
Model-Driven Engineering for
Smart Grid Automation

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Filip Pröstl Andrén, MSc
Registration Number 1229208

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dr. Wolfgang Kastner
Second Advisor: Priv.-Doz. Dr. Thomas Strasser

The dissertation has been reviewed by:

Lars Nordström Wilfried Elmenreich

Vienna, 24th January, 2018
Filip Pröstl Andrén

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Filip Pröstl Andrén, MSc
Oskar-Jascha-Gasse 61
1130 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 24 Jänner, 2018
Filip Pröstl Andrén

iii

For Susanne, Valentina, and Linnea.

Acknowledgements

This thesis is the final result of a work long in progress, and although it is the main
outcome, it is still only a small part of the whole effort. Also, as everybody knows who
has been in the same situation, a PhD is certainly not a one man job. Since the beginning,
many different people have contributed in one way or another. This is for them.

First of all I would like to thank my colleague Thomas Strasser. Thank you for the,
sometimes long, and very helpful discussions and your invaluable advice. Without your
help and support this thesis would not have happened.

Secondly, I want to thank my supervisor Wolfgang Kastner. I really enjoyed your
uncomplicated style and I also want to thank you for your excellent supervision and
always very constructive feedback.

Thank you to Matthias, who helped me a lot during the beginning of the work with
discussions and ideas. Another thank you is directed to Claudia. The many discussions
we had about your PhD also helped me to better understand my own work. Thank you
also to Christian, who always provides excellent help when the laboratory is needed.

Thank you Armin, Oliver, Christian, and all the other involved members of the OpenNES
project. Much of this work was done during this project and your help, comments,
and feedback has made this thesis so much better. Also a great thank you to Jürgen,
Christian, and the partners of the MESSE project. It was during the proposal phase
of this project that I wrote the main part of the methodology chapter in this thesis.
Without the discussions we had for the MESSE proposal, this thesis wouldn’t have been
the same. Also, to anybody I have forgotten to mention: thank you.

My final thanks goes to my family. To my mother, father, and sister for always supporting
me. My deepest thanks to my wife Susanne. For always staying positive and never letting
me doubt myself. Finally, thank you to my children Valentina and Linnea for providing
just the right distraction when work is hard.

vii

Kurzfassung

Die Einführung von Smart Grid Lösungen hat begonnen, und neue Verfahren kommen in
den heutigen Energiesystemen jetzt schon zur Anwendung. Einer der Katalysatoren dieser
Entwicklung ist der massive Ausbau von verteilten Energieerzeugern und erneuerbaren
Energiequellen in den letzten Jahren. Dies hat zu einem fundamentalen Paradigmen-
wechsel in Bezug auf die Planung und den Betrieb der elektrischen Energiesysteme
geführt. Automatisierungs- und Regelungssysteme, die auf fortschrittlichen Informations-
und Kommunikationstechnologien beruhen, sind Schlüsseltechnologien im Umgang mit
den neuen Herausforderungen. Das elektrische Energiesystem entwickelt sich von einem
Einzelsystem zu einem System von Systemen. Die Umsetzung solch komplexer Systeme
von Systemen ist mit einer deutlich erhöhten technischen Komplexität verbunden, die
sich auch in erhöhten Lebenszykluskosten niederschlägt. Um diese Komplexität einzu-
schränken, sind geeignete Automatisierungsmethoden und Werkzeuge für den gesamten
Entwicklungsprozess notwendig. Solch fortgeschrittene Methoden fehlen jedoch derzeit.

Diese Arbeit adressiert diese Schwächen durch die Entwurf einer rapiden Engineeringme-
thode, die alle Phasen des Engineeringprozesses von Smart Grid Anwendungen abdeckt –
vom Entwurf der Spezifikation und Design über die Validierung bis hin zur Ausrollung.
Das Hauptziel der Methode ist die Verbesserung des traditionellen Engineeringprozesses
und damit auch eine Verringerung der notwendigen manuellen Arbeit und der Komplexi-
tät. Dafür werden Automatisierungstechniken der modellgetriebenen Softwareentwicklung
verwendet. Darauf basierend können vier Entwicklungsphasen identifiziert werden: Spezi-
fikation und Design, Implementierung, Validierung, und Ausrollung.

Das Hauptergebnis ist ein formaler Ansatz für die Spezifikation- und Designphase,
zusammen mit einem Konzept für automatisierte Erzeugung und Ausrollung von Anwen-
dungscode und Konfigurationen. Mit diesem Ansatz wird der gesamte Engineeringprozess
von Smart Grid Applikationen erheblich verbessert. Eine prototypische Implementierung
der rapiden Engineeringmethode wird für eine ausgewählte Smart Grid Applikation ange-
wendet, und schließlich auch in einer Laborumgebung validiert. Die Hauptvorteile dieses
innovativen Ansatzes werden durch einen Vergleich von der Leistung dieser Methode mit
der Leistung traditioneller Engineeringmethoden betont. Der Vergleich zeigt, dass die
entwickelte Methodik dieser Arbeit eine drastische Reduktion der Entwicklungs- und
Validierungskomplexität ermöglicht. Gleichzeitig werden der manuelle Aufwand verringert
und die Schnelligkeit existierende Engineeringmethoden erheblich erhöht.

ix

Abstract

The rollout of smart grid solutions has already started with new and intelligent methods
being deployed to today’s power systems. One of the main catalysts for this is the
massive deployment of distributed generators from renewable sources in the recent
years. This has led to a fundamental change in terms of planning and operation of the
electric power system. Automation and control systems, using advanced information
and communication technologies, are key elements to handle these new challenges. The
electric energy system is moving from a single system to a system of systems. As a
consequence, the implementation and deployment of these complex systems of systems
are also associated with increasing engineering complexity, which in the end also results in
increased total life-cycle costs. To mitigate this complexity, proper automation methods
and corresponding tools are also needed for the overall engineering process. Until now,
such a method has been missing.

This work addresses these shortcomings with the development of a concept for a rapid engi-
neering methodology, covering the overall engineering process for smart grid applications—
from use case design to validation and deployment. The main goal with the methodology
is to improve the traditional smart grid engineering process in such a way that manual
work and also the engineering complexity are reduced. In order to achieve this automa-
tion, techniques from model-driven engineering is used. Based on the model-driven
development approach, the methodology consists of four main phases: specification and
use case design, implementation, validation, and deployment.

The main result of the work is a formal approach for the specification and use case design
phase together with a concept for automatic generation and deployment of target code
and configurations for the other phases. Using this approach, the overall engineering
process for smart grid applications is greatly improved. The developed rapid engineering
methodology is also provided as a prototypical implementation, which is applied to a
selected smart grid application and finally validated in a laboratory environment.

This validation also reveals the main benefits of this innovative approach. To show this,
the results of the validation are compared to the performance of traditional smart grid
engineering methods. The comparison shows that the rapid engineering methodology
from this work drastically reduces the engineering and validation complexity for the
engineer. At the same time, the manual effort is reduced and the rapidness of current
engineering methods is significantly increased.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 A Changing Electric Energy System . 1
1.2 Problem Formulation and Research Question 4
1.3 Scientific Research Method . 7
1.4 Structure of the Thesis . 8

2 State of the Art 11
2.1 System Engineering Approaches . 11

2.1.1 Plan-Driven Methods . 12
2.1.2 Agile Methods . 13
2.1.3 Importance for Rapid Engineering of Smart Grids 15

2.2 Use Case Design and System Description 15
2.2.1 IntelliGrid Use Case Template—IEC 62559 15
2.2.2 Smart Grid Architecture Model . 17
2.2.3 The Common Information Model—IEC 61970 and IEC 61968 . . 19
2.2.4 Use Case and System Description in Other Domains 20

2.3 Power Utility Automation . 21
2.3.1 Programmable Controllers—IEC 61131 21
2.3.2 Distributed Control Reference Model—IEC 61499 22
2.3.3 General-Purpose Programming Languages 26
2.3.4 Information and Communication Technologies for Smart Grids . . 26
2.3.5 Interoperability in Power Systems—IEC 61850 28

2.4 Validation of Smart Grid Applications . 30
2.4.1 Traditional Power System Simulation 31
2.4.2 Simulation Methods for Smart Grids 32
2.4.3 Hardware-In-the-Loop Validation . 33

2.5 Software Engineering Methods . 34

xiii

2.5.1 Model-Driven Engineering . 34
2.5.2 Component-Based Software Engineering 37

2.6 Model-Driven Engineering for Smart Grid Application Development . . . 39

3 Requirements for Smart Grid Automation 43
3.1 Selected Business Cases . 43

3.1.1 BC1: Use Case Design . 43
3.1.2 BC2: Utility Operator Control Implementation 46
3.1.3 BC3: Ancillary Services from Component Manufacturers 51

3.2 Business Actors and Requirements . 54
3.2.1 Business Actors and Stakeholders 55
3.2.2 Requirements . 56

4 Rapid Engineering Methodology 61
4.1 Rapid Engineering Concept . 63
4.2 Needed Modeling and Design Methods . 64

4.2.1 Specification and Use Case Design 65
4.2.2 Power System Domain . 66
4.2.3 Communication and ICT Domain 66
4.2.4 Automation and Control Domain . 68
4.2.5 Software Engineering Methods . 69

4.3 Phase I: Design and Specification . 70
4.3.1 Power System Automation Language 71
4.3.2 PSAL Specification . 74

4.4 Integration of an Implementation Language 80
4.4.1 Selecting an Implementation Language 81
4.4.2 Mapping IEC 61499 to PSAL . 84
4.4.3 Using Different Communication Protocols 87

4.5 Phase II: Implementation . 88
4.5.1 Automatic Implementation of Functions 90

4.6 Phase III–IV: Validation and Deployment 92
4.6.1 Generation of Platform Code . 93
4.6.2 Deployment and Execution . 96

4.7 Summary and Reflection . 97

5 Prototypical Implementation 99
5.1 Implementing the Specification Phase . 99
5.2 Prototype for the Implementation Phase . 101
5.3 Tools for the Validation and Deployment 102
5.4 Resulting Framework . 104

6 Applying the Rapid Engineering Methodology 105
6.1 Introduction and Use Case Analysis . 105
6.2 Applying Phase I: Design . 107

6.2.1 Business Case and Functional Design 107
6.2.2 System Design . 110
6.2.3 Information and Communication Layers Design 118

6.3 Applying Phase II: Implementation . 119
6.3.1 Implementing the DER Control Functionalities 121
6.3.2 Implementing the Distribution System Operator (DSO) Control

Functionalities . 124
6.4 Applying Phase III–IV: Validation and Deployment 126

6.4.1 Validating the DER Control Implementation 126
6.4.2 Validating the DSO Control Functions 131

7 Evaluation and Conclusions 137
7.1 Evaluating the Rapid Engineering Methodology 137

7.1.1 Fulfillment of Requirements . 138
7.1.2 Research Validation . 139
7.1.3 Comparison with State of the Art 145

7.2 Conclusions . 146
7.2.1 Recapitulation . 146
7.2.2 Reflection and Future Work . 150

Appendices 153

A PSAL Grammar 155

B Use Case Descriptions According to IEC 62559 159
B.1 Use Case Description for BC1: Use Case Design 159
B.2 Use Case Description for BC2: Utility Operator Control Implementation 161
B.3 Use Case Description for BC3: Ancillary Services from Component Manu-

facturers . 165
B.4 Test Case Description . 167

C Use Case Listings 173
C.1 Application Specification for the Test Case 173
C.2 System Specification for the Test Case . 176

Acronyms 181

Bibliography 187

CHAPTER 1
Introduction

Smart grids are no longer things only existing in a distant future. New and intelligent
approaches for measurement, control, and automation are being implemented in the
power systems, even today. This is a trend mostly propelled by the increasing installation
of distributed components and energy resources. However, the power systems as known
until today were not built to handle this amount of distributed resources. In fact, since
these new components cannot be handled centrally, a number of challenging problems
are introduced.

However, with the availability of new, intelligent, and robust methods from computer
science even the power systems are experiencing a digitalization. In fact, these new
methods are seen as key elements to handle the new situation. But, with new approaches
also follows new challenges. The future power systems—induced with more and more
software applications—require other engineering approaches than the traditional ones.

This work covers one possibility of these new engineering approaches. Especially, it studies
where it is possible to support power system engineers using automated procedures. If this
is achieved, it is expected to decrease the manual effort associated with the engineering
of power system applications today. In the end, the total life-cycle cost of power systems
may also be decreased since human effort equals time, and time equals money.

1.1 A Changing Electric Energy System
The electric energy system is experiencing a fundamental change. The traditional
power system with central bulk generation providing energy to distributed consumers
is not a picture of the reality anymore. Until today, the worldwide power generation
was dominated by fossil fuels. The results are increasing CO2 emissions and global
warming, as indicated by the “World Energy Outlook 2013” from the International
Energy Agency [173]. In order to mitigate this process and at the same time satisfy

1

1. Introduction

a continuously growing demand for electricity, there is an obvious trend towards a
sustainable electric energy system [145].

The two main foundations of sustainable energy are renewable energy and energy effi-
ciency [115]. In more and more countries, fossil fuels are being replaced by renewable
sources, such as Photovoltaic (PV) and wind generators, biomass, and combined heat-
and-power systems [89, 21]. Due to the nature of renewable sources their generation
output often follows a stochastic and dynamic model instead of the linear models of
traditional power plants. Typical examples are PV or wind, which are directly dependent
on the solar irradiation and the force of the wind. As a consequence, in order to estimate
the available generation of these sources predicable weather forecasts are needed [91].
Another thing that differentiates renewable sources compared to traditional generation
technologies is their size—both in physical size as well as in generation capability. As
a result, they are typically available in a much more decentralized way as so called
Distributed Energy Resources (DERs) [89].

A higher penetration of DERs is causing other challenges as well, such as reversed power
flows. On a nice summer day it is not uncommon that PV plants produce more power than
is consumed locally. This leads to negative power flows, which may cause problems since
today’s power systems are not intended to handle such cases [91]. Secondly, consumers
are evolving into so-called prosumers—local energy consumers and producers. They are
no longer only consuming energy but also producing, which requires new planning and
market solutions [145].

The second foundation of sustainable energy is energy efficiency. In order to increase
the efficiency, one main theme has emerged: better coordination of consumption and
generation. This has resulted in a number of different solutions, especially for the
consumer side, such as demand response, energy storage systems, and smart metering
[107, 55]. They all have the goal to only consume energy when it is available [145].
At the same time, the electrification of the transportation sector is also causing new
challenges. With Electric Vehicles (EVs), consumers are no longer fixed to a certain
graphical location [32].

Accompanying these new technology developments, further research and regulatory
alterations are needed. The decentralized manner and also geographical dispersion of
renewable sources and customer side solutions introduce challenges, which cannot be
tackled only using pure technical solutions. Changes in regulations and grid codes are
also necessary [11]. Of course grid codes have always changed, but in recent years the
rapid changes in the electric energy system has also affected regulations and grid codes.
One example is the so called “50.2 Hz problem” in Germany [50]. Due to this, grid codes
were changed and even required already installed inverters to be retrofitted [146].

Summarizing, the above sketched developments are leading to new challenges. Today,
power utilities and system operators are increasingly confronted with a highly dynamic
and less predictable demand-supply balance. Consequently, the planning, management,
and operation of the future power systems have to be redefined.

2

1.1. A Changing Electric Energy System

A sustainable energy system does not only create challenges, it also provides a number of
opportunities. A large scale integration of DERs introduces another level of controllability
to the power system. Consequently, the management and operation of the future power
system can take advantage of new and advanced control functions. An overview of some
of the most important functions and services is given below [40, 34, 145]:

• Advanced monitoring and diagnostics: Monitoring, state estimation, and self-
diagnostic capabilities in the Medium Voltage (MV), and especially in the Low
Voltage (LV) distribution grids will be crucial for future power systems.

• Optimization/self-optimization capabilities: Fluctuating generation from renewable
sources will require self-optimization of future distribution grids. This includes
automatic reconfiguration of grid topology as well as self-healing in case of faults
in the power system.

• Adaptive protection: Automatic or semi-automatic adaption of protection devices
in respect to the actual power grid conditions. One example is the adaptation of
the protection system settings due to the bidirectional power flow caused by DERs.

• Distributed automation and control: Distributed automation and control with
modern solutions (e.g. automatic decision finding and proactive fault prevention)
have to be provided for power system operators.

• DERs with ancillary services: Usage of ancillary services provided by DERs (e.g.,
local voltage or frequency control) in order to improve power system stability, and
at the same time increase the hosting capacity in power distribution grids.

• Demand response/energy management support: The use of electric loads and energy
storage systems is increasing, which provides further operation flexibility.

Additionally, changing framework conditions—such as the liberalization of the energy
markets, new regulatory rules, and technology developments—also require new adapta-
tions to the planning, management, and operation of the future power system. However,
in order to implement the functionalities listed above sophisticated component design
methods, intelligent Information and Communication Technology (ICT) architectures,
automation concepts, as well as proper standards are necessary. They are seen as key
elements in order to manage the higher complexity of the future intelligent power systems,
also know as smart grids [34, 54, 158].

It can also be expected that the complexity of the smart grid will not stabilize, but
increase further. Initial research towards interconnection with other complex systems is
already under way. Prominent examples are hybrid grid approaches, where the electric
energy system is coupled with other energy grids, such as gas or water [165]. Another
example is smart cities, where smart grids are only one component of a large optimal
and sustainable system [20, 32]. As a consequence, the electric energy system is moving
towards a complex cyber-physical system of systems [145].

3

1. Introduction

1.2 Problem Formulation and Research Question
The development of these new smart grid systems are associated with increasing en-
gineering complexity, resulting also in increased total life-cycle costs. The traditional
engineering methods used for power system automation were not intended to be used for
applications of this scale and complexity. When studying different smart grid projects
and activities the engineering methodology can be grouped into four phases: design,
implementation, validation, and deployment [41, 19, 118, 153]. Some may argue that
a system must be deployed before it can be validated. However, for power systems
this is almost never the case. The electric energy systems are categorized as critical
systems, where failure or malfunction may lead to personal damage or great economical
cost. Consequently, new components or functions must be extensively validated and
tested before deployed and commissioned [153]. The phases of the traditional engineering
method for smart grids are illustrated in Figure 1.1.

Design Implementation Deployment OperationValidation

Figure 1.1: Traditional engineering process for smart grids.

Related to this process a number of open issues regarding smart grid engineering can be
identified [175, 5, 8]:

• Rigorous engineering: Rigorous model-based engineering concepts for smart grid
applications are missing or only partly available.

• Increased effort: More and more complex applications and solutions result in
increasing engineering efforts and costs. Methods are needed to increase the effort
of traditional smart grid engineering.

• Multidisciplinarity: The multidisciplinary character of smart grid applications
requires engineers to have an expert knowledge in each discipline. When this is not
the case, it increases the risk of human errors.

• Flexibility: From today’s point of view it is nearly impossible to address all future
needs and requirements in smart grid systems and DER components. The flexible
addition of new functionalities in grid components is therefore an essential feature.

• Proprietary legacy systems: System operators expect a long service life of all
components in their systems. Available proprietary automation solutions in smart
grid systems prevent efficient reuse of control software.

• Geographical dispersion: The distribution of components over large geographical
areas requires special attention. New ICT approaches and wide-area communication
are needed.

4

1.2. Problem Formulation and Research Question

• Timing and performance constraints: Some applications may enforce real-time
constraints on hardware, software and networking. Performance management is
often not adequately addressed in existing engineering processes.

• Scalability: Current engineering methods are focusing on the development for a
single system. With a more complex smart grid, these methods must not only be
able to handle a single system, but a system of systems.

To tackle these issues, new engineering methods are needed. With the usage of proper
methods, automation architectures, and corresponding tools, there is a huge optimization
potential for the traditional engineering process of smart grid applications.

One method to increase engineering efficiency is to start with detailed use case and
requirements engineering. This has led to a number of recent smart grid projects where
use case descriptions of corresponding applications are in the focus [127, 10]. Different
methodologies and standards exist today for describing use cases. Two of the most
common methods in the smart grid domain are the Smart Grid Architecture Model
(SGAM) [25] and the IEC 62559 approach [70] (formerly known as the IntelliGrid method).
The main aim of use case descriptions and corresponding derived requirements is to
provide a clear and concise documentation of the application [9].

The result of this methodology is a structured description of use cases, often containing
a very high amount of information. However, since this information is still in a non-
formal representation, it cannot be adequately utilized in a computerized and automated
approach. The same is true for other specifications that are typically provided as an
input to the engineering process. Also, there is no standardized way of representing
the objects (e.g., controllers and power grid components), neither in the way they are
depicted, nor in the semantics used in the description.

Consequently, a significant amount of work has to be spent a repeated number of times:
(i) in the design, (ii) the implementation, and also in (iii) the validation phase. This is a
very time-consuming and error-prone approach to engineering smart grid applications.
However, if the information gathered during the use case description phase can also be used
directly in an automated way, the development effort can substantially be decreased. By
collecting the use case information in a formal model this can be used for direct automatic
code generation. The result can be executable code for field devices, communication
configurations as well as documentation. Moreover, an automated approach also has
the potential to decrease implementation errors and at the same time to increase the
software quality [96, 132].

However, up to now, there is no integrated engineering method available, covering the
whole development process for smart grid applications, which fulfills this goal. Exactly
this gap is what this work is trying to fill. Therefore, based on these observations, the
main research question of this thesis is formulated.

5

1. Introduction

Research Question:
Given the traditional engineering process for smart grid applications—
covering use case design, implementation, validation, and deployment—what
can be done to significantly reduce the amount of manual work needed from
the smart grid engineer(s)?

As stated by the research question the proposed rapid engineering methodology should
be applicable for the whole development chain of smart grid applications. Specifically
meant are the four main development phases: design, implementation, validation, and
deployment. These phases are general and can always be found independently on the used
engineering methodology, agile or plan-driven. A high-level hypothesis can be formulated
that tackles the research question by focusing on these phases and the transitions between:
Automation during the engineering phases, and of the transitions between the different
phases, reduces the amount of manual engineering work needed for smart grid applications.

This hypothesis is too vague to be evaluated within this thesis. Instead, a more specific
hypothesis must be stated. First of all, automation can be done in many different
ways. Here, Model-Driven Engineering (MDE) [121] will be used for this purpose. In
Section 2.5.1, MDE is explained in more detail. For now, it suffices to say that it is a
software engineering methodology, which focuses on the development of models and the
automatic transformation between these models. These models are virtual representations,
either of real-world objects or of software artifacts. Seen from a more generic perspective,
each engineering phase can be represented with one or more models. Using this knowledge
a more specific hypothesis is formulated.

Research Hypothesis:
Model-Driven Engineering of smart grid applications, with model transfor-
mations during the engineering phases—and for the transitions between the
different phases—will reduce the amount of manual work needed to describe
information in multiple models.

It is the intention that the methodology in this thesis will reduce the amount of manual
work that is needed to describe information in multiple models. In other words, instead
of engineers describing the same information (e.g., functionality) in multiple phases of the
engineering process, this should be done automatically through model transformations
(e.g., code generation). To show that the hypothesis holds, this thesis presents the
development of a rapid engineering methodology for smart grid applications. The
methodology is based on techniques from MDE and covers the engineering phases design,
implementation, validation, and deployment.

6

1.3. Scientific Research Method

1.3 Scientific Research Method
The research method in this thesis follows the inductive-hypothetical research method
[136], which is a typical top-down approach for this kind of studies. According to Omona
et al. [106], the inductive-hypothetical research strategy combines theory and practice
and emphasizes problem specification from a multidisciplinary point of view. The method
consists of five steps [136]:

1. Initiation: Based on the current situation, observations of the state of the art is
carried out. The result is a descriptive empirical model. In this case, this means
that related work on smart grid engineering methods is studied.

2. Abstraction: Based on the empirical model, use case studies are carried out to create
a descriptive conceptual model. Here, this corresponds to requirement identification
based on a number of business cases.

3. Theory Formulation: Following the conceptual model, a theory is formulated,
resulting in a prescriptive conceptual model. In this thesis, this model is the rapid
engineering methodology.

4. Implementation: In this step, the theoretical model is implemented and applied
on the example cases, which results in a prescriptive empirical model. For this
thesis, this means that a prototypical implementation of the rapid engineering
methodology is created and also that this is applied to a test case.

5. Validation: The last step is a validation of the implemented solution and comparison
with the state of the art before the study. In this case, the results from the
application of the rapid engineering methodology are compared with other methods.

The last step, which is the validation and evaluation of the research in this thesis, should
be discussed in more detail. Since the engineering method for smart grid applications is a
practical process, it is not suitable to validate it using traditional evaluation methods for
physics, biology or medicine [130]. Instead, validation methods from software engineering
are better suitable. Shaw presents a number of different validation approaches for research
in software engineering [131]. These were categorized based on research question, research
result, and research validation and are summarized in Figure 1.2.

In this thesis, the research approach follows the path: development method, procedure,
technique, and evaluation. Questions in the development method group cover research
questions like “What is a better way to do/create X?” [131]. This fits very well with
the main research question in this thesis, as seen in Section 1.2. Based on the research
question, a research result will be reached. Results in the group procedure, technique
are for example “New or better way to do some task, such as design, implementation,
...” [131]. This can be compared to the specific hypothesis in this work. The final
step is the validation, where the choice should be made with regard to the type of

7

1. Introduction

Question Result Validation

Development
Method

Analysis Method

Design, evaluation,
analysis

Generalization,
characterization

Feasibility

Procedure,
technique

Qualitative/
descriptive model

Empirical model

Analytic model

Notation/tool

Specific solution

Analysis

Experience

Example

Evaluation

Persuasion

Figure 1.2: Research validation methods for software engineering, summary from [131];
highlighted options show the plan for this thesis.

research question and result. Here, evaluation means validation by comparing the rapid
engineering method with other traditional smart grid engineering methods. Based on the
application of the rapid engineering method on a test case, the amount of manual work
needed from smart grid engineers is evaluated (see Research Hypothesis). This will be
compared to the amount of manual work needed for the traditional engineering methods.

1.4 Structure of the Thesis

Using the scientific research strategy presented above it can also be as a framework for
the structure of this thesis. Therefore, the following chapters in this work are directly
related to the five main steps of the research method. Below is a short summary of
each of these chapters. Furthermore, for some chapters contributions have already been
published in journals or at conferences. These publications are also mentioned below.

Chapter 2 presents the current state of the art on the topic of engineering support for
smart grid applications. Related work is presented in different sections, each associated
with one of the four main engineering phases (i.e., design, implementation, validation,
and deployment). Furthermore, this chapter discusses both work that is considered a
prerequisite for understanding this work, and also work that is considered related or
competitive to this thesis.

Chapter 3 abstracts the state of the art using a number of use cases, or in this case
business cases. These are used to exemplify different problems typical to engineering of

8

1.4. Structure of the Thesis

smart grid applications today, and also to suggest possible solutions. The main outcome
of this chapter is a number of requirements that are used as basis for the conceptualization
of the rapid engineering methodology. Especially, parts of these requirements were already
published in [117].

Chapter 4 is the main chapter of thesis. It contains the formulation of the rapid
engineering methodology. After a general concept is presented, appropriate modeling and
design methods are discussed. Thereafter, the work is divided into sections describing
the methodology for each engineering phase (i.e., design, implementation, validation, and
deployment). The main work of this chapter is based on [5] and [117], but also contains
aspects from other publications, especially [3, 9, 6, 8], and [116].

Chapter 5 shows how a prototypical implementation of the rapid engineering methodology
can be created. For each of the different engineering phases, it is described what tools
were used and what adaptations were implemented. This chapter is partly based on [117],
although much more details are provided in this work.

Chapter 6 uses the prototypical implementation to apply the rapid engineering methodol-
ogy to a specific test case. In this chapter, a detailed description is given about how the
rapid engineering method is intended to be used. Furthermore, this chapter also shows
how different type of validation methods can be integrated and used. The main parts of
this chapter were already published in [117].

Chapter 7 is the last chapter of the thesis. It contains two parts. The most significant
part is an evaluation of the rapid engineering methodology and a revisit to the main
research question as well as the Research Hypothesis of this work. Specifically, the
rapid engineering method is compared to two other traditional smart grid engineering
approaches. A comparison is made with respect the amount of manual effort needed for
each approach. This evaluation is also partly found in [117]. The second part of this
chapter are the conclusions, where the main contributions of the thesis are summarized
and possible directions for future research addressed.

9

CHAPTER 2
State of the Art

The main goal of the work in this thesis is to find a methodology that supports the
engineer with the design, implementation, validation, and deployment of smart grid
applications. Engineering support is nothing new or unique for the smart grid domain.
In other domains, this topic is even more advanced than for smart grids. With this in
mind, this work uses an approach where well-proven engineering technologies from other
domains are reused and applied to the smart grid engineering domain.

This chapter provides a discussion on the current state of the art for the topic of this thesis.
The work is selected according to topics associated with the four main engineering phases:
design, implementation, validation, and deployment. For each phase, both the current
practice is presented and an indication of the future is provided. As already indicated
by the Research Hypothesis, MDE technologies are important for the realization of the
rapid engineering methodology. Consequently, this chapter also provides an overview of
the MDE concept, together with other software engineering methods used in this work.

Finally, the chapter is concluded with a summary of other MDE approaches for smart
grid application development. These are concepts where MDE has been used in one way
or another to improve the engineering effort of smart grid applications. For each concept,
it is shown how this work differentiates and goes beyond the current state of the art.

2.1 System Engineering Approaches

The main intention with system engineering approaches is to help and guide the engineers
and project managers during the development of a system. By structuring the development
approach, it is possible provide distinct methods and solutions for specific tasks. Such
engineering approaches have always existed, but since the introduction of software
development the number of different methods have increased [37].

11

2. State of the Art

Generally, engineering approaches can be divided into two categories: plan-driven and agile
methods. Traditional engineering methods, typically used for hardware or manufacturing
purposes, often belong to the plan-driven methods. In comparison, modern software
engineering approaches usually fall into the agile category [15].

The following sections summarize some existing engineering methods. The main idea
is to give the reader an overview of common engineering approaches. Furthermore, the
presented engineering approaches are also compared with the engineering approach chosen
for this work in order to show how they are related and what the main differences are.

2.1.1 Plan-Driven Methods

Plan-driven methods are often coupled with an extensive requirement engineering phase
before anything has been implemented. This is typically the case for large and complex
projects, where plan-driven methods provide for better communication and coordination
across large groups. For such cases, the prior planning, design and specification are often
required to meet certification standards [15]. There are multiple approaches following
this approach. In this section, two of the most well known approaches are summarized.

The waterfall method is probably the most well known process for system engineering.
One of the reasons for this is that it is easy to understand. Another is that it intuitively
follows the most obvious way to develop a system. The classical waterfall model defines
a non-iterative engineering process divided into a number of phases. Consequently, this
does not allow any room for errors during the development phases. Thus, event though
the waterfall method is easy to understand it does not follow a practical model for actual
development projects [93]. Nevertheless, the development phases used by the waterfall
method are general and embedded into many other engineering methods—plan-driven as
well as agile. Therefore, in order to understand what an engineering approach is, it is
important to know the waterfall method. Usually, the following phases are used [93]:

1. Feasibility: The main aim of this phase is to analyze if it is feasible, technically as
well as financially, to develop the intended system.

2. Requirements: During this phase requirements are analyzed and specified. The
main aim of the requirement analysis is to collect all relevant requirements from the
customer and document them. Thereafter, these requirements are further specified,
usually divided into functional and non-functional requirements.

3. Design: The main aim of this phase is to transform the requirements into a structure
that is suitable for implementation. For a software product, this could for example
be a software architecture.

4. Implementation: After the design phase, the design is implemented. For the above
mentioned example of a software product, this would to translate the software
design into source code.

12

2.1. System Engineering Approaches

5. Testing: The aim of the testing phase is to evaluate and validate the implementation,
for example, according to a system test plan.

6. Maintenance: The last phase considers the installation, migration, support, and
maintenance of the complete system. Especially for software products this phase
usually requires the most effort.

The main shortcoming with the waterfall method is that it is too idealistic. As already
discussed, it assumes that no development error is ever committed during any of the
phases. This is clearly never the case—and would also make the testing phase obsolete.

One approach to overcome the shortcomings of the waterfall model was introduced by
the V-model. Instead of only using a top-down approach with no iterations it follows
a “V”, where the first four phases of the waterfall model are located on the “\” and
the testing and maintenance are located on the “/”, as seen in Figure 2.1. The project
testing and integration receives considerable more attention than in the waterfall model.
Furthermore, iterations are possible—or even intended—since the tests are validated
against the corresponding part in the project definition phase [46].

Feasibility

Requirements

Design

Implementation

System tests

Acceptance tests

Maintenance
Validation

Pro
ject D

efinitio
n Pr

o
je

ct
 T

es
t

an
d

In
te

gr
at

io
n

Figure 2.1: System engineering process according to the V-model.

While the V-model benefits from the same simplicity as the waterfall model it also has
some drawbacks. Two of the most common points of criticism, not only for the V-model
but in general for plan-driven methods, are the rigid structure and the inability to react
to changes of requirements [14]. As a response to this, agile methods were introduced.

2.1.2 Agile Methods

Agile development is an umbrella term for a set of methods and principles focusing on
development where requirements and solutions evolve during the project time. Strong
collaboration between development groups and customers is motivated. The main basis
for agile development was started by “The Agile Manifesto” in 2001 [48]. It was created
as a common denominator for the new software development methods that were receiving
a growing interest. As with the plan-driven methods, multiple established agile methods
exist. Below is a summary of two of the most commonly used methods today.

13

2. State of the Art

Scrum is probably the most well known agile method. It is based on a set of core values,
principles, and practices—collectively the Scrum framework. The main idea with Scrum
is not to be a standardized process, but more a framework for organizing and management
work. This framework is made up of specific roles, activities, artifacts, and rules [125].

Three main roles make up a Scrum team: product owner, Scrum master, and development
team. The product owner represents the product’s stakeholders and is responsible for
what will be developed and in which order. The Scrum master is responsible for guiding
and leading the team in following their approach within the Scrum framework. The
responsibility of the development team is to decide how to implement and deliver what
the product owner has asked for [125].

The main Scrum activity is the sprint. It defines a time, usually up to a month, during
which the development team implements a number of features. In order to decide which
features should be implemented, two backlogs are used: the product backlog managed
by the product owner and the sprint backlog. The product backlog contains all items
that the product owner wants to have in the final product. The number of items usually
exceeds the number of features that can be implemented during one sprint. Therefore,
before a new sprint begins a subset is selected by the development team for the sprint
backlog. Thus, the sprint backlog consists of a number of chosen features that should be
implemented during this sprint. The goal of each sprint is to have a functional prototype
containing the newly implemented features. After the sprint, this is inspected together
with the stakeholders in a sprint review. Then the cycle repeats, beginning anew with
the development selecting a new subset of features for the sprint backlog [125].

Another agile approach is the Kanban Method. Compared to Scrum it does not define
principles for how a team should produce a product. Instead, it is more a method for
visualizing the flow of work, where the main goal is to balance demand with available
capacity and to spot bottlenecks. To do this, a kanban system is used. It is a flow system
that limits the amount of work in progress by using visual signals, usually represented on
a kanban board [2], as seen in Figure 2.2.

Work
Item

Pool of Ideas
Proposals

Ongoing Ready

Selected Development Acceptance
Completed

Discarded

Ongoing Ready

Commitment Delivery

4 64 4

WORK IN
PROGRESS

Figure 2.2: Example of a kanban board [2].

14

2.2. Use Case Design and System Description

The visual signals on the kanban board are used to handle the work in progress. They
prevent too much or too little work from being implemented at the same time. Ultimately,
this should improve the flow of value to the customers. As described by Anderson et
al.: “Work is “pulled” into the system when other work is completed ... rather than
“pushed” into it when new work is demanded” [2]. Work items are generally moved from
the left to the right as they are implemented. At the head of the board, cards are used to
display the limit for each columns. This also defines the limit for the work in progress. In
addition, the board also shows which points are identified for commitment and delivery.

2.1.3 Importance for Rapid Engineering of Smart Grids

Smart grid engineering requires methods that can handle both hardware and software
development. Traditionally, it was a field where hardware dominated, but where software
is gaining more and more ground today. Thus, the agile engineering methods also become
more and more interesting for smart grid engineering [41].

In Section 1.2, the main research question of this thesis stipulates four engineering
phases—design, implementation, validation, and deployment—which will be studied
during this work. Principally, these match with the different phases of the waterfall and
the V-model. However, they can also be found in the agile methods. For each feature
that is implemented during the sprint of the Scrum method, all these phases are carried
out. The same applies for the Kanban model. Once a work item has been selected it will
also go through these phases. Consequently, the findings of this work are not restricted
to only one type of engineering method, but can be used independently of the chosen
development model.

2.2 Use Case Design and System Description

Before an application can be implemented it needs to be clearly designed and specified.
This is independent of the followed engineering method. For plan-driven methods, a
design and specification is done for the whole application, whereas for agile methods
smaller parts (i.e., work items or features) are considered. Often accompanying the
design is also a system or architecture description. For smart grid applications, this
is typically a model of the power system and the corresponding ICT and automation
infrastructure. This section summarizes a number of use case design, and architecture
description methods that are commonly used for smart grid applications. Furthermore, a
perspective from other domains is also given.

2.2.1 IntelliGrid Use Case Template—IEC 62559

The IntelliGrid methodology was originally developed by Electric Power Research Institute
(EPRI) in 2003 as a response to the increasing complexity of power system automation [62].
The idea was to use a systems engineering approach for defining the future energy systems
applications. Since then, the IntelliGrid method has become its own standard described in

15

2. State of the Art

the IEC 62559 [69], which is one of the most commonly used methods for describing smart
grid use cases [122]. Using existing approaches from systems engineering, it integrates
requirements engineering and best practices and combines them into a process model.
Furthermore, the methodology explicitly addresses the identification of stakeholders and
how to structure communications in a project [122]. The core of IEC 62559 identifies five
engineering phases [69]:

1. Approval and review of business cases

2. Description of user requirements with use cases

3. Identification of detailed requirements based on the previously developed use cases

4. Evaluation of standards, technologies, and best practices for project applicability

5. Development of technical specifications based on the previous results

The first three phases are especially covered by the IEC 62559. In fact, a use case
template is provided. The environment of the use case is described by documenting the
relation towards other actors, legal issues, as well as preconditions and assumptions that
affect the function. The use case itself is described through a narrative as well as a visual
representation (e.g., a Unified Modeling Language (UML) diagram). Furthermore, a
detailed step-by-step description of the use case is provided. For each step, a triggering
event and the resulting information exchange is documented. The information exchange
is described by its content, producer, consumer, and any associated requirements [69, 122].
Appendix B contains a number of examples described according to IEC 62559.

Although the IEC 62559 use case template provides a structured approach, which greatly
improves the development of smart grid use cases, it still has its drawbacks. One of these
is the collaboration between different stakeholders. The original template is intended
to be described in text documents making them difficult to compare and harmonize.
As a solution, to this Trefke et al. suggested a use case management tool—the Use
Case Management Repository (UCMR) [162]. It is a web-based tool that supports the
development of smart grid use cases according to the IEC 62559 template. This allows
simultaneous collaboration between experts and organizations [51].

The IEC 62559 has become a de facto standard for smart grid use case descriptions.
It provides a structured and practical approach, which is not only comprehensive for
domain experts. Furthermore, with the help of tool support it is now also possible to
effectively collaborate between different stakeholders. Based on this argumentation, the
IEC 62559 approach is a method that should be supported by the rapid engineering
methodology in this work. However, even though a tool support is available, the current
IEC 62559 approaches are not directly suitable for an automated approach. In order to
use the information from the use case in an automated approach, the descriptions must
be machine-readable. The UCMR certainly introduced more formalism than the standard

16

2.2. Use Case Design and System Description

text documents, but main description of the use case is still a narrative written in prose.
Consequently, this information is very complex to process for a computer. Secondly,
the current approaches are mainly intended for documentation purposes and thus not
directly appropriate for code generation.

2.2.2 Smart Grid Architecture Model

The SGAM was created as a result of the “European Commission M/490 Standardization
Mandate to European Standardization Organizations” [34]. Initially it was mainly
intended for the coordination of standardization activities. The idea was to use the
SGAM model to identify gaps within and amongst standards, but also topics requiring
cooperation among standardization organizations [34]. But, the SGAM also has the
potential to provide a structured approach for modeling of smart grid use cases [25].

The basis for SGAM is a three-dimensional framework consisting of domains, zones,
and layers. In the domains, the traditional layout of the electrical energy infrastructure
can be found: generation, transmission, distribution, DER, and customer premises.
The zones depict a typical hierarchical power system management: market, enterprise,
operation, station, field, and process. These two axes form the component layer. On
top of the component layer, four interoperability layers are placed: the communication,
information, function, and business layers [25]. Combined together, these components
create a three-dimensional model, as seen in Figure 2.3.

Component Layer

Communication Layer

Information Layer

Function Layer

Business Layer

Interoperability
Layers

Generation
Transmission

Distribution
DER

Customer
Premesis

Process

Field

Station

Operation

Enterprise

Market

Domains

Zones

Figure 2.3: Representation of the SGAM, based on [34].

Accompanying the framework in Figure 2.3 is also a use case design methodology. It is
related with the IEC 62559 use case template, which is used as a basis for describing use

17

2. State of the Art

cases. Once a use case has been described using IEC 62559 it is subsequently mapped
into the different layers of SGAM. In order to do this in a structured way, the following
design steps are defined [24, 26]:

1. Use Case Analysis: The first step is an analysis of the use case. It is suggested to
use the IEC 62559 template to create an initial use case description [26].

2. Business Layer Design: The business processes, services, and organizations, which
are linked to the use case, are mapped to the business layer. These business entities
are placed in the appropriate domain and zone.

3. Function Layer Design: In the function layer, functions and their interrelations
should be represented. The functions are derived from the initial use case description.
A use case can be hierarchically divided into sub use cases and functions.

4. Component Layer Design: After the business layer and the function layer have
been modeled, they have to be matched with a certain system. Thus, the next step
is to model the component layer. Based on the actors involved in the use case, and
any existing system components, the needed components for the use case can be
derived and assigned to a domain and zone. Subsequently, the derived functions
from the function layer can be assigned to a corresponding hardware.

5. Information Layer Design: In the information layer, the information exchanged
between functions, services, and components is represented. Information objects
can be identified by analyzing the data exchanged between actors involved in the
use case (e.g., using sequence and activity diagrams). Another important aspect of
this layer is to represent which data models are used for the information exchange.

6. Communication Layer Design: Taking the exchanged information and data models
identified in the information layer into account, suitable communication protocols
and ICT techniques have to be identified. These should be represented in the
communication layer.

One of the main advantages with the SGAM approach is its coordinated set of viewpoints.
It allows to depict various interrelated aspects of smart grid architectures and supports
the identification and coordination of elements on different levels. Using the different
viewpoints, it is possible to identify interoperability issues and interrelated aspects are
easier discovered [163].

From an engineering point of view, most effort is put into the first step (i.e., the use
case analysis). In order to support the user with the methodology described above,
Dänekas et al. developed the so-called “SGAM Toolbox”, a UML-based Domain-Specific
Language (DSL) available as an extension to the Enterprise Architect software [31]. One
advantage of the SGAM Toolbox is that common UML modeling tools like sequence and
activity diagrams are available since these are standard parts of Enterprise Architect.

18

2.2. Use Case Design and System Description

Consequently with the SGAM Toolbox, only one tool is needed covering all steps in
the SGAM methodology. The main idea of the SGAM Toolbox is to provide support
for traditional use case descriptions. Furthermore, it is also possible to use the code
generation capabilities provided by Enterprise Architect [103].

In summary, SGAM is a structured way to approach smart grid architecture development.
However, without tool support the real benefits cannot be utilized. The SGAM Toolbox
was the first attempt at creating such a tool. From this point of view, it would also be
a good candidate for the design phase of the rapid engineering methodology. However,
some disadvantages exist. First of all, even if code generation is possible it is not intended
for smart grids. Furthermore, there is no special support to handle interconnected
distributed applications. For such applications the interaction (e.g., information model,
communication protocol) between the components is of importance and often needs to
be specifically configured. Neither the SGAM Toolbox nor Enterprise Architect support
the automatic generation of such configurations.

2.2.3 The Common Information Model—IEC 61970 and IEC 61968

Since deregulation of the energy market there has been an increasing need for power
companies to exchange data on a regular basis. The main reason for this is to ensure a
reliable operation of the interconnected power networks that are owned and operated
by different utilities. Traditionally, power companies all use different formats to store
their data (e.g., topological power system network data, work scheduling information
or static simulation software files). This data needs to be exchanged, both internally
and externally with other companies. The complexity of exchanging this data using
different formats has driven the requirement for a common format that covers all the
areas of exchange for smart grid systems. This is one of the main drivers for the Common
Information Model (CIM) [95].

As with the IntelliGrid method, CIM also has its roots from EPRI in the mid 1990s.
In a first step, CIM was an internal database model for Energy Management System
(EMS) and Supervisory Control and Data Acquisition (SCADA) systems. Over time, it
evolved into a powerful, object oriented data model also including interfaces for power
system applications. The most recognized part of this framework is a large information
model being a domain ontology for the energy sector. This model is platform- and
technology-independent, maintained in UML. Although, the common goal is to enable
semantic interoperability each series addresses a certain application area. Today, it is
in the scope of utilities, vendors, and system providers along the whole energy value
chain—from generation to consumption [166].

Since then CIM has evolved into its own International Electrotechnical Commission (IEC)
standard. In fact, the standard series consists of three different parts: the IEC 61970,
the IEC 61968, and the IEC 62325 standards. The focus of IEC 61970 is the power
transmission system, in particular its EMS. The main objective of this standard series is
to model power grid topologies. Complementary, IEC 61968 covers data for Distribution

19

2. State of the Art

Management Systems (DMS) in power distribution grids. Finally, IEC 62325 is the latest
extension for defining CIM-based messages for market communications [68, 67, 123].

Complementing the ontology CIM also defines serialization and technology mappings.
As already mentioned, the data models are maintained in UML and are thus technology
independent. In order to make them applicable it has to be specified how the data models
can be modeled with certain technologies. For this purpose, the Resource Description
Framework (RDF) was chosen [123].

The CIM approach is widely used for modeling power system topologies. However, in a
holistic approach as the rapid engineering methodology it covers only a part, the power
system topology. It is not in the scope of CIM to model ICT and automation infrastructure.
Neither is it intended to be used to model automation or control functionalities. For this
reason, it needs to be combined with other methods.

2.2.4 Use Case and System Description in Other Domains

Two commonly known methods for system descriptions are UML [164] and the System
Modeling Language (SysML) [105]. Although both methods are used for system design
UML mainly focuses on the description of software systems, whereas SysML is more
intended for the description of physical systems. Both of these methods are also used for
smart grids, however not as extensively as for example in software engineering.

Combined together, UML and SysML offer a wide portfolio of methods and tools for
system and software modeling. Both methods are general-purpose modeling tools, which
means that they can be use to model any type of system. However, when only considering
smart grids, this is also one of their main disadvantages. It would require of the smart
grid engineer to learn another language in order to model the power system. Secondly, it
may lead to misunderstanding when a domain specific notation cannot be used.

Especially in software and embedded systems engineering there exist a multitude of
Architecture Description Languages (ADLs). There, they are used as a formal language to
create a description of a software architecture. Prominent examples are the Architecture
Analysis and Design Language (AADL), which was initially intended for real-time
and performance-critical applications in avionics [42], and AUTomotive Open System
ARchitecture (AUTOSAR), an open and standardized automotive software architecture,
jointly developed by automobile manufacturers, suppliers and tool developers [49].

Although there is much to learn from these ADLs, there still does not exist a corresponding
language for smart grid applications. Furthermore, what these ADLs all have in common
is that they focus mainly on the software architecture (i.e., the number of processors,
buses, memory) and how processes and tasks are distributed for this architecture. There
is no real possibility to represent the system components, which in the case of the power
system would be, for instance, switches, transformers, loads, and generators.

20

2.3. Power Utility Automation

2.3 Power Utility Automation
This section covers state of the art associated with the implementation of power utility
and smart grid automation functionality. From a chronological point of view, this is the
phase that follows after the use case identification and design phase. In general, two main
topics are covered in this section: programming techniques and ICT approaches for smart
grids. In both cases, only an excerpt of the available existing work is presented. Focus is
mainly on standards and techniques of high importance for the development of the rapid
engineering methodology. Either they will be used directly or they are methods that at
first may seem the best choice, but at second glance reveal themselves inappropriate for
the task at hand.

2.3.1 Programmable Controllers—IEC 61131

The standard IEC 61131 with the name “Programmable Controllers” was originally
published in 1990s. Until then each manufacturer of Power Line Carriers (PLCs) and
other controllers all had their own programming approach. Of course, this prevented
people from using devices and controllers from different vendors since they were not
compatible with each other. In order to solve this problem, and thus prevent a further
vendor lock-in, one of the main goals of the IEC 61131 was to unify the PLC architectures
and standardize the programming approaches [76]. Today, nearly every PLC vendor
supports IEC 61131, at least partially. As a consequence, engineers who are experienced
in IEC 61131 will experience less problems when moving from one vendor to another.
Nevertheless, vendor-specific extensions are still very common, which makes a direct
reuse of control software practically not possible [177].
Until now, nine different parts of IEC 61131 have been published. The most prominent
part is the IEC 61131-3 where four different programming languages are defined. These
are divided into textual (Instruction List (IL) and Structured Text (ST)) and graphical
(Function Block Diagram (FBD) and Ladder Diagram (LD)). On top of these languages,
a Sequential Function Chart (SFC) was defined. It has elements to organize programs for
sequential or parallel execution. Apart from the languages themselves, the IEC 61131-3
part also defines common elements for all languages. These include declarations of data
types and how information is exchanged within a program [63].
Applications programed using one of the languages in IEC 61131-3 are executed using a
cyclic model. At the beginning of the cycle, the process inputs (e.g., from sensors and
measurement devices) are recorded. Thereafter, these inputs are made available to the
program. In the next step, the program is executed. Depending on the type of language,
and vendor interpretation, the order of execution can vary. Usually a top-down and
left-to-right approach is used [177]. Once the program has been executed, the results are
written to the outputs of the controller. Immediately thereafter, the output signals are
available to the process. After this step, the cycle starts over from the beginning [63].
At the time when the IEC 61131 standard was developed centralized control approaches
were still state of the art of software engineering. Therefore, the standard’s main focus

21

2. State of the Art

is the programming of single PLCs. In other words, a control application is always
dependent of the hardware platform. Consequently, it is not possible to model the
application platform-independently. For distributed control systems, this is often a big
disadvantage. It forces the engineer to decide about the location (i.e., execution platform)
of a function before the implementation has started.

