
Optimal Local Path-Planning and Control
for Mobile Robotics

MASTER THESIS

Conducted in partial fulfillment of the requirements for the degree of a

Diplom-Ingenieur (Dipl.-Ing.)

supervised by

Dr. Markus Bader
Assoc. Prof. Dr. Wolfgang Kemmetmüller

submitted at the

TU Wien
Faculty of Electrical Engineering and Information Technology

Automation and Control Institute

by
Horatiu George Todoran

Matriculation number 1128205
Firmiangasse 34/8

1130 Vienna
Austria

Vienna, February 2018

Complex Dynamical Systems Group
A-1040 Wien, Gußhausstr. 27–29, Internet: http://www.acin.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract

Autonomous navigation of mobile robots represents a challenging task in the field of
robotics. This is especially the case when accounting for generic, non-trivial robot
dynamics, unstructured, possibly dynamic environments, realistic sensoric assumptions as
well as the real-time computation requirements.

The thesis addresses this navigation problem by means of Moving Horizon Trajectory
Planning (MHTP), an approach that based on dynamic optimization, lying at the boundary
between the topics of path planning and control.

In such methods, the declarative formulation of the optimization problem is of great
importance, as such formulations are succinct, expressive, posses theoretically provable
characteristics and result in powerful behaviours. Moreover, they allow a safety analysis
of the navigation approach, resulting in formulations of the navigation strategy that
can guarantee that the agent will never collide with the environment. The discussed
assumptions regarding the environment characteristics range from the simple known, static
environment model up to environment models that assume non-trivial sensoric capabilities
(allow sensing only in non-occluded surfaces that are within FOV and maximum sensing
distances) as well as possessing arbitrary dynamic models with bounded uncertainty.

Special care and focus is given also in the practical implementation of the discussed
approaches. To this end, an efficient representation of the relaxed optimization problem is
being presented, the minimal parametric representation. Non-trivial, PDE-induced metrics
used to encode the cost-function of the optimization problem are analysed, aiming for a
convexification of the formulation, with the practical benefits of removing local minima
and thus guaranteeing that the agent is always reaching its navigation goal. Moreover,
the implementation of such methods is addressed assuming an asynchronous system,
presenting synchronization approaches and coupling strategies with the other modules
within the system such as state observers and lower-level controllers.

Simulated and real-world experimental results are presented on three different autonomous
platforms (differential drive, independent wheel steering drive as well as a race car)
operating in various environment types, illustrating the quality of the proposed ap-
proaches.

I

Kurzzusammenfassung

Das autonome Navigieren von mobilen Roboter ist eine komplexe und herausfordernde
Aufgabe in der Robotik. Dies gilt insbesondere, wenn man einen Roboter berücksichtigt,
der eine allgemeine, nicht triviale Dynamik aufweist, der mit realer, fehlerbehafteter
Sensorik ausgestattet ist, der in einer unstrukturierten, möglicherweise sogar dynamischen
Umgebung betrieben wird, und der zusätzliche Echtzeit-Systemanforderungen erfüllen
soll.

Diese Probleme werden in dieser Arbeit mittels einer Moving Horizon Trajektorienplanung
(MHTP) behandelt. Dies ist eine Methode, die auf dynamischer Optimierung basiert und
mit Themen der Pfadplanung und -regelung verwandt ist.

Für solche Methoden ist eine deklarative Formulierung des Optimierungsproblems von
grösster Bedeutung, da dies eine prägnante, aussagekräftige und theoretisch beweisbare
Beschreibung des Problems ermöglicht. Zugleich stellt dieser Navigationsansatz sicher,
dass jegliche mögliche Kollision des Roboters mit seiner Umgebung vermieden wird. Der
vorgestellte Ansatz begünstigt hierbei ein breites Einsatzgebiet - von einfachen statischen
Umgebungen bis zu komplexen Umgebungsmodellen mit nicht-trivialen Sensoreigenschaf-
ten (ermöglichen nur die Erfassung von nicht okkludierten Oberflächen, die sich innerhalb
des FOV und der maximalen Messabständen befinden) und Modellen, die beliebige
Dynamik und beschränkte Unsicherheit aufweisen.

Spezielle Aufmerksamkeit wurde in dieser Arbeit zudem der praktischen Umsetzung
gewidmet. Es wird eine effiziente Repräsentation des Optimierungsproblems vorgestellt,
die Minimale Parametrische Repräsentation. Nicht-triviale, PDE-induzierte Metriken
werden verwendet um eine Kostenfunktion des Optimierungsproblems zu analysieren.
Diese zielen auf eine konvexe Formulierung des Problems ab, die es ermöglicht, lokale
Minima zu beseitigen und somit zu garantieren, dass der Roboter stets sein Navigationsziel
erreicht. Unter Annahme eines asynchronen Systems werden die Methoden mittels
Synchronisierungsansätzen und Kopplungsstrategien mit anderen Modulen des Systems
wie Zustandsbeobachter und Low-Level Regler implementiert.

Die vorgestellten Methoden werden sowohl in simulierten als auch in realen Experimenten
unter verschiedenen Umgebungsbedingungen und auf drei verschiedenen autonomen
Plattformen (Differentialantrieb, unabhängiger Lenkantrieb, und Rennauto) evaluiert und
ausführlich diskutiert.

II

Contents

List of Figures V

List of Examples VII

1 Introduction 1
1.1 State of Art . 3

2 General Definitions and Models 6
2.1 Classes of Dynamic Models . 6

2.1.1 Non-linear Models . 6
2.1.2 Affine-Input Models . 14
2.1.3 Linear Time-Variant Models . 15

2.2 Parametric Functions . 15
2.2.1 Piece-wise Constant . 16
2.2.2 Piece-wise Linear . 18
2.2.3 Polynomials . 21
2.2.4 Splines . 22

2.3 Solving ODEs . 24
2.3.1 Single-step Methods . 25
2.3.2 Multi-Step Methods . 30

2.4 Computing Sensitivities of ODEs . 31
2.4.1 Numeric Differences . 31
2.4.2 Analytic . 32

3 Optimal Planning and Control 37
3.1 Definitions and Models . 37

3.1.1 Dynamic Models . 37
3.1.2 Constraints . 38
3.1.3 Cost Function . 39

3.2 Optimization-based Control . 40
3.2.1 Infinite Optimization Horizon, Perfect Environment Model 40
3.2.2 Finite Optimization Horizon, Perfect Environment Model 41
3.2.3 Classification of Imperfect Environment Models 42

3.3 Constraints for Ensuring Safety . 44
3.3.1 Notation and Related Concepts . 44
3.3.2 Collision-free Navigation Constraints 46

III

Contents IV

4 Implementation of MHTP 50
4.1 Discretizing the Optimization Problem . 51

4.1.1 Fully Discretized Representation 51
4.1.2 Minimal Parametric Representation 54
4.1.3 Evaluation Lattices . 55
4.1.4 Solving the Discretized Optimization Problem 58

4.2 Gradient-based Non-Linear Programming 60
4.2.1 Solver Algorithms . 60
4.2.2 Generic Constraint Modelling . 61
4.2.3 Preconditioning . 69

4.3 Initial Solutions . 70
4.4 Temporal Synchronization . 72

5 A Suitable Cost Function 75
5.1 Reaching a Goal . 75

5.1.1 Metrics and Norms . 76
5.1.2 PDE Candidates . 78
5.1.3 Sensor-processing: Layered Local Maps 83

5.2 Other Navigation Objectives . 85

6 Experimental Results 87
6.1 General Considerations . 87
6.2 Differential-Drive: Navigation in Human-Shared Environments 89

6.2.1 Navigation in Partially-Mapped Static Environments 91
6.2.2 Navigation using Safety Constraints 92
6.2.3 MPC vs Stabilized MHTP Comparison 95
6.2.4 Using State Observers . 101
6.2.5 Real-Robot Testing . 107

6.3 Ackerman-Drive: Navigation of the TU Autonomous Race-Car 109
6.4 IWS-Drive: Navigation with Controlled Torso-Orientation 111

7 Conclusions 115
7.1 Future Work . 116

List of Figures

2.1 Differential-drive geometric model . 8
2.2 Ackerman-drive geometric model . 9
2.3 I4WS geometric model . 10
2.4 I4WS global frame considerations . 11
2.5 The single-track dynamic model . 12
2.6 A 1-dimensional piece-wise constant function ωb(t) 17
2.7 Visualization of a pixel-map . 18
2.8 Piece-wise linear encoding of kinematic inputs for a differential-drive . . . 19
2.9 Visualization of the bi-linear interpolation 20
2.10 Visualization of the bi-linear interpolation 20
2.11 Unconstrained pose-to-pose trajectories using polynomial fitting 21
2.12 Illustration of the gradient computation using the mid-point method . . . 27
2.13 Comparison of various discretization schemes used for numerical integration 28

3.1 Illustration of the emerging trajectories of MPC and Stabilised MHTP . . 42
3.2 Nominal versus guaranteed free space for several future simulated time-steps 45
3.3 Nominal and emergency trajectories when enforcing the safety constraints 49
3.4 Agent and env. simulations timeline when enforcing the safety constraints 49

4.1 Bounds of the discretized distance constraint 53
4.2 Trajectory parametrization with different lattice points 57
4.3 Nominal and guaranteed free space for Random-Walk Environment Models 67
4.4 Precomputed trajectories towards a feasible-invariant state 68
4.5 Control-space vs. state-space trajectory sampling 71

5.1 Local-minima when minimizing the Euclidean Distance 77
5.2 Different Distance Fields . 81
5.3 Solutions of the Eikonal equation with velocity damping 82

6.1 Robotic Platform Pioneer-3DX . 89
6.2 State-Machine for the Differential-Drive Navigation Module 90
6.3 Resulting optimized trajectory takes a shortcut in the environment 92
6.4 Temporal sequence of MPC Controller when avoiding unmapped obstacle 93
6.5 Evaluation of different safety constraints during a cornering manoeuvre . 94
6.6 Navigation under uncertainty . 95
6.7 Testing scenario and computed global path 97
6.8 Trajectories of the agent using MPC and SMHTP with a Lyapunov Controller 98

V

List of Figures VI

6.9 Distance to obstacles, linear and angular velocities along the MPC trajectory 98
6.10 Distance to obstacles, linear and angular velocities along the SMHTP

trajectory . 99
6.11 Trajectory of the MPC under modelling errors 99
6.12 Trajectory of the SMHTP under modelling errors 100
6.13 Linear and angular velocities along the SMHTP trajectory under modelling

errors . 100
6.14 Diagram illustrating the observers structure 101
6.15 Estimated Pose of the MPC vs Ground-Truth Pose 105
6.16 Ground-truth trajectories of MPC and SMHTP using state estimation

under modelling errors . 106
6.17 Adaptation of the observed model parameters as well as linear and angular

velocities along the SMHTP trajectory . 106
6.18 Resulting trajectory of the real platform in partially-mapped static envi-

ronments . 107
6.19 Linear and angular velocity commands along the real-robot trajectory in

static environment . 108
6.20 Resulting trajectory of the real platform navigating near humans 108
6.21 Formula-Student Race-Car Edge8 . 109
6.22 Resulting trajectory in a closed-circuit . 110
6.23 Resulting linear velocity and steering angle in a closed-circuit 110
6.24 Robotic Platform Blue . 111
6.25 Visualization of an ICC trajectory . 112
6.26 Generated trajectories under different dominating weights 113

List of Examples

2.1 Differential-drive kinematic model . 8
2.2 Ackerman-drive kinematic model . 9
2.3 Independent wheel steering (IWS) kinematic model 9
2.4 Single-track dynamic model . 12
2.5 From non-linear to input-affine model . 14
2.6 Dense encoding of system input values . 17
2.7 Pixel maps . 17
2.8 Piece-wise linear representation of kinematic inputs 18
2.9 Continuous pixel maps . 20
2.10 Unconstrained trajectory generation between two states 21
2.11 Mid-point method . 26
2.12 Comparison of different explicit methods for a differential-drive model 27
2.13 Differential-Drive ODE Sensitivities using piece-wise linear kinematic inputs . 33
4.1 Discretizing the Distance-to-Obstacles Constraint for a circular agent 52
4.2 Evaluation Lattices of kinematic models . 56
4.3 Kinematic Constraints: Differential Drive . 63
4.4 Collision-avoidance Constraints: Random-Walk Environment Model 64
4.5 Safety Constraints: Static-Known Environment Model 65
4.6 Safety Constraints: Random-Walk Environment Model 66
6.1 State-Machine for the Differential-Drive Navigation Module 90
6.2 Lyapunov-based Trajectory-Following Control 95
6.3 Input-Output Linearization Trajectory-Following Control 96
6.4 Kalman Filter for State and Parameter Estimation 102

VII

1 Introduction

Autonomous Navigation is a field of research that has recently started to be applied in a
variety of domains, ranging from industrial applications where fleets of agents perform
transportation tasks, the field of assistive robotics in which fetch-and-carry tasks require
autonomous navigation, as well as the field of autonomous vehicle driving.

Navigation in unstructured environments represents a fundamental task for autonomous
agents. A request stated as simple as "going from A to B" has proven to be very difficult
to solve when non-trivial agent (and possibly environment) dynamics as well as constraints
are taken into account. Due to the complexity of this task, the approaches are typically
split into the research sub-topics of of Routing, Global Path-Planning, Localization, Local
Path-Planning and/or Low-Level Control. The above-mentioned topics can be introduced
by utilizing an intuitive analogy: a trip that an insurance employee would perform with a
vehicle fulfilling a job-required task.

Routing Globally, suppose that the company has to coordinate a considerable number
of employees trips. Because of this, the coordination happens at high-level, such that
the company only tells every employee a required route, i. e. key locations (checkpoints)
where they have to be present in certain time intervals. Of course, at this level, the
coordination is desired to optimize the trips requested to the employees, such that e.g.
only one employee visits a location, not more employees require the same vehicle at the
same time. In the context of autonomous navigation, this relates to Routing problems,
which are in general considered as a separate (high-level) module that typically coordinates
multiple autonomous agents. Its typical frequencies are in the order of 0.1 Hz.

Global Path-Planning Given the route of the day, one of the high-level tasks of each
employee is to come up with the path of the day, such that the checkpoints of the
route required by the company are achieved. At this point, the employee can perform
improvements by optimizing the order in which the checkpoints are reached, the taken
roads and high-ways, potentially accounting for some coarse live-traffic data. Returning
from the analogy, the Global Path-Planning module typically accounts for computing
global paths of each agent. Such paths are usually computed using discrete algorithms
(graph search methods such as Dijkstra or A*) and do not account for the dynamics of
the platform and environment. Different approaches expand this module with more or
less functionality from other modules. For example, higher-level functionality is achieved
by computing global paths for multiple agents in the same algorithm, optimizing thus for
"traffic jams" within the coordinated fleet. Approaches that provide such functionality

1

1 Introduction 2

relate to the topic of Multi-Agent-Planning, including algorithms such as reactive planning
[1] or prioritized planning methods [2]. Typical frequencies of this modules are on the
order of 1 Hz.

Localization Nowadays, it is wide-spread for drivers to make use of a GPS module.
This allows the driver to localize itself in a global reference frame and more importantly
make use of this information to be able to plan global paths for its trip. However, prior
to the appearance of the GPS technology, drivers had the more complicated task of
identifying their location by perception of their local neighbourhood and search on a
static map. In the context of Navigation, Localization represents a key capability that the
system has to possess. As in the old driving-days, in many practical (indoor) applications,
GPS signals are not available or not sufficiently accurate. Thus, environment maps are
generated using Simultaneous Localization and Mapping (SLAM) algorithms, by means
of particle-filtering [3] or graph-optimization techniques [4]. Afterwards, the generated
maps and local environment perception are used in Localization algorithms. The current
preferred underlying concept for solving the Localization problem are Particle-Filters [5].
Typical frequencies of this modules are in the order of 10 Hz.

Local Path-Planning Moving towards actually driving the car, the task of the driver
would be to control the vehicle locally, making decisions in dependence with the topology
and dynamics of its immediate neighbourhood, such as changing lanes, stopping at traffic
lights, avoiding collisions with other cars etc. Note that here, the dynamics of the car is
taken into account (e.g. the driver knows that the car requires some distance to stop or
that it cannot take a sharp turn at high velocities). Moreover, the driver has to account
for the dynamics of the environment, i. e. driving between other cars or stopping when a
pedestrian crosses the street. Moreover, the planned trajectory is relatively short (local),
i. e. the driver does not plan how to turn the steering wheel after the next turn, or it
does not consider that maybe in 2 km distance a pedestrian might cross the road. In
Autonomous Navigation, the above-motivated capabilities are typically bundled in Local
Path-Planning. Typical frequencies such modules are in the order of 10− 50 Hz.

Low-Level Control Even though the driver coordinates the motion of the vehicle, the
vehicle itself is a controlled system, mapping the driver inputs (steering wheel angle and
pedals) to actuator inputs that physically put the mechanics in motion. This relates to
Low-Level Control, approaches that control sub-parts of the physical system, running
typically at frequencies ≥ 100 Hz.

The work presented in this thesis addresses methodology and algorithms that mostly
relate to the Local Path-Planning module in the Navigation ecosystem. The initial
motivation of starting at this layer is the fact that it is still sufficiently low-level to
account for challenging dynamics of the platform and(or) environment, but sufficiently
high-level to allow non-trivial (and thus relatively computationally-intensive) algorithms

1 Introduction 1.1 State of Art 3

to be applied. Given those considerations, the fundamental aims of this work can be
summarized as:

• obtaining optimal agent trajectories while systematically accounting for various
constraints

• guaranteed collision-avoidance by design through generic formal analysis

• generic (dynamic) environment modelling

• asynchronous interfacing with Low-Level Control modules

• reduced requirements on the capabilities and functionality of the higher-level Naviga-
tion Modules

• robustness

• mathematical generality (scalability)

• encapsulation from higher-level robotics tasks (such as human-robot interaction,
grasping, etc.)

• fast and modular libraries implementing the above

1.1 State of Art

Offline computational methods for finding feasible navigation paths in dynamic environ-
ments have been proposed. In such approaches, the trajectory is calculated before the
motion begins [6]. Even though such approaches scale well with respect to the length
of the planned trajectories, we believe they are not specifically suited for agents that
are expected to navigate fast, efficiently and in environments that do not have accurate
models (unstructured). This motivates us to approach the problem from a receding horizon
perspective, where system dynamics is explicitly taken into account. This relates to the
generic term of Moving Horizon Trajectory Planning (MHTP).

The paradigm behind MHTP is that by having knowledge about the agent model, one can
predict sufficiently accurate outcomes of different commands over a larger horizon into
the future. This results in the capability of the controller to maintain the satisfiability
of the imposed constraints as well as to induce an optimized trajectory with respect to
some user-definable cost. This process is performed periodically and at each iteration, the
agent is applying only the initial controls of the planned trajectory.

A closely related approach to MHTP is the Model Predictive Control (MPC), a thorough
introduction towards MPC in the context of autonomous navigation being given in [7].
The main difference between the two approaches is that MPC provides the feed-back
character through its repeated iteration, while MHTP is usually used in open-loop. Here,
we propose an extended approach that provides the feedback-character of MPC, the
Stabilized MHTP (SMHTP).

1 Introduction 1.1 State of Art 4

Even though sampling techniques such as the Dynamic Window Approach [8] exist for
searching for a solution in the context of MHTP, we focus ourselves on the approach in
which the planned trajectory is optimized. Similar with fundamental approaches used
in autonomous-driving contexts [9], this motivates the theoretical formulation of the
system as a dynamic optimization problem [10], in practice being discretized and solved
using a non-linear optimization solver. Here, the presented work approaches the concepts
related to dynamic optimization problems in-depth, proposing various improvements and
formulations ranging from Ordinary Differential Equations (ODE) solvers, sensitivity
computation as well as dynamic optimization problem parametrizations and discretization.
Moreover, the convexity of the resulting static optimization problem is addressed, proposing
the usage of non-trivial metrics such as the solution of the Eikonal equation [11] that can
lead to local-minima-free optimization programs.

Even though a lot of research has been done towards autonomous driving and mobile
robotics navigation [7, 12], the industrial market such as the logistic industry still prefers
Automated Guided Vehicles (AGV’s) over autonomous vehicles due to their simplicity
and more importantly due to their certified safe behaviour [13]. However, AGV systems
are only economical in predictable, structured environments – work-spaces where only
trained humans are present. The certified safety issue is resolved by using devices such
as a special laser range scanner which is directly connected to the wheel encoders and
the braking/motor control system. If an obstacle appears within a predefined safety
area of such a safety device, the vehicle will slow down or stop on the currently planned
trajectory. Of course, an intelligent safety sensor is able to scale and transform the safety
areas according to the current vehicle speed and angular velocity; nevertheless, in a case
of a safety violation, the system will slow down the vehicle on the given trajectory or
trigger a stop/hold. The proposed approach towards safe navigation differs: the notion of
safety relates to the vehicle capability to deviate from its planned trajectory towards a
safe location. Therefore, our system is able to navigate at higher speeds through narrow
passages, as it enforces the existence of emergency trajectories candidates along the entire
planned trajectory.

It is well known that for moving-horizon controllers, even though a solution exists for
iteration k, it is in general not guaranteed for a solution to exist at iteration k + 1 [14].
This statement is valid even in the simple case in which the models of the system are exact.
However, to ensure safety, one has to account additionally for the uncertainties of the
system models and numerical methods. In some approaches uncertainty is being dealt with
by not assuming hard constraints but rather solving a stochastic optimization problem
[15]. However, such methods prove to be relatively empirical to mathematically describe
(no explicit constraint modelling), computationally expensive to solve ([15] requires a
high-end GPU for online computation) and difficult to formally analyse when interested
in safety-proofs. Alternatively, Robust MPC [16, 17] is known in the literature as an
extension to classical MPC by assuming a "worst-case" evolution of the system given
bound uncertainties and constraining the allowed motions accordingly. This motivates the
search of a formulation that when applied as an inequality constraint in the optimization
problem would always guarantee non-collision. In his work, Schouwenaars made use
of the concept of feasible invariant states: states of the agent that are guaranteed by

1 Introduction 1.1 State of Art 5

assumption to be collision free indefinitely. For example, a state in which the robot stops
can be considered such a state. However, some platforms (such as fixed-wing UAVs)
cannot maintain such a state. In a similar fashion, [18] makes use of the dual concept of
feasible invariant states: inevitable collision states. In [19], Schouwenaars has extended
the concept of feasible invariant state to allow periodic sequences of states (such as loiter
manoeuvres of a fixed wing flying vehicle). Other approaches propose to compute the
feasible invariant set of agent states explicitly. While computationally inexpensive during
navigation, such approaches have, however, the strong limitation that they require an
accurate a priori knowledge of the environment (requiring most of the cases for it to be
static). In contrast to them, our safe-navigation formulation does not assume that the
environment is static. Also, most works assume that the environment is known, or the
known region is simply a circular space centred on the agent. We directly approach this
by taking into account the intrinsic method of visual sensing: the line of sight. Moreover,
we propose a formulation that addresses the typical problem encountered in Robust
MPC formulations when accounting for environment dynamics: the uncertainty of the
environment state increases quickly during forward-prediction, constraining the planning
horizon of the trajectory generator.

This thesis is organized as follows: Chapter 2 introduces generic concepts related to
dynamic models, parametrizations as well as solving ODEs and their sensitivities. Chap-
ter 3 addresses (continuous) dynamic optimizations, their usage in developing feed-back
controllers as well as the constraint formulations that guarantee navigation safety. Consid-
erations regarding the practical implementation of dynamic optimization-based feed-back
controllers are given in Chapter 4. Chapter 5 analyses the discretized optimization problem
in terms of convexity and proposes a suitable cost-function that encodes the fundamental
task of reaching a goal. Chapter 6 presents simulated and real-platform results, validating
the proposed methods using three different autonomous platforms. Conclusions are drawn
in Chapter 7.

Remark: The main content of this thesis has been written having generality in mind.
To this end, the application of the presented content to the evaluated platforms is
spread throughout all the thesis chapters, structured as examples.

2 General Definitions and Models

2.1 Classes of Dynamic Models

The dynamics of a large class of systems can be described and modelled through the use
of (ordinary) differential equations. Such models are typically the representation of choice
in the context of control theory. Here, one can distinguish between the analysis of such
systems in the Laplace domain (applicable when dealing with linear systems) or in the
time domain using the state-space model. As the state-space model is considerably more
general and provides better tools of analysis and design for MIMO as well as non-linear
systems, it will be the representation of choice throughout this work.

Remark: Any higher-order differential equation can be represented in a state space
model. For example, the ODE:

aẍ+ bẋ+ cx+ d = 0, x(0) = x0, ẋ(0) = ẋ0 (2.1)

can be written in a state-space representation as:

d
dt

[
x1
x2

]
=
[

x2
− bx2+cx1+d

a

]
, x1(0) = x0, x2(0) = ẋ0 (2.2)

In the following, a general continuous-time non-linear state-space model will be presented,
along with several structure-exploiting simplifications of it.

2.1.1 Non-linear Models

In a very general form, the evolution of a dynamic system with an n-dimensional state
x ∈ Rn can be described as

ẋ(t) = fx(x(t), t) , x(t0) = x0 (2.3)

with x(t) a vector-valued function representing the state x at time t as well as fx(x(t), t)
a vector-valued function describing the temporal derivative of the state x. The explicit
temporal dependency of fx is a very general formulation as it can be used to describe a large
class of structures. For example, an ODE that depends on a vector-valued input function
(denoted as u(t)) falls under such a notation, i. e. fx(x(t), t) = f ′x(x(t),u(t)).

6

2 General Definitions and Models 2.1 Classes of Dynamic Models 7

Note that systems modelled by (2.3) have a unique solution given the initial condition t0
and x(t0) = x0, as long as the function fx(·) is reasonable1.

In the case in which the initial condition x(t0) as well as the state transition function fx
are exact, the solution of (2.3) represents exactly the dynamic evolution of the system.
However, in real-world applications, fx as well as x0 are not exactly known, but rather
only an approximation of them (f̂x and x̂0, respectively). In order to describe the system
(2.3) with those approximations, a correcting initial condition and time-varying function
are needed:

ẋ(t) = f̂x(x(t), t) + wx(t) , x(t0) = x̂0 + wx0 . (2.4)

The term wx0 can be interpreted as an observation error from the exact initial condition,
while wx(t) could account for all the uncertainties and errors that occur in the system. In
many approaches aiming to account for the non-explicitly modelled part of the system,
a generic assumption regarding wx(t) relates to it being a stochastic variable subject to
Brownian motion. However, the analysis and calculus required for exploiting the structure
of such an assumption becomes considerably more difficult, as classical calculus cannot be
directly used2.

A more restricting assumption that leads to considerably simpler calculus is to assume that
the w terms in (2.4) are stochastic variables with normal distribution. This results in the
case of linear (or locally linearised) differential equations to a closed-form manipulation
of the stochastic part of the system. This has been widely exploited in the literature
especially on the topic of state observers; however, designing controllers that account for
such assumptions is still a topic of research.

However, the easiest method to deal with the uncertainties is to neglect them. As long
as the uncertainties are sufficiently small (i. e. the system model is sufficiently accurate),
such a simple approach has shown to provide a good trade-off between accuracy, design
and analysis complexity as well as algorithmic (runtime) complexity of control.

The nominal model of the system (2.3) is

˙̂x(t) = f̂x(x̂(t),u(t), t) , x̂(t0) = x̂0. (2.5)

Most of the attention of this work will be towards the nominal systems, addressing however
the model uncertainties as a bound of the system ODE solutions when discussing about
navigation safety.

1The (local) Lipschitz condition is a sufficient condition for the (local) uniqueness of the solution of an
ODE.

2Due to the quadratic variation of the Brownian motion, certain 2nd order terms of the Taylor expansion
have to be accounted for in differential calculus. For more details, see Ito’s Lemma [20].

2 General Definitions and Models 2.1 Classes of Dynamic Models 8

Example 2.1 (Differential-drive kinematic model). One of the most common mechanical
designs of mobile platforms is the differential drive. The platform possesses two parallel
wheels whose revolution can be independently actuated, as presented in Figure 2.1.
Here, the platform pose is defined by x, y, θ, the wheels displacement by d, the wheels
radius is denoted by rw, as well as the linear and angular velocities in the local frame v
and ω, respectively.

x

y

θ

v

ω

rw

ωlw

ωrw

d

Figure 2.1: Differential-drive geometric model

Assuming a perfect-rolling motion, from geometrical considerations we have

v = rw
ωrw + ωlw

2 , ω = rw
ωrw − ωlw

d
. (2.6)

Note that the relationship between the wheels angular velocities (ωrw and ωlw, respectively)
and the chassis linear and angular velocity (v and ω) is linear invertible and unique.
This motivates to parametrize our system kinematic state by the linear and angular
velocities of the chassis, resulting in the so-called mono-cycle model.

Depending on the type of motor-controllers in use, one can distinguish between wheel
velocity controllers and wheel acceleration controllers. In many situations, low-level
motor controllers provide the wheel velocities as an input. Thus, the system model is

x =

xy
θ

 , u =
[
v
ω

]
, ẋ =

v cos(θ)
v sin(θ)
ω

 , x(t0) = x0. (2.7)

Let us assume for the following that we have a platform whose motors can be only
acceleration controlled. To that end, due to the relationship in (2.6), one can simply
extend the system model (2.7) with one more integrator from the acceleration inputs.
Thus, our acceleration-input platform model is

x =

x
y
θ
v
ω

 , u =
[
a
α

]
, ẋ =

v cos(θ)
v sin(θ)
ω
a
α

 , x(t0) = x0. (2.8)

2 General Definitions and Models 2.1 Classes of Dynamic Models 9

Example 2.2 (Ackerman-drive kinematic model). The kinematic motion of an auto-
mobile can be modelled as the so-called bicycle model, illustrated in Figure 2.2.

x

y

ϕ

v

l

θ

ω

Figure 2.2: Ackerman-drive geometric model

Out of trivial geometrical considerations, the state and dynamics of the model when
actuating the velocity of the rear wheel are

x =

xy
θ

 , u =
[
v
ϕ

]
, ẋ =

v cos(θ)
v sin(θ)
v tan(ϕ)

l

 , x(t0) = x0. (2.9)

Example 2.3 (Independent wheel steering (IWS) kinematic model). Many fields of
application of mobile robotics benefit greatly from holonomic motion capabilities. True
holonomicity represents the capability of the system to undergo an arbitrary trajectory
(position and orientation) from any starting configuration. This property allows wheeled
mobile agents to navigate effectively in cluttered environments such as work-spaces
shared with humans or work-spaces restricted with respect to the agent size (e.g. forklifts
operating in indoor warehouses). As true holonomic platforms using omni or mecanum
wheels [21, 22] tend to be avoided for operation in unstructured environments (due
to their generally required wheel maintenance), the typical design used for holonomic
motions makes use of independent steering systems.

In such a configuration, the platform possesses a certain number of wheels (at least
two) that are actuated both in their revolution as well as in their orientation. This
allows the platform to perform (up to certain mechanical design constraints) arbitrary
(unconstrained) motions in the Spherical Euclidean Group [23] SE(2) configuration
space.

A useful concept when analysing the kinematics of such a platform is the Instantaneous
Center of Curvature (ICC), defined as the point around which the platform is currently
performing a circular motion. Figure 2.3 illustrates the local frame of an Independent
four Wheel Steering (I4WS) with its ICC at an arbitrary location. It is worth noting
that for control and wheel synchronization, the ICC should be considered, in general,
to be a local-frame quantity due to present geometrical constraints. In this way, its
location is tractable and parametrization is substantially easier as opposed to when

2 General Definitions and Models 2.1 Classes of Dynamic Models 10

considered in a global frame.

