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2 Abstract 
The biopharmaceutical market is innovative, well growing and delivering about 20% of all 

pharmaceutical product to patients. In order to consistently deliver high product quality the 

biopharmaceutical manufacturing process needs to be understood, controlled and effectively 

monitored. Those tasks are commonly addressed in manufacturing process validation, which 

is also requested from regulatory agencies due its importance in respect to patient risk. 

Especially the first step of achieving process knowledge by understanding and controlling 

potential sources of variance and risks is key to ensure successful routine manufacturing. 

Those activities are usually covered in process characterization studies (PCS) in industry. 

Within this thesis, an advanced data science workflow for PCS is presented that points towards 

a holistic risk awareness and control strategy via knowledge obtained from single unit 

operations. Major novelties described in this thesis ensure on the one hand that information 

from single unit operations such as fermentation processes are accurately extracted. 

Moreover, novel statistical power analysis methods are presented to ensure that no critical 

information or process parameter on product quality has been overlooked. On the other hand 

an integrated process model has been introduced that facilitates to combine this knowledge 

from single unit operation by means of Monte Carlo simulation. The integrated process model 

was successfully applied on a real industrial process to derive holistic risk awareness and a 

holistic control strategy. 

By applying this advanced workflow it is anticipated that variance in process output and product 

quality can be reduced and commensurately producers and patient risk is lowered.  
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3 Introduction 
General aim in pharmaceutical manufacturing is to deliver drugs with consistent product quality 

in order to reduce patient risk of varying dose and quality. Therefore, variation and trends in 

product manufacturing must be understood, meaning that risk and impacting factors on quality 

need to be identified, controlled and ongoingly monitored [1]. Not exclusive driven by regulatory 

agencies, process validation has become the enabling task to achieve this goal [2]. The first 

guidance by the US Food and Drug Administration (FDA) appeared in 1987 defining process 

validation as “Establishing documented evidence which provides a high degree of assurance 

that a specific process will consistently produce a product meeting its predetermined 

specifications and quality characteristics” [3,4]. In 2011 an updated guidance document by the 

FDA appeared (entitled Process Validation: General Principles and Practices) as well as 

harmonized documents that aligned this process into three stages which are intended to be 

performed iteratively within a life-cycle approach [1,5,6]. Stage 1 defines the process design. 

It delivers the identification of interactions between process parameters (PPs) and critical 

quality attributes (CQAs) as well as the definition of a control strategy that aims to ensure high 

product quality. For definition of CQAs and PPs see ICH Q8 R2 guideline [5]. In stage 2, 

process performance qualification runs at manufacturing scale demonstrate the validity of the 

chosen design and capability to produce product quality. Stage 3 is where continued 

monitoring of defined critical quality attributes and parameters takes place to alert in cases of 

unexpected deviations from the state of control. Those stages are intended to be performed 

iteratively in a life-cycle approach. Whenever required, stage 1 or selected tasks from stage 1 

can be repeated when unexpected variation has been observed or process changes have 

been introduced in stage 2 or 3. 

Stage 1 is the place where process knowledge is formed, which is labor intensive and takes 

typically between 12 to 15 month [2,7]. Moreover, extended and scientifically sound activities 

at this stage are much more cost efficient than during later stages such as during investigation 

in counter action and preventive actions (CAPAs) [8]. An easy example is that investigation of 

an additional parameter and its interaction with other parameters in a DoE during stage 1 (e.g. 

going from 4 to 5 studied DoE factors) comes with an increase of only 2 experiments using for 

example definitive screening designs. Performing the same analysis at later stages (e.g. during 

a CAPA) would require to repeat the entire design with 12 experiments. Especially for 

biopharmaceutical products (recombinant proteins, virus as well as nucleic acids as defined 

elsewhere [9]) stage 1 is even more effort intensive compared small molecule products. This 

is due to: 

 The process cannot be studied at manufacturing scale but small scale models need to 

be employed and checked for being representative [10] 
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 characterization of the product is analytically complex and associated with higher 

variance  

 reliable analytical measurements of product quality are hard to obtain at early 

(upstream) unit operations 

 host cells for fermentation are black to grey boxes with complex metabolic activities  

 The manufacturing process is composed of multiple unit operations which highly 

increases the number of potential sources of variance.  

Currently, the worldwide pharmaceutical market is about $1 trillion with 40,000 ongoing (or 

recently reported) candidate products in clinical trials [11]. About 40% of the candidate 

products are likely biopharmaceuticals. Assuming that each newly developed product needs 

to undergo one or the other way of process validation, it can be expected that a huge effort 

and money is spent in those activities. Due to the complexity and the expected industrial need 

this work will focus on biopharmaceutical process validation stage 1. 

Biopharmaceutical process validation stage 1 activities are frequently called “process 

characterization studies” in biopharmaceutical industry, although this is not a regulatory term. 

They try to accomplish following goals of stage 1 process validation 

[12]: 

 Understanding of the role of each unit operation to deliver quality 

product 

 Identification of the impact of PPs onto CQAs 

 Setting of a control strategy for critical process parameters 

(CPPs) 

 Setting acceptance criteria for in process control even on 

intermediate unit operations 

A workflow for that endeavor is present in industry standard 

operating procedures (SOPs) and literature, which is divided into 

(i) data mining (ii) risk assessment (iii) scale down qualification (iv) 

characterization of process performance and (v) experimental 

studies to reveal dependencies of potential critical process 

parameters (pCPPs) onto CQAs (Figure 1) [7,12]. 

 

Figure 1: Typical process characterization  
workflow as suggested by Seely and Seely [7] 
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3.1 Data mining and risk assessment 
Goal of data mining and risk assessment is to identify potential impacting process parameters 

onto CQAs using indications from historical data (development or manufacturing data) and 

knowledge of process experts. A multitude of risk assessment tools are commonly applied in 

industry such as, hazard analysis and critical control points (HACCP) [13] or failure mode, 

effects and criticality analysis (FMECA) [14,15]. Those tools rate the criticality of the 

parameters according to the occurrence, harm and detectability of the potential risk. Many of 

those approaches are mature as they are frequently applied in industry, however, a direct link 

to the development data in the final risk assessment document is hardly established. Linking 

risk assessment directly to data or additional evidence in a document structure might reduce 

the bias of individual persons involved in the risk assessment group.  

3.2 Scale down model (SDM) qualification 
Scale down models are commonly used to investigate effects of the manufacturing scale at 

small scale. This is necessary since manufacturing scale experiments are not feasible for 

biopharmaceutical processes. Some unit operations cannot be scaled down easily and must 

be investigated in pilot scale (e.g. separation of biomass). For each unit operation scale down 

principles exist that describe parameters that need to be kept constant during scale down (e.g. 

bed height, height equivalent of theoretic plates and peak asymmetry for chromatography, 

specific power input for microbial fermentations or trans-membrane pressure for 

ultrafiltration/diafiltration) [16,17]. Although those essential parameters are kept constant, scale 

difference might exist due to inhomogenieties or differences in equipment [18,19]. The 

potential impact of those effects on product quality needs to be examined. This is done by 

comparing performance parameters between small and manufacturing scale, which are 

descriptive for the role of each unit operation for obtaining quality specifications. This process 

of selecting suitable responses for comparison is performed separately during characterization 

of process performance, which is sometimes proposed after SDM qualification (see Figure 1). 

However, this ordering might be rearranged since response selection, according to process 

and impurity clearance performance, should be performed before SDM qualification in order 

to have descriptive responses in place for scale comparison.  

Only a valid SDM is predictive for the effects of PPs onto CQAs at large scale. This is also 

reflected in the ICH Q11 guideline [20]: “The  contribution  of  data  from  small-scale  studies  

to  the  overall  validation  package  will  depend upon demonstration that the small-scale model 

is an appropriate representation of  the  proposed  commercial-scale. Data should be provided 

demonstrating that the model is scalable and representative of the proposed commercial 

process.” Therefore, a truly representative SDM shows the same effects that would occur in 

manufacturing scale [10]. Different possibilities of effects and offsets in manufacturing and 

small scale are shown in Figure 2. Since experimentally investigating effects in manufacturing 
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scale is not feasible, it is common practice to compare all responses between the scales at 

target operating conditions. If there is no difference at target conditions (cases A and B in 

Figure 2) we assume from a heuristic point of view that it more likely to have similar effects 

(case A). This is due to the fact that the probability of finding the intersection of diverging effects 

at an arbitrarily chosen point in the design space (here target conditions) is low. On the other 

hand if there is a practical relevant difference between the scales as shown in cases C and D 

of  Figure 2, both cases seem possible and the risk associated with finding an non-predictive 

model of case D needs to be analyzed, estimated and mitigated. A possible solution to mitigate 

the risk is to identify root causes for the difference of scales at target operating conditions and 

estimate the likelihood that this impacts on differences in effects, too. 

  
Figure 2: Taken with kind permission of Exputec GmbH [21]. Predictability of scale down model (blue) to large scale 
(red). A: no offset good predictability. B: no offset but different effects from large and SDM leads to bad predictability. 
C: shows good predictability although a constant offset exists at target. D: shows bad predictability of scale down 
model where a similar offset at target exists. 

For qualitative performance indicators such as turbidity, SDS gels, curvature of preparative 

chromatograms a side-by-side comparison is usually conducted. For quantitative parameters 

statistical approaches are used to assess whether small and manufacturing scale can be 

regarded practically equivalent at target conditions [12]. A variety of statistical methods exist 

such as testing if all small scale runs are within minimum to maximum (min/max) of 

manufacturing runs, two sample t-tests of difference in means [12], intersection-union tests 

[22], two one sided t-tests (TOST) [23] or even multivariate approaches [24,25]. However, their 

limitations are hardly fully understood by users. For example, when testing if all small scale 

A 

B 

C 

D 
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runs are within min/max or 3 standard deviations of the large scale runs, we reward ourselves 

for large scattering in the manufacturing runs and potentially overlook practical relevant 

differences of the SDM. When using two sample t-test of difference in means we are not able 

to distinguish between practical relevant and statistical significant differences. This leads to 

false alarms by detection non-relevant differences, and even more critical, to overlooking of 

practical relevant differences. Therefore, TOST has been established to detect practical 

relevant differences in the mean performance of the scales by comparing the confidence 

interval of the mean difference between small and manufacturing scale to a pre-defined 

equivalence acceptance criteria (EAC) [26]. The practical inconvenience is often caused by 

the hurdle of defining EACs, which should not be established using the data of either small nor 

manufacturing scale, but should be established using prior knowledge of a practical relevant 

difference. Recently also equivalence testing approaches (also entitled comparability analysis) 

have been reviewed by regulatory agencies [27–30]. However, also those guidance 

documents lack in describing which approaches can be employed to define practical relevant 

EACs for comparing manufacturing processes, which is the pivotal question in equivalence 

testing. 

3.3 Characterization of process performance 
Each unit operations or multiple unit operations are intended to maintain some sections of the 

quality target product profile (QTPP, as defined in ICH Q8 [5]) [2]. Characterization of process 

performance therefore aims to identify which unit operation is responsible for reaching 

specification limits for specific CQAs. Furthermore, it is necessary for each unit operation to 

identify key quality performance indicators that are used during experimental studies and SDM 

qualification as responses [7,12].  

For downstream unit operations typically a majority of the CQAs can be measured analytically 

before and after the unit operation, therefore, yields and clearance factors of impurities are 

compared as key performance indicators between the scales. However, in upstream unit 

operations (i.e. fermentation), CQAs can hardly be directly assessed. FDA clearly states in the 

process validation guideline, that special attention should be paid to operational limits and in 

process controls “when the product attribute is not readily measurable due to limitations of 

sampling or detectability” [6]. Herein, special attention needs to be paid to the upstream unit 

operations. The physiological state of host cells triggers metabolic activity that impact on 

product quality (e.g. glycosylation, monomer-dimer formation, disulfide formation) [31,32]. 

Therefore physiological information about the production organism is a suitable indirect 

measure for product quality. Physiological information about the cells is most effectively 

estimated by cell specific turnover rates. Complexity is increased since cell specific turnover 

rates are more complex to estimate than overall yields of a downstream unit operation and, 
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moreover, are dynamically changing over time. This is especially pronounced for the dominant 

process mode in industry, the fed-batch fermentation. Although specific rate calculation is 

based on derivatives from mass balances and can be found in many text books, their accuracy 

might vary in respect to the accuracy of the original data, which they are derived from 

(concentration of chemical species and biomass) [33]. Original concentration data might be 

measured analytically by taking samples out of the reactor (“offline data”) or estimated 

indirectly from online signals via software sensors [34–37]. In both cases measurements might 

be error prone and it was unclear how this propagates to error in specific rates. Therefore, two 

previously un-addressed gaps have been identified and targeted in this work: 

 How can specific rates from offline measurements (dry cell weight, viable cell density) 

be calculated with constant signal to noise ratio? This reduces the risk that decisions 

are made upon data with little accuracy [38]. 

 How can this be achieved and for software sensors that use off-gas measurements to 

non-invasively estimate the biomass? [39] 

3.4 Experimental identification of CPPs 
Goal of experimental studies is to identify which potential critical process parameters (pCPPs) 

have practical relevant impact on product quality. Subsequently, a sufficient control strategy 

must be developed for those parameters and thereby reduce the risk of process failures and 

risk to the patient. 

This is also defined in ICH Q8 [5] where it is stated that “The list [of pCPPs] can be refined 

further through experimentation to determine the significance of individual variables and 

potential interactions.” A variety of experimental strategies are used to explore the impact of 

PPs onto CQAs. One possibility is to use screening designs to select active main effects, 

followed by a refinement study using response surface designs to estimate interaction and 

quadratic effects [7]. On the other hand it is also possible to use D-optimal designs or special 

forms such as definitive screening designs to study main effects, interaction and quadratic 

effects within a single design [40–42]. The latter one has the benefit that it is possible to study 

all two factor interaction effects and quadratic effects of potential critical process parameters 

at the price of little cofounding of two factor interactions with their respective quadratic effects.  

To select CPPs, which have practical significant impact onto the CQAs, from the set of 

significantly impacting PPs different rules (Z-score, 20% rule) can be applied [43]. However, if 

a parameter is not statistically significant it does not necessarily mean that it has no impact. 

This seems contra-intuitive at the first glance but on a higher level we can say “if we do not 

see it, it does not mean that it is not there”. Especially when analytical variance is hindering to 

detect effects it is likely that we overlook a critical effect. This has not been payed attention to 

in the past, however, it bears a huge potential for unknown risk to the process. Statistical power 
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of a test or a DoE is the chance to detect a significant effect if it is truly there, and it is therefore 

a suitable measure to estimate the risk of overlooking a critical PP. Power is positively 

influenced by the number of experiments, the significance level of the test and the signal to 

noise ratio of the experimental measurements. Statistical power analysis conducted before 

starting the experiments (“a priori” power analysis) is a mature technique to investigate the 

expected power in advance and usually adapt low powered settings by increasing sample size 

[44,45]. Rarely the assumptions of the expected signal to noise ratio during a priori power 

estimation are checked after the experiments have been conducted (retrospective power 

analysis). This is also due to the fact that a suitable statistical method to estimate power for 

individual parameters retrospectively in a multivariate model has been missing [46,47].  

Therefore, it was aim of this work to develop an algorithm that is able to identify potentially 

overlooked effects and answer the following question with terms from project risk management 

[48]: How can we convert “unknown unknown” CPPs to “known unknown” CPPs? 

3.5 Holistic risk assessment 
Risk and criticality of single PPs and material attributes is usually assessed in a unit operation 

wise manner. Since biopharmaceutical manufacturing processes are composed of multiple unit 

operations it is necessary to holistically identify and analyze the risk of a failure and potentially 

adapt the control strategy. This is usually a task addressed by dynamic and steady state 

flowsheet modeling in process system engineering [49–51]. Here first principles, mechanistic 

and empiric equations including a set of parameters describe the interaction between PPs and 

in-process controls or CQAs for each unit operation. Those models are typically applied to unit 

operations where the mechanistic understanding is high, i.e. where impact of PPs onto CQAs 

can be written by ordinary differential equations (ODEs) or differential algebraic equations 

(DAEs). Those unit operations are usually final steps of oral solid dosage form production 

(crystallization, filtration, drying, blending or tablet pressing) [52,53]. However, typically for a 

biopharmaceutical manufacturing process mechanistic knowledge of the impact of PPs onto 

CQAs is rarely available for unit operation prior to drug substance (e.g. fermentation) or 

parameters of the mechanistic models are hard to identify. Furthermore, in process system 

engineering variation in the process input is rarely addressed and therefore a probabilistic 

estimation of variance in process output cannot be estimated. Herein, we want to present a 

possibility how to concatenate statistic (black box) models of each unit operation and estimate 

the overall process capability at normal operating variance of the process parameters using 

an integrated process model (IPM).  

An additional aim of process characterization work is also setting of acceptance limits even at 

intermediate unit operations. Those limits, defined on in-process-controls and intermediate 

CQA measurements, must not be exceeded in order to reach final drug substance or product 
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specifications. One approach is to use estimates of the scattering of historical manufacturing 

data (e.g. 3 standard deviations or tolerance intervals) [54,55]. However, deriving acceptance 

limits from existing data does not take potential process capability into account. One the one 

hand we might overestimate process capability, especially when using tolerance intervals with 

low sample sizes (e.g. only 3 manufacturing runs). In this case the acceptance limits are too 

wide and it is likely not to reach drug substance specifications. On the other hand, a limited set 

of manufacturing runs do not represent a homogeneous sample of the entire design space 

since they are run at target conditions with little variance in PPs. In this case the acceptance 

limits are too narrow and we obtain many false positive deviations leading to investigations. 

Therefore, acceptance limits should be established taking holistic process capability into 

account by using all available knowledge obtained during historical manufacturing but also 

during process characterization studies. However, a quantitative methodology has been 

missing so far. Therefore, we want to show how the IPM can be used to fill this gap. 

3.6 Goals of an advanced data science workflow for process validation 
stage 1 

Despite the effort spent on defining workflows and SOPs for biopharmaceutical process 

validation stage 1, many validated processes still show high variance leading to deviations, 

investigation, trouble solving and patient risk [2,7]. Improvements to existing strategies are 

necessary to ensure that risk estimation is scientifically sound and on a quantitative level. 

Therefore, it is goal of this work to enrich state-of-the-art workflows in biopharmaceutical 

process validation stage 1 with data science tools that aid in understanding process variance, 

holistically estimating risk to the product and ultimately increasing process robustness.  

I want to achieve this by projection of existing and development of new statistical methods that 

can be incorporated in existing process validation activities. Improvements to existing process 

validation stage 1 workflow aim to address following gaps which have been identified above:  

 Responses selection: How to calculate physiological cell information with consistently 

high accuracy for biopharmaceutical fermentation processes and thereby lower risk in 

decision making?  (section 4.3) 

 Experimental evaluation: How to identify unknown unknown risks and make them 

known unknowns? How to place a control strategy on identified known unknown critical 

process parameters (CPPs)? (section 4.5) 

 Holistic process control and risk assessment: How can we estimate the risk of individual 

parameters or unit operations holistically in the process? (section 4.6) 

Those questions have not been addressed from a statistical point of view and have not been 

considered to be applied for process validation. The individual improvements to those 

questions, their novelty and impact will be contrasted to existing approaches in section 4. By 
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mutually applying those novel methods, we anticipate that process robustness is increased, 

patient risk is lowered and manufacturing costs can be reduced. 

Moreover, anticipated solutions to additionally identified gaps in equivalence testing for SDM 

qualification, will be presented in the outlook of this work (section 7).   

4 Advanced workflow for biopharmaceutical manufacturing 
process validation stage 1 

Figure 3 shows the proposed workflow for biopharmaceutical manufacturing process validation 

stage 1 including 6 sub-tasks with their respective connection of outputs of the previous task 

to inputs of the next task. Blue boxes indicate tasks, tools or deliverables that are currently 

applied in biopharmaceutical industry [7]. Green font colors in green boxes indicate areas to 

which this contribution will suggest improvements. At the end of this workflow after task 5 and 

6 the final aim of stage 1 process validation, setting a control strategy, is achieved. Although 

Figure 3 depicts a series of discrete, numbered events, depending on the stage of the product 

life cycle, some steps might be skipped. E.g. in case unexpected variance was encountered 

during routine manufacturing in stage 3, the scale down model (SDM) might be still valid to 

perform representative experiments. Therefore, SDM qualification does not need to be 

performed again. However, the workflow is intended to show stage 1 process validation 

activities as performed for the first time for a new product.  

In the following sections I want to review all single tasks of the proposed workflow as shown in 

Figure 3 together with their inputs and outputs. Moreover, I want to highlight how manuscripts 

of this work (section 5) can be used as an enabler for this workflow.  
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Figure 3: Workflow for biopharmaceutical process validation stage 1. Blue boxes indicate areas that are applied as 
a standard approach in industry (compare Figure 1). Improvements are presented to tasks, tools and deliverables 
indicated by dark green font color in green boxes. Arrows indicate connections of inputs and outputs for of individual 
steps. 

4.1 Task 1: Data Mining 
Input: 

 Development data 

 Manufacturing data of product or similar product in case of a platform process 

Output: 

 Aligned analytical data set, which is input for task 2, 3 and 4  

Data Mining is one of the first steps performed to gather development, pilot and large scale 

data. Input to this step are more (manufacturing data) or less (development data) structured 

data sources. Data types vary from complex time series data of fermentation and analytical 

and preparative chromatograms up to single valued quality data. Complexity of time series 
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data is increased due to shifts between single runs, e.g. in inoculation start for fermentation 

data or elution start for chromatograms. Therefore, databases and data mining tools are used 

frequently to align data in a single structured analytical data set. Requirements to that data set 

are that sparsity is reduced to a minimum, especially for CQAs, potential critical PPs (pCPPs). 

It is important to cover as many runs connected to the product or similar product in case of a 

platform process. This aligned data set facilitates tasks in process performance 

characterization and risk assessment. Moreover, it is intended to be extended when new data 

is recorded from scale down model qualification or design of experiments (DoEs) to be 

compared to existing data.  

4.2 Task 2: Risk assessment 
Input: 

 Aligned analytical data from task 1 

Output: 

 Potential CPPs that will be studied in experimental assessment (task 5) 

Manufacturing risk assessment is a crucial step to identify potential CPPs (pCPPs) using priori 

scientific knowledge about the process and the equipment. The definition of a CPP is given in 

the ICH Q8: “A process parameter whose variability has an impact on a critical quality attribute 

and therefore should be monitored or controlled to ensure the process produces the desired 

quality” [5]. General tasks in a risk management process to identify pCPPs are (i) risk 

assessment, (ii) risk control and (iii) risk review, as described in detail in ICH Q9 [1]. Risk 

control and risk review are addressed during the establishment of a control strategy and during 

stage 2 and 3 of the process validation, respectively. The first step, risk assessment in 

manufacturing, is usually carried out using tools such as Failure Mode Effect and Criticality 

Analysis (FMECA) or Hazard Analysis and Critical Control Points (HACCP). Due to the lack of 

extensive data, commonly evaluation of severity, occurrence and detectability of the harm is 

done on a qualitative basis using priori knowledge of process experts. Practically, this is carried 

out in team meetings which has the drawback that single persons can act as influencers on 

the overall team-opinion and thereby bias the output. Therefore, also the ICH Q9 guideline 

suggests to assemble background information. For example, occurrence of a failure mode (e.g. 

deviation of a process parameter beyond operating ranges) might be estimated from historical 

facility data (e.g. variance of a controlled process parameter). Using data driven risk 

assessment ensures that assignment of risk priority numbers (RPNs) to process parameters 

is less subjective and thereby the chance of overlooking a CPP is reduced. This is in line with 

the principle of risk management that “the evaluation of risk to quality should be based on 
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scientific knowledge and ultimately link to the protection of the patient”, as defined in the ICH 

Q9 guideline. 

The result of risk assessment is a set of pCPPs that might be studied in experimental criticality 

assessment. Methods for selecting this set range from taking all pCPPs that exceed a pre-

defined RPN cutoff value or just applying a Pareto principle by taking the 20% most highly 

ranked pCPPs [7]. 

4.3 Task 3: Characterization of process performance 
Input: 

 Aligned analytical data set from task 1 

Output: 

 Responses that will be studied during SDM qualification (task 4) and as a function 

pCPPs during experimental criticality assessment (task 5) 

Within impurity clearance reports the process performance in respect to product yield and 

impurity formation and clearance of individual unit operations is characterized using the 

established analytical data set. If a unit operation is responsible for the clearance or producing 

of a specific CQA, the performance in respect to this CQA should be taken as a response for 

experimental assessment during SDM qualification and DoE studies. In the easiest way all 

CQAs will be defined as response for each unit operation, however, due to analytical limitation 

it will not possible to measure all of them at load and pool of each unit operation. Moreover, if 

placing a CQA as a response for a unit operation which is not responsible for its purification or 

clearance, it might only raise false positive alarms of statistical non-similarity during SDM 

qualification or critical effects during experimental criticality assessment without practical 

meaning. 

As described in the introduction, special attention should be paid to estimate the performance 

and physiological state of the fermentation of biopharmaceutical processes. This is the place 

where impurities are formed but where least of them can be measured analytically. Although 

physiological turnover rates form a good basis for monitoring metabolic differences that are 

connected to differences in product quality, they might be superimposed by large fraction of 

noise. Therefore, I want to present here two methods that ensure that calculated specific 

turnover rates from offline measured samples as well as indirect softsensor estimation of 

specific rates contain constantly high signal to noise ratios [38,39].  

Using those methods it is possible to achieve risk awareness about the error of specific rates 

which are compared between small and manufacturing scale in task 4 or even can act as 

responses in experimental criticality assessment (task 5). Moreover, the associated error with 
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specific rates, which can be derived using the presented methods, can be used as intra-batch 

variability and can be compared to inter-batch variability of the runs. This is an important 

measure how likely we can observe a true difference between scales in task 4, or detect a 

significant effect in DoE studies in task 5.  

4.4 Task 4: SDM qualification 
Input: 

 Aligned analytical data from task 1 to provide data from manufacturing scale, identified 

responses from task 3 

Output: 

 Identification of similarities and potential differences between SDM and manufacturing 

scale 

 Sufficient evidence to state the SDM representative to the manufacturing scale 

Since manufacturing scale experiments are costly to explore dependency of process 

parameters onto CQAs, it is common practice to use small scale experiments instead. The 

process of comparing the down scaled process to the manufacturing scale is called scale down 

model (SDM) qualification. Comparison is conducted on process performance based 

responses, which have been identified in task 3 of the proposed workflow (Figure 3). Therefore, 

in contrast to existing workflows, it is suggested to perform characterization of process 

performance before SDM qualification. Additional improvements to statistical equivalence 

testing for biopharmaceutical SDM qualification will be discussed in the outlook of this work in 

section 7. 

 

4.5 Task 5: Experimental criticality assessment 
Input: 

 Aligned analytical data set from task 1, identified responses from task 2 and pCPPs to 

be studied identified by task 4 

Output: 

 Classification of pCPPs into CPPs and practically non-critical PPs 

 Set a control strategy for PPs, potential tightening of tentative control strategy for CPPs 

After a SDM model can be regarded representative for the manufacturing scale either by 

stating equivalence of all key performance parameters or identification of known root causes 

for the difference in scale, experiments can be conducted at small scale to assess the criticality 

of pCPPs. This process is carried out for each unit operation separately and will be in the 
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following entitled criticality assessment. Thereby, usually DoE studies are performed to reveal 

the impact of main effect, interaction and quadratic effects of pCPPs, defined in task 2 (risk 

assessment), onto process performance based responses, defined in task 3 (characterize 

process performance). 

From experimental data, statistical regression models (𝐶𝑄𝐴 = 𝑓(𝑝𝐶𝑃𝑃𝑠)) are built using 

stepwise regression or Pareto charts to select significantly impacting pCPPs (those which are 

not likely to have no effect) to enter the model. Currently, those parameters which do not enter 

the model are stated as non-critical, without having performed further analysis. This is unknown 

risk to the process since the chance of overlooking this PP as a CPP has not been estimated.  

