
DIPLOMARBE IT

Numerical Continuation for Periodic
Pipe Flow with Finite Element Method

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Masterstudium technische Mathematik

eingereicht von

Dominik Worf
Matrikelnummer 01025569

Gentzgasse 132/14
1180 Wien

ausgeführt am Institut für Analysis und Scientific Computing
der Fakultät für Mathematik und Geoinformation
der Technischen Universität Wien

Betreuer: Ass. Prof. Dr. Christian Kühn

Wien, 27.03.2018
Verfasser Betreuer

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 



ii



Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst
habe, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und
die aus anderen Quellen entnommenen Stellen, einschließlich Tabellen und
Abbildungen, als solche gekennzeichnet habe.

Wien, am 27.03.2018

Dominik Worf

iii



iv



Abstract

This thesis is concerned with the continuation theory of incompressible pe-
riodic pipe flow. For describing the dynamics of incompressible fluids we
use the incompressible Navier-Stokes equation. For a better understanding
of it we’ll look at its derivation.

For a long time now the consensus has been that the laminar solution is
linearly stable for all Reynolds numbers. The original idea of this thesis
was to adapt a numerical continuation procedure to see if it is possible to
jump from the laminar solution branch onto a turbulent one, as it happens
in practical experiments.

Therefore we inspect the different numerical methods that are used in this
procedure. Especially we look at a preconditioner for the linearized problem
as the matrix given by the finite element method, using Hood-Taylor ele-
ments, becomes less well conditioned as the Reynolds number increases.
Prompted by this we look at the convection-diffusion equation and the
streamline diffusion discretisation to be able to use it in a multigrid method.

To motivate the use of the continuation procedure we look at bifurcation
theory, with Fredholm operators and Crandall-Rabinowitz’ theorem. We
also take a short look at the Allen-Cahn equation to test if the algorithm is
correctly defined.

Keywords: Navier-Stokes equation, finite element method, Hood-Taylor
elements, convection-diffusion equation, streamline-diffusion method, pre-
conditioning, bifurcation theory, Allen-Cahn equation

v



Kurzfassung

Diese Arbeit befasst sich mit der Pfadverfolgungstheorie inkompressibler
periodischer Rohrströmung. Zur Beschreibung der Dynamik von inkom-
pressiblen Fluiden nutzen wir die inkompressible Navier-Stokes Gleichung.
Um diese besser zu verstehen betrachten wir auch ihre Herleitung.

Lange Zeit besteht schon der Konsens, dass die laminare Lösung für alle
Reynolds-Zahlen linear stabil ist. Die ursprüngliche Idee dieser Arbeit war
einen numerischen Pfadverfolgungsalgorithmus zu adaptieren, um zu sehen
ob es möglich ist von der laminaren Lösung auf eine turbulente zu springen,
so wie es auch in praktischen Experimenten passiert.

Deshalb betrachten wir die verschiedenen numerischen Methoden die in
diesem Algorihmus verwendet werden. Insbesondere betrachten wir einen
Vorkonditionierer für das linearisierte Problem, da die Matrix aus der Finiten
Elemente Methode, mit Hood-Taylor Elementen, mit steigender Reynolds-
Zahl immer schlechter konditioniert wird. Das führt uns zur Konvektions-
Diffusionsgleichung und zur Streamline-Diffusion Diskretisierung um sie in
einer Multigrid Methode zu verwenden.

Um die Pfadverfolgungsmethode zu motivieren betrachten wir auch die Bi-
furkationstheorie, mit Fredholm Operatoren und dem Satz von Crandall-
Rabinowitz. Wir betrachten auch kurz die Allen-Cahn Gleichung um zu
testen ob der Algorihmus richtig definiert ist.

Schlagworte: Navier-Stokes Gleichung, Finite Elementen Methode, Hood-
Taylor Elemente, Konvektions-Diffusionsgleichung, Streamline-Diffusion
Methode, Vorkonditionierung, Bifurkationstheorie, Allen-Cahn Gleichung

vi



Acknowledgements

First I want to thank my thesis advisor Prof. Christian Kühn for all the time
he has invested in tutoring and giving his advice. I also want to thank him
for his enormous patience after this thesis took way longer than expected.

I want to thank Prof. Joachim Schöberl and his team for answering all my
questions and giving me advice regarding their program Netgen/NGSolve.

I thank my proofreader Isabella for reading the text with the unbiased eyes
of someone who isn’t already used to every notation there is in FEM and
also for steadily pressuring me to work harder.

Also I want to thank all my friends and family who have supported me
during my studies.

vii



Contents

Abstract v

Kurzfassung vi

List of Figures x

1 Introduction 1

1.1 Experimental history . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Theoretical history . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Numerical Methods 5

2.1 Galerkin method . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Coercive problems . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Inf-sup stable problems . . . . . . . . . . . . . . . . . . . . . 7

2.4 Mixed problems . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Finite element method . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Finite element system assembling . . . . . . . . . . . . 12

2.5.2 Boundary conditions . . . . . . . . . . . . . . . . . . . 13

2.6 Eigenvalue calculation . . . . . . . . . . . . . . . . . . . . . . 14

2.6.1 Arnoldi algorithm and approximate eigenvalue calcu-
lation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.2 Implicitely restarted Arnoldi . . . . . . . . . . . . . . 16

2.6.3 Shift invert method . . . . . . . . . . . . . . . . . . . 20

2.7 Multigrid preconditioning . . . . . . . . . . . . . . . . . . . . 20

2.7.1 Two Grid (TG) . . . . . . . . . . . . . . . . . . . . . . 20

2.7.2 Multigrid (MG) . . . . . . . . . . . . . . . . . . . . . . 24

3 The Navier-Stokes Equation 27

3.1 Transport theorem . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Conservation of mass (continuity equation) . . . . . . . . . . 29

3.3 Conservation of momentum (Equation of motion) . . . . . . . 29

3.4 Conservation of energy . . . . . . . . . . . . . . . . . . . . . . 30

viii



CONTENTS ix

3.5 Derivation of the Navier-Stokes equation . . . . . . . . . . . . 31
3.6 Dimensionless form . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Description of our Problem . . . . . . . . . . . . . . . . . . . 33
3.8 Analysis of the Navier-Stokes equation . . . . . . . . . . . . . 34

3.8.1 Solving the nonlinear equation . . . . . . . . . . . . . 34
3.8.2 Analysis of the linearized problem . . . . . . . . . . . 37
3.8.3 Numerics of the linearized problem . . . . . . . . . . . 42

3.9 Convection-diffusion equation . . . . . . . . . . . . . . . . . . 47
3.10 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10.1 Approximating F . . . . . . . . . . . . . . . . . . . . . 51
3.10.2 Approximating the Schur complement S . . . . . . . . 52

4 Bifurcation theory 54
4.1 Bifurcation theory . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 Bifurcation theory for ODEs . . . . . . . . . . . . . . 54
4.1.2 Lyapunov-Schmidt theorem . . . . . . . . . . . . . . . 55
4.1.3 Crandall-Rabinowitz . . . . . . . . . . . . . . . . . . . 57
4.1.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Arclength continuation . . . . . . . . . . . . . . . . . . . . . . 58
4.2.1 Role of weight ξ . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Switching branches . . . . . . . . . . . . . . . . . . . . 60

5 Experiments 63
5.1 Allen-Cahn equation . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Boundary layer . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Testing the preconditioner . . . . . . . . . . . . . . . . . . . . 66

5.3.1 Value of the preconditioner . . . . . . . . . . . . . . . 66
5.3.2 Boundary layer influence . . . . . . . . . . . . . . . . . 67
5.3.3 NSolve versus NCorr . . . . . . . . . . . . . . . . . . . 69
5.3.4 computing eigenvalues . . . . . . . . . . . . . . . . . . 70

5.4 Pipe continuation . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4.1 Ideas for testing in pipe flow . . . . . . . . . . . . . . 71

A Appendix 73
A.1 Boundary layer approximation . . . . . . . . . . . . . . . . . 73
A.2 Used code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.2.1 ContCollection . . . . . . . . . . . . . . . . . . . . . . 77
A.2.2 cont . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.2.3 NSolve and NCorr . . . . . . . . . . . . . . . . . . . . 78
A.2.4 biseccont . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2.5 swibra . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2.6 Example script . . . . . . . . . . . . . . . . . . . . . . 79



List of Figures

2.1 A hatfunction visualized. . . . . . . . . . . . . . . . . . . . . 11
2.2 The most common reference triangle T̂ . . . . . . . . . . . . . 11
2.3 The mapping p visualized . . . . . . . . . . . . . . . . . . . . 13
2.4 V-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 W-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 FMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Sketch of the pipe . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 One macroelement (Ωr) with its reference element (J = 8). . 44

4.1 Phase portraits of the normal forms. . . . . . . . . . . . . . . 55

5.1 Comparison of plots for Allen-Cahn . . . . . . . . . . . . . . 63
5.2 The bifurcation diagram in the H1-norm for Allen-Cahn. . . 64
5.3 Comparison for different number of calculated eigenvalues . . 64
5.4 Solutions on the three nontrivial branches. . . . . . . . . . . . 65
5.5 The number of gmres-iterations required. . . . . . . . . . . . 68
5.6 Path of the laminar solution. . . . . . . . . . . . . . . . . . . 71

x



Chapter 1

Introduction

How and why does laminar flow become turbulent? This question is as old
as fluid dynamics itself. It is very important since turbulent flow needs
more energy than laminar flow. Therefore pipe flow is one of the classical
problems of stability theory. We now know that the laminar flow in pipes
is linearly stable. This means that transition can only be started by finite
amplitude disturbances. Transitional flow thus is delicate but leads abruptly
to a very disordered motion. It is mostly areas of turbulence seperated by
regions of laminar flow.

Due to the cylindrical geometry of pipe flow this transition process starts
at higher relative flow rates than in planar flow. This is the reason why it
is the least studied type theoretically although it is the easiest to realise in
the lab.

In the next two sections I’ll give a short overview over the history of this
subject summarised from [9].

I want to construct a bifurcation diagram for the problem of periodic
pipe flow using the finite element method. This thesis is structured into
two parts: at first we’ll look at the theory of the problem, in the second
part we’ll look at the computational experiments. In chapter 2 we’ll look
at the numerical methods used, especially finite lement method for mixed
problems. Afterwards we’ll look at the Navier-Stokes equation itself and
its numerical properties in chapter 3. In the last chapter of the theoretical
part we’ll look at bifurcation theory and the algorithm used to construct
the bifurcation diagram. Finally in chapter 5 I will show the results of my
computations.

1.1 Experimental history

The first serious experimental studies of pipe flow were carried out by
Gotthilf Hagen in 1839 and Jean Poiseuille in 1840. Poiseuille concentrated
on small capillaries of 0.015 to 0.6 mm and therefore only got laminar flow

1



2 CHAPTER 1. INTRODUCTION

while Hagen used pipes of larger diameter of about 2.5 to 6 mm. Thus he
also got the unsteady three-dimensional flow.

Due to their work pipe flow is nowadays known as Hagen-Poiseuille flow
(HPF).

In 1883 Reynolds realised that a non-dimensional number was enough
to characterise flow. This lead to the Reynolds-number Re.

He also discovered that the transitional Reynolds-number Ret varied
according to the level of disturbance. He found that the earliest onset of
turbulence was at about Ret ≈ 2000, but was also able to push the transition
to about Ret ≈ 12000 in more tightly controlled experiments. Since then
the lower number was confirmed many times while the higher number was
able to be pushed even further (Ret ≈ 100000).

The implication of this is that there exists a threshold of disturbances
which decreases as Re increases.

Reynolds also found that the flow becomes turbulent in patches seperated
by laminar areas.

This was later studied by Wygnanski (1970s) and he found two different
states, called puffs and slugs:

• Puffs are turbulent regions with sharp upstream and blurred down-
stream boundaries. These are found for 2000 . Re . 2700 and have
a length of about 20-30 pipe diameters. The speeds of the up- and
downstream borders are roughly equal and a bit less than the mean
flow velocity. Thus fluid passes through puffs and they can be seen as
an incomplete relaminarisation process.

• Slugs are also turbulent regions with sharp upstream but also sharp
downstream boundaries. Flow inside a slug looks equal to turbulent
pipe flow. Slugs are found for Re > 3200 where the upstream front
moves slower than the mean flow while the downstream front moves
faster. This means that fluid in a slug is trapped and never relami-
narises.

In 1995 Darbyshire and Mullin mapped the finite amplitude threshold curve.
Afterwards Draad et al. (1998) found that this curve is sensitive to the
frequency of perturbations. It also depends on their azimuthal structure.
Hof et al. found that this can be lowered to a Re−1 scaling for 2000 < Re <
20000 if the perturbation is applied long enough.

1.2 Theoretical history

The first theoretical work put small perturbations on HPF. Rayleigh found
in 1892 that inviscid infinitesimal disturbances don’t grow, thus we know
that HPF is inviscidly linearly stable. Sexl incorporated in 1927 the effects
of viscosity and found that HPF is also stable to axisymmetric disturbances.



1.2. THEORETICAL HISTORY 3

After these findings many studies concentrated an asymmetric distur-
bances. Now the consensus is that it is linearly stable, although no proof
for this is found yet (as far as I have found).

On the other side Joseph and Carmi found in 1969 that HPF is a global
attractor for Re < 81.49. This leaves a large gap between 81.49 and 2000
which isn’t really explained. The gap could be closed by rotating the pipe
as the transitional Reynolds-number Ret falls to 82.88 in the limit as the
rotatioin rate goes to infinity but that completely changes the problem.

In the early nineties people started to focus on the ability of certain
disturbances to temporarily grow algebraicly in shear flows. Physically this
happens if a small initial disturbance with some wall-normal velocities is
introduced. The wall-normal velocities only decay weakly, this leads to a
slow advection of the mean shear which can produce large local anomalies
in the streamwise velocity called streaks. Mathematically this is due to the
non-normality of the linear operator.

This non-normality means that the eigenfunctions of this operator are
not orthogonal (in the energy norm) which means that some initial condi-
tions are poorly spanned. This means that some coefficients in the eigenfunc-
tion expansion need to be very large due to some eigenfunctions canceling.
When the eigenfunctions then decay with different rates it looses this ini-
tial cancellation and the large coefficients become significant. This leads to
a temporary period of algebraic growth. (In [9] a simple example for this
process is given).

In pipe flow these inital conditions are two-dimensional streamwise in-
dependent vortices (rolls) with an azimuthal wavenumber of one. These can
lead to ’streaks’ or azimuthal (spanwise) variations in the mean flow.

In this linearized setting the inital disturbance of streamwise rolls can be
amplified by O(Re2) in energy (while changing into streaks) before decaying
in O(Re) time.

Then people looked at how energy could be fed back from streaks into
rolls. Zikanov (1996) studied three-dimensional linear instability of pipe
flow when adding two-dimensional streamwise rolls. He found that if rolls
induce large enough streaks inflection points appear which are unstable to
three-dimensional disturbances.

During this time the question shifted from how turbulence is initiated
to how it is maintained.

Waleffe (1995) found a spatially and temporally organised cycle of events
during turbulence. It has three phases:

• formation of streaks by streamwise vortices,

• breakdown of streaks,

• regeneration of streamwise vortices.



4 CHAPTER 1. INTRODUCTION

The last phase was least understood since it is fundamentally nonlinear but
it looked like the streaks directly regenerated the rolls. He explored this by
confirming the feasibility of each phase in isolation. With this he showed
that the streak instability could feed energy back into the rolls. Thus he
found a potentially self-sustaining process (SSP).

He converted this into a smooth numerical continuation procedure. With
this he got nonlinear steady state solutions and travelling wave solutions for
plane Couette and Poiseuille flow to arbitrary accuracy.

These consist of the three flow structures discussed such that they main-
tain each other against viscous decay.

People thought that one of these solutions might be an organising centre
for the found quasi-cycle.

In 2001 Kawahara and Kida confirmed that there exists a periodic orbit
which uses a version of Waleffe’s SSP.

The appearance of a streak instability is now considered enough to signify
transition.

Ma et al (1999) confirmed numerically this sequence:

rolls→ streaks→ streak instability→ turbulence.

The biggest problem for numerical simulation is to ensure that the pipe is
long enough while still having a usable resolution that transitional structures
can evolve. This is a problem only in transitional flow, in fully developed
turbulent flow this is no problem (see [9]).



Chapter 2

Numerical Methods

In this chapter we’ll look at the different numerical methods that are used
in the continuation algorithm. We’ll start with the Galerkin method and
the finite element method (FEM) in particular. FEM is a method for ap-
proximating the solution of the weak form of a partial differential equation
(PDE) in a finite dimensional subspace.

The main sources for the background are [1], [3] and [12].

2.1 Galerkin method

A linear PDE in its weak form is given by a bilinearform a(u, v) and a
linearform f(v) on a space V :

find u ∈ V : a(u, v) = f(v) ∀v ∈ V.

The idea of the Galerkin method is to solve this problem in a finite dimen-
sional subspace Vh ⊂ V :

find uh ∈ Vh : a(uh, vh) = f(vh) ∀vh ∈ Vh.

2.2 Coercive problems

To gain existence and uniqueness of a solution we need the following defini-
tion.

Definition 1. A bilinearform a(u, v) on a Hilbertspace V is called

1. continuous if there exists C > 0 such that

a(u, v) ≤ C‖u‖V ‖v‖V ∀u, v ∈ V.

2. coercive if there exists α > 0 such that

a(u, u) ≥ α‖u‖2 ∀u ∈ V.

5



6 CHAPTER 2. NUMERICAL METHODS

With these properties we can prove existence and uniqueness with Lax-
Milgram:

Theorem 1. Given a Hilbertspace V , a coercive and continuous bilinear-
form a(·, ·) and a continuous linearform f(·). Then there exists a unique
solution u ∈ V of

a(u, v) = f(v) ∀v ∈ V,

There holds

‖u‖V ≤ α−1‖f‖V ∗ .

Proof. The proof of this theorem can be found in [12].

For the approximating problem the solvability is inherited from the orig-
inal problem. The approximation error is quasi-optimal:

Theorem 2 (Cea). The approximating error of the Galerkin method is
quasi-optimal

‖u− uh‖V ≤
C

α
inf

vh∈Vh
‖u− vh‖V .

Proof. A very important property is the Galerkin orthogonality: u ∈ V also
solves the discrete problem

a(u, vh) = f(vh) ∀vh ∈ Vh.

Therefore

a(u− uh, vh) = a(u, vh)− a(uh, vh) = f(vh)− f(vh) = 0 ∀vh ∈ Vh.

Now with an arbitrary vh ∈ Vh

‖u− uh‖2V ≤
1

α
a(u− uh, u− uh)

=
1

α
a(u− uh, u− vh) +

1

α
a(u− uh, vh − uh︸ ︷︷ ︸

∈Vh

)

︸ ︷︷ ︸
=0

≤ C

α
‖u− uh‖V ‖u− vh‖V .

By dividing ‖u− vh‖V we get an estimate which also holds for the infimum
since vh was arbitrary.