αc

αiw

vc

viw

ωiw

x

y

ICC
rc

rw

Figure 2.3: I4WS geometric model

Assuming that no drifting motion is desired, wheel orientations are constrained to be
perpendicular to the ICC and their revolution has to be consistent with the angular
velocity induced by the ICC. Thus, the instantaneous kinematic state of an IWS can
be described by three abstract parameters p ∈ R3 for which a (non-linear) algebraic
relationship with the ICC exists. For example, such a parametrization can be: v –
velocity of the body center and the position of the ICC represented in polar coordinates
(r and αc). However, such a parametrization leads to singularity in the case of parallel
wheel placement (r →∞) and therefore r is substituted with ρ = 1/r. In order to be
able to perform changes to the ICC from one side of the base to the other, ρ is allowed
to be negative. In this case, the platform state and dynamics are given by

x =

xy
θ

 , u =

 vρ
αc

 , ẋ =

v cos(θ + αc)
v sin(θ + αc)
−vρ

 , x(t0) = x0. (2.10)

The orientation αiw(t) and rotation ωiw(t) of wheel i result from geometrical considerations
and are presented in (2.11a) and (2.11b), with xiw and yiw the wheel position coordinates
in the local frame and rw the wheel radius [24]

αiw(t) = arctan
(

sin(αc)/ρ− yiw
cos(αc)/ρ− xiw

)
(2.11a)

ωiw(t) = −v
rw

√
1 + ρ2(xiw

2 + yiw
2)− 2ρ(xiw cos(αc) + yiw sin(αc)) (2.11b)

Note that these equations hold for other kinematic parametrizations as well as for
other mobile platforms (such as differential drives or Ackerman drives) through trivial
variable substitution. Thus, given the fixed sub-state describing the configuration
space

[
x y θ

]T
∈ SE(2) and the mappings (2.11a) and (2.11b), we are interested in

parametrizing the rest of the system state and(or) system inputs such that the resulting
model is satisfactory for a given application.

2 General Definitions and Models 2.1 Classes of Dynamic Models 11

Due to the non-linear nature of the geometrical configuration of an IWS, several
parametrizations of its kinematic state are possible and advisable depending on further
application. For example, the above-mentioned parametrization pT =

[
v ρ αc

]
has the advantage of remaining well defined when the base velocity tends towards 0,
simplifying initial conditions and parametrization switches. However, the trade-off lies
on the fact that a singularity is present when performing pure rotation (ρ→∞). An
alternative would be to use pT =

[
v ωb αc

]
, (ωb = −v/r) and avoid the previous

singularity. However, this parametrization is not defined at v → 0. This can be
exploited by the fact that when the platform stands still, the wheels do not have to be
synchronized in order to achieve a different initial state and thus can rotate at full speed
around the z–axis, which generally complicates the control scheme. One could also
use a linear kinematic state (with respect to the configuration space), pT =

[
ẋ ẏ θ̇

]
.

This simplifies some platform path-following controller designs. However, it is not well
defined when the platform stands still. Another drawback of such a parametrization
is the fact that it is not straight-forward to encode the direction of the chassis linear
velocity. This can lead to problems when designing path-following controllers as 180°
jumps in the ICC angle (αc) can occur.

induced ICCwheel geometry ICC

ωb ωc

Figure 2.4: I4WS global frame considerations; the vehicles body can rotate as well

Other parametrizations can be used by exploiting global frame characteristics of the
kinematics. More intuitively, consider the two situations presented in Figure 2.4. On the
left, the global frame motion of the platform with a fixed wheel geometry ICC is shown.
The same trajectory can be achieved by modifying αc while the wheels stay parallel. This
creates an induced ICC and the total trajectory motion curvature can be interpreted
as a superposition of the two ωtraj = ωb + ωc, where the orientation of the platform is
influenced only by ωb. This motivates the parametrization pT =

[
v ωtraj ωb

]
due to

the parameter decoupling between trajectory and orientation of the platform, a fact
that can be further exploited when solving optimization problems.

2 General Definitions and Models 2.1 Classes of Dynamic Models 12

Example 2.4 (Single-track dynamic model). We would like to address the cases in which
we do not assume perfect rolling motion of a vehicle. In this case, a simple dynamic
model of an auto-mobile is the single-track model, illustrated in Figure 2.5 [25].

x

y

ϕ
v

lr

θ

vy

vx

vr
αr

vfαf

α

lf

Frx

Fry

Ffx

Ffy

Figure 2.5: The single-track dynamic model

A useful measure of the lateral velocity of the vehicle is the side-slip angle at the center
of mass, defined as

α = arctan
(
vy
vx

)
. (2.12)

Similarly, the side-slip angles at the front and back wheels are

αf = ϕ− arctan
(
vy + ωlf

vx

)
, αr = arctan

(
vy − ωlr
vx

)
. (2.13)

The forces that act on the vehicle are assumed to be planar and for brevity of notation,
F?(x) denotes the sum of all the forces that act on a specific wheel, in a specific direction.
Having this in mind, the dynamics of the single-track model is given by

d
dt

x
y
θ
vx
vy
ω

=

vx cos(θ)− vy sin(θ)
vx sin(θ) + vy cos(θ)

ω
1
m(Ffx (x) cos(ϕ)− Ffy(x) sin(ϕ) + Frx(x)) + vyω
1
m(Ffx (x) sin(ϕ) + Ffy(x) cos(ϕ) + Fry(x))− vxω

1
Izz

(Ffx (x) sin(ϕ) + Ffy(x) cos(ϕ))lf − Fry(x)lr)

. (2.14)

However, depending on the application of the model, it is sometimes desired to have a
parametrization that encodes the chassis velocity as

[
v α

]
. In order to derive such a

model, we begin by expressing v(t) and its derivative as a function of the previous state
variables

v =
√
v2
x + v2

y , v̇ = vxv̇x + vyv̇y
v

. (2.15)

2 General Definitions and Models 2.1 Classes of Dynamic Models 13

Using the solution for v̇x and v̇y from (2.14) and dropping temporal dependency yields

v̇ = Ffx(x)(vx cos(ϕ) + vy sin(ϕ))− Ffy(x)(vx sin(ϕ)− vy cos(ϕ)) + Frx(x)vx − Fry(x)vy

mv
.

(2.16)
Note that

vx cos(ϕ) + vy sin(ϕ)
v

= cos(ϕ) cos(α) + sin(ϕ) sin(α) = cos(ϕ− α)
vx sin(ϕ)− vy cos(ϕ)

v
= sin(ϕ) cos(α)− cos(ϕ) sin(α) = sin(ϕ− α).

Thus, we have

v̇ = Ffx(x) cos(ϕ− α)− Ffy(x) sin(ϕ− α) + Frx(x) cos(α)− Fry(x) sin(α)
m

. (2.17)

Analogously, starting from α = arctan(vyvx) one can compute α̇. Finally, the
[
v α

]
parametrized model is

d
dt

x
y
θ
v
α
ω

 =

v cos(θ + α)
v sin(θ + α)

ω
1
m (Ffx(x) cos(ϕ− α)− Ffy(x) sin(ϕ− α) + Frx(x) cos(α)− Fry(x) sin(α))

1
mv (Ffx(x) sin(ϕ− α) + Ffy(x) cos(ϕ− α)− Frx(x) sin(α)− Fry(x) cos(α))− ω

1
Izz

(Ffx(x) sin(ϕ) + Ffy(x) cos(ϕ))lf − Fry(x)lr)

(2.18)

Regarding the equations that model the tire friction forces, the literature proposes
various approaches. One naive model is to assume that the tire friction is proportional to
the side-slip and longitudinal slip for lateral and longitudinal friction forces respectively:

Fy(x) = Fy(αw) = cαw (2.19)

A more reasonable model that proves to be quite accurate in low-traction conditions
such as icy roads, is the arctangent model [26]

Fy(x) = Fy(αw) = c1 arctan(c2αw). (2.20)

A semi-empirical model that closely describes the pure lateral (longitudinal) tire-friction
forces is the Pajeka-model [26]

Fy(x) = Fy(αw) = d sin(c arctan(bαw − e(bαw − arctan(bαw)))) (2.21)

Note that in this model, the linear region is included by ∂
∂αw

Fy(αw)
∣∣∣
αw=0

= bcd.

Even in the above presented Pajeka model, several simplifications are performed. Namely,
the normal tire force is assumed to be constant and the tire is assumed to have 0 camber.
Moreover, detailed models take into account the so-called combined slip forces as well
as induced over-turning moments (moments around the z-axis) that the tire-surface
contact generate [26]. As noted previously, additional forces (torques) on the vehicle
such as wheel rolling resistance torque, air-drag, suspension stiffness as well as tire
load-shifts have to be taken into account if an accurate model is desired.

2 General Definitions and Models 2.1 Classes of Dynamic Models 14

2.1.2 Affine-Input Models

A sub-class of non-linear systems is represented by the affine-input models

ẋ(t) = fx(x(t), t) + gx(x(t), t)u(t) , x(t0) = x0. (2.22)

Such a representation is typically appealing in the context of differential-geometric methods,
where successive derivation of a scalar function along the system dynamics vector-field
(Lie-derivative) simplifies considerably. This allows in certain cases to compute the function
inverse u(y) by means of a simple matrix-inversion.

It is here worth noting that a system can be typically transformed in an input-affine
system by creating a fictional input as the derivative of the actual system input [27].

Example 2.5 (From non-linear to input-affine model). Consider the IWS model from
Example 2.3. For the inputs u =

[
v ρ αc

]T
the system is clearly not input-affine, as:

∃ui such that ∂

∂ui

(
∂ẋ
∂u

)
= ∂

∂ui

cos(θ + αc) 0 −v sin(θ + αc)

sin(θ + αc) 0 v cos(θ + αc)
−ρ −v 0

 6= 0

(2.23)
However, by adding the inputs to the state and defining the new fictional inputs ua = u̇,
we obtain the affine-input system

xa =

x
y
θ
v
ρ
αc

, ua =

 v̇ρ̇
α̇c

 , ẋa =

v cos(θ + αc)
v sin(θ + αc)
−vρ

0
0
0

︸ ︷︷ ︸

fx(x)

+

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

︸ ︷︷ ︸

gx(x)

ua. (2.24)

Of course, such a model extension will lead to the fictional input ua being a (higher
order) derivative of the physical input of the system. In such situations in the context
of control, a so called dynamic controller can be used, which (numerically) integrates
the fictional input to obtain the physical input [28]. In our example, suppose we can
physically control the angular velocity of the wheels revolution and their steering angle,
i.e. αiw and ωiw. Thus, a dynamic controller can be applied on the extended model
inputs

u =
[
v ρ αc

]T
, u̇ = ua. (2.25)

Note that such an approach is not advised to be used in open-loop, as the open-loop
numerical integration will in practice drift from the exact solution.

2 General Definitions and Models 2.2 Parametric Functions 15

2.1.3 Linear Time-Variant Models

A further simplification of the affine-input model is to assume that fx is linear in x and
gx does not depend on x. This results in the Linear Time-Variant (LTV) model

ẋ(t) = A(t)x(t) + B(t)u(t) , x(t0) = x0 (2.26)

It is worth noting that compared to Linear Time-Invariant (LTI) models, the LTV model
is considerably more difficult to manipulate in the context of control. Nevertheless, the
solution of the ODE can be in certain cases computed in closed form. We will later-on
make use of such models in order to evaluate a part of the system ODE (and its related
sensitivities ODE) in closed form.

Theorem 2.1 (State-transition Matrix of Time-Variant System). Given is a system
of the form (2.26). If the matrix A(t) can be decomposed in

A(t) =
n∑
i=1

Mifi(t) (2.27)

with Mi – a constant matrix such that ∀i, j ∈ [1, n],MiMj = MjMi, then the system
state transition matrix Φ(t0, t) is

Φ(t0, t) =
n∏
i=1

eMi

∫ t
t0
fi(τ)dτ

. (2.28)

Thus, the solution for x(t) is

x(t) = Φ(t0, t)x(0) +
∫ t

t0
Φ(τ, t)B(τ)dτ. (2.29)

A proof of the Theorem can be found in [29].

2.2 Parametric Functions

Representing information in a mathematical sound way strongly relates with the concept
of functions. Moreover, in many cases, it is convenient to encode the entire search-space
of a given problem into a set of parameters p. However, in many problems, the entire
search-space is so large that it becomes intractable. An approach to circumvent this is
to consider a relaxed problem in which p has a considerably smaller dimensionality and
thus searching in the problem-space becomes feasible. However, the function shapes that
can be encoded through the (reduced dimensionality) parameters p has to be sufficiently
expressive, i. e. it has to approximate a wide range of desired function shapes with sufficient
accuracy.

2 General Definitions and Models 2.2 Parametric Functions 16

For the beginning, let us define a general form of a parametric function:

Definition 2.1 (Parametric function). Given the input space of the problem X ⊆ Rn,
the output space Y ⊆ Rm as well as the search space P ⊆ Rp, we define the vector
valued function (parametric function)

f(p, ξ), ξ ∈ X , f ∈ Y,p ∈ P. (2.30)

Definition 2.1 allows us to formulate a search problem as follows: finding an appropriate
parametric encoding p of the function family f such that the function provides a desired
mapping from certain domains of the input space X ′ ⊆ X to certain domains of the
output space Y ′ ⊆ Y. Typical examples of such problems are function fitting or function
minimization.

An important property of such functions is their continuity and differentiability. We
denote that a function is continuous by C0. Moreover, we denote a function is continuous
and n-times differentiable by Cn. When a function is only piece-wise n-times differentiable,
we represent it with Ĉn.

In the following, several parametric function families along with problem representation
examples will be presented, which are beneficial in the context of control.

2.2.1 Piece-wise Constant

Probably one of the simplest yet useful function family is the piece-wise constant function.
As its structure within one interval is very simple (constant), it is appealing to use due
to the ease of manipulation (for example for sensitivities computation). For functions
that depend on a one-dimensional arc parametrization, any piece-wise constant function
f : Rp × [ξ0, ξn−1)→ Rm can be expressed as

f(p, ξ) = fi for ξi ≤ ξ < ξi+1. (2.31)

As the function is constant on every interval, it follows that it is continuously differentiable
on each interval. The total number of parameters to describe any function from such a
function family with n intervals is

p =
[
ξ0 ξ1 . . . ξn−1 fT

1 fT
2 . . . fT

n−1

]T
(2.32)

having the cardinality dim(p) = n(1 +m).

However, in many applications, using only a few of such constant intervals does not
provide sufficient degrees of freedom. Because of this, the duration of the piece-wise
constant intervals is typically small in relation to the definition domain (i. e. many pieces
are required to express the mapping we are interested in). For such a dense representation,
one can argue that being able to vary the bounds of each constant interval would not

2 General Definitions and Models 2.2 Parametric Functions 17

yield a considerable expressibility gain. This fact motivates reducing the dimensionality
of the function parameter vector by fixing the length of the constant-value intervals

f(p, ξ) = fi(p) for i∆ξ ≤ ξ < (i+ 1)∆ξ (2.33a)

p =
[
∆ξ fT

1 fT
2 . . . fT

n−1

]T
. (2.33b)

In many cases in which ξ represents the time, ∆ξ is fixed and chosen to be equal to the
sampling time of the controller. This enables easier manipulation of time-shifts of such a
function as the system time evolves. In other cases, however, one might want to be able
to vary the interval in which the function is defined.

The variation of ∆ξ can be interpreted as a scaling parameter of the function definition
domain. To that end, note that this implies that when using a fixed dimensionality of the
parameter vector p, larger definition domains imply lower expressibility (resolution) of
the function, while as ∆ξ → 0, the piece-wise constant function can express any function
shape. Even though a function where ∆ξ → 0 is not typically useful, this property will
provide arguments regarding the expressibility increase of a parametrised trajectory whose
duration is well defined but its arc length approaches zero.

Example 2.6 (Dense encoding of system input values). In certain (simplified) models,
actuators can be approximated by an algebraic model that maps their physical input
to the force (torque) they produce, i. e. τ act = f(uact). Provided that this equation is
invertible, one can abstract away the actuators and model the higher-level problem
with the input usys = τ act. Note that in some cases where the actuator dynamics are
non-negligible, their dynamics can be accounted for by a lower-level controller running
at a higher frequency, allowing the above-mentioned simplification.

As under the laws of classical mechanics, the forces (torques) of a system are not required
to be differentiable nor continuous, a good candidate for encoding the system inputs is
the piece-wise constant function

usys(t) =
n−2∑
i=0

usysiσ(t− i∆t)σ((i+ 1)∆t− t), t ∈ [0, (n− 1)∆t]. (2.34)

An illustration of such a 1-dimensional function is presented in Figure 2.6.

t

ωb(t)

0

Figure 2.6: A 1-dimensional piece-wise constant function ωb(t)

2 General Definitions and Models 2.2 Parametric Functions 18

Example 2.7 (Pixel maps). Of-course, we can use the concept of piece-wise constant
functions in higher input dimensions as well. A helping simplification in this case is
to assume again that for each dimension, the constant-value intervals are equal. In
2-dimensional case, this yields to the function family

f(p, ξ) = fij(p) s.t.
[
i ∆ξ0
j ∆ξ1

]
≤ ξ <

[
(i+ 1)∆ξ0
(j + 1)∆ξ1

]
(2.35a)

p =
[
∆ξT

[
fij | 0 ≤ i < n, 0 ≤ j < n

]]T
. (2.35b)

In the case where ξ =
[
x y

]T
, we can interpret the function (2.35) as a pixel-map with

variable resolution on x and y dimension. An example of such a function is illustrated
in Figure 2.7.

www.haifengl.github.io/smile/images/grid-interpolation2d.png

Figure 2.7: Visualization of a pixel-map

2.2.2 Piece-wise Linear

A natural extension of the piece-wise constant function is the piece-wise linear function.
Its structure is still simple enough such that many useful quantities can be computed in
closed-form, but its increased expressibility allows for sparser representations. Moreover,
as it possesses a piece-wise constant derivative, it can be used to encode quantities that
are one integrator higher than the acceleration space for Newtonian mechanics, resulting
in piece-wise constant accelerations of the system.

Example 2.8 (Piece-wise linear representation of kinematic inputs). The equations that
describe the dynamics of a system can be typically derived as a white box model from
physical considerations. However, in many applications, high-level controllers do not
take into account a very detailed model of the system dynamics, as the structure and
computational complexity of such models are more detrimental than the performance
gain that they provide.

Thus, mechanical dynamic systems are often treated under kinematic laws. Following
the kinematic modelling example of the differential drive (2.1), the system kinematic

2 General Definitions and Models 2.2 Parametric Functions 19

input is the velocities of the wheels. Previously it has been showed that there is an
affine relationship between this velocities (accelerations) and the input parametrization

uT =
[
v ω

]
. (2.36)

Thus, for such a motion model, this parametrization proves to be beneficial. Moreover,
the orientation of the robot θ equals to the integral of the angular velocity ω

θ = θ0 +
∫ t1

t0
ω(t) dt. (2.37)

Also, the travelled distance of the agent equals to

s =
∫ t1

t0
|v(t)| dt. (2.38)

It would be thus convenient to have a parametric representation of the system input
(2.36) that can evaluate the vehicle orientation and travelled distance in closed form.
However, modelling and taking into account the accelerations of the system is desired
for improved models and controllers. Thus, we want our kinematic input to be at least
C1 (differentiable).

A simple but yet powerful parametrization that partially fulfils the above-mentioned is
the piece-wise linear function (differentiable on every interval). Even though higher-order
polynomials and splines provide more expressive functions than the piece-wise linear,
piece-wise linear can be evaluated very efficiently, together with various integrals (2.37)
and (2.38) as well as derivatives.

For the given example, such functions can be expressed mathematically as

v(t) =
n−2∑
i=0

σ(t− ti)σ(ti+1 − t) ·
(
vi + (vi+1 − vi)

t− ti
ti+1 − ti

)
(2.39a)

ω(t) =
n−2∑
i=0

σ(t− ti)σ(ti+1 − t) ·
(
ωi + (ωi+1 − ωi)

t− ti
ti+1 − ti

)
, (2.39b)

with ti the arc parametrization of the function, and vi and ωi, respectively, the values of
the function at the inflection points. An illustration of such encodings of the kinematic
input of the system is presented in Figure 2.8. Note that for such parametrization,
pre-computation can be performed such that afterwards, evaluations at an arbitrary
t ∈ [t0, tn−1) of the function itself or various derivatives and integrals can be computed
very efficiently.

t

vb(t)

ωb(t)

0

Figure 2.8: Piece-wise linear encoding of kinematic inputs for a differential-drive

2 General Definitions and Models 2.2 Parametric Functions 20

Example 2.9 (Continuous pixel maps). The concept of piece-wise linear functions can
be as well used in higher input space dimensions. An example is the use of bi-linear
interpolation for pixel-maps. This allows the pixel-maps to become continuous functions,
requiring the evaluation of 4 pixels to obtain one function value [30].

For simplification of notation, let us assume that the coordinates x, y of the point we
are willing to evaluate fulfil x, y ∈ [0, 1]. This results in the bi-linearly interpolated
function value

f(x, y)= a+ bx+ cy + dxy (2.40)
where: a= f(0, 0)

b= f(1, 0)− f(0, 0)
c= f(0, 1)− f(0, 0)
d= f(1, 1) + f(0, 0)− (f(1, 0) + f(0, 1)).

A graphical interpretation of the bi-linear interpolation is presented below:

f(0, 1) f(1, 1)

f(0, 0) f(1, 0)

f(x, y)
= + +

+

Figure 2.9: Visualization of the bi-linear interpolation. In this geometric visualisation,
the value at the black spot is the sum of the value at each coloured spot
multiplied by the area of the rectangle of the same colour, divided by the
total area of all four rectangles. (source: Wikipedia)

For illustration purposes, the pixel-map from Example 2.7 is presented when over-
sampled 20 times using bilinear interpolation:

www.haifengl.github.io/smile/images/grid-interpolation2d.png

Figure 2.10: Pixel-map (left) and its bilinear interpolation (right)

2 General Definitions and Models 2.2 Parametric Functions 21

2.2.3 Polynomials

Assuming that the input-space ⊆ Rp, the most general form of a scalar-valued polynomial
of order r can be given by

f(p, ξ) =
r∑

i1=0

r∑
i2=0
· · ·

r∑
in=0

pi1,i2,...,inξ
i1
1 ξ

i2
2 . . . ξinn . (2.41)

An appealing property of polynomials is that they provide a sparse encoding of considerably
expressive function shapes. Moreover, polynomials are a relatively simple algebraic
structure that can be mathematically easily manipulated. However, a drawback of
polynomials is that it is somewhat cumbersome to encode vector-valued functions (one
method could be to use matrix-polynomials). Moreover, they typically possess very large
sensitivities for the higher order terms [31].

Example 2.10 (Unconstrained trajectory generation between two states). We would
like to find a trajectory for a differential-drive robot for a given start state xT

d0 =[
xd0 yd0 θd0

]
and end state xT

d1 =
[
xd1 yd1 θd1

]
. From the fact that the instan-

taneous velocity vd is constrained to be along the orientation of the robot, it follows
that θd = arctan(ẏd/ẋd), i. e. ẋd = vd cos(θd), ẏd = vd sin(θd). In this case, excluding
the case where vd = 0, finding suitable functions for the temporal evolution of xd and
yd will suffice to describe a feasible motion of the robot model. Moreover, from the
functions derivatives, we will be able to extract the input of the robot motion-model
along the generated trajectories. By counting the number of boundary-conditions for
the functions xd(t) and yd(t), we get

xd(t0)=xd0, xd(t1)=xd1, ẋd(t0)=v0 cos(θ0), ẋd(t1)=v1 cos(θ1) (2.42a)
yd(t0)=yd0, yd(t1) =yd1, ẏd(t0)= v0 sin(θ0), ẏd(t1)=v1 sin(θ1). (2.42b)

We trivially note that a function would require at least 4 parameters to exactly satisfy
the constraints. Thus, one could consider two univariate third order polynomials

xd(t)=axt3 + bxt
2 + cxt+ dx, yd(t) = ayt

3 + byt
2 + cyt+ dy. (2.43)

Combining the above two equations, the polynomial coefficients of the functions can be
obtained. Figure 2.11 illustrates computed trajectories from the origin to three different
end-points with various final orientations for different time intervals.

−1 0 1

0

0.5

1

T = 1s

θ1 = −π/2
θ1 = −π/4
θ1 = 0
θ1 = +π/4
θ1 = +π/2

−1 0 1

0

0.5

1

T = 10s
−1 0 1

0

0.5

1

T = 30s
Figure 2.11: Unconstrained pose-to-pose trajectories using polynomial fitting from origin

to various coordinates for different temporal durations T .

2 General Definitions and Models 2.2 Parametric Functions 22

2.2.4 Splines

A popular mathematical structure that provides a parametric representation of a function
is the Spline. In this subsection, we will take a closer look at the definition, structure
and properties of the B-Spline and its generalization, the Non-Uniform Rational B-Spline
(NURBS) [32].

We have already seen that Subsections 2.2.1 and 2.2.2 make use of increasingly more
expressive functions (piece-wise constant and then piecewise-linear). Subsection 2.2.3
presented the polynomial function, a function that is easy to evaluate (together with
its derivatives and integrals) and can be made arbitrarily expressive by increasing its
order.

Combining the two concepts, the general idea of B-Splines is to make use of polynomials
as Basis Functions (hence the name) of a certain degree d that are well connected with
each-other (continuous up to order n−1). This results in a function family that generalizes
well and can provide certain benefits in practical applications.

Knots As in the case of the piece-wise constant and piece-wise linear functions, the knots
of the Spline define the locations at which certain basis-functions become inactive while
certain basis-functions become active. They are required to be defined in a non-decreasing
order

ξi ≤ ξi+1, i = 0, 1, . . . , n+ d− 1 (2.44)

with the number n of control points and the degree d of the resulting Spline. Note that in
the case of piece-wise constant function (a 0-Order B-Spline), we require exactly n knots.
For the piece-wise linear case, we require n+ 1 knots (an additional knot that ends the
last interval).

Basis Functions B-Splines make use of Basis Functions of degree d that are active
(non-zero) only on a sub-interval of the function. For the case of 0-order Basis Functions,
they are defined as

bi,0(ξ) =
{

1, if ξi ≤ ξ < ξi+1
0, otherwise (2.45)

Higher order basis functions are defined recursively (Cox-de Boor formula) [33]

bi,d(ξ) = ξ − ξi
ξi+d − ξi

bi,d−1(ξ) + ξi+d+1 − ξ
ξi+d+1 − ξi+1

bi+1,d−1(ξ). (2.46)

Control Points Having such basis functions, we can now construct a Spline as a linear
combination of Basis Functions using control points

sd(ξ) =
n−1∑
i=0

cibi,d(ξ), (2.47)

2 General Definitions and Models 2.2 Parametric Functions 23

with ci being the ith Control Point (vector). Note that given the recursive definition
(2.46), (2.47) reduces to [33]

sd(ξ) =
d∑

i=k−d
cibi,d(ξ), ∀ξ ∈ [ξk, ξk+1). (2.48)

We note here the Local Support property of the B-Splines, that is, every basis function
(and control-point) has influence only on the local shape of the curve.

An additional degree of freedom is obtained in the more generalized variant of B-Splines,
the NURBS function

sd(ξ) =
n−1∑
i=0

wibi,d(ξ)∑n−1
j=0 wjbj,d(ξ)

ci. (2.49)

Note that here every control-point is weighted with a weighting factor wi and the result is
accordingly normalized.

Finally, we would like to briefly mention typical operations that can be applied on B-Spline
curves and their practical applicability [32].

• Curve Fitting: This is one of the most used operation that involves a spline. The
typical algorithm (Cox-de Boor algorithm) performs the fit relatively fast, as it
evaluates a fitted point recursively using linear interpolation of depth d.

• Evaluation of Derivatives / Integrals: Given their basis-function structure, B-
Splines derivatives and integrals are again B-Splines (of one degree lower or higher
respectively). This allows relatively easy evaluation of those properties even for
higher orders.

• Knot Insertion: Typically used for increasing the expressibility of the curve in a
certain region. Note that the insertion of a knot does not alter the function shape.

• Knot Removal: Typically used in optimization for reducing the number of control-
points the function possesses. Note that knot removal in general alters the function
shape.

• Degree Elevation: Useful when initialization of a lower order spline is simple, but
finally a higher order spline is desired. For example, if one parametrizes the motion
of a mobile agent with a spline, one might want to initialize it according to a 2D
discrete path (resulting in a 1-order spline) but would want to achieve motions of
higher orders.

In conclusion, this section presented different parametric function families (of increasing
order), presenting their strengths and drawbacks. The main motivation of this discussion
lies on the usage of such a parametric representations in order to encode (at least) the
system inputs in a temporal interval. With this, system trajectories, typically represented
by differential equations, can be analysed.

2 General Definitions and Models 2.3 Solving ODEs 24

2.3 Solving ODEs

Section 2.2 discussed the concept of encoding the search-space of a given problem by means
of parametric functions. Such encodings can be used to uniquely define the trajectory of
a dynamic system (i. e. the solution of an ODE) by parametrizing its input. That is, the
differential equation of the system can be expressed as

x(p, t1) = x0(p, t0(p)) +
∫ t1(p)

t0(p)
f(x(t),p, t)dt . (2.50)

With the exception of few well-known cases, the solutions of an ODE cannot be found in
closed-form. Rather, one has to resort to numerical methods for solving such initial-value
problems, more specifically for the integral term in (2.50). Solving the ODE of a dynamical
system efficiently and with sufficient accuracy is of great importance when solving dynamic
optimization problems. Thus, this section is focusing on varius approaches that solve
ODEs and their sensitivities, discussing their differences with efficiency of numerical
evaluation in mind. Analysing (2.50) in its differential form

ẋ(p, t) = f(x(t),p, t), x(p, t0(p)) = x0(p) , (2.51)

let us initially have a look at the simplest way of numerically solving an ODE, using the
explicit Euler method

xk+1 = xk + hẋk, x0 = x0(p) (2.52)

with the step size h, the numerical solution of the ODE xk at time t = kh. It can be
shown that as h → 0, the numerical solution of the ODE using (2.52) will converge to
the correct solution of the ODE. However, in many situations, willing to reduce required
computational effort, one is interested in finding a sufficiently accurate solution of an
ODE with as large of a h as possible (i. e. least number of steps). This fact motivates the
usage of better integration methods.

Informally speaking, solving an initial-value problem of an ODE can be seen as follows:
we are given a function for which we know the initial value. Moreover, we can access
the value of the function (temporal) derivative given any state of the ODE, but we can
never access the function itself. The Euler integration scheme can be then seen as an
approximation in which one assumes that for every interval of length h, the value of
the function derivative is constant. Of-course, even for the case of linear ODEs, this is
generally not true. Nevertheless, one could argue that a perfect integration step can still
be of the form:

xk+1 = xk + h ˙̄xk (2.53)

with a "magical" step slope ˙̄xk that corresponds to such a perfect step. From here, the
question is how can we improve our approximate step-slope such that for as large as
possible steps, it is still sufficiently close to the ideal step slope. Abstractly speaking, one
can use additional information from the vicinity of the function to smartly improve the
step-slope estimate, by:

2 General Definitions and Models 2.3 Solving ODEs 25

• probing function derivative on the interval [kh, (k + 1)h] at multiple locations and
weighting them to a step slope

• making use of the local history of few previous steps in order to have an expected
slope direction

• creating an implicit dependency between the step slope and the function value at
the next step

All those generic concepts have been widely studied and exploited and as a consequence,
various advanced ODE solvers have emerged [34, 35]. In the following sub-sections, some
major classes of solvers are being presented, mentioning their typical use-cases, strengths
and weaknesses.

2.3.1 Single-step Methods

Single-step Methods are represented by the fact that for the computation of the new
step xk+1, the values of xj , j = 0, . . . , k − 1 are not explicitly needed. Rather, the
method performs an averaging of various function slopes that are evaluated on the interval.
Probably the most popular single-step methods are of the Runge-Kutta methods family
[34]. In the following, its explicit, adaptive as well as implicit variants are presented and
discussed.

Explicit We refer to an integration method as explicit when we have no implicit equation
that binds the evaluated function slopes values with future function values. The general
form of an Explicit Runge-Kutta method is given by [34]

˙̄xk =
s∑
i=1

biki, ki = f(xk + h
i−1∑
j=1

aijkj , tk + hci) (2.54)

where s denotes the number of stages of the method (the number of function derivative
evaluations required for a single step). A convenient way of summarising such a method’s
coefficients is using the Runge-Kutta matrix (also called as Butcher tableau):

0
c2 a21
c3 a31 a32
...

