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Kurzfassung

Biometrische Authentifizierung wird eingesetzt um wichtige Infrastrukturpunkte abzusi-
chern. Die meist benutzte Form der biometrischen Authentifizierung ist das Vergleichen
von Fingerabdrücken. Derzeitige Methoden benutzen spezielle Details, genannt „Mi-
nutiae“, in Fingerabdrücken für robuste Ergebnisse. Dazu braucht es einen robusten
Algorithmus um diese Fingerabdruckdetails zu extrahieren. Der derzeitige State of the
Art benutzt zeitraubende Bildverbesserungsprozeduren und qualitativ hochwertige Fin-
gerabdrucksbilder um eine stabile Erkennung von Minutiae gewährleisten zu können.
Mit dem Anstieg an Verfahren in verwandten Gebieten, welche auf tiefen neuronalen
Netzwerken basieren, und der freien Verfügbarkeit von synthetischen Fingerabdrucksge-
neratoren, ist es vielversprechend diese Technologie hier anzuwenden. Die Idee hierbei ist
ein gleichwertiges binäres Segmentierungsproblem zu lösen, welches für jeden Pixel die
Wahrscheinlichkeit ermittelt, dass dieses zu einem Minutiaepunkt gehört. Dieses Problem
wird dann mit einem U-shaped Fully Convolutional Neural Network (U-net FCNN) gelöst.
Mit dieser Information wird dann eine Liste an Minutiae extrahiert und mit existierenden
Verfahren auf Basis der Vergleichswerte verglichen. Hierbei werden ähnliche Werte erzielt,
wie derzeitige state-of-the-art Verfahren.

Auf neuronalen Netzwerken basierende Verfahren haben eine starke Abhängigkeit zu den
Daten, welche benutzt werden um diese zu lernen. Der frei verfügbare Fingerabdrucksge-
nerator Anguli wird benutzt um den Grundstock an Daten zu generieren. Hierbei ist für
jeden Fingerabdruck auch ein sauberes Bild des dazugehörigen Fingerabdrucksmuster
erstellt worden. Die Ground Truth dazu wird vom kommerziellen Minutiaeextraktor
Verifinger auf den Fingerabdrucksmusterbildern erstellt. In dieser Arbeit wird davon
ausgegangen, dass der derzeitige State-of-the-Art auf diesen Bildern keine Fehler macht.
Um die Unterschiede zwischen den Trainingsbildern und echten Bildern zu minimieren
wird ein neuer Ansatz, basierend auf adversarial training angewendet. Dieser Ansatz
wird verwendet um Veränderung zu lernen, welche die generierten Fingerabdrucksbilder
ununterscheidbar von echten Bildern machen. Dieser Algorithmus kann während dem
Training angewendet werden um die Trainingsbilder zu verändern und verbessern die
Vergleichswerte des Verfahrens über alle getesteten Datenbanken.
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Abstract

Biometric authentication is used to secure vital infrastructure like airports. The most
common form thereof is fingerprint matching. Current matcher use information about
special landmarks in fingerprints, called minutiae for robust matching results. For this
reason a stable fingerprint minutiae extractor is needed. Current solutions use time-
consuming image enhancements routines and rely on specific quality measurements to
allow reliable extraction of minutiae landmarks. With the rise of deep learning in similar
areas and the free availability to synthetic fingerprint generators it is promising to try
this technology on the minutiae extraction problem. The idea is to solve an equivalent
binary segmentation problem, where for every pixel it is determined, if this pixel belongs
to a minutiae region. This problem is then solved using an U-net FCNN. Using this
information, a minutiae list is extracted and is then compared to existing solutions based
on the matching score. Thereby results similar to other state-of-the-art methods are
reported.

Learning based approach depend on their training data. The freely available synthetic
fingerprint generator Anguli is used to generate the basic dataset for training. Anguli
also provides clean images of the ridge pattern to every fingerprint. The commercial
minutiae extractor Verifinger is then used on those clean images to add a suitable ground
truth. In this thesis it is proven, that it is possible to learn a minutiae extractor, which
is better than the minutiae extractor used to generate the ground truth. To minimize
the difference between synthetic images and real fingerprint images a novel approach
based on adversarial learning is proposed, where suitable refinements are learned instead
of hand crafted. This enables to generate synthetic fingerprint images indistinguishable
from real fingerprints and improve the matching score across all tested databases.
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CHAPTER 1
Introduction

Biometric Authentication is a reliable way to secure vital infrastructure and is therefore
used by major law enforcement departments to ensure national security [MMJP09]. Even
apart from national security, biometric authentication is on the rise due to a variety of
cheap sensing technology and use cases, such as mobile phones, where fast and reliable
authentication is needed [MMJP09]. Currently, the most widely used and accepted form
of biometric authentication technique is fingerprint matching [MMJP09].

Fingerprints are a reliable way to determine the identity of an individual, because of
their uniqueness and their temporal stability [HWJ98]. The characteristic information
in fingerprints are special landmarks named minutiae [MMJP09]. These landmarks are
irregularities in ridge pattern. Two out of 150 [MMJP09] such patterns are termination
and bifurication as shown in Figure 1.1. Termination symbolizes an ending of a ridge,
while the fusion of two ridges is called bifurcation. While 150 different irregularity patterns
have been identified [Moe71], all can be reduced to some form of ridge termination or
bifurcation [MMJP09]. While the amount of minutiae on a fingerprint varies from finger
to finger, there are approximately one hundred of them in a regular fingerprint [MMJP09].
Still, only 10 - 15 minutiae are required to reliably identify an individual [MMJP09].

Current matching technology [WGT+04] relies on minutiae points. Therefore a robust
minutiae extractor is needed. Extraction of minutiae relies on fingerprint images with
a dpi of at least 500. Additionally, to work under unstable lighting conditions and
noise, image enhancement algorithms are used [HWJ98, CLJ14]. However, the interplay
of feature extraction with enhancement in general and single enhancement routines in
particular is undocumented, unclear and a holistic form of processing [Ver10]. Therefore,
reliable minutiae extraction on arbitrary fingerprint images is an open problem [TGF16],
due to the large amount of changes in fingerprint images as is shown in Figure 1.3. Figure
1.3(a,b) show the same fingerprint acquired with different sensing technology.
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1. Introduction

Figure 1.1: Example ridge endings and bifurcations of a fingerprint. This image is taken
from [MMJP09].

Deep learning is used in biomedical image segmentation [DVC+16, RFB15] and fingerprint
liveness detection [NdALM16] with promising results. Additionally, with research in
synthetic fingerprint generators [Ans11, CMM04], it is possible to generate an arbitrary
large fingerprint datasets for training and evaluation. With these tools, it looks promising
to apply deep learning for the minutiae extraction problem. The freely available fingerprint
generator Anguli [Ans11] is used to generate ridge patterns as in Figure 1.2(a). Anguli
also generates multiple, different fingerprint instances for each ridge pattern, called
impressions. One such simulated impression of a fingerprint is illustrated in Figure 1.2(b).
Because of the difference to real fingerprints as are shown in Figure 1.3 augmentation as
shown in Figure 1.2(c) is used to bridge the gap. Here, a novel approach for fingerprint
refinement based on Generative Adversarial Networks (GANs) is used to learn refinements
indistinguishable from real fingerprints, as shown in Figure 1.2(d).

To be able to use deep learning to extract minutiae from fingerprint images, the problem
is reformulated as an equivalent binary segmentation problem. The fingerprint image is
segmented in two classes for every pixel determining if this pixel belongs to a minutia
or not. To solve this problem, a novel neural network architecture is used in this thesis
based on the U-shaped neural network design pioneered in [RFB15].

1.1 Motivation and Contributions

This thesis is motivated by the following research question. Can the current state-of-the-
art in fingerprint matching be improved by using deep NNs for the minutiae extraction
step? Even though we did not improve the current state-of-the-art in fingerprint matching
the following contributions are made as part of this thesis. First, a novel technique to
generating realistic, diverse fingerprint is proposed, which are better suited to training a
NN for the minutiae extraction task than existing solutions. This novel approach is based
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1.1. Motivation and Contributions

(a) (b) (c) (d)

Figure 1.2: The same cropped fingerprint, with the original ridge pattern shown in (a).
(b) represents one simulated fingerprint impression generated by Anguli from the ridge
pattern, while (c) is an augmented version using a 3× 3 Gaussian filter. In (d) the output
of the refinement network is shown.

(a) Fingerprint taken from
FVC2000 DB 1.

(b) Fingerprint taken from
FVC2000 DB 2

(c) Fingerprint taken from
FVC2000 DB 3

Figure 1.3: Example real fingerprints taken from the dataset used for the fingerprint
competition FVC2000 [MMC+02a]. Note the difference in resolution, fingerprint size and
illumination. Different sensors were used to generate those fingerprints.

on GANs [GPAM+14]. However, our method also produces a corresponding ground truth
to the generated data. Second, the minutiae extraction task is reformulated as a binary
segmentation task as described in Chapter 6, which in turn is solved by a NN, trained
from the ground up. Similar results to state-of-the-art fingerprint matcher are shown by
using this approach. Third the following design choices in NN are evaluated based on
their applicability to the minutiae extraction task:

3



1. Introduction

1. Network design: Different networks exist for the purpose of tackling a binary
segmentation problem [DVC+16] [RFB15]. In this thesis the state-of-the-art in
binary segmentation [DVC+16] is combined with the state-of-the-art in classifica-
tion [ZK16] to improve the accuracy for the minutiae extraction task.

2. Optimizer: Adam [KB14], RMSProp [TH12] and Stochastic Gradient Descent [Nes83]
(SGD) achieved promising results in segmentation tasks [RFB15, DVC+16] and are
therefore evaluated for the minutiae extraction network. Adam yielded superior
accuracy compared to the other optimizers.

3. Learning Rate Schedule: Three different learning rate scheduling algorithms are
evaluated, namely decay [MSM16], step [MSM16] and cyclic learning [Smi17]. Step
Learning produced the best performance for the models.

4. Batch size: The experiments in Chapter 4 show a tendency that higher batch size
correlates with higher accuracy. The batch size though is limited by the amount of
VRAM and therefore the highest possible value for our machine was used, which is
16.

5. Loss function: Dice Loss and Cross Entropy are used in similar domains, with
state-of-the-art results [DVC+16]. While the performance of both loss functions is
similar, Dice Loss produced binary output without the need for post processing
and was therefore selected as a loss function.

6. Dropout: Dropout [SPT+16] has been used to improve performance of similar
segmentation NN [DVC+16]. Those results were not reproduced and Dropout was
therefore omitted in the final network architecture.

1.2 Methodological Approach
The following methodological approach is used to solve the minutiae extraction problem:

1. Anguli [Ans11] is used to generate 30.000 synthetic ridge patterns.

2. The commercial minutiae extractor Verifinger [Ver10] is used to generate the
minutiae map ground truth for training. For the purpose of this thesis, it is
assumed that the minutiae extractor works perfectly on the binary ridge pattern.
Verifinger is currently one of the best minutiae extractors, according to fingerprint
competitions [CFFM07].

3. Non-linear distortions are used to change the synthetic ridge pattern and to model
the contact region of real fingers.

4. All the minutiae are removed, which are not in the contact region of the impression
generator to avoid having minutiae points in empty regions.

4



1.3. Organization of the remaining Thesis

5. Anguli creates multiple impressions of the fingerprints using the previously generated
minutiae map. This is done by using different contact regions for the fingerprint
and a randomized noise model.

6. A refinement network is trained using the SimGAN framework described in Chapter
7.

7. The impressions are used for training the U-shaped Neural Network (NN) to find a
mapping from a fingerprint image to a corresponding minutiae map.

8. During training on-the-fly augmentations as described in Chapter 7 are used to
make the trained model invariant to different operations.

9. An extraction algorithm is used as described in Chapter 3 to get a minutiae list
from the output of the model on a particular fingerprint image. This includes
extracting the angle and orientation of every minutia point.

10. For evaluation purposes the matching score of the trained model on specific fin-
gerprint datasets is compared to state-of-the-art fingerprint minutiae extraction
algorithms using the same minutiae matcher BOZORTH [WGT+04] in Chapter 9.

1.3 Organization of the remaining Thesis
The rest of this thesis is organized as follows, Chapter 2 lists related work. Chapter 3 is
a summary on the discipline of biometric authentication using fingerprints. In Chapter 4
the theory of deep learning is described and the methodology used throughout this thesis
is presented. Chapter 5 describes the experimental setup, the languages and frameworks
used to program and test the algorithm developed in this thesis. The algorithm itself is
described in Chapter 6. The data used to train the algorithm is explained in Chapter
7. The architecture of the neural networks is visualized in Chapter 8. Moreover, the
evaluations are visualized in Chapter 9. Finally, Chapter 10 draws conclusions.
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CHAPTER 2
Related Work

The main focus of this work is to improve the accuracy of fingerprint matcher by improving
on the current state-of-the-art in minutiae extraction by using deep NNs. Another focus
is the generation of a dataset, which allows a trained minutiae extractor to generalize to
real datasets. In this chapter related works to these focus points are discussed, reviewed
and compared to this work.

2.1 Literature study
In this section the related literature and a summary is shown. For better readability
the works are separated into 5 categories, namely automatic fingerprint matching, deep
learning, synthetic fingerprint generation, generative adversarial networks and binary
segmentation.

Automatic fingerprint matching algorithms have been in the focus of biometric
research since 1892 [Gal92]. Approaches in literature use minutiae matching as preferred
way to match fingerprints [MMJP09]. Extracting minutiae from binary images is done
by applying thinning and then a 3× 3 filter over the image [HWJ98, Got12]. However
the binarization of fingerprint images is susceptible to image quality [HWJ98]. To work
reliably in the presence of creases and bruises, excessive dryness and sweat [CCG07]
image enhancement algorithms were developed [HWJ98, CCG07, Got12, Ver10] and still
form the current state-of-the-art in fingerprint matching competitions [CFFM07].

With [SPVS14] there is recent research in using neural networks for the minutiae extraction
problem. Recently there has been some research in using Convolutional Neural Networks
for fingerprint feature extraction in a forensic setting [TGF16].

Deep Learning has recently been the focus of many works in computer vision [ABGM14,
HZRS16, MSM16, TGF16, RFB15, SIVA17]. With the rise of GPUs as a general com-
puting platform [NBGS08] and the recent generation of immense datasets [Kit14], deep
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2. Related Work

learning has been applied to a variety of similar problems in computer vision like medical
image segmentation [RFB15, MNA16], natural image segmentation [LLS15], fingerprint
feature extraction [TGF16] and iris recognition [GJ16].

Synthetic fingerprint generation is also closely related to this work. Deep learning
needs approximately 5.000 labeled samples per class to work well [GBC16]. In the context
of minutiae extraction the concept of a class is not well defined though. Chapter 7 is
devoted to the artificial generation of a realistic dataset. To my best knowledge the works
in [Ans11] and [CMM04] are the only works related to the generation and enhancement
of simulated fingerprints. The fingerprint generator described in [CMM04] is also used in
fingerprint competitions such as the FVC 2000 [MMC+02a].

