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Kurzfassung

Ein wichtiger Schritt im Design-Flow von Analog Mixed-Signal Systemen ist die Post-
Silicon Verifikation. Sie dient dazu, um Random Manufacturing Defects zu erkennen
und kostenintensive Field Returns vom Kunden zu verhindern. Diese Art von Test wird
durch das Automatic Test Equipment (ATE) unterstützt. Ein ATE dient dazu, um
analoge sowie digitale Stimuli anzuwenden sowie Messungen durchzuführen anhand derer
verifiziert wird, ob das System die Spezifikationsanforderungen erfüllt.

Die heute am meisten verbreitete Testmethode zum Verifizieren von Analog Mixed-Signal
Systemen ist Parameter Oriented Testing (POT). Die größte Schwäche dieser Methode
liegt darin, dass keinerlei Aussage über die Testcoverage bezüglich Random Manufacturing
Defects getroffen werden kann. Eine Alternative, um eine höhere Coverage zu erreichen
ist Defect Oriented Testing (DOT). Dazu ist es notwendig, die aktuelle Coverage der
existierenden Tests zu analysieren und zu messen.

Im Rahmen dieser Arbeit wurde ein Framwork zur Unterstützung der Analyse der
Testcoverage entwickelt. Dazu wird ein beliebiges ATE Testprogramm übersetzt und in
einer Simulationsumgebung ausgeführt. In dieser Simulationsumgebung ist es möglich
Random Manufacturing Defects zu injezieren und die Effektivität der aktuellen Tests zu
messen.

In einem ersten Schritt werden die Teile des ATE und die verwendeten Testinstrumente
vorgestellt, bevor die zu modellierenden Funktionalitäten identifiziert werden. Aufbauend
auf diesen Informationen gibt diese Arbeit einen Überblick darüber wie diese model-
liert werden können. Zusätzlich wird eine Methode vorgestellt, um ein existierendes,
allgemeines ATE Testprogramm automatisch in ein Format zu übersetzen, das von
der Simulationsumgebung importiert und ausgeführt werden kann. Diese Ergebnisse
ermöglichen es, ein ATE Testprogramm mit minimaler manueller Interaktion und einem
großen Anteil an Wiederverwendung von vorhandenen Informationen im Rahmen einer
Simulation auszuführen. Um Aussagen über die Simulationszeit und die Funktionalität
der vorgestellten Methode treffen zu können, wurde der gesamte Prozess anhand eines
existierenden Chips, zur Verfügung gestellt von Infineon Technologies, verifiziert.
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Abstract

Post-silicon verification consists of testing and detecting random manufacturing defects
just before its delivery to the customer. This is an important verification step that allows
preventing costly field returns. This type of tests are executed by the automatic test
equipment (ATE), which provides both ,analog and digital stimuli, and measurement
units to check whether the design meets its specification requirements.

Nowadays, parameter oriented testing (POT) is the predominant testing method used
by industry for the verification of analog and mixed-signal designs. The main drawback
of POT is the relative lack of coverage information that it provides with respect to
random manufacturing defects, e.g. opens and shorts caused by particles during the
manufacturing process. More recently, defect oriented testing (DOT) has been proposed
as an alternative testing method that can achieve higher test coverage than POT. In
order to achieve this goal, it is essential to be able to analyze and measure the coverage
of existing test suites.

In this thesis, we develop a framework that enables and facilitates the coverage analysis
of ATE tests by allowing translation of arbitrary ATE test programs into a given
simulation environment. The simulation environment allows fault injection that mimics
manufacturing defects and thus can be used to assess the effectiveness of the existing
ATE test programs.

We first introduce the ATE environment and its instruments. We then identify the ATE
functionality that needs to be supported in the simulation environment, and we propose
a methodology for modelling it. Furthermore, we develop a procedure for automatically
translating general ATE test programs into a format, which can be imported into and
executed from a simulation environment. The resulting outcomes enable applying ATE
test programs during the simulation runs with a minimal manual interaction, thus
considerably increasing automation and reuse in the testing effort. We implement the
results and evaluate them on a real industrial chip, provided by Infineon Technologies to
ensure the correct functionality of the translation and simulation process as well as for
getting an idea about the needed simulation time for a whole ATE test.
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CHAPTER 1
Introduction

1.1 Motivation
Nowadays, the importance of analog mixed-signal (AMS) designs in system on chips
(SoC) is constantly increasing, resulting in elaborated interactions between heterogeneous
components and consequently a higher complexity of the designs. Since reliability and
robustness have become more and more important for the customers, especially in safety
critical applications, testing AMS designs turns out to be a non trivial challenge for the
industry. From the industry’s point of view there are certain requirements regarding
testing methodologies: since testing time contributes significantly to the manufacturing
costs, a major target is to keep this time as low as possible while keeping a high test
coverage. Whereas in the domain of digital design well-known ATE methodologies, like
scan-chains, are used, there is no such systematic approach for AMS designs.

Figure 1.2 gives an overview of a simplified AMS design flow, based on [BSED07]. As
one can see, the design is divided into an analog as well as a digital part, which are then
combined in the mixed-signal design flow. First of all, the mixed-signal specification is
divided into an analog and a digital specification, such that both parts can be developed
independently from each other. In the analog design flow, shown on the right hand
side, the design engineers have to define several blocks, which are then combined for the
complete analog design. In parallel, the test engineers define the test benches, used for
the verification of the analog part. After a verification step, the model is calibrated, such
that a precise model of the device is available in a simulation environment. When the
verification was successful and the model is complete, physical development of the analog
part starts. The design of the digital parts of an AMS design is similar: the digital
components are designed and tested based on a verification suite. When the design is
complete, physical manufacturing can start. Both parts are combined in the mixed-signal
design flow. Based on the specification, a verification plan is developed, describing all
the scenarios and test cases, which need to be verified.
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1. Introduction

The verification takes place at two different levels in this design flow which are highlighted
in Figure 1.2. During the Simulation Verification the test benches are executed in a
simulation run, for verifying that all functional requirements of the specification are met.
Note, that in [RGA02] it is shown how simulation runs might influence time-to-market
in a positive way (Figure 1.1). In contrast to the traditional approach, verification can
be started earlier which yields in much lower time-to-market since the debugging time
after the first silicon is reduced significantly.

Figure 1.1: Time-to-market improvement by ATE

Caused by high simulation times, this is a common bottleneck in the design flow for
AMS systems. For this purpose often simplifications are used to speed up the simulation
runs. After all the test benches have been executed in the simulation and the functional
verification was successful, manufacturing of the chip starts.

Figure 1.2: Analog Mixed-Signal Design Flow [BSED07]

Although the functional behaviour has been verified well during the simulation phase, it
cannot be guaranteed that no faults will occur during the manufacturing process. The
reason are the so called random manufacturing defects. This kind of defects is caused

2



1.1. Motivation

(a) Defect causing an open (b) Defect causing a short

Figure 1.3: Random Manufacturing Defects

for instance by particles during the manufacturing process, yielding in an open or a
short. Figure 1.3 visualizes these two kinds of defects. On the left hand side, one can see
an open, where the wires are not connected any more, whereas on the right hand side,
a short between the metal layers is shown - two layers, which are not supposed to be
connected, are connected now.

For this final verification an ATE is used, which provides different test instruments, which
are able to force a specific voltage, current as well as wave forms as inputs to the device
under test (DUT). Furthermore, these instruments have the possibility of measuring
analog signals and verify if their value lies within the user-specified limits. In Figure
1.4 a schematic of the setup of an ATE test is shown. The DUT is connected to the
instruments of the ATE via the load board, which has the purpose of realizing dynamic
connections. For instance, relays on the load board are used for connecting various test
instruments to a special pin of the DUT during different tests. Apart from the hardware,
the ATE consists of a test program, describing the test run (e.g. when relays shall be
opened/closed, actual pin levels, current or voltage to apply). Moreover, measurements
performed by the ATE hardware can be read and post-processed to check if the recorded
values lie within specified limits or not. This is referred to as parameter oriented testing
(POT).

The main problem of a POT test is the unknown test coverage. It can never be ensured,
that all possible defects of a device are detected by the test. Therefore, whenever a
random manufacturing defect occurs that is not covered by the POT test, this yields in a
field return by the customer which is very critical in semiconductor industry. Currently,
companies have a big interest to get a quantitative number concerning their test coverage
in order to improve it. Other drawbacks of a POT test are:

1. Test time: This unit is a significant factor regarding manufacturing costs. There-
fore it is necessary to keep test time as low as possible. With the current approach
of testing, single test cases might be redundant and could be dropped out - there is
a high potential for improving test times.

3



1. Introduction

Figure 1.4: Schematic of the test environment

2. Complexity: The quality of the test run mainly depends on the experience of
the test engineer. Designing test cases is a complex task caused by the number of
interactions in AMS designs and the lack of insight into the different tests.

3. Bottleneck in the design process: Designing the load board and implementing
the test program are time consuming tasks. Since the test engineers have to work
with prototypes, development of the test program starts in a late phase of the
design process since there is no possibility for testing the ATE test program earlier.

Caused by the lack of insight into the ATE test because of limited measurement resources,
these challenges cannot be addressed at the stage of Final Verification in the design
flow. It is necessary to go back one step to the Mixed-Mode System Verification. At this
level, a testing approach which has already been proposed in the 90’s in [SGOT98] or
[KTH+11] can be used: the defect oriented test (DOT). Some industrial experience of
DOT is given in [Xin98]. It has been shown that this kind of test indeed comes up with
higher test coverage.

The idea of a DOT is to inject a specific fault into a model of the DUT and check with
a simulation of the ATE test program, whether this fault would be detected or not. A
schematic of the work flow for DOT is shown in Figure 1.5. On the left hand side the
faults are identified and extracted such that they can be injected into the simulation
model of the DUT while on the right hand side the ATE test patterns are executed
within a simulation environment of the ATE. During the Analog Fault Simulation, it is
checked whether an injected fault has been detected by the simulation or not. With the

4



1.2. Related Work

advantages of getting an optimized test run and having a quantitative number of the test
coverage (as has been shown in [Xin98]) this testing method has high potential for being
used in industry, but still there are different challenges like high simulation times and
the translation from an ATE test into some kind of format which can be understood by
the simulation environment.

Figure 1.5: Flow diagram of DOT

This thesis focusses on the second of these challenges. We show, how to set up a
methodology for translating the ATE test program in such a way that it can be simulated
in a pre-silicon simulation environment.

1.2 Related Work
Since DOT testing is not a very new idea, there have already been several proposals of
how to verify the correct behaviour of a device in the context of a simulation environment.

One of the big topics which is actually dealt with in research is formal verification.
[ZT09] gives an overview about different approaches of formal verification, like equivalence
checking, model checking or deductive verification methods.

Equivalence checking is based on two models, one of the specification and another one for
the implementation of the AMS design. The question which has to be answered during
the check is whether these models are equal with respect to some notion of equivalence or
not. At this point, the approach of equivalence checking becomes challenging: how should
equivalence between the models be defined? An example is given in [BHA95] where it is
proposed to use the transfer function of the models to define their equality. Since the
calculation of the transfer function in AMS designs is non trivial, this technique has
been restricted to linear circuits in the content of their work. As one can see, equivalence
checking is a complex approach, which needs a lot of computation time and effort, yielding
in rare usage in industry.

Another approach which was dealt with is deductive verification [Fil11] based on inference
rules. Tools were used to perform equivalence checking based on such rules for instance in

5



1. Introduction

[GV99]. The problems occurring regarding deductive verification are quite similar to the
challenges faced with equivalence checking: the models have to be linearized to reduce
the complexity and the computation effort is much too high.

The third kind of formal verification method to be mentioned is model checking [CGP99].
Here, starting from a specific state, all possible signal sequences are checked whether they
lead to a bad state or not. For this decision, the user first has to define the specification
with a temporal logic formula. This translation is a common bottleneck during model
checking since it cannot be done automatically yet. Secondly, the state explosion problem
yields in high computational cost causing that model checking still needs an insufficient
amount of time.

As one can see, all those verification methods have several challenges in common: com-
putation time, complexity and strong restrictions to the class of circuits that can be
addressed. Therefore, unfortunately, they are insufficient for industrial practice. Instead
of such an exhaustive methodology, which is able to detect all possible faults, an incom-
plete approach is the common way for testing. Based on a set of test cases, derived
from the specification at the beginning of the design flow, the correct functionality of the
device is verified - with the disadvantage of not being able to detect every single fault.

Defect oriented testing techniques, presented in [KTH+11], [Xin98] and [BXvK+99] all
have in common the usage of a DOTSS (defect oriented test simulation system) tool.
This tool requires the manual definition of stimuli, the test bench and the limits and
supports only the testing of shorts. This lack of an automatic translation yields in high
costs.

An approach which can also be used for setting up a simulation environment for AMS
tests is proposed in [Lan90]. In the content of this work, a test pattern specification
language is proposed for translating stimuli in the other way round. The design engineer
has to define the test run with this special language which can then be translated into a
format supported by the tester. Although the translation could be also done in the other
direction, the problem with this approach is the lack of the possibility of injecting and
identifying faults in the simulation environment resulting in the problem of not being
usable for DOT.

