
Modern End-to-End Encrypted
Messaging for the Desktop

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Richard Bayerle
Matrikelnummer 1025259

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdozent Dipl.Ing. Mag. Dr. Edgar Weippl
Mitwirkung: Dr. Martin Schmiedecker

Wien, 2. Oktober 2017
Richard Bayerle Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Modern End-to-End Encrypted
Messaging for the Desktop

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Richard Bayerle
Registration Number 1025259

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdozent Dipl.Ing. Mag. Dr. Edgar Weippl
Assistance: Dr. Martin Schmiedecker

Vienna, 2nd October, 2017
Richard Bayerle Edgar Weippl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Richard Bayerle
Seestraße 67
78315 Radolfzell am Bodensee
Deutschland

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. Oktober 2017
Richard Bayerle

v

Acknowledgements

Thank you, Katherine.

vii

Kurzfassung

Das Ziel dieser Arbeit ist, Benutzer von Desktop-Betriebssystemen an den Fortschritten
im Bereich des Instant Messaging teilhaben zu lassen, die überwiegend auf mobilen
Geräten gemacht wurden.
Um dies zu erreichen, wurden aktuelle Technologien identifiziert und bewertet, sowohl
für zwei als auch für mehr Konversationspartner. Das Resultat ist ein direkter Vergleich
zwischen OpenPGP, OTR, und dem Signal Protocol zum einen, und eine Gegenüber-
stellung üblicher Mechanismen für Gruppenkonversationen mit spezielleren Protokollen
wie np1sec zum anderen. Weiterhin wurden die Anforderungen für ‘modernes’ Messaging
spezifiziert, und ihnen entsprechende Technologien ausgewählt.
Das Ergebnis ist ein erfolgreiches Plugin für die libpurple-Messaging-Library, das das
OMEMO-XMPP-Erweiterungsprotokoll implementiert, und somit auch dem weit ver-
breiteten Pidgin-Messenger zur Verfügung stellt. Um dies zu erreichen, wurden auch
Libraries für das Arbeiten mit der Signal Protocol-Implementation in C sowie das OME-
MO-Protokoll geschrieben. Weiterhin wurde auch ein libpurple-Plugin entwickelt, das es
ermöglicht, mehrere Geräte gleichzeitig zu verwenden.

ix

Abstract

The aim of this thesis is to let users of desktop operating systems partake in the advances
the field of instant messaging has made on mobile devices.
To this end, current technologies are first identified and evaluated, both for the two-
party and multiparty case. The outcome is a direct comparison between OpenPGP,
OTR, and the Signal Protocol for the former case, and a comparison between common
schemes for secure multiparty communication and specifically developed protocols such
as np1sec. Afterwards, the requirements for ‘modern’ messaging are laid down, and
fitting technologies chosen.
Based on this groundwork, the main result is a successful OMEMO XMPP extension
protocol plugin for the open-source libpurple messaging library whose graphical frontend
Pidgin is a widely used messenger. Achieving this required writing libraries to handle the
Signal Protocol library on a higher level, and for dealing with the OMEMO protocol itself.
Additionally, a further libpurple plugin for enabling multi-device support is written.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the Work and Methodology . 2
1.3 Background . 2

1.3.1 Privacy Attributes . 3
1.3.2 Technical Concepts . 4
1.3.3 Common Attacks . 5

2 State of the Art 7
2.1 Overview of Two-Party Encryption Schemes 7

2.1.1 (Open)PGP . 7
2.1.2 OTR . 11
2.1.3 Signal Protocol . 18
2.1.4 Other Protocols . 24

2.2 Evaluation of Two-Party Encryption Schemes 24
2.2.1 PGP . 24
2.2.2 OTR . 27
2.2.3 Signal Protocol . 30
2.2.4 Summary . 33

2.3 Overview of Multiparty Encryption Schemes 36
2.3.1 Two-Party Scheme Reuse . 36
2.3.2 Pairwise Sessions for Key Transport 37
2.3.3 Use of Group Key Agreement 38
2.3.4 Evaluation . 42

3 Design 45
3.1 Approach . 45
3.2 Used Technologies . 47

xiii

3.2.1 XMPP . 47
3.2.2 OMEMO . 48
3.2.3 Pidgin and libpurple . 51
3.2.4 Programming Language . 52
3.2.5 Additional Libraries . 52

4 Implementation 53
4.1 General Notes . 53
4.2 carbons . 54

4.2.1 XEP-0280: Message Carbons 54
4.2.2 Implementation Details . 56

4.3 axc . 57
4.3.1 The libsignal-protocol-c Interface 57
4.3.2 Implementation Details . 58

4.4 libomemo . 67
4.4.1 XEP-0384: OMEMO Encryption 67
4.4.2 Implementation Details . 70

4.5 lurch . 75
4.5.1 Design . 75
4.5.2 Implementation Details . 75

4.6 Evaluation . 87

5 Discussion 97
5.1 Conclusion . 97
5.2 Related Work . 98
5.3 Future Work . 98

List of Figures 99

List of Tables 101

Listings 101

Bibliography 103

CHAPTER 1
Introduction

1.1 Motivation

Most of the time, the motivation behind developing a new scheme or tool for end-to-end
encryption will sound very similar to Philip Zimmerman’s article “Why I Wrote PGP”
from 1991 [Zimb]. In short, it is the belief that privacy is a basic right. While this
idea is not very controversial and part of many countries’ constitutions in one way or
another, it seems to be the case that governments and companies simply cannot resist the
temptation posed by the huge amounts of easily collectable and searchable personal data
made available by the spread of information technology. Zimmerman updated his article
in 1999 to feature a few examples from his home country, the United States, and more
have emerged since then. A case which garnered a lot of attention was the revelation
of the United States National Security Agency’s PRISM program, which enables it to
directly access the data of many big providers of communication services used around
the world, such as Microsoft, Apple, Google and Facebook [GM].
Although the disclosure of PRISM was shocking, the more unsettling side was the
relatively lax restriction of access to private data already in place for law enforcement.
Ignoring the political issues behind this, the central problem is having to trust such
providers with sensitive information in the first place. Not taking legally binding orders
into account, providers still often maintain invasive policies in regards to personal data.
For instance, Google made it clear that users should expect their email will be “processed”
[Rus], Microsoft adopted a similar approach after acquiring the popular messaging service
Skype [Bee], and Yahoo agreed to scan incoming and outgoing emails in real time for
law enforcement without question while hiding it from their own security team [Men].
Therefore, there is definitely a case to be made for not trusting service providers with
access to private communications. Even a responsible company must comply with legal
demands and government warrants, so it is better to avoid the question of trust altogether.
This is more or less possible by employing end-to-end encryption, which limits the amount

1

1. Introduction

of information providers can access. Naturally, a server needs to save some account
information in order to function, but with growing public awareness regarding privacy,
reducing the collected data has seemingly become a selling point. Informal evidence of
this trend is the multitude of new messengers offering end-to-end encryption, examples
of which can be found in later sections.
In today’s technological landscape, it is not surprising these new developments usually
focus on mobile devices. However, those with mobile devices often have and use desktop
computers, which creates the demand for multiple device support and desktop clients. As
a consequence, it is of interest to take a closer look at the progress introduced by mobile
applications and find a way to adapt new schemes and concepts for the desktop setting.

1.2 Aim of the Work and Methodology

The goal of this work is to enable users of desktop operating systems to use a modern
and effective end-to-end encryption scheme on a native client. Modern here means that
additional popular use cases are covered, which are identified as support for connecting
multiple devices to the same account, and group conversations.
In order to do this, the following questions need to be answered:

• Which new developments exist and how do they compare to the existing ones?

• Are adaptations or further improvements necessary?

• Can a two-party scheme be reasonably reused for the group setting, or are more
specific protocols necessary?

The rest of this work is structured as follows:
First, a literature review is conducted to answer the posed questions. The results can be
found in chapter 2. Second, suitable technologies need to be chosen and the general design
laid out. This is done in chapter 3. Third, the implementation needs to be performed. It
is described and evaluated in chapter 4. Lastly, the results are discussed in chapter 5.

1.3 Background

In this section, some key words and concepts of encrypted messaging will be explained in
order to enable the understanding of the overview that follows in chapter 2. As some of
the concepts, especially newer ones, do not have one exact definition in literature, it is
useful to state how exactly even known terms are used in this document.
In accordance with general practice, conversation partners will be called Alice and Bob,
a third conversation partner is Carl. An eavesdropper trying to learn the contents of a
conversation is Eve.

2

1.3. Background

1.3.1 Privacy Attributes

There are attributes which are generally used in literature to classify encrypted messaging
protocols. An example can be found in [UDB+15], on which the following overview is
loosely based.
Of course one can also find more, or present a more fine-grained view – both is done
in [UDB+15] in addition to the selection found here –, but this is not necessary at this
point and more details will be provided if necessary for the discussion.

Confidentiality This attribute describes the baseline of end-to-end encrypted messages:
No one but the intended recipients should be able to read them.
Even though transport encryption like SSL/TLS is widely used nowadays – preventing
eavesdropping on the network connection – data which is not additionally encrypted is
still not confidential, as messaging usually relies on some kind of server for relaying the
data between conversation partners, which then has access to the information.
Also note that in case of an authentication failure, the cryptographically intended recipient
is not necessarily the recipient intended by the user.

Integrity It is possible to verify that an incoming message is exactly as it left the
sender, i.e. has not been altered in transport.

Authenticity It is possible to verify the sender of a message.

Deniability A participant of a chat can deny having sent a certain message because
from a cryptographic viewpoint, anyone could be its author.

Forward Secrecy Even if a user’s long-term keys were obtained by a third party, past
messages cannot be decrypted.

Future Secrecy Even if a user’s ephemeral keys were obtained by a third party, future
messages cannot be decrypted. Note that this excludes an active attacker who gains
access to long-term keys.

When considering the group setting, the following additional attributes are usually
also taken into consideration:

Origin Authentication It is not only possible to verify that a message was written
by a group member, but also the exact sender.

Transcript Consistency It is possible to verify that all group members see the same
transcript of the conversation, i.e. no messages were added or held back for single users.

3

1. Introduction

Participant Consistency It is possible to verify that all group members see the same
group participants. In practice this protects from hidden users who can still read the
conversation.

1.3.2 Technical Concepts

Naturally, talking about encryption in some depth is not possible without knowing some
concrete concepts and techniques. While most are commonly known, their effect on the
introduced attributes might not be.
This section deals with some of those that are often found in applications for encrypted
messaging, as they are either a problem that needs to be solved, or a common solution
to one. These definitions are also going to be useful during comparison and evaluation.

Types of Cryptography For the sake of completeness, let it be said that there are
two categories of cryptographic systems. Symmetric-key algorithms use the same key for
encryption and decryption, while public-key algorithms make use of a pair of keys – the
private key can decrypt what was encrypted with the public key, and vice versa.
Often also just called symmetric and asymmetric encryption, both are used to achieve
confidentiality, frequently even both at the same time.

Digital Signature Closely related to the concept of public-key algorithms, digital
signature schemes use the signer’s private key and some data as input to produce a tag
as proof of authenticity and integrity of said data.
This proof is then considered cryptographically non-repudiable, i.e. it could have only
been produced using that specific private key.

Message Authentication Code Usually abbreviated toMAC, these are used similarly
to digital signatures, that is to provide authenticity and integrity. However, instead of
one person’s private key, a shared secret is used to produce the tag from the message.
This has the effect of removing the non-repudiability property, as anyone who knows
the sceret can produce this type of tag. In turn, it adds a certain degree of deniability,
as while Bob definitely knows an incoming message must have come from Alice, Eve
cannot tell who a message originated from, and cannot prove it was either of them if
she managed to get her hands on the key data, as she could have produced the message
herself. This also means that if there are more than two participants, MACs fail to
provide origin authentication.
A common implementation is HMAC1, in which any cryptographic hash function can be
employed to calculate an authentication tag.

Key Exchange In order to make use of a shared secret as a key for symmetric encryp-
tion, it first has to be established. Before public-key cryptography can be used, public
keys need to be exchanged between the conversation partners. There are a number of

1https://tools.ietf.org/html/rfc2104

4

https://tools.ietf.org/html/rfc2104

1.3. Background

algorithms concerned with this problem.
Even after obtaining such a symmetric or asymmetric key, one needs confirm its authen-
ticity, which is a major design task for each scheme.

Key Derivation Function Often shortened to KDF, it is used to derive an appropriate
cryptographic key from some form of input data. ‘Appropriate’ here means adequately
random, but also of the necessary size for the algorithm it is going to be used with.
Again, a common variant employs cryptographic hash functions to achieve this goal,
which is then called HKDF2. In fact, it does not use the hash algorithm itself, but a
HMAC function which utilizes it, together with some optional input like a salt, info
string, or both.

Cryptographic Ratchet A ratchet is “a mechanism that [. . .] [allows] effective motion
in one direction only”3. This word was first applied to cryptography by Adam Langley
in his description of his program Pond [Ada], and can be understood in terms of the key
material moving forward in a non-predictable way, which achieves forward secrecy as
past messages cannot be decrypted.

1.3.3 Common Attacks

Another category of problems contains the ones caused by malicious attackers. Again,
these issues often go along with encrypted messaging, so it makes sense to explain them
once and then look at how they are solved, given they exist in a specific scheme.

Man-in-the-Middle Often abbreviated to MitM. A situation where Eve relays mes-
sages from Alice to Bob, and from Bob to Alice. While both of them think they are
talking to each other, they are talking to Eve, who thus has access to the messages sent.
In the context of encrypted communication, this is usually only relevant during ses-
sion establishment, as afterwards Eve can only receive the ciphertext, learning nothing.
Accordingly, it is one of the main points to consider for a key exchange scheme.

Unknown Key-Share When Eve requests Alice’s key data and afterwards – unbe-
knownst to Alice – shares it to Bob as her own, she performed the UKS attack. Sometimes
it is also called identity misbinding attack.
The effect is that Eve now can forward messages she received from Bob to Alice, to whom
it looks like she is the original and intended recipient, as Bob used her key data.

Replay Attack If this kind of attack is possible, Eve can save and reuse intercepted
ciphertext messages without having to decrypt them (given she can somewhat guess their
content, e.g. because the protocol is publicly documented and the first steps are always
the same). Such a vulnerability can happen when messages do not contain any hints

2https://tools.ietf.org/html/rfc5869
3http://www.merriam-webster.com/dictionary/ratchet

5

https://tools.ietf.org/html/rfc5869
http://www.merriam-webster.com/dictionary/ratchet

1. Introduction

about their ‘freshness’, such as an indication which message is replied to, or simply some
sort of ID.

6

CHAPTER 2
State of the Art

2.1 Overview of Two-Party Encryption Schemes

2.1.1 (Open)PGP

Background

PGP stands for Pretty Good Privacy and is an encryption scheme created by Philip
Zimmerman in 1991 [ASZ96]. His motivation was the belief in the right to a private
conversation, something that was not possible in electronic form at that time because
strong cryptography was not available to the public [Zimb, Zima].
Back then, electronic communication was usually done via email, bulletin board systems
or newsgroups. In many of these, PGP is still widely used today in the form of its
successor format, OpenPGP. Additionally, it is still often used in new developments, such
as OX [Flo], which utilizes OpenPGP to enable encrypted chats using XMPP (see 3.2.1)
as transport protocol.

In this document, the name PGP generally refers to this newest standard, and it
should be noted that the basic principle described below did not change.

Technical Details

As per the RFCs [ASZ96, CDFT98, CDF+07], programs which implement PGP have
to offer four main services that are required to produce the packets in the format also
described therein. These services are confidentiality, digital signature, compression, and
Radix-64 conversion. Another service not explicitly mentioned in the RFC which is often
also found in programs implementing PGP deals with key management.
These services will be briefly explained here.

7

2. State of the Art

Figure 2.1: Structure of a PGP encrypted message.

sender ciphertext
random

symmetric
key

encrypts

encrypted key

recipient

public key

private key

encryption keypair

encrypts

PGP message

While there are is at least one algorithm per category that has to be implemented to
ensure interoperability, it is not necessary to implement all of them. The algorithm used
can then be specified in a certain field of the wire format using the IDs defined in the
RFC. As an example, AES-128 has the ID 7 in the category of symmetric-key algorithms.

Confidentiality Confidentiality is achieved by emplyoing a combination of symmetric
and asymmetric cryptography. For each “object”, i.e. a message or a file, a one-time
random symmetric session key is generated which is then used for encryption.
This session key is then encrypted itself using the recipient’s public key and sent with
the message. The recipient can then decrypt the session key using his private key, and
use it to decrypt the object. A depiction of a PGP message can be found in figure 2.1.
In the case of multiple recipients, the session key can simply be encrypted with each of
their public keys separately. As the fixed-length key is likely shorter than the plaintext,
this method is probable to be faster than encrypting all of the data for every recipient. The
must-implement algorithms are Elgamal [ElG85] as public-key algorithm, and TripleDES,
AES-128 [Nat01] and CAST51 as symmetric-key algorithms.

Digital Signature As noted in section 1.3.2, the digital signature service may be used
to ensure authenticity of a message. In PGP, it is implemented by creating a hash of the
message, and then signing it using the private key of the sender and a digital signature
algorithm.
On the receiving end, the signature can be verified by using the sender’s public key. Since
it is assumed only the owner of the private key could have used it to create the signature,
this ensures the identity of the sender. The now verified hash can then be compared
to the locally calculated hash of the message. If the received and calculated hashes are
the same, the message has not been altered. Figure 2.2 shows this procedure. Often,
encryption and signatures are used together – in this case, the signature is created over
the plaintext as shown, and then the ciphertext is created over both the original message
and the attached signature.
One should note that the public and private keys mentioned here are not the same keys

1https://tools.ietf.org/html/rfc2144

8

https://tools.ietf.org/html/rfc2144

2.1. Overview of Two-Party Encryption Schemes

Figure 2.2: Structure of a PGP signed message.

sender

public key

private key

signing keypair

plaintext
hash
of

plaintext

signature

recipient

signs

PGP message

used for confidentiality. PGP ‘keys’ actually contain a set of keys – the master signing
key, and a number of subkeys, e.g. the one used for encryption on the same device, or
signing and encryption keys used on other devices. Thus, when creating a key, the user
has the possibility to create a DSA or RSA sign-only keypair, or a pair for signing and
encryption using DSA/Elgamal or RSA/RSA.
In the first versions, MD52 was used as hashing algorithm, but it is now deprecated as
it is easy to create collisions (see e.g. [Ste06]). It was replaced by SHA-13, but other
algorithms such as RIPEMD-1604 are also optionally supported.
As for digital signature algorithms, both DSA [Nat13] and RSA5 must both be imple-
mented.

Compression This step is optionally applied before encryption, but after the signature,
if this service was used. It is not integral to the functioning and simply decreases the
amount of data that is sent.
At first, only the ZIP algorithm6 was supported, and its implementation is still rec-
ommended. But by now, other popular algorithms such as ZLIB7 and BZIP28 can be
specified in the official message format.

Radix-64 Conversion The internal representation of encrypted data, signatures, and
keys is a stream of arbitrary octets, or 8-bit bytes. In order to make sure that this
information can be stored on systems and transmitted through mediums that might
not support raw binary data in this format (such as emails), PGP can represent it in
printable ASCII characters.

2https://tools.ietf.org/html/rfc1321
3https://tools.ietf.org/html/rfc3174
4https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
5https://tools.ietf.org/html/rfc8017
6https://tools.ietf.org/html/rfc1951
7https://tools.ietf.org/html/rfc1950
8http://www.bzip.org/

9

https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc3174
https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc1951
https://tools.ietf.org/html/rfc1950
http://www.bzip.org/

2. State of the Art

This representation is called Radix-64, and the whole output including correct formatting
and headers is called ASCII Armor.

Radix-64 is based on the MIME Base64 encoding9 developed for emails (MIME are the
Multipurpose Internet Mail Extensions). This means the data is represented
using the characters a-z, A-Z, 0-9, +, /, and = for padding.
More specifically, the Radix-64 encoding is simply the base64-encoded data and an
optional 24-bit CRC (Cyclic Redundancy Check) checksum represented in the same
set of characters.

The Web of Trust

As mentioned in the introduction, the specification does not define a method to actually
exchange the keys. They can be often found as email signatures or on personal blogs,
but there also exist keyservers which all hold the same data, synchronized by the SKS
(Synchronizing KeyServers) protocol [UHHC11]. Keys uploaded to keyservers can
easily be searched: A key can be identified by its 8-octet key ID, the fingerprint, or the
user ID of its owner, which is made up from a username and an email address. While
none of these are guaranteed to be unique, one usually knows at least two.

Assuming Alice found Bob’s key on one of the keyservers10, how does she know it
is actually his? More precisely, how can she trust it is his?
Public-key infrastructures (PKIs) often rely on (a hierarchy of) certificate authorities
(CAs) to provide this trust – a key signed by such an authority can be trusted to be
valid, and the list of trusted authorities is usually distributed with the software. This
happens e.g. for TLS: web browsers come with a list of trusted CAs. While CAs also
exist in the PGP model, they are just a special category of users, as anyone can sign a
key, attesting to its authenticity.
In both cases, there needs to be a trusted chain of these certificates, but while it is fixed
in a hierarchical structure, such a chain first needs to be found in the WoT model.

This chain can be found because a PGP key actually contains all of the signatures
it collected as certificates. Alice can search the keys she already knows and has added
to her keychain, e.g. because they were exchanged in person, for a path to Bob’s key.
Luckily, her friend Carl, whose key she has added, signed Bob’s key, so the chain is rather
short. But before she can also trust it to be Bob’s key, there’s another important point
to consider: How much does she trust Carl to verify the authenticity of Bob’s key before
signing it?
This is called introducer trustworthiness, and each implementation can and does use
its own metrics to derive the total trustworthiness of the found path. For example, in
GnuPG the certification path may not be longer than five keys, and they all must be
fully trusted, or there must be three redundant paths.

9https://tools.ietf.org/html/rfc2045
10e.g. http://keys.gnupg.net

10

https://tools.ietf.org/html/rfc2045
http://keys.gnupg.net

2.1. Overview of Two-Party Encryption Schemes

Note that this trustworthiness decision is a local one and, unlike the certificates, is
not propagated. Alice may trust Carl to verify keys before signing them, but since she
just started talking to Bob, she does not trust him yet to do the same. On the other
hand, Carl has known Bob for a long time and trusts him well. As a result, the WoT
differs for each user, and in effect mirrors social relations in the real world, i.e. it will be
hard for Alice to find a trustworthy certificate chain for a person who does not somewhat
belong to her circle of friends already [UHHC11].

More in-depth analyses can be found in [Mau96] and [Car00].

2.1.2 OTR

Background

OTR stands for Off-The-Record and thus carries in its name what the designers
Nikita Borisov, Ian Goldberg, and Eric Brewer wanted to achieve: private electronic
communication [BGB04]. The paper it was first described in is pretty straightforward
concerning its intentions – the second part of the title is “Why Not To Use PGP”.
Their criticism of PGP will be discussed in more detail in section 2.2. Generally said, the
authors work with an updated definition of privacy, and an updated model of electronic
communication. This updated definition includes forward secrecy and deniability, and it
will be explained below how these are achieved. Instead of considering email and BBS
posts, the chosen type of electronic communication is instant messaging, facilitating the
attainment of said attributes.
As can be seen in the next section, the cost of “better” attributes is higher complexity.
The result is that unlike in PGP the steps cannot realistically be done manually any longer.

The first version of the suggested protocol was not without errors, and it was up-
dated accordingly. As these mistakes provide an interesting insight in points to consider
when designing such an encryption scheme, the evolution of this protocol will also be
inspected instead of just considering the newest version as a whole.

Technical Details

Session Establishment To communicate using OTR, a session needs to be established
first. In the first version, this is done by performing the Diffie-Hellman Key Exchange,
also often abbreviated to DH. Whitfield Diffie and Martin Hellman developed it in 1976
based on the concepts of Ralph Merkle in order to enable two parties to create a secure
connection over a public channel [DH76], so exactly what is needed here. In following
versions, a different algorithm is used for the initial key exchange to achieve additional
properties, but as it will become clear, this approach still plays an important part in the
whole scheme.
It works as follows: Beforehand, Alice and Bob agree on a value p, which is a prime,

11

2. State of the Art

Figure 2.3: Establishing the DH shared secret gab between Alice and Bob. The short
notation on the right will be useful later.

gxa

xa

gxb

xb

ga gb

and a value g, which is a primitive element of a finite field with p number of elements.
Having established this, Alice now picks a secret value xa, and Bob a secret value xb, with
1 ≤ xa, xb ≤ p− 1. This x is the exponent they will use, so afterwards, they can compute
the value gxamod p and gxbmod p respectively, and send each other these values. This x,
i.e. the chosen exponent, is also called the short-term or ephemeral DH private key, and
the whole expression gxmod p the short-term or ephemeral DH public key (as opposed
to long-term keypairs as e.g. used for digital signatures). Both Alice and Bob can now
compute the same secret value s by exponentiating the received ephemeral public key
with their own ephemeral private key, because:

(gxb)xa mod p
= gxbxa mod p
= gxaxb mod p
= (gxa)xb mod p

Figure 2.3 also displays the procedure schematically.
For brevity, the mod p suffix will not explicitly be stated in the rest of the thesis, and
only the exponent’s suffix is used to identify it. This means that e.g. the private key xa

is shortened to a, and the corresponding public key from gxa to ga.
In OTR, the first step of agreeing on values p and g is omitted, as g is simply fixed to 2,
and p to the 1536-bit number defined by:

21536 − 21472 − 1 + 264 ∗ ((21406 ∗ π) + 741804)

The chosen x has to be at least 320 bits long. From the shared secret s, several values
are derived by hashing it in various ways using SHA256. These are for instance AES-128
encryption keys and SHA256-HMAC keys [OTR].

OTR Ratchet One of the main improvements the authors had in mind was forward
secrecy. As a OTR views instant messaging as synchronous (i.e. users sit in front of their
computer and pay attention to the messenger), a cryptographic session to them is about
the same as a messaging session, that is, it is establed when the conversation begins, and
torn down when the client exits [BGB04].
In theory, this model alone is already enough to achieve forward secrecy, as the authors

12

2.1. Overview of Two-Party Encryption Schemes

note themselves. However, to decrease the amount of decryptable messages in case of a
compromise, a DH exchange is (ideally) performed with every message, instead of at the
beginning of a session. While this scheme was not called a “ratchet” because the term
did not exist at that time, this name was applied to the algorithm when the concept got
popular, e.g. in [Moxa]. Even though this goal was not explicitly stated, this approach
additionally provides future secrecy.
Similarly to the first key derived at session establishment, the following message keys kij

are then also obtained from a shared secret gab. In order to streamline the establishment
of these following short-lived sessions, the ephemeral public keys gai|bi are simply sent
alongside the regular messages. So the first message from Alice to Bob will not only
contain the ciphertext encrypted by a message key k00 derived from the shared secret
ga0b0 , but also a value ga1 . When replying, Bob’s message will now be encrypted with a
new key k10 derived from ga1b0 , and comes with a new value gb1 . Alice can then encrypt
her answer using the key k11 obtained from hashing ga1b1 , and so on.
In this ideal case, the message key is different with each message. If the conversation
partners do not take turns sending messages, e.g. because Alice is telling a long story,
the same key keeps being used for every message, and the same ephemeral public key
will be announced alongside it. Until Bob replies, and therefore confirms the announced
ephemeral public key by using it for the encryption key himself, Alice cannot use her
new key. Also note that a shared secret is never used to derive a message key for both
encryption and decryption by the same person.
An example of this is illustrated in figure 2.4.