Generative Adversarial Networks (GAN) are used to find suitable, real looking
refinements for syntehtic fingerprint images. GANs were first pioneered in [GPAM+14].
Since the proposal of adversarial training, there have been advances in stabilizing training
like minibatch discrimination [SGZ+16] or energy-based training [ZML16]. The closest
work based in the area of adversarial training to this thesis uses local adversarial loss to
refine eye and hand images [SPT+16]. There is also a work, which generates real looking
synthetic images from a ground truth [CGM+17]. Still, stable GAN training is an active
research area [AB17].

Binary Segmentation on fingerprints is addressed by reformulating the minutiae
extraction problem into a binary segmentation problem. U-shaped Convolutional Neural
Networks (CNN) are used to solve such problems in medical application [RFB15, MNA16,
ÇAL+16]. The architecture used in this work is most closely related to the architecture
used for biomedical image segmentation in [DVC+16]. The main difference is, that Wide
Residual Blocks as explained in Chapter ?? are used instead of Bottleneck Blocks for
their superior performance.

2.2 Analysis of Literature

The problem with current solutions to the minutiae extraction problem is, that the
results are unsatisfying [TGF16]. Current approaches work with time consuming image
enhancement routines [Ver10, WGT+04] and even then the images need to fulfill specific
quality measures like dpi for extracting stable minutiae points [Got12].

There has been a shift away from enhancement routines to new methods like stacked
denoising sparse autoencoders [SPVS14] or pre-trained CNNs [TGF16]. Both those
approaches suffer from a shortage of labeled examples and use fingerprints annotated from
experts. In [SPVS14], 258 images form the training set, while in [TGF16] 4463 fingerprint
images are used. To combat the shortage of training data [SPVS14] works on patches
and [TGF16] works by using a fine-tuning approach with a CNN. Both approaches have
room for improvement with a maximum accuracy on the amount of detected minutiae of
less than 0.60.
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2.3. Comparison to Existing Solutions

Another large part of this thesis is the generation of real looking fingerprints. There are
only two works to the knowledge of the author, that try to do this [CMM04, Ans11].
In [CMM04] a commercial fingerprint generator is described, while [Ans11] describes a
freely available one. While [CMM04] is the basis for [Ans11], however, some functionality
was not implemented and their main focus was on generating a large scale datasets
of fingerprint images and not to provide the most realistic fingerprint images possible.
With this approach it is possible to generate 1 million fingerprint images in a matter of
days [Ans11]. In [CMM04], the fingerprints generated have higher variations and more of
the operations observed in nature, like non-linear distortions or morphological operations,
than the fingerprints generated by Anguli [Ans11]. Still the problem with SFinge is, that
it is possible to reliably distinguish them from real fingerprints even without domain
knowledge [CMM04]. The fingerprints created by SFinge miss operations observed in
the real world as shown in Chapter 7. Additionally, the authors of SFinge themselves
have open issues with their approach [CMM04].

2.3 Comparison to Existing Solutions
Most similar to our work is [TGF16]. In [TGF16] a fine-tuned network is used as pre-
processing and outputs a map of regions of interest. They use logistic regression and
region pooling to find minutia points in those regions. Compared to [TGF16] the problem
is reformulated as a binary segmentation task. This task is then solved by the network
directly. Because synthetic data is used to train our model, it is possible to train the
model from scratch to be especially suited for the minutiae extraction task.

Other solutions using neural networks like the sparse autoencoder used in [SPVS14]
have considerably worse precision compared to the CNN approach [TGF16]. Solutions
based on fingerprint enhancement [HWJ98, Got12, Ver10, WGT+07] suffer from similar
problems of having unsatisfactory accuracy.

Compared to other solutions developing synthetic fingerprints, deep learning is used to
learn, how to generate fingerprints indistinguishable from real fingerprints from data.
The algorithm described in [CMM04] generates fingerprints, which have similar matching
error rates as fingerprint images used in real datasets as shown in [MMC+02a]. However,
due to the large differences to real fingerprints as shown in Chapter 7, they are still
unsuitable for training a minutiae extraction network on their own. In contrast the
approach developed in this thesis uses real datasets to find suitable refinements and
therefore the number of different fingerprints observed is dependent on the real datasets
provided. Competitive results are shown even with only 150 real annotated fingerprint
images.
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CHAPTER 3
Biometric Authentication using

Fingerprints

Fingerprints are the most widely used and accepted form of biometric authentica-
tion [MMJP09]. This chapter is about fingerprints and their representations. Fingerprints
are generally represented using ridges and valleys [Ash99] as is shown in Figure 3.1. The
ridges and valleys of a fingerprint projected on a two dimensional surface form a ridge
pattern. One instance image of a ridge pattern is called an impression of a fingerprint.
In Figure 3.1 the whole ridge pattern of a single fingerprint is shown. Injuries such as
superficial burns or cuts do not change the ridge structure. The ridge pattern is also
duplicated by new growing skin [MMJP09].

Fingerprints are generally described using one of the following three levels of de-
tail [MMJP09]:

1. The overall global ridge flow pattern.

2. Minutiae points.

3. Pores and local shape of ridges.

The three levels of description of a fingerprint are further described in Section 3.1. In
Section 3.2, the current process of fingerprint feature extraction is explained in detail.
The last section describes the process of using those features for a reliable identification.

3.1 Fingerprint Representations
Fingerprints are represented by ridges and valleys which form a ridge pattern. The
characteristic information in those ridge patterns is described in one of three levels of

11



3. Biometric Authentication using Fingerprints

Figure 3.1: Example fingerprint with a detailed description of the ridges and valleys.
Taken from [MMJP09]

detail. While no specific resolution is given for level one features, a 500 dpi resolution is
required for level two features and 1000 dpi for level three features [MMJP09].

Level one features are regions, where the ridges assume distinctive shapes. These three
regions are classified into three typologies, namely loop, delta and whorl [MMJP09]. The
synthetic fingerprint generator Anguli [Ans11] was used to generate ridge patterns of all
three patterns as shown in Figure 3.2. Various fingerprint matching algorithms pre-align
fingerprints using level 1 features or dismiss fingerprints with different level 1 features.
However, only using level 1 features is not distinctive for matching [MMJP09].

Left Loop Whorl Tented Arch

Figure 3.2: The three typologies of fingerprints are shown here.

The minutiae points are the level 2 features of a fingerprint. In the context of fingerprints,
minutiae correspond to points which represent irregularities in ridges [MMJP09]. There

12



3.1. Fingerprint Representations

are over 150 such irregularity patterns [Moe71]. The most commonly found minutiae
types are shown in Figure 3.3. All of those patterns can be reduced to combinations
of the bifurcation and termination patterns. The FBI only distinguishes between ridge
endings and bifurcations for its minutiae detection algorithm [McC04]. Moreover, an
ending changes to a bifurcation and vice versa, if the values for valleys and ridges are
reversed [MMJP09]. This observation makes finding endings and bifurcations a dual
problem. The algorithm proposed in this thesis does not distinguish between different
types of minutiae and just outputs the position, orientation and quality of a minutiae
point.

Figure 3.3: The seven most common minutiae types taken from [MMJP09]. Note that
all the minutiae types can be reduced to a combination of endings and bifurcations. A
Lake for example are just two nearby bifurcations in the opposite direction.

In practice level two features, also called minutiae, are most commonly used for fingerprint
matching and are also accepted as proof of identity in the courts of law in almost all
countries [MMJP09]. One of the main reasons for using minutiae landmarks is the
observation, that minutiae points are stable over time [Gal92]. Even small wounds like
cuts or burns heal in such a way that the minutiae information in a fingerprint is preserved.
Additionally, even though there can be over 100 minutiae in a fingerprint, only 12-15 are
needed to trust a fingerprint match with high confidence [MMJP09]. For the reliable
detection of minutiae points a dpi of 500 is recommended [MMJP09].

Level 3 features consists of further finer details in corresponding fingerprint images [MMJP09].
All fine ridge details like shape, width and edge contour belong to level 3. By zooming
into real fingerprints, the pores in the fingerprint ridges become visible as shown in Figure
3.4, given a resolution of at least 1000 dpi. It has been reported that 20-40 pores are
sufficient to claim the identity of an individual [Ash99]. Additionally, the amount of
pores along a centimeter of ridge varies between 9 to 18. Therefore, only 5 centimeters of
overlapping ridges are needed for reliable identification using level 3 features. This is the
reason why automatic matching techniques cannot use level three features since their
reliable detection requires a resolution of at least 1.000 dpi [MMJP09]. The fingerprint
databases described in Chapter 5 do not provide the resolution for level three feature
extraction.
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Pores

Figure 3.4: Shows the location of the pores in the ridges of the fingerprint. The fingerprint
is taken from the UareU dataset. This is the only dataset, where pores are actually
visible, which was collected as part of this thesis.

3.2 Fingerprint Minutiae Extraction

Most automatic fingerprint matchers use minutiae as their feature representation [MMJP09].
Therefore, minutiae detection is an extremely important task in biometric authentication
and a substantial amount of research has been committed to finding more accurate
algorithms for this problem [TGF16]. Still, these algorithms rely on fingerprint images
with a dpi of at least 500, stable illumination and large overlapping contact regions. In
Figure 3.5 the result of a minutiae extraction process is shown. Approaches exist, where
the image is converted into a binary image [MMJP09]. Those methods benefit from
image enhancement done a priori [HWJ98]. Therefore, image enhancement algorithms
have been developed [HWJ98, CCG07, Got12] and are still the best performing methods
according to fingerprint competitions [Ver10]. Given a binary image, the detection of
minutiae points is done using thinning [ACL81]. This means shrinking the ridges until
they are only a single pixel thick. Different algorithms have been proposed to find a
mapping from a thinned image to minutiae points [MMJP09]. The current state-of-the-art
uses a graph based approach using principal curves to follow ridges and find endings and
bifurcations [ZMZ11].

Recently, authors have proposed methods, like the one described in this thesis, which
work directly on the gray-scale images [TGF16]. The motivation for this approach is,
that a significant amount of information is lost in the binarization process even with
image enhancement steps [MMJP09]. Recent methods use neural networks to find a
mapping between gray-scale images and minutiae positions, by learning a mapping from
data [SPVS14, TGF16]. They did not evaluate on any of the fingerprint datasets that
is used in this thesis and they did not provide a SDK to compare results. Additionally,
access to the minutiae extraction dataset used in their work for evaluation has not been
granted.
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(a) (b)

Figure 3.5: The original synthetic fingerprint shown in (a). In (b) the minutiae detail is
extracted with their angles using Verifinger [Ver10]

3.3 Fingerprint Matching
Fingerprint matching means comparing two fingerprints to each other and determining
either a degree of similarity (a score between 0 and 1) or a binary decision of match or no
match. The most common form of fingerprint matching is minutiae matching and is in
essence a point cloud matching algorithm [MMJP09]. The main difficulties in fingerprint
matching, as described in [MMJP09], are summarized below:

1. Linear transformations: The fingerprint may be rotated and displaced in respect to
the sensor. This may result in only a partial overlap between two impressions of
the same finger.

2. Non-linear distortion: By mapping the three dimensional finger over a two dimen-
sional sensing area results in non-linear distortions. Therefore it is not possible to
match fingerprints as rigid patterns.

3. Pressure, noise and skin conditions: Because of varying pressure of the fingerprint
onto the sensor some parts of the finger might not be seen by the sensor or only
modeled with lower pixel intensity values. Additionally the sensor might be dirty
and introduce noise into the fingerprint impression. Various skin conditions like
sweat, skin disease and humidity in air have profound impact on the extracted
impression.

4. Feature extraction errors: In this work a new minutiae extractor is proposed. This
is done, because current solutions are not perfect. Additionally, it is never claimed,
that the approach in this work is perfect and therefore a matching algorithm has
to account for errors in the feature extraction stage.
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Given a template fingerprint T and a new input fingerprint I there are multiple ways to
calculate a similarity score [MMJP09]. The minutiae matcher BOZORTH3 [WGT+07]
is used for matching the minutiae of each impression of a fingerprint to each other in
this thesis. BOZORTH3 calculates the matches using the similarity score given in (3.1),
where k, n and m denote the matched minutiae and the minutiae points found in T and
I, respectively. The algorithm finds matches using the following steps:

1. Create intra-fingerprint minutiae comparison tables, by computing the differences
in rotation and translation for every minutia in T to every minutia in I.

2. The number of matches k is found by trying out every minutia point in T at every
minutia point of I, as a base point and counting the number of minutiae that fit in
I, using the minutiae tables obtained in step 1. Small deviations in rotation and
translation are allowed to still count as a match [WGT+07].

3. The similarity score is calculated as in (3.1), given the maximum minutiae found in
step 2.

score = k

(n+m)/2 (3.1)

The final output of BOZORTH3 is a similarity score. To use this score for matching a
threshold is needed. This threshold determines the value at which to trust a match. To
determine the threshold the Equal Error Rate (EER) on a sample set is used. The EER
is defined as the error rate given by the threshold, where the rate of false matches is
equal to the rate of true mismatches.
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CHAPTER 4
Deep Learning

Deep Learning is the scientific field of using deep artificial neural networks for specific
applications [GBC16]. Neural Networks (NN) have been part of scientific research since
the introduction of the perceptron in [Ros58]. Even CNNs and Recurrent Neural Net-
works (RNN) have been part of research for decades [Fuk79, LBBH98]. But without the
enormous amount of parameters used in recent networks [HZRS16, SVI+16, SIVA17] and
the ability to train those networks [BSF94], CNNs performed below expectations in the
early days of research [GB10]. However, with the rise of GPU - programming [NBGS08]
and easily accessible datasets, e.g. ImageNet [KSH12], due to the recent data exposi-
tion [Kit14] and advances in training deep neural networks, CNNs are able to shatter
most records set by other state-of-the-art methods in fields of computer vision, such as
object classification [SLJ+15, HZRS16], medical image segmentation [RFB15] or natural
language processing [ZJZF16].

Design choices in deep learning are an open topic due to the amount of time required to
train large models and the amount of hyperparameters to consider for evaluation [MSM16].
One work evaluated design choices in NNs [MSM16], but this list is incomplete and only
tested on a single dataset. Most of the recent research in improving accuracy for deep
learning problems has gone into finding ways to reduce the parameter requirement for
a given accuracy [SIVA17]. Then, by increasing the amount of parameters, additional
accuracy is gained [HZRS16, SIVA17]. Following this intuition, many ideas have achieved
accuracy improvements for a specific parameter quantity on a specific dataset, like residual
connections [HZRS16], group convolutions [XGD+16] and seperable convolutions [Cho16].

Because of the cost of annotating images, instead of generating them [Ans11], research
has gone into finding ways to need less images to perform well, or on the other hand
generating real looking examples [GPAM+14]. One of those methods is to use fine-tuning,
which has been applied to various problems in computer vision with little annotated
training examples like plants [RCC15] or chimpanzees [FRS+16].
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4.1 Introduction

In this section an overview on the history of deep neural networks is given. Additionally,
the theory used to explain the success of deep neural architectures is explained. Finally,
a description of the vanishing and exploding gradient problem is given.

