
Towards Model Driven Reverse
Engineering to UML Behaviors -
From C# Code to fUML Models

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Martin Lackner
Matrikelnummer 0927551

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel
Mitwirkung: Dipl.-Ing. Dr.rer.soc.oec. Tanja Mayerhofer, BSc

Wien, 9. Oktober 2017
(Unterschrift Martin Lackner) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Towards Model Driven Reverse
Engineering to UML Behaviors -
From C# Code to fUML Models

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Martin Lackner
Registration Number 0927551

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: O.Univ.Prof. Dipl.-Ing. Mag. Dr.techn. Gerti Kappel
Assistance: Dipl.-Ing. Dr.rer.soc.oec. Tanja Mayerhofer, BSc

Vienna, 9. Oktober 2017
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Martin Lackner
Völkendorfer Straße 8/15, 9500 Villach

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Villach, 9. Oktober 2017) (Unterschrift Martin Lackner)

i

Acknowledgements

I want to thank all the people who helped and supported me in completing this thesis. Excep-
tionally I want to thank Ms. Tanja Mayerhofer who has supported and guided me through this
work, and especially on her patience. In addition I want to thank Mrs. Kappel for supervising
my thesis. Last but not least, a big thanks to Sabrina who motivated me and went along with me
during the whole studies.

Thank you!

Martin Lackner

iii

Abstract

Model Driven Engineering (MDE) aims to raise the level of abstraction in software engineer-
ing by moving from code-centric approaches to model-centric ones, which means that the main
artifacts in the software development process are models. Thereby, MDE can be used for both
creating new software as well as modernizing or extending existing software. The latter usage
scenario of MDE requires the reverse engineering (RE) of existing software into higher-level
models. The main aim of RE is to extract information of existing software and obtain a more
abstract view for further analysis. Model Driven Reverse Engineering (MDRE) is the appli-
cation of MDE techniques to perform RE tasks. While many MDRE approaches for reverse
engineering the structure of a system already exist, there is a lack of approaches for also re-
verse engineering the behavior of a system, especially detailed behavior descriptions including
algorithmic details of the software. This work proposes an approach for overcoming this gap by
using MDE techniques to reverse engineer the detailed behavior of a system.

The goal of this work is to elaborate a mapping between code written in the general pur-
pose programming language C# and UML models conformant to fUML, by using an MDRE
approach. The OMG standard Semantics of a Foundational Subset for Executable UML Models
or foundational UML (fUML) is chosen because it is possible to precisely and completely de-
fine the behavior of a software system with fUML models. Thus, fUML is a suitable candidate
for serving as target language for MDRE approaches that aim to reverse engineer the detailed
behavior of a software system. A prototype has been developed in this thesis, which is able to
reverse engineer code written in C# to models conformant to fUML, and store them in the UML
modeling environment Enterprise Architect.

Furthermore, an evaluation framework was developed, which uses the developed prototype
to show the feasibility and practicality of the proposed MDRE approach. This framework ex-
ecutes fUML conformant models reverse engineered from C# code within the UML modeling
environment Enterprise Architect and compares the execution result of the model with the ex-
ecution result of the reverse engineered C# code to evaluate whether the model and the code
behave the same. Using this evaluation framework, two case studies have been carried out com-
prising 108 unit tests that evaluate the elaborated C#-to-fUML mappings. The evaluation results
show the general feasibility and practicality of the proposed MDRE approach. Furthermore, it
identifies that maintaining the correct object flow from C# code to fUML models is the most
challenging part of the C#-to-fUML mapping.

v

Kurzfassung

Model Driven Engineering (MDE) zielt darauf ab die Abstraktionsebene in der Softwareent-
wicklung durch die Verwendung von Modellen zu erhöhen. MDE Techniken können sowohl zur
Erstellung neuer Softwaresysteme verwendet werden, als auch um bestehende Softwaresysteme
zu modernisieren oder erweitern. Die letztere Anwendung erfordert das Reverse Engineering
(RE) von bestehenden Softwaresystemen zu abstrakteren Modellen. Das Hauptziel von RE ist
es, relevante Informationen über bestehende Software zu extrahieren und in abstraktere Modelle
für Analysezwecke abzubilden. Model Driven Reverse Engineering (MDRE) ist die Anwendung
von MDE Techniken für RE Aufgaben. Während bereits viele Ansätze existieren um strukturelle
Informationen über bestehende Systemen mittels RE in Modellen abzubilden, gibt es bis heute
kaum RE Ansätze, die detaillierte Verhaltensbeschreibungen von bestehenden Systemen extra-
hieren und abbilden. Im Zuge dieser Diplomarbeit wurde ein RE Ansatz erarbeitet, welcher
detaillierte Verhaltensmodelle erstellt.

Das Ziel dieser Arbeit ist es, ein Mapping zwischen Softwaresystemen, welche in der Pro-
grammiersprache C# programmiert sind, und UML Modellen, welche dem fUML Standard ent-
sprechen, zu erarbeiten. Um das Verhalten von bestehenden Softwaresystemen zu beschreiben,
wurde der OMG Standard Semantics of a Foundational Subset for Executable UML Models,
oder foundational UML (fUML) gewählt, da man mit fUML Modellen das Verhalten von Soft-
waresystemen präzise und komplett beschreiben kann. Somit ist fUML ein geeigneter Kandidat
als Zielsprache für einen MDRE Ansatz, welcher das detailierte Verhalten von Softwaresyste-
men abbilden soll. Im Zuge dieser Arbeit wurde auch ein Prototyp entwickelt, welcher in der
Lage ist, Softwaresysteme, die in C# programmiert wurden, zu fUML konformen Modellen zu
transformieren, und diese Modelle in der UML Modellierungsumgebung Enterprise Architekt
zu persistieren.

Weiters wurde ein Evaluierungs-Framework entwickelt, welche den erstellten Prototypen
nutzt, um die Machbarkeit und Praktikabilität des entwickelten MDRE Ansatzes zu zeigen.
Dieses Framework ist in der Lage, fUML konforme Modelle, welche aus C# Code extrahiert
wurden, in der Modellierungsumgebung Enterprise Architekt auszuführen, und die Ergebnisse
der ausgeführten Modelle mit jenen des ausgeführten C# Codes zu vergleichen. Damit kann
festgestellt werden, ob die berechneten Modelle und der untersuchte C# Code das selbe Ver-
halten aufweisen. Weiters wurden Fallstudien erarbeitet die 108 Unit Tests umfassen, um den
entwickelten MDRE Ansatz zu evaluieren. Die Evaluierungsergebnisse zeigen die Machbarkeit
und Praktikabilität des vorgestellten MDRE Ansatzes. Weiters wurde festgestellt, dass die kor-
rekte Abbildung von Objektflüssen in C# Code die größte Herausforderung im MDRE Prozess
darstellt.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work . 2
1.4 Methodological Approach . 3
1.5 Structure of the Work . 4

2 Background 7
2.1 Reverse Engineering . 7
2.2 fUML . 8
2.3 Enterprise Architect . 13

3 C# to fUML Mapping 15
3.1 Running Example . 15
3.2 Mapping of Structural Features . 16
3.3 Mapping of Behavioral Features . 23

4 Implementation of a C# to fUML Mapper 55
4.1 Enterprise Architect Add-In . 56
4.2 Parsing C# Source Code . 61
4.3 Transforming C# Models into fUML Models 69
4.4 Storing fUML Models in Enterprise Architect 70

5 Evaluation 73
5.1 Evaluation Framework . 73
5.2 Case Studies . 75
5.3 Results . 78

6 Related Work 87
6.1 fREX . 87
6.2 MoDisco . 88
6.3 Other Related Work . 90

7 Conclusion and Future Work 93

ix

7.1 Conclusion . 93
7.2 Future Work . 94

A Example Code 97

Bibliography 103

x

CHAPTER 1
Introduction

1.1 Motivation

Model driven engineering (MDE) aims to raise the level of abstraction by moving from code-
centric approaches to model-centric ones [5]. This is achieved by establishing models as first
class citizens and using models on different abstraction levels [24]. A very popular MDE
implementation is the Model Driven Architecture (MDA1) framework by the Object Manage-
ment Group (OMG2). It defines standards for applying MDE including the common metameta-
model called Meta-Object Facility [20], the modeling language called Unified Modeling Lan-
guage [21], language specifications for defining model transformations [17]), and many more.

MDE techniques can be used for creating new software as well as for modernizing or extend-
ing existing (legacy) software. This work focuses on the later use case, in particular the reverse
engineering of existing software systems. Reverse engineering (RE) is the process of computing
useful higher-level representations of existing systems. Initially invented for hardware analysis
it quickly extended its focus to software systems. The main goal of RE is to obtain a better
understanding of an existing software system to be able to update or upgrade it, reuse parts of it,
or perform reengineering tasks [10].

Model driven reverse engineering (MDRE) is the application of MDE techniques to perform
RE tasks [7]. It is used in software evolution scenarios, such as modifying legacy systems,
performing technical migrations from obsolete technologies to recent ones, platform migration,
refactoring tasks and maintenance scenarios.

MDRE techniques are required, whenever higher-level representations of a software system
are needed, but missing. This might be the case when the system has not been developed in a
model-based way or when the initial design models become obsolete due to evolutions of the
system that were performed independent of these models. In such a scenario, MDRE techniques
can be applied to obtain models of the existing system. Doing these tasks manually is too

1Model Driven Architecture - http://www.omg.org/mda/
2Object Management Group - http://www.omg.org/

1

time consuming and error prone, therefor an (semi-) automated process together with modeling
standards is desireable [30].

In 2011, OMG published the specification Semantics of a Foundational Subset for Exe-
cutable UML Models or fUML in short [25]. This standard selects a subset of the UML lan-
guage units Classes, Actions, Activities, and Common Behaviors, and defines a precise execu-
tion semantics for this subset. With fUML it is possible to precisely and completely define the
behavior of a software system. Thus, fUML is a suitable candidate for serving as target language
for MDRE approaches that aim to reverse engineer the behavior of a software system. However,
currently no MDRE approach exists, that supports the reverse engineering of software systems
into fUML conforming models.

1.2 Problem Statement

Most of the current existing MDRE approaches utilize UML class diagrams and UML state
machine as higher-level representations, of software systems, e.g., as target formalism for rep-
resenting software systems on a higher level of abstraction. The problem with these existing
approaches is that they are not mapping the whole behavior of software systems to the model
level. One factor that contributes to that is the lack of a complete and precise semantics of UML.
With the introduction of the fUML standard, a precise execution semantics for a defined sub-
set of UML, was introduced. When using fUML as target formalism it is possible to model the
whole behavior of a software system in a MDRE scenario using fUML conformant UML activity
diagrams. This enables a more accurate analysis of the behavior of a software system, e.g., the
analysis of non-functional properties described in the work of Fleck et al. [12]. Exhaustive code
generation in a forward engineering process is another advantage of an existing fUML model
containing the complete behavior of a software system. It is possible to change technologies or
programming languages without loosing information about the behavior.

Currently there are no existing MDRE approaches for object oriented programming lan-
guages which are targeting fUML. The fUML standard proposes a mapping between Java and
fUML, but this mapping is incomplete. This work focuses on generating fUML conformant ac-
tivity diagrams out of code written in C# to reverse engineer software systems implemented in
this object oriented programming language. As development/modeling environment, the UML
modeling tool Enterprise Architect from Sparx Systems3 is chosen, because it is widely used in
industry.

1.3 Aim of the Work

The goal of this work is to elaborate a mapping between code written in the general purpose
programming language C# and UML models conforming to fUML for the purpose of reverse
engineering software systems implemented in C# into UML models. This can be divided into
the following parts.

3Enterprise Architect - http://www.sparxsystems.com/products/ea/index.html

2

1. Mapping
As first part, a mapping between the programming concepts provided by C# and the mod-
eling concepts provided by fUML are elaborated. In particular, it is elaborated how to map
C# classes to fUML classes for reverse engineering the structure of a software system and
how to map C# method bodies to fUML activities for reverse engineering the behavior of
a software system. Furthermore, existing discrepancies between C# concepts and fUML
concepts are identified and a solution for overcoming these discrepancies are elaborated.

2. Prototypical implementation for Enterprise Architect
A prototypical implementation capable of reading in C# code and generating correspond-
ing fUML compliant activities in Enterprise Architect is developed to enable the validation
of the elaborated mapping between C# and fUML based on case studies. This prototypical
implementation can be divided into four components.

• Parsing
First, the C# code to be reverse engineered has to be parsed resulting in an abstract
syntax tree (AST).

• Transformation into a C# model
The AST from the previous step is transformed into a C# model conformant to a
C# metamodel. This C# model is elaborated within this thesis because there is no
existing C# metamodel which is available in the programming language C#.

• Transformation into an fUML model
The C# model resulting from the previous step is transformed into an fUML com-
pliant model consisting of classes and activities.

• Persistance
The last part of the implementation is concerned with storing the obtained fUML
model in Enterprise Architect. Therefor, an Add-In for Enterprise Architect has to
be implemented.

The separation of the implementation into several components enables the exchange of
different components to be able to address additional programming languages and target
UML environments in future. This possibility has been kept in mind during the imple-
mentation and is realized by adequate interfaces between the different parts.

1.4 Methodological Approach

The main focus of this thesis is the development of an MDRE approach that enables the transfor-
mation of C# source code to fUML compliant models. The methodology of the thesis is based
on the design science methodology [13].

The design science methodology is a research methodology which defines several guide-
lines aiming to produce information system artifacts efficiently [23]. The guidelines include the
awareness of a problem, the development of an artifact, the evaluation of the produced artifact,
and the communication of the research [13].

