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Abstract

Introduction: Positron Emission Tomography (PET) allows for high resolution
3D imaging of functional processes into the patient body. However, respiratory and
cardiac motion of the patient impairs image quality of cardiac PET scans by motion-
added blurring of the PET activity distribution in the heart. As a result, spatial
resolution of PET images is reduced and quantitative measures are biased.

Aim: The study, conducted in this thesis, focuses on the comparative evaluation of
the performance and accuracy of different Motion Compensation (MoCo) techniques
in PET acquisitions with simulated respiratory and cardiac motion. The main focus
was set on the performance of the following MoCo techniques: (1) Projection Based
Motion Compensation (P-MoCo), which incorporates the motion-information before
the image reconstruction, (2) Motion-Compensated Image Reconstruction (MCIR)
in which the motion compensation is performed during the image reconstruction-
process and (3) Reconstruct-Transform-Average (RTA) that incorporates it after
image reconstruction, in PET acquisitions with respiratory and cardiac motion.

Materials and Methods: Different motion models, from simplistic 1D-axial
motion to complex 3D cardio-respiratory motion models have been used in the
simulations involving a Extended Cardiac-torso (XCAT) phantom as well as a
numerical phantom consisting of a series of MR-based 4D PET/MR datasets.
Furthermore, we included some preliminary evaluations of the performance of the
MoCo approaches in four patient datasets acquired in a Biograph mMR PET/MR
system. Signal-to-Noise Ratio (SNR), Contrast to Noise Ratio (CNR), Lesion
to Background Ratio (L2B) ratio as well as Myocardium to Background Ratio
(M2B) ratio were used as figures-of-merit to evaluate the performance of the
MoCo approaches involving breakdown analysis, stability analysis and separability
analysis.

Results: For XCAT Phantom data a direct comparison of the stability of
performance of P-MoCo, MCIR and RTA throughout the full range of respiratory
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motion complexity (1D-2D) was conducted, giving comparable absolute differences
of 15 · 10−3, 16 · 10−3 and 19 · 10−3 in terms of M2Li1D and M2Li2D for MCIR,
RTA and P-MoCo. For the numerical phantom stability of the MoCo approaches
was tested by means of total difference of LBR1D and LBR3D of 49 ·10−3 for MCIR,
of 72 · 10−3 for RTA but of 497 · 10−3 for P-MoCo, that cannot be compared to the
latter two MoCo approaches. Unsurpassed performance of Gated reconstructions
for both patient datasets including the tracers FDG and NH3 were found. P-MoCo
and RTA lead to an overall better image quality in terms of myocardium definition,
M2B ratios as well as noise properties, than static OSEM reconstructions. Noise
properties of the images were analysed leading to an on average 60 % higher noise in
single gate reconstructions than in P-MoCo, RTA and static OSEM reconstructions.

Conclusion: The findings in this thesis highly suggest that P-MoCo is a good
and useful tool for respiratory motion compensation, yielding to comparable results
as approved methods like MCIR or RTA, but cannot handle complex motion like
a mixture of respiratory and cardiac motion in two and three dimensions. Further,
the findings suggest that P-MoCo is capable of reconstructing patient-data, yielding
to comparable results as standard methods like RTA. According to the findings of
the first datasets, the performance of P-MoCo may vary with different tracers.
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Kurzfassung

Einleitung: Die in dieser Arbeit durchgeführte Studie konzentriert sich auf die
vergleichende Bewertung der Leistung und Genauigkeit verschiedener Bewegungs-
kompensationstechniken (MoCo-Techniken) bei PET-Aufnahmen mit simulierter
Atmungs- und Herzbewegung. Der Hauptfokus lag auf der Durchführung und Leis-
tungsevaluierung der folgenden MoCo-Techniken: (1) P-MoCo, die die Bewegungs-
information vor der Bildrekonstruktion einführt, (2) MCIR, in der die Bewegungs-
kompensation während des Bildrekonstruktionsprozesses durchgeführt wird und (3)
RTA, die die Bewegungsinformation nach der Bildrekonstruktion in das System
einführt.

Materialien und Methoden: Verschiedene Bewegungsmodelle, startend von
vereinfachten 1D-Axialbewegunsmodellen bis hin zu komplexen 3D-kardio- respi-
ratorischen Bewegungsmodellen, wurden in den Simulationen mit einem XCAT
Phantom sowie einem MR-basierten numerischen Phantom, bestehend aus einer
Reihe an 4D PET/MR Datensätzen, verwendet. Darüber hinaus wurden einige
vorläufige Leistungsevaluierungen der MoCo-Ansätze an vier Patientendatensätzen
durchgeführt, die mittels eines Biograph mMR PET/MR-Systems aufgenommen
wurden. Signal-Rausch-, Kontrast-Rausch-, Läsions-Hintergrund- sowie Myokard-
Hintergrund-Verhältnis wurden als Leistungsmerkmale herangezogen, um die Leis-
tung der MoCo-Ansätze mittels der Analyse von Zusammenbruch, Stabilität und
Trennbarkeit umfassend zu bewerten sowie zu charakterisieren.

Ergebnisse: Für XCAT-Phantom-Daten wurde ein direkter Vergleich der Stabi-
lität der Leistung von P-MoCo, MCIR und RTA über den gesamten Bereich der
Atmungsbewegungskomplexität (1D-2D) durchgeführt, was vergleichbare absolute
Unterschiede von 15 · 10−3, 16 · 10−3 und 19 · 10−3 im Bezug auf M2Li1D und
M2Li2D für MCIR, RTA und P-MoCo lieferte. Für das numerische Phantom wurde
die Stabilität der MoCo-Ansätze mittels Totaldifferenz von LBR1D und LBR3D zu
49 · 10−3 für MCIR, zu 72 · 10−3 für RTA, aber zu 497 · 10−3 für P-MoCo getestet,
was nicht mit den beiden letztgenannten MoCo-Ansätzen verglichen werden kann.
Weiters wurde eine unübertroffene Leistung von einzelnen Gated-Rekonstruktionen
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für beide Patienten-Datensätze einschließlich der Tracer FDG und NH3 gefunden.
P-MoCo und RTA führten insgesamt zu einer besseren Bildqualität als statische
OSEM-Rekonstruktionen, hinsichtlich der Myokarddefinition, M2B-Verhältnissen
sowie Rauscheigenschaften. Die Rauscheigenschaften der Bilder wurden analysiert,
was zu einem um 60 % höheren Rauschen bei Einzelgaterekonstruktionen führte als
bei P-MoCo, RTA und statischen OSEM-Rekonstruktionen.

Fazit: Die Ergebnisse dieser Arbeit legen nahe, dass P-MoCo ein gutes und
nützliches Werkzeug für die Atembewegungskompensation ist, die zu vergleichbaren
Ergebnissen zugelassener Methoden wie MCIR oder RTA führt. P-MoCo kann
jedoch komplexe Bewegungen, bestehend aus einer Mischung von Atmungs- und
Herzbewegung in zwei und drei Dimensionen, nicht bewältigen. Darüber hinaus legen
die Ergebnisse nahe, dass P-MoCo in der Lage ist, Patientendaten zu rekonstruieren,
was zu vergleichbaren Ergebnissen anerkannter Methoden wie RTA führt. Ergebnisse
der ersten Patienten-Datensätze legen nahe, dass die Leistung von P-MoCo mit
verschiedenen Tracern variieren kann.

IV



Acknowledgements

First of all, I want to thank my thesis advisors Martin Gröschl and Jacobo Cal-
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1. Introduction

I was born not knowing and have
had only a little time to change
that here and there.

Richard Feynman

The very first PET scanner was developed by Phelps and colleagues in the late 70s
(Phelps et al., 1975; Ter-Pogossian et al., 1975). Since then, PET developed to be
an important tool for nuclear medicine applications in the area of functional imag-
ing. While other anatomic imaging techniques like Computed Tomography (CT)
or Magnetic Resonance Imaging (MRI) use X-rays or strong magnetic fields for
imaging, PET allows for the three-dimensional mapping of positron-emitting radio
pharmaceuticals that are injected into the patient body before examination.

The coverage of applications across various clinical sectors is enormous in PET,
spreading from neurology to psychiatry, cardiology and oncology. From the neurol-
ogy point of view, PET is used for the detection of brain tumors (Tai and Piccini,
2004) as well as early recognition of risks of epilepsy or dementias. In cardiology,
PET is employed for diagnosis of myocardial perfusion and viability (Bengel et al.,
2009), among other applications. In oncology, important progress in possibilities of
diagnosis, detection and monitoring of therapy response (Bailey et al., 2005) can be
attributed to PET.

When imaging the thoracic area, involuntary patient movements like breathing
(Nehmeh and Erdi, 2008; Kesner et al., 2014) or complex contractions of the heart
(Sengupta et al., 2006) degrades the quantitative accuracy of the PET images
(Munoz et al., 2016; Kolbitsch et al., 2017). Movement of the patient primarily
results in the overlapping of normal and abnormal areas of the obtained PET im-
age. This unwanted effect causes a reduction of the image contrast, blurring and
a loss of sharp edges, leading to biased quantitative measures and reduction of the
spatial resolution of PET images (Catana, 2015; Gillman et al., 2017). Therefore
patient motion leads to a reduction of reliability in clinical image interpretation.
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Chapter 1 7

Objective: To counteract the motion-implied PET performance losses, different
MoCo methods were developed and proposed in the literature (Rahmim et al., 2013;
Feng et al., 2016). These techniques can be classified as: 1 - List-Mode Motion
Compensation (LM- MoCo), which incorporates the motion-information before the
image reconstruction (Livieratos et al., 2005). 2 - MCIR, in which the motion
compensation is performed during the image reconstruction-process (Polycarpou et
al., 2012) and 3 - the RTA method that incorporates it after image reconstruction
(Picard, 1997). The aim of this thesis is to evaluate, using simulated data, the
performance and accuracy of these MoCo techniques in PET acquisitions with
respiratory and cardiac motion. Furthermore, we also included some preliminary
evaluations of the performance of the MoCo approaches in real patient data.

Structure: Physical and technical basics of PET imaging, including an overview
of hybrid technology, analytic- and iterative image reconstruction methods and
fundamental principles of motion compensation are described in chapter 2. Chapter
3 introduces the Biograph mMR system, gives a brief overview over the used motion
compensation approaches, including projection-based MoCo (P-Moco), motion
compensated Image reconstruction (MCIR) as well as the Reconstruct Transform
Average (RTA) method. Further, phantom data and image quality analysis are
described and a short introduction to patient data concludes the chapter. On this
basis, chapter 4, gives deep and comparative insights in the obtained results from
numerical phantom data, XCAT phantom data as well as a brief look at patient
data. Finally, Chapter 5 gives a summary and discussion of the results and chapter
6 presents the main conclusions of this master thesis.



2. Theoretical Background and
PET Principles

This chapter provides a general introduction to PET. Section 2.1 introduces
fundamental physical principles of PET, section 2.2 provides an overview of
hybrid technology including PET/CT and PET/MR, section 2.3 highlights different
analytic- and iterative image reconstruction methods, section 2.4 focuses on data
correction and quantification and section 2.5 introduces fundamental principles of
motion compensation.

2.1 PET Physics

This section presents the the most fundamental physical principles of PET. Starting
from the process of positron emission, the subsequent interaction with matter and
the detectors are discussed. Furthermore, a discussion on image formation, including
a classification of coincidence events, is given.

2.1.1 Positron Emission and Annihilation

Positrons (e+) are antiparticles of electrons (e−) with identical massi and spin
quantum numberii, but opposite electric chargeiii. They where theorised 1928 (Dirac,
P. A. M., 1928) and discovered 1932 (Anderson, C. D., 1933). Positrons are produced
naturally in β+ decays of radioactive isotopes or in interactions of gamma quanta
with matter (see section 2.1.3).

ime = 9.109× 10−31 kg
iise± = 1/2
iiiqe+ =1 e

8
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Theorised (1928): With the attempt of explaining the Zeeman effect, Paul Dirac
proposed the Dirac Equationiv(

c αipi +mc2β
)

Ψ (ri, t) = i~
∂

∂t
Ψ (ri, t) (2.1)

with the matrix-inputsv

αi=1,2,3 =

(
0 σi
σi 0

)
β =

(
12 0
0 −12

)
in 1928. The Dirac equation unifies quantum mechanics, special relativity and the
- at that time new - concept of electron spin by replacing the 3D wave function
Ψ (ri=xyz) with a four-component wave function Ψ (ri=xyz, t) of form

Ψ (ri, t) =


Ψ1 (ri, t)
Ψ2 (ri, t)
Ψ3 (ri, t)
Ψ4 (ri, t)

 =

(
ΨA (ri, t)
ΨB (ri, t)

)
with


ΨA (ri, t) =

(
Ψ1 (ri, t)
Ψ2 (ri, t)

)
ΨB (ri, t) =

(
Ψ3 (ri, t)
Ψ4 (ri, t)

)
(2.2)

called spinor. Solving 2.1 with 2.2 leads to a coupled system of differential equations,
that can be solved for a resting particlevi to the plane waves

i~∂tΨA (ri, t) = +mc2ΨA (ri, t) ⇒ ΨA (ri, t) = ΨA0 · e−
i
~mc

2t (2.3)

i~∂tΨB (ri, t) = −mc2ΨB (ri, t) ⇒ ΨB (ri, t) = ΨB0 · e
i
~mc

2t (2.4)

with positive-energy solutions, corresponding to electrons, and negative-energy
solutions, corresponding to antiparticles of the electron, the so called positrons.

Discovery (1932): By passing cosmic rays through a cloud chamber and a lead
plate, Carl David Anderson discovered the positron 1932, when analysing the
particles curvature in a magnetic field that matches the mass-to-charge ratio of
an electron, but in a direction that implies a positive charge. Anderson won the
Nobel prize in Physics for this discovery in 1936.

