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Part I

Introduction
The gluon self-coupling in Quantum Chromodynamics (QCD), the theory of strong interac-
tions, suggests the existence of bound states of gauge bosons, the so-called glueballs. In pure
Yang-Mills (YM) theory, these are the only possible particle states. The non-perturbative
structure of the YM-theory makes it difficult to calculate the glueball spectrum [1]. Nu-
merical simulations of the theory on a space-time lattice have proven to be reliable means
of studying glueballs. In the presence of quarks, these simulations are more difficult, be-
cause glueball states can mix with quark-antiquark states. An outstanding problem is to
calculate theoretical predictions of glueball couplings and decay rates from first principles.
Lattice gauge theory provides some information on euclidean correlators, but is fraught
with uncertainties when extrapolating to the real-time regime. [2].

A completely different approach to strongly coupled gauge theories has been devel-
oped over the last two decades in the form of the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence. The motivation for this correspondence lies in superstring
theory, which besides fundamental strings also contains various non-perturbative solitonic
objects, known as Dirichlet branes, or D-branes for short. Those objects may be viewed
from two different perspectives, the open-string and the closed-string perspective [3]. For
a visualization see figure 1. Which perspective is the appropriate one depends on the value
of the string coupling constant gS controlling the interaction strength of open and closed
strings. String theory moreover is invariant under the so-called S-duality, which relates the
strongly coupled to the weakly coupled regime and thus also relates the two perspectives.
In the open-string perspective D-branes are viewed as higher dimensional objects on which
open strings can end. In the weakly coupled regime, i.e. gS � 1, open strings might be
viewed as small perturbations. By neglecting massive string excitations, i.e. for low ener-
gies, the dynamics of the open strings is described by a supersymmetric gauge theory living
on the worldvolume of the D-brane. In the closed-string perspective D-branes are viewed
as solitonic objects that source the gravitational field and have horizons like black holes.
In the low-energy limit of superstring theory, i.e. supergravity, closed-string excitations
near the horizon decouple from closed-string excitations far away. The dynamics of these
closed strings is described by supergravity in the background of a near-horizon D-brane
solution. Since both perspectives are equivalent descriptions of the same physics we ob-
tain the AdS/CFT correspondence. It manifests itself as an open-closed string duality, in
particular it relates a supersymmetric Yang-Mills theory to supergravity.

Witten [4] proposed a top-down construction of an AdS/CFT like duality based on
non-extremal D4 black-branes in type-IIA supergravity, which breaks both supersymmetry
and conformal invariance. At low energies, below a Kaluza-Klein mass scale MKK , the
dual field theory is a four-dimensional large-NC Yang-Mills theory. In this duality metric
fluctuations of the D4 background correspond to glueball states in the field theory [5, 6].

Quarks in the fundamental representation may be added to this duality in the form
of probe flavor D-branes. Sakai and Sugimoto [7] introduced pairs of D8 and anti-D8
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branes, which intersect the color D4 branes of the Witten model. The resulting Witten-
Sakai-Sugimoto model has been remarkably successful in reproducing various features of
low-energy QCD. It is firmly rooted in string theory and, for given NC and NF , has only
two free parameters, i.e. the ’t Hooft coupling λ and the Kaluza-Klein scale MKK .

Using this model it is possible to study glueball-meson interactions and to calculate
glueball decay rates from effective Lagrangians. This was first carried out by Hashimoto,
Tan and Terashima in [8], which was corrected and extended by Brünner, Parganlija and
Rebhan in [9]. They have considered various glueball states dual to metric fluctuations and
calculated their decay rates. Using these new data it might be possible to identify glueball
states in the experiment. The predicted mass spectrum alone would not be sufficient for
such an identification. This work will extend these efforts by considering a pseudo-vector
glueball state dual to fluctuations of the Kalb-Ramond field, which is inevitably part of
the model. In the hadron spectrum, a pseudo-vector glueball would appear as a so-called
h1 meson, which is unflavored with quantum numbers JPC = 1+−.

This work is structured as follows. In Part II we briefly review the Witten model of
nonsupersymmetric Yang-Mills theory. We calculate the correct supersymmetry solution
and derive the corresponding linearized Einstein equations. Solutions of these equations
are dual to glueballs. We present the resulting glueball modes, calculate their quantum
numbers, masses, and normalizations. Then we calculate fluctuations of the Kalb-Ramond
field. In Part III we extend the Witten model to the Witten-Sakai-Sugimoto model. We
derive an effective action for meson fields and calculate the meson masses and normaliza-
tions. By fitting the mass of the ρ meson and the value of the pion decay constant we fix the
only two free parameters of the theory. In Part IV we calculate an effective glueball-meson
interaction Lagrangian with which we are able to calculate decay rates of pseudo-vector
glueballs.
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Figure 1. Motivation for the AdS/CFT correspondence.

Part II

Witten model
The Witten model of nonsupersymmetric Yang-Mills theory in 3+1 dimensions [4] is based
on the AdS/CFT correspondence, which relates a 6-dimensional superconformal field theory
to a large number NC of coincident M5 branes in 11-dimensional M-theory. At low energy
scales we can look at the embedding of the M5 branes in 11-dimensional supergravity. In
the near-horizon limit the resulting space looks like the product space AdS7×S4 with line
element

ds2 = r2

L2

(
dx2

4 + ηµνdxµdxν + dx2
11

)
+ L2

r2 dr
2 + L2

4 dΩ2
4. (0.1)

The M5 brane is extended in 6 AdS7 directions, chosen as µ, ν = 0, 1, 2, 3 and additionally
4 and 11, leaving out 10. The holographic radial coordinate coordinate is denoted by r.
Dimensional reduction by

x11 ' x11 + 2πR11, R11 = gsls, l2s = α′, (0.2)
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yields the the near-horizon geometry of D4 branes of type-IIA supergravity. Its dual theory
is a five-dimensional super-Yang-Mills theory. Compactifying on an additional circle

x4 ' x4 + 2πR4, R4 ≡
1

MKK
= L2

3rKK
, (0.3)

breaks supersymmetry and yields the doubly Wick-rotated black hole geometry

ds2 = r2

L2

(
f (r) dx2

4 + ηµνdxµdxν + dx2
11

)
+ L2

r2
dr2

f (r) + L2

4 dΩ2
4, (0.4)

with f (r) = 1− r6
KK
r6 .

If we ignore all nontrivial harmonics on the compactification circles and on the S4, we
can interpret the bosonic normal modes of the supergravity multiplet as glueballs in the
dual low-energy 3+1-dimensional Yang-Mills theory [5, 6]. There are a total of 14, coming
from various fluctuations of the AdS7 metric, which will be studied in detail below.

1 11d-SUGRA

1.1 Equations of motion

As we discussed in the introduction the geometry used in the Witten model is based on
11-dimensional supergravity. We will now derive the equations of motion of its bosonic
part. They include the metric and a 4-dimensional field strength, which we will calculate
in detail. The Lagrangian of 11-dimensional supergravity [10] is given by

2κ2
11L

(b)
11 =

√
−gR (ω)−

√
−g

2 · 4!F
M1M2M3M4FM1M2M3M4

+ 1
6 · 3! · (4!)2 ε

M1...M11AM1M2M3FM4...M7FM8...M11 , (1.1)

where we have used the completely antisymmetric epsilon symbol εM1...M11 with ε0123... = 1
and have normalized the field strength such that it satisfies

FM1M2M3M4 := 4∇[M1AM2M3M4]

= ∇M1AM2M3M4 + ... . (1.2)

Variation of L(b)
11 with respect to gMN yields the Einstein equations

√
−g

2κ2
11

(
RMN −

1
2RgMN

)
=
√
−g

2κ2
112 · 4!

(
4F M1M2M3

M FNM1M2M3

− 1
2F

M1M2M3M4FM1M2M3M4 gMN

)
(1.3)
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On the right hand side the first term in the first brackets is obtained by varying one of
the four inverse metrics which are used to raise the indices of the field strength. We thus
obtain a factor of 4. The second term is obtained by using δ

√
−g = −1

2
√
−ggMNδg

MN .

Variation of L(b)
11 with respect to AMNO yields the generalized Maxwell equations

0 = 1
2κ2

113!
∇M1

(√
−gFM1MNO

)
+ 1

2κ2
112 · 3! · (4!)2 ε

MNOM4...M11FM4...M7FM8...M11 . (1.4)

In the first term we get a factor of 4 by using FM1M2M3M4FM1M2M3M4 =
4FM1M2M3M4∇M1AM2M3M4 and an additional factor of 2 since the variation can hit either
F . For the variation of the Chern-Simons term we used

1
2κ2

116 · 3! · (4!)2 ε
MNOM4...M11FM4...M7FM8...M11

− 4 · 2
2κ2

116 · 3! · (4!)2 ε
M1MNOM5...M11∇M1 (AM5M6M7FM8...M11)

= 1
2κ2

116 · 3! · (4!)2 ε
MNOM4...M11FM4...M7FM8...M11

+ 2
2κ2

116 · 3! · (4!)2 ε
MNOM1M5...M11FM1M5M6M7FM8...M11

− 4 · 2
2κ2

116 · 3! · (4!)2 ε
M1MNOM5...M11AM5M6M7∇M1FM8...M11 . (1.5)

The last term is identically 0 due to the Bianchi identity.

1.2 The Witten model geometry

To simplify further calculations we introduce the indices

AdS7 × S4 :A,B,C..., Z,
M10 :A,B,C..., Z,
AdS7 :a, b, c, ..., z,
S4 :α, β, γ, δ,

Minkowski4 :µ, ν, ρ, σ. (1.6)

M10 denotes the 10-dimensional space we obtain after reducing 11d SUGRA to type IIA
SUGRA. The geometry of the Witten model is given by

ds2 = r2

L2

(
f (r) dx2

4 + ηµνdxµdxµ + dx2
11

)
+ L2

r2
dr2

f (r) + L2

4 dΩ2
4. (1.7)

The Einstein equations (1.3) include the metric and a 4-dimensional field strength, for
which we make a Freund-Rubin ansatz
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Fαβγδ = C
√
gS4εαβγδ. (1.8)

Here C is some constant to be determined, gS4 is the determinant of the metric of the
sphere and εαβγδ is the 4-dimensional epsilon symbol. It is easy to see that this ansatz
solves the Maxwell equations (1.4). The first line is zero, because the covariant derivative
commutes with the the volume form and all other lines are trivially zero.

For the geometry (1.7) we obtain

Rαβ = 12
L2 gαβ, (1.9)

RS4 = 48
L2 , (1.10)

Rab = − 6
L2 gab, (1.11)

RAdS7 = − 42
L2 , (1.12)

R = 6
L2 . (1.13)

The constant C is determined by solving the Einstein equations (1.3) restricted to the
sphere

12
L2 gαβ −

3
L2 gαβ = C2

2 · 4!

(
4 · 3!gαβ −

1
2 · 4!gαβ

)
⇒ C = 6

L
(1.14)

Restricted to AdS7, the Einstein equations (1.3) are also satisfied, which can be seen by
calculating

(
Rab −

1
2Rgab

)
= − 9

L2 gab ⇒ Rab + 6
L2 gab = 0. (1.15)

Thus we see that the equations of motion are solved if we include the field strength
Fαβγδ = 6

L

√
gS4εαβγδ.