2.3. INF-SUP STABLE PROBLEMS 7

2.3 Inf-sup stable problems

It is not always possible to show coercivity, therefore we need a weaker
property to show solvability.

Definition 2. Let V and W be Hilbertspaces. A continuous bilinearform
b(·, ·) : V ×W → R, fulfills the inf-sup condition if there exists β > 0 such
that

inf
u∈V,
u6=0

sup
v∈W,
v 6=0

b(u, v)

‖u‖V ‖v‖W
≥ β.

We also need another condition in the other direction

∃β1 > 0 : inf
v∈W,
v 6=0

sup
u∈V,
u6=0

b(u, v)

‖u‖V ‖v‖W
≥ β1.

Here it suffices to use the weaker condition

sup
u∈V,
u6=0

b(u, v)

‖u‖V ‖v‖W
> 0 ∀v ∈W. (2.1)

Theorem 3. Let b(·, ·) be a continuous bilinearform which fulfills the inf-sup
condition (Def. 2) and condition (2.1). Then

b(u, v) = f(v) ∀v ∈W.

has a unique solution. This problem is then called inf-sup-stable. The solu-
tion depends continuously on the righthandside

‖u‖V ≤ β−1
1 ‖f‖W ∗ .

Proof. The proof of this theorem can be found in [12].

For the approximating problem of inf-sup-stable problems the solvability
isn’t inherited, so we need an extra inf-sup condition for the discrete problem

inf
uh∈Vh,
uh 6=0

sup
vh∈Wh,
vh 6=0

b(uh, vh)

‖uh‖V ‖vh‖W
≥ βh. (2.2)

On a finite dimensional space we don’t need the second condition since
injectivity is equivalent to surjectivity.

Again we can show quasi-optimality



8 CHAPTER 2. NUMERICAL METHODS

Theorem 4. Let b(·, ·) be a continuous bilinearform which fulfills the dis-
crete inf-sup condition (2.2). Then there holds

‖u− uh‖V ≤ (1 +
C

βh
) inf
vh∈Vh

‖u− vh‖V .

Proof. Again Galerkin orthogonality b(u,wh) = b(uh, wh) holds for all wh ∈
Wh. Again choose an arbitrary vh ∈ Vh:

‖u− uh‖V ≤ ‖u− vh‖V + ‖vh − uh‖V

≤ ‖u− vh‖V +
1

βh
sup

wh∈Wh,
wh 6=0

b(vh − uh, wh)

‖wh‖W

= ‖u− vh‖V +
1

βh
sup

wh∈Wh,
wh 6=0

b(vh − u,wh)

‖wh‖W

≤ ‖u− vh‖V +
1

βh
sup

wh∈Wh,
wh 6=0

C‖vh − u‖V ‖wh‖W
‖wh‖W

= (1 +
C

βh
)‖u− vh‖V .

2.4 Mixed problems

The linearised Navier-Stokes equation looks a bit different than the general
problem we looked at before. It uses two Hilbert spaces H1 and L2 and two
bilinearforms. Therefore we need the theory of mixed problems. A mixed
problem uses two Hilbert spaces V and Q, bilinearforms

a(u, v) : V × V → R,
b(u, q) : V ×Q→ R

and continuous linearforms

f(v) : V → R,
g(q) : Q→ R.

The problem then is to find u ∈ V , p ∈ Q such that

a(u, v) + b(v, p) = f(v) ∀v ∈ V,
b(u, q) = g(q) ∀q ∈ Q.

One can see this as one big equation with one big bilinearform in the space
V ×Q:

B((u, p), (v, q)) = a(u, v)+b(v, p)+b(u, q) = f(v)+g(q) (v, q) ∈ V ×Q.



2.5. FINITE ELEMENT METHOD 9

If this bilinearform fulfills the conditions of theorem 3 there exists a unique
solution. To get this, we can just look at the mixed problem with Brezzi’s
theorem.

Theorem 5 (Brezzi). Let a(·, ·) and b(·, ·) be continuous bilinearforms

a(u, v) ≤ α2‖u‖V ‖v‖V ∀u, v ∈ V,
b(u, q) ≤ β2‖u‖V ‖q‖Q ∀u ∈ V, ∀q ∈ Q.

Assume a(·, ·) is coercive on the kernel,

a(u, u) ≥ α1‖u‖2V ∀u ∈ V0 = {v ∈ V : b(v, q) = 0, ∀q ∈ Q},

and there holds the LBB (Ladyshenskaja-Babuška-Brezzi) condition

sup
u∈V,
u6=0

b(u, q)

‖u‖V
≥ β1‖q‖Q ∀q ∈ Q.

Then, the mixed problem is uniquely solvable. The solution fulfills

‖u‖V + ‖p‖Q ≤ c(‖f‖V ∗ + ‖g‖Q∗)

with the constant c depending on α1, α2, β1, β2.

Proof. The proof of this theorem can be found in [12].

Again to show the solvability of the discrete problem we have to show
the discrete LBB condition

sup
uh∈Vh,
uh 6=0

b(uh, qh)

‖uh‖V
≥ β1‖qh‖Q ∀qh ∈ Qh.

2.5 Finite element method

In the sections before we discussed the Galerkin approximation. The finite
element method is a special case of the Galerkin approximation. The idea is
to choose a special finite dimensional subspace Vh of V to work with simple
basis functions. FEM uses a space of piecewise polynomial functions, since
it leads to sparse matrices. This is done by triangulating the domain Ω on
which the PDE is defined. In case of 2D-problems this is done by partitioning
into triangles, in the case of 3D-problems this is done by partitioning into
tetrahedrons. (It can also be done by using convex quadrilaterals (2D) or
bricks (3D).) The triangulation of Ω will be denoted by T .

There are certain properties that are important descriptors of the quality
of the triangulation. The first one describes the coarseness of the mesh, by
defining on each triangle (or tetrahedron) T

hT := diam(T )



10 CHAPTER 2. NUMERICAL METHODS

and taking the maximum of this h := maxT∈T hT . The shape of the triangles
is also very important and can be described by

ρT := sup{diam(B) : B is a ball contained in T}.

Together these quantities give the regularity of T by

σT :=
hT
ρT
.

Definition 3 (regular triangulation). A family of triangulations Th of Ω is
called regular as h → 0 if there exists a constant σ > 0, independent of h
and T , such that

σT ≤ σ ∀T ∈ Th.

Th is called uniformly regular for h → 0 if there exists another constant
τ > 0 such that

τ · h ≤ hT ≤ σ · ρT ∀T ∈ Th.

Altough the problem is 3D we will look at 2D here because it is easier to
describe but it is the same principle. The subspace for V can be described
with

Vh = {v ∈ V : ∀T ∈ T : v|T ∈ Pk(T )}.

Where Pk(Ω) is the space of all polynomials of order≤ k on Ω. This is done
by using basis functions on the seperate triangles or patches. This leads to
Ciarlet’s definition of finite elements.

Definition 4 (Finite element). A finite element is a triple (T, VT ,ΨT ) where

1. T is a bounded set,

2. VT is a function space on T of finite dimension NT ,

3. ΨT = {ψ1
T , . . . , ψ

NT
T } is a set of linearly independent functionals on

VT .

Often the finite element is simply denoted by its bounded set T . The
basis {φ1

T , . . . , φ
NT
T } for VT dual to ΨT , i.e.

ψiT (φjT ) = δij ,

is called the nodal basis.
The most famous version are the hat functions which are defined on

the vertex patch, which is the set of triangles which contain the vertex
(wv =

⋃
v∈T T ), by constructing a function which is 1 on the vertex, 0 on

the other vertices and linear on the triangles (fig. 2.1). The dual basis ψT
then are the point evaluation functionals on the vertices ψi(uh) = uh(vi).



2.5. FINITE ELEMENT METHOD 11

φi(vi) = 1

φi(vj) = 0
vi

Figure 2.1: A hatfunction visualized.

(0, 0)

(0, 1)

(1, 0)

Figure 2.2: The most common reference triangle T̂ .

A function uh ∈ Vh then can be described by

uh =
N∑
i=1

uiφi , ui = ψi(uh).

The ui then are called degrees of freedom.

When implementing these elements one usually defines a finite element
on a reference triangle (fig. 2.2) and then uses equivalence to define it on
more general triangles.

Definition 5. Two finite elements (T, VT ,ΨT ) and (T̂ , VT̂ ,ΨT̂ ) are called
equivalent if there exists an invertible function F such that

• T = F (T̂ ),

• VT = {v̂ ◦ F−1 : v̂ ∈ VT̂ },

• ΨT = {ψTi : VT → R : v 7→ ψT̂i (v ◦ F )}.



12 CHAPTER 2. NUMERICAL METHODS

They are called interpolation equivalent if

IT (v) ◦ F = IT̂ (v ◦ F ) ∀v ∈ VT ,

where IT , IT̂ are the so-called local nodal interpolation operators

IT v :=

NT∑
α=1

ψαT (v)φαT .

For triangles the function FT then can be the affine mapping of the
reference triangle onto the general triangle

FT (x̂) = BT x̂ + bT ,

where BT is a suitable matrix in R2×2 and bT a suitable vector in R2. There
are certain properties of this mapping that can be important for showing
the necessary conditions on the finite element space (e.g. the discrete LBB-
condition). When v̂ = v ◦ FT there holds (see [6])

‖BT ‖ ≤
hT
ρT̂
,

‖B−1
T ‖ ≤

hT̂
ρT
,

|v|m,p,T ≤ C1‖B−1
T ‖

m|det(BT )|
1
p |v̂|m,p,T̂ ∀v̂ ∈Wm,p(T̂ ),

|v̂|m,p,T̂ ≤ C2‖BT ‖m|det(BT )|−
1
p |v|m,p,T ∀v ∈Wm,p(T ).

(2.3)

2.5.1 Finite element system assembling

The finite element problem is

Find uh ∈ Vh such that a(uh, vh) = f(vh) ∀vh ∈ Vh.

We describe uh as its basis expansion

uh =
N∑
i=1

uiφi,

also we can reduce the number of testfunctions vh to the basis functions

a(

N∑
i=1

uiφi, φj) = f(φj) ∀j = 1 . . . N.

With
Aij := a(φi, φj) and fj := f(φj)

we get a linear equation system

Au = f .

If we then solve this equation we get the coefficients ui of the solution uh
and therefore the solution of the finite element problem.



2.5. FINITE ELEMENT METHOD 13

j = p(j) = p(`)

j + 1 = p(j + 1) = p(`+ 1)
`

`+ 1

Figure 2.3: The mapping p visualized

2.5.2 Boundary conditions

We still need to look at how to implement boundary conditions. We will
look at Dirichlet boundary conditions and periodic boundary conditions
(Neumann boundary conditions are already in the weak formulation and
therefore taken care of).

In the case of Dirichlet boundary conditions we split the degrees of
freedom {1, . . . , N} into those that correspond to points on the Dirichlet
boundary γD ⊂ {1, . . . , N} and those that don’t γf = {1, . . . , N}\γD. For
the hatfunctions these represent the vertices on the boundary, for different
elements this can be the edges or similar shapes (e.g. faces in 3D).

In the case of periodic boundary conditions we already have to keep
track of the elements when constructing the mesh because for every degree
of freedom on one side there has to be one on the other side so that they can
be mapped onto each other. This means every surface element on one side
looks like the corresponding one on the other side. We introduce a mapping
p which maps all degrees of freedom of one side onto the corresponding
degrees of freedom on the other side while keeping mapped onto degrees
of freedom the same and keeping degrees of freedom which are not in the
periodic boundary the same (see figure 2.5.2.

When we then assemble the linear equation system we get a reduced
system with the reduced matrix Aper and the reduced vector fper

Aperuper = fper.

Where for every entry in Aper of a degree of freedom which gets mapped
onto we also have to add the contribution of the mapped degree of freedom

aper,p(l)=p(i),p(k)=p(j) = ai,j + al,k,

similarly for fper
fper,p(l)=p(i) = fl + fi.

This is often already done during the assembly by simply adding the element-
contributions at the right spot.

After we have solved the linear equation system we get the full solution
out of our reduced solution by simply setting

ui = uper,p(i).



14 CHAPTER 2. NUMERICAL METHODS

2.6 Eigenvalue calculation

We’ll need to calculate eigenvalues to gain statements about stability. I
used the function eigs from scipy [7] which in turn uses ARPACK [11].
The functions of ARPACK are based on the implicitely restarted Arnoldi
algorithm (IRA).

I’ll now describe the Arnoldi algorithm and how it is used for the calcula-
tion of eigenvalues. For an in depth view on large scale eigenvalue problems
see [1].

2.6.1 Arnoldi algorithm and approximate eigenvalue calcu-
lation

The Arnoldi algorithm is an algorithm to calculate an orthonormal basis of
the Krylov-subspace

Kj(x) := Kj(x, A) := span{x, Ax, . . . , Aj−1x}

by using the Gram-Schmidt orthogonalization process. Let {q1, . . . ,qi} be
an orthonormal basis of Ki(x) for i ≤ j define

yj := Ajx−
j∑
i=1

qiq
∗
iA

jx,

qj+1 :=
yj
‖yj‖

.

The orthonormal basis {q1, . . . ,qj+1} of Kj+1(x) reached this way is called
Arnoldi basis and the qi are called Arnoldi vectors. Since

Kj+1(x) = span{q1, . . . ,qj , Aqj},

it’s more economical to orthogonalize Aqj against q1, . . . ,qj instead of Ajq.
The component rj of Aqj orthogonal to {q1, . . . ,qj} then is

rj = Aqj −
j∑
i=1

qi(q
∗
iAqj).

If rj = 0 the procedure stops and we have found an invariant subspace under
A, i.e.

q ∈ Kj(x)⇒ Aq ∈ Kj(x).

If ‖rj‖ > 0 we set

qj+1 =
rj
‖r‖

.

It follows that
q∗j+1rj = ‖rj‖ = q∗j+1Aqj ,



2.6. EIGENVALUE CALCULATION 15

where the second equation holds true because qj+1 is orthogonal to all pre-
vious Arnoldi vectors.. Define

hi,j := q∗iAqj ,

then

Aqj =

j+1∑
i=1

qihi,j . (2.4)

Algorithm 2.1 Arnoldi algorithm

Let A ∈ Fn×n.
q1 := x/‖x‖2
for j = 1, . . . , k do

r := Aqj
for i = 1, . . . , j do

hi,j := q∗r
r := r− qihi,j

end for
hj+1,j := ‖r‖
if hj+1,j = 0 then

return (q1, . . . ,qj , H ∈ Fj×j)
end if
qj+1 := r/hj+1,j

end for
return (q1, . . . ,qk+1, H ∈ Fk+1×k)

The resulting matrix Hk then is an upper Hesenberg matrix. If we define
Qk := (q1, . . . ,qk) with (2.4) we get

AQk = QkHk + qk+1hk+1,ke
∗
k (2.5)

which is called Arnoldi relation.

The Arnoldi algorithm is very expensive and gets more expensive in
each step (in both memory cost and computational cost). Therefore often
a restarted version is used, which in general means that an algorithm is
repeated with an initial vector gained from a previous use of the algorithm.

If hm+1,m = 0 the algorithm stops and from (2.5) we get

AQm = QmHm.

We see that eigenvalues of Hm are eigenvalues of A. Vectors Qmy where y is
any eigenvector ofHm are called Ritz vectors. The corresponding eigenvalues
of Hm are then called Ritz values. In this case Ritz vectors are eigenvectors
of A.



16 CHAPTER 2. NUMERICAL METHODS

Most of the time m with hm+1,m = 0 will be too big to compute Arnoldi
up to this m. It often suffices to use a Krylov subspace with small dimension
for approximating eigenvalues and eigenvectors. If we only want a small
number of eigenvalues then a small dimension of the search space suffices.

With (2.5) we get estimates for the eigenvalue/eigenvector residual. Let

u
(k)
i = Qks

(k)
i be a Ritz vector with Ritz value θ

(k)
i , then

Au
(k)
i − θ

(k)
i u

(k)
i = AQks

(k)
i − θ

(k)
i Qks

(k)
i

= (AQk −QkHk)s
(k)
i = hk+1,kqk+1e

∗
ks

(k)
i .

Therefore we have

‖(A− θ(k)
i I)u

(k)
i ‖2 = hk+1,k|e∗ks

(k)
i |.

Since Hm is a small upper Hessenberg matrix the calculation of its eigen-
vectors and eigenvalues is easily done by QR decomposition.

2.6.2 Implicitely restarted Arnoldi

We start by computing m > n steps of Arnoldi where n is the number of
eigenvalues we want to compute.

Algorithm 2.2 m-step Arnoldi iteration

q1 := x/‖x‖; z := Aq1; α1 := q∗1z
r1 := z− α1q1; Q1 := (q1); H1 := (α1)
for j = 1, . . . ,m− 1 do

βj := ‖r‖
qj+1 := rj/βj
Qj+1 := (Qj ,qj+1)

Ĥj :=

(
Hj

βje∗j

)
∈ Fj+1,j

z := Aqj
h := Q∗j+1z; rj+1 := z−Qj+1h

Hj+1 := (Ĥj ,h)
end for

Remark. Classical Gram-Schmidt

h := Q∗j+1z, rj+1 := z−Qj+1h

may not lead to sufficient orthogonality. So, often the orthogonalization is
iterated

h := Q∗j+1z, rj+1 := z−Qj+1h

c := Q∗j+1rj+1, rj+1 := rj+1 −Qj+1c h := h + c.



2.6. EIGENVALUE CALCULATION 17

This may be repeated but is seldomly necessary. �
This gives us the Arnoldi relation

AQm = QmHm + rme∗m

with

rm = βmqm+1, ‖qm+1‖2 = 1.

If βm = 0 then we have seen that the Ritz values and vectors are eigenvalues
and eigenvectors of A.

Realistically we hope that βm is small. Then

AQm − rme∗m = (A− rmq∗m)Qm = QmHm.

Therefore ran(Qm) is invariant under A + E with E being a small per-
turbation with ‖E‖ = ‖rm‖ = |βm|. This gives us that well-conditioned
eigenvalues of Hm are good approximations of eigenvalues of A.

Now we ask ourselves how to get a starting vector q1 such that βm
becomes small, while we get closer to our desired eigenvalues?

We do this by applying k < m implicit QR steps with shifts µ1, . . . , µk
to Hm. This is done in alg. 2.3.

Algorithm 2.3 k implicit QR-steps on Hm

H+
m = Hm

for i = 1, . . . , k do
H+
m := V ∗i H

+
mVi with H+

m − µiI = ViRi as the QR-decomposition
end for

How do we choose these shifts? The strategy employed by ARPACK
calculates the eigenvalues of Hm and those which fit least our desired eigen-
values are chosen as shifts. We’ll see why this makes sense after we have
looked at what we get from our QR-steps.

We define

V + := V1 · · ·Vk

which is a product of k unitary Hessenberg matrices, therefore it is a unitary
matrix with k nonzero off-diagonals below the main diagonal. Define

Q+
m := QmV

+, H+
m := (V +)∗HmV

+.

