
Implementierung und Vergleich
von Quantoren-

Fuzzifikationsmechanismen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Cem Okulmus, BSc.
Matrikelnummer 01215428

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Prof. Dipl.-Ing. Dr.techn. Christian G. Fermüller
Mitwirkung: Mag.rer.nat Dr.techn. Paolo Baldi

Wien, 1. März 2018
Cem Okulmus Christian G. Fermüller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Implementing and Comparing
Quantifier Fuzzification

Mechanisms

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Cem Okulmus, BSc.
Registration Number 01215428

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Prof. Dipl.-Ing. Dr.techn. Christian G. Fermüller
Assistance: Mag.rer.nat Dr.techn. Paolo Baldi

Vienna, 1st March, 2018
Cem Okulmus Christian G. Fermüller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Cem Okulmus, BSc.
Neustiftgasse 83 / 143, 1070 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. März 2018
Cem Okulmus

v

Danksagung

Ich danke meinen beiden Betreuern für ihren Rat und ihre Geduld und meiner Familie
und Freunden für ihre stete Unterstützung.

vii

Acknowledgements

I thank my two advisers for their guidance and patience, and my family and friends for
their constant support.

ix

Kurzfassung

Diese Arbeit dient einer einheitlichen Präsentation der neuesten Modelle von Quantoren-
Fuzzifikationsmechanismen (QFMs). Diese sind ein Kernstück eines methodischen Rah-
mens von Ingo Glöckner, um Fuzzy-Quantoren von Semi-Fuzzy-Quantoren abzuleiten. Es
erfolgt eine Analyse dieser Modelle im Bezug auf die axiomatischen Eigenschaften, die
Glöckner definiert hat, um die “linguistische Adäquatheit”, sowie andere wichtige Eigen-
schaften von QFMs zu charakterisieren. Zusätzlich wurde als Teil dieser Arbeit ein platt-
formunabhängiges Programm entwickelt, das es erlaubt Queries mit Fuzzy-Quantoren zu
evaluieren und Plots der Wahrheitsfunkionen von Semi-Fuzzy-Quantoren und von QFM
abgeleiteten aussagenlogischen Operationen darzustellen.

xi

Abstract

This thesis provides a uniform presentation of recent models for Quantifier Fuzzification
Mechanisms (QFMs). The idea of a QFM is at the core of a framework by Ingo Glöck-
ner for modelling fuzzy quantifiers starting from semi-fuzzy quantifiers. It proceeds to
analyse QFMs according to the axiomatic properties which Glöckner defined for them
in order to characterize “linguistic adequateness” and other important properties. Ad-
ditionally, as part of this thesis, a multi-platform tool has been developed to evaluate
queries using fuzzy quantified expressions and to visualize plots of truth functions of
semi-fuzzy quantifiers and of propositional operations induced by various QFMs.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Related Work 3

3 Preliminaries 7
3.1 Fuzzy Set Theory . 7
3.2 Logical Quantifiers . 8
3.3 Fuzzy Quantification . 11
3.4 Glöckner’s axiomatic lifting approach . 11
3.5 Mathematical Fuzzy Logic . 14
3.6 Giles’ Game for ukasiewicz logic . 16

4 Semi-Fuzzy (Type III) Quantifiers 19
4.1 Absolute and proportional quantifiers 19
4.2 Blind and Deliberate Choice quantifiers 21

5 Quantifier Fuzzification Mechanism Models 27
5.1 QFMs by Glöckner . 27
5.2 Probabilistic QFMs by Díaz-Hermida et al. 32
5.3 Representation-level based QFM by Sánchez et al. 36
5.4 Closeness-based QFM by Baldi and Fermüller 37

6 Discussion 41
6.1 Glöckner’s “Induced Propositional Logic” 41
6.2 Glöckner’s DFS properties for different QFM proposals 44

7 QFMtool 59
7.1 Technical description with implementation details 61

xv

7.2 Personal report on writing QFMtool 64

8 Conclusion 67
8.1 Future work . 68

List of Figures 71

List of Tables 73

List of Algorithms 75

Bibliography 77

CHAPTER 1
Introduction

Quantifiers are an important expressive device in natural languages (NL). They allow
for statements not just about single individuals or objects, but provide effective means
to express something about collections. A statement like “Few women are smokers”,
regardless of its veracity, exemplifies this. Especially binary quantifiers, such as the
above “few” are used frequently. Other examples of quantifier expressions are “most”,
“many”, “about half”, “almost all”, etc. It is notable, that all these expressions exhibit
some vagueness in their meaning.

In NL we often encounter vagueness. An example is the property “tall”, where different
individuals might disagree on what height is accepted as tall. One choice to formally
model such vague notions has been introduced by Lotfi A. Zadeh [Zad65]. He coined
the term of fuzzy set. In such a set, every individual is a member to some degree. This
membership degree translates into a degree of truth of an expression like “Tom is tall”,
where Tom is an individual in our domain (also known as base set, referential set or
universe of discourse). In other words: the fuzzy approach consists in replacing the
binary notions of fully accepting or fully rejecting a statement with degrees of truth that
a statement can have. Usually the interval [0, 1] is used for these degrees.

Combining both, quantification and fuzzy sets, leads to fuzzy quantified expressions
[Zad83]. This is also something that Zadeh focused on, providing early models for fuzzy
quantifiers that used fuzzy sets as arguments for quantifiers, such as “almost all”, “few”,
etc. Ingo Glöckner wrote a pioneering monograph [Glö06], in which he analyses the
fuzzy quantification models of Zadeh and others, and finds them to be linguistically
inadequate. In his monograph, Glöckner also shows how these early models are unable
to model quantification as it occurs in NL . Another motivation for his novel approach
is the sheer number of possible truth functions for fuzzy quantifiers. As emphasized in
[FR13], even for unary fuzzy quantifiers that can be represented by a truth function
of [0, 1] → [0, 1], there are uncountably many choices. A circumstance Fermüller and
Roschger refer to as embarrassment of riches.

1

1. Introduction

Glöckner’s approach consists in using restricted quantifiers, called semi-fuzzy quantifiers
(SFQs), as the basis. A semi-fuzzy quantifier only takes crisp sets as arguments, i.e.,
the usual set from mathematics. Glöckner proposes a “lifting” of semi-fuzzy quantifiers
to (fully) fuzzy quantifiers, which take fuzzy sets as arguments. Such a lifting is coined
a quantifier fuzzification mechanism (QFM). In his monograph [Glö06] he introduces
a number of possible models for QFMs. Since there is in principle no restriction as
to how a QFM can achieve this lifting, Glöckner also introduces a number of axioms
that are meant to guarantee, among other things, linguistic adequateness. A QFM that
fulfils these axioms or properties, is then called a determiner fuzzification scheme (DFS).
Following his monograph, there has been further research in finding different QFMs for
various purposes, such as information retrieval [DRSV14, BF18].

This thesis aims at presenting the existing literature on this topic in a uniform way and
analysing which of Glöckner’s axioms are fulfilled in various different models. As part of
this thesis a tool was developed that allows one to evaluate fuzzy quantified statements
using QFMs and SFQs that will be presented in the remainder.

The thesis is structured as follows:

Chapter 2 surveys related work, summarizing early research on fuzzy sets and quantifica-
tion. Chapter 3 is intended to provide for a reader with a basic background in Computer
Science, all the needed terminology and concepts to understand the rest of the thesis.
This is followed by chapter 4, which introduces two categories of semi-fuzzy quantifiers,
as they form the building block of Glöckner’s framework. Chapter 5 provides a thorough
examination of the various quantifier fuzzification mechanisms, that make up the focus
of this thesis. This includes, to the best of the author’s knowledge, all research that has
been published on novel QFM models since Glöckner’s pioneering monograph. It is fol-
lowed by chapter 6, a discussion chapter which consists in a comparison of the presented
QFMs with respect to whether they fulfil or break the DFS requirements of Glöckner.
The principal idea here is to get a better understanding of these models, as there might
be good reasons why one might be interested in QFMs that do not satisfy all these
properties. The thesis concludes with chapter 7, a presentation of the tool which was
developed as part of this work. This not only includes some technical descriptions, but
also reports on the personal experiences of the author while working on it: what turned
out to be surprising, difficult, or just interesting. The thesis closes with a conclusion of
the presented results and briefly mentions further issues in fuzzy quantification, trying
to go beyond Glöckner’s QFM framework.

2

CHAPTER 2
Related Work

An influential line of research for this thesis originates in the field of linguistics. The
“Theory of Generalised Quantifiers” (TGQ) [BC81, PW06] is a rich and complex sub-
ject. It tries to interpret noun phrases using generalised quantifiers as they are studied
in linguistics. It presents a basic scheme for all possible quantifier expressions, called
“determiners”. A determiner is part of a larger phrase, see Figure 2.1. A generalised
quantifier takes an arbitrary number of (classical) predicates denoting crisp sets as ar-
guments. A crisp set corresponds to a subset of the domain D, leading to the definition
of the semantics of a generalised quantifier Q as a function of type P(D)k → {0, 1}.

Vague quantifiers, it should be noted, are not modelled directly in the TGQ. This is
not an omission, but rather corresponds to the standard way of modelling vagueness
in linguistics. It proceeds in two separate steps. First we assume the choice of an
appropriate context for all vague determiners and arguments. Later on, we can treat
the whole expression as crisp, meaning it is either accepted or rejected. In other words,
vagueness is treated as a context dependency and, as explained in [PW06], vagueness is
seen as a more general concern and not specific to the modelling of quantifiers. Referring
to the example in Figure 2.1, for some speaker, in a specific situation, it is assumed that
it is clear what “students” and “are young” means, even if this meaning might change for
another person, in another situation. Therefore the meaning of the noun phrase becomes
crisp, completely true, or completely false, even if dealing with vagueness. Barwise and
Cooper refer to this as the “fixed context assumption” [BC81]. In this thesis, however,
we assume that vagueness can be usefully modelled directly as graded notions of truth.

The first to propose fuzzy quantification and provide concrete models was Lotfi A. Zadeh
[Zad83]. Prior to this, he established a framework for fuzzy set theory [Zad65], an influ-
ential tool for dealing with gradual notions. Zadeh also focuses on the need of modelling
expressions such as “many” or “few”, applied to arguments that are themselves vague.
His work categorizes two types of such quantifiers, “absolute quantifiers” which produce
a truth function based on an absolute cardinality (e.g. “around 5”), and proportional

3

2. Related Work

S

NP

Det

most

N

students

VP

are young

Figure 2.1: A phase-structure grammar of an example sentence (S) with a quantifier
expression. The noun-phrase (NP) consists of a noun (N) and determiner (Det), followed
by a verb phrase (VP).

(or relative) quantifiers that express a proportionality between two fuzzy sets. Especially
this second kind of two-place quantifiers try to model a large class of expressions that we
encounter often in natural language. One reason for why they are important, is the se-
mantic role of the two arguments. The first is referred to as range, it acts as a restriction
that determines which objects are considered, and the second as scope, which specifies
something about these objects. An example can be seen in Figure 2.1, “most students
are young”, where the range is a group of “students” and the clearly vague notion of
“are young” is the scope. The quantifier “most” clearly refers to the proportion of young
persons among the students.

Since there are no trivial ways of evaluating such quantifiers over fuzzy sets (since there is
no obvious, unique way of generalising the notion of cardinality from the crisp to the fuzzy
case), a large focus in Zadeh’s research, and of others who follow this framework, consists
in providing various “evaluation methods”. The one that Zadeh initially proposes is the
Σ-count method [Zad65], others were the “ordered-weighted-average” (OWA) method
[Yag98], FG-count and FE-count [Zad83]. An in-depth analysis of these methods is
also given in Ingo Glöckner’s monograph [Glö06]: he refers to them as the “traditional
modelling framework”.

Glöckner’s monograph on fuzzy quantifiers [Glö06] combines the above, i.e., Zadeh’s
fuzzy logic and the TGQ. He begins with an analysis of the fuzzy quantifier models of
Zadeh and others who have extended it. Especially the inadequateness in modelling
quantifiers from natural language is made clear. Another issue he criticizes is the arbi-
trary nature of the resulting models. As an example, there are many possible ways to
model “about half”, when dealing with fuzzy sets as inputs. It seems unsatisfactory to
just settle with an arbitrary one. Therefore his goal is to provide a model for generalised
fuzzy quantifiers which also reduces the number of admissible models.

Glöckner’s framework focuses first on semi-fuzzy quantifiers, which range exclusively over
crisp sets, and then defines a mechanism to extend them to fuzzy quantifiers, which can
accept fuzzy sets as inputs. The latter is called a “quantifier fuzzification mechanism”
(QFM). Of course, without further restrictions there are again many ways in which one
can specify such a method. Therefore, he also proposes a number of properties that a

4

QFM should have. A QFM that satisfies them all is then referred to as a “determiner
fuzzification scheme” (DFS). He additionally shows that such a DFS can be used to define
operations such as the union and intersection on fuzzy sets, which connects his approach
to the earlier fuzzy logic of Zadeh. Remarkably, he also shows how the DFS methods he
found generalise certain “evaluation methods” from the Zadeh framework. This shows
that, while the focus of his work is different from those of those early “pioneers”, there
is still a deep connection between them.

More recently, there have been attempts to model quantifiers that deal with fuzzy sets,
without the two-step approach that Glöckner proposed [Hol08, DH09, Nov08].

Of the presented approaches to modelling fuzzy quantifiers, the Zadeh framework can
be seen as the least abstract. Glöckner generalises it by providing classes of quantifiers,
as each QFM represents all models of fuzzy quantifier that can be lifted from semi-fuzzy
quantifiers. In addition, he also provides axioms that QFMs should satisfy.

The next abstraction step is to forgo concrete models for fuzzy quantifiers, but instead
to analyse properties that all of them share. An example of this can be found in [Hol08],
where a certain kind of algebraic structure, called residuated lattices, is used to analyse
generalised quantifiers. These algebras are interesting since they can be used to model
the semantics of Hájek’s mathematical fuzzy logics (MFL) [Há06].

5

CHAPTER 3
Preliminaries

This chapter is meant as a succinct, but self-contained introduction into the related
topics which are needed to follow the rest of this thesis. They are organized into a few
principal categories. The first is what is referred to as “fuzzy set theory” and introduces
and motivates the early works of Zadeh [Zad65]. Next is an introduction into properties
of logical quantifiers. This leads directly to the next topic, fuzzy quantification, with an
overview of the various types of fuzzy quantifiers and a brief introduction of generalised
quantifiers [BC81]. After that Glöckner’s unique approach of using semi-fuzzy quantifiers
to produce models for fuzzy quantifiers [Glö06], and the motivations for this two-step
approach are presented. Thereafter the topic of mathematical fuzzy logic according to
Hájek [BC81] is introduced, as it is important for a number of other concepts in the
following chapters. This chapter ends with a presentation of a dialogue game designed
by Robin Giles [Gil74], originally formulated for reasoning about experiments in physics.
The game characterizes ukasiewicz logic — one of the fuzzy logics introduced later in
this chapter — and has more recently been used as a framework for defining quantifiers
as well as quantifier fuzzification mechanisms.

3.1 Fuzzy Set Theory

An important notion that proved to be very influential in both science and engineering,
is fuzziness. It resolves vagueness through the use of truth or membership degrees. For a
given property, like, say, “tall”, “rich”, etc., we are unable or unwilling to state determi-
nately for a given element in a set (or figuratively an individual in a group of persons)
whether it has this property, or not. Instead, we simply assign a value, usually from
the interval [0, 1], to each element, which indicates its membership to some degree. A
justification for using the fuzzy approach are certain in logical paradoxes, such as the
famous Sorites paradox. For more information on this [Hyd14] is recommended.

7

3. Preliminaries

A domain (or base set) D is some non-empty (possibly infinite) collection of elements.
A set (also referred to as crisp set) A on D is an element of the powerset P(D). It can
be identified by its membership function µ : D → {0, 1} (also known as indicator or
characteristic function). The latter is defined as:

µA(x) =
{

1 if x ∈ A

0 otherwise
(3.1)

The fuzzy powerset P̃(D) collects all fuzzy sets Ã on D over a given domain D. Every
fuzzy set is specified by its membership function µÃ : D → [0, 1], i.e.

µÃ(x) ∈ [0, 1] (3.2)

Thus µÃ expresses a membership degree, where elements of D with membership degree
0 are understood to be absolutely outside the fuzzy set, and those with membership
degree 1 are understood to be absolutely contained. We can see that one can consider
fuzzy sets as a generalisation of crisp sets. In other words: crisp sets are a special case
of fuzzy sets. In cases where it might not be clear whether a set can be fuzzy, the set in
question shall be marked with a tilde symbol overhead: Ã to mark it clearly as a fuzzy
set. In cases where its clear from context, we will leave this out.

An obvious and natural mapping from fuzzy sets to crisp ones, are alpha-cuts. An alpha-
cut Ãα is a crisp approximation of a given fuzzy set Ã, for a fixed degree α ∈ [0, 1]. Its
membership function is as follows:

µÃα
(x) =

{
1 if µÃ(x) ≥ α

0 otherwise.
(3.3)

A more involved process to acquire crisp approximations of a fuzzy set, called three-
cuts, is proposed by Glöckner in his monograph [Glö06]. It involves partitioning the
range [0, 1] into three regions, essentially yielding a set with a three-valued membership
function. This is then mapped onto a range of possible crisp sets. The reason why
Glöckner introduces a new way of producing crisp approximations is that three-cuts are
symmetrical with respect to complementation, while alpha-cuts are not. Three-cuts will
be introduced in more detail in chapter 5, as it is a central component of Glöckner’s
framework.