Authentication As it stands, both Alice and Bob only know that they established
a shared secret with someone else. This someone could also be e.g. Eve the malicious
server administrator performing a MitM attack.
OTR initially solved this problem by employing digital signatures. Aside from the
ephemeral DH keypair generated for session establishment, each client also generates a
longstanding DSA keypair. This is used to sign the transmitted DH public key during
the initial exchange, which is therefore called authenticated key exchange, or AKE. The
public DSA key is also appended to these key exchange messages, as can be seen in figure
2.5.
While this does not protect from a MitM attack per se, it can be detected by comparing
the sent public DSA key to a previously received one. Unless the attack was performed
every single time with the same key, a differing key should raise some suspicion. This
approach of course is still not a guarantee unless the keys are known to be valid by
verifying them out-of-band, e.g. by comparing fingerprints in a personal conversation,
which the paper suggests doing.
In order to nonetheless achieve deniability for the actual messages, MACs are then used
instead of digital signatures for the rest of the conversation. As already noted, the
SHA256-HMAC key data is derived from the DH secret for this purpose.
When OTR was scrutinized later, the used AKE was found to have several weaknesses
[DRGK05]. For instance, a replay attack can be performed because the public DH key

13

2. State of the Art

Figure 2.4: An OTR ratchet example.

Alice Bob

ga0 gb0k00

ga1 ga1 msg

ciphertext

included as

encrypts

k10confirms

gb1gb1msg

ciphertext

included as

encrypts

k11 confirms

ga2 ga2 msg

ciphertext

included as

encrypts

ga2 msg

ciphertext

included as
encrypts

14

2.1. Overview of Two-Party Encryption Schemes

Figure 2.5: OTR’s initial ‘authenticated DH’. A and B are Alice’s and Bob’s DSA signing
keypairs respectively.

Alice Bob

ga0 Apub

signature

confirms

Apriv

signs

gb0Bpub

signature

confirms

Bpriv

signs

is sent in the clear together with a signature. As long as the key behind the signature
does not change (e.g. because the client is reinstalled), this message containing both the
ephemeral key and a signature on it can be used to impersonate the sender. The other
vulnerability, a possible UKS attack, is based on the same design mistake.

For version 2, OTR followed the advice presented in the same paper and improved
their AKE by employing the SIGMA protocol (“Sign-And-Mac”) in an own adaptation
based on the SIGMA-R variety as described in [Kra03]. This adaptation is described
in [AG07], but as it was only done to work around message size limitations and adds
complexity, the original scheme is described here instead.
Initially, the DH ephemeral public keys ga0 and gb0 are exchanged without any authen-
tication, i.e. like in simple DH seen in section 2.1.2. Note though that those keys are
not the only information being sent - a session identifier and a nonce are usually also
needed for keeping track of messages and helping the processing as well as preventing
replay attacks. After the DH public values were exchanged by Alice and Bob, the DH
shared secret ga0b0 is used for derivation of an encryption key ke for the remaining two
handshake messages, and a MAC key km for computing a MAC over the long-term public
signing key. Since ke and km can be derived from the shared secret by both Alice and
Bob, they can be used on the other end for confirming the MAC and therefore also the
authenticity, and decryption of the whole message. Aside from the public signing keys
Apub and Bpub and their MACs, these two last messages encrypted with ke also contain
a summary of the data exchanged so far, and a signature created over this information
using the private counterpart of the authenticated public signing keys, Apriv and Bpriv

15

2. State of the Art

respectively. This can be observed in the illustration found in figure 2.6.

Improving the authenticated handshake protocol still does not change the fact that a
MitM attack is possible. In order to detect it, users still have to manually confirm that
the long-term public signing keys look the same to both parties. To make this comparison
a bit simpler, usually not the complete key data but its identifying fingerprint is displayed
to the user, which in case of OTR is its SHA-1 hash. In the view of the OTR authors,
this process had to be simplified even further in order to also protect users who do not
have an understanding of public-key cryptography. This is why they added the SMP, or
Socialist Millionaires’ Protocol, to OTR.
In the Socialist Millionaires’ Problem [JY96], two millionaires want to know if they are
equally rich, but do not wish to disclose their wealth to each other, or anyone else. In the
original problem [Yao82], the millionaires wanted to know who of them is richer, so in
this case they are ‘socialist’ because they want to know if their secret is the same. (Not
disclosing their wealth to an eavesdropper probably helps to protect them from being
sent to jail by their socialist state’s secret police too.)
Based on the assumption that two people who wish to have a conversation with each
other will always have some sort of secret an unrelated third party could not easily guess,
OTR adapts the presented problem to let two users compare this real-world secret they
share without revealing any information except for the fact that the secret matches (or
not) to anyone. So when the SMP is initiated, both users are prompted to enter a string,
which is then compared in this way. To prevent a third party from simply forwarding
these messages, the actual secret which is compared consists not only of the entered word
or expression, but also of the SHA-256 hash of the session ID and both Alice’s and Bob’s
key fingerprints [AG07].
The specifics are mathematically too involved to be relevant in this thesis, but can be
found in the paper [AG07]. There is an interesting fact to SMP, though: Just like the
DH handshake, it is based on the assumption that given gx and gy, it is infeasible to
find gxy. This is also called the Computational Diffie-Hellman Assumption, or
CDH assumption. In fact, two DH handshakes take place in the beginning to agree on
two other generator values g2 and g3 which will be needed to perform the algorithm (g1
is 2, as before).

Forgeability In addition to providing cryptographic deniability, OTR goes one step
further and tries to make messages forgeable. The intended effect is that in theory anyone
observing the communication can just as likely have created any message in the first
place. To achieve this, the authors use two measures.
On the one hand, AES is used in counter mode (CTR), which works (for any block
cipher algorithm) by encrypting some counter that is increased for every block, and then
applying the XOR operation on the resulting data and the plaintext block. This turns
the block cipher into a stream cipher, the consequence of which is that the ciphertext
could still decrypt to something meaningful if a bit is changed, as it has exactly one
corresponding bit in the plaintext. Other modes chain the input, therefore the result is
more likely to be uninterpretable garbage data when the ciphertext is modified.

16

2.1. Overview of Two-Party Encryption Schemes

Figure 2.6: The basis for OTR’s improved handshake, the SIGMA-R authenticated key
exchange protocol.

Alice Bob

ga0

gb0

ga0b0 ga0b0

km

Apriv

ke

ga0 gb0 Apub

signature MAC

encrypted data

key for

encrypts

signs

km

Bpriv

ke

ga0 gb0Bpub

signatureMAC

encrypted data

key for

encrypts

signs

17

2. State of the Art

The authors reason that Eve could change the ciphertext to decrypt to anything she
wants given she can guess the original plaintext, increasing the forgeability of messages.
Meanwhile, Alice and Bob can still use the MACs to verify the integrity of the messages
they receive.
On the other hand, MACs are a central part for their main forgeability measure. Once
Alice knows that all messages using a certain MAC key have been received, she publishes
that MAC key with her next message. She knows this because Bob confirmed the
ephemeral public DH key the MAC key is derived from by sending a message encrypted
with an AES key derived from the same secret.
While the authenticity and integrity of messages can be verified when they are received,
this is not possible after the key was published, as it can now be used on any message.
The authors say this can be seen as “forward secrecy for authentication”.

2.1.3 Signal Protocol

Background

In 2010, the company Whisper Systems released the beta of their new instant messaging
application called TextSecure [Whi]. They chose Android as the platform, and this is
because initially the idea was to make SMS more secure; an idea that was eventually
abandoned because of a multitude of reasons. For instance, SMS as a transport always
leaks metadata and therefore can never be really private. Also, SMS can not really be
used for seamless encrypted conversations as there e.g. is no way to detect an uninstall
for a conversation partner [Moxh].
After using OTR for encryption in the beginning, an own scheme was developed which is
better suited for mobile platforms, and solves some issues which will be discussed further
below in the evaluation chapters. The result had several parts: a new key exchange
scheme, a ratchet algorithm, and the actual protocol incorporating these. All of it
combined, but also just the ratchet, were both named Axolotl at first. Later, when
TextSecure was merged with the RedPhone application for encrypted voicecalls, it was
renamed to Signal [Moxd, Moxi]. With this, the ratchet was renamed to Double Ratchet,
and the protocol to Signal Protocol.

In this section, the Signal Protocol will be inspected to determine the characteris-
tics which are supposed to make it an improvement over OTR, and how exactly these
were implemented.

Technical Details

Session Establishment For the Signal Protocol, the developers adapted the 3DH or
Triple Diffie-Hellman handshake from [KP05], which in turn is based on a protocol
presented in [BWJM97]. Instead of just performing one DH exchange using both users’
ephemeral public keys gxa|b , there are (unsurprisingly) three exchanges, as each user also
has a long-term DH keypair and additionally sends this long-term public key gxA|B for

18

2.1. Overview of Two-Party Encryption Schemes

Figure 2.7: Establishing the three DH shared secrets gab, gaB, and gAb. Short notation
on the right.

xA

gxa

xa

gxA

xB

gxb

xb

gxB

gA

ga

gB

gb

combination with the other person’s ephemeral public key.
The result is three shared secrets gxaxb , gxaxB , and gxAxb (or shorter: gab, gaB, and gAb)
which can be used for further calculations such as deriving a single shared secret via
some sort of KDF [Moxj]. This is shown in figure 2.7. Note that even though there are
now three secrets, the exchange is still completed by one message from each participant
as both long-term and short-term keys can be transported at the same time.

Using this algorithm enabled the developers to allow asynchronous session establishment
with the help of an additional trick: Both the long-term DH public key (the identity key)
and a number of pre-computer short-term DH public keys (the pre-keys) are uploaded to
a server which is assumed to always be online, unlike Bob. If Alice wants to message her
new contact Bob, she can ask this server for a bundle consisting of Bob’s identity key and
one of his pre-keys. After receiving this information, Alice only needs to generate the
own ephemeral DH keypair, following which she can compute the shared secret to derive
a session. The first message to Bob can then already be encrypted using this session,
Alice just has to add both of her public DH keys ga and gA as well as the ID of Bob’s
pre-key she used in plaintext, making it a pre-key message. All Bob has to do is look up
the private counterpart of the used pre-key by the received ID, and derive the encryption
key from the calculated secrets.

The described procedure is part of the X3DH (Extended 3DH) specification which is
implemented in the current version of the Signal Protocol [Mox16]. In fact, the possibility
to perform a synchronous handshake in absence of a server, i.e. the regular 3DH exchange,
was removed from the official library 11.

11https://github.com/WhisperSystems/libsignal-protocol-c/commit/
d83a61a328d4e36bcccf9066c925b63bb75bf968

19

https://github.com/WhisperSystems/libsignal-protocol-c/commit/d83a61a328d4e36bcccf9066c925b63bb75bf968
https://github.com/WhisperSystems/libsignal-protocol-c/commit/d83a61a328d4e36bcccf9066c925b63bb75bf968

2. State of the Art

Figure 2.8: In X3DH, Bob’s signed pre-key replaces his regular pre-key, which can then
optionally be used for a fourth secret computed with Alice’s ephemeral key.

xA

gxa

xa

gxA

xB

gxbS

xbS

gxB

gxb

xb

gA

ga

gB

gbS

gb

In this extended version, which is based on the idea of adding signatures from [CF11],
the uploaded bundle also contains a single pre-key signed with the identity key and the
corresponding signature. This signed key actually takes the place of the one-time pre-key
as described before, but can be used more than once. Optionally, but recommended
for better security properties, a one-time pre-key can additionally be used like before
to calculate a fourth shared DH secret with the initiator’s ephemeral key. Note how in
figure 2.8 the signed pre-key gbs replaces gb, which is pushed to the side.
Instead of ‘regular’ DH, the protocol uses ECDH (Elliptic Curve Diffie Hellman)
over either the Curve25519 or Curve448 [Mox16], so the actual calculations differ and e.g.
use multiplication instead of exponentiation, but the gx format was kept for consistency
in order to ease understanding. The Signal Protocol implementation uses Curve25519.
Now, one detail is still missing: Since the identity key is a Curve25519 DH key, how can
it be used to create a EdDSA signature, which requires a Ed25519 key? The answer is
XEdDSA, which was also developed in the context of this protocol and provides a way to
convert a Curve25519 DH key to a Ed25519 EdDSA key [Tre16a]. This is simply done
on-the-fly when a signature is needed.
Finally, to provide some mitigation against UKS attacks, some authenticated data is also
part of the final message format. This data at least contains both used identity keys, but
can also contain more identifying data, sacrificing deniability.

KDF Chain Before getting to the ratchet algorithms, it is important to introduce the
notion of the so-called KDF chain, as the final scheme contains two of those per user. It
is called a ‘chain’ because it is iteratively applied, i.e. every KDF key but the very first
one is both the output from a previous KDF computation and part of the input for the
next key, the other part being some additional data such as a constant.

20

2.1. Overview of Two-Party Encryption Schemes

An important detail is that the KDF key is not the only result of the KDF functions
defined in the Signal Protocol. Their output is a pair, but as this pair is computed in
different ways, the exact explanation will be delivered further below.
After a first shared secret of 32 bytes has been established through some sort of handshake,
which in the Signal Protocol is of course X3DH, it can be used as the first root key of
the chain, from which a sending chain key and receiving chain key are derived. This
sending chain key, CKs for brevity, is then used to compute a key for the symmetric-key
cipher which is used for encrypting the plaintext messages. The other party’s receiving
chain key CKr corresponds to the same key, and vice versa (or else the correct decryption
key could not be obtained).
AES-256 in CBC mode is recommended as the symmetric-key algorithm, and used in
the reference implementation. How these keys are moved forward in their ‘chain’ by the
ratchet and how exactly parameters for symmetric encryption are derived is discussed
next.

Double Ratchet As noted in the introduction to this section, Open Whisper Systems
devised an own cryptographic ratchet for use in their Signal Protocol, which they called
Double Ratchet. This is because it combines two known concepts, the details of which
are discussed below based on the official specification [Tre16b].
The fundamentals of the first ratchet should already be known, as it is based on the ideas
of the OTR ratchet described in section 2.1.2. After performing some improvements
to turn the ‘three-step ratchet’ into a ‘two-step ratchet’ [Moxa], it was included as
Diffie-Hellman Ratchet into this scheme.
Like the name implies, shared secrets established through a DH exchange play a major
role in the algorithm. Each user has a current DH key pair per session, called ratchet
key pair. At session initialization, Alice has to generate this pair, but uses the DH key
already used in the handshake as Bob’s public ratchet key. When combined with X3DH
handshake like in the Signal Protocol, the already used key is the signed pre-key. In
order to forward the ratchet, Alice calculates the shared DH secret from the ratchet key
she just generated, and Bob’s public ratchet key. When she then sends a message to Bob,
she simply includes her generated public ratchet key, and he can derive the same shared
DH secret. In figure 2.9, the newly generated ratchet key is marked with a circle.
The next time Bob writes a message he generates a new ratchet key pair, uses it to
calculate a shared secret with the public ratchet key Alice sent him before, and includes
his new public ratchet key with the ciphertext. Alice repeats this procedure for her next
message to Bob, and so on. In short, the sender’s current public ratchet key is appended
to every message. It is also appended when it was not just freshly generated but e.g. a
second or third message is sent in a row, but more on that later. Note that unlike in the
OTR Ratchet, where a DH key has to be ‘confirmed’ before it can be used, the DH key
sent in a Double Ratchet message was already used to encrypt the containing ciphertext.
Instead of operating on this shared DH secret sij directly, it is used in combination with
the previously established root key. Both are given as input to the root key’s derivation
function KDFRK() to produce the updated root key, and a chain key. In more detail,

21

2. State of the Art

KDFRK() is a HKDF which uses SHA-256 as the hash algorithm, the current root key
as salt, the DH secret as the input key material, and the info string WhisperRatchet to
derive 64 bytes of data. The first 32 bytes are then set as the new root key, and the last
32 bytes are the chain key.
The term ‘chain key’ was used in a non-specific way as the sending and receiving chain
keys are not updated at the same time, but one after the other. This is because one
party’s sending chain key must be the other party’s receiving chain key, and vice versa.
Therefore, the initiating party’s first chain key will be the sending chain key, and the
receiving party’s first chain key will be the receiving chain key. It can be seen in figure 2.9,
where the chain key derived from the root key with an odd index is Alice’s sending chain
key and Bob’s receiving chain key, and after forwarding the root key once to receive an
even index, it is Bob’s sending chain key, and Alice’s receiving chain key. As mentioned
before, and also visible in figure 2.9, these chain keys are not directly used for deriving
symmetric encryption keys, as there is another layer of indirection. This other layer is
the other ratchet.

The concept of the second ratchet is described to be based on the Silent Circle
Instant Messaging Protocol (SCIMP) in a blog post [Moxa], but the specification
points out this approach has been known for some time and is e.g. mentioned in [AB00]
as re-keying based on an unbalanced tree.
This ratchet is called symmetric-key ratchet and it basically just describes moving the
current chain keys forward locally using a KDF. The KDF used here is called KDFCK()
and its output pair is calculated using a HMAC function. The first output of this KDF
is the actual message key to be used for encryption. It is computed by using the current
chain key as the HMAC-SHA-256 key and the constant byte 0x01 as input. The second
output of the KDF is the next chain key, which is the result of the same current chain
key as used for the message key, and the constant byte 0x02.
For every single message that is sent consecutively, i.e. without having received the
conversation partner’s new public ratchet key to move the DH ratchet foward, the sending
chain key is advanced in this symmetric-key ratchet. Naturally, the receiving side does
the same to the receiving chain key in order to be able to derive the same message key.
As a message key is not derived from an earlier one, it can be held on to without posing
a security risk. In fact, this is what happens in order to deal with out-of-order messages.
To facilitate this, the current message keys’s number in the chain is sent with the message,
along with the length of the last chain which helps in case the DH ratchet was advanced
by one of the missing messages.

Finally, in order to prepare the message for sending, another HKDF is utilized. Using
SHA-256, a salt of 80 zero bytes, the info string WhisperMessageKeys, and the previously
derived message key as the input key material, an 80-byte output is obtained, which is
then divided into a 32-byte encryption key, a 32-byte authentication key, and a 16-byte
initialization vector. The plaintext can then be encrypted with AES-256 in CBC mode,
initialized with the encryption key and IV.
By prepending to the ciphertext the associated data already used in the handshake, i.e.

22

2.1. Overview of Two-Party Encryption Schemes

Figure 2.9: The Double Ratchet.

ga1ct1

MAC

sX3DH

MK1
1CK1

s1

CK1
s2

RK1

KDFRK

gbSga1

s1S

0x01

0
x
0
2 encrypts

included as

MK1
1 CK1

r1 RK1

KDFRK

gbSga1

s1S

CK1
r2

0x01

0
x
0
2

sets

decrypts

gb1 ct2

MAC

MK2
1

MK2
2

CK2
s1 RK2

KDFRK

gb1ga1

s11

CK2
s2

CK2
s3

0x01

0
x
0
2

0x01

0
x
0
2

encrypts

included as

MK2
1

MK2
2

CK2
r1

CK2
r2

CK2
r3

RK2

KDFRK

gb1ga1

s11

0x01

0
x
0
2

0x01

0
x
0
2

sets

decrypts

gb1 ct3

MAC

decrypts encrypts

23

2. State of the Art

a concatenation of both parties’ public identity keys, the data over which the MAC
is to be calculated with help of the authentication key is acquired. For the MAC, the
specification suggests using a HMAC which reuses the same hash algorithm utilized for
the HKDF, which in case of the Signal Protocol is SHA-256. Afterwards, the received
tag is appended to the chained data, so that the final message consists of those three
parts. These details are not contained in figure 2.9 for space reasons.

2.1.4 Other Protocols

It should be noted at this point that there are no other protocols which can seriously be
considered ‘state of the art’.
The SCIMP protocol whose ratchet previously mentioned as one of the inspirations for
the Double Ratchet was discontinued and its specification can only be found in an archive
[Vin12]. Silent Circle switched to the Double Ratchet in their SilentPhone app [Sil12].
SafeSlinger [FLK+13], Threema [Thr17] and surespot [sur] all use a PGP-like scheme
for their end-to-end encryption, with varying ideas on how to replace the WoT for
authentication.
Telegram offers so-called secret chats, using a standard unauthenticated DH exchange
for establishing a shared message key, and re-negotiates it per 100 messages or every
week for forward secrecy [Tel]. Their MTProto protocol makes weird choices in regard to
cryptographic primitives, leading to some theoretical vulnerabilities which make it fail
the definition of authenticated encryption [JO15]. It is doubtful whether this protocol
will find application outside of Telegram, and it is in fact not even implemented in all
official clients.
The most interesting protocol is Tox, which tries to avoid issues related to using central
servers by building a peer-to-peer network between the users. As for the end-to-end
encryption, it uses the cryptographic primitives included in the NaCl library12 [Toxb].
Even though reference implementations of the protocol and clients exist, the whole project
is still in alpha stage and the documentation fragmented and incomplete [toxc]. Also,
it is still missing features regarded as necessary in the context of this thesis, such as
support for multiple devices [Toxa]. Therefore it currently cannot be considered for use,
but this can change if it is further improved, as it looks very promising.
Some older academic publications which were never widely adopted can be found in
[UDB+15].

2.2 Evaluation of Two-Party Encryption Schemes

2.2.1 PGP

As PGP was one of the first publicly available encryption tools, it did not have the
possibility to have learned from others’ mistakes. Considering it is still in use today,
over 25 years later, it seems to be doing quite well. This is because it basically just

12https://nacl.cr.yp.to/

24

https://nacl.cr.yp.to/

2.2. Evaluation of Two-Party Encryption Schemes

describes a relatively simple format for applying cryptographic algorithms. During its
evolution, it deprecated those that were discovered to be unfit, and added new develop-
ments, such as elliptic curve cryptography, in new or updated RFCs13. When weaknesses
were found in the format of the specified data packets, such as in [KR02], they could
also be corrected without breaking the underlying scheme. Being designed to be able
to provide confidentiality, authenticity, or both, for a single message, it fullfills these goals.

However, the simple format is also the reason why it is questionable if these and other
implied attributes of PGP fulfill the requirements of modern electronic communication.
For instance, there is no built-in protection against replay attacks. As pointed out in
section 2.1.2, some researchers believed PGP to be unfit so strongly they titled their
paper on a suggested successor “Why to not use PGP”. Their main arguments are as
follows [BGB04]:
Because new encryption keys are not automatically propagated to contacts , users rarely
exchange them, as it is hard to notify other users of this change. In the worst case,
a third party who acquired the keys of a user can read all incoming PGP encrypted
messages. Considering the US NSA is officially allowed to retain any encrypted com-
munication [Gle13], this scenario is generally not too unlikely, and can be seen to break
the goals outlined by Zimmerman for his own country: protecting the right to a private
conversation against the government [Zimb]. While the used cryptographic primitives are
sound, government actors can be considered to have alternative means of acquiring keys
and their passwords [Dec09, Chr09]. The suggested solution to this problem is adding
forward secrecy as a necessary attribute, which the authors did for their own work, OTR..
As the authenticity of messages is cryptographically proven by digital signatures, there
exists cryptographic proof of authorship of a message. According to the authors, this
attribute of cryptographic non-repudiability contradicts the goal of privacy. While this
sounds correct when viewed superficially, in reality a cryptographic proof is rarely ac-
cepted as proof in real life, and definitely not in court, as a digital signature only provides
a binding to a private key. In order to additionally bind this key to a person, further
evidence is needed, which is considered to be very hard if not impossible to obtain
[Mas12], and is therefore definitely not produced by PGP which does not contain this
design goal. This argument against PGP can therefore be considered invalid.

A different point of criticism is usability. Admittedly, this is not unique to PGP,
as can be seen throughout this thesis. However, while other schemes can and do try
to improve this aspect by adding some degree of abstraction from terms like keys or
fingerprints, PGP cannot be used without some understanding of fundamental concepts
of public-key cryptography – something an average computer user does not have.
In the 1999 paper “Why Johnny Can’t Encrypt” [WT99], only 4 out of 12 users were able
to complete a task consisting of encrypting and signing the same message for multiple
members of an imaginary team in a timespan of 90 minutes. Similar papers followed, e.g.
[SBKH06] (“Why Johny Still Can’t Encrypt”), suggesting improvements. Still, 16 years

13https://tools.ietf.org/html/rfc6637

25

2. State of the Art

later, in a paper named “Why Johnny Still, Still Can’t Encrypt” [RAZS15], the findings
remain very similar: Out of 10 pairs of participants, only 1 managed to send encrypted
emails among themselves.
While the papers may not be directly comparable as different software was used (PGP
5.014 and the Mailvelope browser plugin15) and the sample size was very small, the
identified problems seem to be the same, and it does not seem probable results would
differ much with more participants. As claimed in the beginning of the paragraph, these
problems are the missing understanding of public-key cryptography, leading to a failure
to understand the necessary procedure and resulting in mistakes such as generating keys
for the recipient, or using the own public key for encrypting a message to someone else.
This leads to another slight disadvantage of PGP when compared to the other presented
schemes: As those include automatic session establishment, they are safe against passive
adversaries, even though key fingerprints need to be compared for detection of active
attacks. The manual session establishment of PGP can easily fail through ignorance,
which results in plaintext being sent. An application’s user interface can mitigate this,
howver.

Although it is not part of the specification, an evaluation of PGP is likely incom-
plete without also inspecting the Web of Trust. It is considered to be the reason why
PGP prevailed over the Privacy Enhanced Mail (PEM)16 a standard which was never
widely used, presumably as it required a hierarchical public-key infrastructure including
certificate authorities to work [Roe10]). Nevertheless, more recent evaluations such as
in [UHHC11] paint a sobering picture. The snapshot used in the paper was retrived
from the keyservers in December of 2009 and contained about 2.7 million keys. Out of
these, only about 325.000 have or have made at least one signature. These remaining
keys were represented as a directed graph, where an edge marks a signature, allowing for
some interesting conclusions. For instance, the authors looked at the strongly connected
components (SCC s), i.e. subgraphs which only contain members that have a path to
each other.
Ideally, the WoT would be one large SCC. Instead, there are about 240.000, with over
100.000 of those consisting of just one node, further 10.000 of just a node pair, and the
remaining ones having a size of between 10 and 100. The largest SCC, i.e. the set of
users who can actually benefit from the WoT, consists of only about 45.000 keys.
A possible point of compromise is also noted: A not insignificant number of these well-
connected keys uses RSA with key lenghts that have been shown to be factorizable (768,
about 500 keys) or are suspected to be factorizable by now or in the near future (1024,
about 4000 keys) [KAF+10].
Looking at more up-to-date data, there are now about 4.5 million keys uploaded to the
keyservers17, with the largest SCC consisting of about 60.000 keys18, which is still not

14http://www.pgpi.org/
15https://www.mailvelope.com/de
16https://tools.ietf.org/html/rfc1421 through 1424
17https://sks-keyservers.net/status/key_development.php, accessed 2017-02-20
18http://pgp.cs.uu.nl/plot/, with data from 2017-02-06

26

http://www.pgpi.org/
https://www.mailvelope.com/de
https://tools.ietf.org/html/rfc1421
https://sks-keyservers.net/status/key_development.php
http://pgp.cs.uu.nl/plot/

2.2. Evaluation of Two-Party Encryption Schemes

much better. Generally said, a new user will have to manually verify key fingerprints to
have some trust in the key of another person who is not part of these 60.000 (e.g. as
MitM protection), and it is hard to find a reason why this new user should not simply
use a scheme which also requires manual verification and out-of-band authentication, but
is a lot more comfortable to use and provides additional useful properties, as any of the
other protocols presented in this thesis do.

After the rather critical evaluation, it should be noted that PGP does have proper-
ties other protocols do not have. The session establishment can reasonably done by
a human and does not require interaction by the recipient. Also, anything can easily
serve as transport. As a result, it can easily be used in systems that were not made
with confidentiality in mind or cannot provide it, such as websites. A good example
are darknet markets – they provided a step-by-step tutorial for their users on how to
use PGP to send confidential messages between buyers and vendors using their internal
messaging system, e.g. for the disclosure of the delivery address [BB15].
Thus it can be still useful in the right setting, to which email messages unfortunately
still belong, but attempts to employ it for instant messaging, such as the aforementioned
OX for the XMPP protocol, seem misguided, and it is doubtful whether it will ever be
actually implemented.