We developed a retrospective power analysis method that uses permutation tests to estimate 

the risk of having overlooked a CPP, which is explained in detail in one manuscript of this work 

[40]. This methodology gives a possibility to convert “unknown unknown” CPPs to “known 

unknown” CPPs [48]. Moreover, using the presented algorithm it has been successfully shown 

on a real manufacturing process how to impose a suitable control strategy on “known unknown” 

CPPs and thereby mitigate the risk of future process variance [40]. Therefore, we understand 

the definition of a CPP by ICH Q8 in a more probabilistic way, transforming the original 

statement “parameter whose variability has an impact on a critical quality attribute” into “parameter 

whose variability is likely to have impact on a critical quality attribute”. If we do not assess this 

chance we potentially underestimate the risk of our process to the patient and have to pay a 

higher price during trouble shootings at later stages of process validation and commercial 

production when unexpected variation in product quality is encountered. This is then possibly 

due to an insufficient control of the “unknown unknown” CPPs. Moreover, the 2011 FDA 

process validation guideline states that criticality should be “continuum rather than a binary state” 

[6]. This can be interpreted in two ways. On the one hand, there is a smooth transition of non-

critical to CPPs and on the other hand criticality of a parameter might be assessed multiple 

times during the lifecycle and is not fixed. During iterative cycles of stage 1, 2 and 3 unknown 

criticality might become visible or CPPs turn out to be less critical than initially assumed. 

As an output of this subtask the critical PPs of each unit operation are identified and a suitable 

control strategy is placed on them in order to ensure that product quality can be continuously 

delivered. In future the presented power analysis can also be used to establish design spaces 

in quality by design (QbD) approaches [10,56,57].  

 

4.6 Task 6: Integrated process model 
Input: 

 Aligned analytical data from task 1, statistical regression models from DoEs (task 5) 
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Output: 

 Identification of holistic criticality of PPs and potential tightening of the control strategy 

 Assessing overall process robustness 

 Holistic and process capability based acceptance criteria for intermediate unit 

operations 

In one contribution we employed a novel method that uses Monte Carlo simulation as a 

connector between statistical DoE models from task 5 of single unit operations [58]. Discrete 

combinations of possible PP combinations of multiple unit operations are propagated through 

the entire process and risk of out of specification events at batch release is estimated. The 

IPM is extendable to use mechanistic instead of statistical models, too. The approach assumes 

that no critical effect has been overlooked to be included in the statistical models, which can 

be ensured by applying the novel retrospective power analysis as presented in task 5. 

Otherwise, process robustness of the IPM might be overestimated since unknown risk has not 

been taken into account. Although Monte Carlo simulations are widely used their application 

in process validation stage 1 to assess process robustness and overall parameter criticality 

has not been reported before to the best of my knowledge [59,60]. The IPM has successfully 

been applied during industrial process validation to predict representative out of specification 

(OOS) probabilities under normal manufacturing variance of PPs. If OOS probabilities are low, 

this can be regarded as evidence that a process will likely be capable of consistently delivering 

quality product also in future. If OOS probabilities are high, control strategy can be tightened 

for those holistically impacting CPPs. Therefore, by application of the IPM it will be possible to 

lower the OOS probabilities most efficiently, offering benefits to manufacturer and patients. 

Additionally, it is has been demonstrated, using parameter sensitivity analysis, how to assess 

the holistic criticality and impact of single PPs onto product quality within a mutual interplay of 

the entire process. 

Moreover, within the IPM framework it is possible to calculate performance based acceptance 

criteria for intermediate unit operations, which are required to monitor impurity and product 

content of future batches at intermediate process steps. Operating within those limits ensures 

reaching specification at batch release. Those acceptance criteria can be obtained via 

parameter sensitivity analysis of the IPM by varying CQA concentrations at the load of 

intermediate unit operations.  
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5 Manuscripts 

5.1 Author contributions 
Manuscript Contribution of Thomas Zahel (TZA) 

Physiological rate calculation [38] TZA designed the adaptive window rate 

calculation algorithm and the generic 

workflow for rate calculation for 

biopharmaceutical online and offline 

fermentation signals. 

Softsensor error propagation [39] TZA developed and implemented the error 

propagation procedure within the softsensor 

framework as well as the design of the 

generic workflow to identify tolerable 

measurement accuracy to deliver predefined 

softsensor accuracy. 

Criticality assessment [40] TZA developed the retrospective power 

analysis and criticality assessment workflow 

and wrote the manuscript. 

Integrated process model [58] TZA designed the IPM and the Monte Carlo 

simulation and wrote of the manuscript. 

 
5.2 Manuscripts 
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5.2.1 Physiological rate calculation 
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Abstract 

The calculation of metabolic turnover rates is essential for the scalable design, analysis and 
control of bioprocesses. Here, we present a novel rate calculation algorithm based on the 
dynamic adaptation of window sizes in order to deliver robust and precise rates with uniform 
signal-to-noise ratios. Moreover, we present a model-based generic algorithm for deriving 
optimal rate calculation workflows. The generic algorithms delivered more precise and 
accurate rates for on- and offline signals, which was demonstrated for both in silico- and real 
batch and fed-batch fermentation process data. The presented algorithms will strongly support 
bioprocess development and control as enabling tools for multivariate data analysis, 
mechanistic modelling and dynamic experimentation. 

Keywords: bioprocess, bioprocess analysis, Escherichia coli, Pichia Pastoris, metabolic 
turnover rates  

 

1. Introduction 
Bioprocesses are key drivers for innovation in the pharmaceutical industry, whereby global 
sales of drugs produced in bioprocesses exceeded US $100 billion in 2010 [1]. Furthermore, 
industrial bioprocesses are considered key processes for achieving a sustainable bioeconomy 
[2]. In order to stay competitive, a constant increase in productivity and decrease of bioprocess 
development times are requested from an economic point of view. In addition, the regulatory 
authorities strongly suggest science-based development of biopharmaceutical processes. One 
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of the most prominent regulatory initiative of the last decade was the process analytical 
technology (PAT) and quality by design (QbD) initiative of the American Food and Drug 
Administration (FDA) [3,4]. Main goals of PAT and QbD are to understand and control 
manufacturing by focusing on the design of the process and thereby to consistently ensure a 
predefined quality at the end of the process [5].  

In the last decades, multivariate data analysis (MVDA), mechanistic modelling and dynamic 
experiments emerged as efficient tools to achieve faster process development, higher 
productivity and a high degree of process understanding as requested by the regulatory 
authorities. Using MVDA, a broad spectrum of statistical tools are applied to identify major 
influential process parameters on quality attributes such as multivariate linear regression and 
dimensionality reduction tools, which are reviewed in detail elsewhere [6,7]. Mechanistic 
process modelling is successfully applied for fast and efficient process optimization, for 
example, the optimization of upstream fermentation processes [8]. Typically, the model 
structure is initially formulated applying first order principles, such as a set of differential 
equation of mass or energy balances, one for each chemical species. Unknown parameters, 
e.g. kinetic reaction rates, of these so called state equations can be either directly estimated 
from measured states, e.g. by rearranging Eq. 1, or found by varying the parameters in a 
optimization procedure aiming to minimize the difference between the state estimates and the 
measured states. Dynamic methods refer to the purposeful dynamic deflection of process 
states with the goal of maximizing the information extractable from an experiment. For 
example, a dynamic experiment may deal with the cellular response to rapid changes in the 
feed profile or environmental conditions (pH, T) carried out either in a continuous stirred tank 
reactor or under fed-batch mode. This approach was successfully used for the identification of 
optimal feeding profiles [9] and the characterization of induced state metabolic capabilities [10].  

It has been shown that the usage of specific metabolic turnover rates as input for MVDA is 
beneficial compared to classical approaches using raw process data, since the calculation of 
rates introduces additional process knowledge as a feature extraction step [11,12]. In 
mechanistic modelling, specific rates play a major role as parameters, which establish 
relationships between state equations. Even on a more detailed level, specific rates are inputs 
for metabolic relationships for flux analysis [13]. Moreover, the estimation of specific rates is 
key to the evaluation of dynamic experiments, where the impact of a collection of parameter 
combinations on the process quality can be investigated within one process run [14,15]. 

As outlined above, a key element of a broad spectrum of tools for efficient bioprocess 
characterization, optimization and investigation is the calculation of volumetric (𝑟𝑖) and thereof 
derived specific turnover rates (𝑞𝑖). In principle, this is performed based on material balances, 
as depicted in Eq. 1 and Eq. 2 [16]. The basic idea is that the change of mass of a species 𝑖 
within a bioreactor system with a given reactor volume (𝑉𝑅) can only occur due to inflows (�̇�𝑖𝑛 ·

𝑐𝑖𝑛) and outflows (�̇�𝑜𝑢𝑡 · 𝑐𝑜𝑢𝑡) with their respective concentration as well as the reaction (𝑉𝑅 · 𝑟𝑖) 
within the system. In order to obtain catalyst specific rates, the volumetric rates (𝑟𝑖) are divided 
by the biomass concentration (𝛾𝑋). 

�̇�𝑖𝑛 · 𝑐𝑖𝑛 − �̇�𝑜𝑢𝑡 · 𝑐𝑜𝑢𝑡 + 𝑉𝑅 · 𝑟𝑖 =
𝑑(𝑉𝑅(𝑡)·𝑐𝑖(𝑡))

𝑑𝑡
 (1) 

𝑞𝑖 =
𝑟𝑖

𝛾𝑋
 (2) 

In an ideal steady-state operation mode of bioreactors the volumetric and specific turnover 
rates are constant over time. This process mode opens up advantages compared to batch and 
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fed-batch processes such as large scale production of cheap products at relatively high 
productivity. However, a continuous design of fermentation processes holds also risks such as 
strain instability due to mutations on the long run, which limits its application in the production 
of biologics in industry [17,18]. Therefore, batch and fed-batch processes are still a dominant 
production form, where the dynamic changes of turnover rates over time are essential for the 
description and understanding of the process. Herein, this contribution will focus on batch and 
fed-batch processes.  

The concise biotechnological formulation of material balances has been investigated over the 
last three decades. In the case of no in and outflow of the system material balances are 
reduced to a simple derivate formulation (𝑟𝑖 =

𝑑(𝑐𝑖(𝑡))

𝑑𝑡
). If in- and outflows are present, the 

material balance can be integrated and the resulting cumulative entity is differentiated as 
shown by Herwig [14]. Especially the calculation of turnover rates of gaseous species is more 
sophisticated since the dilution of the off-gas stream due to water stripping has to be taken into 
account [19]. From a formal point of view, a biotechnological system is characterized by the 
number of turnover rates, which can be estimated directly from measurements and those which 
may be calculated from others [20]. This classification can be used to identify redundant 
equations, which subsequently can be used for reconciliation and gross error detection. This 
approach significantly increased the signal to noise ratio on the obtained reaction rates in 
industrial fed-batch fermentations [21].  

A major aspect of rate calculation is the pre-processing of the original process data 
(𝑉(𝑡), 𝑐𝑖(𝑡), �̇�𝑖𝑛, �̇�𝑜𝑢𝑡) in order to derive smooth and interpretable rates. Currently, this is 
performed by data driven smoothing and filtering algorithms, such as averaging and polynomial 
smoothing, low pass frequency filters as well as model based filters. Digital low pass filters 
(e.g. the commonly applied Butterworth filter) and smoothing algorithms (e.g. Savitzky-Golay 
smoothing) are applicable for the filtering of online signals with small sampling intervals and 
thereof derived rates, since their smoothing ability relies on the vast amount of sampled data 
[22–24]. On the other hand, these approaches are not suitable for the filtering of rates based 
on offline signals such as metabolite formation rates, growth rates and product formation rates. 
For the filtering of rates derived from offline signals, filters based on mechanistic process 
models such as Kalman filters or particle filters can be used [25].  

Recently, the precision of rates as a function of the precision of the originating  signal was 
investigated and it was found that high sampling frequencies of the integral signal lead to low 
signal to noise ratios (SNR) on the calculated rates [16]. This is especially important, since a 
uniform SNR on the derived rate is prerequisite for a processing of rates within MVDA tools, 
such as multi-linear regression, principal component regression and partial least squares 
regression models. Non-uniform SNR ratios and herein not homoscedastically distributed 
regression residues can lead to imprecise multivariate models and thereby to possibly wrong 
predictions [26].  

Hence, for the accurate volumetric and specific rate calculation following goals can be 
summarized:  

i.) A concise formulation of the material balances around the system boundaries must 
include all relevant in- and outflows as well as the classification of calculable and 
balanceable conversion rates for the whole process system [16,19,20]. 

ii.) Optimal pre-processing of data is necessary in order to obtain interpretable rates 
at reduced noise level.  
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iii.) A uniform signal to noise ratio (SNR) on all resulting rates is required for a valid 
comparison and for most multivariate tools [16].  

However, to date, no method has been published that enables to derive rates with uniform 
SNR at varying sampling frequencies and sampling precision of the integral signal (𝑉(𝑡) · 𝑐𝑖(𝑡)). 
Furthermore, current empirical rate calculation strategies are prevailing and no generic method 
to identify a workflow consisting of pre-processing and rate calculation steps in order to derive 
most precise and robust rates has been published.  

In this contribution, we overcome the aforementioned gaps by presenting an advanced 
novel algorithm that is capable of delivering precise and accurate volumetric rates with uniform 
SNR at dynamic process behaviour and varying sampling frequencies. Furthermore, we 
present a generic model-based algorithm for deriving an optimal rate calculation workflow of 
pre-processing, rate calculation and post-processing steps. The power of the presented tools 
is demonstrated on industrial microbial processes validated with in silico and real process data. 

2. Materials and Methods 
2.1  Generation of model based in silico data 
An empirical model adapted from Sonnleitner [27] was used to describe a representative 
microbial fed-batch fermentation with oxidative growth and one carbon feed as described in 
detail in section S1 of the supporting information (section 9.1). Although this is a very simple 
model of a fed-batch cultivation, the introduced dynamics in the turnover rates are suitable to 
compare different rate calculation algorithms in respect to their capability of de-noising and 
retaining the dynamics. Gaussian distributed noise relative to the amplitude to the power of 
1.05 was added to the modelled biomass signal, mimicking an increased relative error at higher 
cell densities. This is frequently observed, since higher viscosity of the media requires more 
dilution steps - each connected to a dilution error - in case of biomass estimation via OD 
measurement. The modelled feed scale signal was superimposed with an absolute error of 
0.05 to 0.5 g, which is regarded as a typical weight scale error level. In order to obtain 
statistically significant results the addition of noise and subsequent rate calculations were 
performed 50-fold. The sampling of the in silico generated biomass was non-equidistant and 
adapted from real process sampling intervals [28]. The sampling interval of the feed scale was 
set as 20 s.  

2.2  Real process data for verification of the optimal rate calculation workflow 
For the verification of the established workflows, two representative fed-batch fermentations 
using the model organism Pichia pastoris producing recombinant horse radish peroxidase 
were analysed. Fermentation conditions are described in [29]. The weight scale signal as well 
as the off-gas measurements of CO2 were considered as online signals whereas the dry cell 
weight measurement (DCW) was considered as a typical offline measurement for the analysis 
with the proposed rate calculation algorithms. No additionally recorded real process data was 
necessary to investigate the closing of the carbon balance after the application of different rate 
calculation workflows.  

Computational methods 
Simulations and rate calculation workflows were implemented in MATLAB® 2015 (The 
Mathworks, Natick, MA, USA) using the InCyght bioprocess technology toolbox v1.0 (Exputec, 
Vienna, Austria).  
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2.3  Material balances 
The formulation of material balances and the corresponding calculation of the volumetric 
biomass formation rate (rX), substrate uptake rate (rS) and carbon emission rate (CER) were 
performed as described in detail elsewhere [16].  

2.4 Pre-processing methods 
Butterworth low pass filter 
Butterworth filters are low pass filters which reject unwanted high frequencies at a maximally 
flat response in the passband first published by Butterworth [30]. A significant advantage of 
the Butterworth filter compared to other low pass filters is that it has a flat frequency response 
in the passband and a smooth roll-off towards zero in the stopband. A practical limitation with 
non-periodic signals, as usually present in biotechnological applications, is that fluctuations 
might be introduced at start and end points of a time series. Computational implementation of 
the Butterworth filter design were performed by using the MATLAB® function butter. For 
estimating the filter coefficients the algorithms described by Parks were used [31]. 

Savitzky-Golay smoothing and first derivative 
The Savitzky-Golay filter is one of the most used and ubiquitous polynomial filters. It is based 
on the approximation of the data by a polynomial with specified degree fitted to a subset of the 
data points within a certain window. Once the polynomial function is known it is easy to 
calculate derivatives of the smoothed signal. A common drawback of this filter is that the 
window size is fixed over the entire signal insensitive to dynamic changes. Savitzky-Golay 
smoothing and calculation of the first derivate was done by using the MATLAB® function 
sgolay. Implementation was carried out as described by Orfanidis [32]. 

Extended Kalman filter algorithm 
Kalman filters, first reported by Kalman [33], are minimal-variance estimators that produce 
statistically optimal estimates of the states of a system using a dynamic model. Extended 
Kalman filters are the non-linear extension of classical Kalman filters and well known 
applications are navigation systems, signal filtering but also bioprocess control.  Here, an 
extended Kalman filter configuration was used which is described in detail in section S2 of the 
supporting information (section 9.1).  

Statistical test values for comparing time signals (NRMSE) 
As a statistical test value for the comparison of the calculated rate by different algorithms to 
the true rate the normalized root mean square error (NRMSE) was applied according to: 

𝑁𝑅𝑀𝑆𝐸 =  
√

∑ (𝑟𝑐𝑎𝑙𝑐,𝑖−𝑟𝑡𝑟𝑢𝑒,𝑖)²𝑛
𝑖=1

𝑛

𝑟𝑡𝑟𝑢𝑒,𝑚𝑒𝑎𝑛
 (3) 

This measure was used since strong deviations from the true rate are penalized more seriously 
compared to other measures, such as the percentage of error or SNR.   

3. Results 
3.1 Method Development 
3.1.1 Algorithm to calculate metabolic turnover rates with constant signal to noise 

ratio: Dynamic window rate calculation algorithm 
Here, we describe a novel algorithm to calculate metabolic turnover rates with constant signal 
to noise ratio. 
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The uncertainty boundary of  the rate (𝑈𝑟 ) and the SNR of the rate can be calculated with rules 
of Gaussian error propagation resulting in Eq. 4A, Eq. 4B and Eq. 5. 𝑈𝑦𝑖

 corresponds to the 
uncertainty boundary, e.g. obtained due to an investigation of historical data, of a data point 𝑖 
of the originating signal and 𝛥𝑡 corresponds to the span of the time window. If the measurement 
uncertainties are estimated by standard deviations, e.g. from replicate measurements, Eq. 4B 
can be used instead to derive the simple measurement uncertainty of the rate 𝑢𝑟. In the 
following sections we assume knowledge about the uncertainty boundaries of the input signals 
and therefore apply 4A. However, it should be noted that all presented algorithms can also be 
formulated alternatively with Eq. 4B. The full derivation leading to those equations is shown in 
section S3 of the supporting information (section 9.1).  

𝑈𝑟 =
𝑈𝑦1+𝑈𝑦2  

𝛥𝑡
 (4A) 

𝑢𝑟 =
√𝜎1

2+𝜎2
2

𝛥𝑡
 (4B) 

 

𝑆𝑁𝑅𝑟 =
𝑟 

𝑈𝑟
 (5) 

Based on these equations, an algorithm can be formulated to estimate turnover rates with 
constant signal to noise ratios, as depicted in Figure 1.  

 Step 1: The Algorithms starts at the first data point (j = 1) and calculates the rate to the 
second point, which equals a window size of one point (i = 1). In case of continuing this 
procedure over the whole signal, we would call the algorithm fixed window rate 
calculation using two points (FWR2). 

 Step 2: The SNR of the resulting rate with the current window size i is calculated using 
Gaussian error propagation (Eq. 5). 

 Step 3: If the calculated SNR of the rate does not meet a desired SNR level set by the 
operator, the window is widened by one point (i = i + 1) and the algorithm continues 
from step 2. As soon as the calculated SNR of the rate fulfils or exceeds the 
requirements, the calculated rate together with its SNR is stored and the algorithm 
proceeds with step 1 setting j = j + i.  

This procedure is continued until the end of the signal. A requirement for the algorithm is the 
availability of data points of a process signal and their corresponding standard deviation or 
SNR. 
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Figure 1: Schematic representation of the dynamic window rate calculation (DWR) algorithm. Step 1: The rate 

between the first two points is calculated, which equals a window size of  i = 1. Step 2: The SNR of the rate is 

calculated using Gaussian error propagation using Eq. 4A and Eq. 5. If the SNR is higher than desired, the rate is 

stored and the algorithm proceeds with the next rate starting at data point j = j + i. If the desired SNR is not met the 

window is widened by one data point (i = i + 1) and the algorithm repeats from step 2.  

The performance of the developed algorithm on in silico data and real-process data is 
described in section 3.2.1 and 3.2.2 and visually displayed in Figure 3C.  

3.1.2 Generic algorithm for identifying an optimal rate calculation workflow  
Next to an algorithm delivering rates with a uniform signal to noise ratio (section 3.1.1), it is 
necessary to develop a generic algorithm capable of identifying optimal rate calculation 
workflows including data pre-processing, rate calculation and post-processing steps. As a final 
goal this workflow should deliver turnover rates, which have high accuracy and high precision 
insensitive to noise in the originating signal. To do so, a novel model-based approach is 
proposed: As a first step, a mechanistic or empirical model is developed mimicking most 
precisely the states of a given process, which are subsequently superimposed by a 
representative noise. We want to note that the addition of noise influences which rate 
calculation workflow may be considered as optimal. Ideally, the real-process signal noise 
should be added to in silico generated data. However, this is generally not known. Therefore, 
a good noise approximation is required and deep understanding of the true nature of the signal 
noise is crucial. 

After the application of different combinations of pre-processing, rate calculation and post-
processing steps, the NRMSE between the calculated rate and the true rate shows the power 
and applicability of a chosen workflow (Figure 2). However, due to the differences in sampling 
frequency, online signals (continuous sampling < 5min) and offline signals (few samples over 
the whole process) have to be considered separately. Most crucial is the careful selection of 
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filter parameters, such as cut-off frequencies of frequency filters or order of polynomials and 
window width of smoothing algorithms. Therefore, filter parameter selection according to 
rational aspects are supposed to lower the risk of deteriorating the signal characteristics and 
are presented in section S4 of the supporting information (section 9.1). 

Reducing noise of the originating signal during the rate calculation process itself can be 
achieved by widening the temporal window applied for estimating the slope. Moreover, 
algorithms can be differentiated whether they use a fixed (FWR), a dynamically adapted 
window (DWR) size or a window spanning between the boundaries of processes phases 
(PBR).   

 
Figure 2: Graphical representation of the generic method to identify an optimal rate calculation workflow consisting 

of pre-processing, rate calculation and post-processing steps. First of all, model generated data is pre-processed 

using rationally derived filter parameters as described in section S4 of the supporting information (section 9.1). For 

online signals, frequency filters (e.g. Butterworth filter) and polynomial smoothing algorithms (e.g. Savitzky-Golay 

filter) are suggested whereas for offline signals model based Kalman filters are used. Subsequent rate calculation 

can either be performed using fixed windows, dynamic windows or windows spanning between phase boundaries. 

Fixed window rate calculation with two data points is the most frequently used way of calculating the derivate. 

Another way of estimating the slope is to differentiate a polynomial which fits the data. This is done by taking the 

first derivative of the Savitzky-Golay polynomial. Finally the derived rates can be post-processed with frequency or 

polynomial filters, which is in this contribution again only applied for rates derived from online signals using 

rationales explained in section S4 of the supporting information (section 9.1).  
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3.2 Application of Presented Algorithms 
3.2.1 Developing optimal rate calculation workflow for microbial fermentation 

processes  
In silico generated fed-batch data is used to identify the optimal rate calculation workflow for 
microbial fermentation processes applying the generic algorithm presented in section 3.1.2.  

We consider one representative rate derived from an online and offline signal, respectively. As 
a classical offline signal the biomass measurement was chosen, which leads to rx including the 
assumptions of no inflow and outflow of biomass. As a typical online measurement the weight 
scale signal of the carbon feed was chosen, which led to rS assuming carbon limited 
fermentation [16]. The performance of selected workflows in respect to the precision and 
accuracy of derived rx and rS is shown in Figure 3 and Figure 4, respectively.  

As shown in Figure 3A, the combination of Kalman filtering (KaF) and dynamic window 
adaptation with a desired SNR of 5 (DWR5) for rx was identified as optimal workflow followed 
by the combination of KaF and fixed window rate calculation with a window size of two points 
(FWR2). FWR2 is the common way of calculating a rate between two points [14,16,34]. The 
superior behaviour of KaF + DWR5 in comparison to KaF + FWR2 can be explained by the 
fact that Kalman filters not only improve the estimation of the true signal but also provide an 
improved estimation for the covariance of the signal according to Eq. 9 of the supporting 
information (section 9.1). As shown in Figure 5, this additional information can subsequently 
be used by DWR5 to dynamically widen the window size for rate calculation and thereby gain 
even more significant rates with uniform SNR. Surprisingly, DWR5 alone was nearly as good 
as the combination with Kalman filtering as depicted in Figure 3A, which remarkably underlines 
the power of this algorithm taking into account that no mechanistic model is required. The rate 
calculation using solely FWR2 is always worse than all other rate calculation algorithms for 
noise levels higher than 1% relative error. The precision (relative error) of rx calculated with 
different algorithms is shown in Figure 3B, which equals 1/SNR. Rate calculation using 
windows equal to the phase boundaries (PBR) had the lowest relative error for noise levels 
lower than 5%. Upon this boundary the combination of Kalman filtering and dynamic window 
adaptation rate calculation (KaF + DWR5) showed higher precision. The relative error of FWR2 
ranged from 2 to 7, depending on the noise level, which indicates the extremely low reliability 
of this rate calculation method.  
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Figure 3: A: comparison of different rate calculation algorithms for the volumetric biomass formation rate (rx) 

originating from an simulated OD-measurement (offline signal) by means of NRMSE to the true rate at different 

relative noise levels. Error bars indicate 1 standard deviation from 50 simulations. B: relative errors on rate (rx) 

obtained by different rate calculation workflows with different relative noise levels. Error bars indicate 1 standard 

deviation from 50 simulations. C: time resolved biomass signal with 2% relative error indicated with error bars and 

derived rates (rx) using algorithms FWR2 and DWR5 in comparison to the true rx. The stairs function for the rates 

indicate validity ranges. Used abbreviations for algorithms: DWR5: rate calculation with dynamic window adaptation 

with SNR of 5 on resulting rates, FWR2: rate calculation with fixed window size of 2 points, PBR: window size 

equals phase boundary, KaF: Kalman filtering. 
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For online signals, the combination of the first derivate calculation by Savitzky-Golay algorithm 
(SGR20) and a subsequent Butterworth low-pass filter with a cut-off frequency of 0.5 mHz 
(BwF0.5) resulted in an similar accurate rate as the estimation with Savitzky-Golay smoothing 
(SGF20), dynamic window adaptation rate calculation (DWR5) and a final low-pass 
Butterworth filter (BwF0.5) as shown in Figure 4A. It was not possible to detect a significant 
difference (two sample t-test with significance level α = 0.05) between those two approaches 

for all noise levels. A possible interpretation is that the applied algorithms filter noise in a 
redundant way and therefore addition of DWR5 does not significantly decrease the noise level. 
Nevertheless, the approach with SGR20 and BwF0.5 seems to be beneficial since it consists 
of only two algorithms and therefore minimizes the risk of signal deterioration caused by an 
additional de-noising algorithm. However, the current implementations of the Savitzky-Golay 
first derivative do not provide an estimate for the precision of the resulting rates, therefore the 
relative error is not shown in Figure 4B for the combination SGR20 + BwF0.5. The relative 
error of algorithm combinations containing DWR are always lower (< 0.2) than rate calculations 
with fixed window size (> 7) as compared in Figure 4B.  
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Figure 4 A: comparison of different rate calculation algorithms for the substrate uptake rate (rS) originating from a 

simulated scale signal (online signal) by means of NRMSE to the true rate at different absolute noise levels. Error 

bars indicate 1 standard deviation from 50 simulations. B: relative errors on rate (rS) obtained by different rate 

calculation workflows at different absolute noise levels. Error bars indicate 1 standard deviation from 50 simulations. 