3.2 Logical Quantifiers
The expression quantifier is used extensively both in logic and linguistics, if not neces-
sarily with the same meaning. The focus of this thesis is the type of quantifiers used in

8

3.2. Logical Quantifiers

logic, but with an attempt to logically model certain parts of natural language phrases,
called “determiners” in linguistics. The classical logical quantifiers are the existential
(∃) and the universal (∀), and, at the first-order level, they quantify over single objects
of the domain. One immediate and early generalisation of the existential and univer-
sal quantifiers are quantifiers “in-between” these two basic ones, so called “intermediate
quantifiers”. Before continuing, we introduce a useful convention: throughout this thesis,
we shall assume that we have for every element in our domain D a constant c that repre-
sents it. We will then use elements from the domain informally as constants in the object
language, for ease of notation. Examples for intermediate quantifiers are “many”, “few”
or “most”. As the existential quantifier is the supremum (∃xP (x) if at least one constant
c ∈ D s.t. P (c)) and the universal one the infimum (∀xP (x) if all c ∈ D s.t. P (c)).
Intermediate quantifiers allow for semantics in between these extreme points. It should
be noted that these are not necessarily fuzzy quantifiers. They do show the need, how-
ever, for more varied forms of quantification, already in the classical first-order setting.
Additionally, higher-order logic introduces quantification over functions and relations,
and relations of relations and so forth. This thesis focuses on first-order quantification.
To give an example: “Few bankers are poor”, can be written in a more formal notation
as Few x (Banker(x), Poor(x)), where Few is a binary quantifier with some specified
truth function, and the predicates Banker and Poor can be modelled as fuzzy sets.

The ‘Theory of Generalised Quantifiers” (TGQ) [BC81] is a scheme that essentially
considers a quantifier to be some mapping from crisp sets to a truth value. In the
original concept this is a classical two-valued value. Formally

Q : P(D)k → {0, 1},

where k, called the arity, signifies how many arguments the generalised quantifier Q
operates on.

As mentioned earlier, an important pattern that is often encountered in quantified ex-
pressions is that of range and scope. We consider an example expression “Some Y1’s
are Y2’s”. The first argument Y1 restricts the objects to which the quantifier refers and
is called the range. The second argument Y2 asserts something about the individuals
specified in Y1, this is called the scope. Glöckner proposes in his framework an extension
of this to n-ary quantifiers, by treating the last argument as the scope, while no direct
equivalent for the range is given, in general.

A comprehensive survey of quantification in both linguistics and logic is provided by
Peters and Westerståhl [PW06]. The authors state that, while there is no complete
agreement on what precisely “logical quantifier” should mean, there is widespread agree-
ment that a minimal requirement is that truth values of logically quantified sentences
are invariant under permutations of domain elements. More generally the truth value
should remain invariant also under cross-domain bijections. We call this property ISOM.
To state it more formally we need a few basic definitions:

The property ISOM is not limited to quantifiers, and in fact defined in a more general
type-theoretic setting. For a more detailed description, the interested reader is advised to

9

3. Preliminaries

look at chapter 9 of “Quantifiers in Language and Logic”, which includes an introduction
into the objects of finite types.

The definition of the property is done on universal operators, these are general functionals
O that associate to each domain M a concrete object OM . This is a more general concept,
but clearly also includes quantifiers, which are still defined if one swaps the arguments
with sets from a different domain of discourse.

For the definition as it is given in ([PW06], p. 326), a way to generalise bijections of the
kind f : M → M ′ to bijections on objects of finite type over M to objects of the same
type over M ′ needs to be introduced. This is done in an inductive manner:

• If u is a truth value, f(u) = u (by stipulation)

• If R is a binary relation between individuals in M , f(R) = {(f(a), f(b)) | (a, b) ∈
R}

• If F is a function from binary relations between individuals in M to sets of individ-
uals in M , f(F) is the corresponding function over M ′ defined by f(F)(R′) = S′

iff F (f−1(R)) = f−1(S′). (Thinking of F as a relation instead, we have f(F) =
{(f(R), f(S)) | F (R) = S})

Definition 1. ISOM for arbitrary operators on domains
An operator O on domain is ISOM iff for all domains M and all bijections f : M → M ′

with domain M :

f(OM) = Of(M)

Since a quantifier that is ISOM cannot refer to specific elements in a domain, this restricts
their models to operations on the input set itself, like for example union or intersection,
but also cardinality (or proportions of cardinalities) to determine the truth value.

To give an idea why ISOM is important for logicality, let us consider as an example
a quantified statement from natural language: “some of my friends are diligent”. If I
were to describe a bijection f to another domain, such that “my friends” is mapped to
a new set “garden hoes” and “diligent (people)” to “green (garden utensils)”, then the
new sentence “some garden hoes are green” needs to have the same truth value, after
and before the bijection is applied the input sets. In other words, the meaning of the
quantifier is independent of the specific domain of discourse, but only depends on the
cardinalities of the predicates to which it is applied. If we understand logic as the study
of formal reasoning, then it is clear why this is a useful property.

10

3.3. Fuzzy Quantification

Crisp Input Fuzzy Input
Crisp Quantifier Type I Type II
Fuzzy Quantifier Type III Type IV

Table 3.1: Categorization of fuzzy quantifiers, due to [LK98]

3.3 Fuzzy Quantification
We differentiate a fuzzy quantifier by whether its input or output is two-valued (crisp)
or many-valued (fuzzy). This leads to a categorisation of “types” of fuzzy quantifiers,
proposed by Liu and Kerre [LK98].

Type I quantifiers therefore amount to exactly the class of quantifiers that was considered
by Barwise and Cooper, with classical predicates as argument for a quantifier that only
evaluates to a binary semantic value. Furthermore, the classical quantifiers (∃, ∀) are
also of this type.

Two types of this categorization are of special interest for the framework of Glöckner
and are also generally referred in this thesis under the following names. Semi-fuzzy
quantifiers refers to Type III in this scheme. They quantify over elements of crisp sets
and evaluate to a truth value in the range [0, 1]. The term “fully” fuzzy quantifier refers
to Type IV, where one quantifies over fuzzy sets to evaluate, as before, to a truth value
in the range [0, 1].

By a “quantifier” as the term is used in this thesis, we understand a function from a
(crisp or fuzzy) set (or tuple of such sets) to a truth value, again possibly crisp (two
valued) or fuzzy (in the range [0, 1]).

A semi-fuzzy quantifier (SFQ) is then defined as follows:

SFQ : P(D)k → [0, 1] (3.4)

We assume that the domain D is always clear from the context. The k arguments are
crisp sets over the domain D. A Type IV fuzzy quantifier (FQ) is simply defined as:

FQ : P̃(D)k → [0, 1]. (3.5)

3.4 Glöckner’s axiomatic lifting approach
The eventual goal is to model all four types of quantifiers. Since the fuzzy case can
always be seen as a more general form of the crisp one, Type IV quantifiers comprise in
some sense all other types of fuzzy quantification.

As mentioned before, Glöckner notes in his monograph [Glö06] that many of the early
fuzzy quantifier models following Zadeh’s approach are inadequate for modelling natural
language expressions, such as about half. Another point he stresses, is that it is easy to

11

3. Preliminaries

define a Type IV directly, but difficult to give convincing justifications for it. To use the
example “about half”, there are many possible models that come into mind, making it
hard to determine which one might be appropriate for any particular use case. This is
something that is referred to as “embarrassment of riches” by Fermüller and Roschger
[FR13], where they note that even for unary fuzzy quantifiers uncountably many choices
arise.

Glöckner addresses this, in part, by modelling the desired quantifier as a (Type III)
semi-fuzzy one. This reduces the number of choices, and allows one to use operations
on crisp sets, such as intersection and cardinality, to define the semantics. Only after
this are these semi-fuzzy quantifiers “lifted” to the (Type IV) fuzzy case. An operator
that performs such a lifting from a semi-fuzzy quantifier to produce fuzzy quantifiers is
called a quantifier fuzzification mechanism (QFM). Formally,

Definition 2. A quantifier fuzzification mechanism F is a function that takes as its
input a semi-fuzzy quantifier (defined in 3.4) and returns a fuzzy quantifier (defined in
3.5):

F : SFQ→ FQ

The reason why this only solved the problem partially is that it still leaves open the
issue of providing models for SFQs. An attempt at solving this can be seen in [FR13],
where Fermüller and Roschger use a game-theoretic approach to provide a justification
for truth functions of semi-fuzzy quantifiers.

Since there are many different ways in which a quantifier fuzzification mechanism can
be defined, a list of desired properties of a QFM were also given in his monograph.
These axioms, as he refers to them, focus on producing “reasonable” models of fuzzy
quantifiers with respect to the original semi-fuzzy quantifier. A QFM that fulfils all of
these is referred to as a determiner fuzzification scheme (DFS), where “determiner” is a
term from linguistics that is used to describe “quantifier” as it is used in this thesis. The
nod to linguistics hints at Glöckner’s goal of producing models of fuzzy quantification
that are adequate to model expressions from natural language.

We proceed to give an overview of the DFS axioms ([Glö06], p. 106). All of these are
explained in significantly more detail in chapter 6

• Correct Generalisation This property ensures that the resulting fuzzy quantifier
properly subsumes the corresponding semi-fuzzy one. We first introduce a simple
restriction operator that restricts the input of a fuzzy quantifier to be crisp U . If
for a QFM F and for all semi-fuzzy quantifiers Q, it holds that

U(F(Q)) = Q, (3.6)

then we say that F satisfies correct generalisation.

12

3.4. Glöckner’s axiomatic lifting approach

• Membership Assessment A special unary semi-fuzzy quantifier πe is introduced.
It returns 1 iff the input contains e ∈ D. The fuzzy pendant π̃e is defined over the
characteristic function of a given fuzzy set (π̃e(F) = µF (e)). If for a QFM F and
for all e ∈ D, it holds that

F(πe) = π̃e, (3.7)

then we say that F satisfies membership assessment.

• Dualisation This is based on a new operator introduced in chapter 6. For a
quantifier Q we can form the dual Q□ of a quantifier. This is applicable in both
the semi-fuzzy and the fuzzy case (we use □̃ to signify the latter). If for a QFM
F and for all semi-fuzzy quantifiers Q, it holds that

F(Q□) = (F(Q))□̃, (3.8)

then we say that F satisfies dualisation.

• Internal Join This is based on a union operator for fuzzy sets ∪̃, derived using
a QFM. The construction is analogous as for the dual operator. The internal join
takes an n-ary quantifier Q and returns the n + 1-ary quantifier Q∪, where an
additional argument is joined with the last using the union operator. In the fuzzy
case this is done using the mentioned fuzzy union operator. If for a QFM F and
for all semi-fuzzy quantifiers Q, we have

F(Q∪) = (F(Q))∪̃, (3.9)

then we say that F satisfies internal join.

• Preserving Monotonicity A semi-fuzzy quantifier Q : P(D)k → [0, 1] is said to
be nondecreasing (resp. nonincreasing) in its i-th argument, i ∈ {1, . . . , k}, if

Q(Y1, . . . , Yn) ≤ Q(Y1, . . . , Yi−1, Y ′
i , Yi+1, . . . , Yn)

(resp. Q(Y1, . . . , Yn) ≥ Q(Y1, . . . , Yi−1, Y ′
i , Yi+1, . . . , Yn))

whenever the involved arguments Y1, . . . , Yn, Y ′
i ∈ P(D) satisfy Yi ⊆ Y ′

i . Glöckner
introduces a fuzzy inclusion operator and based on this defines nondecreasing (resp.
nonincreasing) in the fuzzy case. If for a QFM F and for all semi-fuzzy quantifiers
Q that are nondecreasing (resp. nonincreasing) in their i-th argument, F(Q) is
nondecreasing (resp. nonincreasing) in its i-th argument too, then we say that F
preserves monotonicity.

13

3. Preliminaries

• Functional application The final property is concerned with a homomorphism
condition between two domains. For any mapping f : D → D′ we have an asso-
ciated powerset mapping f̂ : P(D) → P(D). An extension principle extends f to
form a mapping between fuzzy sets, E(f) : P̃(D) → P̃(D′). Glöckner introduces
a mechanism to use a QFM F to produce a specific extension principle F̃ , s.t,
F̂(f) : P̃(D)→ P̃(D′). Before we can state the DFS axiom, we need to introduce
some notations. For sake of brevity we write

(Q ◦ ×n
i=1f̂)(Y1, . . . , Yn) = Q(f̂(Y1), . . . , f̂(Yn))

where ◦ is functional composition and × is product mapping, in this case applying
the powerset mapping f̂ on all arguments.
If for a DFS F , a semi-fuzzy quantifier Q : P(D)n → [0, 1] and the mappings
f1, . . . , fn, it holds that

F(Q ◦ ×n
i=1f̂i) = F(Q) ◦ ×n

i=1F̂(fi), (3.10)

then we say that F satisfies functional application.

With these six properties we can then formally define determiner fuzzification schemes:

Definition 3 (Determiner Fuzzification Scheme). We are given a QFM F . If F satisfies
(3.6), (3.7), (3.8), (3.9), (3.10) and preserves monotonicity, then F is defined to be a
determiner fuzzification scheme (DFS).

3.5 Mathematical Fuzzy Logic
While fuzzy logic as a term was popularized by Zadeh, his approach is not exactly
a “logic” in the sense of mathematical logic. There have been many ideas for many-
valued logics by logicians, predating Zadeh. Jan ukasiewicz and Kurt Gödel are two
noteworthy logicians that have worked and contributed to this subject. Zadeh himself
notes a distinction between fuzzy logic “in the broad sense” and in the “narrow sense”,
the latter of which is clearly connected to these multi-valued logics. The first to expand
and built on such a connection was Petr Hájek [Há06]. He gives a modern formulation
of fuzzy logic in the narrow sense, with a focus on the analysis of properties such as
soundness and completeness. For Zadeh, fuzzy logic in the narrow sense was focused
on approximate inferences, whereas Hájek is focusing on what he calls “classical logical
questions”, such as completeness or deductive reasoning. An in-depth analysis on the
differences between these two kinds of fuzzy logic can be found in [Běh08].

Hájek’s basic fuzzy propositional calculus has five main design goals:

1. The real unit interval [0,1] is fixed as the standard set of truth values. The ordering
≤ on real numbers is used to get a “comparative notion of truth”. Hájek does not
explicitly exclude other structures of truth, such as only partially ordered or finite
ones.

14

3.5. Mathematical Fuzzy Logic

2. The logic is truth functional, meaning all connectives are interpreted via their
respective truth functions. This allows one to interpret expressions in an inductive
way, uniquely determined by the truth functions of the connectives used.

3. Continuous t-norms (see Definition 4) are taken as possible truth functions of
conjunction. This choice is critical as it determines the rest of the logic. Hájek
introduces three logics that take different t-norms for the conjunction:

x ∗ y = max(0, x + y − 1) (ukasiewicz t-norm)
x ∗G y = min(x, y) (Gödel t-norm)
x ∗P y = max(0, x + y − 1) (product t-norm)

The reason why these three t-norms were chosen, beyond just being continuous,
can be seen in the Mostert Shields theorem, see in [CHN15]. It states that all
continuous t-norms can be expressed as ordinal sums of these three above.

4. The truth function of the implication is derived from the one for conjunction. The
implication ⇒ is defined to be the residuum of the continuous t-norm ∗:

x⇒ y = max{z | x ∗ z ≤ y}

It also holds that x ⇒ y = 1 iff x ≤ y. In the case that x > y, the residua of the
different t-norms are

x⇒ y = 1− x + y (ukasiewicz)
x⇒ y = y (Gödel)
x⇒ y = y/z (product)

5. The truth function for negation is (−)x = x⇒ 0 (x implies falsity).

Definition 4. t̃ : [0, 1]→ [0, 1] is called a t-norm if it satisfies

• t̃(x, 0) = 0 (0-element)

• t̃(x, 1) = x (1-element)

• t̃(x, y) = t̃(y, x) (commutativity)

• If x ≤ z, then t̃(x, y) ≤ t̃(z, y) (monotonically nondecreasing)

• t̃(t̃(x, y), z) = t̃(x, t̃(y, z)) (associativity)

for all x,y,z ∈ [0, 1].

15

3. Preliminaries

Hájek proceeds to introduce for these three logics an underlying “basic logic”, i.e., a
Hilbert-style axiomatic system. Each of the three logics (ukasiewicz, Gödel and product
logic) stands “above” this one in the sense that their Hilbert systems are obtained by
adding one or more axioms to basic logic. With this as a proof system, he proceeds
to analyse soundness and completeness , both in the propositional case and first-order
predicate case. For the remainder, we shall refer to each logic of this framework as a
mathematical fuzzy logic (MFL).

3.6 Giles’ Game for ukasiewicz logic

Robin Giles proposed it both to model experiments in physics and to “provide tangible
meaning” for fuzzy truth values [Gil74]. In Giles’ game for (or G-game for short) there
are two players, called for simplicity’s sake “I” and “You” and the central objects of the
game are multisets of logical formulae. The connection to ukasiewicz logic will become
clear in the course of this explanation. Each player can assert a formula, even multiple
times. These are referred to as that player’s tenet. So “You” can bet for a multiset
of assertions {A1, . . . , An} and “I” can bet for a corresponding multiset {B1, . . . , Bm}.
This means a (possibly final) game state is described by both tenets

[A1, . . . , An | B1, . . . , Bm]

The game starts with an arbitrary formula, asserted as convention by “I”, and proceeds
by the application of rules that inductively lead to simpler and simpler formulae, until
only atomic assertions are left.

What follows is a summary of the rules available in a G-game.

• (R∧) If I assert F ∧ G then you attack by pointing either to the left or to the
right sub-formula. As corresponding defence, I then have to assert either F or G,
according to your choice.

• (R∨) If I assert F ∨G then I have to assert either F or G at my choice.

• (R→) If I assert F → G then you may attack by asserting F , which obliges me to
defend by asserting G. (Analogously if you assert F → G)

• (R∃) If I assert ∃xF (x) then I have to select a constant c and assert F (c).

• (R∀) If I assert ∀xF (x) then you attack by choosing c, and I have to defend by
asserting F (c).