2.2.2 OTR

The first version of OTR had some shortcomings in its authenticated key exchange.
These were already described in section 2.1.2, as they were applaudably fixed in the
next version and the improved AKE has been part of the protocol since. Amusingly, the
initial key exchange had worse properties than the “badly authenticated DH” used as a
counterexample in the SIGMA protocol paper, as none of the received data is signed for
confirmation [Kra03].
It seems though that the updated key exchange partly invalidated an initial design goal:
adding deniability through forgeability. At first, the long-term public keys were sent
without a signature, which made the attacks that were found possible, but also meant
that the previously used MAC keys published in following messages could be used by
anyone to fake a message. Now, these signed keys are only in possession of users who
already established a session with their owners, severely limiting the group of possible
forgers [Moxj].
In general, the SIGMA-R protocol was shown in [DRGK06] to be partially deniable,
i.e. while because of the employed digital signature participation cannot be denied, the
identity of the communication partner as well as the content of all following messages can,
which is completely adequate. As discussed in section 2.2.1, it is generally questionable
whether deniability is an important attribute for privacy, since cryptographic proof needs
to fulfill many more requirements to be usable in real-world scenarios. (‘Deniability’ as
used here means deniable authentication and is not to be confused with deniable encryp-
tion.) In addition, as noted in [DRGK05], it is enough for the key exchange protocol to
be deniable, therefore using SIGMA made the publishing of MAC keys obsolete anyway.

27

2. State of the Art

Considering all this, the added protocol complexity and message size of publishing used
MAC keys seems unnecessary.
Another vulnerability of OTRv1 found in [DRGK05] has not been discussed yet, as it
brought only a minor (yet important) change. Unlike previously described, the MAC key
in OTRv1 was simply a hash of the message key. On the one hand, this unnecessarily
weakened the message key, as the MAC keys are published in the clear. On the other hand,
and more importantly, this allowed an attacker to hijack a session if an ephemeral key is
compromised, as it allows the attacker to also authenticate the injected messages. This
broke the future secrecy the DH ratchet can provide until the next session is established,
but was luckily fixed in OTRv2.

A further big change in the second version of OTR was the addition of the SMP.
This is notable as it tackles the issue of both authentication and trust in a way that is
still unique to it. MitM attacks on OTR were relatively easy to perform, as evidenced
by a module for a popular XMPP server which automatically executes them19. In fact,
this module was cited as part of the motivation to make authentication easier [AG07].
Manual comparison of key fingerprints, as it was possible from the beginning, can detect
this type of attack. However, this again introduces the need to have some understanding
of cryptography, and it naturally cannot serve as identity verification unless conversation
partners have another verified channel, such as meeting in real life. The SMP not only
abstracts away the cryptographic concept of long-term keys, highly increasing usability,
but by employing a conventional shared secret also somewhat manages to tackle the
problem of identity verification at the same time.
Unfortunately, in practice users would often agree on a “secret” in-band even after
skimming instructions, disclosing the information to a possible attacker and rendering
the method useless for both purposes [SYG08]. Still, it is an interesting approach and a
step in the right direction, and as mentioned in the previous section, OTR in any case
provides protection against passive adversaries, unlike PGP. From a cryptographic point
of view, the specific solution to the SMP which is used in OTR was proven to keep its
promises, i.e. no information except if the secret matches is revealed [BST01].

Following the addition of the discussed improvements to the second version of the
protocol, OTR was again scrutinized, and more possible attacks were found in [BM].
However, the paper assumes an attacker to have control over the whole network, which
is why the vulnerabilities are of a rather theoretical nature. Since the proposed additions
cannot be found in OTRv3 [OTR], which was released much later, it can be assumed the
OTR developers agree with this statement.
The exception is the possibility of the ‘version rollback’ attack mentioned in the same
paper, forcing users to downgrade to version 1 and therefore use a weak key exchange.
While OTRv1 was not explicitly deprecated, it was removed from the features an OTRv3
client has to implement [OTR].

19https://www.ejabberd.im/mod_otr

28

https://www.ejabberd.im/mod_otr

2.2. Evaluation of Two-Party Encryption Schemes

Now, the underlying models and assumptions will be inspected. Unlike PGP, which was
made with emails in mind [Zimb], OTR was explicitly designed for instant messaging.
Its authors realized from the start that their synchronous model of communication is
incompatible with the asynchronous medium of electronic mail [BGB04], so it is likely
their call to “not use PGP” should be rather seen as an appeal to re-evaluate its definition
of privacy, especially as attempts of embedding it in instant messaging were being made.
Examples of such experiments from around that time can be found in the gaim-e plugin20

for the AOL, MSN and Yahoo protocols, or an extension for the XMPP protocol21.
The original paper suggests automatically terminating OTR sessions at every client exit
and after some period of inactivity, as well as implementing special NAK (Negative
Acknowledgement) messages which are automatically sent to renegotiate a session in
case the session was terminated only on one side and an unreadable message was received.
Additionally, the last sent message should be saved as plaintext so it could be resent in the
new session. This complexity could have been an indication that modeling instant messag-
ing conversations as synchronous is not optimal, and the only reasoning for establishing
a new cryptographic session for every period of activity in a messaging session can be
found in possible MitM detection by comparing the sent long-term public keys. However,
as already mentioned, this automatic type of detection only works if the MitM was not
performed every time, which however is not unlikely in case of a malicious server admin-
istrator. Furthermore, as (ideally) every message is encrypted with a new key through
the employed ratchet, frequently re-establishing sessions does not improve forward secrecy.
In the end, OTR’s conversation model led to degraded usability and a need for workarounds
a few years down the road, when messaging applications on mobile platforms started
implementing OTR. A few examples can be found in a blog post by Open Whisper Sys-
tems, explaining why they felt it was necessary to move away from OTR for TextSecure
(on iOS) [Moxc]: Before sending an encrypted message, a session has to be established
synchronously, i.e. both users’ clients have to be able to react to it. What is a given
on desktop operating systems, need not be on mobile ones. For reasons such as battery
and data traffic conservation, programs are ‘paused’ when sent to the background by a
different application, limiting their capacity to react to events such as incoming messages.
This is especially true when the screen is turned off, as then only ‘push notifications’
are received, which means that the device is only notified of a message and has to fetch
the actual message contents when it is reactivated. So when a user of TextSecure with
OTR received a handshake message while not actively using the phone, it was actually
just a push message and the client had to wait until the phone was unlocked. Another
example given is ChatSecure (also on iOS), which at the point of writing of the blog
article silently ended the encryption session after the program has been in the background
for two minutes, and equally silently discarded any further messages. In OTRv3, which
was released at the end of 2012, sessions of indefinite length were also allowed [OTR],
likely fixing the worst of these problems as the session only had to be established once.
However, that was not enough.

20https://sourceforge.net/projects/gaim-e/
21https://xmpp.org/extensions/xep-0027.html

29

https://sourceforge.net/projects/gaim-e/
https://xmpp.org/extensions/xep-0027.html

2. State of the Art

The OTR developers also did not consider the possibility that a user owns multiple
devices and wants all of them to receive all messages. To be fair, this feature was not
widely supported by popular IM protocols at the time OTR was conceived. Still, this
requirement became more significant with the widespread use of mobile devices, as cited
as motivation for this work in the introduction. This fact was partly acknowledged by
the developers, as instance tags which permanently identify a client were also added in
OTRv3 [OTR]. With this, the sender at least has the possibility to choose the recipient
device of an encrypted message, while before the result was implementation-dependent.
The result still cannot be called ‘multi-device support’, though, as this does not help
with multiple own devices, which in the best case end up with all incoming but none
of the outgoing messages. Actually, the OTRv3 specification does consider protocols
that deliver messages to multiple devices at the same time, but only insofar as to suggest
using the previously mentioned indefinite sessions for interleaving incoming messages
from multiple sources.

To summarize, the OTR developers reacted to the emerging use of instant messag-
ing with the right ideas, as can be seen informally proven by the long list of programs
which make use of it to this day. Taking away most of the responsibility of key man-
agement from the user was also certainly a good design decision and a step in the
right direction. This improved usability and thus actually enabled users to have private
conversations, in contrast to PGP, whose perceived complexity seems to have hindered
its adoption by less adept users. However, the developers missed out on modernizing
their protocol by adopting it to newly surfacing requirements. The rather minimal fix
which resulted in version 3 could have been further improved on, but to this day was not.

2.2.3 Signal Protocol

As already pointed out in the introduction to section 2.1.3, the whole reason for the Signal
Protocol to exist is because its developers wanted to overcome the shortcomings of OTR,
which is similar to the relationship between OTR and PGP. Therefore this evaluation
will start by looking at what they think was missing, as well as how the improvements
were achieved with this protocol. A good basis for this are the explanations given by
them in a series of blog posts, some of which were already cited in the evaluation of OTR
in the preceding section [Moxj, Moxa, Moxc].

One of the main reasons driving Open Whisper Systems away from OTR is its syn-
chronous conversation model. Messaging on mobile devices came to replace SMS, which is
an asynchronous medium, much like email. People just message away and do not expect
and usually also do not receive an immediate response. Requiring the two conversation
partners to be either active at the same time, or to wait several messages before any
ciphertext can be exchanged can certainly be counted as bad usability. As said before,
OTR was later updated to allow indefinitely long sessions, so the cumbersome session
establishment only has to be done once. However, this is arguably still one time too
many.

30

2.2. Evaluation of Two-Party Encryption Schemes

By employing the ‘cached one-round key exchange‘ protocol (X)3DH, this major obstacle
could successfully be overcome. This, of course, adds a dependency on a server, which
does not matter to the creators of the Signal Protocol, who run their own messaging
service. The stated design goal of OTR to work ‘on top of another protocol‘ [BGB04]
can be seen to imply the opposite. However, as it is trivial to convert an asynchronous
scheme like this into a synchronous one, it should not necesarrily have hindered OTR’s
development, while allowing additional comfort on flexible protocols which allow working
around this restriction.

Another argument brought up against OTR is the complexity of its message format.
In order to perform a new DH calculation to receive a new shared secret, a client first
announces the public key it is going to use, and then waits for it to be acknowledged by
the conversation partner. This makes it necessary to include all key IDs in the messages:
that of both currently used keys and the newly announced key. Not to forget the MAC
key publishing scheme to allegedly add to the deniability by appending previously used
keys to messages as plaintext. Both of these mechanisms increase the size of the message
that is sent. While it might not be much of an issue nowadays, it is surely still nice to
avoid unnecessary traffic, and as explained further below, the Signal Protocol certainly
does make this unnecessary.
As a reminder, one of the main concerns of OTR is deniability, which is the whole reason
for publishing the MAC keys, even though the usefulness of this procedure is questionable.
In the Signal Protocol, this attribute was planned to be achieved from the start by the
nature of the key exchange, as in fact the way the session is established is the most
important part to achieving this attribute. This fact was briefly discussed in section
2.2.2, but the following citation from [DRGK06] reinforces it: “If the parties can deny
having exchanged a key with the other party, then the rest of the communication can
also be denied.”
According to [CGCD+16], the used X3DH protocol likely fulfills the peer-deniability
attribute defined in [CF11], which is very similar to the SIGMA protocol’s partial de-
niability. As no ‘peer-provided element’ such as a nonce is signed in X3DH, it possibly
also fulfills the slightly stronger peer-and-time deniability property also defined in [CF11],
though no proof is given. This type of deniability not only allows denying the intended
peer, but also the time window of the exchange. The counterexample for the latter given
for SIGMA is a hash of a daily newspaper as the peer-provided element.
Curiously, the simple 3DH as suggested in [KP05] is fully deniable in the sense of
[DRGK06] [Moxj], as it did not employ digital signatures at all. Intuitively, this is
because it is possible for Eve to fabricate a whole fake conversation by using Alice’s
advertised long-term public key, but then replace the public ephemeral key with one she
computed herself [Moxj, FMB+14].
However, as stated in [Kra05], this class of implicitly authenticated protocols cannot
provide ‘full’ forward secrecy. This is because the following attack described in [CF11]
is possible: If Eve replaces Alice’s ephemeral public keys with her own when they are
requested by Bob (e.g. by substituting them on the server), she can decrypt messages

31

2. State of the Art

sent from Bob to Alice if she manages to learn Alice’s long-term private key at any
later time. It should be noted that Alice cannot decrypt these messages which makes
this attack very obvious and likely short-lived, however it should not be acceptable by
design. Note the similarity to the previously described attack which was used to prove
full deniability. As a remedy, the paper thus suggests signing the ephemeral public keys,
which was incorporated into X3DH.
Then again, the inclusion of signatures re-enables the key-compromise impersonation
attack for X3DH which empowers an attacker who compromised the signed pre-key’s
private key to impersonate anyone to the victim, which is one of the reasons it is recom-
mended to regularly replace it [Mox16]. This type of attack was excluded for the protocols
underlying 3DH [BWJM97], but also for the more interactive SIGMA protocol which
requires the partner to generate a new signature and therefore provide proof of knowledge
of the private key [BMP04]. These comparisons provide an interesting demonstration of
the inherent tradeoffs between the key attributes authentication, forward secrecy, and
deniability [DRGK06, CF11, BMP04].

An explicitly stated design goal of the Signal Protocol is future secrecy [Moxa], which it
fullfills according to [UDB+15]. Comparing the attribute’s definition given therein (and
used in this thesis) to the one given by the developer of the Double Ratchet, [CGCG16]
reaches the conclusion that future secrecy is implied by forward secrecy anyway. However,
both papers point out that future secrecy is not well defined.
[CGCG16] then introduces the stronger notion of post-compromise security. Unlike
future secrecy, post-compromise security explicitly also covers the scenario of an attacker
gaining access to long-term keys, but not all all memory contents, which limits the attack
window to a timeframe directly after the compromise, i.e. until “an honest communication
exchange” occurs. One of the central mechanisms in PCS is a shared state, which is
included in the Signal Protocol through use of the root key used by the Double Ratchet.
However, while PCS seems to be achievable, the implementation in the Signal application
is not, as a user’s long-term key is shared across multiple devices, but the Double Ratchet
sessions are not, being established between devices individually. This allows an attacker
who compromised the long-term key to impersonate a new device at any later time and
thus gain access to conversations even if their state has been updated in the meantime.
Since future secrecy is described as the main reason for including the symmetric ratchet
in the Signal Protocol [Moxa], it seems important to point out what exactly was achieved
by doing that. As the author notes in the cited blog post, OTR already achieves future
secrecy through its DH ratchet. Yet, if a user writes multiple messages in a row, they are
encrypted by the same message key, which means that in case of key compromise, they all
can be decrypted. The counterexample used is the SCIMP ratchet, which hashes the key
to receive a new key for every message (but of course does not provide future secrecy).
So by incorporating the symmetric ratchet, the Double Ratchet minimizes the amount of
messages whose confidentiality has been broken in case of ephemeral key compromise,
and therefore has better future secrecy properties.

32

2.2. Evaluation of Two-Party Encryption Schemes

The specifications of the Signal Protocol’s several parts point out some attack vec-
tors mostly related to key compromise as well as some security considerations [Tre16b,
Mox16, Tre16a], however multiple papers examining the Signal Protocol generally attest
it security in realistic scenarios [FMB+14, CGCD+16]. A flaw pointed out by [FMB+14]
is the susceptability to a UKS attack, but as previously discussed there is a tradeoff with
deniability and since the specification itself warns about this attack [Mox16] this seems
to be the result of a decision on this tradeoff. Furthermore, [CGCD+16] suggests slight
improvements which would result in resilience against compromise of the random number
generator. This is interesting as one of the reasons for dropping signatures for 3DH was
getting rid of the complexity that comes with DSA [Moxj], citing an example of a bad –
i.e. static – PRNG leading to disclosure of keys [fai10], which of course generally extends
to predictable values [Nat10, H D08].

As for the usability, purely on the protocol level it is the same as OTRv1, i.e. manual
fingerprint comparison, and therefore highly depends on the implementation. That being
said, the Signal app introduced so-called safety numbers to move away from the concept
of ‘fingerprints’, as this metaphor does not seem to work well for the average user without
any background in cryptography [Moxg]. These safety numbers consist of 60 digits (in
12 groups of 5) per conversation in order to decrease the needed comparisons to just one.
Actually, this number still just contains a representation of both public keys, one being
30 digits long. In order to increase resistance against UKS attacks on the UI level, the
phone number is included in the generation of these numbers as well.
Generally, using the phone number for identity establishment can be seen as user-friendly,
as someone usually already knows the phone numbers of his or her friends. However, this
decreases anonymity.

In 2016, the Signal Protocol was adopted by the WhatsApp messenger, the Face-
book messenger, and Google’s new Allo messenger with their many millions of users
[Moxk, Moxb, Moxe]. It can therefore be considered the de-facto standard, and this in
turn can be treated as an informal proof that it did many things right.

2.2.4 Summary

This section features a more direct comparison between all three protocols as a summary
of the preceding evaluation. Table 2.2 shows which of the initially mentioned attributes
were achieved attributes in form of a rating of maximum three stars, while table 2.1
provides an overview of other attributes which cannot be quantified.

First, some commentary on table 2.1.
The first three rows are more or less related: Choice of main medium and communication
model are directly associated with each other, and of course depended on what was
current at the time. Electronic mail is naturally asynchronous, as well as mobile IM, which
can be seen as a more flexible replacement of the equally asynchronous SMS. Nowadays,
Desktop IM is not necessarily synchronous, but e.g. support for ‘offline messages’, i.e.

33

2. State of the Art

Table 2.1: General attributes of the evaluated protocols

Attribute
Protocol PGP OTR Signal Protocol

Main Medium e-mail / BBS desktop IM mobile IM
Communication Model asynchronous synchronous asynchronous
Session Establishment non-interactive

(2-step)
interactive
(4-step)

non-interactive
(2-step)

Session Length single message IM session
(both online)

indefinite

Multi-Device yes no yes
Identity long-term key IM account IM account

(phone #)
Trust Establishment WoT FP verification

or SMP
FP verification
(safety numbers)

Cryptographic Primitives selectable from
given options

fixed chosen per imple-
mentation from
given options

Table 2.2: Cryptographic attributes of the evaluated protocols

Attribute
Protocol PGP OTR Signal Protocol

Confidentiality
Integrity
Authenticity
Deniability
Forward Secrecy
Future Secrecy

store-and-forward, was only starting to be added to IM protocols around the time OTR
was conceived. As an example, see the Message Archiving22 XMPP extension, whose
initial draft was published just the same year as OTR. This of course set the frame of
what kind of session establishment is possible. Note that even for an interactive key
exchange, 4 steps is still 1 step more than necessary, but the 4-step SIGMA-R protects
the responder’s identity against active attacks by delaying sending identifying information
until the initiator’s identity has been verified in the third step. 3-step variants which
either protect the initator’s identity by adding encryption (SIGMA-I), or come with no
protection at all (regular SIGMA) also exist [Kra03].
The session length however is not bounded by this and was set by the developers in

22https://xmpp.org/extensions/xep-0136.html

34

https://xmpp.org/extensions/xep-0136.html

2.2. Evaluation of Two-Party Encryption Schemes

accordance with their model of communication.
For multi-device support it is of course imaginable to simply establish pairwise sessions,
but while OTRv3 added per-client ‘instance tags’ for identifying recipient clients, the
official OTR implementation only lets the user choose one of them to encrypt for. In
addition, and most importantly, it does not account for multiple own devices on which
the user might want to receive a copy as well for a consistent view of the conversation.
The Signal Protocol reference implementation specifically includes per-device sessions
per user, including the own. PGP trivially allows to encrypt the symmetric per-message
session key for any number of recipients using each of their long-term public keys.
Initially, the idea behind PGP was that everyone generates one long-term key to be
identified by, as the scheme is not constricted to a certain medium and can be used for
many things. The developers of OTR found this to not fit in their defition of privacy,
instead binding identity to IM accounts, which can be and usually are registered under
a pseudonym. A similar approach is used in the Signal Protocol, though it should be
noted that the Signal app uses phone numbers for registering accounts, subtracting from
the provided anonymity.
In turn, this makes establishing trust somewhat easier, as a phone number is generally
known by a person’s friends. Additionally, there’s the previously mentioned safety num-
bers for both MitM and UKS detection. The Signal Protocol by itself does not specify
this and is left with simple fingerprint verification however. OTR also employs manual
fingerprint verification, but added the SMP which can also make use of a shared real-life
secret. PGP relies on the Web of Trust, which was lenghtily discussed before.
Lastly, the protocols also differ in how they deal with the choice of cryptographic prim-
itives. In its specification, PGP offers a choice of algorithms for each function, which
implementations can decide to support. Naturally, an application striving for good inter-
operability should then implement most of these. In contrast, OTR fixed all primitives
in their protocol specification. The Signal Protocol does something inbetween: The
specification offers a choice of algorithms for specific parts, out of which a decision has to
be made per implementation. Actually, there is no specification for the whole protocol,
just for its parts which in theory do not necessarily have to be used together.

As for table 2.2, ratings like these are of course debatable, but the detailed reason-
ing can be found in the preceding sections. A short summary explaining the exact rating
follows. The ratings are supposed to be based on an average realistic scenario, and not
on either the worst or the best case.
Since all three protocols use solid and widely reviewed cryptographic algorithms for
encrypting the payload, they get an accordingly high rating for confidentiality. However,
as noted in the PGP evaluation, its wide range of choices unfortunately also allows
long-term keypairs that can be considered compromisable, leading to a slight reduction.
OTR and the Signal Protocol with their more rigid choice of algorithms do not suffer
from this.
However, the latter loses half a star in its authenticity rating because the used X3DH key
exchange algorithm is vulnerable to both UKS and KCI attacks, unlike OTR’s SIGMA

35

2. State of the Art

protocol. The specification points these out though and gives useful pointers on how to
mitigate them on the application level, therefore the impact can be considered not severe.
The half star the Signal Protocol loses against OTR in authenticity it gains again in
deniability. While neither can reach full deniability while still providing authenticity, the
X3DH handshake does not demand a user-supplied value and is therefore argued to still
achieve a higher level of deniability. PGP, which unlike the other two protocols employs
digital signatures instead of MACs, does not provide deniability at all.
Neither does it provide forward secrecy, as it does not force the long-term encryption
keypair to change in any way. OTR specifically wanted to advance from this behaviour
and its ratchet does a good job at regularly changing the encryption key. Nonetheless,
the Signal Protocol managed to slightly improve on it and use a new symmetric key for
every single message, even if the conversation partner does not reply, i.e. no new DH
exchange can be completed.
Even though not explicitly stated as a design goal, the OTR ratchet also manages to
achieve some form of future secrecy. The Signal Protocol did state this goal, but only in
the definition that OTR already fulfills. As it turns out, it manages to achieve resilience
against even more attack scenarios, and therefore receives the full rating. Since the
reference implementation in the form of the Signal app was brought to comparison
throughout the evaluation as well, it should be noted again that it does not achieve this
post-compromise security through its handling of multiple devices, though possible in
theory. With the same reason as before, PGP does not provide any future secrecy.

It seems like tables 2.1 and 2.2 manage to visualize the general feeling one got about the
reasons for why one protocol superseded the other in the medium most used at the time:
OTR obviously has properties that PGP does not have, but which can be counted as an
integral part of ‘privacy’. The Signal Protocol on the other hand does not significantly
improve in this regard. While it does seem to more or less optimize the ideas behind the
conception of OTR, the reasons for its huge success seem to lie mainly in other areas,
namely removing the restrictions of a synchronous model of communication and the
limitation to one device per user.
Seeing how the Signal Protocol is the de-facto standard, it appears it a reasonable starting
point for new developments in the area of instant messaging. Closer inspection revealed
that it in fact has some best-case properties and fulfills other modern requirements, while
other attempts at providing these appear to be absent.

2.3 Overview of Multiparty Encryption Schemes

2.3.1 Two-Party Scheme Reuse

After OTR gained some traction, a first attempt was made to apply it to the groupchat
usage case in [BST07]. Called Group OTR, its concept is based on using one of the
participants as a ‘virtual server’ which has an active session with every member of the
group. All other participants only need a session with this virtual server, as it will

36

2.3. Overview of Multiparty Encryption Schemes

re-encrypt the message for everyone else after decrypting the received ciphertext.
In their implementation, the ‘virtual server’ role is filled by the initiator of the group
chat. The OTR message format is extended to also contain the intended receiver, and
original sender.

2.3.2 Pairwise Sessions for Key Transport

Per-Message Key

Assuming each participant of a group can establish a secure channel with every other
participant, likely the most straightforward way to implement secure group communication
is to use these individual sessions for every message. However, instead of encrypting the
whole message for all recipients individually and then sending the ciphertext to each of
them, the following technique is usually applied:
A symmetric-key algorithm is used to encrypt the plaintext with a random key, and
the previously established session with every recipient is used to only encrypt this key.
Since the key is likely shorter than the plaintext, this technique saves computation time,
but also saves the sender from having to transmit the encrypted message to every user
individually. Instead, one message which contains the encrypted key for each user is
sent to the server, which delivers it to all users as usual. A receiving client then needs
to identify which of the encrypted keys it can decrypt, and finally decrypt the payload,
containing the message text.
This scheme should sound familiar from PGP, where it is for example used by GnuPG,
but it is also used by other programs for their multi-party chat implementations, such as
the Signal Messenger [The, Moxf].

Per-Session Key

Instead of using a pre-existing secure channel with each other group member for relaying
single message keys, it can also be used to transmit other key material once. This can
then be a session key which is the valid for the remainder of the group session, or until
replaced).
One possible version of this mechanism is one of the participants generating a key to be
used by the whole group, and transmitting it to everyone. Such a scheme is e.g. proposed
in the draft of flute [Geob], where a ‘room captain’ is responsible for generation and
distribution of a group key.
A similar technique is for every user to generate an encryption key and then announce it to
every other user. This strategy is part of the Signal Protocol reference implementation, but
as just mentioned, the Signal Messenger itself employs a different mechanism [Opea, Moxf].
However, it is used by e.g. WhatsApp group chats, and is also available as Megolm in
the Olm implementation of the Signal Protocol [Wha, mat]. The following discussion is
based on their documentation.
When a new member joins the group, the client needs to generate a new, random secret,
as well as an ephemeral signing key pair. The first outgoing message needs to contain

37

2. State of the Art

this secret, which will be used to derive encryption keys for the following messages, and
the public signing key used for verifying authenticity. This information is encrypted for
each participant using the existing two-party session. Short-lived digital signatures are
needed because in a multi-party setting like this, MACs computable by all participants
obviously cannot authenticate a specific user.
For each subsequent message, the existing secret is used to derive both a new secret and
an encryption key, similar to the symmetric-key ratchet described in the context of the
Signal Protocol. As before, the secret can be advanced in the same way on the receiving
end to derive the used message key.

2.3.3 Use of Group Key Agreement

(n+1)sec

A first attempt to create an explicit multi-party instant messaging protocol which can
work on top of other protocols and does not require the IM server’s assistance was made
in [GUVGC09] and is called mpOTR, for Multi-Party OTR. Despite its name, it does
not employ OTR, nor is it technologically similar. Rather, both protocols share many
design goals (and one inventor).
Unlike OTR, mpOTR neither came with a ready-to-use library and plugin, nor was the
specification detailed enough for the creation of one. For this reason, several projects
wishing to implement end-to-end encrypted group chats started working on (n+1)sec
[eQua]. The basic mechanism of this protocol is based on mpOTR, however several
improvements were made along the way, especially by choosing algorithms for those parts
where none were defined, or some improvement was necessary. At the moment of writing,
only incomplete drafts of the specification exist in several places [eQua, eQub], however
there is enough information available for the following high-level overview.