1.3 Reduced Lagrangian

Since we are only interested in metric fluctuations of the AdS7 metric it is useful to eliminate
all spherical dependencies of the Lagrangian. To realize the ansatz (1.8), we can choose
a gauge such that Aα1...α3 depends linearly on xα. For the field strength fluctuations we
furthermore assume that there are no mixed indices terms, such as Aα1a2a3 . Those are
excluded because they would not be SO(5) singlet states. We obtain
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2κ2
11L

(b)
11 =

√
−gR (ω)−

√
−g

2 · 4!F
M1M2M3M4FM1M2M3M4

+ 1
6 · 3! · (4!)2 ε

M1...M11AM1M2M3FM4...M7FM8...M11

=
√
−gRAdS7 +

√
−gRS4 −

1
2
√
−gC2 −

√
−g

2 · 4!F
a1...a4Fa1...a4

−
√
−g

2 · 4!F
α1a1...a3Fα1a1...a3

+ 2
6 · 3! · (4!)2 ε

a1...a7α1...α4Aa1...a3Fa4...a7Fα1...α4

+ 2
6 · 3! · (4!)2 ε

a1...a7α1...α4Aα1...α3Fα4a1...a3Fa4...a7

=
√
−gRAdS7 +

√
−g 30

L2 −
√
−g

2 · 4!F
a1...a4Fa1...a4

+
√
gS4

2 · 4!Lε
a1...a7Aa1...a3Fa4...a7 + higher spherical harmonics . (1.16)

For the reduction of the Chern-Simons term we used

εM1...M11AM1M2M3FM4...M7FM8...M11 =
εa1...a7α1...α4Aa1a2a3Fa4...a7Fα1...α4

+εa1...a3α1...α4a4...a7Aa1a2a3Fα1...α4Fa4...a7

+εα1...α4a1...a7Aα1...α3Fα4a1...a3Fa4...a7

+εα1...α3a1...a4α4a5...a7Aα1...α3Fa1...a4Fα4a5...a7 =
2εa1...a7α1...α4Aa1a2a3Fa4...a7Fα1...α4

+2εα1...α4a1...a7Aα1...α3Fα4a1...a3Fa4...a7 =
3εa1...a7α1...α4Aa1a2a3Fa4...a7Fα1...α4 . (1.17)

In the first line we evaluated all relevant combination of indices. In the next line we
collected terms that are equivalent up to permutations and renaming of indices. In the last
line we used

εα1...α4a1...a7Aα1...α3Fα4a1...a3Fa4...a7 =
16εα1...α4a1...a7Aα1...α3∂α4Aa1...a3∂a4Aa5...a7 =
−16εα1...α4a1...a7∂α4Aα1...α3Aa1...a3∂a4Aa5...a7

+16εα1...α4a1...a7Aα1...α3∂a4Aa1...a3∂α4Aa5...a7 =
εa1...a7α1...α4Aa1...a3Fa4...a7Fα1...α4

−εα1...α4a1...a7Aα1...α3Fα4a1...a3Fa4...a7 =
1
2ε

a1...a7α1...α4Aa1...a3Fa4...a7Fα1...α4 , (1.18)
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hµν hµ,11 h11,11 Mn=1[MeV ] (Eq.)
hij Ci φ

2++ 1++
(−) 0++ 1486.99(T4)

hiτ Cτ
1−+

(−) 0−+ 1789.04(V4)
hττ
0++ 855.174(S4)

Table 1. Mode classification following [5]. In the restframe µ and ν can take values among
(1, 2, 3, τ) and i and j among (1, 2, 3). Subscripts to JPC denote odd τ -parity Pτ = −1.

where in the first line we use the definition of the field strength. In the next line we partially
integrate on the sphere. In the second term we also partially integrate on AdS and assume
that the form field on the sphere does not depend on the AdS coordinates. In the term
before the last we collect the derivative terms and note that the second term is again the
term we started with. Thus we obtain the last line.

Note that in (1.17) we must not set Fα4a1...a3 to 0 yet, contrary to what one might
expect from the results obtained in [5].

2 Metric fluctuations

To organize the metric fluctuations we follow [5]. On the boundary the AdS7 metric
fluctuations contain 14 independent components. The fluctuation indices can take values
corresponding to (x1, x2, x3, x11, τ); x0 can be excluded by imposing the transversality
constraint kµhµν = 0. Furthermore the fluctuations have to be symmetric. We thus have
5·6
2 − 1 = 14 components. The background geometry (1.7) is symmetric under SO (4)
rotations in (x1, x2, x3, x11). The 14 independent components thus split into 9-, 4- and 1-
dimensional irreducible representations under SO (4), which are denoted by T4, V4 and S4
respectively. Since the x11-direction is moreover compactified, the 9-, 4- and 1-dimensional
irreducible representations of SO (4) break into irreducible representations of SO (3). The
resulting states are summarized in table 1.

2.1 Tensor glueball fluctuation hµν

2.1.1 Linearized equations of motion

To derive the linearized equations of motion for the metric fluctuations we closely follow
Wald [11]. We consider fluctuations of the form

gab (λ) = gab + λhab. (2.1)
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The covariant derivatives corresponding to g(λ) and g are denoted by

∇cgab (λ) = 0,
0∇cgab = 0. (2.2)

The resulting fluctuations of the Einstein tensor can be calculated by making use of the
tensor field Ccab, which relates the covariant derivative of the perturbed metric and the
background metric by

∇aωb = 0∇aωb − Ccabωc,
∇aTbc = 0∇aTbc − CdabTdc − CdabTcd. (2.3)

Its unique value is

Ccab = 1
2g

cd (λ)
(

0∇agbd (λ) + 0∇bgad (λ)− 0∇dgab (λ)
)
. (2.4)

Using

∇a∇bωc = 0∇a∇bωc − Cdac∇bωd − Cdab∇dωc
= 0∇a

(
0∇bωc − Cdbcωd

)
− Cdac

(
0∇bωd − Cebdωe

)
− Cdab

(
0∇dωc − Cedcωe

)
= 0∇a 0∇bωc − 0∇aCdbcωd −

(
Cdbc

0∇aωd + Cdac
0∇bωd

)
+ CdacC

e
bdωe

−
(
Cdab

0∇dωc − CdabCedcωe
)
, (2.5)

we can relate the perturbed Riemann tensor to the unperturbed one by

R d
abcωd =∇a∇bωc −∇b∇aωc

= 0∇a 0∇bωc − 0∇b 0∇aωc − 0∇aCdbcωd + 0∇bCdacωd
+ CdacC

e
bdωe − CdbcCeadωe

= 0R d
abcωd − 0∇aCdbcωd + 0∇bCdacωd + CeacC

d
beωd − CebcCdaeωd. (2.6)

Contracting the second and fourth index we obtain the Ricci tensor

Rac = 0Rac − 0∇aCbbc + 0∇bCbac + CeacC
b
be − CebcCbae. (2.7)

The change of the Ricci tensor is

Ṙac =
(dRac

dλ

)∣∣∣∣
λ=0

=− 0∇aĊbbcωd + 0∇bĊbac, (2.8)
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where we have defined

Ċcab =
(dRac

dλ

)∣∣∣∣
λ=0

=1
2g

cd
(

0∇ahbd + 0∇bhad − 0∇dhab
)
. (2.9)

Note that all other terms vanish since they contain 0∇agbd = 0.
Writing things out we get

Ṙac =− 1
2

0∇agbd
(

0∇bhcd + 0∇chbd − 0∇dhbc
)

+ 1
2

0∇bgbd
(

0∇ahcd + 0∇chad − 0∇dhac
)

=− 1
2

0∇a 0∇ch+ 1
2

0∇d
(

0∇ahcd + 0∇chad
)
− 1

2
0∇d 0∇dhac. (2.10)

The change of the Ricci scalar is

Ṙ =
(dR
dλ

)∣∣∣∣
λ=0

=
(d (gac (λ)Rac)

dλ

)∣∣∣∣
λ=0

=− hac 0Rac + gacṘac

=− hac 0Rac −
1
2

0∇a 0∇ah+ 0∇d 0∇ahad −
1
2

0∇d 0∇dh. (2.11)

We are now able to calculate the change of the Einstein tensor

Gab = Rab −Rgab (λ) , (2.12)

which reads

Ġac =
(dGac

dλ

)∣∣∣∣
λ=0

=Ṙac − Ṙ gac − 0Rhac. (2.13)

The equations of motion are

Ġac =1
2

0∇d
(

0∇ahcd + 0∇chad
)
− 1

2
0∇d 0∇dhac − 0Rhac (2.14)

=0.

Comparing this with Constable and Myers [6] we find a minor mistake in their derivation
in which they do not include fluctuations of R. After choosing the transverse traceless
gauge this discrepancy however disappears as we can see by calculating
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Ṙac =− 1
2

0∇a 0∇ch+ 1
2

0∇d
(

0∇ahcd + 0∇chad
)
− 1

2
0∇d 0∇dhac

=1
2

0∇d
(

0∇ahcd + 0∇chad
)
− 1

2
0∇d 0∇dhac (2.15)

and thus

Ṙ =− hac 0Rac −
1
2

0∇a 0∇ah+ 0∇d 0∇ahad −
1
2

0∇d 0∇dh (2.16)

=0.

2.1.2 Solution

Since hab is symmetric, transverse and traceless, there are (4·5)
2 − 1 − 4 = 5 independent

tensor fluctuations
hµν = qµν

r2

L2NT
T4 (r)GT (xσ) , (2.17)

where qµν is a symmetric, transverse traceless tensor, which is normalized such that
qµνq

µν = 2. T4 (r) satisfies the equation

d
dr
(
r7 − r r6

KK

) d
drT4 (r) + L4M2r3T4 (r) = 0. (2.18)

2.1.3 Normalization

To normalize our solutions we reduce the 11-dimensional supergravity action (1.1) to 4
dimensions [8, 9]. In this way we obtain a 4-dimensional effective action, for which we
demand that it has a canonically normalized kinetic term. For the fluctuation hµν we
obtain the reduced Lagrangian

L4|G2
T

=
(
L

2

)4
Ω4

1
2κ2

11

ˆ
dr dx4dx11√−g7

(
RAdS7 + 30

L2

)
=C
ˆ

dr r
3T4 (r)2

2L3N 2
T

GT
(
M2 −�

)
GT

=1
2GT

(
M2 −�

)
GT . (2.19)

Note that this 4-dimensional Lagrangian is defined with respect to the standard Minkowski
line-element. Since the prefactor in the Lagrangian appears for every mode we define the
constant
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C =
(
L

2

)4
Ω4

1
2κ2

11
(2π)2R4R11

= L4

16
8π2

3
1

(2π)8 l9sg
3
s

(2π)2 L2

3rKK
lsgs

= 1
72 (2π)4

L6

rKK

lsgs
l9sg

3
s

= 1
72 (2π)4

L6

rKK

λ

2πNC

L2

3rKK
43 (2π)3N3

C

L9

= 8
33 (2π)2

λN2
C

Lr2
KK

, (2.20)

where we have used R4 = 1
MKK

= L2

3rKK , R11 = lsgs, gsls = λ
2πMKKNC

, gsl3s = L3

8πNC ,
Ω4 = 8π2

3 and 1
2κ2

11
= 1

(2π)8l9sg
3
s
.

We furthermore define the constant

CT =
ˆ

dr r
3T4 (r)2

L3 ,

which depends on the specific solution to (2.18). For the lowest mode we obtain

CT = 0.22547 [T4 (rKK)]2 r
4
KK

L3 . (2.21)

The method we used to obtain the numerical value will be explained in chapter 2.1.5. From
equation (2.19) we obtain the normalization condition

1 =CCT
N 2
T

= 1
N 2
T

8
33 (2π)2

λN2
C

Lr2
KK

0.22547r
4
KK

L3

= 1
N 2
T

2
35π2 0.22547λN2

C

9r2
KK

L4

= 1
N 2
T

2
35π2 0.22547λN2

CM
2
KK , (2.22)

which is solved by
NT = 0.0137122λ

1
2NCMKK . (2.23)

Equivalently we could rescale the function T4 (r)

hµν = qµν
r2

L2N 2
T

T4 (r)GT (xσ)

= qµν
r2

L2 T̃4 (r)GT (xσ) , (2.24)
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where the new function satisfies

T̃4 (rKK) = NT . (2.25)

We will see that for some fluctuations we have to impose the boundary conditions T4 (rKK) =
0 and d

drT4 (r)
∣∣∣
x=rKK

= 1, where T4 is then replaced by the corresponding radial mode
function. For these boundary conditions the first method is more straightforward.