IEC 61131 is not only used in the automation industry, it is also used in many power
system automation devices [155, 154]. Since the smart grid is in every sense a distributed
system, the usage of IEC 61131 for future power system applications is questionable.
With more complex and interconnected applications, higher demands will also be put
on the modeling and design methods. For such cyber-physical energy applications, the
device-centric view of IEC 61131 is no longer suitable [60, 146].

2.3.2 Distributed Control Reference Model—IEC 61499

An approach to handle the increased complexity of the next generation of automation
systems is provided by the IEC 61499 standard [64]. The IEC 61499 reference model
has been developed especially as a methodology for modeling open and distributed
industrial-process, measurement and control systems. A further goal was to obtain a
vendor-independent approach for modeling and programming automation applications.
Apart from this, the IEC 61499 standard also focuses on three main issues [86]):

• Portability: This is the ability of software tools to correctly accept and interpret
library elements produced by other software tools.

• Configurability: It is the possibility to configure (control) devices, and their software
components (i.e., select, assign locations, interconnect and parametrize), using
multiple software tools.

• Interoperability: This is the ability of (control) devices from different vendors to
interact with each other, thus executing the functions specified by one or more
distributed applications.

The use of IEC 61499 to implement automation functions for smart grids has already
been suggested in a number of publications [60, 146, 149, 170]. Furthermore, this was
also proposed in the German smart grids standardization roadmap [159] as well as in
the “IEC Smart Grid Standardization Roadmap” [135]. However, not all aspects are
covered by IEC 61499. First of all, its main intention was always to be used directly
for the implementation of automation functions. Nonetheless, it is still equipped with a
number of tools that can be used also for other modeling purposes (e.g., communication
architecture). However, for use case or detailed architecture descriptions, IEC 61499 is
not very well suited. Secondly, since IEC 61499 was not mainly intended for smart grids
the gap between it and methods like SGAM or IEC 62559 is currently too big to allow for
any affective automated approaches. In summary, IEC 61499 provides many modeling

22

2.3. Power Utility Automation

aspects that can help improving the smart grid engineering process. But in order to
effectively use these, it needs to be better integrated with other smart grid approaches
(e.g., SGAM, IEC 62559, CIM, IEC 61850). The next two sections provide an overview
of the main aspects of IEC 61499, which are used in this thesis.

Overview of Main Concepts

The standard defines concepts and models that allow modular control software. To do
this, the main modeling element of this automation approach is the so called Function
Block (FB). Multiple FBs connected together into a FB network make up an IEC 61499
Application. The standard follows an application-centered modeling approach. This
means that only after the complete Application has been defined it is deployed to field
devices (called Devices in the standard) [64]. IEC 61499 specifies an architectural model
in a generic way and extends the FB model of its predecessor IEC 61131-3 with an
additional event handling mechanism. Due to this, FBs are an already established concept
to define robust and reusable software components. They have a defined set of input and
output parameters, which can be connected to other outputs and inputs, thus forming
a complete automation application. In Fig. 2.4, an overview of the main IEC 61499
modeling elements is provided.

Resource A Resource B Resource C

Communication Interface

Process Interface

Resource A Resource B Resource C

Communication Interface

Process Interface

Device 1

Application 1

Application 2

Device 2

Application 3App. 4

Communication
Network

Application Model
(i.e., Function Block

Network)

System Model
(i.e., System =

Communication
Network + Devices +

Controlled Process)

FB5 FB6

FB4FB3FB2FB1

Controlled Process

Figure 2.4: IEC 61499 reference models for distributed automation [64, 86].

One decisive difference between IEC 61499 and IEC 61131-3 is the execution model. As
already explained IEC 61131-3 has a cyclic execution model. IEC 61499 has instead an
event-based execution model. A consequence of this is that it also supports asynchronous
execution. Thus, distributed IEC 61499 control applications can not only be executed in a
synchronous way, through time triggered events, but also in an asynchronous way [86, 151].

23

2. State of the Art

Adapter Interfaces

IEC 61499 is mainly intended to be used as a graphical programming language. In large
applications with many FBs and many connections readability and clarity may become a
problem. The multiple connections often clutter the design space, which makes it difficult
for the engineer to understand the interaction between the FBs. One possibility to
overcome this problem is to use the Adapter concept provided in the IEC 61499 standard.
With this concept data and events can be grouped together forming an interface. Adapters
can be used in two different ways: either as an accepting interface, called Plug, or as a
providing interface, called Socket [177]. Figure 2.5 shows how the Adapter concept is
used in two composite FBs.

Subscriber

>>

Composite FB

E1 E2

D1 D2

Provider

Composite FB

E2 E1

D1D2

>>

Adapter FB

Plug Socket

Figure 2.5: Adapter concept used in composite FBs according to [178].

The subscriber composite FB on the left uses the Adapter as a Plug. Inside the subscriber
the Plug is represented as a FB. The Plug is connected to a Socket with the same Adapter
type implemented by a provider FB. The Socket always has a mirrored interface of the
Plug. In other words, events and data inputs of the Plug are outputs of the Socket, and
vice versa for the Plug’s outputs. Apart from reducing the number of connections, the
Adapter concept also provides better decoupling of application parts [177].

Communication Patterns

Since the IEC 61499 standard has been developed for distributed control systems,
communication is an important topic. This can also be seen in the system model,
with interacting devices connected through a communication network (see Figure 2.4).
However, as IEC 61499 is a generic standard it cannot provide specific communication
means for this interaction. Nonetheless, it defines two generic communication models
and also a suggestion for encoding and decoding IEC 61499 events and data according to
the Abstract Syntax Notation One (ASN.1) specification. On one hand, bidirectional
transactions are supported with a client/server model. On the other hand, unidirectional
transactions are supported with a publish/subscribe model. These two models fulfill
most requirements of distributed IEC 61499 applications. Since the two communication
models are generic it is also possible to map other communication protocols that support
either the client/server or the publish/subscribe approach [7].

24

2.3. Power Utility Automation

Generally, IEC 61499 uses so called Service Interface Function Blocks (SIFBs) to encap-
sulate communication services. For bidirectional transactions, a pair of SIFBs named
CLIENT and SERVER is defined, as seen in Figure 2.6. Data can be exchanged from
the client to the server and back again. Before any data can be exchanged both SIFBs
need to be initialized. According to IEC 61499 the server needs to be initialized before
the client’s initialization, during which it establishes a connection to the server [64]. The
typical usage scenarios for this model are master/slave interactions or remote service
invocations (the client triggers a service provided by the server, which returns the result
of the invoked service to the client) [7].

CLIENT

STRING

QOBOOL

EVENT

BOOL

STATUS

CNF

INITO

EVENT

EVENT

EVENT

INIT

REQ

QI

IDSTRING

ANY

ANY

ANY

ANY

SD_1

SD_m

RD_1

RD_n

SERVER

STRING

QOBOOL

EVENT

BOOL

STATUS

IND

INITO

EVENT

EVENT

EVENT

INIT

RSP

QI

IDSTRING

ANY

ANY

ANY

ANY

SD_1

SD_n

RD_1

RD_m

(a)

Connection
CLIENT SERVER

INIT+

INITO+

REQ+

IND+

INIT+

INITO+

Data Transfer

CNF+

RSP+

(b)

Figure 2.6: Generic CLIENT/SERVER SIFBs for bidirectional transactions according to
IEC 61499 [64]: (a) FB representation; (b) Sequence diagram.

The unidirectional method is described in IEC 61499 with a PUBLISH/SUBSCRIBE pair.
Figure 2.7 shows interface definition of these SIFBs. Communication is directed from the
publisher to the subscriber [64]. In contrast to the client/server model, the unidirectional
model requires no specific order during the initialization. Furthermore, several subscribers
may listen to the same publisher. Since the transaction is unidirectional, the publisher
receives no feedback if data has been correctly received by the subscriber [7].

PUBLISH

STRING

QOBOOL

EVENT

BOOL

STATUS

CNF

INITO

EVENT

EVENT

EVENT

INIT

REQ

QI

PARAMSSTRING

ANY

ANY

SD_1

SD_m

SUBSCRIBE

STRING

QOBOOL

EVENT

BOOL

STATUS

IND

INITO

EVENT

EVENT

EVENT

INIT

RSP

QI

PARAMSSTRING

ANY

ANY

RD_1

RD_m

(a)

Connection
PUBLISH SUBSCRIBE

INIT+

INITO+

REQ+

IND+

INIT+

INITO+

Data Transfer

CNF+

RSP+

(b)

Figure 2.7: Generic PUBLISH/SUBSCRIBE SIFBs for unidirectional transactions
according to IEC 61499 [64]: (a) FB representation; (b) Sequence diagram.

25

2. State of the Art

2.3.3 General-Purpose Programming Languages

General-purpose programming languages are commonly defined as programming languages
that are designed to be used in a wide variety of application domains. This usually
means that the language does not have any constructs that are applicable for a certain
application domain. Well known examples of general-purpose programming languages
are Assembler, C, C++, Java, C#, JavaScript, and Python. Although they are all mostly
used for different domains they are still general-purpose. Two main reasons why, for
example, JavaScript is mainly used for programming webpages are, first of all, that it is
supported by web browsers and, secondly, the many web-domain-specific libraries and
Application Programming Interfaces (APIs) available for JavaScript [47].

Many automation solutions for smart grids are also programmed using general-purpose
languages. Especially, for higher-level optimization and control functions. One of the
main advantages with general-purpose programming languages is that they are very
powerful. Any software problem in any application domain can be solved using them.
Furthermore, this is also possible by learning only one or a few programming languages.

Despite these advantages, several issues can be observed for today’s growing system
complexity. These systems have advanced in complexity faster than the ability of
general-purpose programming languages to mask it. Schmidt considers this one of
the main problems with using general-purpose languages for cases where system-wide
correctness is of high importance. He stated that developers “pay such close attention
to numerous tactical imperative programming details that they often can’t focus on
strategic architectural issues such as system-wide correctness and performance” [128].

Another issue is timing. It is one of the things that is masked away by the many
abstraction layers used in embedded systems design. However, when large complex,
distributed, and connected systems are designed timing is a critical issue. When physical
components are involved, where predictability is not 100 %, timing is always an issue. But,
considering the fact that timing is not in the semantics of general-purpose programming
languages, a program may execute correctly and still miss its deadline [84].

Smart grids is one domain where these mentioned issues can be observed. The smart
grid is highly connected, complex, and the system-wide correctness is of the utmost
importance. Accordingly, using only general-purpose programming languages for smart
grid engineering may not be the best choice. Furthermore, in view of the discussion
above general-purpose languages are mainly suitable for cases or system parts, where
complexity and timing issues can be limited.

2.3.4 Information and Communication Technologies for Smart Grids

As mentioned above, the smart grid and the future power system is a highly interconnected
and complex system. One of the key elements to handle such systems are appropriate
ICT methods. The availability of ICT together with advanced automation and control

26

2.3. Power Utility Automation

concepts provide various opportunities to operate highly interconnected power grids with
corresponding components in a much more effective way as in the past [145, 22].

In the dynamically developing field of ICT solutions for Smart Grids, the development of
standards is of crucial importance mainly due to interoperability requirements. Currently,
standards are mainly focused on non-distributed devices and systems since they originated
prior to the increasing deployment of distributed generators. In order to ensure interop-
erability, international standards have to be taken into account. Several standardization
organizations, various international projects, and roadmaps have analyzed this fact so far
[138, 54]. In the following paragraphs, an overview of the most important ICT standards
for smart grid systems is provided.

On international level, IEC plays an important role by providing common rules for
the planning and operation of active power distribution grids. Especially, the IEC
Technical Committees (TCs) TC 8 (“Systems aspects for electrical energy supply”),
TC 13 (“Electrical energy measurement, tariff- and load control”), TC 57 (“Power
systems management and associated information exchange”), and TC 65 (“Industrial-
process measurement, control and automation”) are responsible for smart grid related
standards as mentioned in the “IEC Smart Grid Standardization Roadmap” [135]. This
report suggests the following core standards to be used for the realization of Smart Grid
related projects [135]:

• IEC TR 62357: Proposes a service-oriented reference architecture for EMS in the
power transmission domain and for DMS in the power distribution domain.

• IEC 61970/61968: Introduces the domain ontology CIM for modeling the electrical
grid and its components (see Section 2.2.3 for more information).

• IEC 61850: Covers the automation of substations and power utility equipment (see
Section 2.3.5 for more information).

• IEC 62351: Describes security issues.

• IEC 62056: Provides data exchange rules and specifications for meter reading,
tariff and load control in power systems.

• IEC 61508: Addresses functional safety rules for electrical, electronic and pro-
grammable electronic safety-related systems and devices.

In addition, the following standards also receive much attention, not only by the IEC
roadmap, but also by other important smart grid related roadmaps [104, 159, 72, 123]:

• IEC 60870-5: Covers tele- and remote control protocols.

• IEC 60870-6: Responsible for inter-control center communication.

27

2. State of the Art

• IEC TR 61334: Addresses Distribution Line Message Service (DLMS).

• IEC 61400-25: Defines wind power communication rules.

• IEC 61850-7-410: Covers hydro energy communication issues.

• IEC 61850-7-420: Covers distribution energy communication issues.

• IEC 61851: Communication for EV, smart home, and E-mobility.

• IEC 62051-54/58-59: Defines metering-related standards.

• IEC 62541: Also known as OPC Unified Architecture (OPC UA), it provides a
platform-independent information and communication model allowing to set up a
Service-Oriented Architecture (SOA).

From these standards, it is clear that ICT is an important topic for smart grids. Also,
these are only a selected extract of the available and used communication standards
in the power system domain. As can be seen from this summary, it is important that
a rapid engineering method can handle multiple communication and ICT standards.
Furthermore, since these are always changing it must also be possible to incorporate new
standards into the engineering method. From the mentioned standards above, IEC 61850
has received a lot of attention. This standard is described in more detail below.

2.3.5 Interoperability in Power Systems—IEC 61850

The first edition of the IEC 61850 standard was published between 2003 and 2005 under the
title “Communication networks and systems in substations” [66]. Since then, parts of the
standards have been revised and new editions have been released. The standard has also
been extended to include automation outside substations. Accordingly, the standard has
also been renamed to “Communication networks and systems for power utility automation”.
The main goal is to increase interoperability between so called Intelligent Electronic
Devices (IEDs) [66]. By standardizing the information used in power utility automation
and providing it in an object oriented matter, interoperability between components from
different vendors can be simplified. At the moment, the standard consists of 31 different
parts and technical reports, but thematically the contents of IEC 61850 can be divided
into three main topics: modeling, communication, and configuration [149]. These are
illustrated in Figure 2.8.

The modeling topic of IEC 61850 covers a virtualization of physical components and
functions into a formal data model. Logical Nodes (LNs) are the main modeling parts
of IEC 61850. They are used to model power system components (e.g., switches, trans-
formers, inverters) as well as power system functions (e.g., measurement, protection,
voltage control). The LN-model defines semantics of real-time data that is exchanged
between IEDs and is represented in text tables. The different elements of the model are
hierarchically organized (top-down): IEDs, LDs, LNs, Data Objects (DOs), Common

28

2.3. Power Utility Automation

Communication

Ethernet
Network

Model

DER

Tap
Ctrl

Virtualization

LN

LN LN

LN

LN

OpCnt

Pos
A

b
st

ra
ct

 C
o

m
m

u
n

ic
at

io
n

 S
er

vi
ce

s

M
M

S

TC
P

/I
P

M
ap

p
in

g

Configuration

XCBR

1

2

3

Figure 2.8: Overview of the main topics of IEC 61850: (1) modeling, (2) communication,
and (3) configuration.

Data Classes (CDCs), and Data Attributes (DAs) [66, 9]. In other words, LNs are
grouped together in LDs, which in turn are contained in IEDs.

The second topic of IEC 61850 describes how the information in the LN-model is
communicated. First of all, it defines different communication services that are available
to transfer this information between IEDs [66, 9]. This includes client/server-based
but also publish/subscriber-based as well as real-time communication (i.e., Sampled
Value, Generic Substation Event (GSE) and Generic Object Oriented Substation Event
(GOOSE)). The use of real-time events enables a fast communication between control and
protection devices, which can be used to improve system stability and performance [56].
Secondly, the standard also defines a mappings between the communication services and
different protocols. For example, a mapping to Manufacturing Message Specification
(MMS) is provided for client/server communication [66].

The third main topic of IEC 61850 is dedicated to the configuration of the first two topics.
The main tool provided for this is the Extensible Markup Language (XML)-based System
Configuration Language (SCL). As indicated in Figure 2.8, it can be used to configure
different aspects. First of all, SCL includes artifacts to describe which components and
functions are modeled, from a whole substation to a single IED. Secondly, it is also
possible to configure how the information can be exchanged (i.e., which service and what
protocol). Thirdly, SCL also provides tools to model and thus configure parts of the
communication network [66]. The results are configuration files that can be used to
configure the different devices in the system [18]. Figure 2.9 shows the main modeling
objects provided by SCL.

Intelligent devices are one of the major preconditions for the realization of smart grids.
In this context, IEC 61850 plays a major role for the standardized information and

29

2. State of the Art

Substation

Voltage
level

Transformer

Bay

Function

LNode Data

LDeviceServer

IED

AccessPoint

Subnetwork

Functional model

Product model

Communication model

Figure 2.9: Main model objects as defined in IEC 61850-6. Adapted from [66].

data exchange. But, the main problem is that it only defines interfaces to the functions
described by the LNs. The implementation of these functions and services is not covered
by IEC 61850 but must be implemented using other solutions. Other standards or
methods must be applied for defining this functionality (e.g. IEC 61131-3 or IEC 61499).
Especially IEC 61499 has been proven to successfully integrate with IEC 61850 for smart
grid applications [60, 170, 146]. Nonetheless, this topic still needs research.

Another issue with the IEC 61850 approach is its user-unfriendliness. First of all, the
LN data model is only provided in text tables. Secondly, to find the complete definition
of a LN, the user is required to switch between different parts of the standard in order
to find all defined sub-types (i.e., CDCs and DA types). This is a very time consuming
and erroneous process. Tool support is available for this process, but the tool suites are
mostly commercial and/or proprietary products that are difficult to integrate into a rapid
engineering method [59, 27]. Within the IEC TC 57, a UML representation of the LNs is
also in development, but until now this has not been opened for the public [9].

2.4 Validation of Smart Grid Applications

Validation of smart grid systems can mainly be divided into three categories: simulative
tests, laboratory tests, and pilot projects in the field. Whereas there exist a lot of
literature about different general simulation methods, less can be found about validation
standards for laboratory tests, and even less about methods for pilot projects. One reason
for this may be that pilots are always designed for one specific use case, whereas simulation
methods can be designed in a more general manner. Consequently, for laboratory tests
the case is somewhere in between. The following sections provide an overview of general
simulation methods for power systems and smart grids. Furthermore, an overview is also
given about hardware and simulation methods for laboratory validation.

In summary, with the presented approaches below the validation of smart grid systems

30

2.4. Validation of Smart Grid Applications

can be covered. However, these methods and tools usually focus only on the validation
itself. Integration with other tools used for design and implementation is usually a
challenge. Analyzing the below described approaches and concepts, it turns out that a
major shortcoming is a missing holistic and standard-based environment for the design,
implementation, testing and validating of smart grid applications. As it is not a goal of
this thesis to develop any new validation methods one of the main focuses for the rapid
engineering methodology will be to provide appropriate interfaces to current smart grid
validation methods.

2.4.1 Traditional Power System Simulation

Power system simulations are traditionally used for a number of different tasks, including
network planning, forecasting, transient stability, short-circuit analysis, power flow
analysis, optimal load flow analysis, etc. Over the years a wide range of power system
analysis tools have emerged. In general, the studies can be divided into two groups:
steady state simulations and transient dynamic simulations [41].

Steady state simulations are often used to study how different modifications or changes
impact the performance of the power system. To do this, the system is analyzed in a
steady state. The focus is foremost to analyze if the power system variables (e.g., voltage
or frequency) are within proper limits. In comparison, transient dynamic simulations are
used to study how the power system behaves between stable states. Often the goal is to find
out how the system behaves due to major changes, like switching activities or disturbances.
In order to perform these studies, simulations need to include electromagnetic transients
with a fine time granularity (e.g., micro- to milliseconds) [98]. Several commercial and
open-source simulators support both types of problem analysis. Table 2.1 shows a list of
common commercial and open source simulation tools [98, 41].

Table 2.1: List of traditional power system simulation tools [98, 41].

Simulator Simulation type Power system domain License
Cymdist steady state generation, distribution commercial
PowerFactory transient, steady state generation, transmission, distribution commercial
EMTP-RV transient transmission, distribution commercial
ETAP PSMS transient, steady state generation, transmission, distribution commercial
EuroStag steady state generation, transmission, distribution commercial
OpenDSS transient, steady state generation, distribution open
PyPower steady state generation, distribution open
GridLAB-D steady state generation, distribution open
PSAT steady state transmission, distribution open
PSCAD/EMTDC transient transmission, distribution commercial
PSS®E transient, steady state generation, transmission commercial
PSS®SINCAL transient, steady state generation, distribution commercial

31

2. State of the Art

Most of the simulation tools in Table 2.1 have been used since many years and have
proven their usefulness. Besides power system analysis capabilities, most of these tools
also offer different interfaces and APIs. Using them, it is possible to control the simulation
and also to exchange data (e.g., import/export of CIM models or database access) [98].

2.4.2 Simulation Methods for Smart Grids

The usage of simulations for validation and evaluation of complex systems has increased
alongside the increased complexity of these systems (of systems). In general, different
reasons may motivate the use of simulation tools and environments instead of studying
the real system [124]:

• Analyzing a real system is too sophisticated/costly

• Tests within a real system are associated with a risk, economical or to infrastruc-
ture/personnel

• The real system is not existing (yet)

• Reproduction of experiments is not possible in the real system

• The real system is only poorly understood or very complex, respectively.

These reasons are not specific for energy systems but many of them also apply to the
smart grid. As described above, traditional power systems simulation is mainly focusing
on power system analysis and load flow calculation. However, classical power system
analysis tools do not deal with the challenge of integrating existing models from other
domains into an overall simulation, yet. For this purpose new solutions are needed.

The smart grid systems are characterized by a wide usage of ICT concepts. The
combination of classic energy system together with ICT system calls for new smart grid
specific simulation concepts. This is also driven by the need to determine the behavior
and impact of new smart grid technologies such as DERs, energy storage solutions
and different control mechanisms. Furthermore, the diversity of simulation approaches
also leads to different categories that can be used to classify these works: “Single-
Simulation Approaches” (i.e., multi-domain simulators) and “Co-Simulation Approaches”
(i.e., coupling of several simulation environments) [124].

Approaches of the first category are characterized by the use of a single simulation tool
to analyze multiple smart grid aspects. Complementary, other tools may be used for pre-
or post-processing of data (e.g., analysis of the results), but the approach itself relies on
a single simulation tool. Especially challenging with this approach is the combination of
the two domains of telecommunication and power systems. However, for this case neither
existing stand-alone power system analysis tools nor simulations tools for communication
network simulation are sufficient to precisely model a fully interconnected power system

32

2.4. Validation of Smart Grid Applications

with an ICT network [88]. Nonetheless, as mature tools exist for both of these domains,
it is a natural approach to couple these tools into so-called co-simulations. It is an
approach where models developed in different tools are jointly simulated through tool
coupling. Each tool analyses one part of a modular problem. Intermediate results are
exchanged between the tools during the simulation in discreet time intervals. Between
these intervals the subsystems are solved independently [13]. From the functional point of
view, a co-simulation is a simulation that is comprised of different models, each simulated
by a different simulation tool.

In Table 2.2, a brief overview of simulation in traditional power systems and smart grids
is provided. Basically, a broader scope and a much higher level of complexity must be
handled by simulations for smart grids. In this case, it is important to not reinvent the
wheel and use existing, established simulation tools and models [124].

Table 2.2: Comparison of simulation in traditional power systems and smart grids [124].

Traditional Power System Smart Grid
monolithic diversified

single system focus multiple system focus
few control systems comprehensive control strategies/mechanisms
simple scenarios complex, large-scale scenarios

2.4.3 Hardware-In-the-Loop Validation

As discussed above real-world tests of new architectures and concepts for smart grid
systems are not always possible or too costly. Pure simulation is one possibility to study
such systems. One sub-domain of simulative validations is to use real-time simulations
[39]. Especially, the real-time simulation approach in combination with real components,
also known as Hardware-In-the-Loop (HIL), is a powerful evaluation method during the
design and development phase. Such a validation setup usually provides a more realistic
test scenario compared to pure software simulation [142]. Furthermore, the advantage of
using a HIL approach has already been proven in various domains from the automotive,
aerospace, and manufacturing domain testing automation and control functions [120, 75].

When the HIL approach is used in the power and energy domain, it is usually divided
into the following two methods: Controller Hardware-In-the-Loop (CHIL) and Power
Hardware-In-the-Loop (PHIL) [142]. CHIL normally refers to a HIL setup whereas the
signals exchanged between the Hardware-under-Test (HuT) and the real-time simulation
systems have a low power rating (i.e., low voltage and current) or through a digital
communication connection. Such a configuration can be used to test and validate
architectures, concepts and algorithms implemented in real controller devices together
with a real-time simulation of a power system [172]. In comparison, the relatively new
PHIL concept, which receives much interest from the power and energy community today,
uses a power amplification device between the real-time simulator and the HuT. As a

33

2. State of the Art

result of this power amplification the signals exchanged between the real-time system
and the HuT have a higher power rating than in conventional HIL. This amplification is
necessary to test power-electronic devices in a virtual environment [167, 4].

Both approaches are of great interest for smart grid application validation. They both
achieve accurate results under realistic conditions with a relatively low financial effort. For
both PHIL and CHIL, there exist complete validation environments provided by various
manufacturers (e.g. National Instruments, Opal-RT, RTDS). They provide interfaces
and computing power to perform HIL tests, often optimized for a certain domain [4].

2.5 Software Engineering Methods

With increasing complexity and an increased use of ICT technologies for smart grid
applications, software engineering methods are gaining more and more interest also for
this domain [41]. This section summarizes technologies from software engineering that
are used or of interest for the work in this thesis. First of all MDE, is described in more
detail. Secondly, a summary of component-based software engineering and how this is
used is presented.

The presented methods below are also topics of research. However, it is not a goal of this
thesis to participate in this research. Instead, these software methods are used as tools in
order to analyze the main research question of this work. In addition, as the presented
methods below are mainly intended to be used for software engineering, they need to be
adapted in order to be used for smart grid application development. For this work, they
are used as concepts and are refined for the current problem/domain (i.e., smart grids).

2.5.1 Model-Driven Engineering

As already mentioned and discussed in Section 2.3.3, increasing system complexity
renders standard general-purpose programming techniques partly inadequate to ensure
systems-wide correctness. One approach to handle this increasing complexity is to use
MDE technologies [128]. In Section 1.2, MDE was already mentioned as a method that
focuses on the development of models and the automatic transformation between these
models. The main idea is to express designs using domain specific models. These provide
abstractions in problem space, rather than abstractions of the solution space, and thus
allows the engineer to solve a problem using concepts from a certain application domain
(e.g., aerospace, biology, energy) [128].

In order to understand the idea MDE, its main concepts need to be explained. Sum-
marizing, these can be divided into two groups: domain-specific modeling and model
transformations. The following two sections describe these two concepts in more detail.
Finally, a section devoted to Model-Driven Architecture (MDA) also summarizes how
this approach builds upon the more general MDE approach.

34

2.5. Software Engineering Methods

Domain-Specific Models and Languages

The first and most central artifact of MDE is the use of models. In this case, models are
representations of a system under study. The system may by virtual or a real-life system,
either existing or intended to exist in the future [121]. They are said to be domain-specific
since they are only used to represent a system from a certain application domain [128].

For such models to be effective, a method is needed for how to define them. For this
purpose, MDE uses so called metamodels. Simply described, a metamodel is itself a
model that can be used to describe a family of models [45]. Or, a metamodel defines a
language for expressing a model [121]. A model, which is expressed using a language
defined by a metamodel, is said to conform to its metamodel. Indeed, if the model is
considered to be the system under study, it must follow that the metamodel must have
its own metamodel. This metamodel is called a meta-metamodel. Of course this kind
of abstraction can be repeated indefinitely. However, in practice four (meta-)modeling
layers are usually used, as seen in Figure 2.10a.

Model instance

Model

Metamodel

Meta-metamodel
Metamodeling

language

Reality

System

Modeling language

Defines

Defines

Represents

Represents

Conforms to

Conforms to

Conforms to

Conforms to

M3

M2

M1

M0

(a)

M3
(MOF)

M2
(UML)

M1
(IEC 61850)

M0
XCBR:LN

LN

Class

Class

Instance of

Instance of

Instance of

(b)

Figure 2.10: Metamodeling with four layers: (a) Metamodeling stack, based on [44]; (b)
Example with a user model of IEC 61850.

The fourth layer meta-metamodel in Figure 2.10a conforms to itself. All other conform
to their (meta-)model in the layer above. Complementary, Figure 2.10b also shows an
example where a domain model of IEC 61850 has been created. With this, an instance of
a LN, called XCBR is created. The LN is an instance of a Class defined by UML [164],
which is one of the most prominent examples of metamodels [45]. In turn, UML conforms
to Meta Object Facility (MOF) [97], which is one of the most well known examples of
meta-metamodels [45].

To help the engineer in creating model instances, the concept of DSLs is often used
[47, 108]. A DSL is a language which is especially defined to describe or solve problems of
a certain domain. Basically, the idea is to allow domain experts to develop applications
using a language with domain-specific notation instead of using general-purpose definitions.

35

2. State of the Art

One advantage of a domain-specific notation is that it increases the understanding of
what a code implies. Consequently, errors are easier to detect, which also helps to improve
the software quality [47]. In principle, either a graphical or a textual notation can be
used. In both cases, the use of a secondary notation, the placement of graphical blocks
or indention of text, is important to support the understanding. Whereas a graphical
notation usually offers a lot of design freedom, text is more constrained and linear [110].

Model Transformations

The second main concept of MDE is the model transformation. Once a model instance
is defined, the main idea is to transform it into other models or source code. A model
transformation can be defined as an automatic generation of one or more target models
from one or more source models. The heart of the model transformation is the transfor-
mation rule, which describes how one or more constructs of the source metamodel can be
transformed into one or more constructs of the target metamodel. A set of transformation
rules can be combined into a transformation specification describing how the source
models are mapped to target models [30]. The basic concept of a model transformation
is seen in Figure 2.11.

Source models

Source metamodel

Transformation
engine

Transformation
specification

Target models

Target metamodel

Conforms to Conforms to

Reads Writes

Refers to Refers to

1

Executes
2

3

Figure 2.11: Basic concept of a model transformation [30].

To execute a transformation, the transformation engine reads the source models. In
the next step it executes the transformation specification. Based on the rules in this
specification, the last step is to create and write artifacts to the target model. Since the
rules of the transformation specification refer to the metamodels the transformation only
works if the source model also conforms to the source metamodel and the target model
conforms to the target metamodel [30].

In general, the transformations can be grouped into model-to-model (M2M) transforma-
tions, model-to-text (M2T) transformations, and text-to-model (T2M) transformations.
For M2M transformations, the result is also a model, whereas for M2T transformations—
also called code generation—the result is plain text or source code. The last category
has text as a source and the target is a model. Thus, all parsing methods are examples
of M2T transformations. There exist numerous frameworks and languages to define
such transformations. Some examples are Query View Transformation (QVT) [82],
ATL Transformation Language (ATL) [78], and Henshin [12] for M2M transformations,
Acceleo [1] and MOF Model to Text (MOFM2T) [101] for M2T transformations, and
xText [36] for T2M transformations. Often multiple transformations are needed before

36

2.5. Software Engineering Methods

an executable solution is achieved. In principle, the path to an executable system can
follow one of two approaches. Either the final result is represented in code (i.e., created
with a model-to-text transformation), or the other option is a model execution engine,
which directly executes the model [100].

Perhaps needless to say, an MDE approach only reaches its full potential when the whole
process is automated. In other words, after the engineer has defined the model instance
the following transformations until the executable solution should be as automatic as
possible. Automation also allows artifacts from models to be synthesized, thus helping to
ensure consistency between implementations and requirements captured by models during
the design phase. Schmidt states that this “automated transformation process is often
referred to as correct-by-construction, as opposed to conventional handcrafted construct-
by-correction software development processes that are tedious and error prone.” [128].

Model-Driven Architecture

Although the MDE method describes in a general way how applications are created using
a model-driven approach, there is still room for interpretation. Over the years different
MDE initiatives have risen, where one of the most prominent is the MDA approach [96],
developed by the Object Management Group (OMG). It has gained interest in computer
science as one possibility to improve the software development process [132].

In summary, the MDA approach follows the general MDE methodology, adding addi-
tional architectural aspect on top. Its approach can be described by three main parts.
The first step is to develop platform-independent application models using a Platform-
Independent Model (PIM). In order to execute this model, it must first be transformed
into a Platform-Specific Model (PSM). The PSM is the second main part of MDA and
describes the application model in terms of a specific execution platform. The final
main concept is the actual transformation of the PIM into the PSM [100]. One of the
main differences compared to standard MDE is the platform-independence of MDA. This
allows the developed application to be installed on different computing platforms using
transformations from one PIM to multiple PSMs [121].

Together with the MDA initiative, OMG also suggest a number of other OMG standards
to be used, namely: MOF for the meta-metamodeling, UML profiles to define DSLs—and
thus also for the implementation of the PIM—and additionally QVT was specified as
transformation language for transformations between PIM and PSM [121].

2.5.2 Component-Based Software Engineering

Component-Based Software Engineering (CBSE) is an established area of software
engineering, which emphasis on decomposition of the system into functional or logical
components. Each component should have well-defined interfaces used for communication
between the components. Compared to object-oriented programming CBSE is considered
to be an even higher level of abstraction. Different definitions of what a software
component is can be found in literature. One of the early and most used definition was

37

2. State of the Art

stated by Szyperski: “A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third party.” [156]. In
Figure 2.12 a common representation of software components is illustrated.

Software
Component

Software
Component

Figure 2.12: A common representation of software components, based on [29].

In order to define and construct software components, three main aspects are usually
considered: functional specification of components, how to establish connections between
components, and how information is exchanged. To describe the functionality of compo-
nents, the interface specification is the most prominent part. An interface defines which
actions/services are provided by a component and thus also accessible to requesters. A
common characterization for an interface is a name and a number of parameters, which
can either be inputs or outputs for the action [58]. One way to describe such interfaces is
by means of an Interface Description Language (IDL). It is used to describe the interfaces
in an implementation independent way (i.e., independent of a specific programming
language). Through a mapping with an implementation language the IDL specification
can be generated into code [29].

Accompanying the software component is often also an engineering process defining the
component lifecycle. This process can be summarized by the following stages: modeling,
implementation, packaging, and deployment [29]. The modeling stage contains the
specification of the aspects described in the paragraph above. In the implementation
stage this specification is produced into code. Sometimes only partial support for this
stage is provided and it is intended that the component is implemented using standard
programming languages. The packaging stage contains the preparation of the component
before it is deployed. The final stage is the deployment of the components. It is
the integration of the developed components into an executable system. In general,
deployment is done at [29]:

• Compilation time: Components are integrated before system execution. Bindings
are achieved through compilation and linking. Typically, the components together
with the execution platform are combined into an executable image.

• Runtime: In this case, components are integrated into an already running system.
This type of deployment is usually more complex since it requires additional
information regarding the deployment of a component. Furthermore, this approach
also requires management capabilities of the execution platform, which handles the
integration of new components.

38

2.6. Model-Driven Engineering for Smart Grid Application Development

There exist multiple different models and frameworks that support CBSE. A number
of common frameworks are among others: Common Object Request Broker Architec-
ture (CORBA) [28], AUTOSAR [49], Open Services Gateway initiative (OSGi) [139],
Java Beans [161], Microsoft Component Object Model (COM) [16], but also the previously
introduced IEC 61131 (see Section 2.3.1) and IEC 61499 (see Section 2.3.2) count as
component models [29].

2.6 Model-Driven Engineering for Smart Grid
Application Development

There are advantages of using MDE technologies, especially for large and complex systems.
This has already been proven in other work [128, 102, 137]. Furthermore, that the smart
grid counts as such a complex system may also be seen as a fact [153, 145, 73]. As a
result, it can be expected that MDE methods will also improve the engineering of smart
grid applications. However, until now the use of MDE for this domain is limited. In
general, the available work can be divided into three groups: architectural approaches,
implementation approaches, and model mappings/transformations.

Previous work that concerns itself with architectural approaches tries to use MDE in order
to improve the design, requirement and engineering process for smart grid applications.
Consequently, these approaches have the most in common with this work. The usage
of a model-based approach to understand, analyze and design smart grid systems was
investigated by Lopes et al. [90]. Based on the NIST framework [53], they structure
the design of smart grid system. Although they propose a model-driven approach,
their solution does not directly focus on the actual implementation, but more on an
understandable presentation of smart grid systems.

The previously mentioned SGAM Toolbox from Dänekas et al. also follows an MDA
approach [31]. However the main attention of this work was more focused on the modeling
process from business concepts to the PIM. How to transform the PIM into a PSM
was not in focus. Nevertheless, thanks to the integrated code generation capabilities
of Enterprise Architect, this option is also available for users of the SGAM Toolbox.
However in this case, the generated code is not optimized for power utility applications
and communication aspects are not covered. Knirsch et al. also based their work on
the SGAM Toolbox [79]. They use the toolbox to implement a model-driven assessment
of privacy issues based on data flows between actors. Secondly, the assessment is used
during design time to study the impact it has on the modeled use case. As with the work
from Dänekas et al., this work also does not present any solution for how to directly
integrate the gained information into a possible implementation.

The second group of related work concerns how MDE can be used to improve the
implementation of certain use cases. An MDE approach was presented by Paulo et
al. already in 2005 [109, 43]. In this work, a meta-modeling architecture for design of
substation automation systems was presented, as well as an object-oriented modeling

39

2. State of the Art

language based on UML. This solution also supports control functions developed using
IEC 61131-3 to be taken into account and allows to include them into the modeling.
Compared to the architectural approaches described above, this work is more focused
on implementation issues. Although code generation is provided to a certain extent this
focuses on functional code. For example, the work does not consider a generic design of
information exchange. Instead, this is assumed to be available, such as pre-configured
IEC 61850 SCL files.

A similar case was presented by Lopez et al. [92], where they combine CIM and IEC 61850
using MDE methods for the implementation of smart substations. Another example
is shown in the work by Yang et al. [174], where a method to automatically generate
IEC 61499 applications based on IEC 61850 configurations is presented. In this case, it is
expected that an IEC 61850 configuration is already available. Based on this, predefined
FBs are generated to create an IEC 61499 application. Both cases are focusing mainly
on the implementation issues. In other words, how to translate the PIM into a PSM.
Compared to the architectural approach described above, these works do not directly
cover the use case design and specification.

Work in the last category focuses on model mappings and transformation between
models. For instance, work on the integration of CIM and IEC 61850 is a common
topic. One example of a mapping between CIM and IEC 61850 is given by Pradeep
et al. [113]. They propose a direct mapping between objects in CIM and IEC 61850.
Another model-driven approach using CIM, IEC 61850 and Companion Specification
for Energy Metering (COSEM) is proposed by Brédillet et al. [17]. Although this work
does not describe any details on the implementation, it shows a concept of including
different standards into a model-based approach. Santodomingo et al. present an ontology
matching approach, which is used to find matches between CIM and IEC 61850 [126]. In
this work, a translation method between CIM configuration files and configuration files
for IEC 61850 is presented. Another approach by McMorran et al. presents a method for
automatic transformation from/to CIM [94]. The idea is to provide a better support for
import/export of CIM models to power system analysis tools from different manufacturers.
With the smart grid engineering process (i.e., with design, implementation, validation,
and deployment) in mind, the work in this last category focuses only on a small part of
the process. Although it provides solutions for specific model transformations, it does
not provide a general solution for smart grid application engineering.

Analyzing the methods and approaches presented above, and in the previous sections,
a number of missing features can be identified. Consequently, these unsolved questions
also serve as a basis for what must be achievable by the rapid engineering methodology
developed in this work. The following list provide a summary of the most important
missing features:

• Holistic engineering: The main drawback of existing approaches up to now is
that non of them cover the whole development process in an integrated manner.

40

2.6. Model-Driven Engineering for Smart Grid Application Development

No approach is available that combines design, implementation, validation, and
deployment in one methodology.

• Model-based: Model-based engineering concepts for smart grids are missing or only
partly available. The existing approaches only cover one part of the development
process are mostly focusing on single aspects.

• Effortless transitions: At the moment there is no method that completely removes
the effort of moving from one engineering step to the next. Methods that provide
automation mostly focuses their efforts on the work within one step.

• System of systems: Current engineering methods are primarily focusing on the
development of single systems and not a system of systems (e.g., one focus on
the development of substation automation). Consequently, there are no methods
available for modeling and design of the overall application.

• Multiple domains: Current approaches are concentrating on handling one domain.
No approach is currently available which integrates domain knowledge from different
domains, such as control, communication, or power system modeling.

• Integration with legacy systems: Many of the current approaches do not offer any
support for the integration of legacy systems, be it functionality or communication
configurations.

• Smart grid domain specific: Approaches that are optimized for smart grid engineer-
ing are only partly available. Many methods can be found for other domains, but
these are often not directly usable for smart grids.

Summarizing, up to now there is no integrated approach available that covers the whole
development process—from use cases design to an executable implementation—using an
MDE approach that can handle the multi-domain aspect of smart grids. Therefore, it is
the purpose of this work to provide the concept for such a solution. Consequently, the
goal of this work is to show that such an holistic approach is possible and thus to fill the
gaps that are still existing for rapid engineering of smart grid applications.

41

CHAPTER 3
Requirements for Smart Grid

Automation

Before a rapid engineering method can be conceptualized, requirements for the engineering
process must be identified. But, since the engineering process can differ very much between
companies, stakeholders, and even users, it is important to first identify for whom the
rapid engineering method is intended. In this thesis, focus will mainly be on the needs of
companies and stakeholders, generally described as business actors.

First of all, this chapter presents a number of business cases that have the purpose of
highlighting different engineering problems—and possible solutions—for different business
actors. For each business case, selected use cases will also be presented. Based on the
business cases and the example use cases, the next step is to identify requirements for
the engineering methodology.

3.1 Selected Business Cases
Three main business cases were chosen. They are based on experience from smart grid
research projects as well as use cases collected from repositories [38]. The main goal of
the business cases is to show the range of engineering problems that stakeholders are
currently faced with for smart grid development. These business cases will be used as a
basis to identify business actors and finally requirements for the engineering methodology.

3.1.1 BC1: Use Case Design

This business case is intended to show the usefulness of structured use case design and
specification. Furthermore, if these specifications can be directly used for implementation,
preferably in an automated way, a much more rapid and cost effective implementation can
be achieved. This business case is mainly motivated by activities in a number of recent

43

3. Requirements for Smart Grid Automation

research projects, such as IntelliGrid [62], DISCERN [127], FP7 ELECTRA IRP [10],
H2020 ERIGrid [153], and IEA ISGAN/SIRFN [134]. In these projects, the design and
also the implementation as well as the validation of smart grid use cases are core topics.

Problem Definition

There is an increasing usage of structured use case description methods (e.g., SGAM [25],
IEC 62559 [69]). These methods have in common that they provide a (textual) template
for specifying use cases. An advantage of using a template is that it simplifies the
comparison of different use cases. Another advantage is that it is easier to find specific
information (e.g., actors, information exchanged) if a structured description is used.
Template based use case description methods are often used to specify high-level use
cases. High-level since they usually do not provide any detail about the implementation
of the use case. Nevertheless these specification are an important step in the engineering
process for smart grid applications.

Structured use case descriptions are an important step in smart grid application engi-
neering. However, until now the information provided in the use case cannot be directly
used as an input for the implementation. Normally the engineer has to read the use case
description and create the implementation based on her/his interpretation of it. This
process is critical for the outcome of the whole engineering process, and it is very prone
to human errors. Furthermore, it is a time consuming process, especially if the use case
description is unclear or vague.

Recommendation

The provision of a methodology for how the information from the use case description
can be directly used in the implementation process would improve the quality of the final
product. Furthermore, if the use case information can be understood by an engineering
tool it can be used to automatically generate the final implementation, or at least parts of
it. In order for this to be possible, the use case information must be available in a machine
readable and formal way. With an automated approach from use case specification to
implementation, the following aspects can be utilized:

• Functionality can be automatically generated based on the functionality descriptions
in the use case specification

• Interfaces to other systems or actors can be automatically created based on the
information flow descriptions of the use case

• Round trip engineering can be utilized, which will allow automatic changes to the
use case descriptions in case of later changes in the implementation.

44

3.1. Selected Business Cases

Justification and Anticipated Outcomes

With the proposed automatic generation of the implementation from the use case
description a number of advantages is achieved. First of all, it is anticipated that
the final implementation will be less prone to errors. Due to misunderstandings or
ambiguous information, the resulting realization may have missing or erroneous features.
By providing a formal method for use case specification, where the information is machine
readable, the use case information will be more intelligible. Furthermore, with an
automated generation of implementation parts, human errors can be decreased. Often
information that is needed for a correct implementation may not be available in the use
case specification. In other cases, the engineer may misinterpret the use case information
and thus the resulting solution may not be that what was ordered.

It is also expected that the time to market can be significantly reduced. With the
traditional approach, the same work is often done multiple times: first during the use
case design and later again during the implementation phase. By providing an automated
generation of much of the implementation, this time can be decreased. Furthermore, due
to the anticipated lower amount of errors, less time will be spent with error correction.

In total, due to fewer errors and a shorter time to market, lower costs are expected.

Example Use Case

This use case is an example of how a template based use case description methodology
can be used. It was collected from the EPRI Use Case Repository [38] and describes a
central volt-VAr controller, using the IEC 62559 template [52]. The use case is typical for
distribution network operation, where a central system manages and controls all Volt-VAr
Controller (VVC) devices in a regional distribution network. The use case description is
available in Appendix B.1.

The idea with this example is to show how use cases are described according to the
IEC 62599 use case template. From this, it will become clear that only providing a
structured approach is not enough in order to generate implementation code. Still, the
benefit with a structured template that also allows the user a certain amount of freedom
must not be lost with the automated solution proposed above.

Relevance for the Engineering Methodology

High-level use case descriptions are an important step in smart grid application engineering.
This is often the first real attempt at specifying the use case functionality in a structured
way. Especially the IEC 62559 use case template and the SGAM approach have proven
their usefulness in this regard. The more complex the use case becomes the greater the
benefit from a high-level description. Consequently, formal design and specification of
use cases, compatible with IEC 62559 and SGAM, is one important requirement for the
engineering method presented in this thesis.

45

3. Requirements for Smart Grid Automation

Furthermore, as stated by this business case the possibility to automatically generate
implementation artifacts directly from the specification is a big advantage. Therefore,
the rapid engineering method should provide such possibilities. With a formal method
for specification, combined with rules stating how to generate implementation artifacts,
the basis for an automatic generation is provided.

This business case is relevant for many smart grid stakeholders. The more comprehensive
the use case, especially in terms of information flows between different actors, the more
useful is a detailed use case description. Thus, utility operators are typical owners of
this business case. But, the automatic engineering process may indeed be interesting for
others as well, including system integrators, device vendors, or plant operators.

3.1.2 BC2: Utility Operator Control Implementation

The goal of the project “DG DemoNet—Smart LV Grid” [19] was to find solutions for
an active network operation for low voltage networks. Two of the main goals for the
project were to find monitoring and control approaches in order to facilitate the system
integration of DERs and electric mobility. The objective was to integrate these with
acceptable costs regarding investment, maintenance and operation. Both solutions for
central and distributed control concepts were tested in three pilot regions in Austria
withing the project [81].

This project is a typical example of a control and grid support application where a utility
operator has to integrate and combine different resources, both internal and external. The
power system is a distributed system, both from a geographical point of view, but also
from a stakeholder point of view. Thus, since the utility operator cannot control what
products are used by the other stakeholders, the interoperability between components
from different vendors becomes even more important.

Problem Definition

The changes towards a smart grid requires the DSO to constantly update its grid
support functions. During the development of control and grid support applications for
distribution networks there is often the need to include resources or ancillary services
from grid components. This can be components owned by the DSO, especially intended
for grid support, or by other stakeholders (e.g., a PV inverter). Even for the components
owned by the DSO, the engineering and configuration can be a challenge, especially
due to the geographical dispersion. But, even more challenging is the engineering and
configuration of components owned by other stakeholders. For this business case, two
possibilities are studied: functional and communication configurations.