Anther methodology has already been proposed in [KRT02], where a test setup simulation
was introduced which translates an ATE test program from a specific format into a
general file format called GPIF. Furthermore the instruments were modelled to simulate
the given test program out of this GPIF file. Also in [BK92], there was a focus on
this approach. They introduced a tool called DANTES, which provides a simulation
environment as well as a database to share information between the design and the test
engineer. The problem of setting up a simulation environment and sharing information
was already addressed in [Web89]. All these proposed solutions have one big drawback in
common: a lot of manual interaction is needed for the test setup - there is no automatic
translation between the design and the test stage in the design flow. Moreover, they
neglect the automatic verification (check of certain limits) and are focussed on debugging
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a test program with less accuracy which is not sufficient for a DOT test. In other works,
e.g. [RKR03], there was just a view at modelling a specific part of the ATE test - the
load board.

[DG04] for instance gives a more formal approach of defining an ATE test concept. This
approach on the one hand shall solve the problem of the manual interaction in the
solutions mentioned before. Anyway, the focus of this work also lies on the debugging of
a test program instead of the fault injection, caused by the lack of accuracy.

The challenge of defining a usable format through all the design stages has also been
tackled by the recently formed Accellera Proposed Working Group with the aim of
defining a standard for so called portable stimuli. A portable stimulus is defined once and
can be reused through all stages in the design flow. Furthermore it should be not just
reusable within the design process, but also between different tools of different vendors.
Members of this working group are big companies regarding AMS designs, like Cadence,
Mentor Graphics or Synopsis.

The abtsract language for defining the stimuli shall be independent of all the currently
used languages. The existence of reusable stimuli would certainly enable a speed up of
the verification time and increase the robustness of the whole design process [TSR+09].
In the last update of the working group, a presentation was given where in Figure 1.6 a
rough overview of the usage of this abstract language is given. The target is to define an
Abstract Portable Stimulus Model which can be parsed into different languages used for
verification or testing with one single tool. Therefore this language can be used through
the whole design process.

As one can see, the setup of the simulation environment and translation of a test program
is not a trivial task. In today’s solutions the user has to define test bench, limits and
stimuli manually since there is no common format which can be used in all phases of
the design process. Although defining standards for portable stimuli has already started,
currently there is no possibility for automatically translating a general ATE test program
into a format which can be executed in a simulation environment.

1.3 Contribution of this work
Although, the challenge of setting up the simulation environment of an ATE and sharing
test information has already been addressed, there is currently no approach that can be
used in a fully automatic way. Together with the lack of accuracy, this approaches are
insufficient for executing a DOT test. Therefore, we address exactly this problem in the
context of this thesis.

We develop a methodology and implement a framework for setting up the simulation
environment for ATE tests and translating generic ATE test programs into a format
that can be simulated. Since during the design flow of AMS designs several languages
(e.g. SystemVerilog, SystemC, Verilog-AMS or VHDL) are used, there is no possibility
for reusing the information which was generated at a specific design level. So, there

7



1. Introduction

Figure 1.6: Overview of an abstract language for portable stimuli [Gro16]

are completely different languages used for defining the ATE test program as well as
defining a simulation run. Reimplementing test benches in different languages used during
the design flow contributes significantly to the time-to-market as well as in the design
costs. Therefore it is indispensable to support an automatic translation mechanism to
support reusing information, which was defined at a specific state. In this thesis, we
study the practical challenges of DOT and more specifically, we address the problem of
systematically translating an ATE test environment into a simulation environment. The
novel contributions of this thesis can be summarized as follows:

1. Modelling of arbitrary ATE environments: the thesis provides a general
simulation environment that can be used independently from the chosen ATE. The
proposed methodology can be used for extending the functionality of the models
with minimal effort.

2. Automatic translation of ATE tests into simulation test runs: the trans-
lation of an ATE test is fully automated, therefore the information from the final
verification is reused to configure the simulation environment.

8



1.3. Contribution of this work

3. Translation of limit checkers: we develop a methodology for manual translation
of limit checkers from the ATE to the simulation environment and propose a sketch
of a procedure that allows automation of this process.

4. Implementation and the evaluation of the framework: we implemented all
the results presented in this thesis and applied them to a real industrial chip using
a real ATE setup.

The main outcome of this thesis is a framework for systematic translation of ATE test
programs in the simulation environment. This framework allows in particular the quality
analysis of the existing ATE test programs in the context of DOT. We demonstrated its
applicability on a real industrial example, making it possible to simulate an entire ATE
test for the first time inside Infineon.

This thesis is organized as follows. In Chapter 2, the ATE test will be considered from a
general point of view to get an idea what exactly has to be supported by a simulation
environment and which constructs are used in such an ATE test program. Afterwards, in
Chapter 3, a closer look at the different test instruments and their content shall be given
to show how a simulation environment can be set up. Combined with the translation
process given in Chapter 4, the simulation process can be executed, which will then be
used for evaluating the results on a specific chip from the area of automotive applications
in Chapter 5.

9





CHAPTER 2
Background to ATE test

programs

In this chapter, we introduce ATE testing. It starts with a short overview of the
requirements for an ATE test, before we continue with the general setup of such a test.
In the third part of this chapter, a short overview about common test cases will be
shown. As a conclusion, we introduce the test case, which will be used as leading example
throughout this thesis. Please note that this chapter is based on [RGA02] and focusses
on the part of final verification in the design flow as shown in Figure 2.1.

Figure 2.1: Analog Mixed-Signal Design Flow focussed on final verification [BSED07]
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2. Background to ATE test programs

2.1 Requirements for an ATE test
Caused by the random manufacturing defects it is indispensable to perform a last
check of the devices during the final verification. Since high test times yield in higher
manufacturing costs, it is desired by the industry to keep the duration of the testing
activities as low as possible, while the quality of the product has to stay the same. To
ensure that these basic requirements are met, test benches based on the specification are
developed early in the design flow. There are several targets for them.

Of course, the main purpose of a test is to ensure the quality of the product, which is
done by checking whether all the specification requirements are met or not. Faults need
to be detected as early as possible to decrease testing costs. Furthermore, it is possible to
give quantitative information about the device, like rise times for digital signals. Apart
from the checks on the device itself, the test is able to verify the quality of the design
process, such that it can be improved for later production.

As one can see, the test benches have an important role in the design process and their
development becomes more and more important with the growing complexity of the
circuit, especially in AMS designs. Therefore, also requirements for the single test benches
should be kept in mind as given in [BSED07]:

1. Scalability: The input stimuli of different technologies are defined as parameter,such
that they can be changed easily for other technologies.

2. Configurability: It has to be possible to define all the test bench variables through
parameters in a main control file.

3. Automated Result Analysis: The verification of a correct test run has to be
performed automatically, without manual interaction.

Nowadays, it is desired to test a high number of devices simultaneously such that the
test is automatically executed and controlled by a computer. This is exactly what an
ATE is used for: execute and evaluate the test benches at high speed without loss of
accuracy of the test. For this purpose, the ATE has to provide several programmable
instruments with desired accuracy such that they can be used in a dynamic way.

Furthermore, for verifying the correctness of analog and digital signals, checking waveforms
and performing timing measurements, the ATE has to provide measurement units which
are able to support these measurements. The general setup of an ATE test will be given
in the next section.

2.2 General setup
An ATE test consists of several parts, introduced in this section. The general setup of
such a test is given in Figure 2.2. As shown, the DUT is the central element, a chip
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consisting of analog as well as digital inputs/outputs. The inputs of the chip are shown
on the left hand side of the figure, whereas its outputs can be found on the right hand
side. It is the test engineer’s task to setup different stimuli as inputs for this DUT and
measuring the outputs for verifying its correct functionality. The ATE’s objective is to
provide the necessary test instruments for achieving these targets. In general, one can
distinguish between digital and analog test instruments. Main tasks which have to be
supported by the analog instruments are:

1. Provide voltage source with current-clamp

2. Provide current source with voltage-clamp

3. Source an arbitrary waveform

4. Measure voltage

5. Measure current

6. Measure timing information

7. Capture waveform

Whereas the digital instruments have to support:

1. Source digital waveform

2. Measure and verify digital signals

The connection between the instruments of the ATE and the DUT is done by the load
board. Its purpose it to provide dynamic connections such that the test environment
can be set up dynamically for different tests (e.g. open and close relays to switch
between different test instruments as inputs for the DUT or provide higher current).
Note that the design of the load board is a time consuming task, since a test program
combines several tests and therefore different connections might be needed for them.
During a simulation run, the correct functionality of the load board should be verified
for performing debugging in an early phase of the design flow.

Additionally to the hardware part, the tester is able to understand a special programming
language used for describing the test flow. It is possible for the test engineer to open/close
relays, connect/disconnect instruments, configure the sourced signals etc. during the test.
Furthermore, different test patterns are executed. A test pattern describes the sequence
of the test vectors, consisting of analog and digital signals, which shall be applied to the
DUT. Furthermore, the points in time when strobes should be performed are specified
(they are similar to procedures used in imperative programming languages). A strobe
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Figure 2.2: Hardware setup of an ATE test

is simply a measurement of an analog or a digital signal within the execution of a test
pattern.

Figure 2.3 shows how the software interface of an ATE test is organized. The program
flow exactly describes the actions performed during the test run and determines the
sequence in which the test patterns have to be executed. Therefore, different inputs,
defined by the test engineer, have to be set up. First of all, the user has to define in
which sequence the patterns shall be executed and the limits which should be used for
the test cases. Furthermore, for sourcing/measuring digital signals, the pin levels have to
be specified. Moreover, the user has to create and store the arbitrary waveforms which
shall be used during the execution. The program flow and the test patterns are normally
executed in parallel and can be synchronized with several flags. For instance it is possible
to close a relay before continuing with the pattern execution. To read the measurements
performed during a test run and check them with the limits, the hardware supports an
interface for communicating with the test program.

A typical test setup for AMS designs is shown in Figure 2.4. Analog signals are applied
to the analog part of the device, whereas the specified digital signals are applied to
the digital part. So, first the test engineers specify the setup of the load board, before
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Figure 2.3: Software setup of an ATE test

executing the test pattern. During the execution, several strobes are performed and
stored in the memory of the test instruments. After the test pattern has finished, the
measurements can be read by the test program. When needed, the test engineer can also
do post calculations in the context of the test program. Last but not least, the results
are compared with the specified limits and automatically verified in the evaluation block.

Figure 2.4: ATE test flow

As one can see, setting up an ATE test is a complex task and combines a lot of information.
Therefore it is necessary to start developing the test program early in the design flow
such that it can already be tested in a simulation environment to ensure its functionality.
The ability of automatically translating the specific test program into a format which
can be imported into the simulation environment would be a big improvement in the
development of an ATE test, which would save time and cost.
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2.3 Common test cases in industry

Since test time has a significant contribution to the time-to-market and manufacturing
costs, it is strongly desired to keep test times as low as possible. Therefore ordering of
the tests is a crucial point to ensure an early detection of a defect during the test. Note:
with DOT this ordering can be optimized automatically based on the simulation results.

In general, an ATE test needs to cover a lot of possible faults. Therefore, different test
categories have been developed which are quite common in industry. The first test case
which is normally executed is the so called continuity test - it is responsible to verify
whether the connection between the chip and the load board is done properly. Afterwards,
the parameters given in the specification (like leakage current or power consumption) are
verified. Other categories, which need to be covered are digital tests (testing the digital
functionality based on truth tables from the specification) and timing tests. A timing
test verifies the quality of the signals (e.g. rise times for digital signals). Last but not
least, also the combination of digital and analog parts of the DUT needs to be verified -
this is done during a mixed-signal test. A more detailed view at AMS testing is given in
[Wan06].

During the test, several test cases chosen from these categories are executed (e.g. during
the parametric test, the power supply is checked as well as the leakage current). In the
remaining parts of this work, it shall be focussed on the continuity test as example.

2.3.1 Example Continuity Test

Since the continuity test is one of the most common test cases used in industry, we use
it as our illustrating example throughout this thesis. Therefore, a short introduction of
this kind of test will be given here. As has already been mentioned, the purpose of this
kind of test is to figure out if the connection between the chip and the load board is done
properly.

Figure 2.5 gives an overview of the functionality of a continuity test. First of all a single
pin is selected which shall be tested for opens or shorts. Normally, a pin is used as input
path to some circuit, which is protected by the protection ESD diodes. Exactly these
diodes are used for the continuity test. The corresponding test instruments are connected
to the pins of the DUT. Every instrument acts as a voltage source, sourcing 0V. The
instrument connected to the pin which shall be checked is configured to sink current.
The current flows through the protection diode to the test instrument - therefore the
voltage measured by the instrument should be in a certain area around a diode voltage
of 0.7V. Otherwise there exists an open/short between two pins.