3

According to these guidelines, this thesis will be realized in four steps as described in the
following:

• Analysis
The first step is an intensive study of current state of the art MDRE methods that exist for
generating behavioral UML models from code. As the goal of this thesis is to generate
UML activity diagrams, in particular fUML compliant activity diagrams, this step should
also result in a better understanding of fUML. A profound analysis of the interfaces, which
Enterprise Architect provides, will also be performed because of the practical part of the
work. To be able to generate fUML compliant models in Enterprise Architect it must also
be analyzed how C# code can be analyzed to gain the needed information about the code.

• Elaboration of a mapping from C# to fUML
In this step, the mapping of C# classes to fUML classes, as well as the mapping of C#
methods to fUML activities has to be elaborated. Potential discrepancies between fUML
models and C# features should be also revealed in this step. Possible solutions for over-
coming these discrepancies should be elaborated.

• Development
This step consists of the development of a prototype integrated with Enterprise Architect
that reads in C# code and generates fUML compliant activity diagrams. This includes the
parsing of C# code, the creation of a C# code model, and the creation of an fUML com-
pliant model in Enterprise Architect. The behavior of the reverse-engineered C# source
code should be preserved by the transformation.

• Evaluation
To evaluate the mapping between C# and fUML for reverse engineering software applica-
tions developed in C#, case studies are carried out. In the case studies, C# applications will
be reverse engineered with the developed prototype. The resulting fUML models will be
evaluated with regard to (i) completeness, i.e., all information available in the source code
shall be retained in the fUML models, (ii) standard conformance, i.e., the fUML models
shall conform to fUML such that they can be executed with the standardized fUML virtual
machine, and (iii) behavioral equivalence, i.e., the C# code and the resulting fUML mod-
els considered in the case studies shall have the same behavior. Brunflicker [8] elaborated
a prototype which is capable of executing fUML compliant models using the execution
engine specified in the fUML standard, within the UML modeling environment Enter-
prise Architect. The evaluation uses this work, which enables the execution of the reverse
engineered fUML compliant models in Enterprise Architect.

1.5 Structure of the Work

The remainder of this work is structured as follows.
Chapter 2 discusses reverse engineering and its applications, gives a brief introduction into

the fUML standard of the OMG, and introduces the UML modeling environment Enterprise
Architect.

4

Chapter 3 is concerned with the mapping between features of the object-oriented program-
ming language C# and the concepts of fUML. It defines how to map C# classes to fUML classes
for reverse engineering the structure of a software system and how to map C# method bodies to
fUML activities for reverse engineering the behavior of a software system.

Chapter 4 is concerned with the implementation of a prototype which is capable of trans-
forming C# software systems to fUML compliant models in Enterprise Architect according to
the mappings introduced in Chapter 3. This includes the parsing of the source code, the trans-
formation into a C# model, the transformation into an fUML model, and the persistance of the
fUML model in Enterprise Architect.

Chapter 5 is concerned with the evaluation of the mapping between C# and fUML. In par-
ticular, it reports on case studies that were carried out using the implemented prototype and
discusses the appropriateness of the elaborated C#-to-fUML mappings.

Chapter 6 discusses related work, in particular, related MDRE approaches are described and
compared to this work.

Chapter 7 concludes this work and gives an outlook to future work.

5

CHAPTER 2
Background

2.1 Reverse Engineering

In the software development life-cycle, the maintenance phase can be seen as the most cost-
intensive phase [30]. Software systems will be changed over time in terms of bringing in new
functionality, bug-fixing or migrating it to other environments. This so called software evolution
process is of high importance in software development because software systems are commonly
used over many years once they are implemented. When using MDE approaches for creating
new software systems there might be models available, but over time these models are often
outdated due to evolutions of the software systems that were performed independent of existing
models. If software systems have not been developed in a model-based way there are often al-
most no models available and the most accurate and reliable description of the existing software
system is its source code. Reverse engineering is used to provide higher level views of existing
systems to gain better understanding of it. It helps to find high level information about systems
and provide indications about the impact of changes [30].

There are two different approaches for doing reverse engineering. In the first, dynamic anal-
ysis is used, e.g., if the source code is not or only partly available. Software systems will be
executed and trace information will be collected during running the software. This includes
information about objects which are manipulated and methods which are executed during the
run. From this tracing information, high level models representing the analyzed system are ob-
tained. This kind of reverse engineering can only capture parts of software systems, because not
all possible execution traces can be collected during one run of a software system. The second
approach is static analysis which statically analyzes the source code of the system and thus pro-
duces higher level models for all possible inputs and all execution traces, but needs the whole
source code of a software system, or at least the part which has to be reverse engineered [30] [9].
These two approaches can also be combined, e.g., static analysis can be used to recover the
structure of a system, and dynamic analysis is used to automatically search for behavioral pat-
terns using pattern matching algorithms [29]. The prototypical implementation described in this

7

thesis uses static analysis to reverse engineer software systems written in the object oriented
programming language C#.

In MDRE, different artifacts of an existing software system are used, like source code and
configuration files, to produce a set of models on a different abstraction level for the representa-
tion of such a system. These higher level models can be used for many different purposes, e.g.,
automated evaluation, quality assurance, further model-to-model transformations, etc. Usually
there are three phases included in a MDRE process. The first phase is called Model Discovery
which is used to create a set of initial models. These models represents the system at the same
abstraction level without losing any information of the source artifacts. The second phase is
called Model Understanding wherein different model manipulation techniques are used to ob-
tain higher-level views of the source system. The third phase is called Model (Re)Generation
which is used to display or generate the desired outcome of the whole reverse engineering pro-
cess [6]. According to Brunelière et al. [7], a full MDRE approach must provide the characteris-
tics of genericity, extensibility, full coverage, reusability, and automation. Genericity is achieved
through the usage of technology independent standards where specific technology support can
be plugged into generic ones. Extensibility refers to the decoupling of the represented informa-
tion and the different steps of the reverse engineering process. Full coverage refers to supporting
different abstraction levels of the source artifacts. Reusability relates to the re-usage and in-
tegration of provided components and the obtained models. Automation is achieved through
relying on predefined sets of model transformations which are already available due to the usage
of MDE techniques.

2.2 fUML

The current version of fUML is 1.3 [27] and was released in June 2017. fUML defines a subset of
UML 2 and specifies foundational execution semantics for this subset. The fUML specification
can be divided into three sections, the abstract syntax metamodel, the execution model and the
foundational model library. The abstract syntax metamodel defines the fUML metamodel, which
is a subset of the UML 2 Superstructure [22] metamodel with similarly named packages and
introduces additional constraints on some elements. The execution model defines the semantics
of fUML. The foundational model library defines primitive types and behaviors operating on
these types. As this work focuses on generating fUML conformant models, the abstract syntax
of fUML is described briefly in the following.

Abstract Syntax

The abstract syntax of fUML is defined as a subset of the UML metamodel, and contains UML
class modeling concepts for defining the structure of a system, and activity modeling concepts
for defining the behavior of a system. Furthermore, additional well-formed rules expressed as
OCL constraints are defined in the fUML standard.

Structure. Figure 2.1 depicts an overview of the fUML metamodel for modeling the structure

8

Namespace
Type

Classifier

BehavioredClassifier DataType

Feature
MultiplicityElement

StructuralFeature
TypedElement

Property

Association

Behavior

Class

Feature

BehavioralFeature
Operation

MultiplicityElement
TypedElement

Parameter

+ownedAttribute

*

+class

0..1

+ownedParameter*

+operation

0..1

+ownedBehavior

*

+behaviored-
Classifier

0..1

+classifierBehavior

0..1

+behavioredClassifier

0..1

+ownedAttribute *

+datatype 0..1

+memberEnd

2..*

+association
0..1

+ownedEnd

*

+owningAssociation

0..1

+method*

+specification0..1

+ownedOperation *

+class

0..1

+ownedParameter

*

+behavior

0..1

Figure 2.1: Excerpt of the fUML metamodel for modeling the structure of a system and the
connections to the behavior.

of a system. Classes (class Class) can own attributes (class Property), possible links between
class instances are defined by associations (class Association), and classes can own operations
(class Operation), which can have parameters (class Parameter). A property can be associated
to a structured data type (class DataType), which is a type whose instances are identified only
by their value. In this figure, we can also see the link between the structure and the behavior of
a system. In particular, behaviors (class Behavior) provide implementations of operations.

Behavior. Figure 2.2 depicts an overview of the fUML metamodel for modeling activities and
thus the behavior of a system. Activities (class Activity) consists of nodes (class ActivityNode)
and edges (class ActivityEdge). Edges are used to connect nodes with each other, either by
control flow edges (class ControlFlow) for defining the control flow between the nodes, or by
object flow edges (class ObjectFlow) for defining the flow of data between the nodes. Nodes are
separated into actions (class Action), control nodes (class ControlNode), and object nodes (class
ObjectNode). Actions are the fundamental unit of executable functionality in fUML. Control

9

Class

Behavior

Activity

RedefinableElement

ActivityNode

RedefinableElement

ActivityEdge

ExecutableNode ControlNode
TypedElement

ObjectNode
ControlFlow ObjectFlow

Action

+incoming

*

+target

1
+outgoing

*

+source

1

+edge *

+activity

0..1

+node*

+activity
0..1

Figure 2.2: Excerpt of the fUML metamodel for modeling the behavior of a system.

nodes are used to coordinate the flows between other nodes, for defining the start and the end of
an activity, and to model alternative and concurrent branches. Object nodes are used for defining
the input and output of actions and activities.

Action Language

The fUML subset contains 27 types of actions for different purposes. They can be categorized
into structural feature actions, object actions, link actions, communication actions, and struc-
tured activity nodes.

Structural Feature Actions

A structural feature action supports the reading and writing of structural features of objects,
which are instances of classes defined in an fUML model. It uses an input pin to obtain the

10

object whose structural feature should be accessed. Table 2.5 depicts the different structural
feature actions of fUML.

Action Description
AddStructuralFeatureValue Adds a value for the defined structural feature to the pro-

vided object.
RemoveStructuralFeatureValue Removes a value for the defined structural feature from the

provided object.
ClearStructuralFeature Removes all values for the defined structural feature from

the provided object.
ReadStructuralFeature Reads the value for the defined structural feature from the

provided object.

Table 2.1: Structural feature actions of fUML.

Object Actions

Object actions are used for handling instances of classes. Table 2.2 depicts the different object
actions of fUML.

Action Description
CreateObject Creates an object (instance) of a statically specified classi-

fier.
DestroyObject Destroys the provided object.
ReadSelf Provides the host object of the current behavior.
ReadIsClassifiedObject Returns a Boolean value which indicates whether the pro-

vided object is an instance of the defined classifier.
ReclassifyObject Adds the given classifiers to an object and removes the old

classifiers from that object.
ReadExtent Returns all instances of the defined classifier.
StartObjectBehavior Invokes an instantiated behavior of the provided object or

the classifier behavior of the provided object’s type.
StartClassifiedBehavior Invokes the classifier behavior of the provided object.

Table 2.2: Object actions of fUML.

Link Actions

Link actions are used for working on links, which are identified by the objects and ends of the
links. Table 2.3 depicts the different link actions of fUML.

11

Action Description
CreateLink Creates a link between the given objects.
DestroyLink Destroys the link between the provided objects.
ReadLink Retrieves an object linked with the provided objects via the

specified association and association end.
ClearAssociation Destroys all links of an association that have a particular

object at one end.

Table 2.3: Link actions of fUML.

Communication Actions

Communication actions are used for communication between activities, and invoking activities
synchronously or asynchronously. Table 2.4 depicts the different communication actions of
fUML.

Action Description
CallBehavior Invokes the defined behavior synchronously.
CallOperation Invokes the defined operation of the provided target object

synchronously.
SendSignal Creates a signal and transmits it to the specified target ob-

ject.
AcceptEvent Waits for the occurrence of an event meeting specified con-

dition defined by a trigger.

Table 2.4: Communication actions of fUML.

Structured Activity Nodes

Structured activity nodes are executable activity nodes which are representing a structured por-
tion of an activity. It is the only activity node which can contain other activity nodes. Table 2.5
depicts the different structured activity nodes of fUML.

Uncategorized Actions

There are other actions which are not part of any previously mentioned category. Table 2.6
depicts all uncategorized actions of fUML.

fUML Reference Implementation

Model Driven Solutions developed an open source implementation of fUML acting as reference
implementation1. This reference implementation is intended to encourage UML tool vendors

1http://portal.modeldriven.org/project/foundationalUML

12

Action Description
StructuredActivityNode Executes the contained activity nodes.
ConditionalNode A conditional node represents an exclusive choice among a

number of alternatives. It executes one body section whose
test section evaluates to true.

LoopNode Represents a loop with setup, test, and body sections. It ex-
ecutes the body section as long as the test section evaluates
to true.

ExpansionRegion Executes the contained activity nodes multiple times corre-
sponding to elements provided through an input collection.

Table 2.5: Structured activity nodes of fUML.

Action Description
TestIdentity Tests whether two values are identical.
ValueSpecification Provides the value according to the defined specification.
Reduce Reduces a collection to a single value by applying the de-

fined behavior.

Table 2.6: Uncategorized actions of fUML.

to implement the fUML standard and in their tools is conformant to the fUML virtual machine
described in the fUML standard [25]. The reference implementation allows to load UML con-
formant models which are stored in an XMI file and execute UML activities defined in such
models. Produced output values are provided as output of the execution.