As a first step and before any group computations can be done, all users need to
generate an ephemeral keypair and broadcast both its public key yi = gxi and a long-term
public key Ui = gxI to all other members. The ephemeral keypair will in fact be used
for three distinct purposes: peer-to-peer handshake, group key agreement, and digital
signatures for origin authentication.
Establishing the peer-to-peer authenticated channel is the next step. (n+1)sec follows
the suggestion made in the mpOTR paper and uses an implicitly authenticated DH key
exchange variant – the Triple Diffie-Hellman handshake described in section 2.1.3. It is
‘implicitly authenticated’ because the proof of authenticity happens through using the
shared secret. In mpOTR it is suggested to use a key derived from the shared secret to
encrypt the transmission of the ephemeral signing key, but as (n+1)sec only uses one
ephemeral keypair in total, it uses an authentication challenge.
This challenge happens by sending a nonce Ni,j . A recipient Alice of such a challenge needs
to compute the shared secret S using her own and the received keys, concatenate it with
her own public key and the nonce, and return a hash of that data T = H(Ua|Nb,a|Sa,b)
to the sender Bob. If Bob gets the same result for this calculation, Alice has proven

38

2.3. Overview of Multiparty Encryption Schemes

knowledge of the secret S to him, and by extension also knowledge of the ephemeral
private key xa. All further messages, i.e. those needed for the protocol run as well as the
ones containing user-written ciphertext, are then authenticated by a digital signature
using this short-term key. How exactly the ephemeral signing keypair (Ed25519) is
derived from the ephemeral ECDH keypair (Curve25519) is not specified.

Once every group member confirmed the authenticity of every other member, the
actual group key agreement can immediately begin, as the needed yi and Ui have al-
ready been broadcasted. The basis for the key exchange scheme used in (n+1)sec is
the mBD+P protocol proposed in [ACMP10], which in turn is a modification of the
Burmester-Desmedt group key exchange protocol described in [BD95] – hence the name.
Based on adjustments suggested in [Man09], it allows for reusing the public DH key yi for
both group and peer-to-peer secrets in order to decrease the number of communication
rounds. Thus, the shared secret S resulting from the previously described 3DH exchange
is not si,j = H(gxixj |gxiUj |gxjUi), but a derived value Si,j = Hp(si,j , Ui|yi, Uj |yj) in order
to prevent collision attacks.
Before any cryptographic operations are performed, all n − 1 user identities, rep-
resented by a concatenation of the username ui and the long-term public key Ui,
are again concatenated in order and then hashed to receive the groupid: groupid =
H(u0|U0| . . . |un−1|Un−1). The index stops at n− 1 because the group members form a
circle, i.e. u0 = un.
Now, every user Ui can calculate the shared secrets d with both neighbors by calculating
the 3DH secret s, concatenating it with the groupid, and hashing the result to receive
di−1,i = H(si−1,i|groupid) and di,i+1 = H(si,i+1|groupid). With these values, a user can
calculate his share z of the group secret g by XORing them. Afterwards, this value
zi = di−1,i ⊕ di,i+1 is again broadcasted to all other users, together with the calculated
groupid. Having received all z0..n−1 from the other group participants, a user Ui can
calculate all other shared secrets. Starting from di+1,i+2 = di,i+1 ⊕ zi+1 which can be
derived from a shared secret Ui already possesses and a received value zi+1, all values
can be computed in a similar manner, i.e. di+2,i+3 = di+1,i+2 ⊕ zi+2, and so on. Hashing
the concatenation of all di,j then yields the group secret g = H(d0,1| . . . |dn−1,0), from
which an encryption key can be derived. This can be observed in figure 2.10.

In order to achieve forward secrecy, the initial draft at [eQua] suggested an OTR-like
ratchet of users announcing new ephemeral keys with either their regular text messages
or special heartbeat messages in order to periodically refresh the group secret. The newer
specification draft does not contain such a scheme [eQub]. Instead, re-keying can be
explicitly triggered by sending a KEY_RATCHET message if the group key has been in
use for too long. Generally, the group encryption key is renegotiated at every join or
leave, which in any case provides at least per-session forward secrecy.
Furthermore, (n+1)sec tries to deal with denial-of-service attacks. Aside from timing
out unresponsive parties, some adjustments were made to detect malicious behaviour
so the offender can be excluded in a subsequent run of the protocol. For instance, a

39

2. State of the Art

Figure 2.10: np1sec group key agreement between four users.

U0 U1

U2U3

d0,1

d1,2

d2,3

d3,0

⊕ ⊕

⊕⊕

z0 z1

z2z3

⊕ ⊕

⊕⊕

malicious user Um broadcasting a wrong groupid together with zm will abort the protocol
run, and cause a re-run excluding him. There is also another step after computing the
group secret g: Broadcasting the value resulting from H(g|groupid). If all users sent the
same value, g can be used. Otherwise, everyone has to publish their ephemeral secret key
xi, so that all calculations made can be reproduced, and the offending party be excluded
in the re-run that follows.

Group OTR

Unlike the scheme with the same name described in section 2.3.1, Group OTR as pre-
sented in [LVH13] does not try to reuse OTR for a group setting. Rather, it simply
shares OTR’s design goals, just like mpOTR. Moreover, GOTR is meant to improve on
mpOTR, which according to the authors does not provide the same level of repudiability
as OTR. However, again very much like mpOTR, the GOTR proposal does not include a
specification of cryptographic primitives, and merely a suggestion regarding a necessary

40

2.3. Overview of Multiparty Encryption Schemes

two-party key exchange protocol. As there is no protocol to inspect, this section only
contains a high-level overview over the nonetheless interesting scheme.

GOTR is based on the Burmester-Desmedt group key exchange protocol, whose ba-
sics were already described in section 2.3.3. Since a non-modified version is used here,
the mathematical operations differ from the description in that section, but this is not
a concern for a general overview. It is still the case that a participant calculates his
or her share of the BD group key by using the two neighbors’ public keys, and these
shares can be used by every participant together with their private key to compute the
same group secret. Therefore, like previously described, each user needs to establish an
authenticated channel to every other user first. After that is done, an ephemeral DH
keypair is generated, and its public value broadcasted. However, GOTR does not treat
one user as one participant – each user Ui acts as two virtual participant nodes Dij0 and
Dij1 for every other user Uj , as can be seen in figure 2.11. Thus, each node Dij0|1 has its
own ephemeral DH keypair, resulting in two public values per every other user.
After receiving the other users’ public DH keys, the first step for Ui is then to calcu-
late the two own shares Rij = (Rij0 , Rij1) of a BD group key between the four virtual
nodes created between Ui and every other user Uj . The computed Rij values are then
broadcasted by every user, which means that the corresonding values Vij = Rji are also
received. In theory, the BD group key of these four-node groups called flakeij could be
calculated and used to secure further communication between Ui and Uj – this is not the
main point of the algorithm however.
Instead, Ui also computes the BD sharesWij0 andWij1 between (Dij0 , Dji0 , Di(j−1)1) and
(Dij1 , Dji1 , Di(j+1)1) respectively, connecting the own virtual nodes created for different
users with one other user’s virtual node each. Now, a BD group key can be determined
by using the received Vij and the connecting Wij . This group key is called Ui’s circle key
Ki. Note that Rij does not play a part in Ui’s computation, as Dij0 and Dij1 are not
connected – only the ‘outer’ nodes form the circle.
Figure 2.11 shows the nodes used for a user U1’s circle key connected by a black undirected
edge. It also exemplifies how the Vij = Rji and Wij values are used to construct the
circle, and why the Rij values are missing.

When writing a message, an encryption key is derived from Ki. However, the Wij

values necessary to compute it are not known to any user except Ui at this point. For
this reason, every message sent by Ui contains all Dij nodes’ public keys and all shares
of Ki, i.e. all Vij and Wij used to compute Ki. All Uj can therefore compute Ki, and
derive the same encryption key.
In fact, a MAC key is also derived from Ki and used over the whole message, which also
contains other information such as a session ID and a hash of all messages, including
the sent one. But as any user can compute the MAC key, origin authentication cannot
be provided by it. Instead, it is achieved by a peer-to-peer consistency check over the
previously established authenticated channel: After receiving a ciphertext, all users
compare the message log hash received as part of the same message. If the consistency

41

2. State of the Art

Figure 2.11: Calculation of a GOTR circle key.

D140 D141

D410 D411

D131

D130

D311

D310

D150

D151

D510

D511

D121 D120

D211 D210

V140 = R410

W141

R140

U1

flake12

check succeeded, the message is authenticated.

GOTR uses what the authors call a ‘hot-plug’ group key agreement, i.e. users can
be added to and removed from the group without making it necessary to restart the key
agreement protocol. The four virtual nodes representing the connection to another user,
i.e. the flake, can be simply added to or removed from a circle key calculation. This
not only simplifies changes to group membership, but also provides resilience against
denial of service attacks – a user who fails to provide the necessary information does not
disrupt the process and can be simply excluded.

2.3.4 Evaluation

As evidenced by the sections on (n+1)sec and GOTR, establishing a group secret in an
authenticated way is not only mathematically complex, but also needs many communica-
tion rounds. Assuming a group chat is permanent and rather static, such as it is often
the case in modern messaging applications, the cost of one join or leave can be considered

42

2.3. Overview of Multiparty Encryption Schemes

negligible even when high, but both schemes also suggest frequent re-keying in order to
achieve forward secrecy. In GOTR’s test implementation, establishing a key between 16
chat participants takes a median time of about 6 seconds (with median transmission delay
of less than 2 seconds) [LVH13], and in a test of the (n+1)sec reference implementation
conducted by the developers the same took about 10 seconds [eQuc].
Even though the cryptography underlying both has been proven to fulfill its promises in
[ACMP10] and [KY03], it is questionable whether the additional implementation effort
and general complexity of a group key agreement protocol adds any value, especially in
a case where a robust two-party scheme already exists and a key broadcasting scheme
can be applied. Since the first step of a group key agreement is to establish a secret
between each pair of users, simply stopping at this point and reusing a two-party scheme
to securely transport key material will intuitively take less time. Schemes that can reuse
pairwise sessions can speed this up even more.

On the other hand, a simple, naive reuse of a two-party scheme as e.g. presented
in section 2.3.1 has more severe drawbacks and should merely act as a counter-example.
Using one participant as a virtual server reintroduces properties which were tried to be
avoided by employing OTR encryption in the first place – there are no guarantees of
authenticity or integrity. The latter two properties cannot be achieved without at least
initial pairwise authentication.

This leaves using pairwise sessions for transporting locally generated ephemeral key
material. flute’s scheme as it is can be criticized for being susceptible to disruptions
by a malicious ‘captain’, as the draft itself points out [Geob]. Its declared primary use
case of establishing a short-term single-use chatroom might also provide a hint that flute
will not improve its compatibility with more persistent chat models as used by modern
messaging applications. For instance, there is currently no mention of a way to establish
a new room captain should the first one disconnect – the session is then simply over.
Depending on the group size, encrypting a randomly generated message key for every
user is definitely feasible. Since all properties transfer over from the underlying two-party
scheme, this can be a simple extension of a well-studied protocol. Some properties
which might require more attention in the group setting, such as transcript and speaker
consistency, can be easily provided by e.g. also including hashes of the participant list
and the chat log in the encrypted data.
If a sender’s computation effort and message size are an issue at growing group sizes,
they can be reduced by making the recipients save all other participants ephemeral keys,
which are transmitted once at the beginning.

Previously made design choices played a big part in the choice of approach for group
messaging. Considering a good two-party scheme was already chosen in the previous
step, it is only reasonable to reuse it. After XMPP was chosen as transport protocol for
the reasons laid out in 3.1, it became clear that there exists a protocol extension draft
which makes use of the chosen Signal Protocol. OMEMO’s multi-device support however

43

2. State of the Art

is in essence a group chat between both participants’ devices, which is why the same
per-message key scheme was then also inofficially applied to the group setting.

44

CHAPTER 3
Design

3.1 Approach

Encryption

After surveying and evaluating the current technologies in chapter 2, the best suited
encryption scheme was chosen. As initially suspected, this turned out to be the Signal
Protocol. Now, naturally the question arises why there is a need for a new development
which utilizes it, considering that, as pointed out before, it already has millions of users
through not only through its own Signal Messenger, but also WhatsApp, Facebook, and
Google. Some missing features, such as native clients on different systems, have already
been pointed out. But in addition to that, it seems that the goal of gaining many users
in the first case, and using encryption as a marketing strategy to keep them in all the
other cases, brings about decisions which are detrimental to the initial goal of privacy. A
more detailed discussion follows in the subsections below.

Anonymity

This attribute, which can surely be considered a part of privacy, is a great example for the
trade-off just mentioned. Tying the identity of the IM user to his or her phone number
allows for contact discovery and thus facilitates connecting to friends, who in the end
are likely to be the most important factor in the decision whether to stay with the just
installed client, or pick one of the many others available. However, privacy-minded users
often consider this feature a flaw, preferring anonymity instead. More concretely, the
Signal Messenger actively informs its users that someone whose number they have saved
on their phone just joined – a situation the joining user might not want, but does not
suspect from a messenger advertised as respecting privacy [Jam]. Similar points apply to
the other messengers which adopted the Signal Protocol.

45

3. Design

Use of An Already Existing Transport Protocol

The original OTR paper [BGB04] provides some good reasons why working on top of
existing IM protocols is a good idea. These can be summed up as easier integration into
existing structures, both technological and social. However, not many others seem to
agree. For example, there is the Wire Messenger1, which uses an own implementation
of the Double Ratchet called Proteus2. While Wire does allow signing up using just
an email address (as opposed to requiring a phone number), the developers decided
to create an own protocol. Naturally, there are valid reasons for this, one being that
a specifically designed protocol will exactly fullfil the requirements. In this light, the
Cryptocat3 messenger’s decision to use the open XMPP protocol but create an own user
network by disallowing outside access seems less understandable. This however is a first
pointer towards using XMPP, as it shows that end-to-end encrypted messaging can be
built on top of it.

Native Client

While the chosen Signal Protocol does include support for multiple devices in its reference
implementation, the applications which utilize it do not make good use of this functionality.
Both WhatsApp and Signal offer the possibility to also use a browser to access their
respective networks with the same account as used on the mobile app. However, this
then unfortunately also means that both the web app in case of WhatsApp and the
Chrome browser extension in case of Signal suffer from the downsides of being just
another JavaScript program run in the browser, including e.g. possible XSS or phishing
[Dav]. Because the identity is tied to the phone number in both cases, native support on
additional mobile devices such as tablets also does not exist.
The Wire Messenger actually does offer modern native clients on different platforms. But
XMPP, which is already implemented by many clients on many platforms, an additional
requirement can be fulfilled.

Federation

Another desirable property, this time not for privacy but for sustainability, is federation.
This means that in theory anyone could set up a server, and users are not dependant on
the whims or economical situation of a single provider. In reality, not many do this. But
looking at the big picture, it is a necessary attribute for a scheme which is intended to
last a long time.
The developers of Signal vehemently oppose federation [Jak], claiming it is hard to evolve
a federated protocol as quickly as it is necessary nowadays. Another one of their main
arguments is inconsistency of features, which makes for a bad user experience. While
their success may prove them right in their approach in spreading end-to-end encrypted

1https://wire.com
2https://github.com/wireapp/proteus
3https://crypto.cat/

46

https://wire.com
https://github.com/wireapp/proteus
https://crypto.cat/

3.2. Used Technologies

communication, there can never be a guarantee that Open Whisper Systems will not for
any reason stop supporting the Signal Messenger. Therefore it is important to create a
sustainable solution employing good cryptography.
To be fair, both the Signal Messenger and Wire Messenger started releasing the source
code of their server software [Opeb, Wir]. But as they do not currently allow federation,
it would at best take some time to update the software to support it, and at worst will
never happen, leading to a fractured userbase. Thus, XMPP appears to be the best
candidate for this endeavour, and will be introduced in more detail in the next section.

3.2 Used Technologies

3.2.1 XMPP

Background

The Extensible Messaging and Presence Protocol, then called Jabber, started
off as an open alternative to the closed instant messaging protocols available at the time,
such as MSN or ICQ [xmp]. Later, it was extended and to support more use cases,
renamed, and defined in several RFCs [SA11b, SA11c, SA11a].
As the name says, it is designed to be extensible and there exist many XEPs, or XMPP
Extension Protocols, which can be suggested by anyone. Over time, these added a
lot of desirable functionality. For example, there is XEP-0280: Message Carbons, adding
support for receiving messages on multiple connected devices [Joe]. The prerequisite for
this is of course that multiple devices or clients can be logged in at the same time, which
was supported by XMPP from the start, instead of e.g. disconnecting one device as soon
as another login attempt is made.
Because of its openness and extensibility it is often chosen as basis for instant messaging
developments. For instance, many companies made use of XMPP when building their own
chat network, such as Facebook, Whatsapp, and Google [Ste, fip]. As will be explained
shortly, these attributes were also very useful when trying to design an encryption solution
that works as a part of XMPP, and not simply on top of it like OTR.

Technical Details

At its core, XMPP builds on the Extensible Markup Language XML [Tim]. This
section will describe the basic workings of the protocol, which should be helpful with
understanding some of the next sections.

Jabber IDs (often shortened to JIDs) are the account names used in XMPP and look
a lot like email addresses: localpart@domainpart. The reason for this was previously
mentioned: like email, XMPP is federated. If a user of one server wants to send a user of
a different server a message, a server-to-server (s2s) connection is negotiated, and the
message then transmitted. Afterwards, the receiving server treats the message the same
as one sent among its own users.

47

3. Design

Any client connected to an account is called a resource, and can be addressed individually
like so: localpart@domainpart/resource. Otherwise, the bare JID without the resource
suffix is used, e.g. if the server is supposed to decide which client receives a specific
message.

On a lower level, the connection built between two machines and used to send XML
data is called an XML stream in XMPP. It is opened by a <stream> tag, closed by the
corresponding closing tag </stream>, and is the equivalent of a “document entity” in
XML terms.
XML “fragments” [Pau] are a way to only deal with the parts of the whole document
that are currently of interest, and are called XML stanza in XMPP. These stanzas are
the elements contained in the stream and come in three flavours:

• <message/>: The method used to send messages, e.g. to other users.

• <iq/>: Stands for “Info/Query” and is a mechanism for structured queries.

• <presence/>: Used for announcing various status information.

All of these tags can and do have attributes, for example from, to, or type. Of course,
these elements can have more specific sub-elements such as <error/> or the <query/>
tag used inside the <iq/> stanza. A number of these is defined in the main specification,
but any XEP can specify more as needed.

3.2.2 OMEMO

Background

OMEMO Multi-End Message and Object Encryption is an XEP which was called
to life in order to replace OTR as the de-facto standard for forward-secret end-to-end
encryption on XMPP. The authors’ reasoning sounds very similar to the drawbacks
mentioned in the evaluation of OTR in section 2.1.2, and likely for similar reasons as
pointed out in section 2.1.3, the Signal Protocol was chosen to power OMEMO in the
background [And]. In fact, this XEP was developed in the context of Conversations4, an
XMPP client for Android, in order to specifically deal with the shortcomings of OTR in
the mobile environment. This program will be considered the reference implementation
in the following sections.
When the work on this thesis began, OMEMO was merely a Proto-XEP, i.e. not officially
accepted yet, and therefore also not widely implemented, which is why it seemed like a
good candidate to achieve the goals laid out in the beginning. This is especially since
again a promising new development was aimed at mobile devices. Luckily, this time it
could be extended to desktop clients as well.

4https://conversations.im/

48

https://conversations.im/

3.2. Used Technologies

Technical Details

One very good design choice was to port the Signal Protocol, which depends on server-side
logic, in a way that avoids this dependency. This is mostly for organizational reasons,
as writing not only new client code but also new server extensions meant more work
on the one hand, and on the other hand experience tells that server administrators are
slow to install new software. It was done using XEP-0163: Personal Eventing Protocol
(or PEP for short), which is already widely deployed on servers and availabe on clients.
It is a subset of a more general publish-subscribe functionality described in XEP-0060
[Peta] and allows XMPP users to create nodes, publish information on them, and have
the subscribed users be automatically notified of changes [Petc]. In PEP, the subscribed
users are usually the “friends” in the contact list, i.e. the users who have a presence
subscription already. An example named in the specification is receiving updates about
the song contacts are currently listening to [Petb], but as will be evident soon, it can
also be employed for a lot more useful undertakings.
In OMEMO, PEP is used to distribute the information which would usually be held by
the central server needed for asynchronicity features, i.e. all the pre-keys, the signed
pre-key, and the public identity key. Like in the Signal Protocol, this collection of data is
called a bundle and is published on such a PEP node. Unlike in Signal, the identity key is
not shared by all devices of an account, but generated per device, which is why each client
has to upload its own bundle. This makes it necessary to also have a per-account node
containing a list of the OMEMO-supporting devices’ IDs, which is simply called devicelist.
Setting or updating information on the nodes happens by simply sending an <iq/> stanza.

In order to start a conversation with another OMEMO user, his or her devicelist node is
consulted, and then each device’s bundle is retrieved via the corresponding node so that
a session can be built as usual. The own devicelist is also consulted, because each device
has to build a session with every other device participating in the conversation, including
the own.
The message body is not encrypted for every device, however. OMEMO uses a com-
mon scheme which was described in section 2.3.2: The payload is encrypted using a
symmetric-key algorithm, in this case AES-128 in GCM, using a randomly generated key
and initialization vector. Then this 16-byte key, is then encrypted using the previously
established long-term ratcheting session.

Even though OMEMO is designed to handle multiple devices, in this case meaning
that a message is correctly encrypted for each of them as previously described, pure
XMPP only delivers messages to one of the devices connected to the account, and which
one is chosen is decided by implementation-dependent rules. This also means that none
of the other own devices receive any copies of sent messages.
In order improve this dated behaviour which treats each resource separately by default,
the use of XEP-0280: Message Carbons [Joe] is recommended in the OMEMO specifica-
tion, which is again supported by many XMPP servers and clients. With this extension,
copies of sent messages are sent to all other clients of the same account, and incoming

49

3. Design

messages are replicated for all of them as well (provided all clients support message
carbons and have announced this to the server). The result is a consistent view across
multiple devices which are online at the same time and prevents annoying situations
which previously arose, such as the server forwarding messages only to the ‘wrong’ device,
i.e. not the one expected by the user.

Of course it is not guaranteed that all devices a user owns are online at the same
time, so for a limited kind of history synchronization another XEP needs to be employed.
This extension is called XEP-0313: Message Archive Management, or MAM in short.
A server which supports MAM simply saves every message a user sends and receives,
unless configured otherwise. When a client reconnects, it can query the archive for the
activity that happened when it was offline, and reconstruct the message log. However,
the <message/> stanzas sent with OMEMO do not have a <body/>, as the encrypted
message is sent inside an <encrypted/> tag instead. Therefore it is necessary to give
the ‘hint’ to still archive it, which is simply done by including a <store/> tag.
It should be noted that this history synchronization only works for devices which are
already part of the converation, but were simply offline at the time. More specifically,
it does not mean that devices added at a later time can retrieve the history, as this is
mutually exclusive with forward secrecy.

Evaluation

There exists an audit of this protocol which found some possible attacks that apply for
uncautious users, though it is not clear how big of a threat they pose in reality [Seb]. In
addition, there are some suggestions for good implementation practices.
A short summary follows.

One big problem pointed out is the possibility of a malicious device added by an attacker,
as it can decrypt the symmetric key and thus also re-encrypt and re-authenticate any
payload. Even though GCM automatically creates an authentication tag, it is simply
appended to the ciphertext. The attack can even happen undetected if the attacker strips
the message of references to the malicious device’s own ID.
The mitigation suggested in this document is including the authentication tag in the data
that is encrypted by the Double Ratchet session, i.e. append it to the payload encryption
key. This results in the actual ciphertext being authenticated, so that no malicious device
can compromise its integrity. The downside of this suggestion is increased computational
load, but this was deemed acceptable by the developers, seeing how this approach was
adopted [Dan].

Another suggestion made in the audit is encrypting the list of recipients inside the
Double Ratchet session as well, so that the client of a recipient could warn of unidentified
devices (i.e. participant consistency). The actual problem here though is that adding
to the device list of a user is not protected enough. A solution could be to require new
devices to acquire a signature from an existing, trusted device, as it is less likely that a

50

3.2. Used Technologies

user adds an unknown device to his own than questioning devices of his conversation
partner. These signatures should then also have a limited lifetime and be revokable.
However, the per-device trust decisions for both own and foreign devices seem to be
enough of a mitigation, as the developers did not change anything in regard to this
suggestion.

A different class of problems concerns devices that are either inactive, or never used
to send a message, as the Double Ratchet root key is never moved forward, in effect
disabling the DH ratchet.
It can be easily solved by a slight tweak, as OMEMO describes a KeyTransportElement
<message/> which is specifically made for transporting key material and has no content.
This type of message can be used as a ‘heartbeat’: Sent regularly, it will help evolving
the root key, and can also be an indication of devices that are not used anymore.
This suggestion was also incorporated, but instead of using it directly, it was written
down for a future, yet unpublished version of the XEP [str].

3.2.3 Pidgin and libpurple

libpurple is an open source instant messaging library which supports many protocols and
is easily extendable by plugins. Its graphical frontend Pidgin is one of the more commonly
used XMPP clients – for instance, it is often preinstalled on Linux distributions. These
were probably the reasons for OTR to use it as a host for its reference implementation,
and it seems they are equally good reasons in this case. Regrettably, the development
has really slowed down since then, and many more modern XEPs are not implemented,
which added some implementation effort.
In addition to providing a certain set of officially supported protocol plugins (prpls) such
as the one for XMPP, libpurple exposes an interface for additional protocol implementa-
tions, which might be one of the causes for its success. At the moment, 40 additional
messaging protocols can be added 5.. For non-protocol plugins, libpurple also offers
additional interface, making it possible to not only add internal, but also user-facing
functionality which will then work in the frontends without writing specific code. As this
is used in the implementation part, a short introduction follows.

There exists a simple per-account key-value store, making it possible to save simple
data without DB access. For instance, a binary value such as if some option is turned
on or off can be set by purple_account_set_bool(), and retrieved at a later point using
purple_account_get_bool(). Similar functions for number and character types can be
found as well. In order to enable plugins to react to events, there is a number of pre-
defined signals, and more can be added. For instance, there is account-signed-on or
conversation-created, and the XMPP protocol plugin adds several more specific
signals such as jabber-receiving-xmlnode. A handler function for a signal can be
registered using purple_signal_connect(). The previously mentioned possibility to add to

5https://developer.pidgin.im/wiki/ThirdPartyPlugins

51

https://developer.pidgin.im/wiki/ThirdPartyPlugins

3. Design

the user interface is based on ‘requests’ which can let the user input some value, ‘actions’
which are added as a menu item in the Tools menu, ‘commands’ which can be typed into
the textbox, and finally and interface to simply add a plugin preferences dialog. As will
be evident in section 4, even by only using commands a lot of useful functionality can be
implemented.

3.2.4 Programming Language

After the host platform was chosen to be libpurple, the choice of the programming
language was restricted to the same one it uses, namely C. Fortunately, an officially
supported implementation of the Signal Protocol exists as libsignal-protocol-c [Opea].

3.2.5 Additional Libraries

SQLite In contrast to many other database systems, SQL or not, SQLite does not
follow a client/server architecture, but rather uses a local file in a cross-plattform data
format. Still, it is a full-featured, transactional SQL implementation6.
As the official website points out, this is likely the reason it is one of the most widely
deployed libraries, and a common choice for use as an application file format7. Naturally,
it was therefore also a good choice for this application.

cmocka A simple unit testing framework8.

libgcrypt “Libgcrypt is a general purpose cryptographic library [...] [which] pro-
vides functions for all cryptograhic [sic] building blocks”9. It is used to implement the
cryptographic functions needed by libsignal-protocol-c for axc, and by libomemo.

Mini-XML A small library for handling XML data10. Used in libomemo to deal with
XMPP messages, which as described before are based on XML.

GLib GLib provides an implementation of common data structures and many utility
functions such as base64 and is available on many platforms. It is written by (and
initially extracted from) the GNOME project11.