4.1.1 Historical Evolution of Convolutional Neural Networks

One focus point in deep learning research is finding new architectures [LBBH98, SZ14,
HZRS16, SLJ+15], that work for specific use cases. In this section the main advancements
in deep learning architecture design are highlighted.

The first modern CNNs was introduced by Lecun in [LBBH98]. This network model
already had convolutional layers and max pooling layers stacked together with two fully
connected layers as a final classifier. This method yielded state-of-the-art performance on
the MNIST dataset at the time. The MNIST dataset contains handwritten digit images.
However, the algorithm did not scale well, because of the processing power required to
train deeper models and the problems associated with actually training those deeper
models [BSF94].

Only recently with the introduction of the AlexNet [KSH12] in 2012 and its victory at
the Imagenet competition, deep learning gained widespread attention. This was the
beginning of training large networks on GPUs to achieve better performance. Their
model consisted of 60 million parameters, which takes months to train on a single
CPU [KSH12]. Additionally, they used the Rectified Linear Unit (ReLU) to combat the
vanishing gradient problem, plaguing previous deep models [BSF94]. Moreover, to combat
overfitting, they already deployed an early form of dropout proposed in [HSK+12], where
half the neurons in all layers were omitted. Eventually the idea proposed in [HSK+12]
was further developed with the introduction of the dropout layer [SHK+14], which is
heavily used in modern architectures [DVC+16, ZK16].

The next step in deep learning was the VGG net [SZ14], which is still widely used as a
base network today [FRS+16, RCC15] and is built into deep learning frameworks like
keras [Cho15] or caffe [JSD+14]. This network signals the rise of actual deep networks
by using 11 to 19 layers with more than 100 Million parameters . However since the
VGG net, the focus has shifted from increasing the number of parameters to changing
the network architecture [SIVA17].

Building on top of the theoretic work of [ABGM14] and the rise of Network in Network
architectures, the inception architecture was formed in [SLJ+15]. The network was
not split up in layers anymore, but in layer blocks, containing convolutional layers
with different paths through one layer block. The U-net-v1 architecture proposed
in Chapter 8 uses these so called inception blocks. The inception architecture was
developed further in [SVI+16]. Batch normalization layers [IS15] are used instead of
dropout to combat overfitting. Since its introduction in [IS15], batch normalization is
used in [ZK16, SVI+16, SIVA17, HZRS16, MSM16]. Additionally, batch normalization
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helps not only against overfitting, but also against the vanishing gradient problem by
normalizing activations in the network itself and improving gradient flow through the
network. The introduction of batch normalization made training deeper models possible,
like the ones proposed in [SLJ+15, HZRS16] with more than 40 and 100 layers, respectively.
In [SVI+16], several design principles were introduced to improve the performance of
the model for a given amount of parameters. These principles include using spatial
aggregations or increasing width and depth at the same time for the best performance
improvements given a specific number of parameters.

Another milestone in deep learning history is the usage of residual connections, also
called skip connections, in [HZRS16]. Residual connections skip the subsequent layer and
connect to one of the following layers directly. This improves the gradient flow through the
network by providing direct connections were the gradient can flow faster. Better gradient
flow not only accelerates training, but also helps finding a better minimum [HZRS16].

This concept was further developed with long skip connections for U-shaped networks
in [RFB15] to improve the state-of-the-art in medical image segmentation. The importance
and effect on the gradient was researched in [DVC+16]. In that paper, the gradual
improvement of the weights with the usage of residual connections is demonstrated.

The current state-of-the-art in deep learning incorporates those skip connections. The
current iteration of the inception architecture uses skip connections to reduce the number
of parameters and training time, while maintaining state-of-the-art accuracy [SIVA17].
Additionally, by making heavy usage of residual connections DenseNet [HLW16] achieved
a new state-of-the-art on the CIFAR-10 dataset. DenseNet uses dense blocks, where
every layer is connected to every following layer leading to a linearly increasing number
of feature maps in a given layer. That architecture is also used in U-shaped form for the
semantic segmentation problem [JDV+16].

4.1.2 Theory behind Deep Learning

With the recent success of deep learning in domains of computer vision [SLJ+15, FRS+16,
TGF16], it is interesting to look at the approach from a theoretical point of view.
Researchers tried to prove the practical success of deep nets theoretically [ABGM14,
KTR16]. Starting point for such works is [KS06], who proved that learning neural
networks is NP-hard even for random input and shallow network architectures. This
means, by adding a single hidden layer the problem on arbitrary input is already NP-hard.
Still it is interesting to look at the resulting functions locally to find reasons on why deep
learning works the way it does and hopefully improve on current methods.

Even though the problem is NP-hard researchers tried to find solutions by restricting the
input space [MPCB14]. Therein, the complexity of the functions computable is studied in
terms of the number of linear regions in the model. Another theoretical point of research
is on information flow in a neural network [SVI+16]. The entropy changes between layers
and a lower bound on the encoded information has been defined in [KTR16].
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Another theoretic work [ABGM14] proved, that the probability distribution of any dataset
can be represented by a large, very sparse deep neural network. This prompted the shift
away from dense, shallow networks in [SZ14] to the sparse, deep networks with 101 layers
in [HZRS16] with better accuracy for the same number of parameters on the ImageNet
dataset than previous state-of-the-art methods [SZ14]. However, width is still important
as shown in [ZK16]. In [SVI+16], it is explained that depth and width are a tradeoff and
the best performance is achieved by increasing both equally.

4.1.3 Vanishing / Exploding Gradient Problem

The best known problem for training deep neural networks is the vanishing / exploding
gradient problem [GB10]. Those phenomena occur, when the gradient gets smaller per
layer until zero is reached in an intermediate layer of the network. In contrast, the gradient
would explode, if it got larger in every layer until it reaches infinity and updates the
weights to undefined values. This leads to layers being left untrained or wrongly trained,
which defeats the purpose of using deep neural networks in the first place [DVC+16].
This problem was particularly amplified by using sigmoid as the activation function,
which clamps the input space between zero and one [KSH12].

In [HZRS16] the problem is addressed by carefully initializing the model weights and to
use a so called warm-up phase. This means using a low (0.001 in [HZRS16]) starting
learning rate for the first few epochs to initialize the model. Afterwards, the learning rate
is set to a higher learning rate which is used for the remaining training (0.1 in [HZRS16]).

Another part of the solution is to use activation functions, which do not clamp the input
space to an arbitrary range of values [KSH12]. This is one of the reasons, why Regularized
Linear Units (ReLU) are used as activation function in recent works as defined in (4.1).
Also, ReLU is computationally inexpensive compared to other popular functions like
sigmoid or tanh [KSH12]:

y = max(0, x) (4.1)

The usage of skip connections is also motivated by the idea to combat the vanishing
gradients [HZRS16]. Skip connections are used to improve the gradient flow through
the network as explored in detail in [DVC+16]. Therein it is shown that the weights are
learned throughout the network instead of only at parts of the network, by analyzing the
weight distribution of the network.

4.2 Neural Network Performance Tuning

In this section, various pitfalls and possibilities to squeeze out more performance of a
given architecture are explained.
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4.2.1 Weight Initialization

Weight initialization is part of deep learning research [GB10]. Wrong initialization leads
to longer convergence times or failure to converge at all. Therefore a weight initialization
algorithm is proposed in [GB10]. Therein the weights are initialized as samples from
a normalized Gaussian distribution depending on the amount of feature maps in that
particular layer. In [HZRS15], that approach was modified to better fit the non-linearities
used in todays network models, like the ReLU function. The models introduced in this
work also use ReLU as their activation function and therefore the initialization scheme
proposed in [HZRS15] is used.

4.2.2 Optimizers

Different optimizers have been proposed in literature [DHS11, KB14, RHW85]. Adam [KB14],
RMSProp [TH12] and Stochastic Gradient Descent (SGD) [RHW85] are compared in re-
spect to their performance on the minutiae extraction task. Those three algorithms were se-
lected based on their prevalence in related binary segmentation works [DVC+16, RFB15].

SGD is a first order optimization technique, which in essence calculates the gradient and
moves along the gradient using a learning rate. Since the inception of stochastic gradient
descent a modification in using momentum [Nes83] has been suggested.

Adam [KB14] is another first order optimization technique, which uses order one and
order two momentum to improve weight updates and to converge faster. Adam does
more calculation than SGD and has therefore higher computational costs and memory
requirements.

For most of my networks, Adam worked best because of its speed in optimization as
shown in Chapter 9. Adversarial training is done using the SGD algorithm, because of
the clearer weight updates, which is important in understanding the changes made to
the model after each update.

A problem concerning both, Adam and SGD, is choosing a learning rate. This is a
compromise between speed of the algorithm and actually converging to a good minimum.
Additionally, the learning rate is dependent on the content of the dataset, the dataset
size and the architecture of the model. Smaller models can make use of higher learning
rates [HZRS16]. For models with more than 10 million parameters a startup phase can
severely reduce training time. This means starting with a large learning rate and then
after a few epochs train with a low learning rate [HZRS16].

One policy for choosing the learning rate is to chose a large initial learning rate and
after the validation loss stops decreasing, reduce the learning rate to a tenth of what
it previously was [MSM16]. Another policy is to use learning rate decay [MSM16].
Learning rate decay reduces the learning rate every epoch by a specified amount, which
depends on the epoch as given by:
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lr = L0 ·
1

(1 + γ · i) (4.2)

,where lr, L0, γ and i are the resulting learning rate, initial learning rate, decay parameter
and the number of the current iteration, respectively.

Cyclic learning rates [Smi17] is another policy for selecting the learning rate. Here the
learning rate is increased and decreased according to a lower and upper bound in a
triangular pattern. The idea is to not only decrease the learning rate as the training
prolongs, but to periodically decrease and increase the learning rate. For this reason the
following equations are used :

step = | epoch
stepsize

− 2 · b1 + epoch

2 · stepsizec+ 1| (4.3)

lr = baselr + (maxlr − baselr) ·max(0, (1− step)) (4.4)

where epoch, stepsize, maxlr and baselr denote the current epoch, half the length of the
cycle, the maximum learning rate and the minimum or original learning rate, respectively.
A graphical comparison of setting a cyclic learning rate compared to step learning or
learning rate decay is illustrated in Figure 4.1.

Figure 4.1: Comparison of the learning rate scheduling techniques.

With this approach three hyperparameters are required to be set, namely stepsize,
maxlr and baselr instead of just a learning rate, as with the other approaches. However,
according to [Smi17], there exist a semi-supervised ways to set maxlr and baselr. This
is done by running the model for several epochs with a linearly increasing value for the
learning rate. The resulting plot of the accuracy is then used to determine working values
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for the base learning rate and the maximum learning rate. Useful values for the stepsize
are 2− 10 according to experiments conducted in [Smi17].

A comparison of the performance required on a fingerprint dataset using the WRN as
described in Chapter 8 is shown in Figure 4.2. Therein is shown, that step learning
produces the lowest loss and therefore step learning is used throughout this work.

Figure 4.2: Comparison of the performance obtained with various learning rate scheduling
techniques with WRN as described in Chapter 8 . The validation loss is used as comparison
metric.

4.2.3 Loss Functions

Two loss functions are used in this thesis, namely binary cross entropy (or log loss) and
dice loss (or negative F-Score), due to their successful usage in related binary segmentation
tasks [RFB15, DVC+16]. An illustration of the different outputs produced by the models
is shown in Figure 4.3.

Dice Loss

Dice loss is a smoothed version of the negative dice coefficient (F-Score). Dice Loss is
used in related works in biomedical image segmentation [DVC+16]. Using dice loss as in
(4.5), where ypred is the prediction made by the model and ycor is the ground truth. The
advantage of using dice loss instead of binary cross entropy is that dice loss produces
visually cleaner images as shown in Figure 4.3. Therein the images are almost binary.
This means that no threshold is needed to post-process the images. This result has also
been reported in [DVC+16].
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(a) (b) (c) (d)

Figure 4.3: Shows the output of the minutiae extraction network on a sample input ridge
pattern in (a). (b,c) show the output using the binary cross entropy loss, where in (c) a
threshold of 0.5 is applied to generate a binary output. In (d) dice loss is used. Here, the
output is nearly binary even without post processing

loss = −2 · (ypred · ycor)
ypred + ycor

(4.5)

Binary Cross Entropy

Another choice used in related works is binary cross entropy [DVC+16]. Binary cross
entropy is defined in (4.6), where yi, pi and N denote the i-th ground truth, the i-th
prediction and the set of valid pixel indices in the image. The final loss output is the
average log-loss for every sample in the image. The output of networks using this objective
are noisier than the ones using dice loss as shown in Figure 4.3. Therefore a threshold is
used to produce a useful output. Additionally, training visualizations using this objective
also validate on a rounded dice coefficient by using 0.5 as a threshold.

loss = − 1
|N |

∑
(i,j)∈N

(yij log(pij) + (1− yij) log(1− pij)) (4.6)

4.3 Special Deep Learning Architectures

In this section, special deep learning architectures and techniques are explained, like the
autoencoder, fine-tuning and GANs.

4.3.1 One-class Learning using Autoencoder

Autoencoders learn a representation of the training data [GBC16]. This can be used to
tackle problems with only one class and the objective is to differentiate this class from any
other class. An example autoencoder for 4 inputs is shown in Figure 4.4. The objective
of an autoenccoder is to reconstruct a given class as well as possible given samples from
this class. The reconstruction error is then used to discriminate between the class and
any other class. Using this insight, only samples of a single class are needed for training.
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Encoder Decoder

Figure 4.4: A sample autoencoder for 4 inputs

This approach has already been applied to the minutiae extraction problem in [SPVS14],
by using two stacked denoising autoencoders [VLL+10] to learn one class each. One
autoencoder learns the class of an image batch showing minutiae in it and the other
one learns the class of an image batch showing no minutiae in it. Then in order to find
batches showing minutiae in a new fingerprint, the reconstruction is compared between
the two autoencoders and classified accordingly [SPVS14].

4.3.2 Fine-tuning

Fine tuning is used to reuse learned features on similar problems to the problem at
hand [FRS+16, RCC15]. CNNs learn very general features at the initial layers, like
corners [GBC16]. In fine tuning, weights learned on a general task are saved and used as
a basis for new tasks [TGF16].

In [FRS+16] two base networks for the chimpanzee re-identification task are tested. One
network was trained on ImageNet, while the other one was trained on the VGG Faces,
which is a human faces dataset. Currently, in literature the chimpanzee re-identification
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Log
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Generated Data

Real Data

Figure 4.5: Illustration of a Generative Adversarial Network for fingerprint generation.

task is closely related to the human re-identification task, because of the similarity in
features. However, a pre-trained network on the more general model outperforms the
more specialized one [FRS+16]. This result illustrates the generalization capability of
the base network. Networks trained on ImageNet [KSH12] are used for various computer
vision problems in literature and in practice [FRS+16, TGF16].

4.3.3 Generative Adversarial Networks

GANs [GPAM+14] are derived from game theory to learn generative models [SGZ+16].
A GAN consists of a generator and a discriminator network as illustrated in Figure 4.5.