C: time resolved feed scale signal with 0.1 g absolute error and derived rates (rS) using algorithm SGR+BW0.5 and 

DWR5 + SG in comparison to the true rS. Used abbreviations for algorithms: DWR5: rate calculation with dynamic 

window adaptation with SNR 5 on resulting rates, FWR4: rate calculation with fixed window size of 4 points, SGF20: 

Savitzky-Golay smoothing with a window size of 20 data points, SGR20: Savitzky-Golay first derivative with a 

window size of 20 data points, BwF0.5: Butterworth low pass filter with 0.5 mHz cut-off frequency.  
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Figure 5: Schematic workflow and synergy between Kalman filter and dynamic window rate calculation (DWR). 

Kalman filter provide an estimation of the variance, which can be used by DWR to dynamically widen the windows 

for rate calculation. Thereby the precision of the resulting rates can be increased and uniform SNR can be achieved. 

Rate calculation with fixed windows (FWR) does not use the corrected variance as input and therefore less 

significant rates with non-uniform SNR evolve.  

More combinations of algorithms for deriving rx and rS are shown in Table 1 and Table 2 of 
supporting information (section 9.1). The optimal rate calculation workflows for online and 
offline signals for a standard microbial fed-batch fermentation are summarized in Figure 6. 
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Figure 6: Proposed optimal rate calculation workflow for online and offline signals consisting of pre-processing, rate 

calculation and post-processing steps for obtaining most precise and robust rates in standard, industrial microbial 

fermentations. 

5.2.2 3.2.2 Proofing optimal microbial rate calculation workflow on real process data 
Since the resulting workflows for a standard microbial fed-batch fermentation established by 
in silico generated process data in section 3.2.1 are biased by the nature of the added noise, 
we need to verify the optimal workflows for online and offline signals using real process data. 
As a typical microbial fed-batch fermentation, we used data from Pichia pastoris fed-batch 
fermentation with methanol induction. As typical for many biopharmaceutical processes, a 
mechanistic model is not available and therefore workflow options with Kalman filtering must 
be neglected. 

Again, the generic algorithm presented in section 3.1.2 can be used for optimal workflow 
identification. For real process data, the closing of the C-balance can be used as a measure 
for precision (NRMSE) since true values of rates are not available. 

In analogy to the in silico observations, the calculation of rx using dynamic window adaptation 
(DWR5) showed best performance concerning the dynamic of the signal, excluding outliers 
with low SNR in the originating signal (Figure 7C). This led to a major improve in the closing 
of the C-balance (increase of 50%-400%) compared to all other workflows without DWR5 
calculation of rx (Figure 7A). The usage of the optimal workflow for rS suggested by the in silico 
observations for normal noise on balances < 0.1 g (SGR20 + BwF0.5) had major improve 
concerning the smoothing of rS (Figure 7B), but resulted only to minor improves concerning 
the closing of the C-balance (Figure 7A). 
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In general, the in silico identified optimal workflows for rx and rS were found to show the best 
closing of C-balances for real process data. This proves the applicability of the optimal rate 
calculation workflow for microbial fermentations. 

 

Figure 7: A: Comparing different rate calculation workflows for rX, rS and CER originating from real process signals 

by calculating the NRMSE of the resulting C-balances to 1. B: Time resolved feed scale signal and derived rS using 

algorithms FWR2 and SGR20 + BwF0.5. C: time resolved biomass measurement and derived rX using algorithms 

DWR5 and FWR2. The stairs function for the rates indicate validity ranges. Used abbreviations for algorithms: 

DWR5: rate calculation with dynamic window adaptation with SNR of 5 on resulting rates, FWR2: rate calculation 

with fixed window size of 2 points, SGR20: Savitzky-Golay first derivative with a window size of 20 data points, 

BwF0.5: Butterworth low pass filter with 0.5 mHz cut-off frequency. 
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4. Discussion 
4.1 Comparison of DWR algorithm to different rate calculation methods 
In signal analysis the result of a measurement or a reconstruction of a signal is an estimate of 
the true signal and therefore accompanied by an error. This error consists of two components, 
a systematic error, determined by the accuracy, and a stochastic error or uncertainty, 
described by the precision.  The normalized root mean square error (NRMSE) is the most 
frequently used marker throughout many disciplines for signal accuracy since it reflects the 
deviation of the mean of the de-noised signal to the true signal [35,36]. The signal to noise 
ratio (SNR) reflects the lack of exact knowledge of the value and is therefore a frequently used 
estimate of the precision [37]. Therefore, the reconstructed signal with the lowest NRMSE and 
SNR is regarded as the most precise and robust estimation.  

In literature, a broad spectrum of approaches to calculate rates in dependence on the 
bioprocess investigated are reported, for example, based on finite difference approximation or 
direct calculation of specific rates with the integral of viable cells [38]. However, we want to 
note that all approaches rely on the mathematical calculation of the slope. This can be reduced 
to a numerical finite difference approximation problem (Eq. 13 in the supporting information  in 
section 9.1), unless a priori knowledge about the signal characteristics is available (e.g. 
exponential growth). Therefore, we anticipate that the dynamic window adaptation algorithm 
(DWR) is fully applicable to all kind of rate calculations with linear signal characteristics and 
superior to other rate calculation methods as shown in Figure 3 and Figure 4, independent of 
the underlying organism or signals processed. The essential difference between DWR and 
other algorithms relies on the sophisticated way how data points of the integral signal are 
selected to derive sound rates but not on the way how the derivative itself is formed. 

4.2 Applications of DWR algorithm and the generic algorithm for deriving an 
optimal rate calculation workflow 

As outlined in the introduction within a system of calculable and measurable rates redundancy 
can be used in order to detect gross errors and improve data quality by reconciliation [20,39]. 
Testing the significance of errors of the measured rates is a crucial step within the reconciliation 
procedure. This is done by calculating a statistical test value (ℎ𝜀), which requires knowledge 
about the precision of the measured rates. To the best of our knowledge, the estimation of 
errors on measured rates was so far conducted only by empirical approximations. The 
presented DWR algorithm can be used to derive rates and their associated precision and 
subsequently formulate the covariance matrix of measured rates. Thereby, we anticipate that 
the overall accuracy in terms of closing of material balances can be increased and the precision 
of calculated and reconciled rates can be improved, although this requires further 
investigations of the interactions between DWR and reconciliation.  

Another potential application of DWR is the evaluation of dynamic experiments such as 
dynamic design of experiments, where the goal is to explore multiple system responses within 
a single process run. Although the temporal resolution of calculated rates cannot be refined 
with DWR, since only widening of time windows is possible, the algorithm ensures precision 
on the observations, reducing misleading interpretations due to temporal system fluctuations.  

Besides the offline applications of DWR for process data analysis, online operation can be 
used to perform a stable process control triggered by reliable and precise specific rates.  
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4.3 Applications of DWR algorithm and the generic algorithm for deriving an 
optimal rate calculation workflow in combination with MVDA 
Many MVDA correlation methods are built on the assumption that the resulting regression must 
attain homoscedastic distribution of residues [26]. Due to changing signal dynamics and a 
varying precision of the measurement, rates with non-uniform SNR are obtained. If those rates 
are subsequently correlated to a critical quality attribute (CQA), homoscedastic residues 
cannot be achieved and outliers may alter the correlation significantly. Therefore, we anticipate 
that rates with uniform SNR as provided by DWR lead to more significant correlations which 
are robust against outliers in the original process signal, as shown in Figure 7C. 

Mechanistic models use specific rates and derived entities (e.g. yield coefficients) as 
physiological parameters, which connect process states with each other. For their estimation, 
DWR is anticipated to deliver more precise and robust inputs which reflect physiological 
interactions more accurately.   

 

4.4 Extensions of DWR algorithm and the generic algorithm for deriving an 
optimal rate calculation workflow to mammalian cell cultures 

The DWR algorithm and the optimal rate calculation workflow in their presented form are tested 
with batch and fed-batch data. The optimal rate calculation workflow might slightly change for 
different biotechnological application depending on the dynamics of the turnover rates. For 
example, higher dynamics might require smaller windows for the Savitzky-Golay smoothing. 
However, the proposed generic approach which delivers optimal rate calculation workflows as 
presented in 3.1.2 is applicable to all biotechnological applications. Moreover, the presented 
dynamic window rate calculation algorithm is anticipated to greatly improve rate calculation in 
mammalian batch and fed-batch processes, where noise prohibits the observability of true rate 
changes due to the slow growth characteristics of the process. Here, a different specific rate 
calculation method for mammalian cell culture than for microbial fermentations is commonly 
applied. In this slightly different rate calculation procedure  it is suggested to use the ratio of 
the observed mass difference during a time window (𝑡 − 𝑡0) of species 𝑖 (𝛥𝑚𝑖) to the integral 
of formed viable cells (𝐼𝑉𝐶) during that time window according to Eq. 6 and 7 [38,40]. As shown 
in section S6 of the supporting information (section 9.1), the estimation of 𝑞𝑖,𝐼 using this 
different approach (Eq. 7) is equivalent to the finite difference approximation and subsequently 
dividing the rate by a linear approximated cell concentration, which was used throughout this 
contribution to drive specific rates. Hence, the algorithms proposed here seem to be highly 
promising also for mammalian cell culture.  

𝐼𝑉𝐶 =  ∫ 𝛾𝑋𝑉

𝑡

𝑡0
· 𝑑𝑡 (6) 

𝑞𝑖,𝐼 =
𝛥𝑚𝑖

𝐼𝑉𝐶
 (7) 

5.  Conclusions 
The calculation of robust and precise turnover rates for univariate and multivariate bioprocess 
analysis, requires i) a concise formulation of material balances in respect to the system 
boundaries, ii) optimal data pre-processing of process data and post-processing of rates and 
iii) a uniform signal to noise ratio (SNR) on all resulting rates. 

Optimal data pre-processing of process data and post-processing of rates can be greatly 
improved by the presented dynamic window adaptation algorithm (DWR). This algorithm is 



38 
 

based on the dynamic widening of time windows of the derivative, triggered by the signal-to-
noise ratio (SNR) of the integral process signal. The algorithm ensures uniform SNR on the 
resulting rates as required by MVDA tools (e.g. multi-linear regression) and thereby delivers 
more precise and robust rates against outliers as demonstrated by in silico and real process 
data. The algorithm is generically applicable for both the analysis of historical data sets and 
real-time applications, and was tested for batch and fed-batch processes in this contribution 

Optimal rate calculation workflows can be identified using the presented generic model-based 
algorithm, which requires a process model and assumption about the signal errors.  

For industrial microbial batch and fed-batch processes, an optimal rate calculation workflow 
was identified for offline and online signals. For online signals, a combination of Savitzky-Golay 
first derivative followed by a Butterworth filter on the rate led to optimal rates concerning 
precision. For optimal rate calculation starting with offline signals, Kalman filters are used to 
pass the estimated variance of the signal to the DWR, which subsequently optimally adapts 
the window size. 

The presented methodology to calculate precise rates is extendable to all microbial 
bioprocesses and can be assumed to be beneficial for mammalian cell cultures.  

We anticipate that using the presented optimal rate calculation workflow, including DWR, will 
improve the performance of MVDA tools and mechanistic modelling and thereby increase the 
overall competitiveness and overall bioprocess understanding.  
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Symbols Used 
Symbols 

𝑐𝑖𝑛  [g l-1] or [mol l-1]   Concentration of inflow into bioreactor 

𝑐𝑜𝑢𝑡  [g l-1] or [mol l-1] Concentration of outflow of bioreactor 

�̇�𝑖𝑛  [g h-1] Inflow into bioreactor 

�̇�𝑜𝑢𝑡  [g h-1] Outflow of bioreactor  

𝛥𝑚𝑖  [g] Change of mass of species 𝑖  

𝑞𝑖,𝐼  [g g-1 h-1] Specific rate of species 𝑖 calculated using the 
integral viable cell density 

𝑞𝑖  [g g-1 h-1] Specific rate of species 𝑖 

𝑟𝑖  [g l-1 h-1] Volumetric rate of species 𝑖 

rS [g h-1] Substrate uptake rate  

rx [g l-1 h-1] Volumetric biomass formation rate 
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𝛥𝑡  [h] Time span used for deriving the rate 

𝜎𝑖
2 Squared units of 

originating signal 
Estimated variance of data point 𝑖 of the originating 
signal for rate calculation 

𝑈𝑟  [g l-1 h-1] Absolute uncertainty boundary of rate 

𝑈𝑦1
  units of originating signal Absolute uncertainty boundary of data point 𝑖 of the 

originating signal for rate calculation 

𝑢𝑟 [g l-1 h-1] Simple measurement uncertainty calculated from 
measurement uncertainties given as standard 
deviations 

𝑉𝑅  [l] Volume of bioreactor 

𝛾𝑋  [g l-1] Biomass concentration 

𝛾𝑋𝑉
  [g l-1] Viable cell concentration 

   

 

Abbreviations 
BwF[n] Low pass Butterworth filter with n mHz cut-off frequency 

CER Carbon emission rate 

DWR[n] Dynamic window rate calculation with SNR of the rate equal to n 

FWR[n] Fixed window rate calculation with a window of n data points 

IVC Integral of viable cells 

KaF Kalman filter 

NRMSE Normalized root mean square error 

PBR Phase boundary rate calculation 

SGF[n] Savitzky Golay smoothing with a window of n data points 

SGR[n] Savitzky Golay first derivative with a window of n data points 

SNR Signal to noise ratio 

SNRr Signal to noise ratio of the rate 
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5.2.2 Softsensor error propagation 
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Abstract 

In biopharmaceutical process development and manufacturing the online measurement of 
biomass and derived specific turnover rates is a central task to physiologically monitor and 
control the process. However, hard-type sensors such as dielectric spectroscopy, broth 
fluorescence or permittivity measurement bury various disadvantages. Therefore, soft-
sensors, which use measurements of the off-gas stream and substrate feed to reconcile 
turnover rates and provide an online estimate of the biomass formation, are smart alternatives. 
For the reconciliation procedure, mass and energy balances are used together with accuracy 
estimations of measured conversion rates, which were so far arbitrarily chosen and static over 
the entire process. In this contribution we present a novel strategy within the soft-sensor 
framework to propagate uncertainties from measurements to conversion rates and 
demonstrate the benefits: For industrial relevant conditions, hereby the error of the resulting 
estimated biomass formation rate and specific substrate consumption rate could be decreased 
by 43 and 64 %, respectively, compared to traditional soft-sensor approaches. Moreover, we 
present a generic workflow to determine the required raw signal accuracy to obtain predefined 
accuracies of soft-sensor estimations. Thereby appropriate measurement devices and 
maintenance intervals can be selected. Furthermore, using this workflow, we demonstrate that 
the estimation accuracy of the soft-sensor can be additionally and substantially increased. 

Keywords 

Bioprocess, biomass estimation, soft-sensor, accuracy, error propagation, bioprocess control 
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Abbreviations 

𝐹𝑎,𝑖𝑛 Air flow in (L min-1) 

𝐹𝑎,𝑜𝑢𝑡 Air flow out (L min-1) 

𝑉𝑚 Molar volume (L mol-1) 

𝑞𝑆 Specific substrate uptake rate (mol mol-1 h-1) 

𝑟𝑋 Biomass formation rate (mol h-1) 

µ Specific growth rate (h-1) 

𝑟𝑖 Consumption/formation rate for species 𝑖 (mol h-1) 

𝑆 Substrate, C-normalized (mol) 

𝑋 Biomass, C-normalized (mol) 

𝑌𝑋/𝑆 Biomass/substrate yield coefficient 

𝑦𝑂2,𝑖𝑛 Oxygen fraction in the inlet air (-) 

𝑦𝑂2,𝑜𝑢𝑡 Oxygen fraction in the off-gas stream (-) 

𝑦𝐶𝑂2,𝑖𝑛 Carbon dioxide fraction in the inlet air (-) 

𝑦𝐶𝑂2,𝑜𝑢𝑡 Carbon dioxide fraction in the off-gas stream (-) 

𝑦𝑤𝑒𝑡 Oxygen fraction in the off-gas without microbial activity (-) 

𝛾𝑖 Degree of reduction for species 𝑖 (-) 

𝜀𝑖 Applied relative error on species 𝑖 (-) 

MFC Mass flow controller 

MPD Median percentage of difference 

𝐶𝐸𝑅 Carbon dioxide evolution rate (mol h-1) 

𝑂𝑈𝑅 Oxygen uptake rate (mol h-1) 

𝑅𝑎𝑖𝑛𝑒𝑟𝑡 Inert gas ratio (-) 

𝛥𝑦 Absolute measurement error of signal 𝑦 

𝐸 Elemental composition matrix 

𝜀 Residual vector for non-closing balances 
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1 Introduction 
Biotechnological process development, analysis and control is key to obtain robust processes 
providing highest product quality attributes as well as a reduced time-to-market latency. 
Catalyzed by regulatory initiatives for biopharmaceutical products, Process Analytical 
Technology (PAT) emerged as a major tool that demands for bioprocess analysis and control 
by frequently measurements ensuring specified final product quality [1]. Especially, in 
biopharmaceutical production and process development of heterologous protein expression 
the physiological state of the cells is highly related to the formation of critical quality attributes 
[2,3]. Therefore, time-resolved knowledge about physiological parameters, such as the specific 
growth rate or specific substrate uptake rat, is essential in the PAT framework as well as to 
perform process-development, -characterization and –validation [4]. Moreover, those variables 
frequently serve as targets for control strategies [5–7]. The key to this physiological information 
is the catalyst concentration – the biomass. However, the required on-line measurement of 
biomass is a critical endeavor using hard-type sensors such as dielectric spectroscopy, broth 
fluorescence or permittivity measurements, each connected to limitations and drawbacks as 
outlined elsewhere [8]. Software sensors, or short soft-sensors, provide an elegant, non-
invasive way to estimate biomass concentration using different other, easy-accessible 
measurements [9].  

In this contribution we want to focus on a dominant biotechnological process mode, the 
microbial fed-batch fermentation, and on the improvement of one of the most mature soft-
sensor implementations using off-gas and substrate-feed measurements. These soft-sensors 
are established tools for bioprocess control and analysis, which was also frequently shown in 
practical applications [5,10,11]. Briefly, mass conservation laws are used to calculate turnover 
rates from online measurements, which might be superimposed with signal errors. In a second 
step accuracy of turnover rates and constraints, formulated as first-order principles such as 
mass and energy conservation laws, are used to reconcile the inaccurate turnover rates in 
order to optimally obey the constraints. Finally the reconciled turnover rates are used to 
calculate the biomass formation rate (𝑟𝑋), which leads after simple integration over time to the 
biomass concentration. The resulting information can be used to calculate specific turnover 
rates, such as the specific substrate uptake rate (𝑞𝑆), which frequently serves as a control 
variable [12]. Therefore, 𝑟𝑋 and 𝑞𝑆 are regarded as the most prevailing benchmark entities to 
evaluate biomass estimation- and physiological control- capability. 

However, the control quality by soft-sensors is limited by measurement errors of raw signals 
used to derive the measured turnover rates. When it comes to industrial applicability, the 
ultimate question is: Which measurement accuracy is required in order to obtain a sufficiently 
accurate estimation of the reconciled rates and the biomass? 

This question can only be answered if the error sources, their respective impact and possible 
counteractions are understood. We note that we use the definition of errors as deviations to 
the true values, excellently defined elsewhere [13]. Random errors leading to a lack of signal 
precision are caused by small changes within the system, e.g. air movement, temperature and 
electrostatic fluctuations. A multitude of algorithms exists to smooth signals with random errors 
ranging from simple median filters to polynomial filters such as Savitzky-Golay filter up to 
frequency filters such as the Butterworth filter.  

While random errors can be minimized quite easily, this is not the case for systematic errors 
caused by miscalibrations, inaccuracy of analytical devices or a defective feature in the sensor. 
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Those systematic errors can only be detected and possibly reduced by making use of all 
available information in terms of first-principle constraints and the accuracy of turnover rates 
in reconciliation procedures as sketched above. First order principles can be generically 
formulated for defined processes whereas the accuracy of turnover rates, which are input to 
the reconciliation procedure, are not known a priori. They highly depend on the accuracy of 
the raw signal measurements and dynamically change over time. It is an existing unmet need 
to establish a methodology that leverages the accuracy information of the raw signals onto the 
derived turnover rates, which are subsequently used in the reconciliation procedure.  

Therefore, it is goal of this contribution to develop an error propagation procedure to derive the 
accuracy of turnover rates and demonstrate its benefits in terms of increased physiological 
accuracy within the soft-sensor framework in microbial fed-batch mode. Moreover, we want to 
address the question raised above, and present a novel generic workflow that identifies 
tolerable measurement errors of combinations of multiple analytical measurements in order to 
meet desired accuracy of soft-sensor estimations.  

2 Material and methods 
2.1 Aim and relevance of the presented approach 
The following study was carried out with in silico generated data. Aim of the in silico data 
generation was to obtain representative microbial fed-batch fermentation data including an 
induction phase, the predominant industrial mode for the production of recombinant proteins. 
The experiments were based on an E. coli process with oxidative growth and glucose as 
substrate. As the batch phase is not part of the discussed soft-sensor, only the fed-batch part 
was considered here.  

As commonly used in industry, the modelled fed-batch phase started with an exponential 
feeding profile. After 8 hours, the induction phase started with a linear feed rate. Starting with 
the induction phase, the biomass yield coefficient typically decreases during the process and 
especially fast during the induction phase due to the metabolic load [14]. This can be measured 
by the soft-sensor and was also considered in the data generation process (Figure 1). 

The advantages of an in silico study are obvious: 

 It is possible to “run” a bioprocess completely without any errors on the signals and to 
introduce defined errors into the system. This is not possible with real data, as the exact 
“real” values without errors on the data cannot be determined. 

 A virtually infinite number of experiments with different combinations of errors can be 
carried out. This enables a systematic study of errors in a high-dimensional “uncertainty 

space”. 

2.2 Computational environment 
All calculations were conducted in a MATLAB environment (2015a, The MathWorks, Inc.). The 
mechanistic model was created in form of a system of ordinary differential equations. As 
graphical user interface and bioprocessing toolbox inCyght (2016.02, Exputec GmbH) was 
used.  

2.3 In silico data generation 
2.3.1 Main mechanistic assumptions 
The main mechanistic assumptions behind data generation and soft-sensor are the same. 
Substrate, ammonia and oxygen are converted to biomass and carbon dioxide. In this simple 
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case, the extracellular formation of product or metabolites will be neglected. This assumption 
is true for many biopharmaceutical processes, as the product formation rate often is several 
order of magnitudes lower than the biomass formation rate [15]. For processes were this 
assumption has to be rejected, the soft-sensor framework has to be extended by on-line 
product measurement, e.g. by using spectroscopic techniques [16]. 

𝑟𝑆𝐶𝐻𝑝𝐻𝑂𝑝𝑂 + 𝑟𝑂2𝑂2 + 𝑟𝑁𝑁𝐻3  → 𝑟𝑋𝐶𝐻𝑧𝐻𝑂𝑧𝑂𝑁𝑧𝑛 + 𝑟𝐶𝑂2𝐶𝑂2 

Two first principle assumptions were made; the carbon balance: 

𝑟𝑆 + 𝑟𝑋 +  𝑟𝐶𝑂2
= 0 

And the degree of reduction balance:  

𝑟𝑆𝛾𝑆 +  𝑟𝑋𝛾𝑋 +  𝑟𝑂2
𝛾𝑂2

= 0 

The detailed list of equations for the data generation step are shown in the supporting 
information (section 9.2). 

 

Figure 1: A: Simulated feed profile and biomass concentration. B: Simulated trajectories of the biomass/substrate 

yield (Yxs) and the specific growth rate (µ) (right).  

 

2.3.2 Addition of noise and errors on the data 
To test the original and new soft-sensors witherroneous data, both systematic as well as 
random errors were introduced into the model. Based on information of off-gas sensor and 
mass flow controller manufacturer, as summarized in Table 1, realistic amounts of systematic 
errors were superimposed to the off-gas data which were used as input for the soft-sensors.  

O2 and CO2 concentrations in the exhaust gas are simply applied on the model output for the 
off-gas data: 

𝑋𝑂2,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =  𝑋𝑂2,𝑚𝑜𝑑𝑒𝑙 ∗ (1 + ε𝑂2
) 

𝑋𝐶𝑂2,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =  𝑋𝐶𝑂2,𝑚𝑜𝑑𝑒𝑙 ∗ (1 + ε𝐶𝑂2
) 

As the error on the mass flow controller affects both total oxygen and carbon dioxide input into 
the system and the resulting final concentrations of O2 and CO2, the error has to be given as 
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input to the model. The set-points for the MFC are the known values, but the model input and 
real values are calculated as follows.  

𝐹𝑂2,𝑖𝑛,𝑚𝑜𝑑𝑒𝑙 =
𝐹𝑂2,𝑖𝑛,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡

1 + ε𝑀𝐹𝐶
  

𝐹𝐶𝑂2,𝑖𝑛,𝑚𝑜𝑑𝑒𝑙 =
𝐹𝑂2,𝑖𝑛,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡

1 + ε𝑀𝐹𝐶
   

For the errors in the feed rate, a relative error on the set-point rate is applied. 

𝑟𝑆,𝑚𝑜𝑑𝑒𝑙 =  
𝑟𝑆,𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡

1 + ε𝑟𝑆

 

The amounts of systematic errors applied for the different experiments are listed in Section 
2.5. 

The model delivered an online value each seven seconds. For the addition of random error 
white Gaussian noise was added to the off-gas signals. The noise was generated by using 
MATLAB’s awgn function with a relative standard deviation of 1 % for the off-gas data and 
10 % on the feed rate. The noise on the feed rate is typically relatively high, as the signal often 
is calculated by deriving the scale signal. 

Table 1: Typical measurement errors of off gas analyzers and mass flow controllers.  

 Relative error to 
measurement value 

Measurement accuracy 
(zero deviance) 

Drift/year 

∆𝐹𝑎,𝑖𝑛 (mass flow controller) ±0.5% of readout ±0.3-1 % of full scale ±1 % of full scale 

∆𝑦𝐶𝑂2,𝑜𝑢𝑡 (infrared) n.a. ±1 % of full scale ±1 % of full scale 

∆𝑦𝑂2,𝑖𝑛 (paramagnetic) ±3 % of readout ±0.2 % full scale ±2 % value 

∆𝑦𝑂2,𝑖𝑛 (Galvanic cell) ±3 % of readout ±0.2 % full scale ±2 % value 
 

2.4 Quantitative evaluation of bioprocess data and error propagation 
2.4.1 Preprocessing 
As described in the introduction, random errors can be minimized by using preprocessing 
methods. We decided to apply a Savitzky-Golay filter with a window size of 30 min and 2nd 
degree polygon on the off-gas signals. These parameters in most cases showed a low signal 
distortion, while on the other hand the elimination of noise was good. However, it has to be 
noted that for specific filtering and smoothing problems better filters and filter parameters may 
exist. In our experience, most of them are not generically applicable, meaning that if they work 
very well for a specific problem on a defined signal with specific signal dynamics, they may 
completely fail on another.  

2.4.2 Data driven rate calculation 
The aim of the next section is to express estimators for those conversion rates derived from 
measurements. In general all conversion rates can be formulated using the simple idea, that 
the conversion rate equals the net accumulation within the reactor minus the inflow into the 
reactor plus the outflow out of the reactor. 

