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Part 1
Introduction

The gluon self-coupling in Quantum Chromodynamics (QCD), the theory of strong interac-
tions, suggests the existence of bound states of gauge bosons, the so-called glueballs. In pure
Yang-Mills (YM) theory, these are the only possible particle states. The non-perturbative
structure of the YM-theory makes it difficult to calculate the glueball spectrum [1]. Nu-
merical simulations of the theory on a space-time lattice have proven to be reliable means
of studying glueballs. In the presence of quarks, these simulations are more difficult, be-
cause glueball states can mix with quark-antiquark states. An outstanding problem is to
calculate theoretical predictions of glueball couplings and decay rates from first principles.
Lattice gauge theory provides some information on euclidean correlators, but is fraught
with uncertainties when extrapolating to the real-time regime. [2].

A completely different approach to strongly coupled gauge theories has been devel-
oped over the last two decades in the form of the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence. The motivation for this correspondence lies in superstring
theory, which besides fundamental strings also contains various non-perturbative solitonic
objects, known as Dirichlet branes, or D-branes for short. Those objects may be viewed
from two different perspectives, the open-string and the closed-string perspective [3]. For
a visualization see figure 1. Which perspective is the appropriate one depends on the value
of the string coupling constant gg controlling the interaction strength of open and closed
strings. String theory moreover is invariant under the so-called S-duality, which relates the
strongly coupled to the weakly coupled regime and thus also relates the two perspectives.
In the open-string perspective D-branes are viewed as higher dimensional objects on which
open strings can end. In the weakly coupled regime, i.e. gg < 1, open strings might be
viewed as small perturbations. By neglecting massive string excitations, i.e. for low ener-
gies, the dynamics of the open strings is described by a supersymmetric gauge theory living
on the worldvolume of the D-brane. In the closed-string perspective D-branes are viewed
as solitonic objects that source the gravitational field and have horizons like black holes.
In the low-energy limit of superstring theory, i.e. supergravity, closed-string excitations
near the horizon decouple from closed-string excitations far away. The dynamics of these
closed strings is described by supergravity in the background of a near-horizon D-brane
solution. Since both perspectives are equivalent descriptions of the same physics we ob-
tain the AdS/CFT correspondence. It manifests itself as an open-closed string duality, in
particular it relates a supersymmetric Yang-Mills theory to supergravity.

Witten [4] proposed a top-down construction of an AdS/CFT like duality based on
non-extremal D4 black-branes in type-IIA supergravity, which breaks both supersymmetry
and conformal invariance. At low energies, below a Kaluza-Klein mass scale Mgy, the
dual field theory is a four-dimensional large-N¢ Yang-Mills theory. In this duality metric
fluctuations of the D4 background correspond to glueball states in the field theory [5, 6].

Quarks in the fundamental representation may be added to this duality in the form
of probe flavor D-branes. Sakai and Sugimoto [7] introduced pairs of D8 and anti-D8



branes, which intersect the color D4 branes of the Witten model. The resulting Witten-
Sakai-Sugimoto model has been remarkably successful in reproducing various features of
low-energy QCD. It is firmly rooted in string theory and, for given N¢o and Np, has only
two free parameters, i.e. the 't Hooft coupling A and the Kaluza-Klein scale Mg .

Using this model it is possible to study glueball-meson interactions and to calculate
glueball decay rates from effective Lagrangians. This was first carried out by Hashimoto,
Tan and Terashima in [8], which was corrected and extended by Briinner, Parganlija and
Rebhan in [9]. They have considered various glueball states dual to metric fluctuations and
calculated their decay rates. Using these new data it might be possible to identify glueball
states in the experiment. The predicted mass spectrum alone would not be sufficient for
such an identification. This work will extend these efforts by considering a pseudo-vector
glueball state dual to fluctuations of the Kalb-Ramond field, which is inevitably part of
the model. In the hadron spectrum, a pseudo-vector glueball would appear as a so-called
h1 meson, which is unflavored with quantum numbers J©¢ = 17~

This work is structured as follows. In Part II we briefly review the Witten model of
nonsupersymmetric Yang-Mills theory. We calculate the correct supersymmetry solution
and derive the corresponding linearized Einstein equations. Solutions of these equations
are dual to glueballs. We present the resulting glueball modes, calculate their quantum
numbers, masses, and normalizations. Then we calculate fluctuations of the Kalb-Ramond
field. In Part III we extend the Witten model to the Witten-Sakai-Sugimoto model. We
derive an effective action for meson fields and calculate the meson masses and normaliza-
tions. By fitting the mass of the p meson and the value of the pion decay constant we fix the
only two free parameters of the theory. In Part IV we calculate an effective glueball-meson
interaction Lagrangian with which we are able to calculate decay rates of pseudo-vector
glueballs.
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Figure 1. Motivation for the AdS/CFT correspondence.

Part 11
Witten model

The Witten model of nonsupersymmetric Yang-Mills theory in 3+1 dimensions [4] is based
on the AdS/CFT correspondence, which relates a 6-dimensional superconformal field theory
to a large number N¢ of coincident M5 branes in 11-dimensional M-theory. At low energy
scales we can look at the embedding of the M5 branes in 11-dimensional supergravity. In
the near-horizon limit the resulting space looks like the product space AdS7 x S* with line
element

2 LQ L2
ds? = % (dmi + Nudatdz” + dx%) + ﬁdTZ + ZdQZ. (0.1)

The M5 brane is extended in 6 AdS; directions, chosen as u,v = 0,1, 2,3 and additionally
4 and 11, leaving out 10. The holographic radial coordinate coordinate is denoted by r.
Dimensional reduction by

r11 ~ 211 + 27 R4, Ri1 = gsls, l? =d, (0.2)



yields the the near-horizon geometry of D4 branes of type-ITA supergravity. Its dual theory
is a five-dimensional super-Yang-Mills theory. Compactifying on an additional circle

+27R R ! L (0.3)
Ty >~ TRy, =— = , .
4 4 4 4 = M 37“KK
breaks supersymmetry and yields the doubly Wick-rotated black hole geometry
r? y L? dr? L?
ds? = = ( () d2? + mdatda” + da?,) + 20 + A, (0.4)

Withf(r):l—r?(—f(

If we ignore all nontrivial harmonics on the compactification circles and on the S%, we
can interpret the bosonic normal modes of the supergravity multiplet as glueballs in the
dual low-energy 3+1-dimensional Yang-Mills theory [5, 6]. There are a total of 14, coming
from various fluctuations of the AdS7 metric, which will be studied in detail below.

1 11d-SUGRA

1.1 Equations of motion

As we discussed in the introduction the geometry used in the Witten model is based on
11-dimensional supergravity. We will now derive the equations of motion of its bosonic
part. They include the metric and a 4-dimensional field strength, which we will calculate
in detail. The Lagrangian of 11-dimensional supergravity [10] is given by

2%11£11 = V- R( ) FM1M2M3M4FM1M2M3M4

24!
1 Mi...M
Toan et A P Fvoang, (1.1)
where we have used the completely antisymmetric epsilon symbol e1--Mi1 with 0123 = 1

and have normalized the field strength such that it satisfies

FM1M2M3M4 = 4V[M1AM2M3M4]

(b)

Variation of £} with respect to gM¥ yields the Einstein equations

V=g ( ) V=9 M, Mo M:
R —fR = VI (4, MMMsp
22, MN guN ) =5 212 4,< N M, M Ms

- 5FM1M2M3M4FM1M2M3M4 gMN) (1'3)



On the right hand side the first term in the first brackets is obtained by varying one of
the four inverse metrics which are used to raise the indices of the field strength. We thus
obtain a factor of 4. The second term is obtained by using §,/—g = —%\/—ggMNégMN.

Variation of Lgbl) with respect to Aysnvo yields the generalized Maxwell equations

_ 1 M1 MNO
0= 223V (v=gr )

1 MNOMjy...M
+2/€%12 -3l (4!)26 T b v Pt 14

In the first term we get a factor of 4 by using FM1M2M3M4FM1M2M3M4 =

AF MMy M Maxg m Ans, v, and an additional factor of 2 since the variation can hit either

F'. For the variation of the Chern-Simons term we used

1 6MNOM4.
2K3,6 - 3! - (41)2
4-2 MiMNOMs...Mi1
2626 - 3! - (41)2 i (
_ 1 (MNOM;..
2k3,6 - 31 - (41)2
N 2
23,6 - 3! - (41)
4.2
2k3,6 - 31 - (412

M
R SV VA 2 VA Vo

Anp vigae, Farg. )

M
Y My My F . M

MNOM; Ms...M
5€ PN By M Mo My Fvig iy

M{MNOMs...M-
et 11‘4]\/[51\/16M7leFJ\/fsmMu' (1'5)

The last term is identically 0 due to the Bianchi identity.

1.2 The Witten model geometry

To simplify further calculations we introduce the indices

AdS; x 8*:A,B,C..., Z,
My :A,B,C..., Z,
AdS7 :a,b,c, ..., 2,
St a8, 7, 6,
Minkowskiy :p, v, p, 0. (1.6)

M denotes the 10-dimensional space we obtain after reducing 11d SUGRA to type ITA
SUGRA. The geometry of the Witten model is given by

2 L2 d 2 LZ
= % (f (r) dag + nudade” + d:L%) e A Zin' (1.7)

2 JR—
ds 2T

The Einstein equations (1.3) include the metric and a 4-dimensional field strength, for
which we make a Freund-Rubin ansatz



Faﬁ'yé = C,/g546a575. (18)

Here C' is some constant to be determined, ggs+ is the determinant of the metric of the
sphere and €,g,s is the 4-dimensional epsilon symbol. It is easy to see that this ansatz
solves the Maxwell equations (1.4). The first line is zero, because the covariant derivative
commutes with the the volume form and all other lines are trivially zero.