The β+ decay: Beta decay (β-decay) is a type of radioactive decay in which,
besides other by-products, an electron (in the β− decay) or positron (in the β+

decay) as well as a neutrino are emitted (Fermi E., 1934). This process is a direct
consequence of the weak force which can enable a change of quark flavour by the
exchange of a intermediate vector-boson (W+, W− or Z0).

ivwith the dirac-matrices γ0 = γ0 = β and γi = αiβ = −γi, 2.1 can be rewritten to the
better-known covariant form (iγµ∂µ − κ) Ψ = 0

vHere, σi=1,2,3 denote the pauli-matrices
viThe resting particle is defined by pi = 0 with initial condition ΨA (ri, t = 0) = ΨA0 and

ΨB (ri, t = 0) = ΨB0
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Figure 2.1: Feynman Diagram of
the β+ decay - A proton (p+)
is converted to a neutron (n0),
a positron (e+) and a electron
neutrino (νe) via the intermediate
W+-boson

Baryons are combinations of quarks, which exist in
the six types up, down, top, bottom, strange and
charm which are called flavours. Protons (p+) are
build of two up- and one down quark (uud), neu-
trons (n0) of two down- and only one up quark
(udd).

As can be seen in the Feynman diagram of the β+

decay (2.1), a p+ is converted to a n0, a positron (e+)
and a electron neutrino (νe).

p+ → n0 + e+ + νe + δQ (2.5)

This process takes place via the intermediate W+-
boson and the related flavour-change u → d of the
p+. The released energy δQ is shared by the e+ and
νe in the form of kinetic energy.

In general, the β+ decay decreases the atomic number Z of the parent nucleus X by
one (Konya and Nagy, 2012)

A
ZX A

Z–1X + e+ + νe + δQ (2.6)

To enable β+ decay, the mass-difference of parent and daughter atom has to exceed
twice the electron mass, since the masses of the released e+ and e− reduce the
released energy δQ by 1022 keV. As the available energy is shared by the e+ and
νe, e

+ are emitted in a continuous spectrum. Figure 2.3 shows the typical emission
spectra for several radionuclides commonly used in PET (see section 2.1.2).

Figure 2.2: Feynman Diagram of
Annihilation - an electron (e−)
and a positron (e+) annihilate to
two photons (γ)

Annihilation: After the p+ travels a finite dis-
tance (the so called positron range - see ta-
ble 2.1) and looses kinetic energy by means
of inelastic scattering, annihilation occurs. As
indicated in the corresponding Feynman dia-
gram (figure 2.2), annihilation results in the
emission of two photons (γ), each with en-
ergy equal to the rest energy of the e+ and
e− (511 keV). The two γ are basically emit-
ted in opposite directions, however, there exists
an angular uncertainty of γ-emission of about
0.5◦, due to non-zero momentum of positron-
ium.
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Figure 2.3: β+ spectra of radioisotopes used in PET with normalized maxima (Cal-González, 2014)

Finite positron ranges limit PET by means of the the fundamental spatial resolution
of the system, angular uncertainty of γ-emission can cause a Gaussian blurring.

2.1.2 PET Radionuclides

PET imaging is dependent on positron-emitting biomolecules that are injected into
the patient body before examination. In nuclear medicine, three principal methods
of production of such radioisotopes exist. They can either be produced by (i)
separation of the by-product produced during fission, (ii) from neutron irradiation
in a reactor or (iii) from bombardment of a target material by charged particles from
accelerators (Jadvar and Parker, 2005).

The most widely used Positron-emitting Radionuclides in PET (see table 2.2) are
produced in cyclotron accelerators or specific generators. Most low-molecular-weight
PET radioisotopes like Carbon-11, Nitrogen-13, Oxygen-15 and Fluorine-18 are pro-
duced by charged particle bombardment in cyclotrons (Alauddin, 2012). Other ra-
dionuclides like Gallium-68 or Rubidium-82 are obtained as decay products from
parent isotopes. Selected isotope production reactions are shown in table 2.1.

A frequently used radio tracer in PET is Fluorine-18 labeled 2-flouro-2-deoxy-
D-glucose (FDG) that uses the high Glucose Metabolic Rate of most cancers for
imaging (Hoh, 2007). FDG is used in oncology in terms of Standardized Uptake
Value (SUV) of 18F-FDG in tumor cells (Lucignani et al., 2004). Moreover, FDG
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Table 2.1: Isotope production reactions, maximum range (Rmax) and mean range (Rmean) of
positrons is in water of commonly used PET radiotracers (Sonzogni, 2016; NIST, 2018)

Isotope Production Reaction Rmax [mm] Rmean [mm]

11C 14N (p,α) 11C 4.2 1.2
13N 16O (p,α) 13N 5.5 1.8
15O 14N (d,n) 15O 8.4 3.0
18F 18O (p,n) 18F 2.4 0.6
38K 38Ar (p,n) 38K 3.6 2.6
62Cu 62Ni (p,n) 62Cu 6.1 4.4
64Cu 64Ni (p,n) 64Cu 2.5 0.7
68Ga 68Zn (p,n) 68Ga 2.7 1.2
82Rb 82Sr (p,n) 82Rb 14.1 5.9
89Zr 89Y (p,n) 89Zr 3.8 1.3
124I 124Te (p,n) 124I 8.7 3.5

Table 2.2: Selection of positron-emitting radionuclides used in PET (Sonzogni, 2016; Jadvar and
Parker, 2005) - All values denoted with ? correspond to mean values

Radio- Half-life β+ Branching β+ Energy? Production β+ Dose?

nuclide [min] fraction? [%] [keV] [MeV/Bq-s]

11C 20.36 99.80 385.7 Cyclotron 0.385
13N 9.97 99.80 491.8 Cyclotron 0.491
15O 2.03 99.90 735.3 Cyclotron 0.735
18F 109.7 96.70 249.8 Cyclotron 0.242
38K 7.64 99.92 2323.0 Cyclotron 2.321
62Cu 9.67 97.83 1319.0 Generator 1.290
64Cu 762.0 17.60 278.0 Cyclotron 0.049
68Ga 67.71 88.90 829.5 Generator 0.738
82Rb 1.258 95.40 1479.0 Generator 1.411
124I 6013.0 22.70 820.0 Cyclotron 0.186
89Zr 4705.0 1.53 470.0 Cyclotron 0.007
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can be used for the assessment of glucose metabolism in the heart, lungs, and the
brain. Because of the complexity of radiopharmaceutical development on-site, the
clinical impact of PET was limited until the mid 1990s. FDG’s comparatively long
half life of 109.7 min and the large number of clinical indications helped PET to
reach a critical volume, so that full-time operation of a PET scanner becomes rea-
sonable as a pure clinical facility (Jadvar and Parker, 2005).

Besides others, Nitrogen-13-labeled Ammonia is used for myocardial perfu-
sion imaging because of good diffusion across cell membranes through glutamine
syntheses to 13N-glutamine (Maddahi and Packard, 2014; Kuhle et al., 1992). The
assessment of myocardial perfusion with Oxygen-15-labeled water (15O-water) is
an established technique in cardiac PET, using 15O-water’s high extraction fraction
that is independent of flow rate (Bergmann et al., 2000). The usage of 13N ammonia
or 15O-water is limited by need for an on-site or nearby cyclotron due to half-lives
ranging from 2-10 minutes.

Another commonly used PET radiotracer is Rubidium-82. Due to its rapid uptake
in cardiac muscle cell (Alvarez-Diez et al., 1999). 82Rb is not dependent on on-site
cyclotrons since it is obtained as decay product from Strontium-82. The difficult
handling of 82Rb’s short half-life of about 75 seconds can be overcome by commercial
services that allow the sharing of the strontium generator between more than one
facility. This is possible due to 82Sr’s comparably long half-life of about 25-days.

2.1.3 Gamma Ray Interaction with Matter

Gamma ray interaction with matter is described by three main processes, whose
interaction probabilities depend on their energy, and results in a characteristic
background spectrum for any gamma detector. The probabilities of the three mainly
contributing processes, Photoelectric effect (µphoto), Compton scattering (µcompton)
and Pair production (µpair), add up to the linear attenuation coefficient

µtotal = µphoto + µcompton + µpair (2.7)

All three processes relevant for PET are described in the following:

Photoelectric Effect - The photoelectric effect is relevant for energies up to
100 keV (see figure 2.6). The total energy of an incident photon with energy hν is
absorbed by an atom and causing latter to emit an electron with a kinetic energy
(2.8), as illustrated in figure 2.5. The kinetic energy consists of the photon’s energy
deducting the binding energy needed to ionize the same electron (Williams, 1991).

Ekin = h · ν − Ebind (2.8)
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Figure 2.4: Schematic of the Photoelectric
Effect

The emitted electron, which is identical to
a beta particle, travels through matter and
primarily interacts by means of (i) ioni-
sation of other atoms or (ii) creation of
bremsstrahlung with energies less than the
kinetic energy of the electron. When the
atom, initially ionized by the photon, has
an electron hole in the K shell, an electron
from an outer shell falls from its higher state
in the gap and causes the atom to emit char-
acteristic X-radiation or an Auger electron,
both with short ranges caused by their low
energies.

Ekin = EX−ray = Eouther
bind − Einner

bind (2.9)

Compton Effect: The Compton effect occurs if the incident photon interacts with
an electron in the outer shell of an atom by means of scattering and deposes parts
of its energy. In contrast to the photoelectric effect, the scattered photon is not
totally absorbed by the interaction and continues to travel through the matter. The
Compton effect becomes dominant at photon energies ranging from approximately
100 Kev to 3 Mev (see figure 2.6). Its energy loss (2.10) depends on the scatter
angle θ, respectively the energy of the accelerated electron.

Ee− = Eγ − E ′γ (2.10)

Figure 2.5: Schematic of the Compton Effect

The minimal energy transfer occurs at θ =
0◦ which would be equivalent to no photon
scattering. The maximum possible energy
transfer to the electron, for a single Comp-
ton effect, occurs at θ = 180◦ and causes
backscattering of the photon in the direc-
tion of its origin. In order to calculate the
results of the scattering process, the electron
is considered as a free particle. Therefore the
angle θ of the scattered photon needs to be
known as well as eithervii the wavelength λ
(Krane, 1988),

λ′ = λ+
h

m0c
(1− cosθ) (2.11)

the frequency ν

ν ′ =
ν

1 + ( hν
m0c2

)(1− cosθ)
(2.12)

viiEγ = ~ω = hν = h cλ
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or the energy Eγ

E ′γ =
Eγ

1 + ( Eγ
m0c2

)(1− cosθ)
(2.13)

of the incident photon.

Figure 2.6: Gamma-Ray-Interaction

Pair Production: This process can only occur at photon energies above 1022 keV.
The lower limit of 1022 keV consists of the rest mass of 2 electrons respectively the
rest mass of an electron and a positron which are produced by conversion of the
photon. Close above 1022 keV the probability of pair production is very low since
the photon is more likely to lose its energy by means of Compton scattering in the
outer shell than penetrating to the atoms core. However, with increasing energy
(several MeV), pair production dominates the gamma ray spectrum (see figure 2.6)
(Hubbel, 1969). The remaining photon energy goes into kinetic energy inputs equally
shared by the positron and the electron. The produced electron triggers the same
effects as described in chapter 2.1.3, the positron will annihilate with an electron
and create 2 photons with 511 keV each send out in opposite directions.

2.1.4 PET detectors

Scintillation Detectors

Scintillation detectors, as the name suggests, depend on the scintillation process.
Strictly speaking, the scintillation process can be broken down into three sub-
processes. The ionizing radiation, absorbed by the scintillator crystal, creates (i)
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electron–hole pairs in the crystal material which are related to an energy E. This
energy can be (ii) transferred to a luminescent center and (iii) light emission takes
place. Note that the above description is fairly general and differs between the se-
lected scintillator materials. The detection of ionizing radiation of energy E and

Figure 2.7: Schematic of a Scintillation Detector in combination with a Photo Multiplier Tube
(PMT) (adapted and rearranged from Grupen (2010))

consequently the operation of the underlying scintillation detector principle can be
broken down into five fundamental steps (Birks, 1964) which are shown in in figure
2.7 and described in the following:

Enclosed by a dense and opaque material ionizing radiation of energy E is ab-
sorbed (1) by a scintillator material, surrounded by a reflector, causing ionisation
and excitation, hence starting the scintillation process (2). A certain proportion E ′

of the initial energy E is converted in N photons. Maximised by the reflector geom-
etry, N ′ = g ·N photons pass the scintillator material as well as the light guide and
impinge on the photo cathode (3). Once more a certain proportion T of initial N ′

photons generate T photo electrons in interaction with the photo cathode (4). Ac-
celerated by the potential difference between the cathode and the first dynode these
T photo electrons impinge and generate P further electrons by secondary emission,
hence M = T · R electronsviii interact with the next dynode causing an immense
electron avalanche (5) resulting in an total electron number Mtot = Rn · T after n
dynodes.

viiiwith an assumed dynode multiplication factor R



Chapter 2 17

Photo Multiplier Tube (PMT) - A Dynode Photomultipier, also called Photo
Multiplier Tube (PMT), converts a scintillation of visible light into a current pulse
of secondary electrons. It amplifies this current, which makes an analysis of this
current pulse as a function of radiation energy, absorbed by the scintillation detector,
possible. Typically, gains in the order of 105 − 108 can be reached with PMTs.
Nevertheless, PMTs are unsuitable for use in combination with Magnetic Resonance
scanners. This is due to deflection of the electrons between the photocathode and
the dynodes in presence of magnetic fields.

Avalanche Photodiode (APD) - The Avalanche Photodiode (APD) uses the
internal photoelectric effect for generation of charge carriers and the avalanche effect
for amplification (see figure 2.8). APDs can be seen as the semiconductor-equivalent

Figure 2.8: Schematic of a Avalanche Photodiode (APD) - Photons are absorbed in the fully
depleted intrinsic i-layer, where they create pairs of charge carriers. Electrons are then accelerated
towards the multiplication zone and cause an avalanche effect (Image under Creative-Commons
license from Wikimedia-Commons (2018))

to PMTs. They consist of a low-field depleted region where photons can create
electron-hole pairs. By applying a high reverse bias voltage, charge carriers can
achieve energies E

′
> Eg which are larger than the band gap energy Eg, and

therefore can create new electron-hole pairs by means of impact ionization. Due
to this avalanche effect, APDs can multiply electron-hole pairs which increases the
initial photo current. In comparison with traditional PMT tubes, APDs present
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a much lower amplification, making necessary the use of low-noise, fast front-end
readout electronics (Webb et al., 1974; Pichler et al., 2006).