6http://sqlite.com/features.html
7http://sqlite.com/about.html
8https://cmocka.org/
9https://gnupg.org/software/libgcrypt/index.html

10https://michaelrsweet.github.io/mxml/
11https://wiki.gnome.org/Projects/GLib

52

http://sqlite.com/features.html
http://sqlite.com/about.html
https://cmocka.org/
https://gnupg.org/software/libgcrypt/index.html
https://michaelrsweet.github.io/mxml/
https://wiki.gnome.org/Projects/GLib

CHAPTER 4
Implementation

4.1 General Notes

For several reasons, the implementation was divided in several more or less distinct parts.
As hinted at before, libpurple’s XMPP protocol implementation is missing many newer
XEPs. Specifically this concerns the extensions previously described as complementing
OMEMO: XEP-0280: Message Carbons and XEP-0313: Message Archive Management.
While the latter can be regarded as simply providing the comfort function of history
synchronization, the former is definitely necessary for multi-device support, and was
therefore implemented as a separate plugin. This is carbons plugin is described in section
4.2.

Before libsignal-protocol-c can be used in a program, several application-specific in-
terfaces have to be implemented. In order to enable reuse for a possibly differing
multi-party chat implementation, this code was put into its own library. It also contains
all utility functions which turned out to be necessary, which resulted in the complete
abstraction of the Signal Protocol library. The result is called axc (Axolotl Client)
and discussed in section 4.3. It is named that way because when implementation started,
the Double Ratchet was still called Axolotl, and its library therefore libaxolotl-c.

While not likely to be of use in a different part of this work, the code for handling
the protocol specified in OMEMO was also put in its own library, making it possible for
others to reuse it, should interest arise. This library was simply named libomemo and is
described in more detail in section 4.4.

Lastly, the previous two pieces of software were combined into one plugin for libpurple,
called lurch. How exactly that was done is outlined in section 4.5.

53

4. Implementation

4.2 carbons

This plugin can be found at https://github.com/gkdr/carbons.

4.2.1 XEP-0280: Message Carbons

The goals of this extension have been discussed already, however the technical details
were not. This will be done in this short section, based on the XEP found at [Joe].

Installation

Initially, aside from announcing support for this feature through adding it to its service
discovery replies, a client needs to send a message to the sever to enable this functionality.
After such a message was sent, an example of which can be seen in listing 4.1, the server
can acknowledge the enabling, or send an error message. A similar request can be sent
to disable this feature again, switching out the <enable/> for a <disable/>.

Listing 4.1: Enabling Message Carbons
<iq xmlns="jabber:client"

from="alice@example.com/desktop"
type="set">

<enable xmlns="urn:xmpp:carbons:2"/>
</iq>

Receiving Carbon Copies

Now, a client can expect two different sorts of messages: copies of incoming messages
sent by other users, and copies of outgoing messages sent by another client of the same
account.
In the case of the former, the incoming message, i.e. the <message/> stanza, is wrapped
by a <forwarded/> element, which is in turn wrapped by a <received/> element
of the carbons namespace. This ‘envelope’ is put into a <message/> stanza which is
directly addressed to the client by its resource. An example can be found in listing 4.2.
In it Alices desktop client receives a message Bob originally sent to her mobile phone.
Copies of sent messages are wrapped analogously, just the <received/> element is
replaced by a <sent/> element, as can be seen in listing 4.3. There, Alice sends a reply
to Bob from her mobile device, and the server sends a copy to the desktop client. To have
a sent message copied to other devices, no additional hints are necessary – for clients
which previously enabled message carbons, this is done automatically based on a set of
rules. A client can exclude sent messages from carbon-copying by adding hints though if
necessary.

54

https://github.com/gkdr/carbons

4.2. carbons

Listing 4.2: A carbon-copied received message
<message xmlns="jabber:client"

from="alice@example.com"
to="alice@example.com/desktop"
type="chat">

<received xmlns="urn:xmpp:carbons:2">
<forwarded xmlns="urn:xmpp:forward:0">

<message xmlns="jabber:client"
from="bob@example.com/mobile"
to="alice@example.com/mobile"
type="chat">

<body> Are you home? No one is answering the door. </body>
</message>

</forwarded>
</received>

</message>

Listing 4.3: A carbon-copied sent message
<message xmlns="jabber:client"

from="alice@example.com"
to="alice@example.com/desktop"
type="chat">

<sent xmlns="urn:xmpp:carbons:2">
<forwarded xmlns="urn:xmpp:forward:0">

<message xmlns="jabber:client"
to="bob@example.com/mobile"
from="alice@example.com/mobile"
type="chat">

<body>
Yes, sorry, I’m in the garden and did not hear the bell. I’m coming.

</body>
</message>

</forwarded>
</sent>

</message>

Security Considerations

It is important for a client to check that the outer <message/>’s from attribute’s value
is equal to the user’s bare JID (e.g. alice@example.com), as seen in the exmaples in
listings 4.2 and 4.3. Otherwise, any user can fake such a forwarded message. Even
though this fact is noted in the XEP’s security considerations, it was recently discovered
that a number of popular XMPP clients did not follow the specification and thus were
vulnerable to this type of attack [Geoa].

55

4. Implementation

4.2.2 Implementation Details

Initialization

The plugin exposes a simple interface to the user by registering one command and its
command handler function carbons_cmd_func() at startup. This command can then
be called by typing /carbons in any message window. It takes either on or off as
argument, turning message carbons on or off for the issuing account, which is done by
calling the carbons_switch_do() function with the corresponding argument from inside
the command handler. A stanza like in listing 4.1 is then created and sent to the server,
and carbons_switch_cb() registered as callback function for the result returned by it.
Depending on whether it was a request to enable or disable the functionality and whether
the server’s reply is positive or negative, this callback function saves the carbons_enabled
account setting as true or false. At startup, this setting is checked inside the function
carbons_autoenable() to decide whether the request to enable message carbons should be
sent automatically.

Reacting to Events

The main work happens in the carbons_xml_received_cb() function for handling of the
jabber-receiving-xmlnode event, i.e. an incoming XMPP stanza.
As no filtering was done so far and any incoming stanza is passed through this handler
function, it first needs to check if it needs to do any work in the first place. This
is simply done by looking for a either a <received/> or <sent/> node with the
urn:xmpp:carbons:2 namespace. If none is found, the function does nothing, otherwise the
processing continues.
In case a message was determined to be a carbon copy, it needs to be checked for
admissability by making sure it was sent by the user’s bare JID. To this end, the function
carbons_is_valid() is called, and in case it returns false, processing is aborted.

Handling Copies of Incoming Messages

A valid <received/> message is now simply stripped of all outer elements, and the
contained <message/> is passed on by the handler. Essentially, the plugin makes
libpurple think the received carbon-copy of a received message is a regular received
message. The message shown in listing 4.2 would therefore look like in listing 4.4 after
passing through this function. Since the bare JID still matches the user’s account, it is
not a problem that the message is addressed to the mobile resource instead of the own
desktop resource name via the to attribute.

56

4.3. axc

Listing 4.4: The contents of listing 4.2 with the outer message stripped
<message xmlns="jabber:client"

from="bob@example.com/mobile"
to="alice@example.com/mobile"
type="chat">

<body> Are you home? No one is answering the door. </body>
</message>

Handling Copies of Outgoing Messages

<sent/> messages are a little more tricky, as libpurple does not inherently know what to
do with an incoming message that was sent by the own account. <message/>s without a
<body/> are stripped and passed on like before, which also includes OMEMO messages
as will be seen later. Ones that do contain a <body/> however, i.e. ‘normal’ messages,
need to be handled by the plugin itself. As libpurple does not know what to do with
such a message, the corresponding conversation window needs to be found or created,
and the contained text written to it manually.

Since this plugin often times only strips the message carbons ‘envelope’ and passes
the contents on as if they were originally received by the client, it is important to not
register the carbons_xml_received_cb() handler at standard priority, as the plugin needs
to be one of the first to process the received stanza. Otherwise, it would not work
together with e.g. OMEMO, which needs this outer <message/> stripped first in order
to understand the contents. Therefore, considering libpurple iterates through handlers
from lowest to highest in priority, it is registered at PURPLE_PRIORITY_LOWEST+ 100,
both to definitely be in front of the standard priority of 0, but also leave enough room
for other plugins which might need to handle incoming stanzas even earlier.

4.3 axc
This library can be found at https://github.com/gkdr/axc.

4.3.1 The libsignal-protocol-c Interface

In order to discuss axc, its backend libsignal-protocol-c, the reference implementation of
the Signal Protocol, needs to be briefly explained first.

As the README states [Opea], a global context struct signal_context has to be initialized
before the library can be used, as this context has to be passed to all functions. Many
also additionally require an initialized signal_protocol_store_context. For these to be
initialized, sub-context structs containing function pointers need to be passed to them.
The pointed-to functions are application-specific and need to be implemented first, which
is a big part of the code that is contained in axc. These functions are used in the
higher-level functions exposed by libsignal-protocol-c, which might perform additional

57

https://github.com/gkdr/axc

4. Implementation

Figure 4.1: axc modules

axc

axc_crypto axc_store

checks or decode the data returned by the database access functions from raw bytes to
higher-level data types.

libsignal-protocol-c also does not offer any higher-level utility functions. For instance,
when a client is initialized, 5 different functions have to be called to create the necessary
data. In order to build a session, a session_builder has to be created first, and only then
the bundle can be passed to it. The same is true for encrypting or decrypting a message,
in which case it is a session_cipher struct instead. Grouping functions that usually are
called together in order to simplify the process of working with the Signal Protocol is
the other part of axc.

4.3.2 Implementation Details

Design

As can be seen in 4.1, axc is divided into three modules.

axc_crypto simply implements all the cryptographic functions which need to be passed
to the signal_context through the signal_crypto_provider struct. These are functions for
initializing, updating, finalizing and cleanup of a SHA256 HMAC and a SHA512 hash,
as well as encryption and decryption functions for AES, and a function providing random
bytes.

axc_store mostly does the same for the ‘store’ functions which need to be passed to the
signal_protocol_store_context, again in their own structs. There are four ‘stores’ resulting
from the different groups of data: signal_protocol_session_store, signal_protocol_pre_key_store,
signal_protocol_signed_pre_key_store, and signal_protocol_identity_key_store. Each of
those mostly just contains the rather typical functions to set, load, and delete an item,
as well as checking for existence.
The only function which is supposed to contain some sort of logic is is_trusted_identity(),
which by the interface documentation should check if the provided identity key matches
the saved one for the contact, in which case it is trusted. Unfortunately, this is not
compatible with OMEMO as each device has its own identity key, and therefore the trust

58

4.3. axc

assessment had to be deactivated here by the function axc_db_identity_always_trusted()
and deferred to the OMEMO implementation.
Different from the previous module, this one does need some additional utility functions.
A rather obvious first example is axc_db_create() which needs to be called at client
initialization to create the necessary tables inside the SQLite database. axc_db_destroy()
does the opposite and drops all tables.
For some types of data, libsignal-protocol-c requires only reading, but no writing
functions, meaning they are additionally contained in this module as well. This con-
cerns the functions for saving the generated own identity key pair and registration ID,
axc_db_identity_set_key_pair() and axc_db_identity_set_local_registration_id().
When a new pre-key pair is generated, its ID is not automatically set, but has to be
supplied as an argument. For axc, the design decision was made to generate sequential
IDs (as opposed to random ones), therefore one function had to be written which retrieves
the highest currently used ID that is not the ‘last resort’ ID’s key, i.e. not MAX_INT.
Also, client initialization was sped up remarkably by using axc_db_pre_key_store_list()
which saves the whole generated list of pre-key pairs at once inside a single transmission.
The ‘reverse’ function axc_db_pre_key_get_list() is useful when assembling a bundle for
publishing, and therefore only retrieves the public pre-key.
Finally, there are getters and setters for key-value attributes saved in the options table,
which are e.g. used to save the database’s initialization state.

All of what remains is realized in the main axc module.
The last functions needed to fully initialize the signal_context are locking and logging func-
tions, which are implemented in recursive_mutex_lock(), recursive_mutex_unlock(), and
axc_default_log(). However, these are optional, and axc offers the possibility to exempt
the pthread-based locking functions by setting NO_THREADS at compile-time, as they
might not be needed in a non-threaded environment and complicate cross-compatibility.
In fact, this is done for working with the single-threaded libpurple to simplify compilation
for Windows. If they do need to be used, the function axc_mutexes_create_and_init()
properly initializes them.
Aside from that, all of this library’s public interface is implemented in this module.
This includes the two structs axc_context which is used to hold the internal state, and
axc_bundle which holds all the data necessary for publishing the bundle. Both come with
functions for constructing and destructing, and since both of these are opaque structs,
there also exist some setters and getters for the fields which can be exposed, such as
axc_context_get_db_fn() for retrieving the previously set path to the DB. Some data
structures exposed by libsignal-protocol-c are typedef’d for brevity and a consistent in-
terface – signal_buffer becomes axc_buf, and signal_protocol_address becomes axc_address.
The decision to provide a single consitent interface from one file also required to write
simple wrapper functions.
Getting to the main functionality of this library, functions can be found for initializing
the context (axc_init()), ‘installing’ it by populating the database with the necessary data
(axc_install()), and functions for simplifying encryption and decryption to a single function
call (axc_message_encrypt_and_serialize() and axc_message_decrypt_from_serialized()).

59

4. Implementation

Utility functions for building sessions from both a requested bundle and an incoming
pre-key message are also provided, as well as for deleting them again, and checking for
existence.

How exactly these three modules then interact is described in the next sections based on
common usage scenarios.

Client Initialization

At every startup, a client needs to create an axc_context by calling axc_context_create().
Optionally, the DB path, log function, and log level can then be set by using the
axc_context_set_*() group of functions. Usually, at least the path to the database file is
set.
With this context, the library can then be initialized through axc_init(). Essentially,
this function just initializes a signal_context and a signal_protocol_store_context by
setting pointers to all required functions, which as previously described are implemented
in axc_crypto and axc_store. References to these two structs are saved in the passed
axc_context. If needed, the semaphores are also initialized, and the implemented locking
and unlocking functions passed to the signal_context. As can be seen in listing 4.5, that
is all the data contained in this struct. An example of this process can be seen in figure
4.2.

Listing 4.5: The axc_context struct
struct axc_context {
signal_context * axolotl_global_context_p;
signal_protocol_store_context * axolotl_store_context_p;
axc_mutexes * mutexes_p;
char * db_filename;
void (*log_func)(int level, const char * message, size_t len, void * user_data);
int log_level;

};

If the client is being run for the first time (or is to be re-initialized), axc_install() needs
to be called afterwards. This function first calls axc_db_create() to create the database
file and the necessary tables inside it, using the specified database path if set in the
passed axc_context. Then, the necessary data – i.e. the long-term identity keypair and
short-term pre-key pairs – is generated using the signal_protocol_key_helper_generate_*()
family of functions, and saved to the newly created database. With this, the library is
ready to use. An example run of axc_install() can be seen in figure 4.3.

However, in the usual, asynchronous mode of operation, the client is not yet fully ini-
tialized, as the public parts of the just generated keypairs still need to be published.
Therefore, a client will generally want to call axc_bundle_collect() to extract this in-
formation back from the database in an already serialized, distribution-ready format.
The steps done in this function are shown in figure 4.4. For simplicity, all of the data is
gathered inside a single axc_bundle struct as seen in figure 4.6, and can then be extracted

60

4.3. axc

Figure 4.2: Sequence diagram of client initialization

axc_context_create()
axc_context

axc_context_set_db_path()

signal_context_create()
signal_context

signal_context_set_crypto_provider()

axc_mutexes_create_and_init()

signal_context_set_locking_functions()

signal_protocol_store_context_create()
signal_protocol_store_context

signal_protocol_store_context_set_session_store()

signal_protocol_store_context_set_pre_key_store()

signal_protocol_store_context_set_signed_pre_key_store()

signal_protocol_store_context_set_identity_key_store()

axc_init()

axc libsignal-protocol-c

opt

61

4. Implementation

Figure 4.3: Sequence diagram of example client installation

axc_db_create()

axc_db_init_status_set()

signal_protocol_key_helper_generate_identity_key_pair()

signal_protocol_key_helper_generate_registration_id()

signal_protocol_key_helper_generate_pre_keys()

signal_protocol_key_helper_generate_last_resort_pre_key()

signal_protocol_key_helper_generate_signed_pre_key()

axc_db_identity_set_key_pair()

axc_db_identity_set_local_registration_id()

axc_db_pre_key_store_list()

session_pre_key_serialize()

axc_db_pre_key_store()

session_signed_pre_key_serialize()

axc_db_signed_pre_key_store()

axc_db_init_status_set()

axc_install()

axc axc_store libsignal-protocol-c

62

4.3. axc

Figure 4.4: Sequence diagram of bundle collection

signal_protocol_identity_get_local_registration_id()

axc_db_pre_key_get_list()

signal_protocol_signed_pre_key_load_key()

session_signed_pre_key_get_key_pair()

ec_key_pair_get_public()

ec_public_key_serialize()

session_signed_pre_key_get_signature()

session_signed_pre_key_get_signature_len()

signal_buffer_create()

ratchet_identity_key_pair_get_public()

ec_public_key_serialize()

axc_bundle_collect()

axc_bundle

axc axc_store libsignal-protocol-c

via getter functions (axc_bundle_get_*()).

Listing 4.6: The axc_bundle struct
struct axc_bundle {
uint32_t registration_id;
axc_buf_list_item * pre_keys_head_p;
uint32_t signed_pre_key_id;
axc_buf * signed_pre_key_public_serialized_p;
axc_buf * signed_pre_key_signature_p;
axc_buf * identity_key_public_serialized_p;

};

63

4. Implementation

(First-Time) Sending

In order to send a message to another device with which a session does not exist yet,
a client needs to retrieve that device’s bundle, the details of which are application-
specific and out of the scope of this library. After this was done, the public keys
contained in the received bundle can be passed to axc_session_from_bundle() in or-
der to locally establish a session with the bundle’s owner device. Inside this func-
tion, the given public keys are deserialized using curve_decode_point() to create the
libsignal-protocol-c bundle type session_pre_key_bundle. Then, this bundle can be
handed to session_builder_process_pre_key_bundle(), which does the actual job of con-
structing a session. Now, all it takes to encrypt a message for that device is to pass
axc_message_encrypt_and_serialize() its axc_address. Internally, a session_cipher struct
is created, which is then used to encrypt the given message. The resulting cipher-
text_message is serialized and a copy of this data returned for sending. In case it was the
first message after a local session establishment from a bundle (and each next time until
a reply is received), the serialized message will be a so-called pre-key message.
The whole process can be seen in figure 4.5.

(First-Time) Receiving

As previously explained, pre-key messages contain the necessary information to cre-
ate a corresponding session on the receiving end and subsequently decrypt the con-
tained (and any following) message. Since libsignal-protocol-c does not offer detec-
tion of message type, the receiving client can confirm that indeed no session exists
by consulting axc_session_exists_initiated(). In this case, the pre-key-message-specific
axc_pre_key_message_process() needs to be called. This function deserializes the
pre-key message with the corresponding function so that it can be passed to ses-
sion_builder_process_pre_key_signal_message(). Afterwards, the contained ciphertext
can be decrypted via session_cipher_decrypt_pre_key_signal_message() and the plaintext
is returned. Additionally, this function automatically generates a new pre-key pair to
replace the used one, which in turn is automatically deleted by libsignal-protocol-c.
If a session already exists, axc_message_decrypt_from_serialized() should be called instead.
At the core, it does the same – deserializing the message, decrypting the ciphertext, and
returning the plaintext. Obviously, the session establishment does not need to be done,
and the functions not specific to pre-key messages are called.
Figure 4.6 shows an example of first-time receiving.

64

4.3. axc

Figure 4.5: Sequence diagram of first-time sending

curve_decode_point(pre_key_public)

curve_decode_point(signed_pre_key_public)

curve_decode_point(identity_key_public)

session_pre_key_bundle_create()

session_builder_create()

session_builder_process_pre_key_bundle()

axc_session_from_bundle()

session_cipher_create()

session_cipher_encrypt()

ciphertext_message_get_serialized()

axc_message_encrypt_and_serialize()

pre-key message

axc libsignal-protocol-c

65

4. Implementation

Figure 4.6: Sequence diagram of first-time receiving

axc_session_exists_initiated()
false

session_builder_create()

signal_protocol_session_load_session()

pre_key_signal_message_deserialize()

axc_db_pre_key_get_max_id()

signal_protocol_key_helper_generate_pre_keys()

session_builder_process_pre_key_signal_message()

session_cipher_create()

session_cipher_decrypt_pre_key_signal_message()

signal_protocol_pre_key_store_key()

axc_pre_key_message_process()

plaintext

axc axc_store libsignal-protocol-c

66

4.4. libomemo

4.4 libomemo

This library can be found at https://github.com/gkdr/libomemo.

4.4.1 XEP-0384: OMEMO Encryption

While section 3.2.2 discussed higher-level details such as the mapping between OMEMO
and Signal Protocol elements, this section will deal with the low-level protocol description
so that the libomemo implementation can be understood more easily. Naturally, this is
based on the specification found in the XEP [And].

Installation

In order to announce OMEMO support, a client needs to append the the Double Ratchet
device ID it generated to the devicelist PEP node by sending an <iq/> stanza like in
listing 4.7. The example assumes Alice does not own any other OMEMO-capable client,
and that the generated ID is 123456. In order to complete the installation, a second step
is necessary. The client now needs to collect all data belonging in a bundle, and publish
it to its own bundle PEP node via a stanza like shown in listing 4.8.

Listing 4.7: A device adding itself to the previously empty devicelist PEP node
<iq from="alice@example.com" type="set">

<pubsub xmlns="http://jabber.org/protocol/pubsub">
<publish node="urn:xmpp:omemo:0:devicelist">

<item>
<list xmlns="urn:xmpp:omemo:0">

<device id="123456" />
</list>

</item>
</publish>

</pubsub>
</iq>

67

https://github.com/gkdr/libomemo

4. Implementation

Listing 4.8: A device publishing public key information on its bundle PEP node
<iq from="alice@example.com" type="set">

<pubsub xmlns="http://jabber.org/protocol/pubsub">
<publish node="urn:xmpp:omemo:0:bundles:123456">
<item>
<bundle xmlns="urn:xmpp:omemo:0">
<signedPreKeyPublic signedPreKeyId="1">
<!-- base64-encoded data -->

</signedPreKeyPublic>
<signedPreKeySignature>
<!-- base64-encoded data -->

</signedPreKeySignature>
<identityKey>
<!-- base64-encoded data -->

</identityKey>
<prekeys>
<preKeyPublic preKeyId="1">
<!-- base64-encoded data -->

</preKeyPublic>
<preKeyPublic preKeyId="2">
<!-- base64-encoded data -->

</preKeyPublic>
<!-- ... -->

</prekeys>
</bundle>

</item>
</publish>

</pubsub>
</iq>

Receiving A Contact’s Information

Suppose Bob is both already an OMEMO user and Alice’s contact, and his client is
subscribed to the urn:xmpp:omemo:0:devicelist namespace as stated in the XEP.
When Alice updates her devicelist node like in listing 4.7, Bob is automatically notified
by his server in a message similar to the one seen in listing 4.9. It contains the complete
devicelist, which Bob’s client is supposed to cache locally in order to be able to determine
changes to Alice’s devices later.

68

4.4. libomemo

Listing 4.9: Bob receiving Alice’s updated devicelist
<message from="alice@example.com" to="bob@example.com">

<event xmlns="http://jabber.org/protocol/pubsub#event">
<items node="urn:xmpp:omemo:0:devicelist">

<item>
<list xmlns="urn:xmpp:omemo:0">

<device id="123456" />
</list>

</item>
</items>

</event>
</message>

Before Bob can send an OMEMO-encrypted message to Alice, his client needs to manually
request all of her device’s bundles. In order to avoid collisions of used pre-keys, this
ideally should happen only shortly before a session is to be established. Luckily for
Bob, Alice only owns one OMEMO-enabled device, so a single request like in listing 4.10
suffices. From the server’s reply, which is excluded for brevity as it contains the whole
bundle, Bob can then build a Double Ratchet session.

Listing 4.10: Bob requesting the bundle of Alice’s 123456 device
<iq from="bob@example.com" to="alice@example.com" type="get">

<pubsub xmlns="http://jabber.org/protocol/pubsub">
<items node="urn:xmpp:omemo:0:bundles:123456" />

</pubsub>
</iq>

Message Format

With the session established, Bob can now send encrypted messages to Alice. These look
as follows: The parent element of all OMEMO-related information is an <encrypted/>
element of the urn:xmpp:omemo:0 namespace, which is a direct child of the message
stanza’s top-level <message/> element. The text Bob enters is encrypted using AES-128
in GCM with a randomly generated key and initialization vector. The resulting ciphertext
is base64-encoded and put inside a <payload/> element. Afterwards, the <header/>
can be constructed, whose sid (‘sender ID’) attribute is set to Bob’s device’s ID. The
used encryption key is concatenated with the authentication tag which was automatically
produced by GCM encryption, and this data is then again encrypted using the previously
established Double Ratchet session. Again, the result is base64-encoded for sending,
and put inside a <key/> element, which is added as a child of the <header/> element.
This procedure is repeated using every recipient device’s Double Ratchet session, and
receiving clients can later discern which of the <key/> elements is meant for them by
the rid (‘recipient id’) attribute. Finally, the IV is also added to the header by first
encoding it in base64, and then putting that data inside an <iv/> element. An example
of the resulting <message/> stanza can be seen in listing 4.11.

69

4. Implementation

Listing 4.11: An OMEMO message
<message to="alice@example.com" from="bob@example.com">

<encrypted xmlns="urn:xmpp:omemo:0">
<header sid="654321">
<key rid="123456"><!-- base64-encoded data --></key>
<iv><!-- base64-encoded data --></iv>

</header>
<payload><!-- base64-encoded data --></payload>

</encrypted>
</message>

The specification also describes KeyTransportElements for just transporting key material,
but these are essentially the same as the just described MessageElements, only missing
the <payload/>.

4.4.2 Implementation Details

Design

Figure 4.7: libomemo modules

libomemo

libomemo_crypto libomemo_storage

Similarly to axc, libomemo consists of three modules. However, as can be seen in figure
4.7, these do not explicitly interact, as the latter two are meant to be easily exchangeable
example implementations.

Aside from initialization and teardown, libomemo_crypto only provides three functions:
encrypting and decrypting using AES-128 in GCM, and providing random bytes. These
are implemented using gcrypt.

The libomemo_storage module implements the caching of devicelists mandated in the
specification on one hand, and ‘chat lists’ which can be used for application-specific
functions on the other hand. This is done by offering ‘save’, ‘get’, ‘delete’ and ‘exists’
functions working on a SQLite database. In order to simplify usage and make database
initialization unnecessary, the optional creation of the simple database scheme is included
in all query transanctions.

70

4.4. libomemo

Lastly, libomemo contains the main functionality, and to this end defines four data struc-
tures: omemo_bundle, omemo_devicelist, omemo_message, and omemo_crypto_provider.
The first three obviously constitute an internal representation of abstract OMEMO types.
Through those, dealing with incoming and outgoing instances of these types is assisted,
as can be seen further below.
The last of these struct types is used to add a layer of indirection between the necessary
cryptographic operations and the implementation, which is represented by the dotted
line seen in figure 4.7. Usually, a client will want to set the contained function pointers
to the implementations provided in libomemo_crypto when passing it to functions that
require this struct. However, it can also choose to use an own implementation – the few
needed functions can be seen in listing 4.12.