We use this simple kind of test throughout this thesis as leading example. What remains
to show is the setup of the test program for running a continuity test. As ATE we used
Teradyne’s Flex Tester. Figure 2.6 depicts the parts a test program consists of. The
communication between tester and software is done by some code, written in Visual
Basic. This program is split up into several specific procedures, where every procedure

16



2.3. Common test cases in industry

Figure 2.5: Continuity test

represents a single test. Within this code, the test engineer has the ability to fully
control the different instruments of the ATE, read the measurements or run conventional
program code like calculations or loops. Furthermore it is possible to define single test
patterns. A test pattern is similar to a procedure - it contains a set of commands,
which are executed in parallel to the Visual Basic code. Also in the content of the test
pattern, program constructs like loops or other conditional statements are available. To
ensure a deterministic test, the user can synchronize the pattern and the Visual Basic
codes via specific statements (e.g. wait). Whereas the Visual Basic program has a
bidirectional communication to the ATE (instruments can be configured and information
like measurements can be read), a pattern can just configure the instruments, which makes
sense because after reading a measurement the user might perform post calculations. We
are having a closer look at the detailed configuration parameters in Chapter 4.

What remains is the configuration of such a test program. The test engineer might
want to control the Visual Basic code and the patterns to be executed from a graphical
user interface. This configuration is done via specific Microsoft Excel Sheets, where the
essential ones are shown in Figure 2.6. For example, in the Test Instances Sheet, the test
flow is specified - here the user can exactly define the test cases (procedures in the code)
to run. The sheets describing the instruments of the ATE are the Pin Map (specifies
the instrument and relay names, which will be used throughout the program) and the
Channel Map, which maps the names of the Pin Map to the physical identification of
the ATE instruments (they are normally identified by unique numbers). Whenever a
function for configuring an instrument is called, the name specified in the Pin Map is
used as identification. Note, that also a grouping of several instruments is possible.
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Figure 2.6: Setup of the Teradyne Flex Tester

The Timing Sheet as well as the Level Sheet define the parameters, needed during a
program run, like which voltage values indicates a logic 1, when we want to make a
digital measurement or for how long a signal is active. A set of these parameters is
available for every instrument - these sets are defined in these two sheets. As already
mentioned, during a test run, different parameters are applied to single instruments.
Instead of configuring one by one, Teradyne also supports configuring an instrument
with a parameter set (PSet), containing a group of configuration parameters. They are
defined in the PSet Sheet, but in contrast to the other sheets, this one is not mandatory.

Last but not least we have the Limit Sheet. Here the test engineer can define the limits, to
verify the correct behaviour of the DUT. The limits are defined for every test separately
in a list. Whenever a check is executed in the test program, the next values are taken
from the list and checked with the desired value.

After this short introduction to Terdyne’s Flex tester, we present now a small example of
the continuity test how it is used for an Infineon chip as DUT. We neglect all the sheets,
since they are very specific and not necessary for the next parts. Just keep in mind that
the timings, levels and parameters are configured in the context of these sheets. Note
that they can also be configured within the Visual Basic code.

Listing 2.1: Setup of a continuity test

Call Relay_On( "OUTxF_k" , 0 . 02 ) ’ maintain 10ms

Call Alarm_On( "Vs_dc30 , Vdd_dc30 , IS_dc30 , all_dc90_hi_a " , Fa l se )

TheHdw.DCVI . p ins ( "Vs_dc30 , IS_dc30 " ) . Connect ( tlDCVIConnectDefault )

TheHdw.Wait ( r e s ou r c e_re l ay_se t t l i ng )
TheHdw.DCVI . p ins ( "Vs_dc30 " ) . PSets ( "DC30v_0VR30V_100mAR200m_measV" ) . Apply
TheHdw.DCVI . p ins ( "Vs_dc30 " ) . Gate = True
TheHdw.DCVI . p ins ( "Vs_dc30 " ) . Disconnect ( tlDCVIConnectHighGuard )

TheHdw.Wait ( 0 . 0 01 ) ’ maintain 1ms
TheHdw.DCVI . p ins ( " all_dc90_lo_a " ) . Connect ( tlDCVIConnectLowForce )
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TheHdw.Wait ( 0 . 0 06 ) ’ maintain 6ms

I f quad220_device = True Then
TheHdw.DCVI . p ins ( " all_dc90_hi_a " ) . Connect ( tlDCVIConnectDefault )
TheHdw.Wait ( 0 . 0 06 ) ’ maintain 6ms

Else
TheHdw.DCVI . p ins ( " all_dc90_Quad " ) . Connect ( tlDCVIConnectDefault )
TheHdw.Wait ( 0 . 0 06 ) ’ maintain 6ms
I f quad040_device = True Then

Call Relay_On( "SO_OUT5_k" , 0 . 002 )
TheHdw.DCVI . p ins ( "OUT0_dc30 ,SO_OUT5_dc30" ) . Connect ( tlDCVIConnectHighSense )
TheHdw.DCVI . p ins ( "OUT0_dc30 ,SO_OUT5_dc30" ) . Connect ( tlDCVIConnectHighForce )
TheHdw.Wait ( r e s ou r c e_re l ay_se t t l i ng )
TheHdw.DCVI . p ins ( "OUT0_dc30 ,SO_OUT5_dc30" ) . Loca lKelv in = False
TheHdw.DCVI . p ins ( "OUT0_dc30 ,SO_OUT5_dc30" ) . Disconnect ( tlDCVIConnectHighGuard )

End I f
End I f
TheHdw.PPMU. pins ( " a l l_hsd " ) . Connect

TheHdw.DCVI . p ins ( "Vs_dc30 , IS_dc30 , all_dc90_lo_a " ) . LocalKelv in = False

TheHdw.Wait ( r e s ou r c e_re l ay_se t t l i ng )

TheHdw.PPMU. pins ( " a l l_hsd " ) . ForceV 0 , 200 ∗ uA, 200 ∗ uA, −200 ∗ uA
TheHdw.Wait ( 0 . 0 01 )

Call TheHdw. D i g i t a l . Patgen . Continue (0 , cpuA) ’VBT_code

TheHdw.DCVI . p ins ( "Vdd_dc30" ) . PSets ( "DC30v_0VR30V_100mAR200m_measI" ) . Apply
TheHdw.Wait ( 0 . 0 01 )
TheHdw.DCVI . p ins ( "Vdd_dc30" ) . Gate = True
TheHdw.Wait ( 0 . 0 01 )
TheHdw.DCVI . p ins ( "Vdd_dc30" ) . Connect ( tlDCVIConnectDefault )
TheHdw.Wait ( r e s ou r c e_re l ay_se t t l i ng )
TheHdw.DCVI . p ins ( "Vdd_dc30" ) . Loca lKelv in = False
TheHdw.Wait ( r e s ou r c e_re l ay_se t t l i ng )

I f quad220_device = True Then
TheHdw. D i g i t a l . Patterns . Pat ( Cont inuity . pat " ) . S ta r t ␣ ( " Continuity_Quad220_Init ial " )

End␣ I f
I f ␣quad040_device␣=␣True␣Then
␣␣␣␣TheHdw. D i g i t a l . Patterns . Pat ( Cont inuity . pat " ) . S ta r t ( " Continuity_Quad040_Init ial " )
End I f
I f penta_device = True Then

Then TheHdw. D i g i t a l . Patterns . Pat ( Cont inuity . pat " ) . S ta r t ␣ ( " Cont inuity_Penta_Init ia l " )
End␣ I f
I f ␣hexa_device ␣=␣True␣Then
␣␣␣␣Then␣TheHdw. D i g i t a l . Patterns . Pat ( Cont inuity . pat " ) . S ta r t ( " Continuity_Hexa_Init ia l " )
End I f

/∗ Note : from here the pattern and the VBA code are executed in p a r a l l e l ∗/
/∗ We jump d i r e c t l y to the l im i t checks ∗/

gnd_vs = TheHdw.DCVI . p ins ( "VS_DC30" ) . Meter .Read( t lNoStrobe , 5 , −1, Average )

/∗ The vo l tage has to be l e s s than −0.7V ∗/
data log ( gnd_vs )

Listing 2.1 illustrates an example of the program code for the setup of a continuity test.
This code snipped is used for configuring the relays of the load board, connect the needed
instruments and set the voltage of all instruments to 0V as common for a continuity
test. As we can see, with conditional statements several types of DUTs are distinguished
(e.g. devices with different channels). In the end the program chooses the pattern to run
depending on the device type.

Listing 2.2: Pattern for the continuity test
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: vec_nr : patexe : ws : s t imu l i : pset :ms
1 , −, 7 , −, d137 d258 d142 d6 d6 d6 d6 . . ,
2 , $repeat =100 , 7 , −, −,
3 , $repeat =3000 , 7 , −, −,
4 , −, 8 , −, −, . . $Enable_Alarm . . . . . .
5 , $repeat=5, 8 , −, −, . . $Strobe . . . . . .
6 , −, 8 , −, −, . . $Disable_Alarm . . . . . .
7 , −, 7 , −, . . d140 . . . . . . ,
8 , $repeat =3000 , 7 , −, −,
9 , −, 8 , −, −, . . $Enable_Alarm . . . . . .

10 , $repeat=5, 8 , −, −, . . $Strobe . . . . . .
11 , −, 8 , −, −, . . $Disable_Alarm . . . . . .
12 , −, 7 , −, . . d137 . . . . . . ,
13 , $repeat =500 , 7 , −, −,
14 , −, 7 , −, d139 d141 d155 d9 d9 d9 d9 . . ,
15 , $repeat =500 , 7 , −, −,

In Listing 2.2 we see an extraction of the pattern in GPIF format [KRT02] as it is called
in the context of the code. Here, every line describes a test vector, where every line
consists of several columns. The first column just describes the line number (which can
be used for jumps inside the pattern), whereas in the second column simple programming
constructs can be used (e.g. repeat, call, jump). The code is followed by a timing
information, represented by a number. This number identifies the timing defined in the
Timing Sheet. This timing information determines the duration of such a line. After
this duration the next line is executed. With this information it is possible to satisfy
timing constraints like rise times. The next column describes a digital waveform - a list
of digital instruments is defined at the beginning of a pattern. The digital waveform
assigns a logical output or expected value to every of these instruments. Afterwards,
the analog waveform is defined, just with the difference of applying a PSet instead of a
logic value. A dot means "don’t change". The last column can be used for executing so
called microcodes for every instrument. Here for example, a filter can be enabled for an
instruments or strobes can be made to be read afterwards in the Visual Basic code.

In Chapter 4 we show the parts and commands used in this program from a more abstract
perspective and use it to clarify which steps have to be taken until we are able to run it
in the simulation environment we propose in the next chapter.
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CHAPTER 3
Setting up the simulation

environment

In this chapter, we develop a model of an ATE test for the simulation environment.
Although there are already test benches available in the simulation environment, they are
not useful as model for the ATE test, since they are not using the same instruments with
the same properties and the load board might be neglected. Therefore it is necessary
to model the different resources, available at an ATE to run the test in a simulation
equivalent to the real test. We first present the overall description of a test environment
model using a top-down approach. We then instantiate this model to a concrete example
of an Infineon chip. We implement this concrete example, using the Cadence Virtuoso
tool and simulate it with Spectre. The modelling activity presented in this chapter is
part of the mixed-model verification part of the design flow, as illustrated in Figure 3.1.

Figure 3.1: Modelling part in the design flow [BSED07]
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3.1 Modelling of an ATE test
In this section, we present a step-by-step overview of the ATE test model that is not
specific to concrete instrument types. Whereas in the ATE test several kinds of resources
are available (e.g. high current/low current or analog/digital instruments), we model
all of them with one single model. We illustrate the modelling steps and the use of the
resulting model with an example from the automotive field, a chip provided by Infineon
Technologies. This chip plays the role of the DUT in our presented scenario.

Figure 3.2 depicts the top level setup of the hardware of an ATE test. The ATE typically
consists of several kinds of test instruments connected to the load board and provides
different functionalities. As one can see, we are using the same model for every instrument,
since a general schematic is used for all types of test instruments. They are connected
to the DUT via the load board. Consider the pinning block in Figure 3.2. This block
includes the detailed connection of the DUT to the load board. It is used to introduce
force and sense lines for the design.

Figure 3.2: Top-Level setup of the simulation environment

We note that the load board is a very special part of an ATE test. Its configuration
depends on the available resources (instruments) of the specific ATE and the tests to
be executed on the DUT. Therefore, the load board is specific to the design and its test
configuration. Due to this specificity, we do not detail the model of the load board in
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this thesis. One should just keep in mind that this part has to be remodelled whenever a
new load board is used in the test. Note that the problem of modelling the load board
was also addressed in [RKR03].

There is just one part of the load board, which can be modelled generally: the connections
to the DUT. During the test, two kinds of connections are used - a force line and a sense
line. The force line is responsible for sourcing a specified voltage, current or waveform,
the signal is driven by the source of the instrument. In contrast to the force line, the sense
line is used for measuring voltage. The distinction between these kind of connections is
necessary, since we want to measure voltage directly at the DUT according to the kelvin
measurement principle. We note that the sense line is shorted with the force line, in
order to measure voltages inside the test instrument later on. This shorting is referred to
as kelvin connection.