2.1.4 Parity and charge conjugation assignments
Following Brower, Mathur and Tan [5] we will now assign quantum numbers to our metric
fluctuations. To do so we look at the dual field theory, which is governed by the low-energy
action of the D-brane and resembles pure glue QCD4. This theory is described by the DBI
action of a D4-brane and a 5-dimensional Chern-Simons term1

SD4 = −STr
ˆ

d5x

√
−det

[
Gab + e−

φ
2 (Bab + Fab)

]
+
ˆ

d5x (C1 ∧ F ∧ F + C3 ∧ F + C5) .
(2.26)

The above Lagrangian involves differently scaled fields, e.g. Bab, than we will use later on.
However the quantum number assignments do not change under the necessary rescalings.

The parity transformation of the vector potential Aa is defined by

P : A0
(
x0, xi, τ

)
→ A0

(
x0,−xi, τ

)
,

P : Ai
(
x0, xi, τ

)
→ −Ai

(
x0,−xi, τ

)
,

P : Aτ
(
x0, xi, τ

)
→ Aτ

(
x0,−xi, τ

)
. (2.27)

Since our background geometry includes a compactified τ -direction it also makes sense to
look at τ -parity. τ -parity transformations are defined by

Pτ : A0
(
x0, xi, τ

)
→ A0

(
x0, xi,−τ

)
,

Pτ : Ai
(
x0, xi, τ

)
→ Ai

(
x0, xi,−τ

)
,

Pτ : Aτ
(
x0, xi, τ

)
→ −Aτ

(
x0, xi,−τ

)
. (2.28)

Since this quantum number has no analogue in 4-dimensional QCD, we will exclude fields
with negative τ -parity from our physical spectrum. We can also define charge conjugation
by the action

C : A0
(
x0, xi, τ

)
→ −AT0

(
x0, xi, τ

)
,

C : Ai
(
x0, xi, τ

)
→ −ATi

(
x0, xi, τ

)
,

C : Aτ
(
x0, xi, τ

)
→ −ATτ

(
x0, xi, τ

)
, (2.29)

1The Lagrangian in [5] contains some typos.
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where T denotes matrix transposition in the non-abelian case of more than one coinciding
D4 branes. The Lagrangian should be invariant under the above transformations and thus
we can conclude how the fields hab transform. To do so we look at the term

habTr
(
F acF bc

)
= hijTr

(
F icF jc

)
, (2.30)

which is obtained by expanding (2.26) and where we have gone to the rest frame of hµν ,
for which transversality implies kµhµν = −mh0ν = 0. Furthermore ∂c and Ac have the
same transformation behavior under parity transformations and thus we can read off the
quantum numbers

hij → 2++ (Pτ = +) . (2.31)

2.1.5 Numerics

To solve the differential equation (2.18) we rewrite it by

0 = d
dr
(
r7 − r r6

KK

) d
drT4 (r) + L4M2r3T4 (r)

=r5
KK

d
dr̃
(
r̃7 − r̃

) d
dr̃ T4 (r̃) + r3

KKL
4M2r̃3T4 (r̃)

=r5
KK

d
dr̃
(
r̃7 − r̃

) d
dr̃ T4 (r̃) + 9r5

KKM
−2
KKM

2r̃3T4 (r̃)

= d
dr̃
(
r̃7 − r̃

) d
dr̃ T4 (r̃) + λr̃3T4 (r̃) , (2.32)

where we have used r̃ = r
rKK

and

λ = 9M−2
KKM

2. (2.33)

Next we map the coordinate r̃ to a finite interval by

r̃ = (cosx)−
1
3 . (2.34)

Using d
dr̃ arccos (r̃) = −1√

1−r̃2
we calculate

dx
dr̃ = d

dr̃ arccos
(
r̃−3

)
= d

(
r̃−3)
dr̃

d
d (r̃−3) arccos

(
r̃−3

)
= −3

r̃4
−1√

1− r̃−6

= 3
r̃
√
r̃6 − 1

. (2.35)

Furthermore we derive
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d
dr̃ T4 (r̃) = dx

dr̃
d
dxT4 (x)

= 3
r̃
√
r̃6 − 1

d
dxT4 (x)

= 3 cos
4
3 x√

1− cos2 x

d
dxT4 (x)

= 3 cos
4
3 x

sin x
d
dxT4 (x)

= 3 cotx cos
1
3 x

d
dxT4 (x) (2.36)

and
d
dr̃
(
r̃7 − r̃

) d
dr̃ T4 (r̃) = dx

dr̃
d
dx

(
r̃
(
r̃6 − 1

) dx
dr̃

d
dxT4 (x)

)
= dx

dr̃
d
dx

(
(cosx)−

1
3
(
(cosx)−2 − 1

) dx
dr̃

d
dxT4 (x)

)
= dx

dr̃
d
dx

(
(cosx)−

7
3
(
1− cos2 x

) dx
dr̃

d
dxT4 (x)

)
= dx

dr̃
d
dx

(
(cosx)−

7
3 sin2 x

dx
dr̃

d
dxT4 (x)

)
= dx

dr̃
d
dx

(
3 (cosx)−

7
3 sin2 x cotx cos

1
3 x

d
dxT4 (x)

)
= dx

dr̃
d
dx

(
3 tan x d

dxT4 (x)
)

= dx
dr̃

d
dx

(
3 (cosx)−2 d

dxT4 (x) + 3 tan x d2

dx2T4 (x)
)

= 9 cotx (cosx)−
5
3

d
dxT4 (x) + 9 cos

1
3 x

d2

dx2T4 (x) , (2.37)

to obtain the transformed differential equation

0 = 9 cos
1
3 x

d2

dx2T4 (x) + 9 cotx (cosx)−
5
3

d
dxT4 (x) + λ (cosx)−1 T4 (x) . (2.38)

To solve this differential equation, we make use of the so-called shooting method. In
this method one chooses appropriate initial conditions with which one solves the differential
equation in terms of the free parameter, which in our case is λ. The correct eigenvalues
λ are then those for which the function satisfies a specified condition at the opposing
boundary. First of all we note that our differential equation has singular points at 0
and π

2 , therefore we introduce a cutoff ε. As initial conditions we choose T4 (ε) = 1 and
d

dxT4 (x)
∣∣∣
x=ε

= 0. The first condition can be imposed without loss of generality, since we
can still rescale the solution. The second condition can be understood by looking at a
transformation x → −x. This transformation maps any boundary point to its antipodal
point, i.e. it maps τ to τ +π. In our ansatz we assumed that the solution does not depend
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T4: λ M =
√

λ
9MKK [MeV ]

n = 1 22.0966 1486.99
n = 2 55.5833 2358.4
n = 3 102.452 3201.88
n = 4 162.699 4034.94
n = 5 236.328 4862.99

Table 2. Mass spectrum of the tensor glueball hµν , the vector glueball hµ,11 and the scalar glueball
h11,11.

on τ and thus it should also be symmetric under the transformation x→ −x. This however
implies d

dxT4 (x)
∣∣∣
x=0

= 0. To obtain the solution T4 (x), with a free parameter λ, we use
Mathematica and the function ParametricNDSolve. Evaluating the resulting parametric
function at the boundary x = π

2 −ε we can use the command FindRoot to find those values
of λ which satisfy the condition T4

(
π
2 − ε

)
= 0. In figure 2 one can see how the boundary

value T4
(
π
2 − ε

)
depends on λ. We obtain the spectrum in table 2, where we have used

(2.33) to translate λ to the real mass M , using MKK = 949MeV as specified in chapter 5.
In figure 3 we show the resulting eigenfunctions.

2.2 (Pτ -odd) axial vector mode hµ,11/Cµ
In this and the following subsections we shortly present the results, obtained by a similar
analysis as in chapter 2.1 applied to the other metric fluctuations. We also include Pτ -odd
fluctuation modes that do not have an interpretation as glueballs in the dual Yang-Mills
theory.

The fluctuation hµ,11 reads

hµ,11 = qµ
r2

NA L2T4 (r)GA (xσ) , (2.39)

where T4 (r), again, satisfies

d
dr
(
r7 − r r6

KK

) d
drT4 (r) + L4M2r3T4 (r) = 0, (2.40)

with the mass spectrum in table 2. Here qµ is a unit transverse polarization vector.
The resulting Lagrangian for a single polarization reads

L4|G2
A

= C
ˆ

dr r
3T4 (r)2

2L3N 2
A

GA
(
M2 −�

)
GA. (2.41)

For the lowest mass state we get

CA =
ˆ

dr r
3T4 (r)2

L3

= 0.22547 [T4 (rKK)]2 r
4
KK

L3 , (2.42)
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Figure 2. T4 (x)|x= π
2 −ε as a function of λ.
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Figure 3. Solutions T4 (x), where the labels n correspond to table 2.

and the normalization constant

NA = 0.0137122λ
1
2NCMKK = NT . (2.43)

From the D4 brane action we obtain the associated quantum numbers

hij → 1++ (Pτ = −) . (2.44)

The τ -parity quantum number is absent in real QCD, thus we exclude this state from our
spectrum.

2.3 Scalar glueball h11,11

The (predominantly dilatonic2) scalar glueball fluctuation reads
2Upon dimensional reduction to 10 dimensions the metric fluctuation h11,11 will become the dilaton. See

e.g. (3.49).
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hµν = r2

NS L2T4 (r)
(
ηµν −

∂µ∂ν
�

)
GS (xσ) ,

h11,11 = −3 r2

NS L2T4 (r)GS (xσ) , (2.45)

with

d
dr
(
r7 − r r6

KK

) d
drT4 (r) + L4M2r3T4 (r) = 0 (2.46)

and the mass spectrum in table 2.
The fluctuation Lagrangian reads

L4|G2
S

= C
ˆ

dr3r3T4 (r)2

L3N 2
S

GS
(
M2 −�

)
GS , (2.47)

with

CS =
ˆ

dr r
3T4 (r)2

L3

= 0.22547 [T4 (rKK)]2 r
4
KK

L3 (2.48)

and

NS = 0.0335879λ
1
2NCMKK =

√
6NT . (2.49)

The quantum numbers are

hij → 0++ (Pτ = +) . (2.50)

2.4 (Pτ -odd) vector mode hµτ
The corresponding fluctuation reads

hµτ = qµ

√
r6 − r6

KK

NV r L2 V4 (r)GV (xσ) , (2.51)

with

d
dr
(
r7 − r r6

KK

) d
drV4 (r) +

(
L4M2r3 − 9r12

KK

r7 − r r6
KK

)
V4 (r) = 0 (2.52)

and the mass spectrum in table 3. Here qµ is again a unit transverse polarization vector.
To solve this differential equations we have to impose the boundary condition V4 (ε) = 0
and d

dxV4 (x)
∣∣∣
x=ε

= 1.
The Lagrangian for a given polarization reads
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V4: λ M =
√

λ
9MKK [MeV ]

n = 1 31.9853 1789.04
n = 2 72.4792 2693.1
n = 3 126.144 3552.87
n = 4 193.133 4396.16
n = 5 273.482 5231.3

Table 3. Mass spectrum of the pseudo-vector glueball hµτ and the pseudo-scalar glueball hτ,11.