... . . .
cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

Table 2.1: Butcher tableau of an explicit Runge-Kutta integration scheme [34]

2 General Definitions and Models 2.3 Solving ODEs 26

For a method to be consistent, it is required that [34]

i−1∑
j=1

aij = ci, ∀i = 2 . . . s (2.55)

The analysis of such methods shows that for a given order p of a method, the local
truncation error is of the order O(hp) while the total accumulated error is of the order
O(hp−1). The minimum number of stages s to achieve a certain order of a method is
an open question. Nevertheless, for most practical applications, an order smaller than 8
suffices. To that end, the minimum number of stages required for achieving an order up
to eight is summarised in the table below:

p 1 2 3 4 5 6 7 8
min s 1 2 3 4 6 7 9 11

Table 2.2: Minimum stages required for achieving a certain truncation error order in
Runge-Kutta integration schemes [34]

One of the most popular Runge-Kutta methods is the 4th Order Runge-Kutta (RK4). In
many practical applications, it provides a good trade-off between computational complexity
and achieved accuracy. Its Butcher tableau is:

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

Table 2.3: Butcher tableau of the 4th order Runge-Kutta method [34]

Example 2.11 (Mid-point method). A family of 2nd order methods is given by the
Butcher tableau:

0
α α

(1− 1
2α) 1

2α

Table 2.4: Butcher tableau of 2nd order Runge-Kutta methods [34]

For α = 1/2, we obtain the so-called mid-point method. Assuming a one dimensional
state and evaluating (2.54) yields

k0= f(xk, tk) (2.56a)

k1= f(xk + h

2k0, tk + h

2) (2.56b)
xk+1= xk + hk1 (2.56c)

2 General Definitions and Models 2.3 Solving ODEs 27

For the sake of intuition-creation, Figure 2.12 illustrates geometrically how a mid-point
method integration-step is being performed. Note that the error e1 of the mid-point
method is substantially smaller than of an Euler-step e0 with the same step-size. However,
one might argue that a 2-stage method requires two gradient evaluations, and thus it
should be compared with the error e′0 relating to an Euler-step method with half the
step-size. Note that even in this case, the second order method step still results in a
smaller error.

x

t

tk tk+1tk + h
2

k0

k1

k1

xk

xk + h
2k0

xk + hk0

xk+1

xk + hk1

e′0

e0

e1

Figure 2.12: Illustration of the gradient computation using the mid-point method

Example 2.12 (Comparison of different explicit methods for a differential-drive model).
An alternative to improve the accuracy of simulating the trajectory of a platform is to
directly model it in discrete time. For example, the literature [36] proposes a discretized
model of the differential drive, based on geometrical considerations and assuming that
no accelerations occur in the system for the duration of a step

x =

xy
θ

 , u =
[
v
ω

]
, xk+1 = xk +

vk
ωk

(− sin(θk) + sin(θk + hωk))
vk
ωk

(+ cos(θk)− cos(θk + hωk))
hωk

 . (2.57)

One can note that a drawback of such a model is the singularity of this representation
as ω → 0. Such models are typically designed to improve the accuracy of numerical
integration. In order to evaluate the quality of this model compared to various Runge-
Kutta discretization schemes of the continuous differential-drive model (presented in
Example 2.1), the models are integrated for the same initial state and input-functions.
Moreover, the number of steps used in the integration scheme have been scaled such
that the computational expense is similar for all evaluated methods.

Figure 2.13 illustrates the integration of the different motion-models for the discrete
model as well as for the continuous model using Euler, Mid-point as well as RK4
discretizations, respectively. As it can be seen, the discrete motion-model is more
accurate only when compared to the Euler method. The second and fourth order RK4
methods clearly possess a higher accuracy.

2 General Definitions and Models 2.3 Solving ODEs 28

Discrete circular Euler

Mid-point RK4

Figure 2.13: Comparison of various discretization schemes used for numerical integration.
The gray trajectory represents the ground-truth solution of the ODE.

Adaptive The Runge-Kutta methods presented so far assume a fixed step-size h. The
reasoning behind adaptive methods is to choose automatically a suited step-size such that
the error (with respect to some error metric) of the scheme is kept within some given
bound ε. The general idea is to use two methods of different order and to evaluate the
error depending on their differences [35]. In order to save computation, the methods are
designed such that the evaluation of the function slopes (i. e. the computation of the k
terms) is identical for both. However, a different set of parameters b? is chosen which
degrades an order p method into an order p − 1 method. Thus, the Butcher tableau
is:

0
c2 a21
c3 a31 a32
...

... . . .
cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs
b?1 b?2 . . . b?s−1 b?s

Table 2.5: Butcher tableau of an explicit, adaptive Runge-Kutta integration scheme [35]

2 General Definitions and Models 2.3 Solving ODEs 29

With this, the error can be defined as

en = h
s∑
i=1

(bi − b?i)ki (2.58)

Note that the truncation error is of the order O(hp). Next, we have to decide how to
suggest a new step-size given some desired tolerances as well as the previously defined
error. We distinguish two types of tolerances [35]:

• constant absolute tolerances: In this case, we are interested in not exceeding a certain
constant absolute value of the error for each state dimension ei, i = 1, . . . ,dim(e).
Thus, given the desired tolerances εi, our new step-size can be computed as [35]

h′ = min
{
h

∣∣∣∣ ε̄iei
∣∣∣∣ 1
p

∣∣∣∣∣ i = 1, . . . ,dim(e), ε̄i = εi

}
. (2.59)

It can be shown that when for the next step the step size h′ is used, for h′ < h, it is
expected that the tolerances will be maintained [35].

• fractional errors: In some applications, one is interested to maintain the fractional
(i. e. relative) errors within some given tolerances. In this case, one can use (2.59)
with the modification

ε̄i = εixi . (2.60)

Independent of the type of tolerances that are kept, the scheme advances as follows:

– h′ < h: the step is rejected and the re-iterated with h← h′

– h′ ≥ h: the (higher-order) step is accepted and for the new iterate, h← h′

Implicit All the methods presented so far are, as mentioned, explicit methods. Even
though more accurate that the naive Euler method, they still possess a small region of
absolute stability. In many practical applications this is not of concern. However, if the
differential equation is stiff3, explicit methods typically perform poorly [34]. A concept
that greatly increases the stability of ODE solvers is given by implicit methods. For this,
consider the simplest implicit method (Backwards Euler)

xk+1 = xk + hẋk+1 . (2.61)

Note that the equation contains the slope at the next step, thus being an implicit equation.
Even though such an equation can be sometimes solved in closed-form for xk+1, in general
one has to resort to numerical optimization for finding a solution, thus making such
methods comparatively slow.

3Stiffness of differential equations is a vague term, being quite difficult to formally define. However, an
intuitive definition would be that the manifold of the differential equation have drastically different
scaling(speeds) in different dimensions.

2 General Definitions and Models 2.3 Solving ODEs 30

Going back to the Runge-Kutta methods, the implicit relations that are now present
can be encoded again in the Butcher tableau, for which the a terms no longer form a
lower-triangular matrix but a full matrix.

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

cs as1 as2 . . . ass
b1 b2 . . . bs
b?1 b?2 . . . b?s

Table 2.6: Butcher tableau of an explicit, adaptive Runge-Kutta integration scheme [35]

2.3.2 Multi-Step Methods

In single-step methods, there is no usage of the information regarding the previously
taken steps, but rather on different evaluations in the evaluated interval. However, in
many situations, such multiple slope evaluations for every step can be too computation-
ally expensive (for example in situations where evaluating the function gradient has a
quadratic time-complexity). This motivates an alternative approach towards improving
the integration scheme, namely to make use of the previously-computed steps.

An informal way of interpreting such methods is to perform a function fit on the last few
steps, and to take this function value into account at the evaluated step.

Generally, multi-step methods have the following form [34]

xk = Xka + hFkb, (2.62)

with

Xk =
[
xk−1 xk−2 . . . xk−s

]
, Fk =

[
f(xk, tk) f(xk−1, tk−1) . . . f(xk−s, tk−s)

]
(2.63a)

a =
[
as−1 as−2 . . . a0

]T
, b =

[
bs bs−1 . . . b0

]T
(2.63b)

Note that for such methods, invariant of the number of stages, the number of function
gradient evaluations for every new step is exactly 1. To this end, one might ask why they
are not superior to Runge-Kutta methods, given their reduced computational requirements.
The answer lies in the convergence proofs and analysis of such methods, which conclude
that Multi-step methods have in general a smaller region of stability when compared to
Runge-Kutta methods.

Many popular methods (Adams-Bashforth and Adams-Moulton) impose the restriction
as−1 = 1, as−2 = as−3 = · · · = a0 = 0 [34]. As Adams-Bashforth methods are explicit,
additionally they require bs = 0. That is, the simplified law has the following form

xk = xk−1 + hFkb (2.64)

2 General Definitions and Models 2.4 Computing Sensitivities of ODEs 31

Note that the contents of Fk are exactly the values of the function derivative of the
previous steps. Regarding initialization, the first steps are typically performed using an
appropriate singe-step method.

2.4 Computing Sensitivities of ODEs

In many optimization problems, the methods used for finding a solution in this parametric
search-space require the sensitivities of the system with respect to the optimization
variables. Intuitively, we are interested in finding, how small variations of the optimization
variables (parameters) p influence the shape of the trajectory of the system.

In the following, several methods for computing such sensitivities are presented, along
with their strengths and limitations. Moreover, for brevity of notation, we will make use
of the Nabla operator to denote the total derivative with respect to the system parameters
∇(·) = d

dp(·).

2.4.1 Numeric Differences

Probably the most straight-forward and least time-consuming way of computing sensitivi-
ties is using numerical differences. Here, we can distinguish between different variants of
their computation. For example, the least computationally expensive method is through
forward differences

∂

∂pi
x(p, t) = lim

ε→0

x(p + εei, t)− x(p, t)
ε

, i = 1, . . . ,dim(p), (2.65)

followed by central differences

∂

∂pi
x(p, t) = lim

ε→0

x(p + ε
2ei, t)− x(p− ε

2ei, t)
ε

, i = 1, . . . ,dim(p) (2.66)

where ei represents the unit vector.

Remark (Function differentiability when using numerical differentiation): Even
though formally, for gradient-based algorithms, we require the evaluated functions
to be continuous and at least once (continuously) differentiable, the differentiability
property can be omitted when evaluating gradients (sensitivities) using numerical
differences. The reason is that even in a region where the true derivative of the function
is not defined, a finite-difference computed gradient will "smooth" the derivative with
respect to the function neighbourhood, leading to a well-defined approximation of the
function derivative.

However, this approach possesses two considerable drawbacks: firstly, their evaluation
tends to be time-consuming. Note that the ODE (along with all its associated functions
evaluation and complexity) has to be evaluated dim(p) times. Secondly, it has an accuracy

2 General Definitions and Models 2.4 Computing Sensitivities of ODEs 32

bound due to finite numerical precision. Especially in nested systems and implementations
in which many intrinsic functions occur, this can lead to a considerable loss of accuracy
of the resulting sensitivities. These considerations motivate alternative methods for
computing the parameter sensitivities.

2.4.2 Analytic

The alternative to numerical differences is to make use of the fact that the mathematical
structure of the ODE is known. Thus, calculus provides tools for computing at least
analytic partial derivatives. We can approach this analysis by considering two mathematical
structures present in an ODE:

• a mathematical relationship that defines the ODE derivative

• a mathematically defined numerical integration method of the ODE

In the following, these different approaches are presented.

Differentiating the ODE integration method An approach towards computing the
ODE sensitivities is to differentiate the ODE integrator method. For example, in the case
of an Euler integrator (note the general case in which the step-size depends on p)

xk+1(p) = xk(p) + h(p)dxk
dt (p, t) (2.67)

we obtain

∇xk+1(p) = ∇xk(p) +
(
∂h

∂p

)
(p)dxk

dt (p, t) + h(p)
(
∂

∂p
dxk
dt

)
(p, t) (2.68)

It means that by having computed ∇x0(p) as well as
(
∂h
∂p

)
(p) and

(
∂
∂p

dxk
dt

)
(p, t), we

can recursively construct the derivative of the system state xn with respect to p.

However, such an approach has some limitations. Even though it is relatively straight-
forward to compute the sensitivities for an Euler discretization method, it is quite obvious
that the equations quickly become very complicated and cumbersome when using higher-
order integration methods. Perhaps even more discouraging, the designer is required to
design new sets of equations for the sensitivities for every different ODE solver method that
might be used. The situation is even more discouraging when considering an adaptive-step
method, as the adaptation algorithm and the second method used for error control have
to be differentiated as well.

2 General Definitions and Models 2.4 Computing Sensitivities of ODEs 33

Differentiating the ODE Taking the total derivative of (2.50) and applying Leibnitz
integral rule, we obtain

d
dpx(p, t1(p)) =∇x0(p, t0(p)) +

∫ t1(p)

t0(p)

∂

∂pf(x(p, t),p, t) + ∂

∂xf(x(p, t),p, t)dx
dp(p, t)dt

+f(x(p, t1(p)),p, t1(p)) d
dp t1(p)

−f(x(p, t0(p)),p, t0(p)) d
dp t0(p) (2.69)

That is, we have to evaluate the coupled (matrix) integral:[
xT

∇xT

]
(p, t) =

[
xT

0
∇xT

0

]
(p, t0(p)) +

∫ t1(p)

t0(p)

 f(x(t),p, t)T(
∂
∂p f(x(t),p, t) + ∂

∂x f(x(t),p, t)∇x(t)
)T

dt

+
[

0T

(f(x(t1),p, t1)∇t1(p)− f(x(t0),p, t0)∇t0(p))T

]
(2.70)

with ∇(·) = d
dp(·) This result can be interpreted as follows: by differentiating the ODE,

we obtain a higher dimension dim(x)(1 + dim(p)) ODE, also refered to in the literature
as the sensitivity differential equation. When solved, it will contain the state as well as
the state sensitivities of the system. The main benefit of using such a method is that we
can now easily modify or use any ODE solver method available: more accurate methods
will implicitly increase the accuracy of the sensitivities as well.

Example 2.13 (Differential-Drive ODE Sensitivities using piece-wise linear kinematic in-
puts). In this example, we are interested in computing the sensitivities of the differential-
drive kinematic model with state

xT =
[
x y θ v ω s

]
(2.71)

and state transition function

ẋT =
[
v cos(θ) v sin(θ) ω v̇ ω̇ |v|

]
. (2.72)

For simplicity of the emerging equations, we will consider the case in which the agent is
allowed to move only forwards, i. e. v(t) ≥ 0,∀t.

We assume that the initial state of the system is fixed and its trajectory is defined similar
to Example 2.8 by piece-wise linear functions describing the linear and angular velocity
of the agent. For simplicity, we choose the functions such that their inflection-points are
at the same temporal intervals, which however are still parameters. Thus, the parameter
vector can be summarized as

pT =
[
v1 v2 . . . vn ω1 ω2 . . . ωn t1 t2 . . . tn

]
. (2.73)

It is worth noting that the inflection points v1, . . . , vn and ω1, . . . , ωn are not to be
mistaken with the system velocities state v and ω. A point that is omitted in many

2 General Definitions and Models 2.4 Computing Sensitivities of ODEs 34

approaches is to ask whether parts of the system state could be computed in closed-form.
This not only would reduce the computational time for solving the ODE (especially
for higher order ODE solvers) but also would increase the accuracy of the entire state
solution. Given the simple structure of piece-wise linear functions, it follows that in
this case, a large portion of the system state can be computed in closed-form. We thus
split the state into a part that has to be solved numerically (xn) and a part that can be
computed in closed-form (xc)

xT
n =

[
x y

]
, xT

c =
[
θ v ω s

]
. (2.74)

In the following, we will go through the process of computing the sensitivities of the
closed-form state and numerical state respectively.

Closed-form State Sensitivities We are interested in obtaining a closed-form solution
of ∇xc(= dxc

dp). Given the considerations from the discussion on differentiating the
ODE, if the (matrix) integral could be evaluated in closed-form, a first step would be to
compute ∇ẋc(= dẋc

dp). As the state linear and angular velocities are uniquely defined
by the parametric functions, it follows that the state transition function ẋc is of the
form ẋc = fc(xc), specific for a system with autonomous dynamics. Thus, for a simpler
approach towards computing ∇ẋc, we could consider a chaining such as:

∇ẋc = ∂ẋc
∂xc

∂xc
∂uc

duc
dp (2.75)

with uc – a valid (fictitious) input of the system. A simple choice for such a fictitious
input is uT

c =
[
v̇ ω̇

]
. With this, we have:

∂ẋc
∂xc

=

0 0 1 0
0 0 0 0
0 0 0 0
0 d|v|

dv 0 0

 (2.76)

Choosing two constant matrices:

M1 =

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 , M2 =

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 (2.77)

according to Theorem 2.1, we can compute the dynamic matrix Φc as:

Φc(t0, t) =

1 0 t− t0 0
0 1 0 0
0 0 1 0
0
∫ t
t0

d|v(t)|
dv dt 0 1

 (2.78)

2 General Definitions and Models 2.4 Computing Sensitivities of ODEs 35

Using the chaining discussed above, we obtain the closed-form state sensitivities:

∇xc = Φ(t0, t)∇xc0 +
∫ t

t0
Φ(τ, t)∂ẋc

∂uc
duc
dp

dτ (2.79)

As in this approach, ∇xc0 = 0, we are interested in solving the integral term of (2.79).
Algebraic evaluation yields:

dxc
dvi

=

0∫ t

t0
dv̇(τ)
dvi dτ
0∫ t

t0
(t− τ)dv̇(τ)

dvi dτ

 , dxc
dωi

=

∫ t
t0

(t− τ)dω̇(τ)
dvi dτ

0∫ t
t0

dω̇(τ)
dvi dτ
0

 , dxc
dti

=

∫ t
t0

(t− τ)dω̇(τ)
dti dτ∫ t

t0
dv̇(τ)

dti dτ∫ t
t0

dω̇(τ)
dti dτ∫ t

t0
(t− τ)dv̇(τ)

dti dτ

(2.80)

where dxc
dvi represents the sensitivities of the closed-form state with respect to the ith

control-point representing the linear velocity value v and analogously for ωi and ti. It
is worth mentioning here that the system still behaves in an autonomous fashion (its
motion is uniquely determined by the parametric function shape). The introduction of
the fictitious input is solely an artefact that allows the computation of the closed-form
sensitivities in a systematic fashion, by making use of Theorem 2.1.

After some (tedious) evaluation, the explicit expressions for the sensitivities of the closed
form state variable v, its derivative v̇ and its integral s are:

d
dvi

v(t) = +σ(t− ti)
min(t, ti+1)− ti

ti+1 − ti
− σ(t− ti+1)min(t, ti+2)− ti+1

ti+2 − ti+1
(2.81)

d
dvi

v̇(t) =

+ 1
ti+1−ti , ti < t ≤ ti+1

− 1
ti+2−ti+1

, ti+1 < t ≤ ti+2
0, otherwise

(2.82)

d
dvi

(∫ t

t0
v(t)dt

)
=−σ(t− ti)

(min(t, ti+1)− ti)(ti − 2t+ min(t, ti+1))
2(ti+1 − ti)

(2.83)

+σ(t− ti+1)(min(t, ti+2)− ti+1)(ti+1 − 2t+ min(t, ti+2))
2(ti+2 − ti+1)

d
dti

v(t) =

−(vi+1 − vi)min(t,ti+1)−ti

(ti+1−ti)2 , ti < t ≤ ti+1

−(vi+2 − vi+1) ti+2−min(t,ti+2)
(ti+2−ti+1)2 , ti+1 < t ≤ ti+2

0, otherwise
(2.84)

d
dti

v̇(t) =

− vi+1−vi

(ti+1−ti)2 , ti < t ≤ ti+1

+ vi+2−vi+1
(ti+2−ti+1)2 , ti+1 < t ≤ ti+2

0, otherwise
(2.85)

2 General Definitions and Models 2.4 Computing Sensitivities of ODEs 36

d
dti

(∫ t

t0
v(t)dt

)
=

− (vi+1−vi)(min(t,ti+1)−ti)(ti−2t+min(t,ti+1))
2(ti+1−ti) , ti < t ≤ ti+1

−

(vi − vi−1)t2i+1+
(vi+1 − vi−1)(t2i − 2titi+1)+

(vi+1 − vi)
(

min(t, ti+1)2+
2t(ti+1 −min(t, ti+1))

)

2(ti+2−ti+1) , ti+1 < t ≤ ti+2

−vi+1−vi
2 , t > ti+2

0, otherwise

(2.86)

The sensitivities with respect to the angular velocity values control points are not present,
as they equate to 0. Note that the above equations hold using variable substitution for
the sensitivities of the angular velocity ω, its derivative ω̇ and its integral θ.

Numerical State Sensitivities Having had those sensitivities computed, let us look at
the numerical state xn. In this case, we can consider uT

n =
[
v θ

]
as the new fictitious

input of the sub-system, as ẋn depends only on this closed-form state for which we
obtained also closed-form sensitivities. Thus, we have:

∂ẋn
∂un

=
[
cos(θ) −v sin(θ)
sin(θ) v cos(θ)

]
(2.87)

Finally, using the chain rule, we obtain the sensitivities of the numerical state derivative:

∇ẋn = dẋn
dp = ∂ẋn

∂un

[
∇v
∇θ

]
(2.88)

which can be integrated together with the numerical state, according to (2.70).

3 Optimal Planning and Control

In the context of control-theory, the typical goal of controlling a system relates to means
by which the inputs of the system are actuated such that the system behaves in a
desired way. One generic approach for computing such system inputs relates to finding
a feedback-law. As the name suggests, the task of the controller designer is to find a
(mathematical) relationship between measurable outputs and inputs of the system such
that the system behaves as desired. Typical families of methods for obtaining such
control laws include Linear Control [37], Lyapunov-Based Control [38] as well as Exact
Input-Output Linearisation [27]. All these methods possess the mathematical apparatus
of design and analysis such that the resulting control-law behaves sufficiently well, i.e.
they possess the characteristic of (asymptotically) (exponentially) stabilising the system.
However, virtually any system that is desired to be controlled possesses constraints, at
least on the magnitude of the applicable system inputs. However, due to the nature of such
methods, systematically accounting for such constraints is in general impossible.

An alternative approach towards controlling a system is to make use of optimization.
In the following, the general constructs related to optimization as well as the methods
through which it is used in the context of control are presented.

3.1 Definitions and Models

3.1.1 Dynamic Models

For the purpose of this work, let us consider trajectory-planning for systems that are
represented by a dynamic model (related to an ODE). Moreover, without loss of generality,
navigation is a task strongly connected with the concept of an environment, more specifi-
cally free space, i. e. locations in the pose space of the agent that are collision-free.

In general, we possess modelling techniques that allow us to describe, with a relatively high
accuracy, the behaviour of the agent. On the contrary, modelling unstructured dynamic
environments with respect to dynamics is a lot more challenging. Thus, even though in
general the agent and the environment model are coupled into a system model xsys, we
choose to split the system into the agent x and environment z, xT

sys =
[
xT zT

]
, in order

to be able to focus on the environment sub-system later-on.

For the beginning, let us define the dynamics of the system in a continuous time formulation.
However, keep in mind that the following analysis can be easily transformed to a discrete

37

3 Optimal Planning and Control 3.1 Definitions and Models 38

time system.

ẋ(t) = f̂x(x(t),u(t))+wfx(t) , x(0)= x̂0 + wx0 (3.1a)
ż(t)= f̂z(z(t),x(t), t) +wfz(t) , z(0)= ẑ0 + wz0 (3.1b)

with the modelled (nominal) state transition function f̂ , agent control input u and process
noise w.

Moving horizon trajectory generators (controllers) relate to optimization or sampling into
the future. Thus, it is convenient to define a short-hand notation for the solutions of a
system ordinary differential equations (ODE).

Definition 3.1 (System Trajectory). Given a system with the state x ∈ Rn, control
input u ∈ Rm satisfying the ODE ẋ = fx(x,u, t), we define the trajectory of the
system x as the vector-valued function trajx as

trajx(x0, t0,wx0 ,u, t1,wfx) (3.2)
=
{

x | x(t0) = x̂0 + wx0 and ẋ(t) = f̂x(x(t),u(t), t) + wfx(t), ∀t ∈ [t0, t1]
}
.

Moreover, we define the nominal trajectory of the system as

trajNx (x0, t0,u, t1) = trajx(x0, t0,0,u, t1,0). (3.3)

In practice, trajx and trajz are computed using various types of ordinary differential
equation solvers. A more in-depth discussion about the numerical algorithms is given in
Section 2.3.

3.1.2 Constraints

Every system is constrained (actuator limits, ranges of operation in which the model
is accurate enough, constraints induced by desired mode of operation etc.). Being able
to account for arbitrary non-linear constraints in an explicit manner is one of the key
benefits of using dynamic (non-linear) optimization. Thus, the system with the state x,
additional to the state transition constraint ẋ = f(x,u, t), will possess a general set of
equality constraints ψ and inequality constraints h in the form

Definition 3.2 (Dynamic System (Nominal) Constraints). Given a system of the form
(3.1a), as well as the vector-valued equality constraints ψ and inequality constraints
h, we define the constraints Cx of the dynamic system with state x as

Cx(x0, t0,u, t1) =

true, if x = trajNx (x0, t0,u, t1),

ψ(x(t1), t1) = 0,
h(x(t),u(t), t) ≥ 0, ∀t ∈ [t0, t1]

false, otherwise

(3.4)

3 Optimal Planning and Control 3.1 Definitions and Models 39

Moreover, we define the set of all feasible solutions of a constraint satisfying program
as

SOLx(x0, t0) =
{[

u t1
] ∣∣∣ Cx (x0, t0,u, t1) = true} . (3.5)

Note that this formulation allows equality constraints evaluated only on the end state x(t1).
However, this is not a restrictive formulation, as any equality constraint g that is active
at every state along the trajectory can be included through the inequality constraints
h ⊇ heq, as heq = {g ≥ 0} ∪ {−g ≥ 0}.

3.1.3 Cost Function

The goal of a large set of problems, including vehicle navigation, is to behave (navigate)
optimally with respect to some criteria. In its most general form, the criteria for the
trajectories of the system are multiple. For example, in the case of navigation, it might be
desired to navigate time-optimally to the goal while reducing accelerations in the system.
The concept of optimization and finding optimal trajectories with respect to multiple
criteria is denoted in the literature as multi-objective optimization. However, the search,
evaluation and selection of trajectories with respect to multiple cost-functions becomes
considerably harder and more expensive to evaluate, as one has to find multiple optimal
solutions that relate to the multi-objective Pareto front.

Because of this, this work addresses the relaxed problem of finding optimal solutions for
the single-objective optimization problem, which in practice can be achieved by combining
the (vectorial) multi-objectives e.g. through the use of a generic inner product. Thus, the
single objective cost function of a dynamic system can be formulated as

J(u, t1) = ϕ(x(t1), t1) +
∫ t1

t0
l(x(t),u(t), t) dt, (3.6)

with the cost function J , the terminal cost ϕ and the Lagrange density function l.

Having the above definitions and assumptions, we can now define the optimization problem
of the system

Definition 3.3 (Dynamic Optimization Problem). Given is a system of the form
(3.1a), together with system constraints and cost-function as defined in (3.4) and (3.6)
respectively. The solution u∗, t∗1 of the optimization problem:

min
u,t1

J(u, t1) s.t. Cx(x0, t0,u, t1) = true (3.7)

when applied to the ideal system with state x, will result in the optimal trajectory of
the system.

3 Optimal Planning and Control 3.2 Optimization-based Control 40

Note that in (3.7), the system control input function u as well as the duration of the
trajectory (through t1) are optimization variables. Thus, in theory, with such a formulation,
any arbitrary navigation task can be solved, the solution of the problem representing the
optimal trajectory of the system and its control input function.

3.2 Optimization-based Control

The previous section presented the general concept and notations used when dealing with
optimization problems. In this section, we will take a closer look at how optimization can be
used to control a system. To that end, we will constructively analyse different assumptions
regarding the quality of our system models and possible methods of optimal-control.

3.2.1 Infinite Optimization Horizon, Perfect Env. Model (t1 →∞, wz = 0)

We will first take a look at the situation in which we possess sufficient expressibility and
computational power to be able to find optimal solutions of arbitrary length. Moreover,
we will assume that we precisely know how the environment state is at all times t > t0.
From here, we differentiate:

Perfect agent model (wx = 0): With this, we would in theory be able to solve any
navigation task by solving an optimization problem once. As all the models are exact, we
could trivially feed-forward the computed agent inputs and the optimal trajectory would
be executed.

Of-course, such a setting is highly unreasonable. Thus, we advance to:

Imperfect agent model (wx 6= 0): This setting becomes reasonable when for example
an agent is navigating in an environment without obstacles and has a navigation task
that is relatively short. To this end, we could solve the optimization problem once using
the nominal model of the agent. This would then become the reference trajectory of the
agent. In order to account for the agent model uncertainties, a classical (static) controller
can be used to stabilise it and perform trajectory tracking control.

Keep in mind, however, that the underlying feed-back controller will in general actuate
the system inputs differently than how their nominal value was computed in the solution
of the optimization problem. This implies that certain constraints which the optimisation-
problem satisfies, might be violated. A simple (empirical) remedy to this problem is to
enforce conservative bounds on the constraints of the optimization problem. A more
careful approach would be to take into account bounds of the agent model uncertainties
and modify the enforced constraints accordingly.

Nevertheless, even this setting is often unsatisfactory, as in practice we are interested in
autonomous navigation of arbitrary length, resulting in the input function of the agent

3 Optimal Planning and Control 3.2 Optimization-based Control 41

ODE requiring an arbitrary expressibility. However, this is typically inapplicable as the
computational complexity of the optimization-problem becomes intractable.

3.2.2 Finite Optimization Horizon, Perfect Env. Model (t1 < tmax1 , wz = 0)

An approach to circumvent this problem is to iteratively solve the optimization problem
while taking into account a maximum temporal horizon into the future. This concept
is known in the literature as Moving Horizon Trajectory Planning (MHTP) [39]. Of
course, this leads to globally sub-optimal trajectories. However, the resulting trajectories
quality increases with the increase of the optimization horizon, while such a horizon
bounds the computational complexity of the optimization problem. This has led to many
applications making use of such an approach with great success. Moreover, iteratively
re-solving the optimization problem is already giving a hint that such an approach could
take into account partial knowledge of the environment as well as reactive (adaptive)
behaviour.

A popular method in which MHTP is used in the context of control is represented by
Model Predictive Control (MPC) [40, 41]. In this approach, the optimization problem is
solved iteratively at discrete time intervals tk while changing the initial state of the agent
according to measurements and(or) observers of its state. At the end of each iteration,
the initial interval of the computed control command is applied. It has been proven
that, under certain assumptions, this leads to an (exponentially) asymptotically stable
behaviour of the system [42]. More informally, the iterative solution of the optimization
problem with updated initial state creates an implicit feed-back loop that leads under
certain assumptions to (exponential) asymptotic stability.

An alternative to MPC is to perform MHTP without updating the initial state of the
agent. This relies on the assumption of the MHTP that the agent follows exactly the
computed trajectory in the interval between two iterative solves. In order to stabilise
the agent along such a trajectory, a static trajectory-following feed-back controller is
used.

Theorem 3.1 (Stabilised MHTP). Given is a system of the form (3.1a) with initial
condition x̂00 (x̂0 at iterate 0) at time t00 . Moreover, a MHTP solving an optimization
of the form (3.7) is run at discrete time intervals t0k (k ≥ 0, t0k+1 > t0k) with the
solution x̂∗k(·) such that

x̂0k+1 = x̂∗k(t0k+1). (3.8)
If the system is controlled by an (exponentially) asymptotically trajectory tracking
controller of the form

u(t) = k(x(τ),xd(τ), τ), τ ≤ t, (3.9)
with a static desired system trajectory xd(t), then the feed-back law

u(t) = k(x(τ), x̂∗k(τ), τ), ∀k ≥ 0, t ∈ [t0k , t0k+1], τ ≤ t (3.10)
(exponentially) asymptotically stabilises the system along the MHTP-computed
trajectory.