Furthermore, we define ¬F = F → ⊥. The rule R→ has a principle of limited liability.
This means that “You” can choose to not attack F → G (since it requires asserting F ,

16

3.6. Giles’ Game for ukasiewicz logic

which might not be desirable). In that case F → G is simply removed from the tennet
of “I”.

At the end of the game, each atomic assertion is seen as a random experiment and the end
result is allowed to be “dispersive”, meaning that it differs on repetition. For an atomic
assertion B, the outcome of the random experiment is denoted by ⟨B⟩ = 1−π(EB) also
called its risk assignment, where EB is a binary experiment, and π(EB) signifies the
probability of success. Then the final evaluation of a G-game is defined as

⟨A1, . . . , An | B1, . . . , Bm⟩ =
∑

1≤i≤m

⟨Bi⟩ −
∑

1≤j≤n

⟨Aj⟩ (3.11)

This final evaluation defines the outcome of the game. At the final game state, either “I”
or “You” pays a certain amount to the other player. Since no player can fully anticipate
the result, the goal of a G-game is to reduce the risk. Note that a risk can be negative,
meaning that “I” can expect to receive a net payment from “You”.

Giles also provides a remarkable result for this game: the connection of the risk value
assignment of G-games with the truth evaluation of a mathematical fuzzy logic, namely
ukasiewicz logic. The reason why ukasiewicz logic in particular is due to the fact that
it is the only MFL that consists of continuous truth functions for all its connectives.
Note: we say “G-game for F” if the game in question starts with “I” asserting F . Also,
a G-game is y-valued for me (i.e. player “I”), if “I” can enforce a risk of at least y for
the outcome of the game.

Theorem 1. [Gil74]
A ukasiewicz-sentence F is evaluated as vM (F) = x in an interpretation M iff every
G-game for F under risk assignment ⟨·⟩M is (1− x)-valued for me.

This also shows how Giles’ game gives a tangible meaning to fuzzy truth values via
game-theoretic semantics. The truth degree of a sentence F corresponds inversely to the
associated risk of the G-game for F . This is used as a starting point by Fermüller and
Roschger [FR13] to introduce further rules to Giles’ games to model semi-fuzzy quanti-
fiers, explained in more detail in Chapter 4. Baldi and Fermüller [BF18] introduce a rule
for G-game to extend semi-fuzzy quantifiers (Type III) to fuzzy (Type IV) quantifiers,
thereby forming a QFM, explained in detail in Chapter 5.

17

CHAPTER 4
Semi-Fuzzy (Type III) Quantifiers

This chapter will focus on introducing various schemes found in the literature on fuzzy
quantification for specifying semi-fuzzy quantifiers. They represent the needed building
block in modelling certain natural language phrases, such as “about half”, “almost all”,
“few”, etc., that deal with vague concepts. To briefly repeat the main ideas, in the
framework proposed by Glöckner, a two step approach is used: first semi-fuzzy quanti-
fiers must be provided. Then these are lifted to Type IV fuzzy quantifiers, in the Liu and
Kerre categorization. This allows for the use of their cardinality as part of the semantics,
something that is not available when dealing with fuzzy sets directly.

This “lifting” from semi-fuzzy to fuzzy quantifiers is not without issues and to understand
the strength and deficits of the various proposals on how such a lifting can work, we need
a broad range of semi-fuzzy quantifiers to test them with. What is presented here is a
collection of various categories of such quantifiers and their semantic definitions.

4.1 Absolute and proportional quantifiers

The fuzzy quantification approach of Zadeh does not deal separately with Type III
and Type VI quantifiers. Glöckner refers to this as the “traditional framework for
fuzzy quantification ” [Glö06]. After the first pioneering work by Zadeh, many others
have followed this traditional modelling framework and expanded it in various ways.
The Zadeh framework refers to two classes of quantifiers. The first class are called
absolute quantifiers. They are typically unary quantifiers and refer in some way to the
cardinality of the fuzzy argument. Zadeh gives as examples: “several, few, many, not
very many, approximately five, close to ten, much larger than ten, are large number,
etc. ”. Quantifiers of the second class are proportional quantifiers, also called relative
quantifiers in the literature. They are binary quantifiers, where the range, usually the
first in our notation, restricts the scope, as explained earlier. In the context of NL such

19

4. Semi-Fuzzy (Type III) Quantifiers

binary quantifiers play an important role. Examples for proportional quantifiers are
given by Zadeh as “most, many, a large fraction, often, once in a while, much of, etc.”.

While in the Zadeh framework these are effectively Type IV quantifiers, one can also
think of them as Type III semi-fuzzy quantifiers by restricting the input to crisp sets.
Indeed this has been implemented as part of this thesis, and we will see absolute and
proportional quantifiers as semi-fuzzy ones used in chapter 6.

The quantifiers considered by the Zadeh framework all have the property of ISOM, de-
scribed in the Preliminaries. Therefore only cardinality measures or set operations are
used to evaluate the quantifiers and in particular referring to specific elements of the
domain is not allowed. Both cardinality measures and operations on sets are completely
straightforward in the semi-fuzzy case, working on crisp sets. It should be noted here
that much (though not all) of the Zadeh framework is concerned with directly general-
ising such cardinality measures from the crisp to the fuzzy case and introducing various
methods of doing so. We shall briefly mention the Σ-Count and OWA-method here, as
such examples, but we will not go into more detail since it is not directly relevant to
the topic of this thesis. The Σ-Count is a simple summation of the fuzzy membership
degrees, while the OWA (order weighted average), additionally introduces a weighting
based on the order.

We shall fix a class of proportional quantifiers that are defined for two crisp sets as
arguments, and a proportionality function µ : [0, 1] → [0, 1]. The argument of this
proportionality function measures how much of the range is contained in the scope, where
1 means the range is fully contained in the scope, and 0 indicates that their intersection
is empty. The formal definition of the class of proportional quantifiers RQ_mu is as
follows:

Definition 5. A proportional quantifier RQµ for a mapping µ : [0, 1]→ [0, 1] is defined
as

RQµ(A, B) =

1 if A = ∅
µ(|A∩B|

|A|) otherwise

Many examples of semi-fuzzy quantifiers that are used in this thesis for the Discussion
follow this scheme, restricted to the semi-fuzzy case as explained. To see how various
quantifiers can be easily defined using this scheme, we will proceed with showing a few
examples and the plots of their corresponding µ functions.

20

4.2. Blind and Deliberate Choice quantifiers

Definition 6. The following is a collection of semi-fuzzy quantifiers that were defined
using the proportional quantifier scheme from Definition 5. Some use the Sα,γ function
of Zadeh, given below.

Sα,γ(x) =

0 if x ≤ α

2x−α
γ−α

2 if α ≤ x and x ≤ α+γ
2

1− 2 x−γ
γ−α

2 if x ≤ γ and α+γ
2 < x

1 otherwise

These definition are taken from [Glö06].

• almost all = RQµ1, where µ1(x) = S0.7,0.9(x)

• around half = RQµ2, where µ2(x) = S0.25,0.4(x)− S0.6,0.75(x)

• half = RQµ3, where µ3(x) = 2 ∗max(0, min(x, 1− x))

• few = RQµ4, where µ4(x) = 1− S0.1,0.3(x)

• equals = RQµ5, where µ5(x) = x

• exists = RQµ6, where µ6(x) =
{

1 if x > 0
0 otherwise

• all = RQµ7, where µ7(x) =
{

1 if x = 1
0 otherwise

A plot of the corresponding µ mappings for the quantifiers in Definition 6 can be seen
in Figure 4.1.

4.2 Blind and Deliberate Choice quantifiers

What follows is an attempt at extending the framework of Glöckner, but using a different
approach with different underlying foundations. The authors Fermüller and Roschger
[FR13] see the idea of starting with (Type III) semi-fuzzy quantifiers and lifting them to
(Type IV) fuzzy quantifiers as appealing, but are interested in truth functional models for
quantifiers, embedded into an existing MFL, namely ukasiewicz logic. Additionally, they
are also interested in general principles that provide semantics for semi-fuzzy quantifiers.
The choice of ukasiewicz logic is no accident, it is the only MFL where all truth functions
are continuous. To achieve this embedding they utilize Giles’ game, which in itself
already gives “tangible meaning” to fuzzy truth degrees through its use of dispersive
experiments, as introduced in the Preliminaries.

21

4. Semi-Fuzzy (Type III) Quantifiers

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) almost all

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) around half

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) few

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) equals

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(e) half

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(f) exists

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(g) all

Figure 4.1: Plots of µ functions of proportional quantifiers

22

4.2. Blind and Deliberate Choice quantifiers

The authors extend the language of ukasiewicz logic with semi-fuzzy quantifiers. The
rules of Giles’ game are accordingly extended with additional rules that corresponds to
these quantifiers. The first kind are called “blind choice” quantifiers, since a number of
elements from the domain of quantification must be chosen by the players before knowing
which specific elements these are. They are acting “blind”. In the paper, the authors
begin by introducing two such blind choice quantifiers.

We first have to define how to evaluate the proportionality of a fuzzy or crisp concept
over a finite domain. This is a critical part of the rules of both blind and deliberate
choice quantifiers.

Definition 7. Let F̃ (x) be a formula and vM (•) a corresponding evaluation function
over the finite domain D. Then

PropM(F̃) =
∑
c∈D

vM(F̃ (c))
|D|

Note that we are using a slightly different notation here than in the actual paper. The
reason is that in chapter 5, where we introduce a QFM based on G-games, we also need
PropM , so instead of defining it twice, with small differences, it is just stated once here
and referred to later.

For any F̃ , PropM(F̃) ∈ [0, 1] is the expected value of F̃ (c) for a random choice of c ∈ D.
We shall see later how this allows us to easily model both blind choice and deliberate
choice quantifiers as proportional quantifiers. What follows is the definition of the rules
for two blind choice quantifiers, Lk

m and Gk
m:

Definition 8. (RLk
m

(F̃)) If player “I” asserts Lk
mxF̃ (x), then player “You” may attack

by betting for k random instances of F̃ (x), while I bets against m random instances of
F̃ (x).
(RGk

m
(F̃)) If player “I” asserts Rk

mxF̃ (x), then player “You” may attack by betting
against m random instances of F̃ (x), while I bets for k random instances of F̃ (x).

Before we show the result that links these rules to truth functions in ukasiewicz logic,
we introduce and repeat some needed terminology. As before when introducing Giles’
games, we say that “a G-game is (1 − x)-valued for me” to mean that player “I” can
limit the expected risk to (1 − x). The risk value assignment ⟨·⟩M of a G-game with
interpretation M is the assignment of the expected risk for atomic assertions, which was
defined in the Preliminaries.

The authors show that the following result holds. The proof is omitted here, as it does
not lie in the scope of this work.

23

4. Semi-Fuzzy (Type III) Quantifiers

Theorem 2. For any interpretation M , let us extend the evaluation function vM of
ukasiewicz logic by:

vM (Lk
mxF̃ (x)) = min(1, max(0, 1 + k − (m + k)PropM(F̃))).

vM (Gk
mxF̃ (x)) = min(1, max(0, 1− k + (m + k)PropM(F̃))).

A sentence F in the language of ukasiewicz logic extended with Lk
m and Gk

m is evaluated
to vM (F) = x iff every G-game for F augmented by the rules RLk

m
and RGk

m
under risk

value assignment ⟨·⟩M is (1− x) valued for me.

This shows that blind choice quantifiers, as defined by the given rules, produce a truth
functional model. Since ukasiewicz logic consists solely of continuous functions, these
quantifiers can be easily and efficiently implemented.

These two quantifiers can be combined to form new ones. For instance Hs
t , which is

defined as a combination of Lk
m and Rk

m.

vM (Hs
t xF̃ (x)) = min(vm(Gs−t

s+txF̃ (x)), vm(Ls+t
s−txF̃ (x)))

The next category of quantifiers allow the two players to choose the instances while know-
ing precisely which elements are picked from the domain. There is a deliberate choice.
To understand why this affects the semantics (and leads to different risk evaluations),
we consider that each player acts rationally and essentially as a perfect reasoner. The
attacker will pick those instances with highest, the defender those with the lowest risk.

For deliberate choice quantifiers, the authors give just one example, though of course
based on the game-based approach there are many other possible rules, and therefore
concrete quantifiers, that fall in this class.

Definition 9. (RΠk
m

(F̃)) If player “I” asserts Πk
mxF̃ (x) then, if “You” attacks, k + m

constants are randomly chosen and “I” has to pick k of those constants, while betting
against the remaining n.

The authors show the following connection with ukasiewicz logic:

Theorem 3. For any interpretation M , let us extend the evaluation function vM of
ukasiewicz logic by:

vM (Πk
mxF̃ (x)) =

(
k + m

k

)
(PropM(F̃))k(1− PropM(F̃))m

A sentence F in the language of ukasiewicz logic extended with Πk
m is evaluated to

vM (F) = x iff every G-game for F augmented by the rule RΠk
m

under risk value as-
signment ⟨·⟩M is (1− x) valued for me.

24

4.2. Blind and Deliberate Choice quantifiers

Unfortunately, this alone leads to an unsatisfactory quantifier, since vM (Πk
mxF̃ (x)) is

always below 1. This is addressed by introducing a “quantifier modifier”, that essentially
multiplies the truth value by a constant amount (with a ceiling of 1).

Definition 10. (Wn(Q)xF̃ (x)) If player “I” asserts Wn(Q)xF̃ (x) then “You” has to
place n bets against QxF̃ (x), while “I” places just one bet for QxF̃ (x)

The deliberate choice quantifier Πk
m is then to be used in combination with Wn. An

example that gives a possible semantics for “about half”, is W3(Π2
2). For “about a

third”, W3(Π1
2) is proposed and W3(Π1

1) finally as a possible model for “very roughly
half”. It is interesting to note that, as opposed to blind choice quantifiers, that can only
model piecewise linear functions, deliberate choice quantifiers are not restricted to those
and can model non-linear increases and decreases.

Beyond the different foundations of blind and deliberate choice quantifiers, another in-
teresting aspect that sets them apart from other models of semi-fuzzy quantifiers is the
fact that they are defined, as was seen, with parameters in their definition. Therefore we
can think of each of them as a class of quantifiers and each concrete assignment of k and
t (or s and t for H) as a specific semi-fuzzy quantifier. For example, the authors point
out how the subclass Gs

2s, meaning we pick for some s, k = s and m = 2s, corresponds
to various forms of “(at least) one third”. By the dual definition the subclass L2s

s , for
example, corresponds to something along the lines of “ (less than) two thirds”.

There is a connection between the semantics of both blind and deliberate choice quan-
tifiers that are based on a measure of proportionality of a crisp set (since a classical
predicate F can be seen as the set {c | vM (F (c)) = 1, c ∈ D}) and the notion of pro-
portional quantifiers in the Zadeh framework, even though one is a unary and the other
binary. If we consider the domain not to be implicit, but an explicit crisp set, we can
replace PropM(F) with a value x ∈ [0, 1] which represents the proportion |D∩F |

|D| . This
way we can use these quantifiers as binary ones, by treating the domain D as the range
and F as the scope. This is not a new idea, but is precisely the notion of relativization
from the TGQ [Wes16]. This tool allows one to extend the arity of a quantifier Q by 1,
to form Qrel, where the new argument in Qrel relativizes the old ones, meaning only the
intersections are considered.

This has been implemented as part of this thesis and some of the examples presented
in later chapters denote these quantifiers as taking two arguments. So for example
G1

2x(A1(x), A2(x)) is equivalent with considering A1 as the domain, and evaluating
G1

2xA2(x). These binary versions take the truth functions defined here, and follow the
scheme of proportional quantifiers given in Definition 5. To give a concrete example, the
truth function of Lm

k is stated as

vM (Lk
mxF̃ (x)) = min(1, max(0, 1 + k − (m + k)PropM(F̃))).

25

4. Semi-Fuzzy (Type III) Quantifiers

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) L1
2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(b) G2
1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(c) H3
1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) W2(Π1
2)

Figure 4.2: Some example plots of blind and deliberate choice quantifiers.

We can reformulate this as a proportionality function µLk
m

: [0, 1] → [0, 1], replacing
PropM(F̃) with an argument x ∈ [0, 1]:

µLk
m

(x) = min(1, max(0, 1 + k − (m + k)x))

Then we can define the binary quantifier simply as

RQµ
Lk

m
(A, B) =

µLk
m

(1) if A = ∅
µLk

m
(|A∩B|

|A|) otherwise

following the scheme given in Definition 5.

26

CHAPTER 5
Quantifier Fuzzification

Mechanism Models

This chapter introduces various models found in the literature for ways to extend semi-
fuzzy quantifiers to the fuzzy case. They are called quantifier fuzzification mechanisms
(QFM) [Glö06]. The ultimate goal is to produce models of quantification that lie in
Type IV of the Liu and Kerre categorization, so they can take fuzzy arguments as inputs
and are evaluated to a fuzzy truth degree. The advantage of being able to define a
semi-fuzzy quantifier, for example for the vague concept “about half”, that takes crisp
sets as arguments and having a mechanism that automatically “lifts” this to a Type IV
quantifier should be apparent. Glöckner also limits this lifting process by a number of
properties that a “reasonable” QFM should fulfil. We will compare the QFMs listed in
this chapter against these properties in the subsequent chapter.

5.1 QFMs by Glöckner

What follows is a simplified account (compared with Glöckner’s monograph [Glö06])
that focuses on the basic implementation of three models that Glöckner developed. In
his monograph he also gives an axiomatic foundation and first sets out a number of
requirements before he shows various mechanisms of extending semi-fuzzy quantifiers to
the fuzzy case.