Brunflicker [8] uses this reference implementation in the prototype elaborated within his
master’s thesis for executing fUML compliant models within the UML modeling environment
Enterprise Architect. This work uses this prototype for the evaluation of the proposed C#-to-
fUML mappings which is further described in Chapter 5.

2.3 Enterprise Architect

Enterprise Architect is a UML modeling environment from the Australian company Sparx Sys-
tems Pty Ltd. The first version 1.1.3 was released about 17 years ago. The current version 13
was released in 2016. Enterprise Architect offers functionality for requirements management,
project management, test management, code engineering, simulation, and many more. It sup-
ports many standards, such as UML 2, SysML2, BPEL3, and WSDL4. It provides full life cycle
modeling for business and IT systems, software and systems engineering, and real-time and em-
bedded development. Enterprise Architect is mainly designed for Windows systems, but can

2Systems Modeling Language - http://www.omgsysml.org/
3Business Process Execution Language - http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
4Web Service Description Language - http://www.w3.org/TR/wsdl

13

also be used on UNIX based operating systems with the open source software WINE5, which is
a compatibility layer capable of running Windows applications on POSIX6-compliant operating
systems [28].

Enterprise Architect offers an automation interface, which provides access to the internals
of Enterprise Architect models from any development environment which is capable of gener-
ating ActiveX COM clients. The internal storage format of Enterprise Architect is a relational
database, e.g., MySQL, Oracle, SQL Server. The universal open source database Firebird7 or an
Microsoft Access8 database can be used by default in the current version.

Enterprise Architect allows users to extend the modeling capabilities to specific domains and
notations by so-called Model Driven Generation (MDG) technologies. With MDG technologies
it is possible to provide further UML profiles, patterns, templates, etc., by using UML support
mechanisms like Tagged Values, Stereotypes, Profiles or Design Patterns. There are MDG tech-
nologies for several existing technologies available, e.g., for SysML, Archimate or BPMN, but
any user can also provide custom ones.

Due to the fact that fUML is a subset of the UML standard and Enterprise Architect is used
as UML modeling environment, it is also possible to create fUML models within Enterprise Ar-
chitect. There are some limitations regarding modeling fUML within Enterprise Architect, e.g.,
some actions are missing from the UML standard. The specific limitations which are relevant
for this work are discussed in Chapter 5.

5WINE - https://www.winehq.org/about/
6Portable Operating System Interface - http://standards.ieee.org/develop/wg/POSIX.html
7Firebird - http://www.firebirdsql.org/
8Microsoft Access - https://products.office.com/en-us/access

14

CHAPTER 3
C# to fUML Mapping

In this chapter a mapping from C# programming concepts to fUML modeling concepts is elab-
orated. This includes the mapping of C# classes to fUML classes which accounts the structure
of a software system, as well as the mapping of C# method bodies to fUML activities which
accounts the behavior of a software system. Conceptual differences and discrepancies between
C# and fUML are identified and possible solutions are elaborated in this chapter.

The mapping of the structural features are quite straightforward, because C# and fUML have
a lot of similarities as both follow the object-oriented paradigm. The mapping of the behavioral
features are mainly based on the proposed Java to fUML mapping described in the fUML stan-
dard. For this mapping the fUML standard v1.1 was used [26]. All mappings in this chapters
are described with the help of the example which is introduced in Chapter 3.1. Chapter 3.2 de-
scribes the mapping of structural features, while Chapter 3.3describes the mapping of behavioral
features of C#.

3.1 Running Example

This section introduces an example based on which the mapping is described. Figure 3.1 depicts
a class diagram which shows the relevant C# classes, their properties and associations. The class
Student consists of the properties Age, FirstName, LastName, MatNr, and University. It also
contains a default constructor and two other constructors, as well as an association to the Uni-
versity class. The University class consists of a Name and Students property, and it also offers
methods for adding and removing students from the Students property. The interface IAdminis-
tration declares the CreateUniversity method which is implemented by the Administration class.
The Administration class has an association to the University class and offers utility operations
for querying and manipulating Student and University objects. The corresponding C# program
can be found in Appendix A.

15

Student

- Age: int
- FirstName: string
- LastName: string
- MatNr: int

+ Student()
+ Student(string, string, int)
+ Student(int)

«property»
+ Age(): int
+ FirstName(): string
+ LastName(): string
+ MatNr(): int

University

- Name: string

+ AddStudent(Student): void
+ ClearAllStudents(): void
+ InsertStudentAt(Student, int): void
+ RemoveStudent(Student): void
+ RemoveStudentAt(int): void
+ University()
+ University(string)

«property»
+ Name(): string

Administration

+ AreStudentsEqual(bool, Student, Student): bool
+ CalculateYear(int, int): int
+ CreateStudent(Student): Student
+ CreateStudentForUniversity(Student, University): Student
+ CreateUniversity(University, string): University
+ GetAllTestStudents(University): List<Student>
+ IsStudent(bool, Student): bool
+ IsStudentOfFullAge(bool, Student): bool
- IsStudentOlderThan(bool, int, Student): bool
+ ResetMatNrOnAllStudentsIterative(University): void
+ SetUniversityOnStudent(University, Student): void
+ TestForNull(bool, Student): bool

«interface»
IAdministration

+ CreateUniversity(University, string): University

+universities

0..*

+administration 0..1

+students 0..*

+university 0..1

Figure 3.1: Class diagram of the running example.

3.2 Mapping of Structural Features

This section describes the mapping from structural C# features to fUML class modeling con-
cepts for reverse engineering the structure of a system. Most UML modeling environments are
capable of reverse engineering the structure of software systems, therefor only the most relevant
mappings are described in this section. The mapping of each feature is explained by a generic
C# code snippet showing the respective C# feature, a description of the feature and its mapping
to fUML, an example C# code using the feature, an excerpt of the fUML metamodel relevant
for mapping the C# feature to fUML, and an fUML model corresponding to the example code.

Classes
[public|private|protected|internal] [abstract|sealed] [partial]
class <ClassName> {...}

16

C# classes are mapped to fUML classes, which inherit the isAbstract and isFinalSpecialization
property from the fUML class Classifier. The isAbstract property indicates that a class is an
abstract class and the default value is false, and the isFinalSpecialization property indicates if a
Classifier can be specialized by generalization and the default value is false. Abstract C# classes,
indicated by the keyword abstract, will be mapped to fUML classes with the property isAbstract
set to true. The sealed keyword in C# prevents a class for further specializations and this is
expressed in fUML by setting the property isFinalSpecialization to true on fUML classes. The
name and visibility properties are inherited by the fUML class Class from the NamedElement
class in fUML. Using the partial keyword on class declarations in C# indicates that a class is
split to two or more class declarations which are combined in one class with all its members at
runtime. Therefor partial classes will be mapped to one fUML class containing all properties of
the declared partial classes. There is no support for static classes, neither in UML nor in fUML
and therefor they are omitted in this work. The class-modifier internal of C# is mapped to the
VisilibityKind package.

C# example:
public class Student {...}

Relevant fUML metaclasses:
«enumeration»

VisibilityKind

public

private

protected

package

Class

NamedElement

+ name: string

+ visibility: VisibilityKind

BehavioredClassifier

Classifier

+ isAbstract: bool = "false"

+ isFinalSpecialization: bool = "false"

Type

PackageableElement

17

fUML model:
Student: Class

isAbstract = "false"

isFinalSpecialization = "false"

name = "Student"

visibility = "public"

Enumerations
[public|private|protected|internal] enum <EnumerationName>
{<identifier1>, <identifier2>, ...}

C# enumerations are mapped to fUML enumerations which are owning an EnumerationLiteral
collection. Each EnumerationLiteral is an InstanceSpecification which is a NamedElement.

C# example:
public enum Color {
red,
green,
black

}

Relevant fUML metaclasses:

Enumeration EnumerationLiteral

InstanceSpecificationNamedElement

+ name: string

+enumerationLiteral

*

+/classifier

1

+enumeration

0..1

+ownedLiteral

*

fUML model:
Color: Enumeration

red :EnumerationLiteral

+ name = "red"

green :EnumerationLiteral

+ name = "green"

black :EnumerationLiteral

+ name = "black"

+ownedLiteral

enumeration

+ownedLiteral+ownedLiteral

18

Interfaces
[public|private|protected|internal] [partial] interface
<InterfaceName> {...}

C# interfaces are mapped to fUML classes with the property isAbstract set to true. The fUML
standard [25] proposes to achieve the effect of interfaces by using abstract classes with entirely
abstract operations.

C# example:
public interface IAdministration {...}

Relevant fUML metaclasses:
«enumeration»

VisibilityKind

public

private

protected

package

Class

NamedElement

+ name: string

+ visibility: VisibilityKind

BehavioredClassifier

Classifier

+ isAbstract: bool = "false"

+ isFinalSpecialization: bool = "false"

Type

PackageableElement

fUML model:
IAdministration: Class

isAbstract = "true"

isFinalSpecialization = "false"

name = "IAdministration"

visibility = "public"

Inheritance and interface implementation
public class <ClassName> : <BaseClass>, <BaseInterface1>,
<BaseInterface2> {...}

19

Inheritance is a primary concept of an object-oriented programming language. Inheritance en-
ables extension and reusing of existing classes, as well as the modification of the behavior which
is defined in other classes. An inherited class can only have one direct base class in C#. Mul-
tiple inheritance is not allowed, but a class can implement multiple interfaces. When a class
implements an interface, it must provide an implementation for all members of the interface.
Inheritance is mapped to the fUML Generalization class which is associated to one specific and
one general Classifier in fUML. Remember that C# interfaces are mapped to abstract classes in
fUML.

C# example:
public class Administration : IAdministration {...}

Relevant fUML metaclasses:
GeneralizationClassifier

+ isAbstract: bool

Class

BehavioredClassifier

+generalization

*

+specific

1

+general

1

+generalization

*

fUML model:
:GeneralizationIAdministration: Class

isAbstract = "true"
name = "IAdministration"
visibility = "public"

Administration: Class

isAbstract = "false"
name = "Administration"
visibility = "public"

+general +generalization

+generalization+specific

Fields
[public|private|protected|internal] [const] [static] <type>
<FieldName>;

20

C# fields are variables of any type declared directly in a class. Fields are mapped to fUML
properties which are contained by a class. An fUML Property is a StructuralFeature which
is a Feature itself. If a field is static, the property isStatic of the Feature is set to true. If
a field is a constant (expressed by the const keyword in C#), the property isReadOnly of the
StructuralFeature is set to true. Each StructuralFeature is also a TypedElement which defines a
Type property and refers to the type of the field.

C# example:
public class Student {
private int age;
}

Relevant fUML metaclasses:

PropertyClass

StructuralFeature

+ isReadOnly: bool

Feature

+ isStatic: bool

TypedElement

+ type: Type

NamedElement

+ name: string
+ visibility: VisibilityKind

+ownedAttribute

*+class

0..1

fUML model:
Student: Class age: Property

isReadOnly = "false"
isStatic = "false"
name = "age"
type: Integer
visibility = "private"

+class

+ownedAttribute

Methods
[public|private|protected|internal] [static|abstract]
<return-type> <MethodName> ([out|ref] <type1> <param1>,
...){...}

21

C# methods are mapped to fUML operations. Each parameter of the method becomes an fUML
parameter, also the return parameter if any available. Parameters in fUML have an Parameter-
DirectionKind property which indicates the direction of the parameter. Possible directions are
in (call-by-value), out, inout (call-by-reference), and return (for the return value). C# out pa-
rameters are mapped to fUML inout direction whereas C# ref parameters are mapped to fUML
out direction. The return type is mapped to a parameter with direction return. Furthermore it
can have a reference to a type, which is the type of the return parameter if it is available. Each
operation is linked to an activity which defines the behavior of the method. If a method is static,
the property isStatic of the fUML class Feature is set to true, and if a method is abstract, the
property isAbstract of the fUML class BehavioralFeature is set to true. The mapping of the
method bodies is explained in detail in Section 3.3.

C# example:
public class Administration {
public int CalculateYear(int nr) {
...
}
}

Relevant fUML metaclasses:

Class Operation

Parameter

+ direction: ParameterDirectionKind

«enumeration»
ParameterDirectionKind

in
out
inout
return

Activity

Type

BehavioralFeature

+ isAbstract: bool

Feature

+ isStatic: bool

TypedElement

+ type: Type

NamedElement

+ name: string

RedefinableElement NamedElement

+ name: string
+ visibility: VisibilityKind

«enumeration»
VisibilityKind

public
private
protected
package

+specification

0..1 +method

*+ownedOperation

*+class

0..1

+ownedParameter *

+operation 0..1 +operation1

+/type 0..1

22

fUML model:
Administration:

Class
CalculateYear: Operation

isAbstract = "false"
isStatic = "false"
name = "CalculateYear"
visibility = "public"

nr: Parameter

direction = "in"
name = "nr"

return: Parameter

direction = "return"
name = "return"

CalculateYear:
Activity

int: DataType

name = "int"

int: DataType

name = "int"

operation

ownedParameter

type method

specification

operation

ownedParameter

operation

class

type

3.3 Mapping of Behavioral Features

This section describes the mapping from C# method bodies to fUML activities for reverse en-
gineering the behavior of a system. Each mapping is explained by a generic C# code snippet
showing the respective C# feature, a description of the feature and its mapping to fUML, an
example C# code using the feature, an excerpt of the fUML metamodel concerened with repre-
senting that feature in fUML, and the fUML activity diagram representing the example C# code.
The mappings of behavioral features reclines on the Java-to-fUML mapping defined in Annex
A of the fUML standard [26].

