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Kurzfassung

Eine Suchmaschine sortiert Dokumente basierend auf ihrer Relevanz für die Suchanfrage.
Wenn nur exakte Wortübereinstimmungen gefunden werden, können Ergebnisse übersehen
werden. Das Erweitern einer Dokumentabfrage mit ähnlichen Wörtern aus einem Word-
Embedding bietet ein großes Potenzial für bessere und umfangreichere Abfrageergebnisse.
Die Erweiterung des Suchraums ermöglicht das Auffinden relevanter Dokumente, auch
wenn diese nicht die eigentliche Anfrage enthalten. Ein zusätzliches Wort verbessert die
Abfrageergebnisse nur, wenn es für das Thema der Suche relevant ist. Studien haben
gezeigt, dass einige der hinzugefügten Wörter, die durch ein standard Word-Embedding
gewonnen wurden, die Retrieval-Performance negativ beeinflussen.

Wir passen ein Word-Embedding so an, um die Effektivität der Suchergebnisse zu verbes-
sern. Die Änderungen, die wir in den lokalen Nachbarschaften von Wörtern durchführen,
passen das Word-Embedding an die Anforderungen einer Suchmaschine an. Wir konzen-
trieren uns auf sehr ähnliche lokale Nachbarschaften innerhalb des Word-Embeddings,
da wir die daraus gewonnenen Informationen bei der Erweiterung einer Suchabfrage ver-
wenden. Für die Anpassung integrieren wir externe Ressourcen in das Word-Embedding
mit Retrofitting. Wir experimentieren mit verschiedenen externen Ressourcen: Latent
Semantic Indexing, semantische Lexika (zB WordNet) und verschiedene Kombinationen
von beiden.

Wir analysieren Veränderungen in den lokalen Wort-Nachbarschaften von Abfragebe-
griffen und globale Differenzen zwischen den ursprünglichen und den nachgerüsteten
Vektoren. Wir evaluieren die Auswirkungen der geänderten Word-Embeddings auf domä-
nenspezifische Retrieval-Tests, in denen wir verbesserte Ergebnisse für einige Test melden.
Zusammenfassend zeigen wir, dass verschiedene Domainen am besten mit verschiedenen
Modellen verstärkt werden können.
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Abstract

Search engines rank documents based on their relevance to a given query – using only
exact word matches might miss results. Expanding a document retrieval query with
similar words gained from a word embedding offers great potential for better query results.
The expansion of the search space allows to retrieve relevant documents, even if they do
not contain the actual query. An additional word improves the query results only if it is
relevant to the topic of the search. As observed by previous studies, an essential problem
in using an out-of-box word embedding for document retrieval is that some of the added
similar words have a negative impact on the retrieval performance.

We create word embedding based similarity models, which are used to expand query
words in domain-specific Information Retrieval. For this we adapt an existing word
embedding with additional information gained from different contexts – we incorporate
them into a Skip-gram word embedding with Retrofitting. We experiment with different
external resources: Latent Semantic Indexing, semantic lexicons. We also study various
techniques to combine two different external resources.

We first analyze changes in the local neighborhoods of query terms and global differences
between the original and retrofitted vector spaces. We then evaluate the effect of
the changed word embeddings on domain-specific retrieval test collections. We report
improved results on some test collections. In conclusion, we show that in two out of three
test collections, incorporating external resources significantly improves the results over
using an out-of-the-box word embedding.
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CHAPTER 1
Introduction

Searching for information has its roots long before modern computer systems. Index
catalog cards allowed librarians for centuries to find information based on basic search
queries, such as the author, title, or subject of a publication. Computer systems enable a
new way of search: fast full-text search. This means the user is able to search for every
single word contained in a collection. Search systems can read and index every word in
every Wikipedia article in a matter of minutes. Index data structures can be queried in
seconds. With the abundance of available data comes the problem of aggregating the
results in a useful way. A user does not benefit from millions of unordered documents,
which contain the query. The ranking of those documents is a very important aspect of
search systems.

The Information Retrieval (IR) discipline is concerned with finding and retrieving relevant
documents based on the information need expressed as a query. This includes text search
as well as music, image, and video retrieval. The document retrieval result contains
multiple documents ordered based on their relevance to the query. The relevance between
a document and a query is determined by a scoring function. Common scoring methods
are based on statistics such as the frequency of query words in documents and the inverse
document frequency of query words.

Keywords selected by humans have the benefit of distilling the document they describe in
a humanly-judged relevant way. Additionally, librarians can easily search for synonyms
and incorporate the context in their search, because they can use their knowledge and
human intelligence to do this task. Computer systems have to extract the relevance of a
document to a certain query automatically.

The Natural Language Processing (NLP) discipline studies in a broad sense the un-
derstanding of natural language by computers. One part of this field is to provide a
computable representation of words, as the building blocks of language. A word is
represented as a numerical vector, called word embedding. A word embedding embeds
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1. Introduction

the identity of a word in a low-dimensional vector space (commonly between 20 and 500
dimensions). All words in the used vocabulary are embedded in the same vector space.
The position of the vectors in this word embedding space defines relationships between
words. This is an abstract representation of the meaning of a word in the context of
other words in the vocabulary.

The Skip-gram (part of word2vec) [MCCD13] word embedding creation method uses a
short window-context around each word (two to five words before and after the word) to
capture a dense vector. Deriving the meaning of words using the local window-context is
inspired by J.R. Firth: “You shall know a word by the company it keeps” [Fir57], i.e.
words in similar contexts tend to have similar vector representations.

1.1 Motivation and Problem Definition
In recent years, several works studied the use of word embeddings for IR and in particular
document retrieval [GFAC16, MDC17, NMCC16]. One recent study using word embed-
dings in document retrieval is the Generalized Translation Model in the Probabilistic
Relevance Framework [RLHZ16]. In this study, the authors use a word embedding as
a source for word pair similarities and introduce a model which extends a query word
by its neighbors in the vector space, inside various scoring functions. The neighbors are
determined with a cosine similarity and selected with a threshold. While the model shows
relative improvements in retrieval results, in another study Rekabsaz et al. [RLHZ17]
point out the issues caused by using word embeddings for retrieval tasks. They show
that it improves the query retrieval performance, but also leads to topic shifting and
diminishes the potential gains. For example: “asthma” has other (non-related) diseases
as very similar words in a Skip-gram embedding of a complete Wikipedia corpus – such
as the word "diabetes" – because “asthma” is often in similar contexts as “diabetes” (both
being diseases). When one searches for “asthma” one would only like to retrieve relevant
documents that talk specifically about “asthma” or for example treatment techniques,
diagnoses, or organizations associated with “asthma”. Documents about other unrelated
diseases (“diabetes”) should not be retrieved.

Word embeddings are primarily developed with a focus on NLP and not IR [MCCD13,
BGJM17, PSM14]. The test datasets commonly used to evaluate word embeddings are
word pair analogy and similarity tasks [LGD15, MSC+13]. These benchmarks neglect
many subtleties of word embeddings needed for Information Retrieval such as the set of
highly related neighbors, that do not shift the topic of a word.

2



1.2. Contributions of the Work

1.2 Contributions of the Work

We hypothesize that the representation of words, when used in Information Retrieval,
should not only be based on their window-context (as used by the Skip-gram method).
The vector representation should be based on a diverse set of inputs: including the window-
context, as well as a document-context (created from word-occurrences in documents
in a collection), and semantic lexicons (hand crafted and judged similarities created by
humans). When word similarities – which are used for query expansion – are based not
on one context, but a variety of contexts, the Information Retrieval results improve.

The contributions of this thesis are:

• Exploitation and Analysis of Adapted Word Embedding Models We cre-
ate different word similarity models, which are based on a word embedding. We
use a Skip-gram word embedding as a base and add additional information from
other methods – we refer to them as external resources – with the Retrofitting
method by Faruqui et al. [FDJ+15]. Retrofitting is a post-processing method,
which moves the vectors in a word embedding, guided by word similarities from
an external resource. We generate word-to-word similarities, by using these novel
word embedding models.
We set up multiple word similarity models: Retrofitting with one external resource,
and Extended-Retrofitting (with two external resources), a model that averages the
word similarities from two retrofitted word embeddings, and finally a Post-Filter
model that filters the similarities gained from a word embedding by using a second
external similarity source.
Despite the fact that we use word embeddings created by the Skip-gram method,
our models are independent of the original creation method. We use the following
external resources: document-context similarities created from LSI [DDF+90] and
semantic lexicons (WordNet [Mil95], FrameNet [BFL98], and PPDB [GVCB13]).
We create models for different retrieval evaluation domains. The domain-specific
models differ by the corpora used to create the Skip-gram embedding and the
external resources used in the Retrofitting process. For each domain we choose a
corpus that is best suited for the domain.
To have a deeper analysis on the changes of the vectors in the retrofitted word
embeddings, we compare local neighborhoods of words used in the retrieval eval-
uation with various metrics and analyze global differences between the original
and retrofitted vector spaces. We found that the vectors in the retrofitted word
embeddings move closer to each other, creating larger neighborhoods in the same
similarity radius. We show that Retrofitting with different external resources creates
similarity results that are indeed different from each other.

• Information Retrieval Evaluation of Novel Word Similarity Models The
effectiveness of the word similarity models in Information Retrieval is evaluated

3



1. Introduction

using an implementation of the Translation Models in the Probabilistic Relevance
Framework [RLHZ16]. We evaluate our similarity models using our retrieval model
implementation against multiple baselines with BM25 and LM scoring methods.
The baselines include an unchanged query and using an out-of-the-box Skip-gram
word embedding to augment a query. We use two news domain collections and
a large patent collection to measure the quality of the retrieval results. Our
implementation makes the retrieval models available in the popular open-source
search engine Lucene as a plugin.
We present a comparison of cross-validated retrieval results between our novel
word similarity models, as well as a thorough parameter exploration to find the
best suited parameter configuration per test collection. We conclude that the
three different test collections require different similarity models to achieve the
best results. Overall the best similarity method is a Post-Filter and Retrofitting
combination of two external resources which performs best on one of the news
collections and the patent collection, additional it performs the same as the baseline
in the second news collection. It shows that incorporating multiple resources gained
from different methods and contexts improve the Information Retrieval results.

1.3 Structure of the Thesis
The structure of the thesis is as follows: in Chapter 2 we discuss the theoretical background
of methods we used in this thesis. This includes an explanation of the Skip-gram model,
Latent Semantic Indexing, the Retrofitting procedure, a brief introduction to inverted
indexes, and the Generalized and Extended Translation Model in the Probabilistic
Relevance Framework. In Chapter 3 we discuss related work in the context of word
embeddings and Information Retrieval.

Our methodology is presented in Chapter 4, including the word similarity models, retrieval
workflow and implementation details. Chapter 5 explains our experiment design with the
data, metrics, and settings we used. The evaluation and results are detailed in Chapter
6 with a thorough analysis of the changes that happen in the word embeddings during
the Retrofitting process, a discussion of the document retrieval results with parameter
exploration, and cross-validated comparison of our models.

Chapter 7 concludes this thesis and in addition we present ideas for future work in
Chapter 8.

4



CHAPTER 2
Background

This chapter describes the theoretical foundations of techniques used in this thesis. We
describe the word embedding models we use in Section 2.1. Section 2.2 describes the
Retrofitting process to merge multiple input resources into a single embedding. Section
2.3 describes the basic indexing data structures and scoring methods for Information
Retrieval. We present the Generalized Translation Models in Section 2.4, which we use
to augment a query with similar terms.

2.1 Word Embeddings
A word embedding contains a list of words as the vocabulary and it maps every word
to a vector. Commonly, the vectors have between 50-500 dimensions for various tasks
[MCCD13, RLH17b]. The word embedding encodes relationship between words. The
semantic relation of the terms is given by their relationship in the vector space. A
"relatedness" relationship is determined by a vector space distance, typically the cosine
similarity. In the following we explain two methods to create word embeddings, which
we use in this thesis, because both are established and well studied methods, that use
different contexts to position the word vectors.

2.1.1 Latent Semantic Indexing

In this section we explain Latent Semantic Indexing (LSI) – a technique, which uses a
document context to generate word-to-document relations. Deerwester et al. [DDF+90]
introduced the LSI method to index and retrieve documents. Although LSI can be
used for a variety of tasks in machine learning and text mining, we use it to create
word-to-word similarity information.

We call it document-context, because the first step in the LSI model is to create a
word-document co-occurrence matrix from a corpus. The co-occurrence counts are not
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2. Background

C U Ʃ VT=

Figure 2.1: Dimensionality reduction of the 3 matrices created by SVD. In green values
that are set to zero. [MRSO08]

used directly and the matrix is weighted with for example Term-Frequency Inverse-
Document-Frequency (TF-IDF). Every row in the matrix corresponds to a term in the
vocabulary and every column corresponds to a document. Typically, most words occur
in few documents leaving the matrix very sparse. To create low-dimensional vector
representations, in the next step, Singular Value Decomposition (SVD) is applied on
the matrix. SVD decomposes the initial co-occurrence matrix C into three matrices.
Multiplied with each other, the three decomposed matrices in fact equal the initial matrix
C as shown in Equation 2.1.