The goal of a GAN is to train a generator model that creates realistically looking images
from random noise. To achieve this goal, a discriminator network is trained to distinguish
between synthetic and real data. This discriminator network is continuously improved
based on the output of the generator, while the generator looks for a distribution that is
accepted by the current discriminator. This results in a min-max optimization problem,
where the optimum is a Nash equilibrium [SGZ+16]. This is a very difficult problem,
where optimization algorithms only exist for specialized cases without any feasible way
to apply them to the GAN problem [SGZ+16]. The cost functions are non-convex, the
parameters continuous and the parameter space is extremely high-dimensional [SGZ+16].

In literature [GPAM+14, SPT+16], SGD is used to optimize both the discriminator and
the generator in turn. However, improving the generator can increase the cost of the
discriminator and vice versa. This makes GAN training highly unstable and very tricky
to get right [AB17]. One such instability is the Helvetica situation where all the input
data points only lead to a single output [GPAM+14], which in turn is moved around
by the generator until this point is not classified correctly by the discriminator. Then
the discriminator learns to classify this point correctly. This process is then continued
infinitely. Another problem is that the training is known to produce artifacts in the
generated images [SGZ+16]. This problem has been addressed in other works, by adding
minibatch discrimination [SGZ+16], historical averaging [SPT+16] or by energy-based
training [ZML16].

Another problem is that there is no good metric for the realness of data [SGZ+16]. Most
work in literature use human evaluators to determine the realness of the data [DCF+15].
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However, even humans are prone to changes in their state of mind and are not a reliable
measurement [SGZ+16]. For the ImageNet dataset, there is a solution by using the
expected output of the inception model trained on ImageNet to quantify the quality
of the resulting samples. This score is called inception score [SGZ+16] and is further
described in Chapter 5.

Energy Based Network

Energy Based Generative Adversarial Networks [ZML16] (EBGAN) use an energy
function as discriminator. Low energy is associated with real data and high energy
with fake data. The energy function is modeled using an autoencoder, where the
energy corresponds to the reconstruction error. This relates to the problem of one-class
learning, where an autoencoder finds a condensed representation of the data and fails
at reconstructing other examples [GBC16]. Following the theory, an autoencoder learns
to encode the distribution of the training set and therefore produces larger errors for
samples from another distribution.

The main advantage of using such an approach is that the discriminator training does not
depend on the generator in the training process. Therefore the discriminator is trained
prior to the generator and is used as a cost function. This leads to a more streamlined
training process and less dependence on careful initialization of the hyperparameters.
After the discriminator has finished training, the generator only learns to construct
samples with low energy, by using the discriminator as a loss function.

Adversarial Training

The problem with the GAN approach is, that it is hard to generate reliable annotations for
the generated data. This is especially troublesome, where annotating is time consuming
like in the minutiae extraction problem [CMM04]. For this reason, the adversarial
training approach is adapted to fit those applications. In [SPT+16] a refinement network
is proposed based on simulated data to generate real looking examples with ground
truth. The simulated data is constructed with existing methods, where the corresponding
ground truth is supplied freely. The main challenge hereby is the regularization. The
network has to be regularized in such a way, that the refinements learned are meaningful,
while still preserving the annotation data.

Another interesting approach using adversarial learning is to generate real looking
synthetic data out of the corresponding ground truth as shown in [CGM+17]. Here retina
images are generated with a binary segmentation as annotation data. A neural network
used for binary segmentation of retina images is supplied as regularizer. The generator
is forced to generate new data, while deviations to the ground truth are discouraged
by regularizing using the binary segmentation network on the generated image and
comparing it to the ground truth. The main challenge with this approach is, that the
resulting images depend heavily on the used binary segmentation network.
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CHAPTER 5
Setup

This chapter gives an overview over the experimental setup used to run the experiments for
this thesis. The whole process of testing the minutiae extraction problem is complicated.
Multiple programming languages with various frameworks are used to train and evaluate
the neural network models. Additionally parts of the programs are run on a GPU and
other parts are run simultaneously on the CPU.

Evaluating the algorithm is a non trivial task. There are multiple components to be
evaluated, like the refinement network and the minutiae extraction network. Then the
metric of choice makes a vast difference and depends on the use-case. For example, the
accuracy of detected minutiae might be better for one neural network, but the matching
score might be worse, because the detected minutiae might be more stable.

The programming languages and frameworks used in this work are listed in Section
1. To learn the models proposed in this thesis specialized CUDA-servers are essential
to speed up computations. The specifications of those machines is given in Section 2.
A description of the datasets created and collected for this work is given in Section 3.
Finally the evaluation metrics for the various parts of the algorithms are described in
Section 4.

5.1 Software

Python is used for everything related to machine learning, like pre-processing the data
and training the models. C++ is then used, when other fingerprint related Software
Development Kits (SDKs) are needed, like the Verifinger SDK [Ver10] for fingerprint
matching and matching-based visualization.
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5.1.1 Python

Python [Ros95] is used as a tool for rapid prototyping. Python is an interpreted language,
which enables the possibility of changing the code, while the program runs. This enables
rapid tryouts of different tasks with a loaded model, without specifying this in advance
and loading the model all over again. Using a higher level language as opposed to a
more lower level one helps me on focusing on the actual challenging part of the thesis.
This means finding the right architecture of the model and fine tuning the model to gain
better performance.

Additionally, Python has a very rich deep learning based toolbox, based on their machine
learning platform scikit-learn [PVG+11]. Pre-defined functionality for splitting data into
training and testing sets, shuffling or cross-validation are built into this framework. All
visualizations related to deep learning, which includes weight, output and performance
visualizations were made using the matplotlib [Hun07] framework of Python.

Theano

Theano [ARAA+16] is primarily a mathematical framework to compute symbolic math
expressions. For the use-case of deep learning some additional features were added,
like gradient calculations and convolutions. Theano gives the user full control over the
calculations performed by the neural network with performance being their primary
goal. Theano provides the gradient and is used to simplify the creation of functions and
variables by using Tensors. Theano works seamlessly on GPU. This means no additional
code has to be written to train or evaluate the neural network on a GPU as opposed to a
cpu. Theano also works in Windows, which helped developing the algorithms on a local
Windows computer, before using the CUDA-Servers for final evaluations, which runs
under Linux. This is the reason for using Theano as opposed to Tensorflow [AAB+15].

Keras

For rapid prototyping, Keras [Cho15] was used. Keras is a wrapper for Theano [ARAA+16]
or Tensorflow [AAB+15] and is used to hide repetitive math definitions from the user,
while still allowing to do those definitions if needed. For example, the dice loss equation
specified in (4.5) was programmed using Keras. Keras works with both, Theano and
Tensorflow tensors, and is not restrictive on the functionality of those frameworks.

In Keras the focus is more on building a working architecture and testing specific
combinations of parameters, than on typing math equations. Keras also provides models
pre-trained on ImageNet for anyone to use and fine tune. Keras allows specifying new
mathematic equations using the underlying framework directly.

A contribution to the source code of Keras has been made as part of the thesis [Cho15].
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5.1.2 C++

For the evaluation of the minutiae extraction algorithm C++ was used. The minutiae
matcher BOZORTH [WGT+04] and the minutiae extraction algorithms Verifinger [Ver10]
and MINDTCT [WGT+04] are all written in C++. To natively use those algorithms,
C++ was selected to write an evaluation software. The minutiae extraction algorithm,
written in Python, outputs a binary file containing the minutiae list for each fingerprint.
This is then read and used in the C++ programs for the fingerprint matching evaluation.
Therefore the data transfer between C++ and Python is done using files.

5.2 Hardware

For the experiments described in this thesis access to CUDA resources was required. For
this reason, access to the servers located at the AIT and at the TU Wien was granted to
me. The configurations of those machines are described in this section.

5.2.1 TU Wien

The TU Wien supplied the Ralph machine for this thesis, with the following specification:

CPU 1x Intel Core i5-4690 (4 cores @ 3.5 GHz)
RAM 16 GB (1600MHz, DDR3)
GPU 1x Nvidia GTX 980 (2048 CUDA-Cores @ 1126 MHz, 4GB GDDR5)
OS Ubuntu 14.04 LTS

Table 5.1: Specification of the Ralph machine.

5.2.2 Austrian Institute of Technology

The Austrian Institute of Technology (AIT) supplied two additional, identical servers,
which were used for teh thesis, with the following specifications:

CPU 1x Intel Core i7-6850K 6 Cores @ 3.60 GHz
RAM 64 GB (2133 MHz, DDR3)
GPU 2x Nvidia Titan X (3072 CUDA-Cores @ 1000 MHz, 12 GB GDDR5)
OS Ubuntu 16.04 LTS

Table 5.2: Specification of the CUDA Server @ AIT.

5.3 Datasets

In this section, the collected datasets and the training dataset is described. To allow the
minutiae extraction model to perform well, it is important that the training set is closely
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related to the dataset observed in nature. For this reason, it is a critical task to compare
simulated fingerprints to real ones and bridge the gap between them.

Collecting datasets is also important to be able to verify the performance of the minutiae
extraction on a broad range of training data. The different datasets collected as part of
this thesis are described in detail in this section and example images are shown.

5.3.1 Synthetic Fingerprint Generation

Due to the required amount of annotated biometric fingerprints to train the neural
networks was not available, synthetic fingerprints were used as a substitute. The advantage
of synthetic fingerprints is that there is no limit on the generated sample size. Therefore
the problem of having not enough training examples and, consequently learning the
training set with poor generalization performance was avoided.

The freely available synthetic fingerprint generator Anguli [Ans11] was used to generate
the training dataset. Initially, Anguli generated 30.000 ridge patterns, where 3.000
were non-linearly distorted as described in Chapter 7. Then for every ridge pattern, 5
impressions were made using Anguli. Example images are shown in Figure 5.1. In total,
150.000 fingerprint impressions were generated for this work. 10.000 images are devoted
as a test set. Out of the remaining 140.000, used for training, 15.000 were non-linearly
distorted. Additionally to the 140.000 simulated fingerprints, 400 annotated fingerprints
were used in the training set as well. Out of the 400 fingerprints 320 were taken from the
NIST SD 4 dataset and 80 from the FVC2000 DB4 dataset.

(a) (b) (c) (d)

Figure 5.1: Example fingerprint impressions generated by Anguli. In (c,d) the underly-
ing ridge pattern was non-linearly distorted, while (a,b) shows fingerprint impressions
generated by Anguli, without additional applied distortions.

5.3.2 Fingerprint Verification Competition

The Fingerprint Verification Competition (FVC) uses four new databases for each of
their competitions. The competition was hosted in the years 2000, 2002, 2004, 2006 and
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one that is still ongoing. The competition has been getting harder every time it has been
hosted and this is one of the reasons, why the classification rate has not improved over
the years for those competitions [MMC+04]. For the ongoing competition, the dataset is
not released yet and access to the database used in the competition for the year 2006
was not granted for this thesis.

Each competition contains four databases. Every database was acquired with different
sensoric [MMC+02a]. This leads to changes in resolution, lighting and local contrast.
Examples for each dataset are shown in Figure 5.2. Therein the large intra class differences
are clearly visible, which are a result of using different sensors to obtain fingerprints.

(a) DB 1 (b) DB 2 (c) DB 3 (d) DB 4

Figure 5.2: A single example image for all the databases in the fingerprint competition
FVC2000 [MMC+02a]. This visualization shows the intra class differences produced by
using different sensor technology to obtain fingerprints.

Apart from changes in the pixel intensity values and local contrast in the databases,
there are also differences in resolution of the fingerprint images. Moreover, the fingerprint
in Figure 5.2(d) is actually synthetic and generated using SFinGe [CMM04]. There-
fore different matching results are achieved by the various algorithms tried on such
a dataset [MMC+02a]. Similar examples of the datasets from 2002 [MMC+02b] and
2004 [MMC+04] are shown in Figure 5.3 and Figure 5.4, respectively.

Every FVC competition consists of the same amount of fingerprints and all have four
databases in them. Every database uses 110 different fingers with 8 impressions per
finger. In total there are 880 images per database and 3520 images per competition.
In total the FVC dataset has 14080 fingerprint images. The FVC dataset is used for
evaluating the minutiae extraction performance based on the matching score between
fingerprint images.

5.3.3 National Institute of Standards and Technology

The National Institute of Standards and Technology (NIST) is also involved in fingerprint
research [WGT+04]. For this reason, multiple fingerprint databases were collected by
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(a) DB 1 (b) DB 2 (c) DB 3 (d) DB 4

Figure 5.3: Example images for all the databases in the fingerprint competition
FVC2002 [MMC+02b].

(a) DB 1 (b) DB 2 (c) DB 3 (d) DB 4

Figure 5.4: Samples of the fingerprint competition FVC2004 [MMC+04].

this institute. In this thesis the special database 4 and the special database 9 are used.
Example images for both datasets are illustrated in Figure 5.5.

Special Database 4

The special dataset 4 consists of 2000 fingerprint pairs with a resolution of 512 × 512
pixels. This means, that a total of 4000 images are stored in this dataset. 300 images
of this dataset have been annotated as part of this thesis to improve the discriminating
ability of the trained model.
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(a) (b) (c) (d)

Figure 5.5: In (a,b) samples from the special database 4 [WW92] and in (c,d) sample
from special database 9 [Wat93] are shown. The resolutions of the fingerprint images
themselves are the same, however the images of the special database 9 are larger. This
leads to problems with training the refinement network.

Special Database 9

This dataset is not used for training the refinement network described in Chapter
7, because of the large areas without a fingerprint in them. Due to the random zoom
operation, as described in Chapter 7, is used to prepare the training data, the preprocessed
images may not include the fingerprint at all. Recall, that in the refinement network the
real datasets are used to determine if the refined fingerprints are real. If background
images are used to denote real fingerprints the refinement network learns unsuitable
refinements. The reason for the large background is, that the acquisition process is done
on all 10 fingers simultaneously. A large image with resolution 4096 × 1536 pixels is
obtained through this process. Then the image is segmented into the 10 regions of size
832× 767 pixels encapsulating a fingerprint each. Large regions are used to accommodate
for the finger size of each individual and therefore large amounts of the images are
comprised of background.

The dataset contains 5.400 such fingerprint cards of 2.700 individuals. This means 27.000
fingerprint pairs were collected as part of this dataset. This means this dataset consists
of a total of 54.000 fingerprint images [Wat93].

5.3.4 Verifinger SDK Datasets

Along with the Verifinger [Ver10] SDK there are two freely available real fingerprint
datasets appended for testing. This includes the Verifinger Sample DB and the UareU
Sample Database [Ver10]. The Verifinger Sample DB contains 51 fingers and 8 impressions
for each finger, thus 408 fingerprint images in total. The UareU Sample DB is used as
a real dataset for the adversarial training and contains 65 fingers with 8 impressions
each. Therefore a total of 520 fingerprint images are in this dataset. Examples for both
datasets are illustrated in Figure 5.6.
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(a) (b) (c) (d)

Figure 5.6: Sample of the UareU Dataset are shown in (a,b), while samples of the
Verifinger Sample DB are shown in (c,d). Both datasets are part of the Verifinger
SDK [Ver10].