Method declaration
Each method body is mapped to an activity with the corresponding operation set as its speci-
fication. Input parameters are mapped to input activity parameters and corresponding activity
parameter nodes. The body of the method is mapped to a structured activity node that contains
the mappings of each statement of the body. If the method has a non-void return type there
must be at least one return statement with an expression. The result of the mapping of the return
expression is connected by an object flow to the return activity parameter node.
A fork node for each method parameter is introduced because of the possibility of multiple usage
of method parameters within the method body. If a method parameter is used within the body it
is connected by an object flow from the corresponding fork node to its usage in the body. If a
method parameter is only used once inside the method body, the fork node can be omitted.

C# code:
public <type> <method>(<type1> <param1>) {
<body>
return <expression>;
}

23

Relevant fUML metaclasses:

Activity

StructuredActivityNode

ActivityParameterNode

ObjectFlow InputPin OutputPin

Pin

ObjectNode

ActivityNode

ActivityEdge

ControlFlow

ControlNode

ForkNode

Parameter

Action ExectuableNode

+edge*

+activity

0..1

+outgoing

*

+source 1

+node

*

+inStructuredNode

+node

*+activity

0..1

+edge *

+inStructuredNode 0..1

+activityParameterNode 1

+parameter 1

+incoming

*

+target 1

+activity

0..1+structuredNode

0..*

Resulting fUML activity:
<method>

<param1>:
<type1>

return: <type>

«structured»
mapping of <body>

«structured»
mapping of

<expression>
:<type>

Literals
A literal is mapped to a value specification action with the corresponding literal value, and must
be of type Integer, Real, Boolean, String, or UnlimitedNatural. The value specification action
provides the value via its result output pin with the corresponding type of the literal value.

C# example:
„this is a literal string“

24

Relevant fUML metaclasses:

LiteralString

+ value: String

LiteralSpecification

ValueSpecificationValueSpecificationAction

OutputPin

LiteralBoolean

+ value: Boolean

LiteralInteger

+ value: Integer

LiteralReal

+ value: Real

LiteralUnlimitedNatural

+ value: UnlimitedNatural

+value

+result

Resulting fUML activity (excerpt):

value = "this is a literal string"

ValueSpecification

result: String

This
A use of this maps to a read self action which provides the context object of the containing ac-
tivity on its result output pin. The context object which corresponds to the current class instance
on which the activity is executed. The type of the output pin depends on the class of the current
object. Also an implicit use of this, e.g., if the keyword this is omitted, maps to a read self action.

C# code:
this

Relevant fUML metaclasses:
ReadSelfAction OutputPin

+result

Resulting activity part(s):
ReadSelf

result: <<Class>>

Local variable declaration
<type> <variableName> [= <initializationExpression>];

25

A local variable declaration statement maps to a fork node to be able to read the value multiple
times. The proposed Java to UML Activity Mapping of the fUML standard [25] requires an
initialization expression on local variable declaration in the source code. Therefor, the fork
node receives an object flow from the result of the mapping of the initialization expression. To
overcome this limitation, the fork node is introduced on the first variable assignment if there
is a local variable declaration without initialization expression. In the following example the
initialization expression maps to a value specification action. The result output pin is connected
to a fork node which represents the local variable. Whenever this local variable is used later, the
value is received by an object flow from this fork node.

C# example:
int magicNumber = 23;

Relevant fUML metaclasses:

ValueSpecification

LiteralSpecification

LiteralInteger

+ value: Integer

ValueSpecificationAction OutputPin

ObjectFlow

ForkNode

+result

+source

+outgoing

+value

+target

+incoming

Resulting fUML activity (excerpt):

value = 23
ValueSpecification

result: Integer
magicNumber

Instance variable assignment
<object>.<field> = <value>;

An instance variable assignment maps to an add structural feature value action with the property
isReplaceAll set to true. The isReplaceAll property indicates if existing values of the structural
feature of the object should be removed before adding the new value. The value to be assigned
must be provided to the value input pin, and the object which contains the instance variable
must be provided to the object input pin of the add structural feature value action. In the follow-
ing example the structural feature of the add structural feature value action is connected to the
structural feature University of the Student class.

26

C# example:
student.University = uni;

Relevant fUML metaclasses:

AddStructuralFeatureValueAction

+ isReplaceAll: bool

InputPin WriteStructuralFeatureAction

InputPin StructuralFeatureAction Property

StructuralFeature

+value

+object +structuralFeature

Resulting fUML activity (excerpt):

University (structuralFeature=Student.University)
isReplaceAll = "true"

AddStructuralFeatureValue

value: University

object: Student
student

uni

Instance variable access
<object>.<field>

An access of an instance variable maps to a read structural feature action for the structural feature
of the corresponding instance variable. The object which contains the desired instance variable
must be provided to the object input pin of the read structural feature action, and the value of the
structural feature will be provided on the result output pin.

C# example:
this.age

Relevant fUML metaclasses:

ReadStructuralFeatureAction

StructuralFeatureAction

OutputPin

InputPin Property

StructuralFeature

+object

+result

+structuralFeature

Resulting fUML activity (excerpt):

age (structuralFeature=Student.age)

ReadStructuralFeature

object:
Student

result:
Integer

<object>

27

Auto-implemented properties
Since version 3.0 of C#, auto-implemented properties can be declared when no additional logic
is required for the property accessors. In such cases, the compiler creates a private anonymous
backing field that can only be accessed through the property’s get and set access operations.
A property for the private field and an activity for each accessor is created in fUML for auto-
implemented properties. In the example below, the activity set_Name is created for the set
accessor which references the set_Name operation by its specification property, and the activity
get_Name is created for the get accessor which references the get_Name operation by its spec-
ification property. The Name property of the class is referenced by the structural feature of the
add structural feature value action and the read structural feature action in the activity set_Name
and get_Name, respectively.

C# example:
public class University {
public string Name{ get; set; }
}
Equivalent code which will be generated by C# internally:
public class University {
private string _Name;
public string get_Name { return this._Name; }
public void set_Name { this._Name=value; }
}

Resulting fUML class:
University

- _Name: string

+ get_Name(): string
+ set_Name(string): void

Resulting fUML activities:
set_Name (specification=Student.set_Name)

value: String

ReadSelf object

(structuralFeature=Student._Name)
isReplaceAll = "true"

AddStructuralFeatureValue
object

value

ActivityInitial

ActivityFinal

get_Name (specification=Student.get_Name)

return: String

ReadSelf

object

(structuralFeature=Student._Name)

ReadStructuralFeature

object

result

ActivityInitial

ActivityFinal

28

Method call
[retvar =] <object>.<operation>(<param1>, <param2>,...);

A method call maps to a call operation action which references the called operation. For each
argument of the called method an input pin is created. If the method returns a value, the call
operation action defines also one output pin. The property isSynchronous of the call action deter-
mines if the operation has to be executed synchronously or asynchronously and is set to true on
method calls. The example method IsStudentOlderThan of the class Administration demands a
Student object and an integer value as input, and returns a value of type bool. Another important
point is that accessing properties by getter/setter operations which looks like an instance variable
use/assignment (e.g. student.FirstName), is also mapped to call operation actions. This
includes auto-implemented properties as well as user defined properties.

C# example:
IsStudentOlderThan(student, 17);

Relevant fUML metaclasses:

CallOperationAction

InputPin

Operation

OutputPin
CallAction

+ isSynchrounus: bool

InvocationAction

+result

0..*

+arguments0..*

+target

+operation

Resulting fUML activity (excerpt):

CallOperation
(Administration::IsStudentOlderThan)

return: bool

age: int

student: Student

target: Administration

17
ValueSpecification

result:
Integer

isSynchrounus = "true"

Object creation
new <ClassName>(<param1>);

29

An object creation maps to a create object action which provides the created object on its result
output pin. fUML does not allow class properties to have default values. The default values will
be mapped in the so-called classified behavior of a class to bypass this limitation. Each mapped
class gets an activity _ClassifiedBehavior which handles the mapping for default values of fields.
The mapped class and the activity are connected by a reference. A start object behavior action
which executes the classified behavior will be called after each create object action. Each class
in fUML may have at most one classified behavior. The isSynchrounus property must be set to
false due to a constraint in fUML. To overcome another limitation of fUML, which defines that
a class can only have a default constructor without parameters, for each available constructor an
operation is created and this operation is called after the start object behavior action is executed
if an other constructor than the default one is used. Control flows must be used in this example
to obtain the right order of the execution.

C# example:
public Student CreateStudent() {
return new Student(123456);
}
Relevant C# code in the Student class:
public class Student {
...
public int MatNr { get; set; }
private int age = 18;
...
public Student(int matNr)
{
MatNr = matNr;

}
...
}

30

Relevant fUML metaclasses:

CreateObjectAction

StartObjectBehaviorAction

CallOperationAction InputPinOutputPin

Class

CallAction

+ isSynchrounus: bool

Operation

Classifier

BehavioredClassifier
Behavior Activity

InvocationAction

+object

+operation

+result 0..*

+result

+target

+classifier-
Behavior

+classifier

+argument 0..*

+ownedOperation

0..*

Resulting fUML activity:
CreateStudent (specification=Administration.CreateStudent)

return: Student

Student
CreateObject

result: Student

CallOperation
(Student::Student)

matNr: inttarget: Student

123456
ValueSpecification

result: Integer

ActivityInitial

ActivityFinal

StartObjectBehavior
_ClassifiedBehavior

isSynchrounus = "false"

object:
Student

isSynchrounus = "true"

31

Relevant fUML activities of the Student class:

Student (specification=Student.Student)

Student: Student

matNr: Integer

CallOperation
(Student::set_MatNr)target: Student

_MatNr: int

isSynchrounus = "true"

_ClassifiedBehavior (specification=Student._ClassifiedBehavior)

value = 18
ValueSpecification

result: Integer
(structuralFeature=Student.age)

isReplaceAll = "true"

AddStructuralFeatureValuevalue: Integer

object: Student

ReadSelf object: Student

ActivityInitial

ActivityFinal

Equality comparison
<arg1> == <arg2>

It can be distinguish between two different types of equality comparisons in C#. The first one is
value equality known as equivalence, which compares two values contained by a variable. The
second one is reference equality or identity, which determines where two variables refer to the
same underlying object in memory. In fUML both types are mapped to a test identity action
which gets two arguments on its input pins and provides a result output pin of type Boolean.
fUML as well as C# handles the two different types of equality comparison in the same way. On
primitive types it will be compared for value equivalence and on reference types for reference
equality. Testing for inequality (in C# with the operator !=) is also mapped to a test identity
action, but the result has to be negated (by using a call behavior action on the boolNeg primitive
behavior which is described in the end of this section).

C# example:
public bool AreStudentsEqual(Student student1, Student
student2) {
return student1 == student2;
}

32

Relevant fUML metaclasses:
TestIdentityActionInputPin OutputPin+first

+result

+second

Resulting fUML activity:
AreStudentsEqual

(specification=Administration.AreStudentsEqual)

student1: Student

student2: Student
return: Boolean

==

TestIdentity

second: Student

first: Student

result: Boolean

Testing for null
<object> == null

Testing for null is mapped to a test whether the argument of the test has a list size of zero,
because the concept of null is not present in fUML. The list length of the argument is obtained
by a call behavior action on the ListSize behavior of the primitive behaviors described in the end
of this section.

C# example:
public bool TestForNull(Student student) {
return student == null;
}

Relevant fUML metaclasses:

CallBehaviorAction Behavior

TestIdentityActionInputPin OutputPin

CallActionInvocationAction

+second

+argument0..* +result 0..*

+behavior

+first
+result

33

Resulting fUML activity:
TestForNull (specification=Administration.TestForNull)

return: Boolean

student: Student

CallBehavior: ListSize

result: Integer
list[*]

==
TestIdentity

first: Integer

second:
Integer

result: Boolean

0
ValueSpecification

result:
Integer

Operator expressions
<arg1> <operator> <arg2>

Operator expressions are mapped to call behavior actions calling the primitive behavior corre-
sponding to the operator and the type of the arguments. Unary operators (e.g., negation) are
mapped similarly, except that they have only one argument and the call behavior action has only
one input pin. The following example also demonstrates an operation call for accessing the Age
property of the student (the getter of the property is called).

C# example:
public bool IsStudentOlderThan(Student student, int age) {
return student.Age > age;
}

Relevant fUML metaclasses:

CallBehaviorAction Behavior

InputPin

OutputPinCallOperationAction

Operation

CallAction

InvocationAction

+arguments

0..*

+behavior

+target

+operation

+result

0..*

34

Resulting fUML activity:
IsStudentOlderThan

(specification=Administration.IsStudentOlderThan)

return: Boolean

student: Student

age: Integer

CallOperation
(Student::get_Age)

return: Integer
target:
Student

CallBehavior:
intGreater

return:

x: Integer

y: Integer

Type checking
<object> is <Class>

The test whether an object is an instance of a certain class by using the C# operator is, is mapped
to a read is classified object action. The object to be tested is passed to the object input pin, and
the class is set as classifier of the action.