Silicon Photomultiplier(SiPM) - A Silicon Photomultiplier (SiPM) consists
of an array of APD cells that are connected in parallel and operated in the so-
called Geiger mode (above breakdown voltage) (see figure 2.9). SiPM combine the
advantages of PMTs and solid-state sensors, they do not require high operating
voltages, are insensitive to shocks and magnetic fields and are cooperatively smaller
(Piatek, 2018). Therefore SiPMs have many attractive properties for implementing
in PET. However, a non-linear response, low photon detection efficiency or high
dark current are drawbacks that need to be considered (Otte et al., 2006). These
drawbacks are mainly considered by high trigger threshold-levels of fully digital
trigger networks (Degenhardt et al., 2009; Frach et al., 2009) or by active sensor
cooling (Cabello, 2016).

Figure 2.9: Schematic of a Silicon Photomultiplier(SiPM) - Each microcell is a series combination
of an Avalanche Photodiode (APD) and a Resistor (RQ). All of the microcells are connected in
parallel - The three panels show a cross section of three microcells (top), a top view of the device
(bottom left) and an equivalent electrical circuit (bottom right). (Piatek, 2018)
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2.1.5 Image Formation

As already discussed in the former sections, annihilation leads to emission of two
nearly collinear photons of 511 keV. In order to receive a valid event, which is re-
ferred to as prompt event, the detected pair of photons must meet all the following
criteria:

Both photons have to be (i) registered within a coincidence-time window, (ii) the
energy deposited of each photon has to be within a pre-defined energy-window and
(iii) the corresponding Line of Response (LOR) has to be within a valid acceptance-
angle. Due to a wide variety of possibilities for prompt-event generation of two
photons, there are numerous possible types of detectable-events in PET acquisition.

Classification of Coincidence Events

The registration of a photon in a PET system is called a Single event. With a
probability of 1-10% a Single event is counted as paired coincidence.

An event that derives from a single positron–electron annihilation, where the two

Figure 2.10: Different types of possible events that can be recorded by a PET ring-system (Bailey
et al., 2005)

annihilation photons reach the detectors on opposing sides, within the coincidence-
time and without interacting significantly with the surrounding atoms, is called a
True event.

Compton scattering of one or both annihilation photons causes a loss in energy
and therefore a change in direction of photon propagation. As can be seen in 2.10,
the consequence of counting scattered events is a misaligned LOR that is uncorre-
lated with the origin of the annihilation event. Up to 30-40% of all prompts are
Scattered events in clinical PET imaging (Vandenberghe et al., 2016b). In pre-
clinical PET of small animals, these fraction is smaller ( ≈ 10-15%) (Goertzen et
al., 2012).
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Accidentally, the decay of two completely unrelated nuclei can happen at the
same time. Two of the four annihilation photons can then be counted within the
coincidence-time and therefore mistakenly be considered to come from the same
positron, while the other two are lost. Given the individual single event rates r[α,β]

for detectors α and β as well as the Coincidence Time Window (CTW) τ , the number
of Random events is given byix (Bailey et al., 2005)

Rαβ = 2τ · rαrβ ∝ rα
2 (2.14)

Random events are removed by estimation of Rαβ by use of 2.14 or by introducing
a delayed CTW. This approach is the preferred and most commonly used approach
which is actually used in the Siemens systems.

When the system detects more than two events within a given CTW, a Multi-
ple event takes place. Since it is not possible to determine the LOR to which the
event is assigned, multiple events are usually discarded by the electronics or add
additional background to the image due to incorrect computation.

Data Management in PET

In PET, two common methods of data acquisition exist. Two-dimensional (2D)
acquisition mode collects data within a specific transaxial plane. This technique
allows for separate reconstructions of single transaxial slices. In contrast to the 2D
mode, the three-dimensional (3D) data acquisition is additionally carried out for
oblique planes, which obviously raises amount of data collected. Apart from the
drastic raise in required computing power, 3D mode leads to better image quality
at a comparable amount of injected activity.

The organization of the data acquired in 2D- and 3D mode is of great importance
for PET. Data management has to meet the requirements of (i) beeing efficient
in memory space and (ii) being appropriate for reconstruction algorithms. Mainly
three structures of data fulfil these requirements which are described in the next
lines:

List Mode (LM): As the name implies, LM records the coordinates of each event
in a data stream. This stream is stored chronically and can consist of measurement
informations like deposited energy or number of detectors as well as external data
like count rate, or gating information. LM can reduce data storage and processing
time when NLOR is much greater than the number of recorded coincidences Nevent.

ixThe proportionality in 2.14 can be reasonably expected by assuming rα ≈ rβ , a balanced
count-rate of all detectors
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LOR Histograms: A true event has already been described as an event where two
annihilation photons reach the detectors on opposing sides of the detector geometry
(see section 2.1.5 and figure 2.10). An imaginary line, the so called line of response

Figure 2.11: (1,2) Visualisation of a line of response (LOR) (3) Formation of a projection p (s, φ) -
formed by integration along all parallel LORs at fixed angle φ - and a sinogram for a point source
f(x, y), where φ denotes the transaxial angle and s the radial distance from the center of the gantry
(Alessio and Kinahan, 2006a)

(LOR), connects the two detectors involved in this true event and demonstrates
that the annihilation took place somewhere on this line (see figure 2.11 - 1). A LOR
histogram stores events for each LOR individually instead of listing all recorded
coincidences with their corresponding timing information. Basically, LORs can be
described in two different sets of variables, (i) with the detector pair (D1, D2) or
(ii) with the triplet (s, φ, θ) consisting of radial distance, transaxial angle and axial
angle (see figure 2.11 - 2).
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Sinogram Data: Given a 2D activity distribution f (x, y), projections of form

P (s, φ) =

∞∫
−∞

f (x, y) dy (2.15)

are generated by integrating along all parallel LORs at an angle φ (see figure 2.11
- 3). In general, the mapping of f (x.y)→ P (s, φ) via line-integrals is called X-ray
transform.

In 2D, these type of projections are called Radon Transform and consist of line-
integrals over organized LORs for variable s and fixed φ. The matrix of all Radon
transformations P (s, φ) corresponding to the angles φ ∈ [0; 2π] gives a sinogram.
Therefore, sinograms plot each LOR as function of its angular orientation versus its
displacement from center of gantry.

As can be seen in figure 2.11 - 3, a fixed point in object space corresponds to a
sinusoidal path in the projection space. Superposition of all sinusoids forms sino-
grams for general objects.

2.2 Hybrid Technology

This section introduces physical basics of CT and Magnetic resonance imaging (MR)
as well as the most important cornerstones in the development of PET including
hybrid PET systems like PET/CT and PET/MR.

The very first PET scanner was developed by Phelps and colleagues (Phelps et
al., 1975; Ter-Pogossian et al., 1975) in the 1970s. It was intended for human stud-
ies. Up to the late 90s, PET scanners were solely stand-alone devices providing good
functional images but lacking anatomical information, both indispensable for clinical
treatment. Since patient movement between separate CT or MR scans leads to dif-
ficulties in the co-registration process of two separate acquisitions, hybrid PET/CT
systems were were developed in the late 90s (Beyer et al., 2000) to solve these issues.
PET/MR systems were developed in the late 2000s (Judenhofer et al., 2008).

2.2.1 PET/CT System

Computed Tomography (CT): While a CT scan, a X-ray generator rotates
around the exterminated object. Penetrating X-rays are attenuated by the object,
and detected outside it. The measured attenuations are then converted into
Hounsfield units (HU) that can be related to different tissue structures of the body,
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finally achieving a good anatomical representation. The HU is defined as follows:
In a voxel with linear attenuation µV OX , the corresponding HU value is given by

HU = 1000 · µV OX − µwater
µwater − µair

(2.16)

where µwater and µair are the linear attenuation coefficients of water and air.

PET/CT System: By combining PET and CT into a single device, a so-called
PET/CT, the previously discussed lack of anatomical information of a standalone
PET system can be avoided (Beyer et al., 2000; Townsend et al., 2003). Since the
patient stays on the same table for both acquisitions, misalignments are reduced,
image quality is increased and scanning time is minimised. Due to the demand
of two CT scans, one for creating the attenuation correction map and another for
anatomical imaging, patients are exposed to more radiation than in the separate
scans (Huang et al., 2010).

The introduction of TOF improved the image quality of PET/CT (Akamatsu et

Figure 2.12: Comparison of conventional PET and TOF PET. (A) In conventional PET, there is
equal probability for a recorded event along the LOR. (B)the incorporation of the time difference
between the detection of photons creates a probability distribution locating the recorded event at
distance ∆ form the axis of the tomography (Beyer et al., 2011)

al., 2012; Vandenberghe et al., 2016a; Conti et al., 2011; Surti, 2016). TOF-PET
not only takes into account the distance- and attenuation information, but adds the
actual time difference between the detection of photons to the algorithm. As can be
seen in figure 2.12, in conventional PET, there is equal probability for a recorded
event along the LOR. Due to the incorporation of the time difference between the
detection of photons, a probability distribution locating the recorded event at dis-
tance ∆ form the axis of the tomography can be modeled (Beyer et al., 2011). This
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leads to a higher sensitivity, signal-to-noise ratio and lesion contrast and lower image
noise (Surti, 2015).

2.2.2 PET/MR System

Magnetic Resonance Imaging (MRI): Instead of X-rays, MRI uses magnetic
fields to generate images. In presence of these strong magnetic fields, hydrogen
atoms in the tissue are excited. These excited hydrogen atoms emit a radio frequency
signal, which is measured by a receiving coil that is then processed to anatomical
representations of the patients. Contrast between different tissue types is determined
by the rate at which excited atoms return to the equilibrium state. (McRobbie, 2007)

PET/MR System: Another way of avoiding the lack of anatomical information
of a standalone PET system is to combine PET with MR to a PET/MR system
(Schlemmer et al., 2008; Pichler et al., 2006; Judenhofer et al., 2008). This reduces
the radiation for the patient to solely the PET. Photomultiplier tubes (PMTs) are
sensible to magnetic fields, this limitation was overcome by silicon photomultipliers
(SiPMs) and avalanche photodiodes (APDs) (Lecomte, 2009). For more details see
section 2.1.4.

2.3 Image Reconstruction

The aim of two-dimensional PET image reconstruction is to recover the (volume-)
activity distribution that is available in image space by the use of data in projection
space. The reconstruction process of tomographic imaging data is therefore mainly
dependent on the mathematical tool of Fourier transformation.

In general, the related transformations from image space to projection space and
vice versa can be obtained analytically or by the use of iterative algorithms. Both
approaches are discussed in the following sections.

2.3.1 Analytic Methods

In this section, the basic idea of the Central Section Theorem is demonstrated, which
is then used to introduce Filtered Back Projection.
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Central Section Theorem: As already described in 2.1.5, the Radon transform,
denoted by the operator X, is a integral operation that maps a function f (x, y) on
line integrals p (s, φ), called sinograms, so that

p (s, φ) = (Xf (x, y)) (s, φ) (2.17)

The central section theorem, often refereed to as the cornerstone of tomographic
reconstruction, states that the 1D Fourier transform of the Radon transform 2.17 at
a given angle φ is related to the 2D Fourier transform of the image f at the same
angle φ by

P (ν, φ) = (Fp (s, φ)) (ν, φ) =

∫
R2

ds (s, φ) e−2πisν (2.18)

where ν is the frequency. By applying data for all angles φ ∈ [0; π], the complete
image reconstruction process can be broken down to 2D Fourier Transformation.

Filtered Back Projection (FBP): Filtered Back Projection is a standard
algorithm in analytical image reconstruction, using a filter function h(s) to create
filtered projections

pF (s, φ) =

∫
ds′p (s′, φ) · h (s− s′) (2.19)

that are mapped on f by the back-projection operator X?, in a way that

f (x, y) =
(
X? pF

)
(x, y) =

π∫
0

dφ pF (s, φ) (2.20)

As can be seen in figure 2.13, FBP performs a Fourier transform of all angular

Figure 2.13: Scheme of Filtered Back Projection (FBP) Algorithm - Fourier transforms of
projections are filtered in the frequency domain and back-transformed (adapted and rearranged
(Bailey et al., 2005))

projections, applies a filter h(s) in the frequency domain and back-transforms via
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X?.

When handling noise free projection data, FBP leads to accurate reconstruction
of activity distribution. However, the introduction of errors in image observation,
FBP can quickly lead to artefacts or noise. By incorporating stochastic system-
information to the solution, these issues can be overcome. This process increases
the complexity and leads to the use of iterative methods of image reconstruction.

2.3.2 Iterative Methods

As already mentioned above, analytic algorithms can lead to mathematically correct
solutions that are afflicted with artefacts, when dealing with noisy data. This is
due to the lack of system modelling in analytic algorithms which lead to complex
mathematical problems, only to be handled by iterative approaches.
Basically, the principle of any iterative algorithm is to find solutions by consecutive

Figure 2.14: Maximum-Likelihood Expectation Maximization (MLEM) Algorithm (Alessio and
Kinahan, 2006a)

estimates, that are compared to measured data sets. On basis of the comparison
of estimated and available data, the current estimate is modified leading directly
to a new estimate that can again be compared and modified. Iterative methods
differ in the way of data comparison and correction. In direct reconstruction
methods, significant changes in the algorithm need to be done when increasing
the dimensionality of the system from 2D to 3D. In contrast, except for the
more complex projector-backprojector pairs and the higher computation power,
in iterative reconstruction algorithms, going from 2D to 3D systems does not
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require significant changes in the reconstruction algorithm. A popular approach
for modelling informations of system, image and data is the Ordered Subsets
Expectation Maximization (OSEM) method (Hudson and Larkin, 1994) that is
based on the Maximum-Likelihood Expectation Maximization (ML-EM) algorithm
(Shepp and Vardi, 1994). Both are described in the following lines.