The wires used for connecting the power supply of the DUT to the load board are shown
in Figure 3.3. On the left hand side, one can see the input pins to which several test
instruments can be directly connected. Sometimes it is necessary to use an implicit wiring,
where connections are realized via ConnectionByName. Moreover, Cadence supports
global wires, available through all design hierarchies. They are identified by a "!" at
the end of the wire name. Therefore, the input pins are connected to the global wire
vsub!, which is the power supply of the model of the chip. Moreover, the output pin,
VS_S is shorted with vsub! for measuring the voltage. We can see that these two wires
are not directly shorted, because of a specific tool feature. Cadence Virtuoso does not
allow a direct connection between two or more input pins. One solution to overcome
this issue is to use low ohmic resistors for these connection, with the disadvantage of
introducing more complexity to the overall design, yielding in higher computational effort
during the simulation. Therefore we used the IProbe, which is normally used for current
measurements. In the circuit they act like a resistor of 0Ω, but do not increase the
computational effort.

The force and the sense lines of the remaining input pins of the chip can be connected
directly, since no global wires are used. Similarly to the previous case, we see on the left
hand side of Figure 3.4 the input pins, also known as force lines, whereas on the right
hand side, the sense lines have a direct connection to the output pins.

With these connections, we can both force current or voltage as input to the DUT pins
and measure voltage directly from the sense lines, shorted with the force lines. We recall
that in this thesis we ignore the load board - hence we directly connect the DUT pins to
the instrument models. In reality, these connections are implemented via the manually
modelled load board.

This concludes the presentation of the high level model of the ATE test environment. In
the remainder of this chapter, we focus on the specific models of the test instruments.
Figure 3.5 depicts a conceptional schematic of a test instrument, whereas Figure 3.6
shows the block diagram of a test instrument. We start with a description of the static
interface (the pins) in a test instrument. Consider the right hand side of Figure 3.6.
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Figure 3.3: Connection between DUT supply and load board

The pins channel_A_hi and channel_B_hi act as high side connections of the source
included in the test instruments. With these channels, it is possible for the test engineer
to realize two different connections for the high side and select the active one in the
context of the test program. At most one of these channels is connected at any time,
never both. A third output which might be used is the so called dibaccess. Via two
switches this output pin can be either connected to the sense or the force line. The
dibaccess can be used for implementing an additional connection, like a flow from the
force line to ground.

On the bottom side of the block, we have the low force connections channel_A_lo and
channel_B_lo. Similar to the high force line, one can multiplex between these low force
connections. Moreover the channels of the high and the low interface can be mixed, e.g.
on the high side channel_B_hi might be used, while on the low side channel_A_lo is
connected. Furthermore, on the low side we have modelled a ground pin, which is used
for voltage sources and the switches inside the block. In contrast to the other channels,
ground is connected all the time.

Furthermore, we have the input pins for measuring voltage on the left hand side of the
instrument - sense_A_hi, sense_A_lo, sense_B_hi and sense_B_lo. Similarly to the
source, the voltmeter needs a high as well as a low side connection. Also here, the test
engineer can switch between two channels for both sides. Again, it is possible to mix
the channels of the high and the low sense interface. For our DUT, just one of the sense
channels (sense_A_hi) is used. It is either connected to ground or floating for the power
supply.

Apart from the pins used for driving and measuring signals, a test instrument can perform
two evaluations on the measured voltage: verify the logical value or performing a timing
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Figure 3.4: Connection between DUT and load board

measurement. Since all these informations are needed for limit checking, we use additional
output pins for the corresponding values. They source the measured value as voltage
such that the limit checker can use them as input for post calculations and verification.

25



3. Setting up the simulation environment

Figure 3.5: Schematic of a test instrument

Figure 3.6: Pinning of a test instrument

3.2 ATE instrument model

We now present the actual models of the test instruments. Normally one can distinguish
between different kinds of test instruments. In general there are analog and digital
instruments, whereas one can further divide these categories. For instance, Teradyne’s
Flex tester distinguishes between grounded and floating analog instruments, high/low
current/voltage instruments, instruments with timing measurement capabilities and so
on. Since this is caused by the available resources of such a tester (increasing costs with
increasing number of complex instruments), this is just an issue of the tester hardware. In
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the context of a simulation environment it is not necessary to take care of this hardware
specialities - therefore we designed a general test instrument which combines all these
features, to reduce the complexity of the modelling work and ensure that changes can be
made easily (e.g. when a test instrument of a special type is replaced in the ATE test by
another one).

The overview of a generic test instrument model is shown in Figure 3.9. The central
element is the block in the middle (1), containing the source which can dynamically switch
between a current or a voltage source. The high pin is located at the right side of the
block. It is connected through an ampere meter (an iprobe called CURRENT_METER
(2)) to two switches: one connected to channel_A_hi and another one connected to
channel_B_hi (7). At every point in time, at most one of these switches is closed, the
other one has to be open. They are controlled by a voltage piecewise linear source
(VPWL) - 5V indicate a closed switch (low resistance), whereas 0V indicate an open
switch (high resistance). Also on the low side, two switches act as a multiplexer for
selecting the desired connection from the available ones.

Apart from this forcing part of the instrument, the sensing input is responsible for
measuring voltage at a specific point in the hardware (current is measured directly at the
force line with low resistance). A voltage controlled voltage source (VCVS) is used for
acting as a voltmeter (3). The two switches between the high input of the voltmeter and
sense_A_hi and sense_B_hi are acting as a multiplexer such that at every point in time
just one of these lines is used as input. The low sense lines are connected in the same way.
In our example, just channel A is used on the low sides (for the force as well as for the
sense line). For most of the instruments, the low force lines are connected to ground. The
test instruments connected to the power supply need to be floating - therefore their low
force/sense lines are connected to the output ports of the DUT. The voltmeter measures
the voltage between the high and the low sense input and sources the measured voltage to
the net vmeas_out, such that it can be used for timing measurements or the verification
of a logical value. Current metering works in a similar way: a current controlled voltage
source (CCVS) (4) uses the measurement of CURRENT_METER as input and sources
the corresponding value. How the voltages representing the actual voltage/current are
sourced throughout the output ports is shown in Figure 3.7, such that they can act as
input for the limit checker.

We can see, that there are two additional switches - one for directly connecting the
high force line with the high input of the voltmeter and another one for connecting
the low force line with the low input of the voltmeter. These are so called local kelvin
connections(5). These connections are useful to have a reference even when no sense
line connection is active. The main intention of the local kelvin is to have a reference
for the control loop used in the test instrument. Moreover it is also possible to force
voltage or current over these sense lines - one has to connect the local kelvin connection,
disconnect both force lines and connect the desired sense line. This might be useful in
some cases (e.g. providing higher current in that way because of a limited number of
available resources).
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Figure 3.7: Meter outputs

On the right hand side of the model, we have two additional blocks - one is responsible
for performing timing measurements (8), whereas the other one verifies a desired logical
value (9). Both use the measured voltage from vmeas_out as input. Additionally for
both evaluations the information of the pin levels (voltage in high (VIH) and voltage in
low (VIL)) is needed. Since the levels can also change dynamically during the execution,
they are controlled externally. Therefore one VPWL is used for sourcing the actual value
of VIH and another one for VIL (6) - the outputs are sourced to the nets called VIL and
VIH.

In the following sections, we have a closer look at the blocks used inside a test instrument
to get a better understanding of their functionality and configuration.

Figure 3.8: ATE test instrument channel
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3.2. ATE instrument model

3.2.1 The source

This section provides a closer look at the used source within an instrument. It has already
been mentioned, that an instrument can either act as a voltage or current source. The
mode of the source might change dynamically during the execution of the ATE test. As
shown in Figure 3.8, this block contains a VPWL as well as an current piecewise linear
source (IPWL). Two switches are used for the dynamic mode change - at every point in
time, exactly one of the switches is closed. One needs to take special care of the current
source: whenever the current source is used, it needs to be ensured that the switch is
closed, otherwise this behaviour would result in high voltage and undesired behaviour.
The signal is sourced at the output pin channel_hi, while the pin channel_lo is used
as reference (it can either be grounded or floating). The gnd pin is just used for the
controlling voltage sources and the switches. We use this configuration also for digital
signals - here just the voltage source is active with the voltage corresponding to the
desired logical value.

The central element in the whole model is the VPWL. Such a source is configured by
a pair consisting of a point in time (in seconds) and a voltage value (in Volts). The
source linearly interpolates the voltage values between these two points in time. Since
the classical VPWL has an upper bound on the number of points which can be defined
and cannot be controlled from external, an extension of this kind of source must be used:
the voltage piecewise linear source - file controlled (VPWLF). In general the VPWLF
supports the same features as the classical VPWL with the difference that it reads the
pairs from an external file with a much higher upper limit.

An example input file for an VPWLF is shown below. While the output of the source is
shown in Figure 3.10. As one can see, the voltage is configured to stay at 0V until 5ms,
then it starts rising linearly to 5V for 2ms, before it is linearly decreasing to 0V again
from 9ms until 10ms. The configuration for the current source (current piecewise linear
source - file controlled (IPWLF)) works the same.

0 0
0 .005 0
0 .007 5
0 .009 5
0 .010 0
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Figure 3.9: ATE test instrument
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3.2. ATE instrument model

Figure 3.10: Example definition of a waveform

At the end of this chapter we would like to mention an additional feature supported by
ATE testers: the voltage/current clamp. For example, the test engineer has the possibility
to define a current clamp for a voltage source. When the current reaches this clamping
value, the voltage source takes the role of a current source, forcing the clamping value as
current. For a current source with a voltage clamp it works symmetrically. Modelling
this feature together with dynamic clamps usually yields in convergence problems during
the simulation and at the moment there is no known solution to this issue in spectre.
Therefore we neglect this feature and assume that an excess of the clamp just occurs in
the case of a fault.

In the next sections we have a closer look at two evaluation blocks used during simulation.

3.2.2 Digital checker

In AMS designs, we need to verify both, analog and digital behaviours. Whereas the sam-
pled value of voltage or current is sourced directly out of the pins current_meter_output
and voltage_meter_output, the digital value is checked first inside the digital checker
which is shown in 3.11 as it is used in the test instrument. Within the ATE test program,
the test engineer can specify the expected logic value at some point in time. This expected
logic value is sourced by a VPWLF - 5V correspond to an expected logic high value,
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3. Setting up the simulation environment

whereas 0V mean that a logic zero is expected. The nets VIH and VIL are used as input
for the actual pin levels. For the information whenever a check shall be performed, an
additional signal is used: at every (rising or falling) edge, the digital checker verifies the
input voltage (vmeas_out) with the expected value according to the pin levels. As long
as no fault occurred, the output out is set to 5V. In case the expected and measured
value differ it is set to 0V. This output is written to digital_checker_result such that it
can be verified in the limit checker later on.

Figure 3.11: Digital checker block

Figure 3.12 depicts an example of the usage of a digital checker during the simulation.
The first signal clk is used for triggering the measurements, whereas check denotes the
expected value. In the third line, one can see the signals vmeas_out, VIH and VIL,
whereas in the last line we have the output digital_checker_result. We note, that at
every event (edge) of the clock, the signal vmeas_out corresponds to the expected logic
value, therefore the output remains at 5V.

Figure 3.12: Example for the functionality of the digital checker

In our environment we implemented the digital checker in Verilog-A - the corresponding
code an be found in the appendix.
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3.2. ATE instrument model

3.2.3 Event stampers

Another measurement used during a test is the timing measurement. It is necessary
to ensure that rise/fall times meet specification requirements of the device. Every test
instrument consists of four event stampers, combined in the block event_stampers shown
in Figure 3.13. It takes the actual levels VIL and VIH as well as the measured voltage
vmeas_out as input. An event stamper is triggered by an event (e.g. leaving the low
value). Whenever this event occurs, the time is measured and written to the output port.
The outputs of the block are the times measured by every event stamper.

Figure 3.13: Event stamper block of the instrument

Figure 3.14 shows how the four event stampers are connected to the input/output pins.
Every event stamper uses the levels and the measured voltage as input. Additionally we
need to specify which event shall trigger a measurement. Here we distinguish between
leaving low, leaving high, reaching low and reaching high events. These events are discussed
in more detail in the next chapter. Furthermore, an event stamper block needs to be
enabled - otherwise no measurements are done. The events of interest are configured via
the voltage of a VPWLF where every voltage level indicates an event. Every stamper
can be triggered on a different event. To enable the desired block, the VPWLF of the
enable signal needs to be set to 5V. When this source is set to 6V a measurement is
performed immediately without waiting for an event. In the case an event happens more
often, always the last time is sourced at the output.

An example of such a timing measurement is shown in Figure 3.15. As can be seen, the
digital voltages VIH and VIL are set to 2.3V and 13V. The voltage indicating the trigger
event is about 1V which means we are waiting for a leaving low event. When the enable
signal is set to high, these values are stored and the stamper waits for the corresponding
event. When the input signal reaches the value of VIL, event_time is set to the actual
time - in this example the event occurs at approximately 4.05ms, therefore the output
voltage of the stamper is set to 4.05mV.