5.4 Evaluation Metrics

Evaluation is important to determine the usefulness of an algorithm. In this section three
different parts of the evaluation are highlighted. First, neural network comparison to
find useful hyperparameter combinations. Second, the evaluation metrics used for the
refinement network. Finally, the metric used for fingerprint matching, which is the main
focus of this work.

5.4.1 Neural Network Comparison

The dice coefficient as defined in (4.5) is used as a rough estimate on how well specific
models are performing. The dice coefficient denotes the amount of overlap between the
predicted minutiae regions and the ground truth regions. This is mainly used to dismiss
hyperparameter combinations that do not work at all and to decide between architectures,
without having to evaluate the matching score.

5.4.2 Refinement Network Evaluation

The need for a quantitative score for generated data is not new and is addressed in
research [SGZ+16]. Popular choices in GAN research are either purely visual [ZML16],
using error rates of human discriminators [SGZ+16] or using the generated data for
semi-supervised learning [Spr15]. The problem with human evaluation is that the results
differ based on person and based on motivation and previous knowledge [SGZ+16]. To
my knowledge the only quantitative evaluation metric for GANs is the inception score
invented in [SGZ+16]. This score uses the inception model [SLJ+15] trained on ImageNet
to ouput the conditional probability p(y|x) of a generated sample. The evaluation metric
is given in (5.1), where KL denotes the Kullback-Leibler divergence [KL51], and uses the
insight that GANs should generate varied samples.

score = exp(ExKL(p(y|x)||p(y))) (5.1)
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The problem with extending this approach to the minutiae extraction problem is that
there is no standardized dataset to test on and the output space is very high dimensional,
namely 224× 224, making the evaluation time consuming. Additionally, this metric does
not work well for training as reported in [SGZ+16].

Given this evaluation of the state-of-the-art, the evaluation used in this work is two-fold.
First, the visual result is highlighted and compared to other versions of the algorithm and
other synthetic fingerprint generators. Second, the matching performance is compared
using the same model trained with a different refinement network and without a refinement
network to observe the performance gain using this method as opposed to current synthetic
fingerprint generators.

5.4.3 Fingerprint Matching

The main focus of this work is to propose a new robust minutiae extractor to allow a
reliable identification of individuals using fingerprints. Therefore the matching score is
the most important metric in this thesis. To achieve a good matching score, the extracted
minutiae need to be consistent across multiple fingerprints. For this reason it is important
to highlight the matching score of such a matcher opposed to an accuracy metric.

To determine the performance of the minutiae extraction algorithm proposed in this thesis,
it is compared to other state-of-the-art works. For fairness reasons the same minutiae
matcher, namely BOZORTH [WGT+04], is used. BOZORTH outputs a probability for a
pair of fingerprints on how likely the corresponding minutiae show the same fingerprint.
Therefore the classifier depends on a threshold at which point to trust the match. The
Equal Error Rate (EER) is used to compare 3 algorithms with each other, namely
Verifinger [Ver10], MinDTCT [WGT+04] and the one proposed in this thesis.

GAR is the Global Acceptance Rate and FAR ist the False Acceptance rate. GAR is
defined as the percentage of the true matches, while the FAR is defined as the percentage
of the false matches. GAR and FAR are controlled by using a threshold t, which controls
if a specific matching score is counted as a match or not. The EER is defined as the rate
obtained given by GAR at the value of t, where (5.2) holds.

1− FAR = GAR (5.2)

The EER is also used in [MMJP09].
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CHAPTER 6
Implementation: Minutiae

Extraction

In this chapter the new algorithm for minutiae extraction is explained in detail. In this
thesis the minutiae extraction algorithm is reformulated as a binary segmentation task,
which is solved using deep learning. This means learning a function that maps an input
image to a probability mask for each pixel, indicating if a pixel is part of a minutiae
point. The final minutiae map needs to be post-processed to match the specification of
the matching algorithm. This chapter describes the algorithm used to extract a minutiae
list from an arbitrary fingerprint image.

6.1 Training Algorithm
The training pipeline is visualized in Figure 6.1. The freely available synthetic fingerprint
generator Anguli [Ans11] is used to generate the ridge pattern. An extension of Anguli,
described in Chapter 7 is used to generate the training data for the neural network. The
fingerprint images share the minutiae positions with their initial ridge pattern as shown
in Figure 6.1. Then the commercial fingerprint minutiae extractor Verifinger [Ver10] is
used to extract minutiae from the ridge pattern. In this work it is assumed that the
minutiae extractor works perfectly on the binary ridge pattern. This is obviously not
true in practice, but as shown in Chapter 9 Verifinger works good enough to learn from
the data. Verifinger outputs a minutiae list, which is transformed into a minutiae regions
map as shown in Figure 6.1. Regions instead of points are used following the insight
that the minutiae points are not a single pixel, but whole regions of pixels. Also the
neural network was unable to learn from single points as minutiae regions and therefore
larger regions are used. The model then outputs a binary minutiae map to be used for
evaluation. The network is then trained using dice loss on the ground truth and the
output of the network. Dice loss is given in Eq. (4.5).
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Figure 6.1: The training pipeline for the minutiae extraction network.

6.2 Fingerprint minutiae list generation
The neural network outputs a binary minutia region map. This region map is not directly
usable by minutiae matching algorithms like BOZORTH3 [WGT+04]. BOZORTH3
expects a list of minutiae with the following properties:

1. Position in x, y coordinates of the image.

2. Orientation in degrees between 0◦ and 360◦.

3. Quality measurement between 0 and 100, where 0 and 100 denote bad and good
quality, respectively

BOZORTH3 expects natural numbers for each property. Recall, that the output of the
neural network proposed in this work is a binary minutiae region map as explained in
Chapter 8. Therefore this chapter describes the process of extracting the minutiae list,
necessary for fingerprint matching, given this minutiae map.

6.2.1 Fingerprint Position and Quality Extraction

The neural network outputs a minutiae map for a 224× 224 image crop of a fingerprint.
As described in Chapter 5, the fingerprint images vary in size and are larger in size. For
matching fingerprints it is favorable to use the whole fingerprint for matching. Therefore in
this section the method used to predict on the whole fingerprint is explained. Additionally,
the method to extract position and the quality extraction are also explained in this
section.

The neural network works on 224× 224 images. However, fingerprints often have different
resolutions ranging from 326× 357 to 832× 768 as shown in Chapter 5. The fingerprints
still use a predetermined dpi of 500. Therefore to use the same dpi in the network model
it is favorably to use crops of the images. However, a single crop does not entail the
whole image and results in missed minutiae points. To circumvent this multiple crops are
used. Multiple crops up to 32 do not cause a significant slow down, because the output
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Different
Probability

Figure 6.2: Showcase of the differences between a predictions on the ridge pattern and
its slightly translated ridge pattern.

can be computed in parallel on the machines using a Titan X. The problem thereby is on
how to combine overlapping regions and how to deal with contrasting information.

This problem is addressed using another insight into deep learning. Namely, that the
neural network is very sensitive to change and produces different outputs for minimally
translated images as shown in Figure 6.2. However, using the insight, that the model is
less likely to do the same mistake twice, leads to a majority vote method on overlaying
regions.

Therefore randomly placed 224× 224 crops are used to detect minutiae in the fingerprint.
The number of crops used for evaluation is a hyper parameter for the feature extraction
stage. A comparison of the minutiae found using different numbers of crops is shown in
Figure 6.3. Therein minutiae that are detected using a specific amount of crops vanish
with a different amount.

The centroid of every minutiae region is used to extract the final minutia position. To do
this the binary connected components are used. The connected components are found
using a depth-first search on the binary input image and outputs all connected regions
using the 4-neighborhood connection. The centroid for every component C is calculated
using (6.1) for the x coordinate and (6.2) for the y coordinate. The problem with this
approach is, that overlapping minutiae regions are combined into one minutia point. Still,
as shown in Chapter 9 the algorithm works well enough.
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(a) (b) (c)

Figure 6.3: Illustration of the detected minutiae using 8 (a), 16 (b) or 32 (c) crops.

centroidx = 1
|C|

∑
p∈C

px (6.1)

centroidy = 1
|C|

∑
p∈C

py (6.2)

Following the idea, that the quality of a minutia correlates with the confidence of the
prediction by the neural network, the connected component is also used for the quality
property. The output of the network, as shown in Chapter 4, is almost binary using
dice loss. Therefore the probability is not suited for this task. However, it is assumed
that the prediction of the model correlates with the size of the extracted minutia region.
Following this idea, the resulting quality measurement is calculated using (6.3).

quality = min(2 · |C|, 100) (6.3)

6.2.2 Fingerprint Orientation Estimation

To match the extracted minutiae positions to each other, the direction of the corresponding
ridge is used [WGT+04]. For the minutiae extraction algorithm, the focus was on learning
the minutia position instead of the orientation. The algorithm proposed in [HWJ98] was
used for a rudimentary orientation estimation. This means splitting the image in 16× 16
blocks, where the orientation of the image is estimated. The angle θ of a block B is
calculated using the following set of formulas:

Vx(B) =
∑

i,j∈B

2 ∗ Sx(i, j) ∗ Sy(i, j) (6.4)

Vy(B) =
∑

i,j∈B

S2
x(i, j) ∗ S2

y(i, j) (6.5)

θ(B) = arctan(Vx(B)
Vy(B) ), (6.6)
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where Sx, Sy symbolize the gradient of the image in the x and y directions, respectively.
For the calculation of the gradient, a Sobel [Sch00] filter is used. The output of such
a filter in both directions can be seen in Figure 6.4. Therein the response of the Sobel
filter in a particular direction is shown.

(a) Original ridge pat-
tern of Fingerprint.

(b) Sobel response in x
direction.

(c) Sobel response in y
direction.

(d) Orientation estima-
tion of the Fingerprint.

Figure 6.4: Orientation Field calculation of a sample fingerprint.

The output of (6.6) can be seen in Figure 6.4d. The direction of the image follows the
ridge pattern and therefore the direction in a block corresponds to the direction of the
ridge in a minutiae block. Because the arctan used in (6.6) only corresponds to degrees
between −90◦ and 90◦, local statistics are used to determine if the ridge is between −90◦
and 90◦ or between 90◦ and 270◦. This means looking at the 3× 3 neighborhood and
using the direction with higher values. This corresponds to the neighborhood containing
the ridge [HWJ98]. The result of this approach is shown in Figure 6.5.

Comparatively, in this thesis a second point based approach is also used in this thesis.
This approach works by looking at every minutia point in isolation and calculating the
orientation in a 10× 10 pixel grid around the minutia point. The orientation is calculated
in the same way as in the orientation field, using (6.6) for the 10× 10 pixel patch. One
such block is shown in Figure 6.6.
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Figure 6.5: Example fingerprint with overlaying minutiae points. The angles are extracted
using the orientation field. The minutiae are extracted using the center as a crop region.

Figure 6.6: Example of a minutia block
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CHAPTER 7
Implementation: Data Generation

This chapter is split into two parts. First in Section 7.1 the offline data acquisition,
generation and modifications are explained. Then in Section 7.2 on the fly augmentation
to the previously acquired fingerprints is described.

7.1 Offline Data Generation
Fingerprint images are tedious to acquire, due to privacy protecting legislation, and a
boring process for both the people involved and the volunteers [CMM02]. For these
reasons synthetic fingerprint generators are used in competitions [MMC+02a, CFFM07].

7.1.1 Synthetic Fingerprint Generators

To my best knowledge only two such generators exist, namely Anguli [Ans11] and SFinGe
[CMM04]. Those approaches work as follows:

1. A fingerprint shape model, a directional map model and a density map model are
combined to create a ridge pattern. For Anguli a sample ridge pattern is shown in
Figure 7.1(a).

2. So called impressions, which are variations of the same fingerprint as described in
Chapter 1 are extracted from the ridge pattern generated in step 1 by extracting
the fingerprint along contact region. Then a noise model is applied on top of that.
SFinGe also uses morphological operations and non-linear distortions to create
more realistic fingerprints [CMM04].

3. Fingerprint impressions are randomly translated and rotated. This operation was
turned off for the purpose of this thesis to preserve the minutiae information, which
is calculated from the binary ridge pattern.
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4. SFinGe [CMM04] additionally uses a background generator to make the fingerprints
more challenging.

For this thesis, only Anguli was available to be used to generate training data, so
additional operations were implemented as part of this thesis to make the fingerprints
more realistic. The operations described in the following sections are randomly applied
to fingerprints and their minutiae maps.

7.1.2 Non-linear distortion

To model the contact region of a fingerprint random non-linear distortions are used. By
using non-linear distortions, changes to the local ridge frequency are created. Non-linear
distortions are implemented as follows. Figure 7.1(b) shows the two radii visualized by
circles used in the non-linear distortions equation given in (7.1). The two circles represent
the regions where different functions are used to calculate the rotation applied to each
pixel. Equation (7.1) is used to model the rotation, where r1 and r2 denote the circle
radii and φ and d the resulting rotation angle and the distance to the center pixel. The
constant k is used to control the resulting rotation and was set to 0.03 to generate the
result shown in Figure 7.1c.

φ(d) =


0, for d ≤ r1

k · (d− r1) for d ≤ r2

k · (r2 − r1 + (d− r2)2) for d > r2

(7.1)

The circle radii are randomly varied in [35− 45] and [95− 125] and are given in pixels.
An illustration of the two radii is shown in Figure 7.1b.

Due to discretization and rounding errors, not all the pixels are rotated accordingly and
so the image is pre-initialized to −1. After the distortion operation, pixels with value −1
are assigned to a value decided by their neighborhood through a majority vote. In case
of a tie, the value of a ridge is used. The final result is illustrated in Figure 7.1c.

Finally, to preserve the annotation data, the transformation is also applied to the minutiae
map. Using these new ridge patterns, Anguli is able to generate new impressions. This is
visualized in Figure 7.2.

7.1.3 Fingerprint Minutiae Annotations

To additionally increase the discriminative power of the training dataset, some fingerprints
were annotated as part of this thesis. For this purpose annotation software was written
to help annotating fingerprints. A screenshot of this computer program is illustrated in
Figure 7.3. A fingerprint of the NIST sd04 [WW92] dataset is shown with the minutiae
information initialized with the Verifinger [Ver10] minutiae extractor.
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(a) (b) (c)

Figure 7.1: A single ridge pattern by Anguli is shown in (a). The circles, where the
different distortions are applied to are shown in (b). By applying (7.1) with the radii of
those circles the ridge pattern in (c) is generated.

(a) (b) (c)

Figure 7.2: The distorted ridge pattern is shown in (a). In (b) and (c) corresponding
impressions generated by Anguli are shown.

As illustrated in Figure 7.3 the minutiae extracted by the Verifinger SDK need to be
checked manually in order to correct annotation errors. Most errors occur in regions with
little contrast and along artifacts like the black line at the top in Figure 7.3. Also some
minutiae points are just not found by Verifinger, which has to be corrected using the
annotation software.

In this approach the orientation and the quality of the minutiae are not considered.
Verifinger supplies the initial orientation and quality and, if corresponding minutiae are
not changed, this information does persist. Changed minutiae have their quality and
their orientation initialized to 100 and 0 degrees respectively. This information is not
used by the training and evaluation algorithms.
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Figure 7.3: Screenshot of the annotation program with a sample initial fingerprint taken
from the NIST Special Dataset 4 [WW92].