For the geometry (1.7) we obtain

12

Rap = 72908 (1.9)
Rgs = g, (1.10)
Rap = —%gab, (1.11)
Raas, = —%, (1.12)
R= %. (1.13)

The constant C is determined by solving the Einstein equations (1.3) restricted to the
sphere

12 3 C? 1
ﬁgaﬂ - ﬁgaﬁ =50 (4 - 3!gap — 3 4!ga5) = C = 7 (1.14)

Restricted to AdS7, the Einstein equations (1.3) are also satisfied, which can be seen by
calculating

1 9 6
Ryw—=Rgw ) = ——=9, R, —3gap = 0. 1.15
( b5 gb) 729ab = b+ 759ab (1.15)

Thus we see that the equations of motion are solved if we include the field strength
Fopys = 7+/Ts1€apns-

1.3 Reduced Lagrangian

Since we are only interested in metric fluctuations of the AdS; metric it is useful to eliminate
all spherical dependencies of the Lagrangian. To realize the ansatz (1.8), we can choose
a gauge such that A,, ., depends linearly on z®. For the field strength fluctuations we
furthermore assume that there are no mixed indices terms, such as Ay, qya;- Those are
excluded because they would not be SO(5) singlet states. We obtain



2’%%1/“561) = \/?gR (w) - 2 :lg,FM1M2M3M4FM1M2M3M4

+m€ VP A v M vy v Fvig. vy

1 V=g
= /—9gRaqs, + vV—9gRgs — 5\/ _902 - mFal“'a‘lFal...M
\Y 7gFalalma3Fa1a1...a3

24!
2
+We‘“"~a7a1"'a4Aa1...a3Fa4.~-a7Fa1...a4
2
+m€al”'a7al"'a4Aa1‘~~03Fa4a1~--‘13Fa4-u¢17
30 —g
= V—gRadgs, + —gﬁ — ;/;F‘”""“‘Fal“_a4
+%Eal'“a7Aa1...a3Fa4,,_a7 + higher spherical harmonics . (1.16)

For the reduction of the Chern-Simons term we used

M. M
e A vy Evag v Fag. vy, =

ai...arqq...oq
€ AalagagFa4...a7Fa1...a4

a1...03Q01 ...00404....Q7
+€ AalazagFal...a4Fa4...a7

Qj...o4aq...a7
+e€ Aoel...agFa4a1...a3Fa4...a7

Q1...00301 ...0400445...47
+€ ° Aa1...a3Fa1...(z4Fa4a5...a7 =

ay...a7a...04
2e AalazagFa4,..a7Fa1...oz4
Q1...401 ...07 _

+2e Aa1...a3Fa4a1...a3Fa4...a7 =

BTN Fean P (1.17)

In the first line we evaluated all relevant combination of indices. In the next line we
collected terms that are equivalent up to permutations and renaming of indices. In the last
line we used

Gal"'a4al"'a7Ao¢1._.a3Fa4a1...a3 aq...a7

166a1"'a4a1ma714a1...a38a4Aa1,..a38a4Aa5...a7 =

_166&1ma4a1ma7ao¢4AOc1...agAal...a38a4Aa5...a7
+166a1"'a4a1'"a7Aa1...a38a4Aa1...a38a4Aa5
Fl
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a7 —
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—01-qaal..ar g

1
560‘1"'a7a1"'a4Aa1,,.a3Fa4...a7Fa1...a47 (118)

al...agFa4a1...a3 a4...a7



| by | Pt | b | Ma—1[MeV] (Eq.) |

hij | Ci ¢

2++ 1(+_) 0+t 1486.99(Ty)
hiT CT

1o 1789.04(Vy)
h’TT

0+t 855.174(S,)

Table 1. Mode classification following [5]. In the restframe p and v can take values among
(1,2,3,7) and 4 and j among (1,2,3). Subscripts to J¢ denote odd T-parity P, = —1.

where in the first line we use the definition of the field strength. In the next line we partially
integrate on the sphere. In the second term we also partially integrate on AdS and assume
that the form field on the sphere does not depend on the AdS coordinates. In the term
before the last we collect the derivative terms and note that the second term is again the
term we started with. Thus we obtain the last line.

Note that in (1.17) we must not set Fy,q,. a5 to 0 yet, contrary to what one might
expect from the results obtained in [5].

2 Metric fluctuations

To organize the metric fluctuations we follow [5]. On the boundary the AdS; metric
fluctuations contain 14 independent components. The fluctuation indices can take values
corresponding to (x1,z2,23,211,7); Tp can be excluded by imposing the transversality
constraint k*h,, = 0. Furthermore the fluctuations have to be symmetric. We thus have
%5 — 1 = 14 components. The background geometry (1.7) is symmetric under SO (4)
rotations in (x1,x2,x3,x11). The 14 independent components thus split into 9-, 4- and 1-
dimensional irreducible representations under SO (4), which are denoted by T4, V4 and Sy
respectively. Since the x1;-direction is moreover compactified, the 9-, 4- and 1-dimensional
irreducible representations of SO (4) break into irreducible representations of SO (3). The

resulting states are summarized in table 1.

2.1 Tensor glueball fluctuation b,
2.1.1 Linearized equations of motion

To derive the linearized equations of motion for the metric fluctuations we closely follow
Wald [11]. We consider fluctuations of the form

gab (A) = gab + A hap. (2.1)



The covariant derivatives corresponding to g(A) and g are denoted by

vcgab (/\) = 07
OV cgap = 0. (2.2)

The resulting fluctuations of the Einstein tensor can be calculated by making use of the

tensor field C¢,, which relates the covariant derivative of the perturbed metric and the

background metric by

Vawp = "Vawy — CCpwe,
VaToe =VoThe — C4The — CL T (2.3)

Its unique value is

c, = %ng (N (°Vagoa (V) + “Vigad (A) = "Vagar (1) ) - (2.4)

Using

VaViwe ="V, Viwe — C%.Viwa — C%V gwe
=V, (Ovbwc - Cgcwd) —C%, (Ovbwd - C‘Zdwe) - CY, (Ovdwc - C‘ZMe)
=V, Ve — “VaClwa — (O "Vawa + Ch. "Viwa) + Ch.Chawe
— (€9 Vawe — CC%we) (2.5)

we can relate the perturbed Riemann tensor to the unperturbed one by

R, wi =VaViwe — VyVawe
=9, "Viywe — 'V 'Vew, — OV, 04w + OV,C2 1wy
+ Ciccidwe - CgcCZdwe
=R Awy— "VuClwyi+ OVyCewg + C¢.C% wq — C5.C% wy. (2.6)

abc
Contracting the second and fourth index we obtain the Ricci tensor
Rac = ORCLC - OVGC?)C + OvbOZc + OZCCZI))e - ch?ze‘ (27)

The change of the Ricci tensor is

- dRge
Hae = ( dA ) A=0

= — OV,C% wy+ OV, CP (2.8)

ac)




where we have defined

. (dRac)
ab — d)\ =0

1
:ing (Ovahbd + Ovbhad — Ovdhab) . (2,9)

Note that all other terms vanish since they contain °V,gpq = 0.
Writing things out we get

. 1
Rac = — 5 Ovagbd (Ovbhcd + Ovchbd - Ovdhbc>
1
+ 5 Ongbd (Ovahcd + Ovchad - Ovdhac)

1
== 5 Vo Ve + 3 OV ("Vahea + Vehad) — 5 "V "V ahae. (2.10)

The change of the Ricci scalar is

. /dR
R= (==
(dA) A=0

_ (40 R g

= —h" ORac + gaCRac

1 1
= — h*OR, — 3 0OV, h+ OV OV R, — 5 0v407 4h. (2.11)
We are now able to calculate the change of the Einstein tensor

Gap = Rap — R ga ()\) 5 (212)

which reads

. (G
Goo = (“52)

A=0
=Rue — Rgae — "Rhge. (2.13)
The equations of motion are
: Logd (0 0 Logdo 0
Gac :i \Y% ( vahcd"‘ Vchad) - 5 \Y% thac - Rhac (214)
=0.

Comparing this with Constable and Myers [6] we find a minor mistake in their derivation
in which they do not include fluctuations of R. After choosing the transverse traceless
gauge this discrepancy however disappears as we can see by calculating

~10 -



: 1 1 1
Rac - _ = Ova Ovch 4= Ovd (Ovahcd + Ovchad) = Ovd Ovdhac
2 2 2
1 1
=20V (°Vahea + °Vehaa) - 5"V Vahae (2.15)
and thus
: 1 1
R=—h* R, — 3 0veO07,h+ OVIO0Vh, g — 3 VARV (2.16)
=0.