Through the introduction of ancillary services provided by DERs, it has also become
necessary to provide configuration possibilities for these services. The number of available
ancillary services has increased in the last years and it is not always possible to use
all at the same time. For example, setting the power factor in parallel with the active
and reactive power of an inverter will very likely lead to conflicts. Therefore it must

46

3.1. Selected Business Cases

be possible for a DSO to configure what ancillary services should be active at a certain
moment. However, this requires the DSO to define which services are available by the
DER and how to configure them.

One aspect that is becoming more and more complex is the configuration of communication
interfaces and information flows. With an increasing number of distributed components
that need to be controlled and monitored there is also an increasing need for unified
configuration possibilities. Software Defined Networking (SDN) is one approach to handle
switch configurations in a centralized way. But, this only solves routing on a lower layer
and is not data dependent. However, with the increasing introduction of comprehensive
communication protocols and information models (e.g., IEC 61850, OPC UA) it is now
also possible to configure what information is exchanged between components.

Due to the high number of different stakeholders, combined with an even higher number
of different component vendors, the process for communication configuration is complex.
Furthermore, the amount of different protocols that need to be supported makes the
situation even more complex. At the moment, there is no unified solution to handle
communication configuration. Neither is there a solution for configuration of different
communication protocols, nor a solution that is completely vendor independent. As a
result, a very time consuming and costly configuration process is currently needed.

Recommendation

It is the recommendation to provide a process and methodology for the DSO that unifies
the functional and the communication configuration. This should also be indifferent of
the communication protocol or the vendor. The process should allow representation
of available services and communication capabilities provided by DERs. It must also
support the DSO to change these in order to fit the current application. In order to
effectively help the engineer, the process should be automated.

In IEC 61850, a process is defined for the configuration of IEDs. The process is shown in
Figure 3.1 and is described by a number of steps: (1) a vendor provides a template with
the data model and general capabilities of the IED; (2) the template is imported by the
system configurator where instances are created, containing system and information flow
specifications; (3) the IED specification extended with the system information is provided
to the IED configurator; (4) a final version of the IED configuration is downloaded to
the IED; (5) it is also possible for the system configurator to directly obtain the current
IED instance from the IED configurator [66].

The process in Figure 3.1 was only intended for IEC 61850, but can also be extended
for functionality and other communication protocols. In that case, templates from
different functions and protocols, from different vendors, must be supported. The system
configuration must also be general enough to handle different information models. The
following points summarize the main solution:

• A general data model should be created that supports representation of services,

47

3. Requirements for Smart Grid Automation

System Configuration

IED
Template

Configured
IED

Instantiated
IED

System Configurator

IED Configurator

IED1 IED2

1

2

3

5

4 IED

Figure 3.1: Configuration and modification process for IEDs according to IEC 61850 [66].

different protocols, and information models (covers step (2) and the system config-
uration in Figure 3.1).

• It should be possible to import templates of functionality or protocol descriptions
from different vendors, and to integrate them with the system configuration (steps
(1) and (5) in Figure 3.1).

• Based on a general system configuration, it should be possible to create configura-
tions for specific IEDs or DERs, configuring their functionality and communication
interfaces (step (3) in Figure 3.1).

Step (4) is considered as proprietary by the different vendors and is not covered by the
recommendation.

Justification and Anticipated Outcomes

With the proposed solution, it is expected that the process for functional and communi-
cation configuration is simplified. This hopefully also means that less time is needed and
that the cost for configuration can be reduced. In general, a number of advantages can be
achieved. As with BC1, it can also be expected that errors are reduced. By automating
much of the process in Figure 3.1, there is less risk that human errors are introduced.

Another advantage is that switching between protocols will be much simpler. With an
independent data model used in the system configuration, the information description is
also independent of the actual protocol that should be used. Consequently, the actual
protocol that should be used is not decided until step (3) in Figure 3.1. This also means
that if another protocol should be used only step (3) needs to be repeated.

48

3.1. Selected Business Cases

Example Use Case

This section gives an example of an implementation use case that would benefit from the
proposed solution. In Appendix B.2, the example is also provided as a use case description
according to IEC 62559. The use case is taken from the project “DG DemoNet—Smart
LV Grid” [19], where it was the goal to find solutions for an active network operation for
low voltage networks. These solutions were mainly focusing on enhancing the voltage
quality in the grid, with the help of DERs and electric vehicles. In the end several control
approaches were suggested. Also within the project, the control approaches were tested
in three pilot regions in Austria [81].

The developed control concepts follow a step-by-step approach. In total, four stages
were designed for the control concept, and implemented as a low voltage grid controller.
The controller is an industrial Personal Computer (PC) and is located in the secondary
substation, where it can access voltage measurements from smart meters in the field.
The four control stages can be summarized as follows [81]:

• Stage 1 - Local Control: In this mode, the local actuators only act on local measure-
ments, and there is no communication between components. The main actuator is
the MV/LV transformer equipped with an on-load-tap-changer. Additionally, PV
inverters and EV charging stations are controlling the voltage locally using droop
curves for reactive, Q(U), and active power, P(U).

• Stage 2 - Distributed Control: Here, a measurement and communication infras-
tructure is used. Voltage values from critical nodes in the grid are measured and
transmitted to the central controller. The controller uses this information to find
an optimal tap position of the transformer. Additionally, the PV inverters and
charging stations from Stage 1 are still in droop control mode.

• Stage 3 - Coordinated Control: Additionally to Stage 1 and Stage 2 the coordinated
control also updates the predefined Q(U) droop curves of the PV inverters and the
active power droop curves charging stations. These updates are sent via broadcasts
messages from the central controller.

• Stage 4 - Selective Coordinated Control: This stage is essentially the same as Stage
3 with one exception: updates of the droop curves are only sent to specific inverters
and charging stations instead of being broadcasted to all remote units.

For the implementation of the control concept, a number of adaptations to the original
system were needed. Functionality was added at substation level through the developed
low voltage controller. Also, the involved PV inverters were extended with new function-
ality to implement the necessary droop curves. The involved components were provided
with necessary communication interfaces and were connected with each other through a
PLC network. Figure 3.2 shows the overall ICT structure of the low voltage grid control
concept. It also shows the communication protocols that were used [19].

49

3. Requirements for Smart Grid Automation

Remote Components

SLVGC
MV/LV Transformer

OLTC

Data Concentrator

IE
C

 6
0

8
7

0
-5

-1
0

4

Modbus

Web Interface
Webservice

Smart Meter

Substation

Smart Meter

kWh0123456

0123456789

Smart Meter

kWh0123456

0123456789

Smart Meter

kWh0123456

0123456789

Figure 3.2: Hardware setup of the low voltage grid control concept. Adapted from [19].

At substation level two main components are seen: a data concentrator and the industrial
PC running the Smart Low Voltage Grid Controller (SLVGC). The data concentrator
is responsible for the communication to the outside world. This includes the MV/LV
transformer, smart meters, and the remote inverters and charging stations. From the
data concentrator the controller receives the state of the grid through a number of
measurements. Part of the project was the implementation of the SLVGC and the
extensions to the PV inverters [19], indicated by the PV array in Figure 3.2.

Relevance for the Engineering Methodology

The increasing number of DERs, and the possibility to use their ancillary services for
grid support, are resulting in more and more distributed control applications. As shown
by this business case the possibility to configure functionality and communication of
DERs and IEDs can highly improve the implementation process for complex control and
grid support applications. Consequently, this is also something that must be supported
by the rapid engineering methodology developed in this thesis.

The use case is one example that would benefit from an automated configuration possibility.
When multiple components are used together with an ICT network, there will always
be a need for configuration. With the proposed solution, this can be done platform
independently. This allows the engineers to put more focus on the control functionality.

This business case is mainly applicable for utility operators and system integrators since
they are often commissioned by utility operators for this kind of projects. Furthermore,
on a lower scale it may also be of interest for plant operators, especially for larger plants
or virtual power plants. They are also dependent on ICT systems and ancillary services
must be divided over multiple DERs.

50

3.1. Selected Business Cases

3.1.3 BC3: Ancillary Services from Component Manufacturers

The increase of renewable energies and Distributed Generations (DGs) in recent years
creates new problems and challenges for grid operators. As a consequence, ancillary
services for both medium and low-voltage networks have received a higher focus in
projects as well as national grid interconnection codes [111], [157]. Furthermore, as seen
in a number of research projects and in national regulations, direct market participation
by smaller DERs is increasing [77, 99, 119].

This business case highlights some of the challenges encountered by component manufac-
turers during the development of extended services of their components. The business
case is motivated by the OpenNES project [118], where it was one of the goals to improve
the development process for DER manufacturers.

Problem Definition

Since PV generation is almost exclusively connected at distribution level, and most
of it at low-voltage level, local problems, and in particular voltage rise problems, are
increasingly experienced in rural areas of several countries. Also in this case, ancillary
services (local voltage control) can help maintain the quality of supply, and also increase
the network hosting capacity [141]. Many existing grid codes already require DERs to be
able to provide ancillary services (e.g., for voltage control purposes) [157, 23, 114, 160].

Even if the main types of ancillary services are generally specified, many grid codes still
do not specify any particular requirement on the implementation of these services (e.g.,
the dynamic response of the controls [114, 160]). In other cases, the specifications are
more detailed, but still written in a generic way. For example the German guideline
[157] as well as the Italian standard [23] both have rather general requirements on the
implementation of the local voltage control support. The Italian standard requires the
maximum response time to be lower than 10 s and the German guideline states a variable
time between 10 s and 1 min, specified by the grid operator. The varying specifications
between different countries increase the complexity of developing ancillary services. As
a consequence two different implementations may still be required although the same
ancillary service is specified by two different countries. This problem is also increasing,
since the required ancillary services may change rapidly, due to unforeseen problems.

One such unforeseen problem is the so-called “50.2 Hz problem” in Germany. It was caused
by the automatic disconnection of PV systems in case of non-severe over-frequencies.
But with a PV generation capacity exceeding 30 GW, the coincident disconnection of all
PV systems only made the situation worse. Hence, the system safety was not guaranteed
anymore and corrective actions had to be taken [50]. The solution was to change how
inverter based generation systems react to over-frequencies in the applicable grid code.
Instead of directly disconnecting, the active power is linearly curtailed when the frequency
rises above 50.2 Hz [111]. The 50.2 Hz problem even required already installed inverters
to be retrofitted. This can be a very costly operation if no remote access and deployment
possibilities exist.

51

3. Requirements for Smart Grid Automation

The energy market is also changing, as a result of the increasing amount of DERs [77, 99].
Since 2014, all DERs in Germany with a peak power production above 100 kW must
participate directly in the energy market [119]. Although not mandatory, this possibility
also exists for smaller power. This opens up new possibilities for virtual power plants and
other services. However, it also introduces new technological challenges for manufacturers,
since they need to provide the necessary ICT interfaces to enable the market participation.
Furthermore, if the new services are not part of their core business model it increases
the willingness of manufacturers to use third-party service providers. But, for this to be
possible it must also be allowed by the used engineering process.

Recommendation

Based on the formal specification method that was recommended in BC1, a number
of extensions can be made in order to improve the engineering method of ancillary
services. The different country specifications often have the same ancillary services,
but the implementation may vary. Therefore, it should be possible to create template
functionality that can be adapted for a certain use case. Many ancillary services follow
the same pattern. For example, a linear relationship between input and output (e.g.,
reactive power output based on the voltage input, or active power output based on the
frequency input). Such functions can all use the same template.

It is also proposed that functionality is developed independently of the execution platform.
Since various countries may require different hardware platforms the same ancillary service
may need to run on different platforms. Platform independent development increases the
usability since it is not necessary to re-implement a function only because the platform
changes. The 50.2 Hz problem also shows that remote deployment of functionality is
important. Platform independent function development is a prerequisite for this, but the
engineering method must also allow that functions are installed to remote DERs.

It is also recommended that the engineering method allows simple integration of function-
ality developed by third-party service providers. This allows the component manufacturers
to outsource the development of services where they do not have the time or enough
in-house knowledge.

Justification and Anticipated Outcomes

As with BC1 and BC2, it is also for this business case anticipated that the proposed
solution will reduce the engineering effort. The implementation will be simpler and more
structured. This will reduce the risk for human errors and decrease the time needed for
the implementation.

Often new grid code requirements only apply to new installations. Thus, currently
installed systems and components are not affected. However, when critical changes are
made (as with the 50.2Hz problem in Germany [50]), even existing systems may need to
be retrofitted. With the proposed solution, manufacturers will support the possibility to
remotely change these installed systems, through updates or reconfiguration.

52

3.1. Selected Business Cases

The direct market participation is one case where additional services are added to a
DER component. In principle, the connection to a market interface can be implemented
directly by the DER manufacturer. However as the number of services increases, so will
also the complexity and needed development resources from the manufacturer. Instead
of doing all development in-house, manufacturers can outsource the implementation of
certain services (e.g., the direct market participation).

Generally, the engineering solutions proposed in these three business cases are all intended
to reduce the human efforts and increase the quality of the implementation. By reducing
the manual effort, time can be saved, which also means reduction of the engineering
costs. The same applies to implementation quality. Artifacts that are created through
an automatic generation process are often referred to as “correct-by-construction”. This
can be compared to the traditional development process where testing is often tedious
and error prone [128].

Example Use Case

As an example to show the development of ancillary services, the German MV guidelines
[157] specify how power plants should be able to provide reactive power for grid support.
The guideline states that with an active power output, either a fixed reactive power
provision is used or the network operator can adjust the target value through remote
control. The reactive power setting can be adjusted through one of the following:

• Fixed active power factor cosφ

• Active power factor cosφ(P)

• Fixed reactive power in MVAr

• Reactive power/voltage characteristic Q(U)

Figure 3.3 shows an example of a Q(U) characteristics. The guideline also states that
for the Q(U) characteristics it should be possible for the network operator to adjust
the reaction time between 10 s and 1 min. Furthermore, to avoid voltage jumps, it is
advisable to choose a characteristic with continuous profile and limited gradient. In
Appendix B.3, a use case description according to IEC 62559 is provided. It describes
the functionality of a Q(U) control for a DER.

Relevance for the Engineering Methodology

The engineering required in order to comply with grid codes from different countries is
for many manufacturers time consuming and challenging. Although many grid codes
have roughly the same requirements there are still many exceptions and differences. First
of all, not all grid codes require the same ancillary services to be implemented. Secondly,
even if the same ancillary service is required it may still be defined differently. This

53

3. Requirements for Smart Grid Automation

Qmax

0

Qmin

0.96 10.98 1.02 1.040.94 0.94

Voltage (U) [p.u.]

R
ea

ct
iv

e
P

o
w

er
 [

V
A

r]

Figure 3.3: Example of a Q(U) characteristic.

means that the rapid engineering methodology must be flexible enough to handle different
requirements depending on the country of sale.

Furthermore, the proposed solution of this business case leads to a number of requirements
regarding the implementation of functionality. These must be supported by the rapid
engineering method:

• Template functionality or configurable software components should be supported.

• Platform independent development of functions should be supported.

• Deployment of functionality to a remote component should be supported without
the need for an engineer on-site.

• Integration of third-party services should be supported, to outsource the develop-
ment of single functions to third-party service providers.

This business case was developed with a component manufacturer in mind, especially
a DER or an inverter manufacturer. However, the proposed solution would certainly
benefit other stakeholders as well (e.g., utilty operators, system integrators, third-party
service providers).

3.2 Business Actors and Requirements

Based on the business cases from Section 3.1, actors and requirements can be identified.
Together with the overall research question and the goals of this thesis from Section 1.2
they formulate the main foundations for this work.

54

3.2. Business Actors and Requirements

3.2.1 Business Actors and Stakeholders

From the business cases a number of actors can be identified. These are stakeholders that
have an economical or practical interest in the engineering of smart grid applications. Not
all of them are actors in the sense that they interact directly with the rapid engineering
methodology, but all of them have an interest in the outcome. Table 3.1 shows the
identified actors without any specific order.

Table 3.1: Actors and stakeholders involved in the rapid engineering methodology.

Actor name and description
A1 Utility Operator

The operator of the power grid. This can for example by either the DSO or
the Transmission System Operator (TSO). A common activity for the utility
operator is the specification of a certain use case or functionality before
implementation, see BC1. But the utility operator may also be directly
involved in implementation and validation of applications, as in BC2.

A2 System Integrator
The system integrator delivers and integrates a whole or part of a system
(e.g., a substation) to a client, which is often a utility operator. The
system integrator may have their own components or they are purchased
from another manufacturer/device vendor. A common setup is that the
utility operator specifies a certain application (according to BC1) that is
implemented by the system integrator (e.g., BC2).

A3 Manufacturer/Device Vendor
The manufacturer of grid components. This actor must have the possibility
to implement functionality on all security levels of a component (i.e., low-
level as well as high-level functionality). This actor is active in both BC2
and BC3.

A4 Third-Party Service Provider
The third-party service provider may be interested in implementing services
for smart grid components. One example is the implementation of direct
marketing services for smart DERs, see BC3.

A5 Plant Operator
This actor is the operator of a power plant or a flexible load (e.g., a building
or an energy storage unit). This could for example be a virtual power plant
operator who needs to optimize the usage of the involved plants. It may
also be an aggregator for ancillary services or flexibility. The plant operator
may also be interested in implementing additional services for their plants,
see BC3, or overall optimization algorithms, see BC2.

55

3. Requirements for Smart Grid Automation

A6 Design Engineer
The purpose of the design engineer is to develop conceptual designs and
specifications that ensure the correct functionality of a product. Further-
more, this is often done in order to meet customer and company needs. In
some cases the design engineer also is responsible for prototyping. This
means that a model or prototype of a product is created and tested.

A7 Implementation Engineer
Based on the specifications and the initial design made by the design
engineer, the implementation engineer is responsible for creating a functional
implementation of the product. For software products, this would imply
creating a functional copy of the software for a certain platform. The
implementation engineer is involved in the development of use case for BC2
and BC3.

A8 Test Engineer
Once an implementation is available the test engineer is responsible for
evaluating if the product fulfills its requirements. This can partly be done
through software tests, but in the case of smart grid applications with
interacting actors also simulative and laboratory studies should be made.
With these methods, it is also possible to study the behavior of the product
interacting with other components. The test engineer is involved in the
testing of developed use case for BC2 and BC3.

A9 Deployment Engineer
The deployment engineer takes over after the product has been successfully
validated. It is her/his responsibility to coordinate all activities related to
ensuring the correct deployment and proper installation of the developed
product. This must be done in cooperation with the product owner. For
example, in BC2 the product owner would be the DSO.

3.2.2 Requirements

It is the intention that the rapid engineering method should support the proposed
solutions presented in the business cases in Section 3.1. Therefore, these are used as a
basis for identifying requirements for the rapid engineering methodology. In Table 3.2,
the result of this identification is presented.

The requirements are inspired by the business cases, but are also more general compared
to the recommendations presented in the business cases. The rapid engineering method
should provide solutions for the business cases, but it should also be more than that.
Furthermore, a number of requirements are identified that are more related to the goals
of this thesis. Thus, in total, the requirements in Table 3.2 provide a framework, with
boundaries, which in the end will contain the rapid engineering methodology.

Each requirement in Table 3.2 is assigned a priority. This is not directly related to the

56

3.2. Business Actors and Requirements

priority of the requirement for the stakeholders. Even if a requirement has a low priority
in Table 3.2 it does not mean that all of the stakeholders also do not find it important.
Instead, the priority is intended to prioritize the work in this thesis. Thus, during the
development of the rapid engineering methodology, more focus is put on requirements
with a higher priority.

Table 3.2: Requirements for the rapid engineering process.

Requirement name and description
R1 Design and Specification Priority high

The specification and use case design phase is the first attempt at defining the
behavior of an application. During this phase, user specifications are collected
and formalized. Compatibility with current use case modeling techniques (e.g.,
SGAM, IEC 62559) should be assured. Furthermore, specifications for different
parts will be needed (e.g., functionality, ICT specifications, information flows).
With a formal specification and design method it can be used as a starting
point for an automated engineering approach.

R2 Implementation Priority high
This is an obvious step in an engineering methodology. It covers the imple-
mentation of functionality (e.g., control algorithms, automation functions, data
processing) as well as the creation of different configurations (e.g., ICT setups,
information flow configurations). During the implementation of a function,
the algorithm of the function is defined in a formal software specification (e.g.,
UML, IEC 61499).

R3 Testing and Validation Priority high
Any implemented functionality and configurations should be tested and validated.
This can be either through simulative or laboratory tests. With a simulative
validation, a system is tested in a virtual environment. This is a common
approach in cases where the real system cannot be used directly, either because
it can cause damage (e.g., to persons, equipment, or cost) or because the system
is not available. In a laboratory validation, the implemented application or
parts of it are tested in a controlled environment, where the final system can
be emulated. This is usually a power system laboratory where the necessary
components are available to emulate the needed connections for the application
(e.g., AC/DC connections, ICT connections).

57

3. Requirements for Smart Grid Automation

R4 Release and Deployment Priority high
This requirement concerns the process of making the implemented application
ready for use with a certain system (i.e., power system and ICT system). This
means that any functions and configurations must be prepared for their host
platform. To operate the implemented application, it must be deployed to
the field. This includes installation of any new system hardware components,
software functions, and configuration of the communication and ICT system. In
order to reduce the down-time of the system, it is important that the deployment
is as rapid as possible.

R5 Seamlessness Priority high
During the whole rapid engineering process the transition between one engi-
neering step to another must be as seamless as possible. Consequently, the best
possible transition is automatic and does not require any user input. Still the
methodology is not allowed to take away the control from the user and it must
always be possible for the user to interact with the process.

R6 Rapidness and Effort Priority high
Smart grid solutions are becoming more and more complex, which results in
increasing engineering efforts and costs. Therefore, it is important to improve
the rapidness of traditional engineering methods. With reduced development
effort, the time between specification and deployment of smart grid applications
is also reduced. This will hopefully also increase the acceptance for new smart
grid solutions, since the investment risk decreases.

R7 Correctness Priority high
Due to the multidisciplinary character of smart grid applications, this also
requires the engineer to have an expert knowledge in each discipline. This
is often not the case, which increases the risk of human errors. Therefore,
one requirement for the rapid engineering methodology is correctness of the
implemented applications.

R8 Domain Expertise Priority medium
The rapid engineering methodology should allow experts from different domains
(e.g., control, communication, power system) to participate in the modeling
process. This means that notation and syntax should be kept, as far as possible,
for each of these domains.

R9 Handling Legacy Systems Priority medium
Grid operators expect a long service life of all components in their systems.
Since not all components are changed at the same time it must be possible to
handle already existing legacy systems. This means that the rapid engineering
methodology must be able to integrate these in terms of existing configuration
and functions.

58

3.2. Business Actors and Requirements

R10 Interoperability Priority low
Interoperability is a critical issue in smart grid applications. This must be
assured on all levels, from specifications over implementation, to deployment
and finally during operation. Also components from different manufacturers
must be handled, which requires a manufacturer independent method.

R11 Changing Requirements Priority low
The engineering process must be flexible enough to handle changing requirements
on the developed application. Often functional as well as non functional
requirements change during the development process. Therefore, at any time
during the engineering process, it must be possible to consider new requirements.

59

CHAPTER 4
Rapid Engineering Methodology

The usage of proper automation methods and corresponding tools can offer a huge
optimization potential for the overall engineering process. A starting point for this im-
provement is detailed use case and requirements engineering. This results in a structured
description of use cases. However, since this information is still in a non-formal repre-
sentation, it cannot be adequately utilized in a computerized and automated approach.
By collecting the use case information in a formal model this can be used for direct
automatic code generation. But, up to now, there is no integrated approach available
that covers the whole development process for smart grid automation applications using
a MDE approach which can handle the multi-domain aspect of smart grids.

This work addresses these needs with a rapid engineering methodology. The goal with
the methodology is to cover the overall development process—from use case design to
deployment—for the development of ICT, control, and automation functions used in
smart grid and power utility automation applications. Based on this goal it is clear
that the methodology must cover a wide range of engineering activities. On one side,
it should be possible to handle high-level use case design (e.g., according to SGAM or
IEC 62559). On the other hand, it must also be possible to define functionality detailed
enough that it can be executed on field devices. An overview of the rapid engineering
process is illustrated in Figure 4.1.

Design Implementation Deployment OperationValidation

Use case design
and specification

Implementation of
target configurations

Simulative and/or
laboratory validation

Deployment to
field components

Figure 4.1: Overview of the rapid engineering process.

The rapid engineering process in this thesis considers the four main development phases:

61

4. Rapid Engineering Methodology

design, implementation, validation, and deployment. These phases are followed by the
operation phase, where all activities related to the operation of the application are
summarized. How the operation phase is carried out is not part of this thesis. The
first four phases of the engineering process are encouraged by the research question in
Section 1.2. Furthermore, they are also stated in the first four requirements in Table 3.2
(i.e., R1-Design and Specification, R2-Implementation, R3-Testing and Validation, and
R4-Release and Deployment). These requirements are directly related to the different
development phases of the engineering and deployment process.

The methodology presented in this work focuses on the design and implementation process
of smart grid use cases. The intention is that the methodology should be usable for as
many of the stakeholders in Table 3.1 as possible. However, since each stakeholder will
also have their own special requests on the engineering method, it will not be possible to
cover every single requirement within this work. In order to limit the work, the following
non-goals are defined:

• It is not intended to use the methodology to model more than one use case at
the time. If this should be supported, special considerations are needed regarding
scalability and concurrency. Instead this is seen as future work.

• The methodology is, at the moment, not intended for use case requirements capture.
It is assumed that a requirements engineering has been done before the design of
the use case.

• It is not intended to use the method solely for the documentation of existing
systems (e.g., a whole utility system with existing power, ICT, and automation
infrastructure). Although it should be possible to model existing parts of a system
it is the main purpose of the methodology to implement new functionality.

• The operation phase, as seen in Figure 4.1, is not considered in the developed
engineering methodology. Instead the engineering process in this thesis ends with
the deployment of the developed application.

• Although it would further automate the development process, automatic execution
of validation phase in Figure 4.1 is not covered by the engineering methodology.
The rapid engineering process provides automated support for the transitions to
and from the validation phase.

• It is not a goal of this thesis to contribute to the research of software engineering
methods. Instead, these methods are only used as tools in order to analyze the
main research question of this work.

Different parts of the rapid engineering methodology have already been published in
different publications. An initial concept as well as a discussion about the required
modeling methods were shown in [5]. The main concept which is presented in this

62

4.1. Rapid Engineering Concept

work was originally published in [117]. The rapid engineering methodology also contains
aspects from other publications, especially [3, 9, 6, 8], and [116].

4.1 Rapid Engineering Concept

There are of course different paths to achieve the same goal. However, some reference
points can be defined. Current description methodologies like SGAM and IEC 62559
represent a state-of-the-art for use case designs today. These approaches are also
appropriate as starting point for the proposed rapid engineering methodology. At the
end of the path executable and deployable code should be available for field automation
devices. The concept for the rapid engineering approach was originally published in [117],
and serves as a basis for the concept below.

Based on the main research question for this thesis, and the requirements in Table 3.2,
the initial engineering approach, as seen in Figure 4.1, needs to be further defined. As
already discussed in Section 1.2, software engineering concepts are introduced in order to
automate the process from design to deployment. In Figure 4.2, a conceptual overview of
the rapid engineering methodology is shown.

Use case design and
specification

Generated target
configurations

Simulative validation
Deployment to

field components

y = f(x){…}

User defined
configurations

z = f(y)

y = 5

Laboratory validation

Y: 005 V

ü

ü Field Devices

Design Implementation DeploymentValidation

Specs.Specs.Specs.

Figure 4.2: Conceptual view of the rapid engineering methodology.

The rapid engineering method should assist the user, and especially provide automated
transitions between the different development phases. It should also support the user
within the phases, for example, through automated generation of target configurations
or automated deployment. Generally, it must also be possible to seamlessly move back
and forth between the development phases. Subsequent changes in the design should not
result in a complete redevelopment of the implementation phase. This can be compared
with R11-Changing Requirements.

The development starts with the design. For this purpose, current use case description
methods should be used as a reference. This is a phase that requires a lot of manual
input. For example, for each layer in SGAM, specifications and designs are made by
the user. This input is crucial since it makes up the main input for the implementation

63

4. Rapid Engineering Methodology

phase. In order to support an automated usage of the use case information, a formal and
machine readable design method should be developed.

The second phase is the implementation. In this phase, target configurations are created
based on the specification in the use case design. Two types of target configurations
are in focus of this thesis: functions and communication configurations. The functions
are algorithms or logic that will later be converted into executable code. Functions can
either be created manually by the user or using an automated process (e.g., based on
standards and other documented functions [66]). Based on the implemented functions,
platform specific code is generated. In order to generate function code from the use case
descriptions a formal implementation language must be provided. The communication
configurations are used to configure the communication setup needed for the developed
application. This includes configuration of the information sent between functions, but
can also include low-level configuration of the communication network (e.g., assignment
of the source and destination addresses).

In the validation phase, the generated target configurations are tested. For simulative
validations, the target platform would be a simulation platform. In this case, the
corresponding simulation model would be generated. A laboratory validation may also be
a mixture of simulations and real system validations. The focus of this thesis is mainly
to support the transition between the implementation and the validation phases. The
actual validation is made by the user.

The last phase is the deployment of the generated, and validated, target configurations to
field devices. This includes transferring the generated and compiled code to the devices
and start the application. The goal is to provide the user with as much support as
possible, and preferably as much of the deployment as possible should be automated.

In the following sections, the concept of the rapid engineering methodology is further
elaborated. It starts with a discussion about needed models and modeling techniques.
Then, different possibilities to use existing techniques for the different phases of the
rapid engineering method are discussed. Thereafter, the development phases shown in
Figure 4.2 are described in detail.

4.2 Needed Modeling and Design Methods

The concept for the rapid engineering methodology presented above should be further
elaborated based on the requirements in Table 3.2. The general approach in this thesis
is to try to reuse existing methods as far as possible, before inventing something new.
There already exists a multitude of modeling, design, development, and engineering
methodologies that are being used for other domains (e.g., software engineering, factory
automation, automotive, aviation). Furthermore, as already mentioned in Section 1.2
models, and the extraction/insertion of information, are key components for the rapid
engineering method. Therefore, this chapter discusses how existing methods and models

64

4.2. Needed Modeling and Design Methods

from the smart grid domain can be applied to the different phases of the rapid engineering
method. The discussion below is mainly based on [5, 8, 9].

As already discussed, the current state of practice provides a limited support for formal
and structured specification and design of smart grid applications. Until now, the need for
such descriptions was not very high since the number of complex applications was rather
limited. However, with the introduction of advanced ICT-based automation systems
this is changing. The electric energy system is moving towards a Cyber-Physical Energy
System (CPES).

With the transition towards a CPES, power system engineers are confronted with
multidisciplinary problems. In the past, it was enough for the engineer to be an expert
in the power system domain. Today, the engineers must also be able to handle ICT,
automation and control topics. In order to support the development of such applications,
it is important to allow experts from different domains to participate in the engineering
process, see requirement R8-Domain Expertise. To support this, the rapid engineering
method in this thesis uses the concept of Domain Models (DMs). For each domain, the
DM should allow a domain-specific engineering by experts in this domain. Finally, it is
the goal with the rapid engineering methodology that the DMs can be combined into
one holistic model.

This thesis focuses on DMs from the power system, communication, automation and
control domains, as well as a corresponding use case design method. It is important that
the DMs are as platform independent as possible. This to ensure that they are not limited
to a certain platform. The following sections study already defined models and standards
used for use case design and in the power and energy, ICT and automation domains. By
ensuring that relevant standards and models are used, not only R8-Domain Expertise,
but also requirement R10-Interoperability can be largely satisfied. Furthermore, if the
DMs are chosen such that they are compatible with existing system standards and models
it is also possible to fulfill requirement R9-Handling Legacy Systems.

4.2.1 Specification and Use Case Design

For a larger system, especially a CPES, with multiple applications, a use case design
language will be crucial in order to understand the correlation between different com-
ponents, e.g., DERs or smart meters. Starting with use case description methods like
SGAM and IEC 62559, a structured approach for use cases design can be defined. For
example, a structured description of the actors and their interactions simplifies the
development process. However, the proposed use case methodology based on the SGAM
has no standardized way of representing the objects, e.g., controllers and power grid
components, neither in the way they are depicted, nor in the semantics used in the
description. In order to achieve a common description methodology, the depiction as
well as the semantics of such objects need to be standardized. Furthermore, to fully
take advantage of the high amount of information in the modeled use cases, a formal
machine-readable format needs to be used.

65

4. Rapid Engineering Methodology

In this work, SGAM, IEC 62559, and current formal specification approaches [31, 5, 116]
are used as a basis to define a formal specification and use case design method. Apart from
use case design, the methodology must also support a number of different specifications
with different levels of detail. This can for example be IEC 61850 SCL specifications that
are used as inputs for the engineering. The use case design and the specifications must
be combined into a holistic use case design language.

From a user perspective, the specification and design is a phase of the engineering process
that contains a lot of manual work. Therefore it is important that the design methodology
helps the user. For this purpose, it is also important that the final design methodology
can be integrated into different software tools. Using this approach it should be possible
to fulfill requirement R1-Design and Specification. Also, using state-of-the-art design
methods (i.e., SGAM, IEC 62559), it is ensured that a domain-specific format, suitable
for smart grids, is used.

4.2.2 Power System Domain

The power system DM should be a representation of the power and energy grid itself, with
components (e.g., breakers, lines, transformers, loads, generators) and their dynamics
as well as the topology of the grid (i.e., how the components are connected with each
other). With CIM, a great attempt has already been made to standardize modeling
and description of transmission systems as well as distribution systems. It contains
different models for multiple grid components. Some of these components are shown in
Figure 4.3 where an example network is modeled using CIM. Since CIM is described using
UML the names in the boxes represent CIM classes (e.g., PowerTransformer, Breaker,
SynchronousMachine).

An advantage with CIM is that it is supported by many power system simulation tools
[112]. This means that it is possible to use already existing models from these tools and
import them into the rapid engineering approach. The opposite would also be possible,
which allows a fast deployment of power system models into simulation tools.

In this work, CIM will be used as a basis for the power system DM. The main goal with
the power system DM is to provide the user with a possibility to model the static parts of
the power system. Thus it is not in focus to allow the modeling of component dynamics.

4.2.3 Communication and ICT Domain

The communication and ICT DM should be able to describe the communication network
used in the power system as well as provide an information model for the data exchanged in
the network. It is also important to take into account the huge amount of communication
protocols and standards already in use in the power and energy system today. Therefore
it must also be possible to model commonly used communication protocols (e.g., PLC,
Ethernet, Industrial Ethernet, Transmission Control Protocol (TCP), User Datagram
Protocol (UDP)), but also existing information models (e.g., CIM, IEC 61850). The

66

4.2. Needed Modeling and Design Methods

17 kV

33 kV

Load

Generator

Breaker
CT

Breaker

Transformer 17-33

Line

Busbar

Breaker

Measurement

PowerTransformer

TapChanger

SynchronousMachine

GeneratingUnit
EnergyConsumer

Breaker

ACLineSegment

Connectivity Node

Terminal

TransformerWinding

TransformerWinding

BusbarSection

Figure 4.3: Simplified representation of the power system DM based on CIM

communication standard IEC 61850 already has an information model designed to fit
power utility applications.

Especially the object-oriented information model of IEC 61850 provides a good starting
point for a communication DM. IEC 61850 uses LNs to model network components as
well as functionality provided by the components (e.g., YPTR is the LN for a power
transformer and ATCC is the LN for an automatic tap change controller). In Figure 4.4a
the communication DM, modeling the same exemplary network as in Figure 4.3, is shown
using IEC 61850 LNs.

IEC 61850 was created especially with power utility automation applications in mind.
But, there are many other cases of data exchange where IEC 61850 may not be the
best choice, or may not be possible to use. Furthermore, sometimes a more generic
information model may be needed. For example, during the use case design it is not
always possible to make an unambiguous definition of the data that is to be exchanged.
However, this is a well known problem in computer science, where IDLs (e.g., [74, 133])
are used to described the information in a platform-independent way. In a second step,
the interface description using the IDL can be generated into specific code, for example
Java or C++ (see also Section 2.5.2).

For the rapid engineering methodology, a communication DM is needed that can handle
both smart grid specific data models as well as generic information descriptions. Fur-
thermore, the communication DM must also be able to model different types of services.

67

4. Rapid Engineering Methodology

Common patterns are client/server or publish/subscriber based communication.

17 kV

33 kV

Load

Generator

Breaker
CT

Breaker

Transformer 17-33

Line

Busbar

XCBR

MMXU XCBR

DGEN

TCTR

YPTR

ATCC

YLTC

ZLIN

AVCO

(a)

17 kV

33 kV

Load

Generator

Breaker
CT

Breaker

Transformer 17-33

Line

Busbar

Automatic Tap
Changer Control

Generator Control

Droop
Ctrl

ATCC

(b)

Figure 4.4: Simplified representation of communication and automation DMs: (a) Com-
munication DM based on IEC 61850; (b) Automation DM based on IEC 61499

4.2.4 Automation and Control Domain

The automation and control DM should address the different control and automation
functionalities of the smart grid. Two examples are discussed in BC2, where a coordinated
voltage controller is developed, and in BC3, where the implementation of ancillary services
for DERs is shown. It must also be possible to model the interactions between different
control functions (e.g., the coordinated voltage controller sends voltage set points to the
local DER controller). In cases where two interacting functions are executed on different
hardware devices, communication is needed. In that sense, the automation DM and the
communication DM are very much related with each other.

For the definition of the automation DM, existing methods and standards should be
considered. As mentioned in Section 2.3, many automation approaches and concepts, as
well as corresponding international standards, have already been developed supporting
the implementation of automation applications (e.g., IEC 61131-3, IEC 61499). However,
non of these standards were specifically developed for smart grid applications. A closer
look at these concepts shows that a number of points are still open and need to be
addressed: (i) formal design of automation functions on a platform-independent level
would improve the interoperability and portability of developed control solutions; (ii)
the exchange of automation models between different engineering tools, and between
different stakeholders, is still an open and only partly solved issue; (iii) despite the
already available domain standards for power and energy systems (e.g., CIM, IEC 61850)
as well as for automation approaches (e.g., IEC 61131-3, IEC 61499), a harmonization

68

4.2. Needed Modeling and Design Methods

and integration of the different concepts is necessary in order to achieve a comprehensive
automation model for smart grid systems.

There are multiple description languages for architecture design of automation systems
in other domains (e.g., UML, SysML, AADL) [148]. System and architecture design
for automation concepts in smart grids can also partly be found in CIM or IEC 61850.
However, even if these two standards can be used to define a system architecture, they
do not provide any means to formally specify automation functions and algorithms.

Several standards and formal design approaches have also emerged from the automation
industry. Two of the most established standards are IEC 61131-3 and IEC 61499. Several
papers have already compared these two standards to be used for automation functions
in smart grids [60, 146, 149, 170]. Summarizing, IEC 61499 has two main advantages
compared to IEC 61131-3 as automation DM for smart grids. First of all IEC 61499 was
designed for modeling of distributed automation applications, which is highly the case
with power utility automation. Secondly, IEC 61499 also includes a system model, where
mappings between hardware and software functions can be made. Such a system model
is not available in IEC 61131-3. In Figure 4.4b, a simplified example of the automation
DM using IEC 61499 is shown.

4.2.5 Software Engineering Methods

In order to use the different DMs together they need to be combined into a holistic smart
grid model. Since the DMs are based on different domain-specific models and standards
the combination must be based on the semantic similarities between the DMs. When
combining different DMs together, it is important to keep them synchronized. This is
necessary, since with more sources of information, the same information is bound to exist
in more than one model. This can cause conflicts if the sources are not synchronized.
The models can be synchronized manually, but to minimize design and implementation
errors, an automatic approach is preferred. By using automatic synchronization between
the DMs it is possible to keep their information unambiguous (i.e., changes in one DM
should lead to automatic changes in the other DMs and vice versa).

When comparing the different DMs in Figure 4.3 and in Figure 4.4, it is clear that there
is a certain overlap. Some of the components are represented in all DMs, but each DM
models a different functionality of the component. For example, for the Generator its
generating capabilities are represented as a SynchronousMachine in Figure 4.3 and as a
DGEN LN in Figure 4.4a. In Figure 4.4b, only the droop control functionality of the
Generator is modeled.

One approach to synchronize the DMs is to use model-to-model transformations (often
only called model transformations). Model transformations are an important part of
MDE methods, see Section 2.5.1. In the MDA initiative, transformations are used to
create a PSM from a PIM. The same concept can be used to synchronize the DMs.
Model transformations enable a domain expert to make a system model in their own
DM (e.g., the control expert makes a control model) and afterwards generate the other

69

4. Rapid Engineering Methodology

DMs through transformations. For this task rules have to be specified that define which
transformations are allowed between the different parts of the DMs.

If model transformations are automatic they are also a powerful tool to accelerate the
engineering process. First of all they can be used to achieve seamless transitions between
different engineering steps, see requirement R5-Seamlessness. Secondly, the more parts of
the development process that are automated the more rapid is the engineering method,
and the less human effort is needed, see R6-Rapidness and Effort. One specific example is
generation of platform-specific code (i.e., model-to-code transformation). This can be code
for simulation models, communication specifications, as well as field implementations used
in operation. If model transformations are done in a correct way they are also a possibility
to minimize the amount of human errors [128, 47]. Consequently, transformations also
contribute to the realization of requirement R7-Correctness.

4.3 Phase I: Design and Specification
The design phase is the first phase of the rapid engineering methodology. Thus it is also
the most important phase. It is the phase where the user provides the most input. This
input is also needed in order to complete the following phases. Consequently, the higher
the quality of the user design, the higher the possibility of a successful development. In
order to increase the quality, an appropriate design support is needed. A structured
approach and guidelines are two ways to support the user during the design phase.

Based on the SGAM use case approach, and as a response to requirement R1-Design
and Specification, a structured design process is defined. It is depicted in Figure 4.5.
As already shown in Section 2.2.2, the first step of the SGAM approach is the use case
analysis. It is assumed that the user has done a general analysis before the design and
specification starts. The analysis should contain a narrative summary of the use case and
it should also contain a first requirement identification. Based on this use case analysis,
the user makes a detailed description of the application in different specifications.

Design and Specification

Business Case Function System Information Communication

Method

Tools

Power System Automation Language { PSAL }

Use Case
Analysis &

Requirements

Figure 4.5: Overview of the design phase and its different steps.

In the business case specification, a general overview of the business cases and goals, which
are of importance for the application, are specified. This is the first step of the design

70

4.3. Phase I: Design and Specification

phase after the use case analysis, as seen in Figure 4.5. The engineering methodology in
this thesis provides the user with the possibility to define a business case with a name
and a narrative summary, as well as a description of the associated business goals. A
business case can in turn be implemented by a number of sub use cases and functions.

Once a business case is defined this can be divided into functions. This is done in the
function design. First of all functionalities of the application are specified. From this
it should be clear what the goals of each function are, what inputs are needed, and
what outputs are produced. The functional design should also include a description of
how the functions interact with each other. Thus it is also necessary to make an initial
specification of the information that is exchanged in the application. This is the second
part of the function design.

Once the functional aspects of the application are defined it must be specified in which
system they should be executed. Therefore, the next step is the system specification.
This includes the description of the physical system which is used for the application. It
can be power system equipment as well as ICT equipment. Furthermore, connections
between the components are also specified. Finally, this step also includes a definition of
a function-system mapping, an assignment of software to execution hardware.

Depending on the functionality of the application and the execution system, different
information models may be suitable. Thus, the next step in the design phase is to make
a detailed information specification. An initial description of the information is provided
during the function design. In this step, this initial description is updated and if needed
assigned to a specific data model.

The last part is the communication specification. Here, the user defines communication
related parameters. This can for example be a specific communication protocol for a
certain Open Systems Interconnection (OSI) layer. It can also be other parameters like
Virtual Local Area Network (VLAN) identifiers, priority, or Media Access Control (MAC)
and Internet Protocol (IP) addresses. With this last part of the design phase, the whole
of requirement R1-Design and Specification is covered.

The design steps in Figure 4.5 are intended as guidelines for the user and it is not necessary
to follow them in a strict order. Indeed, it is very much intended that users adapt these
steps to fit their own needs. In order to allow this, a tool is needed that covers all the
different design steps. At the same time, it must be flexible enough to accommodate
specific user needs. For this purpose, the Power System Automation Language (PSAL)
was created. The following sections introduce and specify PSAL and show how it is used
for the design phase. PSAL was first presented in [116] and [117]. These publications
serve as a foundation for the PSAL specification below.

4.3.1 Power System Automation Language

The main intention with PSAL is to provide a formalized DSL for SGAM compatible
use case design. It is the main tool for the design phase, as seen in Figure 4.5. This

71

4. Rapid Engineering Methodology

section outlines the parts of PSAL and how it relates to the SGAM approach. In the
next section, the grammar and syntax of PSAL are formally defined.

Figure 4.6 shows the SGAM structure together with a simplified model of PSAL rep-
resented as a UML class diagram. The different SGAM layers also correspond to the
different design parts in Figure 4.5 and therefore this structure must be represented in
PSAL as well. The system specification is used to describe the hardware components
of the system. Generally, these are either power system or ICT components. In PSAL,
a general Component is provided. Specializations thereof are used to represent power
system and ICT components. Components either already exist in the system or they
represent new equipment. The Device represents an ICT controller hardware, where
algorithms or software can be executed in so-called Resources. In order to connect
Components with each other, they can provide one or more PhysicalInterfaces (i.e.,
power or ICT interfaces). Two PhysicalInterfaces can be connected with each other
through a Connection.

System Specification
(Component Layer)

Communication Specification
(Communication Layer)

Information Specification
(Information Layer)

Business and Functional
Specification

(Business and Function Layers)

Device Component

Resource PhysicalInterface

ConnectionSystem

Application

Interface

Attribute Operation

Function

ServiceImplementation

Figure 4.6: Simplified UML representation of PSAL on top of the SGAM structure.

If a Connection connects two ICT interfaces this is defined as an ICT Connection.
These two parts are also used for the communication specification. As described above,
this part is used to define different communication parameters (e.g., IP or MAC addresses).

72

4.3. Phase I: Design and Specification

In PSAL, these specifications can be modeled within the ICT Connections and the
PhysicalInterfaces.

Although the communication protocols are specified in the communication specification,
the information model that is used is specified in the information specification. With
PSAL, a detailed specification of the data exchange is realizable. According to requirement
R1-Design and Specification it should be possible to describe the information exchange
between two parties. In particular, this means two things: it must be possible to
specify the format of the exchanged data (i.e., what information model is used) and it
must be possible to specify how the information is exchanged (e.g., if it is published or
requested). PSAL provides two main objects to model the information exchange: Events
and Interfaces. The Interface, as seen in Figure 4.6, models a client/server pattern
and allows data to be exchanged either through read and write of Attributes or by
calling Operations. Similarly, Events can also be defined to model a publish/subscribe
pattern that allows data to be published in one direction.

The business case specification is used to describe business cases and goals. Each business
case can in turn be divided into several use cases. This process continues in the function
design, where use cases and sub use cases are divided into functions. In order to model
this hierarchy, PSAL provides Functions. Each Function can contain other Functions,
which makes it possible to model the same hierarchical structure as with business cases,
use cases, and functions.

Different approaches can be used to model functions and their interaction with each
other. The SGAM methodology proposes to describe functions in different UML
diagrams (e.g., use case, activity, and sequence diagrams [25]). In order to model
function interactions in PSAL, Functions can have ServiceImplementations. Each
ServiceImplementation implements an information interface (e.g., an Interface).
Thus by connecting ServiceImplementations with each other, it is also possible to
model the information flow between the Functions.

Additionally to the SGAM methodology, PSAL provides the Application and the
Systemmodel parts. Together they form a further abstraction layer. The System contains
the specification of the component and the communication layers. The Application

contains the design of the business, function, and the information layers. In order
to associate the Application model with a System model, Functions are mapped
to Resources. A Function-Resource mapping defines in which Resource a specific
Function is executed.

In SGAM, the placement of component and functions into domains and zones was
introduced. Although this placement helps to structure a use case, it is mainly for
documentation purposes and has no direct influence on the realization. With a textual
implementation of PSAL, the definition of domain and zone through spatial layout is not
an option. Nevertheless, it can be done through special comments or by using Java-like
annotations (e.g., @DER and @Station) in the source code.

73

4. Rapid Engineering Methodology

4.3.2 PSAL Specification

Based on the considerations in the previous section, a syntax for PSAL is defined using
Extended Backus–Naur Form (EBNF) [33]. A complete overview of the grammar can be
found in the Appendix A. As depicted in Figure 4.6, the System and the Application
are two main parts. Apart from these, Modules can also be directly, in order to simplify
the definition of communication protocols and information models. The main parts of
the PSAL source code document are shown in Listing 4.1.

1 PSAL ::= PsalContent*
2 PsalContent ::= System | Application | Module

Listing 4.1: Main parts of a PSAL source document.

This means that a PSAL document can contain zero or more occurrences of PsalContent,
which is either a System, an Application, or a Module. In order to define the domain
and zone, a general annotation syntax is defined in Listing 4.2. The annotations can
be placed before any Function or Component in order to place this part in a certain
domain and zone.

1 Annotation ::= '@' ID AnnotationParams?
2 AnnotationParams ::= '(' AnnotationParam (',' AnnotationParam)* ')' | '(' ')'
3 AnnotationParam ::= ID

Listing 4.2: Annotations in PSAL.

There a number of objects in PSAL that require the user to specify different parameters.
Often these parameters are platform specific and thus it is not possible completely define
all of these parameters in the PSAL grammar. Instead a generic syntax is defined that
can be used for parameter assignments. It is always a pair with an identifier and a string
value, as is shown in Listing 4.3.