3 Optimal Planning and Control 3.2 Optimization-based Control 42

Initial optimization state
Planned trajectory
Desired path

MPC Stabilised MHTP

t00 < t01 < t02 < t03

t00 t00

t01
t01

t02

t02

t03
t03

Figure 3.1: Measured states, iteratively-planned and resulting trajectories for MPC and
Stabilised MHTP using an inexact motion model

Proof. (sketch) The main argument of the proof lies in the fact that the chosen controller
does not require evaluation of the desired trajectory xd(t) at future times. Moreover,
the MHTP is iterated such that at a new iterate k + 1, the initial condition is precisely
the previously computed optimal solution x̂∗k at time t0k+1 . This implies that from the
perspective of the feed-back controller (3.9), the function x̂∗k(t), ∀k ≥ 0, t ∈ [t0k , t0k+1]
is static. An intuitive interpretation can be given by the fact that the MHTP computes
new parts of the trajectory just in time, its value between iterates k and k + 1 on the
interval [t0k , t0k+1] remaining constant and consistent with the initial conditions of the
k + 1 iterate.

Figure 3.1 illustrates the MPC and the stabilised MHTP approaches that lead to asymptotic
stability. As it can be seen in the image, one of the benefits of Stabilized MHTP is the
fact that model inaccuracies are compensated by the lower-level control loop. Moreover,
this allows the feedback frequency to be considerably higher, as the controller (3.9) is in
general a lot less computationally intensive. However, the drawback of such an approach
lies in the fact that input constraints are not guaranteed to be satisfied any more.

3.2.3 Classification of Imperfect Environment Models

In all previous scenarios, we have assumed that the environment model is exact. Even in
this setting, it is not necessarily trivial to guarantee that the navigation algorithm will
always be collision free (safe). However, the assumption of a perfect environment model
is in practice far from reasonable. Targeting unstructured environments, it is intuitively
clear that the models of the environment will possess inaccuracies of large magnitude in
comparison with the inaccuracies of the agent model. It is thus expected that guaranteeing
safety of navigation becomes considerably more complicated. Nevertheless, one of the
main interests of this work is to devise a generic approach that is proven to be safe,
a characteristic that is required in most industrial applications as well as autonomous
driving before being accepted and put into practice.

3 Optimal Planning and Control 3.2 Optimization-based Control 43

In the following, we will analyse different environment assumptions and the imperfect
models that emerge.

Static known environment This assumption is probably the most restrictive and easiest
to deal with.

ż = 0, z(t) = z, z(0) = z0 (3.11a)
yz = hz(z) + vz (3.11b)

In this case, all the obstacles states z are static and known, their observation noise closely
relating to the quality of the provided map.

Static observable environment As in the previous model, the dynamics of the envi-
ronment are non-existent. However, the environment (or parts of it) are only partially
observable, the observation function being dependent on the state of the agent sensors.

ż = 0, z(t) = z (3.12a)
yz(t) = hz(z,x(t)) + vz(t) (3.12b)

Even though still naive with respect to the dynamics, such a model becomes feasible in
many applications, where the environment dynamics is slow with respect to the agent
dynamics. Moreover, by assuming that the agent sensors are reliable, such a model will
allow to perform agent-centric navigation guaranteeing collision avoidance.

Dynamic autonomous observable environment In this model, we allow the environment
to change over time. However, we assume that the evolution of the environment is not
influenced by the trajectory of the agent.

ż(t) = fz(z(t), t) + wz(t) (3.13a)
yz(t) = hz(z(t),x(t)) + vz(t) (3.13b)

Such a model is desired to reduce computational complexity in finding a solution to the
navigation task as well as make use of environment dynamic models that are decoupled
with respect to the agent. Note that without additional assumptions, this model cannot
guarantee safe navigation of the agent. An intuitive example would be the situation in
which an agent is stationary in the corner of a room. Such a model will allow dynamic
parts of the environment (e.g. other vehicles) to move towards the agent and ultimately
collide, situation which in general cannot be avoided by the agent.

Dynamic non-intrusive observable environment In indoors navigation, a reasonable
assumption of long-term safety of an agent is to consider that a stationary agent is in a
safe state (i. e. the environment will not collide with it when it does not move). In the

3 Optimal Planning and Control 3.3 Constraints for Ensuring Safety 44

automotive domain, a similar safe state would be a stationary vehicle on the emergency
lane of a high-way. In the topic of fixed-wing Unmanned Aerial Vehicles (UAV), such safe
states could be periodic circular motions (loiter manoeuvres) in certain locations.

All those considerations require the environment to posses certain characteristics, namely
to be non-intrusive when such safe states are reached by the agent. In the following, we
are interested to analyse this concept more formally and ultimately provide a generic
constraint programming formulation that guarantees navigation safety assuming the
dynamic non-intrusive observable environment model.

3.3 Constraints for Ensuring Safety

In a nutshell, the general constraint that we would like to enforce is that the agent is
always in a valid state, i. e. its state is collision-free. We define F(z(t)) as the collision-free
set of agent states with respect to the environment z(t) at time t. With this definition in
mind, the constraint that we want to enforce is

x(t) ∈ F(z(t)), ∀t ∈ [t0,∞). (3.14)

Even though succinct and general, this formulation has some major drawbacks: It requires
the knowledge of the true environment state z(t), ∀t ∈ [t0,∞). In practice, this is rarely
the case even for current time t→ t0. Also, without any additional assumptions regarding
the environment, there is no guarantee that there exists a solution to (3.14).

3.3.1 Notation and Related Concepts

In the following, we will define several concepts that will allow to realistically and feasibly
evaluate (3.14). They will also introduce the main additional assumptions that have to be
taken regarding the nature of the environment z(t).

Assuming noise in the environment model

Depending on the applicability domain, environments can be arbitrarily complex; the
design of qualitative environment models is a rich field of research of its own. However,
all such models will possess inaccuracies, especially when predicting their state into the
future. Nevertheless, we want to make use of their nominal prediction quality. Thus, we
define the nominal environment state as follows trajNz

trajNz (z0, t0,x(·), t1) = trajz(z0, t0,0,x(·), t1,0). (3.15)

Note that this set would coincide with the true free-space set if our environment model is
perfect wz = 0. However, in all other cases, generally F(trajNz (z0, t0,x(·), t)) * F(z(t)).
In order to circumvent this problem, we require that our environment simulator also
provides a function Cwz that enforces the bounds of the environment model initial state

3 Optimal Planning and Control 3.3 Constraints for Ensuring Safety 45

x

y
true obstacle state

guaranteed obstacle state
nominal obstacle state

guaranteed free space
nominal free space

t0 t1 t2 t3

Figure 3.2: Nominal versus guaranteed free space for several future simulated time-steps

error and process noise. With this, we can define the guaranteed free space environment
state as

trajGz (ẑ0, t0,x(·), t1) = z
s.t. F(z) =

⋂
z0,wz(·)

F(trajz(z0, t0,wz0,x(·), t1,wz(·)))

Cwz(ẑ0, z0, t0,wz(t), t) ≤ 0, ∀t ∈ [t0, t1] (3.16)

(3.16) can be interpreted as follows: given all allowed variations of the initial state and pro-
cess noise, it returns the environment state having the free space set valid in all variations,
i. e. the free space that is guaranteed. Of course, in practice, implementations of computing
trajGz would make use of simple noise models and stochastics for efficient computation.
However, this could lead to relatively conservative bounds on the environment model error,
which would result in F(trajGz) strongly shrinking even after short periods of simulation.
Figure 3.2 illustrates the dual of the free space set (namely the obstacle set) for a nominal
vs. guaranteed simulation.

Reducing the constraint evaluation for infinite time

The general idea is to assume that there exists a set of agent safe states that are free and
time-invariant with respect to the environment. This implies that if the agent enters in
such a state at an arbitrary time, it can always remain in this set and be guaranteed free
of collisions. Similarly to [14], we refer to such a set as feasible invariant FI

FI(z0, t0) = { xs | ∃u(·) s.t. x(t) = trajNx (xs, t0,u(·), t),
z(t) = trajGz (z0, t0,x(·), t),
Cx(x̄, t0,u(·), t) = true,
x(t) ∈ F(z(t)), ∀t ≥ t0}. (3.17)

3 Optimal Planning and Control 3.3 Constraints for Ensuring Safety 46

This formulation comes in handy, as for many environment models, computing a subset
of the true feasible invariant set is reasonably straight-forward. One such example is to
assume the stationary state of the agent (for example zero velocity for a differential drive)
for every free pose point with respect to a static map. This would apply, however, some
constraints on the dynamics of the environment, namely no obstacle should collide in the
future with the agent stopping at an arbitrary free location in the static map.

We invite the reader to consider this fact the other way around: by defining a feasible
invariant set of the environment, one constrains the type of the environment in an arbitrary
way; however, as we will see in the next section, it will imply the existence of a solution
for the moving horizon trajectory planning.

Having introduced the above notations, we can now formally define the dynamic non-
intrusive observable environment

ż(t) = fz(z(t),x(t), t) + wz(t) (3.18a)
yz(t) = hz(z(t),x(t)) + vz(t) (3.18b)

FI(z(τ), τ) 6= ∅ (3.18c)
FI(z(τ), τ) ⊆ F(z(τ)), ∀τ ∈ [t0,∞). (3.18d)

An additional notation that we would like to consider is the trajectories bundle that can
move the agent from a state x0 to a feasible invariant state T FI

T FI(x0, z0, t0) =
{ x(·) | ∃u(·), t1 s.t. x(t) = trajx(x0, t0,u(·), t),

z(t) = trajGz (z0, t0,x(·), t),
Cx(x0, t0,u(·), t) = true,

x(t) ∈ F(z(t)),
x(t1) ∈ FI(z(t1), t1), ∀t ∈ [t0, t1] }. (3.19)

3.3.2 Collision-free Navigation Constraints

In this section, we will make use of the definitions and assumptions from the previous
section in order to guarantee safety of a control law devised by a MHTP. Similar approaches
for ensuring solutions of a MHTP are referred in literature as Robust MPC [17]. The
concept behind such approaches is to provide conservative bounds of the models uncertainty
and to constrain the solutions such that given all allowed uncertainties, it is guaranteed
that the constraints will not be violated. However, in the following, we will also provide a
formulation which possesses a tighter bound of the emerging motions, allowing to plan
trajectories of virtually arbitrary length. We will make in the following assumptions
regarding the MHTP:

• A1: the search for a control input u(·) is performed at discrete time-steps at temporal
intervals Ts

3 Optimal Planning and Control 3.3 Constraints for Ensuring Safety 47

• A2: MHTP computes a solution in zero time

• A3: the agent model is exact

• A4: the low-level controller executes exactly the command uk(t) at time t, with
uk(·) representing the input commands computed at time t0k that result in a valid
trajectory

The assumption A3 is in most of the cases reasonable, as the uncertainty of the agent
model is negligible in comparison with the environment uncertainty (wx � wz). Note
that by assuming A3, it is easy to drop the assumption A2 and assume that MHTP
computes a solution in at most Ts time. However, we require A2 for the sake of a cleaner
formulation. A more in-depth discussion regarding non-negligible computation-time is
given in Section 4.4.

Under these assumptions, we would like to define a set of constraints such that if there
exists a control input u0(·) that satisfies them at the initial iteration of the MHTP (t00),
there will exist a control input uk(·) that satisfies them ∀k > 0. This allows us to provide
a safety guaranteeing constraint for moving horizon trajectory planning for finite horizon
(t1 <∞) and to account for environment process noise (wz(·) 6= 0) as follows:

Theorem 3.2. Worst-case Safety Constraints

Given are an agent and environment system of the form (3.1a),(3.1b) as well as
guaranteed bounds of the environment initial state error and process noise, enforced
through the constraint Cwz. Moreover, the agent is controlled using a MHTP that
satisfies A1-A4. If

T FI(x0k , ẑ0k , t0k) 6= ∅ (3.20)

at the initial MHTP iteration (k = 0) for the initial conditions x00 , ẑ00 , t00, there
will exist a solution uxk(·), t1k that satisfies (3.20) ∀k ≥ 0.

Proof. By construction, T FI represents the set of agent trajectories starting from a state
consistent with the initial agent state x̂0 that are guaranteed to be collision-free and ending
in a feasible invariant set. It implies that for any following iteration, there exists at least
the valid trajectory computed in the initial iteration that is valid and collision-free.

Even though this formulation is safe, it possesses one drawback, namely it requires
guaranteed simulation of the environment until the terminal state at time t1. As discussed
previously, due to the conservative bounds in the environment model uncertainty, this
will lead to a considerable shrinkage of the free space with respect to the guaranteed
simulation in comparison with the free space of the real environment state. This implies
that for satisfying non-collision, t1 will be constrained by the "inflation" of the predicted
obstacles state. Conversely, this formulation makes no use of the quality of our nominal
environment simulator, but rather of the guaranteed simulator. This motivates an
alternative formulation of the safety constraints:

3 Optimal Planning and Control 3.3 Constraints for Ensuring Safety 48

Theorem 3.3. Nominal-case Safety Constraints

Given are an agent and environment system of the form (3.1a),(3.1b) as well as
guaranteed bounds of the environment initial state error and process noise, enforced
through the constraint Cwz. Moreover, the agent is controlled using a MHTP that
satisfies A1-A4. If there exists a solution ux0(·), t10 that satisfies:

x(t) = trajx(x0k , t0kuxk(·), t),
zt−Ts = trajNz (ẑ0k , t0k ,x(·), t− Ts)
z̄(t) = trajGz (zt−Ts , t− Ts,x(·), t)
T FI(x(t), z̄(t), t) 6= ∅, ∀t ∈ [t0k + Ts, t1k) (3.21)

at the initial MHTP iteration (k = 0) for the initial conditions x00 , ẑ00 , t00, there
will exist a uk(·) that satisfies (3.21) ∀k > 0.

Proof. (sketch) We assume that (3.21) holds at an iteration k− 1 starting at time t0k−1 =
t0k −Ts. This implies that there exists a trajectory induced by uxk−1(t), t ∈ [t0k −Ts, t0k)
and u′xk−1(t), t ∈ [t0k , t′1] such that the agent is guaranteed safe and enters in a feasible
invariant state at t′1. The reason this is always the case is the fact that when evaluating
(3.21) at iteration k − 1, for t = t0k−1 + Ts = t0k , the nominal simulation is performed for
∆t = 0, i. e. zt−Ts = ẑ0. This implies that the initial environment state evaluated in T FI
is guaranteed. Thus, the MHTP at iteration k will find at least uxk(t) = u′xk−1(t) that
continues to satisfy (3.21).

This formulation is interpretable as follows: we assume that our nominal simulator is
perfect and constrain our motion accordingly. However, in case our nominal simulator will
drift from the real environment in future iterations, we will always have a (guaranteed) safe
trajectory that we can follow. An illustration of the nominal and emergency trajectories
is presented in Figure 3.3, while the performed simulations in (3.21) on a temporal scale
is visualized in Figure 3.4.

3 Optimal Planning and Control 3.3 Constraints for Ensuring Safety 49

x0

invalid (colliding) safety trajectories
invalid (no visibility) safety trajectories

valid safety trajectories

line of sight ray
nominal planned trajectory

evaluation points

Figure 3.3: A nominal planned trajectory starting at state x0 and emergency trajectories
at each evaluation point. An emergency trajectory becomes valid if does not
collide with an obstacle and if it is visible from the evaluation point.

t0k−1 = t0k − Ts t1kt0k

[
x̂mk
ẑmk

]

t′

trajx, traj
N
z

uk(·)

trajx, traj
G
z

uk−1(·)

t′1

trajx, traj
G
z

uk(·)

trajx, traj
G
z

u′k(·)

t′ + Ts

[
x̂0k
ẑ0k

]

Figure 3.4: Timeline of the agent and environment simulations when enforcing the con-
straint (3.21). Note that when using the assumption A2, the computation
cycle starts and ends at t0k with measurements

[
x̂0k ẑ0k

]T
. The top time-

line represents the nominal trajectory of agent and environment (black in
Figure 3.3). The bottom timeline represents an emergency trajectory that
starts at t′. Note that for the initial duration Ts, of the emergency trajectory,
it evolves as the nominal trajectory using uk(·), however with guaranteed
environment simulation. Beyond this temporal point, the trajectory alters
according to u′k(·) towards a feasible invariant state. As mentioned, A2 can
be easily dropped by performing a guaranteed simulation with the control
inputs from the previous cycle. In this case, the beginning of the computation
cycle is at t0k−1 with measurements

[
x̂mk ẑmk

]T
.

4 Implementation of MHTP

Chapter 3 discussed methods in which dynamic optimization can be used in the context of
control. The introduced concepts and their analysis has been conducted in a continuous
formulation. However, the actual methods through which the presented concepts can be
computed (solved) are far from trivial. As presented in Section 2.3, finding solutions of
ODEs requires in general numerical methods. Even in the case where the optimization
problem is static, only numerical algorithms that typically guarantee only the local
optimality of a solution can be used. The difficulty increases further when one is interested
to solve dynamic optimization problems of the form (3.7). In general there exist two main
methods to solve a dynamic optimization of the form (3.7):

Indirect Methods The main idea of such methods is to reformulate the dynamic opti-
mization problem into a (n-point) boundary value problem which is then solved numerically
[43]. This can be achieved by exploiting the mathematical properties of the (piece-wise)
continuously differentiable structure of the problem by making use of Variational Calculus
[44] or the Minimality Principle of Pontryagin [45]. Besides their elegance, the main
strength of such approaches is that they provide solutions that are optimal with respect
to the original dynamic optimization problem. However, they possess a fundamental
drawback in the context of navigation: it is very difficult to systematically take into
account constraints that involve the state of the system. As shown in Section 3.3, when
non-trivial environment models are taken into account, constraints that depend on the
agent state (namely its pose) are crucial. For this reason, indirect methods will not be
considered in this thesis for the practical implementation of Optimal Navigation.

Direct Methods An alternative approach is to discretize the dynamic optimization
problem with respect to time, leading to an optimization problem that no longer searches for
a function (infinite dimensional vector-space) but for a finite set of variables (parameters).
This results in the optimization problem to become static. However, this entails in the
possibility of not satisfying the constraints on the entire desired interval. Moreover, only
a suboptimal solution with respect to the original optimization problem might be found
(due to the limited expressibility when searching in a finite vector-space). On the other
hand, various efficient numerical solvers that can take into account arbitrary constraints
exist.

Having considered the above, this chapter focuses on the practical implementation of
MHTP by means of direct methods, illustrating efficient approaches and design-choices
that lead to a robust, sufficiently accurate and efficient implementation.

50

4 Implementation of MHTP 4.1 Discretizing the Optimization Problem 51

4.1 Discretizing the Optimization Problem

We are now interested in transforming the dynamic optimization problem (3.7) into a
problem of the form

min
p

L(p)

subject to: g(p) = 0
h(p) ≥ 0, (4.1)

where p ∈ Rp are the optimization variables over a finite vector-space. In order to perform
this transformation, several methods can be applied.

4.1.1 Fully Discretized Representation

The general idea behind a fully discretized representation is to consider all system state
variables as well as state inputs as optimization variable. For the beginning, let us
discretize the optimization time-interval [t0, t1] into a temporal lattice with N lattice
points

t0 = t0 < t1 < · · · < tN − 1 = t1. (4.2)

Based on this lattice, we proceed by discretizing the system state and control-input at all
the temporal-lattice locations

XT =
[
(x0)T (x1)T . . . (xN−1)T

]
, UT =

[
(u0)T (u1)T . . . (uN−1)T

]
. (4.3)

Summarized, the most general form of optimizing such a discretized system is to optimize
for

pT =
[
XT UT t0 t1 . . . tN−1

]
(4.4)

Note that an addition of N − 1 inequality constraints is necessary to ensure that the
temporal lattice is consistent

ti+1 − ti ≥ 0, i = 0, 1, . . . , N − 2. (4.5)

An alternative approach that leads to a reduced dimensionality of the search-space is to
assume equal temporal lattice intervals. In this approach, one would not have to optimize
for all temporal lattice points but rather for their interval ∆t.

Having defined our optimization state, we can now discretize the remaining of the
optimization problem. Note that when using full discretization, one has to choose the
ODE discretization method and encode it explicitly in the optimization problem as
the involved ODEs will be implicitly solved during optimization. For example, the
cost-functional (3.6) can be discretized using the Trapeze Rule in the form

L(p) = ϕ(tN−1,xN−1) + 1
2

N−2∑
i=0

(ti+1 − ti)
(
l(xi,ui, ti) + l(xi+1,ui+1, ti+1)

)
. (4.6)

4 Implementation of MHTP 4.1 Discretizing the Optimization Problem 52

Similarly, the state transition function can be discretized and included in the optimization
problem by the equality constraints

xi+1 − xi − ti+1 − ti

2
(
f(xi,ui, ti) + f(xi+1,ui+1, ti+1)

)
= 0, i = 0, 1, . . . , N − 2. (4.7)

Regarding the end-constraint ψ, it is simply evaluated on the end-state of the trajec-
tory

ψ(xN−1,uN−1, tN−1) = 0. (4.8)

The last part of the original optimization problem that has to be discretized are the
inequality constraints

h(x(t),u(t), t) ≥ 0, ∀t ∈ [t0, t1]. (4.9)

The most straight-forward way of discretization is to enforce the inequality constraints at
the lattice points

h(xi,ui, ti) ≥ 0, i = 0, 1, . . . , N − 1. (4.10)

In practice, such an approach will not guarantee that the inequality constraints are satisfied
on the entire interval [t0, t1], but only at the discrete evaluation points. Thus, one would
tighten the bounds of such a constraint such that its discrete evaluation would result in
the initial constraint to be guaranteed satisfied on the continuous interval. The following
example provides a more in-depth discussion on the concept.

Example 4.1 (Discretizing the Distance-to-Obstacles Constraint for a circular agent).
Suppose we are considering the navigation problem of an agent with circular footprint
with radius r and a single obstacle represented by a point. With the agent position
xT
r =

[
xr yr

]
and the obstacle position xT

o =
[
xo yo

]
, the continuous constraint that

enforces non-collision of the agent with the obstacle along a planned trajectory is

||xr(t)− xo(t)||2 − r ≥ 0, ∀t ∈ [t0, t1]. (4.11)

As presented in (4.10), the discrete constraint is

||xr(ti)− xo(ti)||2 − r′ ≥ 0, i = 0, 1, . . . , N − 1. (4.12)

Now, we are interested in computing a value for r′ as well as a bound for the maximum
distance between the evaluation points ti such that the original, continuous constraint
is always satisfied, as illustrated in Figure 4.1.

4 Implementation of MHTP 4.1 Discretizing the Optimization Problem 53

xr(ti) xr(ti+1)

xo

r′

r

∆smax

xr(t0)

xr(t1)
Planned trajectory

Figure 4.1: Bounds of the discretized distance constraint

For the beginning, let us suppose that the maximum distance between two evaluation
points is ∆smax. As the minimum distance between the obstacle and the robot is present
at the point where the two circles of consecutive agent footprints of radius r′ meet, it

follows that the required discrete radius r′ ≥
√(

∆smax
2

)2
+ r2. Note that as ∆smax → 0,

we approach the continuous formulation r′ ≥ r. Thus, the governing parameter on the
tightness of the discrete constraint is governed by the distance between consecutive
lattice points ∆smax. We can conclude that the continuous obstacle-distance constraint
is of spatial nature, even though the so-far considered lattices are of temporal nature.

Next, let us analyse how we can find a bound on ∆smax. For the case in which the
temporal lattice points ti are assumed to be equally spaced (ti+1 = ti + ∆t), we could
find such a bound by taking into account the maximum velocity of the agent vmax:

∆smax = vmax
∆t (4.13)

However, this is a quite conservative bound. Note that even if the planned trajectory
has a very short distance, still the parameter that governs the bound of the constraint
relaxation is vmax. An improvement could be thus achieved if we would have a lattice
that is spaced at equal distance. This would result on r′ to become independent on vmax
and depend on the maximum planned travelled distance smax.

As a final note, one might ask how can one evaluate the distance-to-obstacles constraint
in the non-trivial setting where more than one obstacle point is involved. An efficient
method for this evaluation when considering static unstructured obstacles is to pre-
compute on a pixel-map the Euclidean Distance Transform and evaluate it using bilinear
interpolation, as presented in Example 2.9. This approach which will be discussed more
in-depth in Chapter 5.

We would like now to summarise several characteristics of the full-discretization approach.
A noteworthy property of the full-discretization formulation of the optimization problem
relies in the fact that the differential (now difference) equations are explicitly solved as

4 Implementation of MHTP 4.1 Discretizing the Optimization Problem 54

equality constraints. This implies that we no longer require an external ODE solver for
any involved ODE. The strengths of this approach are that we can easily make use of
implicit ODE solver methods, as for their solution, numerical algorithms are typically
required. However, due to the fixed defined (temporal) lattice points, it is quite difficult to
make use of ODE solvers that require intermediate steps, as this would require an increase
of the lattice points. Thus, we are limited to simple RK methods, such as the Trapeze
Method or to Multi-step methods. Another draw-back of solving the ODEs implicitly
in the optimization problem relates to the solution accuracy. In many implementations
of non-linear solvers, the exact satisfaction of the equality constraints is not guaranteed.
Rather, the optimization process will evolve and converge to a solution in which a norm of
the equality constraints is minimized. Thus, the evaluated system trajectory can possess
relatively high inaccuracies. Lastly, the ODE solver used in the optimization problem has
to be explicitly coded. This results in a design restriction, such that switching between
different ODE solvers becomes a tedious task.

As the ODEs are solved implicitly, one benefit of the full-discretization approach is that
we can evaluate first (and second) order sensitivities in closed form. However, this comes
at the cost of a large optimization space (generally N(n+m+ 1) optimization variables,
with the state dimension n, control dimension m and number of discretized states N)as
well as a large number of additional constraints (for the general case n(N − 1) additional
equality constraints and N − 1 additional inequality constraints).

An alternative to address the reduced numerical accuracy of the ODEs solutions is to solve
the system-dynamics related equality constraints external to the optimization problem.
This is performed by iteratively solving the system ODE using an ODE solver, thus
guaranteeing a system trajectory numerical error of the order of the used ODE solver
type, invariant to the optimization problem convergence.

However, with such an approach, as discussed in Section 2.4, computing (iteratively)
the sensitivities of the system states with respect to the input sequence uk can induce
considerable computational overhead. This motivates using a discretization approach at
the other end of the spectrum, namely by using a minimal parametric representation.

4.1.2 Minimal Parametric Representation

The general concept of such a discretization approach is to formulate the problem such
that no additional equality constraints (related to the ODE solve) are required. This
implies that an external ODE solver is used to iteratively evaluate information required
by the optimization algorithm (such as cost function, equality and inequality constraints
as well as their sensitivities). We will analyse this approach in a constructive manner,
arriving finally at the general formulation of the discretized optimization problem.

The main difference to the full-discretization approach is that we want to use an external
solver for all the ODEs present in our optimization problem. As presented in Example
2.13, it is in general convenient to consider that parts of the system state (and their sensi-
tivities) can be computed in closed form. This choice not only reduces the computational

4 Implementation of MHTP 4.1 Discretizing the Optimization Problem 55

requirements for solving the system but also improves the accuracy of the solution. Thus,
we choose to split the state of the system

xT
sys =

[
xT
n xT

c

]
(4.14)

into a part that requires numerical solutions xn and a part that can be evaluated in
closed-form xc. Additionally, recall that we have to solve an additional ODE related to
the integral term of the optimization cost-function (3.6). Thus, the state that we have to
solve numerically is

xT
ode =

[
L xT

Nm

]
(4.15)

with the integral (Lagrangian) term L of the cost-function. This results in the (matrix)
state for the sensitivities computation to

[
xT
ode

∇xT
ode

]
=
[
L xT

Nm

∇LT ∇xT
Nm

]
(4.16)

Note that in general, the total derivatives of the numerical state with respect to the
optimization parameters can be obtained using the chain-rule given the closed-form states
sensitivities.

For the simple case of unconstrained optimization, one might ask if some of the numerical
states can be omitted from the ODE state. This would be the case when the Lagrangian L
would not depend on those states. However, in constrained optimization, such states might
be required for evaluating certain equality or inequality constraints. For a very efficient
implementation, one might want to define 3 different ODE states, used for the evaluation
of the cost-function, equality constraints and inequality constraints respectively.

4.1.3 Evaluation Lattices

As discussed in Example 4.1, continuous inequality constraints can be of different natures.
Even though in the full-discretization approach, the inclusion of such different lattices is
very difficult1, we will see that they can be feasibly evaluated using a minimal parametric
representation.

We will begin by defining the time as the consistent arc parametrization that we will use
to encode and relate all the evaluation lattices. However, it must not necessarily be time
but rather a function that is continuous and increasing. Now, let us consider a generic
lattice ξ that can be evaluated at different arc parametrizations (times). For such a lattice

1The difficulty lies in the fact that on the course of optimization, when e.g. an equal distance lattice point
coincides with an e.g. equal time lattice point, the sensitivities of the related optimization constraints
are typically undefined or complicated to evaluate.

4 Implementation of MHTP 4.1 Discretizing the Optimization Problem 56

to be consistent, we require

ξT =
[
ξ0 ξ1 . . . ξNξ−1

]
(4.17a)

ξi ≤ ξi+1, i = 0, . . . , Nξ − 2 (4.17b)
ξ0 = t0 (4.17c)
ξNξ−1= t1 (4.17d)

that is, the lattice is non-decreasing.

Provided that such lattices can be computed in closed form (with respect to the optimiza-
tion parameters), we could solve the ODE only once and by stepping exactly in all lattice
points, we could save their states and sensitivities for later use. This results in an efficient
algorithm that solves the optimization problem ODE in a single pass, resulting in the
numerical state solutions and sensitivities for every lattice point ξik of every lattice ξk.
Algorithm 1 presents the pseudo-code of the discussed approach.

Algorithm 1 solve_multilattice_sensitivity_ode(p)
parameters: lattices structure
1:

// initialization:
2: xode ← x0(p)
3: ∇xode ← ∇x0(p)
4: ξik ← computeLatticeArc(p, ξk, i, t0), ∀k, ∀i = 0, . . . , Nξk − 1

// sorting and storage of all arc parametrization points:
5: ξall ← sort

({
ξik
∣∣ ∀k, i = 0, . . . , Nξk − 1

})
// one-pass solve of the ODE:

6: for i = 0, . . . ,dim(ξall)− 1 do
7: ξjk ← getLatticePoint(ξall, i)

8:

[
xT
ode

∇xT
ode

]
← advanceODE(p,xode,∇xode, ξjk)

9: xjξk ← xode
10: ∇xjξk ← ∇xode

// patching the sensitivities of the ODE:
11: ∇xjξk ← ∇xjξk + fx(xjξk ,p, ξ

j
k)∇ξ

j
k(p)− fx(x0(p),p, t0)∇t0(p)

12: end for

Note that when one is not interested to evaluate the sensitivities of the system state,
the algorithm simplifies by omitting the sensitivities-related variables and algorithmic
steps. As a note, we require that all lattice points are computed in closed-form as
otherwise, evaluation of the lattice arcs as well as the correction of the gradients would be
unreasonably expensive to compute.

4 Implementation of MHTP 4.1 Discretizing the Optimization Problem 57

Example 4.2 (Evaluation Lattices of kinematic models). Let us consider the kinematic
model of a platform whose model parametrization includes the chassis velocity v using
a piece-wise linear function.

The first lattice that we want to possess is the lattice that relates to the end-point of
the trajectory. This is required when an end-cost term ϕ is present in the cost-function
or when end-state constraints ψ are present. Thus, we have for the lattice ξend,

ξend(p) = t1(p). (4.18)

The next lattice that we want to possess is (as usual) the temporal lattice ξ∆t, spaced
at equal (but variable) time intervals

ξi∆t(p) = i

Nξ∆t − 1 t1(p), ∀i = 0, . . . , Nξ∆t − 1. (4.19)

As discussed in Example 4.1, navigation under obstacles would benefit of a spatial
lattice ξ∆s. As the travelled distance is defined by

s(p, t1(p)) = s0(p, t0(p)) +
∫ t1(p)

t0(p)
|v(p, τ)|dτ, (4.20)

we require a function parametrization of v(t) such that s(t) can be computed in closed-
form. For piece-wise linear functions, this is simply the case. Moreover, if we consider
only positive velocities v(t) ≥ 0, any parametric function whose integral can be evaluated
in closed-form is a good candidate for obtaining a spatial-lattice. Assuming (variable)
equal distances between the lattice points, we obtain ξi∆s(p) by solving

s(p, ξi∆s(p)) = i

Nξ∆s − 1s1(p, t1(p)), ∀i = 0, . . . , Nξ∆s − 1. (4.21)

We would like here to highlight that other types of lattices can be beneficial. In the case
of the velocity parametrization using piece-wise linear functions, the velocity derivative
is a convex function on every linear interval. If our optimization problem constrains the
linear acceleration of the system, it is sufficient to evaluate the inequality constraint only
at the inflection-points of the piece-wise linear function. Thus, the equal control-points
lattice ξ∆knt is

ξi∆knt(p) = ti(p), ∀i = 0, . . . , Nξ∆knt − 1. (4.22)
An illustration of the above-presented evaluation lattices for a differential drive is
presented in Figure 4.2.