Then

AQmV
+ = QmV

+(V +)∗HmV
+ + rme∗mV

+

or

AQ+
m = Q+

mH
+ + rme∗mV

+. (2.6)



18 CHAPTER 2. NUMERICAL METHODS

V + has k nonzero off-diagonals, so

e∗mV
+ = (0, . . . , 0︸ ︷︷ ︸

p−1

, ∗, . . . , ∗︸ ︷︷ ︸
k+1

), k + p = m.

We then discard the last k columns of (2.6), using the matlab notation for
slices,

AQ+
m[:, 1 : p] = Q+

mH
+
m[:, 1 : p] + rme∗mV

+[:, 1 : p]

= Q+
m[:, 1 : p]H+

m[1 : p, 1 : p] + h+
p+1,p︸ ︷︷ ︸
β+
p

qp + 1+e∗p + v+
m,prme∗p

= Q+
m[:, 1 : p]H+

m[1 : p, 1 : p] + (q+
p+1h

+
p+1,p + rmv

+
m,p)︸ ︷︷ ︸

=:r+p

e∗p

This is again an Arnoldi relation, since Q+
m is as a product of an ONB with a

unitary matrix itself an ONB. It is an ONB of the Krylov space Kp(q+
1 , A).

Now we can look at why ARPACK’s strategy is sensible. The Arnoldi
relation gives

(A− µ1)Qm = Qm(Hm − µ1I) + rme∗m = QmV1R1 + rme∗m.

Then we look at the first comlumn of this equation

(A− µiI)q1 = QmV1e1r1,1 + 0 = q
(1)
1 r1,1.

This means by multiplying Qm with V1 we have made q
(1)
1 a multiple of

(A− µ1)q1.

If µi is an eigenvalue of A then (A − µ1)q1 removes the component of
q1 in the direction of the corresponding eigenvector. In general if µi is
close to an eigenvalue then (A − µ1)q1 has only a small component in the
direction of the corresponding eigenvector to nearby eigenvalues. Then we
apply the next QR steps by multiplying V2, . . . , Vk and each time we remove

the corresponding eigenvector from q
(i)
1 .

Therefore the Krylov space Kp(q+
1 , A) doesn’t contain the approximate

eigenspace of µi. Since we already have the Arnoldi relation of Kp(q+
1 , A)

we only need k steps of Arnoldi to gain Km(q+
1 , A)

This leads to the IRA algorithm 2.4.

Remark. There is the danger of recovering the same Ritz values in each
iteration. Thus other strategies have been proposed but experiments show
that the original strategy mostly works best. �



2.6. EIGENVALUE CALCULATION 19

Algorithm 2.4 Implicitely restarted Arnoldi (IRA)

Let the Arnoldi relation AQm = QmHm + rme∗m be given.
repeat

Determine k shifts µ1, . . . , µk
v∗ := e∗m
for i = 1, . . . , k do

Hm − µiI = ViRi by QR-decomposition
Hm := V ∗i HmVi
Qm := QmVi
vT := v∗Vi

end for
rp := q+

p+1β
+
p + rmv+

m,p

Qp := Qm[:, 1 : p]
Hp := Hm[1 : p, 1 : p]
Start with

AQp = QpHp + rpe
∗
p

k additional steps of Arnoldi until

AQm = QmHm + rme∗m

until convergence

Convergence criterion

Let Hms = θs with ‖s‖ = 1. Let x̃ = Qms, then

‖Ax̃− θx̃‖ = ‖AQms−QmHms‖ = ‖r‖|eTm| = βm|eTms|.

We have

(A+ E)x̃ = θx̃, E = −rmqTm, ‖E‖ = ‖rm‖ = βm.

Theorem 6. If λ ∈ σ(A) is simple and θ is an eigenvalue of A+E closest
to λ, then

|λ− θ| ≤ ‖E‖
yTx

+O(‖E‖2),

where y,x are left and right eigenvectors of E corresponding to λ.

A similar statement holds for eigenvectors, but then the distance to the
next eigenvalue is also used.

In ARPACK a pair (θ, x̃) counts as converged if for a fixed tolerance tol
there holds βm|eTms| ≤ max(eps‖Hm‖, tol|θ|). As |θ| ≤ ‖Hm‖ ≤ ‖A‖ there
holds ‖E‖ ≤ tol‖A‖ at convergence. Therefore well-condtioned eigenvalues
are well approximated.



20 CHAPTER 2. NUMERICAL METHODS

2.6.3 Shift invert method

To find eigenvalues close to a value σ one can use the shift-invert method,
which works by searching the largest eigenvalues of (A− σI)−1. This works
because if λ is an eigenvalue of A with corresponding eigenvector x then

(A− σI)−1x =
1

λ− σ
x

and therefore 1/(λ − σ) is an eigenvalue of (A − σI)−1 with eigenvector x.
The application of (A − σI)−1 can be done by using an iterative solver for
linear equation systems since the IRA doesn’t need the matrix A itself but
rather only the matrix-vector-multiplication Ax = y.

2.7 Multigrid preconditioning

We’ll use multigrid for the preconditioner that I’ll describe in section 3.10.
Let’s look at this method now. For a closer look at iterative solvers and
preconditioning see [3].

If one looks at the error of the damped Jacobi iteration solver one ob-
serves that high frequencies of the error are reduced very quickly while low
frequencies are hardly reduced. Thus we might want to construct a method
that uses two principles:

• damped Jacobi for reducing high frequencies,

• another method for reducing low frequencies.

This leads to the two grid method.

2.7.1 Two Grid (TG)

Here we’ll describe our vectors with umn , where n is the dimension of the
problem and m is the number of smoother iterations.

After a few steps of damped Jacobi our error is already smooth. This
means it may be large but not strongly varying. The idea then is to construct
a good approximation of the error emN on a coarser mesh.

This leads to the two grid method which uses these two steps:

1. Smoothing step: apply m-steps of damped Jacobi onto ANuN = bN
leading to umN .

2. Coarse grid correction (CGC): Use the relation

r = b−Au = Au∗ −Au = A(u∗ − u) = A(−e),

where u∗ is the correct solution and solve a related problem of size
n < N , whose solution approximates the error emN = umN − u∗N . Then
utilize this approximation to correct umN .



2.7. MULTIGRID PRECONDITIONING 21

How is the coarse grid correction done in an algebric way?

We approximate the original matrix AN by a coarse version An, N > n.
Thus we need a restriction operator Rn,N and a prolongation operator PN,n
between solution spaces of dimension N and n. Then CGC is realized by

umN 7−→ uTGN = umN + PN,nA
−1
n Rn,N (bN −ANumN︸ ︷︷ ︸

=rmN=AN (−e)

).

We see that PN,nA
−1
n Rn,N shall approximate A−1

N .

Algorithm 2.5 CGC

Compute residual rmN := bN −ANumN
Restrict rmn := Rn,NrmN
Solve Anδn = rmn
Prolongate and add uTGN = umN + PN,nδn

In algorithm 2.5 the coarse grid correction PN.nδn is an approximation
of the error −e = u∗N − umN . The matrix PN,nA

−1
n Rn,N has reduced rank.

Therefore the error amplification matrix

GCGCN = IN − PN,nA−1
n Rn,NAN

cannot be a contraction since GCGCN vn = vn for vn ∈ ker(Rn,N ). The
elements of ker(Rn,N ) are typically unsmooth objects thus this method is
only useful in conjunction with a smoother. One can also use the smoother
again afterwards for post-smoothing. The smoother may also not be damped
Jacobi (eg. Gauß-Seidel).

Galerkin CGC

In the case of Galerkin methods it is appropriate to use a weak form of CGC,
involving Galerkin orthogonality. Let u∗N ∈ RN be the exact solution of

ANuN = bN AN ∈ RN×N

and approximate in a smaller subspace of RN . The equation is equivalent
to

Find uN ∈ VN , such that (ANuN ,wN ) = (bN ,wN ) ∀wN ∈ VN .

Now let Vn ⊂ VN be a subspace of dimension n < N . The corresponding
Galerkin approximation then is

Find un ∈ Vn, such that (ANun,wn) = (bn,wn) ∀wn ∈ Vn. (2.7)



22 CHAPTER 2. NUMERICAL METHODS

We reformulate this by defining PN,n := (p1
n, . . . ,p

n
n) ∈ RN×n with a basis

{p1
n, . . . ,p

n
n} of Vn. If we then write vn = PN,nyn with yn ∈ Rn then (2.7)

is equivalent to

Find yn ∈ Rn, such that (ANPN,nyn, PN,nzn) = (bN , PN,nzn) ∀zn ∈ Rn,

which is equivalent to

Find solution yn ∈ Rn of P TN,nANPN,nyn = P TN,nbN .

Then we observe that

• PN,n is our prolongation matrix,

• Rn,N := P TN,n is our restriction matrix.

Remark. The Galerkin residual orthogonality holds. We can see this by
rearranging (2.7):

Find vn ∈ Vn such that rn = bN −ANvn ⊥ Vn.

For SPD matrices then the best approximation property follows in the energy
norm ‖ · ‖AN :

‖vn − u∗N‖AN = min
wn∈Vn

‖wn − u∗N‖AN .

�
We therefore get the Galerkin CGC by using

AGalerkinn = P TN,nANPN,n

with appropriately chosen PN,n for our coarse grid approximation for AN .
Due to the remark we have for AN SPD:

‖uTGN − u∗N‖AN = ‖PN,nδn − (−emN )‖AN = min
wn∈Vn

‖wn − (−emN )‖AN ,

therefore
(PN,nδn − (−emN )) ⊥AN Vn.

TG in FEM

Here for notation we use instead of the dimensionN, n the mesh sizes h (fine)
and H (coarse). Our nodal basis functions then are v̂n,i, i = 1, . . . , N =
dim(Ûh). For all ûh ∈ Ûh denote the vector of coefficients in nodal basis
as uh. Let umh be after m smoothing steps and ûmh ∈ Ûh and the error
êmh = ûmh − û∗h at level h. TG seeks

ûTGh = ûmh + δ̂H



2.7. MULTIGRID PRECONDITIONING 23

with δ̂H ∈ ÛH ⊂ Ûh. We aim for δ̂H to be the best approximation to
−êmH . This means that we seek δ̂H such that the error in the energy norm
is minimized. By Galerkin orthogonality we get:

a((ûmh + δ̂H)− û∗h, ŵH) = 0 ∀ŵH ∈ ÛH .

This leads to:

Find δ̂H ∈ ÛH , such that a(δ̂H , ŵH) = a(−êmh , ŵH) ∀ŵH ∈ ÛH (2.8)

which is equivalent to

Find δ̂H ∈ ÛH , such that a(δ̂H , ŵH) = b(ŵH)− a(ûmh , ŵH) ∀ŵH ∈ ÛH

where the righthandside is the residual of ûh in a weak sense.

Note that (δ̂H + êmh ) ⊥a(·,·) ÛH .

Associate now δ̂H , ŵh with their coefficient vectors and the embedding
ÛH ⊂ Ûh with the prolongation matrix Ph,H . Then (2.8) becomes

Find δh, such that (AhPh,HδH , Ph,HwH) = (rmh , Ph,HwH) ∀wH ∈ Rdim(ÛH)

with rmh = bh −Ahumh .

Remark. Ph,H is the Galerkin prolongation matrix. For an SPD problem
it makes sense to choose RH,h = P Th,H because

AH = AGalerkinH = RH,hAhPh,H = P Th,HAhPh,H

is also SPD.

In general AGalerkinH = AH does not hold necessarily. General multigrid
methods work with AH given by the discretization from the coarse level.
Also different choices for Ph,H and RH,h are possible. �

TG as a preconditioner

If we use TG as a preconditioner we simply use TG applied to Aε = r
starting from ε0 = 0 for r being the residual r = b−Au of any given iterate
u to approximate the error

ε = ε0 + T (r−Aε0) = Tr ≈ −e.



24 CHAPTER 2. NUMERICAL METHODS

2.7.2 Multigrid (MG)

The coarse grid problem has the same type as the original problem, therefore
we get the idea to proceed recursively:

Instead of solving on the coarse grid we use TG again, ie. we apply the
smoother and CGC to get a problem on an even coarser grid. We repeat
this until the problem is sufficiently small to solve directly.

Suppose we have a sequence of meshes T`, ` = 0, 1, . . . with correspond-
ing approximation spaces Û`. For simplicity we assume that the spaces
Û` ⊂ Û`+1 are nested for ` = 0, 1, . . . with N` = dim(Û`).

The spaces Û` are spanned by bases. The natural embedding Û` ⊂ Û`+1

then corresponds to the prolongation P`+1,` ∈ RN`+1×N` , R`,`+1 = P T`+1,`.
Let A` be the matrix coming from a(·, ·) at level `.

It may be possible to choose P`+1,` such that

A`−1 = P T`,`−1A`P`,`−1

remains valid. This facilitates the convergence analysis but the MG algo-
rithm doesn’t depend on this. It may not be valid or even desirable. Even
a choice R`−1,` 6= P T`,`−1 may be reasonable.

The algorithm that we get from this strategy is algorithm 2.7.2 with
mpre pre-smoothing steps and mpost post-smoothing steps. It is called V-
cycle (fig. 2.4).

Algorithm 2.6 Basic MG (V-cycle)

MG(u0,b, `)
if level ` is sufficiently small then

compute Au = b directly
else

do m = mpre steps of smoothing with initial guess u0 to gain umN
rm = b−A`umN
δ =MG(0, R`−1,`rm, `− 1)
ũ = umN + P`,`−1δ
do m = mpost steps of smoothing with initial guess ũ to gain u

end if
return u

W-cycle, µ-cycle

One may attempt to improve the approximation by µ repeated recursive
calls. This leads to the µ-cycle (algorithm 2.7.2).

The case µ = 1 is the V-cycle, µ = 2 is called the W-cycle (fig. 2.7.2).

For the convergence analysis one gets an iteration matrix that is in re-
cursive form. This leads to a recursive formula for convergence depending



2.7. MULTIGRID PRECONDITIONING 25

finest grid

coarsest grid

Figure 2.4: V-cycle

Algorithm 2.7 µ-cycle

MG(u0,b, `, µ)
if level ` is sufficiently small then

compute Au = b directly
else

do m = mpre steps of smoothing with initial guess u0 to gain umN
rm = b−A`umN
δ(0) = 0
for ν = 1, . . . , µ do

δ(ν) =MG(δ(ν)−1, R`−1,`rm, `− 1, µ)
end for
ũ = umN + P`,`−1δ

(µ)

do m = mpost steps of smoothing with initial guess ũ to gain u
end if
return u

finest grid

coarsest grid

Figure 2.5: W-cycle



26 CHAPTER 2. NUMERICAL METHODS

coarsest grid

finest grid

Figure 2.6: FMG

on the TG convergence rate. This makes the convergence analysis not easy
(see [3] for more details).

Remark. Nested iteration and Full Multigrid (FMG)
If one needs a useful starting vector for the iteration one can use the following
strategy:

Start at coarsest level and prolongate upwards to the next finer level
where it is used as the starting vector for the next new MG cycle. Repeat
this until you arrive at the finest level (fig. 2.7.2). For an in depth description
see [3].

�



Chapter 3

The Navier-Stokes Equation

The main sources for this chapter are [4], [5] and [6].
Mathematically flow is a continuous transformation of three-dimensional

space onto itself. It describes the position of a fluid particle P with starting
position X = (X,Y, Z) (at t = 0) at times t ≥ 0, then it is at position
x = (x, y, z). The transformation is described by

x = φ(X, t).

Under the assumption that different particles remain distuinguishable (and
assumptions about the differentiability of φ) this function is locally invert-
ible,

X = Φ(x, t).

Most of the time one is interested in certain properties of the flow at fixed
points in space, such as density or velocity of the flow

ρ = ρ(x, t), u = u(x, t).

This view with fixed points (x, t) is called Euler’s view and (x, t) are
called (space-fixed) Euler variables. In contrast the variables (X, t) are called
(mass-fixed) Lagrange variables. Everything describable by (x, t) is also de-
scribable by (X, t). For an arbitrary field b the two different time derivatives
are written as

∂b

∂t
=
∂b(x, t)

∂t
,

Db

Dt
=
∂b(X, t)

∂t
.

Db
Dt is called material derivative and it is the temporal alteration of b

while following a particle. ∂b
∂t is the alteration of b at the fixed position x.

The particle velocity is defined by

u :=
Dx

Dt
.

The particle acceleration then is given by

a :=
Du

Dt
.

27



28 CHAPTER 3. THE NAVIER-STOKES EQUATION

This can be calculated

a =
Du

Dt
=
∂u

∂t
+∇u

Dx

Dt
=
∂u

∂t
+ (u · ∇)u.

In general there holds
Db

Dt
=
∂b

∂t
+ (u · ∇)b

for an arbitrary field b.

Fluid dynamics is governed by three laws of conservation:

• conservation of mass,

• conservation of momentum,

• conservation of energy.

The Navier-Stokes equation is derived from conservation of momentum
but we’ll also give the others here for completeness. One theorem needed to
derive the equations is Reynolds transport theorem.

3.1 Transport theorem

We’ll show the transport theorem but first we also need to see how an in-
finitesimal volume dV changes in the flow. This is given by the determinant
of the Jacobian of φ

detJ(X, t) =
∂(x, y, z)

∂(X,Y, Z)
=

∣∣∣∣∣∣
∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z

∣∣∣∣∣∣ .
We’ll need the material derivative of detJ . With Laplace expansion of de-
terminants one can show:

D(detJ)

Dt
= detJ∇ · u = detJdiv(u).

If the flow is incompressible there can’t be any change in volume, thus
D(detJ)

Dt = 0. This means

div(u) = 0.

Theorem 7. Let b(x, t) be an arbitrary field. Then there holds

D

Dt

∫
V
bdV =

∫
V

∂b

∂t
dV +

∮
∂V
b(u · n)dO.



3.2. CONSERVATION OF MASS (CONTINUITY EQUATION) 29

Proof. Let V (t) be a (mass-fixed) flowing control volume and b(x, t) an
arbitrary field. Then there holds∫

V
bdV =

∫
V0

b(X, t)|detJ(X, t)|dV0 , V0 = V (0).

The material derivative then is given by

D

Dt

∫
V
bdV =

∫
V0

(
|detJ |Db

Dt
+ b

D|detJ |
Dt

)
dV0

=

∫
V0

(
Db

Dt
+ bdiv(u)

)
|detJ |dV0

=

∫
V

Db

Dt
+ bdiv(u)dV =

∫
V

∂b

∂t
+ div(bu)dV.

The last equation holds due to div(bu) = bdiv(u) + (u · ∇)b. With Gauß’
theorem we then get the result.

3.2 Conservation of mass (continuity equation)

When ρ(x, t) > 0 denotes the density the integral continuity equation is∫
V

(
Dρ

Dt
+ ρdiv(u)

)
dV =

D

Dt

∫
V
ρdV =

Dm

Dt
= 0.