1 IDValuePairBody ::= '{' IDValuePair* '}'
2 IDValuePair ::= ID '=' ValueLiteral

Listing 4.3: Parameter definitions in PSAL.

Comments are also allowed and should be used for documentation. Multi-line comments
are started with /* and ended with */. These comments can span multiple lines but do
not nest. A single-line comment is started with // and terminates at the end of the line.
Principally comments may contain any characters that do not terminate the comment.

System Model

The System model is used for the system and the communication specification. The
System is defined in Listing 4.4. Each System has a unique identifier and can contain
zero or more SystemComponents. These are either a Component (see Listing 4.5) or a
Connection (see Listing 4.10).

74

4.3. Phase I: Design and Specification

1 System ::= 'system' ID '{' SystemContent* '}'
2 SystemContent ::= Component | Connection

Listing 4.4: The System model.

For this work, two different types of Components can be defined, as is seen in Listing 4.5.
These are either ICTComponents or ElectricalComponents.

1 Component ::= ICTComponent | ElectricalComponent

Listing 4.5: The Component model.

This work focuses on programmable ICTComponents, which are represented by Devices,
as seen in Listing 4.6. A Device has a unique identifier and can contain Resources
and PhysicalInterfaces. Other ICT components can also be defined. At the mo-
ment gateways, switches and routers can be defined in order to represent an ICT
infrastructure.

1 ICTComponent ::= Device | OtherICTComponent
2 Device ::= 'device' ID '{' DeviceContent* '}'
3 DeviceContent ::= Resource | ICTInterface
4 Resource ::= 'resource' ID
5 OtherICTComponent ::= OtherICTComponentTypes ID IDValuePairBody?
6 OtherICTComponentTypes ::= 'gateway' | 'switch' | 'router'

Listing 4.6: The ICTComponent model.

In order to connect Devices with each other, ICTInterfaces are used. They can be of
different types in order to represent different ICT technologies. Listing 4.7 shows these
types. The ICTInterface can also contain IDValuePairs in order to define parameters
like an IP address or a port (see Appendix A).

1 ICTInterface ::= ICTInterfaceType ID IDValuePairBody?
2 ICTInterfaceType ::= 'ethernet' | 'wireless' | 'serial' | 'analogue' | 'digital'

Listing 4.7: The ICTInterface model.

Apart from the ICTComponent it is also possible to specify ElectricalComponents.
These are used to define the electrical power system upon which the application will
operate. In this sense, the ElectricalComponent model is the representation of the
power system DM in PSAL (see Section 4.2.2). As already discussed, there are multiple
existing models available for representation of power system topologies. For the purpose
of the rapid engineering methodology in this work, CIM is used as a reference [68].
Figure 4.7 shows an overview of the CIM objects that were used in PSAL and Listing 4.8
shows the ElectricalComponent model.

1 ElectricalComponent ::= Transformer | ElectricalEquipment
2 Transformer ::= 'transformer' ID '{' TransformerWinding+ '}'
3 TransformerWinding ::= 'winding' ID '{' ElectricalEquipmentContent* '}'
4 ElectricalEquipment ::= ElectricalEquipmentType ID '{' ElectricalEquipmentContent* '}'
5 ElectricalEquipmentType ::= 'generator' | 'line' | 'eswitch' | 'consumer' | 'busbar'

75

4. Rapid Engineering Methodology

CIM

PSAL

Domain model mapping

PowerTransformer

TransformerWinding

TerminalConnectivityNodeSwitchEnergyConsumer TopologicalNode

1

0..n

0..1

ConductingEquipment

0..n

0..n
0..1

0..1
0..n

0..n

1

Line

ACLineSegment

GeneratingUnit

SynchronousMachine

Transformer

TransformerWinding

ElectricalEq…

-type = 'busbar'

ElectricalEq…

-type = 'line'

ElectricalEq…

-type = 'consumer'

ElectricalEq…

-type = 'generator'

ElectricalEq…

-type = 'eswitch'

PhysicalInterface

Connection Terminal

0..n0..1

Figure 4.7: Relationship between CIM and PSAL.

6 ElectricalEquipmentContent ::= Resource | PhysicalInterface | IDValuePair

Listing 4.8: The ElectricalComponent model.

As is seen in Figure 4.7 and in Listing 4.8, the ElectricalEquipment can have multiple
computing Resources, as well as multiple PhysicalInterfaces. This can both be
ICTInterfaces and Terminals. The Terminal is defined in Listing 4.9 and is used
to connect power system components with each other. Since ElectricalEquipment

can contain both ICTInterfaces and Terminals it is also possible connect them with
ICTComponents. Furthermore, all PhysicalInterfaces can also contain IDValuePairs
in order to define different settings.

1 PhysicalInterface ::= ICTInterface | Terminal
2 Terminal ::= 'terminal' ID IDValuePairBody?

Listing 4.9: The PhysicalInterface model.

As shown in Figure 4.6, Connections can be defined between the PhysicalInterfaces
of the Components. To define a Connection, the definition in Listing 4.10 is used.
Generally, the QualifiedNames must match PhysicalInterfaces defined in the scope
of the System. However, Connections directly to/from OtherICTComponents are also
allowed. Optionally, a Connection can also be configured with user defined settings (i.e.,
IDValuePair). This can, for example, be communication network settings.

1 Connection ::= 'connect' QualifiedName 'with' QualifiedName IDValuePairBody?

Listing 4.10: The Connection model.

76

4.3. Phase I: Design and Specification

Application Model

The Application model in Figure 4.6 contains two main parts: Functions and informa-
tion Interfaces. Furthermore, Connections between ServiceImplementations can
be used to model the information exchange between Functions. The Functions and the
Connections are used for the business and the function design, and the Interfaces are
used for the information specification. The Application model is defined in Listing 4.11.

1 Application ::= 'application' ID '{' ApplicationContent* '}'
2 ApplicationContent ::= Function | Connection | Module

Listing 4.11: The Application model.

The main idea with the Interface in Figure 4.6 is to model the information that is
exchanged between the Functions (i.e., the information specification). However, as
already discussed in Section 4.2.3 this is a well known problem in computer science. There
exist several IDLs to described a platform-independent information exchange [74, 133].
After comparing the syntax and features of different IDLs, the OMG IDL [74] was chosen
as the most suitable for PSAL. OMG IDL is completely platform independent, and it
uses a syntax very similar to the rest of PSAL. Figure 4.8 shows the relationship between
the main objects of the OMG IDL and PSAL are shown.

Domain model mapping

<module>

<definition>

<interface> <event> <const_dcl> <type_dcl>

Module Interface Event Constant TypeDecl

ModuleContent

OMG IDL

PSAL

Figure 4.8: Overview of the main object mapping between OMG IDL and PSAL.

The Module is the top-level object that is used for the information specification. It is
also the main part of the communication and ICT DM, as discussed in Section 4.2.3.
The main function of the Module is to act as a container for other objects. It can also
contain other Modules. The definition is shown in Listing 4.12.

1 Module ::= 'module' ID '{' ModuleContent+ '}'
2 ModuleContent ::= Module | Interface | Event | Constant | TypeDecl

Listing 4.12: The Module model.

77

4. Rapid Engineering Methodology

For PSAL, the main objects for information exchange are the Interface and the Event
elements. These also have a representation in OMG IDL and the mapping for the
interfaces and the events are shown in Figure 4.9.

Domain model mapping

<export>

<interface> <attr_dcl>

Interface Attribute

InterfaceContent

OMG IDL

PSAL
Operation

<op_dcl> <event> <state_member>

Event StateMember

Figure 4.9: Overview of the mapping between the interfaces and events.

The Interface is intended for client/server based information exchange. A server
provides an Interface, which is used by a client. Basically information can be exchanged
either through Attributes or Operations. The Attributes are used for simple read
and write operations. The Operations are services that are called by the client. They can
have input as well as output parameters. Furthermore, inheritance of another Interface
is also possible. As a result, the child has access to all the Attributes and Operations
of the inherited parent. The Interface model is defined in Listing 4.13.

1 Interface ::= ('abstract')? 'interface' ID InterfaceInheritance? '{' ¾
Ç InterfaceContent* '}'

2 InterfaceInheritance ::= ':' QualifiedName
3 InterfaceContent ::= Attribute | Operation | Constant | TypeDecl | ¾

Ç CommunicationParameter
4 Attribute ::= ('readonly')? 'attribute' TypeSpecification ID (',' ID)*
5 Operation ::= ('oneway')? OpTypeSpecification ID OpParameters
6 OpTypeSpecification ::= TypeSpecification | 'void'
7 OpParameters ::= '(' Parameter (',' Parameter)* ')' | '(' ')'
8 Parameter ::= ParamAttribute TypeSpecification ID
9 ParamAttribute ::= 'in' | 'out' | 'inout'

Listing 4.13: The Interface model.

The second main object for information exchange is the Event. Unlike the Interface,
it is used for publish/subscriber communication. A publisher emits an Event and the
the subscriber consumes the Event. In PSAL, the information emitted by Events is
represented using StateMembers. As with the Interface, Events can inherit from
each other. The Event model is defined in Listing 4.14. For a complete definition of the
information specification refer to Appendix A.

1 Event ::= ('abstract')? 'eventtype' ID EventInheritance? '{' EventContent* '}'

78

4.3. Phase I: Design and Specification

2 EventInheritance ::= ':' QualifiedName
3 EventContent ::= TypeDecl | StateMember | CommunicationParameter
4 StateMember ::= ('public' | 'private') TypeSpecification ID

Listing 4.14: The Event model.

The information defined using the Interfaces and the Events can be used by the
Functions. In Listing 4.15, the Function model is defined. Each Function has a
unique identification, a possible mapping (see Listing 4.17), and it consists of other
Functions, Connections and/or ServiceImplementations. The Function is the
main object used for the function design. It is also an important basis for the automation
DM presented in Section 4.2.4.

1 Function ::= 'function' ID (FunctionMapping)? '{' FunctionContent* '}'
2 FunctionContent ::= Function | Connection | ServiceImplementation

Listing 4.15: The Function model.

A ServiceImplementation implements a service type—an Interface or an Event.
ServiceImplementations can be requested or provided by a Function. Depending
on the service type the syntax is a bit different, as seen in Listing 4.16. To define a
service type, the QualifiedName of a ServiceImplementation must match a defined
Interface or Event. ServiceImplementations can also override the communication
protocol defined by an Interface or Event. This is done with the ProtocolUsage,
where the QualifiedName must match an Interface or Event.

1 ServiceImplementation ::= ProvidedService | RequestedService
2 ProvidedService ::= ProvidedIDLInterface | ProvidedIDLEvent
3 RequestedService ::= RequestedIDLInterface | RequestedIDLEvent
4 ProvidedIDLInterface ::= 'provides' QualifiedName ID ('{' ParameterAssignment* '}')? ¾

Ç ProtocolUsage?
5 ParameterAssignment ::= QualifiedName '=' ValueLiteral
6 RequestedIDLInterface ::= 'requests' QualifiedName ID ('{' ParameterAssignment* '}')?
7 ProvidedIDLEvent ::= 'emits' QualifiedName ID ('{' ParameterAssignment* '}')? ¾

Ç ProtocolUsage?
8 RequestedIDLEvent ::= 'consumes' QualifiedName ID ('{' ParameterAssignment* '}')?
9 ProtocolUsage ::= 'using' QualifiedName

Listing 4.16: The ServiceImplementation model.

As represented in Listing 4.11 and in Listing 4.15, both the Application and the
Function can contain Connections. In both cases, the syntax is the same as defined in
Listing 4.10. In the Application, a defined Connection connects a requested service
with a provided service. The same applies to Connections defined in a Function but
with the additional possibility to connect a provided/requested service of a contained
Function with a provided/requested service of the containing Function. In all cases,
the connected ServiceImplementations must be of the same service type.

To connect the Application with a System, the Functions of the Applicationmust be
assigned to the components defined in the System. This is done by mapping a Function

79

4. Rapid Engineering Methodology

to a Resource in a Device or in an ElectricalEquipment. When a Function is
mapped to a Resource, all provided and requested services of this Function are
also mapped to the Resource. Consequently, these services are also available on any
ICTInterface of the component. Listing 4.17 shows how a mapping is defined. The
QualifiedName of the FunctionMapping must match a defined Resource.

1 FunctionMapping ::= 'at' QualifiedName

Listing 4.17: The FunctionMapping model.

4.4 Integration of an Implementation Language

With PSAL, a tool is provided that supports all parts of the design process as defined in
Figure 4.5. However, with the Functions in PSAL the user can only make a high-level
design of functions. Since one of the main goals of PSAL is to facilitate automated
implementation of functions, the high-level Function design will not be enough. One
approach could be to only offer a set of predefined Function types that can be combined
into an application. This approach offers a clear simplicity, but also a lack of flexibility
with respect to new or changing power utility automation functions. Another approach,
which offers more flexibility, is to extend PSAL with a programming language that can
be used to define Functions. However, since there already exist multiple programming
techniques it is not feasible to define a new language for PSAL. Instead, PSAL is extended
with an already existing implementation language.

Once an implementation language has been chosen, it must be defined how the language is
used to implement the Functions specified by PSAL. Furthermore, it must also be defined
how the ServiceImplementations can be implemented and how FunctionMappings
are realized. Summarizing, the integration of an implementation language can be divided
into the following guidelines:

1. Choosing an implementation language L.

2. Define how L is used to implement Functions.

3. Define how ServiceImplementations are implemented using L.

4. Define how Connections between ServiceImplementations are implemented.

5. Define how FunctionMappings are realized.

In this work, IEC 61499 is used as an implementation language. The following sections
discuss how and why IEC 61499 was selected, how IEC 61499 is used for the implemen-
tation, and how ServiceImplementations and FunctionMappings are realized. The
selection of IEC 61499 is mainly motivated by the discussions in [3, 6, 8], and [117].

80

4.4. Integration of an Implementation Language

4.4.1 Selecting an Implementation Language

Based on the definition of PSAL the following main concepts should either be directly
supported, or implementable, by the language:

• Software components: The Functions in PSAL are simple software components
and should be supported by the implementation language. Components should also
be able to contain other components, in order to model different levels of detail.

• Service implementations: The software components must be able to implement and
request services and this must be supported by the implementation language. It is
also important that the language provides a support for connecting services with
each other.

• Execution platform mapping: Once a software component is implemented it should
be mappable to an execution platform. This mapping identifies on which hardware
the software is executed.

Apart from the interoperability with PSAL, platform requirements may also need to be
considered. Depending on the platform hardware and/or software some programming
techniques may not be suited. For example, a system only consisting of embedded
controllers with limited memory capabilities may exclude many higher order programming
techniques. On the other hand, if a certain programming techniques has already been
used for implementations in the system, this technique may probably be the best choice
for compatibility reasons.

For this work, IEC 61499 was chosen as programming technique. IEC 61499 has already
been discussed as one possible solution for implementing standardized smart grid appli-
cations [171, 147]. Especially, together with smart grid communication standards like
IEC 61850 it has already been proven as a way of maintaining a consistent information
model throughout the design for smart grids applications [60, 175]. Moreover, the applica-
tion modeling capabilities of IEC 61499 can be exploited for an overall representation of
whole automation application. Thus not only the single Functions can be implemented
but also how the Functions are interacting in order to achieve a common goal.

IEC 61499 Application Modeling Approach

The IEC 61499 approach is centered around application modeling. First of all, the overall
automation application is modeled and designed using FBs. This is done independently of
where the FBs will be executed. Afterwards in a second step, the FBs of the application
are mapped to their corresponding execution platforms (i.e., control devices). This also
means that the application model can be seen as platform independent—independent of
the type of device it is running. This can be utilized for the implementation phase.

IEC 61499 also offers a model element called Subapplication. It can be used to nest FB
networks. This can be used to build hierarchical models and therefore to structure complex

81

4. Rapid Engineering Methodology

control applications. Furthermore, this matches very well with how the Functions are
modeled in PSAL. Consequently, Subapplications are one possibility to implement the
specified Functions.

The standard data connections between FBs and between Subapplications are used to
transfer data between components. These can also represent communication connections
between different components in the grid. In PSAL, the ServiceImplementations are
used to specify the information interfaces of a Function. In IEC 61499, the Adapter
modeling object can be used to describe such interfaces. To account for both provided
interfaces and required interfaces an Adapter is divided into a socket part and a plug
part. An Adapter definition summarizes multiple events and data connections into one
connection element. This has a number of advantages: (i) the interface of the FB is
formally defined, since a plug can only be connected to a socket if they are of the same
Adapter type, (ii) an Adapter may define a bidirectional connection, and (iii) the total
number of connection elements in the FB network is minimized [57].

Before it can be executed, the control application has to be assigned to an execution
platform. This is done by mapping Subapplications and FBs to Resources contained in
hardware Devices. Once the FBs in the control application have been mapped, they can
be deployed. This also means that connections between FBs of different devices must
be replaced with the communication services as defined by the Interfaces or Events.
Moreover, these communication services can also be encapsulated into special IEC 61499
communication blocks, so called SIFBs. This is described in more detail in Section 4.4.2.

Considering these aspects of IEC 61499, it is clear that it fulfills the requirements needed
by an implementation language. Software components can be represented using FBs and
Subapplications. Service implementations can be defined using Adapters in IEC 61499.
Finally, IEC 61499 also inherently supports the mapping of FBs to hardware devices.
As also discussed in Section 4.2.4, IEC 61499 has many advantages compared to other
solutions. It is also completely platform independent [177], which makes it usable to many
of the identified actors in Table 3.1 and it increases the chances of fulfilling requirement
R10-Interoperability. The selection of IEC 61499 as implementation language also
completes the definition of the automation DM.

Implementation Guidelines

In order to support the user during the implementation phase, guidelines and design
patterns have been specified. These guidelines should help power system engineers to
design standard-compliant and interoperable control applications using IEC 61499. The
guidelines are divided into two categories: one concerning the modeling of the control
application, and the other concerning the deployment of the control application to the
field after it has been designed.

Following an MDE approach, the model of the application should contain no platform
specific information. The platform specific information is added after it has been mapped

82

4.4. Integration of an Implementation Language

to its execution platform. Based on [178], the following guidelines formalize the steps of
modeling a smart grid automation application:

• Top-down as well as bottom-up modeling can be applied with the proposed modeling
approach if necessary/suitable for a specific control problem.

• Hierarchical control applications should be modeled using Subapplications on
different layers. Consequently, the top-most layer should provide an overview of the
different business cases. Below the different Functions from the function design
are implemented, also using Subapplications.

• The Subapplication representing a Function should implement its correspond-
ing behavior. Furthermore, the behavior of a Function is also indicated by
its provided and requested ServiceImplementations. Following the hierarchi-
cal approach, another layer can be added where the implementation of each
ServiceImplementation is contained within a Subapplication.

• The interface of a Function is defined not only by the ServiceImplementations
it provides, but also by the ServiceImplementations it requires from other
Functions. To clearly define these ServiceImplementations, Adapters should
be used. If a Function is providing a ServiceImplementation this should be
represented by an Adapter Socket and required ServiceImplementations are
implemented as Plugs.

Following the guidelines above, a structured and platform-independent application is
created. The next step is to transform this into a platform-specific implementation and
finally deploy it to the field. For this process, the following guidelines are suggested [7]:

• Each Subapplication representing a Function is mapped to its corresponding Re-
source and device. Subapplications representing proprietary or already implemented
Functions are not mapped.

• Platform-specific information is added to the Resource. This include SIFBs for
communication and process interfaces, as well as configuration of platform specific
parameters.

• Adapter connections used in the application to model the information flow between
devices are replaced with SIFBs implementing the needed communication services.
These SIFBs are inserted into the Resource where the Subapplication is mapped.
This process can be automated by the used modeling tool.

• The actual deployment of the application may require specific configuration steps.
This is depending on the used implementation environment and is covered in
Section 5.

83

4. Rapid Engineering Methodology

The following section shows how the IEC 61499 is mapped to PSAL. In order to help
the reader to distinguish between elements from the different models they are differently
emphasized in the following sections. Any model elements from PSAL are emphasized
with a teletype font (e.g., Function). Model elements from IEC 61499 are emphasized
with a sans-serif font (e.g., FB499).

4.4.2 Mapping IEC 61499 to PSAL

Once an implementation language has been selected it must be mapped to the Function
model of PSAL. This means that one or more entities of the language are used to represent
the software component, represented by the Function in PSAL. If possible a one-to-one
mapping is to prefer since this also allows for a simple round-trip transformation.

The guidelines presented above in Section 4.4.1 can be directly used to define a mapping
between PSAL and IEC 61499, as seen in Figure 4.10. Following these, each Function

of PSAL is mapped to a SubApp499 (i.e., Subapplication) in IEC 61499. The SubApp499 is
defined by a SubAppType499. A SubAppType499 can also contain other SubApps499, which
makes it possible to model multiple levels of Functions using IEC 61499. Further-
more, each ServiceImplementation is mapped to an interface of the SubAppType499.
ProvidedServices are mapped to Sockets499 and RequestedServices are mapped to
Plugs499. The mapping between Functions and SubApps499 is shown in Figure 4.10a.

The overall mapping between PSAL and IEC 61499 is shown Figure 4.10b. Due to the
similarity between the models, the mapping is straightforward. The Application is
mapped to the Application499 in IEC 61499. Since IEC 61499 also has a system model it is
possible to find a model mapping for the Devices and Resources of PSAL. As already
mentioned, IEC 61499 supports mapping of FBs499/SubApps499 to Resources499. Using this
opportunity, the FunctionMapping of PSAL can be directly represented as a Mapping499

in IEC 61499.

With this mapping between PSAL and IEC 61499, two important parts of the rapid
engineering methodology introduced in Section 4.1 can be created. The SubAppType499 is
used by the engineer to implement Functions in detail. This allows the realization of
the implementation phase in Figure 4.2, and it also allows the realization of requirement
R2-Implementation. Secondly, the automated mapping and deployment provided by
IEC 61499 can also be used for the validation and deployment phases.

Describing Service Implementations using IEC 61499

Once Functions can be implemented, they must be able to exchange information.
This means that ServiceImplementations of Functions need a representation in
IEC 61499. Furthermore, the Connections between ServiceImplementations also
need a representation in IEC 61499. After the Functions of an Application have
been assigned to a Resource with a FunctionMapping, there is a difference between
internal and external Connections. Internal Connections connect Functions in the
same Resource. External Connections connect Functions in different Resources.

84

4.4. Integration of an Implementation Language

PSAL

IEC 61499

Model mapping

Function

ProvidedService

-ID

SubApp

-name = ID

SubAppType

-name = ID

PlugSocket

-name = ID

RequestedService

-ID -ID

-name = ID

(a)

Application
PSAL

IEC 61499

Model mapping

Function FunctionMapping Resource Device

-ID -ID -ID -ID

Application SubApp Mapping Resource Device

-name = ID -name = ID -name = ID -name = ID

SubAppType

-name = ID

(b)

Figure 4.10: Mapping between IEC 61499 and PSAL: (a) Detailed mapping between
Functions and SubApps499; (b) Mapping for application and system models.

As seen in Figure 4.10a, the ProvidedServices of a Function are implemented as
Sockets499 and the RequestedServices are implemented as Plugs499. Each Plug499 and
Socket499 is defined by an AdapterType499. Since each ServiceImplementation is defined
by either an Interface or an Event, both of these need a mapping to an AdapterType499

representation in IEC 61499.

Figure 4.11 shows an example, where an Interface is mapped to a corresponding
AdapterType499 in IEC 61499. The AdapterType499 in Figure 4.11b is defined using the
Socket499 representation shown in Figure 2.5. The Interface contains Attributes and
Operations. The type of an Attribute can either be a simple type or an already defined
type (e.g., another Interface). All Attributes that are of an already defined type are
represented as a Plug499 interface on the AdapterType499, see the derControls Plug499 in
Figure 4.11b. Attributes that have a simple type are transformed into a set of events
and data ports. All Attributes in PSAL are automatically assigned a get-function.
Non-readonly attributes are also assigned a set-function. To represent this for the
AdapterType499 a GET-Event499 is created for each Attribute, and a SET-Event499 for
non-readonly Attributes, see Figure 4.11. Operations in PSAL, on the other hand,
define a callable function, and can have both inputs (notated with in), outputs (notated

85

4. Rapid Engineering Methodology

with out), and a return value. The Operation getEnergy, defined in Figure 4.11a, is
mapped to an Event499 with the same name as the Operation. This event is associated
with two data ports: from and to in Figure 4.11b. Once the Operation has finished a
CNF-Event499 is triggered.

interface DERInterface {
attribute Controls derControls
attribute boolean startDER
readonly attribute string derType
void getEnergy(in int32 from,
in int32 to,
out float32 energy)

}

(a)

DERInterface

DINT

startDER_WBOOL

EVENT

BOOL

from

SET_startDER

GET_startDER

EVENT

EVENT

EVENT

CNF_startDER

CNF_derType

startDER

derTypeSTRING

EVENT

REAL

EVENT

EVENT

DINT

Controls

CNF_getEnergy

energy

GET_derType

getEnergy

to

derControls >>

startDER
PLUG SOCKET

GET_startDER
GET_startDER

CNF_startDER
CNF_startDER

SET_startDER
SET_startDER

derType

GET_derType
GET_derType

CNF_derType
CNF_derType

getEnergy

getEnergy
getEnergy

CNF_getEnergy
CNF_getEnergy

(b)

Figure 4.11: Mapping between an Interface and an AdapterType499: (a) Interface
definition in PSAL; (b) AdapterType499 definition in IEC 61499.

The Events of PSAL are also mapped to AdapterTypes499, see Figure 4.12. Since an Event

only represents a one-way information exchange its implementation as AdapterType499 is
simplified, with only one Event499. The StateMembers of the Event are mapped to data
ports of the AdapterType499.

eventtype DERMeasurements {
public float32 voltage
public float32 current

}

(a)

DERMeasurements
REAL

EVENT EMIT

voltage

currentREAL

PLUG SOCKET

EMIT
EMIT

(b)

Figure 4.12: Mapping between an Event and an AdapterType499: (a) Definition of an
Event in PSAL; (b) AdapterType499 definition in IEC 61499.

In IEC 61499, connections between FBs499 that are mapped to different Resources499

may need extra attention during deployment. These connections need to be split up
using explicit communication FBs499. The IEC 61499 standard provides two generic
communication patterns: client/server for bidirectional connections and publish/subscribe
for unidirectional connections [64]. The service types in PSAL can also be mapped to
the same patterns. The Interface models a typical client/server connection, where the
client calls the Operations of an Interface and gets/sets the Attributes. In order to
model publish/subscribe relationships, the Event can be used. An Event is emitted by
a publisher, and consumed by a subscriber. Figure 4.13 illustrates how two connections
are split up into client/server FBs499.

86

4.4. Integration of an Implementation Language

D
ev
ic
e2

Resource1

D
ev
ic
e1

Resource1

Mapping

SubApp SubApp

SubApp SubApp

SA1

SA1 SA2

SA2

Client Server

Mapping

Figure 4.13: Splitting connections into communication FBs499.

4.4.3 Using Different Communication Protocols

Once the ServiceImplementations, the Interfaces, and the Events can be imple-
mented, for both internal and external connections, different information models can be
mapped to the PSAL information model (i.e., to Interfaces and Events). This allows
the user to model communication with different protocols (e.g., IEC 61850, Modbus,
OPC UA) and directly include this into the functional model of the application.

Mapping IEC 61850 to Interfaces and Events in PSAL

As an example of how information models can be mapped to the PSAL generic information
model, IEC 61850 is used. The IEC 61850 standard defines LN classes for multiple
applications. In the standard, these classes are defined as tables. Figure 4.14a shows
an excerpt of the MMXU class from [66]. Moreover, IEC 61850 also provides the SCL
description language. It is based on XML, and is used to write configuration files for
IEDs. In order to distinguish IEC 61850 elements defined in SCL they are emphasized
with a slanted font (e.g., LDevice850).

If an SCL file is configured for an IED, it specifies which LN classes are provided by this
IED. For each provided LN the SCL file also includes a type definition—an LNodeType850.
Since data objects of an LN class can be optional, the LNodeType850 defines which of
these are used in the current configuration. Figure 4.14b shows the SCL definition of
MMXU. For the DAType850, called AnalogueValue, only one of the optional attributes is
used—the attribute f.

With SCL as foundation, a mapping from IEC 61850 to PSAL can be formulated. Apart
from the LNodeType850, SCL uses DOTypes850 for CDCs, and DATypes850 for DA types.
For these three types the same mapping approach can be used—each type instance is
mapped to an Interface. Each type in IEC 61850 contains objects: Data Objects

87

4. Rapid Engineering Methodology

Attribute

name
Type

Value/Value

range
M/O/C

i INT32 integer value O

f FLOAT32 floating point value O

AnalogueValue type definition

Data object

name

Comon

data class
Explanation T M/O/C

TotW MV Total Active Power O

PNV WYE Phase to neutral voltage O

MMXU class

Measured and metered values

Data

attribute

name

Type FC TrgOp Value M/O/C

mag AnalogueValue MX dchg, dupd M

q Quality MX qchg M

t TimeStamp MX M

MV class

Data attribute

(a)

<LNodeType lnClass="MMXU" id="MMXU">
<DO name="TotW" type="MV"/>
<DO name="PNV" type="WYE"/>

</LNodeType>
<DOType id="MV" cdc="MV">
<DA name="mag" type="AnalogueValue"

bType="Struct" fc="MX"/>
<DA name="q" bType="Quality"

fc="MX"/>
<DA name="t" bType="Timestamp"

fc="MX"/>
</DOType>
<DAType id="AnalogueValue">
<BDA name="f" bType="FLOAT32"/>

</DAType>

(b)

abstract interface MMXU {
attribute MV TotW
attribute WYE PNV

}
abstract interface MV {
readonly attribute ¾

Ç AnalogueValue mag
readonly attribute uint16 q
readonly attribute date t

}

abstract interface ¾
Ç AnalogueValue {

attribute float32 f
}

(c)

Figure 4.14: Mapping between an LN850 and an Interface: (a) Excerpt of the LN850

MMXU in IEC 61850; (b) MMXU as SCL description; (c) MMXU as Interface

description.

(DOs850), DAs850, or Basic Data Attribute (BDAs850). These are mapped to Attributes
in PSAL. In Figure 4.14c, the PSAL definition of MMXU is shown.

With this mapping, all LN classes that are defined in the IEC 61850 standard can be
imported and represented in PSAL. The mapping also makes it possible to import a
whole SCL file into a corresponding PSAL model. The other way around, if IEC 61850
Interfaces are used in a PSAL model (i.e., as in Figure 4.14c), these can also be
exported to an SCL file. Such an SCL file is one possible target configuration, as seen in
Figure 4.2. Consequently, with the usage of IEC 61499 as implementation language and
protocol mappings like IEC 61850 the implementation phase can be started.

4.5 Phase II: Implementation

With the selection of the implementation language and integration with PSAL, the next
phase of the rapid engineering methodology is the implementation phase. The goal of
this phase is to provide the specified functions with logic. Since IEC 61499 is used as
implementation language this corresponds to finishing the application by implementing
the SubAppTypes499, as presented in Section 4.4.2.

The implementation phase contains three main steps: (i) transforming the Application
and System models into an Application499 and a System499 in IEC 61499, (ii) automatic
generation of functions (i.e., generation of SubAppTypes499), and (iii) definition of func-
tions by the user (i.e., the user implements the SubAppTypes499). An overview of the
implementation phase is seen in Figure 4.15.

Based on the design done by the user with PSAL in the previous phase, a transformation
to IEC 61499 is possible. This transformation uses the rules defined in Section 4.4.2.

88

4.5. Phase II: Implementation

Implementation

Method

Transformation
to IEC 61499

Generation of
functions

User defined
functions

Tools

IEC 61499 FB

Specs.Specs.Specs.

function function function

Figure 4.15: Overview of the different steps of the implementation phase.

Consequently, the first step is to transform the Application and System into equivalent
IEC 61499 Application499 and System499 models. To do this, the mapping from Figure 4.10
is used. The Application499 is also filled with one SubApp499 for each Function499 defined
with PSAL. This step also generates empty SubAppTypes499 for each SubApp499. This step
contributes to the realization of requirement R5-Seamlessness, and also to requirement
R6-Rapidness and Effort. It allows a seamless, and therefore rapid, transition between
the design phase and the implementation phase, which reduces the manual effort required
by the user.

The next step is an automated generation of the logic within the SubAppTypes499. This
generation is based on previous user implementations. Each specified Function is
implemented as a SubAppType499. If all implementations are saved, they can be used as
templates for future implementations. By automatically comparing the design of a new
Function with an already existing Function their similarity can be measured. If this
similarity is high enough the already existing implementation can be used for the new
Function as well. After the generation, the copied implementation can be adapted to
fit the specific needs of the new Function. This step also contributes to requirement
R6-Rapidness and Effort.

The third, and last step of the implementation phase, is for the user to complete the
implementation of the Functions. On the one side, many of the generated implementa-
tions may need adjustments or final adaptations. On the other side, the SubAppTypes499

that were not generated need to be implemented. The user implements a SubAppType499

by adding to it other FBs499 and SubApps499. These are connected with each other as well
as with the interfaces of the SubAppType499. The last two steps of the implementation
enable the realization of requirement R2-Implementation.

In many cases, only some Functions need to be implemented since the other Functions
are provided by another actor or they already exist in the system. These other Functions
do not need to be implemented. Instead, their design will be used to configure communi-
cation interfaces and to integrate the new Functions. This also allows the integration
with legacy systems, see requirement R9-Handling Legacy Systems.

89

4. Rapid Engineering Methodology

4.5.1 Automatic Implementation of Functions

As seen in Figure 4.15, the second step of the implementation phase is an automated
generation of Functions. The goal with this step is to support the user with the
creation of implementations (i.e., SubAppTypes499) for the specified Functions. There
are different approaches for an automated creation of such implementations. One
possibility is to create a semantic mapping between Interfaces/Events and their
implementation. For example, the MMXU LN presented in Figure 4.14a can be associated
with a SubAppType499 for implementation. Whenever the MMXU Interface is used by
a ServiceImplementation in a Function, the associated SubAppType can be used for
implementation of the Function. Of course, it must also be possible for the user to
define their own semantic mappings.

Often it is not possible to define a distinct implementation for an Interface or Event.
Furthermore, in many cases platform-specific parts are also needed to create a fully-
functional implementation. For example, the MMXU is LN that provides measurements.
Consequently, voltage and current sensors need to be interfaced for the implementation.
Such cases always require platform-specific knowledge.

In this thesis, an approach is used that combines the possibility to create semantic
mappings and also uses a simple machine learning of user implementations. An overview
of the approach is shown in Figure 4.16. The main tool for the automated generation
is a template storage. A template represents a previous user implementation and is a
combination of a Function design and a SubAppType. After the initial step of the
implementation phase, an empty SubAppType499 is generated for each specified Function.
In order to determine if a similar implementation already exists, the Functions of the
new Application are compared to the stored templates. When a match is found, the
user is asked if the previous SubAppType499 should be used for the new Function as well.
If the user accepts, the implementation of the old SubAppType499 is copied to the new
SubAppType. Finally, the user has the possibility to adapt the new SubAppType and
make necessary changes, if there are any. Once the user saves the SubAppType a new
template is created and stored.

In order to check if a matching implementation exists, string metrics are used to compare
the Functions. The following parts are considered for the comparison:

• The ID of a Function is an indication of its intended functionality.

• If a comment is provided directly before a Function declaration this is also used.

• The ID of the containing Application.

• Each ServiceImplementation is included with ID and type.

In the literature there are multiple string metrics for measuring the edit distance between
two strings [85, 80]. Principally they measure the minimum number of operations needed

90

4.5. Phase II: Implementation

Transforming Functions
to SubApps

Check for matching
implementation

Copy existing
implementation

User modifies and saves
the implementation

Template storage

Template

function x1

x1

function x1

x1

function x1

x1

Template

function x

x

ü

function x1

x1

ü

x1 ≠ y
x1 ≈ xyz
x1 ≈ x

ü

û

Generation of functions

Method

Tools

Figure 4.16: Automated generation of SubAppTypes499 for Functions.

in order to transform one string into another. This can also be utilized to measure the
similarity of two strings. Consequently, if the similarity of two Functions is measured,
for the parts listed in the bullet points above, it can be used as an indication for how
similar the functionality is as well. The following metric is used to calculate the similarity
s between two Functions

s = kAA + kFF + kCC + kPP + kRR where
kA + kF + kC + kP + kR = 1 (4.1)

kA, kF , kC , kP , and kR are weighting factors and should have a sum equal to 1. They
are combined with A, which is the ID of the containing Application, F , which is the
ID of the Function, and C, any comment provided directly before the Function. P is a
concatenation of the IDs of the ProvidedServices and the IDs of the service type (i.e.,
the ID of the provided Interface or Event). R is the same concatenation, but for the
RequestedServices.

If the similarity s between two Functions is above a certain threshold they are considered
matching. When multiple templates are available, there might be multiple matches as
well. In such cases the user decides which implementation should be used. Using this
approach each user implementation is also available as a template for future applications.
This also allows an easier start for new users, since they can take advantage of designs
made by more experienced users. Furthermore, the template storage can also be filled
with predefined solutions (e.g., for IEC 61850 Interfaces). This simple approach can
also be extended to include more advanced metrics of the user design decisions.

91

4. Rapid Engineering Methodology

4.6 Phase III–IV: Validation and Deployment
The next phase is the validation. The main goal with this phase is to validate and
test the implemented functions and algorithms that were developed in the previous
phase. The next step is the to deploy the developed application be to the field, but only
after a successful validation. However, with the choice of IEC 61499 as implementation
language the validation and the deployment phases melt together. In order to execute
an IEC 61499 Application499 the deployment guidelines defined in Section 4.4.1 should be
followed. Summarized, they specify the following process:

• Mapping of SubApps499 and FBs499 to their corresponding Resources499.

• Adding platform-specific information to the Resource499.

• Configuration of the actual field instance of the Device499 according to the contents
of its Resources499 (i.e., the field Device499 is set up to perform the tasks defined by
its Resources499).

This process is followed independently of if the Application499 is validated or if it is executed
in a field environment. The only difference is that the platform-specific information
will differ depending on the execution platform. Consequently, the actual implemented
functionality remains the same independently of where it is executed [7, 4, 150]. Therefore,
the validation and deployment phases can be combined. This is however not always the
case. For other implementation languages, a strict separation of the validation and the
deployment may be desired. For example, if a modeling and simulation language (e.g.,
Modelica, Matlab/Simulink) is used as implementation language, the validation could
be done directly using simulations, and code generation (e.g., to C code) could be one
possibility for the deployment.

An overview of the combined validation and deployment phase is seen in Figure 4.17.
It contains three main steps: (i) generation of platform-specific code, (ii) deployment
of the code to the dedicated platform, and (iii) the actual execution and/or validation.
Automated support is provided for the first step, whereas the other steps are mainly
carried out by the user.

The first step is the generation of a platform-specific implementation based on the design
and the platform-independent implementation from the previous phase. Three types of
code are automatically generated. First, platform-specific information is added to the
Resources499. This includes generation of SIFBs for communication between Devices499.
Secondly, configurations are generated to setup the communication SIFBs. Finally,
simulation models are generated from the System specification for simulative validations.

Once the necessary platform-specific code is generated it is deployed to its execution
platform. This can be either field devices, a simulation tool or a combination thereof. In
this work, simulation models are generated as CIM models. Thus, they can be simulated
on any power system simulation tool with support for the CIM description format.

92

4.6. Phase III–IV: Validation and Deployment

Validation and Deployment

Generation of
platform code

Deployment
Execution and

validation

<SCL>

Simulation Models

Configurations and code

~=

~
=

Method

Simulation tools Simulative/Laboratory validation

Y: 005 V

y = 5ü

Field devices Field execution

Resource

Figure 4.17: Overview of the steps for the combined validation and deployment phase.

The final step is the actual execution and/or validation of the developed application. The
validation can either be simulative or a laboratory test. How the validation is carried
out is decided by the user and is not a focus of this thesis. The main focus is instead to
provide an automated support for transferring the implemented application to the desired
platform: field devices for automation functions and simulation tool for generated models.
With the combined validation and deployment phase the requirements R3-Testing and
Validation and R4-Release and Deployment are realized.

4.6.1 Generation of Platform Code

The first step of the validation and deployment phase concerns the generation of platform-
specific code. In this thesis, mainly three types are generated: platform-specific IEC 61499
implementations, communication configurations, and simulation models. The following
sections describe this process in detail.

Platform-Specific IEC 61499 Implementation

The Application499 that is the result of the implementation phase is platform-independent.
This means that no platform-specific information is provided within the Application499.
Before it can be deployed, this information must be added in order to be executable on
its target platform. Different platforms must be supported. It can be either a simulation
platform, a laboratory platform, or a field device. The platform-specific information is
added to the Resources499 where the SubApps499 are distributed. The information is on
the one hand SIFBs for the communication between Devices499 and on the other hand
necessary FBs499 for the process interfaces (e.g., for field sensors and actuators).

This work is mainly focused on the generation of SIFBs for the communication between
SubApps499. Each connection that represents a network communication between two

93

4. Rapid Engineering Methodology

Devices499 is split up and SIFBs are added to the corresponding Resources499, as seen
in Figure 4.13. Since each connection is associated with an Interface or Event this
information is used for the generation. If the connection is defined by an Interface

client/server SIFBs are generated. The server FB499 is created in the Resource499 of the
providing SubApp499 (i.e., the SubApp499 with the Socket499 interface). Similarly the client
FB499 is created in the Resource499 of the requesting SubApp499 (i.e., the SubApp499 with the
Plug499 interface). For Event connections publish/subscriber SIFBs are generated. In
this case, the publisher FB499 is created in the Resource499 of providing SubApp499 and the
subscriber FB499 is created in the Resource499 of the requesting SubApp499. Depending on
the protocol that is used, the SIFBs are properly configured. How this configuration is
done depends on the tool and platform that is used. The platform-specific configuration
is discussed in more detail in Section 5.3.

The generation of interfaces to sensors and actuators is not directly in the focus of this
thesis. In modern power systems, many of the sensors and actuators also provide access
through Ethernet interfaces. Therefore, the same approach as for the communication
connections between Devices499 can be used to access the low-level field equipment. Any
SubApps499 belonging to already existing Functions do not need to handled during the
platform-specific implementation. Since they are already implemented in the field there
is also no need to generate any communication SIFBs in their Resources499. To prevent
this, these SubApps499 should be unmapped before generation. These opportunities also
allow the interaction with existing system components and enables the realization of
R9-Handling Legacy Systems.

Communication Configurations

Generally different types of configurations can be generated. On one hand, and as already
discussed, it is possible to generate devices configurations in order to configure their
communication stacks. Examples are the already discussed SCL files but also configuration
of IP-addresses etc. On the other hand, since not only Devices are specified in PSAL,
but also the communication infrastructure and Connections, it is also possible to create
configurations for these as well. One possibility could be to take advantage of SDN
controllers. By generating configurations for these controllers, they can be exploited to
configure the whole communication network [118]. In this thesis, the first possibility is
used to show the feasibility of automatic creation of communication configurations.

IEC 61850 is using SCL files in order to configure the information flow between IEDs
as well as network properties (e.g., VLAN identifier or priority). Based on the mapping
between PSAL and IEC 61850 (see Figure 4.14 and Section 4.4.3) such SCL files can
be created for each Device. In order to support this, the mapping in Figure 4.14 is
extended with the mappings in Figure 4.18.

As seen in Figure 4.18a, the Device is mapped to the IED850 and from each Resource

a LDevice850 is created. In an SCL file, LDevices850 contain LN instances (i.e., LNs850).
In PSAL, these LN instances are represented by the ServiceImplementations, which

94

4.6. Phase III–IV: Validation and Deployment

PSAL

IEC 61850
(SCL)

Model mapping

Device

-ID

IED

-name = ID

Resource

LDevice

Function

ServiceImpl…

LN

Interface

LNodeType

-ID -ID

-inst = ID -id = ID

(a)

Device

IED

ICTInterface

-ID -ID

AccessPoint SubNetwork

Connection OtherICTComp…

ConnectedAP

-name = ID -name = ID -name = ID

-IDPSAL

IEC 61850
(SCL)

SCL Communication

(b)

Figure 4.18: Mapping between PSAL and IEC 61850: (a) Mapping between
ServiceImplementations and LNs850; (b) Mapping between the communication de-
scription in PSAL and in SCL.

in turn are related to a Resource if their implementing Function is associated with
the Resource through a FunctionMapping. Finally, each ServiceImplementation

is defined by an Interface, which is mapped to the LNodeType850. This is also the
mapping that was presented in Section 4.4.3.

In Figure 4.18b it is shown how the communication specification parts of PSAL are mapped
to the corresponding parts in SCL. Each ICTInterface of a Devie is mapped to an
AccessPont850. Moreover if OtherICTComponents like gateway, switch, or router are used
these are mapped to a SubNetwork850 in SCL. The Connections between ICTInterfaces
and OtherICTComponents are represented by a ConnectedAP850 in IEC 61850.

There are some cases where the IEC 61850 model is ambiguous. For example, the
AnalogueValue DAType shown in Figure 4.14a has two optional attributes. It is only
allowed to use one of these attributes and it is up to the engineer to decide which one.
This means that it is not possible to create a final SCL file only from the specification
made in PSAL. Also the implementation is needed, since it is here that the engineer
decides which one of the attributes should be used.

95

4. Rapid Engineering Methodology

Simulation Code

An important tool for validation of smart grid applications is simulation. This is especially
the case when it is not possible to use the real system for tests and validation. Either
because tests with the real system can cause damage or because it is not available. This
is also the case with smart grid systems, see requirement R3-Testing and Validation. To
provide support for simulative validations, the rapid engineering approach allows the user
to automatically generate simulation models, based on the design and implementation.

Using the mapping described in Section 4.3.2, CIM models can be generated from the
specification and design in PSAL. Apart from the ICTComponents the specification
also contains ElectricalComponents. As already discussed in Section 4.2.2 and in
Section 4.3.2, the electrical component model is based on CIM. Thus it is also possible
to generate a CIM model directly from the PSAL specification using the mapping in
Figure 4.7. Since the CIM format is supported by a number of power system simulation
tools any of these can be used to execute the simulations.

Only the ElectricalComponents are transformed into CIM. The ICTComponents are
intended to be implemented using IEC 61499 also for the simulative validation. Instead of
generating simulation models of the ICTComponents the IEC 61499 implementations are
integrated with the power system simulation using a co-simulation approach [150, 143, 140].
This has the advantage that the implemented code does not change between validation
and deployment. Any ICTComponents that are not implemented must be manually
integrated into the simulation.

4.6.2 Deployment and Execution

The final step of the validation and deployment is to validate and execute the developed
application. Depending on the validation method, or execution approach, different steps
are needed in order to deploy and execute the generated code. Of course these steps
are depending on the use case, as well as the different tools used for the development.
Nonetheless, some general steps are always followed. Especially the deployment of the
generated code is one step that is important for both the validation process as well as
the execution phase. As presented above, three types of code are generated: IEC 61499
code, communication configurations, and simulation code. Consequently, all three types
must also be deployed.

The process to deploy IEC 61499 code is defined by compliance profiles, as specified in the
IEC 61499 standard [64]. One of the parts that such a compliance profile must define is
configurability of Devices499 by the means of software tools. In this work, the “IEC 61499
Compliance Profile for Feasibility Demonstrations” is used [61]. It defines that software
tools shall use the management capabilities of Devices499, and that these capabilities
should be available remotely (e.g., via an IP interface). It also defines an XML format
for the configuration of the Device499 from the software tool. The management interface
and the XML format are also used for the deployment of the Application499. Simply said,

96

4.7. Summary and Reflection

the Application499 is deployed by downloading it to the Device499. This deployment process
is always the same, independent if it is a validation case or for field deployment.

In the case of communication configurations, a similar approach, as for IEC 61499,
is needed for the deployment. Unfortunately, there is no common approach to do
this. Instead different communication standards may have their own approaches. In
IEC 61850-6, a remote configuration through file transfers is suggested (see Figure 3.1).
Once an SCL file has been engineered it is transfered to the IED. This is complemented
with a file transfer service defined in IEC 61850-7-2. However, the standard does not
define how—and if—an actual reconfiguration of the IED is triggered by such a file
transfer. This is specific to the actual implementation [66].

The deployment of simulation code is usually not as problematic as for field installations.
A usual scenario is to first import or load the simulation model into a power system
simulator. Once the model is loaded the simulation is started within the simulator. Some
tools offer support with an API or through other interfaces. For the rapid engineering
method in this thesis, no further automatic support is provided beyond the creation of
the simulation models, as described in Section 4.6.1. It is the user’s responsibility to load
the model and start the simulation.

After the deployment, the execution of the application starts. This can be either a
validation or a field execution. How the validation is done is decided by the user. The
rapid engineering approach in this thesis can support the user with both a simulative as
well as an experimental validation. However, it does not cover what is actually validated
and what the criteria for a successful validation are. This is dependent on the use case
and must therefore be decided by the use case engineer. A field execution is also very
much depending on the use case and the current setup. Therefore, the actual process of
starting the application must be handled by the user. The rapid engineering process does
not provide any automatic support for this part. It is not possible, due to the numerous
different setups that would need to be covered.

4.7 Summary and Reflection

In this chapter, a rapid engineering methodology was described. The main goal with
the methodology, as stated by the Research Hypothesis, was to reduce the manual work
needed by the smart grid engineer. For this purpose, MDE technologies have been applied
and although the rapid engineering methodology is focused on applications for power
utility automation, it has many similarities with MDE methods for software development.