L4|G2
V

= C
ˆ

dr r
3V4 (r)2

2L3N 2
V

GV
(
M2 −�

)
GV

= 1
2GV

(
M2 −�

)
GV , (2.53)

with

CV =
ˆ

dr r
3V4 (r)2

L3

= 0.0495616
[
V ′4 (rKK)

]2 r4
KK

L3 (2.54)

and

NV = 0.00642887λ
1
2NCMKK . (2.55)

The quantum numbers are

hij → 1−+ (Pτ = −) . (2.56)

2.5 Pseudo-scalar glueball hτ,11/Cτ
The pseudo-scalar glueball fluctuation reads

hτ,11 =

√
r6 − r6

KK

NPS L2 V4 (r)GPS (xσ) , (2.57)

with

d
dr
(
r7 − r r6

KK

) d
drV4 (r) +

(
L4M2r3 − 9r12

KK

r7 − r r6
KK

)
V4 (r) = 0 (2.58)

and the mass spectrum in table 3. The Lagrangian reads

L4|G2
PS

= C
ˆ

dr r
3V4 (r)2

2L3N 2
PS

GPS
(
M2 −�

)
GPS

= 1
2GPS

(
M2 −�

)
GPS , (2.59)
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with

CPS =
ˆ

dr r
3V4 (r)2

L3

= 0.0495616 [V4 (rKK)]2 r
4
KK

L3 (2.60)

and

NPS = 0.00642887λ
1
2NCMKK . (2.61)

The quantum numbers are

hij → 0−+ (Pτ = +) . (2.62)

2.6 Exotic scalar glueball hττ
The exotic scalar glueball fluctuation reads

hττ = − r2

NES L2 f (r)S4 (r)GES (xσ) ,

hµν = r2

NES L2S4 (r)
[

1
4ηµν −

(
1
4 + 3r6

KK

5r6 − 2r6
KK

)
∂µ∂ν
M2

]
GES (xσ) ,

h11,11 = r2

NES 4L2 f (r)S4 (r)GES (xσ) ,

hrr = − L2

NES r2f (r)
3r6
KK

5r6 − 2r6
KK

S4 (r)GES (xσ) ,

hrµ = hµr = 90r7r6
KK

NESM2L2 (5r6 − 2r6
KK

)S4 (r) ∂µGES (xσ) , (2.63)

with

d
dr
(
r7 − r r6

KK

) d
drS4 (r) +

(
L4M2r3 + 432r5r12

KK(
5r6 − 2r6

0
)2
)
S4 (r) = 0 (2.64)

and the mass spectrum in table 4. Because this mode involves the metric component hττ ,
which has no analogous in other holographic QCD models, it has been termed “exotic” in
[5]. The Lagrangian reads

L4|G2
ES

= C
ˆ

dr r
3S4 (r)2

2L3N 2
ES

GES
(
M2 −�

)
GES

= 1
2GES

(
M2 −�

)
GES , (2.65)

with
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S4: λ M =
√

λ
9MKK [MeV ]

n = 1 7.30835 855.174
n = 2 46.9855 2168.34
n = 3 94.4816 3074.81
n = 4 154.963 3937.85
n = 5 228.709 4783.95

Table 4. Mass spectrum of the scalar glueball hττ .

CES =
ˆ

dr r
3S4 (r)2

L3

= 0.0918315 [S4 (rKK)]2 r
4
KK

L3 (2.66)

and

NES = 0.008751λ
1
2NCMKK . (2.67)

The quantum numbers are

hij → 0++ (Pτ = +) . (2.68)

The mass of this glueball mode is significantly lighter than the tensor glueball, which is in
qualitative agreement with the situation in lattice gauge theory [12]. However quantita-
tively the mass is much too small, which together with the fact that the model has probably
too many scalar glueball modes hints at the possibility that the exotic scalar mode has no
counterpart in real QCD [8, 9].

It is interesting to check if there is a mixing term of the exotic scalar glueball and
the dilatonic glueball since both have the same quantum number. A term proportional to
GESGD would mean that we have not found normal modes yet and that the physical field
is a superposition of GES and GD. It turns out that such a term does not exist.

3 Field strength fluctuations

3.1 Equations of motion

To calculate the field strength fluctuations we first need to calculate the 7-dimensional
equations of motion
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√
−g

2κ2
11

(
Rab −

1
2Rgab

)
=

√
−g

κ2
112 · 2 · 4!

(
4F M1M2M3

a FbM1M2M3 −
1
2F

M1M2M3M4FM1M2M3M4 gab

)
+ 1

2 · 6 · 3! · (4!)2 ε
M1...M11AM1M2M3FM4...M7FM8...M11gab =

√
−g

κ2
112 · 2 · 4!

(
4F a1a2a3

a Fba1a2a3 −
1
2F

a1a2a3a4Fa1a2a3a4 gab

)
+ 1

2 · 6 · 3! · (4!)2 ε
a1...a7α1...α4Aa1a2a3Fa4...a7Fα1...α4gab = 0,

1
2 · 3!κ2

11
∇M1

(√
−gFM1abc

)
+ 1

2κ2
112 · 3! · (4!)2 ε

abcM4...M11FM4...M7FM8...M11 =

∇a1

(√
−gF a1abc

)
+ 1

(4!)2 ε
abca1...a4α1...α4Fa1...a4Fα1...α4 +∇α1

(√
−gFα1abc

)
=

∇a1

(√
−g7F

a1abc
)

+ 1
4 · Lε

abca1...a4Fa1...a4 = 0. (3.1)

Note that in these particular expressions it is possible to replace the covariant derivative
∇a1 with the partial derivative ∂a1 .

3.2 Solutions for the pseudo-vector glueball mode

We find different kinds of solution depending on which components of A are non-vanishing,
see e.g. [5]. For now we will only look at the pseudo-vector fluctuations with JPC = 1+−.
The reason for these quantum numbers is given in the end of this section. To find the
solution corresponding to the pseudo-vector glueball we start with the ansatz

Aµν,11 = a(r)Bµν ,

Aρτr = 1
2b(r)ε

αβγδηρα∂βBγδ, (3.2)

where from now on we will use all Greek indices as Minkowski indices. The field strength
is

Frµν11 = a′(r)Bµν ,
Fρµν11 = a(r) (∂ρBµν − ∂µBρν + ∂νBρµ) ,

Fµρτr = 1
2b(r)

(
εαβγδηρα∂µ∂βBγδ − εαβγδηµα∂ρ∂βBγδ

)
. (3.3)

In the 7-dimensional setup indices are always raised and lowered with respect to g, whose
components are
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gµν = r2

L2 ηµν ,

gττ = r2f(r)
L2 ,

grr = L2

r2f(r) . (3.4)

We however define the operator � = ηµν∂µ∂ν . Recall that εαβγδ is an ε-symbol and does
not involve the metric g.

Our equations of motion have three free indices which can take the values

{a, b, c} = {τ, 11, r}, (3.5)

{a, b, c} = {µ, τ, r}, (3.6)
{a, b, c} = {µ, τ, 11}, (3.7)
{a, b, c} = {µ, 11, r}, (3.8)

{a, b, c} = {µ, ν, 11}, (3.9)
{a, b, c} = {µ, ν, r}, (3.10)
{a, b, c} = {µ, ν, τ}. (3.11)

To solve our ansatz we start with the equation of motion (3.1) for the indices (3.6), i.e.
{a, b, c} = {ρ, τ, r}:

∂a1

(√
−g7F

a1ρτr
)

+ 1
4 · Lε

ρτra1...a4Fa1...a4 =

∂µ

(
r5

L5F
µρτr

)
+ 1
L
ερτrαβγ11Fαβγ11 =

∂µ

(
r5

L5 g
µνgρσgrrgττFνστr

)
− 1
L
εραβγτ11rFαβγ11 =

∂µ

(
r

L
ηµνηρσFνστr

)
− 1
L
εραβγFαβγ11 =

r

2Lb(r)ε
ρβγδ�∂βBγδ −

r

2Lb(r)ε
µβγδηρσ∂µ∂σ∂βBγδ

− 3
L
εραβγa(r)∂αBβγ =

r

2Lb(r)ε
ρβγδ�∂βBγδ −

3
L
ερβγδa(r)∂βBγδ = 0

r b(r)�Bγδ − 6a(r)Bγδ = 0 (3.12)

From this we may determine b(r) to be
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b(r) = 6
rm2a(r), (3.13)

where m is the mass of B. To determine the remaining ambiguity in our ansatz we look
at (3.9), i.e. {a, b, c} = {µ, ν, 11}:

∂a1

(√
−g7F

a1µν11
)

+ 1
4 · Lε

µν11a1...a4Fa1...a4 =

∂a1

(√
−g7g

a1b1gµρgνσg11,11Fb1ρσ11
)

+ 3
L
εµν11ρστrFρστr =

∂α

(
L3

r3 η
αβηµρηνσFβρσ11

)
+ ∂r

( 1
r5L

(
r6 − r6

KK

)
ηµρηνσFrρσ11

)
− 3
L
εµνρσFρστr =

ηµρηνσηαβ∂α

(
L3

r3 a(r) (∂βBρσ − ∂ρBβσ + ∂σBβρ)
)

(3.14)

+∂r
( 1
r5L

(
r6 − r6

KK

)
ηµρηνσBρσa

′(r)
)

(3.15)

− 3
2Lb(r)ε

µνρσ
(
εαβγδηασ∂ρ∂βBγδ − εαβγδηαρ∂σ∂βBγδ

)
= 0. (3.16)

In the second line we keep the summation over ρ and thus obtain only a factor of 6 instead
of 24.

As we will show now, this is solved by

a(r) = r3N4(r). (3.17)

The terms in the first line (3.14) simplify to

ηµρηνσηαβ∂α
(
L3N4(r)∂βBρσ

)
= m2L3N4(r)ηµρηνσBρσ. (3.18)

Calculating the r-derivatives in line (3.15) we get:
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∂r

( 1
Lr5

(
r6 − r6

KK

)
a′(r)

)
=

∂r

( 1
Lr5

(
r6 − r6

KK

) (
3r2N4(r) + r3N ′4(r)

))
=

∂r

( 3
Lr3

(
r6 − r6

KK

)
N4(r)

)
+∂r

( 1
Lr2

(
r6 − r6

KK

)
N ′4(r)

)
=

− 9
Lr4

(
r6 − r6

KK

)
N4(r) + 1

L
18r2N4(r) + 3

Lr3

(
r6 − r6

KK

)
N ′4(r)

− 2
Lr3

(
r6 − r6

KK

)
N ′4(r) + 1

L
6r3N ′4(r) + 1

Lr2

(
r6 − r6

KK

)
N ′′4 (r) =

1
Lr2

(
r6 − r6

KK

)
N ′′4 (r) + 1

L

(
3r3 − 3r

6
KK

r3 − 2r3 + 2r
6
KK

r3 + 6r3
)
N ′4(r)

+ 1
L

(
9 r2 + 9

r4 r
6
KK

)
N4(r) =

1
Lr2

(
r6 − r6

KK

)
N ′′4 (r) + 1

L

(
7r3 − r6

KK

r3

)
N ′4(r) + 1

L

(
9 r2 + 9

r4 r
6
KK

)
N4(r). (3.19)

Lastly for the terms in (3.16) we get

− 3
2Lε

µνρσb(r)
(
εαβγδηασ∂ρ∂βBγδ − εαβγδηαρ∂σ∂βBγδ

)
=

− 3
L
εµνρσb(r)εαβγδηασ∂ρ∂βBγδ =

− 3
L
δµνρβ′γ′δ′b(r)ηββ

′
ηγγ

′
ηδδ

′
∂ρ∂β′Bγ′δ′ =

− 3
L
δρβ′δ

µν
γ′δ′b(r)ηββ

′
ηγγ

′
ηδδ

′
∂ρ∂β′Bγ′δ′ =

− 6
L
b(r)ηβρ∂ρ∂βBµν =

−36r2

L
N4(r)Bµν . (3.20)

Altogether we have

∂r
(
r
(
r6 − r6

KK

)
N ′4(r)

)
+
(
m2L4r3 − 27r5 + 9

r

)
N4(r) = 0, (3.21)

which is exactly the mode equation for N4(r) in [5]. The corresponding eigenvalues are
displayed in table 5. The mode functions are plotted in figure 4.