For demonstration purpose of the subsequent error propagation, the calculation of the 
conversion rate for CO2 will be calculated exemplarily:  
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𝑟𝐶𝑂2
= 𝐶𝐸𝑅 =

𝑑(𝐶𝑂2)

𝑑𝑡 
− 𝐶𝑂2,𝑖𝑛

̇ + 𝐶𝑂2,𝑜𝑢𝑡
̇  

The term 𝑑(𝐶𝑂2)

𝑑𝑡 
 can be neglected since it is predominantly a function of pH and temperature, 

which were kept constant over all in silico simulations. Therefore the carbon emission rate 
(𝐶𝐸𝑅) formulates to: 

𝐶𝐸𝑅 =
𝐹𝑎,𝑖𝑛

𝑉𝑚
(𝑦𝐶𝑂2,𝑜𝑢𝑡 ∙ 𝑅𝑎𝑖𝑛𝑒𝑟𝑡 − 𝑦𝐶𝑂2,𝑖𝑛) 

Where 𝑅𝑎𝑖𝑛𝑒𝑟𝑡 is the inert gas ratio, which connects the inflow to the outflow by: 

𝑅𝑎𝑖𝑛𝑒𝑟𝑡 =
𝐹𝑎,𝑜𝑢𝑡

𝐹𝑎,𝑖𝑛
 

And is defined as: 

𝑅𝑎𝑖𝑛𝑒𝑟𝑡 =
1 − 𝑦𝑂2,𝑖𝑛 − 𝑦𝐶𝑂2,𝑖𝑛

𝑦𝑂2,𝑜𝑢𝑡 − 𝑦𝐶𝑂2,𝑜𝑢𝑡 −
𝑦𝑤𝑒𝑡
𝑦𝑂2,𝑖𝑛

 

Here 𝑦𝑤𝑒𝑡 is the oxygen concentration in the off-gas stream without bio-reaction and indirectly 
relates to water stripping out of the reactor.  

Well known procedures can be applied in order to calculate the substrate- and oxygen- uptake 
rate for a substrate limited E.coli fermentation as described elsewhere [15]. 

2.4.3 Error propagation 
In general, all the input signals for estimating the conversion rates are random variables, 
associated with a random and systematic error, therefore the estimators itself are random 
variables, too. As discussed in the Section 1, random errors in the raw signals can be 
minimized using pre-processing methods whereas systematic errors cannot be removed and 
propagate directly to the estimated conversion rates. However, via Gaussian error propagation 
it is possible to estimate the expected error of the conversion rates. This knowledge will 
subsequently help us to formulate a much more robust reconciliation procedure and estimation 
of biomass. 

The influence of the absolute measurement error (𝛥𝑦) of the signal 𝑦 onto a derived signal 𝑟 
can be approximated using a Taylor expansion [3]: 

𝑟(𝑦 + 𝛥𝑦) = 𝑟(𝑦) +  
1

1!

𝑑𝑟(𝑦)

𝑑𝑦
· 𝛥𝑦 +

1

2!

𝑑²𝑟(𝑦)

𝑑𝑦²
· (𝛥𝑦)2 + ⋯ 

We want to note that the absolute measurement error 𝛥𝑦 of the measurement signal can be in 
most cases calculated from technical device data sheets given by their maximal amplitude 
(e.g. ±3 % of readout). Therefore, the absolute measurement error 𝛥𝑦 can be seen as worst-
case error. For an approximate solution the Taylor expansion can be terminated after the 
second term and the resulting absolute deviation of the derived signal (𝛥𝑟) can be written as:  

𝑟(𝑦 + 𝛥𝑦) − 𝑟(𝑦) =  𝛥𝑟 =
𝑑𝑟(𝑦)

𝑑𝑦
· 𝛥𝑦  

If the derived signal (here the conversion rate) depends on more than one input variable and 
the error of the input signal is only known by its boundaries, which is the typical case for 
biotechnological applications, we can write in analogy: 
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𝛥𝑟 = |
𝜕𝑟

𝜕𝑦1
| · 𝛥𝑦1 + |

𝜕𝑟

𝜕𝑦2
| · 𝛥𝑦2 + ⋯ 

For the 𝐶𝐸𝑅 the error propagation this formulates to: 

𝛥𝐶𝐸𝑅 = |
𝜕𝐶𝐸𝑅

𝜕𝐹𝑎,𝑖𝑛
| ∙ ∆𝐹𝑎,𝑖𝑛 + |

𝜕𝐶𝐸𝑅

𝜕𝑉𝑚
| ∙ ∆𝑉𝑚 + |

𝜕𝐶𝐸𝑅

𝜕𝑦𝐶𝑂2,𝑜𝑢𝑡
| ∙ ∆𝑦𝐶𝑂2,𝑜𝑢𝑡 + |

𝜕𝐶𝐸𝑅

𝜕𝑅𝑎𝑖𝑛𝑒𝑟𝑡
| ∙ ∆𝑅𝑎𝑖𝑛𝑒𝑟𝑡

+ |
𝜕𝐶𝐸𝑅

𝜕𝑦𝐶𝑂2,𝑖𝑛
| ∙ ∆𝑦𝐶𝑂2,𝑖𝑛  

𝛥𝐶𝐸𝑅 = |
1

𝑉𝑚
(𝑦𝐶𝑂2,𝑜𝑢𝑡 ∙ 𝑅𝑎𝑖𝑛𝑒𝑟𝑡 − 𝑦𝐶𝑂2,𝑖𝑛)| ∙ ∆𝐹𝑎,𝑖𝑛 + |

𝐹𝑎,𝑖𝑛

𝑉𝑚
2 (𝑦𝐶𝑂2,𝑜𝑢𝑡 ∙ 𝑅𝑎𝑖𝑛𝑒𝑟𝑡 − 𝑦𝐶𝑂2,𝑖𝑛)| ∙ ∆𝑉𝑚

+ |
𝐹𝑎,𝑖𝑛

𝑉𝑚
∙ 𝑅𝑎𝑖𝑛𝑒𝑟𝑡| ∙ ∆𝑦𝐶𝑂2,𝑜𝑢𝑡 +  |

𝐹𝑎,𝑖𝑛

𝑉𝑚
∙ 𝑦𝐶𝑂2,𝑜𝑢𝑡| ∙ ∆𝑅𝑎𝑖𝑛𝑒𝑟𝑡 + |

𝐹𝑎,𝑖𝑛

𝑉𝑚
| ∙ ∆𝑦𝐶𝑂2,𝑖𝑛 

𝛥𝑅𝑎,𝑖𝑛𝑒𝑟𝑡 = |
1 − 𝑦𝑂2,𝑖𝑛 − 𝑦𝐶𝑂2,𝑖𝑛

(𝑦𝑂2,𝑜𝑢𝑡 − 𝑦𝐶𝑂2,𝑜𝑢𝑡 −
𝑦𝑤𝑒𝑡
𝑦𝑂2,𝑖𝑛

)²
| ∙ ∆𝑦𝑂2,𝑜𝑢𝑡 + ||

1 − 𝑦𝑂2,𝑖𝑛 − 𝑦𝐶𝑂2,𝑖𝑛

(𝑦𝑂2,𝑜𝑢𝑡 − 𝑦𝐶𝑂2,𝑜𝑢𝑡 −
𝑦𝑤𝑒𝑡
𝑦𝑂2,𝑖𝑛

)
2|| ∙ ∆𝑦𝐶𝑂2,𝑜𝑢𝑡

+ |
1 − 𝑦𝑂2,𝑖𝑛 − 𝑦𝐶𝑂2,𝑖𝑛

1
𝑦𝑂2,𝑖𝑛

∙ (𝑦𝑂2,𝑜𝑢𝑡 − 𝑦𝐶𝑂2,𝑜𝑢𝑡 −
𝑦𝑤𝑒𝑡
𝑦𝑂2,𝑖𝑛

)²
| ∙ ∆𝑦𝑤𝑒𝑡 

This procedure can easily be extended to the 𝑂𝑈𝑅 and the substrate uptake rate (𝑟𝑆). Typical 
results of error propagation to the off-gas rates are shown in Figure 2A. 

For the presented in-silico study input signals: 𝐹𝑎,𝑖𝑛, 𝑦𝐶𝑂2,𝑜𝑢𝑡 for 𝐶𝐸𝑅 and 𝑦𝑂2,𝑜𝑢𝑡 for the 𝑂𝑈𝑅, 
were regarded as superimposed with considerably relevant systematic measurement error. All 
other input signals were considered to be perfectly accurate. Typical errors for mass flow 
controllers and off-gas analytics are given in Table 1. However, the error propagation model 
could be easily extended to more inputs with systematic error. For the error propagation of 𝑟𝑆 
the only considerably source of systematic signal error was the concentration of the substrate, 
which might vary due to evaporation during sterilization procedures.  
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Figure 2: A: Time-resolved profiles for OUR and CER are shown together with their respective accuracy as error 

bars, calculated by error propagation as described in section 2.4.3. B: Comparison of biomass (black) and 𝑟𝑋 (gray) 

soft-sensor prediction to the unbiased signals (solid lines). Estimations of traditional soft-sensor implementations, 

assuming 3 % error of all input rates, are shown dotted, the adapted soft-sensor with error propagation for the input 

rates is shown in dashed lines. For this particular simulation, raw signals were superimposed by 2 % error for CO2 

and O2 off-gas concentration, respectively, and 1 % error on the 𝑟𝑆 and the MFC, respectively. 

 

2.4.4 Minimum variance rate reconciliation and biomass soft-sensor estimation 
In the following section we want to briefly summarize an established minimum variance 
reconciliation and biomass estimation procedure in order to reduce systematic error on 
measured turnover rates (𝑂𝑈𝑅, 𝐶𝐸𝑅, 𝑟𝑆) using first principles as reported in detail elsewhere 
[15,17,18]. 

First principles, such as elemental balances (see Section 2.3.1), can be seen as constraints to 
the bioreactor system. We can formulate many of those constraints and thereby connect 
components with each other. Commonly a compact matrix formulation is used to connect 
conversion rates of components with each other using multiple constraints: 

𝐸 ∙ 𝑟 = 0 

𝐸 is the elemental composition matrix [e x n] with e being the number of elemental balances 
and 𝑛 the number of relevant components. 𝑟 is the vector containing the turnover rates. Under 
real conditions the elemental balances do not close due to systematic errors of the rates with 
a residual vector 𝜀: 

𝐸 ∙ 𝑟 = 𝜀 

For this in silico example the elemental C balance as well as the degree of reduction (DoR) 
balance were used as frequently applied elsewhere [5]. 

In order to identify gross errors in the system it is necessary to check if the residual vector (𝜀) 
differs significantly from zero. Therefore, Reilly and Carpani introduced a statistical measure 
(h-value) which weights the residuals by their accuracy (covariance matrix). Using this 𝜒2 
distributed measure it is possible to set confidence levels for detecting gross errors [18]. 

The presented concept can easily extended to more elemental balances or energy balances, 
however, the implementation with C- and DoR-balance is predominantly implemented in 
industry since additional measurements (e.g. nitrogen or heat transfer) are practically more 
complex. 

The redundancy of the measurable rates (rank of redundancy matrix R [15,17,18]) equals 1 
and therefore this redundancy can be used to balance the measured rates in a minimum 
variance sense and obtain reconciled rates [15].  

After no gross error could significantly be detected and the measured rates are reconciled, 
those reconciled rates can be finally used to estimate the biomass formation rate, which is the 
only non-measured rate in this example. For this minimum variance balancing procedure the 
covariance matrix of the measured signals is required. A fair assumption is to state that the 
covariance of the measured rates is diagonal, which assumes non-correlated errors in the 
measured signals. In current soft-sensor implementations an empirical approach was chosen 
and the covariance of all measured rates was assumed to equal 3 % of the readout [10,15]. 
As a unique feature of the presented soft-sensor implementation, we will use at this point the 
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derived error boundaries from above as worst case estimators for the variances of the signals. 
Since the herein derived error boundaries vary dynamically over time, the new approach will 
be further on called adaptive soft-sensor.  

2.5 Comparison of soft-sensor estimates to unbiased model data 
As a methodology to investigate the result of the soft-sensor as a function of the error of the 
input signals we investigated 5915 in silico experiments with systematically varied errors on 
the off-gas measurements, substrate concentration and mass flow controlled (described in 
section 2.3.2). The selected ranges in Table 2 were based on technical manufacturer 
information of MFC and off-gas analyzer (see Table 1).  

As a final output of the soft-sensor the estimated biomass formation rate (�̂�𝑋) was compared 
to the true, unbiased biomass formation rate from the in silico model (𝑟𝑋,𝑡𝑟𝑢𝑒), which is known. 
This comparison was done by calculating the Median Percentage of Difference (MPD) over all 
data points of the time series according to: 

𝑀𝑃𝐷 = 100 ∗ 𝑚𝑒𝑑𝑖𝑎𝑛 (
�̂�𝑋 − 𝑟𝑋,𝑡𝑟𝑢𝑒

𝑟𝑋,𝑡𝑟𝑢𝑒
) 

For each of the 5915 simulations a MPD value for 𝑟𝑋 and 𝑞𝑆 was calculated. Those values are 
displayed as surface plots as shown in Figure 3 and Figure 4. 

Table 2: All errors listed here were combined with each other and applied in 5915 experiments. All those in silico 

generated data sets were used to test the prediction accuracy of traditional and adaptive soft-sensor approach. 

 
Applied relative error on in- 
and outputs Step size 

𝜀𝐶𝑂2,   𝜀𝐶𝑂2
 -3 to +3 % 0.5 % 

𝜀𝑟𝑆
 -3 to +3 % 1 % 

𝜀𝑀𝐹𝐶 -2 to +2 % 1 % 
 

3 Results 
3.1 Comparison of the soft-sensors accuracy 
3.1.1 Biomass formation rate 
In the following sections, a comparison between the traditional approach and the adaptive soft-
sensor is done. While traditionally, the errors on 𝐶𝐸𝑅 , 𝑂𝑈𝑅 and 𝑟𝑆 were estimated to be 3 % 
for all rates and over the whole process, the adapted soft-sensor calculates the accuracy on 
the rates through error propagation, by making use of the known uncertainty ranges of the raw 
signals. The herein dynamically resolved accuracy for 𝑂𝑈𝑅 and 𝐶𝐸𝑅, assuming 3 % maximal 
error on the read out of offgas analytical measurements of O2 and CO2, are depicted in Figure 
2-A. The accurcay of 𝐶𝐸𝑅 is much higher than the accuracy of 𝑂𝑈𝑅. This information is used 
by the adapted soft-sensor, therefore, we obtain much more accurate biomass and 𝑟𝑋 
estimates than previous implementations without error propagation, compared to unbiased 
biomass and 𝑟𝑋 signals, as shown in Figure 2-B.  

Since Figure 2B shows only the results for one particular error combination of errors on O2, 
CO2, 𝑟𝑆 and the MFC, we have to resolve the predictions with all other error combinations in 
order to show superiority of the adapted soft-sensor. Figure 3 shows a comparison of the 
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biomass formation rate (𝑟𝑋) between the true rates (model) and the estimated rates (left 
column: traditional soft-sensor, right column: adaptive soft-sensor) by means of MPD. In each 
of the subfigures the MPD is shown as a function of the error on the O2 and CO2 off-gas 
concentration, varied between -3 and +3 %. The error on the MFC and on 𝑟𝑆 was varied across 
the rows of the subfigures.  

When using the traditional approach (subplots on the left side), especially errors on the oxygen 
signal lead to high errors on the estimated rates as well as much higher MPD values are 
reached (up to 42 % compared to maximal 19 % for the adaptive soft-sensor).  

In the subplots A1 and A2 in Figure 3 the MPD values regarding 𝑟𝑋 are shown as a function 
solely of error on O2 and CO2 off-gas measurement. In the subplots B1 and B2 we added a 
relative error of 2 % on 𝑟𝑆 to the true model values and in subplots C1 and C2 we added an 
error of 2 % on the MFC set-point. The average MPD values as well as the maximal MPD 
values (up to 40 % vs. 18 %) reached throughout all subplots are much lower for the adaptive 
soft-sensor compared to the traditional approach.  
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Figure 3: Comparison of rX for traditional (left) and adapted (right) soft-sensor, showing the deviation between the 

real biomass formation rate and the soft-sensor values (%) as a function of the errors on the off-gas data. A: Errors 

on the off-gas data, but no errors on rS and the MFC. B: Errors on the off-gas data and 2 % error on rS. C: Errors 

on the off-gas data and 2 % error on the MFC. 
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3.1.2 Control quality specific substrate uptake rate 
As one of the main use cases of the soft-sensor is the process control based on physiological 
parameters, the two versions of the soft-sensors were also compared in terms of prediction 
accuracy for the specific substrate uptake rate 𝑞𝑆. 

Here, subplots A1 and A2 in Figure 4 show the MPD for 𝑞𝑆 with varying error on O2 and CO2 
measurement and no error on 𝑟𝑆 and MFC signal. Again, the adaptive soft-sensor shows on 
average much lower MPD values as well as much lower maximal MPD values (up to 15 % for 
the traditional and up to 4 % for the adaptive soft-sensor). B1 and B2 show, that the estimated 
relative standard deviation for both soft-sensors is in the area of 3 %. However, when looking 
at the results in A1 and A2, only the adaptive soft-sensor delivers the estimated standard 
deviations, since MPD values are in the range of ±3 %. 

As shown in C1 and C2 of Figure 4, the h-values of the traditional soft-sensor quickly exceed 
levels of 3. In this case, the null hypothesis, that there is no gross error in the system, has to 
be rejected with a confidence level of 95 %. However, the system had no gross error in reality, 
and as the h-values of the adaptive soft-sensor show, the null hypothesis cannot be rejected 
when using the correctly calculated covariance matrix for the minimum variance reconciliation. 
Therefore, the h-values of the traditional soft-sensor have no statistical significance as the 
covariance matrix, as explained before, is not correctly estimated.  
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Figure 4: Comparison of qS (A), the median of the estimated relative standard deviation on the reconciled qs (B), 

and the median h-values (C) for traditional (left) and adapted (right) soft-sensor, depending on the error level of the 

off-gas analyzers.  
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3.1.3 Integrated comparison over the entire uncertainty space 
The goal of this section is to derive a global parameter which we can use to judge which soft-
sensor approach leads to generally more accurate estimations. In general, we face a four 
dimensional input space consisting of different errors on the O2, CO2, 𝑟𝑆 and MFC 
measurement. This space will be subsequently called the uncertainty space. At each point in 
this uncertainty space the MPD of the true model value of 𝑟𝑋 and 𝑞𝑆 is compared to the two 
soft-sensor approaches. Taking the mean of all those MPD values of the uncertainty space for 
each soft-sensor approach gives us a clear measure which soft-sensor implementation is 
generally more accurate. This integrated parameter will be called the global average MPD.  

Table 3 summarizes the results of this kind of analysis and shows for each cell the mean MPD 
of simulations where the O2 and CO2 error was varied between -3 and +3 %, analogous to one 
subplot of Figure 3. In the columns of Table 2 the error on the MFC is varied, in the rows the 
error on 𝑟𝑆. The global average MPD regarding 𝑟𝑋 of the adaptive soft-sensor is 8.7 % 
compared to 15.2 % of the traditional approach. This is a reduction of the MPD by 43 %. For 
the estimation of the specific substrate uptake rate 𝑞𝑆 the global average MPD can be even 
lowered from 7.6 to 2.7 which corresponds to a MPD reduction of 64 %. 

Table 3: Comparison of traditional and adaptive soft-sensor for different error levels. Each of the cells show the 

mean MPD value of simulations in which the error on O2 and CO2 was varied between -3 and +3 %. 

  Traditional approach  Adaptive soft-sensor 

  Mean MPDs of 𝑟𝑋 

    εMFC [%] 

    -2 -1 0 1 2   -2 -1 0 1 2 

ε r
s [

%
] 

-3 16,1 15,9 15,7 15,6 15,4  12,7 12,7 12,7 12,7 12,7 

-2 14,8 14,6 14,4 14,3 14,1  8,6 8,6 8,6 8,6 8,6 

-1 14,3 14,1 13,9 13,7 13,5  6,0 6,0 6,0 6,0 6,0 

0 14,4 14,2 14,0 13,8 13,6  5,2 5,2 5,2 5,2 5,2 

1 15,0 14,8 14,6 14,4 14,2  6,2 6,2 6,2 6,2 6,2 

2 16,1 15,9 15,8 15,6 15,4  9,1 9,1 9,1 9,1 9,1 

3 18,0 17,9 17,7 17,6 17,5  13,2 13,2 13,2 13,2 13,2 

  Global average MPD of 𝑟𝑋:  15,2  Global average MPD of 𝑟𝑋:  8,7 

             
  Mean MPDs of 𝑞𝑆 

-3 8,7 8,6 8,5 8,4 8,3  3,9 3,9 3,9 3,9 3,9 

-2 8,3 8,2 8,1 8,0 7,9  3,0 3,0 3,0 3,0 3,0 

-1 7,9 7,8 7,7 7,6 7,5  2,4 2,4 2,4 2,4 2,4 

0 7,5 7,4 7,4 7,3 7,2  2,1 2,1 2,1 2,1 2,1 

1 7,3 7,2 7,1 7,1 7,0  2,1 2,1 2,1 2,1 2,1 

2 7,2 7,1 7,0 7,0 6,9  2,4 2,4 2,4 2,4 2,4 

3 7,2 7,1 7,0 6,9 6,9  2,8 2,8 2,8 2,8 2,8 

  Global average MPD of 𝑞𝑆:  7,6  Global average MPD of 𝑞𝑆:  2,7 
 

3.2 Generic workflow to ensure appropriate control quality 
Besides showing superior behavior of the new soft-sensor implementation over state-of the 
art, we want to present a novel generic workflow to obtain a desired soft-sensor estimate or 
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reconciliation quality by adapting accuracy of measurement devices. This workflow includes 
the following steps as indicated in Figure 5: 

1. Use a mechanistic process model to generate time resolved data which will be used to 
derive rates. These are used as input to the soft-sensor (here O2 and CO2 concentration 
of the off-gas stream, substrate concentration and inflowing air controlled by MFC). 

2. Obtain biased signals by superimposing them with representative systematic (see 
manufacturer specifications) and random noise (estimated process noise). 

3. Calculate turnover rates including their accuracy as described in Section 2.4.2. The 
rates and their accuracy (covariance) are input to the soft-sensor. 

4. Use the soft-sensor’s first principles to reconcile measured turnover rates unless gross 

errors are detected. The reconciled rates can be used to estimate the biomass and all 
related entities (e.g. 𝑞𝑆 or biomass). 

5. The herein obtained 𝑞𝑆 estimate (or biomass estimate) is compared to the true, 
unbiased model signal. If the estimate does not meet the predefined thresholds (e.g. 
5 % global average MPD), more accurate measurement devices and their respective 
measurement errors are used to continue with step 2 to 5 with reduced systematic error 
levels. The selection of appropriate measurement devices is driven by technical, 
manufacturing and financial constraints, which is not scope of this study. 

6. If the estimate meets the predefined thresholds in terms of global average MPD, a 
robust estimate under industrial relevant process conditions is achieved. 

As an example, the error ranges of Table 2 were taken as a starting position in Step 2 of the 
generic workflow presented in Figure 5. It was assumed that the desired control quality could 
not be reached with the current analytical devices (Step 5), therefore, exemplary a higher 
accuracy of the oxygen sensor and MFC from ±3 to ±0.5 % and ±2 to ±1 %, respectively, was 
implemented. The results before and after this change are shown in Figure 6. After the change, 
the estimated error surface of 𝑞𝑆 is rotated in a favorable direction to enlarge regions of lower 
error (0 to 2% error), as depicted in the non-shaded areas of the two subfigures of Figure 6. 
Overall this results in 10 % reduced global average MPD. 
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Figure 5: Generic workflow for identification of desired measurement error and noise for robust biomass soft-sensor 

estimation. Asterisk indicate variables which were superimposed by random noise and systematic error. 
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Figure 6: Estimation error of 𝑞𝑆 before (A: ±3 % maximal error on oxygen measurement and ±2% maximal error on 

MFC) and after (B: ±0.5 % maximal error on oxygen measurement and ±1 % maximal error on MFC) the increase 

of the input signal accuracies. Not only values outside the uncertainty range can be excluded but also the mean 

MPD inside the uncertainty space is more accurate. 

 

4 Discussion 
4.1 Superior accuracy for the estimated rates of the adaptive soft-sensor 
As perceived in Figure 2, Figure 3, Figure 4-A1 and Figure 4-A2 as well as summarized in 
Table 1, the adaptive soft-sensor delivers more accurate estimates of 𝑟𝑋, which integrates to 
biomass, and 𝑞𝑆. Moreover, maximal MPD values for 𝑟𝑋 and 𝑞𝑆 are much lower for the adaptive 
soft-sensor which implies that the biomass estimate as well as the control of 𝑞𝑆 can be 
performed much more robust under real process conditions since large deviations to the true 
values of 𝑟𝑋 and 𝑞𝑆 can be avoided. 

This is due to the fact that the covariance matrix for the minimum variance reconciliation 
procedure is arbitrary chosen for the traditional soft-sensor, which assumes a too low 
uncertainty range for the 𝑂𝑈𝑅, as shown exemplarily in Figure 2. The adaptive soft-sensor on 
the other hand, dynamically uses all available information (uncertainty ranges of off-gas 
analysis) to calculate a realistic covariance matrix. This leads to a much more robust estimate 
of 𝑟𝑋 and 𝑞𝑆. 

For each subfigure there are some “sweet spots” for certain error combinations, where the 

classical soft-sensor shows a better accuracy in the prediction of 𝑟𝑋. Since the exact 
combination of the present errors on the input signals is not known a priori, this is no advantage 
under real process conditions. 

4.2 Statistical meaningfulness of standard deviation and h-value 
The covariance matrix is a critical input for the minimum variance reconciliation procedure. As 
for the traditional soft-sensor, the covariance matrix consists of arbitrary values which do not 
represent the true and dynamically changing uncertainties, all calculated statistical measures, 
i.e. standard deviation and h-value, lose their significance. This is different for the adaptive 
soft-sensor. 

As shown in Figure 4-B1 and Figure 4-B2, the relative standard deviations of the estimated 
rates are in the range of 3 % and almost identical for traditional and adaptive soft-sensor. 
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However, when comparing these standard deviations to the actually measured errors in terms 
of MPD in Figure 4-A1 and Figure 4-A2, it becomes clear that the calculated standard 
deviations do not fit to these errors for the traditional soft-sensor; the measured MPDs go up 
to 15 % in the considered area. For the adaptive soft-sensor the standard deviations are 
meaningful and on the same magnitude as the actually measured MPDs. Under real process 
conditions the calculated standard deviation of an estimated rate is the only available measure 
to evaluate their prediction accuracy and expected uncertainty and is therefore of critical 
importance.  

As shown in C1 and C2 of Figure 4, the h-values of the traditional soft-sensor quickly exceed 
levels of 3. As already explained in Section 3.1.2, the calculated h-values are statistically not 
meaningful. This means that they cannot be used to detect a gross error in the system with a 
defined level of significance. They only can be used to relatively compare similar processes or 
detect gross errors when the h-values are magnitudes higher than expected. This is not true 
for the adaptive soft-sensor, as over the whole uncertainty space the h-values are below 3 and 
no false positive detection of gross errors occurred with 95 % confidence.  

4.3 Applicability of the generic workflow to set measurement accuracies and 
ensure desired accuracy of soft-sensor estimations 

The question about the required measurement accuracy of raw signals to meet the desired 
accuracy of derived variables, such as the soft-sensor estimation for bioprocess control, is 
equally urged by device manufacturer as by process engineers. This is due to the fact that 
measurement accuracy is often correlated to higher asset costs of advanced devices or more 
frequent maintenance intervals of existing devices. 

In Section 3.2 we present a generic workflow to answer this question. Since the measurement 
accuracy of the derived soft-sensor estimate is not only a function of the accuracy of the input 
signals (Step 2 of the workflow) but also of the dynamics of the process, a mechanistic model 
has to provide this information (Step 1 of the workflow). If one has multiple possibilities of 
exchanging devices or maintenance intervals to increase accuracy of input signals, this can 
be solved iteratively in the workflow by testing different of those combinations and evaluating 
if the resulting accuracy of the soft-sensor is sufficient. Moreover, as shown in Figure 6, it is 
thereby possible to not only get rid of areas with high levels of MPD but rather additionally 
increase the accuracy in the reduced uncertainty space due to the introduction of 
supplementary knowledge about the accuracy of input signals.  

4.4 Extrapolations of the adaptive soft-sensor and the generic workflow to 
other application areas 

The presented error propagation approach as well as the presented workflow are generically 
applicable to include additional sources of information. For example, the consideration of 
energy balances based on the metabolic heat production during a process [19] or the already 
mentioned combination of the soft-sensor with spectroscopic techniques [16] could be 
included. This would result in an even more robust and diverse applicable package.  