For example, the MDA approach, already described in Section 2.5.1, can be directly
compared to the rapid engineering methodology. The PSAL model developed during the
design phase can be considered a PIM. It is not related to any specific execution platform.
But, it is even more than that. It is also independent of an implementation language.
Only after an implementation language was integrated in Section 4.4 could PSAL be

97

4. Rapid Engineering Methodology

mapped to artifacts of this language. Here, the design model is called a Implementation
Language Independent Model (ILIM). This is seen as the first part in Figure 4.19.

Use case design and
specification

Generation of functions

Field Devices

Design Implementation Validation and Deployment

Resource

Generation of
platform code

Deployment

Application

Implementation Language
Independent Model

Platform-Independent Model Platform-Specific Model

application A1 {
 function F1 {…}
 module M1 {…}
 …
} <SCL>

Figure 4.19: Rapid engineering concept with related MDA aspects.

Using the same argumentation as above, the PIM must come after the ILIM. In Figure 4.19,
the PIM is seen below the implementation phase. The relationship between MDA and
IEC 61499 has already been studied by Zoitl et al. [177]. In their opinion, the Application499

model of IEC 61499 is comparable to the PIM of MDA. Here, this would mean that the
generated Application499 and SubApps499 (see Section 4.5) are the PIM.

The next step would be to create the PSM. According to Zoitl et al. this model is created
by mapping the FBs of the Application499 to hardware (i.e., to Resources499 of Devices499).
Furthermore, services indicated by SIFBs should be inserted into the Resource499, either
manually or by the tool [177]. In the case of this work, communication SIFBs are
automatically generated and configured for the Resources499, as described in Section 4.6.1.
Consequently, these represent the PSM, as seen under the validation and deployment
phase in Figure 4.19. A PSM for communication configurations is represented by the
final configuration file (e.g., an SCL file as described in Section 4.6.1).

The final step that is mentioned in the MDA approach is to create “executable information
systems” from the PSM [100]. Either the PSM is transformed into code (e.g., Java, C++)
or a model execution engine exists that can directly execute the PSM. The approach in
this work is more related to the latter alternative since the IEC 61499 code is deployed
through a download using an XML format, as described in Section 4.6.2.

98

CHAPTER 5
Prototypical Implementation

In order to show the feasibility of the rapid engineering methodology presented in
Chapter 4, a prototypical framework was implemented. A number of goals were defined
for the framework. First of all, the main goal of the framework is to use it to answer the
main research question of this thesis, and to prove the research hypothesis (see Section 1.2).
By using the framework it can be shown that the rapid engineering methodology not
only works in theory, but also in practice. Another goal was to create a usable framework
existing within one tool. This means that the user should not need to shift between
different tools in order to complete the engineering process.

The following sections present the prototypical implementation made for the different
phases. Finally, an overview of the complete framework is presented at the end of the
chapter. The following work is mainly based on [117], although this thesis provides much
more detailed description.

5.1 Implementing the Specification Phase
First of all, PSAL must be implemented such that power utility automation use cases
can be modeled. Furthermore, an editor is needed accompanied by a compiler that can
interpret the PSAL code. The choice fell on the xText [36] environment for the Eclipse
Integrated Development Environment (IDE) [35]. On one side, it allows the definition
of DSLs and on the other side it also provides resources to implement an editor and
compiler. Figure 5.1 shows a conceptual visualization of the resulting PSAL tool, and
the different design steps that it includes.

The figure shows the three main steps of the design phase: design of the Application,
the System, and the Interfaces/Events. These are all carried out by the engineer using
the PSAL editor. The editor automatically uses syntax highlighting based on the defined
grammar. Figure 5.2 shows an IEC 61850 Interface, defined in the PSAL editor.

99

5. Prototypical Implementation

Eclipse IDE

{ PSAL } Tool

Protocol
Mappings

Application System Interfaces

Specification

Figure 5.1: Illustration of the PSAL tool implementation.

Additionally, as seen in Figure 5.1, the user can also define protocol mappings, described
in Section 4.4.3. For this purpose ATL [78] for the Eclipse IDE was used. ATL is
used to describe model-to-model transformations. It allows the user to describe how an
existing information model (e.g., IEC 61850) can be mapped to the information model
in PSAL. In the next step, this description can be used to import and transform the
information model into a resulting PSAL model. Finally, this model can be opened with
the PSAL editor. With the IEC 61850 information model as an example, the MMXU
Interface shown in Figure 5.2 is the result of such a transformation. As input, the full
SCL description of the MMXU from Figure 4.14b is used.

Figure 5.2: Definition of the MMXU LNodeType850 in the PSAL editor.

Figure 5.2 also shows how comments in PSAL can be used for documentation purposes.
Each comment describes the next Attribute and is a direct copy of the description of
each DO850 in the SCL file. Thus, no information is lost during the transformation.

100

5.2. Prototype for the Implementation Phase

5.2 Prototype for the Implementation Phase

In order to facilitate the implementation phase, PSAL should be extended with IEC 61499
capabilities. This will allow the implementation of PSAL Functions. For this purpose,
the 4diac-ide [176, 35] was chosen, an open-source IEC 61499 compatible development
environment. It is also based on the Eclipse IDE and thus it was possible to create one
environment capable of both design and implementations. 4diac also provides a runtime
environment for the execution of IEC 61499 control applications. However, in order to
support a smooth transition between the design phase and the implementation phase
some additions were needed for the 4diac-ide.

In Figure 5.3, a conceptual representation of the 4diac-ide together with the extensions
is shown. First of all, an addition was made to handle the generation of the Application499

and the System499 models based on the PSAL description, see Section 4.4.2 and Section 4.5.
When the user saves any changes in the PSAL editor, all Applications and Systems are
parsed and transformed into their correspondence in IEC 61499. For this transformation,
ATL rules were defined that take the PSAL model as input and create IEC 61499 models
as output. These models are then loaded by the 4diac-ide environment.

Eclipse IDE

IEC 61499 Tool : 4diac-ide

Generate
SubApps499

Generate
Application499

and System499

Java
User

SubApps499

P
O

W
ER

ED
 B

Y

FB

Implementation

{ PSAL }

Figure 5.3: Illustration of the IEC 61499 based on the 4diac-ide.

The next step is to generate SubAppTypes499 and SubApp499 instances, as described in
Section 4.5.1. This addition was created using plain Java and is automatically executed
after the generation of the Application499 and the System499. Previous Function imple-
mentations are saved in a database. Newly specified Functions are compared to the
ones in the database. If a match is found the user is asked if it should be used for the
new implementation as well. If that is the case the old SubAppType499 is copied and used
for the new SubApp499 instance as well. For Functions that do not have a match empty
SubAppTypes499 are generated.

Following the automatic generation of the Application499, the System499, and the SubApps499,
manual interaction by the user is needed. On one hand, the empty SubAppTypes499 must
be implemented. On the other hand, the user also has the possibility to modify the

101

5. Prototypical Implementation

generated SubAppTypes499. For this step, all the standard functionality of the 4diac-ide is
available to the user [35].

5.3 Tools for the Validation and Deployment
As already described in Section 4.6, the validation and deployment phase has three main
parts: code generation, deployment, and execution/validation. The rapid engineering
method provides automation support for the first two parts. In order to accommodate
this support, another extension was added to the 4diac-ide to handle the generation of
Resource499 specific FBs499. Also, two new features were added to support the generation of
communication configurations and simulation models. These additions together with the
conceptual realization for the validation and deployment phase are shown in Figure 5.4.

Eclipse IDE

Generate
Communication
Configurations

Generate
Simulation Models

4diac-rte

PowerFactory

Validation and Deployment

{ PSAL }

4diac-ide P
O

W
ER

ED
 B

Y

FB

Generate
Resource499 FBs

Java

P
O

W
ER

ED
 B

Y

Figure 5.4: Illustration of the tools used for the validation and deployment phase.

The first step of the validation and deployment is to generate platform specific FBs499

for the Resource499. As already described in Section 4.4.2, connections between FBs499

that are mapped to different Resources499 may need extra attention before deployment.
In 4diac, this is handled with SIFBs, as seen in Figure 4.13.

For communication, the 4diac-ide provides client/server and publish/subscriber SIFBs.
These are also proposed in the IEC 61499 standard [64]. With 4diac, these SIFBs can also
be parameterized to use different communication protocols. What protocols can be used
are defined by the 4diac-rte (short for 4diac Runtime Environment (RTE) and also known
as FORTE), which accompanies the 4diac-ide. The standard protocols used by 4diac are
ASN.1 over TCP for client/server connections and ASN.1 over UDP for publish/subscriber
connections. However other protocols like Modbus, OPC UA, Message Queue Telemetry
Transport (MQTT), and Ethernet PowerLink are also natively supported. For this work,
support for IEC 61850 was also implemented using the libiec61850 library [152, 87].

The 4diac-ide also has a primitive support for the automatic generation of communication
SIFBs. For connections between FBs499 in different Resources499 publish/subscriber SIFBs
can be automatically generated [83]. This feature of 4diac was extended during this

102

5.3. Tools for the Validation and Deployment

thesis. Support for automatic generation of client/server based communication, as well as
to handle Adapter connections was added to the 4diac-ide. Consequently, for connections
based on Interfaces client/server FBs499 are generated, and for connections based on
Events publish/subscribe FBs499 are generated.

Furthermore since PSAL offers a better possibility to describe communication interfaces,
this information can also be used to automatically configure the SIFBs. Figure 5.5
extends Figure 4.13 by also showing how the communication SIFBs are parameterized
based on the defining Interface. The Interface i1 inherits from an IEC 61850 LN
called MMXU (see Figure 4.14 for more information on the definition of MMXU). As
a result, both the client FB499 and the server FB499 are configured to use IEC 61850 as
communication protocol. Interfaces and Events without inheritance are automatically
configured to use the standard protocol ASN.1. Sometimes it is also possible to override
the choice of protocol in the ServiceImplementation definition. With help of the
ProtocolUsage part it may be possible to define another communication protocol than
the one defined by the Interface or Event. For example, it is always possible to use
ASN.1, since it does not provide any more semantic than the data type, but IEC 61850
can only be used if the Interface also inherits from an IEC 61850 Interface.

D
ev
ic
e2

Resource1

D
ev
ic
e1

Resource1

Mapping

SubApp SubApp

SubApp SubApp

SA1

SA1 SA2

SA2

Client
Server

Mapping

interface i1 : MMXU {…}

ID

SD_1

SD_2

iec61850[…]

RD_1

RD_2

IDiec61850[…]

Figure 5.5: Automatic generation of communication FBs499 based on Interfaces/Events.

Accompanying the 4diac-ide is the 4diac-rte. It allows the execution of IEC 61499
applications. Both 4diac tools support the “IEC 61499 Compliance Profile for Feasibility
Demonstrations”. Consequently, the deployment of the Resources499 to their Devices499 is
automated, and results to a simple download from the 4diac-ide to 4diac-rte.

In order to validate the generation of communication configurations, the prototypical
implementation supports the automatic generation of SCL files based on used IEC 61850
Interfaces. To achieve this a transformation between PSAL and SCL was implemented
using ATL. The transformation uses the mapping described in Section 4.6.1. As seen in
Figure 5.2, imported IEC 61850 Interfaces include all possible DOs850, mandatory and
optional. In order to decide which DOs850 should be used in the final SCL configuration

103

5. Prototypical Implementation

the implemented SubAppTypes499 for the application are examined. Only the DOs850 that
are actually used in the SubAppTypes499 will also be used in the final SCL configuration.
The resulting SCL file must be manually transfered to the Devices499 where the IEC 61850
client and server FBs499 are executed.

In Section 4.6.1, it is described how CIM models can be generated based on the
ElectricalComponents in the PSAL description. For the validation in this work,
PowerFactory is used as power system simulation tool [112]. It also supports CIM, and
it is possible to import CIM models into PowerFactory. Thus, a transformation was
added to the prototypical implementation that creates CIM models compatible with
PowerFactory. As with the other transformations ATL was used for the realization.

5.4 Resulting Framework
By connecting the parts above together a resulting framework is created, which is the
prototypical implementation for the rapid engineering methodology developed in this
thesis. The framework is running within one Eclipse instance. This means that the user
does not have to switch between different tools during the development. Other tools are
only needed for the validation and the execution. In Figure 5.6, the complete framework
is shown. The figure also shows the intended workflow, and if user interaction is needed
or if automation is provided. A red border indicates that this is a new part, created for
this thesis, and a black border marks already existing parts.

Eclipse IDE

 IEC 61499 Tool : 4diac-ide

{ PSAL } Tool Protocol
Mappings

Generate SubApps

Generate
Resource499 FBs

Generate
Communication
Configurations

Generate
Simulation Models

4diac-rte PowerFactory

Generate
Application499

and System499

Java
User SubApps

Application System Interfaces

P
O

W
ER

ED
 B

Y

P
O

W
ER

ED
 B

Y

Java

Sp
ecificatio

n
Im

p
lem

en
tatio

n
V

alid
atio

n
 an

d

D
ep

lo
ym

en
t

FB

1 2 3

4 5 6

7
8 9

10 10

Manual part

Automated part

Existing part

New part

Figure 5.6: Prototypical implementation of the rapid engineering methodology.

104

CHAPTER 6
Applying the Rapid Engineering

Methodology

As introduced in Section 1.3, the scientific research method used in this work contains
five steps, where the fourth step regards the implementation of the formulated theoretical
solution. The first part of that step is the actual prototypical implementation of the
rapid engineering methodology presented in the previous Chapter 5. However, in this
research case, the fourth step also includes the application of the developed prototype.
In other words, the rapid engineering method is applied to a selected test case to show
how it can be used to develop smart grid applications. For each phase of the engineering
process, this chapter also presents how the prototypical implementation (presented in
Chapter 5) is used. The main parts of this chapter were already presented in [117].

6.1 Introduction and Use Case Analysis

In order to show how the rapid engineering methodology is used, a use case example is
modeled and implemented. The chosen use case considers a coordinated volt-VAr control
that is commissioned by the DSO. This includes the implementation of a control device
owned by the DSO as well as the implementation of new functions in a DER component.
The new DER functionality is commissioned from the DER manufacturer. The use case
was selected to cover at least one part of all three business cases presented in Section 3.1.

The component layer of the use case is seen in Figure 6.1. Its structure is similar to
the “Integrated Volt VAr Control Centralized” [52] use case presented in BC1. A typical
scenario for distribution network operation is used, where the primary goal is to keep
network voltage within the allowed limits. To achieve this, local voltage control is provided
by selected DERs throughout the network. These DERs affect the voltage at their point
of coupling through the use of volt-VAr control [71]. Additionally, at the operation level,

105

6. Applying the Rapid Engineering Methodology

a central volt-VAr optimizer supervises and manages the local DER controllers in order
to achieve an optimal power level within the whole distribution network.

Distribution DER

P
ro
ce
ss

Fi
el
d

St
a
ti
o
n

O
p
er
a
ti
o
n

G
LV

Transformer
Monitor

DER
Controller

Router

AC

Bus Monitor

AC

End-of-Line
Monitor

Distribution
RTU

LV LV

Customer

D-SCADA
Volt-VAr

Controller

DSO Computer

MV

External Grid

Figure 6.1: Component layer for the test case.

The devices in the field (i.e., the Transformer Monitor, the Bus Monitor, the DER
Controller, and the End-of-Line Monitor) send measurements to the Distribution Remote
Terminal Unit (RTU). The Distribution RTU aggregates this information and forwards it
to the DSO SCADA (D-SCADA) system. Thereupon, the D-SCADA forwards all vital
information to the Volt-VAr Controller. It computes new volt-VAr set points for the DER
Controllers. The new set points are forwarded by the D-SCADA and the Distribution
RTU to the field controllers. With the volt-VAr set points, the DER Controllers can
calculate a reactive power set point for the DER Generator, illustrated as the circle with
the G in Figure 6.1. A complete use case description, according to IEC 62559 [69], is
provided in Appendix B.4.

For the implementation of this use case, it is assumed that the D-SCADA and the
Distribution RTU are already implemented and installed in the system. From an
engineering point of view, both are realized in the same manner as the Volt-VAr Controller.
For the field components, only a local volt-VAr control functionality for the DER
Controller needs to be implemented. It is assumed that the monitors are already installed
in the system.

In order to properly validate the prototypical implementation of the rapid engineering
methodology, this use case covers parts of all three business cases in Section 3.1. The
design and specification of the use case cover BC1. The implementation of the Volt-VAr

106

6.2. Applying Phase I: Design

Controller and communication setup of the application is associated with BC2. Finally,
the implementation of the DER Controller is associated with BC3.

In the following sections, the engineering of the use case, according to the rapid engineering
method from Chapter 4, will be presented. First, the whole use case will be designed
and specified using PSAL. Secondly, two implementations will be shown in detail: the
Volt-VAr Controller and the DER Controller. Finally, the implementation of the use case
will be validated. A simulative validation is used to validate the DER Controller and a
laboratory validation will be used to validate the complete setup.

6.2 Applying Phase I: Design
In this section, the application of the specification phase for the use case is presented.
Mainly this means that the use case is designed and modeled using PSAL. As shown in
Section 4.3, this phase is based on the SGAM method. Each of the SGAM layers are
modeled in different steps using PSAL, as seen in Figure 4.5. This is also shown as the
first three steps in Figure 5.6. The following sections show the modeling of these steps
for the use case, using the prototypical framework.

The design of the use case using PSAL is based on the use case description in [52], which
is also partly described in BC1. This shows how high level use case descriptions can be
further analyzed and how functionality and information exchange can be extracted. The
following sections were already presented in [117].

6.2.1 Business Case and Functional Design

As the first step of the specification phase, a business case should be designed and
specified. However, as the use case description in Section 6.1 does not provide any direct
information about business cases or goals, these will not be covered in the modeling.
Instead, the first step is the functional specification.

According to the definition of PSAL, both the business and the function layers are modeled
within the Application. For this use case, the Application is named according to
the use case identification in Table B.37. The Functions of the use case are directly
derived from the use case actors in Table B.46. These actors are all logical actors and
thus each actor represents a certain function in the system. Hence, for each actor a
Function is declared. In Listing 6.1, a VoltVArControlCoordinated Application is
defined containing a Function for each use case actor.

1 application VoltVArControlCoordinated {
/* Volt-VAr Controller: Controller located in the substation monitoring and

* controlling the devices in the network. It optimizes the voltage level in

* the grid by issuing new reactive power set points to the field components.

*/
2 @Distribution @Operation
3 function VoltVArController {}
4 @Distribution @Operation

107

6. Applying the Rapid Engineering Methodology

5 function DSCADA {}
6 @Distribution @Station
7 function DistributionRTU {}
8 @DER @Field
9 function DERController {}

10 @DER @Process
11 function DERGenerator {}
12 @Distribution @Field
13 function TransformerMonitor {}
14 @Distribution @Field
15 function BusMonitor {}
16 @Customer @Field
17 function EndOfLineMonitor {}
18 }

Listing 6.1: Initial Application definition and declaration of Functions for the
example use case.

The listing also shows how annotations are used to place each Function in a domain
and zone. Furthermore the description of the Volt-VAr Controller actor from Table B.46
is added as a comment to describe the VoltVArController Function. In this way, all
information from the use case analysis can be included in the PSAL model.

The functional specification also includes a first draft of the information exchange between
the Functions. Therefore, Interfaces and Events are defined. At this point of the
design their goal is to provide a generic representation of the information that is exchanged
in the use case. The formal data model for the information is defined in the design of the
information layer. In this case, a first analysis of the exchanged information has already
been made based on the use case scenarios. The information exchanged is available in
Table B.54. By analyzing how the information is exchanged, Interfaces and Events
can be identified. Any exchange that matches a client/server pattern should be modeled
with an Interface. Naturally, event based exchanges are modeled with Events. Once
the Interfaces and Events have been identified, they are grouped by the engineer into
Modules. Listing 6.2 shows the identified Interfaces and Event for the use case.

@@ -17,2 +17,27 @@
function EndOfLineMonitor {}

+ module Measurements {
+ interface GridMeasurement {
+ /* Arithmetic average of the phase to phase voltage for 3 phases */
+ readonly attribute float32 voltage
+ }
+ eventtype AggregatedMeasurement {
+ /* Aggregated measurements from field devices (p.u.) */
+ public float32 vTM, vBM, vEOLM, vDER
+ }}
+ module DERCtrlInterfaces {
+ interface DERVoltVArCurve {
+ /* Voltage set points for droop curve */
+ attribute float32 v1, v2, v3, v4
+ /* Reactive power set points for droop curve */

108

6.2. Applying Phase I: Design

+ attribute float32 q1, q2, q3, q4
+ }
+ interface DERDirectControls {
+ /* Reactive power set point in percent */
+ attribute float32 qSetPoint
+ }}
+ module FieldControls {
+ interface DERControls {
+ attribute DERCtrlInterfaces.DERVoltVArCurve derVoltVar
+ attribute DERCtrlInterfaces.DERDirectControls derDirectControl
+ }}
}

Listing 6.2: Identified Interfaces and Events added to Listing 6.1.

The request and the response of the voltage measurement in Table B.54 is represented by
the voltage Attribute. The exchange of the volt-VAr curve is modeled in a similar way
by the DERVoltVArCurve Interface. Likewise, the DERDirectControls Interface is
defined to represent the reactive power set point. Only one Event is used in the use
case. According to Step 9 of the step-by-step analysis of the use case in Table B.50,
the aggregated voltage measurements are published from the DistributionRTU to the
DSCADA. To represent this exchange, the AggregatedMeasurement Event is defined. The
Interfaces and the Event are grouped manually in two Modules: in Measurements all
measurements are contained and in the DERCtrlInterfaces all Interfaces related to
the control of the DER are grouped. Finally, the defined information is added to the
VoltVArControlCoordinated Application.

In order for the Functions to use the information, they need ServiceImplementations
(i.e., ProvidedServices and RequestedServices). Finally, the information exchange
between the Functions is specified by adding Connections. They connect requested with
provided ServiceImplementations. Listing 6.3 shows how ServiceImplementations
are added to the VoltVArController and the DSCADA Functions, and how they are
connected with each other.

@@ -1,7 +1,13 @@
application VoltVArControlCoordinated {
@Distribution @Operation

- function VoltVArController {}
+ function VoltVArController {
+ consumes Measurements.AggregatedMeasurement gridStatus
+ requests DERCtrlInterfaces.DERVoltVArCurve dscadaVoltVArCurve
+ }

@Distribution @Operation
- function DSCADA {}
+ function DSCADA {
+ emits Measurements.AggregatedMeasurement gridStatus
+ provides DERCtrlInterfaces.DERVoltVArCurve voltVArCurve
+ }

@Distribution @Station
function DistributionRTU {}

@@ -38,6 +44,8 @@

109

6. Applying the Rapid Engineering Methodology

module FieldControls {
interface DERControls {
attribute DERCtrlInterfaces.DERVoltVArCurve derVoltVar
attribute DERCtrlInterfaces.DERDirectControls derDirectControl

}}
+ connect VoltVArController.gridStatus with DSCADA.gridStatus
+ connect VoltVArController.dscadaVoltVArCurve with DSCADA.voltVArCurve
}

Listing 6.3: Adding ServiceImplementations and Connections.

By combining the initial Application definition in Listing 6.1 with the new additions
in Listing 6.2 and in Listing 6.3, a complete definition is created. This is presented
in Listing 6.9, although without any comments. In Appendix C, a full listing of the
Application is found (Listing C.1). Apart from the comments, it also includes the
FunctionMappings between the Functions and the Resources in the System model.

6.2.2 System Design

After the functional specification, the next step of the specification phase is the system
specification. With PSAL, this step includes the definition of the System model, where
each component participating in the use case is defined.

The diagram in Table B.45 gives an overview of the different components involved
in the use case. In general, two types of components are used: ICTComponents and
ElectricalComponents. The ICTComponents almost completely coincide with the
Functions in Listing 6.9. The only differences are that one Device is used to host
both the DSCADA and the VoltVArControl Functions, and that the router component
does not have a related Function. Listing 6.4 shows an initial definition of the System
model and the ICTComponents. As with the Functions in Listing 6.9, each component
is placed in its appropriate domain and zone.

1 system DistributionSystemVV {
2 @Distribution @Operation
3 device DSOComputer {
4 ethernet eth0 {ip = "10.0.0.1"}
5 resource SCADA
6 resource VoltVAr
7 }
8 @Distribution @Station
9 device DistributionRTU {

10 ethernet eth0 {ip = "10.0.0.2"}
11 ethernet eth0 {ip = "101.0.0.1"}
12 resource RTUResource
13 }
14 @Distribution @Station
15 router StationRouter
16 @Distribution @Field
17 device TransformerMonitor {
18 ethernet eth0 {ip = "101.0.0.2"}

110

6.2. Applying Phase I: Design

19 resource MonitorResource
20 }
21 @Distribution @Field
22 device BusMonitor {
23 ethernet eth0 {ip = "101.0.0.3"}
24 resource MonitorResource
25 }
26 @DER @Field
27 device DERController {
28 ethernet eth0 {ip = "101.0.0.4"}
29 ethernet eth0 {ip = "192.168.0.2"}
30 resource AncillaryServices
31 }
32 @Customer @Field
33 device EndOfLineMonitor {
34 ethernet eth0 {ip = "101.0.0.5"}
35 resource MonitorResource
36 }
37 }

Listing 6.4: Initial System model for the use case example.

Each Device also has at least one computing Resource and one ICTInterface. Com-
pared to the other Devices, the only Device with two Resources is the DSOComputer.
It has one Resource for the DSCADA Function and one for the VoltVArController
Function. This shows how one device can be split up into different computing resources
and how this can be used to group different functionality.

The use case diagram (see Table B.45) also shows the ICT connections. From these, it is
possible to define the ICTInterfaces of the Devices. For each connection to a Device,
an ICTInterface is created. For this use case it is assumed that an IP network is used.
Thus, all defined interfaces are of the ethernet type and for each ICTInterface an IP
address is defined. It is also possible to specify other settings in the same manner as the
IP address (e.g., macAddress = "00:0c:a8:...").

The ElectricalComponents are defined in the same manner as the ICTComponents.
From the use case diagram (see Table B.45), the main components are identified. Next,
Terminals are added in order to connect the ElectricalComponents with each other.
Listing 6.5 shows how the ExternalSystem, the MV busbar, the transformer, and the
DERGenerator are added to the initial System model.

@@ -33,5 +33,43 @@
device EndOfLineMonitor {
ethernet eth0 {ip = "101.0.0.5"}
resource MonitorResource

}
+ @Distribution @Process
+ generator ExternalSystem {
+ terminal MVBus
+ }
+ @Distribution @Process

111

6. Applying the Rapid Engineering Methodology

+ busbar MVBus {
+ terminal ExternalSystem
+ terminal MV2LVTransformer
+ }
+ @Distribution @Process
+ transformer MV2LVTransformer {
+ winding MV {
+ terminal mvSide
+ }
+ winding LV {
+ terminal lvSide
+ }}
+ @Distribution @Process
+ busbar LVBus1 {
+ terminal MV2LVTransformer
+ terminal Line1
+ }
+ line Line1 {
+ terminal LVBus1
+ terminal LVBus2
+ }
+ @Distribution @Process
+ busbar LVBus2 {
+ terminal Line1
+ terminal DERGenerator
+ terminal Line2
+ }
+ @DER @Process
+ generator DERGenerator {
+ ethernet eth0 {ip = "192.168.0.1"}
+ terminal LVBus2
+ resource DERResource
+ }
}

Listing 6.5: Adding ElectricalComponents to the System in Listing 6.4.

As with the Functions in Listing 6.1, each ElectricalComponent is also placed in
a domain and zone. The transformer consists of two TransformerWindings: one for
the MV side and one for the LV side. Each component also has at least one Terminal.
These are the electrical connection points of the component. Apart from a Terminal,
the DERGenerator also has a computing Resource and an Ethernet ICTInterface.

Once all the components have been defined, they must be connected with each other. Only
PhysicalInterfaces of the same type may be connected. Thus, it is not possible to
connect a Terminal with an ICTInterface. An ICTInterface may also only be used
in one Connection. Consequently, it is not possible for a PhysicalInterface to have
multiple connections. The only component that does not require PhysicalInterfaces
is the router. Therefore, it may also have multiple connections. In Listing 6.6, the
Connections are added to complement the components in Listing 6.4 and Listing 6.5.

@@ -73,3 +73,16 @@

112

6.2. Applying Phase I: Design

resource DERResource
}

+ connect DistributionRTU.eth0 with DSOComputer.eth0
+ connect DistributionRTU.eth1 with StationRouter
+ connect TransformerMonitor.eth0 with StationRouter
+ connect BusMonitor.eth0 with StationRouter
+ connect DERController.eth0 with StationRouter
+ connect DERController.eth1 with DERGenerator.eth0
+ connect EndOfLineMonitor.eth0 with StationRouter
+ connect MVBus.ExternalSystem with ExternalSystem.MVBus
+ connect MV2LVTransformer.MV.mvSide with MVBus.MV2LVTransformer
+ connect LVBus1.MV2LVTransformer with MV2LVTransformer.LV.lvSide
+ connect Line1.LVBus1 with LVBus1.Line1
+ connect LVBus2.Line1 with Line1.LVBus2
+ connect DERGenerator.LVBus2 with LVBus2.DERGenerator
}

Listing 6.6: Adding Connections between the components of the System.

By connecting the components with each other, the final design step of the System model
is completed. The previous steps showed how some of the components were added. In
Listing 6.7, the complete System model is shown, including all components from the use
case diagram, see Table B.45. An even more detailed version of the System model is also
included in Appendix C, which also includes comments.

1 system DistributionSystemVV {
2 @Distribution @Operation
3 device DSOComputer {
4 ethernet eth0 {ip = "10.0.0.1"}
5 resource SCADA
6 resource VoltVAr
7 }
8 @Distribution @Station
9 device DistributionRTU {

10 ethernet eth0 {ip = "10.0.0.2"}
11 ethernet eth0 {ip = "101.0.0.1"}
12 resource RTUResource
13 }
14 @Distribution @Station
15 router StationRouter
16 @Distribution @Field
17 device TransformerMonitor {
18 ethernet eth0 {ip = "101.0.0.2"}
19 resource MonitorResource
20 }
21 @Distribution @Field
22 device BusMonitor {
23 ethernet eth0 {ip = "101.0.0.3"}
24 resource MonitorResource
25 }
26 @DER @Field
27 device DERController {
28 ethernet eth0 {ip = "101.0.0.4"}

113

6. Applying the Rapid Engineering Methodology

29 ethernet eth0 {ip = "192.168.0.2"}
30 resource AncillaryServices
31 }
32 @Customer @Field
33 device EndOfLineMonitor {
34 ethernet eth0 {ip = "101.0.0.5"}
35 resource MonitorResource
36 }
37 @Distribution @Process
38 generator ExternalSystem {
39 terminal MVBus
40 }
41 @Distribution @Process
42 busbar MVBus {
43 terminal ExternalSystem
44 terminal MV2LVTransformer
45 }
46 @Distribution @Process
47 transformer MV2LVTransformer {
48 winding MV {
49 terminal mvSide
50 }
51 winding LV {
52 terminal lvSide
53 }}
54 @Distribution @Process
55 busbar LVBus1 {
56 terminal MV2LVTransformer
57 terminal Line1
58 }
59 line Line1 {
60 terminal LVBus1
61 terminal LVBus2
62 }
63 @Distribution @Process
64 busbar LVBus2 {
65 terminal Line1
66 terminal DERGenerator
67 terminal Line2
68 }
69 @DER @Process
70 generator DERGenerator {
71 ethernet eth0 {ip = "192.168.0.1"}
72 terminal LVBus2
73 resource DERResource
74 }
75 line Line2 {
76 terminal LVBus2
77 terminal LVBus3
78 }
79 @Customer @Process
80 busbar LVBus3 {
81 terminal Line2

114

6.2. Applying Phase I: Design

82 terminal Load
83 }
84 @Customer @Process
85 consumer Load {
86 terminal LVBus3
87 }
88 connect DistributionRTU.eth0 with DSOComputer.eth0
89 connect DistributionRTU.eth1 with StationRouter
90 connect TransformerMonitor.eth0 with StationRouter
91 connect BusMonitor.eth0 with StationRouter
92 connect DERController.eth0 with StationRouter
93 connect DERController.eth1 with DERGenerator.eth0
94 connect EndOfLineMonitor.eth0 with StationRouter
95 connect MVBus.ExternalSystem with ExternalSystem.MVBus
96 connect MV2LVTransformer.MV.mvSide with MVBus.MV2LVTransformer
97 connect LVBus1.MV2LVTransformer with MV2LVTransformer.LV.lvSide
98 connect Line1.LVBus1 with LVBus1.Line1
99 connect LVBus2.Line1 with Line1.LVBus2

100 connect DERGenerator.LVBus2 with LVBus2.DERGenerator
101 connect Line2.LVBus2 with LVBus2.Line2
102 connect LVBus3.Line2 with Line2.LVBus3
103 connect Load.LVBus3 with LVBus3.Load
104 }

Listing 6.7: System model for the use case example.

Once the System model and the Application model are defined, the next step is
to associate them with each other. This is done by adding a FunctionMapping to
each Function in the Application. This means that each Function is mapped to a
computational Resource (i.e., it is defined where the Function is executed). In this use
case, the mapping is mostly straightforward. Based on the use case diagram in Table B.45,
the Function declarations are extended with mapping information. Furthermore, the
DERGenerator Function is mapped to the DERResource. The mapping information is
added to the Functions in Listing 6.8.

@@ -2,3 +2,3 @@
@Distribution @Operation

- function VoltVArController {
+ function VoltVArController at DistributionSystemVV.DSOComputer.VoltVAr {

consumes Measurements.AggregatedMeasurement gridStatus
@@ -7,3 +7,3 @@

@Distribution @Station
- function DSCADA {
+ function DSCADA at DistributionSystemVV.DSOComputer.SCADA {

emits Measurements.AggregatedMeasurement gridStatus
@@ -14,3 +14,3 @@

@Distribution @Station
- function DistributionRTU {
+ function DistributionRTU at DistributionSystemVV.DistributionRTU.RTUResource {

emits Measurements.AggregatedMeasurement gridStatus
@@ -24,3 +24,3 @@

@DER @Field

115

6. Applying the Rapid Engineering Methodology

- function DERController {
+ function DERController at DistributionSystemVV.DERController.AncillaryServices {

provides DERCtrlInterfaces.DERVoltVArCurve voltVar
@@ -31,3 +31,3 @@

@DER @Process
- function DERGenerator {
+ function DERGenerator at DistributionSystemVV.DERGenerator.DERResource {

provides DERCtrlInterfaces.DERDirectControls directControls
@@ -36,12 +36,12 @@

@Distribution @Field
- function TransformerMonitor {
+ function TransformerMonitor at ¾

Ç DistributionSystemVV.TransformerMonitor.MonitorResource {
provides Measurements.GridMeasurements measurements

}
@Distribution @Field

- function BusMonitor {
+ function BusMonitor at DistributionSystemVV.BusMonitor.MonitorResource {

provides Measurements.GridMeasurements measurements
}
@Customer Field

- function EndOfLineMonitor {
+ function EndOfLineMonitor at DistributionSystemVV.EndOfLineMonitor.MonitorResource {

provides Measurements.GridMeasurements measurements
}

Listing 6.8: The Functions from Listing 6.9 mapped to the Resources in Listing 6.7.

The Applicationmodel is completed by adding the FunctionMappings to the Functions.
This model is illustrated in Listing 6.9.

1 application VoltVArControlCoordinated {
2 @Distribution @Operation
3 function VoltVArController at DistributionSystemVV.DSOComputer.VoltVAr {
4 consumes Measurements.AggregatedMeasurement gridStatus
5 requests DERCtrlInterfaces.DERVoltVArCurve dscadaVoltVArCurve
6 }
7 @Distribution @Station
8 function DSCADA at DistributionSystemVV.DSOComputer.SCADA {
9 emits Measurements.AggregatedMeasurement gridStatus

10 provides DERCtrlInterfaces.DERVoltVArCurve voltVArCurve
11 consumes FieldInformation.GridStatus gridStatusRTU
12 requests DERCtrlInterfaces.DERVoltVArCurve rtuVoltVArCurve
13 }
14 @Distribution @Station
15 function DistributionRTU at DistributionSystemVV.DistributionRTU.RTUResource {
16 emits Measurements.AggregatedMeasurement gridStatus
17 provides DERCtrlInterfaces.DERVoltVArCurve voltVArCurve
18 requests DERCtrlInterfaces.DERVoltVArCurve derVoltVArCurve
19 requests Measurements.GridMeasurements derMeasurements
20 requests Measurements.GridMeasurements transformerMeasurements
21 requests Measurements.GridMeasurements busMeasurements
22 requests Measurements.GridMeasurements eolMeasurements
23 }

116

6.2. Applying Phase I: Design

24 @DER @Field
25 function DERController at DistributionSystemVV.DERController.AncillaryServices {
26 provides DERCtrlInterfaces.DERVoltVArCurve voltVar
27 provides Measurements.GridMeasurements measurements
28 requests DERCtrlInterfaces.DERDirectControls derDirectControls
29 requests Measurements.GridMeasurements derMeasurements
30 }
31 @DER @Process
32 function DERGenerator at DistributionSystemVV.DERGenerator.DERResource {
33 provides DERCtrlInterfaces.DERDirectControls directControls
34 provides Measurements.GridMeasurements measurements
35 }
36 @Distribution @Field
37 function TransformerMonitor at ¾

Ç DistributionSystemVV.TransformerMonitor.MonitorResource {
38 provides Measurements.GridMeasurements measurements
39 }
40 @Distribution @Field
41 function BusMonitor at DistributionSystemVV.BusMonitor.MonitorResource {
42 provides Measurements.GridMeasurements measurements
43 }
44 @Customer Field
45 function EndOfLineMonitor at DistributionSystemVV.EndOfLineMonitor.MonitorResource {
46 provides Measurements.GridMeasurements measurements
47 }
48 module Measurements {
49 interface GridMeasurement {
50 readonly attribute float32 voltage
51 }
52 eventtype AggregatedMeasurement {
53 public float32 vTM, vBM, vEOLM, vDER
54 }}
55 module DERCtrlInterfaces {
56 interface DERVoltVArCurve {
57 attribute float32 v1, v2, v3, v4
58 attribute float32 q1, q2, q3, q4
59 }
60 interface DERDirectControls {
61 attribute float32 qSetPoint
62 }}
63 connect DERController.derDirectControls with DERGenerator.directControls
64 connect DERController.derMeasurements with DERGenerator.measurements
65 connect DistributionRTU.derVoltVArCurve with DERController.voltVar
66 connect DistributionRTU.derMeasurements with DERController.measurements
67 connect DistributionRTU.transformerMeasurements with TransformerMonitor.measurements
68 connect DistributionRTU.busMeasurements with BusMonitor.measurements
69 connect DistributionRTU.eolMeasurements with EndOfLineMonitor.measurements
70 connect DSCADA.gridStatusRTU with DistributionRTU.gridStatus
71 connect DSCADA.rtuVoltVArCurve with DistributionRTU.voltVArCurve
72 connect VoltVArController.gridStatus with DSCADA.gridStatus
73 connect VoltVArController.dscadaVoltVArCurve with DSCADA.voltVArCurve
74 }

Listing 6.9: Business case and functional specification for the example use case.

117

6. Applying the Rapid Engineering Methodology

6.2.3 Information and Communication Layers Design

Once an initial design of the Application and the System models is available, it is
time to start with a detailed modeling. In SGAM, the goal of the information layer is to
describe the information flow between the different components of the tackled use case
and which data model is used (e.g., IEC 61850, CIM) [25]. This information also needs to
be provided in the rapid engineering methodology . Step three of the specification phase
is to provide a detailed data model specification of the information exchanged in the
use case. As seen from Listing 6.9, an initial definition of the information layer (i.e., the
definition of Interfaces and Events) is done in the design of the business and function
layers (see Section 6.2.1). This is also needed in order to provide a general picture of the
interaction between Functions. However, the defined information is only using a generic
data model.

In order to use other data models, a protocol mapping is used. Section 4.4.3 describes how
this is done for IEC 61850. For this use case, IEC 61850 will be used as communication
protocol for the information exchange between the field, the station, and the operation
zones. As depicted in Figure 4.14c, the MMXU Interface is declared as abstract. This
means that it cannot be directly implemented by a ServiceImplementation. Instead,
an abstract Interface can only be implemented through inheritance by a non-abstract
Interface. Both Interfaces and Events can inherit, which means that all attributes,
operations, and/or state members defined in the parent are also inherited by the child.

As already described in Section 5.3, the possibility for Interfaces and Events to inherit
also provides a solution for how different data models and protocols can be used by
ServiceImplementations. If the MMXU Interface from Figure 4.14c is used as a par-
ent for the GridMeasurement Interface from Listing 6.9 all ServiceImplementations
that now implement GridMeasurement also have access to the attributes defined by the
MMXU Interface. Using the same approach, the DERVoltVArCurve and the DERDi-
rectControls Interfaces in Listing 6.9 can also be changed into IEC 61850 Interfaces.
In this case, DERVoltVArCurve inherits from the FMAR LN, which is used to define a
volt-VAr droop curve and is defined in the IEC 61850-90-7 technical report [71]. The
DERDirectControls inherits from the DRCC LN. It is used for DER supervisory control
and was first defined in the IEC 61850-7-420 part [65]. Later the DRCC LN was adapted
in the IEC 61850-90-7 technical report [71]. The changes made to the interfaces are
shown in Listing 6.10.

@@ -47,5 +47,3 @@
module Measurements {

- interface GridMeasurement {
- readonly attribute float32 voltage
- }
+ interface GridMeasurement : IEC61850.MMXU { }

eventtype AggregatedMeasurement {
@@ -54,9 +52,5 @@

module DERCtrlInterfaces {
- interface DERVoltVArCurve {
- attribute float32 v1, v2, v3, v4

118

6.3. Applying Phase II: Implementation

- attribute float32 q1, q2, q3, q4
- }
+ interface DERVoltVArCurve : IEC61850.FMAR { }
- interface DERDirectControls {
- attribute float32 qSetPoint
- }}
+ interface DERDirectControls : IEC61850.DRCC { }
+ }

connect DERController.derDirectControls with DERGenerator.directControls

Listing 6.10: Inheritance from IEC 61850 Interfaces is added to the Interfaces
from Listing 6.9.

For the Interfaces that inherit, a clean up of the Attributes may also be needed.
The MMXU Interface already has an Attribute for voltage measurements (actually
multiple Attributes are available but in this case the arithmetic average of the phase
to phase voltage, AvPPVPhs, would be the most fitting). If the original voltage attribute
is not removedm GridMeasurement will contain two Attributes used for the same
measurement. This may lead to ambiguousness and should therefore be avoided. The
same applies to the inheritance of the FMAR and the DRCC Interfaces. Therefore,
the old Attributes of DERVoltVArCurve and DERDirectControls are also removed.

Apart from the data models, different protocols, working on different Open Systems
Interconnection (OSI) layers, can be used. In PSAL, the lower OSI layers (layers 1-4)
can be defined for each ICTInterface and for ICT Connections. For the upper OSI
layers (layers 5-7), definitions or configurations are specified, if they are needed, in the
ServiceImplementations.

6.3 Applying Phase II: Implementation
This section shows the application of the implementation phase. The different steps of
this phase are shown in Figure 4.15, and as steps 4–6 in Figure 5.6. For this use case, focus
is put on the implementation of the SubApps499 VoltVArController and DERController.
However, non of the SubApps499 are automatically generated, since this would require an
existing set of implementations. Instead both are implemented manually.

Once the Application and the System have been specified and the correct data model
has been defined for the Interfaces and Events, a transformation is made into the
chosen programming technique. For this work, it means a transformation to IEC 61499
using the rules defined in Section 4.4.2. After the transformation, IEC 61499 is used to
define the behavior of each Function.

First of all, the Application and System are transformed into equivalent IEC 61499
Application499 and system models. For this, the mapping from Figure 4.10 is used. From the
Application a corresponding VoltVArControlCoordinated Application499 is created, which
is shown in Figure 6.2. The second step is to generate a SubAppType499 for each Function

in Listing 6.9. Each SubAppType499 will have Plugs499 and Sockets499 representing the

119

6. Applying the Rapid Engineering Methodology

ServiceImplementations of the original Functions. Each Socket499/Plug499 is defined
by an AdapterType499. The AdapterType499 is transformed from the Interface or Event
that is implemented by the ServiceImplementation. This transformation uses the
mappings in Figure 4.11 and Figure 4.12. In the third step, the SubApp499 instances of
the SubAppTypes499 are added to the Application499. Based on the Connections in the
Application in Listing 6.9 the Sockets499 and Plugs499 are connected with each other
through adapter connections.

VoltVArControlCoordinated

VoltVArController DSCADA

>> gridStatus

>> voltVArCurve

DistributionRTU

DERController

>> voltVar

gridStatus >>

dscadaVoltVArCurve >>

gridStatusRTU >>

rtuVoltVArCurve >>

>> gridStatus

>> voltVArCurve

derVoltVArCurve >>

>> measurements

derMeasurements >>

Beh >>
GridMeasurements

AvPPVPhs >>

Behaviour

Arithmetic average of the phase to phase voltage …

interface GridMeasurements : IEC61850.MMXU

function DSCADA

application VoltVArControlCoordinated

SubApp SubApp SubApp

SubApp

Application

AdapterType

…
…

TransformerMonitor

>> measurements

SubApp

BusMonitor

>> measurements

SubApp

EndOfLineMonitor

>> measurements

SubApp

transformerMeas... >>

busMeasurements >>

eolMeasurements >>

DistributionSystemVV System

DSOComputer

SCADA

VoltVAr

DistributionRTU

RTUResource

DERController

AncillaryServices

at DistributionSystemVV.DERGenerator.DERResource

device DistributionRTU

Device

Resource

Resource

Device

Resource

Device

Resource

Mapping

TransformerMonitor

MonitorResource

Device

Resource

BusMonitor

MonitorResource

Device

Resource

Mapping

Mapping

router StationRouter

DERGenerator

SubApp

>> directControls

>> measurements

derDirectControls >>

derMeasurements >>

Mapping

Mapping

Mapping

Mapping

EndOfLineMonitor

MonitorResource

Device

Resource

DERGenerator

DERResource

Device

Resource

Figure 6.2: VoltVArControlCentralized as IEC 61499 Application499.

Figure 6.2 also shows how the System from Listing 6.7 is transformed into a corresponding
IEC 61499 system model with Devices499 and Resources499. This transformation only con-
siders the ICTComponents of the System model, as well as any ElectricalComponents
that contain computing Resources. Finally, the figure also illustrates how Mappings499

are generated from the FunctionMappings in Listing 6.9. Each SubApp499 is mapped
to its respective Resources499 (e.g., the DSCADA SubApp499 is mapped to the SCADA
Resource499 in the DSOComputer Device499).

Figure 6.2 shows how transformations between PSAL Functions and IEC 61499 Sub-
Apps499 are made. However, the resulting SubApps499 still do not contain any content. As
was already stated in Section 6.1, it is assumed that for this use case only the VoltVAr-
Controller and the DERController need to be implemented. Their implementations will

120

6.3. Applying Phase II: Implementation

be handled in the following sections. For the other Functions, it is assumed that they
are already implemented and installed in the field. This means that the SubAppTypes499

representing these already existing Functions do not need to be implemented.

6.3.1 Implementing the DER Control Functionalities

The implementation of the DER control functionalities needs to be done by the DER
manufacturer. In this case, it is assumed that the DER manufacturer also uses the same
rapid engineering methodology as the DSO. This makes the specification of the ordered
functionality much simpler since the Application and System specifications made by
the DSO can be used directly. Thus, when the DSO orders the new control functionalities
it also hands over the PSAL specifications to the DER manufacturer . These are then
used directly by the DER manufacturer to further implement the ordered functionality.

The ordered functionality is a volt-VAr control (also called Q(U) control) for the inverter
of the DER. This is a very simple control, where the reactive power output of the DER
depends on the measured voltage at the point of coupling. Usually this relationship
between reactive power and voltage follows a so called droop curve. An example of a
droop curve for volt-VAr control was already shown in Figure 3.3.

Normally, when new functionality is implemented in an inverter, a firmware update is
needed. In this case however, the DER inverter uses the framework developed in the
OpenNES project [118]. Specially focusing on inverters, it provides a flexible software
architecture that allows deployment of new functionality on demand. Furthermore, the
OpenNES ICT and automation solution were developed to be a seamless extension of
the rapid prototyping method in this work. Figure 6.3 provides a brief overview of the
main project idea.

In order to remotely program DER controller functions or IEDs, an appropriate software
architecture is needed on these components. For this purpose, the SmartOS has been
conceptualized within the OpenNES project. It provides a flexible component-based
architecture which allows remote programmability as well as comprehensive configuration
possibilities. In Figure 6.3, the SmartOS is visualized as part of the DER. It contains
four main parts: (i) pluggable software components, (ii) a Virtual Functional Bus
(VFB) for communication between components, (iii) basic security functionality, and (iv)
connectivity to external devices [118].

Especially the software components are of interest for this thesis. Software components
are pluggable modules, which can be dynamically removed or added within the OpenNES
architecture. They can either be developed and delivered by the DER manufacturer
or developed by an external certified partner (e.g., plant operator, system integrator).
Different types of components are available. Some have fixed functionality (e.g., basic
inverter functionality). Others can be programmed from an external IEC 61499 engi-
neering environment. This means that the component can be remotely programmed or
updated during runtime [118].

121

6. Applying the Rapid Engineering Methodology

SCADA

DER

Communication
Network

DER (e.g. inverter)

OpenNES SmartOS

Remote programmable function

Basic functions Registry Security Connectivity

Rapid Engineering Method with PSAL and IEC 61499

VoltageControl TapChangerCtrl

ATCC

DRCC_1

ATCC YLTC

MMXU

DRCC_2

YLTC

MMXU_AVC

MMXU_DG1

MMXU_DG2

DER2Ctrl

MMXUDRCC

DER1Ctrl

MMXUDRCC

Remote programmable function

VFB

Figure 6.3: Overview of the OpenNES system architecture concept, adapted from [118].