All of the fuzzification mechanisms of Glöckner are based on one central notion of reduc-
ing fuzzy sets to crisp sets, which consists of using “three-valued” sets as an intermediate
step. We shall fix the notation for the domain as D, as before. A three-valued set is
essentially a special case of a fuzzy set, but the membership function is only allowed to
map to a set that contains 0, 0.5 and 1, i.e. µT V : D → {0, 0.5, 1}. We proceed by
defining a way to map truth values in [0, 1] into {0, 0.5, 1}

27

5. Quantifier Fuzzification Mechanism Models

Figure 5.1: Three-valued cut as a function of γ and µX̃(x)

three_cutγ(x) =

1 : x ≥ 0.5 + 0.5γ

0.5 : 0.5− 0.5γ < x < 0.5 + 0.5γ

0 : x ≤ 0.5− 0.5γ

(5.1)

In the special case where γ = 0, it is defined as

three_cut0(x) =

1 : x > 0.5
0.5 : x = 0.5
0 : x < 0.5

(5.2)

This is extended to fuzzy sets in a natural way. For a given value of γ, a fuzzy set
Ã and its membership function µÃ, we simply apply the three_cutγ function to the
output of µÃ. So for a fuzzy set Ã, the three-valued cut for γ is defined by Tγ(Ã), whose
membership function is

µTγ(Ã)(c) = three_cut(µÃ(c)) for all c in the domain (5.3)

For a given three-valued set T , there are two natural crisp approximations. The first is
to focus on all elements with membership degree 1, and the second is to be more lenient
and also allow for elements with degree 0.5.

Tmin = {c ∈ D | µT (c) = 1} (5.4)

Tmax = {c ∈ D | µT (c) ≥ 0.5} (5.5)

28

5.1. QFMs by Glöckner

These are the two extreme ends, so to speak. From these we define a range of possible
crisp sets that are in between.

Range(T) = {X | Tmin ⊆ X ⊆ Tmax} (5.6)

For a given three-valued T with n elements of non-zero degree, there are possibly 2n

many crisp sets in Range(T) (consider the case that all n elements have membership
degree 0.5).

This explains how to get crisp approximations for a single three-valued set. For more
than one set, say T1, . . . , Tn, we extend this by first computing the ranges and then
forming the Cartesian product Range(T1) × . . . × Range(Tn). So we consider, for the
crisp case, every possible combination from the elements of the range.

Another important component of this approach is the generalised median function. For
this we first need the specific median function med, which operates on two comparable
elements.

med(a, b) =

min(a, b) if min(a, b) > 0.5
max(a, b) if max(a, b) < 0.5
0.5 otherwise

(5.7)

med is chosen for its properties of being an operator to compute a mean that is associa-
tive, idempotent and commutative. It is then generalised to deal with arbitrary subsets
X ⊆ [0, 1] of the set of truth values [0, 1]. This new generalised operator is also called
med, in the hope that it is clear from context which version is meant.

Definition 11. The generalised median function med is defined as follows:

med(X) = med(inf(X), sup(X))

Glöckner introduces a number of classes of QFMs. Each of these is a general schema that
allows one to get different concrete models of QFMs by using different functions. While
the monograph lists more than the two listed below, we pick three models from different
classes to represent Glöckner style QFMs. The choice of models follows [DRSV14].

5.1.1 The Class of MB-QFMs

The basis of this class of QFMs is the idea of using three-valued cuts to produce ranges of
crisp representations, and subsequently using med to aggregate the values of the range.
The three-cut needs a “cautiousness parameter” γ, so we first assume this parameter is
fixed. This produces the following QFM:

29

5. Quantifier Fuzzification Mechanism Models

Definition 12. Taken from Def. 7.18 ([Glö06], p. 190)
Let Q be a semi-fuzzy quantifier , γ ∈ [0, 1] and Ã a fuzzy set. Then Qγ : P̃(D)→ [0, 1]
is defined as:

Qγ(Ã) = med{Q(B) : B ∈ Range(Tγ(Ã))},

where med, Range, Tγ are defined as in Definition 11, (5.6), (5.3).

The class MB is defined on a given aggregation method B which collects values of Qγ

for any possible choice of γ and maps them to a single truth value. For the definition of
this class, we also introduce the set B, a collection of all mappings f : [0, 1]→ [0, 1] that
are either nonincreasing, nondecreasing or return constantly 1/2.

Definition 13. Let B : B→ [0, 1] be given. The class of QFMs MB is defined by

MB(Q)(X) = B((Qγ(X))γ∈[0,1]),

for all semi-fuzzy quantifiers Q : P(D)→ [0, 1] and X ∈ P̃(D).

The first QFM of Glöckner, which we will introduce, is called simply M. It consists of
a simple integral over the range [0,1]:

Definition 14. Taken from Def. 7.22 ([Glö06], p.192)
Let Ã be a fuzzy set and Q a semi-fuzzy quantifier. The QFM M : P̃(D)→ [0, 1] of the
class MB is defined as

M(Q)(Ã) =M∫ 1
0

(Q)(Ã)

Unpacking the definition of MB, we can also state it as:

M(Q)(Ã) =
∫ 1

0
Qγ(Ã)dγ,

where Qγ is taken from Definition 12.

It shall be noted here, that it is sufficient to sample over only finite possibilities of values
for γ, based on (Ã). Assuming that the domain D is finite, a three-cut can only produce
finitely many different crisp ranges based on the truth degrees occurring in the fuzzy
set. For every i ∈ [0, 1], there is only one “choice” by the three_cut operator, either the
value is mapped to 1 or 0.5, if it is above 0.5, or it is mapped to 0.5 or 0, it is below.
(The values of 0,0.5 and 1 are preserved, so multiple applications of Tγ on the same set
do not produce different outcomes). So for a fuzzy set with at most n different truth
degrees we need only sample n values of γ. This finite sampling is explained in more
detail in chapter 7.

The next QFM falls into the same class as M, but with a more simplified construction:
this simplification allows the QFMs to be only defined on nonincreasing input. In other

30

5.1. QFMs by Glöckner

words, in cases where Qγ is increasing, their behavior is not defined, does not need to
be well behaved. We will see in chapter 6 how this plays a role.

The next QFM called MCX is defined as follows:

Definition 15. Taken from Def 7.56 ([Glö06], p. 201)
The QFMMCX : SFQ→ FQ is defined over an aggregation on the family of quantifiers
Qγ(Ã)γ∈[0,1].

MCX(f) = sup{min(x, f(x)) | x ∈ [0, 1]}

where f := Qγ(Ã)γ∈[0,1] and f is nonincreasing.
Less abstractly, we are given a fuzzy set Ã and define MCX as

MCX(Q)(Ã) = sup{min(γ, Qγ(Ã)) | γ ∈ [0, 1]}

5.1.2 The Class of Fξ-QFMs

The next class of QFMs that we will cover here, is based on a generalisation of the
previous one. Instead of looking on aggregations on the set of mappings from [0, 1] →
[0, 1] (in particular Qγ), we rewrite Qγ as follows:

Qγ(Ã) = med{Q(B) : B ∈ Range(Tγ(Ã))}
= med{sup{Q(B) : B ∈ Range(Tγ(Ã))}, inf{Q(B) : B ∈ Range(Tγ(Ã))}}

To understand why this rewritten form of Qγ(Ã) is valid, consider the generalised median
function: it simply takes the infimum and supremum of its argument and uses the specific
median function med on ordered pairs.

Essentially we are only interested in two elements of the underlying crisp representation.
These are of particular interest to the next class of QFMs, so we shall introduce a shorter
notation:

⊤Q,Ã(γ) = max
γ∈[0,1]

{Qγ(Ã)} (5.8)

⊥Q,Ã(γ) = min
γ∈[0,1]

{Qγ(Ã)} (5.9)

Both of these are functions of the type [0, 1]→ [0, 1], where ⊤Q,Ã is non-decreasing and
⊥Q,Ã is non-increasing. Based on these two, Glöckner defines the class Fξ. The QFMs
in this class operate on the pair (⊤Q,Ã,⊥Q,Ã) and maps this pair to a truth value.

31

5. Quantifier Fuzzification Mechanism Models

Definition 16. We are given a fuzzy set Ã and a semi-fuzzy quantifier Q. For every
mapping ξ : (⊤Q,Ã,⊥Q,Ã)→ [0, 1], the QFM Fξ is defined by

Fξ(Q)(Ã) = ξ(⊤Q,Ã,⊥Q,Ã),

for all semi-fuzzy quantifiers Q : P(D)→ [0, 1] and all fuzzy sets Ã ∈ P̃(D).

The example QFM of this class that is mentioned here is Fowa. It is named since it is, as
shown by Glöckner, a generalisation of the previously mentioned OWA method [Yag98]
in the framework of Zadeh.

Definition 17. Taken from Def 8.13 ([Glö06], p. 226)
Let Ã be a fuzzy set and Q a semi-fuzzy quantifier. The QFM Fowa : SFQ → FQ is
stated as

Fowa(Q)(Ã) = 1
2

∫ 1

0
⊤Q,Ã(γ) d γ + 1

2

∫ 1

0
⊥Q,Ã(γ) d γ,

where ⊤Q,Ã(γ) and ⊥Q,Ã(γ) are defined as in 5.8 and 5.9.

All the QFMs presented here,M,MCX and Fowa fulfil a series of properties (or axioms)
that Glöckner thought of as necessary to truly capture the use of quantifiers in natural
language. As mentioned earlier, Glöckner called such QFMs, determiner fuzzification
schemes. While their applicability in all contexts where fuzzy quantifiers might be useful
is perhaps not obvious, it nonetheless presents an interesting analysis to see if QFMs
that were defined after Glöckner’s monograph fulfil or break with some of them.

A final remark on the QFMs shown here: for sake of simplicity, and to hopefully make
the (not exactly easy to read) work of Glöckner more approachable for an audience that
is new to this topic, all the QFMs were defined using, where applicable, the unary case.
So instead of Qγ(A1, . . . , An) just Qγ(A) was written. This does not mean that any of
the mechanisms shown here are restricted to the unary quantifiers. M,MCX and Fowa

take n-ary semi-fuzzy quantifiers and produce n-ary fuzzy quantifiers.

5.2 Probabilistic QFMs by Díaz-Hermida et al.

The framework of Díaz-Hermida et al. [DHBCB04] is interesting in that they first begin
by a justification of fuzzy semantics themselves. They propose that for each fuzzy concept
(say for example “rich”), we think of a random experiment. We have a set of witnesses,
called voters, that decide, for a any element in our domain if it fulfils the property or
not. Essentially each voter sees the concepts as a crisp one, but they are allowed to
differ in their specification of this crisp set. The fuzzy membership degree is then seen
as the expected value of this outcome. 0 means that no voter thinks it is part of the
fuzzy concept, 0.5 indicates that half of the voters would agree, and half disagree.

32

5.2. Probabilistic QFMs by Díaz-Hermida et al.

While this unique perspective on fuzzy interpretations is not directly related to elevating
semi-fuzzy quantifiers to the fuzzy case, it does show a way of extending crisp sets to fuzzy
sets. This is essentially determined by the choice of the voters. The idea is then to sample
various alpha cuts of fuzzy sets, but under a prespecified probability density function
P . It is determined by the relation of the voters “specificity”, essentially how strict the
voters are in choosing whether an element of the domain belongs to the fuzzy concept or
not. This connection between voting behavior and the corresponding probability density
function is not explicitly given, for example in a formula,but instead left abstract.

Definition 18. We are given a semi-fuzzy quantifier Q and fuzzy sets Ã1, . . . , Ãn. Ad-
ditionally a probability density function P representing the voters specificity respective to
a choice of alpha-cuts. We then define the QFM F P as,

F P (Q)(Ã1, . . . , Ãn) =
∫ 1

0
· · ·
∫ 1

0
Q(A1α1

, . . . , Anαn
)P (α1, . . . , αn) dα1, . . . , dαn.

This is the general framework in how all such QFMs can be defined, according to the
underlying voting-based model of the fuzzy set. Díaz-Hermida et al. present in their
their paper three exemplary choices of this framework.

The critical part here is clearly the definition of the probability density function P .
Essentially its function is to give a weighting on the possible alpha-cuts based on the
underlying voting behavior. Without any restrictions on this voting behavior of the
individual voters, this is rather complex task. In their paper Díaz-Hermida et al. present
instead three simplified scenarios that make assumption about the voting process to make
it easier to define P .

The first is the Maximum dependency model (MD), in which we assume that all voters
agree exactly on the choice of alpha-cut, and furthermore where the choice of alpha-cut
of one fuzzy set determines all the others. Essentially in this scenario we do not have
to produce multiple values for each alpha cut, instead just fixing one for each fuzzy set.
Formally this looks as follows:

Definition 19. We are given a semi-fuzzy quantifier Q and fuzzy sets Ã1, . . . , Ãn. We
define the QFM F MD as:

F MD(Q)(Ã1, . . . , Ãn) =
∫ 1

0
Q(A1α , . . . , Anα) dα

It is noticeable that in this simplified case, P does not appear, since for any α, we have
that P (α, . . . , α) = 1. As before for the QFMs from Glöckner, we note that we can
replace the integral with a sum over just a finite sample of truth degrees, namely those
that appear in all fuzzy sets (Ã1, . . . , Ãn). This is clearly a finite amount, if we also
assume the underlying domain to be finite. The reason why this is equal to the integral

33

5. Quantifier Fuzzification Mechanism Models

over all possible values, is that the alpha cuts used to get crisp sets can, for a finite
domain, only produce finitely many crisp approximations. We shall omit these remarks
from here on out, and just use the integral definitions to have a consistent notation,
while understanding that an efficient implementation should prefer to work with sums.

The next QFM is the Independence model (I), where we do not require to have the same
specificity for all fuzzy notions. As before, however, we still have that the probability
density function P is exactly 1 for each tuple of choices for the alpha cuts. We proceed
to define F I .

Definition 20. We are given a semi-fuzzy quantifier Q and fuzzy sets Ã1, . . . , Ãn. We
define the QFM F I as:

F I(Q)(Ã1, . . . , Ãn) =
∫ 1

0
. . .

∫ 1

0
Q(A1α1

, . . . , Anαn
) dα1 . . . dαn

The next concrete model presented by Díaz-Hermida et al. is the Approximate depen-
dence model. Here we restrict the voters to be “approximately” equally specific for each
fuzzy argument. So the choice of one alpha cut, will have an affect on the choice of
the others, and this should be expressed by the probability density function. To give
a concrete example on how this looks like in the binary case, the authors present the
following function.

P AD(α1, α2) =

h1 −min(h1, h1

|α1−α2|
δ) if 0 ≤ α2 ≤ δ

1
δ −min(1

δ , |α1−α2|
δ2) if δ ≤ α2 ≤ 1− δ

h2 −min(h2, h2
|α1−α2|

δ) if 1− δ ≤ α2 ≤ 1
(5.10)

h1 =− (2/(α2
2 − 2α2δ − δ2)) (5.11)

h2 =(2/(1− 2α2δ + α2
2 + δ2))δ (5.12)

where 0 ≤ δ < 0.5 is a “parameter of flexibility” in the definition.

Then the definition of F AD in the binary case (consider that P AD is only defined there):

F AD(Q)(Ã1, Ã2) =
∫ b1

a1

∫ b2

a2
Q(A1α1

, A2α2
)P AD(α1, α2) dα1 dα2 (5.13)

A somewhat simpler definition of F AD that involves performing an interpolation of F MD

and F I is given by the authors, without a proof. This is also not bounded by argument
size and does not require to define a probability density function, making it at least
conceptually easier.

34

5.2. Probabilistic QFMs by Díaz-Hermida et al.

Definition 21. We are given a semi-fuzzy quantifier Q and fuzzy sets Ã1, . . . , Ãn. We
define the QFM F AD as:

F AD(Q)(Ã1, . . . , Ãn) = τF MD(Q)(Ã1, . . . , Ãn) + (1− τ)F I(Q)(Ã1, . . . , Ãn)

where τ ∈ [0, 1] is the parameter that defines the interpolation. We use τ = 1/2 for
Chapter 6, where we discuss the properties of various QFMs.

The final QFM of this category is FA, stated in [DHLBB05]. It is using a different basis
of probabilities and in fact is not voting-based. Instead it introduces the notion of how
probable it is that a crisp set is a representative of a fuzzy set:

Definition 22. We assume the domain D is given. For a fuzzy set Ỹ and and an
arbitrary crisp set X, we define the representation probability

P (RepresentativeX̃ = Y) =
∏
e∈Y

µX̃(e)
∏

e∈D\Y

(1− µX̃(e))

For simplicity, we will use mX̃(Y) instead of P (RepresentativeX̃ = Y).

Under this definition, a fuzzy set can only have a crisp representation with representation
probability of 1 or 0, if all of its element have binary membership degrees (1 or 0). The
QFM FA is then defined formally by checking for each crisp set in the power set, what
its representation probability is for the respective fuzzy argument and multiplying that
with the result of the semi-fuzzy argument:

Definition 23. We are given a semi-fuzzy quantifier Q. We define the QFM FA as
follows

FA(Q)(X̃1, . . . , X̃n) =
∑

Y1∈P(D)
· · ·

∑
Yn∈P(D)

mX̃1
(Y1) . . . mX̃n

(Yn)Q(Y1, . . . , Yn)

for X̃1, . . . , X̃n ∈ P̃(D).

Clearly a naive implementation of this QFM must be exponential in runtime, since there
are 2|D| crisp sets for a domain D to consider. Díaz-Hermida et al. define an equivalent
way to compute FA that is computable in polynomial time. It restricts the input to
quantitative quantifiers. A quantifier is quantitative, if it can be defined using only
the cardinalities of its arguments (and their boolean combinations). This property is
connected to ISOM, defined earlier, as any quantitative quantifier must be resilient to
isomorphisms of the domain. The probabilities in this case can also be defined over
cardinalities. This means that it is not necessary to consider all of P(D), but instead
just the cardinalities of the subsets of P(D). The implementation of P (CardX = j) is
also given in [DHLBB05], it can be computed in time |D|2. Unfortunately, the authors
only state it for the unary case. Already in the binary case, it becomes necessary for

35

5. Quantifier Fuzzification Mechanism Models

a quantitative quantifier to consider boolean combinations (such as intersection) of its
arguments. A more fine grained probability partitioning is also required: P (CardX1 =
j, CardX1∩X2 = j). No implementation for such a probability is given. This restricts the
use of FA for the Discussion chapter, to unary quantifiers, or very small domains even
for the binary case.