– control point knot

– arc length evaluation point
– temporal evaluation point

– initial state
– end state

t

vb(t)

ωb(t)

0

equal distance intervals

equal time intervals

Figure 4.2: Trajectory parametrization with different lattice points

4 Implementation of MHTP 4.1 Discretizing the Optimization Problem 58

Using an analysis similar to the one presented in Example 4.1, one might conclude that
certain constraints suffice to be evaluated at fewer points along the optimized trajectory.
In this case, one could simply define an additional lattice (with a different number of
evaluation points), providing a flexible and general method for improving the quality
and(or) run-time of the solved optimization problem.

So far, we have discussed how to solve the optimization problem ODEs for the system state
and the Lagrangian at lattice points of different nature. Note, however, that from here,
any additional terms in the cost-function and constraints can be easily modelled by making
use of the chain-rule. This results into an additional benefit of the minimal parametric
representation, namely that the designer can split the work in modelling the state of the
system, and the cost-function and constraints of the optimization problem.

Given all the previous considerations, we can now formulate the general form of the dis-
cretized dynamic optimization problem using a minimal parametric representation:

min
p

L(p) = ϕ(xt1(p), t1(p)) +
∫ t1(p)

t0(p)
l(x(p, t), t)dt

subject to: gξk(xiξk(p)) = 0
hξk(xiξk(p)) ≥ 0, ∀k,∀i = 0, . . . , Nξk − 1 (4.23)

with the equality constraints gξk and the inequality constraints hξk evaluated along the
lattice ξk.

4.1.4 Solving the Discretized Optimization Problem

So far, we have addressed methods to represent, model and encode the optimization
problem. In the following, we would like to mention different methods by which such an
optimization problem can be solved.

Best sampled trajectory Probably one of the simplest ways of solving such an optimiza-
tion problem is through sampling. The general idea is to sample the optimization space and
compute the cost-function and constraints for every sample. At the end, the best-scored
solution that satisfies the constraints is selected as the solution of the optimization. In
the literature, such an approach was among the first to be used in the context of MPC
for vehicle navigation, under the popular name of Dynamic Window Approach (DWA)
[8]. However, such an approach has certain drawbacks. Being inspired from discrete
optimization, it relies on exhaustively evaluating a neighbourhood of an initial solution in
the optimization space. This results in either a huge search-space or in very inexpressive
solutions, being a feasible approach only for small forward-simulation times.

4 Implementation of MHTP 4.1 Discretizing the Optimization Problem 59

Weighted average of high-scored trajectories A variant of the best sampled trajectory
approach is to compute the optimal solution as a weighted average of high-scored solutions.
Even though this might seem not very elegant and unfounded for the feasibility of the
optimal solution, more complex methods can be used to obtain very good results. A
successful approach using such a conceptual technique was achieved in [15] where an
MPC algorithm is devised by solving a stochastic optimization problem for the purpose of
aggressive driving, i. e. driving under large side-slip angles.

Mixed Integer Linear Programming Another technique to solve such an optimization
problem is to make use of simplified non-linear models. Their reduced complexity allows
a more complex optimization problem to be solved, that includes continuous as well as
discrete variables. [19] has successfully applied such techniques for safe navigation of
UAVs.

All the above mentioned methods are typically based on sampling, which guarantees
finding the global optimal solution in the searched space, or guarantees that the optimal
solution is global. The following methods possess this characteristic only for convex
optimization problem. For the generic non-linear case, they only guarantee finding a
locally optimal solution.

Derivative-Free Optimization Methods Moving towards continuous non-linear methods,
the first step is to require the continuity of our optimization problem. Such optimization
problems can be solved by (variations of) the Simplex Algorithm2 [46]. Even though such
an approach requires considerably more iterations than gradient-based methods, it does
not require computation of sensitivities. In certain problems, these methods prove to be
beneficial [47].

Gradient-based Non-Linear Programming Such algorithms require the knowledge of
first (and possibly second) order sensitivities of the optimization problem. The literature
possesses a multitude of generic approaches, improvements and efficient implementations
of such algorithms [48, 49]. One of their strengths is that the solutions possess relatively
high numerical accuracy. Even though originally such algorithms were devised for convex
optimization problems, variants that are well adjusted for general optimization problems
exist.

In the remaining of this work, we will focus on the details and implementation specifics of
solving the optimization problem using Non-Linear Programming algorithms as it has
constituted the method of choice for Optimal Vehicle Navigation.

2not to be mixed with the Simplex Algorithm used for solving linear optimization problems

4 Implementation of MHTP 4.2 Gradient-based Non-Linear Programming 60

4.2 Gradient-based Non-Linear Programming

In the following, we will present certain considerations and implementation specifics that
relate to solving the optimization problem using a non-linear solver. A main characteristic
of non-linear solvers is that they require not only evaluation of the cost-function and
constraints, but also their first and possibly second order sensitivities with respect to the
optimization variables, requiring thus that the modelled cost-function and constraints to
be at least once (twice) differentiable.

4.2.1 Solver Algorithms

For unconstrained non-linear optimization [50], the typical solver algorithms are based on
line-search methods or trust-region methods [49].

In line-search methods, at each iteration, the solver first chooses a search direction in the
optimization space and then searches along this direction for a point which minimizes
the cost-function. It is worth noting here that line-search approaches formally require
that the function is unimodal on the line-search interval, i. e. it possesses only one local
minimum [49]. If this is not the case, the line-search algorithm might end-up oscillating
and convergence to a local-minimum is not guaranteed. In practice, this can be obtained
even for generic non-convex problems if the line-search interval is forced to be sufficiently
small. However, it is practically impossible to obtain a clean formulation that guarantees
the uni-modality of the line-search interval [49].

In trust-region methods, the general idea is to approximate the function at each iteration
with a quadratic function and enforce a bound on the maximum step that can be performed
at one iterate (a trust-region). Then, the optimal point of the iterate is computed assuming
that the to-be-minimized function is the quadratic approximate. At the end, the actual
improvement of the real cost-function is compared with the expected improvement based
on the quadratic estimate. Based on this metric, the trust-region is expanded or shrunk,
resulting in the algorithm to perform iterates such that locally, the cost-function is
described by its quadratic approximate with sufficient accuracy [49].

Moving forward to constrained optimization, solvers have to be able to enforce the equality
and inequality constraints. The equality constraints are taken into account by making
use of Lagrange Multiplicators, which are additional variables that allow manipulation of
the equality constraints together with the cost-function [51]. It is important to note that
the equality constraints are always active, i. e. every valid point in the optimization-space
has to satisfy them. This results in most approaches to perform steps in the tangential
space of the equality constraints, i. e. along the manifold that satisfies them [51]. Most
solvers cannot guarantee the exact satisfaction of the equality constraints, but rather they
will converge with the iterates while preserving a bounded error of the constraints. We
note that this implies a soft satisfaction of the equality constraints. A popular method to
solve equality-constrained optimization problems is the Sequential Quadratic Program
(SQP) method. In this approach, the entire optimization problem is replaced by a local

4 Implementation of MHTP 4.2 Gradient-based Non-Linear Programming 61

quadratic problem approximation, which is iteratively solved until convergence at each
global iteration [52]. More advanced variations of SQP are Inexact Composite-step SQP
methods [53], in which a step correcting the equality constraints error is added (thus
composite-step). Moreover, they converge to optimal solutions even if the sensitivity
information of the program is inexact.

Inequality constraints, however, are in general more complicated to deal with. The main
reason lies on the fact that they can be inactive (we are in the interior of the domain) or
active (we are at the boundary of the domain). At a point where an inequality constraint
is active, it behaves like an equality constraint, while points where an inequality constraint
is inactive behave as if the constraint is not present [49]. One method to take into account
inequality constraints is the Active-Set Method, an approach in which the set of active
inequality constraints is book kept [54]. The main drawback of this approach is the
combinatorial nature of the possible active constraints at a next iterate. Another popular
approach to deal with the inequality constraints is the Interior-Point Method. In this
method, the point at each algorithm iterate is guaranteed to always satisfy all inequality
constraints, never exactly touching a constraint boundary. The approach makes use
of barrier-functions to obtain initial solutions that are intuitively "far-away" from the
boundaries and then allows the solution to increasingly approach the boundaries. Even
though the Interior-Point method is relatively fast, it possesses two drawbacks: firstly, the
initial solution has to be inside the feasible region, i. e. all inequality constraints have to be
satisfied. This can be difficult to ensure in practice for synthetic constraints (for example
minimum distance to a moving obstacle). Secondly, most implementations require that
the inequality constraints are affine with respect to the optimization variables [55].

Given the available implementations as well as the use case in the scope of this thesis, for
the following, an optimization algorithm based on the Interior-Point Method together and
an Inexact Composite-step SQP is preferred.

4.2.2 Generic Constraint Modelling

Given the specifics of typical non-linear programming solvers, we will have a look at
generic methods to encode inequality and equality constraints.

Inequality Constraints The inequality constraints can be generally expressed as

h(p) ≥ 0. (4.24)

Given that certain solvers require that inequality constraints are affine, we differenti-
ate

haff (p) ≥ 0 (4.25a)
hnl(p) ≥ 0, (4.25b)

with the affine inequality constraints haff and the general non-linear inequality constraints
hnl. We are now interested in reformulating the non-linear inequality constraints such that

4 Implementation of MHTP 4.2 Gradient-based Non-Linear Programming 62

specific solvers requirements are satisfied. This is typically done by reformulating them
into equality constraints, which solvers do not typically require to be affine. Moreover,
as a result, the inequality constraints become soft, i. e. they are not necessarily exactly
satisfied.

In the following, we will constructively start from an apparently correct modelling of
such reformulations, identifying certain issues, additional requirements and finally proper
reformulations along the way. Let us begin by considering a single non-linear inequality
constraint

hinl(p)− a ≥ 0, (4.26)

with the constant a. We note that we can reformulate this constraint as an equality
constraint

gh(p) =
{1

2(hinl(p)− a)2, hinl(p)2 ≤ a
0, hinl(p)2 > a.

(4.27)

Note that such a function has a continuous derivative (no discontinuities in either function
nor gradient values at the switching point hinl(p) = a). Also, note that this function is 0
exactly when (4.26) is satisfied.

With this, we can reformulate the optimization problem (4.1) as

min
p

L(p)

subject to: g(p) = 0
gh(p) = 0
haff (p) ≥ 0. (4.28)

We would like to mention here that even though this formulation seems valid, it might be
ill-posed for certain problems and solver algorithms. Note that a point p̄ in the search
space is defined as regular if

rank (∇g) (p̄) = rank

(∇g0) (p̄)
(∇g1) (p̄)

...
(∇gq) (p̄)

 = q, (4.29)

where dim(g) = q and dim(p̄) = p [49]. This implies that q ≤ p, which is expected, since an
optimization problem with more equality constraints than optimization variables is clearly
ill-posed. However, by using an arbitrary number of equality constraints (4.27), q ≤ p
cannot be guaranteed any-more. Another characteristic that (4.29) requires by imposing
rank (∇g) (p̄) = q is the Linear Independence Constraint Qualification (LICQ) condition
[49]. This condition is required by many minimization algorithms that are based on the
Karush-Kuhn-Tucker optimality conditions. It guarantees that the Lagrange-Multipliers
of the optimization problem are unique [49]. To this end, equality constraints such as
g(p) = p2 = 0 are not regular points, following that a reformulation such as (4.27) does not

4 Implementation of MHTP 4.2 Gradient-based Non-Linear Programming 63

satisfy solver requirements. This motivates an alternative transformation of the inequality
constraints hnl, using slack variables s

gh(p, s) = hnl(p)− s (4.30a)
hs(s) = s. (4.30b)

The resulting optimization problem then reads as

min
p,s

L(p)

subject to: g(p) = 0
gh(p, s) = 0
haff (p) ≥ 0
hs(s) ≥ 0. (4.31)

Note that now, the optimization problem possesses additionally dim(s) optimization
variables, namely one additional variable per equality constraint. This guarantees that
q ≤ p. It is worth noting here that one might want to scale the slack variable influence
on the newly created equality constraint, with the aim of improving the conditioning
number of the cost-function Hessian, i. e. gh(p, s) = hnl(p) − cTs, with the vector of
scaling constants c.

Equality Constraints So far we have discussed two simple methods through which
inequality constraints that are non-affine or are desired to be softly satisfied can be
reformulated into equality constraints. We would like here to have a short discussion
regarding equality-constraint scaling. In general, algorithms will try to minimize a norm
of the equality-constraints error up to a given value ε. When equality constraints of
various natures are involved, the designer is interested to maintain different tolerances for
constraints of different natures, i. e. dim(gi(p)) < εi. A simple approach to systematically
account for this is to modify every equality constraint as

gisc(p) = 1
εi
gi(p) (4.32)

Imposing the solver to maintain the tolerance ||gsc(p)|| < 1 thus provides a relatively
tight bound that guarantees that the desired εi are satisfied.

Example 4.3 (Kinematic Constraints: Differential Drive). We formulate the kinematic
constraints of a differential-drive platform, modelled and parametrized in accordance with
example Example 2.13. Firstly, we would like to enforce that the platform moves only
forward, given that most perception-sensors do not have a 360° field-of-view. Moreover,
we would like to enforce limits on the wheels angular velocities and accelerations as
well as a limit on the lateral acceleration of the platform. Given the piece-wise linear
parametrization in v and ω, we identify that a number of constraints are affine with
respect to the optimization variables, being thus able to formulate them directly as

4 Implementation of MHTP 4.2 Gradient-based Non-Linear Programming 64

(hard) inequality constraints

Positive chassis velocity: v(p) ≥ 0 (4.33a)

Max. right (left) wheel angular velocity: ωwmax −
v(p)± d

2ω(p)
rw

≥ 0 (4.33b)

Min. right (left) wheel angular velocity: −ωwmin +
v(p)± d

2ω(p)
rw

≥ 0 (4.33c)

Regarding the angular acceleration of the wheels as well as the chassis lateral acceleration,
they are no-longer affine. We formulate them as

Max. right (left) wheel angular acceleration: ω̇wmax −
v̇(p)± d

2 ω̇(p)
rw

≥ 0 (4.33d)

Min. right (left) wheel angular acceleration: −ω̇wmin +
v̇(p)± d

2 ω̇(p)
rw

≥ 0(4.33e)

Max. (minimum) chassis lateral acceleration: alatmax ∓ vω ≥ 0 (4.33f)

and implement them as soft inequality constraints using slack-variables, as presented
in (4.30). Note that (4.33a), (4.33b), (4.33c), (4.33d) and (4.33e) are convex on any
interval of the piece-wise linear functions as long as the inflection points of the v and ω
parametric functions coincide. This implies that for guaranteed satisfaction of these
constraints on the entire optimization interval, it is sufficient to evaluate them only
at the inflection points. The constraint (4.33f) is most conveniently evaluated on a
temporal lattice.

Example 4.4 (Collision-avoidance Constraints: Random-Walk Environment Model). In
this example, we formulate the collision-avoidance constraints of a platform assuming a
random-walk environment model. Such an environment model results in its nominal
state to be static during the course of solving the optimization problem. For simplicity,
we will initially assume that the platform has a circular footprint.

A main point of any function evaluated inside the optimization problem is that it should
have a minimal computational complexity. Thus, we would like to have a function d(x, y)
which returns the minimum distance to any obstacle at the position (x, y). This can be
performed efficiently for nominally static (unstructured) environments by computing
the Euclidean Distance Transform and its gradient (with respect to x and y) prior to
the optimization, resulting in a constant-time complexity evaluation of the function.

dedt(x) = min{ ||x− p||2, ∀p ∈ z0} (4.34)

The details of this method are beyond the scope of this exercise and will be detailed in
Chapter 5. We assume thus that we can access the value of dedt, ∂

∂xdedt and
∂
∂ydedt at

any desired points (x, y).

Going back to the constraint of interest, we initially desire that the distance to the
closest obstacle is always larger than a desired value, i. e. dedt(x, y) − dmin ≥ 0. To

4 Implementation of MHTP 4.2 Gradient-based Non-Linear Programming 65

account for the radius of the agent footprint, we have

dedt(x(p, t), y(p, t))− dmin − rrob ≥ 0. (4.35)

So far, the formulation assumes that the environment is static. Given the nature of the
random-walk model, we simply have to circularly inflate the environment at t > t0 to
obtain a guaranteed bound of its motion. This results in the constraint

dedt(x(p, t), y(p, t))− dmin − rrob − vmaxz (t(p)− t0) ≥ 0. (4.36)

An empirical improvement of this constraint can be obtained by assuming that the
uncertainty of the robot motion scales e.g. with its linear velocity. This results into an
additional term v(p, t)vmotionnoise to be subtracted from the left-hand-side of (4.36).

Looking at the simplified version of this constraint (4.35), it is clear that it would
be beneficially evaluated on a spatial lattice. Regarding the version in which the
environment random-walk is taken into account (4.36), it is still advised to perform its
evaluation on a spatial lattice, as such a model is still applicable when vmaxz is relatively
small. If this is not the case, more refined environment dynamic models are advised.

Finally, we would like to note that such a constraint can be easily scaled to non-circular
footprints, by discretizing the footprint-shape into a number of circular regions. For
each region, the constraint is enforced on the afferent lattice.

As a follow-up of Section 3.3, we would like to present the specific formulation of the safety
constraints by assuming two simple environment models, the Static-Known environment
and the Random-Walk Environment.

Example 4.5 (Safety Constraints: Static-Known Environment Model). In this simplified
setting, we note that the nominal state of the simulator coincides with the true state of
the simulator (by neglecting the maps error). This implies that enforcing the constraint
(4.35) along the planned trajectory suffices to guarantee non-collision in the optimization
horizon. However, this does not guarantee the existence of a solution of the optimization-
problem at the next controller cycle. Consider the case in which the agent is navigating
with very high speed with a very short planning horizon. This can result in situations
in which the agent cannot physically stop before colliding with the environment.

Typical approaches found in the literature to circumvent this problem is to ensure that
the planning horizon is sufficiently large, where sufficiently is in general an ambiguous
statement. Assuming that any obstacle-free position where the agent has zero velocity
is a feasible invariant state, the constraint that guarantees safe navigation in this setting
is simply:

v(p, t1(p)) = 0 (4.37)
It is worth noting a conceptual drawback of this constraint, namely its distortion of the
resulting trajectories quality. In order to obtain trajectories with increased performance,
one might want to increase the optimization horizon as the last portion will always
move the agent to a stand-still. Informally speaking, end-point constraints can generate

4 Implementation of MHTP 4.2 Gradient-based Non-Linear Programming 66

in certain situations (such as this case) a "moving-horizon bottleneck" of the resulting
trajectories.

Example 4.6 (Safety Constraints: Random-Walk Environment Model). This example
presents the modelling of the safety constraints in a more realistic environment model.
We will observe that even in this relatively simple model, the resulting constraints are
relatively complicated.

Informally, we want to enforce the following:

Guaranteed safety constraint: The entire planned trajectory is visible from the initial
state. Moreover, assuming temporal inflation of the environment with the maximum
random-walk velocity from time t0, the planned trajectory is collision-free and ends with
a stop.

Note that this statement coincides with enforcing the constraints (4.36) and (4.37) with
the additional requirement that the entire trajectory is visible from the initial point.

Nominal safety constraint: From every point along the trajectory at time t, at least
one emergency trajectory (that leads to a stop) is visible. Moreover, assuming temporal
inflation of the environment with the maximum random-walk velocity from time t, the
emergency trajectory is collision-free.

In the following, we would like to define, analyse and formulate the Nominal Safety
Constraint.

Regarding the environment, we assume that

• the agent kinematic sub-state
[
v ω

]T
= 0 is a candidate for a feasible invariant

state,

• if the agent reaches a free-space state with the candidate feasible invariant state,
it is in a feasible invariant state,

• the observed initial state of the environment is error-free for the visible region of
the on-board sensors.

Note that the last assumption regarding the visible region of the on-board sensors is
typically neglected in other navigation approaches. However, we consider it important
especially for navigation in narrow or cluttered environments at moderate to high speeds.
Without any additional information, we can formulate the nominal initial state of the
environment

z0 = {pi | an obstacle is sensed at pi or
pi is an obstacle in the static map}, (4.38)

i. e. the set of all expected obstacle points pi (in 2D space) relating to a non-free location.
In the following, we have to define a dynamic model of the environment. For simplicity,
we will assume that the obstacles are subject to a bounded random-walk model (with

4 Implementation of MHTP 4.2 Gradient-based Non-Linear Programming 67

the maximum random-walk velocity with vmaxz). Similarly to Example 4.5, this implies
that our nominal simulator is

z(t) = {pi | pi ∈ z0} (4.39)

and the guaranteed simulator is

z(t) = {pi | ∀i,∃pj ∈ z0, such that
(
||pi − pj || ≤ vmaxz (t− t0)

)
∧

∀θ, x(t) 6=
[
(pi)T θ 0 0

]T
∨

pi not visible from x(t0)} (4.40)

nominal free space

guaranteed free space for t0
guaranteed free space for t1 > t0

⊆ ⊆

x0

Figure 4.3: Nominal and guaranteed free space with respect to the initial agent state,
taking into account sensor visibility and a bounded random-walk environment
model

An illustration of the resulting free space from the two simulators is presented in
Figure 4.3. For evaluating the distance to the environment, we can again make use
of the function dedt. Note, however, that in the random-walk model, the guaranteed
minimum distance from a point p to the closest obstacle point is dminobst (x,∆t = t− t0) =
max(0, dedt(x)− vmaxz ∆t).

Additionally, we require a measure to evaluate whether a point p will be visible from a
future agent location x. Thus, we define the function viz as

viz(x,x1) = min{ dminobst (x′, t− t0) | ∀x′ ∈ [x,x1]} (4.41)

with time t of state x and the line segment [x,x1] between the positions of x and the
end point x1. Note that this function evaluates to 0 only if the end point x1 is not
visible from location x(t) at time t. For efficient implementation, one could make use of
the edt to skip evaluation points when obstacles are far away from the evaluated line
segment.

4 Implementation of MHTP 4.2 Gradient-based Non-Linear Programming 68

With this definition in mind, the missing constraint for the Guaranteed Safety Constraints
is

viz(x0,x(t)) > 0, ∀t ∈ [t0, t1], (4.42)

which is discretized on a spatial lattice.

Continuing towards the Nominal Safety Constraints, let us have a closer look at the
T FI in order to efficiently evaluate it. Exploiting the fact that a feasible invariant state
can be located in any free point, one can argue that it is sufficient to sample a sub-set
of T FI for which the duration of the trajectories is small. Such emergency trajectories
are the ones that quickly move the agent from a state x0 into a feasible invariant state.
As the trajectory of the agent depends only on its input, it is motivated to precompute
such trajectory candidates for discretized values of initial kinematic state

[
v ω

]T
in an

obstacle-free environment with the pose of the agent coinciding with the origin. Thus,
in order to evaluate whether such a trajectory ∈ T FI, one has to perform just a rigid
transformation to the trajectory and then make use of the previously defined dminobst and
viz.

Figure 4.4: Precomputed trajectories towards a feasible-invariant state. Such trajectories
are precomputed for initial states

[
v0 ω0

]T
that span a discrete 2D space.

In the following, we refer with xtf
j
i as the sampled point 1 ≤ j ≤ m along the

precomputed trajectory 1 ≤ i ≤ n after the rigid transformation in the coordinate frame
x(t0). Finally, our function evaluating whether a trajectory towards a feasible invariant
state exists from a state x(t) is

1
n

n∑
i=1

m

√√√√ m∏
j=1

dminobst (xtf
j
i , t)viz(x(t),xtf

j
i) ≥ 0 (4.43)

Note that this function has the value of zero if at least one point on every trajectory i is
inside an obstacle or not visible from x(t). Moreover, this function is continuous in x0, y0
and θ0. Using bi-linear interpolation in the dimensions v0 and w0 of the precomputed
trajectories sets, the function is continuous in all the agent state dimensions. Thus, it can

4 Implementation of MHTP 4.2 Gradient-based Non-Linear Programming 69

be used for enforcing the safety constraints while solving a gradient-based optimization
problem.

Summarising, the constraints required for enforcing the Nominal Safety Constraints are
(4.35) (non-collision assuming nominal environment) and (4.43) (guaranteed emergency
motion) for every point along the planned trajectory. In practice, a spatial lattice can
be used.

4.2.3 Preconditioning

Especially in the case of first-order algorithms (such as gradient-based methods), having a
lower conditioning number of the cost-function and the constraints Hessians considerably
reduces the number of iterations required for convergence. Thus, instead of solving a
system

Ax = b (4.44)

we are interested to find a left preconditioner Pl (right preconditioner Pr) such that the
condition number of the new system matrix is reduced [56]. This results in a system that
is easier to numerically solve

A′x′ = b, A′ = (Pl)−1A or A′ = A(Pr)−1 (4.45)

The simplest preconditioner is the identity matrix, i. e. P = P−1 = I. This however does
not help as the transformed system is exactly the original system. At the other end of the
spectrum, P = A−1 and thus A′ = P−1A = AP−1 = I has a perfect conditioning number
of 1. However, finding the inverse A−1 is as difficult as solving the original problem, thus
not gaining any speed-increases.

The key-point of preconditioning is to use a perconditioner that provides a trade-off
between accuracy and computation-time with the aim of speeding up the entire solution
of the original system.

A simple preconditioner is the Jacobi (diagonal) preconditioner P = diag(A) [56]. Clearly,
computing its inverse is a trivial operation. More involved methods make use of fac-
torizations, such as LU or QR decompositions [57] to obtain a more accurate precondi-
tioner.

In the following, we will present how to make use of QR decomposition to compute
a preconditioner required for solving the equality constraints system by an Inexact
Composite-step SQP solver. In this case, we are interested to precondition the matrix
∇g∇gT. An efficient (fast) approach is to perform a column-pivoting QR decomposition
of the matrix ∇gT [57]. For the following, we denote A = ∇gT.

AP = QR (4.46a)
A = QRPT (P−1 = PT) (4.46b)

4 Implementation of MHTP 4.3 Initial Solutions 70

Now we want to solve the system

ATAx = b (4.47a)
(QRPT)T(QRPT)x = b

(
A = QRPT

)
(4.47b)

(PRTQTQRPT)x = b (expanding first term) (4.47c)
(RTR)(PTx) = PTb (QTQ = I) (4.47d)
(PTx) = (R−1((R−1)T(PTb)))

(
solving for PTx

)
(4.47e)

It follows from (4.47e) that we have to perform 2 successive evaluations using the (once-
computed) matrix R.

4.3 Initial Solutions

Invariant of the method by which a control-input is chosen, a set of trajectories from which
an initial solution of the problem is selected is required. Depending on the computational
capabilities, desired expressibility and the problem-solving method, several sets of such
initial trajectories can be distinguished:

Null Trajectory This is probably the simplest set of initial trajectories, consisting of a
single trajectory having a near-zero duration.

IT B = {x(·) | ẋ(t) = fx(x(t),u(t)), x(t0) = x0, t ∈ [0, t1], t1 → 0} (4.48)

Starting from such a trajectory has the main benefit that given a valid state x0, it will
satisfy all the hard constraints. However, the optimization problem has to be sufficiently
well defined (ideally convex) such that the optimization solver will be able to reach
satisfactory solutions from such a poor initial condition.

Previous Trajectory Having in mind that we are interested to solve a similar optimization
problems iteratively at every controller cycle, it is expected in many situations that the
optimal solution at iterate tk+1

0 is relatively close to the optimal solution at iterate tk0.
Thus, a good initial solution is the optimal solution of the previous cycle. It is worth
noting here the importance of using soft constraints for the constraints that can become
invalid when initializing the optimization problem at the next iterate. For example, an
optimal solution that is very close to an obstacle might become invalidated at the next
controller iteration in which the obstacle performed a small motion.

As in the case of the null-trajectory, such an initialization approach works well in practice
if the optimization problem is sufficiently well defined (ideally convex). Otherwise, such
an initialization will result in the solution to converge (over multiple iterates) to a local
minima. A closer look towards the methods of initializing the optimization problem from
a previous trajectory will be given in Section 4.4.

4 Implementation of MHTP 4.3 Initial Solutions 71

courtesy: Thomas M. Howard

state-space state-spacecontrol-spacecontrol-space

Figure 4.5: Control-space vs. state-space trajectory sampling for a vehicle on a road

The next two presented approaches are based on coarse sampling of the optimization-space
to obtain a good initial solution, addressing the problem of converging (over more iterates)
to a local minima of the agent trajectory. Note that the evaluation of such sampled
trajectories can be computed in parallel.

Control-Space Sampling The robotics literature has proposed a relatively simple local
planning algorithm based on control-space sampling [8], an approach mentioned before
in this chapter (DWA). Even though crude and sub-optimal, such an approach can be
used to search for an initial solution of the optimization problem. We can define the set
of trajectories sampled in the control-space as

IT B = {xuend(·) | xuend(0) = x0,u(xuend(t1)) = uend} , (4.49)

where the sampling space is the control-inputs uend of the trajectory end-point. Keeping
in mind the drawbacks of such an approach, it is advised to perform this sampling for
relatively short temporal intervals and to let the optimization improve the trajectory until
the desired horizon.

State-Space Sampling An improvement over control-space sampling is to consider
sampling trajectories in the state-space of their end-point xt1 [58].

IT B = {xxend(·) | xxend(0) = x0,xxend(t1) = xend} (4.50)

This results in a more directed search of the initial solution, sampling trajectories based
on desired locations of their end-point. However, in practice such trajectories are typically
obtained by means of optimization, thus having to be pre-computed offline. An illustration
of control-space versus state-space sampling is given in Figure 4.5.

4 Implementation of MHTP 4.4 Temporal Synchronization 72

4.4 Temporal Synchronization

In this section, we would like to have a closer look at means by which the optimization
module and the low-level-control modules interact and can be temporally synchronized in
an asynchronous setting.

An important operation for being able to re-use the computed optimal solution of the
optimization problem from a previous cycle is the temporal-shift of its data, presented in
Algorithm 2.

Algorithm 2 shift_traj_data(x0,p, t0, t′0)
1: x′0 ← trajx(x0,p, t0, t′0)(t′0)
2: p′ such that: trajx(x′0,p′, t′0, t1)(τ) = trajx(x0,p, t0, t1)(τ), ∀τ ∈ [t′0, t1]
3: return x′0,p′, t′0

Given a trajectory of the system starting from time t0 and encoded by the system initial
state x0 and parameters p, the function shift_traj_data returns the system trajectory
shifted into the future to time t′0, t′0 ≥ t0, through the new initial state x′0, initial time-point
t′0 as well as the parameters p′ such that the initial trajectory and the new trajectory
coincide on the interval [t′0, t1]. Having this defined, we will now discuss the temporal
synchronization algorithms used in two main controller modes:

MPC Mode Algorithm 3 presents the main loop run by the optimization module while
taking into account time synchronization:

Algorithm 3 opt_from_last_valid
receives through message from Observers: x̂ at time tx̂
1: t0 ← global_time_now()
2: xl0,pl, tl0 ← shift_traj_data(xl0,pl, tl0, tx̂) // shift last valid to measurement time
3: xl0 ← update_from_measurements(xl0, x̄) // set initial state from measurement
4: if last_traj_valid then
5: xl0,pl, tl0 ← shift_traj_data(xl0,pl, tl0, t0) // shift last valid to t0
6: p∗l ← p∗ // load trajectory from previous cycle
7: t∗1l ← t∗1
8: end if
9: x0,p,∼← shift_traj_data(xl0,pl, tl0, t0 + ∆t) //shift to cycle end time t0 + ∆t
10: x0,p← initialize_opt_problem(x0,p, t0 + ∆t)
11: x∗0,p∗, t∗1 ← optimize(x0, t0 + ∆t,p)
12: last_traj_valid← isV alid(x∗0,p∗, t0 + ∆t, t∗1)
13: if last_traj_valid then
14: send_to_controller(x∗0,p∗, t0 + ∆t, t∗1)
15: end if

4 Implementation of MHTP 4.4 Temporal Synchronization 73

The key idea of the algorithm is to keep track of which trajectories have been sent to the
low-level controller to execute and predict future states of the system accordingly. At
the beginning of the cycle, the last valid optimal trajectory (last trajectory sent to the
low-level controller) is time-shifted to the time-instant in which the state measurements x̂
are recorded tx̂.