C = UΣV > (2.1)

1. U is the term matrix. Every row corresponds to a term, with the same row as the
term in the original matrix C. The number of columns (the vector length) equals
the number of rows.

2. Σ is a diagonal matrix of singular values, e.g. only the diagonal values are non-zero.
The singular values are decreasingly ordered.

3. V > is a transposed document matrix. Every column corresponds to a single
document – a document vector. The document vectors represent each document
similar to the term vectors. The document vectors can be used to measure the
similarity of documents.

The dimensionality of the matrices is reduced by only keeping the k largest singular
values and their corresponding vectors in U and V . The other singular values are set
to zero and therefore remove their corresponding vectors in U and V . This results in
a rank k approximation of C with minimal error. This process and the layout of the
matrices is illustrated with a single removed singular value in Figure 2.1, as illustrated
by Manning et al. [MRSO08]. The removed singular value is set to zero and therefore
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2.1. Word Embeddings

when multiplied the corresponding row and column in the matrices U and V > become
zero as well (highlighted in green).

Removing the zeroed-out columns and rows from the matrices leaves us with an ap-
proximation C ′ to the original matrix C and new matrices U ′ and V ′>. Given the
low-dimensional vector representation of words, one can compute the semantic similarity
between two words using a cosine distance of their corresponding vector representations
in the term matrix U ′.

2.1.2 The Skip-gram Model

In Section 2.1.1 we presented the LSI method, which uses a document-context. In this
section, we present a different approach, which uses a window around each word to
extract information.

We focus on the popular Skip-gram architecture by Mikolov et al. (part of word2vec)
[MCCD13, MSC+13], because we use it as a base word embedding for our similarity
models in this thesis. We use it because, the method is well known and provides robust
results across various tasks. Levy et al. [LGD15] show that different word embedding
methods (Skip-gram, GloVe, PPMI) and their results strongly depend on the preprocessing
of data and hyper-parameters of the word embedding models – with correct parameter
tuning, the word embedding models show highly similar performances in word pair
analogy and similarity benchmarks.

1

......

0

0

...

Input Vector
1-hot encoding
Len. of Vocabulary

Hidden Layer
Dimension of 
Embedding

Output Layer
Softmax
Len of. Vocabulary

0

Word Embedding
= Input Weight Matrix

Figure 2.2: Skip-gram model neural network illustration
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this is a sample sentence full of wordsInput Source

(sentence, sample)

(sentence, a)

(sentence, full)

(sentence, of)
Window samples

1

......

(01000, 00100)

(01000, 10000)

(01000, 00010)

(01000, 00001)1-hot encoding

0

0

...

1-hot 
input

Hidden 
Layer

Softmax 
output

Use as input

Position of the 
probability that it 

is neighboring 
word

0

= p(wt+ j |wt )

Network 
run 

Figure 2.3: Skip-gram model neural network illustration

The Skip-gram model creates a word embedding by optimizing a different task: the
embedding is a byproduct of the solution to optimize the task to predict the likelihood
of the neighbors of a given word. Figure 2.2 shows the Skip-gram architecture. It uses a
1-hidden layer feed-forward neural network. The input and output layer have as many
dimensions as words in the vocabulary. The hidden layer has as many dimensions as
the dimensions of the word embedding vectors. The layer dimensions set the size of the
weight matrices of the network. The word vectors are harvested from the network in
form of the input layer weight matrix. The matrix contains a row for each word in the
vocabulary.

Before training the model with a text corpus, the text is prepared: sentence and document
boundary information is removed and the corpus text is split into a sequence of words.
A vocabulary is generated from the resulting list of words, where very infrequent words
are discarded and removed from the corpus. Commonly as a preprocessing step every
character is lower-cased. Every word in the vocabulary is assigned an id (used as the
index in the word embedding matrix), that does not change.

Figure 2.3 illustrates the process of a single training update in the model. The main
word and its context words are transformed into a list of tuples each containing the
main word and one neighbor. At this point, neighborhood distance information, i.e. how
far away a word is in the window, is discarded. The characters are transformed into
their 1-hot encoding representation based on their position in the vocabulary. The 1-hot
encoding sets one position to one and leaves the rest of the list with zeros. The 1-hot
representation of the main word is used as input vector for the neural network. This
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2.1. Word Embeddings

selects the matrix row for the main word of the matrix between the input and the hidden
layer. Together with the output weight matrix and the softmax function a probability for
every word in the vocabulary is computed. In practice not every probability is calculated.
The weights are updated by using Stochastic Gradient Descent (SGD) to minimize the
loss.

The training objective of the Skip-gram model given by Mikolov et al. is to maximize the
average log probability of a context of size c around every word in the training sequence
w1, w2, ..., wT , as shown in the following:

Jθ = 1
T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt) (2.2)

The variable T equals the number of words that are used for training. The probability
p(wt+j |wt) is defined as a softmax function:

p(wt+j |wt) =
exp(v>wt

v′wt+j
)∑

wi∈V exp(v>wt
v′wi

) (2.3)

The function transforms a vector product into a probability in the range of [0, 1] and
the probability distribution sums up to 1. The variable v denotes an input vector and v′
denotes an output vector (the corresponding vector in the output layer). The sum in
the denominator is computed over all words in the vocabulary. Using this equation is
not feasible - it would take too long to compute. Therefore, Mikolov et al. compute only
an approximation of Equation 2.3. Many techniques exist to approximate the softmax
function, improving its efficiency. Mikolov et al. introduce Negative Sampling, instead of
computing the softmax over all words in the vocabulary, most of which are not probable
to appear next to the current word, the objective is changed to:

Jθ = log σ(v′wt+j

>vwt) +
k∑
i=1

Ewi∼Pn(w)[log σ(−v′wi

>vwt)]

σ(x) = 1
1 + exp(−x)

(2.4)

The objective of the Skip-gram model in Equation 2.4 has two parts: the first contains
the neighboring word of the main term (which is given as training sample) and the
second is the sum of a list of k negative samples. Between 5 and 20 negative words,
i.e. words that do not interact with the current main term, are randomly selected from
the vocabulary. This is in fact one of the core contributions of the method: being able
to train the model, without having to update all weights for every iteration. Only the
weights of the used samples are updated. This enables the use of huge corpora with
billions of training samples [MCCD13].

9



2. Background

In addition to the Negative Sampling method, Mikolov et al. propose to subsample very
frequent words. Some occurrences are ignored, i.e. not included in the window, based on
the probability shown in the following:

P (wi) = 1−
√

10−5

f(wi)
(2.5)

This increases the training efficiency, but also improves the vectors of rare words, because
the subsampling decreases the imbalance of frequent and rare words. The frequency of
a word in the training corpus is denoted by f(wi). When the training iterates over a
corpus multiple times the same word might be used in one iteration and not in the other.

2.2 Word Embedding Retrofitting
We use the Retrofitting procedure to combine a word embedding created by the Skip-gram
model (Section 2.1.2) with external information, such as word-to-word similarities gained
from Latent Semantic Indexing (Section 2.1.1). Faruqui et al. [FDJ+15] propose the
Retrofitting method to adapt the vector representations of an existing word embedding
based on external resources. The Retrofitting procedure is applied to any word embedding
as a post-processing step and does not require the corpus used to create the embedding.
The external resource can be created from an arbitrary source as long as it provides word
similarity information.

Figure 2.4 shows an illustration of a single update to a word vector in one iteration of the
Retrofitting. The orange lines represent different similarity values from external resources
(thicker means more similar). In this example two vectors are not in the neighborhood
of the main term after the retrofitting, because they did not have a connection in the
external resource. The original position of the main term, as well as every term selected
by the external resource influence the new position of the main term after the iteration.
Note that, only the main term moves in this example, but the other terms become
main terms eventually and will move, based on their similar terms, as well during the
Retrofitting.

The Retrofitting method changes the vector representations by optimizing the following
objective function Ψ(V ):

Ψ(V ) =
n∑
i=1

[
αi ‖vi − v̂i‖2 +

∑
(i,j)∈R

βij ‖vi − vj‖2
]

(2.6)

where V is the original embedding, variable v̂ denotes an original vector and v denotes
a retrofitted vector representation, n the number of terms and (i, j) ∈ R represents
the related terms for the current vector at index i (provided by the external resource).
The indexed parameter βij represents a weight between the current term and a related

10



2.2. Word Embedding Retrofitting

Neighborhood (of the main term)

Similarity values 
from external 
information

Current main term

Not used anymore

Before Retrofitting After Retrofitting

Main term moved

Figure 2.4: Two dimensional single iteration, single term Retrofitting illustration

term (which is provided by the external resource), while αi sets a weight on the original
position of the current term. Both regulate the influence of the original position of the
current term versus the influence of a related term. Tipping the balance by increasing
αi strengthens the original position and reduces the changes and increasing βij yields a
more changed embedding. Although the parameters are indexed in the model, Faruqui
et al. set the parameters to constants: αi is set to 1 and βij is set 1

|(i,j)∈R| so that the
sum of all βij for a term is equal to 1 and the importance of the position in the original
and the influence of the related terms is balanced.

In order to minimize the objective function, the method uses an iterative update for
each individual vector, which is based on the first derivative of Equation 2.6 to find the
optimal value for vi:

∂Ψ(V )
∂vi

= 0 (2.7)

Solving Equation 2.7, we result on the update that is applied to vi:

vi =
∑

(i,j)∈R βijvj + αiv̂i∑
(i,j)∈R βij + αi

(2.8)

This is the formula used in the implementation. The formula moves the term vector at
the index i to a new position in the vector space, based on the vectors of the related
terms in the external resource and the original vector of the main term. If there are no
related terms in the external resource, the vector does not change. This is applied in an
iterative fashion and after a few iterations the vectors converge to a minimum.
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2. Background

2.3 Document Retrieval
Information Retrieval and its subfield document retrieval contain many techniques and
applications. We focus on the basic data structure to efficiently search text in documents
and the scoring methods to rank matched documents.

2.3.1 Inverted Index

In this section, we give an overview of how the inverted index is structured and how it
relates to a query in Information Retrieval. The fundamental question during a search is
to assess the relevance between a given query and a document. This is formalized as a
function with the query and document information as parameters. The function returns
a numerical value – a score. A higher score means a higher relevance. This allows us to
sort the documents and return the most relevant first.

When the user wants to search a collection of documents, one approach is to iterate
over all document texts and rank each individual document based on the query. This
is not a feasible solution, as the number of documents and their contents is very large
and the user expects an answer in a very short time. Using an inverted index allows
us to consider only documents that contain parts of the query and use precomputed
statistics instead of the document text. The statistics are used by the scoring methods.
The inverted index is created once and subsequently used by all queries for fast results.

As described by Manning et al. [MRSO08] the inverted index contains statistics per
document and per term. Figure 2.5 gives an overview of the basic contents. Internally,
the index assigns every document an id, which is commonly a consecutive number. All
metadata associated with a document is stored, as well as the document length. The
document length equals the number of terms in a document.

Every term points to a so called posting list. The posting list is a simple data structure
that contains a list of tuples. A single tuple consists of a document id and the term
frequency, i.e. the number of times the term appears in the document. Depending on
the capabilities of the search system the implementation differs for the term matching,
e.g. how you access a posting list from a given query term. In simple exact matching a
hash based set is sufficient. The common property of different term dictionaries is that
they must provide a fast access to information associated with a term.

Not every word that appears in a document is added to the index in the form in which it
is written in a document. Every document that is indexed moves through a language
specific pipeline of preprocessing steps:

1. The text is split by whitespaces and other control characters into a list of tokens

2. Commonly, but not necessarily, every token is stemmed, which means that the
word is reduced to its stem, e.g. a word in singular and plural form map to the
same stemmed word and when the user searches for a word it does not matter
which form the word has in the query or document.

12
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Figure 2.5: Basic inverted index contents and structure

3. Optionally, words that do not transport relevance are not added to the index. Those
stop-words commonly include "the", "and", etc..

4. Finally the term is added to the index and in the terms posting list an entry with
the document id is created or, if it already exists, the frequency is increased.

Full featured search engines like the open source Lucene1 project have index implementa-
tions that offer many more features. For example: a positional index, where the term
offsets are stored in addition to the raw frequency count. This allows to formulate queries
that are aware of ranges between terms. In this thesis we only use a basic index described
above.