5.3 Representation-level based QFM by Sánchez et al.
Sánchez et al. use the notion of level representation [SDV11] (LR) to map fuzzy sets to
crisp sets. In some sense this can be thought of as generalising the concept of alpha cuts.
As with alpha cuts, we think of an assignment from [0, 1] to P(X), subsets of a domain
X. We think of each concrete α ∈ [0, 1] as one “level”. So in essence, instead of just one
alpha-cut we have a set of them. Formally,

Definition 24. A level representation is a pair (Λ, ρ), where Λ = {α1, . . . , αm} is a set
of levels and ρ is a function. Furthermore 1 = α1 > α2 > · · · > αm > αm+1 = 0, m ≥ 1.
ρ is defined as

ρ : Λ→ P(X)
where X is specified domain.

The authors point out two unique properties of their model. First, the levels do not
have to be nested. So for αi, αi+1 ∈ Λ, such that αi < αi+1 we cannot assume that
ρ(αi) ⊆ ρ(αi+1), which holds for simple alpha cuts. The second is, that LR gives a
direct generalisation of crisp operations to fuzzy set, such as union, intersection, etc, by
directly applying them for each level independently.

Before we can introduce the QFM, we need some further notation and concepts.

For a given fuzzy concept F , represented by (ΛF , ρF), we define the set of crisp approx-
imations of F as

ΩF = {ρF (α) | α ∈ ΛF }

We also want ρ to give us a result for all α ∈ [0, 1], even those outside of Λ. To accomplish
this, ρ should simply “round down” to the nearest value in Λ. Let α ∈ [0, 1], α ̸∈ Λ and
αi, αi+1 ∈ Λ such that αi ≤ α < αi+1. Then

ρ(α) = ρ(αi)

Sánchez et al. proceed to define for a LR a probability distribution that assigns to a
crisp set, how likely it is to occur in it.

m(Y) =
∑

αi|Y =ρ(αi)
αi − αi+1

36

5.4. Closeness-based QFM by Baldi and Fermüller

The QFM based on LR proceeds by two steps. For a given n-ary semi-fuzzy quantifier
we evaluate it levelwise, meaning we collect the crisp evaluations, and the numerically
sum them up.

First we define the levelwise evaluation.

Definition 25. Let Q be a n-ary semi-fuzzy quantifier on domain X. Let A1, . . . , An be
fuzzy sets represented by levels as (ΛA1 , ρA1), . . . , (ΛAn , ρAn).
The “evaluation” E ≡ Q(A1, . . . , An) is defined by the level representation (ΛE , ρE),
where

ΛE =
n∪

i=1
ΛAi

and ∀α ∈ ΛE,
ρE(α) = P (ρA1(α), . . . , ρAn(α))

Finally we have to compute a “numerical summary” S(E) for the evaluation (ΛE , ρE).

Definition 26. We are given a semi-fuzzy quantifier Q and fuzzy sets Ã1, . . . Ãn

S(Q)(Ã1, . . . Ãn) = S(E) =
∑

β∈ΩE

mE(β) · β

where E is the evaluation from Definition 25.

5.4 Closeness-based QFM by Baldi and Fermüller

Like the blind and deliberate choice quantifiers, this proposed QFM [BF18] is also based
on the game-based approach of Giles’ game for ukasiewicz logic. A brief account of how
this form of evaluation game works was given earlier and shall not be repeated here. It
should be noted though, that a remarkable feature of this game-based approach is that is
directly embeddable in ukasiewicz logic, which gives direct access to the model theoretic
and proof theoretic tools of MFL.

An interesting note here is that Baldi and Fermüller omit non-unary quantifiers. This
is their initial presentation of their work on QFMs and they presented it the unary case
first, to avoid intensional range and scope dependency problems which already arise
in the binary case. See section 8.1.1 for more on this issue. To have a clearer basis
of comparison for the chapter 6, this thesis proposes a generalisation of their QFM to
also cover arbitrary n-ary quantifiers. We explain this generalisation at the end of this
chapter.

This QFM needs a way of approximating fuzzy predicates as “crisp” ones by using the
following precisification: for a fuzzy predicate F we pick a c ∈ D acting as threshold,

37

5. Quantifier Fuzzification Mechanism Models

then F c(x) = ∆(F (c) → F (x)) is the precisification with threshold c. ∆ is a special
function that performs the following:

vM(∆(φ)) =
{

1 if vM(φ) = 1
0 otherwise

Therefore, vM(∆(F (c) → F (x))) = 1 iff vM(F (x)) ≥ vM(F (c)), and vM(∆(F (c) →
F (x))) = 0 otherwise. This corresponds to performing an alpha-cut with α = vM (F (c)).
Additionally F ⊤(x) = ∆(F (x)), where F ⊤ means using ⊤ as the threshold.

As mentioned before, in Giles’ game we have two players, referred to as “I” and “You”.
The basic idea is stated by the authors as this: we assume that at some point during the
game, player “I” has in its tenet the fuzzy quantified sentence Q̃xF (x), where Q̃ is based
on a semi-fuzzy quantifier Q. If this is attacked by “You”, then, informally speaking, “I”
has the following two-step defence

1. “I” picks an element c ∈ D ∪ {⊤} anged adds QxF c(x) to his tenet

2. “I” has to state that the precisification F c is “close” to the original F .

So player “I” has two goals: choose a precisification that maximizes the truth value of
the semi-fuzzy quantified sentence, but also is as “close” as possible to the original fuzzy
predicate. The closeness measure is defined by the authors as first picking a random
element c from the domain (extended by ⊤) and to be expressed as the ukasiewicz
sentence F (x)↔ F c(x). The expected value of this sentence corresponds to PropM(F ↔
F c). The last point is the reason they named this approach “closeness-based”.

We proceed to state the game-based rule for the QFM.

Definition 27. (RCl
Q̃

) If “I” asserts Q̃xF (x) and “You” attacks, “I” adds Q̃xF c(x) to
his tenet, where c ∈ D ∪ {⊤}. An element d is then randomly chosen, and “You” can
then choose between the following:

1. “You” adds F c(d) to his tenet, thereby forcing “I” to add F (d) to his tenet

2. “You” adds F (d) to his tenet, thereby forcing “I” to add F c(d) to his tenet

For this rule, the authors have shown the following result.

Theorem 4. For any interpretation M , let us extend the evaluation function vM of
ukasiewicz logic by:

vM(Cl(QxF (x))) = sup
c∈D∪{⊤}

(max{0, P ropM(F c ↔ F) + vM(QxF c(x))− 1})

A sentence F in the language of ukasiewicz logic extended with Q is evaluated to vM (F) =
x iff every G-game for F augmented by the rule RCl

Q̃
under risk value assignment ⟨·⟩M

is (1− x) valued for me.

38

5.4. Closeness-based QFM by Baldi and Fermüller

The need to explicitly include ⊤ stems from the fact that none of our domain elements
c ∈ D might evaluate to vM(F (c)) = 1, but by definition vM(F (⊤)) = 1. The alpha cut
at 1 is needed to cover every possible precisification. We will see in chapter 6 that this
is indeed needed to satisfy one of the DFS axioms.

In addition to this general version of Cl, there are two special versions that are also
presented. These are given to better model quantifiers that are nonincreasing or nonde-
creasing. For these monotonic quantifiers, the ↔ is replaced with → (in the increasing
case) and ← (in the decreasing case).

This is the form in which Cl is presented by its authors and clearly restricted to unary
quantifiers, as we only perform one alpha cut on the one possible fuzzy argument. This
makes it stand out from all other mechanisms so far, and while for some of the com-
parisons in the chapter 6 we will consider exactly such unary quantifiers, it was deemed
too restrictive for the purposes of this thesis. Therefore a slightly altered version is
presented here, that coincides with the original in the unary case, but extends it to deal
with arbitrary arguments. We also use a notation that is more in line with previous
QFMs.

For this generalisation to deal with n-ary arguments, we note that the critical aspect is
dealing with PropM(F̃ c ◦ F̃), where ◦ depends on the monotonicity. Instead of just one
fuzzy set to consider, it must be applied to many. The first method for this is to compute
PropM(F̃i

ci ◦ F̃i) for each fuzzy set independently and aggregating the result externally
over a t-norm. The other method is to form, in essence, an average of all F̃ c ◦ F̃ pairs by
using a t-norm and computing PropM just once for this average fuzzy set. This is the
internal one. Additionally, in both cases we can choose from one of the three t-norms of
MFL, defined in the Preliminaries. This leads to six alternatives altogether.

We proceed to define Clext:

Definition 28. We are given a semi-fuzzy quantifier Q : P(D)n → [0, 1], and fuzzy
arguments Ã1, . . . , Ãn ∈ P̃(D). The QFM Clext is defined as

Clext(Q)(Ã1, . . . , Ãn) =
sup

c1∈D∪{⊤}
. . . sup

cn∈D∪{⊤}
(max{0, (PropM(Ã1

c1 ◦1 Ã1) ∗ · · · ∗ PropM(Ãn
cn ◦n Ãn))

+ vM(QxÃ1
c1 , . . . , Ãn

cn)− 1})

where ∗ is either ∗, ∗G or ∗P and ◦i is either →, ← or ↔ depending on the monotonicity
of the i-th argument. To make it clear which t-norm is being used, the symbol , G or P
for, respectively, ukasiewicz, Gödel or Product is to be used (eg. Clext)

Before we can state the definition of the next mechanism, we explain how we define the
combination of two fuzzy sets F1,F2 via a t-norm ∗.

39

5. Quantifier Fuzzification Mechanism Models

Definition 29. For two fuzzy sets F1, F2 in the domain D and a given t-norm ∗, the
combination under ∗ (F1 ∗ F2) is

(F1 ∗ F2)(c) = F1(c) ∗ F2(c) ∀c ∈ D

The internal method Clint is stated below.

Definition 30. We are given a semi-fuzzy quantifier Q : P(D)n → [0, 1], and fuzzy
arguments Ã1, . . . , Ãn ∈ P̃(D). The QFM Clint

Clint(Q)(Ã1, . . . , Ãn) =
sup

c1∈D∪{⊤}
. . . sup

cn∈D∪{⊤}
(max{0, (PropM((Ã1

c1 ◦1 Ã1) ∗ · · · ∗ (Ãn
cn ◦n Ãn))

+ vM(QxÃ1
c1 , . . . , Ãn

cn)− 1})

where ∗ is either ∗, ∗G or ∗P and ◦i is either →, ← or ↔ depending on the monotonicity
of the i-th argument. To make it clear which t-norm is being used, the symbol , G or P
for, respectively, ukasiewicz, Gödel or Product is to be used (eg. Clint)

40

CHAPTER 6
Discussion

The aim of this chapter is to characterize the various proposed QFMs in the literature.
Each of the presented models follows the approach of lifting semi-fuzzy quantifiers to
fuzzy quantifiers from Glöckner, but the various authors had different motivations and
goals in mind. Glöckner established a series of properties that he saw as necessary for a
“reasonable” mechanism of fuzzification. Because of these differences in motivation, some
of the proposed QFMs will conflict with his proposed properties. Moreover, some of the
newer works focus on dealing with issues that Glöckner did not address in his monograph,
and also with reducing computational complexity, at the cost of losing some of the DFS
properties. This analysis is focused in looking at the strengths and “weaknesses” of the
various QFMs that hint at their possible use in modelling various aspects of natural
languages.

Table 6.1 explains the symbols we use to denote each of the QFMs in the example results.

6.1 Glöckner’s “Induced Propositional Logic”

In the TGQ there are methods to operate directly on quantifiers, producing new quan-
tifiers by using existing ones. For example, there is an operator to negate a quantifier
or to produce an antonym, and so forth. All of these operations, however, were defined
originally for the classical two-valued setting.

Glöckner is interested in generalising this to the fuzzy setting in a systemic way. As
a preliminary step, Glöckner uses the QFM framework to define a induced fuzzy truth
function f̃ : [0, 1]n → [0, 1] which is lifted from a simpler semi-fuzzy truth function
f : {0, 1}n → [0, 1].

It is notable here, that the Induced Propositional Logic (IPL) is considering the classical
truth functions for conjunction and negation as a starting point (with disjunction and

41

6. Discussion

Quantifier Fuzzification Mechanism Symbol used Definition
Glöckner’s Integral based DFS M 14
Glöckner’s CX model MCX 15
Glöckner’s OWA generalisation FOW A 17
Maximum dependence model FMD 19
Independence model FI 20
Approximate dependency model FAD 21
Probabilistic model FA 23
Representation-level based QFM S 26
Closeness-based QFM using ukasiewicz t-norm Clint , Clext (30,28)
Closeness-based QFM using Gödel t-norm ClintG , ClextG (30,28)
Closeness-based QFM using Product t-norm ClintP , ClextP (30,28)

Table 6.1: The abbreviations used to denote QFMs

implication being derivable from these, in his framework). We will state their definitions
later in this section.

First some basic notational definitions. We fix the domain as D = {1, . . . , n}.

A bijection η is defined between 2n = {(x1, . . . , xn) | xi ∈ {0, 1}} and the power set
P(D).

η(x1, . . . , xn) = {c ∈ D | xc = 1} (6.1)
η−1(D) = (x1, . . . , xn), where xc = 1 iff c ∈ D (6.2)

In the fuzzy case, there exists an analogous bijection η̃ : [0, 1]n → P̃(D), where [0, 1]n =
{(x1, . . . , xn) | xi ∈ [0, 1]}

µη̃(x1,...,xn)(c) = xc ∀c ∈ D (6.3)
η̃−1(F̃) = (µF̃ (1), . . . , µF̃ (n)) (6.4)

These bijections are used to link semi-fuzzy truth functions f : 2n → [0, 1] to unary
semi-fuzzy quantifiers Qf : P(D) → [0, 1]. Analogously in the fuzzy case, for the truth
function f̃ : [0, 1]n → [0, 1] we have the quantifier Qf̃ : P̃(D) → [0, 1]. To give a formal
definition of this:

Definition 31. Let us assume we have a QFM F : SFQ → FQ, a semi-fuzzy truth
function f : 2n → [0, 1] and η−1 : P(D) → 2n, stated in 6.2. The semi-fuzzy quantifier
Qf : P(D)→ [0, 1] is defined as

Qf (Y) = f(η−1(Y)) for all Y ∈ P(D).

The induced fuzzy truth function F̃(f) : [0, 1]n → [0, 1] is then defined using η̃ : [0, 1]n →
P̃(D) (from 6.3):

F̃(f)(x1, . . . , xn) = F(Qf)(η̃(x1, . . . , xn)) for all xi ∈ [0, 1].

42

6.1. Glöckner’s “Induced Propositional Logic”

In the remainder of this chapter, therefore, if we have a QFM F and a semi-fuzzy truth
function f , then the induced fuzzy truth function will be simply denoted by F̃(f).

We shall now proceed to state “reasonable” definitions for semi-fuzzy truth functions for
negation, conjunction and disjunction (as they are used by Glöckner) and then state the
requirements that should hold for a QFM, as they are part of Glöckner’s DFS scheme.

¬(x) =
{

0 if x = 1
1 otherwise

(6.5)

∧(x, y) =
{

1 if x = y = 1
0 otherwise

(6.6)

∨(x, y) =
{

1 if x = 1 or y = 1
0 otherwise ‘′

(6.7)

With Definition 31 and these semi-fuzzy truth functions we have all that is needed to
induce the fuzzy truth functions via a given QFM. Since there are many ways to define
a QFM, there is no guarantee of which properties the induced truth functions will have.
To restrict this, Glöckner expects a DFS to fulfil certain requirements on its IPL. First
some definitions that are used as part of these DFS requirements.

Definition 32. ¬̃ : [0, 1]→ [0, 1] is called a strong negation operator if it satisfies

• ¬̃0 = 1 (boundary condition)

• ¬̃x1 ≥ ¬̃x2 for all x1, x2 ∈ [0, 1] s.t.x1 ≤ x2 (monotonically non-increasing)

• ¬̃ ◦ ¬̃ is the identity function (involutive)

Definition 33. s̃ : [0, 1]→ [0, 1] is called a s-norm (or t-conorm) if it satisfies

• s̃(x, 1) = 1 (absorbing element)

• s̃(x, 0) = x (neutral element)

• s̃(x, y) = s̃(y, x) (commutativity)

• If x ≤ z, then s̃(x, y) ≤ s̃(z, y) (monotonically nondecreasing)

• s̃(s̃(x, y), z) = s̃(x, s̃(y, z)) (associativity)

for all x,y,z ∈ [0, 1].

For the induced operators, the following should hold under a DFS F :

43

6. Discussion

1. ¬̃ = F̃(¬) is a strong negation operator, see Definition 32

2. ∧̃ = F̃(∧) is a t-norm, see Definition 4

3. ∨̃(x1, x2) = ¬̃(∧̃(¬̃x1, ¬̃x2)) is the dual s-norm (see Definition 33) of ∧̃ under ¬̃
(i.e. ∨̃(x1, x2) as it is defined, fulfils the s-norm properties)

4. ⇒̃(x1, x2) = ∨̃(¬̃x1, x2)

It is perhaps appropriate to draw a comparison here between the approach based on
QFMs and the framework from Fermüller and Roschger that is starting from ukasiewicz
logic and extends it with fuzzy quantifiers. Whereas IPL is a top-down approach, the
other is essentially the bottom-up counterpart.

6.2 Glöckner’s DFS properties for different QFM
proposals

As mentioned in section 3.4, Glöckner argued for the need of fuzzy quantifiers to be
linguistic adequateness and introduced six axioms that a QFM should satisfy to capture
this notion. The definitions are taken from his monograph [Glö06]. For sake of complete-
ness, we will also showcase Glöckner’s own QFM models in this chapter, even though
these are already known to satisfy the DFS axioms. Especially with the MCX model
there are some surprising (on first glance) results.