5 Conclusion 
In this contribution we aim to present an error propagation procedure increasing the accuracy 
and robustness of the soft-sensor estimates.  

Traditionally the uncertainties for conversion rates (𝐶𝐸𝑅, 𝑂𝑈𝑅, 𝑟𝑆) were arbitrarily assumed 
and static over the whole process. Here we established a novel procedure to obtain meaningful 
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uncertainties, dynamically changing over time, which are used as representative knowledge 
source together with first principles in the soft-sensor framework.  

In this in silico case study the new approach using the adaptive soft-sensor the error on the 
estimates could be reduced by 43 % for the estimated biomass growth rate (𝑟𝑋) compared to 
traditional soft-sensor implementations. For the estimation of the specific substrate uptake rate 
𝑞𝑆 the error on the estimate could even be lowered by 64 %.  

When using the traditional soft-sensor approach, the resulting h-values could not be used to 
statistically reject the null hypothesis of detecting gross errors, since estimations of covariance 
of the turnover rates were arbitrarily chosen and static over time. The new approach delivers 
both, statistically meaningful h-values for the detection of gross errors and informative standard 
deviations on the estimated rates. Latter ones are essential under real process conditions to 
judge soft-sensor estimation quality, as obviously there exists no possibility to evaluate the 
control quality by comparing the estimates to unbiased model values. 

Additionally we presented a new generic approach to ensure a predefined control quality of 
the soft-sensor estimate by iteratively evaluating the effect of the different errors on the raw 
signal measurements. It has been demonstrated that by following this generic workflow it is 
possible to additionally significantly increase the adaptive soft- sensor accuracy. 

The presented approach can be generically applied taking also additional error sources into 
account. The new methodology is practically applicable to industrial conditions, where maximal 
errors of measurement devices are used to obtain dynamically changing accuracies of derived 
turnover rates as shown in Figure 2A.  
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5.2.3 Criticality Assessment  
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Abstract: Identification of critical process parameters that impact product quality is a central task 
during regulatory requested process validation. Commonly, this is done via design of experiments and 
identification of parameters significantly impacting product quality (rejection of the null hypothesis that 
the effect equals 0). However, parameters which show a large uncertainty and might result in reaching 
an undesirable product quality limit critical to the product, may be missed. This might occur during the 
evaluation of experiments since residual/un-modelled variance in the experiments is larger than 
expected a priori. Estimation of such a risk is the task of the presented novel retrospective power 
analysis permutation test. This is evaluated using a data set for two unit operations established during 
characterization of a biopharmaceutical process in industry.  The results show that for one unit 
operation the observed variance in the experiments is much larger than expected a priori, resulting in 
low power levels for all non-significant parameters. Moreover, we present a workflow how to mitigate 
the risk associated with overlooked parameter effects. This enables a statistically sound identification 
of critical process parameters. The developed workflow will substantially support industry in delivering 
constant product quality, reduce process variance and increase patient safety.  

Keywords: retrospective power analysis; process characterization study; process validation stage 1; 
criticality assessment; control strategy; design of experiments 

 

1. Introduction 

Process validation of pharmaceutical processes aims to demonstrate the capability of the process 
to constantly deliver high product quality [1,2]. Most of the warning letters connected to process 
validation are raised due to flaws in stage 1 [3]. The aim of process validation stage 1 is to identify a 
robust process design that enables the ability to constantly deliver product quality. Therefore, it is key 
to identify critical process parameters (CPPs) that are likely to create risk to critical quality attributes 
(CQAs) and set up control strategies for these CQAs. Thereby it is possible to reduce out of specification 
(OOS) events, recalls, and ultimately risk to the patient. At process validation stage 1, it is the highest 
priority not to overlook a CPP in the design of the process, which as a consequence might not be 
controlled properly. 

In order to accomplish this goal the following steps are commonly undertaken in industry to 
characterize process design following a risk based approach:  
1. Risk assessment: to identify potential influential/critical parameters for each unit operation: This is 

usually performed using tools such as failure mode and effect analysis (FMEA) [4,5]. Ranking of 
potential criticality is performed using expert knowledge, historical process data, and 
interdependencies identified in development data. 

2. Scale down model establishment: Due to the costs related to large scale experiments, in 
biopharmaceutical manufacturing it is necessary to develop appropriate scale down models 
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(SDMs) that are appropriate to investigate the interdependency between process parameters and 
quality attributes.  

3. Experimental designs: Design of Experiments are applied to quantify the impact of process 
parameters (PPs) onto CQAs. Prior to conducting experiments, a-priori power analysis is a good 
practice to evaluate if an effect that leads to a change in product quality – in the following defined 
as a critical effect – can be detected by the proposed design setting. Statistical power is defined 
as the probability that we are able to detect an effect if it is truly there [6]. This is done for a priori 
analysis by estimating the expected signal to noise ratio, which is thought to occur during the 
experiments [7]. As a result of this a-priori power analysis, the number of required experiments, 
the intended screening range, or the design itself might be adjusted. After a sufficient power can 
be expected, potential influential/critical parameters are purposefully varied within experiments, 
which is done for each unit operation separately using the previously established SDMs.  

4. Criticality assessment of process parameters by evaluating experimental designs: Identification of 
significant factors (rejection of the null hypothesis that the effect equals 0) at a desired significance 
level (typically α<0.05) is performed using Pareto charts and analysis of significance of regression 
coefficients by means of ANOVA. Misleadingly, this does not imply that for non-significant factors 
the null hypothesis is true and their effect is zero [8]. Rather it indicates that the uncertainty around 
these factors in the range examined – often indicated by large confidence intervals around the 
effect - is large and critical levels cannot be excluded. Commonly, only significant factors that have 
been observed to impact product quality or process performance are defined as critical or key, 
respectively. Those which cannot be stated as significantly impacting are stated as non-critical or 
non-key, respectively.  

5. Definition of control strategy: As a means to ensure all CQAs and quality specifications are met a 
process control strategy for all critical and key process parameters must be put in place.  Moreover, 
it has to be evaluated whether their mutual worst case setting would lead to acceptable product 
quality levels. Commonly for biopharmaceutical production, this is accomplished by setting normal 
operating ranges (NOR) and proven acceptable ranges (PAR). 
Although all steps are equally important to design a robust process, we frequently observed that in 

industry steps 3, 4 and 5 are more difficult to accomplish in practice. The US Food and Drug 
Administration (FDA) and other agencies are not prescriptive but clearly state that statistics should be 
used within all stages of process validation [3]. Multiple statistical tools and software for step 3 (a priori 
power analysis & design of experiments) and step 4 (statistical analysis of significant parameters) exist, 
however, the approach of those steps as described above has two major drawbacks: (i) after making 
several assumptions about the expected noise in the a priori power analysis of step 4, those 
assumptions are not checked for validity after the experiments have been performed. Especially in 
biopharmaceutical engineering, reproduction and analytical variability from non-validated methods, 
which might be used during stage 1 of process validation, as well as unexpected non-linear effects (e.g. 
edge of failure experiments), may lead to increased noise in the conducted design of experiments 
(DoEs). (ii) Criticality and potential tightening of the NOR is only taken into account for significant 
parameters. This might not be sufficient since parameters with large uncertainty around the estimated 
effect - those effects, which might be zero, but might be very large, too - can have severe effects on 
product quality as well. 

The first of the mentioned drawbacks can be tackled by retrospective assessment of the actually 
received power. Although retrospective power analysis is controversially discussed when using the 
observed variance and observed effect size, it is an appropriate tool when comparing the observed 
variance in the experiments to a pre-specified critical effect [6,9]. Frequently, retrospective power is 
calculated using the observed effect size, which leads to uninformative results [10]. 

Both issues together might lead to situations where the process shows unexpected variability during 
routine manufacturing. Therefore, we want to present a workflow for criticality assessment that reduces 
the risk to overlook critical PPs. This is demonstrated based on a process characterization study of a 
novel long acting human growth hormone product. Exemplarily for two unit operations, we will address 
the following topics: 
 Establishment of a methodology that prevents engineers, during process validation, from  

overlooking critical parameters 
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 Setting a control strategy for critical and likely overlooked parameters that ensures a robust process 
design 

 A workflow that can be used during stage 1 process validation to assess PP criticality. Applying 
those guidelines it will be possible to better understand potential process variability and provide an 
opportunity to reduce process variability, OOS events, and patient risk.  

2. Methods 

In the following sections we describe the biopharmaceutical production process, selection of 
experimental designs to study the impact of PPs on CQAs (section 2.1), calculation procedures for 
critical effects (section 2.2), an a priori power analysis approach (section 2.3) applied to assess the 
ability of the DoE to detect practically relevant (here critical) effects and their statistical evaluation 
(section 2.4).  

2.1. Description of process and design of conducted experiments 

The workflow for criticality assessment will be presented for two unit operations from a 
biopharmaceutical manufacturing process producing a recombinant protein. The process consists of an 
Escherichia coli fermentation, cell lysis, precipitation (PR), clarification (depth  filtration), and three 
subsequent preparative chromatographic columns (CC 1/ CC 2/ CC 3) for purification. Finally, 
ultrafiltration/diafiltration is performed to adjust product concentration. For the presented case study for 
criticality assessment, unit operations CC 1 and the precipitation step were exemplarily chosen.    

Risk assessment (FMEA) conducted by process experts showed that five and four PPs 
respectively, had a high risk priority number and need to be studied experimentally in respect to their 
influence on CQAs for CC1 and PR, respectively (see Table 1 and Table 2). Due to the number of 
studied PPs for both unit operations, a definitive screening design was chosen [11,12]. Except one 
parameter (Mixing [Yes/No] for precipitation) all DoE factors are numerically scaled. Small scale 
experiments were used to conduct DoEs. 

2.2. Calculation of thresholds for critical effects  

We formulate a critical gap (CG) as the difference between the performance at set-point conditions 
and the threshold for each response: 

𝐶𝐺 = 𝑡ℎ𝑒𝑠ℎ𝑜𝑙𝑑𝑈𝑆𝐿 − �̅�(𝑥𝑆𝑃)  (1) 
where �̅�(𝑥𝑆𝑃) is the response value (here a specific concentration of an impurity) at set-point 

condition of manufacturing. Since we do not have lower specification limits for the studied impurities, 
thet threshold, which must not be surpassed, is derived from the upper specification limit (USL) of drug 
substance (DS) specifications. The studied unit operations are at an intermediate stage of the process. 
We therefore, calculate the specification limit for the investigated unit operation by multiplying the final 
DS specifications times the mean specific clearance factors from manufacturing scale of all unit 
operations in between. This approach might be refined by including knowledge on increased impurity 
clearance, e.g. due to spiking studies. Choosing the approach with mean specific clearances might 
seem conservative, however, it is desirable to reduce risk of overestimating the specific impurity 
clearance. The specific clearance factors for each unit operation are defined by: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 = 𝑆𝐶 =
𝑐𝐶𝑄𝐴,𝑙𝑜𝑎𝑑

𝑐𝐶𝑄𝐴,𝑝𝑜𝑜𝑙
 (2) 

where cCQA, load and cCQA, pool are the specific concentrations (mg CQA per mg product) of the 
respective CQA prior and after the unit operation. 

𝑡ℎ𝑟𝑒ℎ𝑠𝑜𝑙𝑑𝑈𝑆𝐿 =  𝑈𝑆𝐿 ∗ ∏ 𝑆𝐶𝑢

𝑈

𝑢=𝑘

 (3) 

where u=k…U is counting the unit operations from the studied kth unit operation until the last unit 

operation (U) which equals DS. 

2.3. A priori power analysis 
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We want to investigate if the residual error during evaluation of experimental designs (DoEs) masks 
effects to an extent such that they could collectively surpass a critical threshold (e.g. specification limit 
of a specific CQA concentration) within normal operating ranges (see section 0 for calculation of 
thresholds). Since we are dealing with a multivariate problem we need to identify how many parameters 
and to which extent each of those parameters contribute to surpassing of such a critical threshold. From 
a sparsity assumption, it is unlikely that all effects that can be studied using a certain design (e.g. all 
main effects and interactions effects) are truly present. Therefore, it is a common assumption applied to 
many statistical packages to study only power of the total number of main effects[13].  

Moreover, in multivariate analysis (p>1) infinite combinations of effects of multiple parameter exists 
that lead to surpassing of such a critical threshold. E.g., the full effect to surpass the critical threshold 
might be explained solely by the first parameter (𝑃1) and no effect is present from the residual 
parameters (𝑃𝑟), or a fraction of the entire effect is explained by P1 (e.g. 10%) and the residual 90% are 
equally explained by 𝑃𝑟. Overall, we are interested in the mean chance to detect any of those 
combinations. Per default, classical statistical software such as JMP (SAS Institute Inc.) or DesignExpert 
(Stat-Ease, Inc.) only allow for fixed effect power calculation [10,13]. Here we propose a more general 
method based on the assumption that the effects are randomly distributed over all parameters. 
Therefore, we assigned weights to the parameters and varied the fraction/weight of the entire effect that 
is explained by each parameter gradually between 0.0 to 1.0 (we used a step size of 0.01 in our 
experiments, i.e. 100 steps) and split the residual effect equally under the residual parameters: 𝑤𝑖 = 𝑎, 
𝑤𝑗≠𝑖 = (1 − 𝑎)/(𝑝 − 1), for 𝑎 = 0, … ,1 and 𝑖 = 1, … , 𝑝. Hence all the weights 𝑤𝑖 sum up to 1. In total, we 
obtain 𝐶 = 𝑝 ∗ 100 combinations of possible effect distributions and the resulting power values. The 
mean for each parameter of these recorded power values was taken as the power for this experimental 
design (see step 6 of the a priori workflow present below).  

Herein, the following workflow for a priori power analysis can be formulated:  
1. Estimate the mean (�̅�𝑆𝑃) and variance (𝜎𝑆𝑃) of the response variable from small scale or pilot scale 

experiments at set point conditions of manufacturing. We assume that residual error in the model is 
only due to process- and analytical variance. The latter estimate will be used to calculate the 
expected sum of squares of the residuals (𝑆𝑆𝑟𝑒�̃�): 

𝑆𝑆𝑟𝑒�̃� = (𝑛 − 1) ∗ 𝜎²𝑆𝑆𝑃 (4) 
 

2. For each of the combinations (c) described above we calculate critical effects for each parameter 
using its weight 𝑤𝑖

(𝑐): 

𝛽(𝑐)
𝑐𝑟𝑖𝑡,𝑖 =

𝑤𝑖
(𝑐)

∗ 𝐶𝐺

max(𝑁𝑂𝑅𝑈𝑖 − 𝑠𝑝𝑖 , 𝑠𝑝𝑖 − NORL𝑖)
 (5) 

 
In order to estimate the individual coefficient for the ith parameters, from a risk based 

approach, we divide by the longest distance from the set-point (𝑠𝑝𝑖) to the nearest NOR border: 
where 𝑁𝑂𝑅𝑈𝑖 is the upper boundary of the NOR and NORL𝑖 is the lower boundary of the NOR of 
the parameter 𝑖. Note that this works for a symmetric as well as asymmetric NOR. 

3. Using the design matrix 𝑋, obtained for a specific experimental design, we can simulate possible �̃� 
values at the screening range using: 

�̃�(𝑐) = 𝑋𝛽𝑐𝑟𝑖𝑡
(𝑐)  (6) 

4. From that, the total sum of squares can be estimated: 

𝑆𝑆𝑡𝑜𝑡
(𝑐)̃ = ∑(𝑦𝑖�̃�

(𝑐) − 𝑚𝑒𝑎𝑛(�̃�(𝑐)))²

𝑛

𝑖

 (7) 

 
Together with the sum of squares of the residuals the expected coefficient of variance can be 

calculated: 
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�̃�2(𝑐)
= 1 −

𝑆𝑆𝑟𝑒�̃�

𝑆𝑆𝑡𝑜𝑡
(𝑐)̃

 (8) 

5. Using Choen’s effect size (𝑓), the non-centrality parameter λ and the critical F value (𝐹𝑐𝑟𝑖𝑡) the a-
priori power for the combination c of effects that no parameter has been overlooked can be 
calculated [7]: 

𝑓2(𝑐)
=

�̃�2(𝑐)

1 − �̃�2(𝑐)
 

 
(9) 

λ(𝑐) = 𝑓2(𝑐)
∗ ν (10) 

 

1 

6. Confidence intervals for the a priori power for the combination c were calculated according to: 

λupp
(𝑐)

= λ(𝑐) ∗ 𝑐𝑐𝑟𝑖𝑡(1 − 𝛼|ν)/ν 
 

(11) 

λ𝑙𝑜𝑤
(𝑐)

= λ(𝑐) ∗ 𝑐𝑐𝑟𝑖𝑡(𝛼|ν)/ν (12) 
Where 𝑐𝑐𝑟𝑖𝑡(𝛼|ν) is the 100 ∗ 𝛼 percentile from a χ² distribution with ν degrees of freedom. 

𝐹𝑐𝑟𝑖𝑡 = 𝐹𝑖𝑛𝑣(1 − 𝛼| 𝑢, ν) (13) 
7.  

𝑝𝑜𝑤𝑒𝑟𝑎𝑝𝑟𝑖𝑜𝑟𝑖
(𝑐) = 1 − 𝐹𝑛𝑐(𝐹𝑐𝑟𝑖𝑡|, 𝑢, ν, λ(𝑐)) (14) 

Where 𝐹𝑛𝑐 is the non-central F distribution with 𝑢 = 𝑝(number of DoE parameters) and ν = n −

u − 1, where n is the number of observations in the DoE. 
8. The mean power over all combination of effects was estimated as the arithmetic mean of all 

𝑝𝑜𝑤𝑒𝑟𝑎𝑝𝑟𝑖𝑜𝑟𝑖
(𝑐): 

𝑝𝑜𝑤𝑒𝑟𝑎𝑝𝑟𝑖𝑜𝑟𝑖 =
∑ 𝑝𝑜𝑤𝑒𝑟𝑎𝑝𝑟𝑖𝑜𝑟𝑖

(𝑐)𝐶
𝑐=1

𝐶
 (15) 

2.4. Evaluation of DoEs  

Multiple linear models were used to identify the relationship of the studied PPs (DoE factors, X) on 
the response variable (y), representing a CQA or KPI of the process, up to a residual error (ε): 

𝑦 =  𝛽0 + 𝑋𝛽 + 𝜀 (16) 
Where X is a (n x p) dimensional design matrix for n DoE runs and p DoE factors which are studied, 

𝛽0is the intercept, 𝛽 are the true effects of the DoE factors, and 𝜀 is the residual, un-modelled error 
vector. The un-modelled error vector describes the analytical and process variance as well as non-linear 
effects which cannot be accounted for in the model structure. Identification of significant parameters 
was done using stepwise regression within multiple linear regression (MLR) tool of inCyght software 
(inCyght version 2017.03, Exputec GmbH). Parameters showing a partial p-value below 0.05 were 
allowed to enter the model. Those which have shown a p-value larger than 0.1 have been excluded from 
the model. Starting with the most significant parameter, this including/excluding procedure was applied 
iteratively and was repeated till the model structure did not change any more and the optimal model was 
achieved by this approach, identified significant parameters and their respective p-value are shown in 
Table 1 and Table 2 for CC 1 and PR, respectively. The normalized raw data are given in the supporting 
information Table S1 and Table S2 (section 9.3).  

Table 1. p-values of significant process parameters that were used in the statistical models for each CQA 
of CC 1. Normal operating ranges and thresholds are given for each process parameter or critical quality 
attribute, respectively. Non-significant parameters are indicated with “-“.Also the ratio of standard 
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deviation of raw residuals of the model by the standard deviation at set-point (σresidues/σSP) is given for 
each CQA. 

  
End 

pooling 
[CV] 

Elution 
strength 

[mM] 

 Wash 
Strength 

[mM] 

Column 
loading 

density [g/L] 

pH 
[-] 

𝒔𝒓𝒆𝒔𝒊𝒅𝒖𝒆𝒔

𝒔𝑺𝑫𝑴
 

CQA NOR1 -1.1 - 0 -1.1 – 0.65 -1.1 – 1.1 -0.51 – 1.1 

-
0.5
5 – 
0.5
5 

 

 Thres
hold 

      

Process 
impurity 2 
clearance 

0.85 - - 0.059 0.099 - 7.79 
 

Product 
impurity 1 
clearance 

1.08 0.028 - 0.098 0.089 0.0
27 18.12 

Product 
impurity 2 
clearance 

0.1 - - - - - 256.06 

1 NOR was normalized by the screening range 

Table 2. p-values of significant process parameters that were used in the statistical models for each CQA 
of PR. Normal operating ranges or thresholds are given for each process parameter or critical quality 
attribute. Non-significant parameters are indicated with “-“. Also the ratio of standard deviation of raw 
residuals of the model by the standard deviation at set-point (�̂�𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠

�̂�𝑆𝑃
) is given for each CQA. 

  Temperat
ure [°C] 

Time 
[hours

] 

Mixing 
[Yes/No] 

pH [-
] 

�̂�𝒓𝒆𝒔𝒊𝒅𝒖𝒆𝒔

�̂�𝑺𝑷
 

CQA NOR1 
-1.71 – 

0.41 
0.33 – 
0.41 -0.95 – 0.95 -0.61 

- 0.61  

 Threshold      

Process impurity 1 
 concentration specific 

9*105 9*10-5* - - 0.07 64.89 

Process impurity 2  
concentration specific 

(prior filtration) 
9*104 - - - - 2.68 

Process impurity 2 
concentration 

 specific (post filtration) 
784.7 - - - 0.021 0.55 

 

1 NOR was normalized by the screening range 

* A quadratic effect was modelled for temperature and the shown p-value corresponds to the quadratic effect 

3. Results & Discussion 

Experiments performed in biotechnological studies might contain data that violate the statistical 
assumptions of parametric tests (i.e. normality, homogeneity of variances and independence of errors). 
Moreover, with a limited number of experiments and a large number of unknown parameters, such 
assumptions are hard to assess. Consequently, nonparametric approaches bear potential and we want 



69 
 

to present a novel permutation test to assess power of individual DoE factors in a multivariate regression 
model.  

3.1. Permutation test for retrospective power analysis 

The following permutation approach is adapted from a permutation test aiming  to investigate power 
retrospectively [14]. Here we adapted this approach to study the significance of the alternative 
hypothesis that critical effects are present. Following steps are performed: 
1. Using variable selection procedures, we select a significant regression model (all included effects 

are not 0 to a certain significance level): 
𝑦 =  𝛽0 + 𝛽𝑠 ∗ 𝑋𝑠 + 𝑅𝑦|𝑋𝑠

 (17) 
where 𝑋𝑠 denotes the s significant parameters selected from a variable selection procedure 

(e.g. stepwise variable selection) and 𝑅𝑦|𝑋𝑠
 are the residuals of the obtained model. Find a list of 

those significantly selected parameters for the case studies of this work in Table 1 and Table 2. 
2. We define a critical gap (CG) we must not surpass as the difference of the threshold and the worst 

case model prediction within the NOR (𝑥𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒𝑁𝑂𝑅
) , which is the parameter setting where the 

model prediction (�̂�(𝑥)) is closest to the 𝑡ℎ𝑟𝑒ℎ𝑠𝑜𝑙𝑑𝑈𝑆𝐿: 
𝐶𝐺 = 𝑡ℎ𝑒𝑠ℎ𝑜𝑙𝑑𝑈𝑆𝐿 − �̂�(𝑥𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒𝑁𝑂𝑅

) (18) 
3. Similar to the approach discussed in section 0 for the a priori power analysis, for non-significant 

parameters a variety of combinations (in total C) of effects for those parameters exist that lead to 
surpassing a critical threshold. In order to estimate the mean likelihood not to overlook a specific 
parameter, we vary the relative impact on the threshold of each parameter gradually between 0 
and 1 in 100 steps. The fraction of the CG which is attributed to the non-significant parameter 𝑖 is 
expressed as the weight 𝑤𝑖

(𝑐)
 for the combination c. Eq. 5 can be used to calculate the critical effect 

of the parameter 𝑖. 
4. The residuals 𝑅𝑦|𝑋𝑠

 are permuted randomly, producing 𝑅∗
𝑦|𝑋𝑠

 
5. New response values are calculated from the permuted residuals assuming that the critical effect 

is present under the alternative hypothesis (𝐻𝐴): 
𝑦∗ =  𝛽0 + 𝛽𝑠 ∗ 𝑋𝑠 + 𝛽(𝑐)

𝑐𝑟𝑖𝑡 ∗ 𝑍 + 𝑅∗
𝑦|𝑋𝑠

 (19) 
 

where 𝛽(𝑐)
𝑐𝑟𝑖𝑡

 is a vector of regression coefficients for the non-significant parameters and 𝑍 is 
the design matrix for all non-significant parameters. 

6. Make a model for 𝑦∗ based on X and Z and record significance of �̂�𝑐𝑟𝑖𝑡 at a certain significance level 
(here α=0.05) 

7. Repeat steps 4, 5 and 6 a large number of times (here 1000) and count number of significant 
outcome for each �̂�𝑐𝑟𝑖𝑡,𝑖 at a certain significance level (here α=0.05). The fraction of significant 
outcomes of all iteration cycles equals the retrospective power of parameter 𝑖. 

3.2. Comparison of a priori and retrospective power 

If we apply the proposed retrospective power analysis permutation test of section 0 to experimental 
data recorded from two unit operations (CC1 and PR) we obtain power values for each PP/CQA 
combination from Table 1 and Table 2, respectively.  

Figure 1A shows a comparison of the retrospective and a priori power analysis for the CC1 unit 
operation. For all three studied CQAs at this stage (‘process impurity 2 clearance’, ‘product impurity 2 

clearance’ and ‘product impurity 1 clearance’) we obtain a priori estimates of 1 (rightmost bar group in 

Figure 1A). This indicates an ideal case to start with experiments since there is no chance to overlook 
a critical effect. Retrospectively power analysis revealed that for all investigated PPs power values are 
well below the common statistical practice cut-off value of 0.8. This can be explained by the fact that the 
residual variance in the model is much higher than the initial estimate at set point, expressed by ratios 
of �̂�𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠

�̂�𝑆𝑃
 well above 1, as shown in Table 1. In general, multiple reasons for this discrepancy between 

the initial guess of expected variance and the actual residual variance in the model might exist. It could 
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be a non-representative selection of set-point runs (e.g. runs conducted with different operators), 
unexpected increase of variance during experiments (e.g. it is more difficult to control experiments at 
unusual parameter settings) or even non-linear dependency which cannot be captured by the linear 
model structure. Although statistically good practice, our experience shows that such non-linear 
dependencies might not be obvious from analysis of residuals (e.g. investigation of plots of residual vs. 
DoE factors). In a DoE approach, each experiment is unique in its settings if we do not use replicates 
and thereby no redundancy is available to hinder the model from being leveraged by non-linear 
responses. 

For the precipitation step (PR) a priori power analysis again suggested a power of 1 (Figure 4B). 
Retrospectively assessed power values match the results obtained from a priori analysis, indicating that 
the performed DoE had sufficient power to assess critical effects of process parameters on quality 
attributes. This is reasonable since ratios of �̂�𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠

�̂�𝑆𝑃
 are closer to 1 for this unit operation compared to 

CC 1, as shown in Table 1. 

 
Figure 1. Power values for CC 1 (A) and PR (B) for each PP and CQA. Where significant process 
parameters were detected for a quality attribute, bars are marked grey. (A) Though a priori power 
analysis suggested a power of 100% for each investigated CQA for chromatography step 1, retrospective 
power analysis revealed that the power to detect a critical effect did not surpass 80 % for any of the 
investigated process parameters. Strategies to tackle these low-power-situations are given in Figure 4. 
(B) For the precipitation step, a priori power analysis suggested a power of 100% for each investigated 
CQA as well. Retrospective power confirmed these findings that is a 100 % chance that we did not 
overlook a critical effect of the investigated process parameters on quality attributes. 