The solution is thus

Aµν,11 = r3N4(r)Bµν ,

Aρτr = 6r2

m2N4(r)εαβγδηρα∂βBγδ, (3.22)
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N4: λ M =
√

λ
9MKK [MeV ]

n = 1 53.3758 2311.09
n = 2 109.446 3309.37
n = 3 177.231 4211.29
n = 4 257.959 5080.66
n = 5 351.895 5934.05

Table 5. Mass spectrum of the pseudo-vector glueball Bµν .
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x
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Figure 4. Solutions N4 (x), with x defined in (2.34) and the labels n corresponding to table 5.

with field strength

Frµν11 =
(
r3N4(r) + 3r2N ′4(r)

)
Bµν ,

Fρµν11 = r3N4(r) (∂ρBµν − ∂µBρν + ∂νBρµ) ,

Fµρτr = 3r2

m2N4(r)
(
εαβγδηρα∂µ∂βBγδ − εαβγδηµα∂ρ∂βBγδ

)
. (3.23)

A pure gauge mode of this excitation is

Aµντ = T (r) (qν∂µG(x)− qµ∂νG(x)) ,
Aρτr = T ′(r)qρG(x). (3.24)

It corresponds to a gauge transformation

A→ A+ dΛ, (3.25)

with

Λντ = qνT (r)G(x). (3.26)
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We now have to check the remaining index combinations for consistency.
For (3.5), i.e. {a, b, c} = {τ, 11, r} we see that Fµτ11r = 0 and Fµνρσ = 0, and thus the
equations of motion are satisfied:

∂a1

(√
−g7F

a1τ11r
)

+ 1
4 · Lε

τ11ra1...a4Fa1...a4 =

∂µ
(√
−g7F

µτ11r
)

+ 1
4 · Lε

τ11rµνρσFµνρσ = 0. (3.27)

For (3.7), i.e. {a, b, c} = {µ, τ, 11} we similarly use Fνµτ11 = 0, Frµτ11 = 0 and Frνρσ = 0:

∂a1

(√
−g7F

a1µτ11
)

+ 1
4 · Lε

µτ11a1...a4Fa1...a4 =

∂ν
(√
−g7F

νµτ11
)

+ ∂r
(√
−g7F

rµτ11
)

+ 1
L
εµτ11rνρσFrνρσ = 0. (3.28)

For (3.8), i.e. {a, b, c} = {µ, 11, r} we use Fνρστ = 0 but we have to be careful since
Fνµ11r 6= 0. However we can use a gauge in which Bµν is transverse, i.e. ∂µB

µν = 0,
exploiting (3.24):

∂a1

(√
−g7F

a1µ11r
)

+ 1
4 · Lε

µ11ra1...a4Fa1...a4 = 0.

∂ν
(√
−g7F

νµ11r
)

+ 3
L
εµ11rνρστFνρστ =

∂ν

(
r5

L5 g
rrg11,11gνσgµρFσρ11r

)
r5

L5 g
rrg11,11gνσgµρ

(
r3N4(r) + 3r2N ′4(r)

)
gνσ∂νBσρ = 0. (3.29)

For (3.10), i.e. {a, b, c} = {µ, ν, r} we get Fρµνr = 0 and Fρστ11 = 0:

∂a1

(√
−g7F

a1µνr
)

+ 1
4 · Lε

µνra1...a4Fa1...a4 =

∂ρ
(√
−g7F

ρµνr)+ 3
L
εµνrρστ11Fρστ11 = 0. (3.30)

For (3.11), i.e. {a, b, c} = {µ, ν, τ} we have to calculate:
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∂a1

(√
−g7F

a1µντ
)

+ 1
4 · Lε

µντa1...a4Fa1...a4 =

∂r
(√
−g7F

rµντ )+ 3
L
εµντρσ11rFρσ11r =

∂r

(
r5

L5 g
rrgµρgνσgττFrρστ

)
+ 3
L
εµνρστ11rFρσ11r =

−∂r
(
r

L
ηµρηνσFρστr

)
− 3
L
εµνρσFrρσ11 =

−∂r

(
r

L
ηµρηνσεαβγδ

(
3r2

m2N4(r) (ησα∂ρ∂βBγδ − ηρα∂σ∂βBγδ)
))

+ 3
L
εµνρσ

(
r3N4(r) + 3r2N ′4(r)

)
Bρσ =

−∂r

(
r

L

(
3r2

m2N4(r)
(
ηµρενβγδ∂ρ∂βBγδ − ηνσεµβγδ∂σ∂βBγδ

)))

+ 3
L
εµνρσ

(
r3N4(r) + 3r2N ′4(r)

)
Bρσ. (3.31)

After contracting this term with εµ′ν′µν and using the generalized Kronecker delta δµ1...µs
ν1...νs =

−1
(n−s)!ε

µ1...µsρs+1...ρnεν1...νsρs+1...ρn , we see that it is zero:

−εµ′ν′µν∂r

(
r

L

(
3r2

m2N4(r)
(
ηµρενβγδ∂ρ∂βBγδ − ηνσεµβγδ∂σ∂βBγδ

)))

+εµ′ν′µν
3
L
εµνρσ

(
r3N4(r) + 3r2N ′4(r)

)
Bρσ =

−∂r

(
r

L

(
6r2

m2N4(r)ηµρδβγδµ′ν′µ∂ρ∂βBγδ

))

+ 6
L
δρσµ′ν′

(
r3N4(r) + 3r2N ′4(r)

)
Bρσ =

−∂r

(
r

L

(
6r2

m2N4(r)ηµρδγδµ′ν′∂ρ∂µBγδ

))

+ 6
L
δρσµ′ν′

(
r3N4(r) + 3r2N ′4(r)

)
Bρσ =

−12
L
∂r
(
r3N4(r)

)
Bµ′ν′

+12
L

(
r3N4(r) + 3r2N ′4(r)

)
Bµ′ν′ = 0. (3.32)

We conclude that the solution (3.22) solves all equations of motion.

3.3 Normalization

To normalize our fluctuation we plug it back into the Lagrangian
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2κ2
11L

(b)
11 =

∑
L

(i)
EH

+
√
−g 30

L2 −
√
−g

2 · 4!F
a1...a4Fa1...a4

+
√
gS4

2 · 4!Lε
a1...a7Aa1...a3Fa4...a7

=
∑
L

(i)
EH

+
√
−g 30

L2

−
√
−g
4 F rµν11Frµν11 (3.33)

−
√
−g
12 F ρµν11Fρµν11 (3.34)

−
√
−g
4 FµρτrFµρτr (3.35)

+
√
gS4

2L ερτrσµν11AρτrFσµν11 (3.36)

+ 3
√
gS4

4L εµν,11σρτrAµν,11Fσρτr. (3.37)

We will calculate each line individually. The first line (3.33) yields

−
√
−g
4 F rµν11Frµν11 =

−
r5√gS4

L54 grrgρµgσνg11,11Frρσ11Frµν11 =

−
r5√gS4

L54
L4 (r6 − r6

KK

)
r10 r4 (rN4(r) + 3N ′4(r)

)2
ηρµησνBµνBρσ =

−√gS4
r6 − r6

KK

4Lr
(
rN4(r) + 3N ′4(r)

)2
ηρµησνBµνBρσ =

−√gS4
1
4

(
L3m2r3 − 36r5

L

)
N4(r)2ηρµησνBµνBρσ. (3.38)

The second on (3.34) simplifies to

−
√
−g
12 F ρµν11Fρµν11 =

−
r5√gS4

L512 gαρgβµgγνg11,11Fαβγ11Fρµν11 =

−
r5√gS4

L54
L8

r8 r
6N4(r)2ηαρηβµηγν∂αBβγ∂ρBµν =

−√gS4
L3r3

4 N4(r)2ηαρηβµηγν∂αBβγ∂ρBµν . (3.39)

Next we calculate the third line (3.35)
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−
√
−g
4 FµρτrFµρτr =

−
r5√gS4

L54 gµνgρσ
3r2

m2N4(r)εαβγδ (ησα∂ν∂βBγδ − ηνα∂σ∂βBγδ)

·3r
2

m2N4(r)εα′β′γ′δ′ (
ηρα′∂µ∂β′Bγ′δ′ − ηµα′∂ρ∂β′Bγ′δ′

)
=

−
9r5√gS4

4m4L
N4(r)2ηµνηρσεαβγδ (ησα∂ν∂βBγδ − ηνα∂σ∂βBγδ)

·εα′β′γ′δ′ (
ηρα′∂µ∂β′Bγ′δ′ − ηµα′∂ρ∂β′Bγ′δ′

)
=

−
9r5√gS4

4m4L
N4(r)2ηµνηρσηαα

′′
ηββ

′′
ηγγ

′′
ηδδ

′′
εα′′β′′γ′′δ′′ (ησα∂ν∂βBγδ − ηνα∂σ∂βBγδ)

·εα′β′γ′δ′ (
ηρα′∂µ∂β′Bγ′δ′ − ηµα′∂ρ∂β′Bγ′δ′

)
=

−
9r5√gS4

4m4L
N4(r)2ηµνηρσηαα

′′
ηββ

′′
ηγγ

′′
ηδδ

′′
εα′′β′′γ′′δ′′εα

′β′γ′δ′
ησα∂ν∂βBγδηρα′∂µ∂β′Bγ′δ′

9r5√gS4

4m4L
N4(r)2ηµνηρσηαα

′′
ηββ

′′
ηγγ

′′
ηδδ

′′
εα′′β′′γ′′δ′′εα

′β′γ′δ′
ησα∂ν∂βBγδηµα′∂ρ∂β′Bγ′δ′

9r5√gS4

4m4L
N4(r)2ηµνηρσηαα

′′
ηββ

′′
ηγγ

′′
ηδδ

′′
εα′′β′′γ′′δ′′εα

′β′γ′δ′
ηνα∂σ∂βBγδηρα′∂µ∂β′Bγ′δ′

−
9r5√gS4

4m4L
N4(r)2ηµνηρσηαα

′′
ηββ

′′
ηγγ

′′
ηδδ

′′
εα′′β′′γ′′δ′′εα

′β′γ′δ′
ηνα∂σ∂βBγδηµα′∂ρ∂β′Bγ′δ′ =

−
9r5√gS4

4m4L
N4(r)2ηµνηββ

′′
ηγγ

′′
ηδδ

′′
εα′β′′γ′′δ′′εα

′β′γ′δ′
∂ν∂βBγδ∂µ∂β′Bγ′δ′

+
9r5√gS4

4m4L
N4(r)2δνα′ηρα

′′
ηββ

′′
ηγγ

′′
ηδδ

′′
εα′′β′′γ′′δ′′εα

′β′γ′δ′
∂ν∂βBγδ∂ρ∂β′Bγ′δ′

+
9r5√gS4

4m4L
N4(r)δσα′ηµα

′′
ηββ

′′
ηγγ

′′
ηδδ

′′
εα′′β′′γ′′δ′′εα

′β′γ′δ′
∂σ∂βBγδ∂µ∂β′Bγ′δ′

−
9r5√gS4

4m4L
N4(r)2ηρσηββ

′′
ηγγ

′′
ηδδ

′′
εα′β′′γ′′δ′′εα

′β′γ′δ′
∂σ∂βBγδ∂ρ∂β′Bγ′δ′ =

−
18r5√gS4

4m4L
N4(r)2ηµνηββ

′′
ηγγ

′′
ηδδ

′′
εα′β′′γ′′δ′′εα

′β′γ′δ′
∂ν∂βBγδ∂µ∂β′Bγ′δ′

+
9r5√gS4

2m4L
N4(r)2ηρα

′′
ηββ

′′
ηγγ

′′
ηδδ

′′
εα′′β′′γ′′δ′′ενβ

′γ′δ′
∂ν∂βBγδ∂ρ∂β′Bγ′δ′ =

9r5√gS4

2m4L
N4(r)2ηµνηββ

′′
ηγγ

′′
ηδδ

′′
δβ

′γ′δ′

β′′γ′′δ′′∂ν∂βBγδ∂µ∂β′Bγ′δ′ =

9r5√gS4

2m4L
N4(r)2ηµνηββ

′
ηγγ

′′
ηδδ

′′
δγ

′δ′

γ′′δ′′∂ν∂βBγδ∂µ∂β′Bγ′δ′ =

9r5√gS4

m4L
N4(r)2ηµνηββ

′
ηγγ

′
ηδδ

′
∂ν∂βBγδ∂µ∂β′Bγ′δ′ =

9r5√gS4

L
N4(r)2ηγγ

′
ηδδ

′
BγδBγ′δ′ .