Remark: In general, the optimization state x ∈ Rn is larger than the state mea-
surements x̂ of the optimization module. For example, a system whose low-level
controller stabilizes the velocities of the system might use an optimization module that
has constraints in the velocity states as well as the acceleration states of the system.
However, as the low-level controller already stabilizes the system velocities, only the
states relating to the pose-space have to be fed back to the optimization module.
More formally, assuming that the low-level controller (exponentially) asymptotically
stabilises a state xl ⊆ x, the fed back sub-state x̂ ⊆ x to the optimization module
(step 3 in Algorithm 3) is the state with the highest dimensionality, such that all the
scalar relative degrees of the system x′ (with y′ = x̂ = f ′(x′,u′),u′ = xl) are positive.
Otherwise, generally resonance effects will occur on the optimization problem initial
state x0.

Later-on, if the optimization during the previous iterate was successful, the last trajectory
sent to the low-level controller is further advanced to the beginning of the cycle and it
is overwritten by the new trajectory, except the propagated measurement states. This
ensures that the measurement information is propagated up to the point where the new
trajectory is defined. Finally, the trajectory is further time-shifted to the expected temporal
end-point of the current cycle and the optimization problem initial solution is computed.
This approach deals with the non-negligible computation time of the optimization module,
accounting for the fact that the system cannot be physically influenced until the end of
the cycle. Note that in the case of initialization by previous trajectory, the initialization
step performs no operation.

It follows from the nature of Algorithm 3 that we do not require a constant cycle-time
of the module. Rather, we require that for each cycle, ∆t is guaranteed to be at least
the computational duration needed by the module. This allows the module to vary its
frequency, for example running at shorter cycle-times in cases where a previous trajectory
is re-optimized.

Such an asynchronous approach requires a synchronization procedure also in the low-level
controller, presented in Algorithm 4.

4 Implementation of MHTP 4.4 Temporal Synchronization 74

Algorithm 4 low_level_ctrl_sync
receives through message from MHTP: xnew(·), tnew0
receives through message from Observers: x̂ at time t0
1: t0 ← global_time_now()
2: if t0 ≥ tnew0 then
3: xa(·)← xnew(·)
4: end if
5: apply_control_law(x̂,xa(t0), t0)

The general idea is that the controller should evaluate the last received trajectory at each
of its cycles. When a new trajectory it is received, it is stored until the temporal point in
which it becomes valid. At this point, the previous trajectory is discarded and the new
trajectory is evaluated.

As a remark, note that such a control scheme additionally requires that the optimization
module runs at shorter cycles than its planned trajectory duration. Otherwise, the low-
level controller as well as the optimization module state-prediction process will reach the
undefined domain of the previously valid trajectory.

Stabilized MHTP Mode: Taking into account the algorithms presented for the case
of MPC, it follows that Stabilized MHTP relates to a special case. In this setting,
the low-level controller (exponentially) asymptotically stabilizes the entire state of the
optimization module. Thus, there exists no state that is at a strictly higher integration
order. This implies that there is no state that is fed back at step 3 in Algorithm 3.

In such a manner, implementation of an MPC or a Stabilized MHTP no longer assumes the
instant solution of the optimization problem. Thus, it is suited for more complex to evaluate
problems as well as not real-time, distributed frameworks and implementations.

5 A Suitable Cost Function

Until this point, we have assumed that we are solving an optimization problem with
respect to a scalar cost-function. However, we did not address the nature, form or
requirements such a function should meet for achieving the desired results. In this chapter,
the typical objectives that are to be encoded into the optimization cost-function as well
as formulations that lead to robust results are discussed.

5.1 Reaching a Goal

One of the fundamental tasks of navigation is to arrive to a given goal without colliding
with obstacles. In this section, a formal definition of obstacles and drivable space will be
given. Afterwards, an analysis of cost functions that lead the agent to reach a desired
goal are analysed.

We would like to address in the following a simplified sub-part of the optimization problem
related to navigation: a point particle converging from an arbitrary location to a goal,
given a (non-convex) set representing the free/drivable space, bounded by obstacles.

More formally, let the obstacle state z span the space Z = span(z). With this, we define
the differentiable manifold of (drivable) free-space as X = F(z) = Rn\Z, with its border
(∂X)O representing the contour of the obstacles. Relaxing the optimization problem by
assuming static obstacles, we can formulate a (static) optimization problem

min
x

J(x)= 1
2d

2(x) (5.1)
subject to x∈ X\(∂X)O. (5.2)

Note that in comparison with the cost-function (3.6), the integral cost term vanishes.
Moreover, the constraints modelling the dynamics of the system are not present. One can
interpret (5.1) as the simplification of (3.7) by having only an end-cost term, no temporal
dependency, no additional constraints (except the free-space boundary) as well as no
dynamics of the underlying system.

Thus, we are interested in finding a suitable metric d(x) such that (5.1) becomes a
convex optimization problem. For the beginning, let us have a look at the definition of
metrics.

75

5 A Suitable Cost Function 5.1 Reaching a Goal 76

5.1.1 Metrics and Norms

Metrics Formally, a metric on a set X is a function d : X × X → R+ such that
∀x,y, z ∈ X, the following conditions are satisfied [59]

d(x,y) ≥ 0, (5.3a)
d(x,y) = 0 ⇔ x = y, (5.3b)
d(x,y) = d(y,x), (5.3c)
d(x, z) ≤ d(x,y) + d(y, z). (5.3d)

In many cases, metrics are induced by norms, a concept strongly connected to vector-
spaces.

Norms A norm on a vector space X is a function ||x|| : X→ R+ such that ∀x ∈ X, the
following conditions are satisfied [60]

||x|| ≥ 0, (5.4a)
||x|| = 0 ⇔ x = 0, (5.4b)

||x + y|| ≤ ||x||+ ||y||, (5.4c)
||αx|| = |α| ||x||. (5.4d)

The typical used norms are the so called p-Norms

||x||p =
(

n∑
i=1
|xi|p

)1/p

, x ∈ Rn, (5.5)

where for p = 2 we have the typical Euclidean norm.

Note that every norm can induce a metric (by defining dp(x,y) = ||x − y||p) but the
converse does not hold. As it is known that every norm is a convex function, one might
consider a good candidate for our cost function

d(x) = ||x− xgoal||2 (5.6)

with the (constant) pose xgloal of the goal location. To formulate the entire optimization
problem, we still have to encode the constraint that relates to the particle being on
the inside of the domain X . For this, we can make use of the Euclidean Distance
Transform.

Euclidian Distance Transform (EDT) Let us define the EDT

dedt(x) = min{ ||x− p||2 | ∀p ∈ (∂X)O , X ⊆ Rn} (5.7)

i. e. the distance to the closest obstacle (with respect to the 2-norm). Figure 2.7 illustrates
such a field.

5 A Suitable Cost Function 5.1 Reaching a Goal 77

∇dedt(x)

∇d(x)

xgoal

(∂X)O

region converges to x∗l

||x− xgoal||2 = const

dminobstacle

x∗l

Figure 5.1: Local-minima when minimizing the Euclidean Distance. All the points in the
pink region will converge to x∗l . Note that the obstacle boundary (∂X)O is at
distance dmin from the actual obstacle. This is simple to evaluate in practice
when using an EDT of the region.

As its computation is relatively efficient, it is useful to compute such a field for the
purposes of obstacle inflation (to easily account for circular agent footprints). Also,
such a field should be sufficient for the purpose of not colliding with obstacles (it is
continuous differentiable, its gradient pointing always away from the closest obstacle),
which motivates its use at least in emergency cases in which going away from obstacles is
the only objective.

Combining (5.6) and (5.7), we obtain the formulation of the optimization problem

min
x

J(x) = 1
2 ||x− xgoal||22 (5.8)

subject to dedt(x)− dmin ≥ 0. (5.9)

As J(x) is convex, one might ask why such norm-induced metric would not result in
a convex optimization problem. However, for our optimization problem to be convex,
according to (5.2), it is required additionally that the allowed free space X\(∂X)O ⊆ Rns
is a convex set, which is generally not the case. This results in local-minima solutions, as
illustrated in Figure 5.1.

Thus, even in the simplified setting of a point-particle, using naive approaches lead to a
formulation containing multiple optimal points (and thus local minima). Being interested
to obtain a formulation that is convex, let us consider the entire optimization problem (5.1).
For this, we will first introduce the Karush-Kuhn-Tucker (KKT) optimality conditions
[50]

5 A Suitable Cost Function 5.1 Reaching a Goal 78

Theorem 5.1 (Karush-Kuhn-Tucker (KKT) necessary optimality conditions). As-
sume that x∗ is a Minimum of the optimization problem:

min
x

J(x) Cost Function (5.10a)
subject to gi(x)= 0, i = 1, ..., p Equality Constraints (5.10b)

hi(x)≤ 0, i = 1, ..., q Inequality Constraints (5.10c)

with f, g1, . . . , gp, h1, . . . , hq ∈ C1. Additionally, let x∗ be a regular point of the
constraints (5.10b), (5.10c). Then there exists a unique Lagrange-Multiplicator
((λ∗)T, (µ∗)T) with λ∗ ∈ Rp and µ∗ ∈ Rq so that the following equations hold:

(∇J) (x∗) + (∇g) (x∗)λ∗ + (∇h) (x∗)µ∗= 0 (5.11a)
µ∗≥ 0 (5.11b)

hT(x∗)µ∗= 0 (5.11c)
h(x∗)≤ 0 (5.11d)

In order to show that our optimization problem has only one (i. e. global) optimum, it
would suffice to show that equations (5.11a)-(5.11d) are satisfied only in the region of our
goal. To this end, simplifying these equations for our problem by removing the equality
constraints and letting the inequality constraint be scalar we obtain

(∇f) (x∗) + (∇h) (x∗)µ∗ = 0 (5.12a)
µ∗ ≥ 0 (5.12b)

h(x∗)µ∗ = 0 (5.12c)
h(x∗) ≤ 0. (5.12d)

Equation (5.12) can be interpreted as follows: suppose that our inequality constraint (5.2)
is defined such that its gradient points away from our free space. Then it would suffice to
show that ∇d is non-zero for every interior point of our domain and additionally, along
the obstacle domain boundary, ∇d points towards the inside of our domain X .

We are thus interested in a metric that implicitly encodes the topology of the obstacles.
To this end, one might notice the restrictive requirement in the characteristic that a norm
has to satisfy (5.4d). Given the unstructured nature of environments, we would like to
avoid having such a requirement. This will motivate looking for suitable metrics which
are not norm-induced.

5.1.2 PDE Candidates

Given their differential formulation, PDEs might be a suitable mathematical structure for
the purpose of searching for and analysing a candidate metric that would convexify (5.1).

5 A Suitable Cost Function 5.1 Reaching a Goal 79

We will now take a look at two different PDEs that will be proven to provide the desired
convex formulation.

Functions solving the Laplace Equation The Laplace equation
∇2d(x) = 0, ∀x ∈ X (5.13)

is a widely used PDE, playing an important role in e.g. electrodynamics. In the simplified
case of electrostatics, its solution describes the distribution of the electric field in a domain
given the charges of the domain boundaries. Intuitively, if we are following the gradient
of the electric field from a positively charged domain boundary, we will always arrive
to a negative-charged boundary. This implies that starting from any point from our
domain and following the gradient, we will eventually arrive to the negative-charged
boundary.

From this consideration, going back to vehicle navigation, we could take an approach
to define a boundary value problem (Dirichlet type) in which at the obstacles contour,
d(x)|x∈(∂X)O = 1. We have to additionally define the contour of the goals as (∂X)G and
define d(x)|x∈(∂X)G = 0 [61]. This leads to the following theorem

Theorem 5.2 (Convex navigation problem using Laplace equation). Given is a free-
space set X with a closed obstacle boundary (∂X)O and a closed goal boundary (∂X)G.
The solution of the Laplace equation (5.13) with the boundary conditions

d(x)|x∈(∂X)O = 1 (5.14a)
d(x)|x∈(∂X)G = 0 (5.14b)

when applied as cost-function in the optimization problem (5.1) results in a convex
optimization problem.

Proof. (sketch) We will spilt the proof by showing that the function gradient is non-
vanishing in the interior of the domain and that the gradient points inwards at the
obstacles boundary. Based on the KKT conditions, it will thus follow that the only
optimal points are those lying at the goal contour.

As d(x)|x∈(∂X)O 6= d(x)|x∈(∂X)G , it follows that d(x) cannot have a constant value over X .
Moreover, according to the maximum principle of harmonic functions [62], a non-constant
harmonic function d(x) cannot attain a maximum (or minimum) at an interior point of
its domain. This implies that

∇d(x) 6= 0 , ∀x ∈ X\∂X (5.15)
Regarding the obstacle boundary, let the tangent hyperplane to the boundary ∂X at point
x be defined by wTx = 0. As the manifold induced by d behaves locally like a linear
vector space, it follows that w× (∇d(x)) = 0 (d has a constant value along the boundary).
Using (5.15), it follows that ∇d(x) is perpendicular (and inwards) to the boundary.

Together with (5.15), the theorem is proven.

5 A Suitable Cost Function 5.1 Reaching a Goal 80

Algorithmic computation In practice, the computation of the field is typically performed
numerically by the technique of successive over-relaxation (SOR) [63]. This introduces
numerical issues related to the gradient vanishing in the vicinity of d taking values of 1
and is thus not scalable with respect to the resolution. A solution is to map the problem
in Log-Space [61], a technique familiar to the field of Machine Learning. However, this
drastically increases the computational time and is thus not a valid candidate for online
use in Optimal Navigation.

Functions solving the Eikonal Equation The Eikonal equation

|∇d(x)| = 1
u(x) , ∀x ∈ X\(∂X)O (5.16)

is a PDE with usage in electrodynamics and fluid dynamics.

An intuitive analogy is to consider the water-flood in a maze. We thus start to flood the
maze from a broken pipe located at the navigation goal xgoal. The solution of the Eikonal
at every point x will contain the time at which the first drop of water reached x. Note
that for the simplified case in which u(x) = 1,∀x ∈ X\(∂X)O, the solution is equivalent
with the Geodesic Distance (i. e. the minimum distance from point x to the goal through
the maze). For the more general case, an area in which u(x) < 1 translates to our analogy
to the fact that the water expands slower in that region. We can interpret this analogy
the other way around. If starting from a generic point, we invert time and move upstream
the water flow, we will arrive at the source. This consideration motivates the following
theorem

Theorem 5.3 (Convex navigation problem using Eikonal equation). Given is a free-
space set X with a closed obstacle boundary (∂X)O and a closed goal boundary (∂X)G.
The solution of the Eikonal equation (5.13) with the conditions

u(x) 6= 0, ∀X\(∂X)O (5.17a)
u(x) = 0, ∀(∂X)O (5.17b)
d(x)|x∈(∂X)G = 0, (5.17c)

also denoted as a Fast Marching Field (FMF), when applied as cost-function in the
optimization problem (5.1) results in a convex optimization problem.

Proof. (sketch) Similarly to the proof for the Laplace equation, we will spilt the proof in
two parts. From (5.17a) and the definition of the Eikonal equation, it follows that

∇d(x) 6= 0 , ∀x ∈ X\(∂X)O (5.18)

Regarding the obstacles contour, taking into account the condition (5.17b), it follows
that the obstacles boundary will have the gradient norm →∞. From here, the proof is
identical with the case of the Laplace equation.

5 A Suitable Cost Function 5.1 Reaching a Goal 81

(a) Solution of Laplace Equation – Harmonic
Field

(b) Solution of Eikonal Equation (unity – con-
stant velocity map) – Geodesic Distance
Field

Figure 5.2: Different Distance Fields. Note that the goal region is defined as the set of all
free-space points within a certain radius from the active global path end-point
(with respect to the size of the boundaries of the local map)

Figure 5.2 illustrates the solutions of the Laplace and Eikonal equations in a generic
navigation setting.

Gradients orientation at the boundary – Making use of velocity maps Even though
formally, the gradient of the FMF at the boundary is orthogonal to the boundary, in
practice this is no longer the case. The reason is that even though at the obstacle boundary
(∂X)O, u(x) = 0, infinitesimally close to the boundary u(x) 6= 0. For example, in the
constant velocity-map setting (Geodesic Distance), one can visualize the scenario in which
the gradient is parallel to the boundary (when the shortest path curves around an obstacle).
Even though this theoretically suffices to show that optimal points are present only on
the goal boundary (∂X)G , due to the discretization and numerical errors, this can lead
the optimization process to unwanted local minima close to the boundary when explicitly
enforcing the constraint x ∈ X .

A simple solution making use of the degree of freedom of specifying the velocity map u(x)
is to reduce it when closer to obstacles, i. e.

u(x) = min
(
dedt(x)
dobstmax

, 1
)

(5.19)

This ensures that sufficiently close to the boundary, ∇d(x) is not parallel to the boundary.
Moreover, such a metric becomes dependent on the narrowness of the corridor, resulting in

5 A Suitable Cost Function 5.1 Reaching a Goal 82

(a) velocity map with damped ve-
locities closer to 0.2m from
boundary

(b) velocity map with damped
velocities closer to 1m from
boundary

(c) velocity map with damped
velocities closer to 3m from
boundary

Figure 5.3: Solutions of the Eikonal equation with velocity damping in vicinity of obstacles.
Notice that in a), the shortest distance from the agent position to the goal is
through the narrow passage. For b) and c), this is no longer the case.

shorter distances along wider corridors even though with respect to the geodesic distance
it would be otherwise, see Fig. 5.3.

Algorithmic computation A historical approach for computing the (constant velocity
map) solution to the Eikonal equation is using the Dijkstra algorithm [64]. More modern
(and general) approaches are based of the Fast Marching Method (FMM), making use
of upwind finite difference [65]. Such algorithms preserve the one-pass characteristic, i. e.
they start from the goal region and carefully expand towards unvisited new pixels (each
pixel being visited only once).

Comparison Now we would like to summarize the strengths and weaknesses of using each
of the two presented PDEs (and their variations) as cost-function for optimal navigation,
summarized in Table 5.1.

Evaluation metric Harmonic Log-Space
Harmonic FMF FMFdamp

Computation Time - - - + + +(+)1

Anytime Algorithm yes yes no no
Query Valid Path follow gradient follow gradient 1-cell query 1-cell query
Gradient at Boundary orthogonal orthogonal parallel quasi-orthogonal

Table 5.1: Qualitative analysis of distance fields

1For the purpose of Optimal Navigation, the computation of EDT is required anyway and thus velocity
damping induces virtually no overhead.

5 A Suitable Cost Function 5.1 Reaching a Goal 83

As it has been noticed previously, the main drawback of the Harmonic function is
the required computational time, especially in the scalable case (Log-Space Harmonic).
Regarding the Fast Marching Methods, they are comparably very fast (by two orders
of magnitude faster than Log-Space Harmonic). For the FMF with damped velocities a
computational overhead is added, necessary for computing the EDT.

An interesting property of the Harmonic functions solved by successive over-relaxation
is that they result in an any-time algorithm. That is, at every algorithm iteration, the
partial solution is a coarse approximation of the Laplace equation. This can be beneficial
as one can make use of the resulting map before absolute convergence. However, this
does not manage to overcome the large difference in computational requirements when
compared with FMM.

An interesting characteristic that we can further evaluate is by which means we can
evaluate whether we can reach the goal or not. In the case of the Harmonic functions, not
being able to reach the goal would theoretically imply that the gradient of the function at
the agent location would vanish. However, in practice, due to numerical errors and(or)
the algorithm not yet converged, we would have to follow the gradient until a minima is
reached and compare it to the goal location. In the case of FMM, however, we just have
to query the function at the location of the agent, a finite value implying that the goal is
reachable.

Lastly, we are interested in the (practical) situation of the function gradient at the obstacles
boundary. In this case, harmonic functions behave very well, satisfying this requirement
implicitly. Regarding the FMM, the variation that performs velocity-damping in the
vicinity of obstacles manages to achieve a "quasi-orthogonal" shape of its gradient.

5.1.3 Sensor-processing: Layered Local Maps

Given the previously discussed possible methods, the Fast Marching Method with velocity
reduction in the vicinity of obstacles has been chosen for final implementation, due to its
speed and degrees of freedom. In the following, we would like to present the general steps
required to perform the (efficient) computation of such field given typical inputs of the
problem: (static) offline maps and a laser sensor. Algorithm 5 presents the pseudo-code
of the pipeline. As the computational complexity would increase with the size of the
environment (or resolution would be reduced), computing the metrics online globally is
not desired. Thus, an agent-centric map (that at each cycle has the agent in its centre) is
proposed.

Given the new pose of the agent, the algorithm initially translates the map data M to the
new location (note that this can be done efficiently by using circular buffers). Afterwards,
we can identify 3 conceptual steps of processing:

Computing the Obstacle EDT To also account for laser readings from previous cy-
cles, the map layer containing the obstacles (Mo) from last cycle is multiplied by a

5 A Suitable Cost Function 5.1 Reaching a Goal 84

forgetness_factor < 1, thus being discarded when below a threshold timeout_thres.
The locations in which obstacles are sensed in the current iteration (psns) are inserted in
this layer. Also, at this stage, static mapped obstacles read from the global map pgm are
introduced. Finally, the obstacle distance field is computed by using values of the map
layer Moi > 0 as sources.

Computing the Path EDT In many situations, enforcing a maximum deviation from
the global path is desired. To this end, a path EDT is computed, by using the sequence
of points relating to the path center pact_route as sources. Note that the computation of
the two EDTs is independent and thus can be parallelized.

Computing the FMF Computation of the FMF requires as input a map with points
labelled as obstacles, points labelled as goals as well as optionally a velocity map. Consider-
ing the previously computed EDTs, one can easily define the set of obstacles (including the
path boundary as obstacle as well). Regarding the goals, one might want to define not only
a goal point but a goal region (the agent might be required to navigate to a neighbouring
location from the goal point in case the goal point is obstructed by an obstacle). If the
modified velocity map is desired (thus computing FMFdamp), no additional processing is
required as the obstacle EDT is already computed.

Algorithm 5 compute_local_metrics(xagent,psns,pgm,pact_route,pgoal)
parameters: forgetness_factor, timeout_thres, obst_thres, path_thres, d_vel_sat
1: moveMapCenterTo(M,xagent)
2:
3: Mo ← forgetness_factorMo // blur old sensor data
4: Mo(psns)← 1 // insert new sensor data
5: Mo(pgm)← 1 // insert static map data
6: Mo(Mo < timeout_thres)← 0 // discard timed-out measurements
7: Mo_edt ← computeDistanceF ield(Mo) // compute euclidean distance field
8:
9: Mpath ← 0
10: Mpath(pact_route)← 1 // set points along active route as sources
11: Mpath_edt ← computeDistanceF ield(Mpath) // compute euclidean distance field
12:
13: Mfmm_inp ← 0 // initially all is free space
14: Mfmm_inp(pi| ||pi − pgoal||2 < goal_radius)← 1 // assign goal points
15: Mfmm_inp(Mo_edt < obst_thres)← nan // exclude obstacle points
16: Mfmm_inp(Mpath_edt < path_thres)← nan // exclude paths away from path
17: Mfmm_vel ← 1 // initialize constant velocity map
18: Mfmm_vel(Mo_edt < d_vel_sat)← Mo_edt

d_vel_sat// reduce velocity close to obstacles
19: Mfmm ← computeFMM(Mfmm_inp,Mfmm_vel) // compute metric field
20:
21: return [Mo_edt,Mpath_edt,Mfmm]

5 A Suitable Cost Function 5.2 Other Navigation Objectives 85

5.2 Other Navigation Objectives

Section 5.1 presented cost-functions that can be used for reaching a goal, being proven
to convexify the problem in the simplified case of the point-particle. However, in most
practical applications, the navigation agent to be controlled possesses additional constraints
as well as potentially other cost function terms. To this end, it is clear that the goal-
reaching cost function is to be formulated as a terminal cost, i. e.

ϕ(x, t) = dfmm(x). (5.20)

We would like to discuss now briefly if in the case of non-trivial agent models, we can
still preserve the convexity of the optimization problem. Even though it would be very
difficult to be formally proven, an intuitive observation is that such a cost-function does
not necessarily result in a convex optimization problem but the agent never gets stuck in
local minimum given a specific property of the system: the system can perform a sequence
of motions such that its reduced state behaves like an unconstrained particle (the concept
basically relates to the idea of being able to turn on the spot). This is the case for a
differential-drive with a circular foot-print.

The main intuitive argument is by contradiction: suppose that the agent would get
stuck into a local minima. Due to the enforced safety constraints, it will thus stand still.
However, at stand still, no additional constraints are active (which are typically due to
kinematic natures, e.g. maximum angular velocity) and the agent can turn on the spot.
As the planned trajectory length can be now arbitrarily small (it can start moving with
very low velocity), it follows that any parametrization of its inputs becomes arbitrarily
expressive, i. e. any very short-length motion of the agent can be achieved. This results in
the optimization problem to have the character of the point-particle, which cannot get
stuck.

Having this noted, we would like to discuss now other possible objectives during navigation
and methods to model them.

Time Optimality Probably one of the most desired behaviours beside reaching a goal
is to reach it fast. To this end, the literature formulates the time-optimal cost-function
simply as

J(x) = 1
2 t

2
1, (5.21)

i. e. minimization of the square of the planned trajectory end-time. Note that this leads to
desired results in the case in which one optimizes for a fixed trajectory length. For the case
when one optimizes for a fixed trajectory duration, it is trivial that such a cost-function
would be useless.

We would like to present here an elegant alternative that encodes the time-optimality
character of the system implicitly. Intuitively, it relates to the sugar-on-a-stick phenomenon:
a donkey has a stick glued on him such that the sugar cube connected to the stick end is
visible by the donkey. Being hungry, the donkey will run towards the sugar cube as fast

5 A Suitable Cost Function 5.2 Other Navigation Objectives 86

as it can, while obviously never reaching it. This seems to be a highly efficient method to
motivate the proverbially stubborn donkey.

Going back to navigation, the idea is to provide at every iteration of the controller a
goal that cannot be reached given the optimization problem constraints, for example
by constraining the trajectory length to be less than the local cost-maps radius. The
time-optimal character is thus implicitly present, as the optimizer will find the trajectory
that gets as close to the goal as possible, e.g. by maximizing velocities and minimizing
the distance to the goal.

Accelerations In certain circumstances, one might want to penalize the accelerations of
the system. This can be quite easily encoded into an integral cost term

J(x) = 1
t1 − t0

∫ t1

t0
k1v̇

2(t) + k2ω̇
2(t)dt, (5.22)

with the scaling constrants k1 and k2. Note that this becomes a so-called power-cost
due to the temporal normalization involved. The reason for this normalization term is
the fact that when the duration of the trajectory is an optimization variable, we are
interested to equally penalize motions of arbitrary duration to be penalized equally during
high accelerations. Without this normalization, as the horizon duration increases, the
cost-function term would become dominant.

Path Deviation Especially in industrial applications, navigation might be desired to be
performed precisely on predefined route. In this case, one might use an integral cost term
of the form

J(x) =
∫ t1

t0
d2
path(x(t))dt, (5.23)

where dpath can be computed using an EDT. Note that here, in general normalization is
not advised, as this would lead to the optimizer potentially finding solutions with larger
horizon and thus larger path deviation errors. It is worth noting here that for differentially
flat systems, alternative generic formulations of the optimization problem together with
its cost function exist, which possess the invariance property, i. e. after the agent converges
to the path it will never deviate [66].

The above presented objectives are quite general and application independent in the
context of navigation. However, when going closer to specific applications, numerous other
objectives can be present, their modelling and efficient formulations varying greatly in
difficulty and complexity.

6 Experimental Results

In this chapter, simulated as well as real-hardware results of discussed approaches of
Optimal Local Path-Planning and Control are presented. To illustrate the capacities and
flexibility of the discussed methods, results will be presented on three different autonomous
platforms with different purposes: a Differential-Drive used for navigation in human-
shared environments, an Autonomous Race-Car used for time-optimal driving through
an (unknown) circuit as well as an IWS drive used in navigation with torso-orientation
requirements.

6.1 General Considerations

Developed Libraries: MPC Module The implementation of the presented work has been
done in C++, targeting high generality and efficiency of the developed code. To this end,
besides the standard object-oriented programming paradigm, heavy use of template meta-
programming as well as functional programming techniques have been used to provide
the desired modularity and performance. Given the developed library, the library-user is
provided with convenient definition and formulation of the platform model, optimization
variables as well as simple interfaces that provide large flexibility in implementation
specifics (ODE solver method, sensitivities computation method, numerical type of the
variables etc.). Moreover, it allows modular definition and usage of multi-lattice evaluation
(e.g. equal time, equal distance, parametric function knots etc.).

Having the model of the platform defined, the application designer can now focus on
formulating the optimization problem. The library is designed such that the platform
model and optimization problem specifics are as independent as possible. The motivation
behind it is that typically, one might want to formulate and (or) evaluate a vast variety
of optimization approaches given the same platform model. Thus, the library interfaces
allow convenient definitions of cost-functions, equality constraints as well as hard and soft
inequality constraints, together with the definition of the required dynamic models for
evaluating them.

Problem formulations Throughout the thesis, specific formulations and practical con-
siderations have been given, with an emphasis on the differential drive platform. Thus,
Examples 2.1, 2.8, 2.12 2.13, present incrementally the approach and design for solving
the ODE of the differential-drive model (with sensitivities). The ODE evaluation of
other platforms has been designed in a similar fashion. Section 4.1 as well as Example

87

6 Experimental Results 6.1 General Considerations 88

4.2 further present the considerations of the system trajectory evaluation, focusing on
the minimal parametric representation and including efficient multi-lattice support. The
constraints used throughout experimental results are presented in Examples 4.1 and 4.3 –
4.6. The main component of the cost-function is the end-state term discussed in-depth
in Section 5.1, together with non-dominant terms (such as the implicit time-optimality),
discussed throughout Chapter 5.

Optimization Solver Currently, the only supported optimization problem solver is the
library Optizelle. The motivation behind the choice of the optimization library is its
efficiency, State of the Art implemented algorithms as well as matrix-free design. For all
the presented results, the optimization problem is solved using an Interior-Point Method
combined with an Inexact Composite-Step SQP (that internally uses a Trust-Region
Method and a Krylov sub-problem solver). The equality constraints system is precondi-
tioned using a column pivoting QR decomposition of the equality constraints gradient,
while the second order sensitivities are approximated using the BFGS scheme.

Developed Libraries: Environment-Processing Module As discussed in Chapter 5,
the environment-processing algorithms are desired to be computed independent of the
optimization problem. Because of this, we chose to split the computation of various
functions over discretized grids from the general MPC library. Thus, we use a second
processing thread for computing every cycle the Euclidean Distance Transforms, functions
based on Fast Marching Methods as well as gradients of those. In the development of this
module, we make use of the GridMap library [67].

System Framework Modules integration, inter-process communication as well as vi-
sualization and debugging tools are necessary capabilities when working in the field
of Robotics and Navigation. One such open-source framework that is popular in this
field is the Robotics Operating System (ROS) [68], providing a multitude of tools and
academy-developed, maintained, open-source packages.

System Simulation The entire system is initially tested in simulation using the 3D-
Physics Rigid-Body Simulator Gazebo [69].

Hardware and computation times The developed algorithms are tested running on two
cores of an Intel i7 (2016) processor, clocked at 2.7 GHz for the simulated results and
3.2 GHz on the machine running on the real robot.

The run-time of solving the optimization problem for all presented results varies between
20 − 50 ms, for problems parametrized by 20 − 40 parameters, second order Runge-
Kutta ODE solver on approximatively 20 equal time and 20 equal distance lattice points.
Regarding the environment processing module, all the required fields are computed in
approximatively 80 ms for a 640× 640 pixels resolution.

6 Experimental Results 6.2 Navigation in Human-Shared Environments 89

Figure 6.1: Robotic Platform Pioneer-3DX (left) and its simulated model (right).