3.3. How to deal with low-powered parameters? 

The most common approaches to tackle insufficient power values in screening designs are by 
increasing the sample size, reduction of measurement variance (either analytical or process), increasing  
the screening range if technically possible, or accepting the lack of power, however stating the 
parameter as key or critical. The latter strategy will have impact on the extended monitoring of such 
parameters during a subsequent process performance qualification (PPQ) campaign and routine 
manufacturing. As seen in section 0, a priori power analysis suggested high power values for all 
investigated unit operations, however, drastically overestimated the power for CC1. In specific cases, 
retrospectively increasing the sample size or the screening range might not be possible due to shortage 
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of starting material or technical limitations. A measurement method with less variance might not be at 
hand to re-measure backup samples. Another approach made possible by the presented method for 
power analysis is to narrow the NOR of some process parameters. If the threshold stays the same and 
the NOR is symmetrically located around the set point, for smaller NORs larger effect sizes are 
necessary to surpass the critical threshold as shown in Eq. 5 (i.e. steeper slopes). As a demonstrating 
scenario, we have chosen the relatively low power for Product impurity 2 clearance on CC 1 (see Figure 
1A). For this response no significant parameter could be found. Figure 2 shows how a reduction of the 
NOR of the process parameter “wash strength” impacts the power of all studied PPs of this unit 
operation. Upon reducing the initially defined NOR by 50 % of its width the power value for “wash 

strength” increases from 0.34 to 0.68. As seen in Figure 2, the power values of the residual process 

parameters’ effects on the same quality attribute remained unaffected neglecting the residual variation 
caused by the Monte Carlo approach in permutation.  

 
Figure 2. Retrospective power values for product impurity 2 clearance for unit operation CC1 as a 
function of tightened NOR of process parameter “wash strength”. At the initially defined NOR the power 

value is 0.34. Upon reducing the NOR symmetrically by 50 %the power value for this process parameter 
increases to 0.68. The power values of the residual process parameters remain unaffected. The visible 
variation can be attributed to the variance in the permutation test.  

This provides an opportunity to implement a tighter control strategy though adjusting the NOR as 
an approach to ensure no critical effects have been overseen. However, it may not be technically 
feasible or desirable for all process parameters to implement a tighter control strategy narrower ranges, 
especially for a parameter that has not been confirmed to significantly impact a CQA. Since a process 
parameter is studied in respect to multiple CQAs, we want to note that a tightening of a NOR of a process 
parameter that impacts significantly onto one specific CQA will also increase the power not to overlook 
this parameter regarding all other CQAs which have been studied in the same experiment. In contrast 
to changing the NOR of a non-significant parameter onto a CQA as shown for the combination ‘wash 

strength’ onto ‘product impurity 2 clearance’ in Figure 2, we investigated how a change of a significant 

parameter impacts on power levels. This was exemplarily done for decrease in NOR of ’wash strength‘ 

and we recorded power values for ‘process impurity 2 clearance’ of all non-significant parameters (here 
End pooling, elution strength and pH). We can see that due to the reduction of the NOR of a significant 
parameter the power values of all non-significant parameters increase too. In detail, a 50% reduction of 
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the NOR of the significantly impacting parameter “wash strength” increases the power of all non-
significant parameters by approximately 10%. This can be explained by the fact that the worst case 
model prediction within the reduced NOR leads to a larger CG as defined in Eq. 18. Thereby, also the 
critical effects will be larger (Eq.6) and consequently the chances to overlook larger critical effects will 
be reduced. In this way an improved control strategy for a known significant parameter would improve 
the confidence that all residual non-significant parameter were not overlooked. This is potently a more 
desirable approach as improved control of known significant parameters is typically required and 
advantageous, if feasible. 

 
Figure 3. Retrospective power values for ‘process impurity 2 clearance’ for unit operation CC 1 as a 

function of tightened NOR of process parameter “wash strength”. Since wash strength and column 
loading density are significant parameters in this model, the power was not assessed for those two 
parameters. Upon reducing the NOR symmetrically by 50 % of the significant parameter “wash strength 
” power values of all other parameters increase since the critical gap is increased, too, due to a reduction 
of the worst case model prediction in the NOR (Eq. 18). 

3.4. Workflow for criticality assessment 

In order to summarize the knowledge obtained from the application of the proposed posterior power 
analysis on two unit operations, we present a workflow that should aid process engineers in assessment 
of critical parameters (Figure 4). After selection of design and appropriate experiment number, a priori 
power analysis identifies if it is likely that a critical effect will not be overlooked. Sufficient power levels 
are normally assumed at 0.8 to 0.9. In cases where sufficient power cannot be assumed, the number of 
experiments, type of design or screening range must be increased. Both add to the expected signal to 
noise ratio. When increasing the screening range care must be taken not to obtain failure in experiments 
due to technical limitations or likely happening interaction effects (edge of failure). In order to reduce the 
risk of edge of failure experiments it is beneficial to conduct expected worst case setting of the process 
parameters first and potentially revise screening range afterwards. 

In case sufficient power can be assumed, experiments can be conducted and regression modelling 
can be performed together with selection of significant DoE factors/parameters. After the “optimal” model 

was selected with its significant factors, retrospective power analysis as shown in section 0 will estimate 
chances that the residual non-significant factors might contribute to effects that surpass a pre-specified 
critical threshold. In case all non-significant parameters show power values well above 0.8 to 0.9, all of 
them can be stated as non-critical since the residual chance that they have been overlooked is only 20 
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to 10%, respectively. Otherwise, for those parameters that show insufficient power, analytical and/or 
reproducibility variance might be lowered by re-measurement of the samples or re-conducting of 
experiments, respectively. Another option is to narrow the NOR of potentially overlooked parameters 
which show large variability. This decreases their respective critical effect according to Eq. 5. After one 
of those three countermeasures has been taken retrospective power analysis can be repeated to ensure 
sufficient power values are reached and all parameters can be stated as non-critical. If none of the 
above three options is technically feasible or desirable, potentially overlooked parameters should be 
stated as critical and monitored during process performance qualification (PPQ) runs or routine 
manufacturing.  

 
Figure 4. Workflow for criticality assessment of process parameters during process validation stage 1. 

4. Conclusion 

The goal of the contribution was to demonstrate the capability of a multivariate retrospective power 
analysis methodology to identify critical process parameters during pharmaceutical process validation 
stage 1.  



74 
 

We have shown in a case study that parameters that are non-significant in models, which have 
initially thought to be sufficiently powerful to identify critical effects, might still show effects that surpass 
a critical threshold due to increased analytical, process, or reproducibility variance. This leads to 
situations where impact of those parameters on final drug product quality cannot be excluded. This was 
shown using a biopharmaceutical case study conducted at a world leading CMO. However, common 
practice is to state such parameters as non-critical and thereby overlook their potential harmful impact. 
Therefore, two missing parts have been introduced in this contribution: (i) a novel permutation 
methodology for multiple linear regression that estimates retrospective power (i.e. the chance of non-
significant parameters to mutually combine to a critical effect) and (ii) a workflow for criticality 
assessment that shows strategies how to mitigate the risk of low-powered parameters. Besides the well-
known fact that an increase in experiments increases power, it could be shown that a reduction of the 
NOR of significant parameters increases power of all non-significant parameters via a reduction of the 
worst case model predictions. While a reduction of the NOR of a specific non-significant parameter 
increases power solely for this parameter. Additionally, if implementation of tighter NOR controls is 
practically infeasible, this methodology can at a minimum appropriate assess the process risk and 
increase awareness to the limitations of the initial classification, potentially suggesting an improved 
control strategy is required. 

Using both tools, it will be possible for process engineers during the design stage of a process 
validation (stage 1) to: 
 reduce the chance of overlooking potentially CPPs  
 develop a control strategy for potentially overlooked CPPs in order to increase process robustness  
 lower OOS events and finally contribute to increased patient safety.  
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5.2.4 Integrated process model 
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Abstract: During the regulatory requested process validation of pharmaceutical manufacturing 
processes, companies aim to identify, control and continuously monitor process variation and its impact 
on critical quality attributes (CQAs) of the final product. It is difficult to directly connect the impact of 
single process parameters (PPs) to final product CQAs, especially in biopharmaceutical process 
development and production, where multiple unit operations are stacked together and interact with 
each other. Therefore, we want to present the application of Monte Carlo (MC) simulation using an 
integrated process model (IPM) that enables estimation of process capability even in early stages of 
process validation. Once the IPM is established, its capability in risk and criticality assessment is 
furthermore demonstrated. IPMs can be used to enable holistic production control strategies that take 
interactions of process parameters of multiple unit operations into account. Moreover, IPMs can be 
trained with development data, refined with qualification runs, and maintained with routine 
manufacturing data which underlines the lifecycle concept. These applications will be shown by means 
of a process characterization study recently conducted at a world leading contract manufacturing 
organization (CMO). The new IPM methodology therefore allows to anticipate out of specification 
(OOS) events, identify critical process parameters, and take risk based decisions on counteractions 
that increase process robustness and decrease the likelihood of OOS events. 

Keywords: process validation; process characterization study; holistic process model; predict out of 
specification events; Monte Carlo simulation; biopharmaceutical manufacturing  

 

1. Introduction 

The main goal of pharmaceutical manufacturing is to constantly deliver high product quality, which 
is reflected in regulatory guidelines [1–3]. Process validation is a major initiative to demonstrate the 
capability of meeting this goal and is separated in three stages (stage 1 to 3). Stage 1 aims at 
establishing a process design in which process variation in critical quality attributes (CQAs) is 
understood and connected to critical process parameters. This is usually done within a process 
characterization study using design of experiment (DoE) strategies. Resulting critical process 
parameters that have an effect on product quality require sufficient control strategies. Stage 2 consists 
of process performance qualification (PPQ) runs to confirm the design of the process and ensure it can 
consistently deliver high product quality. Stage 3, continued process verification (CPV), is an ongoing 
evaluation and monitoring to confirm the process remains in a state of control or to identify if new 
interdependencies between process parameters (PPs) and CQAs arise. Those three stages can be 
seen interlinked to each other as a lifecycle, where potential changes and associated risk in PPQ or 
routine manufacturing must be iteratively evaluated together with knowledge gained from initial process 
design [4]. Insufficient risk estimation of the entire process at stage 1 of process design (e.g. in terms of 
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estimation of out of specification events) can lead to inconsistent or unpredicted performance at later 
stages.  

Risk evaluation of individual unit operation of a pharmaceutical processes is commonly conducted 
by following steps in accordance with ICH Q8 guideline [2]: 

 Risk assessment using knowledge of process experts, which leads to a candidate set of 
potential critical PPs for each unit operation. 

 Experimental investigation of the impact of potentially critical PPs onto CQAs. This is usually 
performed in DoE approaches and statistical regression modelling is used to describe the 
relationship between significantly impacting critical PPs and CQAs mathematically. 

 Comparison of the output of statistical model predictions within normal operating ranges or a 
design space to pre-defined acceptance limits for each unit operation. 

 The risk of not meeting acceptance limits is mitigated by applying an appropriate control 
strategy, such as a reduction of the normal operating range.  

One difficulty, especially in biopharmaceutical manufacturing where multiple unit operations are 
stacked together and critical PPs interact, is an appropriate evaluation of risk related to impurities. Risk 
analysis is impeded since propagation of impurities is rarely assessed holistically but rather evaluated 
on each unit operation separately [5]. Impurity propagation through multiple unit operations is difficult to 
study with reasonable representative experimental effort, especially at early stages of process design 
where only a limited number of manufacturing runs is available. However, simulations and modeling are 
necessary and useful to assess the chance of out of specification events. Having such a predictive tool 
in place to develop robust processes by incorporating knowledge acquired during process development 
and characterization experiments, unexplained variance in product quality possibly leading to recalls, 
complaints, and patient risk can be reduced. Therefore, it is desirable to formulate holistic process and 
production control strategies that prevent out of specification (OOS) events which could have already 
been anticipated within the design phase [6]. However, to the best of our knowledge, it has not been 
shown so far how a holistic risk evaluation spanning over multiple unit operation can be performed at 
process validation stage 1 and used to demonstrate overall process capability.   

MC simulation is a tool to incorporate random variability into the modelled system and connect 
single modelling-units together. A random sampling distribution for the model parameters (inputs) needs 
be defined a priori, which does not need to be necessarily normally distributed. Within each cycle of the 
MC simulation a different random set of inputs is drawn leading to discrete model results (outputs). Since 
a large number of MC cycles are performed it is possible to aggregate the discrete model outputs to a 
predictive distribution of those outputs. Using this distributional information it is possible to calculate 
probabilities of events (e.g. OOS). MC simulations have shown great potential in pharmaceutical 
industry for drug discovery and simulation of clinical trials [7] and is also routinely utilized for error 
propagation [8]. However, it has, to our knowledge, not been applied to impurity propagation of a batch-
wise pharmaceutical processes. 

Herein, we describe the development of an integrated process model (IPM) that is capable of 
capturing development and design data from multiple unit operations and is able to predict the risk of 
OOS probabilities through Monte-Carlo simulation even at the early design stage of process validation. 
Moreover, we identify how variance and changes in set point of process parameters impacts drug 
substance quality. The model can be enriched at later stages also with data from PPQ, routine 
manufacturing, or additional development. Thereby a continuous process data management is enabled 
and risk based decision making during change and deviation management in continuous manufacturing 
can be based on the full spectrum of development, design, and manufacturing data. 

At this stage, the following derived acceptance criteria for the IPM can be formulated: 
 Prove process robustness of an existing design space: Prove that under normal manufacturing 

conditions it is unlikely to miss drug substance specification for defined CQAs  
 Test process robustness under accelerated variance of process parameters and increased impurity 

burden  
 Establish a platform that leverages process knowledge from PV stage 1 for further usage within 

PPQ and CPV (Stage 2 and 3 of process validation) 
With this contribution we present the development of an IPM, validate the IPM using large scale 

manufacturing data, and demonstrate the capability of the IPM in estimating OOS probabilities under 
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normal and accelerated conditions. This case study was recently conducted at a leading 
biopharmaceutical CMO in contract development of a novel long acting human growth hormone product. 
 

2. Materials and Methods 

Here we want to summarize the required inputs for the IPM as well as their assumptions that 
must be met in order to ensure reliable prediction of the IPM (for details see referred sections): 

 Description of the process, order of unit operations and variance of PPs under normal operating 
conditions (see section 2.1). It is assumed that estimation of variance of PPs is representative for 
routine manufacturing.  

 Optional: If initial unit operation of the process are not modelled by the IPM the starting distribution 
of each CQA needs to be estimated at the starting unit operation of the IPM. It is assumed that the 
estimation of starting distribution is representative for the real CQA distribution under routine 
manufacturing (see section 2.2).   

 Statistical regression models that describe significant relationships between PPs and CQAs for 
each unit operation (see section 2.3.1). It is assumed that scientifically sound analytical methods 
(high accuracy, precision, robustness, selectivity, etc.) have been used to record the data that led 
to formation of those regression models. Moreover, it is assumed that no critical effect has been 
overlooked, which can be tested using power analysis approaches [9]. This ensures that residual 
variance in the regression models can be attributed to normal analytical- and process variance. 

 Optional: Statistical spiking models of each unit operation describing the dependency between 
varied impurity load and specific impurity clearance (see section 2.3.2). Identical assumptions as 
for the regression models must be met.  

 

2.1. Description of biopharmaceutical manufacturing process 

This industrial biopharmaceutical process produces a pharmaceutically active recombinant protein 
and is divided into 7 unit operations. After fermentation using Escherichia coli as host cells and 
recombinant expression of the product, a cell lysis step is performed prior to a precipitation step and 
clarification. After these primary recovery steps, three preparative chromatographic columns are 
performed to clear the product from impurities. A final ultrafiltration/diafiltration is performed to adjust 
the product concentration in drug substance. Two process related impurities as well as 2 product related 
impurities were defined as the major CQAs and herein modelled within the IPM. Since the analytical 
quantification of those CQAs was only possible in the load of the first chromatographic step, this step 
was set as input to the IPM. A summary of the relevant unit operations for modelling, their varied  PPs 
within DoEs, the relative standard deviation of those PPs between large scale (LS) runs and the 
monitored CQAs is given in Table 1. 

Table 1. Available data sets, process parameters and monitored CQAs for each unit operation included 
in the IPM. CC is abbreviation for chromatography column, PCI stands for process related impurities and 
PRI product related impurities. 

UO Available Data sets 
PPs varied in 

DoEs 

Rel. std. of 
PPs 

between LS 
[%]1 

Std / NOR 
[%]² 

Monitored 
CQAs 

CC 1 

 9 manufacturing runs 

 13 DoE runs with 

definitive screening 

design 

pH [-] 1.61 46 

PCI 1, PCI 2,  
PRI 1, PRI 2 

Column loading 
density [g/L] 12.05 50 

Wash Strength 
[mM] 5.00 62 
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Elution strength 
[mM] 5.00 44 

End pooling [CV] 1.36 40 

CC 2 
 

 9 manufacturing runs 

 11 DoE runs using full 

factorial design 

 1 spiking run with 

increased PRI 1 

concentration in load 

 1 spiking run with 

increased PCI 1 

concentration in load 

pH [-] 0.79 30 

Column loading 
density [g/L] 4.84 20 

Gradient slope [% 
of Buffer] 5.00 - 

CC 3 
 

 9 manufacturing runs 

 9 DoE runs using 

definitive screening 

design 

pH [-] 0.92 35 

Column loading 
density [g/L] 12.78 30 

Gradient slope [% 
of Buffer] 5.00 - 

Wash Strength 
[mM] 5.00 50 

1 Relative standard deviation to the set-point of the process parameters; 

² Ratio of one standard deviation to the normal operating range. 

2.2. Scope of IPM and Sampling Distribution of PPs 

Due to limited amount of quantitative analytical data of the CQAs before chromatography column 
1, the starting distribution of each CQA at the first chromatography step was assumed to be normally 
distributed with mean and standard deviation estimated from measured CQA distribution of LS runs. 
From this starting point the following unit operations chromatography column 1, 2, and 3 were modelled. 
The pool of chromatography column 3 was regarded as very similar to drug substance since no further 
clearance formation was expected at the ultrafiltration/diafiltration step. 

For the MC workflow, we have to choose a realistic distribution of the large scale variation in 
process parameters in order to incorporate process related variability. Results of the MC simulation are 
dependent on the sampling strategy for the process parameters at each simulation. Often pseudo-
random numbers are replaced by quasi-random numbers or Latin hypercube sampling [10,11] for better 
overview of possible outcomes. However, for realistic risk assessment, we want our sampling to be 
representative for the process, therefore classical pseudo-random numbers were used for sampling. 
Existing variance of process parameters has been estimated from current large scale runs as listed in 
Table 1. We assumed a multivariate normal distribution for all process parameters centered at their 
mean (target of operation) and variance from large scale runs without any covariance between the 
process parameters. This is a suitable simplification since process parameters are controlled 
independently from each other. In general, this is not a prerequisite for the IPM and might be adapted 
for other processes, where additional information of potential correlation between the process 
parameters exists. 

2.3.  Impurity Clearance Models 

Since it was aim of the IPM to model the final distribution of each of the four major CQAs (i.e. the 
specific concentration of each impurity) and the product in the drug substance, their reduction from load 
of chromatography column 1 until drug substance needs to be described mathematically. In order to 
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estimate the specific CQA concentration after a unit operation (pool) using the specific load 
concentration of this CQA, specific clearances (SCs) were used:  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 = 𝑆𝐶 =
𝑐𝐶𝑄𝐴,𝑙𝑜𝑎𝑑

𝑐𝐶𝑄𝐴,𝑝𝑜𝑜𝑙
, (1) 

where 𝑐𝐶𝑄𝐴,𝑙𝑜𝑎𝑑 and 𝑐𝐶𝑄𝐴,𝑝𝑜𝑜𝑙 is the specific CQA concentration, defined as the amount of impurity per 
amount of product, for load and pool, respectively. 

For modelling the product a similar approach was chosen using step yields (SY) instead of SC: 

𝑆𝑡𝑒𝑝𝑌𝑖𝑒𝑙𝑑 = 𝑆𝑌 =
𝑝𝑝𝑜𝑜𝑙

𝑝𝑙𝑜𝑎𝑑
, (2) 

where 𝑝𝑝𝑜𝑜𝑙 and 𝑝𝑙𝑜𝑎𝑑  are the amounts of product in pool and load, respectively. 
Two major impacting sources specific clearances have been considered here: (i) Impact of potential 

critical process parameters, which have been purposefully selected in a risk assessment and (ii) specific 
amount of impurity load per column volume. Those types of models are described in more detail in the 
following two sections 2.3.1. and 2.3.2., respectively. In case it was not possible to find any PPs that 
significantly impact on the clearance, the mean clearance from LS was taken as a constant model (see 
section 2.3.1 for details). We summarize all found models in Table 2. 
 

Table 2. Summary of the presence of models that describe the relationship of a CQA specific clearance 
factor as a function of PPs (indicated by “DoE”) or the impurity loading density of the respective CQA 

(“Spiking”) and the respective p-value of the regression. In cases where no significant function of PPs on 
a CQA clearance could be found, mean large scale clearance was assumed indicated by “LS clearance” 

in the table. CC is abbreviation for chromatography column, PCI stands for process related impurities 
and PRI product related impurities. 

CQA/Unit Operation CC 1 CC 2 CC 3 

PRI 1 DoE  
(linear, p=0.09) 

LS clearance + Spiking  
(p=0.00) 

DoE  
(quadratic, p=0.01)  

PRI 2 DoE  
(linear, p=0.01) LS clearance LS clearance 

PCI 1 DoE  
(quadratic, p=0.00) 

LS clearance + Spiking  
(p=0.04) 

DoE  
(quadratic, p=0.00) 

PCI 2 LS clearance + Spiking  
(linear, p=0.00)  LS clearance  

LS clearance+ 
Spiking 

(linear, p=0.00) 

Yield DoE  
(linear, p=0.00) LS clearance DoE  

(quadratic, p=0.00) 

2.3.1. Clearance and yield as a function of process parameters (DoE models) 

As a general good practice in PV stage 1, after a purposeful selection of potential impacting process 
parameters, their impact on the SCs and the SY has been tested within DoEs. For reasons of simplicity 
we will only show the modelling approach for SC in the following two sections and not for step yields, 
since both approaches are identical when exchanging SC with step yield. Experimental designs were 
chosen (see Table 1 for number of DoE runs and design) and linear models were established according 
to the form: 

𝑆𝐶 =  𝑃𝑃 ∗ 𝛽𝑃𝑃 + 𝛽0 + 𝜀, (3) 

where 𝑆𝐶 is a (n × 1) vector of the measured specific clearances, 𝑃𝑃 is a (n × p) matrix of the process 
parameter settings of each DoE run, 𝛽𝑃𝑃 are the regression coefficients and 𝛽0 is the intercept. The 
process of selecting a subset of significant process parameters was accomplished by means of stepwise 
regression using multiple linear regression (MLR) package in inCyght (inCyght 2017.03, Exputec GmbH, 
Vienna, Austria). In this stepwise procedure parameters showing a partial p value below 0.05 were 
allowed to enter the model starting with those parameters having the lowest partial p value. Partial p 
values of parameters can change as other parameters are included in a multivariate model. Therefore, 
after each time including a new parameter in the model, it is checked if p values of the existing 
parameters have increased and those parameters showing an p value larger than 0.1 will be excluded 
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from the model. This including/excluding procedure was applied iteratively to achieve the optimal model, 
starting with the most significant parameter and was repeated as long as the model structure did not 
change any more. Thereby, �̂�𝑃𝑃 and �̂�0 could be estimated. The herein obtained models and their 
respective statistical quality measures are summarized in Table S1 (section 9.4) of the supplementary 
materials. 
A new prediction for SC (𝑆�̂�) for randomly selected set of process parameters of the ith MC simulation 
can be obtained by: 

𝑆�̂�(𝑃𝑃(𝑖)) =  𝑃𝑃(𝑖) ∗ �̂�𝑃𝑃 + �̂�0, (4) 

The prediction error of the mean model response was assumed to be normal distributed with: 
𝑁 (𝑆�̂�(𝑃𝑃(𝑖)), 𝜎²𝑆�̂�(𝑃𝑃(𝑖))). Where 𝜎𝑆�̂�(𝑃𝑃(𝑖)) was calculated using: 

𝜎𝑆�̂�(𝑃𝑃(𝑖)) = 𝑠𝑆𝐶 ∗ √
1

𝑛
+ ℎ𝑖, (5) 

with the leverage of the new data point: ℎ𝑖 = 𝑑𝑖𝑎𝑔(𝑃𝑃(𝑖)(𝑃𝑃′𝑃𝑃)−1𝑃𝑃(𝑖)′), the residual standard error: 

𝑠𝑆𝐶 = √
∑(𝑆𝐶𝑖−𝑆𝐶�̂�)²

𝑛−𝑝−1
 if p are the number of parameters and n the number of observations. A random sample 

𝑟𝑎𝑛𝑑(𝑁 (𝑆�̂�(𝑃𝑃(𝑖)), 𝜎²𝑆�̂�(𝑃𝑃(𝑖)))), using MATLAB (MATLAB, The MathWorks Inc. R2015b) function randn, 
was taken from this prediction error distribution for each Monte-Carlo simulation i and added to the mean 
prediction, obtaining the specific clearance impacted by PPs for each unit operation: 

𝑆�̃�(𝑃𝑃(𝑖)) = 𝑟𝑎𝑛𝑑(𝑁 (𝑆�̂�(𝑃𝑃(𝑖)), 𝜎²𝑆�̂�(𝑃𝑃(𝑖)))), (6) 

For responses where no further spiking models have been available, the specific CQA 
concentration of the pool of the uth unit operation was calculated to: 

𝑐𝐶𝑄𝐴,𝑝𝑜𝑜𝑙,𝑢
(𝑖) =

𝑐𝐶𝑄𝐴,𝑙𝑜𝑎𝑑,𝑢
(𝑖)

𝑆�̃�(𝑃𝑃(𝑖))
=

𝑐𝐶𝑄𝐴,𝑝𝑜𝑜𝑙,𝑢−1
(𝑖)

𝑆�̃�(𝑃𝑃(𝑖))
, (7) 

Note, that here the concatenation of the unit operations occurs since the specific CQA concentration of 
the pool of unit operation 𝑢 − 1 is set equal to the load of unit operation 𝑢.   

If no significant effects of any PP on an impurity clearance of a certain unit operation could be 
detected, a constant impurity clearance was assumed within the entire design space. This was modelled 
by the mean clearance of the LS runs and variance of the LS runs. In those cases, for each unit operation 
the specific clearance of the ith MC simulation reduces to: 

𝑆�̃�(𝑃𝑃(𝑖)) = 𝑟𝑎𝑛𝑑(𝑁(𝑆𝐶̅̅̅̅
𝐿𝑆, 𝜎²𝑆𝐶𝐿𝑆

)), (8) 

where 𝑆𝐶̅̅̅̅
𝐿𝑆 and 𝜎²𝑆𝐶𝐿𝑆

 is the mean SC and the variance from LS runs, respectively. 
 

2.3.2. Increased clearance due to varied spiking of impurities 

During process development and design, increased impurity levels were spiked on chromatographic 
preparative columns in order to show elevated clearance capacity. In more detail, during those spiking 
studies, it was shown that the impurity clearance increases with increasing impurity loading density (𝐼𝐿𝐷 =
𝑙𝑜𝑎𝑑𝑒𝑑 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 𝑎𝑚𝑜𝑢𝑛𝑡

𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑜𝑙𝑢𝑚𝑒
) up to the tested level. Additionally, the same relationship of increased impurity 

clearance at increased impurity loading densities was found for large scale runs, where the impurity loading 
varies for each run due to variation in fermentation and previous purification unit operations. Since the ILDs 
were not included within DoE approaches as an independent DoE factor, we followed a two-step approach 
to incorporate altered clearance at varying ILD. 