2.3.2 Document Ranking

To assert the relevance of a certain document to a query, based on information saved
in the inverted index (Section 2.3.1) we use a scoring formula. The popular method
presented here is BM25, because we use it in our retrieval evaluation. BM25 is a widely
studied scoring function, defined as follows:

1http://lucene.apache.org/
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2. Background

BM25(q, d) =
∑

t∈Td∩Tq

(k1 + 1)tfnorm(t)
k1 + tfnorm(t)

(k3 + 1)tfq(t)
k3 + tfq(t)

log |D|+ 0.5
dft + 0.5

tfnorm(t) = tfd(t)
(1− b) + b Ld

avgdl

(2.9)

The formula consist of three parts, indicated by the colored blocks:

1. Orange The term frequency block, which uses the term frequency of the current
term in the given document tfd(t) and normalizes it by the document length Ld as
well as the average document length avgdl. It uses two hyper-parameters k1 and b.

2. Green This block normalizes the term frequency in the query itself tfq(t). It uses
one hyper-parameter k3.

3. Blue The Inverse Document Frequency (IDF) block. It uses the number of doc-
uments |D| and the document frequency of the current term, i.e. in how many
documents the term appears. To prevent a division by zero, the division is adjusted
with 0.5. It gives more weight to terms that appear in fewer documents and less
weight to very frequent terms.

The hyper-parameters are chosen with a parameter exploration, that evaluates multi-
ple candidates and compares the retrieval results to a gold-standard list. The hyper-
parameters for BM25 have commonly used default values [RLHZ16], which we also use
in this thesis.

2.4 Generalized Translation Models
In previous sections we focused on word embeddings. We now use their term relatedness
information and incorporate it in Information Retrieval. The effective methods we use
are called Generalized and Extended Translation Models. Rekabsaz et al. [RLHZ16]
propose the Generalized and Extended Translation Models as a way to incorporate the
idea of the translation model into the Probabilistic Relevance Framework.

Historically, translation models have been introduced as a way to extend language model
ranking methods. The language model utilizes the probability between a query term and a
document model P (tq|Md) to rank documents. The translation model adds a translation
probability between every query term and every document term. This extension is:

P (q|Md) =
∏
tq∈q

( ∑
td∈d

Pt(tq|td)P (td|Md)
)

(2.10)
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Therefore, in a ranking, more terms are considered for the result. The Generalized and
Extended Translation models change the basic building blocks of Information Retrieval
models. In the following we explain each of these.

For every term t, in the vocabulary of the embedding, a list R(t) of similar terms is
selected from a word similarity source, such as a word embedding. For every term t in a
query q, the similar terms in the indexed documents are replaced by t and annotated
with a weight (from a similarity source). Every instance of a similar term is updated,
whether the original term is in the document or not. When we search for the term in
an inverted index we return not only the original occurrences, but also the weighted
replacements. This technique is formalized by:

T̂d = Td \
⋃
t∈q
{t′ ∈ R(t)} ∪ {t ∈ q : R(t) ∩ Td 6= ∅} (2.11)

The set of terms per document Td is rewritten as T̂d, cos(t, t′) denotes the similarity given
by the cosine distance between t and t′. The extended term frequency per document d is
the sum of the main term and all its weighted similar terms:

t̂fd(t) = tfd(t) +
∑

t′∈R(t)
cos(t, t′)tfd(t′) (2.12)

The changed document frequency per term is given by:

d̂f t = |{d ∈ D : t ∈ Td ∨ ∃t′ ∈ R(t), t′ ∈ Td}| (2.13)

It counts all documents that either contain the main term or at least one of the similar
terms. The weights of the similar terms are not used. Because the replaced terms are
weighted it necessarily changes the length of a document. The redefined document length
is:

L̂d =
∑
t∈T̂d

t̂fd(t) (2.14)

Because the individual document lengths change, the average is changed as well. The
following shows the extended average document length, where D denotes the list of
documents:

âvgdl = 1
|D|

∑
d∈D

L̂d (2.15)

Rekabsaz et al. [RLHZ16] propose two different variants for common scoring methods,
which make use of the changed building blocks: The Generalized Translation Model (GT)
and the Extended Translation Model (ET). In the following, we explain the extension of
these two models to BM25 and Language Modeling.
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2. Background

The GT model uses only the updated index, which replaces the terms per document from
Equation 2.11 and the updated term frequency from Equation 2.12. Rekabsaz et al. use
a Dirichlet smoothing function to define the probabilities of the Language Model. The
BM25-GT function is defined as follows:

BM25GT (q, d) =
∑

t∈T̂d∩Tq

(k1 + 1)t̂fnormGT (t)
k1 + t̂fnormGT (t)

(k3 + 1)tfq(t)
k3 + tfq(t)

log |D|+ 0.5
dft + 0.5

t̂fnormGT (t) = t̂fd(t)
(1− b) + b Ld

avgdl

(2.16)

The LM-GT function is defined as follows:

LMGT (q, d) =
∏
tq∈q

( ∑
td∈d

Ld
Ld + µ

t̂fd(t) + µ

Ld + µ

tfc(t)
Lc

)
(2.17)

The ET model makes use of all changed building blocks including the weighted document
length, which changes the average document length and the updated document frequency.
The BM25-ET function is defined as follows:

BM25ET (q, d) =
∑

t∈T̂d∩Tq

(k1 + 1)t̂fnormET (t)
k1 + t̂fnormET (t)

(k3 + 1)tfq(t)
k3 + tfq(t)

log |D|+ 0.5
d̂f t + 0.5

t̂fnormET (t) = t̂fd(t)

(1− b) + b L̂d

âvgdl

(2.18)

The LM-ET function is defined as follows:

LMET (q, d) =
∏
tq∈q

( ∑
td∈d

L̂d

L̂d + µ
t̂fd(t) + µ

L̂d + µ

t̂f c(t)
L̂c

)
(2.19)

We use the GT and ET models to retrieve documents in this thesis, because it does not
restrict the source of the word similarities, that we want to change and it offers a precise
method of expanding a query search space.
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2.5. Summary

2.5 Summary
In this chapter we described the theoretical foundations of techniques used in this thesis.
We present two different word embedding models, that use different contexts to generate
word vectors. We describe the Retrofitting method to merge multiple input resources
into a single embedding, which we use to create the core of our similarity models. The
similarity models we create are used in Information Retrieval queries. As a foundation for
IR we described the basic indexing data structures and scoring methods for IR. Finally,
we presented the Generalized and Extended Translation Models to use our similarity
models in IR to augment a query.
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CHAPTER 3
Related Work

The scope of our work spans across multiple domains, therefore we split the related work
chapter into two sections: Word Embedding and Information Retrieval focused related
work.

3.1 Word Embedding
A variety of ways exist to produce word embeddings and researchers base new models on
top of the Skip-gram and CBOWmodels fromMikolov et al. [MCCD13]. Most new models
are compared using common benchmarks. Table 3.1 shows common word embedding
benchmark results for models we present in this related work section, as reported by the
respective author. As described by Faruqui et al. [FDJ+15] the WordSim-353 and RG-65
benchmarks contain 353 and 65 hand-crafted gold-standard pairs of English words and
the MEN-3K benchmark contains three thousand pairs of very frequent word pairs in

Table 3.1: Comparison of related work models using common word embedding benchmarks

Authors Model MEN-3K WordSim-353 RG-65
Faruqui et al. Skip-gram (unchanged) 67.8 65.6 72.8
Pennington et al. Glove (6B, 300 dimensions) - 65.8 77.8
Pennington et al. Glove (42B, 300 dimensions) - 75.9 82.9
Faruqui et al. Retrofitting (Skip-gram + PPDB) 73.2 70.0 76.3
Faruqui et al. Retrofitting (Skip-gram + WordNet) 70.3 67.5 77.8
Faruqui et al. Retrofitting (Glove-6B + PPDB) 75.1 59.3 79.6
Faruqui et al. Retrofitting (Glove-6B + WordNet) 75.9 61.2 84.2
Speer et al. ConceptNet Numberbatch 16.09 86.6 82.8 89.1
Chen et al. CBOW + Def.Lists. 74.8 70.6 -
Jauhar et al. Skip-gram + EM-RETRO 42.8 32.1 73.4
Wang et al. CBOW + PPDB + Freq 68.7 61.1 71.3
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3. Related Work

a large web corpora. The results of the benchmarks are reported as Spearman’s rank
correlation between the gold-standard list and the model result lists.

Pennington et al. [PSM14] present an embedding creation method: GloVe (Global
Vectors). They combine matrix factorization (similar to LSI) and local co-occurrence
windows (similar to word2vec). GloVe creates a co-occurrence matrix for all words in the
vocabulary. The low-dimensional vectors are learned to approximate the log probability
of a co-occurrence of two words in the full co-occurrence matrix. Additionally, they use
very large corpora to train their model. As Table 3.1 shows, a larger training corpus
leads to better benchmark results for the same model.

It is possible to take a pre-built embedding and change it in a post-processing step. We
already described the Retrofitting method in Section 2.2. Now we present the experiments
conducted by Faruqui et al. [FDJ+15]. In the Retrofitting process Faruqui et al. augment
different embeddings (based on Skip-gram, GloVe and others) independently with the
semantic lexicons: PPDB [GVCB13], WordNet [Mil95], and FrameNet [BFL98]. They
transform the lexicons into a unified data structure, which contains a list of related terms
per term, without individual weights. All related terms have the same relative influence in
a Retrofitting step. They show that the retrofitted embeddings improve the results across
common semantic, sentiment analysis, and rare word benchmarks (WordSim-353, RG-65,
MEN, SYN-REL). The exact results depend on the combination of input embedding and
used lexicon. In general PPDB and WordNet lead to an improvement of 5 to 10 percent
in the benchmark scores, whereas FrameNet does not improve the results. Because we
use the Retrofitting method in our model, we also used the same semantic lexicons as
Faruqui et al. in our experiments.

Speer et al. [SCH17] show that by combining multiple input sources better results can
be achieved in common word embedding benchmarks (MEN, Stanford Rare Words - RW,
WordSim-353, RG-65). They combine pre-computed word2vec and GloVe embeddings
and retrofit them with data from ConceptNet. ConceptNet is a combination of multiple
knowledge graph resources including WordNet and DBPedia. Analogous to Faruqui et
al. [FDJ+15] they focus on common word embedding benchmarks and not information
retrieval tasks in their evaluation. The results reported by Speer et al. are the best
results for all three common benchmarks we surveyed across the related work models
(see Table 3.1).

Chen et al. [CD15] present an alternative to Retrofitting, by incorporating two different
contexts (the text corpus and word pairs of related words) into a single word embedding.
They adapt the word2vec objective to train a joint model. They do not use post-processing,
such as Retrofitting. Similar to Faruqui et al. [FDJ+15] they establish better results in
the WordSim-353 and MEN benchmarks over a plain word2vec baseline.

Jauhar et al. [JDH15] adapt the Retrofitting method to allow for multi-sense word
vectors that capture polysemy. They use a Skip-gram embedding and WordNet within
their Retrofitting procedure. With this Jauhar et al. separate out the different meanings
of vectors that are in captured in WordNet. As Table 3.1 shows, in comparison to the
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other related work models the results presented by Jahuar et al. do not perform as well
as the others models.

Wang et al. [WM17] extend word2vec to incorporate PPDB or WordNet semantic
information into a word embedding, while treating instances of words differently, based
on "information content". The information content is provided by a scoring function,
which uses collection statistics to weight individual terms during the embedding learning.
The rate of application of external resources is controlled based on this measurement.
Their results fall short of most other models presented in this related work section (see
Table 3.1).

3.2 Document Retrieval

In recent years, several studies addressed using word embeddings in the context of
Information Retrieval and how to adapt embeddings or the retrieval method to improve
the downstream retrieval results.

Mitra et al. [MNCC16] propose a Dual Embedding Space Model (DESM) document
scoring method, that uses a word2vec word embedding trained on a query corpus. They
focus on the "aboutness" of a document - does the document only contain a query term
without being relevant, or is it about this query term. In the scoring function each
document is defined as a normalized sum vector of all terms in that document. The model
then takes each query term vector and computes the cosine distance to every document
vector. Mitra et al. propose two variants of their model: the first uses only the input
vectors of the word2vec model in the scoring process, whereas the second combines the
input and output vectors of the word2vec neural network into a document aggregation
vector. Their experiments show that the second approach captures the topical similarity
better. They combine the model linearly with BM25 retrieval ranking. The combination
shows significantly better results on an internal query log dataset.

Zamani et al. [ZC17] argue that for information retrieval the relevance information is
more important than the semantic or syntactic similarity, captured by window-context
word embedding methods. They propose a relevance-based query embedding based on
a neural network model, which encodes relevance in its objective function. They learn
a new embedding from scratch, while we use post-processing. Zamani et al. [ZC17]
show that their word embedding model outperform word2vec and GloVe in information
retrieval tasks.