2.1.2 Solution

Since hg, is symmetric, transverse and traceless, there are M—;) — 1 —4 =5 independent
tensor fluctuations )
r
h =Quvso 7 L2./\/ ( )GT( ) ’ (217)

where ¢, is a symmetric, transverse traceless tensor, which is normalized such that
Qg™ = 2. Ty (r) satisfies the equation

d d
I <r7 — TT?(K> ET4 (r) + L*M?*r3Ty (r) = 0. (2.18)

2.1.3 Normalization

To normalize our solutions we reduce the 11-dimensional supergravity action (1.1) to 4
dimensions [8, 9]. In this way we obtain a 4-dimensional effective action, for which we
demand that it has a canonically normalized kinetic term. For the fluctuation h,, we
obtain the reduced Lagrangian

LN\ 1

— 30
2 11 /dr dtda’t T (RAdS7 + Lz>

c/ BITJ?,)NQ Gr (M?-0) Gr

__ 2 _
_2GT (M2 -0)Gr. (2.19)
Note that this 4-dimensional Lagrangian is defined with respect to the standard Minkowski

line-element. Since the prefactor in the Lagrangian appears for every mode we define the
constant

11 -



LN\* 1
C= (> Qu— (21)> RyR1;

2 2K3,
_ L*8x? 1 5 L?
— 2 !
163 g " Bren
1 LY l.gs

72 (2m)* rrk 1293

1 LS X L 4802n)’N
72 (2m)* ik 2 Ne 3rici Lo

8  ANZ

- , 2.20
33 (2m)* L1y (2.20
where we have used Ry = MLKK = 37"KK Ry = lsgs, gsls = m, gsl3 = %,
87r _ 1
Q=75 and 50 = o
We furthermore define the constant
3Ty (r 2
Cr = /er§ ) ,
which depends on the specific solution to (2.18). For the lowest mode we obtain
27 i
Cr = 0.22547 [Ty (rx))” KK (2.21)

L3
The method we used to obtain the numerical value will be explained in chapter 2.1.5. From
equation (2.19) we obtain the normalization condition

| _Cr

Ni

1 ANZ

18 A, 22547rK§<

TNE 3 (277) Lk L

1 N2 92
~NZFr 20 2254TANG—

2
e =5 0.22547TANE M g, (2.22)
which is solved by
1

N1 = 0.0137122\2 No Mk i - (2.23)

Equivalently we could rescale the function 7} ()

7.2

h,u,z/ = q,uumj—h (T) Gr (xa)

2 o~
= G514 (1) Gr (2). (2.24)

- 12 —



where the new function satisfies

Ty (rxk) = Np. (2.25)
We will see that for some fluctuations we have to impose the boundary conditions Ty (rx ) =
0 and %Tzl (r) = 1, where T} is then replaced by the corresponding radial mode
T=TKK

function. For these boundary conditions the first method is more straightforward.

2.1.4 Parity and charge conjugation assignments

Following Brower, Mathur and Tan [5] we will now assign quantum numbers to our metric
fluctuations. To do so we look at the dual field theory, which is governed by the low-energy
action of the D-brane and resembles pure glue QCD,. This theory is described by the DBI

action of a D4-brane and a 5-dimensional Chern-Simons term?!

Spi = —STr/d% \/—det (Gab+ €% (Bap + Fu)| + / Pz (CLAFAF+C3AF+Cs).

(2.26)

The above Lagrangian involves differently scaled fields, e.g. By, than we will use later on.

However the quantum number assignments do not change under the necessary rescalings.
The parity transformation of the vector potential A, is defined by

P: A (:xo,a;i,r) — Ay (JZO, —CUi7T> )
P A (xo,:ci,T) — —A; (930, *Cﬂi,7> )
P: A, (.%’O,wi,T) — A, (:EO, —xi,T) : (2.27)

Since our background geometry includes a compactified T-direction it also makes sense to
look at 7-parity. 7-parity transformations are defined by

P, Ay (xo,:ni,T) — Ay (SEO,:Ei, —7') )
P.: A (mo,xi,r) — A; (xo,a:i, —T) :
P A (xo,a:",T) — —A; (:co,xi, —7') . (2.28)

Since this quantum number has no analogue in 4-dimensional QCD, we will exclude fields
with negative 7-parity from our physical spectrum. We can also define charge conjugation
by the action

C: A (xo,xi,T) — —Ag (xO,SUZ,T) ,
C: A; (xo,xi,T) — —Al-T (xo,x ,7') ,
C: A (xo,a:i,T) — —A;F (xo,a:l,T) , (2.29)

!The Lagrangian in [5] contains some typos.

~13 -



where T denotes matrix transposition in the non-abelian case of more than one coinciding
D4 branes. The Lagrangian should be invariant under the above transformations and thus
we can conclude how the fields h,p transform. To do so we look at the term

haTr (F°FY%) = hyyTr (FF}) (2.30)

which is obtained by expanding (2.26) and where we have gone to the rest frame of hy,,
for which transversality implies k*h,, = —mhg, = 0. Furthermore 0. and A. have the
same transformation behavior under parity transformations and thus we can read off the
quantum numbers

hij — 27T (Pr = +). (2.31)

2.1.5 Numerics

To solve the differential equation (2.18) we rewrite it by

dr d
d /. d, . _ e
:T?{de: (7"7 - 7“) §T4 (F) + 3 LAMPF3T (7)
d/n Nd,., - _ .
:r%Kd—N (7“7 - 7“) @“T‘l (F) + 9% e M3 M7 Ty (7)
— d ST~ d ~ ~3 ~
T (7” - 7”) L (1) + Ar°Ty (1), (2.32)
where we have used 7 = = and
A = 9M 2 M2 (2.33)

Next we map the coordinate 7 to a finite interval by

7 = (cos x)_% . (2.34)
Using d%varccos () = Il~2 we calculate
2 = Larccos (79)
a3 d .,
=~ 1 = arccos (r )
3
IRV
3
= 2.35
A1 (2:35)

Furthermore we derive



d dz d
=247
G =GFgah@

3 d
IR

30053 T d

TV eads T ()

3cos3 z d

= —T.
sinx dx 1(@)
d
= 3cotz cos3 .%@T;l () (2.36)
and
d/n ~Nd. . ded (/g ~dzd )
SRS =2 1)
&G @ﬁ4m FMGO >&m4m
dx d 1 dx d
=== ~5 —1) ==y
=1 ((cosac) 3 ((cosa:) )d o (x))
dz d z o \dx d
TR ((cosx) 3 (1 — cos x) d—d—T4( ))
do d i, drd
i ((cosac) 3 sin =T —T, (m))
dr d d
= %@ (3 (cos x)fg sin? z cot x cos3 xaTzl (:1;))
dz d d
=% (3tanz—T
rdx<3 anxd 4())
de d 5 d d2
= =1 (3(COS$) £T4( )+3tan:1:d 5Ty (z ))
9cot e (cosz) 3 Ty (2) + 0 cos? e Ty (2) (2.37)
=9cotz (cosz) * —Ti(z coss z=5Tu (2), .
to obtain the transformed differential equation
1 d2 _5 d -1
0 =9cos3 :c@ﬂ () +9cotx (cosz) 3 @TZX () + A(cosz)™ Ty (z). (2.38)

To solve this differential equation, we make use of the so-called shooting method. In
this method one chooses appropriate initial conditions with which one solves the differential
equation in terms of the free parameter, which in our case is A\. The correct eigenvalues
A are then those for which the function satisfies a specified condition at the opposing
boundary. First of all we note that our differential equation has singular points at 0
and 7, therefore we introduce a cutoff €. As initial conditions we choose Ty (¢) = 1 and

T4( )’ = 0. The first condition can be imposed without loss of generality, since we
can still rescale the solution. The second condition can be understood by looking at a
transformation x — —x. This transformation maps any boundary point to its antipodal
point, i.e. it maps 7 to 7+ 7. In our ansatz we assumed that the solution does not depend
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Ty: A | M= \/3Mgk [MeV)
n—1|22.0066 1486.99
n=2 | 55.5833 2358.4
n=3 | 102.452 3201.88
n =4 162.699 4034.94
n=5| 236.328 4862.99

Table 2. Mass spectrum of the tensor glueball h,,,, the vector glueball i, 11 and the scalar glueball

hi111.

on 7 and thus it should also be symmetric under the transformation x — —z. This however
implies L7 (z )‘ = 0. To obtain the solution Ty (z), with a free parameter A, we use
Mathematlca and the function ParametricNDSolve. Evaluating the resulting parametric
function at the boundary z = § — e we can use the command FindRoot to find those values
of A which satisfy the condition Ty (5 —€) = 0. In figure 2 one can see how the boundary
value Ty (5 — €) depends on X. We obtain the spectrum in table 2, where we have used
(2.33) to translate A to the real mass M, using Mg = 949MeV as specified in chapter 5.
In figure 3 we show the resulting eigenfunctions.

2.2 (Pr-odd) axial vector mode hy,11/C),

In this and the following subsections we shortly present the results, obtained by a similar
analysis as in chapter 2.1 applied to the other metric fluctuations. We also include P--odd
fluctuation modes that do not have an interpretation as glueballs in the dual Yang-Mills
theory.