For arbitrary V we get the differential continuity equation

Dρ

Dt
+ ρdiv(u) =

∂ρ

∂t
+ div(ρu) = 0.

A nice result one can get with this and Reynolds transport theorem for
an arbitrary field b is

D

Dt

∫
V
ρb dV =

∫
V
ρ

Db

Dt
dV. (3.1)

3.3 Conservation of momentum (Equation of mo-
tion)

One can alter momentum by putting stress σn orthogonal to the surface
of the control volume, by an outer force g per mass (like gravity, or elec-
tromagnetic force) or a force K on the flow by a body inside the volume
(holding force). This gives us the integral equation of motion

D

Dt

∫
V
ρu dV =

∮
∂V
σn dO +

∫
V
ρg dV + K.



30 CHAPTER 3. THE NAVIER-STOKES EQUATION

We get the differential form by using K = 0, Gauß’ theorem and the
result of the transport theorem (3.1) for arbitrary V

ρ
Du

Dt
=
∑
j

∂σji
∂xj

+ ρg.

Very often the stress tensor σ is split into the inner friction stress tensor
σ′ and the part pI ∈ R3×3, which comes from the pressure p:

σ := σ′ − pI.

Then the equation of motion reads

ρ
Du

Dt
= −∇p+

∑
j

∂σ′ji
∂xj

+ ρg.

3.4 Conservation of energy

The kinetic and inner energy are altered by surface- and volume forces, the
power L which comes from K and the heat flow q:

D

Dt

∫
V
ρ
(u · u

2
+ e
)

dV =

∮
∂V

uσn dO +

∫
V
ρu · g dV + L−

∮
∂V

q · ndO.

With Gauß’ theorem

ρ
D

Dt

(u · u
2

+ e
)

=
∑
i,j

∂

∂xj
(uiσji) + ρu · g − div(q).

We can get the first law of thermodynamics out of this

ρ

(
De

Dt
− p

ρ

Dρ

Dt

)
=
∑
i,j

σ′ij
∂ui
∂xj
− div(q).

With Gibbs’ equation de = Tds− pdV we get different forms:

ρ

(
De

Dt
− p

ρ

Dρ

Dt

)
= ρT

Ds

Dt
= ρ

Dh

Dt
− Dp

Dt

= ρcp
DT

Dt
− βT Dp

Dt
=
∑
i,j

σ′ij
∂ui
∂xj
− div(q).

The full derivation of these equations can be found in [4].



3.5. DERIVATION OF THE NAVIER-STOKES EQUATION 31

3.5 Derivation of the Navier-Stokes equation

We derive the Navier-Stokes equation from the equation of motion. There-
fore we need to describe the stress tensor σ. For a perfect fluid (no inner
friction) we get

σ = −pI, σ′ = 0. (3.2)

In the following we’ll need this definition

D :=
1

2
(∇u +∇uT ).

A fluid is called a Stokes’ fluid if it fulfills Stokes’ postulates:

1. σ is a continuous function of D and is independent of other kinematic
variables.

2. σ is independent of the position x in space.

3. There is no special direction in space (isotropy).

4. If D = 0 then σ = −pI.

If we additionally demand linear dependency σ = f(D) we get the ma-
terial equation for Newtonian fluids

σ = σT = (−p+ µ div(u))I + 2µD.

Here µ(p, T ) is the volume viscosity and µ(p, T ) is the dynamic viscosity
(shear viscosity). For incompressible flow div(u) = 0 there holds µ = µ(T ).

With these we get the compressible Navier-Stokes equation

ρ
Du

Dt
= −∇p+∇(µdiv(u)) +

∑
j

(2µDij) + ρg.

For a perfect fluid (with (3.2)) we get the Euler equation

ρ
Du

Dt
= −∇p+ ρg

and for an incompressible Newtonian fluid we get the incompressible Navier-
Stokes equation

Du

Dt
= −1

ρ
∇p+

µ

ρ
∆u + g,

since∑
j

2
∂Dij

∂xj
=
∑
j

∂2ui
∂xj∂xj

+
∑
j

∂2uj
∂xi∂xj

= ∆ui +
∂

∂xi
div(u) = ∆ui.

We call ν = µ/ρ the kinematic viscosity. So the incompressible Navier-
Stokes equation reads as

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∆u + g.



32 CHAPTER 3. THE NAVIER-STOKES EQUATION

3.6 Dimensionless form

To get a form that is independent of the scale of the problem we use charac-
teristic numbers and reference quantities which are relevant to the problem.
We divide our quantities with their corresponding reference quantities (e.g.
for the pipe the reference length L̃ would be the pipe diameter)

x =
x̃

L̃
, t =

t̃

τ̃
, u =

ũ

Ũ
, ρ =

ρ̃

ρ̃r
p =

p̃

p̃r
, eg =

g̃

g̃r
, µ =

µ̃

µ̃r
, µ =

µ̃

µ̃r

(the tilde and the index r are denoting the original quantities and the refer-
ence quantities respectively) and if we then use these in the incompressible
Navier-Stokes equation we get the following form:

Srρ
∂ui
∂t

+
∑
j

ρuj
∂ui
∂xj

= . . .

· · · = −Eu
∂p

∂xi
+

1

Re

 ∂

∂xi
(µdiv(u)) +

∑
j

∂

∂xj
(2µDij)

+
1

Fr2 ρegi .

The characteristic numbers which now describe our problem are the
Strouhal-number

Sr :=
L̃

Ũ τ̃
(reduced frequency),

the Euler-number

Eu :=
p̃r

ρ̃rŨ2
,

which is important whenever pressure and acceleration forces are a main
factor of the problem, the Froude-number

Fr :=
Ũ√
g̃L̃

,

which is similar to the Mach-number, and finally the Reynolds-number

Re :=
Ũ L̃ρ̃r
µ̃r

=
ŨrL̃

ν̃r
,

which gives the relation between inertia forces and friction forces in the
flow. We will look at the stationary (Sr = 0) incompressible Navier-Stokes
equation, where ρ = 1, Eu = 1 and Fr = 1. Now we get the form of the
Navier-Stokes equation we will look at:

−∇p+
1

Re
∆u− (u · ∇)u = −eg,

div(u) = 0.



3.7. DESCRIPTION OF OUR PROBLEM 33

ΓDΓper,1 Γper,2

n1 n2
u Ω

r

`

Figure 3.1: Sketch of the pipe

3.7 Description of our Problem

We will be looking at pipe flow on the domain Ω with periodic in- and
outflow (Γper,1, Γper,2) and no-slip condition (Dirichlet boundary ΓD) on the
pipe wall. With figure 3.1, where ΓD describes the pipe wall we have the
following problem:
Find (u, p), such that

− 1

Re
∆u + (u · ∇)u +∇p = f , on Ω,

div(u) = 0 , on Ω,

u = 0 , on ΓD,

u|Γper,1 = u|Γper,2 .

This problem is not fully specified since the equation depends on the gradient
of the pressure but not the pressure itself. Therefore the pressure is only
unique up to additive constants. Thus we need another condition, we fix
this by demanding ∫

Ω
p = 0.

But this still isn’t enough, due to the periodic boundary conditions. This
can be seen by looking at the linear subspace

U =

[(
u
p

)]
=




0
0

Re
4 (1− (x2 + y2))

−z




Every element v ∈ U solves the equation for f = 0 and radius of the pipe
r = 1. To fix this usually a jump condition on the pressure is used

p|Γper,1 − p|Γper,2 = c,

with a prescribed constant c. So, we have the problem in the following form



34 CHAPTER 3. THE NAVIER-STOKES EQUATION

Find (u, p), such that

1

Re
∆u− (u · ∇)u−∇p = f , on Ω,

div(u) = 0 , on Ω,

u = 0 , on ΓD,

u|Γper,1 = u|Γper,2 ,
p|Γper,1 − p|Γper,2 = c,∫

Ω
p = 0.

3.8 Analysis of the Navier-Stokes equation

3.8.1 Solving the nonlinear equation

We need to solve the nonlinear Navier-Stokes equation

− 1

Re
∆u + (u · ∇)u +∇p = 0,

div(u) = 0.

which has the form F (u) = 0. Thus we need an iterative method like
newton’s method to solve this.

un+1 = un −DuF (un)−1un

where DuF is the Fréchet derivative of F .
Recall the definition of the Fréchet derivative.

Definition 6. F : X × Y → Z is Fréchet differentiable in X at (u0, v0) if
there exists a bounded linear operator DuF ∈ L(X,Z) such that

lim
h→0

‖F (u0 + h, v0)− F (u0, v0)− (DuF )h‖Z
‖h‖X

= 0.

This operator is called the Fréchet derivative.

Now we need to calculate the Fréchet derivative of our operator F . The
only nonlinear term is (u · ∇)u, so it suffices to look at this term.

((u0 + h) · ∇)(u0 + h)− (u0 · ∇)u0 − (DuF )h =

(u0 · ∇)u0 + (h · ∇)u0 + (u0 · ∇)h+ (h · ∇)h− (u0 · ∇)u0 − (DuF )h.

So, if we set DuF := (. · ∇)u0 + (u0 · ∇). and show

lim
h→0

‖(h · ∇)h‖L2

‖h‖H1

= 0



3.8. ANALYSIS OF THE NAVIER-STOKES EQUATION 35

we have our linearization. With Poincaré’s equation we have

‖(h · ∇)h‖L2

‖h‖H1

≤ ‖h‖L2‖∇h‖L2

‖h‖H1

4
‖∇h‖2L2

‖h‖H1

≤
‖∇h‖2L2

‖∇h‖L2

= ‖∇h‖L2 → 0.

This now gives us our linearized problem:

− 1

Re
∆u + (w · ∇)u + (u · ∇)w +∇p = f ,

div(u) = 0,

with w an arbitrary vector. In the case of Newton’s method w would be the
solution un from the previous step. In our further analysis we will therefore
look at this problem with arbitrary w with div(w) = 0. There are often two
different main linearizations used, Newton’s iteration and the Picard itera-
tion. The Picard iteration omits the term (u·∇)w, the operator arising from
this linearization is called Oseen’s operator. It converges linearly globally.
Newton’s method converges quadratically but only if w is in a small neigh-
bourhood of u. For higher Reynolds numbers this neighbourhood becomes
smaller.

Weak Form

Now we derive the weak form of our linearized problem with our boundary
condtitions

− 1

Re
∆u + (w · ∇)u + (u · ∇)w +∇p = f ,

div(u) = 0,

u|ΓD = 0,

u|Γper,1 = u|Γper,2 ,
p|Γper,1 − p|Γper,2 = c.

We start by multiplying the first equation with smooth periodic testfunctions
v

− 1

Re

∫
Ω

∆u · v +

∫
Ω

(w · ∇)u · v +

∫
Ω

(u · ∇)w · v +

∫
Ω
∇pv =

∫
Ω

f · v.

Now we use integration by parts on the diffusion term and the pressure term.
First we’ll look at the diffusion term. If we denote the boundary as Γ we
get ∫

Ω
∆u · v = −

∫
Ω
∇u · ∇v +

∫
Γ
(∇u)n · v.



36 CHAPTER 3. THE NAVIER-STOKES EQUATION

Take a closer look at the boundary term∫
Γ
(∇u)n · v =

∫
ΓD

(∇u)n · v +

∫
Γper,1

(∇u)n1 · v +

∫
Γper,2

(∇u)n2 · v,∫
ΓD

(∇u)n · v = 0,∫
Γper,1

(∇u)n1 · v = −
∫

Γper,2

(∇u)n2 · v.

The second equation holds because v = 0 on ΓD and the third equation
holds because u, v are periodic and n2 = −n1. Therefore∫

Γ
(∇u)n · v = 0.

Now we’ll look at the pressure term. Before we use integration by parts we
use the linearity of the term by splitting the pressure into a periodic part
and a part which satisfies the jump condition

p = pper + p[c].

We’ll choose a function for p[c]. A simple choice is a linear function along
the domain (in our case the pipe). For our specific problem we can choose

p[c] =
c

`
z

if ` is the length of the pipe and the point of origin is in the middle of the
pipe so that ∫

Ω
p[c] = 0

is satisfied. We then can split the pressure term

∫
Ω
∇p · v =

∫
Ω
∇pper · v +

∫
Ω
∇p[c] · v =

∫
Ω
∇pper · v +

∫
Ω

0
0
c
`

 · v.
We put the jump term on the righthandside of the equation. Now we use
integration by parts on the periodic term.∫

Ω
∇pper · v =

∫
Ω
pperdiv(v)−

∫
Γ
pperv · n,∫

ΓD

pperv · n = 0 since v|ΓD = 0,∫
Γper,1

pper · n1 = −
∫

Γper,2

pper · n2



3.8. ANALYSIS OF THE NAVIER-STOKES EQUATION 37

since pper, v are periodic and n2 = −n1. Similar to before the second
equation holds because v = 0 on ΓD and the third equation holds because
pper, v are periodic and n2 = −n1. Therefore∫

Γ
pper · v = 0.

We then get the weak formulation of our first equation

1

Re

∫
Ω
∇u · ∇v +

∫
Ω

(w · ∇)u · v +

∫
Ω

(u · ∇)w · v −
∫

Ω
pperdiv(v) = . . .

· · · =
∫

Ω
f · v −

∫
Ω
∇p[c] · v.

We get our second equation by simply multiplying with a smooth testfunc-
tion q ∫

Ω
div(u)q = 0.

So we now have our weak form for smooth functions but we can use bigger
spaces. For our velocity functions we can use H1 but we have to modify it
so that it fulfills the Dirichlet and the periodic boundary conditions

(H1
0,per)

3 = {v ∈ (H1)3 : v|ΓD = 0, v|Γper,1 = v|Γper,2}.

Since there is no weak derivative of the pressure pper in the equation it seems
that we could use L22 but since we need to impose a periodic boundary con-
dition on pper and on L2-functions there cannot be prescribed any boundary
conditions we need to use a periodic H1 space instead

L2
0 ∩H1

per = {q ∈ H1 :

∫
q = 0, q|Γper,1 = q|Γper,2}.

After solving we then get the correct solution by adding

p = pper + p[c].

3.8.2 Analysis of the linearized problem

Our linearized problem

− 1

Re
∆u + (u · ∇)w + (w · ∇)u +∇p = f , on Ω,

div(u) = 0 , on Ω,

u = uD , on ΓD,

u|Γper,1 = u|Γper,2 ,
p|Γper,1 − p|Γper,2 = c,



38 CHAPTER 3. THE NAVIER-STOKES EQUATION

with div(w) = 0 transforms into the weak form

1

Re

∫
∇u∇v +

∫
(w · ∇)u · v+(u · ∇)w · v −

∫
div(v)p = . . .

. . . =

∫
fv −

∫
Ω
∇p[c] · v ∀v ∈ V,∫

div(u)q = 0 ∀q ∈ Q,

with V = (H1
0,per)

3 and Q = L2
0 ∩H1

per. We have the form

a(u,v) + b(v, p) = `(v),

b(u, q) = 0,

with

a(u,v) = − 1

Re
∆u + (u · ∇)w + (w · ∇)u,

b(v, p) =

∫
div(v)p.

For our problem to be uniquely solvable we have to show continuity of
a and b, kernel-coercivity of a

a(u,u) ≥ ‖u‖2H1 ∀u ∈ V0 := {v ∈ V : b(v, p) = 0,∀p ∈ Q}
= {v ∈ V : div(v) = 0}

and the LBB condition for b

sup
u∈V,
u 6=0

b(u, q)

‖u‖V
≥ β1‖q‖Q ∀q ∈ Q.

Let’s start with the continuity and coercivity of a. a can be split into three
terms:

a(u,u) = a1(u,v) + c(w; u,v) + d(w; u,v),

a1(u,v) =

∫
∇u∇v,

c(w; u,v) =

∫
(w · ∇)u · v,

d(w; u,v) =

∫
(u · ∇)w · v.

For Picard iteration the bilinearform d is omitted.

Theorem 8. The bilinearform a is continuous.



3.8. ANALYSIS OF THE NAVIER-STOKES EQUATION 39

Proof. [6] p284

Theorem 9. Let w ∈ V with div(w) = 0. Then it follows:

1. For the Picard iteration the bilinearform a is coercive

a(u,u) ≥ α‖u‖2H1 ∀u ∈ V.

2. For the Newton iteration the bilinearform a is coercive in a neighbour-
hood of w

a(u,u) ≥ α‖u‖2H1 ∀u ∈ Uε(w).

Proof. The coercivity of a1 is easily seen as it is the coercivity of the Laplace
operator. The bilinearform c(w; u,v) is often said to be skew-self-adjoint
c(w; u,v) = −c(w; v,u). By using Green’s formula (,where H(div,Ω) is the
space of all L2(Ω) functions, with a bounded weak divergence,)

(v,∇φ) + (div(v), φ) = 〈v · n, φ〉Γ ∀v ∈ H(div,Ω), ∀φ ∈ H1(Ω), (3.3)

we will show this being the case if there are no Neumann conditions.

c(w; u,u) =
N∑

i,j=1

∫
Ω
wj
∂ui
∂xj

uidx =
1

2

N∑
i,j=1

∫
Ω
wj
∂(u2

i )

∂xj
dx =

=
1

2

N∑
i=1

∫
Ω

w · ∇(u2
i )dx

= −1

2

N∑
i=1

(∫
Ω

div(w)u2
i dx−

∫
Γ

w · n(u2
i )ds

)
= 0.

(3.4)

In the last step we used div(w) = 0 and that w satisfies the Dirichlet
boundary condition and the periodic boundary condition.

Finally for the Newton iteration we use continuity of d: Let w = u + r
with ‖r‖H1 < ε, then

d(w; u,u) = d(u; u,u) + d(r; u,u)

Since d(u; u,u) = c(u; u,u) = 0 (≥ 0 for outflow boundary) and with
continuity of d

|d(r; u,u)| ≤ εC‖u‖2H1

it follows that
d(w; u,u) ≥ −εC‖u‖2H1 .

Using this we can set ε small enough that

a(u,u)− Cε‖u‖2H1 ≥ α‖u‖2H1

Therefore a is coercive in a small neighbourhood of w.



40 CHAPTER 3. THE NAVIER-STOKES EQUATION

Remark. The last part in the proof shows why the Newton iteration only

converges if the initial guess is in a small neighbourhood of the solution. �

Remark. If we have Neumann conditions we get in (3.4) instead of 0 the

term

h(u) =
1

2

∫
ΓN

u2w · n.

This is nonnegative on an outflow boundary (w · n ≥ 0). �

Now we’ll look at continuity and the LBB-condition of b.

Theorem 10. The bilinearform b is continuous in V and Q.

Proof. ∫
Ω

div(v)q ≤ ‖div(v)‖L2‖q‖L2 ≤ ‖∇v‖L2‖q‖L2 ≤ ‖v‖H1‖q‖L2 .

For the LBB-condition we start by showing the LBB-condition for the
spaces v ∈ (H1

0 )3 and p ∈ L2
0. We need two results first

Lemma 1. Let f be in the dual space H−1(Ω)N of H−1(Ω)N . If it satisfies

〈f,v〉 = 0 ∀v ∈ V0 = {v ∈ (H1
0 )N : div(v) = 0}

then there exists p ∈ L2, such that

f = ∇p

When Ω is connected, p is unique up to additive constants.