Diaz et al. [DMC16] create their own local-context embedding that performs a topic-
specific training and expands queries with it. They adapt the word2vec training objective
to include document information based on sample query results. Their model uses a
Kullback-Leibler divergence to score a document and a query, where the queries are taken
from a test collection. Because they train their model with queries they use a 10-fold
cross validation to mitigate overfitting their model with test data. They show that their
local embedding outperforms the word2vec baseline significantly.
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Grbovic et al. [GDR+15] use word embeddings created from search logs to better match
advertising keywords to a search query. Based on the Skip-gram model they combine two
data sources: the queries and sessions, i.e. a list of queries that a user searches for close
after one another. Instead of traditional stop-words they use a list of navigational queries
as stop words and subsample them according to Mikolov et al.’s [MSC+13] subsampling
formula. The list contains 3000 navigational queries. Using a word2vec embedding
trained with general news text yields poor results, but training word2vec with their
search data improves the results significantly.

Nguyen et al. [NTSS17] work on domain-specific document embeddings in medicine.
They use their embedding to perform document to document matching in medical search
tasks. They extract concepts of documents using a knowledge-based medical resource.
They conduct the retrieval with the contents of one document as the query. The retrieval
process uses nearby documents gained from the vector space to enrich the query. Nguyen
et al. show improved results for health-related search and clinical search for cohorts on
the precision, recall, and MAP measures.

Guo et al. [GFAC16] introduce a novel neural ranking model (DRMM). In the search
process they use a neural network based scoring method instead of a traditional scoring
method, like BM25. The traditional method is used to create a candidate list of 2,000
documents, which is then re-ranked by the neural model. They use a word embedding
to create a query word to document word similarity histogram. The buckets of the
histograms are similarity ranges set as a hyper-parameter. The histogram is used to
create a consistent input for the ranking neural network model, because it needs a fixed
length - given by the input dimensions of the networks. The network only operates
on word statistics from the histogram and does not use the word vectors in the neural
network itself.

3.3 Summary
Multiple studies presented before improve word embeddings for NLP use cases. We can
compare them with each other, because they often use common benchmarks and build on
the same word embedding models (Skip-gram and Glove). It is more difficult to compare
them with our work, because we focus on word similarities that are exclusively used in
an Information Retrieval downstream task. We evaluate on a different set of objectives.

The Information Retrieval focused related works either change the retrieval model itself
or use query information from logs or test collections to create a novel word embedding
model. We do not create a new retrieval model, rather we create word embedding based
similarity models which are used by the GT and ET retrieval models (presented in Section
2.4). We also do not use query information to change our embeddings. We use collection
or knowledge based resources, which are not directly linked to searches.
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CHAPTER 4
Methodology

This chapter provides an overview of the word similarity models used, a description
of the retrieval workflow, an example how word neighborhoods change, and how we
implemented our models.

4.1 Word Similarity Models

We do not study various retrieval models, our focus is on the source of the similar terms
used. We use different models to provide word similarity information. This similarity
information is subsequently used by the BM25-GT, BM25-ET, LM-GT, and LM-ET
Information Retrieval models to conduct the retrieval. The requirements for the similarity,
when used in Information Retrieval is that the additionally added words should be highly
similar and topically related to the query words. Our hypothesis is that incorporating
external resources in an out-of-the-box Skip-gram embedding tailors the list of similar
words to the need of the retrieval tasks.

The external resources are encoded in the following data structure: The structure contains
a vocabulary of available words and for every word in the vocabulary the resource contains
a list of weighted similar words. If no score is available to weight a similar term, then the
weight is set to a constant one. This allows to use the same data structure and models
regardless of the availability of scores in the external resource. The external resource and
the Skip-gram embedding might have different vocabularies, which means that only the
intersection of both vocabularies contain the effective terms usable in the following word
similarity models.

The output of every similarity model is a list of weighted similar words for every word in
the vocabulary. We integrate the output of our models with the Translation Models by
setting a threshold on the similarity score, so that the output of our models can directly
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Table 4.1: Word similarity models

Model name Description

w2v
Similarity source is an out-of-the-box Skip-gram
embedding

Post-Filter(*)
Using the similarity results from a Skip-gram em-
bedding and filter them again with the similarity
information from an external resource

Retro(*)

Retrofit a Skip-gram embedding with word sim-
ilarities gained from an external resource – the
retrofitted embedding is used to provide word simi-
larities

Ext-Retro(* + *)
Extended Retrofitting: Retrofit with two different
external resources, both incorporating half of the
influence

Post-Filter-Retro(*,*)
Use a Skip-gram embedding retrofitted with one ex-
ternal resource and post-filter the similarity results
with another resource

Retro(*) + Retro(*)
Average the similarity results of two retrofitted em-
beddings, each with a separate external resource

be used by the GT & ET retrieval models. We refer to this threshold as Translation
Model threshold.

Table 4.1 shows an overview of our models that we use to produce word similarity
information. A star (*) describes a placeholder for an external resource. Retro
stands for Retrofitting and indicates that the embedding has been retrofitted. The
Post-Filter models are introduced by Rekabsaz et al. [RLHZ17].

Retro(*) The Retrofitting model is implemented using Equation 2.8. The equation
provides a weight for a similarity relationship between two words (βij). We described in
Section 2.2 how the sum of all βij for all similar terms must be one. An external resource
might provide its own similarity score between two words. If so – to keep the "sum equals
one" property – we normalize the score sij as shown in the following:

βij = sij∑m
j′=1 sij′

(4.1)

The score sij must be in the range of 0 to 1.

Ext-Retro(* + *) The Extended Retrofitting model combines two different external
data resources (A and B) for the Retrofitting procedure. The method extends the
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Retrofitting formula to allow a balanced influence of both resources. This is shown in
the following equation:

vi =
∑

(i,j)∈RA
βijvj · 0.5 +

∑
(i,j)∈RB

γijvj · 0.5 + αiv̂i∑
(i,j)∈RA

βij · 0.5 +
∑

(i,j)∈RB
γij · 0.5 + αi

(4.2)

We duplicated the external term selection part and introduced a new parameter γij that
has the same functionality as βij but for the second resource. The two parameters are
weighted down to only have half the influence on the new position of the retrofitted
vector. This keeps the balance between αi and the sums of γij and βij , described in
Section 2.2.

Post-Filter(*) The post filtering model can be used with any word embedding.
The post filtering provider implements an additional step in the selection process of
similar words gained from a word embedding. First, every similar word is extracted from
a word embedding with the Translation Model threshold parameter. Then, every word
to similar-word pair is filtered by the similarity of the word pair in the external resource
(*), e.g. if the similarity between the two words is smaller than a given threshold
hyper-parameter than the similar word is not added to the output of the model. The
post filtering does not add any additional words that have not been selected from the
word embedding, it only removes words.

Post-Filter-Retro(*,*) This model is a nested combination model of two other
models presented here. First, this model uses the Retro(*) model on the first given
resource to create a retrofitted word embedding. It then employs the post-filtering using
the Post-Filter(*) model with the second resource. This allows to use two external
resources, while only changing the embedding with one resource.

Retro(*) + Retro(*) Another method to utilize two resources is to combine the
similar word lists results of two retrofitted word embeddings. We retrofit the two word
embeddings separately. The similarity lists are averaged, so that we have a balanced
combination of the two. If the similarity of a word is low in one of the two word
embeddings, then it will very likely be filtered out by the Translation Model threshold,
which is applied after the combination. We added this model, because we observed that
the various retrofitted word embeddings have different strengths and we want to combine
them.
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4.2 Retrieval Workflow
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Figure 4.1: Workflow illustration

Figure 4.1 illustrates the retrieval workflow and
how the word similarity models fit into it. As
an example we choose the Retro(LSI) model.

The pipeline starts by creating the necessary
prerequisites for the document retrieval task:
an inverted index and a word similarity model,
based on a retrofitted embedding. The inverted
index (Section 2.3.1) is created from the respec-
tive test collection corpus in Lucene. The word
embedding is the product of the Retrofitting
process (Section 2.2), which combines a Skip-
gram embedding (Section 2.1.2) with LSI term
similarity information (Section 2.1.1). The
word embeddings, the LSI data, and the in-
dex all use the same stemming option.

The document retrieval task, implemented in
Lucene, uses the test collection topics to query
the index. It uses the Generalized and Ex-
tended Translation Models (Section 2.4) to ex-
pand the index statistics used in the scoring
functions, based on the word similarity gained
from the retrofitted word embedding.

The retrieval results, which contain the first
1,000 ranked document identifiers per topic
are evaluated with trec_eval. The program
uses the qrels relevance judgments to compute
evaluation metrics. The result is calculated per
topic and on average over all topics. The per
topic result is used to compute the significance
tests and cross-validation results.

A single model run consists of multiple execu-
tions of the pipeline, using different values at
the three configuration points (shown in ma-
genta circles). (1) is the LSI threshold, selecting
similar words used in the Retrofitting. (2) is
the Translation Model threshold, selecting sim-
ilar words used in the document retrieval. (3)
is the retrieval model, one out of: BM25-GT,
BM25-ET, LM-GT, or LM-ET.
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4.3. Word Similarity Model Example

As stated before, Figure 4.1 shows only one model pipeline. The other word similarity
model and data combinations – as listed in Table 5.3 – differ slightly:

• Retro(Semantic Lexicons) does not have the external resource threshold
parameter, because the lexicons do not contain a similarity score.

• The Ext-Retro model uses PPDB and LSI in the Retrofitting process, as men-
tioned in Table 5.3. PPDB is a static resource and does not need a parameter
configuration. LSI is selected by the same threshold as Retro(LSI).

• The Post-Filter-Retro model uses the same pipeline, but the selection of
similar words for the retrieval task contains another layer that filters the similar
words gained from the embedding. This filter introduces a third threshold parameter
that is evaluated alongside a given range.

• The Retro(LSI)+Retro(PPDB) model duplicates the first part of the pipeline
that creates the retrofitted embedding and linearly combines the similar word
results of the two.

4.3 Word Similarity Model Example
The following qualitative example of the results for the words austria and austrian is
created from a Wikipedia based word embedding as well as LSI similarities created from
the same corpus. This example shows the subtle differences in seemingly very related
words, as well as the benefits of the Retrofitting process with document-context LSI
similarity. Table 4.2 and 4.3 show the neighborhoods of the respective words.

The term austria is highly similar to austrian in LSI (using the threshold of 0.82 in this
example), but austrian is also linked to habsburg and cisleithanian - both showing a
historical bias in Wikipedia documents about austria(n). Cislethania is connected to
Austrian history as the Wikipedia article about Cislethania states: "Cisleithania was a
common yet unofficial denotation of the northern and western part of Austria-Hungary,
the Dual Monarchy created in the Compromise of 1867"1. Wikipedia contains many
articles about this topic mentioning both words often in similar contexts. The Skip-gram
similarities also show a historic connection, but with a different term: In the original
word embedding austria is highly similar to hungari (stemmed) and it would be expanded
if the standard 0.7 threshold is used. In most use cases this is a clear topic shifting and
it should not occur. After the retrofitting hungari and germani are both far away from
the optimal 0.8 - 0.85 threshold – the topic shifting was mitigated in this case. With the
word austrian the topic shifting manifests itself in the LSI data, not in the Skip-gram
similarities. However, the Retrofitting does not move the unwanted words (habsburg,
cislethania) close enough, that they are selected with a Translation Model threshold of
0.8, which shows the best results for retrofitted embeddings.

1See: https://en.wikipedia.org/wiki/Cisleithania checked: 15.3.2018
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Table 4.2: LSI (at threshold 0.820) & word embedding neighborhood for the term austria

LSI Original Skip-gram Retrofitted

austrian 0.910 austrian 0.779 austrian 0.952
hungari 0.734 vienna 0.794
vienna 0.719 graz 0.744
germani 0.690 wien 0.736
graz 0.661 linz 0.729
oesterreich 0.658 viennes 0.722

Table 4.3: LSI (at threshold 0.820) & word embedding neighborhood for the term austrian

LSI Original Skip-gram Retrofitted

austria 0.910 austria 0.779 austria 0.952
habsburg 0.844 vienna 0.733 vienna 0.800
cisleithanian 0.838 austro 0.711 austro 0.780

oesterreichisch 0.673 viennes 0.761
vorarlberg 0.662 habsburg 0.755
graz 0.660 graz 0.737
oesterreich 0.659 cisleithanian 0.736
viennes 0.657 vorarlberg 0.724
german 0.646 wien 0.722
klagenfurt 0.640 klagenfurt 0.721

It is important to note that the vectors for two close terms, like in this example, influence
each others position in the Retrofitting process, because both (austria and austrian)
contain the other word in their LSI selection. This means that the vectors pull and push
each other in each iteration of the Retrofitting. A position change of austria in the first
iteration, has an influence on the position of austrian in the second iteration.

4.4 Implementation
The experiment pipeline is orchestrated using bash scripts, because different parts are
written in different programming languages. Lucene is Java based and therefore the plugins
are written in Java as well. Trec_eval is a a tool written in C. The embedding creation,
retrofitting procedure, embedding analysis, cross-validation, and result transformation
in plots and tables are written in Python. The programs are individually compiled and
then started in the ordering set by the pipeline.