The fluctuation h, 11 reads

2

hﬂyll quN 72 ( )GA ( ) ’ (2'39)
where Ty (), again, satisfies
d GRS L )+ LM () = 0 (2.40)
d,r, KK d'l" 4 4 ) .

with the mass spectrum in table 2. Here g, is a unit transverse polarization vector.
The resulting Lagrangian for a single polarization reads

3T4 5
Lalge _c/ 2L3N2 GA (M? - D) Ga. (2.41)

For the lowest mass state we get

3 2
CA :/dr,r-zs(,r)

4
= 0.22547 [Ty (ri i )]? % (2.42)
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Figure 3. Solutions T} (), where the labels n correspond to table 2.

and the normalization constant

N = 0.013712202 Ne- Mg ic = Nip. (2.43)
From the D4 brane action we obtain the associated quantum numbers

hij — 17T (P = —). (2.44)

The 7-parity quantum number is absent in real QCD, thus we exclude this state from our
spectrum.

2.3 Scalar glueball hi 11

The (predominantly dilatonic?) scalar glueball fluctuation reads

2Upon dimensional reduction to 10 dimensions the metric fluctuation hi1 11 will become the dilaton. See
e.g. (3.49).
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h,uu = WTAL (r) <7hw -0 ) Gs(z7),

hi111 = _3WT4 (r)Gs (27), (2.45)
with

d /- 6 d 4772 3 _

T (r - r’rKK> §T4 (r)y+ L*M=r°Ty (r) =0 (2.46)

and the mass spectrum in table 2
The fluctuation Lagrangian reads

37’ T4 2
Lalge _c/ L3N2 GS (M?-D)Gs, (2.47)
with
3Ty (r)?
Cs = /drz:g )
2 TKEK
= 0.22547 [Ty (ricrc)|* =15 (2.48)
and
Ns = 0.0335879A2 N My i = /6N (2.49)
The quantum numbers are
hij — 07T (Pr = +). (2.50)

2.4 (P--odd) vector mode h,,

The corresponding fluctuation reads

0 — 1k o
hMT qu NV L2 Vi (7’) Gv (‘T ) ) (251)
with
7)) Ly, L~ R )y =0 2.52
d?“(r —’I“’I"KK)E 4(7“)+ T—W 4(7")— ( )

and the mass spectrum in table 3. Here ¢, is again a unit transverse polarization vector.
To solve this differential equations we have to impose the boundary condition Vj () = 0
d
and $-Vi (m)‘x:6 =1.
The Lagrangian for a given polarization reads
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Va: A | M= \/3Mgk [MeV)
n—1| 319853 1789.04
n=2 | 72.4792 2693.1
n=3 | 126.144 3552.87
n—4 ]| 193.133 1396.16
n=5| 273.482 5231.3

Table 3. Mass spectrum of the pseudo-vector glueball h,, and the pseudo-scalar glueball i 1;.

3‘/21 9
£4|G2 C/ 2L3N2 (M B D) Gv
= 5GV (M ) GVv
with
3V (r)?
Cy = /drz?s)
, 2 T%(K
= 0.0495616 [V (ricxc)]” 75
and

Ny = 0.00642887A2 No M

The quantum numbers are

hij 1" (PT = —) .

2.5 Pseudo-scalar glueball h;;,/C;

The pseudo-scalar glueball fluctuation reads

hT,ll =

with

d / d 494723
W (7’ —rrKK) dTV4(7')+<LMr —

6

6 _
T TkK

Npg L?

Vi(r)Gps (z

and the mass spectrum in table 3. The Lagrangian reads

Lales,

= %GPS <M2 -

3 2
:C/drr Vi (r)

2L3N3Eg

~19 —

Gps (M2 -

D) Gps,

O')7

QT}?K Vi (r) =
ri—r T‘%K

D) Gps

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)



with

Cps = /d/”?’V4(7”>2

L3
2 T%{K
= 0.0495616 [Vi (ricxc)]” —5- (2.60)
and
Npg = 0.00642887\2 No: M . (2.61)
The quantum numbers are
hij — 0~ (Pr=+). (2.62)

2.6 Exotic scalar glueball h,,

The exotic scalar glueball fluctuation reads

2
hTT = —ﬁf (’I“) S4 (7') GE'S (:Ba) )

r2 1 1 3r8 9,0, ;
h,uu = WS4 (7") [477;”/ - <4 + 56— QT‘%K 12 GEgs (1‘ ) ,

2

hi1,11 = mf (1) S4(r)GEs (27),

R = — L2 3T%K S (1") G (ZL‘U)
T Nesrf(r )5r6 —2r5 7t Es(27),
907776
h'r‘ =h r = KK S a G - ’os
T Nps M2L? (576 — 21§, ) 1(r) 0uGrs (7)), (2.63)
with
d (’[”7—’[”7'6 ) dS (T)+ L4M2r3+% S (T)_O (264)
dr KK ) qr°4 (516 2%) 4(r) = .

and the mass spectrum in table 4. Because this mode involves the metric component h,.,
which has no analogous in other holographic QCD models, it has been termed “exotic” in
[5]. The Lagrangian reads

38y (
Ligz =C / rs L;/\/? s (M? - D) Grs
ES

with
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Su: A | M= \/3Mgk [MeV)
n=1]7.30835 855.174
n—2 | 46.9855 2168.34
n—3| 944816 3074.81
n—4 | 154.963 3037.85
n=>5| 228709 4783.95

Table 4. Mass spectrum of the scalar glueball h..

Cgs = /drw

I3
2 T%{K
= 0.0918315 [Sy (ki )] IE (2.66)
and
Ngs = 0.008751A2 N Mg k. (2.67)
The quantum numbers are
hij — 07T (P = +). (2.68)

The mass of this glueball mode is significantly lighter than the tensor glueball, which is in
qualitative agreement with the situation in lattice gauge theory [12]. However quantita-
tively the mass is much too small, which together with the fact that the model has probably
too many scalar glueball modes hints at the possibility that the exotic scalar mode has no
counterpart in real QCD [8, 9].

It is interesting to check if there is a mixing term of the exotic scalar glueball and
the dilatonic glueball since both have the same quantum number. A term proportional to
G gsGp would mean that we have not found normal modes yet and that the physical field
is a superposition of Gpg and Gp. It turns out that such a term does not exist.

3 Field strength fluctuations

3.1 Equations of motion

To calculate the field strength fluctuations we first need to calculate the 7-dimensional
equations of motion
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VI (L)
VY9 (Ry— =R
25%1 ab 2 Gab
— 1
2\2ﬁ294' (4Fa MMM [y vty — 5FM1M2M3M4FM1M2M3M4 gab)
K114 4%
1 M.
o630 (412

V=g 1
W 4Fa ajaas3 Fba1a2a3 _ §Fa1a2a3a4Fa1a2a3a4 Gab
1

e A Faso For s = 0,

M
YA MMy F My M P My Gab =

1

1
/ M ab beMy... M-
2 3!5%1 Vo ( —gE C) + 2ﬁ%12 23! (4!)26a e 11FM4---M7FMs---Mn

1
val (\/ngalabc) + (4!)2Eabcal..,a4a1...oa4Fa1ma4Fa1ma4 + val (\/ngalabc) _

1
Val (\/_797Fa1abc) + HeabcalmwFalmm =0. (3'1)

Note that in these particular expressions it is possible to replace the covariant derivative
V., with the partial derivative 0, .

3.2 Solutions for the pseudo-vector glueball mode

We find different kinds of solution depending on which components of A are non-vanishing,
see e.g. [5]. For now we will only look at the pseudo-vector fluctuations with JF¢ = 1+,
The reason for these quantum numbers is given in the end of this section. To find the
solution corresponding to the pseudo-vector glueball we start with the ansatz

A,ul/,ll = CL(’I")BW/,
1
Aper = §b(r)eaﬁv5npaaﬂ3w, (3.2)
where from now on we will use all Greek indices as Minkowski indices. The field strength

is

Frwjll = a/(T)Bw/,
Foun1 = a(r) (0pBuy — 0uBpy + 9, Bpy)

1
Eyprr = 35(0) (€°1000,05B15 — < 000,05B.5) (3.3)

In the 7-dimensional setup indices are always raised and lowered with respect to g, whose
components are
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Juv = 12 Nuvs
rf(r)
Grr = 2
L2
rr — . 3.4
g 7“2f(7") ( )

We however define the operator J = 1*V0,0,. Recall that €*P79 is an e-symbol and does
not involve the metric g.