Proof. ∇ ∈ L(L2, H−1(Ω)N ) is the dual operator of -div ∈ L(H1
0 (Ω), L2(Ω))

due to Green’s formula (3.3). Since ran(∇) is a closed subspace of H−1(Ω)N ,
there holds

ran(∇) = ran(∇) = 0(ran(∇)0) = 0(ker(div)) = 0V0.

Where 0V0 is:

0V0 = {y ∈ H−1(Ω)N : 〈y,v〉 = 0 ∀v ∈ V0}

Therefore the lemma is proven.



3.8. ANALYSIS OF THE NAVIER-STOKES EQUATION 41

We split H1
0 (Ω)N orthogonally by

H1
0 (Ω)N = V0 ⊕ V ⊥.

Corollary 1. Let Ω be connected. Then

1. the operator ∇ is an isomorphism of L2
0(Ω) onto 0V0,

2. the operator div is an isomorphism of V ⊥ onto L2
0(Ω).

Proof. 1. ∇ ∈ L(L2
0(Ω), 0V0). Lemma 1 shows that this is a bijection.

Since 0V0 and L2
0 are Banach spaces, it follows that ∇ is an isomor-

phism.

2. Since div is the dual operator of −∇, div is an isomorphism from (0V0)′

onto (L2
0)′. Now we prove that (0V0) can be identified with (V ⊥)′.

Take any g ∈ (V ⊥)′, we extend g to H1
0 by setting

〈g̃,v〉 = 〈g,v⊥〉 ∀v ∈ H1
0

where v⊥ is the orthogonal projection of v onto V ⊥. Then g̃ ∈ 0V0

and the linear mapping g 7→ g̃ maps isometrically (V ⊥)′ onto 0V0.

With these results we can show the LBB-condition for (H1
0 (Ω))N and

L2
0(Ω).

Lemma 2. The bilinearform b satisfies the LBB-condition for the spaces
(H1

0 (Ω))N and L2
0(Ω):

sup
v∈(H1

0 (Ω))N

b(v, q)

‖v‖H1

= sup
v∈(H1

0 (Ω))N

(div(v), q)

‖v‖H1

≥ β‖q‖L2 ∀q ∈ L2
0(Ω).

Proof. Let q ∈ L2
0(Ω). Due to corollary 1 above there exists a unique func-

tion v ∈ V ⊥, such that

div(v) = q, ‖v‖H1 ≤ C‖q‖L2 .

Thus
(div(v), q)

‖v‖H1

=
‖q‖2L2

‖v‖H1

≥ 1

C
‖q‖L2 .

With β = 1/C the statement follows.

(see [6].) Now the LBB-condition for the spaces V and Q we use follows
from this lemma 2.

Corollary 2. The bilinearform b satisfies the LBB-condition for V and Q:

sup
v∈V

b(v, q)

‖v‖H1

≥ β‖q‖L2 ∀q ∈ Q.



42 CHAPTER 3. THE NAVIER-STOKES EQUATION

Proof. Since (H1
0 )3 ⊂ V and Q ⊂ L2

0 there holds

sup
v∈V

b(v, q)

‖v‖H1

≥ sup
v∈(H1

0 )3

b(v, q)

‖v‖H1

≥ β‖q‖L2 ∀q ∈ L2
0.

It follows

sup
v∈V

b(v, q)

‖v‖H1

≥ β‖q‖L2 ∀q ∈ Q.

3.8.3 Numerics of the linearized problem

The first finite element space we’d think about for the Navier-Stokes equa-
tion would be piecewise linear continuous basis functions in the velocity
space and piecewise constant discontinuous basis functions in the pressure
space.

This doesn’t work, the inf-sup condition cannot be shown. An easy way
to see this is to think about the number of degrees of freedom. There are
simply more triangles/tetrahedrons than vertices.

The simplest finite element space that works in 2D is the following: With
barycentric coordinates λ1, λ2, λ3, which are linear functions that are 1 on
the corresponding vertex and 0 on the other vertices, and the outer normal
vectors n1,n2,n3 on the edges of a triangle define

p1 := n1λ2λ3, p2 := n2λ3λ1, p3 := n3λ1λ2,

P1(κ) := P 2
1 + span{p1,p2,p3},

Wh := {w ∈ C0(Ω)2 : w|κ ∈ P1(κ), ∀κ ∈ Th},
Xh := Wh ∩H1

0 (Ω)2,

Qh := {q ∈ L2(Ω) : q|κ ∈ P0, ∀κ ∈ Th},
Mh := Qh ∩ L2

0(Ω).

(3.5)

I will not show its inf-sup condition here, for a proof see [6]. Most of the
time (if we have subsonic velocities or our setup with the periodic pressure
space) we won’t see discontinuous pressures. Due to this we would like to
have a discretisation that has continuous pressures. This leads us to one of
the more famous elements for the Navier-Stokes equation, the Hood-Taylor
element:

Xh := {v ∈ C0(Ω)2 : v|κ ∈ P 2
2 , ∀κ ∈ Th, v|Γ = 0},

Qh := {q ∈ C0(Ω) : q|κ ∈ P1, κ ∈ Th},
Mh := Qh ∩ L2

0(Ω).

I will here show the proof for the twodimensional case for p = 1. Sadly its not
that easy to generalize the proof to tetrahedrons, although according to [5]



3.8. ANALYSIS OF THE NAVIER-STOKES EQUATION 43

it is possible to use a similar approach and it can be done but they didn’t
give a reference to this proof and I wasn’t able to find a proof anywhere else.
They give, however, a proof for bricks, which I will not do here because I
used tetrahedrons for the calculations.

First we need to look at an important theorem which lets us prove the
global inf-sup condition if we are able to prove a local inf-sup condition.

Theorem 11. Let Wh ⊂ H1(Ω)N , Qh ⊂ L2(Ω) with R ⊂ Qh be two finite
dimensional spaces and

Xh := Wh ∩H1
0 (Ω)N = {v ∈Wh : vh|ΓD = 0},

Mh := Qh ∩ L2
0(Ω) = {qh ∈ Qh :

∫
Ω
qhdx = 0}.

Ω shall be able to be partitioned into a finite number of disjoint Lipschitz-
continuous open subsets Ωr with boundary Γr:

Ω =

R⋃
r=1

Ωr.

For 1 ≤ r ≤ R define

Xh(Ωr) := {v ∈ Xh : v = 0 in Ω \ Ωr},
Qh(Ωr) := {q|Ωr : q ∈ Qh},
Mh(Ωr) := Qh(Ωr) ∩ L2

0(Ωr),

Mh := {q ∈ L2
0(Ω) : q|Ωr is constant, 1 ≤ r ≤ R}.

If the pair (Xh,Mh) satisfies: There exists a constant λ∗ > 0, independent
of h and r, such that

sup
vh∈Xh(Ωr)

∫
Ωr

div(vh)qhdx

|vh1,Ωr

≥ λ∗‖qh‖0,Ωr ∀qh ∈Mh(Ωr), 1 ≤ r ≤ R

and there exists a subspace Xh of Xh, such that (Xh,Mh) satisfies the inf-sup
condition with a constant β independent of h, then (Xh,Mh) also satisfies
the inf-sup condition with a constant β∗ independent of h.

Proof. The proof can be found in [6].

So we need to show a local inf-sup condition for Hood-Taylor because
the spaces (Xh,Mh) defined in (3.5) already fulfill the corresponding re-
quirements in the theorem.

At first we need to choose a partition that works for our proof. We do
this by grouping all elements which share a common vertex (vertex patches).
We need to make the following assumption about our triangulation Th:



44 CHAPTER 3. THE NAVIER-STOKES EQUATION

x̂1

x̂2

T̂0 = T̂8

T̂1T̂2

T̂3

T̂4

T̂5 T̂6

T̂7

T0 = T8

T1

T2

T3

T4
T5

T6

T7

α1

α2

α3

α4

α5

α6

α7

α8

ar

Figure 3.2: One macroelement (Ωr) with its reference element (J = 8).

Assumption 1. Th has a set of interior nodes {ar}r = 1R such that {Ωr}Rr=1

with

Ωr =

( ⋃
ar∈T

T

)◦
is a partition of Ω.

It is not difficult to construct a triangulation which fulfills this assump-
tion. One simply starts with a coarse mesh and adds interior nodes until
the assumption is satisfied.

Theorem 12. Let Th be a regular triangulation of Ω that satisfies the as-
sumption. Then there exists a constant λ∗ > 0, independent of h and r such
that

sup
v∈Xh

∫
Ωr

div(v)q

|v|1,Ωr
≥ λ∗‖q‖0,Ωr ∀q ∈Mh(Ωr).

Proof. Let J be the number of elements in Ωr. We number them with
0 ≤ i ≤ J such that Ti is adjacent to Ti−1 and T0 = TJ .

The edge shared by Ti and Ti+1 we name ei and the midpoint of the edge
αi. The vertex common to all elements Ti in Ωr is called ar (see figure 3.2).

We associate with this the reference set:

Ω̂ =
J⋃
i=1

T̂i

by the continuous piecewise affine function Fr efined by:

Fr(T̂i) = Ti, Fr(x̂) = Bix̂ + bi ∀x̂ ∈ T̂i.



3.8. ANALYSIS OF THE NAVIER-STOKES EQUATION 45

Since the triangulation is regular the number of elements in Ωr J is bounded
from above by a fixed number I independent of r. This means that there ere
at most I different reference sets Ω̂r. Thus all geometrical constans related
to Ω̂ can be bounded independently of h and r.

Let qh be an arbitrary function in Qh(Ωr) and vh a function in Xh(Ωr)
which fulfills vh(ar) = 0. Since vh vanishes on ∂Ωr and qh ∈ H1(Ωr) there
holds ∫

Ωr

div(vh)qhdx = −
J∑
i=1

∫
κi

vh · ∇qhdx.

Each component v of vh is a quadratic polynomial on Ti that vanishes at
the vertices of Ti. Therefore the quadrature formula∫

Ti

vdx = meas(Ti)
1

3
[v(αi) + v(αi−1)]

is valid. Due to ∇qh being constant on Ti (∇qh|Ti = gi) there holds∫
Ωr

div(v)qhdx = −1

3

J∑
i=1

meas(Ti)[v(αi) + v(αi−1)] · gi.

Since ∂qh/∂τ is continuous on the edges it seems sensible to choose

vh(αi) = −(gi · ti)ti = −(gi+1 · ti)ti,

where ti is the tangent vector to ei with length ‖ei‖ pointing outside of Ωr.
This leads to∫

Ωr

div(v)qhdx =
1

3

J∑
i=1

meas(Ti)[(gi · ti)2 + (gi · ti−1)2].

g · t is preserved by affine transformations. Thus we can write∫
Ωr

div(v)qhdx =
1

3

J∑
i=1

meas(Ti)[(ĝi · t̂i)2 + (ĝi · t̂i−1)2].

Since each set {t̂i−1, t̂i} is a basis on the reference space the function
ĝ→ [(ĝi · t̂i)2 + (ĝi · t̂i−1)2]1/2 is equivalent to the Euclidean norm. With

|q̂|2
1,T̂i

= meas(Ti)‖ĝi‖2

this implies that there exists a constant Ĉ1 > 0 such that∫
Ωr

div(v)qhdx ≥ Ĉ1

J∑
i=1

meas(Ti)|q̂|21,T̂i . (3.6)



46 CHAPTER 3. THE NAVIER-STOKES EQUATION

The definition of vh gives us

‖vh‖20,Ti ≤ Ĉ2meas(Ti)[‖vh(αi−1‖2 + ‖vh(αi)‖2]

≤ Ĉ3meas(Ti)[hTi |q̂|1,T̂i ]
2

Due to (2.3) and since v̂ belongs to P2 on T̂ there holds

|vh|1,Ti ≤ C1‖B−1
i ‖|det(Bi)|

1
2 |v̂h|1,T̂i

≤ C2‖B−1
i ‖|det(Bi)|

1
2 |v̂h|0,T̂

≤ C3‖B−1
i ‖‖vh‖0,T

≤ C4meas(Ti)[σTi |q̂|1,T̂i ].

(3.7)

With (3.6), (3.7) and the regularity of Th we get

∫
Ωr

div(vh)qhdx ≥ Ĉ6
1

σ
|vh|1,Ωr

[
J∑
i=1

meas(Ti)|q̂|21,T̂i

] 1
2

.

Now it remains to show that on a regular triangulation there holds

[
J∑
i=1

meas(Ti)|q̂|21,T̂i

] 1
2

≥ Ĉ‖q‖0,Ωr ∀q ∈ H1(Ωr) ∩ L2
0(Ωr).

Fr maps H1(Ωr) into H1(Ω̂) but it does not preserve the zero mean
value. We handle this by replacing q ∈ H1(Ωr) ∩ L2

0(Ωr) by q where

q̂ = q̂ − 1

meas(Ω̂)

∫
Ω̂
q̂dx̂.

Then q and q differ by a constant and we have

‖q‖0,Ωr = inf
c∈R
‖q + c‖0,Ωr ≤ ‖q‖0,Ωr .

This then gives

‖q‖20,Ωr =

J∑
i=1

meas(Ti)‖q̂‖20,T̂i

≤ Ĉ7 sup
1≤i≤J

(h2
Ti)|q̂|

2
1,Ω̂

since q̂ ∈ H1(Ω̂) ∩ L2
0(Ω̂)

≤ Ĉ8

[
sup1≤i≤J(h2

Ti
)

inf1≤i≤J(ρ2
Ti

)

]
J∑
i=1

meas(Ti)|q̂|1,T̂i .



3.9. CONVECTION-DIFFUSION EQUATION 47

Thus we have [
J∑
i=1

meas(Ti)|q̂|1,T̂i

] 1
2

≥ Ĉ9

σr
‖q‖0,Ωr

with

σr :=
sup1≤i≤J(hTi)

inf1≤i≤J(ρTi)
.

Due to the regularity of Th we have

σr ≤ Ĉσ.

3.9 Convection-diffusion equation

We’ll need the convection-diffusion equation as a subproblem in our precon-
ditioner described in the following section. Therefore we’ll now look at it
more closely. The convection-diffusion equation is

−ε∆u+ w · ∇u = f (3.8)

with a constant ε > 0 and boundary conditions

u = uD on ΓD,

∂u

∂n
= gN on ΓN ,

u|Γper,1 = u|Γper,2 .

w is called wind. In the rest of the section we drop the periodic boundary
condition, since it doesn’t change the arguments presented here.

Most of the time diffusion is less significant than convection, which means

ε << |w|.

This is going to be the case for our problem on most of the volume Ω.
In the following we’ll assume that ε/(|w|L) is small, where L is a char-

acteristic length scale of the problem. Then the solution u of (3.8) is close
to the solution û of

w · ∇û = f.

We analyse this equation by using characteristics or streamlines, this means
curves c(s) which fulfill dc

ds = w which leads to the ODE

d

ds
(û(c(s))) = f(c(s)). (3.9)

If f = 0 the solution û is constant along streamlines.



48 CHAPTER 3. THE NAVIER-STOKES EQUATION

Let now ĉ(s0) be on an inflow boundary and set û(c(s0)) as an initial
condition for (3.9). If the streamline c intersects the border ∂Ω at another
point c(s1) the solution of (3.9) û(c(s1)) might not be the same as the
boundary condition of the original problem u(c(s1)).

Therefore it often happens that the solution u has a steep gradient in
some portion Ω. In the most part of Ω u and û are very similar but along
streamlines ending in an outflow boundary where u and û differ a steep
gradient is needed to satisfy the boundary condition. In such a case the
problem is called to be singularly perturbed and the solution has an expo-
nential boundary layer.

Also diffusion may lead to a steep gradient transverse to streamlines
where u is smoother than û. A possibility for this are discontinuous bound-
ary conditions on the inflow. The discontinuity then propagates into Ω along
streamlines. u is continuous but rapidly varying across an internal layer.

Such layers (internal and at boundary) lead to problems when trying to
construct approximations for cases when the convection is dominant.

It is useful to have a measurement on the relative contributions of con-
vection and diffusion. This leads to the Peclet number, which we get by
putting equation (3.8) in its dimensionless form.

Let L be a characteristic length, w = Ww∗ with a positive W (which
would be the reference velocity of the wind) and |w∗| normalized and for
each point x ∈ Ω let ξ̂ = x̂/L be its scaled version. With u∗(ξ̂) = u(Lξ̂) we
get

−∆u∗ +

(
WL

ε

)
w∗ · ∇u∗ =

L2

ε
f.

The Peclet number then is

P :=
WL

ε
.

If P ≤ 1 the equation is therefore diffusion dominated and relatively benign,
on the other hand if P >> 1 then the problem becomes much more difficult.
Due to the steep gradients we get a problem for the standard Galerkin
method because the mesh needs to be fine enough to resolve these gradients.
This leads to large problems or in the case of our preconditioner is not
sensible since the coarser grids of the multigrid method may be too coarse
to resolve this.

For a more in-depth analysis of this problem see [5].

Therefore we need a strategy to get useful solutions even on coarse grids.
This leads to the streamline diffusion (SD) method.

Streamline diffusion (SD) method

Here I’ll only describe the SD method, for the theory of errors see [5]. The
derivation of the SD discretisation uses a Petrov-Galerkin formulation.



3.9. CONVECTION-DIFFUSION EQUATION 49

Idea of Petrov-Galerkin: Use different spaces for solution and testfunc-
tions, i.e. for an arbitrary operator L and Lu = f the weak problem is (with
suitable product)

Find u ∈ U such that (Lu, v) = (f, v) ∀v ∈ V.

In the case of the SD discretisation L is the convection-diffusion operator,
the trialspace U is the space of trialfunction that fulfill the Dirichlet condi-
tion Xh

D and the testspace V is spanned by the functions vh+δw ·∇vh where
vh ∈ Xh

0 (fulfills 0-boundary condition) and δ > 0 is a constant parameter.
This gets us to the lefthandside of our equation

(Lu, v) = ε

∫
Ω
∇uh · ∇vh − ε

∫
∂ΩN

vh
∂uh
∂n

+

∫
Ω

(w · ∇uh)vh

+ δ

∫
Ω

(w · ∇uh)(w · ∇vh)− δε
∫

Ω
(∆uh)(w · ∇vh).

If gN = 0 this simplifies since the boundary integral vanishes.
One problem here is that ∆uh is not defined since uh doesn’t need to

have a second derivative. But if we restrict to individual elements and these
restrictions have a second derivative, which is true most of the time since
most of the time the functions are polynomials on elements, we can construct
a legitimate method with an element-wise sum

−δε
∑
k

∫
Tk

(∆uh)(w · ∇vh).