Listing 4.12: The omemo_crypto_provider struct
struct omemo_crypto_provider {
int (*random_bytes_func)(uint8_t ** buf_pp, size_t buf_len, void * user_data_p);
int (*aes_gcm_encrypt_func)(const uint8_t * plaintext_p, size_t plaintext_len,

const uint8_t * iv_p, size_t iv_len,
const uint8_t * key_p, size_t key_len,
size_t tag_len,
void * user_data_p,
uint8_t ** ciphertext_pp, size_t * ciphertext_len_p,
uint8_t ** tag_pp);

int (*aes_gcm_decrypt_func)(const uint8_t * ciphertext_p, size_t ciphertext_len,
const uint8_t * iv_p, size_t iv_len,
const uint8_t * key_p, size_t key_len,
uint8_t * tag_p, size_t tag_len,
void * user_data_p,
uint8_t ** plaintext_pp, size_t * plaintext_len_p);

void * user_data_p;
};

When XML data is to be passed to any of the functions (e.g. for creating the internal
representation of a message), it is expected as a string. This is done in order to not force
programs which use this librar to depend on a specific library. Internally, mxml is used
for dealing with this data.

Devicelists

A devicelist can be either created from scratch by using omemo_devicelist_create(),
or imported from an incoming PEP update message using omemo_devicelist_import().
In most cases, the devicelist will be imported from an incoming PEP update. The
corresponding function expects the XML data to start at the <items/> element as it
is considered the actual data of the update message, but then looks for the <list/>
element which is the first OMEMO element inside it. This <list/> element is then
‘unhinged’ from its parent elements, and saved in the list_node_p pointer of the struct. As
IDs are of uint32_t type, but come as character strings inside the XML data, the device
IDs are parsed into the integer type and put into a separate linked list, which is saved
under the id_list_p pointer, greatly simplifying handling. Since a devicelist’s owner’s

71

4. Implementation

name is not contained in any of its elements, it needs to be taken from the <message/>’s
from attribute and saved separately. The resulting struct used to represent devicelists is
shown in listing 4.13.
If a new devicelist is to be constructed, aside from of course allocating the memory,
the internal <list/> XML element also has to be created. The linked list can stay
empty however, as a null pointer is a valid empty list in glib. For a client, creating
a new devicelist is really only useful if it is the user’s first OMEMO device and the
first-time publishing of the devicelist PEP node has to be performed. Otherwise, the
own devicelist is sent by the server in a PEP update like any other. But internally, the
libomemo_storage module uses the contructor function in order to return this higher-level
devicelist type when asked for a user’s devicelist.
There exist several functions to work with existing omemo_devicelist structs. For one, they
can be modified by omemo_devicelist_add() and omemo_devicelist_remove(). In addition,
information can be retrieved, such as whether a devicelist is empty, contains a specific ID,
or who the owner is. Often, it will be necessary to work on the list of IDs as integers, which
is why a copy of the internal ID list can be retrieved using omemo_devicelist_get_id_list().
The omemo_devicelist_diff() function provides the possibility to compare two devicelists,
for example a user’s cached devicelist to an incoming one. Finally, the devicelist can be
exported back to XML for publishing on the PEP node, but most of the time it will
likely just be removed from memory by calling the omemo_devicelist_destroy() function.
Even though the PEP node name is static and available as a constant, there is also
a omemo_devicelist_get_pep_node_name() returning a string. This is to match the
interface to the non-static bundle node name, as will be explained below.

Listing 4.13: The omemo_devicelist struct
struct omemo_devicelist {
char * from;
GList * id_list_p;
mxml_node_t * list_node_p;

};

Bundles

Unlike the devicelist, a bundle does not need to be worked with – it just exists to either
parse incoming information, or publish data already collected by the Double Ratchet
code. Because of this, the internal data is held as XML elements, as visible in listing 4.14:
the omemo_bundle struct consists of four pointers to XML elements, the device ID as a
character string, and the number of pre-keys contained in it. That way, the incoming
bundle can simply be deconstructed into its parts when the struct is created, and the
contained information decoded when needed. In turn, exporting the bundle to XML for
sending to the server is made simple, as the elements contained in the struct just need to
be put together.
As explained before, a device’s bundle usually needs to be published when new pre-
keys are generated, for example after the client has been newly installed. To do this,

72

4.4. libomemo

the client first has to create an an empty bundle by using omemo_bundle_create().
Then, its Double Ratchet database must be queried for all necessary data – the public
identity key, the signed pre-key and its signature, a certain number of pre-keys, and
the device ID. The retrieved information can be added to the omemo_bundle using the
omemo_bundle_set_*() functions, which create the respective XML element and set the
passed data as the element’s value after converting it to it base64 representation. When
that is done, omemo_bundle_export() can be used to get the bundle in XML format,
starting at the <publish/> element as seen in listing 4.8. For exporting, first the three
‘outer’ elements <publish/>, <item/> and <bundle/> are created, and then the
already created ‘inner’ elements are simply hooked in at the right place.
In order to create a Double Ratchet session, this bundle is then requested by other devices.
The reply containing the bundle can be imported with omemo_bundle_import(). Inside
this function, the inner elements containing the different keys are unhooked from the outer
elements and saved as the corresponding struct member. These can then be retrieved
using the omemo_bundle_get_*() functions. This group of functions simply decodes the
base64-encoded data and returns a byte buffer. omemo_bundle_get_random_pre_key() is
the exception, as it contains some additional logic to retrieve a random key, as the name
says. For this reason the number of pre-key elements is also counted when importing.
Since the bundle PEP node’s name contains the owning device’s ID, it cannot be a
constant and has to be put together individually. For this case, the bundle interface
provides the omemo_bundle_get_pep_node_name() utility function, which does exactly
that.

Listing 4.14: The omemo_bundle struct
struct omemo_bundle {
char * device_id;
mxml_node_t * signed_pk_node_p;
mxml_node_t * signature_node_p;
mxml_node_t * identity_key_node_p;
mxml_node_t * pre_keys_node_p;
size_t pre_keys_amount;

};

Messages

Most of the data objects handled by this library will be of the type seen in listing 4.15,
as it represents normal messages which will be sent between users. Unlike the previous
two types, it actually contains data which does not directly end up in the final XML
representation. It is not intended that a client constructs an omemo_message from
scratch – it is made from either an incoming or an outgoing message. The exception is the
KeyTransportElement, whose creation is not triggered by user input as it does not contain
a payload. This kind of message can be created by using omemo_message_create(), and
in fact this function is also called internally when preparing an outgoing message for
encryption. The constructor function generates the random key and initialization vector,
saving pointers to these in the newly allocated struct that will be returned. Since the

73

4. Implementation

IV is not going to be modified after this point, it is already base64-encoded and put
in its <iv/> element inside the <header/> element at this point. Both of these XML
elements are created for this purpose and naturally also saved under the appropriate
struct member.

Listing 4.15: The omemo_message struct
struct omemo_message {
mxml_node_t * message_node_p;
mxml_node_t * header_node_p;
mxml_node_t * payload_node_p;
uint8_t * key_p;
size_t key_len;
uint8_t * iv_p;
size_t iv_len;
size_t tag_len;

};

So when omemo_message_prepare_encryption() is called, it first creates a new omemo_message,
and then encrypts the plaintext contained in the passed <message/> using the key
and IV contained in that struct. For this, it needs to use functions contained in an
omemo_crypto_provider. This resulting ciphertext is then base64-encoded and set as the
value of the newly created <payload/> element. The <body/> node which contained
the plaintext is deleted from the <message/> stanza as it is not needed anymore, but
the latter is saved for later reuse, including all child elements it still contains. Since AES
in GCM is used for encryption of the payload, an authentication tag is also automatically
generated. As noted in section 3.2.2, this tag was initially appended to the ciphertext,
basically rendering it useless. Because of this, all implementations switched to appending
it to the key data, including this one. In order to keep the interface simple, the authenti-
cation tag is simply appended to the key data inside the same buffer, so that the client
does not have to concatenate this data itself. So when calling omemo_message_get_key(),
the whole buffer is returned: the key used for encrypting the payload as well as the tag.
The combined data should then be encrypted using the previously established Double
Ratchet session with a recipient device. The encrypted key and tag can then be added
to the OMEMO <header/> using omemo_message_add_recipient(), which takes the
recipient device’s ID as one of its arguments.
After this process is repeated for every recipient, the resulting message stanza can be
exported as XML through omemo_message_export_encrypted(). Since the real work was
already done, it is just a matter of creating the necessary <encrypted/> node, setting
the saved <header/> and <payload/> elements as its children, and adding it to the
<message/> node which was saved in the beginning. Optionally, a hint can be added
which helps the receiving client and user to correctly handle such an encrypted message.
This can be done by adding a <body/> with a standard message which will then be
displayed to the user, an XEP-0380: Explicit Message Encryption1 <encryption/>
element, or both.

1https://xmpp.org/extensions/xep-0380.html

74

https://xmpp.org/extensions/xep-0380.html

4.5. lurch

When anOMEMO message arrives and is imported with the omemo_message_prepare_decryption()
function, these optional XML elements are stripped again, if present. Additionally,
<header/> and <payload/> elements are removed from the <message/> as its chil-
dren, and pointers to all three are saved. The client can then access the information
inside the omemo_message through functions which parse the contained XML data.
This includes the sender’s device ID or JID, and most importantly, the encrypted
key and tag for the own device ID, which are also base64-decoded before being re-
turned. After identifying the necessary Double Ratchet session from the retrieved
information, it can be used to decrypt the key and tag. By then giving this data to
omemo_message_export_decrypted(), the OMEMO message is transformed into a ‘regular’
message and returned as an XML string. The conversion happens by base64-decoding
the value of the <payload/> element, decrypting the resulting ciphertext using the
passed key and omemo_crypto_provider, and putting the plaintext inside a newly created
<body/> node, which is then set as a child element of the previously saved <message/>.

4.5 lurch
This plugin can be found at https://github.com/gkdr/lurch.

4.5.1 Design

Combining libomemo for XML handling and axc for the necessary Signal Protocol
sessions, lurch provides an OMEMO implementation for libpurple through a plugin. The
resulting structure can be seen in figure 4.8.
The basic idea of the plugin is to make use of libpurple’s signals to intercept outgoing
messages before they are sent, and incoming messages directly after they are received to
encrypt and decrypt them respectively. In the background, the PEP and IQ interfaces of
libpurple’s XMPP protocol plugin are employed to publish and retrieve the necessary
information. A client-agnostic user interface for some necessary functionality is offered
through the command interface.
For most cases encountered during the development, the public types defined in the
mentioned libraries were adequate. Still, two new types had to be added: lurch_addr
is employed in order to not abuse axc_address and neatly devide the domains, and
lurch_queued_msgs (seen in listing 4.16) are used to save all information necessary
to hold back an outgoing message until sessions with all receiving devices could be
established.

4.5.2 Implementation Details

Plugin Startup and Installation

When the plugin is to be loaded, libpurple calls the lurch_plugin_load() function which
was supplied to it via the PurplePluginInfo struct. Aside from initializing the cryptography
library, it registers the handlers for all signals, the devicelist PEP handler, and handlers

75

https://github.com/gkdr/lurch

4. Implementation

Figure 4.8: lurch design

libpurple

lurch

axc

libsignal-protocol-c

libomemo

for the commands which are discussed in section 4.5.2. An important detail is that by
calling jabber_pep_register_handler(), libpurple also automatically subscribes to updates
of the named PEP node. The whole procedure can be observed in figure 4.9. The first
two signals are jabber-receiving-xmlnode and jabber-sending-xmlnode for
decryption and encryption, and are connected to using purple_signal_connect_priority()
because it is important to register these handlers with a higher priority than usual
so that most other processing is already finished by the time the stanzas reach these
handlers (reminder: ‘higher’ priority means later handling in libpurple). For instance, the
XEP-0184: Message Delivery Receipts plugin2 only adds the receipt request to messages
which have a <body/> element, but it is removed by OMEMO. In the other direction,
the XEP-0280: Message Carbons ‘envelope’ needs to be stripped first when receiving.
This is also the reason the carbons plugin is registered with a lower priority, meaning it
will be processed first, as described in section 4.2. The latter three signals are connected
to using the regular purple_signal_connect(). They are conversation-created and
conversation-updated for updating the window title as it will be described in
section 4.5.2, and more importantly to the account-signed-on signal which triggers
the greater part of the actual OMEMO initialization.
The callback function registered for this last signal is lurch_account_connect_cb(), which

2https://app.assembla.com/spaces/pidgin-xmpp-receipts/

76

https://app.assembla.com/spaces/pidgin-xmpp-receipts/

4.5. lurch

Figure 4.9: Sequence diagram of lurch plugin load

purple_cmd_register()

omemo_default_crypto_init()

omemo_devicelist_get_pep_node_name()

jabber_pep_register_handler()

purple_signal_connect_priority()

purple_signal_connect_priority()

purple_signal_connect()

purple_signal_connect()

purple_signal_connect()

lurch_plugin_load()
lurch libomemo libpurple

simply checks if the connected account is an XMPP account, and in case it is requests that
account’s devicelist from the server. lurch_pep_own_devicelist_request_handler(), the
handler for the previously mentioned request, is where the key and database initialization
happens. By consulting an account option, this function checks whether the client is
already initialized. If not, it calls lurch_axc_prepare(), which mostly just calls axc_install(),
but also makes sure the generated device ID does not exist yet. Depending on whether
the request returned a devicelist or not, i.e. if the client is the first OMEMO device of
the account, the own ID is either added to the received list of devices, or to a newly
created one, and then sent back to the server. All that is left now is publishing the
bundle like it can be seen in figure 4.10. This is actually done at every startup to
make sure the bundle node exists, since a server restart might also delete all saved PEP
nodes. Afterwards, the initialized option is set to true. However, before cleaning up and
returning, the lurch_devicelist_process() function is called on the just generated devicelist,
whose purpose is described in the next section. An example of the whole process can be
found in figure 4.11. It assumes that it is the first run of the client, and the client is the
only OMEMO device.

77

4. Implementation

Figure 4.10: Sequence diagram of lurch_bundle_publish_own()

axc_context_create()

axc_context_set_db_fn()

axc_init()

lurch_axc_get_init_ctx()

axc_bundle_collect()

omemo_bundle_create()

axc_bundle_get_*()

omemo_bundle_set_*()

omemo_bundle_export()

jabber_pep_publish()

lurch_bundle_publish_own()

lurch axc libomemo libpurple

Devicelist Updates

The handler function for incoming devicelist updates is lurch_pep_devicelist_event_handler()
and is not very complicated. It has a simple task: If the update is from the own ac-
count, it calles the previously described, more specific handler. Otherwise, it calls
lurch_devicelist_process(), which simply updates the stored devicelist for a user with the
incoming changes. To achieve this, the saved devicelist is recovered from the database
using omemo_storage_user_devicelist_retrieve(), compared with the incoming devicelist
by calling omemo_devicelist_diff(), and finally saving the added IDs, or deleting the
removed ones. A sequence diagram for a situation which assumes a contact added a new
device can be found in figure 4.12.

78

4.5. lurch

Figure 4.11: Sequence diagram of example lurch initialization

purple_account_get_protocol_id()

omemo_devicelist_get_pep_node_name()

jabber_pep_request_item()

lurch_account_connect_cb()

purple_account_get_bool(initialized)
false

lurch_axc_get_init_ctx()

axc_install()

axc_get_device_id()

omemo_storage_global_device_id_exists()

lurch_axc_prepare()

axc_get_device_id()

omemo_devicelist_create()

omemo_devicelist_add()

omemo_devicelist_export()

jabber_pep_publish()

lurch_bundle_publish_own()

purple_account_set_bool(initialized)

lurch_devicelist_process()

lurch_pep_own_devicelist_request_handler()

lurch axc libomemo libpurple

79

4. Implementation

Figure 4.12: Sequence diagram of example devicelist handling

omemo_devicelist_import()

omemo_storage_user_devicelist_retrieve()

omemo_devicelist_diff()

omemo_storage_user_device_id_save()

lurch_devicelist_process()

lurch_pep_devicelist_event_handler()
lurch libomemo libpurple

Message Encryption

As previously described, the plugin ‘catches’ messages before they are sent in order
to encrypt them. The registered handler function is lurch_xml_sent_cb(), but it only
checks whether to further process the message by checking if it is a <message/> stanza
with a <body/>. If this is the case, it then calls either lurch_message_encrypt_im()
or lurch_message_encrypt_groupchat(), depending on the type attribute of the message
(chat or groupchat respectively). The former case will now be inspected.
Before doing any processing, it is established whether the recipient is an OMEMO user by
checking the stored devicelist using omemo_storage_user_devicelist_retrieve(). As PEP
devicelist updates are received automatically and the changes written to the database by
the handler, the devicelist returned at this point is current already and does not need to
be requested from the server again. This also means that if there is no devicelist, the
message recipient does not use OMEMO and the message does not need to be processed
any further. Otherwise, a linked list of lurch_addrs is assembled, containing the full
addresses of all OMEMO-using devices owned by both the recipient and the sender.
This list is then passed to lurch_msg_finalize_encryption(), along with the imported
omemo_message.
By first calling lurch_axc_sessions_exist(), this function finds out which of the devices
passed to it do not have a session yet. In case they all do have a session already, a
call to lurch_msg_encrypt_for_addrs() will encrypt the symmetric key contained in the
passed omemo_message for all of them, after which the original <message/> stanza
can be replaced by the output of omemo_message_export_encrypted(). The other case
is a bit more involved, as the OMEMO specification dictates to only request bundles
right before session establishment, so they cannot be simply retrieved from the database
like the devicelists. Therefore, the bundle of each session-less device is requested using

80

4.5. lurch

lurch_bundle_request_do(). All data collected so far is saved in a lurch_queued_msg
struct which is passed as data to this callback function. As can be seen in listing 4.16, the
data which is necessary to continue processing at a later time is the imported message,
the list of recipients, the list of recipients without a session, and a hashtable for marking
recipients as handled.

Listing 4.16: The lurch_queued_msg struct
struct lurch_queued_msg {
omemo_message * om_msg_p;
GList * recipient_addr_l_p;
GList * no_sess_l_p;
GHashTable * sess_handled_p;

};

In order to be able to pass data such as this struct to a callback function, the more
general IQ interface has to be used, as the libpurple PEP interface does not allow that.
This is exactly what the bundle requesting function does. Finally, the message is held
back from sending by setting it to NULL. When a response arrives, it is handled by
lurch_bundle_request_cb(), which calls lurch_bundle_create_session() to create a session
from the received bundle, and marks the device as ‘handled’ in the lurch_queued_msg.
It is also marked as handled in case the server returns an error, e.g. because no bundle
was uploaded, so that the process can still be finished and the message encrypted for the
other, working devices. When all devices are ‘handled’, lurch_msg_encrypt_for_addrs() is
called, as before. However, the final exported message cannot be simply passed on like in
the previous case. Instead, the jabber-sending-xmlnode signal is emitted in order
to send it. An example of the part leading up to the request can be seen in figure 4.13,
while the handling of the response is depicted in 4.14. Both of the examples assume that
the client wants the send a message to a device for which no session exists yet.

Message Decryption

Like before, an incoming message is first passed to a very general handler function, in
this case lurch_xml_received_cb(). If it does not contain an OMEMO <encrypted/>
element, it does not do nothing, but calls lurch_message_warn(). This function checks
if a session with the sending device exists, and if so, warns the user of the unen-
crypted incoming message. For messages that do contain the <encrypted/> element,
lurch_message_decrypt() is called for further processing. There, the message is first
imported by calling omemo_message_prepare_decryption(). After retrieving the own
device ID through axc_get_device_id(), the payload key encrypted for this client can
be fetched from the parsed message by utilizing omemo_message_get_encrypted_key().
The encrypted payload key is nothing other than a Signal Protocol message. Unfor-
tunately, libsignal-protocol-c cannot discern between a regular message and a pre-key
message. Therefore, axc_pre_key_message_process() is always called first on the ci-
phertext. If it fails because it was not a pre-key message, and a session already
exists (checked by axc_session_exists_initiated()), it must be a regular message, so
axc_message_decrypt_from_serialized() is called on it. The decrypted payload key, can

81

4. Implementation

Figure 4.13: Sequence diagram of example lurch bundle request

omemo_message_prepare_encryption()

omemo_storage_user_devicelist_retrieve(recipient)

omemo_storage_user_devicelist_retrieve(self)

lurch_addr_list_add()

axc_session_exists_initiated()

lurch_axc_sessions_exist()

lurch_queued_msg_create()

jabber_iq_new()

omemo_bundle_get_pep_node_name()

xmlnode_set_attrib()

jabber_iq_set_callback()

jabber_iq_send()

lurch_bundle_request_do

lurch_msg_finalize_encryption()

lurch_message_encrypt_im()

lurch_xml_sent_cb()
lurch axc libomemo libpurple

82

4.5. lurch

Figure 4.14: Sequence diagram of example lurch bundle request handling

omemo_bundle_import()

omemo_bundle_get_*()

axc_session_from_bundle()

lurch_bundle_create_session()

axc_session_exists_initiated()

axc_message_encrypt_and_serialize()

omemo_message_add_recipient()

lurch_msg_encrypt_for_addrs()

omemo_message_export_encrypted()

purple_signal_emit()

lurch_bundle_request_cb()
lurch axc libomemo libpurple

now be passed to omemo_message_export_decrypted(), which returns the decrypted
message as discussed in section 4.4.2.
In case the message was sent by another account, this decrypted message can be simply
passed on to libpurple, as it looks like a regular incoming message. However, in case
the sender is the own account, as it can happen when the carbons plugin is also active,
libpurple will not know what do to. When that happens,the decrypted plaintext is
manually written to the conversation window, and the message then dropped.
Processing a pre-key message can also fail because the pre-key was used before and
the keypair was already deleted. In this case, the contained text is unfortunately lost,
but a working session can be set up automatically by requesting the bundle of the
sending device and then sending a KeyTransportMessage after building the session locally.
Unlike before, the more limited PEP interface can be used this time, so the bundle is
requested using jabber_pep_request_item(). The handler function set for the response,

83

4. Implementation

Figure 4.15: Sequence diagram of example lurch pre-key message decryption

omemo_message_prepare_decryption()

axc_get_device_id()

omemo_message_get_encrypted_key()

axc_pre_key_message_process()

omemo_message_export_decrypted()

lurch_msg_decrypt()

lurch_xml_received_cb()
lurch axc libomemo libpurple

lurch_pep_bundle_for_keytransport(), then does exactly what was previously described
to establish a working session.

Group Chats

Considering an OMEMO conversation between two users is essentially a group conver-
sation between all of their devices, it is clear that in theory actual group chats using
OMEMO are not hard to implement. However, they are not contained in the specification,
as current limitations only allow for a very specific type of usage. PEP nodes can only
be seen and queried by clients which are subscribed to their owner’s presence, i.e. are
in that user’s ‘buddy list’ (roster in XMPP terms). However, the extension allowing
group chats – XEP-0045: Multi-User Chat3 – generally allows anonymous chats between
strangers. In other words, it might not even be the case that the JID of other users
in the chat room is known, as only the self-chosen alias is shown. Therefore, OMEMO
encrypted group chats are only possible if the chatroom is set to non-anonymous which
allows seeing JIDs, and every user is in every other user’s roster so that the necessary
PEP nodes can be accessed. Thus, the resulting realistic usage case is a chat between
friends, rather than adding encryption to any MUC.
In addition to that, libpurple itself presents another implementation obstacle, as it does
not fill its own PurpleConvChatBuddy struct used to represent a MUC participant with all
available data. More specifically, even in non-anonymous rooms the JID is not available.
This made it necessary to parse the incoming <presence/> stanzas manually, and keep
the information in-memory. In fact, the previously described lurch_xml_received_cb() not

3https://xmpp.org/extensions/xep-0045.html

84

https://xmpp.org/extensions/xep-0045.html

4.5. lurch

Figure 4.16: Sequence diagram of example lurch session repair

omemo_message_prepare_decryption()

axc_get_device_id()

omemo_message_get_encrypted_key()

axc_pre_key_message_process()
AXC_ERR_INVALID_KEY_ID

jabber_pep_request_item()

lurch_msg_decrypt()

lurch_xml_received_cb()

axc_session_delete()

lurch_bundle_create_session()

axc_get_device_id()

omemo_message_create()

lurch_key_encrypt()

omemo_message_add_recipient()

omemo_message_export_encrypted()

purple_signal_emit()

lurch_pep_bundle_for_keytransport()

lurch axc libomemo libpurple

85

4. Implementation

only looks for OMEMO messages in order to decrypt them, but also for <presence/>
stanzas, which are then passed to lurch_presence_handle(). This function checks whether
the stanza contains any information it is interested in, i.e. an <x/> element in the
http://jabber.org/protocol/muc#user namespace which includes an <item/>
node having a jid attribute. These are received when a non-anonymous MUC room is
joined by the client, or a new user joins the MUC later on. If the stanza does indeed
contain the necessary data, the global hash table is consulted, which saves another
hash table for every MUC. This second hash table contains the mapping between the
alias used in the MUC and the actual JID of the user, and the received information is
saved to it. After the preparatory work is done, messages can actually be encrypted.
When lurch_xml_sent_cb() catches a message whose type attribute is groupchat,
it calls lurch_message_encrypt_groupchat(), which just compiles a list of addresses to
encrypt the message for before calling lurch_msg_finalize_encryption() on it, much like
the function for regular conversations. The difference is of course that this has to
happen for every MUC participant, and that a user’s JID has to be retrieved from
the room’s hash table before the database can be queried for the devicelist. Message
decryption is so similar to the two-party case that it is done in the same function,
lurch_message_decrypt(). Determining the sender of the message is not as straigthfor-
ward, however. The from attribute usually containing the sender’s JID will usually
look like room@conference.example.com/useralias in <message/>s of type
groupchat, i.e. the MUC ’s full name with the sneder user’s alias appended. Using this
information, the hash table for the MUC can be found, and thus the user’s JID from the
alias. After the sender’s JID is retrieved, decryption continues as usual.

User Interface

Most of the user interface is not graphical in nature – the interaction happens inside
a message window through commands. For instance, to display a help message which
offers information about the available commands, the user can enter /lurch help in a
message window, and the plugin will write the requested information to the same message
window. Commands exist for enabling and disabling the plugin for single conversations
or completely, displaying fingerprints and device IDs, and manually change the devicelist
on the server.
However, there is one rather graphical feature as well: the plugin indicates whether a
conversation is OMEMO-encrypted. As this had to be done without writing GUI code,
the conversation’s title was chosen to convey this information. To do this, (OMEMO)
is appended to it. The original title is usually either the contact’s JID or the alias the
user chose. Because of how libpurple works, this is surprisingly complicated, as the
title changes every time the conversation is focused. This is not noticable since the
title stays the same, but it is updated constantly. Thus, like described in section 4.5.2,
handlers for the conversation-created and conversation-updated signals are
registered. lurch_conv_created_cb(), the handler for the former, checks whether the
concerning conversation’s protocol is XMPP, and depending on whether it is a regular
or a group conversation, calls lurch_topic_update_im() or lurch_topic_update_chat().

86

4.6. Evaluation

lurch_conv_updated_cb(), the handler for the update event, does essentially the same,
but has to check whether the update is of type PURPLE_CONV_UPDATE_TITLE. The
two functions for updating the title only differ in how it is determined whether OMEMO
is used. For a single user, it is checked whether a session exists and is not blacklisted.
Since encryption has to be manually activated for MUCs, for groupchats this setting is
simply consulted.

4.6 Evaluation

The implementation will now be practically evaluated by performing actions of common
usage cases. Pidgin offers a debug window which displays a multitude of helpful informa-
tion and will be used to confirm the necessary actions are actually taken. This is possible
because lurch makes extensive use of the debug interface. In the examples below, Alice
registered the account a@localhost and added her friend Bob, b@localhost. Bob
had previously installed the lurch plugin already and now tells Alice to do the same as he
wants their communication to be encrypted end-to-end. After confirming that it works,
Alice wishes to chat on her second device as well, so she also installs the carbons plugin.