Our equations of motion have three free indices which can take the values

{a,b,c} = {1, 11,1}, (3.5)
{a,b,c} = {u, 7,7}, (3.6)
{a” b, C} = {:U” 7-711}’ (37)

{a,b,c} = {u, 11,1},

{a,b,c¢} = {u,v, 11}, (3.9)
{a,b,c} = {u,v,r}, (3.10)
{a,b,c} = {u,v,7}. (3.11)

To solve our ansatz we start with the equation of motion (3.1) for the indices (3.6), i.e.
{a,b,c} ={p, 7,1}

1
00, (VETF™) +

r’ pprr
r

5
a'u (L5 g,uugpagrrgTTFyo_Tr> - paB,YTHTFaﬁ'yll —

pTTal...04 _
€ Fal...a4 =

| =

Trafyll
e’ A FaB'yll =

~ =

r 1
aﬂ (LTIWTIPUFWTT) - zepaﬁ’yFaﬂﬁll =
ib(r)epﬂvémaﬁ% - %b(r)eﬂwnmauaoaﬁ%
3
—Zeﬂaﬂm(r)aaBm =
%b(r)epm‘sDGﬁBm; - %epﬁwa(r)aﬂ% ~0
rb(r)dBys — 6a(r)Bys =0 (3.12)

From this we may determine b(r) to be
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6
a
rm?2

b(r) = (r), (3.13)

where m is the mass of B. To determine the remaining ambiguity in our ansatz we look

at (3.9), i.e. {a,b,c} ={p,v,11}:

1
8(11 (\/TQ,YFalﬂllll) + I Leuulla1...a4Fa1ma4 —

3
aa1 <\/_7.g79a1b1g'upgyagH’Htholl) + ZG'LWHPUTTF/)JTT =

L3 v 1 6 6 17
80! <r3770¢577u,077 0F,3,00’11> + 87’ (7“5L (T‘ - TKK) 7]“’)77 UFTpoll)

3 vpo
—Zeu ’ Fpo‘rr =
L3
nupnuonaﬁaa (T?’CL(T) (85Bp0 — 0,835 + angp)) (3.14)
1 vo
+0, <7‘5L (7“6 - T?{K) n"fn Bpoa,(r)> (3.15)
3
— 5 b (77100003 By5 — €1100505 B15 ) = 0. (3.16)

In the second line we keep the summation over p and thus obtain only a factor of 6 instead
of 24.
As we will show now, this is solved by

a(r) = r3Ny(r). (3.17)

The terms in the first line (3.14) simplify to

1”70 O (L3N4(r)8ngg) = m*L3Ny(r)n"*n"" B . (3.18)

Calculating the r-derivatives in line (3.15) we get:
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+0y 2 rf— T?{K) Ny(r)) =
9 (6 Lo 2 3 (6 .6 /
—m (7’ —TKK) N4<T>+218T N4(7’)+m (T TKK) N4(7’)
2 1 1
T3 (7“6 - T?(K) Ni(r) + zGTsNi(T) T2 (7"6 T?(K) N{(r) =
1 1
7.2 (1"6 - ’I"?(K) Ny (r)+ 7 (37“3 3 K3K 2r3 42 K3K + 6r3> Nj(r)
1
T (97"2 + 4T?(K> Ny(r) =
1 6_ .6 " 1 5 Tk / 1 2, 9 6
m (7" —T'KK) N4 (T)+Z re — 7’3 N4(T)+Z 9r +T747“KK N4(T). (319)
Lastly for the terms in (3.16) we get
3
—5p e 7b(r) (€100 0p0 B — €7 100503 Brs ) =
3
—Ee“"p"b(r)eo‘m‘snwapangyg =
3 / / /
_fég’yﬂﬁafb(r)nﬂﬁ W71 0,05 Byt =
3 ’ / ’
fzég/éf%,b(r)nﬂﬁ Y % 0,03 By =
6 4
—Zb(r)nﬁpapﬁgB“ =
2
—36; Na(r) B, (3.20)
Altogether we have
9
Or (r (7“6 - ’I“%K> Ni(r)) + (m2L4r3 — 2770 + 7“) Ny(r) =0, (3.21)

which is exactly the mode equation for N4(r) in [5]. The corresponding eigenvalues are
displayed in table 5. The mode functions are plotted in figure 4.
The solution is thus

A;uz,ll = 7”3N4(T)B;un

612

Aprr = WNMT)GaﬁwnpaaﬁBwa (3.22)
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Ny: A | M= \/3Mgk [MeV)
n=1] 53.3758 2311.09
n =2 | 109.446 3309.37
n=3|177.231 4211.29
n =4 | 257.959 5080.66
n =5 351.895 5034.05

Table 5. Mass spectrum of the pseudo-vector glueball B,,,, .

n=1
n=2
n=3
n=4

Figure 4. Solutions Ny (z), with = defined in (2.34) and the labels n corresponding to table 5.

with field strength

It corresponds to a gauge transformation

with

Frw = (T3N4(T‘) + 3T2Ni(7“)) B,
Fownr = T3N4(7“) (0pBuw — OuBpy + 0 Byy)

3r2

Fluprr = WNA‘(T) (6“'8757],)&8#85375 - eaﬁwnﬂaapangg) .

A pure gauge mode of this excitation is

A,ul/T = T(T) (q,,auG(ZL') - Q,LLGVG(:E)) ’
Ap’T"I‘ = T/(’I’)qu(fL')~

A — A+dA,

Ay = ¢ T(r)G(x).
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We now have to check the remaining index combinations for consistency.
For (3.5), i.e. {a,b,c} = {7,11,7} we see that Fj;11, = 0 and F),,,; = 0, and thus the
equations of motion are satisfied:

1
efllral..‘ale

8a1 ( /7_97Fa17117“) 4 I Q104 =

1
O (V=ge PP 4 T, = 0, (3.27)

For (3.7), i.e. {a,b,c} = {u, 7,11} we similarly use F, ;711 =0, Fryr11 = 0 and Fpppe = 0:
/S raiptll 1 Tllaj...a
8a1 ( _g7F e ) + 7 ' 4Fal---a4 =

4-L
3, (\/_797}714”11) 10, (\/_797}777”11) + %eurllrvpopwpa =0. (3.28)

For (3.8), i.e. {a,b,c} = {p, 11,7} we use F,,;r = 0 but we have to be careful since
F,u11r # 0. However we can use a gauge in which By, is transverse, i.e. 0,B" = 0,
exploiting (3.24):

1
aal (\/TWFQWHT) + 4. LEMIIML.'%F@L..M = 0.

3
al/ (\/TQ’YFI/MII'I‘) + EeullrupaTprUT —
TS rr 11,11 vo up
Oy 75997 979 Fopuir
T5 rr 11,11 _vo up (,.3 2 a1/ vo
597997 <T‘ Ny(r) + 3r N4(r))g 0yBsp = 0. (3.29)

For (3.10), i.e. {a,b,c} = {u,v,r} we get Fj,,r = 0 and Fjpr11 = O:

1
aal ( /7_g7Fa1/wr) + Hﬁ,uural...a4Fvalma4 —

3
0y (V/=g7FPH") + ZG“Z’T””THFPUTM = 0. (3.30)

For (3.11), i.e. {a,b,c} = {u, v, 7} we have to calculate:
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1
Ous (VZFHT) T o =
ar ( /_g7Frw/T) + %6uquallerJHT —
) TS T _pup Vo  TT 3 pvpoTllr _
r\ 759 99 9 Frpa‘r + —€ Fpallr—
L L
3
—Or ( U“pn FpaTr) - Zeuyngrpall =
o, [ Lypopoeoms (3 9,05B 0,05 B
- L77 n W 4(T) (naa pOBD~s — Npalc0p ’yé)
3
—1—56’“’”” <T3N4(’l“) + 37‘2N4’1(7“)> Byy =
r(3r pp v B0 vo puBys
~0, (7 | 5 Nalr ) (€ 00,05By5 — 11" #0005 B,5)
3 pvpo (.3 2 ar/
+re (r*Nu(r) + 3r2Nj(r)) Byo- (3.31)

After contracting this term with €./, and using the generalized Kronecker delta 64!} =

ﬁe’“ HaPstlPre,  yepeii..ons We see that it is zero:

3r2
_Gulyluyar (L ( N4( ) ( NPEVﬁ’Y(SapaﬁB’Ya . nV06M57580_8BB76>>>
3 v po 3 AN
—i-e#/,/wze (r Ny(r) + 3r N4(r)) By =

612
)

L5Z v ( INy(r) + 3T2Ni(r)) B,y =

9, (L <6T Na(r)i°875,,0,0 ng>>

5pg ( 3N4(7‘) + 31"2Ni(7“)) B,y =

o
12 3
—f& (7" N4(7')) B/L/V/
12
+T (r3N4(r) + 37“2Nf1(7")) By =0. (3.32)

We conclude that the solution (3.22) solves all equations of motion.

3.3 Normalization

To normalize our fluctuation we plug it back into the Lagrangian
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b (i) 30 V=9 har.a
2:‘?%1,65_1) :Z EEH + _gﬁ - 7F 1 4Fa1.. a

-a4

2-4!

gs4
2\/_; €Y Ay asFay.an
30

(4)
= Lyt 972

4_9 F“WHFT/LVH

+

Vlgg pr/lle,u,l/ll

) HeTT

- ppTT

A/ (g4
+ 291‘—/5’ EPTTUMVHApTTFUp,VH

V954 opT
+ 3f€'m/’11 P TA;U/,IIFO',OTT-

We will calculate each line individually. The first line (3.33) yields

_7\/4_9177“#1/11}77"“”11

5
TG54 oy Pl OV
L°4

7,‘5 L4 7"6—7"6
IS LU ) 4 (N () 4 3NY) 0P B B =

L34 r10

6 6

Tt —r
-V gS‘liKK (TN4(T) + 3NZIL(T))2 Up“nWBuqua =

4Lr

- 934% <L3m2r3 — 32&) Ni(r)*n”"n°" By By
The second on (3.34) simplifies to
_gFWV“FpWH —
%9‘”’9”9”"9”’“Famanwn =
_rsﬁ fsT6N4(r)Qnapnﬁ”nwaaBﬂvapBuV =
1,343

~VYsi— Ny (7)1 0" 00 B0y B -

Next we calculate the third line (3.35)
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37"2 18118
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975 /gga
_Tg]\h (T)2nuunpaeaﬁ76 (noaaua/g’B'yé - nuaaaaﬁB'yé)
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2mAL
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%]\M( ) nuunﬁﬁ 77')”)/ 99 57//5//8 853758 8B/B 1§50 =
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T\/‘?Nél(r) 77/“/7755 1 55 0 653758 861

+ 1" 7765" ,’777//7’66/’ Eq/! Bl 511 eVﬂ"ylé’ 31,3/33765,035/ B’y’5’ =

7 " " ’ /6/
N4(’)") 77“11776,8 ,,777 00 62// ,,5,,8 853753M85/37/5/ =

/5/ =
9 / !
TT\/@NNWW " BysByy.
(3.40)

The fourth line (3.36) reads
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Vst 11
Tepﬂngwj ApTT‘FO'}M/].]. =

/95t 3r? "y
- LS 5 Na(r)e" 090,05 B157Nu(r) (05 By — 04 Bo + 0y Boy) =

gg1 9r°
L 2m?

