/10.1371/journal.pone.0118432
https://doi.org/10.1371/journal.pone.0118432
http://doi.acm.org/10.1145/2522968.2522981
http://doi.acm.org/10.1145/2522968.2522981

A. Sperotto, R. Sadre, and A. Pras. Anomaly characterization in flow-based traffic time
series. In Proceedings of the 8th IEEE International Workshop on IP Operations and
Management, IPOM ’08, pages 15–27, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN
978-3-540-87356-3. doi: 10.1007/978-3-540-87357-0_2. URL http://dx.doi.org/
10.1007/978-3-540-87357-0_2.

M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult. Monic: Modeling and
monitoring cluster transitions. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’06, pages 706–711, New
York, NY, USA, 2006. ACM. ISBN 1-59593-339-5. doi: 10.1145/1150402.1150491.
URL http://doi.acm.org/10.1145/1150402.1150491.

L. Spitzner. Honeypots: Catching the insider threat. In Computer Security Applications
Conference, 2003. Proceedings. 19th Annual, pages 170–179. IEEE, 2003.

J. Stearley. Towards informatic analysis of syslogs. In Cluster Computing, 2004 IEEE
International Conference on, pages 309–318. IEEE, 2004.

M. Takaffoli, F. Sangi, J. Fagnan, and O. R. Zäıane. Community evolution mining in
dynamic social networks. Procedia-Social and Behavioral Sciences, 22:49–58, 2011.

M. Thottan and C. Ji. Anomaly detection in ip networks. IEEE Transactions on signal
processing, 51(8):2191–2204, 2003.

M. Toyoda and M. Kitsuregawa. Extracting evolution of web communities from a series
of web archives. In Proceedings of the Fourteenth ACM Conference on Hypertext
and Hypermedia, HYPERTEXT ’03, pages 28–37, New York, NY, USA, 2003. ACM.
ISBN 1-58113-704-4. doi: 10.1145/900051.900059. URL http://doi.acm.org/10.
1145/900051.900059.

R. Vaarandi. A data clustering algorithm for mining patterns from event logs. In
Proceedings of the 3rd IEEE Workshop on IP Operations Management (IPOM 2003)
(IEEE Cat. No.03EX764), pages 119–126, Oct 2003. doi: 10.1109/IPOM.2003.1251233.

C. Vehlow, F. Beck, P. Auwärter, and D. Weiskopf. Visualizing the evolution of commu-
nities in dynamic graphs. Computer Graphics Forum, 34(1):277–288, 2015. ISSN 1467-
8659. doi: 10.1111/cgf.12512. URL http://dx.doi.org/10.1111/cgf.12512.

B. P. Welford. Note on a method for calculating corrected sums of squares
and products. Technometrics, 4(3):419–420, 1962. doi: 10.1080/00401706.
1962.10490022. URL http://amstat.tandfonline.com/doi/abs/10.1080/
00401706.1962.10490022.

M. Wurzenberger, F. Skopik, M. Landauer, P. Greitbauer, R. Fiedler, and W. Kastner.
Incremental clustering for semi-supervised anomaly detection applied on log data.
In Proceedings of the 12th International Conference on Availability, Reliability and
Security, page 31. ACM, 2017.

127

http://dx.doi.org/10.1007/978-3-540-87357-0_2
http://dx.doi.org/10.1007/978-3-540-87357-0_2
http://doi.acm.org/10.1145/1150402.1150491
http://doi.acm.org/10.1145/900051.900059
http://doi.acm.org/10.1145/900051.900059
http://dx.doi.org/10.1111/cgf.12512
http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022
http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022

K. S. Xu, M. Kliger, and A. O. Hero Iii. Adaptive evolutionary clustering. Data Mining
and Knowledge Discovery, 28(2):304–336, 2014.

W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan. Detecting large-scale
system problems by mining console logs. In Proceedings of the ACM SIGOPS 22Nd
Symposium on Operating Systems Principles, SOSP ’09, pages 117–132, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-752-3. doi: 10.1145/1629575.1629587. URL
http://doi.acm.org/10.1145/1629575.1629587.

W. Yassin, N. I. Udzir, Z. Muda, and M. N. Sulaiman. K-means clustering and naive Bayes
classification for intrusion detection. In Proceedings of the 4th International Conference
on Computing and Informatics, 2013. URL http://publisher.unimas.my/ojs/
index.php/JITA/article/view/45.

M. Yu, G. Li, D. Deng, and J. Feng. String similarity search and join: a survey. Frontiers
of Computer Science, 10(3):399–417, Jun 2016. ISSN 2095-2236. doi: 10.1007/
s11704-015-5900-5. URL https://doi.org/10.1007/s11704-015-5900-5.

A. Zhou, F. Cao, W. Qian, and C. Jin. Tracking clusters in evolving data streams over slid-
ing windows. Knowl. Inf. Syst., 15(2):181–214, May 2008. ISSN 0219-1377. doi: 10.1007/
s10115-007-0070-x. URL http://dx.doi.org/10.1007/s10115-007-0070-x.

128

http://doi.acm.org/10.1145/1629575.1629587
http://publisher.unimas.my/ojs/index.php/JITA/article/view/45
http://publisher.unimas.my/ojs/index.php/JITA/article/view/45
https://doi.org/10.1007/s11704-015-5900-5
http://dx.doi.org/10.1007/s10115-007-0070-x

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work

	State of the Art
	Anomaly Detection
	Cluster Evolution

	Clustering
	Requirements
	Word-based Matching
	Alignment-based Matching
	Algorithm

	Cluster Evolution
	Cluster Tracking
	Cluster Transitions
	Evolution Metrics
	Examples

	Time-series Analysis
	Models
	Forecasting
	Correlation
	Robust Filtering
	Multivariate Outlier Detection
	Algorithm
	Aggregated Detection

	Evaluation
	Log Data
	Evaluation Environment
	Results
	Aggregated Detection
	Application on Real Log Data

	Conclusion and Future Work
	List of Figures
	Bibliography