Maximum-Likelihood Expectation Maximization (ML-EM): Maximum-
Likelihood Expectation Maximization is widely used in PET and includes a Poisson
likelihood coast function to map the current image estimate f̂n on the next estimate
f̂n+1 in a way that (Alessio and Kinahan, 2006a)

f̂n+1
i = f̂ni

1∑
j=i

aj′,i︸ ︷︷ ︸
sensitivity

N∑
j=1

aj,i
pj∑

j=i

aj,i′ f̂
n
i′︸ ︷︷ ︸

forwardprojection︸ ︷︷ ︸
backprojection

i = 1, ..., P (2.21)

The flowchart 2.14 illustrates the basic structure of ML-EM (2.21). Starting by
comparing the calculated projections of an initial guess f̂ (0) with the measured
projections, correction factors are obtained in projection space. These factors are
then back-projected and voxel-wise applied on the system matrix. The obtained
values serve as new image estimate. Note that each iteration performs one forward
and one back-projection which can affect computing time.

Ordered-Subsets Expectation Maximization (OSEM): Ordered-Subsets
Expectation Maximization is an improvement of ML-EM that performs weighting
and backprojecting separately (Munoz et al., 2016). OSEM reaches a similar solution
X times faster than the corresponding ML-EM by dividing the projections into X
subsets.

2.4 Standard Data Corrections and Quantifica-

tion

Apart from photon attenuation in the patient body, there exist various other
quantification errors that affect the accuracy and precision of PET measurements.
These are for example count-rate losses or unwanted scattered and random
coincidences. This section presents three of the most common corrections of
quantification errors in PET.
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2.4.1 Attenuation

As already discussed in section 2.1.5, a coincidence is dependent on simultaneous
detection of both photons arising from the annihilation of a positron. Accordingly,
coincidence will not occur if (i) photons are absorbed in the body or (ii) photons are
scattered out of the Field of View (FOV). When defining B as the total thickness
of the body, exp(0) and exp (−µB) in 2.22 represent the probability for near and
far detectors, which leads to the number of detected coincidences (Gopal, 2010)

C = C0 e
0e(−µB) = C0 e

(−µB) (2.22)

Correcting for photon attenuation in the body is therefore the task of estimation of
the probability of photon attenuation. This needs to be done for all sources along
the line of response (LOR).

The most common approaches of determining the probability of photon attenuation
are (i) measuring attenuation correction by blank scans, using coincidence- or sin-
gles transmission data or (ii) calculating attenuation correction for each coincidence
line. Attenuation correction maps (µ-maps) can also be acquired by computed to-
mography (CT) or magnetic resonance imaging (MRI) (Zaidi and Hasegawa, 2003).

While transmission scans create µ-maps by the use of sources that emit photons
at similar energies to the annihilation photons (Bailey, 1998), CT scans use the at-
tenuation of X-rays that is extrapolated to 511 keV to obtain µ-maps (Kinahan et
al., 1998) while the emission scan. The fraction that is absorbed along a line of re-
sponse (LOR) in a transmission scan can be used to correct the emission scan data.
MR based µ-maps are calculated by the measured parameters of proton density and
relaxation. Nevertheless, it needs to be stated, that the problem of MR-based atten-
uation correction is not straightforward, as the MR image is not directly related to
photon attenuation, and therefore is not fully solved yet. This is especially true for
regions other than the brain (Rausch et al., 2017; Mehranian et al., 2016; Ladefoged
et al., 2017).

2.4.2 Scatter

Besides photon attenuation, photon scattering in the body or in the PET detectors
need to be corrected for. Besides the, in section 2.1.3 already discussed, Compton
Effect that is the most likely interaction at 511 keV, annihilation photons can
undergo various other scatter-events. This wide variety leads to numerous
approaches for scatter estimation and scatter correction that can be structured in
four categories: (1) empirical approaches (Cherry et al., 1993, 1995), (2) methods
involving energy windows (Harrison et al., 1991; Thompson, 1993), (3) convolution
methods (Bailey et al., 1994; Bergstrom et al., 1983) and (4) methods that simulate
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the scatter distribution via analytical or Monte Carlo simulations (Hasegawa et al.,
2002; Barney et al., 1991). In general, the obtained scatter correction can be (i)
subtracted from the sinogram or (ii) added in the system model, with the second
option being preferable to preserve the Poisson statistical nature of data.

2.4.3 Randoms

Image quality can also be reduced by random coincidences (see section 2.1.5), that
introduce a uniform background noise, leading to reduction of the image contrast.
Random coincidences are proportional to the coincidence timing window and to the
amount of activity within the FOV. Reduction of this timing window minimizes
the collection of random coincidences. Therefore, a simple possibility of estimating
the number of random coincidences involves the singles rate and the coincidence
time window. In all Siemens systems a delayed CTW is used for the estimation of
randoms. The obtained scatter correction can be subtracted from the prompts or
added to the system model, with the second option being preferable to preserve the
Poisson statistical nature of data.

2.5 Motion Compensation

Basically, patient motion can be classified in voluntary and involuntary motion pro-
cesses. Voluntary movement is characterised by the conscious decision of moving
for example one arm the PET acquisition is performed. Involuntary movements are
caused for example by internal organs, like the pumping of the heart, that cannot be
consciously controlled by the patient. In PET imaging, motion causes a degradation
of image quality in terms of blurring, smearing and, thus, reduction of measured ac-
tivity concentration (Liu et al., 2009).

Further, artefacts arising from motion induced misalignment of the activity con-
centration with the PET data can cause significant image quality and PET quantifi-
cation impairment (see figure 2.15) (Lassen et al., 2017; Rausch et al., 2017; Ouyang
et al., 2013). This results in a reduction of spatial resolution of the PET activity
distribution and therefore a reduction of reliability in clinical image interpretation.

Respiratory motion

Respiratory motion consists of an inspiration phase where contraction of intercostal
muscles and diaphragm fills the lungs with air and an expiration phase, where this
process is inverted to expel air form the lungs. Breath holding is a simple but not
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Figure 2.15: Effect of respiratory and cardiac motion on PET image quality - (A) Blurring effect
due to cardiac motion and (B) Motion-induced artifact due to miss-registration (Rausch et al.,
2017)

applicable way of minimizing the effects of respiratory motion, due to the long time
required to perform a PET acquisition, in the order to several minutes.

Another approach is respiratory gating, where the respiratory signal is divided into
bins, at the cost of increased noise in the reconstructed PET-images. This can be
done as a function of time or amplitude and presented in histograms (Dawood et
al., 2007; Jani et al., 2013).

Historically, hardware-based methods for motion detection have been the standard.
Most common hardware-based methods use sensors, cameras or belts to track phys-
iological characteristics related to the organ’s movement and create a motion model
(McClelland et al., 2013). Especially in PET/CT, advanced methods for respira-
tory motion tracking use the monitoring of the changes in temperature of the air
in the oral area (Pepin et al., 2014). Unfortunately, most hardware-based meth-
ods for motion correction have limitations (e.g. complicated and time-consuming
set-up, partially faulty controls, etc.). For this reason, alternative data-driven ap-
proaches, using the PET or the MR raw-data, have been proposed. For example,
in PET/MR, motion can be derived directly from the MR data. This approach is
called self-navigation and detects the breathing motion by acquiring a central profile
in k-space and comparing each projection to a reference position that is obtained in
the learning stage (Uribe et al., 2007).

Cardiac motion

Cardiac motion is a very complex motion that involves longitudinal and radial con-
tractions as well as rotations (Sengupta et al., 2006). In a similar way to the gating
of respiratory motion, also cardiac motion can be divided into short frames to re-
duce the effect of motion. It needs to be stressed, that motion effects can be reduced
using these approaches, but at the same time the SNR in the resulting images is
lowered.
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Several methods for minimizing cardiac motion for PET/MR have been proposed
(Scott et al., 2009). Nevertheless Electrocardiography (ECG)-based gating is the
most widely used in PET. For this approach, electrocardiography data is used, that
is measured while the PET examination.

Another method, called cardiac self-gating, eliminates the use for (ECG)-based gat-
ing by obtaining a cardiac signal directly from the MR data (Larson et al., 2004).
Similarly to the respiratory self-navigation approach, also cardiac self-gating uses
profiles of the k-space to model the cardiac motion (Crowe et al., 2004).

2.5.1 Motion Compensation Techniques

Approaches towards respiratory and/or cardiac gating are commonly used to re-
duce motion-induced blurring in PET images, whereby the emission data is divided
into gates that correspond to different respiratory or cardiac phases. Therefore, the
simplest approach (and most used in clinical routine) is respiratory and/or cardiac
gating, at the cost of increased noise in the reconstructed PET-images. However, a
more preferable solution is to perform motion compensation (MoCo) using the full
data-acquisition, both to reduce acquisition times and to improve the signal-to-noise
ratios in the PET images.

All Motion Compensation (MoCo) techniques rely on the existence of information
about patient motion. Basically, MoCo techniques can be classified according to the
type and timing of incorporation of the motion information into the image recon-
struction (IR) process (Rahmim et al., 2013; Feng et al., 2016).

Pre-reconstruction techniques: Pre-reconstruction techniques incorporate the
motion information before the IR process. By the use of nearest neighbour
interpolation, a specific LOR is transformed and assigned to another LOR. This
is done by a transformation matrix that is derived from the input of the motion-
information (Lassen et al., 2015; Livieratos et al., 2005).

Reconstruction techniques: Reconstruction techniques incorporate the motion
information while the IR process. Linear interpolation is used to calculate a so-
called motion-warping operator that is combined with the original system matrix,
resulting in an updated system-matrix, containing motion-information (Tsoumpas
et al., 2013; Polycarpou et al., 2012).
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Post-reconstruction techniques: Post-reconstruction techniques incorporate
the motion information after the IR process. Already reconstructed images are
shifted to a common reference frame. The shifts are given by the motion fields. The
final image is given by the sum of all shifted pictures (Picard, 1997).

Popular motion compensation approaches of the above-listed will be discussed
in more detail in the following sections. Section 2.5.2 highlights list-mode- and
sinogram-based approaches, that are examples of the pre-reconstruction technique,
section 2.5.3 gives an overview of the reconstruction technique Motion Compensated
Image Reconstruction and section 2.5.4 discusses the post-reconstruction technique
Reconstruct-Transform-Average.

2.5.2 Projection-Based Motion Compensation

P-MoCo belongs to the category of so-called pre-reconstruction techniques, there-
fore P-MoCo incorporates the motion information before the image reconstruction
(IR) process. There exist mainly two approaches to correct for motion before the IR
process, namely (i) histogram/sinogram based approaches or (ii) List-Mode based
approaches.

One popular approach of List-Mode Motion Compensation, the so-called List-Mode

Figure 2.16: Simplified process of List-Mode Motion Compensation (Rahmim et al., 2004) - List-
Mode Motion Compensation shifts a LOR i′, generated originally by an event in voxel j, that is
due to motion translated to voxel j′ =M (j), back to the position i = L−1 (i) that corresponds to
the position where the LOR would have been detected if the object had not moved.

Expectation Maximization (LM-EM), works directly with LOR coordinates. It ba-
sically shifts a LOR i′, generated originally by an event in voxel j, that is due to
motion translated to j′ =M (j), back to the position i = L−1 (i) that corresponds
to the position where the LOR would have been detected if the object had not moved
(Rahmim et al., 2004). This process is further illustrated in figure 2.16. After LM-
EM, the reorganized LM-data is therefore corrected for motion and can be further
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processed.

A closely related process can be used for histogram/sinogram based approaches.
As the LM gives the sinogram bin of each coincidence event, the only difference
lies in the movement of the data. While list-mode based approaches move the pro-
jected data event-by-event, histogram/sinogram based approaches move the already
histogrammed data.

2.5.3 Motion Compensated Image Reconstruction

Motion Compensated Image Reconstruction (MCIR) belongs to the category of re-
construction techniques, therefore MCIR incorporates the motion information while
the IR process. The standard Ordered-Subsets Expectation Maximization (OSEM)

Figure 2.17: Simplified flowchart of Motion Compensated Image Reconstruction (MCIR) from
(Munoz et al., 2016) - Measured sinogram data is binned into N bins that are reconstructed to a
motion corrected image, using a reconstruction an algorithm with a system matrix that is modified
with motion fields

algorithm, that is already discussed in chapter 2.3.2, can be updated to the MCIR
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algorithm by including motion information in the system matrix (Polycarpou et al.,
2012).

Figure 2.17 sketches the basic concept of MCIR. The measured PET sinogram data
is binned in N individual motion-free frames, so called bins. This is done to alle-
viate reconstruction time. Every bin is then reconstructed in a way that motion
information is directly incorporated while the reconstruction process by updating
the PET system matrix. The incorporation of motion information therefore modi-
fies the emission and attenuation maps. After the reconstruction process with the
modified system matrix, a motion corrected image is obtained.

2.5.4 Reconstruct-Transform-Average

Reconstruct-Transform-Average (RTA) belongs to the post-reconstruction tech-
niques, therefore RTA incorporates the motion information after the IR process.
Figure 2.18 sketches the basic concept of RTA. Again, the measured PET sinogram

Figure 2.18: Simplified flowchart of Reconstruct-Transform-Average (RTA) from (Munoz et al.,
2016) - Measured sinogram data is binned into N bins that are individually reconstructed and
warped to a reference bin by transforms with inverted motion fields. Averaging leads to the
motion compensated image

data is binned in N individual motion-free frames. Each frame is then reconstructed
independently, using a standard image reconstruction algorithm, providing N indi-
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vidual reconstructed bins. After the reconstruction, the motion information is ap-
plied. This is done by warping N−1 reconstructed bins from different motion states
to a pre-selected common reference bin N0 by the use of inverse motion field transfor-
mations. In the last step, all bins are averaged to obtain the final motion-corrected
image (Picard, 1997).