N4(r)znﬁﬁlnwl7755'5;%5/85375 (8UBW — auBm/ + (‘)VBUM) =

v/ 3ds4 97’5 / 7 /
I WNAL(T)Q’][}B n’ 7766 aﬂBwaﬁBw’a/ =

v/ 9s4 / !
— LS 97"5]\74(7“)2?7’Y’Y 7765 B'ytst/é/' (3.41)

And finally we calculate the last line (3.37)

V954 11
3 AL, e apTTAuV,llFapTr =

9st 3r?
—3%6" 0pTSN4(T)BHVWN4(T) <€a67677paaaaﬁB»y5 _ 6aﬂ76n0a8p8/8376> _

9 5
VIS Ny ()27 By 0000,03 Bys =

L 2m?
\/‘lq??nrjN4(7“)27)66,7777/1756,5575/5,BW8033375 =
— \/?91"5]\74(T)QUWVIU‘S‘S/BW/(;/B,Y(;. (3.42)
Altogether we get the simple term
—\V/gsi iLgm%gM(T)Qn”“n””Bpra ~ Vs LZS Na(r)* 000" 9 B 0p By =

1
—/g31 ZL3T3N4(T)277W77WBW (m2 — D) B,s. (3.43)

Integrating over the sphere with radius % yields

1 8n2L*IL3 .
T —r5N4(r)2np“n””BW (m2 — EI) Boos

Li=— | drdrday—p o 2
. /TT”C112@13164

1 L7, 5

— _ - 0 = P, OV 2

- /drR11R42H11 5 5 " Na(r) 0 B, (m? —0) By
1

= _ZCBHPHUGVB;W <m2 — D) Bpg (3‘44)

Finally we calculate the resulting normalization
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Cp = R11R4—L7— /dr 73 Ny (r)
77T 4
N4(’I”KK) = 0.116079 R11R47L 3 - TKK
11
_ 6 2
= 0.116079WL ANZME
= 0.0000967936 LIANZ M,
Nu(rrer) ™" = 0.00983838 L3Nz No My k. (3.45)

We normalize the kinetic term in B to i such that each polarization mode in

Z\/»e,wapq 097Gy () (3.46)
has a canonical normalization. This ansatz automatically solves the transversality condi-
tion. The sum runs over all 3 physical polarizations with unit polarization vectors q?/\).
Suppressing the polarization label we explicitly calculate

B (m? —0) By, =
1

Ee“””qgapG(:r) (m2 — D) Wi

Cuvo’p qal 6'0/ G(.le) -

o L o o’ _
~2670, \ﬁqaa ,G(z) (m? - 0) Ntk G(z) =
2009°G(x) (m* = D) G(2) - 20°9,G(2) = <m2— 0) 4:0°G(x), (3.47)

which for physical polarizations, i.e. a transverse one, yields

2G () (m* - D) G(a). (3.48)
For the unphysical longitudinal mode ¢* =

G (), we get in momentum space —2G(p) (m? + p?) G(p) + 2G(p) (m? + p?) G(p) = 0.
In (3.46) we see that the pseudo-vector fluctuation is a massive vector state. It appears

in the D4-brane action (2.26) in linear combination of Fgp. In the restframe we see that
By, = 0, thus B;; has to transform like Fj; under charge and parity transformation. Its
quantum numbers are thus J©¢ = 17~ as stated in the beginning of this section.

Part 111
Witten-Sakai-Sugimoto model

In the Witten model it is conjectured that the geometry (1.7) is dual to the low-energy
limit of pure Yang-Mills theory with N¢ > 1 colors. This duality is an open-closed string
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0 1 2
Ne D4 o o o
Nr D8 —D8 o o

3 (4 56 7 8 9
O

e} e} (¢] e} (¢] e} (¢]

Table 6. Brane configuration in the Witten-Sakai-Sugimoto model.

g’ﬂL’fH B’HLTL

Figure 5. D8 brane embedded in the near-horizon geometry (1.7).

duality, i.e. it relates a theory of geometry to a gauge theory. To get to a QCD-like theory
we also need flavor degrees of freedom. Chiral quark pairs are introduced by including
probe D8 and anti-D8 branes, see figure 5. The probe approximation means that we do
not include backreactions of the D8 branes to the geometry. It corresponds to the quenched
case in lattice QCD, where quark loops are neglected. Sakai and Sugimoto [7] proposed the
brane configuration shown in table 6. If the branes are placed at antipodal points in the
compactified T-direction the anti-D8 brane is forced to join the D8 brane at rxx and thus
breaks the chiral symmetry U (Ng)p X U (Np);, — U (NF)g, - This symmetry breaking
gives rise to Goldstone bosons, namely pions as we will be seen below. If the branes are
not placed at antipodal points, the branes join at r > rgx.

To start the calculation we have to reduce our 11-dimensional metric to 10 dimensions.

We use

r? L? dr? L?
ds%l = ﬁ (f (T) dmi + nuudxud-ru + dx%) + TTW + Zdﬂi
= GyundzMdzN

_2¢ M1 N 49
=e 3 gmd:r:Md:L‘N + e dad

-2 N, T 2 2. 9
=e 3 gyyde™de +ﬁf(r)dx4+63dxn. (3.49)

3
With e? = (%)2 we can identify
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Guv = ﬁn’“j’
rL
gaﬁ - Z(s ﬁ7
B L
g?"?" - ’]"f(r)’
3
Grr = ﬁf(T) (3.50)
The volume elements read
o
7"9
- rl5

For the D8 embedding it turns out to be convenient to define new coordinates Z and K by

Z? —1

T?(K
—K-1

= f(r) K. (3.54)

The transformation of the line element can be calculated by

——dr?, (3.55)

and

gmﬂdr2 =

I
Q
N
N

o

N

[\e}

9zz = . (3.56)



The field strength tensor living on the D8 brane is

Fpdatdr = Fzd2"dZ

7.2

=3———F,zdatdr (3.57)

VI(r) T%(K

and thus its components transform as

’1“2

Fpp = 3—
g )k

Fuz. (3.58)

The action of the joined D8 branes describes the dynamics of the ¢g mesons through
flavor gauge fields on the branes. It is given by the DBI action

Sps = —ugTr/d$96¢\/—det (gMN + QWQ’FMN + BMN)? (3.59)
and a 9-dimensional Chern-Simons action

Scs = i,ug/ Tr (exp (27’ Fo + Ba) A C3) (3.60)
d=9

with brane tension pug = (2r)"° I5°. The Chern-Simons action will be important to calcu-
late decay rates.
By using

1 1 1 1
det/2 (1 + M) = exp [2tr <M — oM+ oM - 4M4>} , (3.61)

the DBI action may be simplified to

1 ~ ~ ~ o~
Spg = —,ugTr/dxgeQb\/—g (1 + i (27TO¢’)2QMNQOPFMO~FN]5 + ) ) (3.62)

This action contains kinetic, mass and interaction terms. As a first step let us look at the
former two. The relevant second-order term in the field strength reads
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272 N2 4 r\ "2 T11/2L*7/2r§’<K

<L6 9L%r?

T*GUWUPJFWFW + 2 7“6 n“ynZZFuZFuZ>
KK
472 9 rs 1 M2z .18
= — MST (271'0/) Tr/dx4dZ ﬁ 5?7#VnpUFupro' + TgiKnﬂynZZFMZFVZ
KK

2 L 1
=- Ms% (2ma)? TI;K Tr / datdz K—/? <2n“”np”FupFug + M K*3npprn?? FMZFVZ)
1
= — KTr / dz*dZ (QK—l/?’nﬂ”nf’”F“pFW + KM[%Kn‘“’nZZFuZFVZ> : (3.63)

. 2 N2 Lir AN,
with k= ps’- (2ma’)” >[5 =565,

4 Mesons

F2
Variation of 51(38 ) with respect to A® yields the equations of motion

1 — o2
0=3K Y3y o B Foo + K M3 e 0?2 F,yFyy
=2K P4 Ag + 2MF 07 (14 2%) 07 Aa
1/3
MAo == (1+22) 0, (14 2%) 9,4 (4.1)

To solve them we make the ansatz

Az = Ukkdo (Z) 7 (z"),

Ay =11(Z) pu (2¥),
Fzu =11 (Z) pu (2”) = Uk ¢o (Z) Opm (),

Fuy =1 (Z) Oupy (2°) — Y1 (Z) Oppy () - (4.2)

To ease notation we will from now on raise indices with 1 instead of g. We obtain the
effective action
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2 1
Sg; ) _ —kTr / dz*dZz (QK—V%%PUFWFW + KM]Z(KanZZFMZFVZ>

_ 1
= —kTr / dz*dZ [21{ Y32 (.00)? + §2KM]2<KU?( k2 (0,m)? + KME b pup + ]

/\1MI2(K 2

K2 p, 0"+ .| .
5 N VY pup” +

1
= —KTr / dztdz [(8“py)2 + §2KM§(KU§(K¢% (8,m)* +

(4.3)

Here Z runs from —oo to 400, which corresponds to integrating over a joined pair of D8
and D8 branes. The used normalizations are explained in the following subsection.