We implemented the event stamper in in Verilog-A, the corresponding code can be found
in the appendix.
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3. Setting up the simulation environment

Figure 3.14: Connections of the four event stampers

3.2.4 Limit checker

Now that we are able to measure voltage, current, time and verify the correctness of logical
values, we need to combine all those information for evaluating the correct functionality
of the DUT. Since the limit checker is generated during the translation of an ATE test
program, we just discuss its connections and high-level functionality here.

The limit checker takes all the measurement signals as inputs. Similar to the digital
checker, it is triggered by a clock where every edge indicates an event. Whenever such
an event occurs, either the value of a signal is measured and stored within an array or
post calculations/checks are performed. Its output is 5V as long as no fault occurred
and all checks were successful, in the case of an error the output voltage is set to 0V.
The digital checks are not event driven, at the moment one digital checker falls down to
0V, the limit checker immediately triggers an error.

In this kind of way, the limit checker knows about every signal from every instrument,
therefore also dependencies of measurements can be checked. When there are no depen-
dencies between test instruments one might also implement the limit checker within the
test instrument.
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3.2. ATE instrument model

Figure 3.15: Example of an event stamper

With this discussion, we conclude the modelling part of the ATE environment. In the
next chapter we show how to translate an ATE test program such that we can simulate
it in this environment and verify the results automatically.
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CHAPTER 4
Translation of an ATE test

program

In the previous chapters, we presented the functionality of ATE tests and we showed how
to model it in a simulation environment. Next, we develop a procedure for translating ATE
test programs into test descriptions that can be executed in the simulation environment
in the content of this chapter. We first identify the functionality that is needed in order to
successfully port ATE test programs into the simulation environment. We then propose
a general language in which we can express such functionality and propose the concrete
translation from ATE to simulation test programs.

Figure 4.1: Translaton process in the design flow [BSED07]
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4. Translation of an ATE test program

4.1 Identification of needed functionalities

In this section, we identify the core functionality of ATE test programs that is independent
from a specific ATE and is needed for their accurate translation into a simulation
environment.

Figure 4.2 depicts the abstract view of the main components in an ATE test. The ATE
hardware consists of a load board and the test instruments. The test program must be
able to control different functionalities of these hardware components. A load board
contains relays that are dynamically configured at runtime. They are responsible for
dynamically setting up the DUT connections. Note that the remaining components of
the load board are passive (e.g. resistors or capacities with static values), therefore they
will not be discussed in this section.

The ATE test instruments are configurable by test engineers. We distinguish between
analog, digital and general ATE functionality in the context of AMS design. In the
previous section we showed how to model test instruments with such heterogeneous
functionality.

Furthermore, communication between the ATE hardware and the test program plays an
important role and must be considered. This communication typically has the following
form: the test program provides a sequence of input values to the ATE hardware, one by
one. In every step, the test program sends an input value, waits for the ATE to process
the data and acknowledge with a special event before it moves to the next step. This
functionality is represented by the Communication block in Figure 4.2.

Figure 4.2: Abstract schematic of ATE

We now present specific aspects of the elements identified in Figure 4.2 and have a closer
look at their provided functionalities in the sense of an abstract language.
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4.1. Identification of needed functionalities

The load board relays are controlled by an impulse (input voltage), which can have two
states: on (5V) or off (0V). Note that by default, the impulse of every relay is in the off
state, whereas the relay is either open or closed in this state, depending on the design
of the load board. Whenever the impulse changes, the state of the relay is updated
accordingly.

Figure 4.3: Relay functionalities

It follows that a test program can control a relay by switching the impulse on and off.
This action is done by the two commands Relay_On and Relay_Off as shown in Table
4.1.

Description Command
Turn on the impulse, which controls the relay Relay_On
Turn off the impulse, which controls the relay Relay_Off

Table 4.1: Relay functionalities and commands

We now focus on the control of the test instruments by a test program. We start by
presenting general functionalities that are common to every test instrument, regardless of
whether it is digital or analog. All test instruments (a conceptional overview was given in
Figure 3.5) have high and low connections (for both, the force and the sense line) as well
as a local Kelvin connection to connect the sense and the force line through a switch.
An overview of these functionalities is given in Figure 4.4. The Levels block in Figure
4.4 defines the pin levels, which might dynamically change during the test run. They
are used for specifying the voltage levels high and low. Furthermore they are important
during a timing test for distinguishing when a specific logic value has changed. The
timing itself is used for both, analog and digital signals: for an analog signal it indicates
how long an output is active (e.g. set output voltage to 5V for 5us), whereas in the
digital part the timing determines the length of the signals as well as the point in time
when a signal has to be strobed.

Table 4.2 summarizes the commands used to connect and disconnect test instruments.
Note that we will treat the commands used for defining the pin levels and the timing will
be treated separately.
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4. Translation of an ATE test program

Figure 4.4: Overview about the basic general functions of an ATE

Description Command
Connect the high side of the force line ConnectHighForce
Connect the low side of the force line ConnectLowForce
Disconnect the high side of the force line DisconnectHighForce
Disconnect the low side of the force line DisconnectLowForce
Connect the high side of the sense line ConnectHighSense
Connect the low side of the sense line ConnectLowSense
Disconnect the high side of the sense line DisconnectHighSense
Disconnect the low side of the sense line DisconnectLowSense
Close the high kelvin relay ConnectHighKelvin
Close the low kelvin relay ConnectLowKelvin
Open the high kelvin relay DisconnectHighKelvin
Open the low kelvin relay DisconnectLowKelvin

Table 4.2: Commands available on the force line

The level parameters, shown in Figure 4.5, are used at the input and the output lines
in the digital part of a test instrument. The input of a digital instrument is used for
specifying an expected logic value at a specified point in time. The digital signal is
measured at that time instant and the recorded value is compared to the specified logic
value. A difference between the specified and the measured value indicates an error in
the DUT. Four different pin levels are configured for every instrument, as summarized in
Table 4.3 - voltage out high (VOH), VIH, voltage out low (VOL) and VIL.

The input and the output levels are dynamic and the test engineer can control them
in every digital instrument, by using the commands depicted in Table 4.3. Note that
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4.1. Identification of needed functionalities

Figure 4.5: Overview of the basic properties concerning the levels

different levels can be applied to different instruments, such that it is possible to perform
several digital measurements in parallel.

Description Command
Minimum voltage for output high SetVOH
Maximum voltage for output low SetVOL
Minimum voltage for input high SetVIH
Maximum voltage for input low SetVIL

Table 4.3: Commands for configuring the pin levels

The timing block is used in both, analog and digital instruments. On the one hand the
timing is used for configuring the duration of a signal (e.g. set the output voltage to 5V
for 4us or force a logic 1 for the same time). Furthermore, the test engineer can control
the time between the execution of two consecutive commands by setting a delay between
them. This delay is determined by the period of the timing configuration. For digital
waveforms, two additional informations are needed: the window and the format. The
format simply defines the wire code which is used (e.g. non-return to zero or return to
zero). The window is used to define an interval over which the digital measurements are
made. For example, when the timing is set to 3us and the window to [200us, 250us], then
the input signal is measured throughout the interval [3200us, 3250us] and compared with
the specified logic value.

We now proceed with the presentation of the commands specific to the analog part of
a test instrument. The analog instrument consists of a force and a sense line. As can
be seen in Figure 4.7, there is a force line as well as a sense line. In general an analog
instrument can be used as voltage or as current source. It has to be able to switch between
these modes. Additional to the source mode, a clamp has to be applied (current clamp
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4. Translation of an ATE test program

Figure 4.6: Overview about the basic timing functions of an ATE

Description Command
Set period (corresponds to a wait statement) Wait
Set wire code (e.g. NRZ) SetFormat
Set Window within the timing for strobe and check input SetTimingWindow

Table 4.4: Commands available for the timing parameter

for a voltage source and a voltage clamp for a current source) to limit the corresponding
unit. Furthermore it is possible to source a whole waveform (in current or voltage mode).
For this functionality, the samples have to be configured together with a sample rate and
the mode. Note that the timing is used for defining a sequence of commands. Assume
we apply a timing with a period of 3us to an instrument and force 0V. Next we apply a
timing with a period of 10us and force a voltage of 10V. This would mean that for 3us a
voltage of 0V is forced. After this 3us, the next command with the timing period of 10us
is applied, yielding in an output voltage of 10V for the next 10us. This might yield to
problems when sourcing a waveform: here the delay between two values is determined by
the sample_rate. When there is a value applied in the time between two points in time
of the wave, this will result in a malformed wave and therefore cause a wrong behaviour.
We realize the timing period with a simple wait statement.

The other part of an analog test instrument is the measurement unit. We can distinguish
between three units to be measured: current, voltage or time. Time measurements are
event-driven: the test program supports different events in which the user might be
interested (e.g. reaching the voltage VOH after a logic 0 was applied). We will discuss
the concrete functionality and configuration of timing measurements in the next block.
The hardware often includes a filter for the input of the sense line that can be enabled or
disabled. We do not consider this functionality, since it is not relevant for the simulation.

Table 4.5 gives an overview about the command set, used for configuring the force line
of the analog instrument. Since a whole waveform can also be sourced by applying the
corresponding current and voltage values combined with a correct timing, we ignore the
wave command. The clamp indicates a boundary for the voltage (in case of a current
source) or the current (in case of a voltage source). When the corresponding unit reaches
this boundary value, an alarm would be raised indicating an error. In some cases, it is
allowed to disable this alarm, when it is possible to reach this value. When for instance
the current clamp of a voltage source is exceeded, the instrument will switch to a current
source, sourcing the value of the current clamp.
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Figure 4.7: Overview about the basic analog functions of an ATE

Description Command
Force current on the force line ForceCurrent
Force voltage on the force line ForceVoltage
Force a given waveform (e.g. Ramp) in voltage or current mode ForceWave
Set voltage or current clamp SetClamp

Table 4.5: Commands available for the source

The commands for configuring the sense line are summarized in Table 4.6. Note that in
some testers, metering current or voltage means that the corresponding value is stored
in the memory of the test instrument and has to be read separately. We assume that
the value is immediately transferred to the test program. Furthermore, aggregation
functions such as averaging multiple samples can be realized with a restricted set of basic
commands, hence we ignore them in this thesis.

When the clamping value is set, it is automatically treated in the expected way - when
the instrument is configured as voltage source it will be used as current clamp, otherwise
as voltage clamp.

When considering timing measurements, some more information needs to be available
which is shown in Figure 4.8. Timing measurements are event triggered based on a
global clock that starts running at the beginning of the test program. When the timing
measurements are enabled, the measurement unit waits, until the configured event occurs.
Examples of interesting events during such a timing measurement are shown in Figure
4.8. Whenever such an event happens, the time is stored in the instrument and can be
read by the test program. Furthermore we will introduce a command to force a timing
measurement, such that timing differences between the current point in time and the
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Description Command
Configure meter to current mode MeterCurrent
Configure meter to voltage mode MeterVoltage
Get the time of a measured event (e.g. Leaving Low) GetEventTime
Set voltage or current clamp GetWave

Table 4.6: Commands available on the sense line

time of the event can be calculated.

Figure 4.8: Overview about the basic timing functions of an ATE

Table 4.7 gives an overview of the commands, needed for controlling the timing measure-
ment unit. First of all, the event the user is interested in has to be defined. As shown in
Figure 4.8 one can distinguish between:

1. Leaving Low: The voltage level of the input signal becomes greater or equal to VIL

2. Reaching Low: The voltage level of the input signal becomes lower or equal to VIL

3. Leaving High: The voltage level of the input signal becomes lower or equal to VIH

4. Reaching High: The voltage level of the input signal becomes greater or equal to
VIH

The timing measurement has to be enabled to force the instrument to wait for the desired
event. When the event occurs, the actual time of the global clock is stored in the memory
and can be read at some point in the test program. We note that one event stamper per
instrument may not be sufficient in some cases, hence the test equipment can contain
multiple stampers in every instrument as shown in Section 3.2.3. It is necessary to enable
and set the events of the stampers separately (they can also be triggered on different
events).
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Description Command
Set the event at which time is sampled SetTriggerEvent
Enable event stamping EnableStamper

Table 4.7: Commands for configuring the event stampers

The parts which have to be taken into account for the digital part of the test instruments
are shown in Figure 4.9. Similar to the analog part, also the digital instrument consists
of an input and an output. The output is responsible for sourcing a digital logic value
based on the actual levels and the timing. On the other hand, the input part samples a
value and performs a check on it. As a consequence, the test engineer is able to define an
expected value (high or low) and during the window phase inside the actual timing it is
checked whether the input is equal to this value - if not, an error occurs.

Figure 4.9: Overview about the basic digital functions of an ATE

Table 4.8 shows that two commands are needed to control a digital test instrument: one
for defining the expected value, as well as defining the output value. Note, that apart
from 0 and 1 also X can be used, meaning don’t care. When the expected value is X
there will just be no check of the input signal and the output of the test instrument is
set to high-impedance (current source with 0A). The output will keep its last value.