Startup

The first-time startup can be observed in the debug log seen in listing 4.17. As previously
mentioned, the installation is triggered in the lurch_pep_own_devicelist_request_handler(),
as the plugin needs to know whether there are other OMEMO devices in order to avoid
using the same device ID. Aside from that, the necessary long- and short-term keypairs
are also generated in this step.
As it is Alice’s first device, the request for the own devicelist causes an empty response.
A devicelist, which for clarity is shown separately in listing 4.18, is created and published.
It also shows the namespace which is actually used for compatibility with other OMEMO
clients and that it differs from the one specified in the XEP. To finish the installation,
the bundle also shown separately in listing 4.19 is then published, but as described
before this also happens at every startup. The plugin then begins to process the
incoming PEP updates, the first of which is the own devicelist published a moment
ago. Being subscribed to all devicelist updates, this is not surprising, and will become
necessary when multiple devices connect to the same account. For now the second
update coming from Bob is more important though, and can be observed in listing 4.20.

87

4. Implementation

Listing 4.17: lurch initialization debug log
lurch: lurch_pep_own_devicelist_request_handler: preparing installation...
lurch: lurch_pep_own_devicelist_request_handler: ...done
lurch: lurch_pep_own_devicelist_request_handler: no devicelist yet, creating it
lurch: lurch_pep_own_devicelist_request_handler: devicelist needs publishing...
jabber: Sending (ssl) (a@localhost/24f3944e-6386-4676-b4d4-615dd9396cb5): ...
lurch: lurch_pep_own_devicelist_request_handler: ...done
jabber: Sending (ssl) (a@localhost/24f3944e-6386-4676-b4d4-615dd9396cb5): ...
lurch: lurch_bundle_publish_own: published own bundle for a@localhost
lurch: lurch_devicelist_process: processing devicelist from a@localhost

for a@localhost
lurch: lurch_devicelist_process: cached devicelist is empty
lurch: lurch_devicelist_process: saving 942218035 for a@localhost to db

/home/alice/.purple/a@localhost_omemo_db.sqlite
jabber: Recv (ssl)(332): ...
lurch: lurch_pep_devicelist_event_handler: a@localhost received devicelist update

from b@localhost
lurch: lurch_devicelist_process: processing devicelist from b@localhost

for a@localhost
lurch: lurch_devicelist_process: cached devicelist is empty
lurch: lurch_devicelist_process: saving 1877784789 for b@localhost to db

/home/alice/a@localhost_omemo_db.sqlite

Listing 4.18: Alice’s published devicelist
<iq type="set" id="purple69bf560a">

<pubsub xmlns="http://jabber.org/protocol/pubsub">
<publish node="eu.siacs.conversations.axolotl.devicelist">
<item>
<list xmlns="eu.siacs.conversations.axolotl">
<device id="942218035"/>

</list>
</item>

</publish>
</pubsub>

</iq>

88

4.6. Evaluation

Listing 4.19: Alice’s published bundle
<iq type="set" id="purple69bf560b">

<pubsub xmlns="http://jabber.org/protocol/pubsub">
<publish node="eu.siacs.conversations.axolotl.bundles:942218035">

<item>
<bundle xmlns="eu.siacs.conversations.axolotl">

<signedPreKeyPublic signedPreKeyId="0">
BQiNPqg4DKvukxlKjMfDmrYN/e1UqWMgRoSoIZn3BSop

</signedPreKeyPublic>
<signedPreKeySignature>
6Tmd8RhyoVFuy8488xbi0cDQtGt1uHzFjMBGHMow2pDB
viZSdg0KTdrKewMkIQttfWPnkMuasnfwUXgHUxDNCw==

</signedPreKeySignature>
<identityKey>
BTd8erhvsyqq26nIkx/fJhJZ/zQRnbFjTJAulFoGN35l

</identityKey>
<prekeys>
<preKeyPublic preKeyId="1">
BZ6WUUQbp4TDskbQxWI35uO6+PnhASSXsUo5qOA4LSsE

</preKeyPublic>
<!-- ... -->
<preKeyPublic preKeyId="100">
BXtill8dFzjY6b2DfdlZaBIUmABU9nFvN/UA0Ki/V7Me

</preKeyPublic>
</prekeys>

</bundle>
</item>

</publish>
</pubsub>

</iq>

Listing 4.20: The devicelist update received from Bob
<message type="headline" to="a@localhost/24f3944e-6386-4676-b4d4-615dd9396cb5"

from="b@localhost">
<event xmlns="http://jabber.org/protocol/pubsub#event">
<items node="eu.siacs.conversations.axolotl.devicelist">

<item id="1">
<list xmlns="eu.siacs.conversations.axolotl">

<device id="1877784789"/>
</list>

</item>
</items>

</event>
</message>

Sending a message

Now that everything is set up, the client is ready to send and receive OMEMO-encrypted
messages to and from OMEMO-using contacts. When Alice opens a message window with

89

4. Implementation

Figure 4.17: The window title is informing Alice that OMEMO is available for Bob.

Figure 4.18: Bob receives the first encrypted message from Alice.

Bob, the plugin informs her via the window title that OMEMO is available, but there is
no session yet. This can be observed in figure 4.17. She now sends him a simple first
message - “hey”, which causes a number of events, as evident from the debug log of listing
4.21. The first two messages seen in the log are actually just ‘chat state’ notifications,
which in this case inform Bob that Alice is typing something, and then stopped (because
she hit ‘send’). Now, both the recipient’s and the own devicelist are retrieved in order
to know which devices the message needs to be encrypted for. In this case it is only
Bob’s single device with the ID 1877784789. As naturally there is no session with
Bob’s device yet, the bundle needs to be requested. It can also be observed that the
message was set to NULL in order to prevent sending of plaintext until all sessions are
established. The rather big response containing the bundle is received in three parts,
following which a session is established locally, and the held back message is sent. Since
it needs to contain all the information Bob needs to compute the session as well, the
Signal Protocol-encrypted key is quite long, as is evident in listing 4.22. On Bob’s side,
the message is decrypted transparently and displayed like a regular one, however the
window title still makes it apparent that the message was encrypted in transport. This is
pictured in figure 4.18.

90

4.6. Evaluation

Listing 4.21: lurch first-time message sending debug log
jabber: Sending (ssl) (a@localhost/00798bb1-4f86-4e01-9631-5f894b2e550c):

<message type="chat" id="purple4c85762c" to="b@localhost">
<composing xmlns="http://jabber.org/protocol/chatstates"/>

</message>
jabber: Sending (ssl) (a@localhost/00798bb1-4f86-4e01-9631-5f894b2e550c):

<message type="chat" id="purple4c85762d" to="b@localhost">
<paused xmlns="http://jabber.org/protocol/chatstates"/>

</message>
conversation: typed...
lurch: retrieved devicelist for b@localhost:

<publish node="eu.siacs.conversations.axolotl.devicelist">
<item>

<list xmlns="eu.siacs.conversations.axolotl">
<device id="1877784789" />

</list>
</item>

</publish>
lurch: retrieved own devicelist:

<publish node="eu.siacs.conversations.axolotl.devicelist">
<item>

<list xmlns="eu.siacs.conversations.axolotl">
<device id="942218035" />

</list>
</item>

</publish>
lurch: lurch_msg_finalize_encryption: b@localhost has device without session

1877784789, requesting bundle
lurch: lurch_bundle_request_do: a@localhost/ is requesting bundle from

b@localhost:1877784789
jabber: Sending (ssl) (a@localhost/00798bb1-4f86-4e01-9631-5f894b2e550c):

<iq type="get" to="b@localhost" id="b@localhost#1877784789#-121318556">
<pubsub xmlns="http://jabber.org/protocol/pubsub">

<items node="eu.siacs.conversations.axolotl.bundles:1877784789"
max_items="1" />

</pubsub>
</iq>

lurch: lurch_bundle_request_do: ...request sent
g_log: xmlnode_to_str_helper: assertion "node != NULL" failed
g_log: jabber_send_raw: assertion "data != NULL" failed
jabber: Recv (ssl)(4095): ...
jabber: Recv (ssl)(4095): ...
jabber: Recv (ssl)(1171): ...
lurch: lurch_bundle_request_cb: a@localhost received bundle update from

b@localhost:1877784789
lurch: lurch_bundle_create_session: creating a session between a@localhost

and b@localhost from a received bundle
lurch: lurch_bundle_create_session: bundle’s device id is 1877784789
lurch: lurch_msg_encrypt_for_addrs: trying to encrypt key for 1 devices
lurch: lurch_key_encrypt: encrypting key for b@localhost:1877784789
lurch: sending encrypted msg
jabber: Sending (ssl) (a@localhost/00798bb1-4f86-4e01-9631-5f894b2e550c): ...

91

4. Implementation

Listing 4.22: The first encrypted message: “hey”
<message type="chat" id="purple4c85762e" to="b@localhost">

<active xmlns="http://jabber.org/protocol/chatstates"/>
<encrypted xmlns="eu.siacs.conversations.axolotl">
<header sid="942218035">
<key rid="1877784789">
MwhIEiEFUZ3lNQ2vlrT0o9O33k9hn496wPSMaIalGxXjIhInIRcaIQU3fHq4b
7MqqtupyJMf3yYSWf80EZ2xY0yQLpRaBjd+ZSJiMwohBWZxYU2UazWlJ5Bm12
Ktc19Xj5/1mgwSvzZmm16+R+M5EAAYACIwbgOH+TSg5rVjhcBB0ggwGXWzKBR
VDJj61aV2vubwbpJTIjTcy790yqfzkLbkk23vtVCLMA9FEa8os7akwQMwAA==

</key>
<iv>
P0EbShgyHqiDxcoUzhZGWA==

</iv>
</header>
<payload>
EYYT

</payload>
</encrypted>
<encryption xmlns="urn:xmpp:eme:0"

namespace="eu.siacs.conversations.axolotl"
name="OMEMO"/>

<store xmlns="urn:xmpp:hints"/>
</message>

Adding another device with carbons

After confirming that the plugin works, Alice wants to use OMEMO encryption on her
second device as well, so in addition to lurch she also installs carbons. There is one
difference, however: As no graphical interface is available, she runs Finch instead of
Pidgin on her second device. Since it is also based on libpurple, the plugins work equally
well. When Alice starts up Finch, it thus adds itself to Alice’s OMEMO devicelist. This
can be observed on Pidgin’s debug log, as every client receives this update. The relevant
debug log snippet is shown in listing 4.23.
Following the installation and activation of the carbons plugin, the message carbons
feature has to be manually enabled by typing /carbons on in any message window.
Alice does this on both devices, and informs Bob that she connected a new device. As
can be seen in figure 4.19, Finch also automatically established an OMEMO session with
Bob, notifying Alice about it through the window title. The screenshot in figure 4.20
shows Pidgin running at the same time, and displaying the same messages as Finch. It
also shows a limitation of implementing XEP-0280 as a plugin: libpurple does not offer
the possibility to set a different sender name, which is why it displays the own randomly
generated string identifying the Pidgin resource as a sender.
To investigate what exactly happened at that moment, it is necessary to take a look at
the debug log produced by Pidgin, provided in listing 4.24. First, the simple process of
activating message carbons can be seen. Then, a copy of the message sent on Finch is
received, which is shown in 4.25. Inside the carbons ‘envelope’ is the message containing

92

4.6. Evaluation

Figure 4.19: Alice activates carbons and sends a message from her new device using
Finch.

Figure 4.20: Through carbons, both clients produce the same log of sent and received
messages.

the text “new device!”, encrypted for both Bob and Alice’s other device. Because this was
the first message received from the new device, it means a pre-key was used to establish
a session. The corresponding key pair is deleted after use, replaced with a new one, and
the new bundle containing the new public pre-key is published, which can be seen next.
Afterwards, Pidgin receives a copy of Bob’s reply, presented in listing 4.26. This time,
the copied message is inside a <received/> element instead of a <sent/> element.
One other notable difference is the length of the data inside the <key/> element – as
Bob already has sessions with both devices, the payload key is contained inside a regular
Signal Protocol ciphertext message, instead of a pre-key message. Such a regular message
is noticably shorter.

93

4. Implementation

Listing 4.23: Notified of a second device.
lurch: lurch_devicelist_process: processing devicelist from a@localhost

for a@localhost
lurch: lurch_devicelist_process: cached devicelist is

<publish node="eu.siacs.conversations.axolotl.devicelist">
<item>
<list xmlns="eu.siacs.conversations.axolotl">
<device id="942218035" />

</list>
</item>

</publish>
lurch: lurch_devicelist_process: saving 1679735306 for a@localhost to db

/home/alice/.purple/a@localhost_omemo_db.sqlite

Listing 4.24: Receiving carbon-copied messages on Pidgin
jabber: Sending (ssl) (a@localhost/98a6b8cc-86e5-4f92-b678-624dd22654b3):

<iq type="set" id="purple3596c3f6">
<enable xmlns="urn:xmpp:carbons:2"/>

</iq>
carbons: Sent enable request for a@localhost/
jabber: Recv (ssl)(93):

<iq id="purple3596c3f6"
type="result"
to="a@localhost/98a6b8cc-86e5-4f92-b678-624dd22654b3"/>

jabber: Recv (ssl)(1194): ...
carbons: Received carbon copy of a sent message.
carbons: Carbon copy of sent message does not contain a body - stripping and passing it through.
jabber: Sending (ssl) (a@localhost/98a6b8cc-86e5-4f92-b678-624dd22654b3):

<iq type="set" id="purple3596c3f8">
<pubsub xmlns="http://jabber.org/protocol/pubsub">
<publish node="eu.siacs.conversations.axolotl.bundles:942218035">
<!-- ... -->

</publish>
</pubsub>

</iq>
lurch: lurch_bundle_publish_own: published own bundle for a@localhost
jabber: Recv (ssl)(1007): ...
carbons: Received carbon copy of a received message.

94

4.6. Evaluation

Listing 4.25: The message sent on Finch, arriving on Pidgin
<message type="chat"

to="a@localhost/98a6b8cc-86e5-4f92-b678-624dd22654b3"
from="a@localhost">

<sent xmlns="urn:xmpp:carbons:2">
<forwarded xmlns="urn:xmpp:forward:0">

<message type="chat"
to="b@localhost"
from="a@localhost/finch"
id="purple4a81ef66"
xmlns="jabber:client">

<active xmlns="http://jabber.org/protocol/chatstates"/>
<encrypted xmlns="eu.siacs.conversations.axolotl">

<header sid="1679735306">
<key rid="942218035">
Mwg8EiEFspIUFIIh6X82TepBY1dj11krUhC0pkxKiUIrGv/wYXAaIQVAWlZqL
BZA6Wcf4LZKa901zlo/sgcuQT0Qx5Yz+Yi+XyJiMwohBetJpyQ3LNX8LUF2T/
zBV39l5l2sdgnxjQXfpz4o22UrEAAYACIwtD8wzU0kPnFcIZgl7yGRxWwj0+u
uZImCjZZwccR4TOUo2NzOZWl7MgCFwaQAZjsZR7DeNQfuClYoivT6oAYwAA==

</key>
<key rid="1877784789">
MwggEiEFkaSzPDEnvX+CSvGfY83CL5pjiT5YMkipDUEwSqXPKCcaIQVAWlZqL
BZA6Wcf4LZKa901zlo/sgcuQT0Qx5Yz+Yi+XyJiMwohBY1WDqyPRQVc3cxfwe
Ubv/1x73OrNergo92ToRGJwPpUEAAYACIwGFcjgou/bAd2WtgOP5o6TqW4X9D
vGkQx3TnqyhopX+7eliNQED8UW294puGxN3m9GKoIbna+T6IoivT6oAYwAA==

</key>
<iv>
mdgn4e7+vai7zfwU+PQ0Lw==

</iv>
</header>
<payload>
owEO1lh12C/aFjg=

</payload>
</encrypted>
<encryption namespace="eu.siacs.conversations.axolotl"

name="OMEMO"
xmlns="urn:xmpp:eme:0"/>

<store xmlns="urn:xmpp:hints"/>
</message>

</forwarded>
</sent>

</message>

95

4. Implementation

Listing 4.26: The message sent by Bob and copied to both clients, as received by Pidgin
<message type="chat"

to="a@localhost/98a6b8cc-86e5-4f92-b678-624dd22654b3"
from="a@localhost">

<received xmlns="urn:xmpp:carbons:2">
<forwarded xmlns="urn:xmpp:forward:0">
<message type="chat"

to="a@localhost/finch"
from="b@localhost/5a52fecf-8e4d-4963-a1ba-ad1b3d04d98b"
id="purple3cb992ce"
xmlns="jabber:client">

<active xmlns="http://jabber.org/protocol/chatstates"/>
<encrypted xmlns="eu.siacs.conversations.axolotl">
<header sid="1877784789">
<key rid="942218035">
MwohBaAYpOWJIIdYJx9pO2KdPAGEYbeCSEggi7GDlJLt
ctRXEAAYACIwnAL3Mc4Wpi1/iA50CqQMqZp6Fbk6ZjOy
PA+8TcgeWHSbTa1Lrbr/BqB8amwRjGUpULKGmbx9CRU=

</key>
<key rid="1679735306">
MwohBVyrLnwAho4FhqOxr5JEBtDgivLW+/9y4DYp0rN4
FFx+EAAYACIwZvqQINCQftJhtaM5wzzm9QGXfAoVjvdW
wx1luMKY6NqwN05I7pyTajqx7H0KHZueFySFcCmN+dA=

</key>
<iv>
2lA6KWGKwEWuMW9vla/Tpg==

</iv>
</header>
<payload>
wPOYs50=

</payload>
</encrypted>
<encryption namespace="eu.siacs.conversations.axolotl"

name="OMEMO"
xmlns="urn:xmpp:eme:0"/>

<store xmlns="urn:xmpp:hints"/>
</message>

</forwarded>
</received>

</message>

96

CHAPTER 5
Discussion

5.1 Conclusion

While more general overviews over ‘secure’ messaging like in [UDB+15] had already
existed, this work picks the most relevant schemes and offers an in-depth comparison of
the individual parts they comprise: session establishment, cryptographic ratchet, and
trust establishment. The result is not only a verdict about the best scheme, but also an
understanding of which assumptions impact design decisions, and which trade-offs exist
in regard to protocol design.
Naturally, the ‘winner’ was still picked for the implementation. After compiling the
additional requirements documented in the design chapter, a young XMPP extension
protocol fulfilling these could be found: OMEMO. Even though it was still in draft phase,
presenting a huge improvement over OTR it gathered a lot of attention. For example,
this is evidenced by pages which track the inclusion in existing XMPP clients1. The
lurch plugin implementing this protocol for the widespread libpurple messaging library is
the result of this thesis’ practical part. At the moment of writing, it has 113 stars on
GitHub, and appears in user-curated package repositories for the Arch2 and Exherbo
Linux3 distributions. With some mutual assistance, it was made available for Windows4

and MacOS (as a plugin for Adium)5. The hundreds of users helped with bug hunting, so
that most of the open issue tickets are only feature requests. This work can therefore be
considered successful in enabling and spreading modern, end-to-end encrypted messaging.

1https://omemo.top/
2https://aur.archlinux.org/packages/libpurple-lurch-git/
3https://git.exherbo.org/summer/packages/net-im/lurch/index.html
4https://eion.robbmob.com/lurch/
5https://github.com/shtrom/Lurch4Adium

97

https://omemo.top/
https://aur.archlinux.org/packages/libpurple-lurch-git/
https://git.exherbo.org/summer/packages/net-im/lurch/index.html
https://eion.robbmob.com/lurch/
https://github.com/shtrom/Lurch4Adium

5. Discussion

5.2 Related Work
Throughout the thesis, comparisons have already been necessary. Since ‘privacy’ became
somewhat of a selling point, there exist many messengers which claim to offer it. These
have briefly been mentioned in section 2.1.4. As the reference implementation of the
Signal Protocol, the Signal Messenger is inspected throughout chapter 2 and in section 3.1.
The latter section also mentions the Wire Messenger, which uses its own implementation
of the Signal Protocol as part of its own protocol. libolm, which was mentioned in section
2.3.2 for its Megolm group chat scheme, is an alternative, permissively licensed Double
Ratchet implemenation.
Because of OMEMO’s popularity, there is a multitude of projects intending to add it to
existing XMPP messengers. A site which tracks this XEP’s progress has previously been
mentioned6.

5.3 Future Work
There are some ways in which the lurch plugin itself could be improved. For instance, it is
missing an interface for saving trust decisions at the moment. A graphical user interface
has also been requested. More generally, work can be done to either add support for more
XEPs to libpurple’s XMPP protocol plugin, or create plugins for these, as it happened
for Message Carbons. Concretely, Message Archive Management could enable history
synchronization between devices. On a more organizational level, a next version of the
OMEMO protocol is currently being discussed on the XMPP Standards Foundation’s
mailing list7 and requires help from people who know about cryptography, protocol
design, and ideally also the XMPP ecosystem. One specific problem currently being
discussed is that the Signal Protocol’s X3DH key conversion algorithm does not have
any alternative implementations, and is therefore only available under the GPL license.
Adding this scheme to a permissively licensed crypto library and having it audited could
thus be of help.

6https://omemo.top/
7https://mail.jabber.org/pipermail/standards/

98

https://omemo.top/
https://mail.jabber.org/pipermail/standards/

List of Figures

2.1 Structure of a PGP encrypted message. 8
2.2 Structure of a PGP signed message. 9
2.3 Establishing the DH shared secret gab between Alice and Bob. The short

notation on the right will be useful later. 12
2.4 An OTR ratchet example. 14
2.5 OTR’s initial ‘authenticated DH’. A and B are Alice’s and Bob’s DSA signing

keypairs respectively. 15
2.6 The basis for OTR’s improved handshake, the SIGMA-R authenticated key

exchange protocol. 17
2.7 Establishing the three DH shared secrets gab, gaB, and gAb. Short notation

on the right. 19
2.8 In X3DH, Bob’s signed pre-key replaces his regular pre-key, which can then

optionally be used for a fourth secret computed with Alice’s ephemeral key. 20
2.9 The Double Ratchet. 23
2.10 np1sec group key agreement between four users. 40
2.11 Calculation of a GOTR circle key. 42

4.1 axc modules . 58
4.2 Sequence diagram of client initialization . 61
4.3 Sequence diagram of example client installation 62
4.4 Sequence diagram of bundle collection . 63
4.5 Sequence diagram of first-time sending . 65
4.6 Sequence diagram of first-time receiving 66
4.7 libomemo modules . 70
4.8 lurch design . 76
4.9 Sequence diagram of lurch plugin load . 77
4.10 Sequence diagram of lurch_bundle_publish_own() 78
4.11 Sequence diagram of example lurch initialization 79
4.12 Sequence diagram of example devicelist handling 80
4.13 Sequence diagram of example lurch bundle request 82
4.14 Sequence diagram of example lurch bundle request handling 83
4.15 Sequence diagram of example lurch pre-key message decryption 84
4.16 Sequence diagram of example lurch session repair 85

99

4.17 The window title is informing Alice that OMEMO is available for Bob. . 90
4.18 Bob receives the first encrypted message from Alice. 90
4.19 Alice activates carbons and sends a message from her new device using Finch. 93
4.20 Through carbons, both clients produce the same log of sent and received

messages. 93

100

List of Tables

2.1 General attributes of the evaluated protocols 34
2.2 Cryptographic attributes of the evaluated protocols 34

Listings

4.1 Enabling Message Carbons . 54
4.2 A carbon-copied received message . 55
4.3 A carbon-copied sent message . 55
4.4 The contents of listing 4.2 with the outer message stripped 57
4.5 The axc_context struct . 60
4.6 The axc_bundle struct . 63
4.7 A device adding itself to the previously empty devicelist PEP node . . 67
4.8 A device publishing public key information on its bundle PEP node . . 68
4.9 Bob receiving Alice’s updated devicelist 69
4.10 Bob requesting the bundle of Alice’s 123456 device 69
4.11 An OMEMO message . 70
4.12 The omemo_crypto_provider struct . 71
4.13 The omemo_devicelist struct . 72
4.14 The omemo_bundle struct . 73
4.15 The omemo_message struct . 74
4.16 The lurch_queued_msg struct . 81
4.17 lurch initialization debug log . 88
4.18 Alice’s published devicelist . 88
4.19 Alice’s published bundle . 89
4.20 The devicelist update received from Bob 89
4.21 lurch first-time message sending debug log 91

101

4.22 The first encrypted message: “hey” . 92
4.23 Notified of a second device. 94
4.24 Receiving carbon-copied messages on Pidgin 94
4.25 The message sent on Finch, arriving on Pidgin 95
4.26 The message sent by Bob and copied to both clients, as received by Pidgin 96

102

Bibliography

[AB00] Michel Abdalla and Mihir Bellare. Increasing the Lifetime of a Key: A Com-
parative Analysis of the Security of Re-Keying Techniques. In International
Conference on the Theory and Application of Cryptology and Information
Security, pages 546–559. Springer, 2000.

[ACMP10] Michel Abdalla, Céline Chevalier, Mark Manulis, and David Pointcheval.
Flexible Group Key Exchange with On-Demand Computation of Subgroup
Keys. In International Conference on Cryptology in Africa, pages 351–368.
Springer, 2010.

[Ada] Adam Langley. Pond README. https://github.com/agl/pond/
blob/7bb06244b9aa121d367a6d556867992d1481f0c8/README.
md. Accessed on 2017-02-11.

[AG07] Chris Alexander and Ian Goldberg. Improved user authentication in off-the-
record messaging. In Proceedings of the 2007 ACM Workshop on Privacy
in Electronic Society, WPES ’07, pages 41–47, New York, NY, USA, 2007.
ACM.

[And] Andreas Straub. XEP-0384: OMEMO Encryption. https://xmpp.org/
extensions/xep-0384.html.

[ASZ96] Derek Atkins, William Stallings, and Philip Zimmermann. PGP Message
Exchange Formats. RFC 1991, 1996. https://tools.ietf.org/html/
rfc1991.

[BB15] Julia Buxton and Tim Bingham. The rise and challenge of dark net drug
markets. Policy Brief, 7, 2015.

[BD95] Mike Burmester and Yvo Desmedt. A Secure And Efficient Conference Key
Distribution System. In Advances in Cryptology – EUROCRYPT’94, pages
275–286. Springer, 1995.

[Bee] Kristina Beer. Vorsicht beim skypen - microsoft liest mit.
http://www.heise.de/security/meldung/Vorsicht-beim-Skypen-Microsoft-
liest-mit-1857620.html. Accessed on 2017-05-20.

103

https://github.com/agl/pond/blob/7bb06244b9aa121d367a6d556867992d1481f0c8/README.md
https://github.com/agl/pond/blob/7bb06244b9aa121d367a6d556867992d1481f0c8/README.md
https://github.com/agl/pond/blob/7bb06244b9aa121d367a6d556867992d1481f0c8/README.md
https://xmpp.org/extensions/xep-0384.html
https://xmpp.org/extensions/xep-0384.html
https://tools.ietf.org/html/rfc1991
https://tools.ietf.org/html/rfc1991

[BGB04] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record communica-
tion, or, why not to use PGP. In Proceedings of the 2004 ACM workshop
on Privacy in the electronic society, pages 77–84. ACM, 2004.

[BM] Joseph Bonneau and Andrew Morrison. Finite-State Security Analysis of
OTR Version 2.

[BMP04] Colin Boyd, Wenbo Mao, and Kenneth G Paterson. Key Agreement Using
Statically Keyed Authenticators. In International Conference on Applied
Cryptography and Network Security, pages 248–262. Springer, 2004.

[BST01] Fabrice Boudot, Berry Schoenmakers, and Jacques Traoré. A Fair and
Efficient Solution to the Socialist Millionaires Problem. Discrete Applied
Mathematics, 111(1-2):23–36, 2001. Coding and Cryptology.

[BST07] Jiang Bian, Remzi Seker, and Umit Topaloglu. Off-the-record instant
messaging for group conversation. In IEEE International Conference on
Information Reuse and Integration, 2007., pages 79–84. IEEE, 2007.

[BWJM97] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key Agreement
Protocols and their Security Analysis. In IMA International Conference on
Cryptography and Coding, pages 30–45. Springer, 1997.