The majority of the others QFMs do not have the same motivations and will unsur-
prisingly “fail” at some of these properties. As stated before, this is not necessarily a
failure as much as it stems from a difference in focus and application. Nonetheless it is
useful to understand which of the aforementioned QFMs violate which principle and to
understand why this is so.

6.2.1 Correct generalisation

This property is concerned with the relation of the fuzzy quantifiers created by a QFM
and how (and if) they subsume the original semi-fuzzy quantifiers. In other words, once
we apply a QFM F to a given semi-fuzzy quantifier Q, we want to know if F(Q) behaves
as Q under crisp sets. If we call this restriction step U this can be formally stated as
follows:

Glöckner’s DFS Property 1.
We are given a QFM F and any semi-fuzzy quantifier Q. If it holds that

U [F(Q)] = Q,

then F satisfies Correct Generalisation.

44

6.2. Glöckner’s DFS properties for different QFM proposals

QFM U [F(almost all)](C1, C2) almost all(C1, C2)
M 1/8 1/8
MCX 1/8 1/8
FOW A 1/8 1/8
FMD 1/8 1/8
FI 1/8 1/8
FAD 1/8 1/8
FA 1/8 1/8
S 1/8 1/8
Clint 3/4 1/8
Clext 3/4 1/8
ClintG 3/4 1/8
ClextG 3/4 1/8
ClintP 3/4 1/8
ClextP 3/4 1/8

Table 6.2: Results of Correct generalisation example.

We proceed to give an example that shows how the various QFMs satisfy or break this
property in the given case:

Example 1. Consider the semi-fuzzy quantifier almost all, defined in Definition 6.
We will use for simplicity sake the two crisp sets C1 = {A, B, C, D}, C2 = {A, B, C}.

We compute first the expression almost all(C1, C2), and then compare it for each QFM
F with U [F(almost all)](C1, C2), where U is the restriction operator stated earlier.

We can see the results in Table 6.2.

To understand why most QFMs presented here satisfy this property, we simply have to
look at how alpha cuts, or three cuts deal with such a fuzzy-set, which is essentially crisp.
Clearly a fuzzy set with just membership degrees 1 and 0 will always lead to one unique
crisp approximation. No matter how a QFM is aggregating the results from multiple
possible crisp approximations, in the case of just one, they all collapse to the underlying
semi-fuzzy model.

In case of the closeness-based Cl QFMs, we are allowed to consider all choices of domain
elements as precisification, and then consider the supremum. In Example 1, we can
pick elements that lead to an alpha-cut with α = 0, which means we produce a crisp
approximation that contains the entire domain. Since almost all is increasing on its
scope, evaluating it on this crisp approximation will lead to a larger truth value than in
the semi-fuzzy case, namely 1. At the same time the closeness measure will be lower,
than if we would just choose the original crisp set. In sum we obtain 3/4: a higher truth
overall than the 1/8 in the crisp case, leading to a diverging result. Therefore, the Cl
QFMs do not generalise the semi-fuzzy quantifiers correctly, as Glöckner requires.

45

6. Discussion

6.2.2 Membership Assessment

We call a (unary) quantifier a membership assessment if it is true iff a given element e
of the domain is contained in its argument. In the semi-fuzzy case, this will be a two-
valued quantifier, since we can determine for a crisp set whether it absolutely contains
e or not. On a fuzzy set we expect the membership degree of e to be the output. To fix
the notation, we shall refer to the semi-fuzzy membership assessment as πe and for the
fuzzy case we shall use π̃e.

To make this property clearer, we shall formally define the needed types of quantifiers:

πe(A) = µA(e) =
{

1 if x ∈ A

0 otherwise
(6.8)

where we recall that µA is the membership function, or characteristic function of the set
A, and e is an element of the domain D. The analogous definition holds for π̃e, except
we use a fuzzy set Ã as input and its membership function µÃ, ie.:

π̃e(Ã) = µÃ(e) (6.9)

This special class of quantifiers are dependant on the inclusion of an individual element
of the domain in a crisp or fuzzy set. Glöckner requires that a “plausible model” of
quantifiers fuzzification should lift the quantifier πe to its fuzzy counterpart π̃e.

Glöckner’s DFS Property 2.
We are given a QFM F . If we have

F(πe) = π̃e ∀e ∈ D,

where πe and π̃e are stated in 6.8 and 6.9, then F satisfies Membership Assessment.

Two of Glöckner’s QFM models fulfil this as it is part of the DFS requirements. All
voting-based QFM models of Díaz-Hermida et. al and the representation level approach
of Sánchez fulfil the membership assessment property. To understand why, we consider
a simplified view that describes how they both work. Each method collects truth values
over various alpha cuts, in the range from 0 to 1, and then aggregates them into an
integral or a finite sum. This sum corresponds to a proportion over this range, between
the parts in the range [0, 1] where πe is true, and the parts where it is false.

Interestingly enough, the QFM MCX breaks this property. The explanation found for
this stems from the definition of the quantification method in Glöckner’s monograph, as
given in chapter 5. MCX is defined on quantifiers that produce truth functions which
are nonincreasing. Therefore Glöckner here is clearly limiting the possible models of

46

6.2. Glöckner’s DFS properties for different QFM proposals

QFM F(πSue)(tall)
M 3/4
MCX 1/2
FOW A 3/4
FMD 3/4
FI 3/4
FAD 3/4
FA 3/4
S 3/4
Clint 11/15
Clext 11/15
ClintG 11/15
ClextG 11/15
ClintP 11/15
ClextP 11/15

Table 6.3: Results of Membership Assessment example.

semi-fuzzy quantifiers for which MCX is defined. As the author notes “no models of
interest are lost”, as far as he was concerned. The semi-fuzzy quantifier πe is increasing,
based on the element e and the crisp set supplied to it. By its definition, MCX is
therefore exempt from this property, but we shall still, for completeness sake, use it in
the example below.

The proposed QFM Cl from Baldi and Fermüller does not fulfil Glöckner’s DFS Prop-
erty 2. To see why this is the case, we shall recall the underlying semantics to their
approach: The main problem is that the closeness measure is considered globally for all
elements in the domain, not restricted to e from πe. This will not, in general, lead to a
correct proportion on how πe behaves over all possible alpha cuts. This is not so much
a weakness of Cl as it is simply a characterization of its underlying semantics.

Example 2. Consider a domain D = {Tom, Sue, Marcus, Michael, Mary}. Then a fuzzy
set on D tall = {(Tom, 2/3), (Sue, 3/4), (Marcus, 1), (Michael, 1/2), (Mary, 1/4)}. We con-
sider the semi-fuzzy quantifier πe as defined in 6.8.

The fuzzy quantifier π̃Sue(tall), as defined in 6.9, evaluates to 3/4.

The results for the various fuzzifications of πSue are listed in Table 6.3.

6.2.3 Dualisation

This property is based on the IPL, as introduced earlier in this chapter. To repeat the
basic idea: One first establishes a bijection between the sets 2n and P({1, . . . , n}), where
n is the size of the domain. In the fuzzy case we have the sets [0, 1]n and P̃({1, . . . , n}),
where [0, 1] is an ordered range of truth values, and P̃({1, . . . , n}) is the set of all fuzzy

47

6. Discussion

sets on the domain. For a semi-fuzzy truth function f : 2n → [0, 1] we produce a
translation into a “fully” fuzzy truth function f̃ : [0, 1]n → [0, 1].

The focus of the Dualisation property is on the truth function for negation ¬̃ : [0, 1] →
[0, 1]. We use the following definition.

Definition 34. We are given a QFM F : SFQ→ FQ and the semi-fuzzy truth function
¬ : 2→ [0, 1], stated in 6.5. The fuzzy complement operator is defined as

µ¬̃X(e) = F̃(¬)µX(e)

where F̃(f) for a semi-fuzzy truth function f is given in Definition 31. Furthermore, we
shall denote ¬̃ = F̃(¬) for the induced fuzzy truth function for negation.

This way we get a fuzzy complement operation from a simple truth function, using a
QFM (therefore the “induced” part). Similarly, one can also define a fuzzy union and
intersection, from the semi-fuzzy truth functions ∧ and ∨, though they will not be needed
for this property.

Glöckner defines the following operations on (both semi-fuzzy and fuzzy) quantifiers:

Definition 35. We are given the induced fuzzy truth function for negation ¬̃ : [0, 1]→
[0, 1]. The external negation ¬̃Q of a semi-fuzzy quantifier Q is defined as:

(¬̃Q)(Y1, . . . , Yn) = ¬̃(Q(Y1, . . . , Yn))

External negation is the first form of quantifier negation and consists of applying the
induced truth function for negation to the final result. As an example for the models
produced by external negation, Glöckner shows that no is the external negation of some:

no(birds, fish) = ¬̃some(birds, fish)

Definition 36. We are given an induced fuzzy complement operator ¬̃ : P̃({1, . . . , n})→
P̃({1, . . . , n}). The antonym (or internal negation) Q¬̃ of a semi-fuzzy quantifier Q is
defined as:

Q¬̃(Y1, . . . , Yn) = Q(Y1, . . . , Yn−1, ¬̃Yn)

The antonym consists of applying the induced fuzzy complement operator to the last
argument of the quantifier. This might seem arbitrary at first, however, by convention
this last arguments represents the scope. Therefore, we “flip” the scope (relative to a
given domain) to get the antonym. To see how the antonym is used in natural language,
Glöckner shows a few equivalences, following Def. 3.9 [Glö06]. For example no is the
antonym of all, leading to

no(birds, fish) = all(birds,¬fish)

48

6.2. Glöckner’s DFS properties for different QFM proposals

Figure 6.1: A square of opposition, for “all”, “some” and “no”, from Glöckner

Definition 37. We are given both an induced fuzzy complement operator ¬̃ : P̃({1, . . . , n})→
P̃({1, . . . , n}) and the induced fuzzy truth function for negation ¬̃ : [0, 1] → [0, 1]. The
dual Q□̃ of a semi-fuzzy quantifier Q is defined as:

Q□̃(Y1, . . . , Yn) = ¬̃Q(Y1, . . . , Yn−1, ¬̃Yn)

Finally, the dual of a quantifier is obtained by performing both external and internal
negation simultaneously. As before, Glöckner gives example of a few quantifiers and
shows how they form a square of opposition, following the classical model of Aristotle,
seen in Figure 6.1.

Glöckner states for each form of quantifier negation a corresponding requirement that
a QFM should satisfy to be a DFS. The idea behind them is to have a “reasonable”
behavior, that connects the semi-fuzzy case with the lifted fuzzy case. For brevity’s sake,
it is enough to simply list the one for the dual operator, as it incorporates the previous
two forms of negation, and the other requirements can be derived from it [Glö06].

For a given DFS F , a semi-fuzzy quantifier Q, the following must hold:

Glöckner’s DFS Property 3.
Let Q be any semi-fuzzy quantifier and F a QFM. If it holds that

F(Q□̃) = F(Q)□̃,

where □̃ is given in Definition 37, then F satisfies Dualisation.

49

6. Discussion

Note that we use the same symbol □̃ for both the semi-fuzzy and fuzzy case. This is
done for ease of notation, though it should be noted here that both of these are defined
by combining internal and external negation, but they necessarily use different forms of
complementation for the internal negation. In the semi-fuzzy case this uses the usual
complement operation from set theory. The fuzzy complement is as defined in Definition
34.

This property holds for all QFMs defined by Glöckner, and this is also shown in the
examples given here. It is interesting to note that even though MCX fails to induce a
“strong negation”, since it is only defined for non-increasing quantifiers, it actually does
not violate Glöckner’s DFS Property 3. This seems like an oversight, one might wish
to strengthen this property by requiring for a DFS F , that F̃(¬) is a strong negation
operator.

Of the three voting-based QFM methods from Delgado et al. only the independence
method fulfils Glöckner’s DFS Property 3, while the maximum-dependence model breaks
it. This follows from their own paper, and is confirmed in all examples shown here.
Since approximate-dependency method can be defined as a combination of maximum-
dependency and the independence method, it also breaks this property, as noted by
Delgado et al.

The generalised Cl QFMs do not fulfil this property, as will be shown by a counterexam-
ple. To see why this is so, we look at the two truth functions that are to be induced by
the QFM and the requirements on these induced truth functions. Cl induces a strong
negation operator namely standard negation (for all variants), so external negation corre-
sponds to the DFS requirement, but the induced complement operator does not conform
with complementation in the crisp case.

Example 3. We assume a domain D = {Tom, Sue, Marcus, Michael, Mary, James, Sarah,
Katherine, Martin, Lucas, John, Patrick, Lisa}.
On this we define two fuzzy sets, Young and Dilligent, as follows:

Young = {(Sue, 2/7), (Marcus, 3/7), (Michael, 4/7), (Mary, 5/7), (James, 6/7),
(Sarah, 1), (Katherine, 6/7), (Martin, 5/7), (Lucas, 4/7), (John, 3/7), (Patrick, 2/7), }

Dilligent = {(Sue, 6/7), (Marcus, 5/7), (Michael, 4/7), (Mary, 3/7), (James, 2/7),
(Sarah, 1/7), (Katherine, 2/7), (Martin, 3/7), (Lucas, 4/7), (John, 5/7), (Patrick, 6/7), }

As a quantifier we choose for this example few, defined in Chapter 4. To see whether the
various QFMs fulfil the Duality principle, we first compute the left hand side of Glöckner’s
DFS Property 3, which entails computing the dual of the semi-fuzzy quantifier, and then
lifting it to the fuzzy case. Then the right hand side, were the order is the opposite: the
lifting is performed first, and then the dual of the new fuzzy quantifier is applied to the
argument. The results for the considered QFMs can be seen in Table 6.4. As explained
FMD fails the property Glöckner’s DFS Property 3, leading to different results. This also
shows that the representation-level approach S from Sánchez et al. does not satisfy this
property.

50

6.2. Glöckner’s DFS properties for different QFM proposals

QFM F(few□̃)(Young, Dilligent) F(few)□̃(Young, Dilligent)
M 5/7 5/7
MCX 1/2 1/2
FOW A 5/7 5/7
FMD 5/7 6/7
FI 36041371/47064402 36041371/47064402
FAD 69658801/94128804 76382287/94128804
FA

S 5/7 6/7
Clint 32/77 36/77
Clext 32/77 36/77
ClintG 50/77 5585/12474
ClextG 54/77 30/77
ClintP 274/539 36/77
ClextP 270/539 36/77

Table 6.4: Results of the Dualisation example.

6.2.4 Internal Joins

As with Dualisation before, this property is build on the IPL, introduced earlier in this
chapter. The focus here is on the union operator and the truth function for ∨. For crisp
sets we have the standard union operation ∪ from set theory. For fuzzy sets the induced
operation is defined analogously to the induced complement in Definition 34:

Definition 38. We are given a QFM F : SFQ→ FQ and the semi-fuzzy truth function
∨ : 2→ [0, 1], stated in 6.7. The fuzzy union operator ∪̃ is defined as

µY ∪̃X(e) = F̃(∨)(µY (e), µX(e))

where F̃(f) for a semi-fuzzy truth function f is given in Definition 31. Furthermore, we
shall denote ∨̃ = F̃(∨) for the induced fuzzy truth function for negation.

Next Glöckner states an operation on both semi-fuzzy and fuzzy quantifiers. This oper-
ations extends the arity of the quantifier by taking an additional argument (a crisp or
fuzzy set) and “joining” it with the last argument using a crisp of fuzzy union operator.

Definition 39. Let a semi-fuzzy quantifier Q : P(X)n → [0, 1] be given. We define the
semi-fuzzy quantifier Q∪ : P(X)n+1 → [0, 1] by

Q∪(Y1, . . . , Yn+1) = Q(Y1, . . . , Yn ∪ Yn+1)

for all Y1, . . . Yn+1 ∈ P(X).

This is defined analogously for fuzzy quantifiers, but Q̃∪̃ is defined using an induced fuzzy
union operator ∪̃

51

6. Discussion

Finally for a DFS, it is required that performing such an internal join before the lifting
on the semi-fuzzy quantifier, should produce the same value as lifting it first to the fuzzy
case and performing the internal join on the fuzzy case thereafter.

Glöckner’s DFS Property 4.
Let Q be any semi-fuzzy quantifier and a QFM F . If we have

F(Q∪) = F(Q)∪̃,

where ∪ and ∪̃ are given in Definition 39, then F satisfies Internal Join.

From the voting-based QFMs, this axiom is only satisfied by FMD, but not by FI or
Fowa. It is also fulfilled by the level-representation based QFM S.

Example 4. For this example we take the fuzzy sets from a previous example and add as
a third one Tall, as the ∪ operator increases the arity of a given quantifier. Furthermore,
for performance reasons, we have reduced the size of the domain and we are leaving out
completely FA as its exponential runtime, in the naive implementation, make it infeasible
for ternary quantifiers.

Young = {(Marcus, 3/7), (Michael, 4/7), (Mary, 5/7), (James, 6/7),
(Sarah, 1), (Katherine, 6/7), (Lucas, 4/7), (John, 3/7), }

Dilligent = {(Marcus, 5/7), (Michael, 4/7), (Mary, 3/7), (James, 2/7),
(Sarah, 1/7), (Katherine, 2/7), (Lucas, 4/7), (John, 5/7), }

Tall = {(Marcus, 1/2), (Michael, 1/2), (Mary, 1/2), (James, 1/2),
(Sarah, 1/2), (Katherine, 1/2), (Lucas, 1/2), (John, 1/2), }

We abbreviate Young, Dilligent and Tall, respectively, as Y, D and T to fit them into
the table.

As a semi-fuzzy quantifier we choose the deliberate-choice quantifier W2(Π1
2).