(3.40)

The fourth line (3.36) reads
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√
gS4

2L ερτrσµν11AρτrFσµν11 =

−
√
gS4

L

3r2

2m2N4(r)ερσµνεαβγδηρα∂βBγδr3N4(r) (∂σBµν − ∂µBσν + ∂νBσµ) =
√
gS4

L

9r5

2m2N4(r)2ηββ
′
ηγγ

′
ηδδ

′
δσµνβ′γ′δ′∂βBγδ (∂σBµν − ∂µBσν + ∂νBσµ) =
√
gS4

L

9r5

m2N4(r)2ηββ
′
ηγγ

′
ηδδ

′
∂βBγδ∂βBγ′δ′ =

−
√
gS4

L
9r5N4(r)2ηγγ

′
ηδδ

′
BγδBγ′δ′ . (3.41)

And finally we calculate the last line (3.37)

3
√
gS4

4L εµν,11σρτrAµν,11Fσρτr =

−3
√
gS4

4L εµνσρr3N4(r)Bµν
3r2

m2N4(r)
(
εαβγδηρα∂σ∂βBγδ − εαβγδησα∂ρ∂βBγδ

)
=

−
√
gS4

L

9r5

2m2N4(r)2εµνσρr3Bµνε
αβγδηρα∂σ∂βBγδ =

√
gS4

L

9r5

m2N4(r)2ηββ
′
ηγγ

′
ηδδ

′
δµνσβ′γ′δ′Bµν∂σ∂βBγδ =

−
√
gS4

L
9r5N4(r)2ηγγ

′
ηδδ

′
Bγ′δ′Bγδ. (3.42)

Altogether we get the simple term

−√gS4
1
4L

3m2r3N4(r)2ηρµησνBµνBρσ −
√
gS4

L3r3

4 N4(r)2ηαρηβµηγν∂αBβγ∂ρBµν =

−√gS4
1
4L

3r3N4(r)2ηρµησνBµν
(
m2 −�

)
Bρσ. (3.43)

Integrating over the sphere with radius L
2 yields

L4 = −
ˆ

drdτdx11
1

2κ2
11

8π2

3
L4

16
L3

4 r3N4(r)2ηρµησνBµν
(
m2 −�

)
Bρσ

= −
ˆ

dr R11R4
1

2κ11

π4

3
L7

2 r3N4(r)2ηρµησνBµν
(
m2 −�

)
Bρσ

= −1
4CBη

ρµησνBµν
(
m2 −�

)
Bρσ (3.44)

Finally we calculate the resulting normalization
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CB = R11R4
2

2κ2
11
L7π

4

3

ˆ
dr r3N4(r)2

N4(rKK)−2 = 0.116079R11R4
2

2κ2
11
L7π

4

3 r
4
KK

= 0.116079 2
π235L

6λN2
CM

2
KK

= 0.0000967936L6λN2
CM

2
KK

N4(rKK)−1 = 0.00983838L3λ
1
2NCMKK . (3.45)

We normalize the kinetic term in B to 1
4 such that each polarization mode in

Bµν =
∑
λ

1√
�
εµνσρq

σ
(λ)∂

ρG(λ)(x) (3.46)

has a canonical normalization. This ansatz automatically solves the transversality condi-
tion. The sum runs over all 3 physical polarizations with unit polarization vectors qσ(λ).
Suppressing the polarization label we explicitly calculate

Bµν
(
m2 −�

)
Bµν =

1√
�
εµνσρqσ∂ρG(x)

(
m2 −�

) 1√
�
εµνσ′ρ′qσ

′
∂ρ

′
G(x) =

−2δσρσ′ρ′
1√
�
qσ∂ρG(x)

(
m2 −�

) 1√
�
qσ

′
∂ρ

′
G(x) =

2qσqσG(x)
(
m2 −�

)
G(x)− 2qρ∂ρG(x) 1

�

(
m2 −�

)
qσ∂

σG(x), (3.47)

which for physical polarizations, i.e. a transverse one, yields

2G(x)
(
m2 −�

)
G(x). (3.48)

For the unphysical longitudinal mode qρ = 1√
−p2

pρ, where p denotes the momentum of

G (x), we get in momentum space −2G(p)
(
m2 + p2)G(p) + 2G(p)

(
m2 + p2)G(p) = 0.

In (3.46) we see that the pseudo-vector fluctuation is a massive vector state. It appears
in the D4-brane action (2.26) in linear combination of Fab. In the restframe we see that
B0µ = 0, thus Bij has to transform like Fij under charge and parity transformation. Its
quantum numbers are thus JPC = 1+− as stated in the beginning of this section.

Part III

Witten-Sakai-Sugimoto model
In the Witten model it is conjectured that the geometry (1.7) is dual to the low-energy
limit of pure Yang-Mills theory with NC � 1 colors. This duality is an open-closed string
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0 1 2 3 (4) 5 6 7 8 9
NC D4 ◦ ◦ ◦ ◦ ◦

NF D8−D8 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Table 6. Brane configuration in the Witten-Sakai-Sugimoto model.

gmn, Bmn

Am

r

τ

D8

Figure 5. D8 brane embedded in the near-horizon geometry (1.7).

duality, i.e. it relates a theory of geometry to a gauge theory. To get to a QCD-like theory
we also need flavor degrees of freedom. Chiral quark pairs are introduced by including
probe D8 and anti-D8 branes, see figure 5. The probe approximation means that we do
not include backreactions of the D8 branes to the geometry. It corresponds to the quenched
case in lattice QCD, where quark loops are neglected. Sakai and Sugimoto [7] proposed the
brane configuration shown in table 6. If the branes are placed at antipodal points in the
compactified τ -direction the anti-D8 brane is forced to join the D8 brane at rKK and thus
breaks the chiral symmetry U (NF )R × U (NF )L → U (NF )R+L. This symmetry breaking
gives rise to Goldstone bosons, namely pions as we will be seen below. If the branes are
not placed at antipodal points, the branes join at r > rKK .

To start the calculation we have to reduce our 11-dimensional metric to 10 dimensions.
We use

ds2
11 = r2

L2

(
f (r) dx2

4 + ηµνdxµdxµ + dx2
11

)
+ L2

r2
dr2

f (r) + L2

4 dΩ2
4

= GMNdxMdxN

= e−
2φ
3 gMNdx

MdxN + e
4φ
3 dx2

11

= e−
2φ
3 gM̃Ñdx

M̃dxÑ + r2

L2 f (r) dx2
4 + e

4φ
3 dx2

11. (3.49)

With eφ =
(
r
L

) 3
2 we can identify
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gµν = r3

L3 ηµν ,

gαβ = rL

4 δαβ,

grr = L

r f(r) ,

gττ = r3

L3 f(r). (3.50)

The volume elements read

√
−det (G) = r5

16L, (3.51)√
−det (g) = r9

24L5 , (3.52)√
−det (g̃) =

√
r15

28L7f(r) . (3.53)

For the D8 embedding it turns out to be convenient to define new coordinates Z and K by

Z2 = r6

r6
KK

− 1

= K − 1
= f(r)K. (3.54)

The transformation of the line element can be calculated by

2dZ Z = 6 r5

r6
KK

dr

dZ2 = 9 r10

f(r)K r12
KK

dr2

= 9 r4

f(r) r6
KK

dr2, (3.55)

and

grrdr2 = L

r f(r)dr
2

= gZZdZ2

= gZZ9 r4

f(r) r6
KK

dr2,

gZZ = Lr6
KK

9 r5 . (3.56)
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The field strength tensor living on the D8 brane is

Fµrdxµdr = FµZdxµdZ

= 3 r2√
f(r) r3

KK

FµZdxµdr (3.57)

and thus its components transform as

Fµr = 3 r2√
f(r) r3

KK

FµZ . (3.58)

The action of the joined D8 branes describes the dynamics of the qq mesons through
flavor gauge fields on the branes. It is given by the DBI action

SD8 = −µ8Tr
ˆ

dx9e−φ
√
−det

(
gM̃Ñ + 2πα′FM̃Ñ +BM̃Ñ

)
, (3.59)

and a 9-dimensional Chern-Simons action

SCS = iµ8

ˆ
d=9

Tr
(
exp

(
2πα′F2 +B2

)
∧ C3

)
, (3.60)

with brane tension µ8 = (2π)−8 l−9
S . The Chern-Simons action will be important to calcu-

late decay rates.
By using

det1/2 (1 +M) = exp
[1

2tr
(
M − 1

2M
2 + 1

3M
3 − 1

4M
4
)]

, (3.61)

the DBI action may be simplified to

SD8 = −µ8Tr
ˆ

dx9e−φ
√
−g̃

(
1 + 1

4
(
2πα′

)2
gM̃ÑgÕP̃FM̃ÕFÑP̃ + ...

)
. (3.62)

This action contains kinetic, mass and interaction terms. As a first step let us look at the
former two. The relevant second-order term in the field strength reads
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S
(F 2)
D8 =− µ8Tr

ˆ
dx9e−φ

√
−g̃1

4
(
2πα′

)2
gM̃ÑgÕP̃FM̃ÕFÑP̃

=− µ8
8π2

3
1
4
(
2πα′

)2 Trˆ dx4dr e−φ
√
−g̃gM̃ÑgÕP̃FM̃ÕFÑP̃

=− µ8
2π2

3
(
2πα′

)2 Trˆ dx4dZ
(
r

L

)− 3
2 r11/2L−7/2r3

KK

243

·
(
L6

r6 η
µνηρσFµρFνσ + 29L2r2

r6
KK

ηµνηZZFµZFνZ

)

=− µ8
4π2

3
(
2πα′

)2 Trˆ dx4dZ r3
KK

16 · 3L2r2

(
1
2η

µνηρσFµρFνσ + M2
KK r

8

r8
KK

ηµνηZZFµZFνZ

)

=− µ8
π2

3
(
2πα′

)2 L4rKK
4 · 3 Tr

ˆ
dx4dZ K−1/3

(1
2η

µνηρσFµρFνσ +M2
KKK

4/3ηµνηZZFµZFνZ

)
=− κTr

ˆ
dx4dZ

(1
2K
−1/3ηµνηρσFµρFνσ +KM2

KKη
µνηZZFµZFνZ

)
, (3.63)

with κ = µ8
π2

3 (2πα′)2 L4rKK
4·3 = λNC

216π3 .