In the first step, linear regression on SC as a function of ILD was applied to identify significant 
correlations. Having such a regression model in place, for a specific ILD in the ith MC simulation an 
estimate for the SC could be obtained (𝑆�̃�(𝐼𝐿𝐷(𝑖))): 

𝑆�̃�(𝐼𝐿𝐷(𝑖)) = 𝑟𝑎𝑛𝑑 (𝑁 (𝑆�̂�(𝐼𝐿𝐷(𝑖)), 𝜎2
𝑆�̂�(𝐼𝐿𝐷(𝑖)))), (9) 
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where  𝑆�̂�(𝐼𝐿𝐷(𝑖)) is the mean predicted SC from the linear regression model at the specific 𝐼𝐿𝐷(𝑖) and 
𝜎2

𝑆�̂�(𝐼𝐿𝐷(𝑖)) is the variance of the mean prediction, which can be obtained analogous to Eq. 5. An example 
of such a spiking model is shown in Figure 1, where an increased loading density of process related 
impurity 2 shows a significant (p=7×10-8) increase in specific clearance of process related impurity 2. 
Significant (p-value < 0.05 as well as R² (explained variance) - Q² (from leave one out cross validation) 
difference < 0.3) spiking models were selected for each response/unit operation and are summarized in 
Table 2 and Table S2 of the supplementary materials (section 9.4). 

 
Figure 1. Exemplary plot for dependency of specific clearance (here of process related impurity 2) against 
impurity loading density of process related impurity 2 of DoE runs (blue) and large scale (LS) runs (red). 
Yellow error bars indicate the mean model prediction error. Normalization has been performed by division of 
the maximal value for each axes. 

Hereafter in the second step, if significant spiking models were available, they were combined with 
the existing ones as a function of PPs as described in section 2.3.1. Therefore, for each unit operation, 
we added the expected clearance increase due to increased ILD to the specific clearance of the ith Monte 
Carlo simulation impacted by PPs: 

𝑆�̃�(𝑖) =  𝑆�̃�(𝑃𝑃(𝑖)) ∗
 𝑆�̃�(𝐼𝐿𝐷(𝑖))

𝑆�̂�(𝐼𝐿𝐷̅̅ ̅̅ ̅)
, (10) 

where 𝑆�̂�(𝐼𝐿𝐷̅̅ ̅̅ ̅) is the SC under mean ILD from DoE runs. The ILD of the simulation i and the unit 
operation u can be calculated according to: 

𝐼𝐿𝐷𝑢
(𝑖)

=
𝑐𝑙𝑜𝑎𝑑,𝑢

(𝑖)
∗𝑝𝑙𝑜𝑎𝑑,𝑢

(𝑖)

𝐶𝑉
=

𝑐𝑝𝑜𝑜𝑙,𝑢−1
(𝑖)

∗𝑝𝑝𝑜𝑜𝑙,𝑢−1
(𝑖)

𝐶𝑉
, (11) 

where 𝑐𝑙𝑜𝑎𝑑,𝑢
(𝑖)  is the specific concentration of the CQA at the ith simulation and the uth unit operation and 

𝑝𝑙𝑜𝑎𝑑,𝑢
(𝑖)  is the product amount modelled by step yield of simulation i and unit operation u, 𝐶𝑉 is the column 

volume. Again, the load concentrations and amounts can be expressed by the respective pool 
concentrations of the previous unit operation (u-1). 
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Since the impurity loading density was not included within DoE approaches on column steps as an 
independent DoE factor, we assume that varied impurities do not show interactive effects with other 
DoE factors (mainly process parameters) within normal operating variance. In order to estimate the risk 
that the simulation performance is biased by the spiking models and the risk of the above stated 
assumptions, the IPM was simulated without applying any spiking model. Those results are shown in 
Figure S1-S4 of the supplementary materials (section 9.4), where we show that only for product related 
impurity 1, process related impurity 1 and process related impurity 2 the out of specification chance 
increases by 0.1, 0.7 and 4.2 %, respectively. Therefore, the above mentioned assumptions about 
spiking models and the connection to DoE models can be seen as a minor influence to the overall IPM 
prediction and valid simplification. Moreover, this can be regarded as a valid simplification since the 
assumed normal manufacturing variance which is used during IPM simulation of process parameters is 
well within the normal operating range (NOR, see standard deviation to NOR ratio in Table 1 is often 
below 30 %) and therefore around 99% the simulated batches are run within NOR. However, we want 
to note that one could even refine the IPM by including specific impurity concentrations in the load of 
chromatographic columns as an additional factor in DoE experiments to study that effect in combination 
with all other DoE factors.  

3. Results 

3.1. Monte Carlo Approach for integrated process modelling 

The main idea behind the integrated process is to concatenate impurity clearance models of each 
unit operation together to predict the CQA distribution at each intermediate and at drug substance. To 
account for error propagation during this concatenation we performed a Monte-Carlo approach in four 
steps: 
1. 1000 simulations were performed each having a different set of PPs (𝑃𝑃(𝑖)) for the three modelled 

unit operations (chromatography column 1/2/3) and different initial specific CQA concentrations 
(𝑐(𝑖)

𝐶𝑄𝐴,𝑖𝑛𝑖𝑡) at the load of chromatography column 1, sampled from distributions which were 
estimated from LS runs. Also the variance in PPs was estimated from LS runs and is indicated by 
a schematic distribution on the x-axis in Figure 2A and Figure 2B. Additional increase in simulations 
did not increase model accuracy and 1000 simulations are a common standard for Monte Carlo 
simulations[7]. A more detailed description of this step and a list of used process parameters are 
provided in section 2.2.  

2. For each unit operation, we modelled the specific clearance (SC) of each CQA as a function of the 
critical PPs and the ILD by multiple linear regression. Each model is associated with a prediction 
error, which is indicated by the blue shaded area around the found regression line Figure 2A and 
Figure 2B. The ILD can be derived from 𝑐𝐶𝑄𝐴,𝑙𝑜𝑎𝑑  of each unit operation, which equals 𝑐𝐶𝑄𝐴,𝑖𝑛𝑖𝑡 for 
the first modelled unit operation and 𝑐𝐶𝑄𝐴,𝑝𝑜𝑜𝑙,𝑢−1 for all subsequent modelled unit operations (u).  

3. Since 𝑐𝐶𝑄𝐴,𝑝𝑜𝑜𝑙,𝑢 can be calculated from SC and 𝑐𝐶𝑄𝐴,𝑙𝑜𝑎𝑑,𝑢, on the whole, 𝑐𝐶𝑄𝐴,𝑝𝑜𝑜𝑙,𝑢 can be seen as 
a function of 𝑃𝑃𝑢 as well as 𝑐𝐶𝑄𝐴,𝑖𝑛𝑖𝑡 or 𝑐𝐶𝑄𝐴,𝑝𝑜𝑜𝑙,𝑢−1 as indicated in the formula of Figure 2A Figure 
2B, respectively. Thereby the model outputs from multiple unit operations can be stacked together, 
which is indicated by black arrows in Figure 2A more thorough description of which models could 
be found on which CQA and unit operation is depicted in section 2.3. 

4. Since we performed 1000 simulations, each having different settings in process parameters, we 
obtained a distribution for the specific CQA concentration in the pool and finally in drug substance, 
indicated on the y-axes of Figure 2A and Figure 2B and by the distribution in Figure 2C.  
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Figure 2. Schematic description of the integrated process model using a Monte-Carlo approach: 1000 
simulations are performed, each having a different set of process parameters (indicated as distribution 
on the x-axes of A and B) and initial specific CQA concentration (𝒄𝑪𝑸𝑨,𝒊𝒏𝒊𝒕). Multiple linear regression 
models describe the relationship between the 𝒄𝑪𝑸𝑨 of the pool of unit operation u (B) and the PP of this 
unit operation as well as the pool concentration of the previous unit operation u-1 (A). Thereby models 
from multiple unit operations (A and B) are connected to predict the CQA distribution in the drug 
substance (C). Since 1000 simulations are performed, the CQA values form a distribution after each unit 
operation. The higher the model uncertainty, indicated by blue shaded area around the regression line, 
the wider the resulting CQA distribution. This ultimately propagates until drug substance, where the 
chance of out of specification events can be assessed. 

3.2. Validation of the IPM using Observed CQA distribution in Drug Substance 

For model validation, the distribution of the predicted specific CQA concentrations at the pools of 
each unit operation and drug substance were compared to the measured CQA distribution of LS runs. 
The OOS chance for the IPM was calculated by simply counting the number of simulations that are 
above the upper specification limit and dividing by the number of simulations. For the calculation of the 
OOS chance using the 9 large scale runs, a normal distribution was fitted to the data. 

Figure 3, Figure 4, Figure 5 and Figure 6 show overlays of simulated and observed CQA distribution 
after each chromatography step for product related impurity 1 and 2, as well as process related impurity 
1 and 2, respectively. For reasons of data security, all values have been normalized by the maximum 
observed or simulated CQA value. For the calculation of the observed distributions all 9 LS runs have 
been used and have been plotted. CQA distribution after chromatography column 3 (yellow colored bar 
in Figure 3, Figure 4, Figure 5 and Figure 6) can be regarded as drug substance since no further 
purification has been shown to occur at the ultrafiltration/diafiltration step.  

From visual inspection the predicted distributions for each CQA nicely overlap with the observed 
distributions at each chromatography step. This is also reflected in good agreement of simulated and 
measured OOS probabilities at drug substance level, which are displayed in the title of each subfigure, 
except for process related impurity 2.  Also, the skewness of the measured CQA distribution is well 
described by the model (e.g. positive skewness of the product related impurity 1 distribution at 
chromatography column 2 in Figure 3). Herein, we regard the model as valid for further investigations 
such as varying set-point conditions or accelerated variance of PPs.  

For process related impurity 2, the variance of the predicted specific CQA concentrations is larger 
than the observed variance, especially at chromatography column 3 level, as shown in Figure 6. 
However, the mean prediction at chromatography column 3 level is very close to the observed runs. The 
simulated OOS events of the IPM are 9.1 % whereas only 0 % when calculating from LS data. This gap 
in predicted versus observed OOS events might be caused by an different mean response of the scale 
down model at set-point conditions, which was used to conduct the experiments, an overlooked effect 
of a PP onto this CQA, an overlooked spiking model, or the gap is introduced by the selection of the 
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current large scale runs which show a too low OOS chance. For the first two issues power analysis for 
the insignificant models terms needs to identify if additional experiments need to be conducted to make 
sure that no critical effect has been overlooked [9]. Whereas, the latter possibility indicates a risk that 
was uncovered by the IPM and has luckily not been observed during LS runs. Herein, counter actions 
might be taken such as an increase of specific purification capacity in primary recovery.  

For product related impurity 2, the OOS chances for the IPM and the observed data are equally 
around 7 % as shown in Figure 4. Since for this CQA two statistical models as a function of PPs at 
chromatography column 1 and chromatography column 3 could be established (Table 2), parameter 
sensitivity analysis using the IPM can reveal optimization potential to increase process robustness for 
this CQA. 

 
Figure 3. Comparison of simulated (top) product related impurity 1 distribution and observed (bottom) 
product related impurity 1 from LS after each column step. Normalization was performed by diving by the 
maximum observed 𝒄𝑪𝑸𝑨. 
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Figure 4. Comparison of simulated (top) product related impurity 2 distribution and observed (bottom) 
product related impurity 2 from LS after each column step. Normalization was performed by diving by the 
maximum observed 𝒄𝑪𝑸𝑨. 
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Figure 5. Comparison of simulated (top) process related impurity 1 distribution and observed (bottom) 
process related impurity 1 from LS after each column step. For chromatography column 3 pool, no 
process related impurity 1 value was observed above LoQ, therefore, no histogram bar is plotted for the 
observed values at chromatography column 3 pool. Normalization was performed by diving by the 
maximum observed 𝒄𝑪𝑸𝑨. 
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Figure 6. Comparison of simulated (top) process related impurity 2 distribution and observed (bottom) 
process related impurity 2 from LS after each column step. Normalization was performed by diving by 
the maximum observed 𝒄𝑪𝑸𝑨. 

3.3. Impact of accelerated variation in process parameters on drug substance 

Parameter sensitivity analysis (PSA) was performed to assess how a change in set-point or 
variance of controlled PPs influences OOS events at drug substance. PSA was conducted as follows: 
Each PP was varied individually regarding its mean and variance and resulting change in OOS events 
was measured. If interaction effects of parameters have been detected within DoE models, those 
parameters can be varied simultaneously to study this effect. However, this was not the case for any 
model established in this study. Moreover, since the model was built only on a segment of all unit 
operations, we are interested in how an altered performance of the fermentation and primary recovery 
– leading to an increased impurity burden at the load of chromatography column 1 – will impact on drug 
substance. Therefore, the specific impurity concentration at the loading of the chromatography column 
1 was also varied in a parameter sensitivity analysis. 

Results of an example of such an analysis are shown for product related impurity 2 (Figure 7), 
where in panel A the change of OOS events as a function of change in percent of set-point settings of 
all process parameters is displayed. As can be seen from this subfigure, only a change in pH and wash 
strength of chromatography column 1 leads to a drastic change in OOS events. This is expected since 
both factors are part of the DoE model (see Table S1 of supplementary materials in section 9.4). In more 
detail, both factors have a favorable direction in terms of reduction of OOS events (lowered pH and 
increased wash strength). For example, a reduction of the pH value by 10 % of the set-point leads to a 
reduction of OOS events from 7 % to around 3 %. Interestingly, a change in variance of those two 
process parameters by ± 50 % is not impacting at the OOS events (Figure 7B). This sounds contradictory 
at first glance, however, since a variance increase to a certain extent will also drive a lot of simulations 
to the more favorable side (lowered pH and increased wash strength), the overall OOS chance remains 
similar to the initial estimate. This also emphasizes the well-known fact that optimization should be rather 
addressed via a change in the set-point than reduction of variance, which is in general even harder to 
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accomplish. A change in initial product related impurity 2 burden after primary recovery propagates as 
well into drug substance, which can be explained by the fact that no spiking model could be established 
for this CQA at any unit operation as shown in Figure 7C. In detail, a 10 % reduction of the specific 
product related impurity 2 concentration after primary recovery lowers the OOS events by another 3 %. 
Therefore it would be favorable to lower the pH of chromatography column 1 and reduce the impurity 
burden already after primary recovery using prior knowledge or build models that capture the interaction 
of fermentation- and primary recovery parameters on this CQA. Thereby OOS events could be lowered 
for product related impurity 2 down to 1 % or less. In order not to increase the OOS probability for 
another CQA by changing those two process parameters, one would need to consider also their impact 
onto the residual CQAs. This is not shown here since we only wanted to introduce the methodology for 
a potential application of the IPM and due to reasons of simplicity. 

 
Figure 7. Estimated OOS event for product related impurity 2 at drug substance as a function of change 
in set-point (A) and variance (B) of all PPs as well as a function of increased specific impurity 
concentration after primary recovery (C). Deviations in set-point of pH and salt concentration in wash of 
chromatography column 1 impact severely on OOS chance, which is not the case when variance in PPs 
increases by up to 50%. A change of specific product related impurity 2 concentration at the primary 
recovery level will increase OOS chances, too. 

4. Conclusions 

Here we have shown how in using an IPM it was possible to demonstrate that sufficient process 
knowledge is available from process development to describe impurity clearance of process related 
impurity 1 and 2, as well as product related impurity 1 and 2. The distributions of simulated and observed 
CQAs are in good agreement to each other and make it possible to quantify the risk of not meeting 
product specifications under normal operating conditions, something which is often not possible due to 
limited large scale runs. 

For product related impurity 1 and process related impurity 1, both, the predicted OOS chance by 
the IPM as well as the observed OOS chance is numerically close to 0 %. Herein, the process design 
can be validated in respect to those CQAs. In a first application of the IPM within a parameter sensitivity 
approach, it was possible to identify potential changes in process parameter set-points that will 
potentially decrease the chance of OOS events for the product related impurity 2 from 7 % to 1 %. For 
process related impurity 2 the mean prediction of clearance within the IPM is similar to that obtained 
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from LS measurements, however, the model predicts a 9.1 % chance to be above drug substance 
specification, whereas current large scale data estimate 0 % OOS chance. Since no statistical model 
could be established that might be used for optimization, process changes might be introduced. Here, 
IPM can be used within a model life-cycle approach as an enabler in change management. In case parts 
or entire unit operations are exchanged or included into an existing process design the IPM can predict 
the mutual performance of this change in the context of existing clearance capacity. This can be 
achieved by replacement with statistical models of respective unit operations. Thereby, overall 
performance of the changed process design can be assessed in terms of OOS events.  

Furthermore, it should be emphasized that this model, in accordance with current opinion, is not 
finished in the traditional sense, but is expected to incorporate any future experiments and GMP runs 
for model refinement and application in further PV stages. Thereby it is expected that new or 
insufficiently studied dependencies between PPs and CQAs can be incorporated as identified. 

Supplementary Materials: The following are available online at www.mdpi.com/link, Figure S1: Comparison of 
simulated (top) product related impurity 1 distribution and observed (bottom) product related impurity 1 from 
LS after each column step, Figure S2: Comparison of simulated (top) product related impurity 2 distribution 
and observed (bottom) product related impurity 2 from LS after each column step, Figure S3: Comparison of 
simulated (top) process related impurity 2 distribution and observed (bottom) process related impurity 2 from 
LS after each column step, Figure S4: Comparison of simulated (top) process related impurity 1 distribution 
and observed (bottom) process related impurity 1 from LS after each column step, Table S1: Overview of 
found models based on DoE data, Table S2: Overview of models showing a correlation between specific 
CQA clearances and CQA load density. 
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6 Conclusion 
The aim of this work is to enrich traditional manufacturing PV stage 1 workflows with data 

science tools that aid in the scientific risk estimation and mitigation to ultimately decrease 

process variance and patient risks.  

In this work it was possible to establish an advanced workflow for biopharmaceutical 

manufacturing process validation stage 1 that improves process robustness and decreases 

patient risk. Three areas of improvement to traditional manufacturing process validation have 

been presented:  

 Fermentation is one of the most complex unit operations and thereby also 

biopharmaceutical manufacturing differentiates to small molecule production. CQAs 

are analytically hard to measure at that early stage of the process. Therefore, indirect 

measures by means of physiological activity and specific turnover rates are highly 

valuable. However, only by knowing accuracy of that measures makes it possible to 

estimate the risk associated with decisions based on that quantities. Therefore, we 

developed methods to derive specific rates that show constant signal to noise ratio 

derived from online and offline raw measurements. Using that methods it is possible to 

obtain a fair and well-balances comparison of specific rates across scales. This is 

essential for SDM qualification but they may also serve as a high-accuracy response 

for experimental evaluation of parameter criticality. 

 Less focus has been given to the unknown risk of a process in traditional process 

validation stage 1 approaches. How likely is the chance that we missed to detect a 

critical influencer that will show up in later stages of production? This kind of questions 

have not been targeted so far using data driven methods, also due to missing statistical 

approaches. Those have been presented in this work and their benefits in mitigating 

“unknown unknown” CPPs to “known unknown” CPPs has been demonstrated 

successfully. Moreover, it has been shown how a control strategy can be set up for 

those “known unknown” CPPs. This methodology, is not limited or special for 

biopharmaceutical process validation but can be applied to all areas of manufacturing 

where unknown risk is inferred from experimental data.  

 Another typical aspect of biopharmaceutical processes is the usage of multiple unit 

operations that are carried out sequentially for production and clearance of to the final 

product. In this setting understanding of interactions between critical parameters of 

single unit operations is key for a holistic risk estimation. The presented integrated 

process model is connecting statistical regression models of single unit operations 

together and predicting out of specification probabilities as a function of CPPs. 
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However, only by making sure that no CPP has been overlooked during task 5 of the 

presented workflow it is possible to correctly estimate process robustness. Thereby the 

overall risk of a change in a single CPP can be estimated and control strategies might 

be adapted accordingly. Thereby, sufficient confidence can be obtained that the 

process will be capable of consistently delivering quality product in future. 

The overall presented workflow consists of sequence of steps that might be followed in the 

presented order when applying the stage 1 for the first time to a specific product. There are 

clear inputs and outputs for each step that need to be in place as described in this work, 

however, they might have been achieved earlier in the product life cycle. If single steps are 

skipped without having in enough confidence in the achieved output, serious impact can be 

expected ultimately leading to increased process variance. For example, by skipping data 

mining or not having a full understanding of the meaning and reliability of the manufacturing 

data, it will not be possible to perform a scientifically sound risk assessment nor will it be 

possible to judge the predictability of the SDM. Since risk assessment (task 3) and SDM 

qualification (task 4) do not rely on input of each other directly they might be performed in 

parallel or independently from each other. 

Overall, the presented workflows enables to scientifically sound estimate the risk on product 

quality associated with certain PPs or unit operations. Measures of that risk are acceptance 

criteria, power levels of PPs to be overlooked, similarity of SDM as well as holistic criticality of 

single PPs. Those estimates need to be understood as tentative measures which are 

constantly refined during process validation life cycle. As soon as more data from 

manufacturing runs is collected a periodic update of those measures is useful and regulatory 

requested to constantly demonstrate risk awareness. 

Due to the complexity of the tasks, they need to be addressed in a multidisciplinary team 

formed by statisticians, process experts, quality control, analytical chemists and validation 

expert. This is also recommended in the FDA process validation guideline [6]. 

This work has proven that the presented novel methods can increase the science based 

process knowledge, risk awareness and how to impose an appropriate control strategy for 

biopharmaceutical processes. Moreover, those methods have proven to give evidence “that a 

process is capable of consistently delivering quality product“, which is literally the goal of 

process validation stage 1 [6]. 
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7 Outlook 
In contrast to small molecule production, biopharmaceutical manufacturing differs also by the 

amount of redundant analytical methods employed to characterize the product. A bunch of 

analytical methods are used to characterize complex protein or nucleic acid structure, its 

isoforms and impurities. Therefore, we are rich in redundant information about the quality of 

our product, which we should make use of. Multivariate statistics are an excellent tool to use 

redundant variables and estimate latent variables that can be compared between scales. 

Therefore, multivariate equivalence testing offers a huge potential to increase accuracy of 

SDM qualification without increasing the number of experiments or analytical measurements 

required. Moreover, this can be enriched by usage of Bayesian methods to incorporate 

physical constraints and prior knowledge and thereby additional elevate power of the detecting 

equivalence or a reduction of experimental effort. 

A hurdle in applying equivalence testing for SDM qualification is the setting of practical relevant 

levels of difference between manufacturing and small scale, EACs. This is potentially also the 

reason why still less scientifically sound methods such as checking if all runs are within 3 sigma 

of the large scale runs are applied. Strategies that try to estimate the EACs with a constant 

times the standard deviation of the manufacturing/reference runs (i.e. 𝐸𝐴𝐶 = 𝑓 ∙ 𝜎𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒) 

always award for large scattering in the manufacturing/reference group. This might be 

applicable when a large number of replicate runs are available that have proven to deliver high 

product quality. However, in stage 1 of process validation only few manufacturing runs are 

available, which limits the estimation of the true scattering. Here I want to briefly give 

possibilities how EACs can be achieved systematically for all unit operations: 

 For responses which are use across multiple processes and products, such as viable 

cell density for fermentation processes or product yields of chromatography columns, 

general EACs can be established by applying a questionnaire within process experts 

of the firm. Questions should aim to answer what is the difference we are likely to accept 

as no practical relevant difference. A mean value of all those answers could be used 

as a general standard.  

 For responses which are product specific or less prior knowledge is available: 

o If acceptance criteria are available the shift in large scale population that still 

leads to an acceptable process capability index (e.g. Ppk > 1) can be regarded 

as practical relevant difference to impact product quality. In some cases the 

herein derived EACs might be tightened in case of extremely robust process 

steps with extraordinary high process capability. Otherwise, this may lead to 

non-informatively wide EACs. 
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o If failed batches are available that can be regarded as non-similar to the existing 

process, a decision boundary between acceptable batches, known to have 

reached specifications and those failed batches can be established. This can 

be performed using classification algorithms such as support vector machines 

where the decision boundary is a balanced margin between similar and non-

similar observations. 

However, in cases where only a limited amount of manufacturing runs exist, only tentative 

estimates of the EAC can be established, which need to be refined during the process 

validation life cycle. 
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9 Annex: Supporting Information to Manuscripts 
9.1 Supporting Information: Accurate Information from Fermentation 

Processes - Optimal Rate Calculation by Dynamic Window Adaptation” 
 

S1 Mechanistic model formulation for generation of model 
based in silico data 

For the generation of in silico data, which is used to derive an optimal rate calculation workflow 

for microbial fed-batch processes, a mechanistic model is applied as briefly described in 

section 2.1 of the main article. Here we want to give a more detailed view on this model. 

An industrial fed-batch feeding profile according to Wechselberger [1] was simulated with a 

short exponential feeding phase followed by a constant feeding phase as investigated 

previously in literature (Figure 4 of main article).  A decrease of the biomass yield coefficient 

with process maturity during the constant feeding, as frequently observed in industrial 

processes due the effects of metabolic load [2], was included in the model. This increases the 

signal dynamics of the resulting biomass formation rate and thereby a considerable and 

industrially relevant benchmark signal (rx) for testing different rate calculation algorithms is 

obtained. 

S2 Formulation of extended Kalman filter configuration 
In the following, the basic formulation of the Kalman filter configuration, as referred to from 

section 2.4 of the main article, is described in detail:  

The dynamic model: 

�̇�(𝑡) = 𝑓(𝒙(𝑡)) + 𝒏(𝑡) (1) 

where 𝒙(𝑡) is the state vector and 𝒏(𝑡) has the covariance matrix 𝑸(𝑡). 

Observation model:  

𝒍(𝑡) = 𝑯 · 𝒙(𝑡) + 𝒘(𝑡) (2) 

Where 𝒍(𝑡) is the vector of observations and the covariance matrix of 𝒘(𝑡) is 𝑹(𝑡𝑖). In our 

case it was approximated that there is no transfer matrix for the measurement and therefore 

𝑯 was set to 𝑰. 

The a priori state: 

�̇�−(𝑡) = 𝑓(𝒙−(𝑡)) (3) 

The state transition matrix (𝜱) can obtained by: 
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𝑑

𝑑𝑡
𝜱𝑡𝑖−1

𝑡𝑖 = 𝑭(𝑡𝑖) · 𝜱𝑡𝑖−1

𝑡𝑖  (4) 

And the dynamic matrix (𝑭(𝑡𝑖)) can be approximated with a Tayler series with respect to 𝒙 at 

𝑡𝑖 terminated after the first term: 

 

𝑭(𝑡𝑖) =
𝜕𝑓(𝒙)

𝜕𝒙
|

𝒙=𝒙−(𝑡𝑖)
 (5) 

The a priori covariance matrix 𝑷−(𝑡𝑖): 

𝑷−(𝑡𝑖) =  𝜱𝒕𝒊−𝟏

𝒕𝒊 · 𝑷+(𝑡𝑖−1) · (𝜱𝑡𝑖−1

𝑡𝑖 )𝑇 + ∫ 𝑸(𝑡)𝑑𝑡
𝑡𝑖

𝑡𝑖−1
 (6) 

And 𝑸(𝑡) was set to zero since no process variance was expected for the in silico generated 

data.  

Gain Matrix 𝑲(𝑡𝑖) at time point 𝑡𝑖 since 𝑯 = 𝑰: 

𝑲(𝑡𝑖) = 𝑷−(𝑡𝑖) · (𝑷−(𝑡𝑖) + 𝑹(𝑡𝑖))
−1 (7) 

A posteriori state: 

𝒙+(𝑡𝑖) = 𝒙−(𝑡𝑖) + 𝑲 · (𝒍(𝑡𝑖) − 𝒙−) (8) 

 

A posteriori covariance matrix: 

𝑷+(𝑡𝑖) = (𝑰 − 𝑲(𝑡𝑖)) · 𝑷−(𝑡𝑖) (9) 

 

S3 Derivation of the signal to noise ratio of rates using 
Gaussian error propagation 

In order to obtain specific rates with a constant signal to noise ratio, error propagation from the 

original signals to the derived turnover rates needs to be investigated, as outlined briefly in 

section 3.1.1 of the main article. 

The influence of the absolute measurement uncertainty boundary (𝑈𝑦) of the signal 𝑦 onto a 

derived signal 𝑟 can be approximated using a Taylor expansion [3]: 

𝑟(𝑦 + 𝑈𝑦) = 𝑟(𝑦) + 
1

1!

𝑑𝑟(𝑦)

𝑑𝑦
· 𝑈𝑦 +

1

2!