The results can be seen in Table 6.5. It is broken by all versions of the ClQFM, as
their induced union operators ∪̃ fail to adhere to Glöckner’s requirements. This leads to
diverging results between the first and second case. The same is true for FI and FAD,
as stated by Delgado et al in their survey [DRSV14]. While left out for this example
for performance reasons, FA satisfies this DFS axiom, according to [DHLBB05], so we
would expect the same value on both sides.

6.2.5 Preserving Monotonicity

To define the monotonicity property on fuzzy quantifiers, we will first need to define a
fuzzy inclusion relation.

52

6.2. Glöckner’s DFS properties for different QFM proposals

QFM F(W2(Π1
2)∪)(Y, D, T) F(W2(Π1

2))∪̃(Y, D, T)
M 1/2 1/2
MCX 1/2 1/2
FOW A 593/1344 593/1344
FMD 9/320 9/320
FI 14849/141120 13607/282240
FAD 9409/141120 13607/282240
FA

S 9/320 9/320
Clint 0 583/3360
Clext 0 583/3360
ClintG 23/63 1343/3360
ClextG 7/18 1121/2520
ClintP 281/2520 4937/17640
ClextP 409/3528 1009/3528

Table 6.5: Results of the Internal Joins example.

Definition 40. Taken from Def. 3.14 ([Glö06], p. 98)
Assume a domain D and X̃1, X̃2 ∈ P̃(D) are fuzzy sets on D. We say that X̃1 is
contained in X̃2 (X̃1 ⊆ X̃2) if

µX̃1
(e) ≤ µX̃2

(e) ∀e ∈ D

Based on this, we can proceed to define what it means for a semi-fuzzy or fuzzy quantifier
to be monotonic on one of its arguments.

Definition 41. Taken from Def. 3.15 ([Glö06], p. 98)
A semi-fuzzy quantifier Q : P(D)→ [0, 1] is said to be nondecreasing in its i-th argument,
i ∈ {1, . . . , n}, if

Q(Y1, . . . , Yn) ≤ Q(Y1, . . . , Yi−1, Y ′
i , Yi+1, . . . , Yn)

whenever the involved argument Y1, . . . , Yn, Y ′
i ∈ P(D) satisfy Yi ⊆ Y ′

i . Q is said to be
nonincreasing in the i-th argument, if Yi ⊆ Y ′

i , it always holds that

Q(Y1, . . . , Yn) ≥ Q(Y1, . . . , Yi−1, Y ′
i , Yi+1, . . . , Yn)

The corresponding definitions for fuzzy quantifiers are entirely analogous. The arguments
in this case range over P̃(D) and the fuzzy inclusion relation is used instead.

Examples for semi-fuzzy quantifiers with monotonic behaviour in one of their arguments
are almost all, which is nonincreasing in the first and nondecreasing in the second, and

53

6. Discussion

few, where it is the other way around, nondecreasing for the first, nonincreasing for the
second.

The DFS property has to preserve these behaviours in the newly produced fuzzy quan-
tifiers. Formally, we have:

Glöckner’s DFS Property 5. Taken from Def. 3.17 ([Glö06]. p. 100)
We are given a QFM F . If it holds that all semi-fuzzy quantifiers Q : P(D) → [0, 1]
which are nondecreasing (resp. nonincreasing) in their i-th argument, i ∈ {1, . . . , n}, are
mapped to fuzzy quantifiers F(Q) which are also nondecreasing (resp. nonincreasing) in
their i-th argument, then we say that F preserves monotonicity in the arguments

All QFMs of Glöckner which are looked at here fulfil this property. Of the voting-based
QFMs, both FMD and FI fulfil this, and therefore also FAD since it was defined as an
interpolation of the previous two. As was stated in [DHLBB05], FA is also preserving
monotonicity of the arguments.

Finally, all the variations Cl for generalised quantifiers were resistant against attempts
to break monotonicity. Of course, a simple test is not enough to formally prove that
there is no counter-example to be found. However, this suggests that the extension to
the n-ary case presented here might have this property.

Example 5. We will use two fuzzy sets from a previous example.

Young = {(Sue, 2/7), (Marcus, 3/7), (Michael, 4/7), (Mary, 5/7), (James, 6/7),
(Sarah, 1), (Katherine, 6/7), (Martin, 5/7), (Lucas, 4/7), (John, 3/7), (Patrick, 2/7), }

Dilligent = {(Sue, 6/7), (Marcus, 5/7), (Michael, 4/7), (Mary, 3/7), (James, 2/7),
(Sarah, 1/7), (Katherine, 2/7), (Martin, 3/7), (Lucas, 4/7), (John, 5/7), (Patrick, 6/7), }

As a semi-fuzzy quantifier we select almost all. It is increasing in its second argument,
so to test whether the produced fuzzy quantifiers preserve this we will define another fuzzy
set Dilligent′, s.t. Dilligent ⊆ Dilligent′, where ⊆ follows Definition 40.

Dilligent′ = {(Sue, 1), (Marcus, 5/7), (Michael, 4/7), (Mary, 3/7), (James, 3/7),
(Sarah, 6/7), (Katherine, 4/7), (Martin, 3/7), (Lucas, 1), (John, 1), (Patrick, 6/7), }

Since no truth degree in Dilligent′ is smaller than in Dilligent, Dilligent ⊆ Dilligent′

holds.

The results of the monotonicity test can be seen in Table 6.6.

We can see in the example that all QFMs produce in the second case values that are
equal to or higher than those in the the first case. The monotonicity of almost all is
preserved.

54

6.2. Glöckner’s DFS properties for different QFM proposals

QFM F(almost all)(Young, Dilligent) F(almost all)(Young, Dilligent′)
M 2/7 3/7
MCX 1/2 1/2
FOW A 2/7 3/7
FMD 2/7 3/7
FI 11023031/47064402 2913/5929
FAD 24470003/94128804 2727/5929
FA

S 2/7 3/7
Clint 47/77 5/7
Clext 47/77 5/7
ClintG 47/77 5/7
ClextG 47/77 5/7
ClintP 47/77 5/7
ClextP 47/77 5/7

Table 6.6: Results of the Preserving Monotonicity example.

6.2.6 Functional application

The final property that determines a DFS, is concerned with resilience against bijections
from one domain to another. It is therefore essentially a homomorphism condition, which
ensures that expressions are evaluated the same, independently of whether the bijection
is applied before or after the semi-fuzzy quantifier is lifted.

In the next step we use cross-domain bijections to define a mapping from sets of one
domain to another. First the straightforward powerset mapping for crisp sets.

Definition 42. Taken from Def. 3.19 ([Glö06], p. 101)
To each mapping f : D → D′, we associate a mapping f̂ : P(D)→ P(D′) (the powerset
mapping of f) which is defined by

f̂(Y) = {f(e) | e ∈ Y }

for all Y ∈ P(D).

In the fuzzy case, such a mapping is called an extension principle.

Definition 43. Taken from Def. 3.21 ([Glö06], p. 102)
An extension principle E assigns to each mapping f : D → D′ a corresponding mapping
E(f) : P̃(D)→ P̃(D′). For convenience, we shall assume that D, D′ ̸= ∅.

Glöckner proceeds to state how to define such an extension principle using a QFM and
a given mapping between domains.

55

6. Discussion

Definition 44. Taken from Def. 3.25 ([Glö06], p. 103)
Every QFM F induces an extension principle F̂ which to each f : D → D′ (where
D, D′ ̸= ∅) assigns the mapping F̂(f) : P̃(D)→ P̃(D′) defined by

µF̂(f)(X)(e
′) = F(πe′)(f̂(X)),

where πe′ has been defined earlier for membership assignment.

For a succinct formulation of the final property, Glöckner proceeds to introduce some
shorthand notations. We can construct a semi-fuzzy quantifier Q′ : P(D′)n → [0, 1] by
composing a quantifier Q : P(D)n → [0, 1] with a given collection of powerset mappings
f̂i, . . . , f̂n

Q′(Y1, . . . , Yn) = Q(f̂1(Y1), . . . , f̂n(Yn))

To express this more compactly, Glöckner utilizes product mapping and functional de-
composition

(Q ◦
n×

i=1
f̂i)(Y1, . . . , Yn) = Q(f̂1(Y1), . . . , f̂n(Yn))

A similar construction on fuzzy quantifiers is produced by using the induced extension
principle F̂ of a QFM. This is a composition of Q̃ : ˜P(D)n → [0, 1] with F̂(f1), . . . , F̂(fn)
to form, analogously to the above, the quantifier Q̃◦×n

i=1 F̂(fi) : ˜P(D′)n → [0, 1], defined
as

(Q̃ ◦
n×

i=1
F̂(fi))(X1, . . . , Xn) = Q̃(F̂(f1)(X1), . . . , F̂(fn)(Xn).

The last DFS property can now be simple defined as follows:

Glöckner’s DFS Property 6. Taken from Def. 3.26 ([Glö06], p. 104)
Let F be a given QFM. If it holds that

F(Q ◦
n×

i=1
f̂i) = F(Q) ◦

n×
i=1
F̂(fi),

then F is compatible with functional application.

As with the properties before, these are fulfilled by the QFMs from Glöckner. From the
voting-based ones, there is no answer given by the survey from Delgado et al. [DRSV14].
Interestingly enough, in all experiments with the implemented voting-based QFMs, they
do seem to comply with this property. Of course, the absence of a counterexample is
hardly a proof, but it suggests that a deeper formal analysis might be called for to

56

6.2. Glöckner’s DFS properties for different QFM proposals

QFM F(around half ◦×n
i=1 ĥ)(X1, X2) F(around half) ◦×n

i=1 F̂(h)(X1, X2)
M 1/2 1/2
MCX 1/2 1/2
FOW A 1/2 1/2
FMD 7/10 7/10
FI 61/100 61/100
FAD 131/200 131/200
FA 151232/253125 151232/253125
S 7/10 7/10
Clint 8/15 23/36
Clext 8/15 23/36
ClintG 19/30 133/180
ClextG 11/15 139/180
ClintP 7/12 599/900
ClextP 44/75 1807/2700

Table 6.7: Results of the Functional Application example.

clearly determine if these three QFMs are compatible with functional applications. A
clear answer is lacking also for S, in the absence of counterexamples only a formal proof
can positively answer the question.

Example 6. We begin by defining two fuzzy sets again, this time on properties of various
kinds of trees.

Tall trees = X1 = {(Pine, 1)(Ash, 4/5)(Maple, 1/2)(Pear, 0)(Larch, 2/5)(Oak, 1/2)}
Timber hardness = X2 = {(Pine, 9/10)(Ash, 0)(Maple, 3/5)(Pear, 1/2)(Larch, 0)(Oak, 4/5)}

As we will define an isomorphism on domains, we make the domain of the fuzzy sets
explicit.

D1 = {Pine, Ash, Maple, Peak, Larch, Oak}

The domain onto which this is mapped is D2, on colors.

D2 = {Red, Blue, Green, Orange, Violet, Turquoise}

The isomorphism h : D1 → D2 will map every element in D1 to on in D2, based on the
order we have written down the sets (e.g. “Pine” to “Red”, and “Oak” to “Turquoise”).

The result of the functional application test can be seen in Table 6.7 .

57

6. Discussion

To see why no variation of Cl fulfils this, we note that the induced extension principle
needs the Membership Assessment property, as otherwise it will not correctly preserve
the truth degrees. This is the reason why it differs on the left and right column of
the table: ĥ is a different extension principle than F̂(h), if F is one of the Cl QFMs.
Therefore, none of the Cl QFMs preserves functional application.

58

CHAPTER 7
QFMtool

As part of the thesis, a tool was developed which implements the presented semi-fuzzy
quantifiers and QFMs models. It allows the user to declare fuzzy or crisp sets to represent
vague or crisp concepts and then to state a fuzzy quantified sentence using these sets.
This input functions as a query, the answer is the truth value of the input sentence. The
tool will compute the truth value using the models presented in this thesis.

The statement at the end of such a query can be of the form

F [Q](A1, . . . , An),
where F is a QFM, Q is a semi-fuzzy quantifier, A1, . . . , An are fuzzy arguments. Another
possible form for the statement at the end is

Q(B1, . . . , Bn),

where Q is a semi-fuzzy quantifier, as before, but B1, . . . , Bn are crisp sets. The decla-
rations of the argument sets must precede the final statement.

The semi-fuzzy quantifiers and QFMs are pre-defined, and can be selected via a drop-
down menu, as seen in Figure 7.1. This will insert them at the current cursor position,
and can also replace selected text.

The queries can be loaded from a selection of text files to present to the user a number
of different expressions. This is meant to encourage the user to vary the QFMs to see
how they differ on the same output, or vice-versa, how the same QFM produces different
fuzzy quantifiers on various semi-fuzzy quantifiers. New queries can also be saved as text
files.

Another utility built into QFMtool is to see various “plots”, i.e. 2D or 3D representations
of the truth functions of the used semi-fuzzy quantifiers, and the induced t-norms for

59

7. QFMtool

Figure 7.1: Screenshot of QFMtool, running on Ubuntu 17.10

60

7.1. Technical description with implementation details

the various QFMs. The former is useful to better understand the results of the fuzzy
quantified expressions, the latter is an example on how the QFM models differ, as some
of the different induced t-norms are used in some of the DFS axioms.

7.1 Technical description with implementation details
The tool and underlying algorithms were implemented in the functional programming
language Objective Caml (OCaml for short), developed by the INRIA research insti-
tution in Rocquencourt, France [LDF+14]. It is an extension of the existing language
Caml, which itself is based on Standard ML. So while OCaml was first released in 1996, it
has been influenced by languages that date back further. As the name suggests, OCaml
added object-oriented programming paradigms, such as introducing classes into the type
system and multiple inheritance. OCaml is statically typed, so the type of all expres-
sions is inferred at compile-time, making explicit type declarations unnecessary (though
useful, as stricter type definitions can help detecting errors faster).

The implementation of the described models of QFMs and SFQs is based directly on the
original source, in many cases using the mathematical descriptions as they were given.
This was aided by the fact that purely functional code somewhat resembles mathematical
notation, an example being the use of equality as an expression of (boolean) truth, rather
than value assignments.

7.1.1 Finite computation of integrals

One technical detail, which is given in [DHBCB04], is the transformation of integrals
to finite sums, preserving the actual value. This works only for finite domains, as in a
finite domain fuzzy sets can only have finitely many crisp representations. To go into
more detail, we look at the QFM M by Glöckner, stated in Definition 14.

M(Q)(Ã) =
∫ 1

0
Qγ(Ã)dγ

Based onÃ we can then define a finite set I ⊆ [0, 1] of truth values for which the three cuts
will produce different crisp representations. Considering more values does not change
the final value. We can then redefine M as:

M(Q)(Ã) =
∑
γ∈I

Qγ(Ã) ∗m(γ)

where m(γ) = γ − γ′ and γ′ is the immediate predecessor of γ in I (or 0 if γ is the
smallest already).

The critical thing is then of course the definition of I. We differentiate between QFMs
that use the three cut function to get crisp approximations, and QFMs that use the
much more common alpha cut. For three cut based QFMs this set, which we denote

61

7. QFMtool

Figure 7.2: Relation of a to γ(a), compared with the underlying three-cut function

by Itc, is based on the actual three cut function, given in 5.1. For all truth degrees
a ∈ {µÃ(c) | c ∈ D} , Itc must contain the threshold γ(a) ∈ [0, 1], that determines if the
three valued set uses the lower or higher choice. To explain this in more detail: if one
studies the three-cut function it becomes clear that values above 1/2 can only be mapped
to 1 or 1/2, and values below 1/2 will be mapped to 0 or 1/2. The threshold γ(a) is the
critical point where a will be mapped to the corresponding lower choice. In QFMtool,
this threshold can be defined with the following function:

γ(a) =
{
|2(a− 1/2)| − ϵ if a ̸∈ {0, 1/2, 1}
a otherwise

ϵ is some value that is “small enough”. Currently that is 10−6. The restriction here is
that no two truth values, occurring in the fuzzy sets as a membership degree, should be
closer than this chosen ϵ.

A visual presentation of γ(a) can be seen in Figure 7.2. The definition of Itc for the
three cut based QFMs is then:

Itc = {γ(µÃ(c)) | c ∈ D}

For alpha-cut based QFMs, this is considerably simpler. The truth values themselves
are the thresholds that are needed. So in these QFMs, we have the following:

Iα = {µÃ(c) | c ∈ D}

So we only need to collect the individual truth values occurring in the fuzzy arguments,
and can replace all integrals by a sum over them.

62

7.1. Technical description with implementation details

7.1.2 Proportional quantifiers

Proportional semi-fuzzy quantifiers are defined using the scheme given in Definition
5. This general scheme needs only a simpler function µ : [0, 1] → [0, 1] to produce a
truth function for a semi-fuzzy quantifier. The implementation in OCaml follows the
definition almost exactly, the only deviation is due to the fact that the type of semi-
fuzzy quantifiers is assumed to be general, so no restriction on arity is given. Since
proportional quantifiers of this kind are binary, an exception is thrown if the argument
list does not have length 2. The implementation uses as the type of a crisp set a list of
strings, so each single element in the domain is represented by a unique string.

Algorithm 7.1: The function used to define all binary SFQs in QFMtool
let relative_quantor_2 (mu: num -> num) = function

| [[];b] -> Int 1 (* if range is empty *)
| [a ;b] -> mu (Int (length (inter a b)) // Int (length a))
| l -> failure $ argument_error 2 (length l)

7.1.3 Using arbitrary precision numerals

The principal operation of QFMtool lies in the manipulation of real numbers. The
properties on QFMs, such as those for DFS, are sensitive to small changes in the truth
values of fuzzy quantified expressions. Unfortunately, the standard way of representing
real numbers on computers, IEEE 754, is susceptible for rounding errors. While there are
methods to compensate for these, QFMtool eschews floating-point numbers and instead
uses arbitrary precision numerals. These work by representing real numbers by two
integers, a denominator and a numerator. If necessary, the numerator will be increased.
Therefore, this representation does not give a memory bound. The larger the number
(higher denominator) and the more precise (higher numerator), the more memory it
will consume. Furthermore, these numbers are not supported by special hardware. In
essence, they are both slower and need more memory.