[Car00] Germano Caronni. Walking the Web of Trust. In Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises, 2000.(WET ICE 2000).
Proeedings. IEEE 9th International Workshops on, pages 153–158. IEEE,
2000.

[CDF+07] Jon Callas, Lutz Donnerhacke, Hal Finney, David Shaw, and Rodney Thayer.
OpenPGP Message Format. RFC 4880, 2007. https://tools.ietf.
org/html/rfc4880.

[CDFT98] Jon Callas, Lutz Donnerhacke, Hal Finney, and Rodney Thayer. OpenPGP
Message Format. RFC 2440, 1998. https://tools.ietf.org/html/
rfc2440.

[CF11] Cas Cremers and Michele Feltz. One-Round Strongly Secure Key Exchange
with Perfect Forward Secrecy and Deniability. IACR Cryptology ePrint
Archive, 2011:300, 2011.

[CGCD+16] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and
Douglas Stebila. A Formal Security Analysis of the Signal Messaging Proto-
col. Technical report, Cryptology ePrint Archive. International Association
for Cryptologic Research (IACR), 2016.

[CGCG16] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On Post-
Compromise Security. In Computer Security Foundations Symposium (CSF),
2016 IEEE 29th, pages 164–178. IEEE, 2016.

104

https://tools.ietf.org/html/rfc4880
https://tools.ietf.org/html/rfc4880
https://tools.ietf.org/html/rfc2440
https://tools.ietf.org/html/rfc2440

[Chr09] Christopher Williams. UK jails schizophrenic for refusal to decrypt files.
http://www.theregister.co.uk/2009/11/24/ripa_jfl/, 2009.
Accessed on 2017-02-17.

[Dan] Daniel Gultsch. commit f0c3b31a42ac6269a0ca299f2fa470586f6120be.
https://github.com/siacs/Conversations/commit/
f0c3b31a42ac6269a0ca299f2fa470586f6120be. Accessed on
2017-03-23.

[Dav] David Wind and Christoph Rottermanner. An Analysis of Signal-Desktop
and WhatsApp Web.

[Dec09] Declan McCullagh. Judge orders defendant to decrypt
PGP-protected laptop. https://www.cnet.com/news/
judge-orders-defendant-to-decrypt-pgp-protected-laptop/,
2009. Accessed on 2017-02-17.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
In IEEE Transactions on Information Theory, volume 22, pages 644–654.
IEEE, 1976.

[DRGK05] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Secure Off-
The-Record Messaging. In Proceedings of the 2005 ACM Workshop on
Privacy in the Electronic Society, WPES ’05, pages 81–89, New York, NY,
USA, 2005. ACM.

[DRGK06] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Deniable Au-
thentication and Key Exchange. In Proceedings of the 13th ACM conference
on Computer and Communications Security, pages 400–409. ACM, 2006.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE transactions on information theory, 31(4):469–
472, 1985.

[eQua] eQualit.ie. (N+1)SEC. https://learn.equalit.ie/wiki/Np1sec.
Accessed on 2017-04-17.

[eQub] eQualit.ie. (n+1)sec protocol specification — draft. https://github.
com/equalitie/np1sec/blob/master/doc/protocol.pdf. Ac-
cessed on 2017-04-17.

[eQuc] eQualit.ie. (n+1)sec Test Report. https://github.com/equalitie/
np1sec/raw/master/doc/np1sec-test-report.pdf. Accessed on
2017-05-01.

[fai10] fail0verflow. Console Hacking 2010 – PS3 Epic Fail. https:
//events.ccc.de/congress/2010/Fahrplan/attachments/
1780_27c3_console_hacking_2010.pdf, 2010.

105

http://www.theregister.co.uk/2009/11/24/ripa_jfl/
https://github.com/siacs/Conversations/commit/f0c3b31a42ac6269a0ca299f2fa470586f6120be
https://github.com/siacs/Conversations/commit/f0c3b31a42ac6269a0ca299f2fa470586f6120be
https://www.cnet.com/news/judge-orders-defendant-to-decrypt-pgp-protected-laptop/
https://www.cnet.com/news/judge-orders-defendant-to-decrypt-pgp-protected-laptop/
https://learn.equalit.ie/wiki/Np1sec
https://github.com/equalitie/np1sec/blob/master/doc/protocol.pdf
https://github.com/equalitie/np1sec/blob/master/doc/protocol.pdf
https://github.com/equalitie/np1sec/raw/master/doc/np1sec-test-report.pdf
https://github.com/equalitie/np1sec/raw/master/doc/np1sec-test-report.pdf
https://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf
https://events.ccc.de/congress/2010/Fahrplan/attachments/1780_27c3_console_hacking_2010.pdf

[fip] fippo. No, it’s not the end of XMPP for Google Talk. https://xmpp.org/
2015/03/no-its-not-the-end-of-xmpp-for-google-talk/.
Accessed on 2017-07-15.

[FLK+13] Michael Farb, Yue-Hsun Lin, Tiffany Hyun-Jin Kim, Jonathan McCune, and
Adrian Perrig. Safeslinger: Easy-to-Use and Secure Public-Key Exchange. In
Proceedings of the 19th annual international conference on Mobile computing
& networking, pages 417–428. ACM, 2013.

[Flo] Florian Schmaus and Dominik Schürmann and Vincent Breitmoser. XEP-
0374: OpenPGP for XMPP Instant Messaging. https://xmpp.org/
extensions/xep-0374.html.

[FMB+14] Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma, Joerg
Schwenk, and Thorsten Holz. How secure is textsecure? Cryptology ePrint
Archive, Report 2014/904, 2014. http://eprint.iacr.org/2014/
904.

[Geoa] Georg Lukas. CVE-2017-5589+ Multiple XMPP Clients User Imper-
sonation Vulnerability. https://rt-solutions.de/de/2017/02/
cve-2017-5589_xmpp_carbons-2/. Accessed on 2017-03-25.

[Geob] George Kadianakis. flute Specification. https://github.com/
asn-the-goblin-slayer/flute/blob/master/flute_spec.
txt. Accessed on 2017-05-01.

[Gle13] Glenn Greenwald and James Ball. The top secret rules that allow NSA to use
US data without a warrant. https://www.theguardian.com/world/
2013/jun/20/fisa-court-nsa-without-warrant, 2013. Accessed
on 2017-02-17.

[GM] Glenn Greenwald and Ewen MacAskill. NSA Prism pro-
gram taps in to user data of Apple, Google and others.
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-
data. Accessed on 2015-11-20.

[GUVGC09] Ian Goldberg, Berkant Ustaoğlu, Matthew D Van Gundy, and Hao Chen.
Multi-Party Off-the-Record Messaging. In Proceedings of the 16th ACM
Conference on Computer and Communications Security, pages 358–368.
ACM, 2009.

[H D08] H D Moore. Debian OpenSSL Bug. https://hdm.io/tools/
debian-openssl/, 2008. Accessed on 2016-10-11.

[Jak] Jake Edge. The perils of federated protocols. https://lwn.net/
Articles/687294/. Accessed on 2017-03-20.

106

https://xmpp.org/2015/03/no-its-not-the-end-of-xmpp-for-google-talk/
https://xmpp.org/2015/03/no-its-not-the-end-of-xmpp-for-google-talk/
https://xmpp.org/extensions/xep-0374.html
https://xmpp.org/extensions/xep-0374.html
http://eprint.iacr.org/2014/904
http://eprint.iacr.org/2014/904
https://rt-solutions.de/de/2017/02/cve-2017-5589_xmpp_carbons-2/
https://rt-solutions.de/de/2017/02/cve-2017-5589_xmpp_carbons-2/
https://github.com/asn-the-goblin-slayer/flute/blob/master/flute_spec.txt
https://github.com/asn-the-goblin-slayer/flute/blob/master/flute_spec.txt
https://github.com/asn-the-goblin-slayer/flute/blob/master/flute_spec.txt
https://www.theguardian.com/world/2013/jun/20/fisa-court-nsa-without-warrant
https://www.theguardian.com/world/2013/jun/20/fisa-court-nsa-without-warrant
https://hdm.io/tools/debian-openssl/
https://hdm.io/tools/debian-openssl/
https://lwn.net/Articles/687294/
https://lwn.net/Articles/687294/

[Jam] Jamie Zawinski. Signal. https://www.jwz.org/blog/2017/03/
signal-leaks-your-phone-number-to-everyone-in-your-contacts/.
Accessed on 2017-06-25.

[JO15] Jakob Jakobsen and Claudio Orlandi. A practical cryptanalysis of the
Telegram messaging protocol. PhD thesis, Master Thesis, Aarhus University
(Available on request), 2015.

[Joe] Joe Hildebrand and Matthew Miller. XEP-0280: Message Carbons. https:
//xmpp.org/extensions/xep-0280.html.

[JY96] Markus Jakobsson and Moti Yung. Proving without knowing: On obliv-
ious, agnostic and blindolded provers. In Proceedings of the 16th Annual
International Cryptology Conference on Advances in Cryptology, CRYPTO
’96, pages 186–200, London, UK, UK, 1996. Springer-Verlag.

[KAF+10] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K Lenstra, Em-
manuel Thomé, Joppe W Bos, Pierrick Gaudry, Alexander Kruppa, Peter L
Montgomery, Dag Arne Osvik, et al. Factorization of a 768-bit RSA Modulus.
In Annual Cryptology Conference, pages 333–350. Springer, 2010.

[KP05] Caroline Kudla and Kenneth G Paterson. Modular Security Proofs for
Key Agreement Protocols. In International Conference on the Theory
and Application of Cryptology and Information Security, pages 549–565.
Springer, 2005.

[KR02] Vlastimil Klíma and Tomáš Rosa. Attack on private signature keys of the
openpgp format, pgp (tm) programs and other applications compatible with
openpgp. IACR Cryptology ePrint Archive, 2002:76, 2002.

[Kra03] Hugo Krawczyk. SIGMA: The ’SIGn-and-MAc’approach to authenticated
Diffie-Hellman and its use in the IKE protocols. In Annual International
Cryptology Conference, pages 400–425. Springer, 2003.

[Kra05] Hugo Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Proto-
col. In Annual International Cryptology Conference, pages 546–566. Springer,
2005.

[KY03] Jonathan Katz and Moti Yung. Scalable Protocols for Authenticated Group
Key Exchange. In Annual International Cryptology Conference, pages
110–125. Springer, 2003.

[LVH13] Hong Liu, Eugene Y Vasserman, and Nicholas Hopper. Improved Group
Off-The-Record Messaging. In Proceedings of the 12th ACM Workshop on
Privacy in the Electronic Society, pages 249–254. ACM, 2013.

107

https://www.jwz.org/blog/2017/03/signal-leaks-your-phone-number-to-everyone-in-your-contacts/
https://www.jwz.org/blog/2017/03/signal-leaks-your-phone-number-to-everyone-in-your-contacts/
https://xmpp.org/extensions/xep-0280.html
https://xmpp.org/extensions/xep-0280.html

[Man09] Mark Manulis. Group Key Exchange Enabling On-Demand Derivation of
Peer-to-Peer Keys. In International Conference on Applied Cryptography
and Network Security, pages 1–19. Springer, 2009.

[Mas12] Stephen Mason. Electronic Signatures in Law, 3rd Edition. pages 229–213,
318–322. Cambridge University Press, 2012. Accessed on 2017-02-18.

[mat] matrix.org. Megolm group ratchet. https://matrix.org/docs/spec/
megolm.html. Accessed on 2017-04-17.

[Mau96] Ueli Maurer. Modelling a Public-Key Infrastructure. In European Sympo-
sium on Research in Computer Security, pages 325–350. Springer, 1996.

[Men] Joseph Menn. Exclusive: Yahoo secretly scanned customer emails for
u.s. intelligence - sources. http://www.reuters.com/article/us-yahoo-nsa-
exclusive-idUSKCN1241YT. Accessed on 2017-05-20.

[Moxa] Moxie Marlinspike. Advanced Cryptographic Ratcheting. https://
whispersystems.org/blog/advanced-ratcheting/. Accessed on
2016-10-08.

[Moxb] Moxie Marlinspike. Facebook Messenger deploys Signal Protocol
for end to end encryption. https://whispersystems.org/blog/
facebook-messenger/. Accessed on 2017-03-12.

[Moxc] Moxie Marlinspike. Forward Secrecy for Asynchronous Messages. https://
whispersystems.org/blog/asynchronous-security/. Accessed
on 2016-10-07.

[Moxd] Moxie Marlinspike. Just Signal. https://whispersystems.org/
blog/just-signal/. Accessed on 2017-03-09.

[Moxe] Moxie Marlinspike. Open Whisper Systems partners with Google on end-
to-end encryption for Allo. https://whispersystems.org/blog/
allo/. Accessed on 2017-03-12.

[Moxf] Moxie Marlinspike. Private Group Messaging. https:
//whispersystems.org/blog/private-groups/. Accessed
on 2017-04-17.

[Moxg] Moxie Marlinspike. Safety number updates. https://whispersystems.
org/blog/safety-number-updates/. Accessed on 2017-03-12.

[Moxh] Moxie Marlinspike. Saying goodbye to encrypted SMS/MMS. https://
whispersystems.org/blog/goodbye-encrypted-sms/. Accessed
on 2016-10-06.

108

https://matrix.org/docs/spec/megolm.html
https://matrix.org/docs/spec/megolm.html
https://whispersystems.org/blog/advanced-ratcheting/
https://whispersystems.org/blog/advanced-ratcheting/
https://whispersystems.org/blog/facebook-messenger/
https://whispersystems.org/blog/facebook-messenger/
https://whispersystems.org/blog/asynchronous-security/
https://whispersystems.org/blog/asynchronous-security/
https://whispersystems.org/blog/just-signal/
https://whispersystems.org/blog/just-signal/
https://whispersystems.org/blog/allo/
https://whispersystems.org/blog/allo/
https://whispersystems.org/blog/private-groups/
https://whispersystems.org/blog/private-groups/
https://whispersystems.org/blog/safety-number-updates/
https://whispersystems.org/blog/safety-number-updates/
https://whispersystems.org/blog/goodbye-encrypted-sms/
https://whispersystems.org/blog/goodbye-encrypted-sms/

[Moxi] Moxie Marlinspike. Signal on the outside, Signal on the inside. https://
whispersystems.org/blog/signal-inside-and-out/. Accessed
on 2017-03-09.

[Moxj] Moxie Marlinspike. Simplifying OTR deniability. https://
whispersystems.org/blog/simplifying-otr-deniability/.
Accessed on 2016-10-06.

[Moxk] Moxie Marlinspike. WhatsApp’s Signal Protocol integration is now complete.
https://whispersystems.org/blog/whatsapp-complete/. Ac-
cessed on 2017-03-12.

[Mox16] Moxie Marlinspike and Trevor Perrin. The X3DH Key Agreement
Protocol. https://whispersystems.org/docs/specifications/
x3dh/, 2016. Accessed on 2017-03-05.

[Nat01] National Institute of Standards and Technology. Advanced Encryption
Standard (AES), 2001.

[Nat10] Nate Lawson. DSA requirements for random k
value. https://rdist.root.org/2010/11/19/
dsa-requirements-for-random-k-value/, 2010. Accessed
on 2016-10-11.

[Nat13] National Institute of Standards and Technology. Digital Signature Standard
(DSS), 2013.

[Opea] Open Whisper Systems. libsignal-protocol-c. https://github.com/
WhisperSystems/libsignal-protocol-c.

[Opeb] Open Whisper Systems. Signal-Server. https://github.com/
WhisperSystems/Signal-Server.

[OTR] OTR Development Team. Off-the-Record Messaging Protocol version
3. https://otr.cypherpunks.ca/Protocol-v3-4.1.1.html. Ac-
cessed on 2016-09-25.

[Pau] Paul Grosso and Daniel Veillard. XML Fragment Interchange. https:
//www.w3.org/TR/xml-fragment.

[Peta] Peter Millard and Peter Saint-Andre and Ralph Meijer. XEP-0060: Publish-
Subscribe. https://xmpp.org/extensions/xep-0060.html.

[Petb] Peter Saint-Andre. XEP-0118: User Tune. https://xmpp.org/
extensions/xep-0118.html.

[Petc] Peter Saint-Andre and Kevin Smith. XEP-0163: Personal Eventing Protocol.
https://xmpp.org/extensions/xep-0163.html.

109

https://whispersystems.org/blog/signal-inside-and-out/
https://whispersystems.org/blog/signal-inside-and-out/
https://whispersystems.org/blog/simplifying-otr-deniability/
https://whispersystems.org/blog/simplifying-otr-deniability/
https://whispersystems.org/blog/whatsapp-complete/
https://whispersystems.org/docs/specifications/x3dh/
https://whispersystems.org/docs/specifications/x3dh/
https://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/
https://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/
https://github.com/WhisperSystems/libsignal-protocol-c
https://github.com/WhisperSystems/libsignal-protocol-c
https://github.com/WhisperSystems/Signal-Server
https://github.com/WhisperSystems/Signal-Server
https://otr.cypherpunks.ca/Protocol-v3-4.1.1.html
https://www.w3.org/TR/xml-fragment
https://www.w3.org/TR/xml-fragment
https://xmpp.org/extensions/xep-0060.html
https://xmpp.org/extensions/xep-0118.html
https://xmpp.org/extensions/xep-0118.html
https://xmpp.org/extensions/xep-0163.html

[RAZS15] Scott Ruoti, Jeff Andersen, Daniel Zappala, and Kent Seamons. Why
Johnny Still, Still Can’t Encrypt: Evaluating the Usability of a Modern
PGP Client. arXiv preprint arXiv:1510.08555, 2015.

[Roe10] Michael Roe. Cryptography and Evidence. Technical Report UCAM-CL-
TR-780, University of Cambridge, Computer Laboratory, May 2010.

[Rus] Dominic Rushe. Google: don’t expect privacy when sending to
gmail. https://www.theguardian.com/technology/2013/aug/14/google-
gmail-users-privacy-email-lawsuit. Accessed on 2017-05-20.

[SA11a] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):
Address Format. RFC 6122, 2011. https://xmpp.org/rfcs/rfc6122.
html.

[SA11b] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):
Core. RFC 6120, 2011. https://xmpp.org/rfcs/rfc6120.html.

[SA11c] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):
Instant Messaging and Presence. RFC 6121, 2011. https://xmpp.org/
rfcs/rfc6121.html.

[SBKH06] Steve Sheng, Levi Broderick, Colleen Alison Koranda, and Jeremy J. Hy-
land. Why Johnny Still Can’t Encrypt: Evaluating the Usability of Email
Encryption Software, 2006.

[Seb] Sebastian Verschoor. OMEMO: Cryptographic Analysis Report. https:
//conversations.im/omemo/audit.pdf.

[Sil12] Silent Circle. What is Silent Phone? (archived). https:
//web.archive.org/web/20160304091202/https://support.
silentcircle.com/customer/en/portal/articles/
2118686-what-is-silent-phone-, 2012.

[Ste] Steff. Facebook schaltet XMPP API ab! https://www.jabber.de/
facebook-schaltet-xmpp-api-ab/. Accessed on 2017-07-15.

[Ste06] Marc Stevens. Fast collision attack on md5. IACR Cryptology ePrint
Archive, 2006:104, 2006.

[str] strb. Introduce ODR, improve specification. https://github.com/
xsf/xeps/pull/460. Accessed on 2017-07-22.

[sur] surespot. how surespot works. https://www.surespot.me/
documents/how_surespot_works.html. Accessed on 2017-03-14.

[SYG08] Ryan Stedman, Kayo Yoshida, and Ian Goldberg. A User Study of Off-The-
Record Messaging. In Proceedings of the 4th symposium on Usable privacy
and security, pages 95–104. ACM, 2008.

110

https://xmpp.org/rfcs/rfc6122.html
https://xmpp.org/rfcs/rfc6122.html
https://xmpp.org/rfcs/rfc6120.html
https://xmpp.org/rfcs/rfc6121.html
https://xmpp.org/rfcs/rfc6121.html
https://conversations.im/omemo/audit.pdf
https://conversations.im/omemo/audit.pdf
https://web.archive.org/web/20160304091202/https://support.silentcircle.com/customer/en/portal/articles/2118686-what-is-silent-phone-
https://web.archive.org/web/20160304091202/https://support.silentcircle.com/customer/en/portal/articles/2118686-what-is-silent-phone-
https://web.archive.org/web/20160304091202/https://support.silentcircle.com/customer/en/portal/articles/2118686-what-is-silent-phone-
https://web.archive.org/web/20160304091202/https://support.silentcircle.com/customer/en/portal/articles/2118686-what-is-silent-phone-
https://www.jabber.de/facebook-schaltet-xmpp-api-ab/
https://www.jabber.de/facebook-schaltet-xmpp-api-ab/
https://github.com/xsf/xeps/pull/460
https://github.com/xsf/xeps/pull/460
https://www.surespot.me/documents/how_surespot_works.html
https://www.surespot.me/documents/how_surespot_works.html

[Tel] Telegram. Secret chats, end-to-end encryption. https://core.
telegram.org/api/end-to-end. Accessed on 2017-03-14.

[The] The Free Software Foundation. The GNU Privacy Handbook – Encrypt-
ing and decrypting documents. https://www.gnupg.org/gph/en/
manual.html#AEN111. Accessed on 2017-04-17.

[Thr17] Threema. Threema Cryptography Whitepaper. https://threema.ch/
press-files/cryptography_whitepaper.pdf, 2017.

[Tim] Tim Bray and Jean Paoli and C. M. Sperberg-McQueen and Eve Maler and
François Yergeau. Extensible Markup Language (XML) 1.0 (Fifth Edition).
https://www.w3.org/TR/xml/.

[Toxa] Tox Wiki. Frequently Asked Questions. https://wiki.tox.chat/
users/faq. Accessed on 2017-05-25.

[Toxb] Tox Wiki. Technical FAQ. https://wiki.tox.chat/users/techfaq.
Accessed on 2017-05-25.

[toxc] toxcore Github Issues. How does the toxcore work, is there a brief and
complete description about how does it work in detail? https://github.
com/irungentoo/toxcore/issues/1637. Accessed on 2017-05-25.

[Tre16a] Trevor Perrin. The XEdDSA and VXEdDSA Signature Schemes. https://
whispersystems.org/docs/specifications/xeddsa/, 2016. Ac-
cessed on 2017-03-06.

[Tre16b] Trevor Perrin and Moxie Marlinspike. The Double Ratchet Algo-
rithm. https://whispersystems.org/docs/specifications/
doubleratchet/, 2016. Accessed on 2017-02-20.

[UDB+15] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Hen-
ning Perl, Ian Goldberg, and Matthew Smith. SoK: Secure
Messaging. In 2015 IEEE Symposium on Security and Privacy,
pages 232–249. IEEE, 2015. http://www.jbonneau.com/doc/
UDBFPGS15-IEEESP-secure_messaging_sok.pdf.

[UHHC11] Alexander Ulrich, Ralph Holz, Peter Hauck, and Georg Carle. Investigating
the OpenPGP Web of Trust. In European Symposium on Research in
Computer Security, pages 489–507. Springer, 2011.

[Vin12] Vinnie Moscaritolo and Gary Belvin and Phil Zimmermann.
Silent Circle Instant Messaging Protocol Specification (archived).
https://web.archive.org/web/20150402122917/https:
//silentcircle.com/sites/default/themes/silentcircle/
assets/downloads/SCIMP_paper.pdf, 2012.

111

https://core.telegram.org/api/end-to-end
https://core.telegram.org/api/end-to-end
https://www.gnupg.org/gph/en/manual.html#AEN111
https://www.gnupg.org/gph/en/manual.html#AEN111
https://threema.ch/press-files/cryptography_whitepaper.pdf
https://threema.ch/press-files/cryptography_whitepaper.pdf
https://www.w3.org/TR/xml/
https://wiki.tox.chat/users/faq
https://wiki.tox.chat/users/faq
https://wiki.tox.chat/users/techfaq
https://github.com/irungentoo/toxcore/issues/1637
https://github.com/irungentoo/toxcore/issues/1637
https://whispersystems.org/docs/specifications/xeddsa/
https://whispersystems.org/docs/specifications/xeddsa/
https://whispersystems.org/docs/specifications/doubleratchet/
https://whispersystems.org/docs/specifications/doubleratchet/
http://www.jbonneau.com/doc/UDBFPGS15-IEEESP-secure_messaging_sok.pdf
http://www.jbonneau.com/doc/UDBFPGS15-IEEESP-secure_messaging_sok.pdf
https://web.archive.org/web/20150402122917/https://silentcircle.com/sites/default/themes/silentcircle/assets/downloads/SCIMP_paper.pdf
https://web.archive.org/web/20150402122917/https://silentcircle.com/sites/default/themes/silentcircle/assets/downloads/SCIMP_paper.pdf
https://web.archive.org/web/20150402122917/https://silentcircle.com/sites/default/themes/silentcircle/assets/downloads/SCIMP_paper.pdf

[Wha] WhatsApp Developers. WhatsApp Encryption Overview. https://www.
whatsapp.com/security/WhatsApp-Security-Whitepaper.
pdf. Accessed on 2017-04-17.

[Whi] Whisper Systems Development Team. Accouncing The Public
Beta. https://web.archive.org/web/20100530011131/http:
//www.whispersys.com/updates.html. Accessed on 2016-10-06.

[Wir] Wire Developer Team. Wire Server. https://github.com/wireapp/
wire-server.

[WT99] Alma Whitten and J Doug Tygar. Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0. In Usenix Security, volume 1999, 1999.

[xmp] An Overview of XMPP. https://xmpp.org/about/
technology-overview.html.

[Yao82] Andrew C. Yao. Protocols for secure computations. In Proceedings of the
23rd Annual Symposium on Foundations of Computer Science, SFCS ’82,
pages 160–164, Washington, DC, USA, 1982. IEEE Computer Society.

[Zima] Philip Zimmerman. PGP Marks 10th Anniversary. https://www.
philzimmermann.com/EN/news/PGP_10thAnniversary.html.
Accessed on 2016-09-20.

[Zimb] Philip Zimmerman. Why I Wrote PGP. https://www.
philzimmermann.com/EN/essays/WhyIWrotePGP.html. Accessed
on 2016-09-20.

112

https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://web.archive.org/web/20100530011131/http://www.whispersys.com/updates.html
https://web.archive.org/web/20100530011131/http://www.whispersys.com/updates.html
https://github.com/wireapp/wire-server
https://github.com/wireapp/wire-server
https://xmpp.org/about/technology-overview.html
https://xmpp.org/about/technology-overview.html
https://www.philzimmermann.com/EN/news/PGP_10thAnniversary.html
https://www.philzimmermann.com/EN/news/PGP_10thAnniversary.html
https://www.philzimmermann.com/EN/essays/WhyIWrotePGP.html
https://www.philzimmermann.com/EN/essays/WhyIWrotePGP.html

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Aim of the Work and Methodology
	Background
	Privacy Attributes
	Technical Concepts
	Common Attacks

	State of the Art
	Overview of Two-Party Encryption Schemes
	(Open)PGP
	OTR
	Signal Protocol
	Other Protocols

	Evaluation of Two-Party Encryption Schemes
	PGP
	OTR
	Signal Protocol
	Summary

	Overview of Multiparty Encryption Schemes
	Two-Party Scheme Reuse
	Pairwise Sessions for Key Transport
	Use of Group Key Agreement
	Evaluation

	Design
	Approach
	Used Technologies
	XMPP
	OMEMO
	Pidgin and libpurple
	Programming Language
	Additional Libraries

	Implementation
	General Notes
	carbons
	XEP-0280: Message Carbons
	Implementation Details

	axc
	The libsignal-protocol-c Interface
	Implementation Details

	libomemo
	XEP-0384: OMEMO Encryption
	Implementation Details

	lurch
	Design
	Implementation Details

	Evaluation

	Discussion
	Conclusion
	Related Work
	Future Work

	List of Figures
	List of Tables
	Listings
	Bibliography