C# example:
public bool IsStudent(object student) {
return student is Student;
}

Relevant fUML metaclasses:
ReadIsClassifiedObjectAction

Classifier

InputPin OutputPin

+classifier

+result+object

Resulting fUML activity:
IsStudent (specification=Administration.IsStudent)

student:
Object

return: Boolean
:Student

ReadIsClassifiedObject

object result:
Boolean

If-else statements
if (<testexpression>){
<body1>
}
else {
<body2>
}

35

An if-else statement is mapped to a structured activity node with an initial node connected to a
decision node by a control flow. The decision node gets a decision input flow from the mapping
of the test expression and has two outgoing control flows with guards. One control flow is
connected to a structured activity node for the if branch with true as guard, the other control flow
is connected to a structured activity node for the else branch with false as guard. The statements
within each branch are mapped separately within each structured activity node. The structured
activity for each branch has input and output pins for each variable access and assignment done
in the branch. The output pins for each variable assignment in each branch are connected to a
merge node, which has an object flow to a fork node, which acts as the source for all variable
accesses subsequently defined after the if-else statement. If a variable is only assigned in one
branch, the structured activity node representing the other branch must also provide an input and
output pin for the variable which are directly connected by an object flow.
If there is no else branch, and a variable is assigned in the if branch then there must also be an
structured activity node for the else branch with all input pins connected to output pins (and of
course the merge node to provide the variable for subsequent statements after the if statement).
The structured activity for the else branch can be replaced by an activity final node if there are no
variable assignments within the if branch. A nested if-else-if statement leads to nested structured
activity nodes, e.g., the mapping of the second if statement is nested within the structured activity
node from the first else mapping, etc.

C# code:
int magicNumber = 23;
if (nr > magicNumber)
{
magicNumber = magicNumber + 10;
}
else
{
magicNumber = magicNumber + 20;
}

36

Resulting fUML activity (excerpt):

«structured»
ifelse

magicNr:
Integer

nr: Integer

nr

value = 23
ValueSpecification

result: Integer

magicNr

CallBehavior:
intGreater

return: Boolean

x: Integer

y: Integer «structured»
if_branch

magicNr:
Integer

magicNr:
Integer

CallBehavior:
intPlus

return:
Integer

x: Integer

y: Integer

10
ValueSpecification

result:
Integer

«structured»
else_branch

magicNr:
Integer

magicNr:
Integer

magicNr

CallBehavior:
intPlus

return:
Integer

x: Integer

y: Integer

20
ValueSpecification

result:
Integer

[false]

<<decisionInputFlow>>

[true]

Do-while loops
do {
<body>
} while (<testexpression>)

Do-while loops are mapped to a structured activity node with looping control structure outside
which is realized by decision and merge nodes. A merge node (on the left side in the example)
serves as entry point. It is connected by a control flow to the structured activity node. A decision
output pin of the structured activity node, which receives its value from the test expression,
serves as decision input flow for a decision node, which decides whether the loop has to be
repeated (on the right bottom side in the example).
Each statement within the loop is mapped separately within the structured activity node. The
structured activity node has input and output pins for each referenced variable within the loop.
The input pins for each variable is connected by an object flow from the mapping for the variable
from before the loop. Each input pin is connected by an object flow to a fork node, which is
used as source for all other mappings inside the loop. If a variable is changed inside the loop
the new value is provided to the corresponding output pin by an object flow from the fork node
which represents the variable.

37

The test expression is mapped to a structured activity node which has input pins for each used
variable in the test expression. The input pins are connected from fork nodes, which represents
the variable. The result of the test expression is provided by an object flow to an output pin of the
outer structured activity node. The output pin for each variable used within the loop is connected
to a decision node by an object flow which serves as input if the loop has to be repeated, or it
provides the new value as fork node for subsequent use after the loop (the right upper decision
node in the example controls the object flow for the variable).

C# code:
do
{
magicNumber = magicNumber - 1;
} while (magicNumber > 0)

Resulting fUML activity (excerpt):

magicNr

«structured»
doWhile

magicNr:
Integer

magicNr:
Integer

decision:
Boolean

magicNr

decision

magicNr

CallBehavior:
intMinus

return:
Integer

x: Integer

y: Integer

magicNr

value = 1
ValueSpecification

result:
Integer

«structured»
testExpression

x: Integer

result:
Boolean

value = 0
ValueSpecification

result: Integer

CallBehavior:
intGreater

return: Boolean

x: Integer

y: Integer

magicNr

[false]

[false]

<<decisionInputFlow>>

<<decisionInputFlow>>

[true]

[true]

While loops
while(<testexpression>) {
<body>
}

While loops are mapped to do-while loops which are nested in an if statement.

38

C# code:
while (magicNumber > 0)
{
magicNumber = magicNumber - 1;
}
Equivalent code in C# that is mapped to fUML:
if (magicNumber > 0)
{
do
{
magicNumber = magicNumber - 1;

} while (magicNumber > 0)
}

For loops
The fUML standard proposes to map for loops to expansion regions. Expansion regions are
however only working when iterating over lists. To overcome this limitation, for loops are
treated like while loops, also if the loop is used for iterating over list items.

C# code:
for (int i = 0; i < uni.Students.Count; i++)
{
uni.Students[i].MatNr = 0;
}
Equivalent code in C# that is mapped to fUML:
int i = 0;
while (i < uni.Students.Count)
{
uni.Students[i].MatNr = 0;
i = i + 1;
}

Foreach loops
Foreach loops are mapped to expansion regions. The list of iterated values is passed by an
object flow to an input expansion node, which serves as input node within the loop body. Each
statement within the loop body is mapped seperately. If any other variables are used inside the
loop, then they are provided into the expansion region via input pins.

C# code:
public void ResetMatNrOnAllStudentsIterative(University uni)
{

39

foreach (Student student in uni.Students)
{
student.MatNr = 0;

}
}

Resulting fUML activity:
ResetMatNrOnAllStudentsIterative

(specification=Administration.ResetMatNrOnAllStudentsIterative)

uni: University

foreach«iterative»

students

CallOperation
(::)target:

University

return:
List

CallOperation
(Student::MatNr)

target:
Student

MatNr:
Integer

0
ValueSpecification

result:
Integer

Switch-case statements
Switch-case statements are mapped to nested if-else statements. For each case a (nested) if
statement is created, the last else branch behaves as the default case (if any available). In C# it is
not allowed to fall through cases. This means each case must have a break at the end. Therefor
it is possible to map switch-case statements to nested if-else statements.

C# code:
switch (nr)
{
case 1:
magicNumber = 14;
break;

case 10:
magicNumber = 24;
break;

default:
magicNumber = magicNumber + 1;
break;

}
Equivalent code in C# that is mapped to fUML:
if (nr == 1)

40

{
magicNumber = 14;
}
else
{
if (nr == 10)
{
magicNumber = 24;

}
else
{
magicNumber = magicNumber + 1;

}
}

Alternative mapping:
Switch-case statements can also be mapped to conditional nodes alternatively. A conditional
node consists of one or more clauses wherein each clause can have successor and predecessor
clauses. Each clause consists of a test section and a body section. All test sections are evaluated
and if one test section evaluates to true (the value true is assigned to the decider output pin
of the test section), the corresponding body section is executed. The isAssured property of the
conditional node asserts that at least one test section evaluates to true, the property isDeterminate
asserts that at most one test section evaluates to true. Because it is not allowed to fall through
cases in C#, the property isDeterminate is always set to true. It is possible to model a default
clause by setting this clause as last clause and returning always true in its test section. Any
output value which is created in the body section of a clause and provided by an output pin has
to be provided on each clause to prevent an undefined value which could be used outside the
conditional node.

41

Relevant fUML metaclasses:
ConditionalNode

+ isAssured: bool
+ isDeterminate: bool

Clause

ExectuableNode

OutputPin

+clause 0..*

+test 1..*

+result

*

+bodyOutput*

+clause 0..*

+body *

+predecessorClause

+successorClause

+clause 1..*

+decider

42

Resulting fUML activity (excerpt):

«conditional»
switchCase (isAssured = "true", isDeterminate = "true")

[Test]

[Body]

[Test]

[Body]

[Test]

[Body]

output:
Integer[0..1]

output:
Integer[0..1]

decider:
Boolean

decider:
Boolean

output:
Integer[0..1]

decider

nr
==

TestIdentity

first: Integer result: Boolean

second:
Integer

==
TestIdentity

result: Integerfirst: Integer

second:
Integer

value = 1
ValueSpecification

result:
Integer

magicNr

value = 14
ValueSpecification

result: Integer

value = 10
ValueSpecification

result:
Integer

value = 24
ValueSpecification

result: Integer
magicNr

CallBehavior:
intPlus

return: Integer
x: Integer

y:
Integervalue = 1

ValueSpecification
result: Integer

value = "true"
ValueSpecification

result: Boolean

Primitive Datatypes and Behaviors

The Foundational Model Library for fUML contains user-level model elements which can be
referenced in an fUML model. It defines the primitive types Boolean, Integer, Real, String, and
UnlimitedNatural, as well as a set of primitive behaviors which are operating on the primitive
data types. It also defines two behaviors for List types. These primitive datatypes and behaviors
have to be provided by an fUML modeling and execution environment to make them available
at design-time and execution/run-time of fUML models, because they can be referenced from
any fUML model.

Table 3.1, 3.2, 3.3, 3.4, and 3.5 depict all functions available for the primitive types Boolean,
Integer, Real, String, and UnlimitedNatural, respectively. They also show the C# equivalent of

43

each function, except for UnlimitedNatural because there is no adequate datatype available in
C#.

An activity is created for each function of the different primitive datatypes, because Enter-
prise Architect does not allow to define primitive behaviors. Such activity serves as placeholder
to be able to reference these primitive behaviors in the mappings of the behavioral features de-
scribed above by using a call behavior action. An fUML execution environment must take this
into account to be able to map the call of the call behavior action to the right primitive behavior
defined in the fUML execution environment.

Table 3.1: fUML Boolean functions.

Function Signature Description C# equivalent
Or(x: Boolean, y: Boolean):
Boolean

Returns true if either x or y is
true.

z = x || y; (z, x, and y of type
bool)

Xor(x: Boolean, y:
Boolean): Boolean

Returns true if either x or y is
true, but not both.

z = x ˆ y; (z, x, and y of type
bool))

And(x: Boolean, y:
Boolean): Boolean

Returns true if x and y are
true.

z = x && y; (z, x, and y of
type bool)

Not(x: Boolean): Boolean Returns true if x is false and
vice versa.

z = !x; (z, and x of type bool)

Implies(x: Boolean, y:
Boolean): Boolean

Returns true if x is false, or if
x and y is true.

z = !x || y; (z, x, and y of type
bool)

ToBoolean(x: String):
Boolean[0..1]

Converts x to a Boolean if
possible.

z = bool.Parse(x); or z =
Convert.ToBoolean(x); (x of
type string, z of type bool)

ToString(x: Boolean): String Converts x to a String value. x.ToString(); (x of type bool)

Table 3.2: fUML Integer functions.

Function Signature Description C# equivalent
Neg(x: Integer): Integer Returns the negative value of

x.
x = -y; (x and y of type int)

+(x: Integer, y: Integer): In-
teger

Returns the value of the addi-
tion of x and y.

z = x + y; (z, x, and y of type
int)

-(x: Integer, y: Integer): Inte-
ger

Returns the value of the sub-
traction of x and y.

z = x - y; (z, x, and y of type
int)

*(x: Integer, y: Integer): In-
teger

Returns the value of the mul-
tiplication of x and y.

z = x * y; (z, x, and y of type
int)

/(x: Integer, y: Integer):
Real[0..1]

Returns the value of the divi-
sion of x by y.

z = (double)x / y; (z of type
double, x and y of type int, x
is casted to double to get dec-
imal value).

44

Abs(x: Integer): Integer Returns the absolute value of
x.

z = Math.Abs(x); (z and x of
type int, usage of static Abs
method on static Math class.

Div(x: Integer, y: Integer):
Integer[0..1]

Returns the number of times
that y fits completely within
x.

z = x / y; (z, x, and y of type
int)

Mod(x: Integer, y: Integer):
Integer

Returns the result of x mod-
ulo y.

z = x % y; (z, x, and y of type
int)

Max(x: Integer, y: Integer):
Integer

Returns the maximum of x
and y.

z = Math.Max(x, y); (z, x,
and y of type int, usage of
static Max method on static
Math class.)

Min(x: Integer, y: Integer):
Integer

Returns the minimum of x
and y.

z = Math.Min(x, y); (z, x, and
y of type int, usage of static
Min method on static Math
class.)

<(x: Integer, y: Integer):
Boolean

Returns true if x is less than
y.

z = x < y; (z, x, and y of type
int)

>(x: Integer, y: Integer):
Boolean

Returns true if x is greather
than y.

z = x > y; (z, x, and y of type
int)

<=(x: Integer, y: Integer):
Boolean

Returns true if x is less than
or equal to y.

z = x <= y; (z, x, and y of type
int)

>=(x: Integer, y: Integer):
Boolean

Returns true if x is greather
than or equal to y.

z = x >= y; (z, x, and y of type
int)

ToString(x: Integer): String Converts x to a String value. z = x.ToString(); (z of type
string, x of type int)

ToUnlimitedNatural(x: Inte-
ger): UnlimitedNatural[0..1]

Converts x to an Unlimited-
Natural value.

No C# equivalent available.

ToInteger(x: String): Inte-
ger[0..1]

Converts x to an Integer
value if possible.

z = int.Parse(x); or z = Con-
vert.ToInt32(x); (z of type
int, x of type string)

Table 3.3: fUML Real functions.