6.2 Differential-Drive: Navigation in Human-Shared
Environments

In this section, we are interested in developing an Optimal Local Path-Planner/Controller
for a Differential-Drive platform, its main application being autonomous navigation in
(unstructured) environments in which humans are present.

The agent used for simulated and real-world testing is a Pioneer P3DX, illustrated in
Figure 6.1. In most of the presented experiments, we limit the agent wheel angular
velocity to 10 rad/s (corresponding to a maximum linear velocity ≈ 1 m/s), wheel angular
acceleration to 3 rad/s2 and maximum lateral acceleration to 0.5 m/s2. Note that the
maximum platform accelerations constraints are quite conservative, as the platform is
physically capable of accelerating/decelerating approximately twice as fast. This not
only results in smooth perceived motions but also illustrates the quality of the presented
navigation approaches when the dynamic constraints of the platform are non-negligible.
Before starting to analyse different approaches and results, we would like to note that in
general, all desired navigation behaviours cannot be appropriately mapped into solving
only one optimization problem. Moreover, we would like to possess redundant emergency
behaviours in the cases in which the to-be-solved optimization problem becomes infeasible.

6 Experimental Results 6.2 Navigation in Human-Shared Environments 90

To address this aspect, in practice we use different optimization problem formulations for
different behaviours. For example, we distinguish between the general case in which the
agent has to navigate along a global route and the case close to the goal, where the agent
is expected to reach it with a high accuracy.

Example 6.1 (State-Machine for the Differential-Drive Navigation Module). This ex-
ample provides a more in-depth discussion regarding the implemented state-machine.
Figure 6.2 presents graphically the states and their associated transition conditions.

FreenavEndPt

Init ReOpt
¬isValid

isValid

Freenav

Halt

Init ReOpt
¬isValid

isValid

always

¬isValid

¬isValid

closeToGoal

Stop

¬isValid

Idle
stoppedAtGoal¬stoppedAtGoal

@10Hz @30-50Hz

@30-50Hz@10Hz

@10Hz

@10Hz

@10Hz

isValid

Figure 6.2: State-Machine for the Differential-Drive Navigation Module

We distinguish between 5 different states for the behaviour state-machine:

• FreeNav: The general case in which the agent is expected to navigate (loosely)
along the global path while taking into account all the dynamic and environment-
based constraints.

• FreeNavEndPoint: In comparison with the FreeNav behaviour, we formulate the
optimization problem such that the end-state of the agent is imposed to coincide
with a stop at the route end-point using equality constraints. This behaviour
is desired to be enabled when the agent is sufficiently close to the route end-
point, represented by the boolean predicate closeToGoal. In practice, closeToGoal
evalutes to true when the end-point of the optimized trajectory is relatively close
to the goal(for example < 0.3 m).

6 Experimental Results 6.2 Navigation in Human-Shared Environments 91

• Halt: In certain situations, the optimization problem of the FreeNav or
FreeNavEndPoint behaviours might fail due to limited number of iterations or a
poor initial solution. To this end, the predicate isValid evaluates the satisfaction
of the constraints of the optimization problem that has just been solved. In this
case where ¬isValid, we would like to find trajectories that simply stop the agent
while not colliding with obstacles. Note that solving such an optimization should
require in general less iterations, as the number of constraints are reduced as well
as the cost-function has a simple structure.

• Stop: Redundant behaviour which is triggered when everything else fails. Note
that in comparison with Halt, this does not guarantee non-collision with obstacles.
Rather, it will make use of a simple kinematic sequence (no optimization involved)
that stops the agent. Also note that Stop always transitions to Halt, resulting in
recovery of the normal operation as soon as a solution that does not collide with
obstacles is found.

• Idle: In cases in which it is clear that the goal cannot be reached, or after the
agent reaches the goal (i. e. stoppedAtGoal evaluates to true), we would like the
system to enter an Idle state.

Additionally, we would like to solve the optimization problems differently depending
on which initial solution approach is used (as discussed in Section 4.3). For example,
when starting with a null trajectory, we expect the solver to require more iterations in
comparison with starting from an optimal trajectory computed in the previous cycle.
Thus, expecting a reduced number of required iterations in a re-optimization situation,
we can increase the frequency of the optimization module (the algorithms presented in
Section 4.4 do not require a fixed cycle-time).

6.2.1 Navigation in Partially-Mapped Static Environments

In this experiment, we are interested in analysing the resulting trajectory of the agent
in partially-mapped environments. Thus, the main goal is qualitative evaluation of
the resulting trajectories when using the non-trivial cost function based on FMM. The
following experiments are run using ground-truth measurements of the agent state, as
provided by the 3D physics simulator.

Figure 6.3 illustrates a scenario in which local information allows a trajectory optimization
(compared to the global path). In this example, the global path is computed assuming
that the narrow path in the middle of the image is blocked. However, the MPC controller
using the FMFdamp maps finds a trajectory that is shorter (with respect to its metric).
Note that in this scenario, using a stronger reduction of the velocity map close to obstacles
would result in the robot navigating on the left corridor.

Figure 6.4 illustrates the scenario complementary to the previous: the global path becomes
invalid under local (online) information. In Figure 6.4a, the blocking obstacles are not
yet in the agent sensing range, thus the planned trajectory closely follows the global

6 Experimental Results 6.2 Navigation in Human-Shared Environments 92

Figure 6.3: The optimized planned trajectory of the MPC controller (magenta) undertakes
a shorter euclidean path to the goal in comparison to the global path (green).
black–mapped obstacles, red–sensed obstacles

path. However, in the cycle in which the blocking obstacles are sensed, the MPC finds an
alternative trajectory towards the goal 6.4b.

Note that by using the naive end-cost term of an euclidean norm to the goal, none of the
two presented behaviours could be (systematically) achievable in practice.

6.2.2 Navigation using Safety Constraints

In those experiments, we are interested in validating the concepts of safe navigation
constraints discussed in Section 3.3, whose practical formulation is given in Example 4.6.
With this, two scenarios will be analysed: a cornering manoeuvre using simulation and
navigation through narrow passages, making use of the real robot.

Cornering maneuver In this experiment, we compare the resulting trajectories when
undertaking a cornering manoeuvre in confined space. We assume that the environment
is static but (partially) unknown. We perform the experiment using three different
formulations:

• F1: guaranteed-safe constraints

6 Experimental Results 6.2 Navigation in Human-Shared Environments 93

(a) MPC trajectory follows closely the global
path

(b) Global path invalidated by unmapped obsta-
cles; MPC trajectory finds alterative route

(c) Note the time-optimal trajectory as the lat-
eral acceleration constraint is active

(d) Goal is reached

Figure 6.4: Temporal sequence illustrating the behaviour of the MPC controller when the
global route becomes invalid due to non-mapped obstacles.

• F2: nominal-safe constraints

• F3: linear velocity end-state constraint

Recall that when the environment model is static and known, F3 guarantees safety.
However, in this scenario, it is possible that an obstacle is present just around the corner,
a situation in which F3 will result in a collision. Figure 6.5 illustrates the three different

6 Experimental Results 6.2 Navigation in Human-Shared Environments 94

start

end

1 m

breaking at the corner

t[s]

v
[m
/s

]

Figure 6.5: Evaluation of different safety constraints during a cornering manoeuvre in
a static (partially) unknown environment. Top-Left: Executed trajectories
using zero end velocity constraint (red), nominal safety constraints (blue) and
guaranteed safety constraints (green). Bottom: the velocity profile of the
respective trajectories. Note that the profiles have been temporally aligned at
the end of the motion

trajectories as well as the agent linear velocity during the manoeuvre. As expected, F3 has
the highest velocity profile and the trajectory resembles with a time-optimal manoeuvre:
the radius of the turn is maximized as the lateral acceleration constraint is active. We
can note that the F2 velocity profile closely resembles with F3. The trajectory, however,
performs a motion that increases the visibility around the turn, a fact expected from
the problem formulation. Considerably different is the velocity profile of F1. The reason
is that according to the constraint formulation, the predicted trajectory always has to
remain in the visible region. This induces a strong deceleration before the turn, hence the
difference in the velocity profile.

Traversing narrow areas We evaluate the motions resulting from F1 and F2 under the
random-walk model in narrow spaces. We set the maximum random walk velocity to
0.5 m/s and want to evaluate the trajectories and the velocities of the agent in corridors
(doorways) of 1−2 m. Of course, in such scenarios where the free-space width is small with
respect to the random-walk maximum velocity, a better model of the environment is desired
(e.g. constant velocity model). Nevertheless, this scenario allows us to validate expected
behaviours. Figure 6.6 presents the resulting trajectories and velocity profiles.

6 Experimental Results 6.2 Navigation in Human-Shared Environments 95

start

end

1m 2.5m
v
[m
/
s]

t[s]

Figure 6.6: Navigation under uncertainty. Top: Executed trajectories using the nominal
safety constraints (blue) and guaranteed safety constraints (green). Bottom:
the velocity profile of the respective trajectories

In the case of F2, the trajectory is as expected: in order to maximize velocity, the
agent should maximize its distance from obstacles (thus being allowed to decelerate
towards a feasible invariant state for a longer period of time). Note that the trajectory
resembles closely with following the Voronoi path [70], i. e. the path that maximizes the
minimum distance to obstacles. However, this behaviour is implicit through the formulated
constraints and environment model. Also, the velocity profile is expected: in the wider
section, the agent has a higher velocity.

However, F1 fails to reach the goal. The reason is that due to the aggressive inflation of
the environment over the forward simulation, the planned trajectory is very short: in this
experiment, with an average of 0.1 m (in comparison with F2 which averaged at 1.7 m).
The main argument lies within the fact that even though we make use of a non-trivial
cost-function in our optimization problem (discretized solution of the Eikonal equation),
the non-linear solver is not guaranteed to find a global minimum of the problem.

6.2.3 MPC vs Stabilized MHTP Comparison

In addition to the well known optimization-based control MPC, Section 3.2 introduced
the concept of Stabilized MHTP (SMHTP). The details of the algorithmic additions for
the concerned modules are given in Section 4.4. In the following experiments, we are
interested in validating and evaluating the quality of the two approaches.

As presented previously, SMHTP requires a low-level controller that (exponentially)
asymptotically stabilizes the agent along the optimization-module planned trajectory. The
following examples will present two such controllers.

6 Experimental Results 6.2 Navigation in Human-Shared Environments 96

Example 6.2 (Lyapunov-based Trajectory-Following Control). A generic approach of
designing (static) feed-back controllers for non-linear systems is based on Lyapunov-
methods. For the differential drive model presented in Example 2.1, the control law

vfb(t)= vd(t) cos(eθ) + k1(cos(θ(t))ex + sin(θ(t))ey) (6.1a)
ωfb(t)= ωd(t) + k2vd(t)(cos(θ(t))ey − sin(θ(t))ex) + k3eθ, (6.1b)

with

k1= k3 = 2ξ
√
bv2
d(t) + ω2

d(t) (6.2a)
k2= b (6.2b)

and the controller design parameters b, ξ , asymptotically stabilizes the error e

eT =
[
ex ey eθ

]
=
[
xd(t)− x(t) yd(t)− y(t) θd(t)− θ(t)

]
(6.3)

along the trajectory
[
xd(t) yd(t) θd(t) vd(t) ωd(t)

]T
. The stability proof of this

control-law can be found in [28].

Example 6.3 (Input-Output Linearization Trajectory-Following Control). Another ap-
proach to design a simple feed-back law for non-linear systems is through Input-Output
Linearization. Such an approach transforms the (initially non-linear) system into a
linear system with respect to the error. The resulting system can be exponentially
asymptotically stabilized by using linear control theory.

For the differential drive model presented in Example 2.1, we note that using the error

eT =
[
ex ey

]
=
[
x(t)− xd(t) y(t)− yd(t)

]
(6.4)

and the system inputs uT =
[
v ω

]
results in a full relative degree r = dim(e) = 2, as

r = r1 + r2 and rT =
[
r1 r2

]
=
[
1 1

]
. However, the decoupling matrix

D(x) =
[
Lg1Lr1−1

f ex(x) Lg2Lr1−1
f ex(x)

Lg1Lr2−1
f ey(x) Lg2Lr2−1

f ey(x)

]
(6.5)

is singular. On the other side, using the fictitious input uT =
[
v̇ ω

]
, we still obtain

rT =
[
1 1

]
and additionally, the decoupling matrix

D−1(x) =
[

cos(θ) sin(θ)
− sin(θ)

v
cos(θ)
v

]
(6.6)

is non-singular for every v 6= 0. Thus, the control-law

ufb = D−1(x)(v− b(x)), b(x) =
[
Lr1f ex(x)
Lr2f ey(x)

]
= 0 (6.7)

6 Experimental Results 6.2 Navigation in Human-Shared Environments 97

allows the design of a linear state controller with respect to the new input v. For
example, one could set

v = −Kpe−Kdė = −Kp

[
x(t)− xd(t)
y(t)− yd(t)

]
−Kd

[
v(t) cos(θ(t))− ẋd(t)
v(t) sin(θ(t))− ẏd(t)

]
. (6.8)

Keep in mind that such a control-law is designed for the system input uT =
[
v̇ ω

]
.

As in reality we are interested in the input uT =
[
v ω

]
, we can create a dynamic

controller by integrating v̇ numerically. Note that this is valid in the context of SMHTP,
as Theorem 3.1 allows the controller to evaluate previous temporal points.

Having introduced simple feed-back laws that asymptotically or exponentially stabilize
the agent along a trajectory, we can now evaluate as well the SMHTP controller.

Figure 6.7 illustrates the scenario in which the following experiments will be performed.
Note that the global path does not take into account unmapped obstacles present in the
scene.

Start Goal

Unmapped Obstacles

Global Path

1m

Figure 6.7: Testing scenario and computed global path

Figure 6.8 illustrates the undertaken trajectories of the agent through the static (partially
unknown) environment using MPC as well as SMHTP with an asymptotic controller.
Note that in the case of SMHTP, the trajectory deviates towards the opening between the
two unmapped boxes. This deviation is due to the fact that in this run, the visibility of
the environment was different (due to different trajectories and noise in the sensor data)
and thus the environment representation considered induced planning a feasible trajectory
through the two boxes for a longer period of time. However, as expected, as soon as the
region is observed to be too narrow, the agent adapts its motion accordingly.

6 Experimental Results 6.2 Navigation in Human-Shared Environments 98

MPC
SMHTP (Lyapunov)

1m

Figure 6.8: Trajectories of the agent using MPC and SMHTP with a Lyapunov Controller

The minimum distance to obstacles dobst as well as the linear and angular velocities of the
platform are illustrated in Figure 6.9 and Figure 6.10 for MPC as well as SMHTP. In the
SMHTP case, the nominal (as computed by the optimization module) as well as applied
velocities are presented. As no additional controller is involved, in the MPC case they
coincide.

0
0.2
0.4
0.6
0.8

1

d
o
bs
t

[m
]

0
0.2
0.4
0.6
0.8

1

v
[m
/
s]

0 5 10 15 20 25 30 35 40−2
−1

0
1
2

t [s]

ω
[ra

d/
s]

Figure 6.9: Distance to obstacles, linear and angular velocities along the MPC trajectory

6 Experimental Results 6.2 Navigation in Human-Shared Environments 99

0
0.2
0.4
0.6
0.8

1

d
o
bs
t

[m
]

0
0.2
0.4
0.6
0.8

1

v
[m
/
s]

0 5 10 15 20 25 30 35 40−2
−1

0
1

t [s]

ω
[ra

d/
s] nominal

applied

Figure 6.10: Distance to obstacles, linear and angular velocities along the SMHTP trajec-
tory

At this point, one might ask why SMHTP would be beneficial. Resulting from the previous
experiment, it requires relaxing the constraints of the optimization problem and does not
induce optimal input sequences when perturbations are present. One argument could be
that the low-level controllers, due to their reduced computational requirements can run at
higher frequencies than the optimization module. Another argument that motivates the
usage of SMHTP is parameter variations.

Nominal
Parameter Variations

1m

Figure 6.11: Trajectory of the MPC under modelling errors

6 Experimental Results 6.2 Navigation in Human-Shared Environments 100

1m

Nominal
Parameter Variations

Figure 6.12: Trajectory of the SMHTP under modelling errors

Figure 6.11 and Figure 6.12 present the resulting trajectories when altering the model
parameters of the controllers from nominal values (wheel radius r = 0.97 m and wheel
displacement d = 0.33 m) by approx. 10% (r′ = 0.8 m, d′ = 0.3 m). As expected, the
MPC trajectory degrades, visible especially in the narrow areas at the beginning of the
course. Nevertheless, even in the case of such variations, the control scheme continue to
provide acceptable results. For the case of MHTP, the distortion of the trajectory in the
same region is not as large. However, the deviations of the applied platform velocities
compared with the nominal velocities are non-negligible, as seen in Figure 6.13.

0

0.2

0.4

0.6

0.8

v
[m
/
s]

0 5 10 15 20 25 30 35 40 45

−1

0

1

t [s]

ω
[ra

d/
s]

nominal
applied

Figure 6.13: Linear and angular velocities along the SMHTP trajectory under modelling
errors

6 Experimental Results 6.2 Navigation in Human-Shared Environments 101

6.2.4 Using State Observers

So far, all experiments have been conducted by providing the algorithms the ground-truth
state of the agent. In practice, this is not the case. As discussed in the introduction, an
entire topic of research regarding navigation is on the context of localization, i. e. the
discipline of observers for the agent pose. Currently, due to their robustness, the most
popular methods for localization are based on Particle-Filtering. However, from a system
dynamics perspective, they typically tend to be relatively inaccurate.

Another point to consider regarding using only the localization observer for the control-
algorithms is the fact that in a non-linear system, the independence property does not hold:
one cannot design a stable controller and a stable observer independently and expect that
using them together will result in a stable system. Of course, in practice, this is not taken
into account and results are satisfactory. Nevertheless, we are interested in potentially
allowing observers to be proper (i. e. designed in accordance with the controllers) while
still making use of localization approaches as a black-box. This motivates the observer
chaining structure presented in Figure 6.14.

Depth Sns.Controller Cmds

Encoders / IMU

Localization

Final Observer

Drifting Observer

prediction

update (ĥloc,Rloc)

update (ĥsns,Rsns)

prediction (x̂ol, Σ̂ol)

update (ĥwh,Rwh)

x̂, Σ̂

Figure 6.14: Diagram illustrating the observers structure

As we want to consider the localization module as a black box, we require an open-loop
observer that provides the so called odometry to the localization module, i. e. a predicted
state x̂ol, Σ̂ol that is as qualitative as possible while still not providing updates in the
pose-space of the agent. For correctness, note that a very slow filter can be applied such
that the open-loop observer does not reach numerical instability as the run-time of the

6 Experimental Results 6.2 Navigation in Human-Shared Environments 102

system →∞. As localization is typically based on particle filtering, we are interested in
post filtering its output in a final observer, that for increased quality takes into account
all the inputs and measurements of the system. Note that here, parameter estimation
of the platform-model can be performed. Moreover, note that the final observer can
be designed together with the controller. Unfortunately, there exist no methods in the
literature to construct observers that are stable in combination with an MPC. This is
another argument that motivates the usage of SMHTP.

Example 6.4 (Kalman Filter for State and Parameter Estimation). In this example,
we would like to present the design of an Extended-Kalman-Filter (EKF) observer for
estimating the agent pose, velocities as well as wheels radius and displacement. As
mentioned earlier, such an observer is not proven to be stable when used in combination
with a controller. However, in practice it results in a generic observer that provides
satisfactory results.

For generality, we are interested in the case in which we design an EKF that possesses
multiple update types ĥu, u ∈ U . As such updates might come from sub-systems that
are running at different frequencies, another requirement of the designed filter is to be
able to process updates arriving at asynchronous time intervals. The pseudo-code of
such an algorithm when processing a measurement is given in Algorithm 6.

Algorithm 6 EKF_async_update(ĥu,Ru, t̂u)
internal state: x̂, Σ̂, t, tu, ∀u ∈ U
requirements: t̂u ≥ t
1:

// prediction step:
2: ∆t← t̂u − t
3: t← t̂u
4: x̄← advance_ode(x̂,∆t)
5: Σ̄← Φ(x̂,∆t)Σ̂Φ(x̂,∆t)T + Qd(x̂,∆t)

// correction step:
6: ∆tu ← t̂u − tu
7: tu ← t̂u
8: S← Cu(x̄)Σ̄Cu(x̄)T + Rd

u(Ru,∆tu)
9: K← Σ̄C(x̄)TS−1

10: x̂← x̄ + K(ĥu − hu(x̄))
11: Σ̂← (E−KCu(x̄))Σ̄

The prediction-step is independent of the type of update, with the discrete ODE solver
step advance_ode(x,∆t) that advances the system state x by the time interval ∆t,
the discrete state-transition matrix of the linearised system Φ as well as the discrete
prediction noise Qd. The update step requires functions that are dependant on the
type of update, with the observation function hu(x̄), the observation function Jacobian

6 Experimental Results 6.2 Navigation in Human-Shared Environments 103

Cu(x̄) and the discrete observation noise Rd
u(Ru,∆tu).

Thus, we want to design the functions advance_ode, Φ and Qd for the filter state
model and the functions hu, Cu and Rd

u for every implemented update type u ∈ U .
In the following, we are interested in computing the above-mentioned functions for
designing an observer for the Differential-Drive that accepts updates from wheel angular
velocity measurements as well as agent pose (from the localization module). Moreover,
we are interested in also estimating the platform linear and angular velocity as well
as the kinematic model parameters: the wheel radius rw (ρ = 1/rw) and the wheels
displacement d. Thus, our filter state and inputs are

xT =
[
x y θ v ω ρ d

]
, uT =

[
v̇ ω̇

]
(6.9)

with the system dynamics

ẋT =
[
v cos(θ) v sin(θ) ω v̇ ω̇ 0 0

]
. (6.10)

Computing the (continuous-time) dynamic matrix A and input matrix B, we obtain

A = ∂ẋ
∂x =

0 0 −v sin (θ) cos (θ) 0 0 0
0 0 v cos (θ) sin (θ) 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

, B = ∂ẋ

∂u =

0 0
0 0
0 0
1 0
0 1
0 0
0 0

. (6.11)

Regarding the (continuous-time) state transition noise, we assume the presence of terms
in all the system states except the constant parameters, i. e.

Q = diag
([
nnxy nnxy nnθ nnv nnω 0 0

])
. (6.12)

Note that there is no state transition noise present for the estimated model parameters,
as they are of constant nature. For the wheels update, we have the observation function

ĥwh =

ρ (v + ωd
2

)
ρ
(
v − ωd

2

) (6.13)

and its Jacobian

Cwh = ∂ĥwh
∂x =

[
0 0 0 ρ ρd

2 v + ωd
2

ωρ
2

0 0 0 ρ −ρd
2 v − ωd

2 −ωρ
2

]
. (6.14)

Analogously, we have for the localization measurement

ĥloc =

xy
θ

 (6.15a)

Cloc = ∂ĥloc
∂x =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

 . (6.15b)

6 Experimental Results 6.2 Navigation in Human-Shared Environments 104

Now, we are interested to discretize the above-defined functions. The advance_ode can
be discretized using various ODE discretization methods as discussed in Section 2.3.
For the rest, formally we want to compute

Φ= eA∆t (6.16a)

Γ=
∫ ∆t

0
eAtB dt (6.16b)

Qd=
∫ ∆t

0
eAtQ(eAt)T dt (6.16c)

Rd
u= Ru

∆tu
(6.16d)

with the matrix exponential eA∆t. In the following we will make use of the second order
(Tustin) approximation of the matrix exponential [71]

eA∆t ≈
(

E + A∆t
2

)(
E− A∆t

2

)−1
(6.17)

With this, we obtain

Φ=

1 0 −∆t v sin (θ) ∆t cos (θ) −1/2 v sin (θ) ∆t2 0 0

0 1 ∆t v cos (θ) ∆t sin (θ) 1/2 v cos (θ) ∆t2 0 0

0 0 1 0 ∆t 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

(6.18a)

Γ=

1/2 cos (θ) ∆t2 −1/6 v sin (θ) ∆t3

1/2 sin (θ) ∆t2 1/6 v cos (θ) ∆t3

0 1/2 ∆t2

∆t 0

0 ∆t

0 0

0 0

(6.18b)

Rd
u= Ru

∆tu
(6.18c)

and the non-zero upper-triangular values of the symbolic discrete covariance matrix are
given in (6.19). Note that the matrix Qd contains entries from the e.g. v–related noise
also in the terms relating to the pose states.

6 Experimental Results 6.2 Navigation in Human-Shared Environments 105

Qd(0, 0)= ∆t (3 v2(sin(θ))2nnω ∆t4+20 (sin(θ))2∆t2v2nnθ+20 (cos(θ))2∆t2nnv+60 nnxy)
60

Qd(0, 1)= −
∆t3 sin (θ) cos (θ)

(
3 ∆t2v2nnω + 20 v2nnθch − 20 nnv

)
60

Qd(0, 2)= −1/8 v sin (θ) ∆t2
(
nnω ∆t2 + 4 nnθ

)
Qd(0, 3)= 1/2 cos (θ) nnv ∆t2

Qd(0, 4)= −1/6 v sin (θ) nnω ∆t3

Qd(1, 1)= ∆t (3 v2(cos(θ))2nnω ∆t4+20 (cos(θ))2∆t2v2nnθ+20 (sin(θ))2∆t2nnv+60 nnxy)
60

Qd(1, 2)= 1/8 v cos (θ) ∆t2
(
nnω ∆t2 + 4 nnθ

)
Qd(1, 3)= 1/2 sin (θ) nnv ∆t2

Qd(1, 4)= 1/6 v cos (θ) nnω ∆t3

Qd(2, 2)= 1/3 nnω ∆t3 + nnθ ∆t
Qd(2, 4)= 1/2 nnω ∆t2

Qd(3, 3)= nnv ∆t (6.19)

Given the presented observers structure, Figure 6.15 illustrates the ground-truth vs.
observed pose of the agent during navigation. Note that in certain regions, a drift from
the ground-truth pose emerges. The main reason for this deviation is the fact that the
map of the environment is relatively inaccurate. Nevertheless, as the navigation-approach
relies on agent-relative (local) information, sufficiently small deviations from ground-truth
pose do not influence the quality of the emerging trajectories.

1m

Ground-Truth
Filtered

Figure 6.15: Estimated Pose of the MPC vs Ground-Truth Pose

Figure 6.16 presents the resulting (ground-truth) trajectories of the agent using the MPC

6 Experimental Results 6.2 Navigation in Human-Shared Environments 106

scheme, SMHTP with a Lyapunov controller and SMHTP with Input-Output Linearization
controller with modelling errors of approx. 10%, similar with the setting from Subsection
6.2.3. It can be noted that all controllers behave qualitatively even in this case where the
system state is observed and considerable modelling errors are present.

1m

MPC
SMHTP (Lyapunov)
SMHTP (IO-Lin)

Figure 6.16: Ground-truth trajectories of MPC and SMHTP using state estimation under
modelling errors

The nominal and applied agent velocities as well as the model parameter estimation
evolution for the IO-Lin SMHTP are presented in Figure 6.17. Note that the model
parameters quickly converge to their true values.

8 · 10−2
9 · 10−2

0.1

r
[m

]

0.28
0.3

0.32
0.34
0.36

d
[m

]

00.20.40.60.81

v
[m
/s

]

0 5 10 15 20 25 30 35−2
0
2
4

t [s]

ω
[ra

d/
s] nominal

applied

Figure 6.17: Adaptation of the observed model parameters as well as linear and angular
velocities along the SMHTP trajectory

6 Experimental Results 6.2 Navigation in Human-Shared Environments 107

6.2.5 Real-Robot Testing

In the following, we would like to do a qualitative analysis of the presented navigation
algorithms on the real-world robotic platform, using the other required modules such as
Localization, Observers etc.

Navigation in Partially-Mapped Static Environments In this experiment, we let the
robot navigate through a static office environment. As the radius of the agent is approxi-
matively 0.15 m, a minimum distance to obstacles of 0.2 m has been enforced. Moreover,
an additional velocity dependant distance term has been added: a constant factor (0.2)
multiplied by the agent velocity. Thus, if the agent navigates at 1 m/s, it has to maintain
a distance to obstacles of 0.4 m.

In the tested environment, non-convex unmapped obstacles have been added in certain
regions. Moreover, the robot has to pass a relatively narrow doorway. The computed
global-path and the executed agent trajectory are illustrated in Figure 6.18.

1m

Global Path

Start

Goal

Unmapped Obstacles

Agent trajectory

Figure 6.18: Resulting trajectory of the real platform in partially-mapped static environ-
ments

As visible in Figure 6.19 at t = 20 s, the agent slows-down almost to a stop just before
navigating through the (mapped) doorway. The reason of this unnecessary and sub-optimal
slow-down is the fact that the Localization-module possessed relatively high inaccuracies
in the orientation of the agent just before entering the doorway. Because of this, the
navigation through the (narrow) doorway was rendered as infeasible, transitioning the
optimization module into Halt mode. However, as the agent dynamics reduced, the
Localization-module converged to the true pose of the agent and the system entered in
normal operation.

Navigation near Dynamic Obstacles Working in the same environment setting, we now
remove some of the static un-mapped environments and allow humans to move along the
robot trajectory. Figure 6.20 illustrates the undertaken agent trajectory and key temporal

6 Experimental Results 6.2 Navigation in Human-Shared Environments 108

0
0.2
0.4
0.6
0.8

1

v
[m
/
s]

0 5 10 15 20 25 30 35 40

−1

0

1

t [s]

ω
[ra

d/
s]

Figure 6.19: Linear and angular velocity commands along the real-robot trajectory in
static environment

points where a human performs certain motions. In the first encounter (yellow), the
human waits in the door-way. As expected, as soon as the doorway is in the local view of
the agent, the agent smoothly navigates to a stop, as the goal cannot be reached. As soon
as the human moves away, the agent continues its task. The second encounter is one in
which the human initially stands still (light blue). As soon as the robot starts to navigate
around the human, the human moves towards (dark blue) the trajectory of the agent.
With this, we want to create an "annoying human" scenario, which requires the agent to
heavily modify its trajectory. Even though only a random-walk model of the environment
is assumed, we observe that the agent quickly adapts to the human motion.

t = 16s

Human Pose

1m

t = 0s
t = 7.5s

t = 23s
t = 27s
t = 36s
t = 39s
t = 50s

Global Path
Unmapped Obstacles

Agent Trajectory

Figure 6.20: Resulting trajectory of the real platform navigating near humans

6 Experimental Results 6.3 Navigation of the TU Autonomous Race-Car 109

Figure 6.21: Formula-Student Race-Car Edge8 (left) and its simulated model (right).

6.3 Ackerman-Drive: Navigation of the TU Autonomous
Race-Car

In this section, we would like to evaluate a small set of experiments on a different platform:
an electric autonomous race-car. The race-car has been designed and manufactured by the
TU Racing Team. Moreover, the team has created a high-fidelity model of the platform
for simulation-use in the Gazebo simulator, accounting for non-linear tire friction models,
air drag, battery voltage drops etc. Details regarding the race-car and the developed
simulation model can be found in [72]. Figure 6.21 illustrates the real and the simulated
platform.

The main reason of considering experiments on such a platform is to evaluate the scalability
of the proposed approaches. Note that in the following tests, velocities as high as 15 m/s
(54 km/h) are achieved, which results in the platform advancing 0.3 − 1.5 m between
each optimization cycle, depending on the update rate. Thus, one of the main validated
algorithms is the temporal synchronization and extrapolation of the navigation module,
discussed in Section 4.4.

The simulated model is controlled by applying individual torques to the rear wheels.
However, for the optimization module, a kinematic model similar with the one designed
for the Differential-Drive has been used. Thus, a low-level controller that controls the
longitudinal wheel-slip has been developed, asymptotically following the velocity-profile
requested by the optimization module. Figure 6.22 illustrates the trajectory of the agent
when navigating through an (unknown) circuit. Note that due to the non-circular shape
of the car, its bounding box is approximated by two circular regions. Figure 6.23 presents
the velocity and steering-angle profile of the platform during the course of one lap.