For every run we create a unique folder and copy the configuration file (containing all
input paths and parameter settings) as well as all source code into it, this allows for a
very good reproducibility. We do not copy the input data, but the the raw input data
never changes, meaning it is not necessary to copy it for every run. We save all temporary
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results, analysis output, and retrieval results in the run folder. Because a single run
contains up to thousands of different experiment results and multiple different analysis
tables, we create a single Excel file, which combines all result and analysis data in one
place. This proves very useful in organizing the results and discussion and research process.
For example, with a single Excel file it is possible to send the complete information a
single run produced to other researchers via email without creating confusion about which
experiment and data is referenced. To compare multiple runs, and therefore multiple
models with each other, we created a meta result transformer tool. The tool reads all
results from the given runs and transforms them into tables and plots.

We used the popular open-source Gensim library2 in Python 3 to create our window-
context word embeddings. The library contains a highly optimized implementation of
Skip-gram as well as methods to compute the nearest neighbors of a word in any arbitrary
embedding.

We implemented the Retrofitting process in Python using NumPy3. We use the formula
shown in Equation 2.8, so that the implementation allows arbitrary external resources.
The data structure of an external resource contains for every term in its vocabulary a
list of similar terms and scores. The scores might be constant set to one. This allows us
to experiment with semantic lexicons, document-context information, as well as various
combinations of them. Terms are identified in the system with integer ids and not strings.
We use integer ids to increase the performance of the system, because we can directly
access an array index with them and the computation uses less memory. The computation
time depends on the size of the embedding as well as the number of terms in the external
data. In comparison with training a new model from scratch, the Retrofitting model is
very efficient. Following Faruqui et al. [FDJ+15] we used 10 iterations, but the vectors
converged usually after 6 to 7 iterations.

As described earlier in Section 2.4, we use the GT and ET models as basis for our IR
tasks. The models are implemented in Java 8 as a plugin for the open-source search
engine Lucene4. This allows the implementation to be used in a practical setting because
Lucene is the core for the Solr5 search server as well as the Elasticsearch6 platform. A
natural focus is on the performance and well tested correctness of the implementation,
so that the method is feasible to use in a real-world scenario in addition to setting a
reliable foundation for the evaluation of the new fusion embedding. The implementation
is usable with any word embedding and any Lucene index.

Figure 4.2 shows an overview of the implemented process. Updating the index for every
search is not feasible in a short time, especially if the index is large. The documents in the
index remain unchanged, the similar words are gathered per query word from the word
similarity model and the Lucene inverted index is queried for all original and similar words.

2See: https://github.com/RaRe-Technologies/gensim checked: 21.4.2018
3See: http://www.numpy.org/ checked: 21.4.2018
4See: http://lucene.apache.org/ checked: 3.3.2018
5See: http://lucene.apache.org/solr/ checked: 3.3.2018
6See: https://www.elastic.co/products/elasticsearch checked: 3.3.2018
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Figure 4.2: Query process illustration for an efficient Translation Model implementation

The returned posting lists are aligned, so that when iterating through them all posting
lists stay at the same sorted document number and expose term frequency information
per document. This alignment is necessary, because every document in Lucene is only
scored once and as Equation 2.16 and 2.18 show the similar word information needs to
be incorporated in a single execution of the BM25 formula. We iterate through every
document and score it with the aligned term frequency information. This is repeated for
every original query word and Lucene combines the scores per document, sorts them and
returns the highest 1,000 documents results. The performance impact is linear in the
number of added similar words and no further overhead is created. The implementation
is further documented in detail in Appendix A.

The code and evaluation for the extension is available at:
https://github.com/sebastian-hofstaetter/ir-generalized-translation-models
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CHAPTER 5
Experiment Design

In this chapter we present the test collections, external resources, parameter setting,
evaluation metrics that we used in our experiments as well as how we calculated cross-
validated results.

5.1 Test collections

Table 5.1 shows three Information Retrieval test collections, used for the evaluation. The
two TREC collections are in the news domain and CLEF-IP is a patent text collection.
We choose those collections to evaluate two distinctly different domains. The text from
the TREC collections is stemmed using a Porter stemmer before creating the index, as it
also improves retrieval performance. The text from CLEF-IP is not stemmed. All indexes
use a stop-word list from NLTK. We use an English Wikipedia corpus as window-context
and document-context for the TREC embeddings because the TREC collections are
small and Wikipedia based embeddings yield better results, as shown by Rekabsaz et al.
[RLHZ16]. The CLEF-IP collection is big enough for a good embedding and includes
many patent domain specific words and meanings.

Table 5.1: A list of test collections and additional information we used

Name Collection # Doc Topics Embedding Stem

TREC-123 Disc1&2 740088 150 Wikipedia Yes

TREC-Robust-2004 Disc4&5
without CR 523951 250 Wikipedia Yes

CLEF-IP-2013 CLEF-IP 2.6 million 50 CLEF-IP No
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Table 5.2: A summary of vocabulary size and effective words of our external resources
(LSI is selected with a 0.75 threshold)

Name # Vocab. # Wiki # CLEF-IP # Avg. sim. words Weight

LSI (Wikipedia) 482,294 220,449 - 3.22 Yes
LSI (CLEF-IP) 643,365 - 418,533 4.98 Yes
PPDB 102,903 38,533 47,422 3.64 No
WordNet(Synonyms) 148,731 24,306 23,819 2.12 No
FrameNet 10,823 6,253 6,614 39.98 No

5.2 External resources

We use two types of external resources: document-context and semantic lexicons. Both
provide the same word similarity data structure described in Section 4.1. Table 5.2 gives
an overview of all external resources used in our experiments. The "# Vocab." column
shows the total amount of available words in each resource. However, not every word
is usable, the "# Wiki" and "# CLEFIP" columns of Table 5.2 describe the number of
words that intersect with the vocabulary of the Wikipedia and CLEF-IP word embedding
vocabulary and therefore the effective number of words in the Retrofitting process. The
"# Avg.sim. words" column shows how many similar words are effectively available per
resource on average. In the LSI resources this number depends on the selected threshold.
In this table we use an LSI threshold of 0.75. In the following we present more details
about each external resource type:

• Document-context The document-context data is provided by LSI and selected with
a similarity threshold. We use the LSI word matrix U ′, as described in Section 2.1.1
to create word-to-word based similarities for all words in the vocabulary. For every
row in U ′, that represents a single word, we compute the cosine similarity with every
other row in the matrix. We sort the list in descending order and select the words
based on the given similarity threshold. We used the Gensim library for Python
to compute our SVD matrices and NumPy to compute the list of similar words.
The LSI vocabulary is the same as the vocabulary of the embeddings (because they
are both created from the same corpora). However, for LSI the lower number of
effective words is caused by the similarity threshold that filters out words that do
not have at least one similar word with a higher score.

• Semantic lexicons We used the following semantic lexicons: WordNet [Mil95],
FrameNet [BFL98], and PPDB [GVCB13]. We use them, because Faruqui et al.
[FDJ+15] use them in their Retrofitting evaluation, as we have explained in Chapter
3. They also provide preprocessed data files of the lexicons, in the needed input data
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structure for the Retrofitting process, as described in Section 4.1. The semantic
lexicons contain hand-crafted similarity relationships between words, but word
pairs are not scored. If a word is in a similarity relationship it has the implicit score
of 1. As Table 5.2 shows, the semantic lexicons have smaller vocabularies than LSI
and the effective word sets ("# Wiki" and "# CLEFIP") are even smaller, because
the semantic lexicons are created independently from the corpora and therefore
the vocabularies are less overlapping. Additionally, the semantic lexicons contain
phrases, that are not supported by our system and therefore ignored and not in
the effective word sets. FrameNet has a very high average number of similar words
as it contains many duplicates.

Table 5.3 shows the combination of our similarity models and external resources to form
our set of final similarity models. To keep the number of evaluated models manageable
we only used PPDB, when we used multiple input combinations that include a semantic
lexicon, because it showed the best results in the single resource Retrofitting evaluation.

Table 5.3: Combination of similarity models and external resources

Similarity model External resource data

Post-Filter(*) LSI word similarity

Retro(*)
Semantic lexicons (PPDB, WordNet, FrameNet)
as used by Faruqui et al. [FDJ+15];
LSI word similarity

Ext-Retro(* + *) PPDB and LSI word similarity

Post-Filter-Retro(*,*)
For retrofitting: PPDB;
For post-filter: LSI word similarity

Retro(*) + Retro(*) PPDB and LSI word similarity

5.3 Evaluation Metrics

Our evaluation focuses on MAP, P@10, and NDCG for the TREC collections and MAP,
PRES, and RECALL for the CLEF-IP patent collection. The RECALL shows how
many of all relevant documents have been retrieved. Finding a duplicated patent is an
important goal in the patent domain. For the evaluation we used the trec_eval1 utility.
Trec_eval uses a list of human-judged document identifiers that are scored as relevant or
non-relevant2. All other documents that are not judged are considered non-relevant.

1See: https://github.com/usnistgov/trec_eval checked: 17.3.2018
2See: https://trec.nist.gov/data/qrels_eng checked: 17.3.2018
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5.4 Cross-Validation for Information Retrieval

We employ cross-validation of the experiment results to prevent overfitting the test
collection data with our model. Overfitting occurs when parameters of the model are
tuned specifically to improve the results of a set of queries. Because the parameters
are tuned specifically for one collection they might not generalize well and the model
performs worse on previously unseen queries. Cross-validation makes the evaluation and
comparison of different models independent from the used parameters. Cross-validation
is not used for parameter finding or tuning, rather to evaluate overall system performance
in a fair setting, with no parameter bias. A significant difference between systems is a
very strong signal of a better method.

We cross validate the Translation Model parameter configurations from a single experiment.
This follows the experiment design concept by Rebasaz et al. [RLHZ16]. In Figure 4.1,
which describes the workflow the Translation Model parameter is configuration point two.
Once we cross-validated the Translation Model threshold, we pick the best LSI threshold
if it is used. We do this because different LSI thresholds create different word embeddings.
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Figure 5.1: 5-fold cross-validation process for two sample experiment results
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Subsequently we compare results of the cross-validation with other experiments that use
the same measure, retrieval test collection, and scoring model.

Figure 5.1 shows how the cross-validation works with an example of two parameter values
(Config. #1, Config. #2) used in one experiment. Because every topic is independently
scored, we conduct the data splits and cross-validation after running the retrieval. The
cross validation process works as follows:

1. The cross-validation begins by gathering all detailed results for every parameter
configuration (based on our parameter range there are 40 different Translation
model threshold configurations per experiment) - for example for 50 topics, each
result is a list with 50 values based on a single evaluation metric, sorted by topic
number.

2. For every result list cross-validation splits each list 5 times into 5 different folds:
one validation and four test folds. Every topic (i.e. item in the list) is covered by
one of the validation folds. For 50 topics, one validation fold contains 10 values
and the test the other 40 values. The validation parts of one fold covers the same
number of topics in all configuration results.

3. The mean for every test fold of every experiment is calculated. The highest mean
value per fold is selected (one column in the figure) - which means we select one
best experiment per fold. For this best experiment of a fold the validation result
values are added to the result list (without checking if the validation results are
better than the other experiments).

4. By selecting one validation part per fold, cross-validation creates a result list that
contains exactly one result per topic – as mentioned above, every selected validation
fold contains unique topic numbers.

5. With a single cross-validated result list we can calculate a single cross-validated
mean result for the evaluated metric and use it to compare this experiment with
others.

We report our cross-validated results in Chapter 6. Additionally, we present complete
results for the best parameter configurations per experiment in Appendix B.
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5.5 Parameter Settings

• Similar to Rekabsaz et al. [RLHZ16], for the Wikipedia and CLEF-IP word
embedding models we created 300 dimensional vectors with the Skip-gram model
running for 25 epochs, using the sub-sampling parameter set to 10−5, a context
window of 5 words, and word count threshold of 20.

• We computed the Retrofitting procedure with the following parameter configuration:
α = 1, and β was set to a normalized similarity score as shown in Equation 4.1.
Setting alpha to 1 is recommended by Faruqui et al. [FDJ+15].

• We explored the threshold for the LSI data selection in a range from 0.5 to 0.9
in steps of 0.02. We explored the threshold for the Translation Model in a range
from 0.6 to 1 in steps of 0.01. When the Translation Model threshold is set to 1
the query equals a plain query, meaning no additional terms are added to a query.
We used these ranges, because they provide a reasonable robust parameter search
space, where the results at the beginning and end of the ranges are not optimal
and commonly show the lowest results.

• Similar to Rekabsaz et al. [RLHZ16], for BM25 we set b = 0.6, k1 = 1.2, and
k3 = 1000, and for LM we set µ to 1000.
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CHAPTER 6
Evaluation and Results

In this chapter we present our word embedding and word similarity analysis, which
measures changes at different stages in the evaluation pipeline. We present the cross-
validated results in domain-specific Information Retrieval test collections for our similarity
models. In addition we present insights into the parameter exploration we conducted to
find the best Translation Model threshold.