3. Methodology

This chapter introduces the Biograph mMR system (section 3.1), gives a brief
overview over the used motion compensation approaches (section 3.2), includig
Projection Based Motion Compensation (P-Moco), Motion Compensated Image
Reconstruction (MCIR) as well as the Reconstruct Transform Average (RTA)
method. Phantom data, including Numerical phantom and the XCAT phantom,
are highlighted (section 3.3) and image quality analysis (section 3.4) are described.
Finally, a short introduction to the evaluated patient data (section 3.5) concludes
this chapter.

3.1 Biograph mMR

The Siemens Biograph mMR system (figure 3.1), located at Allgemeines Kranken-
haus (AKH) Wien, was used. Biograph mMR is the first clinical simultaneous
PET/MR hybrid system (Delso et al.; 2011).

Figure 3.1: Siemens Biograph mMR (Muzic,
DiFilippo, 2014)

The PET component consists of 448 de-
tector blocks, arranged in 8 detector rings
of 56 detector blocks each. Every block
is built of 8×8 crystal elements with
3×3 avalanche photodiodes (APD). In to-
tal, Biograph mMR consists of 64 crys-
tal rings, providing an axial and ra-
dial field of view (FOV) of 258 mm and
588 mm.

The MR component is a compilation of a
3 T niobium-titanium superconductor mag-
net, a radio-frequency body coil with peak
power of 35 kW and a whole-body gradient
coil system. A detailed information of all

36
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specifications of the Siemens Biograph mMR can be found in table 3.1.

Table 3.1: Specifications of the Siemens Biograph mMR (from Delso et al. (2011))

MR component

Magnet 3 T
Gradient coil: strength 45 mT m−1

Gradient coil: slew rate 200 mT m−1 s−1

Radiofrequency coil: peak power: 35 kW
Radiofrequency coil: transmitter bandwidth 800 kHz

PET component

Detector rings 8
Axial spacing 0.40625 mm
Detector blocks (per detector ring) 56
Crystal elements (per detector block) 8×8
Size of crystal elements [mm×mm×mm] 4×4×20
Avalanche photodiodes (per detector block) 3×3
Axial FOV [mm] 258

3.2 Motion Compensation Approaches

As already discussed in chapter 2.5, to compensate for patient motion, different
motion compensation (MoCo) methods were developed and proposed in the liter-
ature. They can be classified as Pre-reconstruction-, Reconstruction- and Post-
reconstruction techniques, according to the timing of incorporation of the motion
information into the Image Reconstruction (IR) process (see figure 3.2).

Three MoCo approaches were chosen and tested on different phantom- and motion

Figure 3.2: Different Motion Compensation Approaches listed according to the timing of
incorporation of the motion information into the image reconstruction (IR) process (top) combined
with an oversimplified flowchart of PET image reconstruction (bottom) - Projection-Based Motion
Compensation (P- MoCo) incorporates the motion-information before the IR process, Motion-
Compensated Image Reconstruction (MCIR) incorporates the motion-information during the IR
process and Reconstruct-Transform- Average (RTA) incorporates the motion-information after the
IR process
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models: Projection-Based Motion Compensation (P- MoCo) that incorporates the
motion-information before the IR process, Motion-Compensated Image Reconstruc-
tion (MCIR) that incorporates the motion-information during the IR process and
Reconstruct-Transform- Average (RTA) which incorporates the motion-information
after the IR process. All approaches are described in detail in the following sections.

3.2.1 Projection-Based Motion Compensation

Projection-Based Motion Compensation (P-MoCo) incorporates the motion infor-
mation before the image reconstruction process. Figure 3.3 sketches the basic con-
cept of P-MoCo. P-MoCo can be divided in four main steps. Starting from (i) ideal
sinogram projections, the motion fields are incorporated by the (ii) co-registration
process, leading to a (iii) motion-compensated sinogram. This sinogram can then be
(iv) reconstructed using a standard reconstruction algorithm. In the next lines these
four steps are further specified.

P-MoCo is a completely data driven approach which automatically extracts the

Figure 3.3: Simplified flowchart of Projection-Based Motion Compensation (P-MoCo) - Ideal
sinogram projections are co-registered with the motion fields to obtain a motion compensated
sinogram that is then processed with the OSEM algorithm

respiratory signal from the LM file. The extracted respiratory signal is then used
for gating. In a further step, respiratory motion vector fields are extracted from the
gated data. The extracted respiratory motion fields are then applied to the prompt
and delayed events in the original LM, to create a new LM file that is now compen-
sated for motion. After normalisation, respiratory-motion compensated sinograms
are obtained (Lassen et al., 2018).

This respiratory-motion compensated sinograms was reconstructed using a stan-
dard reconstruction algorithm. Here, the Ordered-Subsets Expectation Maximiza-
tion (OSEM) algorithm was used to obtain the motion compensated image. This
was done with the well-known iterative algorithm Ordered Subsets Maximum a pos-
teriori One-step-late (OSMAPOSL) (Green, 1990a,b) which is freely available within
the Software for Tomographic Image Reconstruction (STIR) library (Thielemans et
al., 2012).
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3.2.2 Motion Compensated Image Reconstruction

The Motion Compensated Image Reconstruction (MCIR) approach, that incorpo-
rates the motion-information during the IR process, is based on an iterative algo-
rithm with a common regularization approach, namely the OSMAPOSL (Green,
1990a,b). OSMAPOSL was extended to include motion information in order to
reconstruct all gates into one reference frame (Tsoumpas et al., 2013). Equation
3.2 describes the incorporation the motion compensation within the system matrix
(Tsoumpas et al., 2013)

Λ(s+1)
ν = Λ(s)

ν

1∑
b∈Sl,g

∑
ν́Ŵ

−1
ν́g→νPν́bAbg + β∆ΛνE

(s)
ν

(3.1)

×
∑
b∈Sl,g

∑
ν́

Ŵ−1
ν́g→νPν́b

Ybg∑
ν́Pbν̃

∑
ν̌Ŵν̌→ν̃gΛ

(s)
ν̌ +

Bbg
Abg


Here, Λ

(s)
ν is the estimated radioactivity at voxel ν and sub-iteration s, Ybg is the

number of measured coincident photons of each detector pair b that belongs to the
lth subset S and gate g. Sl is the lth subset of the projection space, which is divided
into a total of L subsets and s is the sub-iteration number. Pbν is the system pro-
jection matrix, Abg the attenuation coefficient for bin b and gate g and finally Bbg

corresponds to the background term (e.g. scatter) for bin b and gate g.

The MCIR approach makes use of so-called warping operations Ŵ and Ŵ−1 that
move the activity form one location to another. Ŵ represents the forward warping
operations of the image that moves the activity from voxel ν ′ to voxel ν, using the
motion fields and linear interpolation. Ŵ−1 represents the backward warping oper-
ations. Therefore Ŵ−1 acts to warp all gates to the reference gate, while Ŵ acts
the opposite way.

The motion vector fields that are incorporated in equation 3.2 were estimated from
the co-registration of previously reconstructed gated PET images to a chosen ref-
erence gate. This co-registration process was done in Matlab, using the Medical
Image Registration Toolbox (MIRT) software (Myronenko and Song, 2010).

3.2.3 Reconstruct-Transform-Average

The Reconstruct-Transform-Average (RTA) approach used for motion correction
incorporates the motion-information after the IR process and consists of the inde-
pendent reconstructions of each frame, that are then transformed to a reference
frame and averaged (Picard, 1997).
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The independent reconstructions of each gate were calculated by (Tsoumpas et al.,
2013)

Λ(s+1)
νg =Λ(s)

νg

1∑
b∈SlPνbAbg + βg∆ΛνgE

(s)
ν

∑
b∈Sl

Pbν
Ybg∑

ν̃Pbν̃Λ
(s)
ν̃g +

Bbg
Abg

(3.2)

where

βg∆ΛνgE
(s)
ν

def
= βg

Λ
(s)
νg −M (s)

ν

M
(s)
ν

(3.3)

Λ
(s)
νg corresponds to the estimated radioactivity at voxel ν and gate g at sub-iteration

s, Ybg is the number of measured coincident photons of each detector pair b that be-
longs to the lth subset S and gate g. Sl is the lth subset of the projection space. Pνb
is the system projection matrix, Abg the attenuation coefficient for bin b and gate
g and finally Bbg corresponds to the background term (e.g. scatter) for bin b and
gate g. In equation 3.3, βg are the penalization factors that were set to zero for the
reconstructions .

Equation 3.4 describes the transformation step that is followed after reconstruction
of all gates

Λν =
1

G

∑
g

∑
ν′

Ŵ−1
ν′g→νΛν′g (3.4)

Here, G denotes the total number of gates and Ŵ−1 denotes the represents the
backward warping operation that moves the activity from voxel ν ′ to voxel ν, using
the motion fields and linear interpolation.

Again, the motion vector fields that are incorporated in equation 3.4 were esti-
mated from the co-registration of previously reconstructed gated PET images to a
chosen reference gate. This co-registration process was done in Matlab, using the
MIRT software (Myronenko and Song, 2010).

3.3 Phantom Data

Simulated acquisitions of a 4D XCAT phantom (Segars et al., 2010), as well as a
numerical phantom obtained from real MR acquisitions (Tsoumpas et al., 2011),
were used for the evaluation of the motion compensation (MoCo) approaches
described in chapter 3.2. Both phantoms and the simulated motion patterns are
described in more detail in the sections below.
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3.3.1 XCAT Phantom

It is well known, that voxelized phantoms were very realistic, limited in their abilities
to model patient motion. Mathematical models, on the other hand, are due to their
mathematical definitions flexible to model patient data, but are limited realistic due
to the simplicity of the used equations.

The 4D extended cardiac-torso (XCAT) phantom is a whole-body adult male and
female model (see figure 3.5) overcomes these limitations by combining the advan-
tages of both types of phantoms. This computational phantom is able to simulate
different respiratory and cardiac motion models.

Figure 3.4: Simulated motion of the XCAT phantom
- (1) 1D motion 2 cm superior-inferior heart motion,
(2) 2D motion a combination of 2 cm superior-inferior
and 1 cm anterior-posterior heart motion

Different respiratory motion pat-
terns were applied on the XCAT
phantom, that differ in the com-
plexity level of motion. As can
be seen in figure 3.4 and table 3.2,
one-dimensional motion was simu-
lated as 2 cm superior-inferior heart
motion and two-dimensional move-
ment of the heart was simulated
as a combination of 2 cm superior-
inferior and 1 cm anterior-posterior
heart motion.

The following SUV values were used
in both simulations: soft tissue = 2,
liver = 7, myocardium = 18, lumen
= 5, ribs 3. The respiratory motion
was simulated for 5 gates, including
both randoms, scatter and Poisson noise, to mimic a patient acquisition (Tsoumpas
et al., 2011; Cal-González et al., 2017).

Simulated acquisitions of the XCAT phantom, including different complexity lev-
els of motion, were reconstructed using Ordered Subset Expectation Maximiza-
tion (OSEM), Motion-Compensated Image Reconstruction (MCIR), Reconstruct-
Transform-Average (RTA) and Projection-Based Motion Compensation (P-MoCo).
Furthermore, every single gate was reconstructed using OSEM (OSEM-gated) and
also a static acquisition without any motion (No Motion) was simulated and evalu-
ated. The simulated reconstructions were performed using the Software for Tomo-
graphic Image Reconstruction (STIR) (Thielemans et al., 2012).
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Figure 3.5: The 4D extended cardiac-torso (XCAT) phantom - (1) Levels of detail of male (top)
and female (bottom) anatomies of the XCAT, (2) Cardiac and respiratory motions of the XCAT
(Segars et al., 2010)

3.3.2 Numerical Phantom

The numerical phantom is a series of MR-based 4D PET/MR datasets (Tsoumpas
et al., 2011a). This thorax phantom is capable of mimicking respiratory and car-
diac motion. It contains two spherical hot lesions, simulating atherosclerotic plaque
lesions, and one cold lesion within the myocardium, which mimics an infarcted area
with reduced FDG uptake (see figure 3.6).

Different respiratory motion patterns were applied on the numerical phantom, that

Figure 3.6: Numerical Phantom - Coronal and Sagital plane of the thorax phantom with highlighted
lesions - (1,2) spherical hot lesions, simulating atherosclerotic plaque lesions and (3) cold lesion
within the myocardium that mimics an infarcted area with reduced FDG uptake
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differ in the complexity level of motion. First, a simple approach to respiratory mo-
tion consisting of one-dimensional respiratory motion solely in the axial direction.
Then two more sophisticated approaches to respiratory motion, involving respira-
tory and cardiac motion in two and three spatial dimensions (see table 3.2). Cardiac
motion is clearly visible since the appearence of the heart in different gates changes
cardiac phases.

As described in Cal-González et al. (2017), Attenuation maps were created, us-
ing an ultra-short time-echo (UTE) sequence. The simulated motion vector fields
were estimated using a dynamic MR sequence (35 dynamic frames, 0.7 s duration
each) during normal breathing. FDG-PET standardized uptake values (SUV) were
assigned to the segmented regions of the MR images. Scatter was simulated ana-
lytically using the single scatter simulation formula (Watson, 2000), random events
summing in total a 30 % of the simulated counts, were approximated as a uniform
background. Poisson noise was included to simulate a levels of 500 million counts.