7.2 Data augmentations
The minutiae extraction model needs to be invariant to various operations, like lin-
ear transformations, lightning changes, pixel intensity changes and noise [MMC+02a].
Therefore on the fly augmentation are used in the training process.

7.2.1 Linear transformation

To make the minutiae extraction CNN invariant to linear transformations, the following
operations are applied to the training data on the fly:

1. Translation Invariance: Fingerprint images are randomly translated by a value
between [−25, 25] pixels in x and y directions illustrated in Figure 7.4(b).

2. Rotation Invariance: The input images are rotated, by a random degree between
0 and 180 degrees around the center of the image. Additionally random mirroring
is used to add additional invariance to larger rotation.

3. Scale Invariance: The input image size of the CNN is 224 × 224 pixels, while
the resolution of the fingerprints generated by Anguli is 400 × 275 pixels. Real
fingerprints use different resolutions [MMC+02a]. To gain limited amount of scale
invariance, the fingerprint is first resized by a random factor between [1, max(h1,w1)

min(h2,w2)) ],
where h1 and w1 denote the input resolution of the CNN and h2, w2 denote the
resolution of the fingerprint. This value is 0.815 for the fingerprints generated by

48



7.2. Data augmentations

Anguli. After the resize operation, a random crop is used as the final image. This
operation is called random zoom in this thesis.

Example affine transformations are visualized in Figure 7.4.

(a) (b) (c) (d)

Figure 7.4: In (a) the original simulated fingerprint is shown, while (b-d) show linear
transformations of this fingerprint used for training. (b) shows a random translation and
(c) shows a random rotation, while (d) shows a random zoom, resulting in an image size,
which is usable by the CNN.

7.2.2 Other augmentations

Fingerprints also change appearance under various conditions. For example, wet fingers
look vastly different than normal fingerprint images [CMM04]. For this reason, the
following additional augmentation operations are used:

1. Random Blurs: The images are randomly blurred with a gaussian kernel, where
the variance varies to simulate noisy fingerprints.

2. Morphological operations: Grayscale dilation and erosion are used to model
wet and dry fingerprint images [CMM04]. These operations do not change the
minutiae positions in the image and therefore are not applied to the minutiae map.

3. Random channel shift: A specific percentage of rows or columns of the image
are omitted. This way the noise in the image is modeled. Also the CNN avoids to
rely on specific rows or columns to classify minutiae.

The operations described above are illustrated in Figure 7.5.
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(a) (b) (c) (d)

Figure 7.5: In (a) the original simulated fingerprint is shown, while (b-d) shows augmented
fingerprints used for training. (b) shows a gaussian blurred fingerprint and (c) shows an
erosion operation on this fingerprint. In (d) the result of a chnanel shift is shown.

7.2.3 Refinement Network

As described in Chapter 4, a GAN is used to generate data indistinguishable from real
data. The problem with this approach is, that there is no reliable way to add annotation
data to the generated data. In contrast, current synthetic data generators enable an
automated way of annotation [Ans11].

Therefore, to still apply the GAN paradigm to the minutiae extraction problem simulated
fingerprints with annotation data are used as input. A so called refinement network or
refiner is learned, instead of a generator network in the original approach. This neural
network is used to refine fingerprints, while preserving the annotation data, instead of
generating entirely new data. Such a refinement network is then used to augment data
on the fly.

The preservation of the annotation data is done by regularizing the refinement network
in order to preserve the underlying ridge structure of the fingerprints. In [SPT+16], this
is accomplished by using the Mean Squared Error (MSE) between the input image and
the generated output image. The refinement network and a discriminator network are
combined to form the SimGAN, named after the network used in [SPT+16].

The refinement network is used to refine simulated fingerprints until it is not possible
to discriminate them from real ones. To ensure this, the refinement network is trained
using a second network, namely the discriminator, which is responsible for discriminating
between real and simulated fingerprint images. The SimGAN converges, when the
discriminator is unable to learn a discrimination between the generated data and the
real data. The architecture details of the refinement and the discriminator networks is
given in Chapter 8
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Training the SimGAN

The process of generating real looking simulated fingerprints is visualized in Figure 7.6.
Anguli generates various synthetic fingerprints to be refined. Those fingerprints are
combined with the real fingerprints and are fed into the SimGAN. Then the algorithm
works as follows:

1. The refinement network is applied to the simulated data and the output is combined
with the real data. The refinement output has the label zero, while the real data
has the label one. In deep learning, some operations are only applied at the training
stage, like dropout and batch normalization, and produce different outputs with
different value spreads then in the testing stage. Using the testing stage of the
refinement network to produce the samples used by the discriminator in the training
stage leads to divergent SimGAN training.

2. The discriminator is trained on the dataset, which was prepared in Step 1, for one
epoch.

3. The discriminator and all its layer weights are frozen. This is done to be able to
use the discriminator solely as a loss function for the refinement network. In this
stage, there is no need to know in which way a single item has to be refined.

4. The refinement and the discriminator networks are combined to form the SimGAN.
The output of the refinement network is the input to the discriminator, while
the output of the discriminator is the final output of the model. Because the
discriminator is frozen in Step 3 the gradient is backward propagated through the
SimGAN and only updates the weights of the refinement network.

5. The label for each simulated fingerprint is set to one, which is the class of the
real fingerprints. This is done to allow the SimGAN to learn the refinement of
fingerprints so they are perceived as real by the discriminator.

6. Using the dataset constructed in Step 5, the SimGAN is trained for two epochs.

7. The discriminator and all its layers are unfrozen again and the whole process starts
with Step 1 until the maximum number of iterations is reached.

There is no actual convergence condition to the refinement network. Therefore, the
refiners used in this thesis are trained for 20 iterations. In the experiments conducted the
difference afterwards are negligible and the risk of collapsing to a single output increased
with the number of epochs.
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Figure 7.6: Training Pipeline of the SimGAN.

Regularization

In the literature MSE is used on the original image as regularizer to discourage the
refinement network from applying large refinements [SPT+16]. This work proposes the
usage of the Hessian image instead of the original image for regularization, following the
idea to allow the network more freedom in the refinement process. The Hessian represents
the ridges independent of the pixel intensity values as illustrated in Figure 7.7. The
Hessian is the second spatial image derivative and is calculated by using the Sobel filters
twice. The Hessian is calculated as part of the NN. Depending on the directions of the
Sobel [Sch00] filter either the xx, xy or the yy Hessian is produced. The resulting ridge
pattern is not supposed to deviate strongly from any of these directions and therefore all
of those directions are used for regularization. To penalize deviations from the Hessian
MSE is used, due to its successful usage in related literature [SPT+16].

(a) (b) (c) (d)

Figure 7.7: In (a) the original simulated fingerprint is shown, while (b-d) show the
Hessian of the fingerprint image in xx, xy and yy directions.

By controlling the regularization parameter of the MSE in the loss function, different
refiner networks are learned. Those refiner networks then produce different output
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fingerprints as visualized in Figure 7.8. The structure of the ridge pattern is preserved
even with little weight on the regularization. However, the structure is less visible and as
shown in Figure 7.8(a). The illustration in Figure 7.8 also shows, that increasing the
value of the regularization parameter improves the visibility of the ridge pattern.

(a) (b) (c) (d)

Figure 7.8: Refined outputs of a SimGAN trained with local adversarial loss. The only
difference is the value of the regluarization parameter. (3 in (a), 5 in (b), 8 in (c) and
16 in (d)) Note, that the ridges and valleys are more visible when higher weighting is
applied.

Different Real Datasets

The refinements calculated by the refinement network are dependent on the real dataset
used for discrimination. Example images are shown in Figure 7.9. Therein large differences
in real datasets and the impact of using different real datasets for training a refinement
network are shown. One characteristic in the sample from the FVC200 [MMC+02a] is the
inhomogeneous brightness distribution as shown in Figure 7.9(a). This is then adopted
by the refinement network in Figure 7.9(d). Similar behavior is shown by the other two
examples illustrated in Figure 7.9. Therefore, the real dataset used for generating new
fingerprint images needs to be diverse in its appearance to allow the refinement network
to generate a diverse dataset.
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(a) (b) (c)

(d) (e) (f)

Figure 7.9: Output of the refinement network, when trained on a particular dataset. (d)
was trained on the FVC2000 DB 1 dataset with a sample shown in (a). (e) was trained
on the sd04 dataset, with a sample shown in (b). Finally (f) was trained on the UareU
dataset with a sample shown in (c).
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CHAPTER 8
Implementation: Neural Network

Design

Various architectures are proposed in literature for NNs [SZ14, HZRS16, SVI+16, SIVA17,
XGD+16, Cho16] with performance improvements for tasks in computer vision. The
ideas described in those papers are used to design the novel architecture used in this
thesis for the minutiae extraction task. As explained in Chapter 6 the minutiae extraction
task is reformulated as a binary segmentation task. This chapter is split into three parts.
In Section 8.1, the similarities between all architectures are explored and evaluated. In
the next section, the minutiae extraction models are explored and compared. Finally,
the refinement and discriminator network architectures are described and evaluated.

8.1 Network Architecture
This section is about the common elements in the different neural networks. This ranges
from hyperparameters like batch sizes and dropout to the general layout of the model.
The evaluation of those experiments prompted the development of the following abstract
architecture.

8.1.1 Abstract Architecture

To speed up the development of new architectures, an abstract architecture was developed,
where the similarities between the different architectures are collected. The basis of all
the minutiae extraction and the refinement models forms a so called U-Shaped Fully
Convolutional Neural Network. The U-Shaped architecture is first proposed in [RFB15],
while the first fully convolutional neural network is introduced in [SDBR14]. "Fully
convolutional" means that down-sampling is accomplished using convolutional layers
instead of pooling layers. U-shaped architectures have successfully been used to address
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Figure 8.1: Shows the abstract network architecture, inspired by the U-shaped Architec-
ture proposed in [RFB15].

segmentation problems like semantic segmentation [JDV+16] and biomedical image
segmentation [RFB15, MNA16, DVC+16].

The general architecture is visualized in Figure 8.1. This part of the network is imple-
mented in this thesis as an abstract model to rapidly prototype small changes to the
network architecture, like changing layer blocks and different amount of layers. In this
chapter, before every convolution, batch normalization and a ReLU activation is applied
unless stated otherwise.

The U-Shape of the network is illustrated in Figure 8.1. The U-shape is accomplished
with Transition and Upsample blocks. Convolutional layers with a 2× 2 stride are used
for transitioning downwards. This has the advantage of being able to learn downsampling
layers and not to lose information in contrast to 2× 2 pooling, where 3

4 of the information
is lost. For the Upsample blocks, a so called Upsample Layer is used, which in essence
just repeats each pixel in a 2 × 2 grid and therefore doubles the width and height of
the resulting feature maps. After the Upsample block a 3× 3 convolution without prior
batch normalization and ReLU activation is applied, before the feature maps are passed
on to the next layer block.

The final activation function of those U-shaped networks is sigmoid as defined in (8.1).
The final layer is not preceded by a batch normalization and does not use a ReLU.
However a dropout layer is applied before the final layer. This is done according to the
observation in [DVC+16], that dice loss, as defined in (4.5), benefits from dropout before
the final layer. The sigmoid function has an output range of [0, 1]. By using sigmoid as
the final activation function, the network tries to learn a mapping from a pixel to the
probability, that this pixel belongs to a minutiae region, given the whole image.

f(t) = 1
1 + e−t

(8.1)
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8.1. Network Architecture

8.1.2 Effect of the image size on network architecture

The amount of parameters in a convolutional layer is not dependent on the image
size [LBBH98]. Therefore it is possible to use a large image as input and still keep the
number of parameter to optimize low. However, because of the large amount of intra
class differences as explored in Chapter 7, a reasonably large batch size of at least 16,
preferably 32 or 64 is needed for the training to work well as shown in Figure 8.2.

Figure 8.2: Validation Loss on the U-net-v1 network with different batch sizes.

However the model needs to fit into the VRAM to be optimized. For this reason the
limiting factor for the image size is the VRAM in the GPU. Because the images calculated
in one batch have to be stored in VRAM in order to calculate the gradient. The WRN-V2
network as described in Chapter 8 uses 11.314 MB of the 12.189 MB available VRAM
in a Nvidia Titan X GPU. This illustrates the point, that segmentation is starving for
VRAM, because the output size is the same as the input size. To preserve information
flow the amount of information contained in subsequent layers should not change too
drastically [SVI+16].

8.1.3 Hyperparameters

The optimizer used to train the model is one hyperparameter [Nes83]. In literature,
either Adam [KB14], SGD with nesterov momentum [Nes83] or RMSProp [TH12] are
used [RFB15, DVC+16, GBC16]. Fig 8.3 shows a comparison between the different
optimizers using the WRN-V1 model. The jumps when using the adam optimization
occurs where the learning rate is cut. SGD and RMSprop use learning rate decay and
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therefore the jumps are not as noticeable. Adam worked best while optimizing the U-net
shaped networks. It did find a better optimum faster than SGD and RMSprop.

Figure 8.3: Equal error rate plot on the synthetically generated data.

Another hyperparameter is the number of samples per epoch. It is possible to increase
the samples per epoch arbitrarily, without feeding the same images into the network over
and over again, because of the on-the-fly augmentation. In this work, this is non-trivial,
because epochs have an influence on the learning rate, depending on the learning rate
scheduling. In step learning, when the validation error stops decreasing, the learning rate
is cut. If the model is trained in a single epoch, the learning rate is never cut. This leads
to a difference in using more or less samples per epoch. Therefore the training algorithm
needs longer to react to a non-decreasing validation loss. The impact of this phenomenon
is shown in Figure 8.4.

8.1.4 Dropout

Dropout [SHK+14] is heavily used in literature [KSH12, ZK16, HLW16]. In [DVC+16]
it is reported, that dice loss benefits especially from dropout. Therefore it is promising
to incorporate dropout into our network architecture. Because dropout is not used for
the validation score, the validation score can be higher than the training score as shown
in Figure 8.5. In Keras [Cho15], the validation loss is calculated after the training set
has been traversed completely. Therefore the difference between the training and the
validation loss is larger in the first 2 epochs as shown in Figure 8.5.

In Figure 8.6, different architectures based on the DenseNet, described in the following
section, are compared. The difference in the architectures is the amount of dropout
layers used. One network uses no dropout. The second one uses dropout in the final
convolution layer. The last model uses dropout as part of its layer blocks. As shown in
Figure 8.6, using dropout is detrimental for the performance of the network.
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Figure 8.4: Validation error on the U-net-v1 network with different amount of samples
per epoch.

Figure 8.5: Training and validation loss for the U-net-v1 network.

8.2 Minutiae Extraction Networks

Recall, that the minutiae extraction problem is reformulated as a binary segmentation
task. For this reason the networks proposed here are similar to the ones proposed for
other binary segmentation tasks in medicine [RFB15, DVC+16]. In this section, the
different networks programmed for the minutiae extraction problem are explained.
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Figure 8.6: Performance of the dense network with dropout enabled/disabled.