6.1 Word Embedding Analysis

The word embedding analysis starts with an analysis of the global differences in the
vector spaces, followed by a local neighborhood analysis.

6.1.1 Retrofitting Changes

During the Retrofitting procedure every word that has similarity information in the
external resource, moves in the vector space, as shown in Section 2.2. In this section, we
empirically analyze relative differences and compute metrics that capture the changes in
the word embedding.

Figure 6.1 shows the histogram of normalized Euclidean distances between the original
and retrofitted positions of the vectors for the CLEF-IP corpus. The x-axis depicts the
distance between the original and new positions. The lower the LSI similarity threshold
is set the more vectors change. At a threshold of 0.8, 272, 000 vectors remain unchanged,
this is 50 percent higher than at 0.7. A lower threshold – more input data – does not
mean, that the vectors move farther away, most of the vectors move by a distance between
0.35 and 0.5. The number of vectors that are moved in this range increase by 40 percent
between the thresholds of 0.8 and 0.7. There are no vectors that move farther than the
last shown range, therefore we omit the empty ranges from the histogram. Using the
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Figure 6.1: Histogram of normalized euclidean distances between the original vectors
and the retrofitted vectors using different LSI thresholds for a CLEF-IP word embedding

Wikipedia corpus with LSI for the TREC test collections, we can observe a very similar
pattern and therefore the collection is not displayed.

Using a semantic lexicon like PPDB or WordNet, which both have much less information
on words, the histogram analysis still shows the same characteristics. It is important
to note for the following analysis and results, that the semantic lexicons change much
fewer vectors. Depending on the exact configuration only a fifth or less. But with
every additional neighboring vector, the relative influence of each neighbor becomes
lower in the Retrofitting formula, and therefore changing fewer vectors still shifts the
similarity results of the word embedding. When we combine LSI with PPDB data in the
Ext-Retro(*,*) model the histogram keeps its Gaussian-like shape, but the distance
range moves closer and most changes happen between 0.15 and 0.35.

As a first observation we can conclude that the Retrofitting procedure (especially with
LSI) overall has sizable impact on the global changes of the vector space.

6.1.2 Quantitative Neighborhood Analysis

In this section, we focus on the changes inside local neighborhoods, because we use the
neighborhoods of individual vectors from the word embedding in the GT and ET retrieval
models. A neighborhood is defined as a set of similar words, whose similarity to the main
word is higher than a threshold.

Figure 6.2 shows the average number of neighbors for different thresholds using a CLEF-
IP word embedding for all unique query words from the CLEF-IP-2013 test collection.
We counted the number of neighbors with similarities higher than the threshold per query

38



6.1. Word Embedding Analysis

0

5

10

15

20

25

30

35

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9

Av
er

ag
e 

N
ei

gh
bo

r C
ou

nt

Neighborhood Threshold (cosine similarity)

w2v Baseline
Retro(LSI@0.70)
Retro(LSI@0.72)
Retro(LSI@0.74)
Retro(LSI@0.76)
Retro(LSI@0.78)
Retro(LSI@0.80)

Figure 6.2: Number of average common words in the neighborhoods of query words for
different cosine similarity (Translation Model threshold) for a CLEF-IP word embedding
and CLEF-IP-2013 query words

word and divided the result by the number of unique query words for the average. The
gray line on the bottom shows the unchanged w2v baseline. The lower the LSI threshold
(e.g. the more information is used in the Retrofitting) the higher the neighborhood size
for the same similarity. This figure shows that the vectors move closer to each other after
the Retrofitting process, because more words are located in the same similarity range.
Therefore, we state that the word embedding contracts during the Retrofitting.

We experiment with different similarity models as listed in Section 4.1 – Figure 6.3
visualizes differences in the neighborhoods of different similarity models. The x-axis
shows different neighborhood sizes, defined by a cosine similarity. They y-axis shows
the average intersection of the neighborhoods of two word embeddings, e.g. how many
similar words are in the neighborhoods of the two.

For this analysis we use a Wikipedia based baseline word embedding and word embeddings
retrofitted with LSI similarities created from Wikipedia and the semantic lexicon PPDB.
We use the LSI similarity threshold of 0.7. We also evaluated an extended model
which combines LSI@0.7 and PPDB data during the Retrofitting process. We analyze
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Figure 6.3: Number of common neighbors in various similarity values for Wikipedia-based
word embeddings and TREC-Robust-2004 query words

neighborhoods of all unique query words from the TREC-Robust-2004 test collection.

We pairwise compare the query word neighborhoods of each created word embedding
with each other by computing the number of common words between the two sets. The
two sets are required to have the same number of words, so we can compare them fairly.
Simply applying the same similarity threshold to both embeddings does not guarantee
the same number of neighbors, in fact as Figure 6.2 shows the sizes of the neighborhoods
differ substantially. We apply a similarity threshold per word to the first word embedding,
which sets the number of similar words used for the second embedding. The displayed
percentage is an average over all unique query words.

Compared to the original Skip-gram word embedding, Retro(LSI) (orange) changes
fewer words in the query word neighborhoods in comparison to Retro(PPDB) (blue)
on small neighborhoods. In larger neighborhoods, e.g. with a lower cosine similarity,
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Retro(LSI) changes more words around the query words than Retro(PPDB). By
comparing the intersection of neighbors between two retrofitted word embeddings (red),
we can observe that the neighborhoods differ more than each individually to the original
word embedding. This means that different external resources do change the word
embedding in different ways.

6.2 Information Retrieval Results
In this section we present a comparison of our similarity model results, which are used by
the evaluated retrieval models and a detailed parameter exploration for selected models.

6.2.1 Evaluation Results

We focus our comparison of our model results using cross-validation, described in Section
5. The baselines and their symbols for significance are summarized in Table 6.1. The
STD retrieval model is a query without any changes. We report statistical significance
using a two sided paired t-test and p < 0.05.

In the following we present the results per test collection: TREC-123, TREC-Robust-2004,
and CLEF-IP-2013.

Table 6.1: Baselines and their symbols for the significance tests

Baseline Tested from Sig. Symbol

STD All the models and baselines †
w2v Retrofitting and Post-Filter models ρ

Post-Filter(LSI) Retrofitting models ν

TREC-123 The TREC-123 test collection is in the news domain. Table 6.2 shows the
results of our word similarity models for BM25-GT, BM25-ET, LM-GT, and LM-ET
retrieval models. The baselines are reported in the first section, the second section
contains single word embedding similarity models, the third section contains similarity
models that introduce an additional similarity selection step with two external resources.
The best result per measure over all retrieval models is displayed in bold.

The w2v similarity model does not significantly improve over the baseline. From the sim-
ilarity models with a single external resource Retro(LSI) and Retro(PPDB) improve
significantly over the STD baseline. The best performing models for the TREC-123 col-
lection are Post-Filter-Retro(LSI,PPDB) and Retro(LSI) + Retro(PPDB).
Both are statistically significantly better than all baselines in the MAP score with BM25-
GT and BM-ET. Both models combine two resources during the selection of similar
terms.
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6. Evaluation and Results

Table 6.2: Results for TREC-123 per similarity model, Translation Model, and scoring
method showing different measures

Method T. Model BM25 LM
MAP NDCG P@10 MAP NDCG P@10

T
R

E
C

-1
23

STD 0.222 0.431 0.488 0.222 0.437 0.505

Plain-w2v GT 0.225 0.430 0.485 0.222 0.435 0.511
ET 0.225 0.432 0.477 0.224 0.435 0.507

Post-Filter(LSI) GT 0.226 0.437†ρ 0.497 0.226 0.439 0.506
ET 0.228 0.440† 0.489 0.227 0.442ρ 0.511

Retro(FrameNet) GT 0.228 0.427 0.501 0.224 0.438 0.517†
ET 0.230 0.432 0.487 0.227 0.439 0.503

Retro(PPDB) GT 0.226 0.434 0.507ρ 0.229†ρ 0.438 0.515
ET 0.232† 0.440 0.497ρ 0.227 0.440 0.510

Retro(WordNet.synonyms) GT 0.226 0.434 0.506 0.225 0.438 0.505
ET 0.229 0.432 0.503ρ 0.222 0.434 0.513

Retro(WordNet.synonyms+) GT 0.223 0.438 0.481 0.223 0.441 0.520†
ET 0.226 0.429 0.482 0.220 0.429 0.520†

Retro(LSI) GT 0.229† 0.440†ρ 0.494 0.229†ρ 0.443† 0.511
ET 0.229† 0.441†ρ 0.497ρ 0.228 0.442 0.512

Ext-Retro(LSI + PPDB) GT 0.227 0.436 0.502 0.227ρ 0.439 0.517
ET 0.228† 0.439† 0.501ρ 0.225 0.438 0.518†

Post-Filter-Retro(PPDB, LSI) GT 0.234†ν 0.441†ρ 0.502 0.233†ρν 0.444 0.520ν
ET 0.236†ρν 0.444†ρ 0.502ρ 0.232†ρ 0.442 0.513

Retro(PPDB) + Retro(LSI) GT 0.235†ρν 0.442†ρ 0.511†ρ 0.234†ρν 0.444ρ 0.521
ET 0.235†ρν 0.442†ρ 0.505ρ 0.232†ρ 0.444ρ 0.518

The baseline STD MAP results for both BM25 and LM are very close to each other
in the TREC-123 test collection. For a majority of similarity models BM25 with the
Generalized Translation Model (BM25-GT) performs best in MAP. The best results
are achieved with BM25-ET but closely followed by the other scoring methods. The
results clearly show that this test collection benefits from a similarity model built on two
different external resources during the selection of similar terms. However, the similarity
model that combines two resources into a single word embedding Ext-Retro(PPDB +
LSI) fails to improve over the single resource models.

TREC-Robust-2004 TREC-Robust-2004 covers the same general news domain as
TREC-123. The results for all measures and models are shown in Table 6.3. The table
has the same structure as Table 6.2 containing three sections and the best result per
measure over all retrieval models is displayed in bold.

The w2v and Post-Filter(LSI) similarity models perform significantly better in the
MAP measure than the STD baseline – for all four retrieval models. None of the other
similarity models can outperform the w2v and Post-Filter(LSI) baselines. Only the
Retro(PPDB) similarity model improves the MAP score slightly above the w2v results,
but not significantly. Retro(FrameNet) even leads to results that are below the STD
minimum.

The NDCG measure also shows that models based on PPDB and the two baselines w2v
and Post-Filter(LSI) are very similar in their results and they all improve over the
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6.2. Information Retrieval Results

Table 6.3: Results for TREC-Robust-2004 per similarity model, Translation Model, and
scoring method showing different measures

Method T. Model BM25 LM
MAP NDCG P@10 MAP NDCG P@10

T
R

E
C

-R
ob

us
t-

20
04

STD 0.263 0.535 0.449 0.264 0.538 0.435

Plain-w2v GT 0.276† 0.546† 0.439 0.276† 0.551† 0.424
ET 0.279† 0.551† 0.443 0.276† 0.549† 0.424

Post-Filter(LSI) GT 0.277† 0.547† 0.447 0.278† 0.551† 0.436ρ
ET 0.277† 0.548† 0.447 0.276† 0.548† 0.436ρ

Retro(FrameNet) GT 0.259 0.527 0.447 0.269 0.535 0.432
ET 0.258 0.530 0.449 0.266 0.536 0.432

Retro(PPDB) GT 0.281† 0.548† 0.453ρ 0.280† 0.550† 0.415
ET 0.283† 0.550† 0.456ρ 0.276† 0.548† 0.431

Retro(WordNet.synonyms) GT 0.273† 0.537 0.450 0.271 0.541 0.439ρ
ET 0.273† 0.542 0.452 0.269 0.541 0.437ρ

Retro(WordNet.synonyms+) GT 0.269 0.538 0.453ρ 0.268 0.541 0.429
ET 0.270 0.536 0.454ρ 0.267 0.540 0.431

Retro(LSI) GT 0.274† 0.544 0.448 0.272 0.544 0.430
ET 0.275† 0.547† 0.450 0.269 0.542 0.439ρ

Ext-Retro(LSI + PPDB) GT 0.279† 0.550† 0.450ρ 0.274† 0.549† 0.435ρ
ET 0.280† 0.551† 0.456ρ 0.273† 0.547† 0.433

Post-Filter-Retro(PPDB, LSI) GT 0.277† 0.548† 0.451ρ 0.274† 0.549† 0.437ρ
ET 0.276† 0.547† 0.458ρν 0.272 0.549† 0.435

Retro(PPDB) + Retro(LSI) GT 0.275† 0.546† 0.457ρ 0.275† 0.551† 0.429
ET 0.279† 0.546† 0.459ρν 0.273† 0.548† 0.431

STD baseline. Other Retro(*) models based on LSI, WordNet, and FrameNet fail to
improve significantly over STD.