The numerical phantom, including different complexity levels of motion, was re-

Table 3.2: Overview of simulated motion parameters for XCAT Phantom and Numerical Phantom
- For XCAT Phantom the total simulated myocardium motion is listed, for Numerical Phantom
simulated motion of hot lesion 1 and hot lesion 2 as well as simulated upper and lower myocardium
motion is listed

Phantom (Region) Motion Axial
Movement

Anterior-
Posterior
Movement

XCAT (tot. Myoc.)
Respiratory (1D) 2.00 cm 0.00 cm
Respiratory (2D) 2.00 cm 1.00 cm

Numerical (Hot Les. nr. 1)
Respiratory (1D) 0.68 cm 0.00 cm
Respiratory-
Cardiac (2D/3D)

1.21 cm 0.97 cm

Numerical (Hot Les. nr. 2)
Respiratory (1D) 0.75 cm 0.00 cm
Respiratory-
Cardiac (2D/3D)

1.03 cm 0.43 cm

Numerical (upper Myoc.)
Respiratory (1D) 1.29 cm 0.00 cm
Respiratory-
Cardiac (2D/3D)

0.69 cm 1.03 cm

Numerical (lower Myoc.)
Respiratory (1D) 0.63 cm 0.00 cm
Respiratory-
Cardiac (2D/3D)

0.35 cm 0.48 cm

constructed using Ordered Subset Expectation Maximization (OSEM), Motion-
Compensated Image Reconstruction (MCIR), Reconstruct-Transform-Average (RTA)
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and Projection-Based Motion Compensation (P-MoCo). Furthermore, every sin-
gle gate was reconstructed using OSEM (OSEM-gated). For the sake of compari-
son, also a static image (No Motion) was evaluated. The simulated reconstructions
were performed using the Software for Tomographic Image Reconstruction (STIR)
(Thielemans et al., 2012).

3.4 Image Quality Analysis

To evaluate the effect of the motion compensation (MoCo) approaches for the dif-
ferent motion patterns, all PET images are quantified by the use of different figures
of merit, including SNR, L2B or M2B. Besides this, a bias- as well as a breakdown
analysis was performed which will be discussed in the next sections.

All MoCo approaches described in section 3.2 were performed by using 5 iteration-
cycles with 21 subsets each, adding up to a total number of 105 sub-iterations.
After each iteration (every 21st sub-iteration), reconstructed images were stored
and different figures of merit (see sections below) were calculated to comparatively
evaluate the performance and convergence of the implemented algorithms for the
numerical phantom and the XCAT phantom. Moreover, Full Width at Half Maxi-
mum (FWHM) Gaussian filtering was applied after each iteration in all reconstruc-
tions.

3.4.1 Bias-Analysis

A Region of Interest (ROI) analysis of the heart was performed with the motion-
corrected images of the numerical phantom and the XCAT phantom by segmenting
the lesions and the myocardium. A reference frame was chosen as background,
using the lumen region of the heart or the liver. The corresponding mean activity
3.5 measured within the segmented area ASEG of the ROI is

Sξ=L,M,B =
∑

V OXξ ∈ASEG

V OXξ (3.5)

where V OXξ is the measured activity of one voxel of the tissue-type ξ in ASEG.
Therefore SL is the measured activity within the segmented lesion, SM the measured
activity within the segmented myocardium and SB the measured activity within the
segmented background.

CNR was calculated as the absolute difference |Sξ=L,M − SB| divided by the standard
deviation σB

CNR =
|SL,M − SB|

σB
(3.6)
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and SNR was calculated as a measure of the logarithmic fraction of Sξ=L,M and the
root mean square (RMS) of the measured activity within the segmented background

SNR = 20 · log10

(
SL,M

RMS (SB)

)
(3.7)

Also a bias analysis was performed. The activity bias within the segmented lesions
was calculated by comparison to a reference image

bias (%) =

(
mean (SL)−mean (SREF )

mean (SREF )

)
· 100 (3.8)

The figures of merit for the XCAT phantom were calculated by means of a
Myocardium to Background Ratio (M2B) where SMy is measured activity within
the segmented myocardium and SB=Li,Lu corresponds to measured activity within
the segmented background region in the liver (SB=Li) or the lumen(SB=Lu).

3.4.2 Breakdown-Analysis

In another part of the Image Quality (IQ) analysis, a breakdown analysis was per-
formed. This includes the computation of lesion-to-background-ratio (L2B).

The performance of the MoCo approaches in different stages of simulated motion-
complexity was tested using the mean activity mean (SL) within the segmented
lesion for the Numerical Phantom and the mean activity mean (SMy) within the
segmented Myocardium for the XCAT Phantom, and comparing them to the mean
value of the selected background regions for the respective phantom

L2B =
mean (SL)

mean (SB)
or M2B =

mean (SMy)

mean (SB=Li,Lu)
(3.9)

To highlight the performance breakdown of the MoCo approaches in different stages
of simulated motion-complexity, the maximum activity of 3.9 within the segmented
lesion SL was used for the Numerical Phantom

L2Bmax =
max (SL)

mean (SB)
or M2Bmax =

max (SMy)

mean (SB=Li,Lu)
(3.10)

or the the maximum activity of 3.10 within the segmented myocardium SMy was
used for the XCAT Phantom, and compared to the mean value of the selected
background regions for the respective phantom.
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3.4.3 Stability-Analysis

In a concluding part of the image quality analysis, a stability analysis was performed.
This includes the computation of a the absolute differences

∆L2B2D−1D(Xi) = abs [L2B2D(s)− L2B1D(s)]smax (3.11)

∆L2B3D−1D(Xi) = abs [L2B3D(s)− L2B1D(s)]smax (3.12)

of L2B 3.9 for the Numerical Phantom, or the absolute differences

∆M2B2D−1D(Xi) = abs [M2B2D(s)−M2B1D(s)]smax (3.13)

of M2B 3.9 for the XCAT Phantom, for different dimensions, evaluated at the last
subiteration smax, that are directly liked to the stability of the motion-compensation
approach Xi.

The stability-criteria was selected as follows - The MoCo-approach Xi is stable
compared to the approach Xj, if the absolute difference of L2B or M2B for different
dimensions are in a comparable range ζ, therefore

L2B2D−1D (Xi) ≈ L2B3D−1D (Xi) ≈ L2B2D−1D (Xj) ≈ L2B3D−1D (Xj) ≈ ζ (3.14)

for the Numerical Phantom and

M2B2D−1D (Xi) ≈M2B2D−1D (Xj) ≈ ζ (3.15)

for the XCAT Phantom.

3.5 Patient Data

Besides the in-depth-analysis of two simulated phantoms, capable of respiratory mo-
tion or cardiac motion, two patients were selected for a proof of concept analysis.

The selected patients were scanned using the fully-integrated PET/MR system
Siemens Biograph mMR (see section 3.1). With all patients, myocardial perfu-
sion imaging was done employing the tracer NH3 with activities of 845± 133 MBq.
Also metabolism studies were employed using the tracer FDG with the activity of
339 ± 31 MBq. To enable a good distribution of the tracer in the myocardium, all
studies of motion-compensation evaluated on PET-emission data from the last 10
minutes of the acquisitions. For a detailed description of the imaging protocol see
Lassen et al. (2018) and figure 3.7.
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Figure 3.7: Flow-chart of the dual-tracer PET/MRI protocol - consisting of a simultaneous
acquisitions of PET-based myocardial perfusion imaging employing NH3 and cine-acquisitions in
the MR system. Myocardial viability was assessed through simultaneous acquisitions of PET
employing FDG, rest and late-gadolinium enhancement imaging protocols (Lassen et al., 2018)

Therefore, a total of four patient data-sets were reconstructed, using Ordered Sub-
set Expectation Maximization (OSEM), Reconstruct-Transform-Average (RTA) and
Projection-Based Motion Compensation (P-MoCo). Furthermore, every single gate
was reconstructed using OSEM (OSEM-gated). No Motion Compensated Image
Reconstruction (MCIR) evaluations were included in the patient datasets, due to
unexpected artefacts observed in some of the reconstructions. All reconstructions
were performed using the Software for Tomographic Image Reconstruction (STIR)
(Thielemans et al., 2012).

To be consistent with the former phantom studies, all reconstructions were per-
formed by using 5 iteration-cycles with 21 subsets each, adding up to a total number
of 105 sub-iterations. After each iteration (every 21st sub-iteration), reconstructed
images were stored and different figures of merit (see sections below) were calculated
to comparatively evaluate the performance and convergence of the implemented al-
gorithms. Again, FWHM Gaussian filtering was applied after each iteration in all
reconstructions.

The performance of the different MoCo methods for patient-data was tested in
terms of the ratio of mean activity mean (SMy) within the segmented Myocardium
and mean activity mean (SB=Lu) of the selected background region (lumen) for the
respective phantom (see equation 3.9).



4. Results

In this chapter, the main results of the conducted motion compensations are
presented. Section 4.1 discusses the results from the XCAT phantom simulations,
section 4.2 discusses the performance of the motion compensation in numerical
phantom simulations and finally, section 4.3 shows the results from the analysis
of patient data.

4.1 XCAT Phantom

A comparison of reconstructed images of the 4D extended cardiac-torso (XCAT)
phantom for different levels of respiratory motion complexity (1D-2D) is presented
in this section. First, a comparison of Ordered Subset Expectation Maximiza-
tion (OSEM), Motion-Compensated Image Reconstruction (MCIR), Reconstruct-
Transform-Average (RTA) and Projection-Based Motion Compensation (P-MoCo),
single gates (OSEM-gated) and static images (No-Motion) is presented (section
4.1.1). Furthermore, the performance of the MoCo methods is tested by means
of a bias analysis (section 4.1.2) as well as a stability-analysis (section 4.1.3).

4.1.1 Reconstructed Images

Figure 4.1 illustrates coronal plane slices of the reconstructed images of the XCAT
phantom with corresponding cardiac Line Profiles for different levels of motion com-
plexity. In contrast to the numerical phantom (see section 4.2) that is capable of
simulation respiratory and cardiac motion, the XCAT phantom only performs respi-
ratory motion of different complexity levels. Simple one dimensional (1D) superior-
inferior heart motion, as well as complex two dimensional (2D) heart motion includ-
ing a mixture of superior-inferior and anterior-posterior plane motion (for details
see section 3.3.1) was analysed.

A visual inspection and comparison of the reconstructed images (figure 4.1) leads to

48
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Figure 4.1: Numerical Phantom - Comparison of OSEM, RTA, MCIR, P-MoCo, Gated and No-
Motion for 3D movement with corresponding Line Profile

the subjective and qualitative statement that P-MoCo, MCIR and RTA yield good
image quality. In terms of image contrast, the blurring of the activity distribution
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or the noise, P-MoCo, MCIR and RTA seem comparable to Gated and No-Motion
images. Solely OSEM Reconstructed images show clear losses of image quality, with

Figure 4.2: XCAT Phantom - Myocardium to Liver and Myocardium to Lumen Ratio for 1D and
2D movement of OSEM, RTA, MCIR, P-MoCo, Gated and No-Motion

significant losses in the contrast of the image.

After visual inspection, a quantitative analysis of line profiles through the my-
ocardium was conducted. Image blurring and noise in the OSEM reconstruction
was directly validated by the comparison of the width of the line profiles of the
different MoCo approaches. OSEM differs up to 44 % in FWHM of the myocardium
peak in the 1D line profile and even up to 63 % of the myocardium peak in the
2D line profile. Furthermore it turned out that the maximum activity of OSEM
reconstructions nearly halved in comparison to the other MoCo approaches. Be-
sides OSEM all other reconstructions yield a comparable range in terms of activity.
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Closer analysis of the maximum activity reveals a comparable performance of MCIR
and No-Motion as well as P- MoCo and Gated followed by RTA. This is valid for
simple 1D respiratory motion. For the more realistic 2D respiratory motion MCIR
and RTA surpass the maximum activity of P-MoCo.

4.1.2 Bias Analysis

Figure 4.3: XCAT Phantom - Bias analysis for 1D and 2D movement of OSEM, RTA, MCIR,
P-MoCo, Gated and No-Motion

In a further analysis step, the performance of the different MoCo approaches was
tested by means of reference to different tissue types, namely lumen and liver.
Myocardium-to-Liver (M2Li) ratio and Myocardium-to-Lumen (M2Lu) ratio analy-
sis as well as Bias analysis for lumen and liver was conducted and compared. Both
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image quality measures were implemented for 1D and 2D respiratory motion. A
comparison of M2Li and M2Lu are given in figure 4.2. The outcome of the bias
analysis for lumen and liver can be found in figure 4.3.

When analysing solely the myocardium and liver contributions in plots 4.2 and
4.3 one can conclude that MCIR, No-Motion and Gated yield comparable image
quality for 1D-motion, for 2D respiratory motion only MCIR and No-Motion give
comparable results. The performance of P-Moco and RTA for 1D-motion and 2D-
motion is nearly identical. This behaviour was also obtained by analysing solely
myocardium and lumen. Also in this measurement set-up, image quality of MCIR
surpasses the nearly identical image quality of P-MoCo and RTA.

4.1.3 Stability Analysis

In a concluding analysis step, the evidence that MCIR, RTA and P-MoCo perfor-
mance is not affected by simple 1D and complex 2D respiratory motion was validated
by a stability analysis.

A direct comparison of the performance of P-MoCo, MCIR and RTA throughout the

Figure 4.4: XCAT Phantom - Stability of Myocardium to Liver (M2Li) Ratio of RTA, MCIR and
P-MoCo for 1D and 2D movement

full range of respiratory motion complexity (1D-2D) can be seen in figure 4.4. The
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absolute difference of M2Li1D and M2Li2D in figure 4.4 stays nearly constant for
all MoCo approaches. For MCIR an absolute difference of 15 · 10−3 was measured,
for RTA an absolute difference of 16 · 10−3 was obtained and P-MoCo leaded to an
absolute difference of 19 · 10−3.
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4.2 Numerical Phantom

In this section, a comparison of reconstructed images of the numerical phantom for
different levels of motion complexity (1D-3D) are presented. In detail, a comparison
of Ordered Subset Expectation Maximization (OSEM), Motion-Compensated Image
Reconstruction (MCIR), Reconstruct-Transform-Average (RTA) and Projection-
Based Motion Compensation (P-MoCo), single gates (OSEM-gated) and static
images (No-Motion) is presented (section 4.2.1). Furthermore, the performance of
the different MoCo approaches is tested by means of bias, stability and separability
analyses (sections 4.2.2, 4.2.3 and 4.2.4).