4 Mesons

Variation of S(F 2)
D8 with respect to Aα yields the equations of motion

0 =1
2K
−1/3ηµνηρσFµρFνσ +KM2

KKη
µνηZZFµZFνZ

=2K−1/3m2
AAα + 2M2

KK∂Z
(
1 + Z2

)
∂ZAα

λnAα =−
(
1 + Z2

)1/3
∂Z
(
1 + Z2

)
∂ZAα. (4.1)

To solve them we make the ansatz

AZ = UKKφ0 (Z)π (xµ) ,
Aµ = ψ1 (Z) ρµ (xν) ,
FZµ = ψ′1 (Z) ρµ (xν)− UKKφ0 (Z) ∂µπ (xν) ,
Fµν = ψ1 (Z) ∂µρν (xρ)− ψ1 (Z) ∂νρµ (xρ) . (4.2)

To ease notation we will from now on raise indices with η instead of g. We obtain the
effective action

– 36 –



S
(F 2)
D8 = −κTr

ˆ
dx4dZ

(1
2K
−1/3ηµνηρσFµρFνσ +KM2

KKη
µνηZZFµZFνZ

)
= −κTr

ˆ
dx4dZ

[
2K−1/3ψ2

1 (∂µρν)2 + 1
22KM2

KKU
2
KKφ

2
0 (∂µπ)2 +KM2

KKψ
′2
1 ρµρ

µ + ...

]
= −κTr

ˆ
dx4dZ

[
(∂µρν)2 + 1

22KM2
KKU

2
KKφ

2
0 (∂µπ)2 + λ1M

2
KK

2
2
λ1
Kψ′21 ρµρ

µ + ...

]
.

(4.3)

Here Z runs from −∞ to +∞, which corresponds to integrating over a joined pair of D8
and D8 branes. The used normalizations are explained in the following subsection.

4.1 Normalization of meson modes

In order for the meson fields in (4.3) to be canonically normalized we have to impose the
conditions

2κ
ˆ

dZ K−1/3ψ2
1 = 1,

2κM2
KKU

2
KK

ˆ
dZ Kφ2

0 = 1,

2
λ1
κ

ˆ
dZ Kψ′21 = 1. (4.4)

The normalization for ψ1 is
ˆ

dZ K−1/3ψ2
1 (Z) = 2.80301ψ2

1 (0)

ψ−2
1 (0) = 2κ · 2.80301

ψ−1
1 (0) = 2.36771 · κ

1
2 (4.5)

and the first two eigenvalues are

λ1 = 0.669314,
λ2 = 1.569. (4.6)

For φ0 we make the ansatz

φ0 = c1
1
K
, (4.7)

which is canonically normalized if we take
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2κM2
KKU

2
KK

ˆ
dZ Kφ2

0 = 1

2κM2
KKU

2
KKc

2
1

ˆ
dZ 1

K
= 1

2κM2
KKU

2
KKc

2
1π = 1

1
MKKUKK

√
2κπ

= c1

1
KMKKUKK

√
2κπ

= φ0. (4.8)

5 Choice of parameters

From this action (4.3) we can infer the mass of the ρ meson to be m2
ρ = λ1MKK . By fitting

this result to the experimental value of mρ ≈ 766MeV we fix the Kaluza-Klein mass to
MKK = 949MeV [7].

The term containing the Goldstone bosons of chiral symmetry breaking appearing in
(4.3) can be matched to

SD8 = f2
π

4

ˆ
d4xTr

(
U−1∂U

)2
+ ..., U = Pexp

{
i

ˆ
dZ AZ

}
, (5.1)

by identifying the so-called pion decay constant

f2
π = 1

54π4λNCM
2
KK . (5.2)

In order to calculate glueball-meson interactions, we have to extrapolate our duality to
finite coupling λ and finite NC = 3. To do so we match the pion decay constant to the
experimental value fπ ≈ 92.4MeV, which yields the coupling constant λ ≈ 16.63.

Part IV

Decay of pseudo-vector glueballs
6 Chern-Simons term on D8-brane

To obtain an effective Lagrangian, which describes the decay of pseudo-vector glueballs
in mesons, we look at the Chern-Simons action of a D8-brane. There are also interaction
terms if we expand the DBI action to higher order terms in the field strength. We will see
however that the interaction terms coming from the Chern-Simons action dominate over
the DBI contributions; the latter will not change the interpretation of our results. The
Chern-Simons action for a D8 brane reads (see e.g. [10])
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SCS =iµ8

ˆ
Tr
(
exp

(
2πα′F2 +B2

)
∧ C3

)
iµ8

ˆ
Tr
(
exp

(
2πα′F2

)
∧ exp (B2) ∧ C3

)
. (6.1)

Since we are only interested in glueball decays into mesons and not into other glueballs, it
is sufficient to look at the term linear in B2

SCS |B2
= iµ8

ˆ (2πα′)2

2 Tr (F2 ∧ F2 ∧B2 ∧ C3) .

By partial integration

8 · 6 · F2 ∧ F2 ∧B2 ∧ C3 =
εM1...M9FM1M2FM3M4BM5M6CM7M8M9 =

−2εM1...M9AM2∂M1FM3M4BM5M6CM7M8M9

−2εM1...M9AM2FM3M4∂M1BM5M6CM7M8M9

−2εM1...M9AM2FM3M4BM5M6∂M1CM7M8M9 =
2εM1...M9AM1FM2M3BM4M5∂M6CM7M8M9 =
1
2ε

M1...M9AM1FM2M3BM4M5FM6M7M8M9 =
1
2 · 4 · 4! ·A1 ∧ F2 ∧B2 ∧ F4, (6.2)

where in the second step we have used that the only non-vanishing possibility to distribute
the 4 spherical indices is ∂α1Cα2α3α4 , we may simplify the action SCS |B2

to

iµ8
(2πα′)2

2

ˆ
Tr (A1 ∧ F2 ∧B2 ∧ F4) =

iµ8
(2πα′)2

2
6
L

8π2

3

(
L

2

)4 1
gs

ˆ
Tr (A1 ∧ F2 ∧B2) =

iµ8
(2πα′)2

2 L3π2 1
gs

ˆ
Tr (A1 ∧ F2 ∧B2) =

iµ8
(2πα′)2

2
1
gs
L3π2 1

4ε
a1a2a3a4a5

ˆ
TrAa1Fa2a3Ba4a5 =

iµ8
(2πα′)2

2
1
gs
L3π2 1

4ε
µνρσZ

ˆ
TrAZFµνBρσ

−iµ8
(2πα′)2

2
1
gs
L3π2 1

2ε
µνρσZ

ˆ
TrAµFZνBρσ. (6.3)

For convenience we define the constant C = µ8 (2πα′)2 1
8gsL

3π2 and use some renamed
fields in our previously obtained equations
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AZ = UKKφ0 (Z) ÃZ (xµ) ,
Aµ = ψ1 (Z) Ãµ (xν) ,
FZµ = ψ′1 (Z) Ãµ (xν)− UKKφ0 (Z) ∂µÃ (xν) ,
Fµν = ψ1 (Z) ∂µÃν (xρ)− ψ1 (Z) ∂νÃµ (xρ)

= ψ1 (Z) F̃µν , (6.4)

Bµν = Aµν,11

= r3N4(r)B̃µν , (6.5)

B̃µν = 1√
�
εµνσρq

σ∂ρG̃(x), (6.6)

N4(rKK)−1 = 0.00983838L3λ
1
2NCMKK ,

ψ−1
1 (0) = 2.36771 · κ

1
2 ,

φ0 = 1
KMKKUKK

√
2κπ

,

κ = λNc

216π3 ,

λ = 16.63. (6.7)

The lowest eigenmodes of ÃZ (xµ) and Ãν (xµ) correspond to π (xµ) and ρν (xµ) respec-
tively. The components of B2 are Bµν , and B̃µν is introduced to denote Bµν of chapter 3.
We accordingly renamed G(x) to G̃(x) and define

G(x) =r3N4(r)G̃(x). (6.8)

We continue the calculation we stopped at (6.3) and get
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CεµνρσZ
ˆ

TrAZFµνBρσ

−2CεµνρσZ
ˆ

TrAµFZνBρσ =

Tr
(
T aT b

)
CεµνρσZ

ˆ
AaZF

b
µνBρσ

−Tr
(
T aT b

)
2CεµνρσZ

ˆ
AaµF

b
ZνBρσ

Tr
(
T c
[
T a, T b

])
CεµνρσZ

ˆ
AcZA

a
µA

b
νBρσ

−Tr
(
T c
[
T a, T b

])
2CεµνρσZ

ˆ
AcµA

a
ZA

b
νBρσ =

−Tr
(
T aT b

) 4C
mG

ˆ
AaZF

b
µνq

µr3N4(r)∂νG̃(x)

Tr
(
T aT b

) 4C
mG

ˆ
AaµF

b
Zν (qµ∂ν − qν∂µ) r3N4(r)∂νG̃(x)

−Tr
(
T c
[
T a, T b

]) 12C
mG

ˆ
AcZA

a
µA

b
νq
µr3N4(r)∂νG̃(x) =

−Tr
(
T aT b

) 4C
mG

ˆ
AaZF

b
µνq

µr3N4(r)∂νG̃(x)

−Tr
(
T aT b

) 4C
mG

ˆ
Aaµ∂νA

b
Zr

3N4(r) (qµ∂ν − qν∂µ) G̃(x)

−Tr
(
T c
[
T a, T b

]) 12C
mG

ˆ
AcZA

a
µA

b
νq
µr3N4(r)∂νG̃(x) =

−Tr
(
T aT b

)ˆ 4C
mG

UKKφ0ψ1r
3N4Ã

a
Z F̃

b
µνq

µ∂νG̃(x)

−Tr
(
T aT b

) ˆ 4C
mG

UKKφ0ψ1r
3N4Ã

a
µ∂νÃ

b
Z (qµ∂ν − qν∂µ) G̃(x)

−Tr
(
T c
[
T a, T b

])ˆ 12C
mG

UKKr
3φ0ψ

2
1N4Ã

c
ZÃ

a
µÃ

b
νq
µ∂νG̃(x) =

−iTr
(
T aT b

) g1
mG

ÃaZ F̃
b
µνq

µ∂νG̃(x) (6.9)

−iTr
(
T aT b

) g1
mG

Ãaµ∂νÃ
b
Z (qµ∂ν − qν∂µ) G̃(x) (6.10)

−iTr
(
T c
[
T a, T b

]) g2
mG

ÃcZÃ
a
µÃ

b
νq
µ∂νG̃(x). (6.11)