CLEF-IP-2013 The CLEF-IP-2013 test collection consist of patent text. Table 6.4
shows all similarity model results for CLEF-IP-2013 in the same structure as the result
tables before.

The MAP results for the w2v similarity model show no changes in comparison to the STD
baseline. All of the other similarity models increase the result significantly over the two
STD and w2v baselines. Retro(PPDB) works well with LM-ET only. The other similarity
models perform best with BM25-ET. The best methods are Post-Filter(LSI) (with
LM-GT and BM25-ET) and Post-Filter-Retro(PPDB, LSI) (with BM25-ET) for
the MAP measure.

The LM based retrieval models outperform BM25 on the Recall measure. The w2v
similarity model does not change the Recall results in comparison to the STD baseline.
The Retro(LSI) model performs significantly better than STD and w2v. The other
models do not show a clear pattern of improvement. Some perform better than the
baseline, but not significantly over both baselines.

Discussion We conclude that the three different test collections require different
similarity models to achieve the best results. Overall the best similarity method is
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6. Evaluation and Results

Table 6.4: Results for CLEF-IP-2013 per similarity model, Translation Model, and scoring
method showing different measures

Method T. Model BM25 LM

MAP PRES RE-
CALL MAP PRES RE-

CALL

C
LE

F
-I

P
-2

01
3

STD 0.184 0.607 0.703 0.200 0.669 0.755

Plain-w2v GT 0.185 0.611 0.685 0.192 0.671 0.751
ET 0.207† 0.615† 0.679 0.200 0.665 0.758

Post-Filter(LSI) GT 0.215ρ 0.613 0.723 0.248†ρ 0.669 0.765
ET 0.247†ρ 0.638†ρ 0.733ρ 0.228†ρ 0.689 0.785

Retro(FrameNet) GT 0.180 0.607 0.707ρ 0.204 0.667 0.735
ET 0.206 0.633† 0.698 0.188 0.661 0.762

Retro(PPDB) GT 0.205ρ 0.594 0.682 0.198 0.655 0.765
ET 0.194 0.625 0.715 0.240†ρ 0.667 0.758

Retro(WordNet.synonyms) GT 0.167 0.618 0.691 0.224†ρ 0.668 0.758
ET 0.206 0.610 0.705 0.208 0.651 0.717

Retro(WordNet.synonyms+) GT 0.169 0.595 0.687 0.204 0.659 0.738
ET 0.180 0.597 0.674 0.207 0.638 0.754

Retro(LSI) GT 0.227ρ 0.605 0.709 0.235†ρ 0.664 0.733
ET 0.238† 0.639† 0.733ρ 0.221 0.698 0.812†ρ

Ext-Retro(LSI + PPDB) GT 0.213 0.611 0.671 0.233†ρ 0.667 0.768
ET 0.239†ρ 0.624 0.733ρ 0.227†ρ 0.669 0.765

Post-Filter-Retro(PPDB, LSI) GT 0.226ρ 0.610 0.712 0.233†ρ 0.664 0.752
ET 0.246†ρ 0.643†ρ 0.733ρ 0.218†ρ 0.686 0.788ρ

Retro(PPDB) + Retro(LSI) GT 0.216ρ 0.598 0.691 0.217†ρ 0.667 0.785
ET 0.221† 0.639†ρ 0.743ρ 0.216 0.676 0.798ρ

Post-Filter-Retro(PPDB, LSI) which performs best on TREC-123 and CLEF-
IP-2013 and shows the same results as the baseline in TREC-Robust-2004. This model
requires two resources to select the threshold: the retrofitted word embedding with
PPDB and the LSI similarities to filter the final result list. This model is more complex
than a single word embedding. If one wants to use only a single word embedding the
Ext-Retro(LSI + PPDB) similarity model shows robust results over all three test
collections. In the news domain the semantic lexicons have more benefits than in the
patent domain, where the best results are combinations of LSI.

The best overall retrieval model is BM25-ET, which in most cases provides the best results
or is not significantly worse than the best results. An exception is the Recall metric on
the patent collection, where a combination of LSI and LM provides a significantly better
result than all other experiments.

6.2.2 Threshold parameter exploration

In this section we observe changes in results based on the changes in the Translation
Model and LSI threshold parameters. We focus on Retrofitting with one resource to keep
the visualization tractable.

We discussed in Section 4.2 that a single experiment depends on the Translation Model, the
scoring method, the Translation Model threshold, and an external resource configuration.
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Figure 6.4: Results for different Translation Model thresholds and different LSI similarity
thresholds used in Retrofitting for CLEF-IP-2013 with BM25-ET

As mentioned above, we always evaluated a range of possible thresholds. The following
figures show selected results of this parameter range exploration that represent our
experiments. We choose to visualize the BM25-ET MAP results, as they have proven to
be overall best retrieval results. Each line in the following figures represents a retrofitted
word embedding with a different external resource configuration.

When we compare models alongside the Translation Model threshold parameter we use
the best baseline results as the comparison for all parameter settings – since the best
Translation Model threshold is shifted, because of the contracted word embedding. The
best w2v and STD baseline results are visualized by horizontal black dotted lines. The
complete best result tables for all models and measures are located in Appendix B.

Figure 6.4 shows detailed results for the CLEF-IP-2013 test collection and the Retro(LSI)
model. The w2v baseline (gray dotted line) does not have a clear maximum, whereas a
single global maximum is more common in other collections using the Translation Models.
Retrofitting the Skip-gram word embedding with LSI data transforms the results to have
a single global maximum at the Translation Model threshold of around 0.8. Using the
LSI threshold of 0.75 provides robust results over multiple Translation Model thresholds.
The best result is a MAP score of 0.254 which is significantly higher than both baselines.

Figure 6.5 shows the results for the TREC-Robust-2004 test collection. It uses LSI data
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Figure 6.5: Results for different Translation Model thresholds and different LSI similarity
thresholds used in Retrofitting for TREC-Robust-2004 with BM25-ET

at different thresholds to retrofit the Skip-gram word embedding (Retro(LSI)). The
Translation Model threshold achieving the best results shifts higher to 0.86, still all LSI
retrofitted word embeddings fail to improve the results of the base word embedding. Using
the best threshold of the base word embedding at 0.7 with the LSI word embeddings the
results decrease the results considerably under the STD baseline. The results are falling
below the STD baseline much faster than the base word embedding if the Translation
Model threshold is not selected carefully. A low LSI threshold only amplifies this effect.

Figure 6.6 depicts results using semantic lexicons in the Retrofitting for TREC-Robust-
2004 (Retro(Semantic Lexicons)). Note that the scale of the y-axis (the MAP
values) is very fine grained, therefore a seemingly big difference in the plot is actually
very small. As shown in Table 6.3 the best baseline result for w2v is significantly
higher than the STD result, but there is no statistically significant difference between
the w2v baseline, Retro(PPDB), and Retro(WordNet-synonyms). As mentioned
before only Retro(PPDB) improves the absolute result value. Again the Translation
Model threshold providing the best results increases.
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Figure 6.6: Results for different Translation Model thresholds and different semantic
lexicons used in Retrofitting for TREC-Robust-2004 with BM25-ET

6.3 Summary
In the Information Retrieval results, we observe similar effects outlined in the word
embedding analysis (Section 6.1): 1. Different similarity models produce different
similarity results and those results do change the the overall retrieval results. We tracked
these changes from the core of the word similarity model to the different retrieval result
measures. 2. We conclude that overall for our three test collections and most data sources
a higher Translation Model threshold is needed to achieve the best results. This shows
with the neighborhood analysis, that even with a retrofitted embedding (where words are
closer to each other) only a certain low amount (1-3 words on average) of words improve
the retrieval results. This is a similar average to the w2v baseline.
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CHAPTER 7
Conclusion

Incorporating similar words in a document retrieval query gained from a word embedding
offers great potential for better retrieval results. The crucial point is to expand the search
space with topic-related similar words, so that the expansion improves retrieval results.
Expanding the query words with too many or query unrelated words reduces the retrieval
performance, because results diverge into unrelated topics.

We hypothesized that the word embedding model that provides the representation of
words should not only be created based on a window-context (used by the Skip-gram
word embedding), but on a diverse set of input sources with different informational value.
In this thesis, we incorporate various additional – external resources – into a Skip-gram
word embedding in a post-processing step using the Retrofitting method. This adds more
information to the embedding which is not captured in a window-context of words alone.
We create word embedding based word similarity models, which are used to incorporate
similar words in a domain-specific Information Retrieval query. We implemented the used
retrieval models in the popular open source search engine Lucene. We compared our novel
word similarity models with each other and analyzed how the word embeddings change
during the Retrofitting process. We evaluated a set of parameter ranges for the selection of
similar words in combination with four different retrieval models. We evaluated two news
collections (TREC-Robust-2004, TREC-123) and one patent collection (CLEF-IP-2013).

Our retrofitted word embedding analysis showed that the more data is used to retrofit,
the more the word embedding changes and the word vectors move closer to each other.
We also showed that different external resources produce indeed different word similarity
results. Overall the best word similarity model is the Post-Filter-Retro(PPDB,
LSI) model, which is a Post-Filter and Retrofitting combination of two external resources:
PPDB and LSI. In this model we combine as many inputs as possible (window-context,
document-context, and semantic lexicon). The model improves significantly over an
out-of-the box word embedding baseline on the TREC-123 news collections and the
CLEF-IP-2013 patent collection. However, in the TREC-Robust-2004 news collection we
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7. Conclusion

did not observe an improvement in comparison to an out-of-the box word embedding
baseline. The TREC-Robust-2004 news collection is best served with the Retro(PPDB)
model, which retrofits information from the semantic lexicon PPDB into a Skip-gram
embedding.
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CHAPTER 8
Future Work

During the work on this thesis we touched multiple areas that are interesting to pursue,
but outside the scope of this thesis. In the following, we summarize our ideas for future
work:

• De-bias adapted word embeddings Rekabsaz et al. [RLH17a] and Bolukbasi et
al. [BCZ+16] showed the existing gender bias in the English Wikipedia corpus,
which we use as a basis for our news domain word embedding. Bolukbasi et al.
propose a method to remove gender and other measurable bias, such as racial
discrimination or stereotypes, from an embedding without breaking the useful
unbiased relationships of the vectors. We aim to apply this method on our new
word embedding models and measure the effect it has on the evaluation tasks. Not
using de-biased embeddings can be a potential problem for every downstream task,
which does not explicitly study the bias because the bias only gets amplified. For
example, a retrieval task that expands a neutral query with biased words will yield
returned documents that contain more biased results than an unchanged query.
Therefore, we find it ethical to use word embeddings in a system that are de-biased.

• Using context everywhere Currently the Translation Models as well as the word
similarity models do not use the complete query context of a query word in
selecting which words are used to expand the query. The system can not distinguish
polysemous words, such as "bank". When a user searches for "bank loan", the
system should be able to recognize the correct meaning of "bank", given by the
second word. The solution requires changes in multiple parts of the search system:

– Context based embedding Use or create an embedding to capture polysemy,
where each word can have multiple vectors (and therefore different neighbor-
hoods) based on multiple senses. This should be learned from the corpus that
is used to create the embeddings.
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8. Future Work

Neelakantan et al. [NSPM14] proposed an extended version of the Skip-gram
model, which automatically learns different senses or meanings per word.
Every meaning of a word is captured in an individual vector. The model
does not require a parameter to set the number of meanings a word has.
This number is also learned automatically per word. The training time stays
reasonable in the range of hours, not days. Neelakantan et al. describe a
nearest neighbor search that combines the neighborhoods of the individual
vectors of a word, but the model itself would also allow to retrieve the lists of
neighbors per sense individually. This is not a focus of their paper and could
be a new contribution in combination with context words provided by queries.
Rekabsaz et al. [RLHZ17] did study the positive and negative impact of
similar words to the MAP metric. They concluded that with a lower similarity
threshold the potential gains are high, but diminished by negative words that
cause topic shifting. Using a multi-sense embedding with a context dependent
sense selection could potentially filter out more negative words. As a first
step, the analysis by Rekabsaz et al. should be reevaluated with multi-sense
embeddings.

– Multi-word or phrase selection Currently information about phrases or context
about topics gained from inspecting multiple query terms is not used: Searching
for "United Kingdom" expands the individual words, but not the phrase of
the combined two words. Each individual word is again expanded with single
words. A good solution would be to expand this phrase with another phrase
like "Great Britain". Using phrases to select similar words could provide a
very useful tool against topic shifting - if the topic is encoded in the query.

– Similar term selection learning Learn to select similar terms based on the whole
query with a recurrent neural network and some form of reinforcement learning
based on test collection gold standard ranking data. Peters et al. [PNI+18]
propose deep contextualized word representations in the context of NLP
applications. Their recurrent model builds on LSTM’s and a nearest neighbor
query is conducted with the context of a word in form of a sentence. They
show that they can improve a variety of NLP tasks, when their representation
is applied to the previous state-of-the-art models.