4.2.1 Reconstructed Images

Figure 4.5, 4.6 and 4.7 illustrate coronal views of the reconstructed images of the nu-
merical phantom with corresponding cardiac Line Profiles for different levels of mo-
tion complexity. One dimensional motion represents simple respiratory motion in the

Figure 4.5: Numerical Phantom - Comparison of OSEM, RTA, MCIR, P-MoCo, Gated and No-
Motion for 1D movement with corresponding Line Profile

coronal plane, two- and three dimensional motion represents complex respiratory-
and cardiac motion patterns in coronal and sagital plane.



Chapter 4 55

In a first analysis step, visual inspection and comparison of the reconstructed images
leads to subjective and qualitative statements, that are then, in a second analysis
step, supported by the quantitative analysis of obtained Line Profiles.

Visual inspection and comparison of the reconstructed images leads to the following

Figure 4.6: Numerical Phantom - Comparison of OSEM, RTA, MCIR, P-MoCo, Gated and No-
Motion for 2D movement with corresponding Line Profile

qualitative statements:

• Throughout all motion-patterns (1D-3D) Gated and No-Motion give best
results in terms of noise and contrast.

• MCIR and RTA provide good and comparable image quality throughout all
motion-patterns. This is mainly seen in a sharp and clear activity distribution
in the lesions and the myocardium

• One can see a reduction of image quality for P-MoCo when increasing
motion complexity. This is mainly seen by the fact, that by increasing the
dimensionality of motion, P-Moco matches OSEM more and more, which in
all cases gives the least image quality.
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All qualitative statements that are mentioned above can be validated by the quan-
titative analysis of cardiac line profiles that can be found besides the reconstructed
images in figures 4.5, 4.6 and 4.7.

As expected, the maximum activity in all motion patterns is achieved by Gated

Figure 4.7: Numerical Phantom - Comparison of OSEM, RTA, MCIR, P-MoCo, Gated and No-
Motion for 3D movement with corresponding Line Profile

and No-Motion, followed by MCIR and RTA. The stated reduction of image quality
for P-MoCo for complex motion patterns is clearly visible in the line profiles. While
the maximum activity of P-MoCo and OSEM differs significantly for 1D motion
(0.6 SUV), this difference reduces drastically for 2D (0.2 SUV) and 3D motion (0.1
SUV). The FWHM of line profiles can directly be connected to the blurring of the
activity distribution in a given region of the image. Especially for 1D motion, one
can see a clear effect of image blurring in OSEM reconstruction, when comparing
FWHM of the activity distribution of OSEM to the one of MCIR, RTA or P-MoCo.
A total change of FWHM of up to 46 % was seen when comparing the three MoCo
approaches for 1D motion. For 2D and 3D motion, this change reduces to 10 %.
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4.2.2 Bias Analysis

Figure 4.8: Numerical Phantom - Maximum Lesion to
Background (LBRmax) for 1D, 2D and 3D movement of
OSEM, RTA, MCIR, P-MoCo, Gated and No-Motion

The Maximum Lesion to Back-
ground (LBRmax) ratio can be
found in figure 4.8. The Lesion-
to-Background Ratio (LBR) of
the hot Lesions as well as the
Bias Analysis for the numerical
phantom can be found in figure
4.9. The results for 1D, 2D and
3D motion reflect the observed
behaviour described in section
4.2.1.

Besides the unsurpassed per-
formance of Gated and No-
Motion images, MCIR and RTA
reconstruction yield compara-
ble and stable LBR in respira-
tory and cardiac motion. As
can be seen in the bias anal-
ysis, especially for respiratory
motion (1D), the image qual-
ity of P-MoCo leads to a bias
in the range of MCIR and
RTA. It further turned out that
when adding components of car-
diac motion (2D and 3D), P-
MoCo cannot keep up to MCIR
and RTA performance, drop-
ping to a bias in the range of
OSEM.

Also the Maximum Lesion to
Background ratio (LBRmax) was
measured that solely compares
the maximum activity within a
given region to the background
activity. The exclusive incor-
poration of maximum activity
clearly yields to a narrow range
of LBRmax for respiratory mo-
tion (figure 4.8 top). Since
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OSEM is afflicted with fluctuations, it seems, that the performance for respiratory
motion is higher, than it actually is (compare to figure 4.9 top left). Nevertheless,
by increasing motion complexity to a mixture of respiratory and cardiac motion (2D
and 3D motion), LBRmax for P-MoCo is comparable to the one of OSEM (figure
4.8).

Figure 4.9: Numerical Phantom - Lesion to Background and Bias analysis for 1D, 2D and 3D
movement of OSEM, RTA, MCIR, P-MoCo, Gated and No-Motion
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4.2.3 Stability Analysis

A direct comparison of the performance of P-MoCo, MCIR and RTA throughout
the full range of motion complexity (1D-3D) can be seen in figure 4.10. The left plot
illustrates LBR for hot lesions only, the right illustrates LBR for myocardium only.

When analysing the performance of motion compensation of small hot lesions, e.g.

Figure 4.10: Numerical Phantom - Comparison of stability of Lesion to Background (LBR) of
RTA, MCIR and P-MoCo for Lesion and Myocardium with 1D, 2D and 3D movement

solely lesion-reconstruction, MCIR and RTA reconstructions yield stable image qual-
ity in the lesion region for cardiac and respiratory motion. This is seen by a total
difference of LBR1D and LBR3D of 49 · 10−3 for MCIR, of 72 · 10−3 for RTA but of
497 · 10−3 for P-MoCo. Nevertheless, P-MoCo leads to images quality in the range
of MCIR and RTA for respiratory motion (1D).

A performance breakdown was seen when focusing on small hot lesions in com-
bination with respiratory- and cardiac motion effects. For reconstructions of the
myocardium, including the same motion-inputs, slightly different results were ob-
tained. MCIR still leads to the best image quality, but besides this, a nearly identical
performance of 1D P-MoCo, 1D and 2D RTA and 3D MCIR was measured.
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4.2.4 Separability Analysis

Another important measure in coronal imaging is the separability of different areas
of the image associated with different levels of activity. This is of great importance
when considering lesions close to the myocardium. In figure 4.11, one can see two
hot lesions of different sizes near the myocardium, highlighted with ’Lesion NR. 1’
and ’Lesion NR. 2’ together with their corresponding Coronal Line Profiles of My-
ocardium Activity without motion.

Besides the sharp separation of Myocardium and Lesion areas without motion,

Figure 4.11: Numerical Phantom - Separability study using Myocardium Line Profiles for 1D, 2D
and 3D movement of OSEM, RTA, MCIR, P-MoCo, Gated and No-Motion

MCIR gives the best separation of this areas while respiratory motion for both scales
of lesion size. For big lesions, afflicted with high activity, the quality of separation
of P-MoCo is comparable to the one of RTA.
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4.3 Patient Data

In this section, a comparison of reconstructed images of four patient datasets is
presented. In detail, a comparison of Ordered Subset Expectation Maximization
(OSEM), Reconstruct-Transform-Average (RTA) and Projection-Based Motion
Compensation (P-MoCo) as well as Single Gate Reconstruction (OSEM-gated) is
presented (section 4.3.1). Furthermore, the performance of the different MoCo
approaches is tested by means of Myocardium-to-Background analysis and noise
properties (section 4.3.2).

4.3.1 Reconstructed Images

Figure 4.12 and 4.13 illustrate coronal and transversal views of the reconstructed
images of patient A and patient B for the two different tracers FDG and Ammonia
(NH3).

In a first analysis step, visual inspection and comparison of the reconstructed images
leads to subjective and qualitative statements, that are then, in a second analysis
step, supported by the quantitative analysis of obtained Myocardium to Background
Ratio and Noise Properties (for quantitative analysis see section section 4.3.2).

Figure 4.12 shows reconstructed images of patient A. One can clearly see motion
artefacts in the region of the diaphragm (highlighted with a yellow arrow in figure
4.12 for the static OSEM reconstruction. A clear reduction of these artefacts can
be seen, when comparing this region to P-MoCo and RTA. When analysing the my-
ocardium definition, also a clear improvement can be seen for P-MoCo, RTA and
Gated reconstructions. In terms of noise, single-gate reconstructions are afflicted
with the most noise. This can clearly be seen when analysing the liver or the my-
ocardium.

Figure 4.13 shows reconstructed images of patient number B. The yellow arrow in
figure 4.13 highlights an infarcted area within the myocardium with reduced tracer
uptake. When comparing the infacted region of the static OSEM reconstruction to
the one of P-MoCo, RTA and Gated reconstruction, one can clearly see improve-
ments in image quality. When analysing the overall myocardium definition, also a
clear improvement can be seen for P-MoCo, RTA and Gated reconstructions. In
terms of noise, single-gate reconstructions are afflicted with the most noise. This
can clearly be seen when analysing the liver or the myocardium.
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Figure 4.12: Patient A - Comparison of OSEM, RTA, P-MoCo and Gated Reconstruction for the
two tracers FDG (top) and NH3 (bottom) - The yellow arrow highlights motion artefacts in the
region of the diaphragm in the static OSEM reconstruction.
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Figure 4.13: Patient B - Comparison of OSEM, RTA, P-MoCo and Gated Reconstruction for the
two tracers FDG (top) and NH3 (bottom) - The yellow arrow highlights an infarcted area within
the myocardium with reduced tracer uptake for the P-MoCo image.
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4.3.2 Myocardium to Background Ratio and Noise Proper-
ties

This section gives a brief overview of the quantitative analysis performed on the re-
constructed images of the four patient datasets discussed in section 4.3.1. In a first
step, a comparative analysis of the myocardium definition in terms of Myocardium
to Background Ratio (M2B) will be performed. Further, the noise properties of the
images will be analysed.

Figure 4.14 shows the Myocardium to Background (M2B) Ratio for Patient A and
B for the two tracers FDG and NH3. Besides the unsurpassed performance of Gated
reconstructions for both patients and all tracers, P-MoCo and RTA lead to overall
higher M2B ratios than static OSEM reconstructions for both patients and both
tracers. For patient A with FDG tracer, RTA reconstructed images yield M2B ra-

Table 4.1: Patient Datasets A and B - Myocardium to Background Ratio measured at the maximum
iteration number of 105 iterations (M2BIt.NR. 105) and the respective percentage of noise measured
in the image of OSEM, RTA, P-MoCo and Gated Reconstruction for FDG and NH3 tracers

Patient/Tracer MoCo apr. M2BIt.NR. 105 Noise [%]

A/FDG

OSEM 1.22 13.2
OSEM (Gated) 2.01 20.1
P-MoCo 1.71 12.7
RTA 1.91 13.0

A/NH3

OSEM 2.51 13.3
OSEM (Gated) 3.20 20.6
P-MoCo 3.01 12.9
RTA 2.77 13.9

B/FDG

OSEM 1.32 8.16
OSEM (Gated) 1.67 11.5
P-MoCo 1.51 9.62
RTA 1.57 8.44

B/NH3

OSEM 1.57 7.61
OSEM (Gated) 2.54 13.8
P-MoCo 2.29 8.23
RTA 1.72 7.36

tios in the range of Gated reconstructions with a relative drop of 12.58 % M2B in
the maximum iteration compared to Gated. In contrast to this, patient A including
NH3 tracer, P-MoCo yield M2B ratios in the range of Gated reconstructions with a
28.18 % drop of M2B in the maximum iteration relative to Gated (see table 4.1). In
all cases static OSEM reconstructed images show clear losses of image quality, with
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Figure 4.14: Myocardium to Background (M2B) for Patient A and B of OSEM, RTA, P-MoCo
and Gated Reconstruction for FDG and NH3 tracers

significant losses in the M2B ratios.

For patient B with FDG tracer, RTA reconstructed as well as P-MoCo reconstructed
images yield M2B ratios with respective 26.49 % and 44.73 % drops of M2B in the
maximum iteration compared to Gated. Patient B including NH3 tracer, P-MoCo
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yield M2B ratios in the range of Gated reconstructions with a relative drop of 26.44
% M2B in the maximum iteration compared to Gated. Again, in all cases static
OSEM reconstructed images show clear losses of image quality with significant losses
in the M2B ratios.

In a further analysis step, the noise properties of the images were analysed. Ta-

Table 4.2: Patient Datasets A and B - Mean Myocardium to Background Ratio measured at the
maximum iteration number of 105 iterations (M2Bmean) with corresponding standard deviation
and the respective mean percentage of noise (Noisemean) with corresponding standard deviation.

OSEM OSEM (Gated) P-MoCo RTA

M2Bmean 1.65 2.35 2.12 1.99
M2Bstdv 0.51 0.58 0.58 0.46

Noisemean [%] 10.5 16.3 10.9 10.7
Noisestdv [%] 2.72 3.77 2.01 2.83

ble 4.1 illustrates the Myocardium to Background Ratio measured at the maximum
iteration number of 105 iterations (M2BIt.NR. 105) and the respective percentage of
noise measured in the image.

For both patients and all tracers, single-gate reconstructions yield on average 6 %
higher noise than P-MoCo, RTA and static OSEM reconstructions (see table 4.2).



5. Summary and Discussion

This chapter provides a brief summary (section 5.1) and an in-depth discussion of
the results of the thesis. In detail, section 5.2 focusses on the discussion of the results
related to the XCAT-Phantom, section 5.3 discusses results related to the Numerical
phantom and section 5.4 provides discussion on the results related to patient data.
Furthermore, a comparison of XCAT-Phantom and Numerical-Phantom is given in
section 5.5. To conclude this chapter, 5.6 provides a comparison of Phantom- and
Patient Data studies.