This leads to the equation

Find uh ∈ Xh
D such that aSD(uh, vh) = `SD(vh) ∀vh ∈ Xh

0 ,

where

aSD(u, v) := ε

∫
Ω
∇u · ∇v +

∫
Ω

(w · ∇u)v + δ

∫
Ω

(w · ∇u)(w · ∇v)

− δε
∑
k

∫
Tk

(∆u)(w · ∇v),

`SD(v) :=

∫
Ω
fv + δ

∫
Ω
fw · ∇v.

This methodology leads to a different norm, the SD norm

‖v‖SD := (ε‖∇v‖2 + δ‖w · ∇v‖2)
1
2 .

For linear elements the coercivity bound then is

aSD(uh, vh) ≥ ‖vh‖2SD



50 CHAPTER 3. THE NAVIER-STOKES EQUATION

which is stronger than the Galerkin bound because it does not degrade in
the limit ε→ 0.

We still need to choose the parameter δ or a locally defined parameter
δ∗k. With the element Peclet number Pkh := |w|hk/(2ε) it is useful to choose

δ∗k =

 hk
2|wk|

(
1− 1

Pkh

)
, if Pkh > 1

0 , if Pkh ≤ 1

where hk is a measure of element length in direction of wind and |wk| is the
`2-norm of wind at the element centroid.

The choice of this parameter is better motivated with a more special
derivation of the SD discretisation which can be found in [5], but it is note-
worthy that in the limit Pkh →∞ we see δ∗k → hk/(2w) which is optimal in
the convective limit.

Otherwise when the mesh resolves all layers of the problem the SD dis-
cretisation becomes the standard Galerkin discretisation.

3.10 Preconditioning

To solve the linear equation system arising from our FEM-discretisation
efficiently we want to use a preconditioner. The the discretisation of the
Navier-Stokes problem has the form(

F BT

B 0

)(
u
p

)
=

(
f
g

)
,

where the blocks F and B represent the discrete versions of the bilinearforms
a(u,u) and b(u, q) respectively

Since our matrix is not symmetric it is not that useful to use a block
diagonal matrix as our preconditioner instead we use a block triangular
matrix

M =

(
MF BT

0 −MS

)
.

Where MF shall be an approximation of F and MS shall be a suitably chosen
Schur complement. We apply this preconditioner by solving(

MF BT

0 −MS

)(
w
s

)
=

(
v
q

)
,

with given v and q, which is relatively inexpensive when solving

MSs = −q, MFw = v −BT s.

To construct a sensible choice for MS we assume MF = F and look at
the generalized eigenvalue problem(

F BT

B 0

)(
u
p

)
= λ

(
F BT

0 −MS

)(
u
p

)
.



3.10. PRECONDITIONING 51

There are two possibilities: λ = 1 or λ 6= 1.

In the case of λ 6= 1 we get

Fu+BT p = 0 or u = −F−1BT p

from the first block equation. Then it follows with the second equation that

BF−1BT p = λMSp. (3.10)

This means the eigenvalues of M consist of unity (case λ = 1) and the
eigenvalues of (3.10). If we define

K :=

(
F BT

B 0

)
and use block LU-decomposition we get(

F BT

B 0

)
=

(
I 0

BF−1 I

)(
F BT

0 −BF−1BT

)
.

If we’d set the Schur complement

MS = S := BF−1BT

the eigenvalues of the preconditioned matrix L = KU−1 would be 1. This
would be ideal but is not feasible. Therefore we want to approximate S with
a different MS .

We assumed MF = F but the preconditioner requires M−1
F . This means

we also need a strategy for MF .

3.10.1 Approximating F

Here I will outline some of the issues arising from using multigrid for F in
a concise manner. For an in depth view on this topic see [5].

We observe that for the Picard iteration the matrix F arising from the
Oseen operator is a block-diagonal matrix with a discrete convection diffu-
sion operator in each nonzero block. For the Newton iteration this is not
the case but for the preconditioner we’ll use an approximation of F instead.
We use F̂ which shall be the matrix arising from an Oseen operator.

Therefore it is natural to employ multigrid strategies used for convection
diffusion equations.

Multigrid for convection diffusion

There are two major points which are important for a successful use of
multigrid.



52 CHAPTER 3. THE NAVIER-STOKES EQUATION

1. Choice of discretisation: Due to the fact that standard Galerkin dis-
cretisation on coarse grids is ineffective it is not sensible to use it for
multigrid, instead use streamline diffusion (SD) discretisation. Even
if the original grid is fine enough the coarse grids of multigrid can be
too coarse. In experiments this leads to divergent behavior (see [5]).

2. Smoothing operators: Due to the direction of flow simply using a
Gauß-Seidel smoother is not sufficient as performance varies widely
for different ordering of variables. If the order of variables follows the
direction of flow already one step of a Gauß-Seidel smoother gives very
good results. But if the order of variables is in the opposite direction
the performance is really bad. Each step only smoothes the error on
the first cells of the flow.
So if the direction of flow is known one can choose the ordering accord-
ingly. For more complex flows the ordering could be chosen adaptively
but this would be computationally expensive. Instead we can use or-
dering along each axis in both directions in each step of Gauß-Seidel.
For 2-dimensional problems this leads to the 4 directional Gauß-Seidel
and for 3-dimensional problems this leads to the 6 directional Gauß-
Seidel. This strategy is less effective than following the direction of
flow but much better than ordering in the opposite direction.

3.10.2 Approximating the Schur complement S

With the pressure mass matrix Q, setting MS = ReQ is a very good choice
as long as the Reynolds number is small (order of Re ≤ 40). To get to our
approximation we start with the Oseen operator

L = − 1

Re
∆ + wh · ∇.

Suppose we have an analogous operator on the pressure space

Lp =

(
− 1

Re
∆ + wh · ∇

)
p

.

We now say p ∈ H1 although p ∈ L2 and look at the commutator of the
convection-diffusion operator with the divergence operator

E = div

(
− 1

Re
∆ + wh · ∇

)
−
(
− 1

Re
∆ + wh · ∇

)
p

div.

We would like to have E small in some sense. E would be 0 if wh was
constant and Ω an unbounded domain.



3.10. PRECONDITIONING 53

Pressure convection-diffusion preconditioner

Let Q be the velocity mass matrix

Q = (qij), qij =

∫
Ω

ΦiΦj ,

where the Φi are the velocity basis functions of the finite element method.
The matrix representation for the discrete divergence operator is Q−1B and
for the discrete gradient operator is Q−1BT . A similar derivation gets us
the matrix representation of the convection-diffusion operator. With these
we now get a discrete version of our commutator

Eh = (Q−1B)(Q−1F )− (Q−1Fp)(Q
−1B), (3.11)

Fp = (fp;ij), fp;ij = 1
Re

∫
Ω∇ψj∇ψi +

∫
Ω(wh · ∇ψj)ψi. (3.12)

We isolate the Schur complement in (3.11) by multiplying QF−1
p Q from the

left and F−1BT from the right

BF−1BT ≈ QF−1
p BQ−1BT .

There are some details needed for implementation. The matrix BQ−1BT

is problematic because it is dense. Therefore we want to use another ma-
trix which is sparse. For enclosed flow we have spectral equivalence to the
Laplace operator on the pressure space

Ap = (ap;ij), ap;ij =

∫
Ω
∇ψj · ∇ψi.

For nonenclosed flow this is not useful. Instead we can use T = diag(Q)
and replace BQ−1BT with BT−1BT . Now we have our approximated Schur
complement

MS := QF−1
p Ãp

whereby Ãp means Ap or BT−1BT depending on the problem. Our precon-
ditioner requires

M−1
S = Ã−1

p FpQ
−1

which can be implemented easily.
This derivation can be altered for stabilized methods and in case of

discontinuous pressure also altered with jumps (see [5]).



Chapter 4

Bifurcation theory

The main sources for this background are [8], [10] and [14].

4.1 Bifurcation theory

We want to look at the stability of our equation. Therefore we look at the
steady states.

4.1.1 Bifurcation theory for ODEs

First we introduce bifurcation theory for ODEs

u′ = f(u, p).

We need the definition of topological equivalence.

Definition 7. A dynamical system (A) is topological equivalent to another
one (B) if there is a homeomorphism mapping trajectories of (A) to (B)
preserving the direction of time.

Now we can define what a bifurcation is.

Definition 8. The appearence of a topologically nonequivalent phase portrait
under parameter variation is called bifurcation.

This definition can be used to look at normal forms of bifurcations, e.g.

u′ = u(p− u) u : R→ R, p ∈ R

is the normal form of transcritical bifurcations (see fig. 4.1).

We want to look at stability, therefore we need to define stable and
unstable manifolds.

54



4.1. BIFURCATION THEORY 55

p

u

p

u

p

u

Figure 4.1: Phase portraits of the normal forms for the transcritical bifur-
cation (u′ = u(p − u)), the fold bifurcation (u′ = p − u2) and the pitchfork
bifurcation (u′ = u(p−u2)). The blue lines are stable steady states and the
red dashed lines are unstable steady states.

Definition 9. Let φ(u0, t) be the flow of an ODE with steady state u∗. We
then define stable and unstable manifolds as

W s(u∗) := {v ∈ Rd : φ(v, t)→ u∗, t→∞},
W u(u∗) := {v ∈ Rd : φ(v, t)→ u∗, t→ −∞}.

We can get informations about stability from the eigenvalues of our lin-
earized problem. We need to define hyperbolic steady states.

Definition 10. A steady state u∗ is called hyperbolic steady state if the
derivative (Duf)(u∗) ∈ Rd×d has only eigenvalues λi with Re(λi) 6= 0.

Theorem 13 (Stable-Unstable Manifold Theorem). Suppose an ODE has
a hyperbolic steady state u∗ and (Duf)(u∗) has k real-part negative and
d − k real-part positive eigenvalues with corresponding eigenspaces Es(u∗)
and Eu(u∗) for the linearized system. Then there exists a neighbourhood U
of u∗ with local stable and unstable manifolds W s

loc(u
∗) and W u

loc(u
∗)

W s
loc(u

∗) = {v ∈ U : φ(v, t)→ u∗, t→∞, φ(v, t) ∈ U ∀t ≥ 0},
W u
loc(u

∗) = {v ∈ U : φ(v, t)→ u∗, t→ −∞, φ(v, t) ∈ U ∀t ≤ 0}.

These manifolds are tangent to Es(u∗) and Eu(u∗) at u∗ and are as smooth
as f .

Proof. The proof can be found in [10].

It follows that if p− k = 0 the steady state is stable.

4.1.2 Lyapunov-Schmidt theorem

We want to generalize this theory to PDEs. We do this by focusing on local
bifurcations. We look at problems of the form:

F (u, v) = 0, F : X × Y → Z, (u, v) ∈ X × Y (4.1)



56 CHAPTER 4. BIFURCATION THEORY

where X, Y, Z are Banach spaces.
We use a generalization of the implicit function theorem to gain infor-

mation.

Theorem 14 (Implicit Function Theorem). Suppose (u0, v0) satisfies (4.1).
The Fréchet derivative DuF (u0, v0) is bijective, F ∈ C(X×Y,Z) and DuF ∈
C(X×Y,L(X,Z)). Then there exists a neighbourhood U ×V of (u0, v0) and
a continuous map f : V → U such that f(v0) = u0 and

F (f(v), v) = 0 ∀v ∈ V.

Moreover all solutions in U × V are of this form.

This theorem gives us local uniqueness of a branch of solutions and fails
if two branches cross. Therefore interesting points for bifurcations are where
the implicit function theorem fails.

We want to reduce our infinite dimensional problem to a finite dimen-
sional problem. If we assume that V ⊂ R (or Rd) it remains to reduce the
u-component. This is done using the Lyapunov-Schmidt method.

We need to know what a Fredholm operator is.

Definition 11. Let F : U ⊂ X → Z and F shall be Fréchet differentiable.
Let u0 ∈ U ⊂ X. F is a nonlinear Fredholm operator if

• dim(ker((DuF )(u0))) <∞,

• codim(R((DuF )(u0))) <∞,

where codim(S) := dim(Z − S). We define the Fredholm index as

Fredholm index := dim(ker((DuF )(u0)))− codim(R((DuF )(u0))).

Fredholm operators have ’relatively small nullspace’ and miss a ’rela-
tively small part’ of the range.

Theorem 15. Assume

F (u0, v0) = 0, F, DuF ∈ C, F (·, v0) : X → Z

is a Fredholm operator. Then there exists a neighbourhood U ×V of (u0, v0)
such that F (u, v) = 0 is equivalent U × V to the finite dimensional problem

Φ(ũ, v) = 0, (ũ, v) ∈ Ũ1 × V1 ⊂ N × V

and Φ is continuous with Φ(ũ1, v1) = 0 for (ũ1, v1) ∈ Ũ1 × V1.

Proof. The proof can be found in [10].

The function Φ is called bifurcation function.



4.1. BIFURCATION THEORY 57

4.1.3 Crandall-Rabinowitz

Now we search for local bifurcations of certain PDEs. We use the following
form:

F (u, p) = 0, F : X × R→ Z, F (0, p) = 0.

The last condition gives that we always have a trivial solution branch. We
assume:

• dim(ker((DuF )(0, p)))) = 1 = codim(R((DuF )(0, p)))

• F ∈ C3 in an open neighbourhood of the trivial branch.

Without loss of generality we can assume that the critical point is at p = 0.

Theorem 16 (Crandall-Rabinowitz Theorem). The assumptions from this
subsection shall hold and

ker((DuF )(0, 0)) = span(e0), (D2
upF )(0, 0)e0 /∈ R((DuF )(0, 0))

for e0 ∈ X and ‖e0‖ = 1. Then there is a nontrivial branch of solutions
described by a C1-curve through (u, p) = (0, 0)

{(u(s), p(s)) : s ∈ (−s0, s0), (u(0), p(0)) = (0, 0)}

which satisfies F (u(s), p(s)) = 0 locally and all solutions in a neighbourhood
of (0, 0) are either on the trivial branch or on the nontrivial curve.

The situation in this theorem is also called bifurcation from a simple
eigenvalue as dim(N ) = 1. And it gives us the existence of a nontrivial
solution branch.

Corollary 3. The tangent vector to the nontrivial solution curve at (u, p) =
(0, 0) is given by (e0, ṗ(0)).

This is directly used in some numerical methods for branch switching
(see [8] Method IV)

4.1.4 Stability

Now we still need to look at the stability of the evolution problem

∂tu = F (u, p), u : [0,∞)→ X, u = u(t) ∈ X, p ∈ R.

Definition 12. A solution branch (u∗(p), p) for F (u, p) = 0 is called (lin-
early) stable at p∗ if
σ((DuF )(u∗, p∗)) is properly contained in the left half of the complex plane.



58 CHAPTER 4. BIFURCATION THEORY

4.2 Arclength continuation

For the calculation of solution branches we use the algorithm described
in [14] called (pseudo)arclength continuation. The aim is to calculate a
solution branch of

G(u, λ) = 0

for G : X×R→ X a C1-function and X being a Banach space. The branch
z(s) shall be parametrized by s and we look at the extended system

H(u, λ) =

(
G(u, λ)
p(u, λ, s)

)
= 0 ∈ X × R,

where p is used to make s an approximation of the arclength.
We assume now that X is a Hilbert space with inner product 〈·, ·〉. The

standard choice then is: If we have (u0, λ0) = (u(s0), λ(s0)) with s0 given
and we know the tangent τ0 := (u̇0, λ̇0) := d

ds(u(s), λ(s)) we use

p(u, λ, s) := ξ〈u̇0, u(s)− u0〉+ (1− ξ)λ̇0(λ(s)− λ0)− (s− s0),

where 0 < ξ < 1 is a weight and τ0 shall be normalized in

‖τ‖ξ :=
√
〈τ, τ〉ξ,

〈(
u
λ

)
,

(
v
µ

)〉
:= ξ〈u, v〉+ (1− ξ)λµ.

With a fixed s and ‖τ0‖ξ = 1 then p(u, λ, s) = 0 defines a hyperplane
perpendicular (in 〈·, ·〉ξ) to τ0 at distance ds := s− s0 from (u0, λ0).

We now use a predictor (u1, λ1) = (u0, λ0) + dsτ0 for a solution on that
hyperplane. Using Newton’s method we correct this estimate(

u`+1

λ`+1

)
=

(
u`

λ`

)
−A(u`, λ`)−1H(u`, λ`), A =

(
Gu Gλ
ξu̇T0 (1− ξ)λ̇0

)
. (4.2)

Since ∂sp = −1 on a smooth solution arc it follows that

A(u(s), λ(s))

(
u̇(s)

λ̇(s)

)
= −

(
0
−∂sp

)
=

(
0
1

)
.

Therefore after convergence of (4.2) we can get our new tangent τ1 at the
newly found point (u1, λ1) with the Jacobian A1 from

A1τ1 =

(
0
1

)
, (4.3)

with normalization ‖τ1‖ξ ≤ 1. This process conserves the orientation of τ0,
i.e. 〈τ0, τ1〉 = 1.

One can choose to use a chord method where A = A(u1, λ1) remains
fixed during the iteration.(

u`+1

λ`+1

)
=

(
u`

λ`

)
−A(u1, λ1)−1H(u`, λ`).

This avoids the costly assembly of Gu at the price of an increased count of
iterations during the Newton correction.



4.2. ARCLENGTH CONTINUATION 59

4.2.1 Role of weight ξ

There are two major roles of ξ.
If G(u, λ) = 0 comes from a discretization of a PDE G(u, λ) = 0 over

a domain with np spatial points then u is an element of Rp with large p.
Here let’s use p = Nnp, with N being the dimension of the image of u.
In this case we want to choose ξ such that ξ‖u‖2Rp is an approximation of
(1/meas(Ω))‖u‖2L2(Ω).

If u ≡ 1 corresponds to uj , j = 1, . . . , np then by assuming ui, i =
1, . . . , N we get an estimate

1

meas(Ω)
‖u‖2(L2)N = N

!
= ξ‖u‖2Rp = ξNnp ⇒ ξ =

1

np
.

Therefore we get a basic formula for ξ.
But if we choose different ξ we get different continuations. Small ξ favors

changes in u and large ξ favors changes in λ. ξ can therefore also be seen
as a parameter to tune continuation and may be changed during runs. This

Algorithm 4.1 Basic continuation algorithm

Given ξ, (u0, λ0, τ0), ds.
Predictor: (u1, λ1) := (u0, λ0) + dsτ0

Newton-corrector: Iterate (4.2) until convergence. Decrease ds if it fails to
converge, back to predictor step. Increase ds for next step if it converges
quickly.
New tangent: Calculate τ1 from (4.3), set (u0, λ0, τ0) = (u1, λ1, τ1) and
return to the predictor step.

algorithm doesn’t work at bifurcation points where A is singular, which
generally doesn’t happen since the algorithm shoots past these points most
of the time.

Definition 13. A simple bifurcation point is a point (u, λ) where det(A)
changes sign. The assumption is that this happens due to a simple eigenvalue
of A crossing zero.