• Supervised word representation learning The Retrofitting approach is an unsuper-
vised method. Using a supervised learning method could further improve a word
embedding. The supervision could be gained from retrieval gold standard rankings.
This would tailor the embedding specifically to the Information Retrieval domain.

• Use a subword embedding We used TREC/CLEF-IP test collections with com-
plete queries, without incorrect spelling, or incomplete words. Therefore the test
framework does not reflect the scenarios in which users make spelling mistakes or
search for parts of words. Together with a subword matching in the search engine a
subword embedding, like FastText by Bojanowski et al. [BGJM17], could prepare
the system for a more real world usage scenario.
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• Evaluate languages other than English This thesis as well as much of the research
into word embeddings and text understanding centers around the English language.
The models used in this thesis should also be evaluated on other languages, to test
their usability outside of English speaking countries and applications.

• Improve nearest neighbor search One of the longest running tasks of the evaluation
pipeline is to compute the nearest neighbors of all terms that have to be evaluated.
For a performance oriented production system a complete computation of all
neighbors in the vocabulary is necessary. As possible direction to address this
problem Garcia et al. [GDNB10] propose an exact GPU-based method to retrieve k-
nearest neighbors. Andoni et al. [AI08] analyze "Near-optimal Hashing Algorithms
for Approximate Nearest Neighbor in High Dimensions", especially the concept of
locality-sensitive hashing (LSH). This concept is implemented in the open-source
project Annoy1. Potentially the approximation method could be used during
research and before publishing an exact brute-force GPU-method could be used to
generate a list of all similar terms.

1See: https://github.com/spotify/annoy checked: 8.3.2018
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APPENDIX A
Translation Models implemented

in Lucene

This appendix describes implementation details of the Lucene plugin that implements the
GT and ET retrieval models. The code and evaluation for the extension is available at:
https://github.com/sebastian-hofstaetter/ir-generalized-translation-models

The extension project extends Lucene specific as well as Solr specific parts in the query
pipeline as shown in Figure A.1. It has a Solr specific query parser (SimilarityParser)
that can be used in the Solr configuration (SimilarityParserPlugin). The parser sends
the query terms (pre-processed through the specified analyzer) to the SimilarityApi. The
API is not part of this project.

The parser than creates Lucene query objects (AugmentedTermQuery), used by the
search system. Multiple queries are concatenated via a built-in BooleanQuery. Each
AugmentedTermQuery provides an AugmentedTermWeight which in turn provides an
AugmentedTermScorer that coordinates the iteration over the found documents as well as
the scoring of them. The AugmentedTerm* classes are tightly coupled and cannot be used
in a standalone fashion. Only the AugmentedTermQuery is used by other components.

Every class is tested with unit or integration tests. These tests provide a good example
of how the classes are used.

In the following we describe the parts and classes of the extension project:

SimilarityParser The SimilarityParserPlugin is a factory method to create a new
instance of the SimilarityParser. This is specified by Solr.

The SimilarityParser hardcodes as little configuration as possible: It uses the defined
analyzer from the Solr schema, the default search field, and the API parameters are
set in the configuration. Each term tokenized by the analyzer will be used to create an
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Figure A.1: Overview of the extension types needed to implement a Lucene & Solr
extension

AugmentedTermQuery with information gathered from the SimilarityApi. The API is
only accessed once per query - with a list of all terms. The API then returns similar
terms and their distances to the main term. These results are parsed in Lucene usable
Term objects that are used in the AugmentedTermQuery.

AugmentedTermScorer and AugmentedTermQuery The structure of the Aug-
mentedTerm* classes follows the requirements of how a Lucene search is conducted.
Figure A.2 shows this workflow. The interaction with the Lucene query execution system
cannot be changed and the extension classes have to work in the intended workflow for
a plugin. Specifically, the extended term frequency that is calculated by the Augment-
edTermScorer. The other components actively contribute information so that the term
frequency of the main term and the sum of the weighted similar term frequencies can be
calculated.

Note: Lucene can call Weight.scorer() multiple times, for each LeafReader that is used,
but it does not change the main interaction and is therefore omitted from Figure A.2.

The AugmentedTermQuery is used as an interface for external code that uses the extension
and it starts the search process. The functionality itself is limited to storing the term
and similar term information as well as pulling the TermContext for each term. It is
important that each unique term has its own context otherwise the PostingsEnum would
be overridden in a later stage and create wrong results without throwing an error.

The term information is formed as follows (it is set in the constructor):

• Main term

• List of <term, weight> tuples, i.e. the similar terms
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AugmentedTermQuery:Query

Lucene query execution system
Query.createWeight(..) -> Weight

Main term
   - w1 + sim. Term 1
   - w2 + sim. Term 2
   - w3 + sim. Term 3

...

AugmentedTermScorer:Scorer

MultiDocSetIdIterator: 
DocIdSetIterator

Weight.scorer(..) -> Scorer

Start query

• Get TermContext for each Term
• Add w1, w2 … 
        (similarity information)

AugmentedTermWeight:Weight

Initialize new AugmentedTermWeight

• PostingEnums per Term
• Collection & Term statistics
• Similarity class
• Initializes MultiDocSetIdIterator

Pulled from

Lucene 
IndexInitialize new AugmentedTermScorer

iterator() -> DocIdSetIterator

Shares the reference to the iterator
(now Lucene & Scorer can access it)

nextDoc() -> int

Query Result

score() -> float

Score the current document

• Get current id

from

• Sum up all frequencies and weight them
        (from the PostingEnums matching the current id)

• Call the similarity score(..) function

• Return the value returned by the similarity class

Repeat until nextDoc() returns no more docs

Input (set via constructor)

Figure A.2: Plugin types in cooperation with the Lucene search process

AugmentedTermWeight The AugmentedTermWeight is an inline class of Augment-
edTermQuery, because it has to access the saved term information. The AugmentedTer-
mQuery is cache-able by Lucene, because only the state of the AugmentedTermWeight
changes during a query.

The AugmentedTermWeight coordinates the query: it gathers the needed reference to
the Similarity class, the CollectionStatistics, the TermStatistics, the PostingsEnum for
each TermContext, and it initializes the AugmentedTermScorer.

AugmentedTermScorer The AugmentedTermScorer works together with the Mul-
tiDocSetIdIterator. The Lucene query system has access to the iterator via a reference
obtained by the iterator() method. The query system advances the iterator to the next
document.

The iterator wraps all PostingsEnum iterators (main + similar), and iterates through
the union of all documents in a linear fashion. It changes the state of all wrapped
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PostingsEnum, so that the AugmentedTermScorer can access the postings frequency
information at scoring time. It aligns multiple PostingsEnum instances with to the same
document id (if they contain the same document). The iterator only emits ascending
document id values, as defined by the specification. All PostingsEnum iterators are
treated equally.
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APPENDIX B
Result Tables

In this Appendix we present the results for the three test collections with the best
parameter configurations for each experiment – as decided by our parameter exploration.

Table B.1: Results for the best parameter configurations for CLEF-IP-2013

Method T. Model BM25 LM

MAP PRES RE-
CALL MAP PRES RE-

CALL

C
LE

F
-I

P
-2

01
3

STD 0.184 0.607 0.703 0.200 0.669 0.755

w2v GT 0.214† 0.611 0.709 0.218† 0.671 0.761
ET 0.224† 0.631† 0.719 0.216 0.672 0.768

Post-Filter(LSI) GT 0.227† 0.617 0.723 0.248†ρ 0.675 0.765
ET 0.248†ρ 0.644† 0.743 0.233†ρ 0.691 0.785

Retro(FrameNet) GT 0.211† 0.607 0.707 0.209† 0.667 0.755
ET 0.219† 0.633† 0.718 0.212† 0.668 0.768

Retro(PPDB) GT 0.205 0.597 0.682 0.226† 0.657 0.765
ET 0.221† 0.636† 0.736 0.240†ρ 0.674 0.768

Retro(WordNet.synonyms) GT 0.207 0.618 0.711 0.231† 0.675 0.758
ET 0.223† 0.625† 0.725 0.226† 0.668 0.757

Retro(WordNet.synonyms+) GT 0.206† 0.606 0.707 0.216† 0.662 0.755
ET 0.212† 0.624 0.712 0.220† 0.661 0.768

Retro(LSI) GT 0.241†ρ 0.611 0.712 0.244†ρ 0.671 0.761
ET 0.254†ρ 0.641† 0.743 0.227† 0.698 0.812†ρ

Ext-Retro(LSI + PPDB) GT 0.222 0.613 0.716 0.233† 0.671 0.768
ET 0.248† 0.632 0.733 0.232† 0.672 0.775

Post-Filter-Retro(PPDB, LSI) GT 0.230† 0.614 0.723 0.244†ρ 0.672 0.765
ET 0.254† 0.643† 0.743 0.240†ρ 0.690 0.788

Retro(PPDB) + Retro(LSI) GT 0.221 0.611 0.709 0.237†ρ 0.671 0.785
ET 0.235† 0.639† 0.743 0.253†ρ 0.677 0.798
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B. Result Tables

Table B.2: Results for the best parameter configurations for TREC-123 and TREC-
Robust-04

Method T. Model BM25 LM
MAP NDCG P@10 MAP NDCG P@10

T
R

E
C

-R
ob

us
t-

20
04

STD 0.263 0.535 0.449 0.264 0.538 0.435

w2v GT 0.277† 0.548† 0.449 0.277† 0.551† 0.436
ET 0.279† 0.551† 0.451 0.276† 0.549† 0.437

Post-Filter(LSI) GT 0.277† 0.548† 0.451 0.278† 0.551† 0.441
ET 0.279† 0.551† 0.453 0.276† 0.549† 0.442

Retro(FrameNet) GT 0.267 0.536 0.449 0.269 0.539 0.436
ET 0.266 0.537† 0.451 0.268 0.540 0.436

Retro(PPDB) GT 0.281† 0.551† 0.458 0.280† 0.553† 0.437
ET 0.283† 0.554† 0.460† 0.279† 0.551† 0.438

Retro(WordNet.synonyms) GT 0.278† 0.546† 0.455 0.276† 0.547† 0.439
ET 0.278† 0.549† 0.455 0.275† 0.546† 0.440†

Retro(WordNet.synonyms+) GT 0.272 0.543† 0.453 0.271 0.544 0.436
ET 0.273 0.544† 0.454 0.271 0.544 0.436

Retro(LSI) GT 0.277† 0.548† 0.451 0.277† 0.551† 0.439
ET 0.279† 0.551† 0.454 0.276† 0.549† 0.440

Ext-Retro(LSI + PPDB) GT 0.280† 0.550† 0.454 0.277† 0.551† 0.441
ET 0.281† 0.552† 0.458 0.276† 0.549† 0.441

Post-Filter-Retro(PPDB, LSI) GT 0.282† 0.552† 0.458 0.281† 0.553† 0.441
ET 0.283† 0.554† 0.461† 0.279† 0.551† 0.439

Retro(PPDB) + Retro(LSI) GT 0.278† 0.549† 0.457 0.277† 0.551† 0.441
ET 0.279† 0.551† 0.459 0.276† 0.550† 0.440

T
R

E
C

-1
23

STD 0.222 0.431 0.488 0.222 0.437 0.505

w2v GT 0.229 0.436 0.500 0.227 0.440 0.515
ET 0.229 0.438 0.496 0.227 0.440 0.512

Post-Filter(LSI) GT 0.229 0.438† 0.500 0.229 0.441 0.515
ET 0.229† 0.440† 0.499 0.227 0.442 0.515

Retro(FrameNet) GT 0.228 0.434 0.504 0.226† 0.439 0.517†
ET 0.230 0.436 0.501 0.227 0.442 0.516†

Retro(PPDB) GT 0.232† 0.438† 0.507 0.231† 0.442† 0.515
ET 0.234† 0.441 0.505 0.232† 0.443 0.514

Retro(WordNet.synonyms) GT 0.228 0.437 0.512 0.227 0.442 0.510
ET 0.229 0.437 0.509 0.227 0.440 0.517

Retro(WordNet.synonyms+) GT 0.228† 0.438 0.502 0.227 0.441 0.520†
ET 0.228 0.436 0.501 0.225 0.439 0.520†

Retro(LSI) GT 0.229† 0.440† 0.500 0.229† 0.443† 0.515
ET 0.229 0.441† 0.503 0.228 0.442 0.514

Ext-Retro(LSI + PPDB) GT 0.232† 0.440† 0.505† 0.231 0.442 0.518†
ET 0.230† 0.440† 0.505 0.228† 0.441 0.518†

Post-Filter-Retro(PPDB, LSI) GT 0.234† 0.442† 0.515† 0.233† 0.444† 0.520
ET 0.236† 0.444† 0.509† 0.232† 0.444 0.519

Retro(PPDB) + Retro(LSI) GT 0.235†ρν 0.442† 0.511† 0.234†ρν 0.445 0.521
ET 0.235† 0.443† 0.506 0.232† 0.444 0.518
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