𝑑²𝑟(𝑦)

𝑑𝑦²
· (𝑈𝑦)

2
+ ⋯ (10) 

For an approximate solution the Taylor expansion can be terminated after the second term and 

the resulting absolute deviation of the derived signal (𝛥𝑈𝑟) can be written as:  
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𝑟(𝑦 + 𝑈𝑦) − 𝑟(𝑦) =  𝑈𝑟 =
𝑑𝑟(𝑦)

𝑑𝑦
· 𝑈𝑦 (11) 

If the derived signal depends on more than one input variable, the input variables are 

uncorrelated and the uncertainty of the input signal is only known by its boundaries, which is 

the typical case for biotechnological rate calculations, we can write in analogy: 

𝑈𝑟 = |
𝜕𝑟

𝜕𝑦1
| · 𝑈𝑦1

+ |
𝜕𝑟

𝜕𝑦2
| · 𝑈𝑦2

 (12) 

The finite difference approximation is used to obtain the derivate of the signal 𝑦: 

𝑟 =  
𝑦2−𝑦1

𝛥𝑡
 (13) 

By inserting Eq. 13 in Eq. 12 we can finally estimate the absolute uncertainty of the derived 

rate, which is: 

 

𝑈𝑟 =
𝑈𝑦1+𝑈𝑦2

 

𝛥𝑡
 (14A) 

 

If the uncertainty of the input signals is known by its standard deviation we can alternatively 

formulate the simple rate uncertainty, 𝑢𝑟:  

𝑢𝑟 =
√𝜎1

2+𝜎2
2

𝛥𝑡
 (14B) 

 

In this contribution we use Eq. 14A to derive the SNR of the rate (Eq. 15). Using the obtained 

SNR of the rate (Eq. 15) the time window can be dynamically widened, where the resulting 

SNR on the rate is too low, yielding to significant rates with predefined SNR at highest possible 

time resolution.  

𝑆𝑁𝑅𝑟 =
𝑟 

𝑈𝑟
 (15) 

 

 

S4 Rational driven parameter selection for existing pre- and 
post-processing methods 

Before using filtering and smoothing algorithms, the selection of algorithm parameters has to 

be performed carefully on a rational basis in order not to deteriorate the signal characteristics, 

as described in the section 3.1.2 of the main article. However, so far the determination of cut-

off frequencies and smoothing windows remain an empirical endeavour and no rationales are 
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provided [4,5]. Here, we want to present some bioprocess rationales supporting a rationally 

sound filter design. 

The cut-off frequency of the Butterworth filter for post-processing rates can be derived from a 

Fourier analysis of the expected rate. For example, in a carbon limited fed-batch the change 

in the substrate uptake rate cannot be faster than the change in the feeding rate assuming 

metabolic shifts are slower. Therefore, a Fourier analysis was performed on the supposed 

feeding rate and a cut-off frequency of 0.5 mHz was determined for the in silico data set 

presented in section 2.1 of the publication, since no higher frequency components were 

present. This cut-off frequency can also be used for the real process data. Here, the signal 

dynamics of the feeding rate were even less pronounced since no exponential feed was 

applied but only constant and linear feeding rates. This procedure has to be evaluated for each 

rate separately. Moreover, the cut-off frequency cannot be rationally derived for original raw 

signals (e.g. scale signal, pump signal) and therefore all high frequency components are 

allowed. This can be easily illustrated by the fact that a pump may be switched on/off 

instantaneously but the resulting change in the specific substrate uptake will occur smoothly. 

Therefore, filtering using the frequency domain is suggested only for physiological rates. All 

presented Butterworth filters are 4th-order low-pass filters, which corresponds to a moderate 

frequency roll off. 

For the Savitzky-Golay smoothing of online signals (measurement period < 2min), which have 

a supposedly smooth deterministic signal compound, a first order polynomial is used. 

Furthermore, the window width should be smaller than the width of the fastest signal change 

but larger than the supposed width of spikes and ripples. In our case, for the scale signals, this 

was approximated to 20 data points at a sampling interval of 20 s. 

 

S5 Additional rate calculation workflows for industrial microbial 
fed-batch fermentation deriving rx and rS using the generic 
model-based algorithm 
 

As outlined in the section 3.2.1 of the publication, the optimal rate calculation workflow for an 

industrial microbial fed-batch fermentation can be found using the generic model-based 

algorithm presented in section 3.1.2. In section 3.2.1 the most relevant pre-processing and 

rate calculation combinations are shown in order to derive volumetric biomass formation rate 

(rx) and substrate uptake rate (rS). In Table 1 and Table 2 we want to show more investigated 

combinations of pre-processing and rate calculation steps for deriving rS and rx, respectively. 

The different combinations were evaluated in respect to their accuracy to the true rates using 
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the normalized root mean square error (NRMSE) and in respect to their precision using the 

mean relative error on the rate (𝛥𝑟𝑟𝑒𝑙).  

 

Table 1: comparison of different rate calculation algorithms for the substrate uptake rate (rS) originating from a scale 

signal (online signal) by means of NRMSE to the true rate and relative errors of the rate (𝛥𝑟𝑟𝑒𝑙) at different absolute 

noise levels. Used abbreviations for algorithms: DWR5: rate calculation with dynamic window adaption with SNR 5 

on resulting rates, FWR2: rate calculation with fixed window size of 2 points, FWR4: rate calculation with fixed 

window size of 4 points, SGF20: Savitzky-Golay smoothing with a window size of 20 data points, SGR20: Savitzky-

Golay first derivative with a window size of 20 data points, BwF0.5: Butterworth low pass filter with 0.5 mHz cut-off 

frequency, n.a. refers to not available, since the first derivative with Savitzky-Golay algorithms does not provide 

estimates about the precision of the calculated rate.  

  Added absolute noise 
[g] 0.05   0.1   
  NRMSE  𝛥𝑟𝑟𝑒𝑙 NRMSE  𝛥𝑟𝑟𝑒𝑙 
DWR5 0.111 0.132 0.113 0.134 
SGF20 + DWR5 0.043 0.129 0.067 0.132 
SGF20 + DWR5 + 
BwF0.05 0.027 0.129 0.047 0.132 
FWR2 1.712 6.194 3.422 6.882 
SGF20 + FWR2 0.086 1.976 0.171 4.112 
FWR4 0.578 2.795 1.148 6.603 
SGF20 + FWR4 0.050 0.652 0.099 1.327 
SGF20 + FWR4 + 
BwF0.5 0.035 0.651 0.067 1.319 
SGR20  0.048 n.a. 0.094 n.a. 
SGR20 + BwF0.5 0.024 n.a. 0.048 n.a. 
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Table 2: Comparison of different rate calculation algorithms for the volumetric biomass formation rate (rx) originating from an OD-measurement (offline signal) by means of NRMSE 

to the true rate and relative errors (𝛥𝑟𝑟𝑒𝑙) of the rate at different relative noise levels of the OD-measurement. Used abbreviations for algorithms: DWR5: rate calculation with dynamic 

window adaption with SNR of 5 on resulting rates, FWR2: rate calculation with fixed window size of 2 points, FWR3: rate calculation with fixed window size of 3 points, FWR4: rate 

calculation with fixed window size of 4 points, PBR: window size equals phase boundary, KaF: Kalman filtering. 

Added relative error to biomass signal [%]: 
0.5 - 1 

 
2 - 2.5 

 
3.5 - 4 

 
5 - 5.5 

 
Applied algorithms: NRMSE 𝛥𝑟𝑟𝑒𝑙 NRMSE 𝛥𝑟𝑟𝑒𝑙 NRMSE 𝛥𝑟𝑟𝑒𝑙 NRMSE 𝛥𝑟𝑟𝑒𝑙 
DWR5 0.15 0.12 0.22 0.14 0.22 0.15 0.34 0.16 
FWR2 0.37 3.46 0.99 5.4 1.71 7.03 2.35 6.12 
FWR3 0.24 2.67 0.5 3.21 0.88 6.14 1.11 3.35 
FWR4 0.26 1 0.39 7.26 0.57 4.57 0.76 4.97 
PBR 0.82 0.03 0.82 0.08 0.83 0.13 0.84 0.18 
KaF + DWR5 0.11 0.09 0.13 0.1 0.16 0.1 0.19 0.1 
KaF + FWR2 0.11 0.15 0.14 0.16 0.2 0.19 0.26 0.27 
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S6 Proof of equivalence of finite difference approximation in 
combination with linear interpolation and “integral” 

calculation of specific rates (qi) 
 

In this contribution we presented an optimal rate calculation workflow that uses finite 

difference approximation for deriving volumetric rates. Dividing those volumetric rates by the 

concentration of biomass, specific rates for each species 𝑖 (𝑞𝑖) can be obtained. However, a 

different specific rate calculation method for mammalian cell culture than for microbial 

fermentations is commonly applied, as discussed in section 4.4 of the main article. It was 

suggested to use the ratio of the observed mass difference during a time window (𝑡 − 𝑡0) of 

species 𝑖 (𝛥𝑚𝑖) to the integral of viable cells (𝐼𝑉𝐶) according to Eq. 16 and 17 [6,7]. The 

numerical integration in Eq. 17 was performed using trapezoidal integration.  

𝐼𝑉𝐶 =  ∫ 𝛾𝑋𝑉

𝑡

𝑡0
· 𝑑𝑡  (16) 

𝑞𝑖,𝐼 =
𝛥𝑚𝑖

∫ 𝛾𝑋𝑉

𝑡

𝑡0
·𝑑𝑡

=
𝛥𝑚𝑖

1

2
(𝛾𝑋𝑉,𝑡

+𝛾𝑋𝑉,𝑡0
)·𝛥𝑡

  (17) 

It can be easily shown that the finite difference approximation delivers the same specific rate 

(𝑞𝑖,𝐹𝐷) at 𝑡0 +
𝑡−𝑡0

2
 using linear interpolation for the viable cells concentration (𝑋𝑉) as shown in 

Eq. 18: 

 

𝑞𝑖,𝐹𝐷 =
𝛥𝑚𝑖

𝛥𝑡
·

1

𝛾𝑋𝑉,𝑡0+(𝑡−𝑡0)/2

=
𝛥𝑚𝑖

𝛥𝑡
·

1

𝛾𝑋𝑉,𝑡0
+

(𝛾𝑋𝑉,𝑡
−𝛾𝑋𝑉,𝑡0

)

2

=
𝛥𝑚𝑖

1

2
(𝛾𝑋𝑉,𝑡

+𝛾𝑋𝑉,𝑡0
)·𝛥𝑡

  (18) 

Symbols Used 
𝑭  Dynamic matrix 

𝑯  Observation matrix 

𝐼𝑉𝐶  Integral of viable cells 

𝑲  Gain matrix 

𝒍  Vector of observations 

𝛥𝑚𝑖  Change of mass of species 𝑖 

𝒏  Dynamic noise of state vector 

𝑷−  A priori covariance matrix 

𝑷+  A posteriori covariance matrix 

𝑸  Covariance matrix of the dynamic noise 
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𝑞𝑖,𝐼  Specific rate of species 𝑖 calculated using the integral viable cell density 

𝑞𝑖,𝐹𝐷  Specific rate of species 𝑖 calculated using the finite difference 

approximation 

𝑹  Covariance of observation noise 

𝑈𝑟  Absolute uncertainty boundary of rate 

𝛥𝑟𝑟𝑒𝑙  Relative error of rate 

𝛥𝑡  Time span used for deriving the rate 

𝒘  Observation noise 

𝛾𝑋𝑉
  Viable cell concentration 

𝒙  State vector  

𝒙−  A priori state vector 

𝛥𝑦𝑖  Absolute measurement error of data point 𝑖 of the originating signal for rate 

calculation 
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9.2 Supporting Information: Propagation of Measurement Accuracy to 
Biomass Soft-Sensor Estimation and Control Quality 

 

Main mechanistic assumptions and equations 
The main mechanistic assumptions behind data generation and soft-sensor are the same. 
Substrate, ammonia and oxygen is converted to biomass and carbon dioxide. As the 
amounts of products in biopharmaceutical processes are in the ranges of some milligrams 
per liter (CITE), the formed product can be neglected.  

𝑟𝑆𝐶𝐻𝑝𝐻𝑂𝑝𝑂 + 𝑟𝑂2𝑂2 + 𝑟𝑁𝑁𝐻3  → 𝑟𝑋𝐶𝐻𝑧𝐻𝑂𝑧𝑂𝑁𝑧𝑛 + 𝑟𝐶𝑂2𝐶𝑂2 

Main input signal into the model are the stoichiometry of the substrate (C6H12O6) and the 
concentration (0.400 g mL-1) and feed rate of the substrate. The stoichiometry of the 
organism was taken from CITE. 

The feed rate at time point t during the not induced fed-batch phase was calculated in form 
as follows. After the induction phase, the feed rate was kept constant (Relevance shown in 
Fehler! Verweisquelle konnte nicht gefunden werden.). 

𝐹(𝑡) = 𝐹0 ∗ 𝑒µ𝑡 

t is the time (h), µ the feed exponent (h-1) and F0 the feed rate (mL) at fed-batch start which 
was calculated  

𝐹0 =
𝑋 ∗ 𝑀𝑆 ∗ µ

𝑌𝑋/𝑆 ∗ 𝑀𝑋 ∗ 𝑐𝑆
 

Where X is the total amount of biomass in the reactor (g), MX the C-normalized molecular 
weight of the biomass (g c-mol-1), YX/S the biomass substrate yield (c-mol c-mol-1), cS the feed 
concentration (g mL-1) and MS the C-normalized molecular weight of the substrate (g c-mol-1).  

As there is no substrate accumulation and no outflow of substrate during the fed-batch 
phase, the complete inflow of substrate is immediately consumed, resulting in a substrate 
uptake rate rS (c-mol h-1) which is only dependent on the feed rate and the concentration of 
the feed. 

𝑟𝑆 =  −
(𝐹 ∗ 𝑐𝑆)

𝑀𝑆
 

It should be mentioned here, that all rates where the flow direction shoes into the cell or 
where a species is consumed, were defined to be negative (rS, OUR), while rates leading to 
an accumulation or formation of a species were defined to be positive (rX, CER). 

The biomass formation rate rX (c-mol h-1) was calculated by using a fixed biomass/substrate 
yield in the exponential fed-batch phase, and a decreasing biomass/substrate yield in the 
induction phase.  

𝑟𝑋 =  −𝑟𝑆 ∗ 𝑌𝑋/𝑆 

The consumption of oxygen per formed amount of biomass YO2/X (mol c-mol-1) was calculated 
by setting up the electron balance. γS, γS and γO2 are the degrees of reduction based on one 
c-mole of substrate and biomass (c-mol-1), or one mole of oxygen (mol-1), respectively. The 
degrees of reduction were calculated by setting up γN = -3, γC = 4, γH = 1 and γO = -2 
(Villadsen, 2011). As γ for CO2, NH3 and H2O according to the previous definition is 0, the 
degree of reduction in the system sum should not change over time. 
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𝑟𝑆𝛾𝑆 +  𝑟𝑋𝛾𝑋 +  𝑟𝑂2
𝛾𝑂2

= 0 

When setting rX to 1 and and rS to 1/YX/S, rO2 corresponds to YO2/X and can be calculated 
according to the following equation: 

𝑌𝑂2/𝑋 =

𝛾𝑆
𝑌𝑋/𝑆

−  𝛾𝑋

𝛾𝑂2

 

Using YO2/X, the oxygen uptake rate OUR (mol h-1) now can be simply calculated. 

𝑂𝑈𝑅 = 𝑌𝑂2/𝑋 ∗ 𝑟𝑋 

For the calculation of the carbon dioxide evolution rate CER (mol h-1) it was assumed that the 
whole carbon flux goes into the biomass or leaves the reactor as carbon dioxide. When 
neglecting product formation and extracellular metabolites, the carbon balance can be stated 
as follows. All sum formulas are normalized to one carbon, resulting in the following 
equation:  

𝑟𝑆 + 𝑟𝑋 +  𝑟𝐶𝑂2
= 0 

As the accumulation of carbon dioxide in the reactor can be neglected, the carbon dioxide 
evolution rate was calculated as follows:  

𝐶𝐸𝑅 = 𝑟𝐶𝑂2
=  𝑌𝐶𝑂2/𝑆 ∗  −𝑟𝑆  = (1 − 𝑌𝑋/𝑆) ∗  −𝑟𝑆 

In the last step, the used oxygen and the produced carbon dioxide are added and subtracted 
from the inlet air and oxygen, considering water stripping and assuming the whole gas phase 
as ideal gas. The oxygen fraction in the air (yO2, Air) is 0.2095, the oxygen fraction of the 
oxygen supply tank 0.9800 (yO2, O2). The volumetric inflow of oxygen O2, in (L h-1) is calculated 
as follows: 

𝐹𝑂2,𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 = 𝑦𝑂2,𝐴𝑖𝑟 ∗ 𝐹𝐴𝑖𝑟,𝑖𝑛 + 𝑦𝑂2,𝑂2
∗ 𝐹𝑂2,𝑖𝑛 

The volumetric oxygen outflow FO2, out (L h-1) is 

𝐹𝑂2,𝑜𝑢𝑡 = 𝐹𝑂2,𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 + (𝑂𝑈𝑅 ∗ 𝑉𝑀) 

Similar for carbon dioxide FCO2, out (L h-1) 

𝐹𝐶𝑂2,𝑜𝑢𝑡 =  𝐹𝐶𝑂2,𝑖𝑛 + (𝐶𝐸𝑅 ∗ 𝑉𝑀) 

In the final step, the total outflow is calculated and the detected values XCO2, out and XO2, out 
(%) are generated. The value yO2, wet represents the oxygen content of the exhaust gas 
without microbial activity. It is an important value to estimate the water stripping effect and 
described in detail elsewhere (CITE). First the total outflow of air FAir, out has to be calculated 

𝐹𝐴𝑖𝑟,𝑜𝑢𝑡 =  
𝐹𝐴𝑖𝑟,𝑖𝑛,𝑡𝑜𝑡𝑎𝑙 + 𝐶𝐸𝑅 ∗ 𝑉𝑀 + 𝑂𝑈𝑅 ∗ 𝑉𝑀

𝑦𝑂2,𝑤𝑒𝑡
𝑦𝑂2,𝐴𝑖𝑟

⁄
 

𝑋𝑂2,𝑜𝑢𝑡 =  100 ∗
𝐹𝑂2,𝑜𝑢𝑡

𝐹𝐴𝑖𝑟,𝑜𝑢𝑡
 

𝑋𝐶𝑂2,𝑜𝑢𝑡 =  100 ∗
𝐹𝐶𝑂2,𝑜𝑢𝑡

𝐹𝐴𝑖𝑟,𝑜𝑢𝑡
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9.3 Supporting Information: Criticality Assessment Workflow for Biopharmaceutical Process Validation Stage 1 
Table 1: Standardized experimental data from DoE study of primary recovery (PR), as well as upper and lower normal operating ranges (NOR_U, NOR_L, respectively) and scale 
down model (SDM) variance and mean. Normalization was performed by subtracting all values by the mean and diving by the standard deviation of DoE runs.  

Batches Parameter: 
temperature  

Parameter: 
time 

Parameter: 
Mixing 
[Yes/No] 

Parameter: 
pH 

Process 
impurity 2 
concentration 
specific (post 
filtration)    

Process 
impurity 1 
concentration 
specific 

Process impurity 2 
concentration specific 
(prior filtration)    

DoE1 
0,00 1,22 0,95 -1,22 -0,88 -1,20 -0,55 

DoE2  
1,22 -1,22 0,95 -1,22 -0,81 0,80 -0,63 

DoE3  
-1,22 0,00 -0,95 -1,22 -0,74 0,06 -0,23 

DoE4 
0,00 -1,22 -0,95 1,22 0,87 -0,88 -0,39 

DoE5  
-1,22 -1,22 0,95 0,00 -0,71 0,93 -0,41 

DoE6  
1,22 1,22 -0,95 0,00 -0,76 0,51 -0,66 

DoE7  
-1,22 1,22 -0,95 1,22 2,07 0,68 -0,24 

DoE8A  
0,00 0,00 0,95 0,00 0,17 -1,25 1,98 

DoE9A  
0,00 0,00 -0,95 0,00 0,92 -1,03 1,76 
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DoE10  
1,22 0,00 0,95 1,22 -0,14 1,40 -0,63 

Threshold 
    

78,76 24,41 77,31 

NOR_L -1,71 0,33 -0,95 -0,61 
   

NOR_U 0,41 0,41 0,95 0,61 
   

Sign Params     
Parameter: pH  

Parameter: pH, 
Parameter: 
temperature  

SDM_variance     0,99 0,02 0,22 

SDM_mean 
    3,27 -0,70 0,98 
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Table 2: Standardized experimental data from DoE study of chromatography column 1 (CC1), as well as upper and lower normal operating ranges (NOR_U, NOR_L, respectively) 
and scale down model (SDM) variance and mean. Normalization was performed by subtracting all values by the mean and diving by the standard deviation of DoE runs.  

Batches 

Paramete
r End 
pooling  

Paramete
r Elution 
strength 

Paramet
er wash 
strength 

Parameter 
colum loading 
density 

Paramete
r pH 

Process impurity 2 
clearance 

Product 
impurity 2 
clearance 

Product impurity 1 
clearance 

DoE1 1.10 -1.10 -1.10 1.10 -1.10 -0.25 -0.55 -0.25 

DoE2 0.00 1.10 -1.10 -1.10 -1.10 -1.07 -0.53 -0.75 

DoE3 -1.10 0.00 -1.10 1.10 1.10 -0.34 -0.06 -0.36 

DoE4 -1.10 -1.10 -1.10 -1.10 0.00 -0.51 2.72 -0.29 

DoE5 1.10 -1.10 0.00 -1.10 1.10 0.33 NaN NaN 

DoE6 1.10 1.10 -1.10 0.00 1.10 -0.86 -0.28 -0.81 

DoE7 -1.10 1.10 1.10 -1.10 1.10 -0.68 0.11 -0.62 

DoE8 -1.10 1.10 0.00 1.10 -1.10 -0.65 -0.62 1.77 

DoE9 0.00 0.00 0.00 0.00 0.00 0.86 -0.38 -0.78 

DoE10 0.00 -1.10 1.10 1.10 1.10 0.75 1.21 0.44 

DoE11 -1.10 -1.10 1.10 0.00 -1.10 0.79 -0.71 2.20 

DoE12 1.10 0.00 1.10 -1.10 -1.10 -0.83 -0.48 0.06 

DoE13 1.10 1.10 1.10 1.10 0.00 2.46 -0.42 -0.61 

Threshold      
-1.67 -1.04 -1.49 

NOR_U 0.00 0.65 1.10 1.10 0.55  
 

 

NOR_L -1.10 -1.10 -1.10 -0.51 -0.55  
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Significant 
Parameter
s      

Parameter wash strength, 
Parameter column 

loading density 

 

Parameter end pooling, 
Parameter wash strength, 
Parameter column loading 
density, Parameter pH 

SDM 
variance      0.03 0.00 0.02 

SDM mean      -0.45 -0.58 -0.80 
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9.4 Supporting Information: Integrated Process Modeling – A process 
validation life cycle companion 

Table S3: Overview of found models based on DoE data. CC is abbreviation for chromatography column, PCI 
stands for process related impurities and PRI product related impurities. 

 

 

 Response alph
a Model R² Q² ΔR

Q P Parameters 

C
C

 1
 

Yield 0.05 Linear 0.8
8 

0.7
4 0.14 0.00

0 

(+) End pooling, 
(+) Elution strength, 
(-) pH 

Specific PRI 1 
clearance 0.05 Linear 0.2

6 
0.0
5 0.20 0.09

2 (+) pH, 

Specific PRI 2 
clearance 0.05 Linear 0.7

7 
0.5
0 0.27 0.00

6 

(-) pH, 
(+), Wash strength, 
(+) column loading density 

Specific DNA 
clearance - - - - - - - 

Specific PCI 1 
clearance 0.05 Quadrati

c 
0.9
1 

0.6
2 0.30 0.00

3 

(+) End pooling, 
(-) End pooling^2, 
(+) Column loading density, 
(+) Wash strength, 
(-) pH 

Specific PCI 2 
clearance - - - - - - - 

C
C

 2
 

Yield - - - - - - - 
Specific PRI 1 
clearance - - - - - - - 

Specific PRI 2 
clearance - - - - - - - 

Specific DNA 
clearance - - - - - - - 

Specific PCI 1 
clearance - - - - - - - 

Specific PCI 2 
clearance - - - - - - - 

C
C

 3
 

Yield 0.05 Quadrati
c 

0.9
1 

0.8
0 0.11 0.00

0 

(-) Column loading 
density^2, 
(+) Column loading density 

Specific PRI 1 
clearance 0.05 Quadrati

c 
1.0
0 

0.9
1 0.09 0.00

9 

(-) pH^2, 
(+) pH, 
(-) Wash strength, 
(+) Wash strength^2, 
(-) Column loading 
density^2, 
(+) Column loading density 

Specific PRI 2 
clearance - - - - - - - 

Specific DNA 
clearance - - - - - - - 

Specific PCI 1 
clearance 0.05 Quadrati

c 
0.9
9 

0.9
8 0.02 0.00

0 

(+) Column loading density, 
(-) Column loading 
density^2, 
(+) Gradient slope 

Specific PCI 2 
clearance - - - - - - - 
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Table S4: Overview of models showing a correlation between specific CQA clearances and CQA load density. CC 
is abbreviation for chromatography column, PCI stands for process related impurities and PRI product related 
impurities. 

1 PRI 1 spiking experiments were used to establish this model 
² PCI 1 depletion experiments were used to establish this model 
 

  

 Response alph
a model R² Q² ΔRQ P Parameters 

C
C

 1
 

Specific PRI 1 
clearance - - - - - - - 

Specific PRI 2 
clearance - - - - - - - 

Specific DNA 
clearance - - - - - - - 

Specific PCI 1 
clearance - - - - - - - 

Specific PCI 2 
clearance 0.05 Linear 0.7

8 
0.6
8 0.10 0.00

0 
Load PCI 2 amount per 
CV 

C
C

 2
 

Specific PRI 1 
clearance1 0.05 Linear 0.6

6 
0.4
2 0.24 0.00

0 
Load PRI 1 amount per 
CV 

Specific PRI 2 
clearance - - - - - - - 

Specific DNA 
clearance - - - - - - - 

Specific PCI 1 
clearance² 0.05 Linear 0.5

4 
0.3
6 0.18 0.00

0 
Load PCI 1 amount per 
CV 

Specific PCI 2 
clearance - - - - - - - 

C
C

 3
 

Specific PRI 1 
clearance - - - - - - - 

Specific PRI 2 
clearance - - - - - - - 

Specific DNA 
clearance - - - - - - - 

Specific PCI 1 
clearance - - - - - - - 

Specific PCI 2 
clearance 0.05 Linear 0.6

3 
0.3
7 0.26 0.00

2 
Load PCI 2 amount per 
CV 
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IPM Simulation without Spiking Models 
 

 
Figure S4: Comparison of simulated (top) product related impurity 1 distribution and observed (bottom) product 
related impurity 1 from LS after each column step. Normalization was performed by diving by the maximum 

observed 𝒄𝑪𝑸𝑨. Simulation was performed without taking any spiking model into account. 
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Figure S5: Comparison of simulated (top) product related impurity 2 distribution and observed (bottom) product 
related impurity 2 from LS after each column step. Normalization was performed by diving by the maximum 

observed 𝒄𝑪𝑸𝑨. Simulation was performed without taking any spiking model into account. 
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Figure S6: Comparison of simulated (top) process related impurity 2 distribution and observed (bottom) process 
related impurity 2 from LS after each column step. Normalization was performed by diving by the maximum 

observed 𝒄𝑪𝑸𝑨. Simulation was performed without taking any spiking model into account. 
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Figure S7: Comparison of simulated (top) process related impurity 1 distribution and observed (bottom) process 
related impurity 1 from LS after each column step. For CC 3 pool, no process related impurity 1 value was 
observed above LoQ, therefore, no histogram bar is plotted for the observed values at CC 3 pool. Normalization 
was performed by diving by the maximum observed 𝒄𝑪𝑸𝑨. Simulation was performed without taking any spiking 

model into account. 

 

 

 

 

 

 

 