Description Command
Set the expected logic value (high or low) SetExpectedValue
Set the logic value of the output SetLogicOutput

Table 4.8: Commands available on the digital sense line

Specific testers may often support additional functions to the ones considered in this
document. In this thesis, we only consider commands that are relevant for the translation
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of ATE test programs into the simulation environment. In addition, ATEs often support
test patterns that are executed in parallel with the test program and synchronized for
ensuring a deterministic test. The functionalities for the communication between pattern
and test program are in the block Communication in Figure 4.2. Since, the pattern is
very similar to a function call and only deterministic tests shall be considered here, this
functionality is neglected to keep the language simple.

Finally, test programs may support conditional statements in order to accommodate to
test device variations.

4.2 General test program language
We assume that ATE test programs are written in a general Turing Complete programming
language. We do not require any specific syntax, and use pseudo-code where appropriate.

As already mentioned, one part of a test program are the so called test patterns. Such
a pattern defines line by line a test vector consisting of the timing to use, the digital
configuration (output and expected logic value) as well as the analog stimuli in the
form of a voltage/current value or of a waveform description, consisting of a sequence
of timestamp/value pairs. Test patterns also use conditional statements and loops. We
note that patterns are executed in parallel to the rest of the test program. Despite
this parallelism, we assume deterministic tests. This is a reasonable assumption - non-
determinism in ATE test execution is an undesirable feature that is avoided in practice
by proper synchronization primitives.

During the run of an ATE test program, signals are measured and their result is compared
to a bound defining the minimum and maximum allowed value. For automatic detection
of a limit check, it is necessary to introduce a separate command. As a consequence, the
CheckLimit command, parameterized with an input variable and high/low limits, is used
for checking the limits during a test execution.

The actual limits used in CheckLimit are not always simple constraints fetched from the
limit specification table. It turns out that the specified limit values are often pre-processed
using different arithmetic operators before being used for the limit checking. We will
see in the next section that this preprocessing of specified limits is problematic for the
translation of ATE tests to the simulation environment.

The last problem, which remains is how to specify which test instrument shall be
configured when calling a specific command. Every instrument has a unique name such
that this name is also known by the ATE (the test instruments are uniquely identified
by the ATE by their positions). Every command takes as parameter the name of the
instrument which shall be configured. Additionally these commands take the necessary
information (e.g. high level voltage and low level voltage) as parameters. Furthermore,
the question is, when will such a command be applied (e.g. when the sourcing mode
changes, the clamping value might not be up-to-date and might cause an error in the test).
Therefore we introduce the Apply command, which will apply the currently configured
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parameters to the instrument identified by the name. So it is possible to send a whole set
of changing parameters to the test instruments without introducing secondary effects.

4.3 Translation process
After completing the definition of a general ATE test program language, we now propose
an automated procedure for translating ATE test programs into a format supported
by simulation environments. We note that a precondition is the support of an offline
debugging by the tester, such that it is possible to run the test program before the first
silicon (otherwise one loses the advantage of using the translation early in the design
flow).

Figure 4.10 depicts a high-level overview of the translation process. The translation
procedure takes as input the ATE test program and a configuration file. As we have
shown in the section before, the test program consists of several commands, which are
relevant for the simulation. In a first step, we need to identify which of these commands
are executed during the execution of the ATE test program and print this program flow
into an intermediate file. Therefore, after every relevant command, a line is added which
prints the command of interest into the intermediate file. This approach is called code
injection. The adapted test program is then executed in the debugging (offline) mode
of the tester. After this execution, we have an intermediate file which contains all the
commands which were really executed. As highlighted with the grey box in the figure, the
generation of the intermediate format is not part of this thesis and used from [KRT02]
with small changes in the format. We use this intermediate file as input for the parser
and translate this program flow for the simulation environment.

The points of manual interaction have been highlighted in the figure:

1. ATE test program: The ATE test program has to be written by the test engineer
for the final verification in the design flow and is taken as input.

2. Debugging run: Debugging has to be executed manually by the user, to write the
relevant commands into a file.

3. Configuration file: The user has to provide a configuration file with information
about the simulation environment such that it can be configured automatically.

In the next sections, these single parts of the translation flow will be discussed separately
in more detail. Note that the limit checker can of course be implemented in an arbitrary
language (Verilog-A, VHDL-AMS,...), it just has to be supported by the simulator. In
this thesis, we encode the limit checkers as state machines expressed in Verilog-A.

The intermediate file filters the test pattern and contains only statements (sequences
of commands) that are relevant for executing the test in the simulation environment.
In addition, it contains the set of calculations that are performed during the test run.
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Figure 4.10: Translation process for an ATE test program

The last two pieces of information are necessary for keeping track of how variables are
calculated such that post calculations can be simulated in the context of the limit checker.

4.4 Code injection
In many cases, a test program is not just implemented for one single device, but for
several versions (e.g. 4 channel and 2 channel devices). Therefore a lot of the test program
is similar for these two models and it won’t make sense to implement two very similar
test programs. Instead, the test engineer uses conditional statements for distinguishing
between these two models when it comes to specific parts in the test program. The test
engineer is then able to select the model to be checked in the graphical user interface.

Translating a test program into a format supported by the simulation environment is
challenging to do with a parser, due to the lack of information generated during the test
runtime. Another possibility would be to use on-the-fly translation of the test program
during its execution with an interpretor. However, this solution may be too expensive
for complicated test patterns.

To overcome this challenge, the idea which is introduced within [KRT02] is code injection.
We got this generated intermediate file from Infineon Technologies as input for our
parser. From the previous section, it is already known, which commands of the tester
are relevant for the simulation environment. This knowledge can now be used for doing
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some preprocessing, before the test program is executed. The goal is to instantiate a test
pattern to a specific configuration, thus getting rid of conditional statements and loops,
resulting in a simple sequence of commands that are really executed for that particular
configuration.

During the code injection, the preprocessor goes through the files of the test program
line by line as shown in Figure 4.11, searching for the relevant commands including
tester commands, variable definitions (local and global) as well as variable calculations.
Whenever such a line is found, the associated command with its parameters is inserted
to the intermediate file. The program simply runs until all lines have been processed.

Figure 4.11: Flow diagram for the code injections

After the test program has been preprocessed, the user has to start the offline debugger,
which is able to simulate the test program without a device (of course the limit checks
will fail without responses from the DUT, so they have to be ignored). During this run,
also the newly added output commands will be executed leading to an intermediate file
including all the information of interest which was executed. Note: since different testers
of course use different languages for configuration, one has to change the commands of
interest! They should be mapped to the general language introduced in the previous
sections such that the parser, which will be used in the next step needs not to be adapted.

In order to improve the reusability of this method, the intermediate file uses a general
encoding that is not specific to particular equipment or simulation environments.

We finally note that many test equipments support a network interface for the communi-
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cation between ATE and test program over which the commands are sent. Therefore, an
improvement against this static code injection would be to read the executed commands
over the network interface and process them according to their meaning.

4.5 Parsing of the intermediate file
After filtering the test pattern and generating the intermediate file, we need to parse it
and adapt it to the simulation environment by:

1. Provide the configuration files for the test instruments in the simulation environ-
ment.

2. Provide a state machine in a chosen language for the limit checker.

3. Provide a configuration file for setting all the parameters in the simulation environ-
ment automatically.

We remind the reader that every instance of a test instrument or a relay is uniquely defined
in the simulation environment by its name, as discussed in Section 3. For configuring
such a test instrument, the path of the used input file is taken as parameter. Normally,
the user would have to set all the filenames in the simulation environment manually. For
preventing this issue, many simulation programs provide a scripting language (e.g. SKILL
in Cadence) such that these parameters can be set automatically, preventing typos and
other undesired faults. The needed input files are created during the translation process
by the parser automatically. For relating a file to the corresponding instances, the user
has to provide this information in a configuration file: a mapping between instrument
names used in the test program to the instance which corresponds to this instrument in
the simulation environment. The parser therefore automatically creates a script, which
can be imported by the simulation program. This has to be done for the instruments as
well as for the relays.

We next continue with the generation of the input files for the simulation environment.
The target is to translate the entire command sequence used in the test program to
simple waveforms which can then be sourced by the test instruments. Furthermore it has
to be possible to switch between the current and the voltage source and configure the
switches which are used in the model. So let’s first give an overview about the different
files, which have to be generated for the simulation environment.

We use the file format we introduced in Chapter 3 for controlling the whole simulation
environment from external, including all the voltage supplies for controlling the switches
and used voltage/current source for the instrument. For configuring a relay, just one file
is necessary - the file defining the waveform for the voltage source which is controlling the
switch (0V means open, 5V is closed). For an instrument a set of files must be generated,
controlling all the parts of the instrument, including:
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• Voltage Source

• Current Source

• Switch of the voltage source

• Switch of the current source

• Switch for channel A high (force)

• Switch for channel B high (force)

• Switch for channel A low (force)

• Switch for channel B low (force)

• Switch for channel A high (sense)

• Switch for channel B high (sense)

• Switch for channel A low (sense)

• Switch for channel B low (sense)

• Switch for high kelvin

• Switch for low kelvin

• Expected value for digital check

• Trigger signal for digital check

• Voltage for logic high

• Voltage for logic low

• Enable signals for all event stampers

• Trigger events for all event stampers

In the target path (which is specified in the configuration file), a folder structure must
contain a folder for every test instrument including these files and a separate folder for the
relays. The purpose of the parser is to perform the translation between the intermediate
file and these set of files automatically, such that all the instruments are configured.

Therefore in a first step all the files are generated out of the list of instruments given in
the configuration file (through the instance mapping) and initialized with the first line
which is mandatory: 0 0. Afterwards parsing starts, where every single command, which
is of interest, is mapped to one of these files with the correct wave information.

Note that all the commands take as parameter the instrument on which they shall be
applied. The user can define a whole block of commands (consisting of a timing, sourcing
value etc.) followed by an apply command when the last block shall be applied to the
instrument. After an apply command, the parser executes the commands (including
keeping track of the time).

4.6 Creating the limit checker

In this section we have a closer look at the construction of the limit checker. This block
is responsible for verifying the correct behaviour of the DUT based on the measurements
from the test instruments. The limit checker must execute all the post calculations from
the ATE test program. As we mentioned in Chapter 2, the limit values are defined in
a Limit Sheet. This sheet consists of a list for every test, where an element of this list
consists of a higher limit value as well as a lower limit value. During execution of the
ATE test program, the CheckLimit procedure is called, using a variable and the limits
as parameter. Whenever this procedure is called, we compare the value with the next
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element from the list. We use this information to design a finite state machine(FSM),
which performs the limit checking.

The first step is to define trigger points for this state machine, similar to a clock signal
in synchronous designs. In our abstract language, several commands (e.g. MeterCurrent
or MeterVoltage) are available for performing a measurement and getting the result.
Whenever we execute one of these commands, new calculations are executed - therefore
we use these command set to define the trigger points (events) of the limit checker. An
event is either a rising or a falling edge. Every time, a command of this command set is
recognized, we generate such an event (according to the previous event). For this signal,
we use the same file format as introduced in combination with a VPWL.

Assume the test engineer executed a MeterCurrent command at some point in time and
stores its value in a variable. This means that we need to insert a new state in the limit
checker in which the same measurement is executed and stored in a variable during the
simulation. Furthermore, we must keep track about these variables. Whenever we detect
such a measurement, the corresponding variable name is stored in a data structure (e.g.
Hash Map). At the moment, the parser recognizes a new calculation, it checks whether
the used variables occur in the Hash Map or not. Variables, which do not occur in the
Hash Map have a deterministic value since they are not related to any measurements
(we exclude the case of randomness because we assume that the test is deterministic).
Therefore, this kind of variables is replaced by their value.

The other case is to find a calculation, which uses such a measurement variable found in
the Hash Map. This means, its value is non deterministic. Therefore, we need to add
this calculation to the state machine to the actual state - the deterministic values are
again replaced. Moreover, the new variable is added to the Hash Map.

When we encounter a CheckLimit command, the check of the variable taken as parameter
is added to the actual state. Note that for the moment we neglect the occurrence of
global variables. When they are introduced, we need to use one map for local and one
for global variables to distinguish between them. Also procedure calls must be taken into
account within a calculation - here the procedure call simply has to be replaced with the
return value during the calculation.

A flow diagram of the whole code injection flow with a limit checker included is illus-
trated in Figure 4.12. We now distinguish between two different files: one is used for
implementing the FSM (e.g. in Verilog-A) and another one acts as the intermediate
file as before. Furthermore, calculations are added to the set of relevant commands -
whenever a calculation is recognized, we check, whether it is relevant to be added to
the state machine or not. Note that calculations are always added to the actual state.
Measurement commands are handled in the same way, additionally they just trigger a
new event for the state machine. All the other commands are handled in the same way
as before and will be written into the intermediate file.

What remains to show is the state machine itself which is used for the limit checker.
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Figure 4.12: Flow diagram with limit checker included

Figure 4.13 gives a rough overview of how the limit checker is supposed to work. The
checker uses all the measurements done by the instruments as inputs, including voltage,
current and timing measurements. Whenever a clock event occurs (either a rising or
a falling edge), the desired input is read and stored in a variable. Since all the post
calculations from the code, occurring after the measurement, are included in that state,
they are immediately executed. In the case that also a CheckLimit command has to be
executed before the next measurement command, it is added to the same state. Therefore,
after a clock event, three steps are executed: reading the measurement(always), post
calculation and limit check (both optional).