Function Signature Description C# equivalent
Neg(x: Real): Real Returns the negative value of

x.
x = -y; (x and y of type dou-
ble)

+(x: Real, y: Real): Real Returns the value of the addi-
tion of x and y.

z = x + y; (z, x, and y of type
double)

-(x: Real, y: Real): Real Returns the value of the sub-
traction of x and y.

z = x - y; (z, x, and y of type
double)

45

*(x: Real, y: Real): Real Returns the value of the mul-
tiplication of x and y.

z = x * y; (z, x, and y of type
double)

/(x: Real, y: Real):
Real[0..1]

Returns the value of the divi-
sion of x by y.

z = x / y; (z, x, and y of type
double)

Abs(x: Real): Real Returns the absolute value of
x.

z = Math.Abs(x); (z and x of
type double)

Floor(x: Real): Integer[0..1] Returns the largest integer
that is less than or equal to x.

z = (int)Math.Floor(x); (z
of type int, x of type dou-
ble, usage of the static Floor
method on static Math class)

Round(x: Real): Inte-
ger[0..1]

Returns the (larger) integer
that is closest to x.

z = (int)Math.Round(x); (z of
type int, x of type double),
usage of the static Round
method on static Math class.

Max(x: Real, y: Real): Real Returns the maximum of x
and y.

z = Math.Max(x, y); (z, x and
y of type double, usage of the
static Max method on static
Math class)

Min(x: Real, y: Real): Real Returns the minimum of x
and y.

z = Math.Min(x, y); (z, x and
y of type double, usage of the
static Min method on static
Math class)

<(x: Real, y: Real): Boolean Returns true if x is less than
y.

z = x < y; (z, x, and y of type
double)

>(x: Real, y: Real): Boolean Returns true if x is greather
than y.

z = x > y; (z, x, and y of type
double)

<=(x: Real, y: Real):
Boolean

Returns true if x is less than
or equal to y.

z = x <= y; (z, x, and y of type
double)

>=(x: Real, y: Real):
Boolean

Returns true if x is greather
than or equal to y.

z = x >= y; (z, x, and y of type
double

ToString(x: Real): String Converts x to a String value. z = x.ToString(); (z of type
string, x of type double)

ToReal(x: String): Real[0..1] Converts x to an Real value if
possible.

z = double.Parse(x); or z =
Convert.ToDouble(x); (z of
type double, x of type string)

ToInteger(x: Real): Integer Converts x to an Integer
value.

z = Convert.ToInt32(x); (z of
type int, x of type double)

Table 3.4: fUML String functions.

Function Signature Description C# equivalent

46

Concat(x: String, y: String):
String

Returns the concatenation of
x and y.

z = x + y; (z, x, and y of type
string)

Size(x: String): Integer Returns the number of char-
acters in x.

z = x.Length; (z of type int,
x of type string, usage of
the Length property on the
string)

Substring(x: String, lower:
Integer, upper: Integer):
String[0..1]

Returns the substring of x
starting at character number
lower, up to and including
character number upper.

z = x.Substring(lower-1,
upper-lower); (z and x of
type string, lower and upper
of type int)

Table 3.5: fUML UnlimitedNatural functions.

Function Signature Description
Max(x: UnlimitedNatural, y: Unlimit-
edNatural): UnlimitedNatural

Returns the maximum of x and y.

Min(x: UnlimitedNatural, y: Unlimit-
edNatural): UnlimitedNatural

Returns the minimum of x and y.

<(x: UnlimitedNatural, y: Unlimited-
Natural): Boolean

Returns true if x is less than y.

>(x: UnlimitedNatural, y: Unlimited-
Natural): Boolean

Returns true if x is greather than y.

<=(x: UnlimitedNatural, y: Unlimited-
Natural): Boolean

Returns true if x is less than or equal to y.

>=(x: UnlimitedNatural, y: Unlimited-
Natural): Boolean

Returns true if x is greather than or equal to y.

ToString(x: UnlimitedNatural): String Converts x to a String value.
ToUnlimitedNatural(x: String): Un-
limitedNatural[0..1]

Converts x to an UnlimitedNatural value if pos-
sible.

ToInteger(x: UnlimitedNatural): Inte-
ger[0..1]

Converts x to an Integer value.

Mapping of List Types

Lists declared in C# in the form List<base type> are representing a list of values of the type
<base type>. These types are mapped e.g., to <base type> properties or parameters with mul-
tiplicity [*]. fUML restricts calls to Clear (clear structural feature action), Add (add structural
feature value action) and Remove (remove structural feature action) methods to be used on struc-
tural features only. With this restriction it is not be possible to define a local list within a method
and add or remove list items. A class List is introduced to overcome this limitation, which holds
the list of values, and offers operations for manipulating these items. Figure 3.2 shows the class
List with its operations.

47

Table 3.6 depicts the mapping from C# operations which can be called on list types to the
List class operations shown in Figure 3.2.

List

+ items [0..*]

+ Add(Object)
+ Clear()
+ Get(int): Object
+ Insert(int, Object)
+ List()
+ Remove(Object)
+ RemoveAt(int)
+ Size(): int

Figure 3.2: The class List.

Table 3.6: Mapping between C# list functions and operations defined by the fUML class List.

C# list function fUML List class operation
Add(item) Add(item)
Clear() Clear()
list[int] Get(Integer)
GetAt(int) Get(Integer)
Insert(int, object) Insert(int, object)
Remove(object) Remove(object)
RemoveAt(int) RemoveAt(int)
Count Size(int)

In the following, the behavior of the operations is described:

• Adding items to a list
Figure 3.3 shows the activity for the Add operation of the introduced fUML class List. It
maps the C# list add method to an add structural feature value action with the property
isReplaceAll set to false. A read self action puts the list object to the object input pin
of the add structural feature value action and the value input pin of the add structural
feature value action gets the value from the input activity parameter node item. The value
specification action provides the unlimited natural value -1 to the insertAt input pin of the
add structural feature value action to add the item at the end of the list.

• Clear all items of a list
Clearing all items of a list maps to a clear structural feature action on the List object. The
object input pin of the clear structural feature action is provided with the list object by the
read self action, which is shown in Figure 3.4.

• Retrieving an item of a list
A call to the C# List Get operation maps to an fUML call behavior action calling the
primitive behavior ListGet of the fUML foundational model library. The result pin is

48

connected to the result pin of the activity. The list input pin of the call behavior action
gets its input from a read structural feature action which returns the structural feature items
of the List object. Figure 3.5 depicts the resulting activity for getting an item of a list.

• Inserting an item into a list
Inserting an item into a list is similar to adding an item to a list, but instead of specifying
a value specification action for the insertAt input pin of the add structural feature value
action, the input value is provided through the activity parameter node index. It has to be
considered, that the index of the C# Insert operation is a zero-based index. This means,
that the first element of a C# list is at index 0, as against the first element of an fUML
list starts at index 1. Hence, the value of the index is increased by one. The activity for
inserting an item to a list can be seen in Figure 3.6.

• Removing an item from a list
Removing an item from a list by passing the item to be removed as parameter, maps to an
fUML remove structural feature value action which receives the item to be removed (input
pin value) from the activity parameter node item. Figure 3.7 shows the resulting activity
for removing an item of a list.

• Removing an item from a list by an index
Removing an item from a list by using an index maps also to a remove structural feature
value action. Thereby, the item to be removed first has to be retrieved from the list using
a call behavior action for the primitive behavior ListGet providing the index as input. The
item to be removed is sent to the value input pin of the remove structural feature value
action. The removeAt input pin gets its value from the activity parameter node index. The
activity for removing an item of a list by an index is shown in Figure 3.8.

• Retrieving the size of a list
An access to the list count property in C# maps to a call behavior action for the primitive
behavior ListSize of the foundational model library described in Section 3.3. The return
pin is connected to the return pin of the activity. The list input pin gets its value from the
read structural feature value action retrieving the list items. The activity for counting the
items of a list is depicted in Figure 3.9.

Add (specification=List.Add)

item:
Object[1]

this
ReadSelf

result:
List[1]

items(structuralFeature=List.items)
isReplaceAll = "false"

AddStructuralFeatureValue

insertAt:
UnlimitedNatural[1]

object:
List[1]

value:
Object[1]

value = -1
ValueSpecification

result:
UnlimitedNatural[1]

Figure 3.3: fUML activity for adding an item to a list.

49

Clear (specification=List.Clear)

items (structuralFeature=List.items)

ClearStructuralFeature
object: List[1]

this
ReadSelf

result: List[1]

Figure 3.4: fUML activity for clearing all items of a list.

Get (specification=List.Get)

return: Object[1]

index:
Integer[1]

ListGet:
ListGet

index:
Integer[1]

list[1..*]

return:
Object[1]

this
ReadSelf

result: List[1]
items (structuralFeature=List.items)

ReadStructuralFeatureobject: List[1]

result: Object[0..*]

Figure 3.5: fUML activity for retrieving an item from a list.

Insert (specification=List.Insert)

item[1]

index: Integer[1]

this
ReadSelf

result: List[1]

items (structuralFeature=List.items)

AddStructuralFeatureValue

insertAt:
Integer[1]

object: List[1]

value[1]

this

1
ValueSpecification

result: Integer

CallBehavior:
intPlus

return:
Integer[1]

x: Integer[1]
y: Integer[1]

Figure 3.6: fUML activity for inserting an item into a list.

Remove (specification=List.Remove)

item: Object[1]

this
ReadSelf

result:
List[1]

items (structuralFeature=List.items)

RemoveStructuralFeatureValue
object: List[1]

value[1]

this

Figure 3.7: fUML activity for removing an item from a list.

50

RemoveAt (specification=List.RemoveAt)

index:
Integer[1]

this
ReadSelf

result: List[1]

items (structuralFeature=List.items)

ReadStructuralFeature

object: List[1]

result:
Object[1..*]

items (structuralFeature=List.items)

RemoveStructuralFeatureValue
object: List[1]

removeAt:
Integer[1]

value:
Object[1]

ListGet:
ListGet

index:
Integer[1]

list: Object[1..*]

return: Object[1]

this

index

Figure 3.8: fUML activity for removing an item from a list by an index.

Size (specification=List.Size)

return:
Integer[1]

this
ReadSelf

result: List[1]

items (structuralFeature=List.items)

ReadStructuralFeature
object: List[1]

result[1..*] ListSize:
ListSize

list[1..*] return:
Integer[1]

Figure 3.9: fUML activity for retrieving the size of a list.

Unused fUML Actions

Not all available fUML action types are needed in the proposed mapping. Table 3.7 depicts and
describes all action types which are not used.

Unconsidered C# Features

The following listing describes some common C# features which are not considered within this
work and outlines a possible solution for the mapping of each feature if it is possible.

• Break statement
If a break statement in C# is used within a loop, the loop ends. This could be realized by
mapping this break statements to FlowFinalNodes within the fUML activities.

• Continue statement
If a continue statement in C# is used within a loop, the loop starts with the next iteration.
This could only be partially solved. If a continue statement is used within a do-while,
while, or for loop, the mapping could be done by using correct control flows. But there is
no accurate mapping possible if a continue statement is used within a foreach loop.

51

Table 3.7: Unused fUML action types.

fUML action type Description
destroy object action Destroying an object in C# is not done manually but

done automatically by the garbage collector after all
references to the object have been set to null.

reclassify object action There is no need for this action because C# does not
support multiple inheritance.

read extent action Receiving all objects from a class is not possible in
C#.

start classified behavior action The start object behavior action can be used instead
of the start classified behavior action for calling cre-
ated constructors.

link actions Links and associations are not explicit features of C#
and therefor not needed.

send signal action Send signal actions could be used for the mapping
of delegates and events, but they are not covered in
this work.

loop node Loops can also be realized by looping control struc-
ture which is realized by decision and merge nodes,
as described above. But of course loop nodes could
also be used for realizing loops.

• Usage of external libraries
It is an essential feature of C# to use existing libraries in each project. The .NET frame-
work provides a lot of different classes for different purposes. A possible approach for the
mapping would be to reverse engineer all used libraries within a C# project if the source
code is available.

• Reflection
Reflection allows to read the metadata of assemblies as well as information about types
and modules at runtime. With reflection it is possible to create dynamically instances of
a type, invoke methods or access fields and properties of an existing object. It is a very
powerful mechanism which is provided by the .NET framework. fUML does not support
the concept of reflection.

• Generics
public class Example<T> { ... }
Generic type parameters make it possible to design classes and methods in a generic way,
so that the specification of one or more types is deferred until the class or method is
declared and instantiated by client code. fUML does not support the concept of generics,
but UML supports them by the usage of so-called Templates. A possible solution for the
mapping of generics would be to add Templates to the fUML metamodel and enhance an
fUML execution environment to support them.

52

• Exception handling
try {
...
} catch (Exception ex) {
...
}
Errors in C# programs at runtime are propagated by using the mechanism of exceptions.
Exceptions can be thrown by the .NET framework common language runtime (CLR) or by
the program code. Whenever an error occurs within a try block, the system propagates the
execution of the catch block. An error handling can be provided within the catch block.
fUML does not support the concept of exceptions, but UML has support mechanisms for
error handling. A possible solution for the mapping of exception would be to add the
RaiseExceptionAction and the ExceptionHandler to the fUML metamodel and enhance
an fUML execution environment to support them.

53

CHAPTER 4
Implementation of a C# to fUML

Mapper

To validate the elaborated mapping between C# and fUML, we have developed a prototype
capable of reverse engineering C# programs to fUML models. The prototype is realized as an
Add-In for Enterprise Architect version 12 and implemented in C# within Visual Studio 2013
using .Net 4.0. Figure 4.1 gives an overview of the implemented prototype. The prototype
consists of the following components:

• Enterprise Architect Add-In
This component represents the Enterprise Architect Add-In which puts all needed com-
ponents together. It enables the selection of a C# project and serves as entry point for the
whole reverse engineering process. The basics of Enterprise Architect Add-In develop-
ment is described in Section 4.1.

• Parser
The parser is used to read C# code files, generate an AST of the code, and transform the
AST into a C# model. The functionality of this component is described in Section 4.2.