This excludes folds, where a simple eigenvalue reaches zero, but det(A)
doesn’t change sign (can be seen in diagramm anyway). It also excludes
points with an even number of eigenvalues crossing iR. Remark. [14] says

that ξ = 1/2 is the numerically most robust.
In pde2path, the matlab toolbox described in [14], by default uses LU-

decomposition to detect a sign change of det(A). �
Due to the size of our problem this approach is not feasible. The evaluation

of det(A) is too costly. Instead we calculate a small number of eigenvalues



60 CHAPTER 4. BIFURCATION THEORY

close to iR. The problem of this approach is that it can detect a change
without an eigenvalue crossing iR. This can happen if an eigenvalue with a
positive (or negative) real part drops out of the list of eigenvalues while an
eigenvalue with negative (or postive respectively) real part comes into the
list. One way to restrict the possibility of this happening is by starting on
a branch with known stability. E.g. on the stable branch we know that all
eigenvalues are on the same side of the imaginary axis, therefore the next
detected bifurcation can’t be due to this effect.

After we detect a bifurcation between sk and sk+1 the bifurcation is
located by a bisection method.

4.2.2 Switching branches

When we detect a bifurcation we want to be able to switch the branch we
are following. We do this by using ’Method I’ of [8].

z(s) shall be the solution branch. z(s0) is a singular point if
rank(Gz(z(s0))) = N −1. Since Gz ∈ RN×N+1 there exist two linearly inde-
pendent null vectors Φ1,Φ2 ∈ RN+1. One can set ΦT

i Φj = δij , therefore we
have an orthonormal system of ker(Gz(z(s0))). Also GTz (z(s0)) ∈ RN+1×N

has rank N − 1 therefore

ker(GTz (z(s0))) = span(ψ).

Since
G(z(s)) = 0

it follows that
Gz(z(s))ż(s) = 0,

thus at s = s0, ż(s0) can be described by

ż(s0) = αΦ1 + βΦ2 α, β ∈ R.

Through differentiation we get

Gz(z(s))z̈(s) +Gzz(z(s))ż(s)ż(s) = 0.

We multiply by ψT and evaluate at s = s0, then the first term vanishes and
we get

ψTGzz(z(s0))ż(s0)ż(s0) = 0.

Then we substitute the presentation of ż(s) and get

a11α
2 + 2a12αβ + a22β

2 = 0

where aij = ψTGzz(z(s0))ΦiΦj . This quadratic equation has depending on

∆ = a2
12 − a11a22



4.2. ARCLENGTH CONTINUATION 61

up to two different solutions. Since z(s) is a smooth solution branch ∆ < 0
is not possible. If ∆ > 0 there exist 2 nontrivial tangents therefore z(s) is
a bifurcation point. ’Method I’ of [8] uses this equation. Use the tangent
vector

ż(s0) = αΦ1 + βΦ2

and

Φ1 =

(
φ
0

)
, Φ2 =

(
φ0

1

)
.

We know already one branch of solutions, therefore we already know one
tangent. This determines one solution of the equation. Let the known
tangent be (u̇0, λ̇0) then

β0 = λ̇0, u̇0 = α0φ+ β0φ0.

We can then get the second solution easily by setting

α1 = −
(
a11α0

β0
+ 2a12

)
, β1 = a11

because

0
!

= a11α
2
1 + 2a12α1β1 + a22β

2
1

= a11

(
a2

11α
2
0

β2
0

+ 4a11a12
α0

β0
+ 4a2

12

)
− 2a12

(
a11α0

β0
+ 2a12

)
a11 + a22a

2
11

=
a3

11α
2
0

β2
0

+ 2a12a
2
11

α0

β0
+ a22a

2
11

⇔ a11α
2
0 + 2a12α0β0 + a22β

2
0 = 0.

Therefore we only need to know a11 and a12, but this needs evaluation of
Guu and Guλ. We can estimate these with the finite differences

a11 =
1

δ
ψT (Gu(u0 + δφ, λ0)−Gu(u0, λ0))φ

a12 =
1

δ
ψT ((Gu(u0 + δφ, λ0)−Gu(u0, λ0))φ0 + . . .

. . .+Gλ(u0 + δφ, λ0)−Gλ(u0, λ0))

This means we need ψT , φ, φ0. We get φ and ψ by calculating

Guφ = 0, GTuψ = 0

and normalize by setting ‖φ‖ = 1, 〈ψ, φ〉 = 1. We then get φ0 through the
presentation of u̇0

φ0 = β−1
0 (u̇0 − ψT u̇0φ).

We then get algorithm 4.2.



62 CHAPTER 4. BIFURCATION THEORY

Algorithm 4.2 switch branch algorithm

(u0, λ0) is a simple bifurcation point τ0 tangent along the branch.
Calculate φ, ψ withGu(u0, λ0)φ = 0, Gu(u0, λ0)Tψ = 0, ‖φ‖ = 1, 〈ψ, φ〉 =
1
Let β0 = λ̇0, α0 = ψT u̇0, φ0 = β−1

0 (u̇0 − α0φ).
Choose some small δ > 0, calculate the finite dimensions

a11 =
1

δ
ψT (Gu(u0 + δφ, λ0)−Gu(u0, λ0))φ,

a12 =
1

δ
ψT ((Gu(u0 + δφ, λ0)−Gu(u0, λ0))φ0 + . . .

. . .+Gλ(u0 + δφ, λ0)−Gλ(u0, λ0)).

Assume β 6= 0 (see [8] if this is not true), set

α1 = −
(
a11α0

β0
+ 2a12

)
, τ1 =

(
α1φ+ a11φ0

a11

)
.

Choose a weight ξ and stepsize ds, set τ0 = τ1/‖τ1‖ξ and go back to the
continuation algorithm. If there is no convergence in the continuation
algorithm or it falls back onto the known branch one may change ξ or ds.



Chapter 5

Experiments

5.1 Allen-Cahn equation

For checking the algorithm worked correctly I used a version of the Allen-
Cahn equation

−0.25∆u− λu− u3 + u5 = 0 on Ω,

u = 0 on ∂Ω

on the axisymmetric rectangle (−1, 1)×(−0.9, 0.9) and compared the results
to the results described in [14].

As it should be expected, we see in figure 5.1 u = 0 is the trivial solu-
tion. We see the that the bifurcation points are located at the same position,
therefore our method of finding bifurcations seems to have worked without
problems. Although I have found one extra branch since the searched inter-
vall was a bit larger. Also the found branches look the same. If you use an
equivalent norm the plot looks qualitatively the same but it will probably

‖u‖
L2

λ

number of
negative eigenvalues:

= 0
= 1
= 2
= 3
= 4

Figure 5.1: The plot from [14] (left) for comparison, next to my plot in the
L2-norm.

63



64 CHAPTER 5. EXPERIMENTS

‖u‖
L2

λ

number of
negative eigenvalues:

= 0
= 1
= 2
= 3
= 4

Figure 5.2: The bifurcation diagram in the H1-norm.

‖u‖
L2

λ λ

number of
negative eigenvalues:

= 0
= 1
= 2
= 3
= 4

Figure 5.3: Zoomed in versions of the diagrams for different numbers of
calculated eigenvalues (left: 15 eigenvalues, right: 20 eigenvalues)

be scaled in some form. In figure 5.2 you can see the plot when using the
H1-norm.

On the nontrivial branches close to the bifurcation points we see a dif-
ference in the number of eigenvalues with negative real part of two. This
seems to be due numerical errors. One thing that seems to support this is
that when I computed the diagrams with a different number of calculated
eigenvalues these areas changed as can be seen in figure 5.3. Therefore it
can’t be an effect inherent to the equation but must be brought on by other
means.

When looking at the solutions in figure 5.4 we see that they behave the
same way as in [14], although the solution one the first branch is the negative
one, which is no problem as for a solution u of the Allen-Cahn equation −u



5.2. BOUNDARY LAYER 65

0.000 0.3373 0.6746 1.012 1.349

−1.232 −0.616 0 0.616 1.232

−1.216 −0.608 0 0.608 1.216 −1.517 −0.7585 0 0.7585 1.517

Figure 5.4: Solutions on the three nontrivial branches at λ = 1.93, λ = 3.33
and λ = 3.73 and the last point of the third branch. Next to the solutions
from [14] at λ = 1.93, λ = 3.33

is also a solution. For the first two nontrivial branches the qualitative look
of the solutions is not changing along the branch, while at the third branch
the peaks shift into the corners in a clockwise direction.

5.2 Boundary layer

Due to the difference in scales between the diffusion and the convection term
if the flow velocity is large enough the diffusion term can be neglected:

1

Re
∆u = O(Re−1)↔ u · ∇u = O(u).



66 CHAPTER 5. EXPERIMENTS

This makes sense in large areas of the flow but one big area where this will
fail is at the Dirichlet boundary (no-slip condition). Flow speeds are small
there, therefore also the convection term is small. This means there exists a
boundary layer, with thickness of about O(Re−

1
2 ), which behaves differently

than most of the rest of the geometry.
One can use this to solve two different equations on two different areas

with interface conditions (see section A.1).
If you don’t want to neglect diffusion you have to remember that this

boundary layer exists. For numerical simulation this means that your mesh
should be finer at the boundary such that the boundary layer is taken care
of.

To demonstrate this effect I have done some of the following tests on
meshes with boundary refinement and without it.

5.3 Testing the preconditioner

To test the preconditioner I used the Navier-Stokes equation on the cube
Ω = (−1, 1) × (−1, 1) × (−1, 1) with the righthandside f = (0, 0, x)T with
no-slip condition on ∂Ω with and without boundary refinement.

Also I tested on the periodic pipe with the axis (0, 0,−5)− (0, 0, 5) and
radius r = 1 with no-slip condition on the pipe wall and periodic boundary
conditions on the in- and outflow boundaries.

We want to answer some questions that might be of interest about the
preconditioner and the linear equation solver in general.

• Is it worth the effort to implement the preconditioner or does the solver
work good enough without it?

• How does the boundary layer influence the solver/Newton algorithm?

• Is there a remarkable difference when using this solver/preconditioner
for NSolve or NCorr (see A.2.3)?

• How does this solver/preconditioner fare when used for computing the
eigenvalues of the matrix

A =

(
Gu Gλ
ξu̇T (1− ξ)λ̇

)
5.3.1 Value of the preconditioner

Is it really worth the effort to implement the preconditioner?
Short answer: yes.
It is really easy to realise the enormous value of the preconditioner after

only a few tests. I have tested on two relatively coarse meshes to solve
with and without the preconditioner, on the cube and on the pipe. (Cube:



5.3. TESTING THE PRECONDITIONER 67

maxh = 0.3, boundary maxh = 0.15, boundary layer thickness = 0.02;
Pipe: maxh = 0.3, boundary maxh = 0.2, boundary layer thickness = 0.05.)
When testing on the cube I used a zero-vector as the starting solution, while
on the pipe I used the analytic laminar solution. On the cube this setup
led to two Newton steps before the tolerance of 10−2 was reached. On the
pipe this lead to instant convergence of the Newton algorithm, therefore in
the table I have put the data of the Newton when we let the continuation
algorithm run for one extra step. I tested at Re = 20.

Newton tol preconditioned? Newton iterations achieved
= 10−2 iteration residual value

cube False 0 300 0.34
cube False 1 300 0.39
cube True 0 17 0.00095
cube True 1 20 0.00048
pipe False 0 300 0.096
pipe True 0 5 0.00095

When only setting a tolerance of 10−3 the gmres isn’t able to converge
within the maximum number of iterations (300 iterations) when not using
the preconditioner. In contrast, with the preconditioner and the same setup
the solver achieves the tolerance within a few iterations.

5.3.2 Boundary layer influence

When I started the tests it became apparent pretty quickly that the con-
tinuation algorithm started to fail at certain Reynolds-numbers due to the
Newton-algorithm not achieving the desired tolerance because of the gmres-
solver hitting the maximum number of iterations. After some further testing
I was able to discern three major influences in this effect.

The first one was almost obvious, the coarseness of the mesh was a
factor, finer meshes lead to higher critical Reynolds numbers but the second
influence is more important and it is the resolution of the boundary layer.

boundary layer boundary maximum h critical Re
thickness maximum h

0.05 0.15 0.3 20.01
0.05 0.1 0.2 21.47
0.02 0.1 0.2 39.95

The third influence was not that obvious but after reviewing the data
was also not that hard to see. It was the restart count on the gmres-solver.
The number of iterations needed for the solver to achieve its set tolerance
steadily increased while getting closer to the critical Reynolds number as
seen in figure 5.5. We see two large jump in this plot as the number of
iterations arrives at the restart points.



68 CHAPTER 5. EXPERIMENTS

Figure 5.5: The number of gmres-iterations required to get the defined tol-
erance. Two jumps can be seen when hitting the restart counts of 100 and
200 iterations. At 300 the maximum number of iterations is reached.

Thus the main possibilities to achieve higher break-off points are to re-
solve the boundary layer finer, use a finer mesh, or in the same type of
approach use a higher order discretization or to set a higher restart count
or lower tolerances.

We already see that the boundary layer has an enormous influence.

I also wanted to compare the effects of refining for the boundary layer
against meshes without boundary refinement. Therefore I tested on the
cube with four different meshes: Two with boundary refinement, one with
the same resolution on the main part of the cube without the refinement
and one with finer resolution overall but also without boundary refinement.
The coarser refined mesh has about the same number of degrees of freedom
as the finer unrefined mesh.

maxh boundary thickness boundary maxh Newton iterations

0.3 0.02 0.1 6
0.2 0.02 0.1 5
0.2 - - 88
0.1 - - diverged

It is quite interesting to see what happened. While between the first
three tests there was the expected effect, in the fourth test the Newton
iteration failed and diverged after the gmres failed to achieve the wanted
tolerance. This is probably due to the increased complexity of the linear



5.3. TESTING THE PRECONDITIONER 69

equation system while not getting the advantage of better resolving the
problematic areas.

To show this I have put here an overview of the number of gmres iter-
ations needed during the Newton iteration. Due to the third mesh having
a lot of steps where only one step of gmres was performed the average was
skewed quite a bit. Therefore I have also put here the overview of the first
five steps of the Newton algorithm since the refined mesh only took five
steps and I thought it would be the most interesting comparison.

gmres iterations

all Newton steps first 5 steps

mesh mean min max mean min max

h=0.3 refined 35.67 34 38 35.4 34 38
h=0.2 refined 35 33 37 35 33 37

h=0.2 13.43 1 211 46.2 44 49
h=0.1 192.58 6 300 257.6 191 300

5.3.3 NSolve versus NCorr

One big question is if the preconditioner still works as well when used in the
setting of the (pseudo-)arclength continuation.

There we use the matrix

A =

(
Gu Gλ
ξu̇ (1− ξ)λ̇

)

for our Newton correction. Due to preconditioner described in section 3.10
being made for the block Gu we need to adjust it. When MGu is the pre-
conditioner for Gu then I simply made the preconditioner for A by defining

MA :=

(
MGu 0

0 1

)
.

But this begs the question if this still works as well. Therefore I made
a test to compare them on the cube with a mesh with boundary refinement
(h = 0.3, bh = 0.15, boundary thickness= 0.02).



70 CHAPTER 5. EXPERIMENTS

NSolve/NCorr Newton step gmres iterations residual value
at Newton step

NSolve 0 30 0.11
1 33 0.0075
2 32 0.0017
3 31 0.00051
4 32 6.5 · 10−5

5 33 2.3 · 10−5

6 33 8.0 · 10−6

NCorr 0 30 0.11
1 33 0.0075
2 32 0.0017
3 31 0.00051
4 32 6.6 · 10−5

5 33 2.4 · 10−5

6 33 8.1 · 10−6

It shows that this adjustment didn’t make any distinguishable difference.

5.3.4 computing eigenvalues

As described in section 4.2 we need to compute eigenvalues close to zero
to check if one crosses over. Thus we need to use the shift-invert mode of
eigs from scipy [7]. Thankfully eigs is implemented in a way so that one
can specify how this inverse works. (More specifically how the matrix-vector
multiplication with the inverse works.)

Therefore we want to use our gmres-precondtioner combo for this. We’ll
now look at how this fares for calculating the eigenvalues.

I have tested on a mesh on the cube (h = 0.3, boundary: h = 0.15,
thickness= 0.02) and did two full continuation steps.

gmres steps in NCorr gmres steps in eigs

max times called mean min max median

33 322 37.11 34 38 37
34 268 38.68 36 39 39

We see that the solver was called about 300 times in eigs and it always
was slightly worse than when used for NCorr but not really impacting a
lot. This reflects what we would have expected, although I have found in
early testing stages (when I hadn’t set the restart count for gmres myself
(default= 20)), that the performance was way worse. Thus it seems to be a
good idea to set the restart count as high as possible.



5.4. PIPE CONTINUATION 71

‖u‖`2

λ

Figure 5.6: Path of the laminar solution, the change of resolution comes
from a change of dsmax.

5.4 Pipe continuation

Sadly, due to computational problems, I was not able to do a continuation on
a long pipe (length = 100 pipe diameters). As mentioned in the introduction
one of the bigger problems is getting a fine enough mesh.

Since transitional flow needs a long enough pipe and I never was able to
reach a high enough Reynolds number, I didn’t get transitional flow.

At least I was able to use the algorithm on the short pipe with length
10 radii.

In figure 5.6 we see what we could expect already. The laminar solution
gets linearly bigger as the Reynolds number increases.

5.4.1 Ideas for testing in pipe flow

Since I never got to test on the correct setting I was not able to experiment
on how to change the continuation algorithm to jump from the laminar
solution onto any turbulent flow. However I’d like to list here some ideas
that I had. All of them evolve around changing the predictor step

(
u1

λ

)
=

(
u0

λ0

)
+ dsτ0.



72 CHAPTER 5. EXPERIMENTS

The core idea is, since the transition is brought on by finite amplitude dis-
turbances, to add a vector b onto τ0 to jump away from the laminar solution(

u1

λ1

)
=

(
u0

λ0

)
+ ds(τ0 + b).

The question is on how to choose this vector b. The problem is that we want
to choose b in a way such that it facilitates a jump onto another branch but
doesn’t hinder the Newton correction too much if no jump occurs.

I had three ideas on how to choose b:

• Simply a random vector with a fixed norm. This might lead to the
highest probability of jumps but also of a diverging Newton correction.

• A vector that only brings a disturbance on the periodic boundary for
the influence of inflow disturbances.

• Or a vector that gives a disturbance on or near the pipe wall (Dirichlet
boundary conditions) to look for an influence from the pipe itself.



Appendix A

Appendix

A.1 Boundary layer approximation

sources: [2], [4]

Due to the existence of a boundary layer for the Navier-Stokes equation
one can try to approximate the solution with two different equations on two
different domains. Here I will give the idea for two-dimensional flow on a
flat plate (Ω = R×R+). Let u = (v, w)T ∈ R2 and ε = 1/Re� 1 be a fixed
value. Then the Navier-Stokes equation looks as follows:

vt + vvx + wvy + px = ε∆v,

wt + vwx + wwy + py = ε∆w,

vx + wy = 0,

v|y=0 = w|y=0 = 0,

v(0, x, y) = vI(x, y), w(0, x, y) = wI(x, y).