The programmable components can be seamlessly used together with the rapid engineering
method in this work. Since they are programmable using IEC 61499 they can be directly
comparable to the SubApps499 and SubAppTypes499 generated from the Functions. For
this use case it means that the DER manufacturer implements the DERController
SubAppType499 and deploys it as a software component to the OpenNES DER.

For the implementation of the DERController SubAppType499 the interactions with the
other SubApps499 are studied. These are found in Appendix B.4 as well as in Table 6.1,
where the steps involving the DERController are summarized.

Table 6.1: Overview of the steps with the DER Controller from Scenario 6 and Scenario 7.

Scenario 6
Scenario Name Distribution system voltage control
Step
No.

Event Description of Process Information
Producer

Information
Receiver

Information
Exchanged

4 Time
trigger

The Distribution RTU re-
quests voltage measurement
from DER Controller.

Distribution
RTU

DER Con-
troller

IEX-1

8 The DER Controller re-
turns voltage measurement
to Distribution RTU.

DER Con-
troller

Distribution
RTU

IEX-2

14 The Distribution RTU for-
wards the requests.

Distribution
RTU

DER Con-
troller

IEX-4

122

6.3. Applying Phase II: Implementation

15 The DER Controller re-
turns its current curve
points.

DER Con-
troller

Distribution
RTU

IEX-5

19 The new curve setpoints are
forwarded.

Distribution
RTU

DER Con-
troller

IEX-6

22 Receives
curve
points

The DER Controller uses
the new volt-VAr curve
points

Scenario 7
Scenario Name DER volt-VAr control
Step
No.

Event Description of Process Information
Producer

Information
Receiver

Information
Exchanged

1 Time
trigger

The DER Controller re-
quests current voltage level
from the DER Generator.

DER Con-
troller

DER Genera-
tor

IEX-1

2 The DER Generator re-
turns voltage measurement
to DER Controller.

DER Genera-
tor

DER Con-
troller

IEX-2

3 The DER Controller calcu-
lates a new reactive power
setpoint based on its cur-
rent volt-VAr curve.

4 The new reactive power set-
point is sent to the DER
Generator

DER Con-
troller

DER Genera-
tor

IEX-7

Apart from handling communication requests of different attributes (voltage measurement
and curve points), the main work is represented by Step 22 of Scenario 6 and Step 3 of
Scenario 7 in Table 6.1. Based on a volt-VAr curve, represented by a number of voltage
and reactive power set points, the DERController calculates a new reactive power set
point for the DERGenerator. Furthermore, the set points of the volt-VAr curve should
be changeable through the voltVAr interface to the DistributionRTU (see Figure 6.2).

The implementation of the DERController SubAppType499 is seen in Figure 6.4. Left and
right in the figure the Sockets499 and Plugs499 of the SubAppType499 are shown as adapter
FBs499 (i.e., the voltVar, measurements, derDirectControls, and derMeasurements FBs499).
These are representations of the interfaces of the SubAppType499. This means that if
data is written on the voltVar Socket499 of the DERController SubApp499 in Figure 6.2, it
arrives on the output side of the voltVar adapter FB499 in Figure 6.4.

The CurvePointBuffer FB499 is a buffer where the current volt-VAr curve points are
stored. In this use case four points are used to represent the droop curve shown in
Figure 3.3. The points can be read and written by anyone connected to the voltVar
Socket499 of the DERController SubApp499. The current curve points are also transfered
to the DroopControl FB499 as an array. The main cycle of the SubAppType499 is handled
by the MainCycle FB499. It triggers an output event every 500 ms. First a new voltage
measurement is retrieved from the derMeasurements interface. After that the voltage
measurement is forwarded with an event to the DroopControl FB499. It calculates

123

6. Applying the Rapid Engineering Methodology

voltVar

PairArray >>
DERVoltVArCurve

measurements

AvPPVPhs >>
GridMeasurement

derDirectControls

>> OutVArNom
DERDirectControls

derMeasurements

GridMeasurement
>> AvPPVPhs

CurvePointBuffer

curveArray

CNF

v3

DroopControl

curve QSetPoint

REQ

voltage

CNF

SetQSetPoint

f OutVArNom >>

SET_f

v1
q1
v2
q2

q3
v4
q4
>> PairArray

INIT

GetAnalogueVoltage

f
AvPPVPhs >>

GET_f

ReturnAnalogueVoltage

f
>> AvPPVPhs

GET_mag CNFCNF

Start

MainCycle

START EO

E_CYCLE
STOP

DT

0.95
40

0.98
0

1.02
0

1.05
-40

500ms

DERController

Figure 6.4: Implementation of the DERController SubAppType499.

a new reactive power set point and sends this on the derDirectControls interface to
the DERGenerator. Moreover, the voltage measurement from the DERGenerator is
also buffered in the ReturnAnalogueVoltage FB499, where it can be read through the
measurements interface. All FBs499 that do not have a type name (e.g., CurvePointBuffer)
are also implemented as SubApps499. They are mainly used to handle and access data
and their specific implementation is not important for this use case.

6.3.2 Implementing the DSO Control Functionalities

The implementation of the DSO control functionalities follows a similar pattern as
in Section 6.3.1. In fact, the DSO may implement this functionality itself but may
also be commission it to a third party (e.g., a system integrator). For both cases, the
implementation mainly consists of implementing the VoltVArController SubAppType499. As
with the DERController, the implementation is based on the use case steps in Table B.50.
Table 6.3 summarizes the steps involving the VoltVArController.

Table 6.3: Steps involving the Volt-VAr Controller for Scenario 6.

Scenario 6
Scenario Name Distribution system voltage control
Step
No.

Event Description of Process Information
Producer

Information
Receiver

Information
Exchanged

10 The D-SCADA forwards
measurements to the Volt-
VAr Controller.

D-SCADA Volt-VAr Con-
troller

IEX-3

11 The Volt-VAr Controller
calculates the voltage
spread.

124

6.3. Applying Phase II: Implementation

12 Voltage
spread
above
limit

The Volt-VAr Controller re-
quests the current volt-VAr
curve points from the DER
Controller.

Volt-VAr Con-
troller

D-SCADA IEX-4

17 The D-SCADA forwards
the current curve points.

D-SCADA Volt-VAr Con-
troller

IEX-5

18 The Volt-VAr Controller
calculates new curve set-
points for the DER Con-
troller

19 The new curve setpoints are
sent to the DER Controller.

Volt-VAr Con-
troller

D-SCADA IEX-6

From the steps, it is clear that the VoltVArController does not need an own cycle,
as compared to the DERController. The functionality of the VoltVArController is
triggered when new measurements are received from the DSCADA. This causes the
VoltVArController to calculate the voltage spread and only if the spread is too high it
will calculate new curve points for the DERController.

In Figure 6.5, the implementation of the VoltVArController SubAppType499 from Figure 6.2
is shown. Two adapter Plugs499 are implemented by the VoltVArController. The gridStatus
Plug499 subscribes the important measurements from the grid, and the dscadaVoltVArCurve
Plug499 requests the control interfaces from the field devices (i.e., from the DERController).
Using the grid measurements, the voltage spread (i.e., the difference between highest and
lowest voltage measurement) in the grid is calculated. In case of a too high spread, new
voltage set points for the field devices are calculated. For the DERController, this means
that a new volt-VAr droop curve is calculated.

A new volt-VAr droop curve is easily calculated by changing the dead band of the curve.
This means that if the voltage spread is too high the dead band is decreased [129]. Left
and right in Figure 6.5 the Plugs499 of VoltVArController are shown (i.e., the gridStatus
and fieldControls FBs499). The VoltVArController SubAppType499 also contains two other
SubApps499: ActivateDroop and CurvePoints. These SubApps499 are only used to access
the important data for this use case. The CurvePoints SubApp499 provides the points of
the droop curve as an array, with pairs of volt-VAr values (i.e., pointArray for reading
and pointArrayW for writing).

Every time a new EMIT event is emitted (i.e., new measurements are published by
DSCADA), the voltage spread is calculated from the new measurements. Thereafter,
the current droop curve points are requested from the DER. Once these arrive they are
forwarded, together with the voltage spread, to the ChangeDeadband FB499. If the spread
is higher than the allowed Threshold the dead band of the droop curve is decreased by
the Change amount. Next, the ChangeDeadband FB499 sends the new droop curve values
to the DERController.

125

6. Applying the Rapid Engineering Methodology

VoltVArController

ChangeDeadband

gridStatus

vTM
vBM

GridStatus

vEOLM
vDER

EMIT

dscadaVoltVArCurve

>> PairArray
Controls

CurvePoints

pointArrayW PairArray >>

SET

VoltageSpread

in1
in2

Spread

in3
in4

CNFREQ

spread

14%

pointArray

GET
CNF

pointArrayIN

pointArrayOUT

REQ CNF
ChangeDeadband

Change0.5%
Threshold

spread

Figure 6.5: Implementation of the VoltVArController SubApp499 from Figure 6.2.

6.4 Applying Phase III–IV: Validation and Deployment

Once the implementation of the different SubApps499 is finished, the next step is the
validation and deployment phase. For this use case, two validations are made: the
implementation of the DERController is validated using a simulation and the control
functions associated with the DSO are validated in a laboratory environment.

6.4.1 Validating the DER Control Implementation

The validation of the DER control implementation for this use case is intended to be done
by the DER manufacturer. The goal is to test the volt-VAr control of the DERController
using a simulative validation. It is not intended to test how the curve set points can
be adapted, and also not how voltage measurements are read by the DSCADA. Using
these assumptions, the validation case can be simplified to only concentrate of the
DERController and the DERGenerator Functions.

Scenario and Test Case Description

If only theDERController and the DERGenerator Functions are studied the Application
from Listing 6.9 and System from Listing 6.7 can be simplified. Furthermore, the com-
plete model of the power system is also not needed to only test the volt-VAr control
of the DERController. A substitute power system model is used containing only a
slack generator, the DERGenerator, and a line connecting their busbars. The resulting
simplified Application and System are seen in Listing 6.11. The single-line diagram of
the power system model is also seen in Figure 6.6.

1 application VoltVArControlTest {
2 function DERController at VoltVArSystemTest.DERController.AncillaryServices {
3 requests DERCtrlInterfaces.DERDirectControls derDirectControls
4 requests Measurements.GridMeasurements derMeasurements
5 }
6 function DERGenerator at VoltVArSystemTest.DERGenerator.DERResource {
7 provides DERCtrlInterfaces.DERDirectControls directControls
8 provides Measurements.GridMeasurements measurements
9 }

10 module Measurements {

126

6.4. Applying Phase III–IV: Validation and Deployment

11 interface GridMeasurement : IEC61850.MMXU { }
12 }
13 module DERCtrlInterfaces {
14 interface DERDirectControls : IEC61850.DRCC { }
15 }
16 connect DERController.derDirectControls with DERGenerator.directControls
17 connect DERController.derMeasurements with DERGenerator.measurements
18 }
19 system VoltVArSystemTest {
20 device DERController {
21 ethernet eth0 {ip = "192.168.0.2"}
22 resource AncillaryServices
23 }
24 generator ExternalSystem {
25 terminal LVBus
26 controlMode = "voltage"
27 }
28 busbar LVBus1 {
29 terminal ExternalSystem
30 terminal Line1
31 nominalVoltage = 0.4 //MV
32 }
33 line Line1 {
34 terminal LVBus1
35 terminal LVBus2
36 length = 0.5 //km
37 x = 0.15 //reactance
38 }
39 busbar LVBus2 {
40 terminal Line1
41 terminal DERGenerator
42 nominalVoltage = 0.4 //MV
43 }
44 consumer DERGenerator {
45 ethernet eth0 {ip = "192.168.0.1"}
46 terminal LVBus2
47 resource DERResource
48 powerFlowP = -0.02 //MW
49 powerFlowQ = 0 //MVAr
50 }
51 connect DERController.eth1 with DERGenerator.eth0
52 connect LVBus1.ExternalSystem with ExternalSystem.LVBus
53 connect Line1.LVBus1 with LVBus1.Line1
54 connect LVBus2.Line1 with Line1.LVBus2
55 connect DERGenerator.LVBus2 with LVBus2.DERGenerator
56 }

Listing 6.11: Simplified Application and System model for the validation of the
DERController.

Compared to the original Application in Listing 6.9 and the original System in List-
ing 6.7, most of the changes are simple deletions of the parts that are not needed for
this validation. One of the significant changes is that the type of the DERGenerator is

127

6. Applying the Rapid Engineering Methodology

changed from generator to consumer. The reason for this is that the simplest way to
represent DERs in PowerFactory is to use a negative load (i.e., a negative consumer).
Apart from this, parameters are added to the ElectricalComponents as IDValuePairs
(e.g., controlMode = "voltage")). Each of these parameters is transformed into a corre-
sponding parameter in CIM, and they are needed for the power system simulation.

Using the System model in Listing 6.11, a CIM model can be generated from the
ElectricalComponents and their Connections. Figure 6.6 shows how this generation
is made. Each ElectricalComponent is transformed into one or more CIM objects.
Furthermore the connections between the components in Figure 6.6 represents the
Terminals and the Connections between them. This transformation is specifically
defined in order to be compliant with PowerFactory. Thus if another simulation tool is
used other/further parameters may be needed for the ElectricalComponents.

ExternalSystem:GeneratingUnit

ExternalSystem:SynchronousMachine

ExternalSystem_control:RegulatingControl

LVBus1:TopologicalNode :VoltageLevel

:BaseVoltage

-nominalVoltage = 0.4 MV

:TopologicalIslandLine1:ACLineSegment

LVBus2:TopologicalNode :VoltageLevel

LVBUS1:Substation

LVBUS2:Substation

DERGenerator:EnergyConsumer

DERGenerator:LoadResponse

CIMPSAL

V

ExternalSystem

LVBus1

LVBus2

DERGenerator

Line1

generator ExternalSystem {
 …
 controlMode = "voltage"
}

busbar LVBus1 { …
 nominalVoltage = 0.4 //MV
}

line Line1 { …
 length = 0.5 //km
 x = 0.15 //reactance
}

busbar LVBus2 { …
 nominalVoltage = 0.4 //MV

}

consumer DERGenerator { …
 powerFlowP = -0.02 //MW
 powerFlowQ = 0 //MVAr
}

-mode = "voltage"

-length = 0.5
-x = 0.15

-pConstantPower = 1
-qConstantPower = 1

:SvPowerFlow

-p = -0.02
-q = 0

Figure 6.6: Generation of CIM model from the PSAL System model.

Validation Environment and Concept

The generated CIM model is imported into PowerFactory. On the left side of Figure 6.7 the
imported model is seen. It shows the two busbars with the slack generator ExternalSystem
and the DER. Using only PowerFactory load flow and dynamic analysis can be performed
on the model. However, unless manually modeled in PowerFactory, such simulations
do not include the control behavior of the DERController. As already mentioned in

128

6.4. Applying Phase III–IV: Validation and Deployment

Section 4.6.1, the rapid engineering methodology solves this by means of co-simulation
between simulation tools [150, 143, 140]. The idea is that the control functionality is
executed in 4diac-rte and the power system model is simulated in PowerFactory.

In order to connect PowerFactory with 4diac-rte in a co-simulation setup, different
approaches are possible. One of the most convenient ways is to include an external
Dynamic Link Library (DLL) into PowerFactory that handles the connection with 4diac-
rte. During dynamic simulations it is possible to call user defined functions in the
DLL. This is done through a DIgSILENT Simulation Language (DSL) model, which is
executed each step of the simulation [144]. Since the external DLL can contain any user
functionality it is possible to use it for communication with 4diac-rte. For this validation
case, a TCP/IP connection is used, where the external DLL connects to a TCP server in
4diac-rte. Figure 6.7 shows the simulation setup between PowerFactory and 4diac-rte.

TCP/IP

4diac-rte

IEC 61499 Application

ASN.1
Client

DERController

PowerFactory

CIM Model

U

Q

D
SL

 M
o

d
el

External DLL
(digexfun.dll)

Function
Call

A
SN

.1
 S

er
ve

r

Return
Value

U

Q

Figure 6.7: Co-simulation setup between PowerFactory and 4diac-rte, including the
imported CIM model in PowerFactory.

As seen in Figure 6.7, the DERGenerator is simulated within PowerFactory. This means
that the communication between the DERController and the DERGenerator is now
realized with the communication between PowerFactory and 4diac-rte. From the figure,
it is seen that ASN.1 is used for the communication between PowerFactory and 4diac-rte.
The reason for this is that PowerFactory does not support IEC 61850. For such cases,
the easiest way use ASN.1 is to override the use of IEC 61850. To achieve this, the
ServiceImplementations in Listing 6.11 must be changed in order use ASN.1 instead
of IEC 61850. These changes are seen in Listing 6.12 where ProtocolUsages are added.
As a result, the IEC 61850 information model is still used (i.e., the naming of the
Attributes stays the same), but the data format for the communication is using ASN.1.
With these additions to the ServiceImplementations, ASN.1 is used for the generation
of communication SIFBs. Thus, instead of an IEC 61850 ID configuration string as is
seen in Figure 5.5, an ASN.1 configuration string is generated.

129

6. Applying the Rapid Engineering Methodology

@@ -2,8 +2,8 @@
function DERController at VoltVArSystemTest.DERController.AncillaryServices {

- requests DERCtrlInterfaces.DERDirectControls derDirectControls
+ requests DERCtrlInterfaces.DERDirectControls derDirectControls using StdProt.ASN1
- requests Measurements.GridMeasurements derMeasurements
+ requests Measurements.GridMeasurements derMeasurements using StdProt.ASN1

}
function DERGenerator at VoltVArSystemTest.DERGenerator.DERResource {

- provides DERCtrlInterfaces.DERDirectControls directControls
+ provides DERCtrlInterfaces.DERDirectControls directControls using StdProt.ASN1
- provides Measurements.GridMeasurements measurements
+ provides Measurements.GridMeasurements measurements using StdProt.ASN1

}

Listing 6.12: Inheritance from IEC 61850 Interfaces is added to the Interfaces
from Listing 6.9.

Performed Experiment and Results

Once the SIFBs are generated the validation can be started. To start the co-simulation
4diac-rte must be started first (i.e., the DERController is deployed). Thereafter, the
simulation in PowerFactory is started, whereupon PowerFactory connects to 4diac-
rte through the external DLL. In each simulation step values are exchanged between
PowerFactory and 4diac-rte. For this setup to work, the simulation in PowerFactory
must be run in real-time (i.e., the simulation time is synchronized with the computer
clock). The voltage at LVBus2 in Figure 6.7 is measured and sent through the DLL
to 4diac-rte. Every time a new voltage measurement is received a new reactive power
set point is calculated by the DERController SubApp499. The new set point is sent
back to the simulation in PowerFactory where it is applied to the DERGenerator load.
The connection between PowerFactory and 4diac-rte is asynchronous, which means that
PowerFactory does not wait for a return value from 4diac-rte before it continues with the
simulation of the next step. Since both PowerFactory and 4diac-rte run in real-time this
setup mimics the behavior of a real system.

In Figure 6.8, the results of the co-simulation are shown. For the simulation, the voltage
was varied as a step function, as seen in the upper graph. The lower graph shows the
response of the DERController. As seen the simulated reactive power follows the expected
volt-VAr curve (i.e., the Q(U) curve). From this figure the dead-band and the saturations
are clearly seen. Although the voltage changes between 10 s and 14 s the reactive power
output does not change.

This simulation shows the validation of the DroopControl FB499 of the DERController
(see Figure 6.4). Since this is only one part more tests would normally be needed in
order to completely validate the implementation of the DERController. For this thesis
however, it is assumed that they have already been completed. Therefore the next step is
to validate the DSO control functions and thus also the whole use case. This is described
in the next section.

130

6.4. Applying Phase III–IV: Validation and Deployment

4 6 8 10 12 14 16 18 20
0.9

0.95

1

1.05

1.1

V
ol

ta
ge

 (
p.

u.
)

4 6 8 10 12 14 16 18 20

Time (s)

-10

-5

0

5

10

R
ea

ct
iv

e
P

ow
er

 (
kV

A
r)

Q(U) curve
Sim. results

Figure 6.8: Validation results for the co-simulation of the DERController.

6.4.2 Validating the DSO Control Functions

Once the DERController has been implemented and validated it is also possible to
validate the DSO functions. As already explained in Section 6.1, it is assumed that
the functions of the DSCADA and the DistributionRTU are already existing. Thus the
remaining functionality to validate is the VoltVArController. This validation is made
in a laboratory environment, and can be done either directly by the DSO (i.e., a utility
operator), but also by a system integrator.

Scenario and Test Case Description

For the test case, the following scenario is used. A voltage change in the grid causes the
voltage spread to increase above its allowed threshold. This causes the control algorithm
in VoltVArController to calculate a new volt-VAr droop curve for the DERController.
With the new curve the DERController will be more sensitive to voltage deviations. This
in turn will decrease the voltage spread.

Compared to the validation in Section 6.4.1, this test case shows how the rapid engineering
method is used to deploy an application to real devices. Furthermore, it also includes
communication between multiple devices using IEC 61850, which needs to be configured.
Finally, the goal is also to validate the implementation of the VoltVArController SubApp499

shown in Figure 6.5.

For this scenario, the Application from Listing 6.9 and the System from Listing 6.7
are used. Since no simulation is used the ElectricalComponents are not directly used,

131

6. Applying the Rapid Engineering Methodology

although they represent the grid emulated in the laboratory. From the ICTComponents
the TransformerMonitor, the BusMonitor, and the EndOfLineMonitor are not available
in the laboratory. Thus their Functions will instead by assigned to a new Resource in
the DistributionRTU. These changes are shown in Listing 6.13 and Listing 6.14.

@@ -9,5 +9,6 @@
device DistributionRTU {
ethernet eth0 {ip = "10.0.0.2"}
ethernet eth0 {ip = "101.0.0.1"}
resource RTUResource

+ resource MonitorResource
}

Listing 6.13: Adding a new Resource to the DistributionRTU in Listing 6.7.

@@ -36,11 +36,11 @@
@Distribution @Field

- function TransformerMonitor at ¾
Ç DistributionSystemVV.TransformerMonitor.MonitorResource {

+ function TransformerMonitor at ¾
Ç DistributionSystemVV.DistributionRTU.MonitorResource {
provides Measurements.GridMeasurements measurements

}
@Distribution @Field

- function BusMonitor at DistributionSystemVV.BusMonitor.MonitorResource {
+ function BusMonitor at DistributionSystemVV.DistributionRTU.MonitorResource {

provides Measurements.GridMeasurements measurements
}
@Customer Field

- function EndOfLineMonitor at DistributionSystemVV.EndOfLineMonitor.MonitorResource {
+ function EndOfLineMonitor at DistributionSystemVV.DistributionRTU.MonitorResource {

provides Measurements.GridMeasurements measurements

Listing 6.14: Mapping is changed for the monitor Functions in Listing 6.9.

Validation Environment and Concept

The laboratory setup is illustrated in Figure 6.9. As already discussed above, the
number of hardware ICT components are reduced. Figure 6.9 also shows to which
Device499 the different SubApps499 are mapped. The VoltVArController and the DSCADA
SubApps499 are mapped to the DSOComputer Device499. The DistributionRTU and the
monitor SubApps499 are mapped to the DistributionRTU Device499 and the DERController
SubApp499 is mapped to the DERController Device499.

The controller hardware used in the laboratory consist of a normal laptop with Windows 7
for the DSOComputer and two Raspberry Pis (Raspberry Pi 1 Model B+) with Raspbian
are used for the DistributionRTU and DERController. 4diac-rte is available for multiple
platforms, including Windows and Raspbian, and thus there was no problem of installing
it to the three Devices499.

132

6.4. Applying Phase III–IV: Validation and Deployment

DERController

IEC 61850

Controller
Hardware

Power
Hardware

DERController

VoltVAr
Controller DSCADA

DistributionRTU

DSOComputer

IEC 61850

VoltVArController DSCADA

LVBus1 Line1 (emulation) LVBus2 PV Array
Simulator

MV/LV
20/0.4 kV

External System

DistributionRTU TransformerMonitor

BusMonitor

EndOfLineMonitor

Distribution
RTU T.Monitor

B.Monitor

EoLMonitor

Gateway

DERGenerator

~
IEC

 6
1

8
5

0

Figure 6.9: Laboratory setup for the use case validation.

The DERGenerator is a commercial off-the-shelf PV inverter connected on the DC side to
a PV array simulator and on the AC side to the normal LV grid. To create a dependency
between the voltage and the output of the inverter, a line impedance was emulated by
the laboratory equipment. Natively, the inverter has a Modbus TCP/IP control and
measurement interface, but it does not have an IEC 61850 interface. To remedy this, a
previously developed simple IEC 61850/Modbus gateway was used in the DERGenerator
[152]. The gateway translates all messages between Modbus and IEC 61850. For example,
measurements from the inverter (e.g., voltage, power, reactive power) are translated into
IEC 61850 measurements before they are sent to the DERController.

Performed Experiment and Results

Before the laboratory validation can be started the application must be deployed. The
first precondition for this is that the inverter is connected and feeding power into the
grid. Secondly, the Devices499 must be started and 4diac-rte must be executed on all
Devices499 and awaiting a deployment from the 4diac-ide. The next step is to deploy the
communication configurations.

Once the SubApps499 from Figure 6.9 have been mapped, communication infrastructure
can be generated for connections between SubApps499 of different Resources499. Generated
are both communication FBs499 as well as communication configurations, as described in
Section 4.6.1. For this test case, all the Interfaces are derived from IEC 61850, which
results in generation of SCL files for the communication configuration. The resulting
IEC 61850 configuration for the DERController is seen in Figure 6.10. The IED850 is
named DERController after the Device499, and the LNs850 are prefixed with the name of
the Socket499 interfaces.

After the SCL files have been downloaded to the Devices499, the SubApps499 are deployed

133

6. Applying the Rapid Engineering Methodology

� �
<SCL xmlns="http://www.iec.ch/61850/2003/SCL">
<Header id="" version="3"/>
<Communication> ... </Communication>
<IED name="DERController">
<Services> ... </Services>
<AccessPoint name="SubstationRing1">
<Server>
<LDevice inst="AncillaryServices" desc="">
<LN0 lnClass="LLN0" inst="" lnType="LLN0_0"> ... </LN0>
<LN prefix="voltVar" lnClass="FMAR" inst="1" lnType="FMAR_0"/>
<LN prefix="measurements" lnClass="MMXU" inst="1" lnType="MMXU_0"/>

</LDevice> </Server> </AccessPoint> </IED> ... </SCL>� �

DERController

>> voltVar

>> measurements

DERController

Figure 6.10: Generated SCL file for configuration of the IEC 61850 server in DERCon-
troller.

according to Figure 6.9. This deployment is done using standard IEC 61499 methods and
is a built-in feature of 4diac. Therefore, it is also not necessary to generate any new code
from the IEC 61499 model. After a deployment is made, the Application499 is automatically
started, whereupon the SCL files are loaded and the IEC 61850 communication is
initialized. For example, the IEC 61850 client in DistributionRTU connects to the
IEC 61850 server in the DERController.

Once the deployment is finished, the VoltVArController algorithm can be validated.
For this validation, the inverter is configured to an active power output of 18 kW and
a reactive power output of 0 kVAr. The voltage measured by the inverter (i.e., the
DERGenerator is forwarded to the VoltVArController at the vDER data output of the
gridStatus FB499 (see Figure 6.5). The other voltage measurements (i.e., vVRC, vCBC,
and cEOLM) are all emulated and fixed to 0.9 per unit (p.u.). After stabilization, this
results in a vDER voltage of around 1.004 p.u., and no extra reactive power. This is
seen in the beginning of the time series in the top graph of Figure 6.11, where Q is the
reactive power of the inverter and U is the measured voltage by the inverter (i.e., vDER).

In order to trigger the VoltVArController algorithm, a voltage spread increase is emulated.
This happens at the first event (i), as depicted in Figure 6.11 after 158 s. At this event,
the fixed voltage of vVRC was changed from 0.9 p.u. to 0.86 p.u. This increases the
voltage spread (Umax − Umin in the bottom graph of Figure 6.11) above the allowed
threshold of 0.14. This is detected by the algorithm in the VoltVArController and new
volt-VAr curve parameters are calculated by the ChangeDeadband FB499 in Figure 6.5.
The new curve parameters are sent to the DERController, which results in a new reactive
power set point for the DERGenerator. With the new volt-VAr parameters, the inverter
starts producing reactive power. This is shown as event (ii) in Figure 6.11. However,
since the voltage spread is still too high, the volt-VAr parameters are changed by the
VoltVArController once again after 185 s, event (iii) in Figure 6.11.

134

6.4. Applying Phase III–IV: Validation and Deployment

(i) (ii) (iii)

Figure 6.11: Measurements from the laboratory validation: (i) Detection of voltage band
violation; (ii) First curve correction; (iii) Second curve correction.

135

CHAPTER 7
Evaluation and Conclusions

The previous three chapters have provided a theoretical description of the rapid engi-
neering methodology in Chapter 4, a possible prototypical implementation in Chapter 5,
and an application of the developed method on a test case in the previous Chapter 6.
Although some of the advantages of a rapid engineering method are obvious by only
studying the usage of the approach, a scientific evaluation is still needed. This evaluation
represents the last step of the scientific research method presented in Section 1.3. As
described there, in order to properly answer the research question of this thesis it must
be shown that the developed method reduces the amount of manual effort compared
to traditional smart grid engineering methods. This chapter contains this evaluation.
Furthermore, the developed rapid engineering methodology is also evaluated against the
specified requirements in Section 3.2.2.

This chapter also contains the conclusions of this thesis. They contain a summary of
the main achievements in this work together with a description how this fits with the
scientific research method chosen in Section 1.3. Finally, an outlook is made into future
developments and applications of the rapid engineering methodology.

7.1 Evaluating the Rapid Engineering Methodology

The evaluation of the rapid engineering methodology is twofold. First it is made sure that
the methodology fulfills all the requirements identified in Table 3.2. Secondly, and most
important, is to validate the rapid engineering methodology against the main research
question of this thesis. In fact, the Research Hypothesis already states a claim for how the
research question can be answered. Accordingly, the validation of the rapid engineering
methodology focuses on proving that hypothesis.

137

7. Evaluation and Conclusions

7.1.1 Fulfillment of Requirements

In Table 3.2, a number of requirements were presented. These were identified, based
on the business cases and the thesis’ research question, as the main requirements for
the rapid engineering methodology. During the design of the methodology in Chapter 4,
these were consistently used in order to support the design decisions. In this section,
these requirements are revisited and it is shown how they are fulfilled by the application
of the rapid engineering method in Chapter 6.

The first four requirements in Table 3.2 are concerned with the different phases of the
engineering process. R1-Design and Specification specifies the requirement to allow
design and specification in a formal way, compatible with SGAM and IEC 62559. This
is shown in Section 6.2, where the test case design is explained in detail. The second
requirement R2-Implementation should allow the user to implement functionality based
on the design. This was also shown in detail in Section 6.3, both for the DER and
for the DSO control functionalities. The third and fourth requirements, R3-Testing
and Validation and R4-Release and Deployment concern the validation and deployment
phase. According to them it should be possible to validate the developed application
both through simulative and laboratory tests. It should also be possible to create a PSM
and deployment this to a hardware platform. The fulfillment of both these requirements
was shown in Section 6.4, where the implemented application was successfully validated
and deployed.

The following two requirements are focusing on the performance of the rapid engineering
methodology. Requirement R5-Seamlessness should assure that the transition between
one engineering step to another is as seamless as possible. The purpose of R6-Rapidness
and Effort is to improve the rapidness of traditional engineering methods and thus reduce
the development efforts. The fulfillment of these requirements is directly related to the
automation using MDE techniques. These automation possibilities are clearly shown
during the application in Chapter 6. Furthermore, these requirements are also related to
the Research Hypothesis of this thesis, which is discussed more below in Section 7.1.2.

Also related to the performance of the rapid engineering methodology is R7-Correctness.
Its intention is to assure that the implemented application is as correct as possible. It
has been shown that the automatic generation possibilities of the rapid engineering
methodology saves manual work. Consequently, since less human interaction is needed
this will also reduce the risk of human errors for these tasks. Furthermore, the application
of the methodology to the test case in Chapter 6 with the included validation also shows
that the intended functionality was correctly implemented.

The purpose of R8-Domain Expertise is to allow experts from different domains to
participate in the engineering process. This has been shown with the integration of
different DMs, as explained in Section 4.2. Compatibility with SGAM and IEC 62559
for the use case design allows the interaction from people without any specific technical
knowledge. In Section 4.3.2, it was explained how the OMG IDL was integrated with
PSAL. This is a well known modeling language for information exchange. In order to

138

7.1. Evaluating the Rapid Engineering Methodology

represent power system models, CIM was used, as explained in Section 4.3.2. Finally, for
automation purposes IEC 61499 was used (see Section 4.4).

The requirement R9-Handling Legacy Systems specifies that it should be possible to
integrate legacy systems in both directions—applications developed with the rapid engi-
neering method should be integrable with an existing system, and the configuration and
functionality of legacy components should be integrable into the rapid engineering method.
Section 6.4.2 shows that existing third-party Functions can be automatically handled
by the engineering method. On the other hand, integration of existing configurations
was shown in Section 4.4.3, where it was described how SCL files can be imported.

Requirement R10-Interoperability is similar to the previous two requirements since it is
also concerned with interaction. Interoperability should be assured on all levels, from
specifications over implementation, to deployment and finally during operation. For the
rapid engineering methodology, this has first of all been shown with compatibility with
SGAM and IEC 62559 shown in Section 4.3.1. Secondly, the possibility to import and
export domain specifications (e.g., IEC 61850, CIM) also shows that interoperability
with existing standards is given. This is shown in Section 6.4.1 and Section 6.4.2.

Another requirement that regards the interaction with the rapid engineering method is
R11-Changing Requirements. According to this requirement, it should be possible to
consider new requirements at any time during the engineering process. This has been
specifically shown in Section 6.4.1, where the communication protocols were changed
without the need for any other changes.

In summary, it has been shown that all specified requirements have been fulfilled by
the rapid engineering methodology. Furthermore, it is also provides solutions to the
presented business cases in Section 3.1. These cases were used to explicitly show the
potential of a rapid engineering process for a selected number of stakeholders. Therefore,
the developed rapid engineering methodology is not only a solution to the problems
presented in the business cases, but also an opportunity for these stakeholders to improve
their engineering processes.

7.1.2 Research Validation

The second part of the evaluation is to validate the rapid engineering methodology
against the research question: Given the traditional engineering process for smart grid
applications—covering use case design, implementation, validation, and deployment—
what can be done to significantly reduce the amount of manual work needed from the
smart grid engineer(s)? In Section 1.2, a research hypothesis was formulated that already
hints at a solution for this question. Thus, the validation in this section will focus on
proving that this hypothesis holds.

According to the Research Hypothesis MDE of smart grid applications, with model
transformations during the engineering phases—and for the transitions between the
different phases—will reduce the amount of manual work needed to describe information

139

7. Evaluation and Conclusions

in multiple models. If this hypothesis holds it is also one possible answer to the research
question. However, in order to show that the hypothesis holds the rapid engineering
methodology must be compared to traditional solutions. At the moment, no smart
grid engineering approaches exist that can be directly compared to the method in this
thesis. But, nevertheless existing solutions for each single development phase can be
used together to compare with the rapid engineering method. For this validation, two
different solutions are chosen.

Comparison to IEC 62559 and Automation Programming Languages

The first traditional engineering approach uses the IEC 62559 templates for use case
design and IEC 61131 for the implementation phase. As with SGAM, IEC 62559 is one
of the most frequently used templates for use case descriptions of smart grid applications.
Typical approaches for industrial automation are IEC 61131 and the already well-known
IEC 61499. But, since IEC 61131 is more common in today’s systems than IEC 61499 it
will be used for the comparison with the rapid engineering methodology.

In this approach, the IEC 62559 use case template is used for the design phase. The test
case from this thesis is available in Appendix B.4 and it shows how use cases are described
using the template. The main difference compared to PSAL is that, although IEC 62599
uses tables to structure the description, it is not a formal and machine-readable approach.
Instead mainly prose is used to describe the use case (which is also possible to do with
comments in PSAL). Due to this, using the use case information directly for an automated
approach would only be possible if the IEC 62559 template was accompanied with further
design rules. For example, it would be theoretically possible to extract IEC 61850 LNs if
the exact names of the LNs were used by the engineer for the information exchanged
(compare Table B.54). For this comparison, it is assumed that no extra design rules are
used. Therefore, in this case the only real advantage with IEC 62559 is its simplicity
since no special tools are necessary.

Since it is not possible to automate the transition from from the IEC 62559 template,
much of the work already done during the design phase needs to be repeated during
the implementation phase. Thus, each functionality defined in the use case description
needs to be implemented using IEC 61131. Furthermore, also any communication
information described in the use case (i.e., information exchanged) must be transfered
into an appropriate representation in IEC 61131. In summary, the transition between
design and implementation requires significantly more manual work with the traditional
engineering approach than with the rapid engineering method.

The IEC 61131-3 part also provides FBs. In fact, the FBs in IEC 61499 are an extension
of FBs in IEC 61131-3, as already stated in Section 2.3.2. Let us assume that the engineer
has created empty IEC 611313 FBs for each functionality described in the use case. Then
the next step is to implement the functionality of each FB and to connect them with
each other. There already exist a number of comparisons in the literature, where the
usability of IEC 61131 and IEC 61499 for smart grids is studied [171, 147]. As already

140

7.1. Evaluating the Rapid Engineering Methodology

discussed in Section 4.4.1, one of the advantages of IEC 61499 is its application centered
modeling approach [177]. It is also independent of where the FBs are executed. With
IEC 61131, there is no such approach. Instead, a device centered approach is used,
where a programmed functionality is always platform-specific. Therefore, there is also
no application view available in IEC 61131 (compare with Figure 6.2). More detailed
studies of the differences between IEC 61131 and IEC 61499 have already been done
[168, 169, 171, 147, 177], and would go beyond the scope of this thesis. Nevertheless,
despite their differences the amount of manual work needed for the implementation phase
is similar for both IEC 61131 and the rapid engineering method.

The rapid engineering methodology also offers the possibility to automatically generate
communication configurations based on the PSAL design. However, for the traditional
approach, the same conditions apply as before. Since the IEC 62559 template is no
machine-readable format, the available communication information in the use case
description cannot be directly used. Therefore, it is also not possible to generate
communication configurations (e.g., SCL files). Consequently, these configurations need
to be manually created based on the information in the use case description. The result
is significantly more manual effort and an increased risk for human errors. Furthermore,
it also not possible to generate simulation models from the IEC 62559 template. Thus, if
a simulative validation is needed these also need to be manually created.

For the validation and deployment phase, the manual effort is comparable between the two
approaches. In both cases, the actual validation is done manually. Furthermore, although
the IEC 61131 standard does not specify any deployment process many compatible
software tools do. Therefore, both the traditional and the rapid engineering approach
require about the same amount of manual work.

Summarizing the comparison between the traditional approach, using IEC 62559 together
with IEC 61131 and the rapid engineering method, a number of differences in manual
effort were found. Using the traditional engineering approach, the use case would is only
used as a specification. Based on this specification, a new implementation in IEC 61131
would be created. Consequently, much of the work is done at least two times. A further
disadvantage is that any changes in the use case description require manual changes
in the implementation. Finally, another solution based on IEC 61131 would also not
support the automatic generation of communication configurations. Listed, the main
differences are:

• Use case descriptions with IEC 62559 cannot be easily used in an automated
approach and can thus merely be used as a specification.

• Functional and communication design need to be repeated multiple times with the
traditional approach, whereas with the rapid engineering method this is only done
once during the design phase.

141

7. Evaluation and Conclusions

• Succeeding changes in the IEC 62559 use case description require manual changes
in the implemented, while changes in the PSAL description are automatically
transfered into the implementation.

Comparison to SGAM and General-Purpose Programming Languages

The second traditional engineering approach uses the SGAM Toolbox [31] for the design
phase and general-purpose programming language (e.g., Java, C++) for the implemen-
tation phase. As already discussed in Section 2.2.2, the SGAM Toolbox is a commonly
used tool for use case design according to the SGAM approach. It is also widely accepted
among the stakeholders in Table 3.1. It is also very common that general-purpose
programming languages are used for the implementation. Furthermore, it is also assumed
that the programming language is accompanied with some sort of Continuous Integration
(CI) process. This means that developed functions can be integrated and deployed to the
field devices in an automated manner.

The SGAM Toolbox follows a graphical approach for the design phase. Each layer is
modeled using SGAM specific, or normal UML artifacts [31]. Compared to the textual
approach of PSAL, a graphical approach is better to understand spatial layouts. For
example, it is easier to understand how components are connected with each other
through a graphical view of the component layer of SGAM, see Figure 6.1, than a
textual description, see Listing 6.7. Nevertheless, once the user is accustomed to a
textual notation, the design is usually faster [110]. Both approaches have their own
advantages and disadvantages but in short, the amount of work needed by the user is
similar. Furthermore, with both methods it is possible to completely model the test case
in Appendix B.4. Thus, it is assumed that after the design phase the same information
is available in both engineering methods.

Before the implementation phase, a closer study of the transition from the design phase
should be made. With the rapid engineering methodology SubApps499 are automatically
generated based on the Functions in the PSAL description. The SGAM Toolbox is part
of the Enterprise Architect tool, which also offers code generation support. Based on
modeled UML diagrams code for a number of general-purpose programming languages
can be generated. But, there is still a number of differences between the two approaches.

In order for Enterprise Architect to successfully generate code, the user has to create the
UML models in a certain way. Therefore, even if a detailed UML model is available it
may not be possible to generate code from it because it was not modeled in the right
way. With PSAL, this is not the case. The syntax of PSAL is more constrained and it is
optimized to allow function generation. Thus, it is always possible to generate IEC 61499
code from a PSAL Application.

The rapid engineering methodology also allows for a more detailed transfer of communi-
cation information from the design to the implementation phase. The Interfaces and
Events are incorporated into the SubApps499 and it is even possible to model different
communication patterns (i.e., publish/subscribe and client/server). This is not possible

142

7.1. Evaluating the Rapid Engineering Methodology

with Enterprise Architect. It is possible to model information exchange through sequence
diagrams, but how the information is exchanged (i.e., a local function call or a communi-
cation interface) is not considered. Therefore, with Enterprise Architect the user has to
include this information manually into the generated code.

In summary, function generation is possible both in Enterprise Architect and with the
rapid engineering method but more user effort is required in Enterprise Architect. A
higher design effort is required since the user has to model in the right way. Also,
communication patterns are not included, which requires the user to include these
manually after the code has been generated.

During the implementation phase, both approaches require similar amount of manual
work. In both cases, the functionality must be manually implemented. The automatic
implementation of functions described in Section 4.5.1 is not considered for the comparison.
It is assumed that the implemented functions are new and have no previous match.

For the transition between the implementation and the validation and deployment
phase, the rapid engineering methodology provides a number of automation services.
Communication interfaces are automatically configured with automatically generated
configurations (e.g., SCL files). Moreover, the implemented functions are automatically
connected to the communication interfaces, see Section 4.6.1. Also, from the PSAL
description, simulation models can be automatically generated. None of these automation
possibilities exist with Enterprise Architect. This means significantly more manual work
for the engineer. Communication interfaces must be configured and integrating with the
functions. This is time consuming and also requires detailed knowledge about the used
communication protocols. If a simulative validation is made the engineer also has to
create a simulation model.

The last phase is the validation and deployment. For both engineering approaches, the
validation is made manually. For example, for a simulative validation the simulation
models—automatically generated or manually created—are simulated with a power
system analysis tool (e.g., PowerFactory). With the assumption that a CI process is
used for the traditional engineering approach, also the deployment is similar for both
approaches. Consequently, there is no big difference in the amount of manual work for
this phase using one or the other of the engineering approaches.

In summary, compared to a traditional smart grid engineering approach, using the
SGAM Toolbox and general-purpose programming languages, the amount of manual
work can be significantly reduced using the rapid engineering methodology. Although the
SGAM Toolbox and especially Enterprise Architect support code generation, this code
is generic and not specialized for smart grid applications. Furthermore, the generation
of communication configurations is not supported by the SGAM Toolbox. It is also not
possible to use generic communication patterns as provided by IEC 61499. Therefore,
they again have to be implemented manually and integrated into the source code. The
main differences are summarized as:

143

7. Evaluation and Conclusions

• PSAL was especially created to allow code generation, which guides the user to
create designs suitable for code generation.

• With the rapid engineering methodology, communication and interface information
only have to be described once during the design, compared to the traditional
approach where this has to be done repeatedly during all the phases.

• System and component information designed with PSAL can be directly used to
generate simulation models, whereas with the traditional engineering approach
these have to be manually created.

Validation Summary

The main research question of this thesis is to answer how it is possible to reduce the
amount of manual work with an automated rapid engineering method, which covers the
whole development chain for smart grid automation applications—from use case design
to its field deployment. To tackle this, a Research Hypothesis was formulated, which
states that using MDE technologies for the smart grid engineering method is one answer
to the research question. The rapid engineering methodology developed in this thesis
is one proof that this hypothesis holds. To further highlight this fact, the previous two
sections have shown a comparison with other traditional engineering methods.

The comparison with the other engineering methods has especially shown one thing.
With traditional engineering methods, a significant manual effort is needed to repeatedly
copy and recreate artifacts that were already specified during the design phase. One
example is the functionality of the application and how information is exchanged between
functions. Another example is the configuration of communication interfaces. With
the rapid engineering methodology, this manual effort is reduced to a minimum since
these artifacts are automatically reused in the following engineering phases. In total, the
complete development process is summarized to the following steps:

1. Initial design of the Application and the System using PSAL

2. Detailed design of Interfaces and Events using protocol mappings

3. Transformation into IEC 61499 Application499 and System499 models

4. Function design by implementation of SubAppTypes499

5. Generating and downloading the communication configurations (e.g., SCL files)

6. Downloading the Resources499 to their Devices499

7. Validation and/or field execution

144

7.1. Evaluating the Rapid Engineering Methodology

From these steps, only the first, second, fourth, and the last step requires significant
manual inputs from the engineer. The other steps are automated and only require
a simple activation by the user. The application of the rapid engineering method in
Chapter 6 also shows that these steps are enough to implement a complete use case.
The automation of these steps is possible through the use of MDE methods, in this case
specifically model-to-model transformations. They allow a transformation and reuse of
previously defined information and thus provide the automatism of the rapid engineering
method. Without the automatic transformations, these steps would require manual effort.
Consequently, this also proves the soundness of the Research Hypothesis and, as a result,
also provides an answer to the main research question in Section 1.2.

7.1.3 Comparison with State of the Art

One of the main goals of a PhD is that it should make a significant contribution to the
current state of the art. Hopefully, this contribution is also an improvement compared to
existing solutions. In Chapter 2 both background knowledge and possible methods and
solutions are presented. Existing engineering approaches from the smart grid domain are
complemented with an outlook towards other domains and the tools used there. At the
end of Section 2.6 a number of missing features and gaps were identified. These features
are what is missing in order to solve the main research question of this thesis—to improve
the traditional engineering methods in terms of manual effort. In Table 7.1 the results of
this work is compared with the missing features and current gaps identified in Chapter 2.

Table 7.1: Comparison with state of the art and existing approaches.

Gap Description Comparison with this work
Holistic
engineering

Non of the existing approaches
cover the whole development pro-
cess (design, implementation, vali-
dation, and deployment) in an in-
tegrated manner.

Compared to other existing so-
lutions this missing feature is
covered by the rapid engineer-
ing methodology. All engineering
phases are considered in one holis-
tic approach.

Model-based Model-based engineering concepts
for smart grids are missing or only
partly available.

The rapid engineering method is
based on an MDE concept cov-
ering all phases. This allows for
automation with MDE techniques
like model transformations.

Effortless
transitions

At the moment there is no method
that completely removes the effort
of moving from one engineering
step to the next.

Model transformation also
achieves automatic transitions
between the engineering phases.
This way information from one
phase can be automatically reused
in the next.

145

7. Evaluation and Conclusions

System of
systems

Current engineering methods are
primarily focusing on the develop-
ment of single systems and not a
system of systems (e.g., one focus
on the development of substation
automation).

The application centered design
approach of the rapid engineer-
ing methodology supports develop-
ment of applications in an holistic
manner. Focus is put on the whole
solution, not only the implemen-
tation for each separate system.

Multiple
domains

No approach is currently avail-
able that integrates general do-
main knowledge from different do-
mains, such as control, communi-
cation, or power system modeling.

Especially the relationship of
PSAL with well known domain
models closes this gap. This fea-
ture also allows import and export
of already existing models (e.g.,
communication models).

Integration
with legacy
systems

Many of the current approaches
do not offer any support for the
integration of legacy systems.

Due to possibility of integrating
new models into PSAL this feature
can be easily covered. By defining
new model transformations it is
even possible to integrate propri-
etary models.

Smart grid
domain
specific

Approaches that are optimized for
smart grid engineering are only
partly available.

The rapid engineering methodol-
ogy is a domain specific approach
intended for smart grids. Not
only during the design phase, but
throughout the whole engineering
process the connection to smart
grids is clear.

7.2 Conclusions

This section concludes the thesis. A summary of the previous chapters is given and finally,
the outcome of the work is critically analyzed with an outlook towards future work.

7.2.1 Recapitulation

With the smart grid rollout new intelligent concepts for measurement, control, and
automation are being implemented in the power systems today. Nevertheless, the smart
grid system is an evolving system. Focus is moving from a single system to a system of
systems perspective. As a result, the engineering complexity is increasing, which in the
end also means increasing costs. To tackle this, there is a need for smart and automated
engineering methods, also in the smart grid domain.