• C#-to-fUML Transformation
The C#-to-fUML transformation is responsible for the transformation from a C# model to
an fUML model. The functionality of this component is described in Section 4.3.

• Serializer
This component is responsible for the persistence of the fUML model. It uses the COM
interface of Enterprise Architect for storing model elements in the internal storage of
Enterprise Architect. This component of the prototype is discussed in Section 4.4.

55

Enterprise Architect Add-In

C# project
Parser

C# model

C#-to-fUML
Transformation fUML model

Serializer
Enterprise Architect

UML model

Component Artifact Input/Output Relation

Figure 4.1: Overview of the prototype implementation.

4.1 Enterprise Architect Add-In

The implemented Enterprise Architect Add-In provides a file selection dialog allowing the user
to select the C# project that should be reverse engineered to fUML. After selecting a C# project
file, the Parser component of the Add-In transforms the C# code of the selected project into a C#
model as described in Section 4.2. Thereafter the C# model is transformed into an fUML model
by the C#-to-fUML Transformation component which is described in Section 4.3. Afterwards
the Serializer component stores the fUML model in Enterprise Architect, and the generated
model can be accessed within the project browser of Enterprise Architect. The set of functions
which Enterprise Architect provides for accessing the internal model and adding new elements
to a model is described in Section 4.4.

Figure 4.2 shows the user interface of Enterprise Architect. The toolbox on the left side can
be used to add new model elements to an existing model. Diagrams are displayed in the middle
of Enterprise Architect, and the project browser showing the complete content of the model is
on the right side. The project browser displays the model in a tree view. To start the conversion
from existing C# code to fUML models a package has to be selected in the project browser, and
the Extensions/CSharp2fUML/Convert menu entry of the context menu of the selected package
has to be called. The reverse engineered fUML model will be stored in the selected package.

Overview of the Prototype Implementation

The prototype consists of several components which can be seen in Figure 4.1. Figure 4.3 depicts
the main classes of the implementation of these components. The class Enterprise_Architect_Add_In
is the main entry point of the whole conversion process. It has to implement the Add_In_Interface
defined by Enterprise Architect to be recognized as an Enterprise Architect Add-In. The Start-
Converting method is called whenever a user clicks on the Convert menu entry which can be
seen in Figure 4.2. It calls the Parse method of the Parser class, which parses the selected C#
project. There are several methods available within the parser, which are parsing different parts
of the C# project, e.g., the ParseClass method parses the class declarations, the ParseMethods
operation parses the method declarations, etc. The functionality of the parser is described in

56

Figure 4.2: User Interface of Enterprise Architect.

Section 4.2. The Parser returns a C# model which serves as Input for the CreateFumlModel
method of the FUmlFactory class, which does the C#-to-fUML transformations. There are
again several methods available which take care of the transformation for different code element
types. The transformation into an fUML model is described in Section 4.3. At the last step,
the FUmlFactory returns an fUML model, which serves as input for the WriteModel method of
the ModelWriter class, which takes care of the serialization of the fUML model in Enterprise
Architect.

Implementation of an Enterprise Architect Add-In

To be able to access the internals of Enterprise Architect and also to store new model elements,
an Add-In has to be implemented. For this implementation several steps have to be done. The
following enumeration describes the steps which are needed when implementing an Add-In for
Enterprise Architect using C#.

• Set up a ClassLibrary project
First a C# class library project has to be setup.

• Make library COM interoperable
Enterprise Architect uses the COM interface for communication with an Add-In, and
therefor the class library project has to be COM interoperable. This can be done by ticking

57

Enterprise_Architect_Add_In

+ StartConverting(EA.Repository): void

Parser

+ ProjectFileLocation: string

- MapExpression(ExpressionSyntax): Expression
- MapStatement(StatementSyntax): Statement
- MapVariableDeclaration(VariableDeclarationSyntax): VariableDeclaration
+ Parse(): CompilationUnit
- ParseClass(Class, ClassDeclarationSyntax): void
- ParseEnumeration(Enumeration, EnumDeclarationSyntax): void
- ParseFields(Class, FieldDeclarationSyntax): void
- ParseInterface(Interface, InterfaceDeclarationSyntax): void
- ParseMethodBody(Method, BlockSyntax): void
- ParseMethods(int, MethodDeclarationSyntax): void
- ParseNamespace(Namespace, NamespaceDeclarationSyntax): void
- ParseProperties(Classifier, ClassDeclarationSyntax): void

FUmlFactory

- CreateClassStubs(Element, CompilationUnit): Dictionary<Class, Class>
- CreateFlows(Activity, ActivityNode, ActivityNode): ActivityNode
+ CreateFumlModel(CompilationUnit): Element
- CreateInitialNode(Operation): ActivityNode
- CreateListBehaviors(Element): void
- CreateOperationStubs(Dictionary<Class, Class>): List<Operation>
- CreatePrimitiveBehaviors(Element): void
- CreateRootModelPackage(CompilationUnit): Element
- MapExpression(Statement, Activity): AcitvityNode
- MapStatement(Statement, Activity, ActivityNode): ActivityNode

ModelWriter

- CreateClass(Package, Class): void
- CreateEnumeration(Package, Enumeration): void
- CreatePackage(Package, Package): void
- WriteActivityNodes(NamedElement, Element): void
+ WriteModel(Element): void

«interface»
Add_In_Interface

+ EA_Connect(EA.Repository): String
+ EA_Disconnect(): void
+ EA_GetMenuItems(EA.Repository, string, string): object
+ EA_GetMenuState(EA.Repository, string, string, string, ref bool, ref bool): void
+ EA_MenuClick(EA.Repository, string, string, string): void
+ IsProjectOpen(EA.Repository): bool

+FUmlFactory

+ModelWriter

+Parser

Figure 4.3: Main classes and methods of the prototype.

the Register for COM interop setting on the project settings and the ComVisible attribute
in the AssemblyInfo.cs has to be set to true.

• Reference Interop.EA.dll
The Interop.EA.dll library comes with Enterprise Architect and is needed to access and
communicate with Enterprise Architect. It can be found in the installation directory of
Enterprise Architect.

• Set registry key for Enterprise Architect
A registry key must be set for Enterprise Architect, so that Enterprise Architect is able to
load the Add-In at startup. The registry key has to be set at HKEY_CURRENT_USER\Soft
ware\Sparx Systems\EAAddins and consists of the full qualified class name of the main
class in the created class library project.

• Implement needed methods
Several methods must be implemented to communicate with Enterprise Architect. The
following list describes the needed methods and shows the concrete implementation used
for the prototype:

– EA_Connect
This method is executed when Enterprise Architect starts, to check if an Add-In
exists. This method needs to exist for the Add-In to work but nothing has to be done
here.
public String EA_Connect(EA.Repository Repository)
{

58

return "";
}

– EA_Disconnect
Enterprise Architect executes this method when it exits. It can be used to do some
cleanup work.
public void EA_Disconnect()
{
GC.WaitForPendingFinalizers();
}

– IsProjectOpen
Determines if a model is currently opened within Enterprise Architect. This is done
by trying to access the models within Enterprise Architect.
private bool IsProjectOpen(EA.Repository Repository)
{
try
{
EA.Collection c = Repository.Models;
return true;

}
catch
{
return false;

}
}

– EA_GetMenuItems
Enterprise Architect executes this method whenever a user clicks on the Add-In
menu item within Enterprise Architect. In this method, it is possible to define which
menu items are available for the Add-In. The prototype defines a top level menu
option „CSharp2fUML“ and a submenu called „Convert“.
public object EA_GetMenuItems(EA.Repository Repository,

string Location, string MenuName)
{
switch (MenuName)
{
// defines the top level menu option
case "":
return "-&CSharp2fUML";
// defines the submenu options
case "-&CSharp2fUML":
string[] subMenus = { "&Convert" };
return subMenus;

}

59

return "";
}

– EA_GetMenuState
Enterprise Architect executes this method when the top level menu has been opened,
to see which menu items should be activated. In this example we are activating the
„Convert“ submenu entry.
public void EA_GetMenuState(EA.Repository Repository,

string Location, string MenuName, string ItemName,
ref bool IsEnabled, ref bool IsChecked)

{
if (IsProjectOpen(Repository))
{
switch (ItemName)
{
// enable Convert submenu
case "&Convert":
IsEnabled = true;
break;
// default state is disabled
default:
IsEnabled = false;
break;

}
}
else
{
// If no open project, disable all menu options
IsEnabled = false;
}
}

– EA_MenuClick
Enterprise Architect executes this method whenever a user makes a selection in the
menu. This is the main entry point where the desired functionality of the imple-
mented Add-In is called. In this example the method StartConverting is called if the
user clicks on the Convert submenu entry.
public void EA_MenuClick(EA.Repository Repository,

string Location, string MenuName, string ItemName)
{
switch (ItemName)
{
// user has clicked the Convert menu option
case "&Convert":
// start the mapping process

60

StartConverting(Repository);
break;

}
}

4.2 Parsing C# Source Code

The .Net Compiler Platform Roslyn [18] was chosen for parsing C# source code. It is an open
source compiler from Microsoft, which provides APIs for performing code analysis, refactoring,
compilation, etc., on C# and Visual Basic projects. This work is based on the April’s End User
Preview of Roslyn from 2014, which installs on top of Visual Studio 2013, because the final
version of Roslyn was not released when this work started.

Listing 4.1: Example of how to retrieve a syntax tree and its root element with Roslyn.

S y n t a x T r e e t r e e = CSharpSyn taxTree . P a r s e T e x t (code) ;
v a r r o o t = (C o m p i l a t i o n U n i t S y n t a x) t r e e . GetRoot () ;

Listing 4.1 depicts an example of how it is possible to retrieve a C# syntax tree with Roslyn
and how to access the root element of the syntax tree. The ParseText method uses a string
parameter which represents the C# code.

CSharpSyntaxNodeCompilationUnitSyntax

+ attributeList: CSharpSyntaxNode
+ members: CSharpSyntaxNode
+ usings: CSharpSyntaxNode

BaseTypeDeclarationSyntax

MemberDeclarationSyntax

TypeDeclarationSyntax

ClassDeclarationSyntax

+ attributeList: CSharpSyntaxNode
+ baseList: BaseListSyntax
- identifier: SyntaxToken
+ members: CSharpSyntaxNode
+ modifiers: CSharpSyntaxNode
+ typeParameterList: TypeParameterListSyntax

BasePropertyDeclarationSyntax

PropertyDeclarationSyntax

+ accessorList: AccessorListSyntax
+ attributeList: CSharpSyntaxNode
+ identifier: SyntaxToken
+ modifiers: CSharpSyntaxNode
+ type: TypeSyntax

NamespaceDeclarationSyntax

+ externs: CSharpSyntaxNode
+ members: CSharpSyntaxNode
+ name: NameSyntax
+ usings: CSharpSyntaxNode

MethodDeclarationSyntax

+ attributeList: CSharpSyntaxNode
+ body: BlockSyntax
+ modifiers: CSharpSyntaxNode
+ parameterList: ParameterListSyntax
+ return: TypeSyntax
+ typeParameterList: TypeParameterListSyntax

BaseMethodDeclarationSyntax

StatementSyntax

ExpressionSyntax TypeSyntax

Figure 4.4: Excerpt of the Roslyn C# syntax tree.

61

Figure 4.4 depicts an excerpt of the C# syntax tree used by Roslyn. The base element is a
CSharpSyntaxNode. The root element of each C# syntax tree is the CompilationUnitSyntax ele-
ment. ClassDeclarationSyntax elements are used for class declarations, MethodDeclarationSyn-
tax elements are used for method declarations within classes, PropertyDeclarationSyntax ele-
ments are used for property declarations, and NamespaceDeclarationSyntax elements are used
for namespace declarations. There are a lot of specializations of StatementSyntax elements, e.g.
for local declaration statements, block statements or expression statements. The same applies
to ExpressionSyntax elements, e.g. for binary expressions, unary expressions, member access
expressions, etc.

Listing 4.2 depicts a C# program containing a namespace declaration Example followed by
a class declaration with the name Test, which has an auto-implemented property Name with a
set and a get accessor.

Listing 4.2: Example of a simple C# class.

namespace Example {
p u b l i c c l a s s T e s t {

p u b l i c s t r i n g Name { g e t ; s e t ; }
}

}

Figure 4.5 depicts an instance of the C# syntax tree after parsing the example from List-
ing 4.2 with Roslyn. The root element is the CompilationUnitSyntax element which has a
NamespaceDeclarationSyntax element representing the namespace Example as referenced mem-
ber. This NamespaceDeclarationSyntax element references a ClassDeclarationSyntax element
representing the declaration of the class Test as member. The ClassDeclarationSyntax element
in turn references a PropertyDeclarationSyntax element representing the declaration of the prop-
erty Name as member. This PropertyDeclarationSyntax element references an AcessorListSyn-
tax element, which contains an AccessorDeclarationSyntax element for each of the accessor de-
fined for the property Name in the example. The names of the different elements are expressed
by SimpleNameSyntax elements and SyntaxToken elements.

Transformation into a C# Model

The C# syntax tree, which is generated by the parser, is in the next step transformed into an
instance of a C# model which was implemented within this work. The transformation to a C#
model was done to be able to use another parser in future, or to be able to use a newer version of
Roslyn without influencing the transformation to an fUML model. The C# model was elaborated
with the help of the C# Language Specification1 (in particular with the lexical grammar given in
the specification) and the Roslyn syntax tree model. This elaborated C# model is not complete,
but only the most common language features have been considered which are required to support
the C#-to-fUML mapping described in Chapter 3.