8.2.1 Inception Style Architecture

The first network was developed with the thought of fusing the state-of-the-art in
segmentation [RFB15] with the state-of-the-art in classification [SIVA17] and was named
U-Net-v1. In Figure 8.7, this network, namely the u-net-v1, is illustrated. This figure is
primarily used to showcase the complexity of the models used in this thesis. This model
uses inception blocks [SIVA17] on its downward path and residual inception blocks on its
upward path as shown in Figure 8.7, giving a weight distribution of its filter kernels as
visualized in Figure 8.8. Therein the value of the norm of every filter kernel is visualized
per layer. This model is also different in the way long residual connections are used.
Because of the results in [SZ16], weighted residuals are used here. This is accomplished
by learning the weight of the residual by applying a 1× 1 convolution on the residual
connection.

The complete specification of the network, split into its layers can be found in Tab. 8.1.
The parameter count is low in relation to the number of layers compared to the other
architectures proposed in this thesis. This network was used to test out the U-Shaped
approach. All the following architectures were built after the success of this one as
indicated in Chapter 9. The other models are larger in the size of parameters. To still
compare the performance, a larger model with a similar architecture was constructed.
However, this particular architecture did not scale well and the performance decreased as
the parameter count increased, which is why this model is not further used for evaluations.

8.2.2 Other Architectures

Because of the scaling problem with inception blocks, as previously mentioned other
layer blocks are considered as part of this work. One particular important work hereby
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Figure 8.7: Complete U-Net-v1 model. This is the only model, where the complete graph
is shown.

is [DVC+16], which investigated the correspondence of weight development over epochs
with the usage of skip connections. Also the correlation between the weight development
and the performance of the network is analyzed. Therefore three different architectures

Figure 8.8: Norm of the filter weights for every convolutional layer

61



8. Implementation: Neural Network Design

Layer Amount in Model Total Parameter Count
Convolution2D 49 527149

BatchNormalization 9 1216
InputLayer 1 0

Merge 15 0
Dropout 3 0
Lambda 3 0

UpSampling2D 3 0
Activation 3 0
In Total 86 528365

Table 8.1: U-net model specification.

were developed using the following three different layer blocks:

1. ResUnet with Bottleneck Blocks [DVC+16]: As shown in Figure 8.9(a), a small
1× 1 convolution is followed by a small 3× 3 convolution. Afterwards a large 1× 1
convolution follows. The insight, that large layers are often linear combinations of
small layers, is applied here by using the final 1×1 convolutions. Additionally, 1×1
convolutions are used to shield computations and reduce the number of parameters.

2. WRN with Wide Residual Blocks [ZK16]: As shown in Figure 8.9(b), two large
3×3 convolutions are used. The key insight here is, that width is equally important
as depth of the model and increasing both yields a higher accuracy per parameter
than only increasing in width or in depth. In [ZK16], a streamlined residual layer
block is introduced.

3. DenseNet with Dense Blocks [HLW16]: As shown in Figure 8.9(c) every layer is
connected to every following layer leading to an ever increasing architecture. Using
more residual connections helps with the gradient flow and allows the whole network
to learn equally in each layer [HLW16]. Dense Blocks have already been applied to
semantic segmentation in [JDV+16] with state-of-the-art results.

To give a sense about the final architectures, the norm of the filter weights for each layer
is plotted in Figure 8.10. Therein every line represents one convolutional layer and the
length of the line shows the number of filters in that layer. A stable weight distribution
is needed for a network to learn well [DVC+16]. The networks are also nearly symmetric
in their layers, due to the reuse of layer blocks on the downwards and upwards paths.
One key characteristic of the WRN is the lower amount of convolutional layers and the
larger amount of filters per layer compared to the other architectures. In contrast to the
ResUnet, all of the filters are 3× 3 convolutions. The DenseNet uses a merge layer per
convolutional layer and therefore the visualization in Figure 8.10 is not indicative for the
computational complexity required to run this model compared to the other architectures.
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1x1 Convolution

1x1 Convolution

3x3 Convolution

(a) (b) (c)

Figure 8.9: Shows the three layer blocks used in this thesis. The bottleneck block is
shown in (a), the wide residual block in (b) and the dense block in (c).

The residual feature maps in a DenseNet are appended to the current feature maps,
before the next convolutional layer is applied. In the ResUnet and the WRN the feature
maps are added and therefore need to have the same input size as output size. Another
interesting property of dense blocks is that the incoming feature map is passed through
the entire block as well as a subset of the outgoing feature maps.

(a) (b) (c)

Figure 8.10: Shows the architectures developed using bottleneck blocks (a), wide residual
blocks (b) and dense blocks (c).

A comparison of the three architectures based on their dice losses using the same amount
of parameters of approximately 4.000.000 is given in Figure 8.11. The models are trained
using step learning, which is the reason for the jumps in the loss function. As illustrated
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in Figure 8.11, the wide residual connections proved to yield the best results.

Figure 8.11: Model comparison between the three different models. The best performance
is obtained by using wide residual connections.

8.2.3 Final Architecture

Based on the comparison, a final architecture was developed, named WRN-V2. This
model is used to determine the final matching score on the fingerprint databases in
Chapter 9.

Wide residual blocks are used, because they provided the best performance as shown
previously. To be able to use 2.000.000 more parameters in the model and keep the batch
size stable, four down-sampling and up-sampling levels are used instead of the three
described in the abstract model. A visualization of the model is given in Figure 8.12.
Therein the symmetric model is visualized. To preserve the amount of information in any
cut separating the input to the output the amount of filters in a layer block is increased
as the image size is decreased on the downwards path as illustrated in Figure 8.12. The
first layer in such a block is either the down-sampling or the up-sampling convolution.
Then every layer block uses two convolutions. Therefore the number of layer blocks in a
level of the U-shape is countable by means of the number of layers with the same amount
of filters. The first layer and the last layer are the only layers that use different kernel
sizes for their filters and therefore their norms are higher than the other filters. The first
layer uses a 5× 5 kernel, while the last layer uses 1× 1. 3× 3 filters are used everywhere
else. This gives a total of 37 Convolutional Layers and 6.048.997 parameters.

This model was then trained using cyclic learning with four steps and the learning rate
is bounded in [1e−6, 1e−4]. Additionally, weight decay of 1e−6 was used to combat
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(a) (b)

Figure 8.12: Shows the WRN-V2 model pre training (a) and post training (b).

Figure 8.13: Training curve of the WRN-V2 network using cyclic loss.

overfitting by the model. The final training result is visualized in Figure 8.13. The
resulting performance is similar to previous iterations, because this network is trained on
data generated by the refinement network, instead of the augmented data used previously.
The model shown in Figure 8.13 is used for the matching results in Chapter 9.

8.2.4 Failed Architectures

This is a short description of additional architectures that were programmed and tested,
but did not produce the anticipated results. One such network would be the larger model
based on the inception architecture. Another uses the ideas gathered in [XGD+16], where
group convolutions are used. In this work it is proven that group convolutions are the
same as aggregated residuals, which is what was used for this architecture. The insight
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is, that very deep networks are possible using this kind of architecture. The weight
visualization of that network is shown in Figure 8.14. The 1054 layer deep network is
shown. Even with such a large amount of layers the model only has 2.213.057 parameters.
Still, training this network took a day for every epoch instead of only 15 minutes for
other architectures. Therefore this model was never trained to convergence.

Figure 8.14: Weight visualization of the network using group convolutions as proposed
in [XGD+16].

Additionally, an autoencoder was trained on patches without minutiae to learn how to
encode and decode ridges. Then the idea is, that the autoencoder fails at reconstruction
patches with minutiae in them with the same accuracy as on patches with minutiae in
them. Then the patches with minutiae in them are detected by using a threshold on
the reconstruction error. A 20% higher value than the average reconstruction error on
patches without minutiae is chosen as a threshold. With this approach, an accuracy of
60% was achieved on detecting whether a patch has a minutiae in there or not. This
is not even close to the performance acquired by the minutiae extraction framework as
shown in Chapter 9.

Another approach was using the Unet-v1 architecture on a regression problem, where
the minutia point itself had the largest value and the surrounding area had a decreasing
value. That model produced a completely noisy image and failed to learn a meaningful
mapping.

8.3 SimGAN Networks

In this section, the architecture of the SimGAN network is explored. The framework
used in this thesis is largely based on [SPT+16]. Additionally, the insights gained by
training minutiae networks are applied to that refinement network. The SimGAN is
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a combination of two networks, namely the refinement network and the discriminator.
Both can have vastly different architectures. The combination of the networks depends
on the actual architectures of the networks used. The interaction between those two
networks in the training phase is illustrated in Figure 8.15. Anguli generates the initial
fingerprint images denoted as input. For training the refinement network the minutiae
ground truth for the fingerprint images is unnecessary. The Hessian on the input images
is calculated in advance by applying two Sobel filters on the image and are also used
as input to the refinement network. Given the generated input images by Anguli, the
Hessian of those images and a real fingerprint dataset the algorithm works as follows:

1. Freeze the weights of the discriminator and use the discriminator as a loss function
for the refinement network. The refinement network uses the same number of
generated samples as input as the discriminator.

2. Generate refined samples for the discriminator from anguli generated input images
on which the refinement network was not trained on.

3. Update the discriminator with equal amount of generated data by the refinement
network and real fingerprint images.

4. Repeat Step 1, 2 and 3 for 20 epochs.

One issue that appeared while using this algorithm is the difference between the training
and the predict algorithm. Because batch normalization is only applied, while training
the network the output of the predict algorithm is different to the one used to train the
network. This has implications in having the discriminator network discriminate between
a different value spread in training and as part of the adversarial training. This lead to
the discriminator being 100% confident in discriminating the fake and the real samples
and the SimGAN was 100% confident in fooling the discriminator.

TODO: read again

8.3.1 Refinement Network

The refinement network proposed in this thesis uses the same underlying abstract
architecture as the minutiae extraction models. Therefore a U-net FCNN was used to
refine the fingerprints. In [SPT+16], a refinement network was used for equally sized
images and in there they did not make use of an U-shape and just used a succession of
convolutional layers. The problem with not using a U-shape is, that for the same amount
of parameters the run time is longer and the memory requirements for the GPU are
larger. On-the-fly refinements are used. Therefore the runtime of the refinement network
has an impact on training the minutiae extraction network. Therefore lower runtime is
preferable. Because of the superior performance of wide residual blocks on the minutiae
extraction task, they are also used for the refinement parts of the model. In essence, it is
a smaller version of the WRN network proposed earlier.
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Figure 8.15: A visualization of the training phase of the SimGAN approach. Anguli
generates the input fingerprint images, while the refinement network produces refined
versions of the same fingerprint. The refinement network is trained on the log loss of
the discriminator on the refined fingerprints and the mean squared error between the
Hessians of the input and refined fingerprint. After every iteration of the refinement
network the resulting refined fingerprints and a batch of real fingerprints are combined
and used to train the discriminator network.

8.3.2 Discriminator

To determine the realness of the refined images another neural network is used. This is
trained against the output of the images generated by the refinement network and the
real images to reliably distinguish between them. The discriminator network proposed
in [SPT+16] uses local loss. Here, this architecture is compared to a simple discriminator
and an energy based approach using an autoencoder as network architecture [ZML16].
All three models are visualized in Figure 8.16.

For the autoencoder architecture, a convolutional autoencoder is used, similar to the
U-shaped network, without long skip connections. The problem with a traditional
autoencoder is the large amount of parameters needed to encode and decode an image
of size 224 × 224. Using the traditional autoencoder to get to 100 neurons encoding,
5.017.600 parameters are needed in the single dense layer. The decoder part has the same
numbers of parameter, making this network larger than the minutiae extraction networks.
Therefore a fully convolutional neural network is used as autoencoder as illustrated in
Figure 8.16(c).

The simple discriminator and the local loss networks are very similar. Both were modeled
using a combination of convolutional layers followed by max pooling layers. The model
in Figure 8.16(b) uses a single larger one to determine if this fingerprint is real. The local
loss architecture uses the same principle with less filters per layer as illustrated in Figure
8.16(a). However the local loss discriminator uses 16 of those simple models. Each of
these models is supposed to judge if this batch is part of a real fingerprint. The first

68



8.3. SimGAN Networks

layer of such a model is a split layer, which splits the tensor into their local parts and
feeds each part into one of the 16 models. This has the advantage of learning for every
image patch separately, if this path belongs to a real fingerprint image.

(a) (b) (c)

Figure 8.16: Shows the norm of the weights in every convolutional layer of the models.
In (a) a simple discriminator is shown, while in (b) a discriminator working on patches is
shown. The illustration in (c) shows the autoencoder approach.

In Figure 8.17, the training loss and the resulting accuracy of the discriminator and the
SimGAN are demonstrated. The problem of training such a network is visualized by
showing that the loss jumps arbitrarily. This is the intended behavior of the SimGAN,
because the training of the discriminator increases the loss of the generator and vice-versa.
Even after the loss converges for both networks, the loss diverges again shortly afterwards.
It is also hard to tell, when the model is actually converged, because both loss functions
decrease and increase.

(a) Log Training loss of GAN. (b) Accuracy of the discriminator.

Figure 8.17: Visualization of the Training process of training the SimGAN.

In contrast, by using the energy based approach those arbitrary jumps are eliminated.
First the discriminator is trained on its own on the real dataset and penalized by the
reconstruction error as shown in Figure 8.18(a). Then the generator is trained using the
discriminator as a loss function as shown in Figure 8.18(b). Therefore this approach
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8. Implementation: Neural Network Design

is very similar to training any other network in literature, because the training of one
network has no impact on the other network. However, the results were visually not as
good with this method as with using the local loss.

(a) (b)

Figure 8.18: Visualization of the Training process using the energy based approach. In
(a) the discriminator is trained, while in (b) the generator is trained.
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CHAPTER 9
Implementation: Evaluation and

Visualizations

This chapter shows the fingerprint matching performance and further visualizations of
the methods described previously. The evaluation uses metrics, which are described in
Chapter 5. First the F-score on the generated dataset is shown. Then the minutiae
extraction algorithm is evaluated based on the matching score on several fingerprint
databases. For the purposes of this chapter the algorithm proposed in this work is called
U-net FCNN. Next is a section about the visualization of the network intermediate
outputs to provide insight into the inner structure of the neural networks. Also special
images and interesting outputs are explored.

9.1 Evaluation on Synthetic Fingerprints

Annotated fingerprints were evaluated using two metrics. First we evaluated the amount
of minutiae found using the F-Score and second the Equal Error Rate (EER) was
monitored while matching the fingerprints as described in Chapter 5.

The F1 Score is defined:

F-Score = 2 · Precision ·Recall
Precision+Recall

, (9.1)

where Precision and Recall are defined in Equations 9.2 and 9.3, respectively.

Precision = TP

TP + FP
(9.2)
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9. Implementation: Evaluation and Visualizations

Figure 9.1: The points are the detected minutiae points and the white regions represent
the ground truth.