(A.1)

Outer expansion

We start in the outer area, which means outside the boundary layer where
we can think of the fluid as frictionless as ε is small. This should result in
the Euler-equation. We start by making an ansatz:

v = v0 + εv1 + ε2v2 + . . . ,

w = w0 + εw1 + ε2w2 + . . . ,

p = p0 + εp1 + ε2p2 + . . . .

73



74 APPENDIX A. APPENDIX

When we insert this into our equation (A.1) we get in the lowest order the
Euler equations:

∂tv0 + v0∂xv0 + w0∂yv0 + ∂xp0 = 0,

∂tw0 + v0∂xw0 + w0∂yw0 + ∂yp0 = 0,

∂xv0 + ∂yw0 = 0,

v(0, x, y) = vI(x, y), w(0, x, y) = wI(x, y).

(A.2)

Inner expansion

Inside the boundary layer we expect that there are large differences in the
y-direction, while there are little differences in the x-direction. Thus we
apply a scaling only on the y-direction T := t, X := x, Y = y/εα with an
unknown α > 0, which we will determine later,

V (T,X, Y ) = v(T,X, εαY ),

W (T,X, Y ) = w(T,X, εαY ),

P (T,X, Y ) = p(T,X, εαY ).

Inserting this into our equation (A.1) gives us

∂TV + V ∂XV + ε−αW∂Y V + ∂XP = ε∂2
XV + ε1−2α∂2

Y V,

∂TW + V ∂XW + ε−αW∂YW + ∂XP = ε∂2
XW + ε1−2α∂2

YW,

∂XV + ε−α∂YW = 0,

V |Y=0 = W |Y=0 = 0.

(A.3)

We then use a general expansion for V, W, P

V = V0 + εβV1 + ε2βV2 + . . . ,

W = W0 + εβW1 + ε2βW2 + . . . ,

P = P0 + εβP1 + ε2βP2 + . . . .

with unknown β > 0, still to determine.

When we then insert this in the third equation in (A.3) we get

[∂XV0 + εβ∂XV1 + . . . ] + ε−α[∂YW0 + εβ∂YW1 + . . . ] = 0.

The leading ε-exponent is at ∂YW0 which suggests

∂YW0 = 0,W0(T,X, 0) = 0∀T,X ⇒ W0 = 0 .

The next smallest ε-exponent suggests α = β, thus this gives us

∂XV0 + ∂YW1 = 0 .



A.1. BOUNDARY LAYER APPROXIMATION 75

We then insert the expansion into the first equation in (A.3) and get

[∂TV0 + εβ∂TV1 + . . . ] + [V0 + εβV1 + . . . ] · [∂XV0 + εβ∂XV1 + . . . ]

+ ε−α[0 + εαW1 + . . . ] · [∂Y V0 + εα∂Y V1 + . . . ] + [∂XP0 + εα∂XP1 + . . . ]

= ε[∂2
XV0 + εα∂2

XV1 + . . . ] + ε1−2α[∂2
Y V0 + εα∂2

Y V1 + . . . ].

If we choose α > 1/2 then 1−2α < 0 and we only have one leading term
∂2
Y V0 = 0. But if we choose α = 1/2 such that 1−2α = 0 we get the highest

number of leading terms.

∂TV0 + V0∂XV0 +W1∂Y V0 + ∂XP0 = ∂2
Y V0 .

With α = β = 1/2 we have the thickness of the boundary layer as δ(ε) =

O(ε
1
2 )

It remains to insert the expansion into the second equation in (A.3)

[∂TW0 + ε
1
2∂TW1 + . . . ] + [V0 + ε

1
2V1 + . . . ] · [0 + ε

1
2∂XW1 + . . . ]

+ ε−
1
2 [0 + ε

1
2W1 + . . . ] · [0 + ε

1
2W1 + . . . ] + ε−

1
2 [∂Y P0 + ε

1
2∂Y P1 + . . . ]

= ε[0 + ε
1
2∂2

XW1 + . . . ] + [0 + ε
1
2∂2

YW1 + . . . ].

In the leading order we now get

∂Y P0 = 0 .

Thus the pressure is constant in the y-direction in the boundary layer.

matching

Our two expansions need to be compatible with each other we start with
a condition in the limit for ε → 0. Then δ(ε) → 0 and V0, W0, P0 give
the boundary connection between the boundary conditions and v0(δ(ε)),
w0(δ(ε)), p0(δ(ε)).

lim
Y→∞

V0(T,X, Y )
!

= lim
y→0

v0(t, x, y),

lim
Y→∞

W0(T,X, Y )
!

= lim
y→0

w0(t, x, y),

lim
Y→∞

P0(T,X, Y )
!

= lim
y→0

p0(t, x, y).

(A.4)

But it is then still discontinuous for ε > 0. Due to the second condition and
W0 = 0 we have w0(t, x, 0) = 0 which corresponds to the typical boundary
condition of the Euler equations (u · ν = 0).



76 APPENDIX A. APPENDIX

Solving for outer expansion

The outer expansion doesn’t need information from the inner expansion
therefore we start by solving the Euler equation (A.2) with w0(t, x, 0) = 0
in the outer area. Due to the third condition in (A.4) and ∂Y P0 = 0 we get
P0(T,X, Y ) = p0(t, x, 0) ∀T = t,X = x, Y .

This means that the pressure in the boundary layer is fully described by
the pressure from the outer expansion at the boundary (y = 0).

Solving for inner expansion

With p|y=0 and v0|y=0 given from the outer flow we can solve for the inner
expansion. The equations are called Prandtl’s boundary layer equations.

∂TV0 + V0∂XV0 +W1∂Y V0 + ∂X(p0|y=0) = ∂2
Y V0,

V0|Y=0 = W1|Y=0 = 0,

lim
Y→∞

V0(T,X, Y ) = v0(t, x, 0),

∂XV0 + ∂YW1 = 0,

V0(0, X, Y ) = vI(x, 0) if uI has no boundary layer.

full approximation

If we’d define our approximation like this:

v̂ :=

{
V0(t, x, y

ε
1
2

) , y ∈ (0, δ(ε))

v0(t, x, y) , y ∈ (δ(ε)),∞)

it would be discontinuous and therefore not a suitable approximation.
We instead define it through

v̂(t, x, y) := V0

(
t, x,

y

ε
1
2

)
+ v0(t, x, y)− lim

y→0
v0(t, x, y).

Where the limit is used such that v̂ fulfills the boundary condtition. Anal-
ogously we define ŵ and p̂

ŵ(t, x, y) := w0(t, x, y) (since W0 and w0(t, x, y) = 0),

p̂(t, x, y) := p0(t, x, y)

(since the pressure is constant in Y in the boundary layer).
Result: In a boundary layer of thickness O(

√
ε) the horizontal velocity

v0 is corrected such that at y = 0 the no-slip condition u = 0 is fulfilled.
The vertical velocity already fulfills w0(t, x, 0) = 0 and thus doesn’t need to
be corrected.

For a slightly more physical view on that subject look at [4].



A.2. USED CODE 77

A.2 Used code

I used Netgen/NGSolve [13] and its Python interface for implementing the
continuation algorithm. NGSolve is a FEM-Solver using C++. The whole
implementation of my code is done in Python and follows the description
in [14].

A.2.1 ContCollection

ContCollection is the base class for everything in this code. It collects ev-
erything that is needed for running the algorithm. Therefore all functions
used are called with an object of this class.

The constructors signature is

p = ContCol l ec t ion ( spa , gr f , amat , amatinv ,
applyBLF , rhs , invlam=False ) .

I will go through these arguments now.

spa, grf

spa takes the finite element space from NGSolve on which the FEM is
defined. grf is the Gridfunction (also from NGSolve) defined on the FESpace
spa for the solution.

amat and amatinv

ContCollection takes the matrix A and its inverse (or a solver) as linear
operators amat and amatinv which follows the rules of the scipy-linear
operators with an added necessary update function. Due to this imple-
mentation one can use any desired form of the matrix and its solver. It
only needs to give the result of the matrix-vector multiplication. amat and
amatinv needs to be able to give the multiplication with Gu or G−1

u re-
spectively because these are needed in swibra (see A.2.5) and NSolve. Also
amat needs to be able to give Gλ as it is needed in swibra. Again due to the
requirements of swibra both operators need to be able to give a transposed
version.

There are default implementations. These use the multiplication and
inverse given from the bilinearform in NGSolve.

applyBLF

applyBLF is a Bilinearform from NGSolve used for the calculation of
the residuum of the nonlinear problem. The last component given by the
number-FESpace is not relevant for this, thus it can be used to define a norm
for the solution (e.g. L2, H1-norm). If this option is used the parameter
L2n has to be set as true.



78 APPENDIX A. APPENDIX

rhs

This is the shortened vector for the righthandside of the equation given as
a numpy array.

Parameters

There are some parameters saved in ContCollection. Some of them are
boolean ones that change how the computation works (righthandside is the
default value).

• invlam = False: Describes if the parameter λ of the equation is given
in its reciprocal value. Since it is already needed in the constructor it
can be given as a parameter in the constructor.

• chord = True: Defines if a chord method is used.

• calctangent = True: Gives if the tangent τ is calculated by using
Aτ = (0, 1)T or by using the secant defined by the last two points
calculated.

• L2n = False: If this is true the norm of u is calculated using apply-
BLF. Otherwise the vectornorm specified by normord is taken.

• calceigs = True: Since calculating the eigenvalues is the most ex-
pensive operation this value can be used to to turn it off if you only
want to follow the branch without detecting bifurcation points.

• saveu = False: Defines if each calculated point is saved. Often it is
not sensible for problems with a high number of degrees of freedom.

Other parameters are, e.g. in which area the continuation is done, the
order of the used norm, the names of the autosaves (done with pickle) or a
filename to save certain benchmarks to.

A.2.2 cont

cont is the implemented function of the main continuation algorithm de-
scribed in section 4.2. Its only argument is an object of ContCollection.

A.2.3 NSolve and NCorr

NSolve is a Newton iteration using the matrix Gu with a fixed λ. NCorr
is the Newton correction used in cont using the matrix A.

Both again use ContCollection as their argument. NCorr also has a
boolean argument that is used to describe if NCorr is called by cont or by
the bisection method.



A.2. USED CODE 79

A.2.4 biseccont

This is the bisection method that is called after a bifurcation is detected. Its
arguments are the base class and the number of negative eigenvalues at the
old point. After it has gotten close enogh to the bifurcation point it creates
an object of the class bifurpoint which saves u, λ, u̇, λ̇ at the point.

A.2.5 swibra

swibra is the implementation of the function described in subsection 4.2.2.
Its arguments are ContCollection and a bifurpoint and it calculates the
branch switching at that point.

A.2.6 Example script

Here I give an example script using the Allen-Cahn equation.

from ngso lve import ∗
import sys
sys . path . append ( ' . . ' )
import netgen . geom2d as g2d
from numpy import zeros , i n f
from LinOps import amatLinOp , amatinvLinOp
from c o n t c o l l import ContCol l ec t ion
from cont import cont
from swibra import swibra
import matp lo t l i b . pyplot as p l t
import p i c k l e

#Creat ing the geometry on which the equat ion i s s o l v e d
#us ing netgen
geo = g2d . SplineGeometry ( )
p1 = geo . AppendPoint (−1 ,−0.9)
p2 = geo . AppendPoint (1 ,−0.9)
p3 = geo . AppendPoint ( 1 , 0 . 9 )
p4 = geo . AppendPoint (−1 ,0.9)

geo . Append ( [ ” l i n e ” , p1 , p2 ] , bc=1)
geo . Append ( [ ” l i n e ” , p2 , p3 ] , bc=2)
geo . Append ( [ ” l i n e ” , p3 , p4 ] , bc=3)
geo . Append ( [ ” l i n e ” , p4 , p1 ] , bc=4)

#Generating the mesh us ing netgen
mesh = Mesh( geo . GenerateMesh (maxh=0.05))



80 APPENDIX A. APPENDIX

#Def in ing the FESpace wi th n g s o l v e
V = H1(mesh , order =1, d i r i c h l e t = [1 , 2 , 3 , 4 ] )
N = FESpace ( mesh = mesh , type = ”number” )

f e s = FESpace ( [V,N] )

u , lam = f e s . Tr ia lFunct ion ( )
v ,mu = f e s . TestFunction ( )

#Def in ing the GridFunction wi th n g s o l v e
gfu = GridFunction ( f e s )
gfu . components [ 0 ] . Set (0∗x )
gfu . components [ 1 ] . Set (0∗x )

gfu0 = gfu . components [ 0 ]
gfu1 = gfu . components [ 1 ]

#Define a v e c t o r o f i n d i c e s to shor ten
#the v e c t o r s to g e t on ly the f r e e d o f s
BA = f e s . FreeDofs ( )
FDinds = ze ro s ( gfu . vec . s i z e , dtype=int )
n=0
for i t e r a t in range ( gfu . vec . s i z e ) :

i f BA[ i t e r a t ] :
FDinds [ n]= i t e r a t
n+=1

FDinds=FDinds [ 0 : n ]

#Def in ing the r i g h t h a n d s i d e wi th
#a l i n e a r f o r m from n g s o l v e
sourceLF = LinearForm ( f e s )
sourceLF += SymbolicLFI (0∗v+0∗mu)

sourceLF . Assemble ( )

#Def in ing the b i l i n e a r f o r m f o r the l i n e a r i z e d problem
Gu = 0.25∗ grad (u)∗ grad ( v)−gfu1 ∗u∗v− . . .
. . . −3∗ ( gfu0 ∗ gfu0 )∗u∗v+5∗( gfu0 ∗ gfu0 ∗ gfu0 ∗ gfu0 )∗u∗v
Glam = −gfu0 ∗ lam∗v

GuBLF = Bil inearForm ( f e s )
GuBLF += SymbolicBFI (Gu+Glam)

GuBLF. Assemble ( )



A.2. USED CODE 81

#Def in ing the appBLF
#f o r c a l c u l a t i n g the residuum and the L2−norm
appu = 0.25∗ grad (u)∗ grad ( v)−lam∗u∗v− . . .
. . . − ( u∗u∗u)∗v+(u∗u∗u∗u∗u)∗v

appBLF = Bil inearForm ( f e s , nonassemble = True )
appBLF += SymbolicBFI ( appu )
appBLF += SymbolicBFI (u∗u∗mu)

#Def in ing the l i n e a r o p e r a t o r s
#f o r s o l v i n g the l i n e a r equat ion system
amat = amatLinOp (GuBLF, FDinds )
amatinv = amatinvLinOp (GuBLF, FDinds )

#Construc t ing the Cont Co l l ec t i on
p = ContCol l ec t ion ( f e s , gfu , amat , amatinv , appBLF ,

sourceLF . vec .FV( ) .NumPy( ) [ FDinds ] )

#S e t t i n g d i f f e r e n t parameters f o r the c o n t i n u a t i o n
p . e i g t o l = 1e−12
p . Ntol = 1e−12
p . numeigs = 20
p . normord = i n f
p . L2n = True

p . lam = 1.0
p . lamold = 1 .0
p . dsmax = 0 .3
p . lammax = 5
p . normumax = 20
p . maxit = 200

p . autosavename0 = ' a l l encahnas0 '
p . autosavename1 = ' a l l encahnas1 '

#S e t t i n g the f i r s t tangent v e c t o r
p . lamprime = 1
p . uprime = gfu . components [ 0 ] . vec .FV( ) .NumPy( )
p . uprime = p . uprime [ FDinds [ : − 1 ] ]

p . lamprime = p . lamprime/p . tauXiNorm ( )
p . uprime /= p . tauXiNorm ( )



82 APPENDIX A. APPENDIX

#s t a r t i n g c o n t i n u a t i o n
cont (p)

#s w i t c h i n g branchesa t the f i r s t b i f u c a t i o n p o i n t
swibra (p , p . b i f u r l i s t [ 0 ] )

#c ont inu i ng c o n t i n u a t i o n a f t e r b r a n c h s w i t c h i n g
cont (p)

#r e p e a t f o r o t her b i f u c a t i o n p o i n t s
swibra (p , p . b i f u r l i s t [ 1 ] )

cont (p)

swibra (p , p . b i f u r l i s t [ 2 ] )

cont (p)



Bibliography

[1] Peter Arbenz. Lecture notes on solving large scale eigenvalue problems.
Zürich, 2016. Lecture Notes, ETH Zürich, available at http://people.
inf.ethz.ch/arbenz/ewp/Lnotes/lsevp.pdf [accessed 27.03.2018].

[2] Anton Arnold. Modellierung mit partiellen differentialgleichungen. Vi-
enna, 2016. Lecture Notes, Vienna University of Technology, available
at http://www.asc.tuwien.ac.at/∼arnold/lehre/zeitabhaengige probleme/
pde-modellierung.pdf [accessed 27.03.2018].

[3] W. Auzinger and J. M. Melenk. Iterative solution of large linear sys-
tems. Vienna, 2017. Lecture Notes, Vienna University of Technol-
ogy, available at http://www.asc.tuwien.ac.at/∼winfried/teaching/106.
079/ [accessed 27.03.2018].

[4] Stefan Braun. Strömungslehre für tph. Vienna, 2015. Lecture Notes,
Vienna University of Technology.

[5] Howard Elman, David Silvester, and Andy Wathen. Finite Elements
and Fast Iterative Solvers. Oxford University Press, Oxford, second
edition, 2014.

[6] Vivette Girault and Pierre-Arnaud Raviart. Finite Element Methods
for Navier-Stokes Equations. Springer-Verlag.

[7] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open
source scientific tools for Python, 2001–. http://www.scipy.org/; [ac-
cessed 20.03.2018].

[8] H.B. Keller. Lectures on Numerical Methods In Bifurcation Problems.
Springer-Verlag, Berlin Heidelberg, 1986.

[9] R.R. Kerswell. Recent progress in understanding the transition to tur-
bulence in a pipe. IOP Publishing Ltd and London Mathematical Soci-
ety.

[10] Christian Kuehn. Lecture notes: Dynamical systems and pdes. Vi-
enna, 2015. Lecture Notes, Vienna University of Technology, avail-

83



84 BIBLIOGRAPHY

able at http://www-m8.ma.tum.de/personen/kuehn/courses/2014 notes
DynamicsPDE.pdf [accessed 27.03.2018].

[11] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’Guide:
Solution of Large-Scale Eigenvalue Problems by Implicitely Restarted
Arnoldi Methods. SIAM, Philadelphia, PA, 1998.

[12] Joachim Schöberl. Numerical methods for partial differential equa-
tions. Vienna, 2009. Lecture Notes, Vienna University of Technol-
ogy, available at https://www.asc.tuwien.ac.at/∼schoeberl/wiki/index.
php/Lecture Notes [accessed 27.03.2018].

[13] Joachim Schöberl et al. Netgen/NGSolve, 1996–. https://ngsolve.org/
[accessed 20.03.2018].

[14] Hannes Uecker, Daniel Wetzel, and Jens D.M. Rademacher. pde2path -
a matlab package for continuation and bifurcation in 2d elliptic systems.
2013.