4.1 Normalization of meson modes

In order for the meson fields in (4.3) to be canonically normalized we have to impose the

conditions
2/<;/dZK_1/3w% =1,
2KM§<KU§<K/dZK¢3 =1,
/\21,% / dZ Ky = 1. (4.4)

The normalization for v is

/ dz K=Y3¢? (Z) = 2.8030142 (0)

Y72 (0) = 2k - 2.80301

DL (0) = 236771 - k2 (4.5)
and the first two eigenvalues are
A1 = 0.669314,
Ao = 1.569. (4.6)
For ¢g we make the ansatz
b0 = 1 (47)
= C1— .
0 1

which is canonically normalized if we take
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QKMIQ(KU%(K/dZKqﬁ% =1

1

2kMa Usecim =1

1
=c
M kUkkrgV2km !
1
— . 48
KMy xUk g/ 2rm b0 (48)

5 Choice of parameters

From this action (4.3) we can infer the mass of the p meson to be m,% = M Mgg. By fitting
this result to the experimental value of m, ~ 766MeV we fix the Kaluza-Klein mass to
MKK = 949MeV [7]

The term containing the Goldstone bosons of chiral symmetry breaking appearing in
(4.3) can be matched to

2 [ 2
Spg = Zffd 2Tr (U—laU) .., U=Pexp {z‘/dZAZ}, (5.1)
by identifying the so-called pion decay constant

2 1

fz = @ANCMIQ(K- (5.2)

In order to calculate glueball-meson interactions, we have to extrapolate our duality to
finite coupling A and finite No = 3. To do so we match the pion decay constant to the
experimental value f, = 92.4MeV, which yields the coupling constant A ~ 16.63.

Part IV
Decay of pseudo-vector glueballs

6 Chern-Simons term on D8&-brane

To obtain an effective Lagrangian, which describes the decay of pseudo-vector glueballs
in mesons, we look at the Chern-Simons action of a D8-brane. There are also interaction
terms if we expand the DBI action to higher order terms in the field strength. We will see
however that the interaction terms coming from the Chern-Simons action dominate over
the DBI contributions; the latter will not change the interpretation of our results. The
Chern-Simons action for a D8 brane reads (see e.g. [10])
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Scs :iug/Tr (exp (2w Fo + By) A C3)
mg/Tr (exp (27 Fy) A exp (B2) A C3). (6.1)

Since we are only interested in glueball decays into mesons and not into other glueballs, it
is sufficient to look at the term linear in By

(2m)?

SCS|BQZZ.N8/ TI‘(FQ/\FQ/\BQ/\C3).

By partial integration

86 -Fo NFy AN By AN(C3 =

M. M,
€0 By vy F v vy Bavig v C vty Mg My =

_26 ! gAMgaMlFM3M4BM5M60M7M8Mg

M. M
=270 A, Fivgg vy Ona, B s v Oy Mg Mo

—2e™ 9AM2FM3M4BM5M68M10M7M8M9 =

2€M1...
1
2

M.
© Aty Feo vy By v Onig Covty Mg My =

M. M.
e A Favgg vy B iy M Fvig vy Mg vy =

1
5'4'4!‘A1/\F2/\B2/\F4’ (62)

where in the second step we have used that the only non-vanishing possibility to distribute
the 4 spherical indices is On; Casazay, We may simplify the action Scg|p, to

(2ra)?
2

_ (27d/)? 6 82 (L>41/
2 (2) = [ Tr(ALAFy A By) =
13 \3) 5 ) TAARAB)

T8 /Tl"(Al/\FgABz/\F4):

ora’)? 1
iugmLsﬂ'Qf /TI‘ (Al N Fy A\ Bg) =
2 Js
2ra’)? 1 1
i,ugi( Ws) [P 102030405 / TrAqg, Fayas Bayas =
gs 4

o2ra’)? 1 1

( 7T2CV) gL37T24€MVpUZ/TrAZF,Lpra
S

o2ra’)? 1 1

( ”20‘) ;L%?EG#W’UZ / TrA,Fz,Bpo. (6.3)
S

ifig

—ip8

For convenience we define the constant C' = pg (2ra’)? %L?’WQ and use some renamed

S

fields in our previously obtained equations
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Z
Ay =41 (2) Ay (2),
FZM - 1 (Z) A’Zl,u ([EV) - UKK¢0 (Z) aIJA (‘:UV) )
Fuy = ¥1(2) 94, (2) — 1 (2) 8,4, (2”)
=11 (Z) Fuua (64)
B,uzl - A,uu,ll
= N B (65)
~ 1 o ap A
v = Eeuyapq 8pG($)7 (66)

Nu(rrex) " = 0.00983838 L3Nz No M ke,
P71 (0) = 2.36771 - k2,

1
%0 = KMygxUkr/2rr
AN,
K= —0-:,
21673
A = 16.63. (6.7)

The lowest eigenmodes of Ay (z*) and A, (z*) correspond to 7 (z*) and p, (z*) respec-
tively. The components of By are By, and BW is introduced to denote B, of chapter 3.
We accordingly renamed G(z) to G(z) and define

G(z) =r3Ny(r)G(z). (6.8)

We continue the calculation we stopped at (6.3) and get
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CelvrrZ / TrAzF,, Byo
—2C kP74 / TrA,Fz,B,, =
Tr (T°7") Cetvrr? / AYFY, B,
—Tr (77" 20e 7% / ACFS, By,
Tr (7° [1°, 7)) Cetveo? / Ay A2 AYB,
~Tr (T° |17, T*]) 2CetPo? / ACALALB,, =
Ty (TaTb) i'i / AYFL g3 Ny(r)9” G (x)

4C ~

apb) Y a b nav VAW .3 v
Tr (T T ) e /A,U,FZZ/ (g"0" — q"0") r°Na(r)0"G(z)
12C
me

Qz

(z) =
()

/AaayAl’Zr3N4(r) (¢"9” — ¢" ") G(z)

—Tr (TC [T“7TbD / AaAbq“r3N4( )"

(Y

AC

arpb a b 3 v
~Tr (7°7") e /AZFunr Ny(r)d
AC

—Tr (T“Tb) e

Ty (TC Ta Tb 12C /Ac AaAbq”T3N4( )8”@(1‘) _
—Tr TaTb /UKK¢0¢1T3N4AGZF3unaVG($)
ma
—Tr T“Tb / EUKWOMT?’MAZ@VA’?Z (¢"9” — ¢"0") G(z)

12 - -
~Tr (7¢ 17, 7)) / 2 b2 NL S, A &b ghd o) =

. b\ 91 ja b v A
—iTr (T“T)m—G G E,q" 0" G(x) (6.9)

. arb) 91 ja Ab v v A
—iTr (T T ) e A0 AL (07 — " 0") () (6.10)

. c a b 92 3¢ %a jb Vs
—iTr (7°[1°,7°]) e A AL A0 G ). (6.11)

The first two lines after the last equality sign will be relevant for the 2-body and the third
for the 3-body decay.
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The coupling constants in this Lagrangian turn out to be

g1 =/4CUKKT3¢0¢1N4

2ra/)? 1
Z/NS(Q)L37T2UKKT3¢01/J1N4

s

1
= / M82a/2;L3W4UKKT3¢O¢1N4
S

1 1 1
=—2ugmia L ——————— [N, (r 0 /er3N
g, 2K Mrr 2m[ 4 (i) [¥1(0)] 7o Natn
L oerta— kK 1.63571
9s NI NG M2 o ry/27 0, 00983838 - 2, 36771

2 4
—70.2191—— (2n)

_g gsls 321675 4

V2 93 NaNZ M2
om)? A N2 (2n)? 2713
70219127 (970)8 (877 ) (2m)” 27 pe
8V 27 2rNo Mg i L3 AEN%MI%’K
NA\? 2773
—70.2191 (27) /2 2 <87T3 > 27Tk
8Nc Mgk \ L A2 NZMZ .
1
=70.2191 (27) Y22~
A2 Ng
=56.0268\"2 N (6.12)

and

92 = / 12CUk gr° popi Ny
_3
=5132.09A "' N 2. (6.13)
The vector mesons corresponding to mode v; are parametrized as

ps+ % p—ipy Ky —ikK3

~ € . * Tk
AST? = ﬁ p1+ip2 % —ps K3 —21K4 , (6.14)
K{ +iK3 Kj 4+ 1K} —%

the pseudoscalar Goldstone bosons as

7T3—|—% m —imy K1 — 1Ko

_ 1 , .
o8 — \ﬁ w1 + imo % —7m3 Ks—iK, |. (6.15)
K1 +iKy K3 +iK, 72%

Furthermore there are excited modes 9, 3..., which however are too heavy for the con-
sidered decays. For decays of excited glueballs or if one extrapolates the glueball mass to
values obtained from the lattice, those will become relevant.
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7 Glueball-meson interactions

7.1 2-body decay
As already mentioned the 2-body decay is obtained from (6.9) and (6.10),

—iTr (T°T") ﬂ% 19 Fb,q"0" G(x)

—iTr (T°T") %AZ@AIJZ (¢"d” — ¢"0") G(z) =
—in%ﬁg (0,43 - 0,42 ¢"0" G(w)

~i- (A0, Ay — A39,A%) "0 Clw) =

;9 V(G) (W) V(M pi(G) _ v (@) u(G) _ v(G)(n) A2 A2
ol (p P d" + 4 pVp" q'pyp" "t Q“) (A(M)AZG(‘T)>' (7.1)

Note that to ease notation we used p,(f) and pffl) as the corresponding momenta of fiua

and A‘IZ, the obtained equations are however valid for all mesons, not only w and 1. The
polarization of the vector meson and the glueball are €, and ¢ and the momentum of the
glueball is pH(©).