This work fulfills this need with a rapid engineering methodology especially designed
for the smart grid domain. The goal of the methodology is to automate the engineering

146

7.2. Conclusions

process, thus helping and supporting engineers. In detail, the automation was provided
using MDE techniques, otherwise mostly seen in software engineering. MDE focuses
on the development of models and the automatic transformation between these models.
Thus, if the transition through an engineering process is seen as a transformation between
different engineering models, the automation of these transformations will also lead to an
improved engineering process.

This thesis follows an inductive-hypothetical research strategy. It consists of five steps,
starting with the initiation, where the state of the art is studied in order to form a
descriptive empirical model. In this work the current state of the art for smart grid
engineering has been presented in Chapter 2. It shows an overview of current methods
used in the smart grids domain, but also gives an outlook to what approaches are used
in other domains.

In order to formalize a rapid engineering methodology it must be clear for whom this
process is intended and also what their requirements are. Therefore, the next step of the
work was a use case study and requirement analysis. This part represents the second step
of the research strategy: the abstraction. The goal is to substantiate the issues identified
during the initiation through field studies. In this case this is represented by three business
cases, collected from different research projects. Each business case is associated to one or
more stakeholders. Furthermore, for each business case an example use case was shown.
The business cases, stakeholders, and use cases served as a basis for the identification of
the requirements for the rapid engineering methodology. These requirements make up
the descriptive conceptual model which is the result of the abstraction phase.

Based on the requirements, the next step is the theory formulation, the third step of
the research methodology. In the case of this work, the goal of this step is to formulate
a theory for the best way to improve the traditional engineering methods for smart
grids. The result was the rapid engineering methodology, which utilizes MDE in order to
automate the smart grid engineering process. In the end, four engineering phases were
crystallized:

1. Design of the use case and specification of the application that is to be implemented

2. Implementation of the application including generation of executable code as well
as communication configurations

3. Validation of the developed application, either using simulations or laboratory tests

4. Deployment of the generated code and configurations to field devices

In order to follow an MDE approach, PSAL was created for the design phase. It is
a DSL that supports use case design according to the SGAM method. Specifically,
the design of a smart grid use case is organized into five layers: business, function,
information, communication, and component layer. For this purpose, PSAL provides

147

7. Evaluation and Conclusions

different constructs. In summary, the main goal is to provide a formal method for SGAM
compatible and platform independent use case descriptions of smart grid applications.

The second step was to combine PSAL with IEC 61499 in order to support detailed
function development in the implementation phase. Any functionality initially designed
and specified using PSAL in the first phase is implemented using IEC 61499. As
engineering support, an automatic transformation from the function layer of the PSAL
specification into IEC 61499 Application499 and System499 models is provided. Furthermore,
automatic generation of functionality is also offered. Previous user implementations
are compared to the specifications of new functions. If a match is found the previously
implemented function can be used as a template by the user.

Based on the IEC 61499 implementations and the PSAL descriptions, three types of code
are generated: platform specific code, communication configurations, and simulation
models. The platform specific code is an adaptation of the implemented functionality
based on the execution platform. Secondly, different communication configurations are
generated, such as IEC 61850 SCL files. These are based on both the information and
communication layers of the PSAL specification. Finally, simulation models can also
be generated. Based on the component layer in the PSAL description a CIM model is
generated, which can be imported and used in a power system simulator.

Figure 7.1 shows an overview of the main model transformations that are possible with
the rapid engineering methodology. In general, if a machine readable format for SGAM or
IEC 62559 was available such descriptions could be imported and used as a starting point
for the process. Conversely a PSAL description could also be used to create descriptions
in SGAM or IEC 62559. Furthermore, CIM and SCL configurations can also be used as
inputs for PSAL. This allows import of existing power system models and communication
configurations. In the end, executable IEC 61499 code is generated together with any
needed CIM models and communication configurations (e.g., SCL files).

Rapid Engineering Tool

Design Implementation
Validation and
Deployment

<IEC62559>

<SCL>

<CIM>

<CIM> <SCL>

<FB>
<SGAM>

{ PSAL } function

Figure 7.1: Overview of the main model transformations possible with the rapid engi-
neering methodology.

148

7.2. Conclusions

Validation is either made using a simulative or a laboratory approach. It is followed by the
deployment phase where the generated code is downloaded and executed on compatible
field devices. For this purpose the IEC 61499 deployment approach is used. It provides a
download process, where the implemented Application499 is downloaded to field devices.

Once the theory for the rapid engineering methodology is formulated, the fourth step
of the research strategy follows—the implementation. The main goal of this step is to
show how the formulated theory can be implemented and used on the studied cases
during the abstraction phase. First of all, a prototypical implementation of the rapid
engineering methodology was developed. Using an iterative process, the results was an
Eclipse based toolkit. Using only this tool, it is possible for the engineer to go through
all the engineering phases described above. For the second part, the rapid engineering
methodology was applied to a specific test case, similar to the studied business cases.
The test case concerns the implementation of a coordinated volt-VAr control and includes
examples and detailed explanation of all the engineering phases. Furthermore, to show
different validation scenarios both a simulative and a laboratory test are used to validate
the implemented functionality.

The fifth and last part of the research strategy is the validation. In this part results from
the implementation part are compared to the existing state of the art. For this work the
evaluation of the rapid engineering methodology is threefold. First, the methodology
was compared to the requirements. Secondly, and most important, the rapid engineering
methodology was validated against the main research question and the hypothesis of
the thesis. Specifically, the goal was to show how applying MDE technologies to the
traditional smart grid engineering process can reduce the manual development effort.
Thirdly, the developed methodology was compared to the existing state of the art.

To confirm the hypothesis of the thesis, the rapid engineering methodology was compared
to two other solutions. The first solution is a traditional engineering methodology, where
the use case is documented using the IEC 62559 template. With this as a basis, a
new implementation is created. Consequently, much of the work is done at least two
times. Furthermore, changes in the use case description require manual updates in the
implementation. A comparison to a more advanced method, the SGAM Toolbox [31],
also shows some important differences. Although code generation is supported by the
SGAM Toolbox, this code is generic and not specialized for smart grid applications.
Another important advantage of the rapid engineering methodology is the generation of
communication configurations. These configurations are currently not supported by the
SGAM Toolbox, which also does not provide a rapid deployment process.

The comparison with the other methods has especially shown one thing. Traditional
engineering methods need significant more manual effort. This is needed to repeatedly
copy and recreate artifacts that were specified during the design phase. With the
rapid engineering methodology, this manual effort is reduced to a minimum since these
artifacts are automatically reused in the following engineering phases. Summarizing, the
development process is represented with the following steps:

149

7. Evaluation and Conclusions

1. Design and specification using PSAL

2. Transformation into IEC 61499 models

3. Function implementation using IEC 61499

4. Generating and downloading the communication configurations

5. Downloading the implemented functionality

6. Validation and/or field execution

From these steps, only the first, third, and the last step requires manual inputs from the
engineer. The other steps are automated and only require a simple user activation. MDE
methods, specifically model-to-model transformations, provide a powerful approach to
automate these steps. Information can be automatically reused throughout the rapid
engineering methodology, which otherwise would require manual effort. Consequently,
this also proves that the main goal of the thesis has been achieved.

7.2.2 Reflection and Future Work

As always when this kind of study is made, only a portion of all possible cases can be
studied. Consequently, the rapid engineering methodology as presented here should be
seen as a first attempt and is still far from all-encompassing. This section selectively
points out a number of issues, where future work should be invested.

First of all, during the design of PSAL only a subset of future modeling needs was covered.
Much focus was appointed to model information exchange in a detailed manner. This is
also clearly seen throughout the thesis. Other issues are not covered in the same detail, or
not at all—at least not explicitly. Topics of interest could for example be timing, system
performance, or functional correctness. Moreover, future work could include explicit
modeling of these issues as well as automatic checks. In summary, the current state is
not to be considered final, but instead as a starting point for further studies.

Another open issue of the current methodology, and especially the prototype, is that it
does not support round-trip engineering in an optimal way. If completely possible it would
allow the engineer to start anywhere on the engineering process and generate artifacts
in both directions. For instance, a user could start directly with the implementation
phase using IEC 61499 and based on this generate the PSAL specification. At the
moment, this is not completely supported. In theory, the model transformations defined
in the methodology support it. The issue here is rather the lack of means to express all
information in all models (e.g., IEC 61499 is not intended for modeling of power system
components, and would only allow it with great difficulty). Additionally, the current
prototype was not designed to handle this case.

Scalability is another matter not directly handled by the rapid engineering methodology.
As already mentioned in the introduction of Chapter 4, handling multiple use cases at

150

7.2. Conclusions

once is not a goal of the thesis. Nevertheless, also with only one use case scalability
may be an issue. This is currently not handled by the methodology. For example,
no constructs were considered to allow import of existing specifications. Furthermore,
no constructs were created to allow specification of multiple Components at once (e.g.,
multiple measurement devices of the same brand). The same can be said about the
prototype. Also in this case more attention to scalability must be paid for a industry
prototype. Consequently, this is another matter where future research is needed.

Currently, the validation phase is only partly automated. One direction for future work
could be to also provide automation support for testing and validation, as indicated by
Strasser et al. [153]. Of course, this would also require further solutions in the design
phase for specification of validation scenarios and expected results.

The rapid engineering methodology is an example of active engineering support provided
to the user. Of course, MDE technologies is only one possibility of how such support can be
realized. A further solution could be to use machine learning or expert systems approaches
to additionally improve the engineering support. By studying the user engineering
behavior, the machine could learn how to best implement smart grid applications, and
in a further step use this knowledge to instruct new engineers. The current automatic
implementation of functions, described in Section 4.5.1, is one example of how to take
advantage of the user experience. Similar solutions could also be possible for the
information design (e.g., how to group Interfaces and Events into Modules).

Concluding, future work will have to prove the feasibility of the rapid engineering
methodology for large-scale applications. Nevertheless, with this work a big step is
made towards a comprehensive engineering support for the development of smart grid
applications. There is still much work to be done, but the rapid engineering methodology
has shown that with the right tools the amount of manual effort for developing smart
grid applications can be significantly improved.

151

Appendices

153

APPENDIX A
PSAL Grammar

The grammar of PSAL using an EBNF notation [33].
1 PSAL ::= PsalContent*
2 PsalContent ::= System | Application | Module
3
4 /* System grammar */
5 System ::= 'system' ID '{' SystemContent* '}'
6 SystemContent ::= Component | Connection
7 Component ::= ICTComponent | ElectricalComponent
8 ICTComponent ::= Device | OtherICTComponent
9 Device ::= 'device' ID '{' DeviceContent* '}'

10 DeviceContent ::= Resource | ICTInterface
11 Resource ::= 'resource' ID
12 OtherICTComponent ::= OtherICTComponentTypes ID IDValuePairBody?
13 OtherICTComponentTypes ::= 'gateway' | 'switch' | 'router'
14 PhysicalInterface ::= ICTInterface | Terminal
15 ICTInterface ::= ICTInterfaceType ID IDValuePairBody?
16 ICTInterfaceType ::= 'ethernet' | 'wireless' | 'serial' | 'analogue' | 'digital'
17 Terminal ::= 'terminal' ID IDValuePairBody?
18 ElectricalComponent ::= Transformer | ElectricalEquipment
19 Transformer ::= 'transformer' ID '{' TransformerWinding+ '}'
20 TransformerWinding ::= 'winding' ID '{' ElectricalEquipmentContent* '}'
21 ElectricalEquipment ::= ElectricalEquipmentType ID '{' ElectricalEquipmentContent* '}'
22 ElectricalEquipmentType ::= 'generator' | 'line' | 'eswitch' | 'consumer' | 'busbar'
23 ElectricalEquipmentContent ::= Resource | PhysicalInterface | IDValuePair
24 Connection ::= 'connect' QualifiedName 'with' QualifiedName IDValuePairBody?
25
26 /* Application grammar */
27 Application ::= 'application' ID '{' ApplicationContent* '}'
28 ApplicationContent ::= Function | Connection | Module
29 Function ::= 'function' ID (FunctionMapping)? '{' FunctionContent* '}'
30 FunctionMapping ::= 'at' QualifiedName
31 FunctionContent ::= Function | Connection | ServiceImplementation
32 ServiceImplementation ::= ProvidedService | RequestedService

155

A. PSAL Grammar

33 ProvidedService ::= ProvidedIDLInterface | ProvidedIDLEvent
34 RequestedService ::= RequestedIDLInterface | RequestedIDLEvent
35 ProvidedIDLInterface ::= 'provides' QualifiedName ID ('{' ParameterAssignment* '}')? ¾

Ç ProtocolUsage?
36 ParameterAssignment ::= QualifiedName '=' ValueLiteral
37 RequestedIDLInterface ::= 'requests' QualifiedName ID ('{' ParameterAssignment* '}')?
38 ProvidedIDLEvent ::= 'emits' QualifiedName ID ('{' ParameterAssignment* '}')? ¾

Ç ProtocolUsage?
39 RequestedIDLEvent ::= 'consumes' QualifiedName ID ('{' ParameterAssignment* '}')?
40 ProtocolUsage ::= 'using' QualifiedName
41
42 /* Information grammar based on [74] */
43 Module ::= 'module' ID '{' ModuleContent+ '}'
44 ModuleContent ::= Module | Interface | Event | Constant | TypeDecl
45 Interface ::= ('abstract')? 'interface' ID InterfaceInheritance? '{' ¾

Ç InterfaceContent* '}'
46 InterfaceInheritance ::= ':' QualifiedName
47 InterfaceContent ::= Attribute | Operation | Constant | TypeDecl | ¾

Ç CommunicationParameter
48 Attribute ::= ('readonly')? 'attribute' TypeSpecification ID (',' ID)*
49 Operation ::= ('oneway')? OpTypeSpecification ID OpParameters
50 OpTypeSpecification ::= TypeSpecification | 'void'
51 OpParameters ::= '(' Parameter (',' Parameter)* ')' | '(' ')'
52 Parameter ::= ParamAttribute TypeSpecification ID
53 ParamAttribute ::= 'in' | 'out' | 'inout'
54 Event ::= ('abstract')? 'eventtype' ID EventInheritance? '{' EventContent* '}'
55 EventInheritance ::= ':' QualifiedName
56 EventContent ::= TypeDecl | StateMember | CommunicationParameter
57 StateMember ::= ('public' | 'private') TypeSpecification ID
58 Constant ::= 'const' TypeSpecification ID '=' ValueLiteral
59 TypeDecl ::= EnumType | Sequence
60 EnumType ::= 'enum' ID '{' EnumValue (',' EnumValue)* '}'
61 EnumValue ::= ID
62 Sequence ::= 'typedef' 'sequence' '<' TypeSpecification (',' Int)? '>' ID
63 TypeSpecification ::= Types | QualifiedName
64 CommunicationParameter ::= 'parameter' ID ('=' ValueLiteral)?
65
66 /* Parameter definitions */
67 IDValuePairBody ::= '{' IDValuePair* '}'
68 IDValuePair ::= ID '=' ValueLiteral
69
70 /* Terminals and literals */
71 ID ::= ([a-zA-Z] | '_') ([a-zA-Z0-9] | '_')*
72 String ::= '"' [^"]* '"'
73 QualifiedName ::= ID ('.' ID)*
74 ValueLiteral ::= String | BooleanLiteral | NumberLiteral
75 BooleanLiteral ::= 'true' | 'false'
76 NumberLiteral ::= ('-')? (Int | FloatingPtLiteral | HexLiteral)
77 Int ::= [0-9]+
78 FloatingPtLiteral ::= INT '.' INT | INT | '.' INT
79 HexLiteral ::= '0' 'x' [0-9a-fA-F]+
80 Annotation ::= '@' ID AnnotationParams?
81 AnnotationParams ::= '(' AnnotationParam (',' AnnotationParam)* ')' | '(' ')'

156

82 AnnotationParam ::= ID
83 Types ::= 'boolean' | 'float32' | 'float64' | 'int8' | 'int16' | 'int32' | 'int64' | ¾

Ç 'uint8' | 'uint16' | 'uint32' | 'uint64'| 'byte' | 'word16' | 'word32' | ¾
Ç 'word64' | 'string'| 'date'

Comments can be used both as multi-line and single-line. Multi-line comments are started
with /* and ended with */. They can span multiple lines but cannot be nested. A
single-line comment is started with // and terminates at the end of the line. Principally
comments may contain any characters that do not terminate the comment.

157

APPENDIX B
Use Case Descriptions According

to IEC 62559

B.1 Use Case Description for BC1: Use Case Design

Table B.1: Use case name [52].

Use Case Identification
ID Domain(s) Name of Use Case
BC1-UC1 Distribution, DER, Consumer Integrated Vol-VAr Control Centralized

Table B.3: Use case version [52].

Version Management
Version No. Date Name of author(s) Changes Approval Status
A 09/16/2011 Brian D. Green Initial release
B 10/31/2011 Ron Cunningham Final team review Final version

Table B.5: Use case narrative [52].

Narrative of Use Case
Short description
The centralized integrated volt-VAr control system is an integral part of the distribution SCADA
environment. One central system manages and controls all volt-VAr controller devices on the regional
distribution network [52].
Complete description

159

B. Use Case Descriptions According to IEC 62559

This control implementation uses a centralized approach where the actual intelligence of the volt-
VAr control lies within the DSO, and all actions are routed through the D-SCADA system. The
controller devices in the field (i.e., the Voltage Regulator Controller, the Capacitor Bank Controller, the
DER Controller, and the End-of-Line Monitor) send measurements, and the Circuit Reconfiguration
Controller sends the grid status, to the Distribution RTU. The Distribution RTU aggregates this
information and forwards it to the D-SCADA system. Also the Powerflow Module acquires necessary
loadflow information and passes it on to the D-SCADA. Thereupon the D-SCADA forwards all vital
information to the VVC. The VVC computes new set points and commands for the controller devices.
These are forwarded by the D-SCADA and the Distribution RTU to the field devices. All important
data are continuously sent to the Distribution Historian [52].

Table B.7: Use case diagram.

Diagram of Use Case

AC G
LV

Voltage Regulator
Controller

DER Controller

Router

AC

Capacitor Bank
Controller

AC

End-of-Line
Monitor

Distribution RTU

Circuit
Reconfiguration

Controller

LV LV

D-SCADA

Distribution
Historian

Powerflow
Module

Volt-VAr
Controller

Operations

MV

External Grid

Table B.8: Use case actors [52].

Actors
Actor Name Actor Type Actor Description
Capacitor Bank Controller IED Controller for the capacitor banks.
Circuit Reconfiguration Controller Station Controller Controller for the circuit reconfiguration

system (logic and application)
Distribution Historian Application Data Historian for the distribution system
Distribution RTU RTU Distribution RTU
D-SCADA SCADA Distribution SCADA
End-of-Line Voltage Monitor End Point Monitor Voltage monitors for endpoints at the end

of the line
Powerfow Module Application Loadflow calculation engine

160

B.2. Use Case Description for BC2: Utility Operator Control Implementation

Volt-VAr Controller Application Controller for volt-VAr operation
Voltage Regulator Controller IED Controller for the voltage regulators

Table B.10: Excerpt of the step-by-step analysis [52]

Scenario 1
Scenario Name Normal sequence
Use
Case
Step

Triggering
Event

Description
Of Process

Information
Exchanged

Producer Receiver Message
Type

1 Predeter-
mined and/or
variable
polling fre-
quency

D-SCADA on a
predetermined
and or variable
frequency will
poll the Distri-
bution RTU of
specified Feeder
Devices

Poll of Distri-
bution RTU

D-SCADA Distri-
bution
RTU

Distri-
bution
Network
Protocol
(DNP3)

2 On a pre-
determined
frequency Dis-
tribution RTU
will Poll of
specified Feeder
Devices

Poll of speci-
fied Feeder De-
vices

Distri-
bution
RTU

Feeder De-
vice

DNP3

...
24 D-SCADA

sends Sys-
tem Data to
Distribution
Historian on
predetermined
interval

System Data D-SCADA Distri-
bution
Historian

Propri-
etary

B.2 Use Case Description for BC2: Utility Operator
Control Implementation

Table B.11: Use case name [19].

Use Case Identification
ID Domain(s) Name of Use Case
BC2-UC1 Distribution, DER, Consumer DG DemoNet—Smart LV Grid

161

B. Use Case Descriptions According to IEC 62559

Table B.13: Use case narrative [81].

Narrative of Use Case
Short description
The goal of the project was to find solutions for an active network operation for low voltage networks.
Two of the main goals for the project were to find monitoring and control approaches in order to
facilitate the system integration of DERs and electric mobility. The developed control concepts follow
a step-by-step approach. In total, four stages were designed for the control concept, and implemented
as a low voltage grid controller [81].
Complete description
The developed control concepts follow a step-by-step approach. In total, four stages were designed for
the control concept, and implemented as a low voltage grid controller. The controller is an industrial
PC and is located in the secondary substation, where it can access voltage measurements from smart
meters in the field. The four control stages can be summarized as follows [81]:

• Stage 1—Local Control: In this mode the local actuators only act on local measurements, and
there is no communication between components. The main actuator is the MV/LV transformer
equipped with an on-load-tap-changer. Additionally, PV inverters and EV charging stations are
controlling the voltage locally using droop curves for reactive, Q(U), and active power, P(U).

• Stage 2—Distributed Control: Here, a measurement and communication infrastructure is used.
Voltage values from critical nodes in the grid are measured and transmitted to the central
controller. The controller uses this information to find an optimal tap position of the transformer.
Additionally the PV inverters and charging stations from Stage 1 are still in droop control
mode.

• Stage 3—Coordinated Control: Additionally Stage 1 and Stage 2 the coordinated control also
updates the predefined Q(U) droop curves of the PV inverters and the active power droop
curves charging stations. These updates are sent via broadcasts messages from the central
controller.

• Stage 4—Selective Coordinated Control: This stage is essentially the same as Stage 3 with the
one exception. Updates of the droop curves are only sent to specific inverters and charging
stations instead being broadcasted to all remote units.

162

B.2. Use Case Description for BC2: Utility Operator Control Implementation

Table B.15: Use case diagram [19].

Diagram of Use Case

Remote Components

SLVGC
MV/LV Transformer

OLTC

Data Concentrator

IE
C

 6
0

8
7

0
-5

-1
0

4

Modbus

Web Interface
Webservice

Smart Meter

Substation

Smart Meter

kWh0123456

0123456789

Smart Meter

kWh0123456

0123456789

Smart Meter

kWh0123456

0123456789

Table B.16: Use case actors [52].

Actors
Actor Name Actor Type Actor Description
Web Interface Application Application to monitor and supervise the

operation.
Tap Changer Station Controller Controller for the tap changing of the

transformer.
Data Concentrator Computer Data concentrator for the smart meters.
SLVGC Station Controller Smart low voltage grid controller implementing

the different control strategies.
PV Inverter Distributed Energy Resource Responsible for local voltage optimization using

volt-VAr control.
Smart Meters End Point Monitor Voltage monitors for endpoints and critical

points of the line.

Table B.18: Scenario conditions.

Scenario Conditions
No. Scenario Name Primary Actor Triggering Event
1 Stage 1—Local Control PV Inverter Continuous
2 Stage 2—Distributed Control SLVGC Continuous
3 Stage 3—Coordinated Control SLVGC Continuous
4 Stage 4—Selective Coordinated Control SLVGC Continuous

163

B. Use Case Descriptions According to IEC 62559

Table B.20: Excerpt of steps for Scenario 3.

Scenario 3
Scenario Name Stage 3—Coordinated Control
Step
No.

Event Description of Process Information
Producer

Information
Receiver

Information
Exchanged

1 Time
trigger

The Data Concentrator re-
quests voltage measurement
from smart meters.

Data
Concentrator

Smart Meters IEX-1

2 The smart meters returns
voltage measurement to the
Data Concentrator.

Smart Meters Data
Concentrator

IEX-2

...
10 The SLVGC calculates the

voltage spread.
11 Voltage

spread
above
limit

The SLVGC calculates new
curve setpoints for the PV
Inverter

12 The new curve setpoints are
sent to the PV Inverter.

SLVGC PV Inverter IEX-3

...
20 Voltage

spread
below
limit;
voltage
too high

The SLVGC calculates new
tap position for the Tap
Changer

SLVGC Tap Changer IEX-4

...

Table B.22: Information exchanged.

Information Exchanged
Information
Exchanged ID

Name of Informa-
tion Exchanged

Description of Information Exchanged

IEX-1 Voltage measurement
request

Request for the current voltage measurement

IEX-2 Voltage measurement Voltage measurement message as response of a request
IEX-3 New volt-VAr curve

points
The new calculated volt-VAr curve points

IEX-4 Tap postition The tap position for the transformer

164

B.3. Use Case Description for BC3: Ancillary Services from Component Manufacturers

B.3 Use Case Description for BC3: Ancillary Services
from Component Manufacturers

Table B.24: Use case name.

Use Case Identification
ID Domain(s) Name of Use Case
BC3-UC1 DER Q(U) control of DER

Table B.26: Use case narrative [157].

Narrative of Use Case
Short description
The Q(U) characteristic defines the reactive power provision of the DER depending on the voltage
measured at the point of coupling.
Complete description
With an active power output, either a fixed reactive power provision is used or the network operator
can adjust the target value through remote control. One possibility is that the reactive power setting
is adjusted through a reactive power/voltage characteristic Q(U).
For the Q(U) characteristic it should be possible for the network operator to adjust the reaction time
between 10 s and 1 min. Furthermore, to avoid voltage jumps it is advisable to choose a characteristic
with continuous profile and limited gradient. The Q(U) characteristic defines the reactive power
provision depending on the voltage measured at the point of coupling of the DER.

Table B.28: Use case diagram.

Diagram of Use Case

Qmax

0

Qmin

0.96 10.98 1.02 1.040.94 0.94

Voltage (U) [p.u.]

R
ea

ct
iv

e
P

o
w

er
 [

V
A

r]

165

B. Use Case Descriptions According to IEC 62559

Table B.29: Use case actors.

Actors
Actor Name Actor Type Actor Description
Q(U) Controller Controller Microprocessor-based controller with a pro-

grammable memory for the internal storage of
user-defined instructions. It is part of the DER
and is responsible for the Q(U) control.

DER Distributed Energy Resource Small unit which generates energy and which is
connected to the distribution grid through an in-
verter. It implements the reactive power setpoints
from the Q(U) Controller.

Voltage Meter End Point Monitor Voltage monitor for the point of coupling of the
DER.

Table B.31: Scenario conditions.

Scenario Conditions
No. Scenario Name Primary Actor Triggering Event
5 DER volt-VAr control Q(U) Controller Continuous

Table B.33: Steps for normal operation.

Scenario 5
Scenario Name DER volt-VAr control
Step
No.

Event Description of Process Information
Producer

Information
Receiver

Information
Exchanged

1 Time
trigger

The Q(U) Controller re-
quests current voltage level
from the Voltage Meter.

Q(U)
Controller

Voltage Meter IEX-1

2 The Voltage Meter returns
voltage measurement to the
Q(U) Controller.

Voltage Meter Q(U)
Controller

IEX-2

3 The Q(U) Controller calcu-
lates a new reactive power
setpoint based on its cur-
rent volt-VAr curve.

4 The new reactive power set-
point is sent to the DER

Q(U)
Controller

DER IEX-3

5 Receives
reactive
power
setpoint

The DER uses the new re-
active power setpoint.

166

B.4. Test Case Description

Table B.35: Information exchanged.

Information Exchanged
Information
Exchanged ID

Name of Informa-
tion Exchanged

Description of Information Exchanged

IEX-1 Voltage measurement
request

Request for the current voltage measurement

IEX-2 Voltage measurement Voltage measurement message as response of a request
IEX-3 Reactive power

setpoint
The reactive power setpoint for the inverter

B.4 Test Case Description

Table B.37: Use case identification.

Use Case Identification
ID Domain(s) Name of Use Case
TC1 Distribution, DER Coordinated Volt-VAr Control

Table B.39: Version management.

Version Management
Version No. Date Name of author(s) Changes Approval Status
1.0 2018-01-24 Filip Pröstl Andrén Initial version First draft

Table B.41: Scope and objectives of use case.

Scope and Objectives of Use Case
Scope Voltage optimization using local and central control
Objective Keeping voltage within the defined limits

Table B.43: Narrative of use case.

Narrative of Use Case
Short description
To keep the voltage in the network within the allowed limits local volt-VAr control is provided by
selected DERs throughout the network. Additionally, at the operation level, a central volt-VAr
optimizer supervises and manages the local DER controllers in order to achieve an optimal power
level within the whole distribution network.
Complete description

167

B. Use Case Descriptions According to IEC 62559

The scenario of the use case is typical for distribution network operation. The primary goal is to
keep the voltage in the network within the allowed limits. To achieve this local voltage control is
provided by selected DERs throughout the network. These DERs affect the voltage at their point
of coupling through the use of volt-VAr control [71]. Additionally, at the operation level, a central
volt-VAr optimizer supervises and manages the local DER controllers in order to achieve an optimal
power level within the whole distribution network.
The devices in the field (i.e., the Transformer Monitor, the Bus Monitor, the DER Controller, and the
End-of-Line Monitor) send measurements to the Distribution RTU. The Distribution RTU aggregates
this information and forwards it to the D-SCADA system. Thereupon, the D-SCADA forwards all
vital information to the Volt-VAr Controller. It computes new volt-VAr set points for the DER
Controllers. The new set points are forwarded by the D-SCADA and the Distribution RTU to the
field controllers. With the volt-VAr set points the DER Controllers can calculate a reactive power set
point for the DER Generator.

Table B.45: Diagram of use case.

Diagram of Use Case

Distribution DER

P
ro
ce
ss

Fi
el
d

St
a
ti
o
n

O
p
er
a
ti
o
n

G
LV

Transformer
Monitor

DER
Controller

Router

AC

Bus Monitor

AC

End-of-Line
Monitor

Distribution
RTU

LV LV

Customer

D-SCADA
Volt-VAr

Controller

DSO Computer

MV

External Grid

Table B.46: Use case actors.

Actors
Actor Name Actor Type Actor Description
Volt-VAr Controller Station Controller Controller located in the substation monitor-

ing and controlling the devices in the network.
It optimizes the voltage level in the grid by
issuing new reactive power set points to the
field components.

168

B.4. Test Case Description

D-SCADA SCADA The SCADA application provides the basic
functionality for managing the grid, especially
provides the communication with the substa-
tions to monitor and control the grid.

Distribution RTU IED Incorporates one or more processors with the
capability to receive or send data/control be-
tween the field devices and the DSO station
controller.

DER Controller Controller Microprocessor-based controller with a pro-
grammable memory for the internal storage
of user-defined instructions. It is responsible
for the high-level controls, including the local
volt-VAr control, of the DER Generator.

DER Generator Distributed Energy Resource Small unit which generates energy and which
is connected to the distribution grid through
an inverter. It implements the reactive power
setpoints from the DER Controller.

Transformer Monitor End Point Monitor A monitor of electricity not used for billing
purposes and deployed by the DSO for the
purposes of LV visibility of per-premises
consumption.

Bus Monitor End Point Monitor A monitor of electricity not used for billing
purposes and deployed by the DSO for the
purposes of LV visibility of per-premises
consumption.

End-of-Line Monitor End Point Monitor A monitor of electricity not used for billing
purposes and deployed by the DSO for the
purposes of LV visibility of per-premises
consumption.

Table B.48: Scenario conditions.

Scenario Conditions
No. Scenario Name Primary Actor Triggering Event
6 Distribution system voltage control Volt-VAr Controller Voltage spread too high
7 DER volt-VAr control DER Controller Continuous

Table B.50: Steps for Scenario 6.

Scenario 6
Scenario Name Distribution system voltage control
Step
No.

Event Description of Process Information
Producer

Information
Receiver

Information
Exchanged

1 Time
trigger

The Distribution RTU re-
quests voltage measurement
from grid monitors.

Distribution
RTU

Transformer
Monitor

IEX-1

169

B. Use Case Descriptions According to IEC 62559

2 Time
trigger

The Distribution RTU re-
quests voltage measurement
from grid monitors.

Distribution
RTU

Bus Monitor IEX-1

3 Time
trigger

The Distribution RTU re-
quests voltage measurement
from grid monitors.

Distribution
RTU

End-of-Line
Monitor

IEX-1

4 Time
trigger

The Distribution RTU re-
quests voltage measurement
from DER Controller.

Distribution
RTU

DER Con-
troller

IEX-1

5 The Transformer Monitor
returns voltage measure-
ment to Distribution RTU.

Transformer
Monitor

Distribution
RTU

IEX-2

6 The Bus Monitor returns
voltage measurement to Dis-
tribution RTU.

Bus Monitor Distribution
RTU

IEX-2

7 The End-of-Line Monitor
returns voltage measure-
ment to Distribution RTU.

End-of-Line
Monitor

Distribution
RTU

IEX-2

8 The DER Controller re-
turns voltage measurement
to Distribution RTU.

DER Con-
troller

Distribution
RTU

IEX-2

9 The Distribution RTU for-
wards collected measure-
ments to the D-SCADA.

Distribution
RTU

D-SCADA IEX-3

10 The D-SCADA forwards
measurements to the Volt-
VAr Controller.

D-SCADA Volt-VAr Con-
troller

IEX-3

11 The Volt-VAr Controller
calculates the voltage
spread.

12 Voltage
spread
above
limit

The Volt-VAr Controller re-
quests the current volt-VAr
curve points from the DER
Controller.

Volt-VAr Con-
troller

D-SCADA IEX-4

13 The D-SCADA forwards
the requests.

D-SCADA Distribution
RTU

IEX-4

14 The Distribution RTU for-
wards the requests.

Distribution
RTU

DER Con-
troller

IEX-4

15 The DER Controller re-
turns its current curve
points.

DER Con-
troller

Distribution
RTU

IEX-5

16 The Distribution RTU for-
wards the current curve
points.

Distribution
RTU

D-SCADA IEX-5

17 The D-SCADA forwards
the current curve points.

D-SCADA Volt-VAr Con-
troller

IEX-5

18 The Volt-VAr Controller
calculates new curve set-
points for the DER Con-
troller

19 The new curve setpoints are
sent to the DER Controller.

Volt-VAr Con-
troller

D-SCADA IEX-6

170

B.4. Test Case Description

20 The new curve setpoints are
forwarded.

D-SCADA Distribution
RTU

IEX-6

21 The new curve setpoints are
forwarded.

Distribution
RTU

DER Con-
troller

IEX-6

22 Receives
curve
points

The DER Controller uses
the new volt-VAr curve
points

Table B.52: Steps for Scenario 7.

Scenario 7
Scenario Name DER volt-VAr control
Step
No.

Event Description of Process Information
Producer

Information
Receiver

Information
Exchanged

1 Time
trigger

The DER Controller re-
quests current voltage level
from the DER Generator.

DER Con-
troller

DER Genera-
tor

IEX-1

2 The DER Generator re-
turns voltage measurement
to DER Controller.

DER Genera-
tor

DER Con-
troller

IEX-2

3 The DER Controller calcu-
lates a new reactive power
setpoint based on its cur-
rent volt-VAr curve.

4 The new reactive power set-
point is sent to the DER
Generator

DER Con-
troller

DER Genera-
tor

IEX-7

5 Receives
reactive
power
setpoint

The DER Generator uses
the new reactive power
setpoint.

Table B.54: Inforamtion exchanged.

Information Exchanged
Information
Exchanged ID

Name of Informa-
tion Exchanged

Description of Information Exchanged

IEX-1 Voltage measurement
request

Request for the current voltage measurement

IEX-2 Voltage measurement Voltage measurement message as response of a request
IEX-3 Aggregated voltage

measurement
Aggregated voltage measurements from all field
components

IEX-4 Volt-VAr curve
request

Request for the currently used volt-VAr curve points

IEX-5 Volt-VAr curve
points

The currently used volt-VAr curve points

IEX-6 New volt-VAr curve
points

The new calculated volt-VAr curve points

171

B. Use Case Descriptions According to IEC 62559

IEX-7 Reactive power
setpoint

The reactive power setpoint for the inverter

172

APPENDIX C
Use Case Listings

C.1 Application Specification for the Test Case
1 application VoltVArControlCoordinated {
2 /* Volt-VAr Controller:
3 * Controller located in the substation monitoring and controlling the devices
4 * in the network. It optimizes the voltage level in the grid by issuing new
5 * reactive power set points to the field components.
6 */
7 @Distribution @Operation
8 function VoltVArController at DistributionSystemVV.DSOComputer.VoltVAr {
9 consumes Measurements.AggregatedMeasurement gridStatus

10 requests DERCtrlInterfaces.DERVoltVArCurve dscadaVoltVArCurve
11 }
12
13 /* D-SCADA:
14 * The SCADA application provides the basic functionality for managing the grid,
15 * especially provides the communication with the substations to monitor and
16 * control the grid.
17 */
18 @Distribution @Station
19 function DSCADA at DistributionSystemVV.DSOComputer.SCADA {
20 emits Measurements.AggregatedMeasurement gridStatus
21 provides DERCtrlInterfaces.DERVoltVArCurve voltVArCurve
22 consumes FieldInformation.GridStatus gridStatusRTU
23 requests DERCtrlInterfaces.DERVoltVArCurve rtuVoltVArCurve
24 }
25
26 /* Distribution RTU:
27 * Incorporates one or more processors with the capability to receive or send
28 * data/control between the field devices and the DSO station controller.
29 */
30 @Distribution @Station
31 function DistributionRTU at DistributionSystemVV.DistributionRTU.RTUResource {

173

C. Use Case Listings

32 emits Measurements.AggregatedMeasurement gridStatus
33 provides DERCtrlInterfaces.DERVoltVArCurve voltVArCurve
34 requests DERCtrlInterfaces.DERVoltVArCurve derVoltVArCurve
35 requests Measurements.GridMeasurements derMeasurements
36 requests Measurements.GridMeasurements transformerMeasurements
37 requests Measurements.GridMeasurements busMeasurements
38 requests Measurements.GridMeasurements eolMeasurements
39 }
40
41 /* DER Controller:
42 * Microprocessor-based controller with a programmable memory for the internal
43 * storage of user-defined instructions. It is responsible for the high-level
44 * controls, including the local volt-VAr control, of the DER Generator.
45 */
46 @DER @Field
47 function DERController at DistributionSystemVV.DERController.AncillaryServices {
48 provides DERCtrlInterfaces.DERVoltVArCurve voltVar
49 provides Measurements.GridMeasurements measurements
50 requests DERCtrlInterfaces.DERDirectControls derDirectControls
51 requests Measurements.GridMeasurements derMeasurements
52 }
53
54 /* DER Generator:
55 * Small unit which generates energy and which is connected to the distribution
56 * grid through an inverter. It implements the reactive power setpoints from the
57 * DER Controller.
58 */
59 @DER @Process
60 function DERGenerator at DistributionSystemVV.DERGenerator.DERResource {
61 provides DERCtrlInterfaces.DERDirectControls directControls
62 provides Measurements.GridMeasurements measurements
63 }
64
65 /* Transformer Monitor:
66 * A monitor of electricity not used for billing purposes and deployed by the DSO
67 * for the purposes of LV visibility of per-premises consumption.
68 *
69 */
70 @Distribution @Field
71 function TransformerMonitor at ¾

Ç DistributionSystemVV.TransformerMonitor.MonitorResource {
72 provides Measurements.GridMeasurements measurements
73 }
74
75 /* Bus Monitor:
76 * A monitor of electricity not used for billing purposes and deployed by the DSO
77 * for the purposes of LV visibility of per-premises consumption.
78 *
79 */
80 @Distribution @Field
81 function BusMonitor at DistributionSystemVV.BusMonitor.MonitorResource {
82 provides Measurements.GridMeasurements measurements
83 }

174

C.1. Application Specification for the Test Case

84
85 /* End-of-Line Monitor:
86 * A monitor of electricity not used for billing purposes and deployed by the DSO
87 * for the purposes of LV visibility of per-premises consumption.
88 *
89 */
90 @Customer Field
91 function EndOfLineMonitor at DistributionSystemVV.EndOfLineMonitor.MonitorResource {
92 provides Measurements.GridMeasurements measurements
93 }
94
95 /* Module for measurements */
96 module Measurements {
97 /* Interface for measurements at a single point in the grid */
98 interface GridMeasurement {
99 /* Arithmetic average of the phase to phase voltage for 3 phases */

100 readonly attribute float32 voltage
101 }
102 /* Event for aggregated voltage measurements */
103 eventtype AggregatedMeasurement {
104 /* Aggregated measurements from field devices (p.u.) */
105 public float32 vTM, vBM, vEOLM, vDER
106 }}
107
108 /* Module for DER controls */
109 module DERCtrlInterfaces {
110 /* Representation of the volt-VAr curve */
111 interface DERVoltVArCurve {
112 /* Voltage set points for droop curve */
113 attribute float32 v1, v2, v3, v4
114 /* Reactive power set points for droop curve */
115 attribute float32 q1, q2, q3, q4
116 }
117
118 /* Interface for direct controls of the DER Generator */
119 interface DERDirectControls {
120 attribute float32 qSetPoint
121 }}
122
123 /* Connections between service implementations */
124 connect DERController.derDirectControls with DERGenerator.directControls
125 connect DERController.derMeasurements with DERGenerator.measurements
126 connect DistributionRTU.derVoltVArCurve with DERController.voltVar
127 connect DistributionRTU.derMeasurements with DERController.measurements
128 connect DistributionRTU.transformerMeasurements with TransformerMonitor.measurements
129 connect DistributionRTU.busMeasurements with BusMonitor.measurements
130 connect DistributionRTU.eolMeasurements with EndOfLineMonitor.measurements
131 connect DSCADA.gridStatusRTU with DistributionRTU.gridStatus
132 connect DSCADA.rtuVoltVArCurve with DistributionRTU.voltVArCurve
133 connect VoltVArController.gridStatus with DSCADA.gridStatus
134 connect VoltVArController.dscadaVoltVArCurve with DSCADA.voltVArCurve
135 }

Listing C.1: Full business case and functional specification for the example use case.

175

C. Use Case Listings

C.2 System Specification for the Test Case

1 system DistributionSystemVV {
2 /* ICT components */
3
4 /* DSO Computer:
5 * The computer at the DSO wich contains the processes for the D-SCADA and the
6 * Volt-VAr Controller processes.
7 */
8 @Distribution @Operation
9 device DSOComputer {

10 ethernet eth0 {ip = "10.0.0.1"}
11 resource SCADA
12 resource VoltVAr
13 }
14 /* Distribution RTU:
15 * The RTU at the station zone. It contains the process for the DistributionRTU
16 * process.
17 */
18 @Distribution @Station
19 device DistributionRTU {
20 ethernet eth0 {ip = "10.0.0.2"}
21 ethernet eth0 {ip = "101.0.0.1"}
22 resource RTUResource
23 }
24 /* Station router
25 * Ethernet router between DSO network and field network.
26 */
27 @Distribution @Station
28 router StationRouter
29 /* Transformer Montior:
30 * Measurement device which monitors the voltage at the transformer.
31 */
32 @Distribution @Field
33 device TransformerMonitor {
34 ethernet eth0 {ip = "101.0.0.2"}
35 resource MonitorResource
36 }
37 /* Bus Montior:
38 * Measurement device which monitors the voltage at the LV bus.
39 */
40 @Distribution @Field
41 device BusMonitor {
42 ethernet eth0 {ip = "101.0.0.3"}
43 resource MonitorResource
44 }
45 /* DER Controller:
46 * An embedded controller connected with the DER Generator.
47 */
48 @DER @Field
49 device DERController {
50 ethernet eth0 {ip = "101.0.0.4"}
51 ethernet eth0 {ip = "192.168.0.2"}

176

C.2. System Specification for the Test Case

52 resource AncillaryServices
53 }
54 /* End-Of-Line Montior:
55 * Measurement device which monitors the voltage at the end of the line.
56 */
57 @Customer @Field
58 device EndOfLineMonitor {
59 ethernet eth0 {ip = "101.0.0.5"}
60 resource MonitorResource
61 }
62
63 /* Electrical components */
64
65 /* External Grid:
66 * The external grid represents the MV grid to which the use case grid is
67 * connected.
68 */
69 @Distribution @Process
70 generator ExternalSystem {
71 terminal MVBus
72 }
73 /*
74 * The MV bus above the transformer
75 */
76 @Distribution @Process
77 busbar MVBus {
78 terminal ExternalSystem
79 terminal MV2LVTransformer
80 }
81 /*
82 * The MV to LV transformer, contining two windings
83 */
84 @Distribution @Process
85 transformer MV2LVTransformer {
86 winding MV {
87 terminal mvSide
88 }
89 winding LV {
90 terminal lvSide
91 }}
92 /*
93 * The LV busbar after the transformer
94 */
95 @Distribution @Process
96 busbar LVBus1 {
97 terminal MV2LVTransformer
98 terminal Line1
99 }

100 /*
101 * The line between the first two LV busbars
102 */
103 line Line1 {
104 terminal LVBus1

177

C. Use Case Listings

105 terminal LVBus2
106 }
107 /*
108 * The second LV busbar
109 */
110 @Distribution @Process
111 busbar LVBus2 {
112 terminal Line1
113 terminal DERGenerator
114 terminal Line2
115 }
116 /* DER Generator:
117 * It contains an Ethernet interface as well as a computational resource.
118 */
119 @DER @Process
120 generator DERGenerator {
121 ethernet eth0 {ip = "192.168.0.1"}
122 terminal LVBus2
123 resource DERResource
124 }
125 /*
126 * The line between the second and the third LV busbars
127 */
128 line Line2 {
129 terminal LVBus2
130 terminal LVBus3
131 }
132 /*
133 * The third LV busbars
134 */
135 @Customer @Process
136 busbar LVBus3 {
137 terminal Line2
138 terminal Load
139 }
140 /*
141 * The load at the end of the line
142 */
143 @Customer @Process
144 consumer Load {
145 terminal LVBus3
146 }
147
148 /* Connections between the ICT components */
149 connect DistributionRTU.eth0 with DSOComputer.eth0
150 connect DistributionRTU.eth1 with StationRouter
151 connect TransformerMonitor.eth0 with StationRouter
152 connect BusMonitor.eth0 with StationRouter
153 connect DERController.eth0 with StationRouter
154 connect DERController.eth1 with DERGenerator.eth0
155 connect EndOfLineMonitor.eth0 with StationRouter
156
157 /* Connections between electrical components */

178

C.2. System Specification for the Test Case

158 connect MVBus.ExternalSystem with ExternalSystem.MVBus
159 connect MV2LVTransformer.MV.mvSide with MVBus.MV2LVTransformer
160 connect LVBus1.MV2LVTransformer with MV2LVTransformer.LV.lvSide
161 connect Line1.LVBus1 with LVBus1.Line1
162 connect LVBus2.Line1 with Line1.LVBus2
163 connect DERGenerator.LVBus2 with LVBus2.DERGenerator
164 connect Line2.LVBus2 with LVBus2.Line2
165 connect LVBus3.Line2 with Line2.LVBus3
166 connect Load.LVBus3 with LVBus3.Load
167 }

Listing C.2: Full system specification for the example use case.