6 Experimental Results 6.3 Navigation of the TU Autonomous Race-Car 110

Lap Start

Trajectory
True Bounding-Box
Appox. Bouding-Box

Track boundary

Figure 6.22: Resulting trajectory in a closed-circuit

0

5

10

15

v
[m
/
s]

0 1 2 3 4 5 6 7 8 9 10 11 12−10

0

10

t [s]

φ
[°]

Figure 6.23: Resulting linear velocity and steering angle in a closed-circuit

6 Experimental Results 6.4 Navigation with Controlled Torso-Orientation 111

6.4 IWS-Drive: Navigation with Controlled Torso-Orientation

In this section, we are interested in evaluating the emerging trajectories of the optimization
module under various dominating cost-function terms, when applied to an IWS platform,
introduced in Example 2.3.

Figure 6.24 illustrates the robotic platform Blue and the simulation model of its mobile
base, making use of CAx models of the components as specified by the designer, together
with component inertial information. General purpose surface friction parameters have
been applied accordingly. Without loss of generality, the actuators are modelled taking
into account damping and the interface has been designed to apply shaft torques as input.
As 3D physics engines implemented in Gazebo (such as ODE, Bullet or Dart) perform
typically poor in over-constrained closed kinematic chains (such as a I4WS) when force
control is used, increased simulation accuracy is achieved through parameter-tuning of
the engine (increased iteration count as well as relaxation of the stiffness of the formed
contact joints). Additionally, quantisation noise is modelled for the angular sensors of the
actuators as well as Gaussian noise of the depth sensor.

Figure 6.24: Robotic Platform Blue (left) and its simulated model (right).

As discussed in Example 2.3, various parametrizations of the platform can be applied.
In the following, the wheels actuators are controlled using de-coupled linear (PID-based)
controllers, assuming independence in their models. These controllers are used to control
the individual motors such that the desired chassis state is achieved.

Initially, we are interested in visualizing the evolution of the ICC parameters given a
certain chassis state trajectory. For simplicity of data interpretation, the parametrization
pT =

[
v ρ α

]
is used. Figure 6.25b presents the local view of the platform as it performs

the sequence of control commands from Figure 6.25a. For visualization purposes, the

6 Experimental Results 6.4 Navigation with Controlled Torso-Orientation 112

entire parameter trajectory has been computed initially; however, each cycle computation
is performed on-line during normal operation. Desired versus applied parameter and wheel
velocity trajectories are illustrated in Figure 6.25a, together with the temporal evolution of
the orientation as well as rotation speed of the top-right wheel. As expected, when the ICC
revolutes at a small radius relative to a wheel (big values of ρ), the non-linear character of
the wheel motion becomes significant, as depicted in the right side of Figure 6.25a.

0

0.5

1

v c
[m
/
s]

−2
−1

0
1
2

ρ
c
[1 m

]

0 2 4 6 8

0
0.2
0.4
0.6

t[s]

α
c
[ra

d]

−0.2

0

0.2

0.4

0.6

α
i w

[ra
d]

0 2 4 6 8
−30

−20

−10

0

t[s]

ω
i w

[ra
d/

s]

(a) Desired (red) vs. measured (blue) data: ICC parameters (left), orientation and velocity of a wheel (right)

0.1 m

ICC trajectory

(b) ICC trajectory in local frame of the I4WS when executing a parametrized trajectory from Figure 6.25a

Figure 6.25: Visualization of an ICC trajectory

6 Experimental Results 6.4 Navigation with Controlled Torso-Orientation 113

t = 10.06s, s = 5.913m

t = 4.726s, s = 5.431m

t = 8.432s, s = 6.121m

t = 4.822s, s = 5.851mt = 4.76s, s = 3.31m

1 m

sensed
obstacle

a) close follow b) fast follow

d) attention point e) attention point

c) reduced path width

attention
points

Figure 6.26: Generated trajectories under different dominating weights

6 Experimental Results 6.4 Navigation with Controlled Torso-Orientation 114

Figure 6.26 presents the behaviour that can be obtained by the Local Path-Planner using
only three control points. The active route for this instance is represented by the green
dotted line and its afferent distance-field is created. The route far away is not considered
locally and is in this instant inactive (blue). In the presented scenarios, the parametrization
pT =

[
v ωtraj ωb

]
has been used as it performs superior to other parametrizations

when attention-focus points are targeted. The agent has an initial velocity of 0.1 m/s and
for all trajectories, the end-constraint of 0 base velocity is imposed. Furthermore, wheel
actuator orientation, velocity and acceleration as well as platform base linear and lateral
acceleration constraints have been enforced. Figure 6.26a presents the scenario where route
accuracy is desired. As the number of control points is small, high path-following accuracy
implies a reduction of the trajectory length. Figure 6.26b presents the generated trajectory
with dominant costs towards time-optimality. Notice that the obstacle represents the only
active spatial constraint. 6.26c illustrates the situation where maximum path deviation is
reduced. Notice here the sensed obstacle distance field truncation further away from the
path, as the path constraint makes this region automatically infeasible. Last but not least,
Figures 6.26d and 6.26e showcase the same scenario when an attention-focus point (to the
left and right respectively) is targeted. The increased duration of the generated trajectory
in Figure 6.26e is mostly due to the internal actuator constraints of such motion.

7 Conclusions

This thesis focused on Optimal Local Path-Planning and Control. Chapter 2 presented
generic concepts related to dynamic models, parametrizations as well as solving ODEs and
their sensitivities. Moreover, it provided models for various agent platforms (Differential-
Drive, Ackerman-Drive, Single-Track model, IWS-Drive) as well as practical approaches
of the discussed topics building upon these models.

Chapter 3 formulated the dynamic optimization problem and methods of its usage in
feed-back loops. Here, besides the well-known MPC scheme, we presented an alternative
feed-back approach, the Stabilized MHTP, which in certain circumstances possesses several
benefits over MPC. Moreover, we addressed the problem of guaranteeing safety in the
context of Autonomous Navigation using MHTP. We started from general models of the
agent and the environment (allowing the environment to be dynamic and assuming inexact
knowledge regarding its model). From this, we defined the required assumptions that have
to be made and provided two formulations (in form of constraints) that if once satisfied,
will continue to be satisfied indefinitely, thus providing safety for the navigation task. As
previously discussed, even though more expensive computationally, the proposed nominal
safety constraint allows planning trajectories for arbitrary horizons even in the case where
the uncertainty of the environment prediction is non-negligible.

In Chapter 4, practical implementation specifics of MHTP Local-Path Planning within
the context of autonomous navigation have been addressed. Initially, two discretization
methods of the dynamic optimization problem are proposed. Building upon the Minimal
Parametric Discretization method, methods for constraints discretization on evaluation
lattices of different natures (spatial, temporal, dynamic) have been presented. Attention
has been given to the temporal synchronization of the iterative optimization module,
obtaining finally algorithms that can function asynchronously. Last but not least, the
Chapter discussed various details regarding optimization problem modelling and solvers
specifics.

Motivated by unsatisfactory performance of straight-forward approaches, Chapter 5
addressed the convexity of the optimization problem with the objective of reaching to
a goal subject to navigable space constraints. Two metrics defined by functions solving
partial differential equations (Laplace and Eikonal, respectively) have been proposed in
order to convexify the problem with respect to non-linear optimization. For a simplified
setting (point-particle), we have proven that such mappings ensure that the gradient of
the metric never vanishes and is always pointing towards the inside of the allowed drivable
space. These properties make the optimization sub-problem have only one optimum, i. e.
the global optimum. The required operations and computed fields have been summarized

115

7 Conclusions 7.1 Future Work 116

in an environment-processing algorithm. Lastly, other typically desired cost-function
terms and their induced behaviours have been discussed.

Chapter 6 presented simulated and real-platform results, validating the proposed methods
using three different autonomous platforms. The qualitative and quantitative analysis of
the resulting trajectories and behaviours satisfies the desired capabilities of motion: its
optimal character and robustness. Moreover, it was observed that it behaves well even if
the used environment models are relatively simplistic: the platform behaved satisfactory
when close to human motion even when assuming a low-noise random-walk environment
model. Temporal synchronization and extrapolation of the proposed algorithms have been
validated by applying them on a real-sized autonomous Race-Car.

7.1 Future Work

Improvements and future research (and implementations) could be performed in various
contexts presented throughout the Thesis.

Regarding parametrizations and ODE solvers, one possible improvement is to make use
of higher order B-Splines to parametrize the ODEs. However, due to their recursive
definition with respect to the Spline knots, computing their sensitivities when the knots
locations are variable is expected to be relatively computationally-intensive. A class of
ODE solvers whose accuracy versus computational requirement could be analysed are
Symplectic Solvers [73]. Regarding sensitivities computation, integration of Automatic
Differentiation Tools (AutoDiff) [74, 75] in the developed libraries is desired. However,
due to the complexity of the developed code, fully using AutoDiff might considerably
increase the run-time of the algorithm.

In Chapter 3, the two presented dynamic optimization problem discretization approaches
lie at opposite ends of the spectrum: one approach solves the entire ODEs within the
optimization problem while the other approach fully solves the ODEs external to the
optimization problem. An advanced approach would be to combine the two discretization
methods, by splitting the simulated trajectory into several intervals: each interval ODE
being externally solved and the intervals being connected by equality constraints enforced
in the optimization problem. This would still provide accurate ODE solutions on such
intervals while allowing the entire trajectory ODE to be solved in parallel. Regarding
initial solution initialization, the main two approaches used in the current implementation
are the previous trajectory and the null trajectory. Even though the null trajectory has
been extensively used to validate the robustness of the optimizer solution w.r.t. local
minima, improved results are expected when using sampling methods to initialize the
optimization problem. As a more long-term goal, evaluation of methods solving stochastic
optimization problems is desired.

The nominal safety constraint possesses one practical drawback: the existence of trajecto-
ries towards a feasible invariant state has to be investigated for all the states along the
trajectory. Future work is expected in the context of efficient evaluation of such trajec-

7 Conclusions 7.1 Future Work 117

tories, for example by parallelizing their evaluation. Moreover, the presented technique
of precomputing trajectory candidates towards feasible invariant states is not generally
applicable, in particular in the case in which regions in the environment are explicitly
excluded from the feasible invariant set. An example could be an expert explicitly not
allowing agents to reside in certain regions of the environment. Another problematic
situation would be in the case where the trajectories towards feasible invariant states do
not tend to have a short duration. Moreover, the proposed approach could be improved
by using more complex dynamic environment models.

The environment processing module leaves room for future work as well. Firstly, non-
trivial dynamic obstacle perception and models are desired for improved navigation in
the vicinity of humans. Moreover, in the context of Multi-Agent Navigation, distributed
extensions could allow the agents to predict their motion while taking into account the
predicted motion of neighbouring agents.

Last but not least, additional testing for all the real platforms is expected. Moreover,
an implementation of a Local-Path Planning module based on the (dynamic) single-
track model is desired for pushing the limits of the Autonomous navigation of the TU
Race-Car.

Bibliography

[1] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Siegwart, “Optimal
reciprocal collision avoidance for multiple non-holonomic robots,” in Distributed
Autonomous Robotic Systems: The 10th International Symposium, A. Martinoli,
F. Mondada, N. Correll, G. Mermoud, M. Egerstedt, M. A. Hsieh, L. E. Parker, and
K. Støy, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 203–216,
isbn: 978-3-642-32723-0. [Online]. Available: https://doi.org/10.1007/978-3-
642-32723-0_15.

[2] M. Čáp, P. Novák, A. Kleiner, and M. Seleckỳ, “Prioritized planning algorithms for
trajectory coordination of multiple mobile robots,” IEEE Transactions on Automa-
tion Science and Engineering, vol. 12, no. 3, pp. 835–849, 2015.

[3] P. Moral, Mean Field Simulation for Monte Carlo Integration, ser. Chapman and
Hall/CRC Monographs on Statistics and Applied Probability Series. CRC Press
LLC, 2016, isbn: 9781138198739. [Online]. Available: https://books.google.at/
books?id=bHJKvgAACAAJ.

[4] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure in 2d lidar
slam,” in 2016 IEEE International Conference on Robotics and Automation (ICRA),
2016, pp. 1271–1278.

[5] M. Montemerlo and S. Thrun, “Fastslam 2.0,” FastSLAM: A scalable method for
the simultaneous localization and mapping problem in robotics, pp. 63–90, 2007.

[6] M. Phillips and M. Likhachev, “Sipp: Safe interval path planning for dynamic
environments,” in Robotics and Automation (ICRA), 2011 IEEE International
Conference on, IEEE, 2011, pp. 5628–5635.

[7] T. Howard, “Adaptive model-predictive motion planning for navigation in com-
plex environments,” PhD thesis, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, Aug. 2009.

[8] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision
avoidance,” IEEE Robotics Automation Magazine, vol. 4, no. 1, pp. 23–33, Mar.
1997, issn: 1070-9932.

[9] W. Xu, J. Wei, J. M. Dolan, H. Zhao, and H. Zha, “A real-time motion planner
with trajectory optimization for autonomous vehicles,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on, May 2012, pp. 2061–2067.

[10] B. Chachuat, Nonlinear and Dynamic Optimization: From Theory to Practice -
IC-32: Spring Term 2009, ser. Polycopiés de l’EPFL. EPFL, 2009. [Online]. Available:
https://books.google.at/books?id=%5C_JOHYgEACAAJ.

118

https://doi.org/10.1007/978-3-642-32723-0_15
https://doi.org/10.1007/978-3-642-32723-0_15
https://books.google.at/books?id=bHJKvgAACAAJ
https://books.google.at/books?id=bHJKvgAACAAJ
https://books.google.at/books?id=%5C_JOHYgEACAAJ

Bibliography 119

[11] J. Rauch, Hyperbolic Partial Differential Equations and Geometric Optics, ser. Gradu-
ate studies in mathematics. American Mathematical Soc., 2012, isbn: 9780821885093.
[Online]. Available: https://books.google.at/books?id=rDbAC1%5C_SOewC.

[12] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision
avoidance,” Robotics Automation Magazine, IEEE, vol. 4, no. 1, pp. 23–33, Mar.
1997, issn: 1070-9932.

[13] M. Bader, A. Richtsfeld, M. Suchi, G. Todoran, W. Holl, W. Kastner, and M. Vincze,
“Balancing centralized control with vehicle autonomy in agv systems,” in Proceedings
11th International Conference on Autonomic and Autonomous Systems (ICAS),
vol. 11, May 2015, pp. 37–43.

[14] T. Schouwenaars, E. Feron, and J. How, “Safe receding horizon path planning for
autonomous vehicles,” in Proceedings of the 40th Allerton Conference on Communi-
cation, Control and Computing, Monticello, IL, 2002.

[15] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggressive
driving with model predictive path integral control,” in Robotics and Automation
(ICRA), 2016 IEEE International Conference on, IEEE, 2016, pp. 1433–1440.

[16] D. Q. Mayne, M. M. Seron, and S. Raković, “Robust model predictive control of
constrained linear systems with bounded disturbances,” Automatica, vol. 41, no. 2,
pp. 219–224, 2005.

[17] D. Q. Mayne and E. C. Kerrigan, “Tube-based robust nonlinear model predictive
control,” IFAC Proceedings Volumes, vol. 40, no. 12, pp. 36–41, 2007.

[18] L. Martinez-Gomez and T. Fraichard, “Collision avoidance in dynamic environments:
An ics-based solution and its comparative evaluation,” in Proceedings of the 2009
IEEE International Conference on Robotics and Automation, ser. ICRA’09, Kobe,
Japan: IEEE Press, 2009, pp. 2251–2256, isbn: 978-1-4244-2788-8.

[19] T. Schouwenaars, J. How, and E. Feron, “Receding horizon path planning with
implicit safety guarantees,” in American Control Conference, 2004. Proceedings of
the 2004, IEEE, vol. 6, 2004, pp. 5576–5581.

[20] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications,
ser. Hochschultext / Universitext. Springer, 2003, isbn: 9783540047582. [Online].
Available: https://books.google.at/books?id=VgQDWyihxKYC.

[21] T. P. d. Nascimento, A. L. d. Costa, and C. C. Paim, “Axebot robot the mechanical
design for an autonomous omnidirectional mobile robot,” in Electronics, Robotics
and Automotive Mechanics Conference, 2009. CERMA ’09., Sep. 2009, pp. 187–192.

[22] M. O. Tatar, C. Popovici, D. Mandru, I. Ardelean, and A. Plesa, “Design and
development of an autonomous omni-directional mobile robot with mecanum wheels,”
in Automation, Quality and Testing, Robotics, 2014 IEEE International Conference
on, May 2014, pp. 1–6.

[23] P. Ryan, Euclidean and Non-Euclidean Geometry: An Analytic Approach. Cambridge
University Press, 1986, isbn: 9780521276351. [Online]. Available: https://books.
google.at/books?id=%5C_6VoRV-RwNwC.

https://books.google.at/books?id=rDbAC1%5C_SOewC
https://books.google.at/books?id=VgQDWyihxKYC
https://books.google.at/books?id=%5C_6VoRV-RwNwC
https://books.google.at/books?id=%5C_6VoRV-RwNwC

Bibliography 120

[24] G. Todoran and M. Bader, “Expressive navigation and local path-planning of
independent steering autonomous systems,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2016), Daejeon, Korea, Oct. 2016, pp. 4742–
4749.

[25] D. Schramm, M. Hiller, and R. Bardini, “Single track models,” in Vehicle Dynamics,
Springer-Verlag, 2018, pp. 225–257.

[26] H. Pacejka, Tyre and Vehicle Dynamics, ser. Automotive engineering. Butterworth-
Heinemann, 2006, isbn: 9780750669184. [Online]. Available: https://books.google.
at/books?id=wHlkbBnu9FEC.

[27] A. Isidori, Nonlinear control systems. Springer Science & Business Media, 2013.
[28] A. De Luca, G. Oriolo, and M. Vendittelli, “Control of wheeled mobile robots: An

experimental overview,” in Ramsete: Articulated and Mobile Robotics for Services
and Technologies, S. Nicosia, B. Siciliano, A. Bicchi, and P. Valigi, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 181–226, isbn: 978-3-540-45000-9.
[Online]. Available: https://doi.org/10.1007/3-540-45000-9_8.

[29] B. R. Rao and S. Ganapathy, “Linear time-varying systems – state transition
matrix,” in Proceedings of the Institution of Electrical Engineers, IET, vol. 126, 1979,
pp. 1331–1335.

[30] M. Gasca, “Multivariate polynomial interpolation,” in Computation of Curves and
Surfaces, W. Dahmen, M. Gasca, and C. A. Micchelli, Eds. Dordrecht: Springer
Netherlands, 1990, pp. 215–236, isbn: 978-94-009-2017-0. [Online]. Available: https:
//doi.org/10.1007/978-94-009-2017-0_7.

[31] A. Gelman and G. Imbens, “Why high-order polynomials should not be used in
regression discontinuity designs,” Journal of Business & Economic Statistics, 2017.
eprint: https://doi.org/10.1080/07350015.2017.1366909. [Online]. Available:
https://doi.org/10.1080/07350015.2017.1366909.

[32] J. A. Cottrell, T. J. Hughes, and Y. Bazilevs, Isogeometric analysis: Toward inte-
gration of CAD and FEA. John Wiley & Sons, 2009.

[33] C. De Boor, “On calculating with b-splines,” Journal of Approximation theory, vol.
6, no. 1, pp. 50–62, 1972.

[34] J. Butcher, Numerical Methods for Ordinary Differential Equations. Wiley, 2003,
isbn: 9780471967583. [Online]. Available: https://books.google.at/books?id=
nYuDWkxhDGUC.

[35] W. H. Press, Numerical recipes 3rd edition: The art of scientific computing. Cam-
bridge university press, 2007.

[36] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). The MIT Press, 2005, isbn: 0262201623.

[37] F. Fairman, Linear Control Theory: The State Space Approach. Wiley, 1998, isbn:
9780471974895. [Online]. Available: https : / / books . google . at / books ? id =
kZQ9x0WQa%5C_IC.

https://books.google.at/books?id=wHlkbBnu9FEC
https://books.google.at/books?id=wHlkbBnu9FEC
https://doi.org/10.1007/3-540-45000-9_8
https://doi.org/10.1007/978-94-009-2017-0_7
https://doi.org/10.1007/978-94-009-2017-0_7
https://doi.org/10.1080/07350015.2017.1366909
https://doi.org/10.1080/07350015.2017.1366909
https://books.google.at/books?id=nYuDWkxhDGUC
https://books.google.at/books?id=nYuDWkxhDGUC
https://books.google.at/books?id=kZQ9x0WQa%5C_IC
https://books.google.at/books?id=kZQ9x0WQa%5C_IC

Bibliography 121

[38] R. Freeman and P. V. Kokotovic, Robust nonlinear control design: State-space and
Lyapunov techniques. Springer Science & Business Media, 2008.

[39] Y. Kuwata, T. Schouwenaars, A. Richards, and J. How, “Robust constrained receding
horizon control for trajectory planning,” in AIAA Guidance, Navigation, and Control
Conference and Exhibit, 2005, pp. 15–18.

[40] F. Allgöwer, T. A. Badgwell, J. S. Qin, J. B. Rawlings, and S. J. Wright, “Nonlinear
predictive control and moving horizon estimation–an introductory overview,” in
Advances in control, Springer, 1999, pp. 391–449.

[41] L. Grne and J. Pannek, Nonlinear model predictive control: Theory and algorithms.
Springer Publishing Company, Incorporated, 2013.

[42] J. Rawlings and D. Mayne, Model Predictive Control: Theory and Design. Nob Hill
Pub., 2009, isbn: 9780975937709. [Online]. Available: https://books.google.at/
books?id=3%5C_rfQQAACAAJ.

[43] B. Chachuat, “Nonlinear and dynamic optimization: From theory to practice,” Tech.
Rep., 2007.

[44] D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise Intro-
duction. Princeton, NJ, USA: Princeton University Press, 2011, isbn: 0691151873,
9780691151878.

[45] L. Pontryagin, Mathematical Theory of Optimal Processes, ser. Classics of Soviet
Mathematics. Taylor & Francis, 1987, isbn: 9782881240775. [Online]. Available:
https://books.google.at/books?id=kwzq0F4cBVAC.

[46] P. B. Ryan, R. L. Barr, and H. D. Todd, “Simplex techniques for nonlinear opti-
mization,” Analytical Chemistry, vol. 52, no. 9, pp. 1460–1467, 1980.

[47] Z. Manchester and S. Kuindersma, “Derivative-free trajectory optimization with
unscented dynamic programming,” in 2016 IEEE 55th Conference on Decision and
Control (CDC), Dec. 2016, pp. 3642–3647.

[48] I. Griva, S. G. Nash, and A. Sofer, Linear and Nonlinear Optimization (2. ed.).
SIAM, 2008, pp. I–XXII, 1–742, isbn: 978-0-89871-661-0.

[49] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd. New York: Springer,
2006.

[50] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004, isbn: 0521833787.

[51] D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, ser.
Athena scientific series in optimization and neural computation. Athena Scien-
tific, 1996, isbn: 9781886529045. [Online]. Available: https://books.google.at/
books?id=-UQZAQAAIAAJ.

[52] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming for large-scale
nonlinear optimization,” Journal of Computational and Applied Mathematics, vol.
124, no. 1, pp. 123–137, 2000.

https://books.google.at/books?id=3%5C_rfQQAACAAJ
https://books.google.at/books?id=3%5C_rfQQAACAAJ
https://books.google.at/books?id=kwzq0F4cBVAC
https://books.google.at/books?id=-UQZAQAAIAAJ
https://books.google.at/books?id=-UQZAQAAIAAJ

Bibliography 122

[53] M. Heinkenschloss and L. N. Vicente, “Analysis of inexact trust-region sqp algo-
rithms,” SIAM Journal on Optimization, vol. 12, no. 2, pp. 283–302, 2002.

[54] M. S. Lau, S. Yue, K. Ling, and J. Maciejowski, “A comparison of interior point
and active set methods for fpga implementation of model predictive control,” in
Control Conference (ECC), 2009 European, IEEE, 2009, pp. 156–161.

[55] C. Kanzow and A. Klug, “On affine-scaling interior-point newton methods for
nonlinear minimization with bound constraints,” Computational Optimization and
Applications, vol. 35, no. 2, pp. 177–197, 2006.

[56] K. Chen, Matrix Preconditioning Techniques and Applications, ser. Cambridge
Monographs on Applie. Cambridge University Press, 2005, isbn: 9780521838283.
[Online]. Available: https://books.google.at/books?id=d9UdanCqJ1QC.

[57] L. Trefethen and D. Bau, Numerical Linear Algebra, ser. Other Titles in Ap-
plied Mathematics. Society for Industrial and Applied Mathematics, 1997, isbn:
9780898713619. [Online]. Available: https://books.google.at/books?id=bj-
Lu6zjWbEC.

[58] T. Howard, C. Green, D. Ferguson, and A. Kelly, “State space sampling of feasible
motions for high-performance mobile robot navigation in complex environments,”
Journal of Field Robotics, vol. 25, no. 6-7, pp. 325–345, Jun. 2008.

[59] A. Kolmogorov and S. Fomin, Introductory Real Analysis, ser. Dover Books on
Mathematics. Dover Publications, 1975, isbn: 9780486612263. [Online]. Available:
https://books.google.at/books?id=z8IaHgZ9PwQC.

[60] K. Hoffman and R. Kunze, Linear algebra, ser. Prentice-Hall mathematics series.
Prentice-Hall, 1971. [Online]. Available: https://books.google.at/books?id=
I4kQAQAAIAAJ.

[61] K. H. Wray, D. Ruiken, R. A. Grupen, and S. Zilberstein, “Log-space harmonic
function path planning,” in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, IEEE, 2016, pp. 1511–1516.

[62] R. Duffin, “The maximum principle and biharmonic functions,” Journal of Math-
ematical Analysis and Applications, vol. 3, no. 3, pp. 399–405, 1961, issn: 0022-
247X. [Online]. Available: //www.sciencedirect.com/science/article/pii/
0022247X6190066X.

[63] I. K. Youssef and A. A. Taha, “On the modified successive overrelaxation method,”
Appl. Math. Comput., vol. 219, no. 9, pp. 4601–4613, Jan. 2013, issn: 0096-3003.
[Online]. Available: http://dx.doi.org/10.1016/j.amc.2012.10.071.

[64] T. H. Cormen, Introduction to algorithms. 2009.
[65] J. V. Gómez, D. Álvarez, S. Garrido, and L. Moreno, “Fast methods for eikonal

equations: An experimental survey,” CoRR, vol. abs/1506.03771, 2015. [Online].
Available: http://arxiv.org/abs/1506.03771.

[66] T. Faulwasser, Optimization-based solutions to constrained trajectory-tracking and
path-following problems, EPFL-BOOK-184941. Shaker Verlag, 2013.

https://books.google.at/books?id=d9UdanCqJ1QC
https://books.google.at/books?id=bj-Lu6zjWbEC
https://books.google.at/books?id=bj-Lu6zjWbEC
https://books.google.at/books?id=z8IaHgZ9PwQC
https://books.google.at/books?id=I4kQAQAAIAAJ
https://books.google.at/books?id=I4kQAQAAIAAJ
//www.sciencedirect.com/science/article/pii/0022247X6190066X
//www.sciencedirect.com/science/article/pii/0022247X6190066X
http://dx.doi.org/10.1016/j.amc.2012.10.071
http://arxiv.org/abs/1506.03771

Bibliography Bibliography 123

[67] P. Fankhauser and M. Hutter, “A universal grid map library: implementation
and use case for rough terrain navigation,” in Robot Operating System (ROS) –
The Complete Reference (Volume 1), A. Koubaa, Ed., Springer, 2016, ch. 5, isbn:
978-3-319-26052-5.

[68] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “Ros: An open-source robot operating system,” in ICRA Workshop on
Open Source Software, 2009.

[69] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source
multi-robot simulator,” in Intelligent Robots and Systems, 2004. (IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference on, vol. 3, Sep. 2004, 2149–
2154 vol.3.

[70] “Handbook of computational geometry,” J.-R. Sack and J. Urrutia, Eds., 2000.
[71] T. A. Bickart, “Matrix exponential: Approximation by truncated power series,”

Proceedings of the IEEE, vol. 56, no. 5, pp. 872–873, May 1968, issn: 0018-9219.
[72] M. Zeilinger, R. Hauk, M. Bader, and A. Hofmann, “Design of an autonomous race

car for the formula student driverless (fsd),” in Proceedings of the OAGM & ARW
Joint Workshop (OAGM & ARW-17), Vienna, Austria, May 2017, pp. 57–62.

[73] E. Hairer, G. Wanner, and C. Lubich, “Symplectic integration of hamiltonian
systems,” in Geometric Numerical Integration: Structure-Preserving Algorithms for
Ordinary Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 179–236, isbn: 978-3-540-30666-5. [Online]. Available: https://doi.org/
10.1007/3-540-30666-8_6.

[74] S. N. Laboratories, U. S. N. N. S. Administration, U. S. D. of Energy. Office of
Scientific, and T. Information, Sacado: Automatic Differentiation Tools for C++
Codes. United States. National Nuclear Security Administration, 2009. [Online].
Available: https://books.google.at/books?id=F69UnQAACAAJ.

[75] D. Kourounis, L. Gergidis, M. Saunders, A. Walther, and O. Schenk, “Compile-
time symbolic differentiation using c++ expression templates,” ArXiv preprint
arXiv:1705.01729, 2017.

https://doi.org/10.1007/3-540-30666-8_6
https://doi.org/10.1007/3-540-30666-8_6
https://books.google.at/books?id=F69UnQAACAAJ

Eidesstattliche Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct – Regeln
zur Sicherung guter wissenschaftlicher Praxis (in der aktuellen Fassung des jeweiligen
Mitteilungsblattes der TU Wien), insbesondere ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel, angefertigt wurde. Die aus anderen
Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der
Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In– noch im Ausland in gleicher
oder in ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Vienna, February 2018

Horatiu George Todoran

	Contents
	List of Figures
	List of Figures
	List of Examples
	List of Examples
	1 Introduction
	1.1 State of Art

	2 General Definitions and Models
	2.1 Classes of Dynamic Models
	2.1.1 Non-linear Models
	2.1.2 Affine-Input Models
	2.1.3 Linear Time-Variant Models

	2.2 Parametric Functions
	2.2.1 Piece-wise Constant
	2.2.2 Piece-wise Linear
	2.2.3 Polynomials
	2.2.4 Splines

	2.3 Solving ODEs
	2.3.1 Single-step Methods
	2.3.2 Multi-Step Methods

	2.4 Computing Sensitivities of ODEs
	2.4.1 Numeric Differences
	2.4.2 Analytic

	3 Optimal Planning and Control
	3.1 Definitions and Models
	3.1.1 Dynamic Models
	3.1.2 Constraints
	3.1.3 Cost Function

	3.2 Optimization-based Control
	3.2.1 Infinite Optimization Horizon, Perfect Environment Model
	3.2.2 Finite Optimization Horizon, Perfect Environment Model
	3.2.3 Classification of Imperfect Environment Models

	3.3 Constraints for Ensuring Safety
	3.3.1 Notation and Related Concepts
	3.3.2 Collision-free Navigation Constraints

	4 Implementation of MHTP
	4.1 Discretizing the Optimization Problem
	4.1.1 Fully Discretized Representation
	4.1.2 Minimal Parametric Representation
	4.1.3 Evaluation Lattices
	4.1.4 Solving the Discretized Optimization Problem

	4.2 Gradient-based Non-Linear Programming
	4.2.1 Solver Algorithms
	4.2.2 Generic Constraint Modelling
	4.2.3 Preconditioning

	4.3 Initial Solutions
	4.4 Temporal Synchronization

	5 A Suitable Cost Function
	5.1 Reaching a Goal
	5.1.1 Metrics and Norms
	5.1.2 PDE Candidates
	5.1.3 Sensor-processing: Layered Local Maps

	5.2 Other Navigation Objectives

	6 Experimental Results
	6.1 General Considerations
	6.2 Differential-Drive: Navigation in Human-Shared Environments
	6.2.1 Navigation in Partially-Mapped Static Environments
	6.2.2 Navigation using Safety Constraints
	6.2.3 MPC vs Stabilized MHTP Comparison
	6.2.4 Using State Observers
	6.2.5 Real-Robot Testing

	6.3 Ackerman-Drive: Navigation of the TU Autonomous Race-Car
	6.4 IWS-Drive: Navigation with Controlled Torso-Orientation

	7 Conclusions
	7.1 Future Work