Now we extend this simple state machine as illustrated in Figure 4.14. Since after
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Figure 4.13: Schematic of the functionality of the limit checker

every measurement different post calculation steps might be executed, we need to keep
track about this measurements - this is done by the new state introduced by every
measurement command. Therefore a counter indicating the current state is increased
after every clock event, yielding in the possibility of varying the post calculation steps
after every measurement.

Figure 4.14: Schematic of the state machine for the limit checker

Note that the limit checker has also to distinguish between the test cases, since different
test cases use different limit sets. To overcome this issue, another input, indicating the
currently executed test case has to be added.

What should be mentioned is that in several programming languages in which an ATE
test program might be implemented, the module size can be restricted. This could lead
to problems with the limit checker, since we must keep track on every single variable and
calculation, yielding in a lot of code to inject. These injections might result in an excess
of the module size - the program cannot be executed any more. This should be kept
in mind during implementation such that the calculations are outsourced into several
modules. Note that another possibility for automatically creating the limit checker is the
usage of signal temporal logic as introduced in [JBG+15]. With some modifications, it
would be possible to implement a similar solution in Verilog-A.
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4.7 Example translation for the continuity test
In this section we apply the proposed approach to the code of the continuity test shown
in Chapter 2. We do not show the step of the code injection, instead we start with the
output of the debugging phase. Recall that in a first step the relevant commands are
identified inside the code and an output line is inserted next to them, before we run the
new code in the debugging mode of the tester.

The code from the intermediate file is shown in Listing 4.1. At first, all the instruments
and relays are connected. The wait statements are needed for ensuring that all the signals
are set before applying new waveforms. Note that also in the simulation environment
such waiting times are needed, insufficient delays might yield in convergence problems.

Listing 4.1: Setup of a continuity test

Call Relay_On( "OUTxF_k" )

ConnectHighForce ( "Vs_dc30 " )
ConnectHighSense ( "Vs_dc30 " )

ConnectHighForce ( " IS_dc30 " )
ConnectHighSense ( " IS_dc30 " )

ForceVoltage ( "Vs_dc30 " , 0)
SetClamp ( "Vs_dc30 " , 0 . 1 )
Apply ( "Vs_dc30 " )

ConnectLowForce ( " all_dc90_lo_a " )
ConnectHighForce ( " all_dc90_hi_a " )
ConnectHighSense ( " all_dc90_hi_a " )
ConnectLowSense ( " all_dc90_hi_a " )

ConnectHighForce ( " a l l_hsd " )
ConnectHighSense ( " a l l_hsd " )

DisconnectHighKelvin ( "Vs_dc30 , IS_dc30 , all_dc90_lo_a " )
DisconnectLowKelvin ( "Vs_dc30 , IS_dc30 , all_dc90_lo_a " )

ForceVoltage ( " a l l_hsd " , 0)

ForceVoltage ( "Vdd_dc30" , 0)
SetClamp ( "Vdd_dc30" , 0 . 1 )
Apply ( "Vdd_dc30" )

ConnectHighForce ( "Vdd_dc30" )
ConnectHighSense ( "Vdd_dc30" )

DisconnectHighKelvin ( "Vdd_dc30" )

ForceVoltage ( " IS_DC30" , 0 . 0 )
SetClamp ( "IS_DC30" , 0 . 0002 )
ForceVoltage ( "VDD_DC30" , −0.1)
SetClamp ( "VDD_DC30" , 0 . 1 )
ForceCurrent ( "Vs_DC30" , −0.001)
SetClamp ( "Vs_DC30" ,−1)
ForceVoltage ( "Vs_1Alo " ,0 )
SetClamp ( "Vs_1Alo " , 0 . 0002 )
ForceVoltage ( "Vs_2Alo " ,0 )
SetClamp ( "Vs_2Alo " , 0 . 0002 )
ForceVoltage ( "Vs_3Alo " ,0 )
SetClamp ( "Vs_3Alo " , 0 . 0002 )
ForceVoltage ( "Vs_4Alo " ,0 )
SetClamp ( "Vs_4Alo " , 0 . 0002 )
Wait (0 .000001)

Wait (0 .000001) # Repeat t h i s l i n e 100 t imes
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Wait (0 .000001) # Repeat t h i s l i n e 3000 t imes

Wait (0 .000001)
Wait (0 .000001) # Repeat t h i s l i n e 3000 t imes

# Repeat these l i n e s 5 t imes
MeterVoltage ( "Vs_DC30" )
Wait (0 .000010)

ForceCurrent ( "Vs_DC30" , −0.00005)
SetClamp ( "Vs_DC30" , −1)
Wait (0 .000001)
Wait (0 .000001) # Repeat t h i s l i n e 3000 t imes

# Repeat these l i n e s 5 t imes
MeterVoltage ( "Vs_DC30" )
Wait (0 .000010)

SetVoltage ( "Vs_DC30" , 0)
Wait (0 .000001)
Wait (0 .000001) # Repeat t h i s l i n e 500 t imes

ForceCurrent ( " IS_DC30" , 0 . 0001 )
SetClamp ( "IS_DC30" , 1)
ForceCurrent ( "VDD_DC30" , −0.0001)
SetClamp ( "VDD_DC30" ,−1)
ForceVoltage ( "Vs_DC30" ,0 )
SetClamp ( "Vs_DC30" , 0 . 1 )
ForceCurrent ( "Vs_1Alo " 0 .00005)
SetClamp ( "Vs_1Alo " , 1)
ForceCurrent ( "Vs_2Alo " 0 .00005)
SetClamp ( "Vs_2Alo " , 1)
ForceCurrent ( "Vs_3Alo " 0 .00005)
SetClamp ( "Vs_3Alo " , 1)
ForceCurrent ( "Vs_4Alo " 0 .00005)
SetClamp ( "Vs_4Alo " , 1)

Wait (0 .000001) # Repeat t h i s l i n e 500 t imes

gnd_vs = (MeterVoltage (VS_DC30) +
MeterVoltage (VS_DC30) +
MeterVoltage (VS_DC30) +
MeterVoltage (VS_DC30) +
MeterVoltage (VS_DC30) ) / 5 ;

CheckLimit (VS_DC30, −0.7 , 1000 ) ;

Now that we have got the intermediate file in our general language, we can translate
it into the input format (waveforms of the VPWLFs) of the simulation environment -
they are generated by the parser for the intermediate file. Here, we simply focus on the
instrument VS_DC30 and show the configuration files for it. The others are generated
in the same way. Note that the files of VS_DC30 which are not shown here, are set to
0V at every point in time.

Here we show, how the files generated by the parser look like for this instrument. They
exactly define the waveforms used for the connections, the sources and for the limit
checker. The connections within the instrument VS_DC30 are shown in the Listings 4.2,
4.3 and 4.4. During the continuity test, the instrument acts as a current source - the
current is shown in Listing 4.5.

Listing 4.2: Switch of the current source
0 0
9.0618 e−5 0
9.0619 e−5 0
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9 .062 e−5 0
9 .067 e−5 0
0.000109832 0
0.000110832 5
0.003291856 5
0.003292856 5
0.006362871 5
0.006363871 0

Listing 4.3: Channel A connect
0 0
8 .97 e−5 0
8 .98 e−5 5

Listing 4.4: Sense AHI connet
0 0
8 .99 e−5 0
9e−5 5

Listing 4.5: Current source
0 0
9.0618 e−5 0
9.0619 e−5 0
9 .062 e−5 0
9 .067 e−5 0
0.000109832 0
0.000110832 −0.001
0.003291856 −0.001
0.003292856 −0.00005
0.006362871 −0.00005
0.006363871 0
0.006863877 0
0.006864877 0

During the translation, also the limit checker for the continuity test is generated. The
corresponding Verilog-A code is shown in Listing 4.6. Note that we show just the state
machine. Every time the trigger signal crosses the value 2.5V, an event is recognized and
calculations, measurements or checks are performed. In case of an error (e.g. the average
of the measured voltage is less than -0.7V), the output voltage is set to 0V.

Listing 4.6: Limit checker code
@( i n i t i a l_ s t e p ) begin

output_value = 5 ;
end

@( c r o s s (V( c l k ) − 2 . 5 , 0 ) ) begin
case ( subs ta te )
0 :

buffer_vs_dc30 [ 0 ] = V( vs_dc30_voltage ) ;
1 :

buffer_vs_dc30 [ 1 ] = V( vs_dc30_voltage ) ;
2 :

buffer_vs_dc30 [ 2 ] = V( vs_dc30_voltage ) ;
3 :

buffer_vs_dc30 [ 3 ] = V( vs_dc30_voltage ) ;
4 :

buffer_vs_dc30 [ 4 ] = V( vs_dc30_voltage ) ;

gnd_vs = ( buffer_vs_dc30 [ 0 ] +
buffer_vs_dc30 [ 1 ] +
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buffer_vs_dc30 [ 2 ] +
buffer_vs_dc30 [ 3 ] +
buffer_vs_dc30 [ 4 ] ) / 5 ;

i f ( gnd_vs < −0.7) output_value = 0 ;
end

subs ta te = substa te + 1 ;
endcase

end

V( out ) <+ output_value ;

When we run this simulation, the corresponding signals are sourced and the functionality
is automatically verified. The waveforms for the connections of VS_DC30 are shown in
Figure 4.15 whereas the sourced current is illustrated in Figure 4.16 together with the
resulting voltage.

Figure 4.15: Connections of VS_DC30 for the continuity test

In Figure 4.17 we show the trigger signal for the continuity test together with the
measured voltage (from the voltmeter of VS_DC30). The voltage is about -520mV at
every measurement, therefore the behaviour of the DUT is correct and no fault was
recognized.

This example just gives a small overview of the translation process for mainly analog
signals. In more complicated test cases (e.g. timing test) also digital signals/checks
as well as timing checks are implemented. They can be read and checked by the limit
checker in the same way. Just keep in mind that digital signals significantly increase the
simulation time due to the number of transitions as we show in the evaluation section.
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Figure 4.16: Forced signals by VS_DC30 for the continuity test

Figure 4.17: Limit checker of the continuity test

Furthermore it needs to be mentioned that the limit checker was generated manually by
the approach introduced in this thesis. Caused by the limited module size of Visual Basic
it is not possible to use the code injection for variables and calculations. A possibility to
overcome this issue, would either be the usage of the network interface of an ATE tester
to figure out which commands are executed or setting up an interpreter for Visual Basic.

With this example, we conclude the translation of an ATE test program. In the next
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chapter we show the evaluation of this approach.
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CHAPTER 5
Evaluation

In the previous chapters, we gave an overview of how to parse an ATE test program
such that we can execute it in our modelled simulation environment. What remains is
the evaluation concerning simulation time and fault detection. In the first section, we
describe the concrete test setup and which tests were used for the evaluation. Afterwards
we continue with the evaluation of the simulation times for the single tests, before we
conclude with a concrete fault injection which needs to be detected by the test setup.

5.1 Setup
The top-level schematic we used for the evaluation is shown in Figure 5.1. In the middle,
one can see the block, containing the load board which is connected to the different
test instruments around it. Although we modelled one general instrument, some of
them are mainly used for analog signals while other ones are used for digital signals or
timing measurements, depending on how they are used in the test program. The tester
used for the final verification is Teradyne’s Flex Tester. On the right hand side of the
schematic, we have the limit checker with the needed input signals - they are connected
via connection by name. A detailed description of the models is given in Chapter 3.
Note that the top-level schematic as well as the load board need to be exchanged for
other versions of the DUT. The DUT used in our simulation is an Infineon chip. We
used spectre for the simulation. Furthermore, caused by the lack of large module sizes
in visual basic, the code injection is very limited, therefore we needed to implement the
limit checker manually in Verilog-A, following the description in this thesis.

As in the previous chapters, we neglect the concrete modelling of the load board since it
does not influence the simulation time in a relevant manner. In general, the whole ATE
setup, does not influence the simulation time significantly. Table 5.1 gives an overview of
the tests we used for the verification. Note that just an excerpt from the whole ATE
test program is shown. We divided this extraction into several independent parts. The
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Figure 5.1: ATE test setup

columns give the number of analog and digital transitions applied by our test instruments
during the given part. Furthermore we can have a look at the execution time of a specific
part needed on the real tester, which also influences the simulation time. Last but not
least, we note that the digital transitions are dominating in most of the parts. In the
next chapter we have a closer look at the simulation times of the different parts to get
an idea which factors increase the simulation time.

We note that Parts 1, 2 and 5 don’t contain so many digital transitions as the parts 3
and 4. Therefore we expect lower simulation times for these mainly analog parts of the
test program.