179

Acronyms

AADL Architecture Analysis and Design Language. 20, 69

AC Alternating Current. 57, 133

ADL Architecture Description Language. 20

API Application Programming Interface. 26, 32, 97

ASN.1 Abstract Syntax Notation One. 24, 102, 103, 129

ATL ATL Transformation Language. 36, 100, 101, 103, 104

AUTOSAR AUTomotive Open System ARchitecture. 20, 39

BDA Basic Data Attribute. 88

CBSE Component-Based Software Engineering. 37, 39

CDC Common Data Class. 28, 30, 87

CHIL Controller Hardware-In-the-Loop. 33, 34

CI Continuous Integration. 142, 143

CIM Common Information Model. 19, 20, 23, 27, 32, 40, 66–69, 75, 76, 92, 96, 104, 118,
128, 129, 139, 148

COM Component Object Model. 39

CORBA Common Object Request Broker Architecture. 39

COSEM Companion Specification for Energy Metering. 40

CPES Cyber-Physical Energy System. 65

D-SCADA DSO SCADA. 106, 160, 161, 168

DA Data Attribute. 29, 30, 87

181

DC Direct Current. 57, 133

DER Distributed Energy Resource. 2–4, 32, 46–55, 65, 68, 105–107, 109, 118, 121, 122,
125, 126, 128, 138, 160, 162, 165–168

DG Distributed Generation. 51

DGEN Logical Node: DER unit generator. 69

DLL Dynamic Link Library. 129, 130

DLMS Distribution Line Message Service. 28

DM Domain Model. 65–70, 75, 77, 79, 82, 138

DMS Distribution Management Systems. 19, 27

DNP3 Distribution Network Protocol. 161

DO Data Object. 28, 87

DRCC Logical Node: DER supervisory control. 118, 119

DSL DIgSILENT Simulation Language. 129

DSL Domain-Specific Language. 18, 35, 37, 71, 99, 147

DSO Distribution System Operator. xv, 46, 47, 55, 56, 105, 106, 121, 124, 126, 130,
131, 138, 160, 169, 181

EBNF Extended Backus–Naur Form. 74, 155

EMS Energy Management System. 19, 27

EPRI Electric Power Research Institute. 15, 19, 45

EV Electric Vehicle. 2, 28, 49, 162

FB Function Block. 23–25, 40, 81, 82, 98, 140, 141

FBD Function Block Diagram. 21

FMAR Logical Node: Establish mode curves and parameters. 118, 119

GOOSE Generic Object Oriented Substation Event. 29

GSE Generic Substation Event. 29

HIL Hardware-In-the-Loop. 33, 34

182

HuT Hardware-under-Test. 33, 34

ICT Information and Communication Technology. 3, 4, 15, 18, 20, 21, 26–28, 32–34, 49,
50, 52, 57, 58, 61, 62, 65, 66, 71–73, 75, 77, 111, 119, 121, 132

IDE Integrated Development Environment. 99–101

IDL Interface Description Language. 38, 67, 77, 78, 138

IEC International Electrotechnical Commission. 19, 27, 30

IED Intelligent Electronic Device. 28, 29, 47, 48, 50, 87, 94, 97, 121

IL Instruction List. 21

ILIM Implementation Language Independent Model. 98

IP Internet Protocol. 71, 72, 94, 96, 111, 129, 133

LD Ladder Diagram. 21, 28, 29

LN Logical Node. 28–30, 35, 67, 69, 87, 88, 90, 94, 103, 118, 140

LV Low Voltage. 3, 49, 50, 112, 133, 162, 169

M2M model-to-model. 36

M2T model-to-text. 36

MAC Media Access Control. 71, 72

MDA Model-Driven Architecture. 34, 37, 39, 69, 97, 98

MDE Model-Driven Engineering. 6, 11, 34–37, 39–41, 61, 69, 82, 97, 138, 139, 144, 145,
147, 149–151

MMS Manufacturing Message Specification. 29

MMXU Logical Node: Measurement. 87, 88, 90, 100, 118, 119

MOF Meta Object Facility. 35, 37

MOFM2T MOF Model to Text. 36

MQTT Message Queue Telemetry Transport. 102

MV Medium Voltage. 3, 49, 50, 53, 111, 112, 162

NIST National Institute of Standards and Technology. 39

183

OMG Object Management Group. 37, 77, 78, 138

OPC UA OPC Unified Architecture. 28, 47, 87, 102

OSGi Open Services Gateway initiative. 39

OSI Open Systems Interconnection. 71, 119

P Active Power. 49, 162

p.u. per unit. 134

PC Personal Computer. 49, 50, 162

PHIL Power Hardware-In-the-Loop. 33, 34

PIM Platform-Independent Model. 37, 39, 40, 69, 97, 98

PLC Power Line Carrier. 21, 22, 49, 66

PSAL Power System Automation Language. 71–78, 80–82, 84–89, 94–97, 99–101, 103,
104, 107, 108, 110, 119–121, 128, 138, 140–144, 146–148, 150, 155

PSM Platform-Specific Model. 37, 39, 40, 69, 98, 138

PV Photovoltaic. 2, 46, 49–51, 133, 162

Q Reactive Power. 49, 121, 162

QVT Query View Transformation. 36, 37

RDF Resource Description Framework. 20

RTE Runtime Environment. 102

RTU Remote Terminal Unit. 106, 160, 161, 168

SCADA Supervisory Control and Data Acquisition. 19, 106, 159, 169, 181

SCL System Configuration Language. 29, 40, 66, 87, 88, 94, 95, 97, 98, 100, 103, 104,
133, 134, 139, 141, 143, 144, 148

SDN Software Defined Networking. 47, 94

SFC Sequential Function Chart. 21

SGAM Smart Grid Architecture Model. 5, 17–19, 22, 23, 39, 44, 45, 57, 61, 63, 65, 66,
70–73, 107, 118, 138–140, 142, 143, 147, 148

SIFB Service Interface Function Block. 25, 82, 83, 92–94, 98, 102, 103, 129, 130

184

SLVGC Smart Low Voltage Grid Controller. 50

SOA Service-Oriented Architecture. 28

ST Structured Text. 21

SysML System Modeling Language. 20, 69

T2M text-to-model. 36

TC Technical Committee. 27, 30

TCP Transmission Control Protocol. 66, 102, 129, 133

TSO Transmission System Operator. 55

U Voltage. 49, 121, 162

UCMR Use Case Management Repository. 16

UDP User Datagram Protocol. 66, 102

UML Unified Modeling Language. 16, 18–20, 30, 35, 37, 40, 57, 66, 69, 72, 73, 142

VFB Virtual Functional Bus. 121

VLAN Virtual Local Area Network. 71, 94

VVC Volt-VAr Controller. 45, 160

XML Extensible Markup Language. 29, 87, 96, 98

185

Bibliography

[1] “Acceleo,” Jun. 2017. [Online]. Available: https://www.eclipse.org/acceleo/

[2] D. J. Anderson and A. Carmichael, Essential Kanban Condensed. Blue Hole Press,
Nov. 2015.

[3] F. Andrén, R. Bründlinger, and T. Strasser, “IEC 61850/61499 Control of Dis-
tributed Energy Resources: Concept, Guidelines, and Implementation,” IEEE
Transactions on Energy Conversion, vol. 29, no. 4, pp. 1008–1017, Dec. 2014.

[4] F. Andrén, F. Lehfuss, and T. Strasser, “A Development and Validation Environ-
ment for Real-Time Controller-Hardware-in-the-Loop Experiments in Smart Grids,”
International Journal of Distributed Energy Resources and Smart Grids, vol. 9,
no. 1, pp. 27–50, 2013.

[5] F. Andrén, M. Stifter, and T. Strasser, “Towards a Semantic Driven Framework
for Smart Grid Applications: Model-Driven Development using CIM, IEC 61850
and IEC 61499,” Informatik-Spektrum, vol. 36, no. 1, pp. 58–68, Jan. 2013.

[6] F. Andrén, T. Strasser, and W. Kastner, “Model-driven engineering applied to
Smart Grid automation using IEC 61850 and IEC 61499,” in Power Systems
Computation Conference (PSCC), Aug. 2014, pp. 1–7.

[7] F. Andrén, T. Strasser, A. Zoitl, and I. Hegny, “A reconfigurable communication
gateway for distributed embedded control systems,” in 38th Annual Conf. of the
IEEE Ind. Electronics Society (IECON), 2012.

[8] F. Andrén, T. Strasser, and W. Kastner, “Towards a Common Modeling Approach
for Smart Grid Automation,” in 39th Annual Conference on IEEE Industrial
Electronics Society (IECON), 2013, pp. 5338–5344.

[9] F. Andrén, T. Strasser, S. Rohjans, and M. Uslar, “Analyzing the need for a common
modeling language for Smart Grid applications,” in 11th IEEE International
Conference on Industrial Informatics (INDIN), 2013.

[10] Angelo Frascella et al., “Looking for the unified classification and evaluation
approach of SG interface standards for the purposes of ELECTRA IRP,” in Int.
Symp. on Smart Electric Distribution Systems and Technologies (EDST), 2015.

187

https://www.eclipse.org/acceleo/

[11] L. Ardito, G. Procaccianti, G. Menga, and M. Morisio, “Smart Grid Technologies
in Europe: An Overview,” Energies, vol. 6, no. 1, pp. 251–281, Jan. 2013.

[12] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin: ad-
vanced concepts and tools for in-place EMF model transformations,” Model Driven
Engineering Languages and Systems, pp. 121–135, 2010.

[13] J. Bastian, C. Claus, S. Wolf, and P. Schneider, “Master for co-simulation using
FMI,” in 8th International Modelica Conference; March 20th-22nd; Technical
Univeristy; Dresden; Germany. Linköping University Electronic Press, 2011, pp.
115–120.

[14] B. Boehm, “Get ready for agile methods, with care,” Computer, vol. 35, no. 1, pp.
64–69, 2002.

[15] B. Boehm and R. Turner, Balancing Agility and Discipline: A Guide for the
Perplexed, Portable Documents. Addison-Wesley Professional, 2003.

[16] D. Box, Essential COM. Addison-Wesley Professional, 1998.

[17] P. Brédillet, E. Lambert, and E. Schultz, “CIM, 61850, COSEM Standards Used
in a Model Driven Integration Approach to Build the Smart Grid Service Ori-
ented Architecture,” in 2010 First IEEE International Conference on Smart Grid
Communications (SmartGridComm), Oct. 2010, pp. 467–471.

[18] C. Brunner, “IEC 61850 for power system communication,” in Transmission and
Distribution Conference and Exposition, 2008. T&D. IEEE/PES. IEEE, 2008, pp.
1–6.

[19] H. Brunner, “DG DemoNet - Smart LV Grid,” 2015.

[20] A. Caragliu, C. Del Bo, and P. Nijkamp, “Smart cities in Europe,” Journal of
urban technology, vol. 18, no. 2, pp. 65–82, 2011.

[21] C. Cecati, C. Citro, A. Piccolo, and P. Siano, “Smart Operation of Wind Turbines
and Diesel Generators According to Economic Criteria,” IEEE Transactions on
Industrial Electronics, vol. 58, no. 10, pp. 4514–4525, 2011.

[22] C. Cecati, G. Hancke, P. Palensky, P. Siano, and X. Yu, “Guest Editorial Special
Section on Information Technologies in Smart Grids,” IEEE Transactions on
Industrial Informatics, vol. 9, no. 3, pp. 1380–1383, Aug. 2013.

[23] “CEI 0-21 Reference technical rules for the connection of active and passive users
to the LV electrical utilities,” CEI, Tech. Rep., 2012.

[24] CEN-CENELEC-ETSI Smart Grid Coordination Group, “SG-CG/M490/F
Overview of SG-CG Methodologies,” Tech. Rep., 2014.

188

[25] CEN-CENELEC-ETSI Smart Grid Working Group Reference Architecture, “Refer-
ence Architecture for the Smart Grid,” Tech. Rep., 2012.

[26] CEN-CENELEC-ETSI Smart Grid Working Group Sustainable Processes, “Use
Case Collection, Management, Repository, Analysis and Harmonization,” Tech.
Rep., 2012.

[27] “CET850 IEC 61850 configuration tool V2.1 | Schneider Electric,” Nov. 2017.
[Online]. Available: https://www.schneider-electric.us/en/download/document/
CET850+IEC850+configuration+tool/

[28] “Common Object Request Broker Architecture,” Object Management Group
(OMG), Tech. Rep., 2012. [Online]. Available: http://www.omg.org/spec/CORBA/
3.3/

[29] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. V. Chaudron, “A Classification
Framework for Software Component Models,” IEEE Transactions on Software
Engineering, vol. 37, no. 5, pp. 593–615, Sep. 2011.

[30] K. Czarnecki and S. Helsen, “Feature-based survey of model transformation ap-
proaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–645, 2006.

[31] C. Dänekas, C. Neureiter, S. Rohjans, M. Uslar, and D. Engel, “Towards a Model-
Driven-Architecture Process for Smart Grid Projects,” in Digital Enterprise Design
& Management, ser. Advances in Intelligent Systems and Computing, P. J. Benghozi,
D. Krob, A. Lonjon, and H. Panetto, Eds. Springer International Publishing,
2014, vol. 261, pp. 47–58.

[32] K. Dyke, N. Schofield, and M. Barnes, “The Impact of Transport Electrification on
Electrical Networks,” IEEE Transactions on Industrial Electronics, vol. 57, no. 12,
pp. 3917–3926, 2010.

[33] “EBNF for XML,” World Wide Web Consortium (W3C), Tech. Rep., 2004. [Online].
Available: https://www.w3.org/TR/2004/REC-xml-20040204/#sec-notation

[34] EC, “M/490 Standardization Mandate to European Standardisation Organisations
(ESOs) to support European Smart Grid deployment,” European Commission (EC),
Tech. Rep., 2012.

[35] “Eclipse - The Eclipse Foundation open source community website.” [Online].
Available: http://www.eclipse.org

[36] S. Efftinge and M. Völter, “oAW xText: A framework for textual DSLs,” in
Workshop on Modeling Symposium at Eclipse Summit, vol. 32, 2006.

[37] G. Elliott, Global business information technology: an integrated systems approach.
Pearson Education, 2004.

189

https://www.schneider-electric.us/en/download/document/CET850+IEC850+configuration+tool/
https://www.schneider-electric.us/en/download/document/CET850+IEC850+configuration+tool/
http://www.omg.org/spec/CORBA/3.3/
http://www.omg.org/spec/CORBA/3.3/
https://www.w3.org/TR/2004/REC-xml-20040204/#sec-notation
http://www.eclipse.org

[38] “EPRI SmartGrid Resource Center - Use Case Repository,” Feb. 2017. [Online].
Available: http://smartgrid.epri.com/Repository/Repository.aspx

[39] T. Facchinetti and M. L. Della Vedova, “Real-time modeling for direct load control
in cyber-physical power systems,” IEEE Transactions on Industrial Informatics,
vol. 7, no. 4, pp. 689–698, 2011.

[40] H. Farhangi, “The path of the smart grid,” IEEE Power and Energy Magazine,
vol. 8, no. 1, pp. 18–28, 2010.

[41] M. Faschang, “Rapid control prototyping for networked Smart Grid systems based
on an agile development process,” Ph.D. dissertation, Vienna University of Tech-
nology, 2015.

[42] P. H. Feiler and D. P. Gluch, Model-based engineering with AADL: an introduction
to the SAE architecture analysis & design language. Addison-Wesley, 2012.

[43] E. Ferreira, R. Paulo, and P. Henriques, “Integration of the ST language in a model-
based engineering environment for control systems: An approach for compiler
implementation,” Computer Science and Information Systems, vol. 5, no. 2, pp.
87–101, 2008.

[44] M. Fleck, “Search-Based Model Transformations,” Ph.D. dissertation, Institute of
Software Technology and Interactive Systems, Vienna University of Technology,
2016.

[45] M. Fleck, J. Troya, and M.Wimmer, “Search-based model transformations,” Journal
of Software: Evolution and Process, vol. 28, no. 12, pp. 1081–1117, Dec. 2016.

[46] K. Forsberg and H. Mooz, “The Relationship of Systems Engineering to the Project
Cycle,” Engineering Management Journal, vol. 4, no. 3, pp. 36–43, Sep. 1992.

[47] M. Fowler, Domain-specific languages. Pearson Education, 2010.

[48] M. Fowler and J. Highsmith, “The agile manifesto,” Software Development, vol. 9,
no. 8, pp. 28–35, 2001.

[49] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-Biller, P. Heitkämper,
G. Kinkelin, K. Nishikawa, and K. Lange, “AUTOSAR–A Worldwide Standard is
on the Road,” in 14th International VDI Congress Electronic Systems for Vehicles,
Baden-Baden, vol. 62, 2009.

[50] “General Conditions for a Temporary Arrangement for the Frequency-Dependent
Active Power Control of PV Systems in the LV Distribution Network,” VDE
Association for Electrical, Electronic & Information Technologies, Tech. Rep., 2011.

[51] M. Gottschalk and M. Uslar, “Supporting the Development of Smart Cities using
a Use Case Methodology,” in 24th International Conference on World Wide Web.
ACM, 2015, pp. 541–545.

190

http://smartgrid.epri.com/Repository/Repository.aspx

[52] B. D. Green, “Integrated Volt VAR Control Centralized,” American Electric
Power, Tech. Rep., 2011. [Online]. Available: http://smartgrid.epri.com/UseCases/
Integrated%20Volt%20VAR%20Control%20Centralized_ph2add.pdf

[53] C. Greer, D. A. Wollman, D. E. Prochaska, P. A. Boynton, J. A. Mazer, C. T.
Nguyen, G. J. FitzPatrick, T. L. Nelson, G. H. Koepke, and A. R. Hefner Jr, “NIST
Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0,”
Special Publication (NIST SP)-1108r3, 2014.

[54] V. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. Hancke,
“Smart Grid Technologies: Communication Technologies and Standards,” IEEE
Transactions on Industrial Informatics, vol. 7, no. 4, pp. 529–539, 2011.

[55] H. T. Haider, O. H. See, and W. Elmenreich, “A review of residential demand
response of smart grid,” Renewable and Sustainable Energy Reviews, vol. 59, pp.
166–178, 2016.

[56] A. Hakala-Ranta, O. Rintamaki, and J. Starck, “Utilizing possibilities of IEC
61850 and GOOSE,” in 20th International Conference and Exhibition on Electricity
Distribution-Part 1, CIRED. IET, 2009, pp. 1–4.

[57] I. Hegny, T. Strasser, M. Melik-Merkumians, M. Wenger, and A. Zoitl, “Towards an
increased reusability of distributed control applications modeled in IEC 61499,” in
17th IEEE International Conference on Emerging Technologies Factory Automation
(ETFA 2012), Sep. 2012, pp. 1–8.

[58] G. T. Heineman and W. T. Councill, Component-Based Software Engineering:
Putting the Pieces Together, 1st ed. Boston, Mass. u.a.: Addison-Wesley Profes-
sional, Jun. 2001.

[59] “Helinks LLC,” Nov. 2017. [Online]. Available: http://www.helinks.com/

[60] N. Higgins, V. Vyatkin, N.-K. Nair, and K. Schwarz, “Distributed Power System
Automation With IEC 61850, IEC 61499, and Intelligent Control,” IEEE Transac-
tions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 41,
no. 1, pp. 81–92, 2011.

[61] Holonic Manufacturing Systems (HMS) Consortium, “IEC 61499 Compliance
Profile for Feasibility Demonstrations,” Sep. 2013. [Online]. Available:
http://www.holobloc.com/doc/ita/index.htm

[62] J. Hughes, “IntelliGrid Architecture Concepts and IEC61850,” in 2005/2006
IEEE/PES Transmission and Distribution Conference and Exhibition, May 2006,
pp. 401–404.

[63] IEC 61131-3: Programmable controllers - Part 3: Programming languages. Geneva,
Switzerland: International Electrotechnical Commission (IEC), 2012.

191

http://smartgrid.epri.com/UseCases/Integrated%20Volt%20VAR%20Control%20Centralized_ph2add.pdf
http://smartgrid.epri.com/UseCases/Integrated%20Volt%20VAR%20Control%20Centralized_ph2add.pdf
http://www.helinks.com/
http://www.holobloc.com/doc/ita/index.htm

[64] IEC 61499: Function blocks. Geneva, Switzerland: Int. Elect. Commission (IEC),
2012.

[65] IEC 61850-7-420: Communication networks and systems for power utility automa-
tion - Part 7-420: Basic communication structure - Distributed energy resources
logical nodes. Geneva, Switzerland: International Electrotechnical Commission
(IEC), 2009.

[66] IEC 61850: Communication networks and systems for power utility automation.
Geneva, Switzerland: International Electrotechnical Commission (IEC), 2010.

[67] IEC 61968: Application integration at electrical utilities. Geneva, Switzerland:
International Electrotechnical Commission, 2003, no. IEC 61968, published: Part 1
- 14.

[68] IEC 61970: Energy management system application program interface (EMS-API).
Geneva, Switzerland: International Electrotechnical Commission, 2004, no. IEC
61970, published: Part 1-5.

[69] IEC 62559, PAS: Intelligrid Methodology for developing requirements for Energy
Systems. Geneva, Switzerland: International Electrotechnical Commission, 2008,
no. IEC 62559.

[70] IEC 62559: Use case methodology. Geneva, Switzerland: International Electrotech-
nical Commission, 2015, no. IEC 62559.

[71] IEC/TR 61850-90-7 - Communication networks and systems for power utility
automation - Part 90-7: Object models for power converters in distributed energy
resources (DER) systems. Geneva, Switzerland: International Electrotechnical
Commission (IEC), 2013.

[72] “IEEE Guide for Smart Grid Interoperability of Energy Technology and Information
Technology Operation with the Electric Power System (EPS), End-Use Applications,
and Loads,” IEEE Std 2030-2011, pp. 1–126, Oct. 2011.

[73] M. D. Ilic, L. Xie, U. A. Khan, and J. M. Moura, “Modeling of future cyber-physical
energy systems for distributed sensing and control,” IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, vol. 40, no. 4, pp. 825–838,
2010.

[74] “Interface Definition Language Version 3.5,” Object Management Group (OMG),
Tech. Rep., 2014. [Online]. Available: http://www.omg.org/spec/IDL35

[75] R. Isermann, J. Schaffnit, and S. Sinsel, “Hardware-in-the-loop simulation for the
design and testing of engine-control systems,” Control Engineering Practice, vol. 7,
no. 5, pp. 643–653, 1999.

192

http://www.omg.org/spec/IDL35

[76] K. H. John and M. Tiegelkamp, IEC 61131-3: programming industrial automation
systems: concepts and programming languages, requirements for programming
systems, decision-making aids. Springer Science & Business Media, 2010.

[77] J. Jorgensen, S. Sorensen, K. Behnke, and P. Eriksen, “EcoGrid EU — A prototype
for European Smart Grids,” in Power and Energy Society General Meeting, 2011
IEEE, 2011, pp. 1–7.

[78] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model transformation
tool,” Science of Computer Programming, vol. 72, no. 1, pp. 31–39, Jun. 2008.

[79] F. Knirsch, D. Engel, C. Neureiter, M. Frincu, and V. Prasanna, “Model-driven
privacy assessment in the smart grid,” in International Conference on Information
Systems Security and Privacy (ICISSP). IEEE, 2015, pp. 1–9.

[80] G. Kondrak, “N-Gram Similarity and Distance,” in String Processing and Informa-
tion Retrieval, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,
J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan,
D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, M. Consens, and G. Navarro,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, vol. 3772, pp. 115–126,
dOI: 10.1007/11575832_13.

[81] F. Kupzog, R. Schwalbe, W. Prüggler, B. Bletterie, S. Kadam, A. Abart, and
M. Radauer, “Maximising low voltage grid hosting capacity for PV and electric mo-
bility by distributed voltage control,” e & i Elektrotechnik und Informationstechnik,
vol. Volume 131, Issue 6, pp. 188–192, 2014.

[82] I. Kurtev, “State of the art of QVT: A model transformation language standard,”
in Applications of graph transformations with industrial relevance. Springer, 2008,
pp. 377–393.

[83] L. Lednicki and J. Carlson, “A framework for generation of inter-node communi-
cation in component-based distributed embedded systems,” in Proceedings of the
2014 IEEE Emerging Technology and Factory Automation (ETFA), Sep. 2014, pp.
1–8.

[84] E. A. Lee, “Cyber physical systems: Design challenges,” in Object oriented real-time
distributed computing (isorc), 2008 11th ieee international symposium on. IEEE,
2008, pp. 363–369.

[85] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and
reversals,” in Soviet physics doklady, vol. 10, 1966, pp. 707–710.

[86] R. W. Lewis, Modeling control systems using IEC 61499. IEE Publishing, 2001,
no. ISBN: 0 85296 796 9.

[87] “libIEC61850 / lib60870-5 | open source libraries for IEC 61850 and IEC
60870-5-104,” 2017. [Online]. Available: http://libiec61850.com/libiec61850/

193

http://libiec61850.com/libiec61850/

[88] H. Lin, “Communication infrastructure for the smart grid: A co-simulation based
study on techniques to improve the power transmission system functions with
efficient data networks,” Ph.D. dissertation, Virginia Polytechnic Institute and
State University, 2012.

[89] M. Liserre, T. Sauter, and J. Hung, “Future Energy Systems: Integrating Renewable
Energy Sources into the Smart Power Grid Through Industrial Electronics,” IEEE
Industrial Electronics Magazine, vol. 4, no. 1, pp. 18–37, 2010.

[90] A. J. Lopes, R. Lezama, and R. Pineda, “Model Based Systems Engineering
for Smart Grids as Systems of Systems,” Procedia Computer Science, vol. 6, no.
Supplement C, pp. 441–450, Jan. 2011.

[91] J. Lopes, N. Hatziargyriou, J. Mutale, P. Djapic, and N. Jenkins, “Integrating
distributed generation into electric power systems: A review of drivers, challenges
and opportunities,” Electric Power Systems Research, vol. 77, no. 9, pp. 1189–1203,
2007.

[92] R. Lopez, A. Moore, and J. Gillerman, “A model-driven approach to Smart
Substation automation and integration for Comision Federal de Electricidad,”
in IEEE PES T D 2010, Apr. 2010, pp. 1–8.

[93] R. Mall, Fundamentals of Software Engineering. PHI Learning Pvt. Ltd., May
2009.

[94] A. W. McMorran, E. M. Stewart, C. M. Shand, S. E. Rudd, and G. A. Taylor,
“Addressing the challenge of data interoperability for off-line analysis of distribution
networks in the Smart Grid,” in PES T D 2012, May 2012, pp. 1–5.

[95] A. W. McMorran, “An introduction to IEC 61970-301 & 61968-11: The common
information model,” University of Strathclyde, vol. 93, p. 124, 2007.

[96] S. J. Mellor, S. Kendall, A. Uhl, and D. Weise, MDA Distilled. Redwood City,
CA, USA: Addison Wesley Longman Publishing Co., Inc., 2004.

[97] “Meta Object Facility,” Object Management Group (OMG), Tech. Rep., 2016.
[Online]. Available: http://www.omg.org/spec/MOF/2.5.1/

[98] K. Mets, J. A. Ojea, and C. Develder, “Combining Power and Communication Net-
work Simulation for Cost-Effective Smart Grid Analysis,” IEEE Communications
Surveys Tutorials, vol. 16, no. 3, pp. 1771–1796, 2014.

[99] G. Migliavacca, M. Rossi, D. Six, M. Džamarija, R.-I. E. DTU-Denmark, S. HORS-
MANHEIMO, C. MADINA, I. Kockar, and J. M. MORALES, “SmartNet: a H2020
project analysing TSO-DSO interaction to enable ancillary services provision from
distribution networks,” CIRED, Glasgow, 2017.

194

http://www.omg.org/spec/MOF/2.5.1/

[100] “Model Driven Architecture (MDA): The MDA Guide Rev 2.0,” Object Management
Group (OMG), Tech. Rep. ormsc/2014-06-01, Jun. 2014.

[101] “MOF Model to Text Transformation Language,” Object Management Group
(OMG), Tech. Rep., 2008. [Online]. Available: http://www.omg.org/spec/
MOFM2T/1.0/

[102] G. Mussbacher, D. Amyot, R. Breu, J.-M. Bruel, B. H. Cheng, P. Collet, B. Combe-
male, R. B. France, R. Heldal, and J. Hill, “The relevance of model-driven en-
gineering thirty years from now,” in International Conference on Model Driven
Engineering Languages and Systems. Springer, 2014, pp. 183–200.

[103] C. Neureiter, D. Engel, J. Trefke, R. Santodomingo, S. Rohjans, and M. Uslar,
“Towards consistent smart grid architecture tool support: From use cases to visu-
alization,” in IEEE PES Innovative Smart Grid Technologies Conference Europe
(ISGT-Europe). IEEE, 2014, pp. 1–6.

[104] “NIST Framework and Roadmap for Smart Grid Interoperability Standards,” Na-
tional Institute of Standards and Technology - U.S. Department of Commerce,
USA, Tech. Rep. NIST Publication 1108, 2010.

[105] “OMG System Modeling Language,” Object Management Group (OMG), Tech.
Rep., 2017. [Online]. Available: http://www.omg.org/spec/SysML/1.5/

[106] W. Omona, T. P. van der Weide, and J. T. Lubega, “Knowledge Management
Research Using Grounded Theory Strategy: Applicability, Limitations and Ways
Forward,” in ICCIR 10 : Proceedings of the 6th Annual International Conference
on Computing and ICT Research, Jan. 2010, pp. 163–185.

[107] P. Palensky and D. Dietrich, “Demand Side Management: Demand Response,
Intelligent Energy Systems, and Smart Loads,” IEEE Transactions on Industrial
Informatics, vol. 7, no. 3, pp. 381–388, 2011.

[108] T. Parr, The Definitive ANTLR Reference: Building Domain-specific Languages.
Pragmatic Bookshelf, 2007.

[109] R. Paulo and A. Carvalho, “Towards model-driven design of substation automation
systems,” in Proc. of CIRED, 2005.

[110] M. Petre, “Why Looking Isn’T Always Seeing: Readership Skills and Graphical
Programming,” Com. ACM, vol. 38, no. 6, pp. 33–44, 1995.

[111] “Power generation systems connected to the low-voltage distribution network -
Technical minimum requirements for the connection to and parallel operation with
low-voltage distribution networks,” VDE Association for Electrical, Electronic &
Information Technologies, Tech. Rep. VDE-AR-N 4105, 2011.

195

http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/SysML/1.5/

[112] “PowerFactory - DIgSILENT Germany,” 2017. [Online]. Available: http:
//www.digsilent.de/index.php/products-powerfactory.html

[113] Y. Pradeep, P. Seshuraju, S. A. Khaparde, V. S. Warrier, and S. Cherian, “CIM
and IEC 61850 integration issues: Application to power systems,” in 2009 IEEE
Power Energy Society General Meeting, Jul. 2009, pp. 1–6.

[114] “Prescriptions techniques spécifiques de raccordement d’installations de production
décentralisée fonctionnant en parallèle sur le réseau de distribution,” Synergrid,
Tech. Rep., 2012.

[115] B. Prindle, M. Eldridge, M. Eckhardt, and A. Frederick, “The twin pillars of
sustainable energy: synergies between energy efficiency and renewable energy
technology and policy,” Washington, DC: American Council for an Energy-Efficient
Economy, 2007.

[116] F. Pröstl Andrén, T. Strasser, and W. Kastner, “Applying the SGAM Methodology
for Rapid Prototyping of Smart Grid Applications,” in 42nd Annual Conference of
the IEEE Ind. Electronics Society (IECON), 2016.

[117] ——, “Engineering Smart Grids: Applying Model-Driven Development from Use
Case Design to Deployment,” Energies, vol. 10, no. 3, p. 374, Mar. 2017.

[118] F. Pröstl Andrén, T. Strasser, O. Langthaler, A. Veichtlbauer, C. Kasberger, and
G. Felbauer, “Open and Interoperable ICT Solution for Integrating Distributed
Energy Resources into Smart Grids,” in 21th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA’2016), 2016.

[119] A. Purkus, E. Gawel, M. Deissenroth, K. Nienhaus, and S. Wassermann, “Market
integration of renewable energies through direct marketing - lessons learned from
the German market premium scheme,” Energy, Sustainability and Society, vol. 5,
no. 1, p. 12, Apr. 2015.

[120] S. Raman, N. Sivashankar, W. Milam, W. Stuart, and S. Nabi, “Design and imple-
mentation of HIL simulators for powertrain control system software development,”
in American Control Conference (ACC), 1999.

[121] A. Rodrigues da Silva, “Model-driven engineering: A survey supported by the
unified conceptual model,” Computer Languages, Systems & Structures, vol. 43, no.
Supplement C, pp. 139–155, Oct. 2015.

[122] S. Rohjans, C. Dänekas, and M. Uslar, “Requirements for Smart Grid ICT-
architectures,” in 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe
(ISGT Europe), Oct. 2012, pp. 1–8.

[123] S. Rohjans, Semantic service integration for smart grids. Ios Press, 2012, vol. 14.

196

http://www.digsilent.de/index.php/products-powerfactory.html
http://www.digsilent.de/index.php/products-powerfactory.html

[124] S. Rohjans, S. Lehnhoff, S. Schütte, F. Andrén, and T. Strasser, “Requirements for
Smart Grid simulation tools,” in IEEE 23rd International Symposium on Industrial
Electronics (ISIE). IEEE, 2014, pp. 1730–1736.

[125] K. S. Rubin, Essential Scrum: A Practical Guide to the Most Popular Agile Process.
Addison-Wesley Professional, 2012.

[126] R. Santodomingo, J. A. Rodríguez-Mondéjar, and M. A. Sanz-Bobi, “Ontology
matching approach to the harmonization of CIM and IEC 61850 standards,” in First
IEEE International Conference on Smart Grid Communications (SmartGridComm).
IEEE, 2010, pp. 55–60.

[127] R. Santodomingo, M. Uslar, A. Göring, M. Gottschalk, L. Nordström, A. Saleem,
and M. Chenine, “SGAM-based methodology to analyse Smart Grid solutions
in DISCERN European research project,” in 2014 IEEE International Energy
Conference (ENERGYCON), May 2014, pp. 751–758.

[128] D. C. Schmidt, “Model-Driven Engineering,” Computer, vol. 39, no. 2, pp. 25–31,
Feb. 2006.

[129] R. Schwalbe, A. Einfalt, A. Abart, M. Radauer, and H. Brunner, “DG DemoNet
Smart LV Grid - Robust Control Architecture to Increase DG Hosting Capacity,” in
23rd International Conference and Exhibition on Electricity Distribution, CIRED,
2015.

[130] M. Shaw, “Writing good software engineering research papers,” in 25th International
Conference on Software Engineering, May 2003, pp. 726–736.

[131] ——, “What makes good research in software engineering?” International Journal
on Software Tools for Technology Transfer (STTT), vol. 4, no. 1, pp. 1–7, 2002.

[132] J. Siegel, “Developing in OMG’s New Model-Driven Architecture,” Management,
2001.

[133] M. Slee, A. Agarwal, and M. Kwiatkowski, “Thrift: Scalable cross-language services
implementation,” Facebook White Paper, vol. 5, no. 8, 2007.

[134] “Smart Grid International Research Facility Network (SIRFN), IEA ISGAN Annex
5,” 2017. [Online]. Available: http://www.sirfn.net/

[135] SMB Smart Grid Strategic Group (SG3), “IEC Smart Grid Standardization
Roadmap,” International Electrotechnical Commission (IEC), Geneva, Switzerland,
Tech. Rep. Ed. 1.0, 2010.

[136] H. G. Sol, “Simulation in information systems development.” Ph.D. dissertation,
University of Groningen, 1982.

197

http://www.sirfn.net/

[137] J. Somers, “The Coming Software Apocalypse,” The Atlantic, Sep. 2017.
[Online]. Available: https://www.theatlantic.com/technology/archive/2017/09/
saving-the-world-from-code/540393/

[138] M. Specht, S. Rohjans, J. Trefke, M. Uslar, and J. M. Gonzalez Vazquez, “Interna-
tional Smart Grid Roadmaps and their Assessment,” EAI Endorsed Transactions
on Energy Web, vol. 1, Mar. 2013.

[139] “Specifications – OSGi™ Alliance,” Jan. 2018. [Online]. Available: https:
//www.osgi.org/developer/specifications/

[140] M. H. Spiegel, F. Leimgruber, E. Widl, and G. Gridling, “On using FMI-based
models in IEC 61499 control applications,” in 2015 Workshop on Modeling and
Simulation of Cyber-Physical Energy Systems (MSCPES), Apr. 2015, pp. 1–6.

[141] T. Stetz, F. Marten, and M. Braun, “Improved Low Voltage Grid-Integration of
Photovoltaic Systems in Germany,” IEEE Transactions on Sustainable Energy,
vol. 4, no. 2, pp. 534–542, Apr. 2013.

[142] M. Steurer, F. Bogdan, W. Ren, M. Sloderbeck, and S. Woodruff, “Controller and
power hardware-in-loop methods for accelerating renewable energy integration,” in
Power Engineering Society General Meeting, 2007. IEEE. IEEE, 2007, pp. 1–4.

[143] M. Stifter, E. Widl, F. Andrén, A. Elsheikh, T. Strasser, and P. Palensky, “Co-
simulation of components, controls and power systems based on open source
software,” in 2013 IEEE Power Energy Society General Meeting, Jul. 2013, pp. 1–5.

[144] M. Stifter, F. Andrén, R. Schwalbe, and W. Tremmel, “Interfacing PowerFactory:
Co-simulation, Real-Time Simulation and Controller Hardware-in-the-Loop Ap-
plications,” in PowerFactory Applications for Power System Analysis, ser. Power
Systems. Springer, Cham, 2014, pp. 343–366, dOI: 10.1007/978-3-319-12958-7_15.

[145] T. Strasser, F. Andrén, J. Kathan, C. Cecati, C. Buccella, P. Siano, P. Leitao,
G. Zhabelova, V. Vyatkin, P. Vrba, and V. Marik, “A Review of Architectures and
Concepts for Intelligence in Future Electric Energy Systems,” IEEE Transactions
on Industrial Electronics, vol. 62, no. 4, pp. 2424–2438, Apr. 2015.

[146] T. Strasser, F. Andrén, F. Lehfuss, M. Stifter, and P. Palensky, “Online Reconfig-
urable Control Software for IEDs,” IEEE Transactions on Industrial Informatics,
vol. PP, no. 99, pp. 1–1, 2013.

[147] T. Strasser, F. Andrén, V. Vyatkin, G. Zhabelova, and C.-W. Yang, “Towards an
IEC 61499 compliance profile for smart grids review and analysis of possibilities,”
in Annual Conference on IEEE Industrial Electronics Society (IECON), 2012, pp.
3750–3757.

198

https://www.theatlantic.com/technology/archive/2017/09/saving-the-world-from-code/540393/
https://www.theatlantic.com/technology/archive/2017/09/saving-the-world-from-code/540393/
https://www.osgi.org/developer/specifications/
https://www.osgi.org/developer/specifications/

[148] T. Strasser, M. Rooker, I. Hegny, M. Wenger, A. Zoitl, L. Ferrarini, A. Dede, and
a. M. Colla, “A Research Roadmap for Model-Driven Design of Embedded Systems
for Automation Components,” in IEEE International Conference on Industrial
Informatics (INDIN’09), 2009.

[149] T. Strasser, M. Stifter, F. Andrén, D. Burnier, and W. Hribernik, “Applying open
standards and open source software for smart grid applications: Simulation of
distributed intelligent control of power systems,” in Power and Energy Society
General Meeting, IEEE, 2011.

[150] T. Strasser, M. Stifter, F. Andrén, and P. Palensky, “Co-Simulation Training
Platform for Smart Grids,” IEEE Transactions on Power Systems, vol. 29, no. 4,
pp. 1989–1997, Jul. 2014.

[151] T. Strasser, A. Zoitl, J. Christensen, and C. Sünder, “Design and Execution Issues
in IEC 61499 Distributed Automation and Control Systems,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 41,
no. 1, pp. 41–51, 2011.

[152] T. Strasser, F. Andrén, R. Bründlinger, and D. Garabandic, “Integrating PV into
the Smart Grid - Implementation of an IEC 61850 Interface for Large Scale PV
Inverters,” in EUPVSEC Proceedings. WIP, 2013.

[153] T. Strasser, F. Pröstl Andrén, G. Lauss, R. Bründlinger, H. Brunner, C. Moyo,
C. Seitl, S. Rohjans, S. Lehnhoff, P. Palensky, P. Kotsampopoulos, N. Hatziargyriou,
G. Arnold, W. Heckmann, E. Jong, M. Verga, G. Franchioni, L. Martini, A. Kosek,
O. Gehrke, H. Bindner, F. Coffele, G. Burt, M. Calin, and E. Rodriguez-Seco,
“Towards holistic power distribution system validation and testing—an overview and
discussion of different possibilities,” e & i Elektrotechnik und Informationstechnik,
Dec. 2016.

[154] “Substation Automation Systems - Smart Grid So-
lutions - Siemens,” Nov. 2017. [Online]. Avail-
able: http://w3.usa.siemens.com/smartgrid/us/en/transmission-grid/products/
substation-automation-systems/pages/substation-automation-system.aspx

[155] “SystemCORP: Smart Grid Controllers,” Nov. 2017. [Online]. Available:
https://www.systemcorp.com.au/products/hardware/smart-grid-controllers/

[156] C. Szyperski, Component Software: Beyond Object-oriented Programming. ACM
Press, Jan. 1997.

[157] “Technical Guideline: Generating Plants Connected to the Medium-Voltage Net-
work,” BDEW German Association of Energy and Water Industries, Tech. Rep.,
2008.

199

http://w3.usa.siemens.com/smartgrid/us/en/transmission-grid/products/substation-automation-systems/pages/substation-automation-system.aspx
http://w3.usa.siemens.com/smartgrid/us/en/transmission-grid/products/substation-automation-systems/pages/substation-automation-system.aspx
https://www.systemcorp.com.au/products/hardware/smart-grid-controllers/

[158] “Technology Roadmap Smart Grids,” International Energy Agency (IEA), Tech.
Rep., 2011.

[159] “The German Standardisation Roadmap E-Energy/Smart Grid,” German Com-
mission for Electrical, Electronic & Information Technologies of DIN and VDE,
Frankfurt, Germany, Tech. Rep., 2010.

[160] “TOR D4 Parallelbetrieb von Erzeugungsanlagen mit Verteilernetzen,” e-control,
Tech. Rep. Version 2.1, 2013.

[161] “Trail: JavaBeans(TM) (The Java™ Tutorials),” Jun. 2017. [Online]. Available:
https://docs.oracle.com/javase/tutorial/javabeans/

[162] J. Trefke, J. M. González, and M. Uslar, “Smart Grid standardisation manage-
ment with use cases,” in IEEE International Energy Conference and Exhibition
(ENERGYCON). IEEE, 2012, pp. 903–908.

[163] J. Trefke, S. Rohjans, M. Uslar, S. Lehnhoff, L. Nordström, and A. Saleem, “Smart
Grid Architecture Model use case management in a large European Smart Grid
project,” in Innovative Smart Grid Technologies Europe (ISGT EUROPE), 2013
4th IEEE/PES. IEEE, 2013, pp. 1–5.

[164] “Unified Modeling Language,” Object Management Group (OMG), Tech. Rep.,
2015. [Online]. Available: http://www.omg.org/spec/UML/2.5/

[165] M. Uslar, F. Andrén, W. Mahnke, S. Rohjans, M. Stifter, and T. Strasser, “Hybrid
grids: ICT-based integration of electric power and gas grids-A standards perspec-
tive,” in 3rd IEEE PES International Conference and Exhibition on Innovative
Smart Grid Technologies (ISGT Europe). IEEE, 2012, pp. 1–8.

[166] M. Uslar, M. Specht, S. Rohjans, J. Trefke, and J. M. González, The Common
Information Model CIM: IEC 61968/61970 and 62325-A practical introduction to
the CIM. Springer Science & Business Media, 2012.

[167] A. Viehweider, G. Lauss, and F. Lehfuss, “Stabilization of Power Hardware-in-the-
Loop simulations of electric energy systems,” Simulation Modelling Practice and
Theory, vol. 19(2011), pp. 1699–1708, 2011.

[168] V. Vyatkin, “The IEC 61499 standard and its semantics,” IEEE Industrial Elec-
tronics Magazine, vol. 3, no. 4, pp. 40–48, 2009.

[169] ——, “IEC 61499 as Enabler of Distributed and Intelligent Automation: State-of-
the-Art Review,” IEEE Transactions on Industrial Informatics, vol. 7, no. 4, pp.
768–781, 2011.

[170] V. Vyatkin, G. Zhabelova, N. Higgins, K. Schwarz, and N. Nair, “Towards intelligent
Smart Grid devices with IEC 61850 Interoperability and IEC 61499 open control
architecture,” in 2010 IEEE PESTransmission and Distribution Conference and
Exposition, 2010.

200

https://docs.oracle.com/javase/tutorial/javabeans/
http://www.omg.org/spec/UML/2.5/

[171] V. Vyatkin, G. Zhabelova, N. Higgins, M. Ulieru, K. Schwarz, and N. Nair,
“Standards-enabled Smart Grid for the future Energy Web,” in Innovative Smart
Grid Technologies (ISGT), 2010, 2010, pp. 1–9.

[172] D. Westermann and M. Kratz, “A real-time development platform for the next
generation of power system control functions,” IEEE Transactions on Industrial
Electronics, vol. 57, no. 4, pp. 1159–1166, 2010.

[173] “World Energy Outlook 2013,” Intern. Energy Agency, Tech. Rep., 2013.

[174] C.-W. Yang, V. Vyatkin, A. Mousavi, and V. Dubinin, “On automatic generation
of IEC61850/IEC61499 substation automation systems enabled by ontology,” in
40th Annual Conf. of the IEEE Ind. Electronics Society (IECON), 2014.

[175] L. Zhu, D. Shi, and X. Duan, “Standard Function Blocks for Flexible IED in
IEC 61850-Based Substation Automation,” IEEE Transactions on Power Delivery,
vol. 26, no. 2, pp. 1101–1110, 2011.

[176] A. Zoitl, T. Strasser, and A. Valentini, “Open source initiatives as basis for the
establishment of new technologies in industrial automation: 4diac a case study,” in
2010 IEEE International Symposium on Industrial Electronics (ISIE), 2010.

[177] A. Zoitl and V. Vyatkin, “IEC 61499 architecture for distributed automation: The
“glass half full” view,” IEEE Industrial Electronics Magazine, vol. 3, no. 4, pp. 7–23,
2009.

[178] A. Zoitl and H. Prahofer, “Guidelines and Patterns for Building Hierarchical
Automation Solutions in the IEC 61499 Modeling Language,” IEEE Transactions
on Industrial Informatics, vol. 9, no. 4, pp. 2387–2396, Nov. 2013.

201

Filip Pröstl Andrén Curriculum Vitae

Contact
Information

Filip Pröstl Andrén

Oskar-Jascha-Gasse 61
1130 Wien
Austria
M +43 664 2351916
filip.proestl-andren@ait.ac.at

Personal
Data

Full name Per Johan Filip Pröstl Andrén
Nationality Swedish
Born March 13th, 1984 in Helsingborg, Sweden
Languages Swedish (native), German (fluid), English (fluid)

Vienna University of Technology, Vienna, AustriaEducation

PhD, Informatics since June 2013

• Thesis Model-Driven Engineering for Smart Grid Automation

∗ Supervisor: Wolfgang Kastner

Linköping University, Linköping, Sweden

MSc, Applied Physics and Electrical Engineering Dec. 2009

• Thesis Optimization of Random Access in 3G Long Term Evolution

∗ Supervisor: Fredrik Gunnarsson

Fachhochschule Technikum Wien, Vienna, Austria

Exchange Student, Mechatronics/Robotics Sept. 2008 – Feb. 2009

AIT Austrian Institute of Technology, Center for Energy, ElectricalEmployment
Record /
Academic
Experience

Energy Systems, Vienna, Austria

Scientist since Sept. 2014

• Topics of research: control and information systems for smart grids,
power utility automation, model-driven engineering

University of Applied Sciences Technikum, Department of Renewable
Energy, Vienna, Austria

Lecturer since Mar. 2012

• Tutorial: Anlagentechnik und Simulation - Smart Grids

AIT Austrian Institute of Technology, Center for Energy, Electric En-
ergy Systems, Vienna, Austria

Junior Scientist Nov. 2009 – Sept. 2014

• Topics of research: control and information systems for smart grids,
power utility automation, power systems modeling and simulation

Publications
Most Recent
and Relevant

[1] C. Zanabria, A. Tayyebi, F. Pröstl Andrén, J. Kathan, and T. Strasser,
“Engineering support for handling controller conflicts in energy storage
systems applications,” Energies, vol. 10, no. 10, 2017.

[2] F. Pröstl Andrén, T. Strasser, and W. Kastner, “Engineering Smart
Grids: Applying Model-Driven Development from Use Case Design to
Deployment,” Energies, vol. 10, no. 3, p. 374, Mar. 2017.

[3] M. Faschang, S. Cejka, M. Stefan, A. Frischenschlager, A. Einfalt, K. Di-
wold, F. Pröstl Andrén, T. Strasser, and F. Kupzog, “Provisioning, de-
ployment, and operation of smart grid applications on substation level,”
Computer Science - Research and Development, vol. 32, no. 1, pp. 117–
130, Mar 2017.

[4] T. Strasser, F. Pröstl Andrén, G. Lauss, R. Brndlinger, H. Brunner,
C. Moyo, C. Seitl, S. Rohjans, S. Lehnhoff, P. Palensky, P. Kotsam-
popoulos, N. Hatziargyriou, G. Arnold, W. Heckmann, E. Jong, M. Verga,
G. Franchioni, L. Martini, A. Kosek, O. Gehrke, H. Bindner, F. Coffele,
G. Burt, M. Calin, and E. Rodriguez-Seco, “Towards Holistic Power Dis-
tribution System Validation and Testing—An Overview and Discussion
of Different Possibilities,” e & i Elektrotechnik und Informationstechnik,
Dec. 2016.

[5] F. Pröstl Andrén, T. Strasser, and W. Kastner, “Applying the SGAM
Methodology for Rapid Prototyping of Smart Grid Applications,” in 42nd
Annual Conference of the IEEE Industrial Electronics Society (IECON),
2016.

[6] F. Pröstl Andrén, T. Strasser, O. Langthaler, A. Veichtlbauer, C. Kas-
berger, and G. Felbauer, “Open and Interoperable ICT Solution for Inte-
grating Distributed Energy Resources into Smart Grids,” in 21th IEEE
International Conference on Emerging Technologies and Factory Automa-
tion (ETFA’2016), 2016.

[7] F. Andrén, B. Bletterie, S. Kadam, P. Kotsampopoulos, and C. Bucher,
“On the Stability of Local Voltage Control in Distribution Networks With
a High Penetration of Inverter-Based Generation,” IEEE Transactions on
Industrial Electronics, vol. Volume 62, Issue 4, pp. 2519–2529, 2015.

[8] T. Strasser, F. Andrén, J. Kathan, C. Cecati, C. Buccella, P. Siano,
P. Leitao, G. Zhabelova, V. Vyatkin, P. Vrba, and V. Marik, “A Re-
view of Architectures and Concepts for Intelligence in Future Electric
Energy Systems,” IEEE Transactions on Industrial Electronics, vol. 62,
no. 4, pp. 2424–2438, Apr. 2015.

[9] F. Andrén, T. Strasser, and W. Kastner, “From Textual Programming
to IEC 61499 Artifacts - Towards a Model-Driven Engineering Approach
for Smart Grid Applications,” in 13th IEEE International Conference
on Industrial Informatics (INDIN 2015), IEEE, Ed. IEEE, 2015, pp.
1524–1530.

	Kurzfassung
	Abstract
	Contents
	Introduction
	State of the Art
	Requirements for Smart Grid Automation
	Rapid Engineering Methodology
	Prototypical Implementation
	Applying the Rapid Engineering Methodology
	Evaluation and Conclusions
	Appendices
	PSAL Grammar
	Use Case Descriptions According to IEC 62559
	Use Case Listings
	Acronyms
	Bibliography