5.1 Summary of Results

The study, conducted in this thesis, focuses on the comparative evaluation of the
performance and accuracy of different motion compensation techniques in PET
acquisitions with simulated respiratory and cardiac motion. The main focus was
set on the performance of the motion compensation approaches Ordered Subset
Expectation Maximization (OSEM), Motion-Compensated Image Reconstruction
(MCIR), Reconstruct-Transform-Average (RTA) and Projection-Based Motion
Compensation (P-MoCo). All MoCo approaches were tested in different levels of
motion complexity using XCAT phantom, that is capable of mimicking respiratory
motion (1D-2D), and a numerical phantom, that is capable of mimicking respiratory
and cardiac motion (1D-3D). A proof-of-concept analysis of four patient datasets
completed the evaluation.

XCAT Phantom results - For the XCAT phantom, P-MoCo, MCIR and RTA
yield good image quality that is comparable to Gated reconstructions and No-Motion
images in terms of image contrast, noise and the blurring of the activity distribution.
OSEM reconstructed images show clear losses of image quality (see figure 4.1), with
significant losses in contrast and noise. This was directly validated by the comparison
of the width of the line profiles of the different MoCo methods. OSEM differs up to
44 % in FWHM of the myocardium peak in the 1D line profile and up to 63 % of
the myocardium peak in the 2D line profile, paired with a nearly halved maximum
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activity in comparison to the other MoCo approaches. The performance of the
different MoCo approaches was further tested by means of reference to different
tissue types, namely lumen and liver for 1D and 2D respiratory motion (see figure
4.2 and 4.3). In this measurement set-up, image quality of MCIR surpasses the
nearly identical image quality of P-MoCo and RTA. Finally, a direct comparison of
the performance of P-MoCo, MCIR and RTA throughout the full range of respiratory
motion complexity (1D-2D) was conducted, giving comparable absolute differences
of 15 ·10−3, 16 ·10−3 and 19 ·10−3 in terms of M2Li1D and M2Li2D for MCIR, RTA
and P-MoCo.

Numerical Phantom results - For the Numerical phantom, Gated reconstruc-
tions and No-Motion images give best results in terms of noise and contrast through-
out the whole motion-spectrum (1D-3D), followed by MCIR and RTA that both
provide good and comparable image quality (see figures 4.5, 4.6 and 4.7 ). A reduc-
tion of image quality for P-MoCo was identified when increasing motion complexity.
This was validated by means of L2B-analysis (see figure 4.9), a breakdown analysis
involving L2Bmax (see figure 4.8) as well as a direct comparison to OSEM, which
in all cases gives the least image quality. While the maximum activity of P-MoCo
and OSEM differs significantly for 1D motion (0.6 SUV), this difference reduces
drastically for 2D (0.2 SUV) and 3D motion (0.1 SUV). A total change of FWHM
of up to 46 % was seen in when comparing OSEM to MCIR, RTA or P-MoCo for
1D motion. For 2D and 3D motion, this change reduces to 10 %. A bias analysis
revealed that P-MoCo leads to a bias in the range of MCIR and RTA for simple
1D movement patterns but dropping to a bias in the range of OSEM for complex
2D and 3D movement. Further, stability of the MoCo approaches was tested by
means of total difference of LBR1D and LBR3D of 49 · 10−3 for MCIR, of 72 · 10−3

for RTA but of 497 · 10−3 for P-MoCo, that cannot be compared to the latter two
MoCo approaches (see figure 4.10). Finally, performance was tested in terms of a
separability analysis for two hot lesions of different sizes near the myocardium (see
figure 4.11). MCIR gave the best overall separation of this areas while respiratory
motion. For big lesions, afflicted with high activity, the quality of separation of
P-MoCo was comparable to the one of RTA.

Patient Data results - Besides the unsurpassed performance of Gated recon-
structions for both patient datasets A and B including the tracers FDG and NH3,
P-MoCo and RTA lead to an overall better image quality in terms of myocardium
definition, M2B ratios as well as noise properties, than static OSEM reconstructions
(see figures 4.12 and 4.13). For patient A with FDG tracer, motion artefacts in the
region of the diaphragm were reduced by RTA reconstruction yielding M2B ratios
in the range of Gated reconstructions with a relative drop of 12.58 % M2B in the
maximum iteration compared to Gated. For patient A with NH3 tracer, motion
artefacts in the region of the diaphragm were reduced by P-MoCo yielding M2B ra-
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tios in the range of Gated reconstructions with a relative drop of 28.18 % M2B in the
maximum iteration compared to Gated (see figure 4.14 and table 4.1). For patient B
with FDG tracer, RTA reconstructed as well as P-MoCo reconstructed images yield
M2B ratios with respective 26.49 % and 44.73 % drops of M2B in the maximum
iteration compared to Gated. For Patient B including NH3 tracer, P-MoCo yield
M2B ratios in the range of Gated reconstructions with a relative drop of 26.44 %
M2B in the maximum iteration compared to Gated (see figure 4.14 and table 4.1).
Further, noise properties of the images were analysed leading to an average noise
increase of 60% in single gate reconstructions when comparing with P-MoCo, RTA
and static OSEM reconstructions (see table 4.2)

5.2 Discussion of XCAT-Phantom Results

When analysing the performance of the different MoCo approaches, that can be
seen in figure 4.1, it turned out that for the XCAT phantom throughout all motion-
patterns and all ROIs MCIR gave best results and OSEM gave worst results. The
performance of MCIR was even comparable to a static image (No Motion) that was
not afflicted by motion. This has also shown to be true when solely analysing my-
ocardium and liver or myocardium and lumen (see figure 4.2) for both simple 1D-or
complex 2D-respiratory motion. These findings were expected.

As we saw by the comparison of the performance of MCIR, P-Moco and RTA for
1D and 2D respiratory motion in terms of bias analysis (see figure 4.3) and ROI
analysis, we can conclude that all MoCo approaches can handle respiratory motion.
Further, the comparable range of absolute difference of 15 · 10−3 for RTA, 16 · 10−3

and 19 · 10−3 for P-MoCo in the conducted stability analysis (see figure 4.4) un-
doubtedly implies that MCIR, RTA and P-MoCo performance is not affected by
simple 1D and complex 2D respiratory motion.

These findings suggest that P-MoCo is a good tool for respiratory motion com-
pensation, yielding to comparable results as standard methods like MCIR or RTA.

5.3 Discussion of Numerical-Phantom Results

As expected, when analysing the performance of the different MoCo approaches,
that can be seen in figure 4.5, 4.6 and 4.7, it turned out that for the Numerical
phantom throughout all motion-patterns and all ROIs MCIR gave best results and
OSEM gave worst results.
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When the bias analysis was conducted, we realized significant impact of the motion-
complexity on the performance of the different MoCo approaches. As can be seen
in figure 4.8, especially for respiratory motion (1D), the image quality of P-MoCo
leads to a bias in the range of MCIR and RTA. By increasing motion complexity
to a mixture of complex respiratory and cardiac motion (2D and 3D motion), the
bias for P-MoCo is comparable to the one of OSEM (see figure 4.9). With this
observation, we were able to show that when adding components of cardiac motion
(2D and 3D), P-MoCo cannot keep up to MCIR and RTA performance.

We were able to validate the observed sensitivity of P-MoCo to complex 2D and
3D cardiac motion by a stability analysis (see figure 4.10). Comparable differences
of lesion-to-background ratios of 49 · 10−3 for MCIR and 72 · 10−3 for RTA, but of
497 · 10−3 for P-MoCo were found. Therefore, it needs be stated that the P-MoCo
is a good tool for respiratory motion compensation, yielding to comparable results
as approved methods like MCIR or RTA, but cannot handle complex motion like a
mixture of respiratory and cardiac motion.

With a separability analysis (see figure 4.11), we were able to show that MCIR gives
the best separation of myocardium and lesions while respiratory motion. Especially
for big lesions, afflicted with high activity, the quality of separation of P-MoCo is
comparable to the one of RTA.

Further analysis of the minimum activity in the area between Myocardium and
Lesion implies that P-MoCo is capable of separating small lesions in a comparable
quality to MCIR, when considering solely respiratory (1D) motion.

5.4 Discussion of Patient Data Results

As expected, when analysing the performance of the different MoCo approaches,
that can be seen in figures 4.12 and 4.13, it turned out that for patient A and B
for both tracers FDG and NH3, Gated reconstructions gave best results and static
OSEM reconstructions gave worst results.

When the Myocardium-to-Background (M2B) ratio analysis was conducted, we re-
alized that for both patients with FDG tracer, RTA images gave better performance
than P-MoCo images. For both patients with NH3 tracer it turned out to be the
directly opposite scenario in which P-MoCo images gave better performance than
RTA images (see figure 4.14). This behaviour can be explained by a higher num-
ber of breath-holding involved while ammonia-scans, compared to the amount of
breath-holding while FDG scans. Furthermore, the number of counts in the differ-
ent gates varied a lot. Performance losses of RTA can therefore also be explained
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by the similar weighting of the RTA algorithm of all the gates, without taking the
count-rate into account. At the moment, the observed trend for different tracers has
no statistical relevance since only four datasets were analysed.

With an analysis of the noise properties of the reconstructed images (see tables
4.2 and 4.1), we were further able to show that single-gate reconstructions are af-
flicted with on average 60 % higher noise than P-MoCo, RTA and static OSEM
reconstructions. Again it needs to be stressed that at the moment, this finding has
limited statistical relevance since only four datasets were analysed.

Motion Compensated Image Reconstruction (MCIR) evaluations were not included
in this work. The reason for not including MCIR is the occurrence of unexpected
artefacts in two of the four reconstructed datasets. Nonetheless, in the cases were the
MCIR worked well, we observed a similar behaviour than in the simulated phan-
tom acquisitions, with slight superior performance of the MCIR when comparing
with RTA or P-MoCo. The understanding of the origin of these artefacts and their
correction is still work in progress.

5.5 Comparison of XCAT-Phantom and Numerical-

Phantom

One of the primary goals of the investigations presented in this thesis was to find
out how far we can increase motion complexity without impairing the performance
of the Projection-Based Motion Compensation (P-MoCo) approach.

By simulating two levels of complexity of solely respiratory motion (1D and 2D)
via the XCAT phantom and three levels of motion complexity via the numerical
phantom, including 1D respiratory motion and complex 2D and 3D respiratory and
cardiac motion, we were able to directly observe the impact of the different motion-
patterns on the performance of P-MoCo and validate the findings against approved
methods like MCIR or RTA.

The stability analysis of the different MoCo approaches for XCAT phantom and
Numerical Phantom in all simulated motion patterns (see figures 4.4 and 4.10) gave
clear insight in how far motion complexity can be increased without impairing the
performance of P-MoCo. On the one hand, we showed that the absolute differences
of 15 · 10−3 for RTA, 16 · 10−3 and 19 · 10−3 for P-MoCo satisfy the stability criteria
3.15 for XCAT phantom. On the other, we showed that the absolute differences
of 49 · 10−3 for MCIR and 72 · 10−3 for RTA satisfy the stability criteria 3.14 for
Numerical phantom, but the absolute difference of 497 · 10−3 for P-MoCo do not
satisfy the stability criteria 3.14 for Numerical phantom.
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These findings highly suggest that P-MoCo is a good tool for respiratory motion
compensation, yielding to comparable results as approved methods like MCIR or
RTA, but cannot handle complex motion like a mixture of respiratory and cardiac
motion.

5.6 Comparison of Phantom-Data studies and

Patient Data studies

In a further attempt of investigating how far we can increase motion complexity
without impairing the performance of the P-MoCo approach, we analysed patient
datasets.

With the Patient-Data studies, the two already existing stages of motion complex-
ity, namely (i) solely respiratory motion (simulated with XCAT phantom) and (ii)
a mixture of respiratory motion (simulated with numerical phantom), have been
raised by a third stage. The reconstructed Patient Data consist of respiratory and
cardiac motion, but were solely analysed with respiratory gating. Therefore patient
data acts as an intermediate stage of motion complexity between XCAT phantom
and numerical phantom and tops off the investigation of P-MoCo.

With the Patient-Data studies, that basically reflect the findings of the Phantom-
Data studies, we were able to show that for FDG tracer, RTA images gave better
performance than P-MoCo images and for NH3 tracer P-MoCo images gave better
performance than RTA images. Nevertheless, up to now, due to a low number of
datasets, these findings have limited statistical relevance and more datasets need to
be analysed.

These findings suggest that the P-MoCo approach is capable of reconstructing
patient-data, yielding to comparable results as standard methods like RTA. Ac-
cording to the findings of the first datasets, the performance of P-MoCo may vary
with different tracers. However, this statement is lacking statistical relevance and
needs to be further investigated.



6. Conclusion and Outlook

In a general attempt of investigating how far we can increase motion complexity
without impairing the performance of the data-driven Projection-Based Motion
Compensation (P-MoCo) approach, we studied the performance of P-MoCo in
different levels of motion complexity. By simulating different levels of motion
complexity including solely 1D and 2D respiratory motion and a mix of complex
1D, 2D and 3D respiratory and cardiac motion, we were able to directly observe
the impact of the different motion-patterns on the performance of P-MoCo and
validate the findings against approved methods like MCIR or RTA. In a further
step we studied the P-MoCo approach with real patient data. We found significant
sensibility of the P-MoCo performance regarding to the prevalent motion complexity.

Final Conclusion

The findings in this paper highly suggest that P-MoCo is a good and useful tool
for respiratory motion compensation, yielding to comparable results as standard
methods like MCIR or RTA, but cannot handle complex motion like a mixture of
respiratory and cardiac motion in two and three dimensions. Especially for hot
lesions, the quality of separation of P-MoCo was found to be comparable to the one
of RTA and when considering solely respiratory motion even comparable to MCIR.
Finally, P-MoCo is capable of reconstructing patient-data, yielding to comparable
results as approved methods like RTA. According to the findings of the first datasets,
the performance of P-MoCo may vary with different tracers.

Outlook

In order to adequately cover the wide range of simulated motion complexity, the
P-MoCo also needs to be tested with XCAT simulations that involve a mixture of
respiratory and cardiac motion. Further, the findings of the first patient datasets
suggest that the performance of P-MoCo may vary with different tracers. These
findings needs to be validated using a larger number of patient datasets.
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