The first two lines after the last equality sign will be relevant for the 2-body and the third
for the 3-body decay.
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The coupling constants in this Lagrangian turn out to be

g1 =
ˆ

4CUKKr3φ0ψ1N4

=
ˆ
µ8

(2πα′)2

2
1
gs
L3π2UKKr

3φ0ψ1N4

=
ˆ
µ82α′2 1

gs
L3π4UKKr

3φ0ψ1N4

= 1
gs

2µ8π
4α′2L3 1

MKK

√
2πκ

[N4 (rKK)] [ψ1 (0)]
ˆ

dZ r3 1
K
N4ψ1

= 1
gs

2µ8π
4α′2

r3
KK

λ
1
2NCM2

KKκ
√

2π
1.63571

0, 00983838 · 2, 36771

=70.2191 2π4
√

2π
(2π)−8 gsls

g2
s l

6
s

π3216 r3
KK

λ
3
2N2

CM
2
KK

=70.2191 (2π)4

8
√

2π
(2π)−8 λ

2πNCMKK

(8πNc

L3

)2 (2π)3 27 r3
KK

λ
3
2N2

CM
2
KK

=70.2191 (2π)−5/2 λ

8NCMKK

(8πNc

L3

)2 27 r3
KK

λ
3
2N2

CM
2
KK

=70.2191 (2π)−1/2 2 1
λ

1
2NC

=56.0268λ−
1
2N−1

C (6.12)

and

g2 =
ˆ

12CUKKr3φ0ψ
2
1N4

=5132.09λ−1N
− 3

2
C . (6.13)

The vector mesons corresponding to mode ψ1 are parametrized as

ÃaµT
a = εµ√

2


ρ3 + ω8√

3 ρ1 − iρ2 K∗1 − iK∗2
ρ1 + iρ2

ω8√
3 − ρ3 K∗3 − iK∗4

K∗1 + iK∗2 K∗3 + iK∗4 −2ω8√
3

 , (6.14)

the pseudoscalar Goldstone bosons as

ÃaZT
a = 1√

2


π3 + η8√

3 π1 − iπ2 K1 − iK2

π1 + iπ2
η8√

3 − π3 K3 − iK4

K1 + iK2 K3 + iK4 −2η8√
3

 . (6.15)

Furthermore there are excited modes ψ2, ψ3..., which however are too heavy for the con-
sidered decays. For decays of excited glueballs or if one extrapolates the glueball mass to
values obtained from the lattice, those will become relevant.
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7 Glueball-meson interactions

7.1 2-body decay

As already mentioned the 2-body decay is obtained from (6.9) and (6.10),

−iTr
(
T aT b

) g1
mG

ÃaZ F̃
b
µνq

µ∂νG̃(x)

−iTr
(
T aT b

) g1
mG

Ãaµ∂νÃ
b
Z (qµ∂ν − qν∂µ) G̃(x) =

−i g1
mG

ÃaZ

(
∂µÃ

a
ν − ∂νÃaµ

)
qµ∂νG̃(x)

−i g1
mG

(
Ãaµ∂νÃ

a
Z − Ãaν∂µÃaZ

)
qµ∂νG̃(x) =

−i g1
mG

εν
(
pν(G)p(ω)

µ qµ + qνp(η)
µ pµ(G) − qνp(ω)

µ pµ(G) − pν(G)p(η)
µ qµ

) (
Ãa(µ)Ã

a
ZG̃(x)

)
. (7.1)

Note that to ease notation we used p
(ω)
µ and p

(η)
µ as the corresponding momenta of Ãµ

a

and ÃaZ , the obtained equations are however valid for all mesons, not only ω and η. The
polarization of the vector meson and the glueball are εν and qν and the momentum of the
glueball is pµ(G).

In the center-of-mass frame (CMS) we can simplify the amplitude further

Mν =− i g1
mG

(
pν(G)p(ω)

µ qµ + qνp(η′)
µ pµ(G) − qνp(ω)

µ pµ(G) − pν(G)p(η′)
µ qµ

)
=− i g1

mG

(
pν(G)p(ω)

µ qµ + qνp(η′)
µ pµ(G) − qνp(ω)

µ pµ(G) − pν(G)p(η′)
µ qµ

)
=− i g1

mG

(
pν(G)p(ω)

z δκ3 − qνmGE
(η′) + qνmGE

(ω) − pν(G)p(η′)
z δκ3

)
=− i g1

mG

(
2 pν(G)p(ω)

z δκ3 + qνmG

(
E(ω) − E(η′)

))
. (7.2)
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To calculate the total cross section we need to take the absolute square of the amplitude

|M|2 =1
3
∑
κ

∑
λ

εµλε
ν
λMκ

µMκ∗
ν

=1
3
∑
κ

(
ηµν +

pµ(ω)p
ν
(ω)

m2
ω

)
Mκ

µMκ∗
ν

=1
3g

2
Gωη′

1
m2
G

(
−4m2

Gp
(ω)2
z +

∑
κ

(
mGq

ν
(
E(ω) − E(η′)

))2

+
∑
κ

4 δκ3 qνpν(G)p(ω)
z mG

(
E(ω) − E(η′)

))

+ 1
3g

2
Gωη′

1
m2
ω

1
m2
G

((
2p(ω)
ν pν(G)p(ω)

z

)2
+
∑
κ

(
p(ω)
ν qνmG

(
E(ω) − E(η′)

))2

+4
∑
κ

p(ω)
ν pν(G)p(ω)

z δκ3p
(ω)
µ qµmG

(
E(ω) − E(η′)

))

=1
3g

2
Gωη′

1
m2
G

(
−4m2

Gp
(ω)2
z + 3m2

G

(
E(ω) − E(η′)

)2
)

+ 1
3g

2
Gωη′

1
m2
ω

1
m2
G

((
−2E(ω)mGp

(ω)
z

)2
+
(
p(ω)
z mG

(
E(ω) − E(η′)

))2

−4E(ω)m2
Gp

(ω)
z p(ω)

z

(
E(ω) − E(η′)

))
=1

3g
2
Gωη′

(
−4 p(ω)2

z + 3
(
E(ω) − E(η′)

)2
+ 4
m2
ω

E(ω)2p(ω)2
z

1
m2
ω

p(ω)2
z

(
E(ω) − E(η′)

)2
− 4
m2
ω

E(ω)p(ω)2
z

(
E(ω) − E(η′)

))
. (7.3)

Using the kinematic identities

E(ω) =
m2
G −m2

η +m2
ω

2mG
,

E(η′) =
m2
G −m2

ω +m2
η

2mG
,

p(ω)
z =

[(
m2
G − (mω +mη)2

) (
m2
G − (mω −mη)2

)]
2mG

, (7.4)

we get

|M|2 =
g2
Gωη′

(
m6
G − 2m4

G

(
m2
η + 3m2

ω

)
+m2

G

(
m2
η + 3m2

ω

)2
+ 8

(
m3
ω −m2

ηmω

)2
)

12m2
ωm

2
G

. (7.5)

The total decay rate reads

Γ = 1
8π |M|

2

∣∣∣p(G)
∣∣∣

M2 . (7.6)

Before calculating the 2-body decay rates we have to mention a small caveat in the calcula-
tion of decays including ω and η mesons. In the Standard model it turns that the fields η8
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Particle π K η′ η ρ K∗ ω φ G

Mass [MeV ] 140 497 1057.88 556.391 776 895 776 1019 2311

Table 7. Masses used in our calculation.

Channel Γ/mG #
ρπ 0.120815 3
KK∗ 0.0486318 4
η′ω 0.0168338 1
η′φ 0.00195568 1
ηω 0.0530406 1
ηφ 0.00857957 1
Sum 0.637382 11

Table 8. 2-body decay rates.

and ω8 in (6.14) and (6.15) and the corresponding U (1) fields η1 and ω1 are superpositions
of the physical fields η, η′, ω and ω′ according to

η8 =η′ sin (θP ) + η cos (θP ) ,
η1 =η′ cos (θP )− η sin (θP ) ,
ω8 =ω sin (θV ) + φ cos (θV ) ,
ω1=ω cos (θV )− φ sin (θV ) . (7.7)

We have used the values

θP =− 0.250503,
θV =0.61087,

=35◦. (7.8)

θP and θV correspond to the standard values stated in [13].
For the calculation of the 2-body decays we use the masses displayed in table 7. The

resulting 2-body decay rates are displayed in table 8. In the first column we denote the
involved particles of the decay channel. The values in the second column correspond to
one decay channel, e.g. ρ1π1. In the third column we state how many decay channels there
are. In the last line we write the sum over all channels.

7.2 3-body decay

The 3-body decay is obtained from (6.11)
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−iTr
(
T c
[
T a, T b

]) g2
mG

ˆ
ÃcZÃ

a
µÃ

b
νq
µ∂νG̃(x) =

f cab
g2
mG

ˆ
ÃcZÃ

a
µÃ

b
νq
µ∂νG̃(x), (7.9)

which yields

ε
(1)µ
λ ε

(2)ν
λ′ Mκ

µν =

ε
(1)µ
λ ε

(2)ν
λ′ f cab

g2
mG

(
qκµp

(G)
ν − p(G)

µ qκν

)
. (7.10)

The notation in the last line is a little bit subtle. The indices in f cab are supposed to match
the cross section we want to calculate. Furthermore we fixed a and b to satisfy a < b. In
CMS we calculate

|M|2 = 1
3
∑
κ
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λ ε
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where E denotes the kinetic energy. Particles 1 and 2 are vector-mesons and θ is the angle
between them. If we use the total energy e we obtain
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(7.12)

As a reminder we again state the coupling constant

g2 =
ˆ

12Cr3N4UKKφ0ψ
2
1

=5132.095λ−1N
− 3

2
C . (7.13)

The phase-space integral reads

Γ
mG

= 1
(2π)3

1
32m4

G

ˆ
|M|2 , (7.14)

where we integrate over the physical phase space. We obtain the solutions displayed in
table 9.

Channel Γ/mG # Decay Products
πρρ 0.0864591 3 π1ρ2ρ3,π2ρ1ρ3,π3ρ1ρ2

πK∗K∗ 0.00355496 6 π1K
∗
1K
∗
4 ,π1K

∗
2K
∗
3 ,π2K

∗
1K
∗
3 ,π2K

∗
2K
∗
4 ,π3K

∗
1K
∗
2 ,π3K

∗
3K
∗
4 ,

KρK∗ 0.000266598 12 K1ρ1K
∗
4 ,K1ρ2K

∗
3 ,K1ρ3K

∗
2 ,K2ρ1K

∗
3 ,...

KK∗ω 0.000263124 4 K1K
∗
2ω,K2K

∗
1ω,K3K

∗
4ω,K4K

∗
3ω

KK∗φ 0 4 K1K
∗
2φ,K2K

∗
1φ,K3K

∗
4φ,K4K

∗
3φ

η′K∗K∗ 0 2 η′K∗1K
∗
2 ,η′K∗3K∗4

ηK∗K∗ 0 2 ηK∗1K
∗
2 ,ηK∗3K∗4

Sum 0.284959 33

Table 9. 3-body decay rates.

Part V

Conclusion
In the first part we have briefly reviewed the Witten model, which is a predecessor of the
Witten-Sakai-Sugimoto model. We have calculated metric and field strength fluctuations,
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which are supposed to be dual to glueballs. These fluctuations are the same in the Witten-
Sakai-Sugimoto model. In part II we considered the Witten-Sakai-Sugimoto model, in
which fluctuations of the D8 branes correspond to qq-states in the dual field theory. We
obtained an effective Lagrangian that contains glueballs, mesons and their interactions,
neglecting the subdominant DBI action. We have calculated decays of the pseudo-vector
glueball in 2 and 3 mesons, which we found to be relativity broad. Experimentally this
means that the pseudo-vector glueball might be very hard to detect.

For our calculation we left the usual large NC-limit and used a finite ’t Hooft coupling,
thus backreactions and other corrections might become important. In the Witten-Sakai-
Sugimoto model quarks are massless. In [14] a holographic mechanism to include quark
masses. The idea is similar to extended technicolor theories. In our calculation we however
used, as a first approximation, experimentally obtained meson masses. As a future work
it might be interesting to study methods to include explicit quark masses, since such
mechanisms could lead to additional glueball-meson interaction terms. It could also turn
out to be useful to study the D4-D6 system of [15], since it might be easier to include
explicit quark masses to such a brane-setup.

Another possible research topic uses the Witten model to study dark matter. Non-
abelian gauge theories are candidates for self-interacting dark matter [16]. Glueball cross-
sections compatible with cosmological observations were calculated in [12], using an esti-
mate for the leading self-interaction Lagrangian. The Witten model would allow to derive
such cross-sections from first principles. It will be interesting to see how, or if, it is possible
to reproduce these results.
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