Recall = TP

TP + FN
(9.3)

For our purposes, a True Positive (TP) is defined as a minutia point that is in a ground
truth minutia region. A minutiae region is defined as a 6× 6 region around a minutiae
point. Visually this is argued, that a minutia point in the image does not correspond to a
single pixel in the image, but a collection of pixels. 6× 6 regions are used, because it gave
us the highest accuracy while training the network. Experiments with 1× 1 and 3× 3
regions have also been conducted, but the accuracy dropped by 60% and 35% respectively.
A minutia point that is not in a region is called a False Negative (FN). Finally, a False
Positive is a minutia region without a minutia point in it. This is illustrated in Figure
9.1. The F-Score on the Anguli generated dataset, calculated using this method is 0.86.

9.2 Fingerprint Matching

The main goal of this work is robust biometric authentication using fingerprints. The
minutiae extraction is only one step in this process. Most important about the extracted
minutiae is how well they are suited for fingerprint matching. For this reason, it is
important to robustly detect the same minutiae points in different impressions of the
same finger. Thus the EER was calculated on a test set using the BOZORTH3 [WGT+07]
matcher.
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9.2. Fingerprint Matching

9.2.1 Synthetic Fingerprints

Anguli generated test set was constructed for testing the algorithm. 10.000 true matches
and 10.000 false matches are used to determine the EER. In Figure 9.2(a) the original
proof of concept is shown. Using the U-net-v1 model, as described in Chapter 8, the
error rate is already lower then for MINDTCT, which for this experiment was used to
generate the ground truth minutiae for training, instead of Verifinger due to the fact,
that it took some time until access to the Verifinger SDK was granted. This experiment
shows, that it is possible to learn a better minutiae extractor, than the one supplying the
ground truth and that the network does not only learn the operations used by the ground
truth generator. The second experiment shown in Figure 9.2(b), which compares the
approach proposed in this thesis to Verifinger prompted the switch to Verifinger as the
ground truth generator, because of its superior results. Verifinger is able to match the
Anguli fingerprints to each other without making any mistakes and is therefore hidden in
Figure 9.2(b) by the black figure border.
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Figure 9.2: Equal error rate plot using the U-net-V1 network on data generated by Anguli
compared to MINDTCT (a) and Verifinger (b). Note, that Verifinger makes no mistake
for this dataset and the line is at 100%.

9.2.2 FVC 2000 Databases

A comparison to the state-of-the-art is made in Figure 9.3 and 9.4. The figures show
EER plots. Given a False Acceptance Rate (FAR) the Global Acceptance rate is plotted.
The benchmark number using such a plot is the EER. This is the error rate where the
1− FAR = GAR holds. Using these plots it is shown that the proposed algorithm does
not set a new state-of-the-art and is beaten on by the commercial fingerprint minutiae
extractor Verifinger [Ver10], but it is consistently better than MINDTCT. Also training
with refinements leads to consistent improvements in the matching scores.

As shown in Figure 9.4 the improvements obtained by using refinements on the DB 3
dataset are higher than on the DB 1 dataset. Here the U-net FCNN approach is vastly
better then the MINDTCT algorithm, but worse than Verifinger.
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Figure 9.3: Matching scores compared to the state-of-the-art with the WRN-V2 model
trained with (a) Anguli data, (b) augmented data, (c) refined data on the FVC2000 DB
1 dataset.

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0.1  1  10  100

G
A

R
 [

%
]

FAR [%]

U-net FCNN
MINDTCT
Verifinger

(a)

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0.1  1  10  100

G
A

R
 [

%
]

FAR [%]

U-net FCNN
MINDTCT
Verifinger

(b)

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0.1  1  10  100

G
A

R
 [

%
]

FAR [%]

U-net FCNN
MINDTCT
Verifinger

(c)

Figure 9.4: Matching scores compared to the state-of-the-art with the WRN-V2 model
trained with (a) Anguli data, (b) augmented data, (c) refined data on the FVC2000 DB
3 dataset.

Sample outputs for the DB 1 dataset are shown in Figure 9.5. The actual minutiae
positions are remarkably similar using all three approaches. Still, there are some slight
differences in the center of the fingerprint and on the margins. One thing that is different
is the quality estimate in the images. The algorithm proposed in this thesis nearly
always outputs good quality, compared to the other approaches. Considering the quality
estimation there are also some differences between the MINDTCT and the Verifinger
algorithm. MINDTCT finds wrong minutiae points at the borders of the image of low
quality. Verifinger and the FCNN do not find those minutaie points, which is desirable.

The orientation estimations are even more different. MINDTCT and Verifinger differ
in their orientations by 180 degrees as illustrated in Figure 9.5(a,b). The U-net FCNN
approach outputs a combination of both and is not actually consistent, which leads to a
decrease in EER. This shows the weakness of the orientation extraction algorithm.

Sample results produced by the minutiae network for the DB 3 dataset are shown in
Figure 9.6. The fingerprint images are different in values for ridges and valleys, lightning
condition and rotation to the ones shown in Figure 9.5. In those images, MINDTCT
finds low quality minutiae in the background. This time even Verifinger finds wrong
minutiae points in regions with low contrast as in Figure 9.6(e) at the bottom of the
fingerprint. The U-net FCNN approach is able to ignore those regions. However regions
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9.2. Fingerprint Matching

(a) (b) (c)

(d) (e) (f)

Figure 9.5: Comparison of the outputs for a fingerprint of the FVC2000 DB 1 dataset
using MINDTCT (a,d), Verifinger (b,e) and the U-net FCNN (c,f).

with changing rigde frequency are misclassified as minutiae as shown in Figure 9.6(f).

9.2.3 UareU Database

For this dataset, the refinement network was not trained using the UareU dataset. This
is done to get a stable estimate of the test performance of the algorithm, without having
seen the data in the training phase. The FVC 2000 DB 1 dataset was used instead
as a real dataset for the refinement training. Still there is a significant matching gain
by using the refinements. It shows the general applicability of the refinement network
compared to manual augmentations. While the traditional augmentations also worked
comparably to the refinement network for the FVC 2000 databases, there is only a 1.78%
improvement by using the manual augmentations to using only the anguli generated data.
In comparison by using the refinement network the EER is improved by 9.81%.

9.2.4 Different Orientation Configurations

Figure 9.8 is an illustration on the importance of the angle extraction algorithm. As
shown therein, the performance of the orientation field algorithm severely outperforms
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9. Implementation: Evaluation and Visualizations

(a) (b) (c)

(d) (e) (f)

Figure 9.6: Comparison of the outputs for a fingerprint of the FVC2000 DB 1 dataset
using MINDTCT (a,d), Verifinger (b,e) and the U-net FCNN (c,f).

the algorithm, which assigns the same orientation to all of its minutiae points, based
on the matching score. The FVC2000 dataset used for this evaluation has only little
rotation in its fingerprints and the matching performance decreased drastically by not
using the angle information.

In this thesis two approaches to the angle extraction problem are proposed, namely using
points based versus field based orientation extraction. The comparison is shown in Figure
9.9. Therein the actual EER of the point based approach is worse than the one using
the orientation field. However, the point based extraction algorithm is more stable in its
performance and outputs a lower error rate, if wrong matches are not permitted.

9.2.5 Results for Specific Number of Output Crops

The output algorithm uses multiple crops of the image as described in Chapter 8. A
comparison of the matching scores is given in Figure 9.10. Even though the difference is
not that significant, there is an improvement concerning the EER as shown in Table 9.1.
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Figure 9.7: Matching score compared to the state-of-the-art with the WRN-V2 model
trained with (a) Anguli data, (b) augmented data, (c) refined data on the UareU Sample
DB [Ver10] dataset.
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(a) EER plot with the orientation field
extraction algorithm.
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(b) EER plot with every angle set to 0
degree.

Figure 9.8: Comparison of the Equal error rate with orientation and without on the
FVC2000 DB1 dataset.

Method FVC2000 DB1 EER Average Acquisition Time in sec
CNN 8 Crops 9.41% 0.022
CNN 16 Crops 8.99% 0.035
CNN 32 Crops 8.86% 0.061

Table 9.1: Table showing the difference in EER by using different amounts of crops

9.3 Results for Specific Input Data

The output of the neural networks for specific input data is presented. The minutiae
extractor developed in this thesis, also manages to find minutiae in images not showing
fingerprints and might therefore be fooled by synthetic images. Input data ranges from
generated data to natural images. This section is also used to highlight the faults made
by the proposed approach and the limitations of the neural network approach.
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(a) EER plot with the orientation field
extraction algorithm.
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(b) EER plot with the point based angle
extraction algorithm.

Figure 9.9: Comparison of the EER with point versus orientation field estimation on the
FVC2000 DB1 dataset.
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Figure 9.10: EER plot comparing different crop strategies.

9.3.1 FVC2000

In Figure 9.11 the output of the U-net FCNN is visualized. Because the model only works
on resolutions of 224 × 224, crops of the images are used to output results. In Figure
9.11(a) the original fingerprint is illustrated, while (b) shows the output of the cropping
process and the input to the network. The network output without any post-processing
is visualized in Figure 9.11(c). This already corresponds to the minutiae positions as is
shown by overlaying this output over the fingerprint in Figure 9.11(d).

9.3.2 Natural Images

To illustrate the behavior of the network it was also evaluated on natural images like
a tree in Figure 9.12. A tree was chosen because the ridges of a tree are similar to
minutiae. As shown in Figure 9.12 minutia can also be found in natural images as well
and a fingerprint matcher can be fooled by using the same tree twice.
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(a) (b) (c) (d)

Figure 9.11: Visualization of the output of the network on a sample fingerprint taken
from the FVC2000 databases. (a) shows the whole fingerprint image, while (b) shows the
network input. In (c) the network output is visualized and the output is then overlayed
on (b) to produce (d).

(a) (b)

Figure 9.12: Visualization of the output of the network for a tree image. The original
image is shown in (a). The output of the network displayed on top of the rotated grayscale
tree image is illustrated in (b).

9.3.3 Empty Image

Interestingly, using an empty image resulted in found minutiae as shown in Figure 9.13.

By analyzing the inner outputs of the neural network the zero padding in combination
with the bias values in the convolutions was responsible for adding structures to the
image. Then batch normalization distributes the values through the image and structure
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Figure 9.13: Output of U-net FCNN on an empty image.

is formed as shown in Figure 9.14. In the final layer, the network predicts that minutiae
are in the image. This example is used to showcase the volatile nature of the neural
network approach.

Figure 9.14: Shows the sample inner outputs of the neural network on an empty image.
The first image shows, how the bias and zero padding add ridges into the inner images of
the network. Then through batch normalization structure in the images is formed. This
structure is then later classified as minutiae.

9.3.4 Intermediate Output Visualization

In Figure 9.15, the intermediate layer ouptuts of the network are illustrated. At the
beginning, the network learns the orientation of the image. As previosly mentioned
the orientation constitutes to the ridge pattern. This is similar to the algorithm used
in [HWJ98]. Responses produced by the ridges are amplified. Later, the ouptut is
transformed into a height map, where circles denote minutiae regions. Those circles are
then slowly transformed into minutiae regions and form the final output. The network
used for this viusalization is the U-net-v1 trained with dice loss.
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Figure 9.15: Intermediate layer visualization of layers 5 -> 15 -> 25 -> 35 -> 45 -> 50.
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CHAPTER 10
Conclusions

In this thesis, a novel approach using a FCNN for the minutiae extraction problem is shown,
following the idea to solve an equivalent binary segmentation problem. Current synthetic
fingerprint generators are used to provide the training data and the corresponding clean
ridge patterns. The annotations are generated by current matching technology, following
the assumption, that current minutiae extractors are perfect on good quality fingerprints.
In this thesis the assumption is proven, that a better minutiae extractor can be learned
by using this data, than the minutiae extractor responsible for generating the data on
that data. Further, it is shown in this thesis, that the performance translates to other
real datasets with competitive results to existing solutions.

Also, the reliance on good training data and why existing synthetic fingerprint generators
are inadequate to learn a good minutiae extractor are demonstrated. For this reason,
the novel idea of learning suitable augmentations based on adversarial training to refine
synthetic fingerprint images while preserving annotation data is introduced. This enables
the generation of synthetic fingerprints, which are indistinguishable to real data and are
thus used for training. A clear performance improvement is reported, by using the refined
fingerprints instead of augmented fingerprints for training. Vastly different refiners are
learned using different combinations of hyper parameters and real datasets, solving the
problem of current fingerprint generators of only generating similar fingerprint images.

Additionally, the state-of-the-art in binary segmentation was discussed and used to
propose a new architecture suited for the minutiae extraction problem. Improvements to
the architecture are done by using insights found by trying out different combinations of
hyperparameters. Concepts like cyclic learning or dropout were applied to the fingerprint
minutiae extraction problem to check the applicability to this new use-case.

The initial research question was to improve on the state-of-the-art in fingerprint matching
by improving the performance on the minutiae extraction task. While this result was
not achieved in this thesis, comparable performance to other state-of-the-art minutiae
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10. Conclusions

extractor was shown with our method. Open issues remain, as discussed in Section
10.1, which are likely to improve the accuracy of the minutiae extractor. However, a
clear improvement to synthetic fingerprint generations is reported by using adversarial
training with deep NNs. Using this method, fingerprints were generated, which were
better suited for training a minutiae extraction network. This method is entirely data
driven and can therefore be applied to other domains as well. This approach is used
to generate data indistinguishable from a real dataset by a NN. A ground truth is
provided for the generated data by the algorithm. Therefore, the need to annotate data
is severely diminished as shown in Chapter 9. This method is likely to improve the
accuracy of deep NN on domains where labeled data is scarce, like biomedical image
segmentation [DVC+16].

10.1 Remaining Issues

The output of the neural network is post-processed using the position, orientation and
quality extraction algorithms. Those algorithms, as shown in Chapter 9 do have issues
and limitations. The position estimation can not deal with two overlapping minutiae
regions and therefore combines them to one wrong minutiae. The orientation estimation
algorithm uses local information about minutiae points to decide if the angle is between
0◦− 180◦ or 180◦− 360◦. This decision is not as consistent as existing solutions as shown
in this thesis. Finally for the quality extraction algorithm outputs the same quality for
95% of the minutiae, which implies that the factor is too high.

Another issue is that the initial minutiae map provided by the Verifinger SDK, which
is used for training the minutiae extraction network, is not perfect. This could be
improved upon by using an initial fingerprint generator, which provides native access to
the generated minutiae.

10.2 Future Work

Currently, the proposed architecture is similar to current state-of-the-art models in binary
segmentation. Therefore the model will be compared to other state-of-the-art models on
a semantic labeling benchmark in a future work to look at the general scalability of said
network.

The minutiae extraction algorithm still has problems with the orientation extraction
algorithm. A future topic could be to use the minutiae extraction network to also output
the orientation field. Additionally, the final decider to use the orientation between 0◦
and 180◦ or between 180◦ and 360◦ could also be learned.

Another interesting future topic would be to try using the learned model for matching
directly. This would be done by using a siamese network architecture, where two feature
extraction networks are combined with a classifier on top. It would be interesting if we
get better performance than by using an existing matcher.

84



10.2. Future Work

Finally, collecting more real data is useful for both the minutiae matcher and the
refinement training to generate better results.
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