In the center-of-mass frame (CMS) we can simplify the amplitude further

MY = 9L (pV(G)pr)qu + q”pfﬁl)p“(G) _ q”pff)p“(G) _ p”(G)pEﬁI)q“)

ma
= TleG (pu<G)pr> ¢" + ¢ p @) — g pleI (@) (@) qu)
-9 (pu(@pgwmg — meE™ + ¢'maE®@ — p?(©@)p) 5§)
mg
— I (9@ @)sE g v (@) _ g
= 2 5 E E : 7.2
zmg(p P55 + ¢'ma ( ) (7.2)
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To calculate the total cross section we need to take the absolute square of the amplitude

]‘ *
IM|? =§XH:Z€&‘6WZM5

p<w>p) .
S

w

:;gé“”'rrizc< AmZp) +Z<mcq (E(w) W)))Q

+Z4 5§ql,p”(G)pgw)mG (E(w) _ E(n')))
+ ;géwn,w;n% ((gp(yw) V(@) p ) +Z (P q"me: (B _Ew’)))?

A3 I Opsp) ¢ me (B - E(n’)))

1, 1 y - e
:39Gwn’m%< 4mZp! )2 + 3m2 (E( )_E(n)> )

+ %géwn/%m% <<_2E(W)mGng))2 + ( gw) (E(w) _ E(n/)))Q
w "G
—4E@)mZp) p) ( Ew) _ E(n’)))

_1 ()2 @ _ N\ L A pw2 (@2
_3gGwn/(4p +3(EW - B) 4+ 5 B

L2 (5@ — pn)? - 2 g (g E(n’))) . (7.3)

z
mw mw

w

Using the kinematic identities

mé—m%—l—mi

B —
2mga ’
E(n/) :mé — mg + m%
2mg ’
@) [(m% — (my + mn)Q) (mQG — (my — mn)Qﬂ
pZ = 2mG ) (7.4)
we get
2
2 6 4 2 2 2 2 2
,  JGuy (mG —2mg, (mn + Smw) +mg (mn + 3m? ) +38 (m - mnmw) )
IM|* = pTp— . (75)
w''tG
The total decay rate reads
(@)
1 9 |P

Before calculating the 2-body decay rates we have to mention a small caveat in the calcula-
tion of decays including w and 7 mesons. In the Standard model it turns that the fields ng

_ 44 —



Particle T | K n n p

K*

Mass [MeV] || 140 | 497 | 1057.88 | 556.391 | 776

895

776

1019

2311

Table 7. Masses used in our calculation.

Channel ‘ I'/mg ‘ # ‘
o7 0.120815 3
KK* 0.0486318 | 4
n'w 0.0168338 | 1
n'o 0.00195568 | 1
1

1

nw 0.0530406
ne 0.00857957

| Sum | 0.637382 | 11|

Table 8. 2-body decay rates.

and wsg in (6.14) and (6.15) and the corresponding U (1) fields 7; and w; are superpositions

of the physical fields 1, 1’, w and W’ according to

ns =n"sin (0p) + ncos (0p),
=n'cos (0p) — nsin (6p),

wg =wsin (Oy) + ¢ cos (fy) ,
) — (Ov)

wi=w cos (Ay) — ¢sin (By ) .

We have used the values

0p = — 0.250503,
6y =0.61087,
=35°.

0p and 6y correspond to the standard values stated in [13].

(7.8)

For the calculation of the 2-body decays we use the masses displayed in table 7. The

resulting 2-body decay rates are displayed in table 8. In the first column we denote the

involved particles of the decay channel. The values in the second column correspond to

one decay channel, e.g. pym1. In the third column we state how many decay channels there

are. In the last line we write the sum over all channels.

7.2 3-body decay
The 3-body decay is obtained from (6.11)
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—ir (1° [1°,7%] ) 22 / G AL Abg" 0" G(x) =

feab 22 / Ay As 2 ¢ G(x), (7.9)
which yields
( 6)\/ Mﬁ
(1 2)1’ cab 92 ( k(G G
e (4:p ) pIqp). (7.10)

The notation in the last line is a little bit subtle. The indices in f¢ are supposed to match
the cross section we want to calculate. Furthermore we fixed a and b to satisfy a < b. In
CMS we calculate

’M’QZ ZZ)\ X 5/\/15 /-c*

KoAN

B
_ Z( p1p1 <77y/3 + p2p2> MZV gﬂé

1 mj

5
2 g Pip php
: Z(n”‘“r L 1><n5+ “)qup(u gip?
my

m2

5
L P 't 5P
g Z ( -’ ) (77”5 +23 ) P g g

_ fcab

1 2

v, B
2 g3 LP I'ps 292
22 Z P1p1 1 g8 4 P22 2 qu,(jc)pga) ¢
1 m2
2 N2
pi‘qﬁ) X (pgp,(, ))

2
2y 1+(2 —mg + 5

3mg mj ms

v, (G2 2
Z 2+ (pli;’% ) 14 (pé;fjg)

(@) v (G) ik
2 g3 pipy " plq Phpy by
2y (v 252p9) o270

ml my

s <3 N (pi')2> (_m% o (p8)2)

2
my my

ZTZ% (—mé+m2a (if) <3+ (p3)” + (p3)2+(p§)2>

2
1 my

93 m2 pYpY (pTps + pipY + pip3)
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where E denotes the kinetic energy. Particles 1 and 2 are vector-mesons and 6 is the angle
between them. If we use the total energy e we obtain
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As a reminder we again state the coupling constant
g2 = / 12073 NyUr g pot)s
_3
=5132.095\" 1N, 2. (7.13)
The phase-space integral reads
r 1 1
— = /|M|2, (7.14)
ma (27[') 32mG

where we integrate over the physical phase space. We obtain the solutions displayed in
table 9.

Channel ‘ I'/mg ‘ # ‘ Decay Products
TPp 0.0864591 3 T1P203,T201P3,T30102
7K K* | 0.00355496 | 6 | mKiK;,m KK maKiKs maKiKjmsKi K3 msKiK],
KpK* | 0.000266598 | 12 Kip K5 K1 po K3, K1 p3K3, Kopi K3 ...
KK*w | 0.000263124 | 4 K1 Kiw, KoKiw,KsKjw, KsKiw
KK*¢ 0 4 K\ K5, KoK{ 9, Ks K, KaK5¢
nK*K* 0 2 N Ki{KsnKiKj
nK*K* 0 2 nK{ K3 nK3Kj}

| Sum | 0.284959 |33 |

Table 9. 3-body decay rates.

Part V
Conclusion

In the first part we have briefly reviewed the Witten model, which is a predecessor of the
Witten-Sakai-Sugimoto model. We have calculated metric and field strength fluctuations,
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which are supposed to be dual to glueballs. These fluctuations are the same in the Witten-
Sakai-Sugimoto model. In part II we considered the Witten-Sakai-Sugimoto model, in
which fluctuations of the D8 branes correspond to ¢g-states in the dual field theory. We
obtained an effective Lagrangian that contains glueballs, mesons and their interactions,
neglecting the subdominant DBI action. We have calculated decays of the pseudo-vector
glueball in 2 and 3 mesons, which we found to be relativity broad. Experimentally this
means that the pseudo-vector glueball might be very hard to detect.

For our calculation we left the usual large No-limit and used a finite 't Hooft coupling,
thus backreactions and other corrections might become important. In the Witten-Sakai-
Sugimoto model quarks are massless. In [14] a holographic mechanism to include quark
masses. The idea is similar to extended technicolor theories. In our calculation we however
used, as a first approximation, experimentally obtained meson masses. As a future work
it might be interesting to study methods to include explicit quark masses, since such
mechanisms could lead to additional glueball-meson interaction terms. It could also turn
out to be useful to study the D4-D6 system of [15], since it might be easier to include
explicit quark masses to such a brane-setup.

Another possible research topic uses the Witten model to study dark matter. Non-
abelian gauge theories are candidates for self-interacting dark matter [16]. Glueball cross-
sections compatible with cosmological observations were calculated in [12], using an esti-
mate for the leading self-interaction Lagrangian. The Witten model would allow to derive
such cross-sections from first principles. It will be interesting to see how, or if, it is possible
to reproduce these results.
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