The problems with bounding errors show the importance of having QFMs that satisfy
an additional property not discussed so far: continuity, or better arg-continuity [Glö06].
Roughly speaking, if a QFM is arg-continuous, the fuzzy quantifiers obtained are such
that small changes in the input only determine small changes in the output. Continuous
fuzzy quantifiers would thus be robust against bounding errors and any kind of noisy
inputs.

For a performance critical application it is likely a better idea to use floating-point
numbers instead, and look for methods to correct or at least mitigate rounding errors,
such as arg-continuity mentioned above. Since the focus of QFMtool is not to be used
in a performance sensitive environment, the need for precision seemed more urgent and
therefore the numerous technical downsides justified. It shall be noted that replacing

63

7. QFMtool

Figure 7.3: The plot viewer of QFMtool, running on Windows 10

the use of numerals with floating point numbers is fairly easy, only the used operators
need to be replaced, with all other code staying the same.

7.2 Personal report on writing QFMtool
My experience was generally positive. I already had some experience working with
OCaml, and I very quickly had a working prototype of Glöckner’s QFMs running. This
early version did not yet use the finite sums approach explained above but instead relied
on a Montecarlo sampling over the range [0, 1] and it also used the inbuilt floating point
numbers for truth values.

I was a bit surprised how quickly I could make progress in implementing the QFMs and
getting basic prototypes working. Of course, these often proved to have numerous bugs
and unforeseen issues. Especially the finite sums for integrals took quite a few iterations
to get working well, though most bugs turned out to be fairly small things (such as the
weighting function m in the finite sums having to consider the ϵ value, for the Glöckner
QFMs)

64

7.2. Personal report on writing QFMtool

The idea to shift from floating point numbers to arbitrary precision numerals came
while I was working on the Discussion chapter. Some properties were sensitive to very
small changes in truth values, for example monotonicity. So it seemed infeasible to
keep working with a representation that was inherently susceptible to rounding errors.
I quickly read about arbitrary precision representations and how I could use them in
OCaml. For this end, I used the num package which is part of the OCaml standard
library before version 4.06 and is continued as a separate library after it. The change
involved replacing operators like +,− and / with special versions in the num package,
such as +/, −/ and //.

This was the first time I developed a graphical user interface in OCaml, and I expected
it to take quite a while to get running and looking well. Again, I was positively surprised
how easy this turned out to be. OCaml provides bindings to GTK+, a cross-platform
widget toolkit for graphical user interfaces. The entire code for the user interfaces turned
out to have less than 200 lines of code, far less than I had experienced for imperative
languages, such as C/C++ or Java. It took a bit work to get an OCaml environment
running under Windows. But once it was set up, it also produced a native application
that runs, and has been tested for Windows 10. Unfortunately, the window decorations
look a bit outdated in the Windows version, but this seems to be due to issues with
GTK itself, I was unable to find a way to improve or fix them.

For the plotting functionality, I settled on the cross-platform PLPlot library. It provided
support for both 2D and 3D plots, allowing me to render functions of type [0, 1]→ [0, 1]
with 2D plots and functions of type [0, 1]2 → [0, 1] with 3D plots. The former are
the truth functions for the proportional semi-fuzzy quantifiers and the latter are the
induced truth functions for conjunction and disjunction that are produced by the QFM,
as explained in section 6.1. I decided to include a small widget in QFMtool that allows
the user to see these plots, and to select the involved SFQs and QFMs. For performance
reasons, I render all the plots before hand, and the tool simply has accesses them in
runtime.

65

CHAPTER 8
Conclusion

As part of this thesis a presentation of various recently published QFM models has been
provided. These models have been developed after Glöckner’s monograph introduced
the concept of and argued for the need for a mechanism lifting semi-fuzzy quantifiers
to fuzzy quantifiers. Besides three chosen QFMs from Glöckner’s monograph [Glö06],
four probabilistic QFM models have been developed by Díaz-Hermida et al. [DHBCB04,
DHLBB05], one model using a novel level-representation for fuzzy sets from Sánchez et.
al [SDV11] and the closeness-based QFM from Baldi and Fermüller [BF18], which uses
Giles’ game as a foundation for its semantics and aims to embed fuzzy quantifiers into
ukasiewicz logic.

A separate chapter has been devoted to the analysis of the QFM models listed above
with respect to the DFS axioms, which Glöckner considered critical for any “plausible
interpretation of fuzzy quantifiers”. These six criteria form together the basis of many
other properties that are derivable from them. Since many QFM models are motivated
by different goals than the ones Glöckner had in mind, it is not surprising that these
more recent approaches might prefer other properties. Of the presented models, the only
one for which it is known that it is compatible with the DFS axioms, and which was not
developed by Glöckner himself, is FA from Díaz-Hermida, which was also presented as
part of his doctoral thesis. For all the other ones, conflicts can be found, and have been
presented in at least one of the examples in chapter 6.

In addition to the previous two points, a tool, called simply QFMtool, has been devel-
oped. It implements all presented QFM models on a semantic level, and, was also of
help during the writing of chapter 6. QFMtool supports the evaluation of fuzzy quan-
tified expressions, for a number of predefined semi-fuzzy quantifiers, and the presented
QFMs. It also allows one to easily choose from a number of examples of quantified
statements and the user is encouraged to change the QFMs and semi-fuzzy quantifiers
involved, to see how the results vary. QFMtool has been written in the functional
programming language OCaml [LDF+14], and the tool has been built for the Linux

67

8. Conclusion

distribution Ubuntu, version 17.10, and for Microsoft Windows 10. The tool, including
the source code and compiled executables for Linux and Windows, can be accessed at
www.github.com/cem-okulmus/QFMtool.

8.1 Future work
This section is meant to highlight selected issues that go beyond the framework of Glöck-
ner and is intended to give the reader an outlook into the future work that could be done
in this area.

8.1.1 Issues with linguistic adequateness and modelling intensionality

An important point to keep in mind when modelling fuzzy quantification is to try to
be “linguistically adequate”. This term is unfortunately a bit vague, but is generally
understood to apply to formal systems that can be useful for modelling natural lan-
guages in a way that is compatible with the basic assumptions made in scientific studies
of natural language. As noted by Fermüller [Fer15], however, linguists mostly eschew
working with fuzzy models and prefer working with binary notions (such as “accepted”
or “not accepted”). There are of course many reasons why one might wish to avoid
fuzzy notions, such as assuming that the vagueness disappears if a more precise context
is found. This thesis will not go further in this direction. Another interesting reason
presented in [Fer15], however, is that there is one relevant notion explored in linguistics
that is supported neither in Zadeh’s nor in Glöckner’s model: namely intensionality.

As the word suggests, intensionality is about the intended target of given arguments. In
this context, intensionality refers to meaning-related dependencies between the range and
scope predicates. For this reason, this can be essentially ignored for unary quantifiers,
such as absolute quantifiers from the Zadeh framework. It is only with binary quantifiers,
such as proportional quantifiers, that this problem appears. This is best understood by
an example.

Example 7. This example follows one from [Fer15], adjusted here to use semi-fuzzy
quantifiers and QFMs already presented.

We assume two fuzzy concepts child and poor. As the quantifier we choose almost all
and we use the M QFM from Glöckner. The two concepts shall be represented by the
following fuzzy sets:

child = {(Tom, 1
2), (Sue, 1

2), (Marcus, 1
2), (Michael, 1

2), (Mary, 1
2)}

poor = {(Tom, 1
2), (Sue, 1

2), (Marcus, 1
2), (Michael, 1

2), (Mary, 1
2)}

The evaluations are:
M[almost all](child, poor) = 1

2
M[almost all](child, child) = 1

2

Clearly, as it is used in natural language, we expect the expression “almost all children
are children” to be treated differently than “almost all children are poor”, regardless of

68

www.github.com/cem-okulmus/QFMtool

8.1. Future work

how the set “children” and “poor” are represented. To respect intensionality, we have
to take into account that different precisifications of the range and scope predicates may
result in different evaluations, even if the predicates coincide if presented as fuzzy sets.

Fermüller notes that it is not possible to capture intensionality if one only considers
fuzzy sets for fuzzy concepts (or predicates), as is done in both the Zadeh and Glöckner
approaches. In other words, the extension (the sets used to model the arguments) is not
enough to capture the intention behind them. It should also be mentioned here that
this is essentially a different way of representing and thinking about vague concepts and
that the reason why the prior methods cannot address is more due to having different
paradigms in mind. Furthermore, the example shows that there is a modal aspect in
modelling binary (or generally speaking, more than unary) quantification, which cannot
be captured in a purely truth functional approach.

8.1.2 Combining the QFM framework with MFL

As part of his QFM framework, Glöckner also develops what he refers to as the “Induced
Propositional Logic”, explained in detail in chapter 6. The IPL provides truth functions
for conjunction, disjunction, negation and implication. The implication is defined di-
rectly via the negation and disjunction as in classical logic:

⇒̃(x1, x2) = ∨̃(¬̃x1, x2).

On the other hand, one of Hájek’s stated design goals for MFL was, as we recall, that the
truth function for implication should be derived from the truth function of conjunction
∗, as its residuum:

x⇒ y = max{z | x ∗ z ≤ y}.

Glöckner himself notes this discrepancy in his monograph ([Glö06], p. 156):

Some readers might prefer a different choice of the implication operator,
namely x1→̃x2 = min(1, 1 − x1 + x2). However, it is clear that every QFM
with the highly desirably property of preserving Aristotelian squares will
also preserve the interdefinability of connectives, and therefore differ from
ukasiewicz logic.

With IPL he provides a truth functional fuzzy logic to be used, presumably, with his
framework for fuzzy quantifiers. The IPL, however, is quite different from the MFL
approach. Since Hájek first introduced it, there has been a plethora of research for
MFL in model theory, proof theory and other fields [CHN15]. This makes it desirable to

69

8. Conclusion

model fuzzy quantifiers within MFL: one possible scenario might be to develop a syntac-
tic systems that can reason with fuzzy quantifiers, proving that some fuzzy quantified
expression must hold for a given premise, for example.

Fermüller and Roschger [FR13] and Baldi and Fermüller [BF18], showed how to model
fuzzy quantifiers in MFL, through extensions of the Giles’ game for ukasiewicz logic,
which we discussed in section 3.6. In [FR13] the authors extended Giles’ games with
semi-fuzzy (Type III) quantifiers, see Section 4.2. This was further extended in [BF18],
where in the same setting the authors introduced the closeness-based QFM, to deal with
fully fuzzy (Type IV) quantifiers.

70

List of Figures

2.1 A phase-structure grammar of an example sentence (S) with a quantifier
expression. The noun-phrase (NP) consists of a noun (N) and determiner
(Det), followed by a verb phrase (VP). 4

4.1 Plots of µ functions of proportional quantifiers 22
4.2 Some example plots of blind and deliberate choice quantifiers. 26

5.1 Three-valued cut as a function of γ and µX̃(x) 28

6.1 A square of opposition, for “all”, “some” and “no”, from Glöckner 49

7.1 Screenshot of QFMtool, running on Ubuntu 17.10 60
7.2 Relation of a to γ(a), compared with the underlying three-cut function . . 62
7.3 The plot viewer of QFMtool, running on Windows 10 64

71

List of Tables

3.1 Categorization of fuzzy quantifiers, due to [LK98] 11

6.1 The abbreviations used to denote QFMs 42
6.2 Results of Correct generalisation example. 45
6.3 Results of Membership Assessment example. 47
6.4 Results of the Dualisation example. 51
6.5 Results of the Internal Joins example. 53
6.6 Results of the Preserving Monotonicity example. 55
6.7 Results of the Functional Application example. 57

73

List of Algorithms

7.1 The function used to define all binary SFQs in QFMtool 63

75

Bibliography

[BC81] Jon Barwise and Robin Cooper. Generalized Quantifiers and Natural Lan-
guage. Linguistics and Philosophy, 4(2):159–219, 1981.

[Běh08] Libor Běhounek. On the difference between traditional and deductive fuzzy
logic. Fuzzy Sets and Systems, 159(10):1153–1164, 2008.

[BF18] Paolo Baldi and Christian G. Fermüller. From Semi-fuzzy to Fuzzy Quanti-
fiers via Łukasiewicz Logic and Games. In Janusz Kacprzyk, Eulalia Szmidt,
Sławomir Zadrożny, Krassimir T. Atanassov, and Maciej Krawczak, editors,
Advances in Fuzzy Logic and Technology 2017, Advances in Intelligent Sys-
tems and Computing, pages 112–124. Springer, 2018.

[CHN15] Petr Cintula, Petr Hájek, and Carles Noguera. Handbook of Mathematical
Fuzzy Logic, Volume 3, volume 58 of Studies in Logic, Mathematical Logic
and Foundations. College Publications, 2015.

[DH09] Antonín Dvořák and Michal Holčapek. L-fuzzy quantifiers of type < 1 >
determined by fuzzy measures. Fuzzy Sets and Systems, 160(23):3425–3452,
2009.

[DHBCB04] Félix Díaz-Hermida, Alberto Bugarín, Purificación Cariñena, and Senén
Barro. Voting-model based evaluation of fuzzy quantified sentences: a
general framework. Fuzzy Sets and Systems, 146(1):97–120, 2004.

[DHLBB05] Félix Díaz-Hermida, David E Losada, Alberto Bugarín, and Senén Barro.
A probabilistic quantifier fuzzification mechanism: The model and its eval-
uation for information retrieval. IEEE Transactions on Fuzzy Systems,
13(5):688–700, 2005.

[DRSV14] Miguel Delgado, M Dolores Ruiz, Daniel Sánchez, and María-Amparo Vila.
Fuzzy quantification: a state of the art. Fuzzy Sets and Systems, 242:1–30,
2014.

[Fer15] Christian G Fermüller. Combining Fuzziness and Context Sensitivity in
Game Based Models of Vague Quantification. In International Symposium
on Integrated Uncertainty in Knowledge Modelling and Decision Making,
Lecture Notes in Computer Science, pages 19–31. Springer, 2015.

77

[FR13] Christian G Fermüller and Christoph Roschger. Randomized game seman-
tics for semi-fuzzy quantifiers. Logic Journal of IGPL, 22(3):413–439, 2013.

[Gil74] Robin Giles. A non-classical logic for physics. Studia Logica, 33(4):397–415,
1974.

[Glö06] Ingo Glöckner. Fuzzy Quantifiers: A Computational Theory, volume 193
of Studies in Fuzziness and Soft Computing. Springer, 2006.

[Hol08] Michal Holčapek. Monadic l-fuzzy quantifiers of the type < 1n, 1 >. Fuzzy
Sets and Systems, 159(14):1811–1835, 2008.

[Hyd14] Dominic Hyde. Sorites Paradox. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Univer-
sity, Winter 2014 edition, 2014. URL https://plato.stanford.edu/
archives/win2014/entries/sorites-paradox/.

[Há06] Petr Hájek. A Companion to Philosophical Logic, chapter Why Fuzzy
Logic?, pages 595–605. Blackwell Publishing Ltd, 2006.

[LDF+14] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier
Rémy, and Jérôme Vouillon. The OCaml system release 4.02. Institut
National de Recherche en Informatique et en Automatique, 54, 2014.

[LK98] Yaxin Liu and Etienne E Kerre. An overview of fuzzy quantifiers. (I).
Interpretations. Fuzzy Sets and Systems, 95(1):1–21, 1998.

[Nov08] Vilém Novák. A formal theory of intermediate quantifiers. Fuzzy Sets and
Systems, 159(10):1229–1246, 2008.

[PW06] Stanley Peters and Dag Westerståhl. Quantifiers in Language and Logic.
Oxford University Press, New York, 2006.

[SDV11] Daniel Sánchez, Miguel Delgado, and María-Amparo Vila. An Approach
to General Quantification Using Representation by Levels. In Proc: WILF
2011, volume 6857 of Lecture Notes in Artificial Intelligence, pages 50–57.
Springer, 2011.

[Wes16] Dag Westerståhl. Generalized Quantifiers. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford
University, Winter 2016 edition, 2016. URL https://plato.stanford.
edu/archives/win2016/entries/generalized-quantifiers/.

[Yag98] Ronald R Yager. On Ordered Weighted Averaging Aggregation Operators
in Multicriteria Decisionmaking. IEEE Transactions on Systems, Man, and
Cybernetics, 18(1):183–190, 1998.

[Zad65] Lotfi A Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

78

https://plato.stanford.edu/archives/win2014/entries/sorites-paradox/
https://plato.stanford.edu/archives/win2014/entries/sorites-paradox/
https://plato.stanford.edu/archives/win2016/entries/generalized-quantifiers/
https://plato.stanford.edu/archives/win2016/entries/generalized-quantifiers/

[Zad83] Lotfi A Zadeh. A computational approach to fuzzy quantifiers in natural
languages. Computers and Mathematics with Applications, 9(1):149–184,
1983.

79

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Preliminaries
	Fuzzy Set Theory
	Logical Quantifiers
	Fuzzy Quantification
	Glöckner's axiomatic lifting approach
	Mathematical Fuzzy Logic
	Giles' Game for Łukasiewicz logic

	Semi-Fuzzy (Type III) Quantifiers
	Absolute and proportional quantifiers
	Blind and Deliberate Choice quantifiers

	Quantifier Fuzzification Mechanism Models
	QFMs by Glöckner
	Probabilistic QFMs by Díaz-Hermida et al.
	Representation-level based QFM by Sánchez et al.
	Closeness-based QFM by Baldi and Fermüller

	Discussion
	Glöckner's ``Induced Propositional Logic''
	Glöckner's DFS properties for different QFM proposals

	QFMtool
	Technical description with implementation details
	Personal report on writing QFMtool

	Conclusion
	Future work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