In general there might be dependencies between the introduced parts, yielding in the
necessity of simulating the whole ATE test (e.g. normally we would have to simulate
these parts in the given order). This is caused by the optimal setup used for ATE testing
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Part Digital Transitions Analog Transitions Duration
Part 1 0 84 30ms
Part 2 783 318 90ms
Part 3 9840 89 90ms
Part 4 3540 310 60ms
Part 5 1843 50 50ms

Table 5.1: Overview about the independent parts

- instead of disconnecting and reconnecting the same instrument between two parts, it
simply stays connected to be used in the next parts. Furthermore, in the case of DOT,
the given extraction of the ATE test must be simulated for every single fault, resulting in
insufficient high simulation times (as we see in the next section). To overcome this issue,
we decoupled the parts from each other manually, such that we can run them in parallel
and also in a different order which has also a high potential to decrease the simulation
time for a DOT test. Therefore the given parts are treated separately in the following
sections.

5.2 Simulation time

When having a look at DOT testing, simulation time becomes a crucial aspect. In this
section, we have a closer look at the single parts of the extraction of our ATE test and
how they influence the simulation time. Note that the environment used for modelling
the ATE does not influence the simulation time significantly. It is determined by the
complexity of the chip in our example. Of course, when the load board becomes more
complex (e.g. another DUT is used), it will contribute a significant amount of simulation
time. Note that we spent no efforts in optimizing the simulation time - this is not part of
this thesis. Furthermore no models of the function blocks of the DUT were used.

Figure 5.2 depicts the simulation times (in hours) of every independent part used in
our setup. As we see, part 3 needs a lot more simulation time than the mixed-signal
or pure analog parts. We suppose that this is caused by the long run time of this part
(90ms) together with a high number of digital transitions which seems to slow down the
simulation time. In contrast to part 3, part 1 just contains analog transitions together
with a low run time on the ATE, yielding in fast simulation times. We also note that
part 2 contains less digital transitions than part 5, but has a higher simulation time. We
explain this by the usage of an oscillator during part 5, which causes a huge amount
of transitions and slows down the simulation time. All in all, we note that the number
of digital transitions as well as the run time on the real ATE are the properties that
influence the simulation time.

In Figure 5.3 we depict the contribution of every single part to the whole simulation
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Figure 5.2: Simulation times

time (in percent). The overall simulation time is about 127 hours, where more than 60%
of this time are consumed by part 3. Also here, we can see that the number of digital
transitions provide a significant contribution to the simulation time.

Figure 5.3: Distribution of the test time in percent

All in all we note that a simulation time of 127 hours for one execution of this extraction
of the ATE test is too much for being used in a DOT test (a calculation gave an indication
that approximately 40 years would be needed to check every single fault). This is one
part, which needs to be extended in future work such that it is possible to use DOT.
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For example, NXP already introduced an approach for reducing the simulation time in
[KTH+11]. They run the whole simulation just one time to get a reference simulation.
Afterwards, the ATE test is just simulated in a boundary around the strobes - this
approach provides a big improvement concerning simulation time, while still most of the
faults are detected. Similar approaches for improving this time are proposed in [HDT+11]
or [FGK01].

5.3 Fault detection
Now that we got an idea about the needed simulation time, it remains to show that an
injected fault will also be detected. In this section, we inject a fault into the chip which
is surely detected by the continuity test on the ATE. The fault is an open at the pin IN4.

First of all, the expected behaviour of the DUT without faults is shown in Figure 5.4.
We have already seen, that the voltage measured at IN4 has to be in a certain boundary
around 700mV during the continuity test (while a given current is sourced on that pin).
Since this is a correct behaviour, we notice that the limit checker’s output stays at 5V
for the whole test.

Figure 5.4: Expected behaviour for the IN4 pin

Next, we insert an open in the pinning between the pin IN4 and the load board as can be
seen in Figure 5.5. Caused by this open, the current is not able to flow into the pin IN4
any more. This is the same behaviour as when there was an open between the pin and
the circuit inside the chip it is connected to.

When we simulate the ATE test with this injected fault, we get the results as shown in
Figure 5.6. On can see that the voltage now lies in the area of MV. This is caused by

65



5. Evaluation

Figure 5.5: Fault in the pinning of the chip

the current which can not flow somewhere. Note that on the real device, the chip or the
tester instruments might be destroyed by this behaviour - therefore the test engineer can
use a voltage/current clamp as we mentioned in Chapter 3. Since we did not implement
this feature, the voltage reaches this high value.

Furthermore, the graphic shows the output of the limit checker. It is 5V at the beginning
of the test. After approximately 27ms, the test is finished and the necessary strobes are
available - at this point in time the limit checks are performed. The figure shows that
the output of the limit checker switches from 5V to 0V indicating a failure. In a DOT
test this would stop the test since the fault was successfully detected.

This example acts as our proof of concept to show that the ATE test was successfully
translated and that the models of the simulation environment as well as the limit checker
are working correctly. For the moment, the limit checker was implemented manually in
Verilog-A - in future works this needs also to be done automatically, especially for more
complex post calculations.

In summary, we saw that the framework introduced in this thesis is working quite well and
able to detect injected faults. Compared to previous activities, where the focus lied on
the debugging of the test program, this solution can additionally be used for DOT testing
because of the exact modelling of the simulation (no models or other simplifications were
used). Future works need to focus on the reduction of the simulation time to improve
this approach such that it can be used for DOT testing. But with this extension, the
proposed framework is a good candidate to be used in industry.
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Figure 5.6: Faulty behaviour for the IN4 pin
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CHAPTER 6
Conclusion and future work

Caused by random manufacturing defects during the production of AMS devices, it is
necessary to perform a last verification before the chip is transferred to the customer. To
address this problem, the common approach in industry is the usage of an ATE - several
instruments provide different stimuli for the DUT and it is verified via strobes whether
the device meets all the specification requirements or not.

Although this is a well known methodology for the final verification, drawbacks like
uncertain information about the test coverage arise. Therefore it is desired to use the so
called DOT. To get better knowledge about the test coverage, it is necessary to simulate
a DOT. A DOT simulation can be divided into two parts: translating the ATE test setup
for being executed in a simulation environment and the fault injection. In this thesis, we
address the first one of these challenges. This challenge (especially the modelling part)
was already topic of several publications. What all of them have quite in common is
the focus on the debugging of a test program instead of DOT. Therefore they use less
accuracy and just small parts of the test program were simulated instead the whole one.
Also a working group for defining a portable stimulus has been evolved, but there are no
results available yet. To overcome these issues, we provide a generic framework which
exactly tackles these challenges and can be used for debugging an ATE test program as
well as for verifying a DOT.

Our first step was to figure out the core functionalities and common test cases in industry
to get a better knowledge of the required configurations for the model and which properties
can be neglected. In general we noticed that the needed behaviours of the ATE are
the ability to force and measure voltage/current and digital signals. Furthermore the
functionality of measuring time in an event driven way is needed. As an example we
used the continuity test throughout this thesis to show the concrete functionality of our
models and the translation.
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With the knowledge of the needed functionalities of an ATE we modelled the hardware
setup of the whole test, such that it can be controlled externally via files. Although in
most testers different test instruments with different capabilities (e.g. digital/analog
instruments, instruments with event stampers or high voltage/current instruments) are
available, we designed one schematic of a general instrument which combines all of these
functionalities. Because it is a very specific part of an ATE test, we neglected the load
board in the context of this work, just note that it must be redesigned when another
DUT is used.

Given the simulation model of a general ATE, it is necessary to translate the finished
test program such that it can be understood by the environment. In our case translating
means to generate waveform files for all the switches and sources used in the model.
Therefore we identified the core functionalities which need to be controlled from external
in the context of a test program written in an arbitrary programming language. We use
code injection to generate a general intermediate file from the specific ATE test program.
This approach ensures that just the necessary information needs to be parsed. From this
intermediate file, a parser generates the waveform files, the limit checker as well as a
script file to configure the file paths used in the simulation environment.

In the evaluation section, we gave an overview about the simulation times needed for
verifying the functionality of an Infineon chip with a concrete test setup and provided a
proof of concept with a concrete fault injection. Here we saw that it is indeed possible to
translate an ATE test program and verify the correct functionality of a DUT with our
approach. But there is still room for improvements in future works.

Currently the simulation time is much too high. One simulation of the introduced parts
of an ATE test needs about 127 hours. This would have to be executed for every possible
fault, which might be quite a lot. NXP described one possible solution for improving the
simulation time while keeping the fault detection intend. With this approach it is possible
to simulate only the time around a strobe instead of the whole test program. Also the
ordering of test cases in dependence of the injected fault can improve the simulation
time.

Another problem which occurred throughout the thesis was the modelling of a volt-
age/current clamp for the sources. In some test programs, the test engineer might run a
voltage source into the current limitation such that it acts like a current source. Modelling
this special kind of source becomes challenging when the clamping values are dynamic,
i.e. they can be arbitrarily changed during the program execution. We tried several
solutions we found and also asked the modelling experts for help without any success -
there is currently no way to model this special kind of source without getting convergence
problems during the simulation. Anyway, this case could simply be avoided by the test
engineer by using a current source instead of a voltage source and let it run into the
current limitation.

Although the simulation time is quite high for the moment, our approach is working
and can be used for the translation of an ATE test program into the given simulation
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environment. Since this methodology is very generic, it can be easily adjusted for
different ATE testers. Therefore the proposed framework can be used in industry for
the translation part of DOT tests and furthermore to debug the ATE test program in
an early stage (pre-silicon) of the design flow (also when POT is used). This will give a
quite good estimation of the test coverage, which can be used to ensure the quality of
the product.
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CHAPTER 7
Appendix

Within this chapter, one can find the code we used for the digital checker and the event
stamper written in Verilog-A. Listing 7.1 shows how we implemented the digital checker.
The output of the checker is set to 5V at the initial state. Whenever the clock signal
crosses 2.5V a new event is generated. In that case, the signal check indicates, whether
a logic high or low is expected. When a fault (mismatch) occurred, the output of the
checker is set to 0V and remains at this value.

Listing 7.1: Code of the digital checker
// Veri logA for wk_heindlma , d ig i ta l_checker , v e r i l o g a

‘ i n c lude " cons tants . vams "
‘ i n c lude " d i s c i p l i n e s . vams "

module d i g i t a l_checke r ( c lk , check , vih , v i l , in , out ) ;
input clk , vih , v i l , in , check ;
output out ;
e l e c t r i c a l c lk , vih , v i l , in , out , check ;

r e a l output_value ;

analog begin

@( i n i t i a l_ s t e p )
output_value = 5 ;

@( c r o s s (V( c l k ) −2.5 ,0)) begin
i f ( output_value >= 2 . 5 ) begin

i f (V( check ) >= 2 . 5 ) begin
i f (V( in ) < V( vih ) )

output_value = 0 ;
end else begin

i f (V( in ) > V( v i l ) )
output_value = 0 ;

end
end

end

V( out ) <+ output_value ;

end
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endmodule

The used implementation of the event stampers is shown in Listing 7.2. The output is set
to 0V in the initial state. When the enable signal crosses 2.5V with a rising transition,
the values of VIL and VIH as well as the trigger event are stored in the corresponding
variables. Whenever one possible event occurs, it is checked whether this event matches
the trigger event - in that case the actual time is measured and written to the output.
Note that an enable signal of 6V indicates an immediate time measurement without
waiting for an event.

Listing 7.2: Code of the event stamper
// Veri logA for wk_heindlma , event_stamper , v e r i l o g a

‘ i n c lude " cons tants . vams "
‘ i n c lude " d i s c i p l i n e s . vams "

module event_stamper ( enable , vih , v i l , t r igger_event , in , out ) ;
input enable , vih , v i l , t r igger_event , in ;
output out ;
e l e c t r i c a l enable , vih , v i l , t r igger_event , in , out ;

r e a l output_value ;
r e a l t r i gge r ing_event ;
r e a l vih_tmp , vil_tmp ;

analog begin
@( i n i t i a l_ s t e p ) begin

output_value = 0 ;
vih_tmp = 0 ;
vil_tmp = 0 ;
t r i gge r ing_event = 0 ;
output_value = 0 ;

end

@( c r o s s (V( enable )−5.5 ,+1)) begin
output_value = $abstime ;

end

@( c r o s s (V( enable )−2.5 ,+1)) begin
t r i gge r ing_event = V( tr igge r_event ) ;
vih_tmp = V( vih ) ;
vil_tmp = V( v i l ) ;

end

@( c r o s s (V( enable )−2.5 ,−1)) begin
t r i gge r ing_event = 0 ;

end

@( c r o s s (V( in)−vih_tmp ,+1)) begin
i f ( t r i gge r ing_event == 4) begin

output_value = $abstime ;
end

end

@( c r o s s (V( in)−vih_tmp ,−1)) begin
i f ( t r i gge r ing_event == 3) begin

output_value = $abstime ;
end

end

@( c r o s s (V( in)−vil_tmp ,+1)) begin
i f ( t r i gge r ing_event == 1) begin

output_value = $abstime ;
end

end
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@( c r o s s (V( in)−vil_tmp ,−1)) begin
i f ( t r i gge r ing_event == 2) begin

output_value = $abstime ;
end

end

V( out ) <+ output_value ;
end
endmodule
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