1C# Language Specification - http://www.microsoft.com/en-us/download/details.aspx?id=7029

62

:CompilationUnitSyntax

:NamespaceDeclarationSyntax

:ClassDeclarationSyntax

:PropertyDeclarationSyntax

:AccessorListSyntax :AccessorDeclarationSyntax

:AccessorDeclarationSyntax

:SimpleNameSyntax

:PredefinedTypeSyntax

:SyntaxToken

value = "Example"

:SimpleNameSyntax
:SyntaxToken

value = "Test"

:SimpleNameSyntax
:SyntaxToken

value = "Name"

:SyntaxToken

value = "string"

:SyntaxToken

value: "public"

:SyntaxToken

value = "public"

:SyntaxToken

value = "get"

:SyntaxToken

value = "set"

identifier

modifiers

keyword

members

accessors

members

type

name

keyword

accessorList

keyword

name

accessors

name

identifiermodifiers

identifier

members

Figure 4.5: C# syntax tree obtained from Roslyn representing the example from Listing 4.2.

C# Metamodel

Figure 4.6 shows the main metaclasses defined in the elaborated C# metamodel. The most gen-
eral metaclass is CodeElement, which represent each C# code element. It defines a reference
to the metaclass CodeComment, which is used for representing comments in C# code, because
each C# code element can be associated with a comment. The root element of each C# project
is an assembly or application, which is represented by an instance of the CompilationUnit meta-
class that contains the representations of all other code elements. The Block metaclass represents
all code blocks which is represented by using curly brackets in C#. All code elements within a
block are represented by code elements which are contained in an items collection (represented
by an association between Block and CodeElement). Furthermore, the Block metaclass offers
also operations to Add and Insert code elements to its items collection. The TypedElement meta-
class represents a code element which has a type, which is represented by the Type metaclass
(assocation from TypedElement to Type). Each case of a switch-case statement is represented
by the Case metaclass, which contains a block as body (assocation from Case to Block), and
contains a condition represented by an instance of the Expression metaclass. The Statement ele-
ment serves as base class for all possible statements in C#, e.g. return statements, loops, switch

63

statements, etc., which is shown in Figure 4.7.

CompilationUnit

+ Name: string

CodeElement CodeComment

Block

+ Add(CodeElement): void
+ Insert(int, CodeElement): void

Type Statement

CaseTypedElement

+ Classification: TypeClassification

Expression

+elements

0..* +items

0..*

+Comment

0..1

+type 0..1 +body 0..1

Figure 4.6: Main metaclasses of the C# metamodel.

CodeElement

Statement

ReturnStatement

+ ReturnExpression: Expression

Switch

+ Cases: Case[*]
+ Expression: Expression

Loop

+ Body: Block
+ Condition: Expression
+ LoopType: LoopType

IfThenElse

+ Body: Block
+ Condition: Expression

Break

Continue

+next 0..1

Figure 4.7: Metaclasses for representing C# statements.

Figure 4.8 shows that the metaclass TypedElement serves as base class for C# elements which
have a type, e.g. methods (metaclass Method), fields (metaclass Field), parameters (metaclass

64

Parameter), expressions (metaclass Expression), etc. Except for parameters and expressions,
typed elements also consist of a declaration modifier, e.g. private, public, etc., which is rep-
resented by the DeclarationModifier metaclass. C# expressions are represented by Expression
elements, which are an specialization of the metaclass TypedElement. Different types of expres-
sions exists, e.g. method calls, binary and unary expressions, null expressions, etc., which are
shown in Figure 4.9.

ICodeElement

TypedElement

+ Type: Type

DeclarationModifier

+ Modifier: Modifier

Classifier

+ Members: ICollection<ICodeElement>
+ Name: string

Field

+ Name: string

Parameter

+ Name: string
+ Qualifier: TypeQualifier

Method

+ Body: Block
+ IsInterfaceRealization: bool
+ IsStatic: bool
+ Name: string
+ ReturnType: Type

Enumeration

Property

+ Name: string

Expression

+getter
0..1

+properties

0..*

+parameters 0..*

+fields 0..*

+setter
0..*

+methods

0..*

+classifier 0..1 +classifier 0..1

+defaultValue 0..1

Figure 4.8: Metaclasses for representing C# typed elements.

Figure 4.10 depicts the possible specializations of Type and Classifier metaclasses. All enu-
merations which are used in the C# metamodel are summarized in Figure 4.11.

65

TypedElement

Expression
MethodCall

+ Classifier: Classifier
+ IsStatic: bool
+ Name: string

BinaryExpression

+ ExpressionType: BinaryOperator

UnaryExpression

+ ExpressionType: UnaryOperator

ThisFalse TrueNullExpression

+target

0..1

+arguments

0..*

+leftHandSide0..1

+operand

0..1

+rightHandSide 0..1

Figure 4.9: Metaclasses for representing C# expressions.

DeclarationModifier

TypedElement

Classifier

+ Members: ICollection<ICodeElement>
+ Name: string

Class

+ Enumerations: ICollection<Enumeration>
+ Fields: ICollection<Field>

InterfaceCodeElement

Type

PredefinedType

+ Type: StandardType

+classes 0..*

Figure 4.10: Metaclasses for representing C# types and classifiers.

Mapping the Roslyn Syntax Tree to a C# Model

The mapping from the C# syntax tree to the C# metamodel is straight-forward because of the
similarities of the elaborated C# metamodel and the C# syntax tree used by Roslyn. Table 4.1
depicts the mapping between the C# syntax tree and the elaborated C# metamodel.

66

«enumeration»
BinaryOperator

Plus
Minus
And
Or
Assignment
MemberAccess
Equals
NotEquals
EnumAccess

«enumeration»
LoopType

TestFirst
TestLast
Infinite

«enumeration»
Modifier

Public
Private
Internal
Protected
Abstract
Sealed
New

«enumeration»
StandardType

Boolean
Integer
Double
Float
String

«enumeration»
TypeQualifier

Out
Ref
Params

«enumeration»
UnaryOperator

Plus
PlusPlus
Minus
MinusMinus
Negation
BitwiseComplement

Figure 4.11: Enumeration elements used in the C# metamodel.

Table 4.1: Mapping between C# syntax tree and C# metamodel.

Syntax tree element C# metamodel element
CompilationUnitSyntax ICompilationUnit
UsingDirectiveSyntax IUsing
NamespaceDeclarationSyntax INamespace
InterfaceDeclarationSyntax IInterface
EnumDeclarationSyntax IEnumeration
EnumMemberDeclarationSyntax IEnumerationMember
ClassDeclarationSyntax IClass
PropertyDeclarationSyntax IProperty / IAutoProperty
MethodDeclarationSyntax IMethod
ConstructorDeclarationSyntax IMethod
ConstructorInitializerSyntax IConstructorInitializer
FieldDeclarationSyntax IField
ParameterSyntax IParameter
StatementSyntax IStatement
BlockSyntax IBlock
ReturnStatementSyntax IReturnStatement
LocalDeclarationSyntax ILocalDeclarationSyntax
ExpressionStatementSyntax IExpressionStatement
IfStatementSyntax IIfStatement / IElseClause

67

SwitchStatementSyntax ISwitch
SwitchSectionSyntax ICase
BreakStatementSyntax IBreak
WhileStatementSyntax IWhile
DoStatementSyntax IWhile
ForStatementSyntax IForLoop
ForEachStatementSyntax IForEachStatement
VariableDeclarationSyntax IVariableDeclaration
VariableDeclaratorSyntax IVariableDeclarator
MemberAccessExpressionSyntax IMemberAccessExpression
ThisExpressionSyntax IThis
LiteralExpressionSyntax ILiteralExpression
BinaryExpressionSyntax IBinaryExpression
IdentifierNameSyntax IIdentifierName
InvocationExpressionSyntax InvocationExpression
UnaryExpressionSyntax IUnaryExpresssion
ObjectCreationExpressionSyntax IObjectCreationExpression
InitializerExpressionSyntax IInitializerExpression
PredefinedTypeSyntax IPredefinedType
GenericNameSyntax IGenericName
ArgumentSyntax IArgument
BaseListSyntax IBaseList

Listing 4.12 depicts the C# model obtained from the example shown in Listing 4.2. The
CompilationUnit references the Class „Student“, which contains the Property „Name“. The
property references a Method for the getter and a Method for setter, and the setter method refer-
ences the Parameter „value“.

Example:
CompilationUnit

Test: Class

Name: Propertyget_Name: Method set_Name: Method

value: Parameter

+properties

+setter

+elements

+getter

+parameters

Figure 4.12: C# model of the example given in Listing 4.2.

68

input : compilationUnit: The C# model
output: rootModelPackage: The root package of the fUML model

1 rootModelPackage← CreateRootModelPackage(compilationUnit);
2 CreatePrimitiveBehaviors(rootModelPackage);
3 CreateListBehaviors(rootModelPackage);
4 classes← CreateClassStubs(rootModelPackage, compilationUnit);
5 methods← CreateOperationStubs(classes, compilationUnit);
6 foreach method in methods do
7 lastnode← CreateInitialNode(method);
8 foreach statement in method.Statements do
9 lastnode← MapStatement(statement, method.Activity, lastnode);

10 end
11 final← CreateFinalNode(method.Activity);
12 CreateFlows(method.Activity, lastnode, final);
13 end

Algorithm 4.1: Main algorithm for mapping a C# model to an fUML model.

4.3 Transforming C# Models into fUML Models

The fUMLFactory component traverses the generated C# model and transforms its elements into
fUML elements according to the mappings presented in Chapter 3. For INamespace elements
Packages are created.

Algorithm 4.1 shows a simplified version of the algorithm which generates the fUML model.
An ICompilationUnit (compilationUnit) representing the root element of the C# model is pro-
vided as input, and the root package of the mapped fUML model is returned (rootModelPack-
age). First, the root model package is created (line 1). Note that the primitive behaviors, as well
as the predefined list behaviors, which are described in Section 3.3, are created for each run of
the whole mapping process (line 2- 3), i.e., the primitive behaviors and predefined list behaviors
are added to each fUML model reverse engineered from a C# compilation unit.
Creating the structural parts of the model (lines 4- 5). First, all packages, classes, enumera-
tions, interfaces, properties, and fields are created, and stored in a seperate data structure which
is returned (line 4). Afterwards all operations, defined in the C# compilation unit are mapped
into corresponding fUML operations and parameters. This mapping includes the creation of
one activity per operation containing acticity parameter nodes corresponding to the operation’s
parameters. The created operations are stored in a variable (line 5).
Creating the behavioral parts of the model (lines 6- 13). The mapping of the behavioral part
of each operation is done for each operation seperately. First an inital node is created (line 7)
for each method. Afterwards each statement within the method is mapped seperately by the
MapStatement method (line 9) which is described in Algorithm 4.2. Subsequently the final node
of the activity is created (line 11), and last a control flow edge is created between the activity
final node and the activity node representing the last statement of the method (line 12).

Algorithm 4.2 shows the algorithm which is responsible for the mapping of a single state-
ment defined within a method. The inputs of the method are the current statement which has to

69

input : statement: The current C# statement, activity: The activity representing the
method, lastnode: The last activity node of the previous mapping.

output: lastnode: The last activity node of the mapping of this statement
1 if statement is of type IBlock then
2 foreach substatement in statement do
3 lastnode← MapStatement(substatement, activity, lastnode);
4 end
5 end
6 lastexpressionnode← MapStatementWithExpression(type, statement,
activity);

7 CreateFlows(activity, lastnode, lastexpressionnode);
8 lastnode← lastexpressionnode;

Algorithm 4.2: Algorithm for mapping C# statements to fUML (MapStatement).

be mapped (statement), the activity which is representing the current method (activity), and the
last activity node (lastnode) of the previous statement mapping (or the initial node if it is the first
statement). The variable lastnode is needed to be able to set the correct object and control flows
within the activities.
Mapping a block (line 1- 5). If the current statement is a block of other statements (represented
by an IBlock), each sub-statement is mapped seperately by calling the same method recursively.
Mapping a statement with its expression (line 6- 8). For all statements which are not of type
IBlock, the statement and its containing expression are mapped by a seperate method Map-
StatementWithExpression which is an implementation of the mapping described in Section 3.3
(line 6). The mapping of the statement and its expression returns the last created activity node
(lastexpressionnode) which is needed to be able to create the object and control flows correctly
(line 7). Finally, the last node created for the mapped expression is returned as last node of the
statement (line 8).

Algorithm 4.3 shows as an example for mapping statements the algorithm for mapping an
invocation expression statement which is a method call in C#. It is one of 12 implemented
statement mappings. First the operation is determined which has to be called (line 1). Then a
call operation action has to be created with pins for all operation parameters and object flows
have to be set correctly (line 2- 3). If the operation has a return parameter, a return pin has to be
created (line 4-line 5). The call operation action is returned to the caller of the operation.

The created root model package of the mapped fUML model is returned to the caller of the
mapping process and serves as input for storing the fUML model within Enterprise Architect,
which is described in the following Section 4.4.

4.4 Storing fUML Models in Enterprise Architect

Enterprise Architect provides an object of type EA.Repository which is the main element to
access a model within Enterprise Architect. It is a container of all model structures and can be
used for accessing the opened model. Listing 4.3 depicts an example of how new packages can

70

input : expressionStatement: The C# expression statement, activity: The activity
representing the method.

output: lastnode: The last activity node of the mapping of the expression statement
1 operationToCall← GetOperation(expressionStatement, activity);
2 callOperationAction← CreateOperationAction(operationToCall, activity);
3 MapPossibleParametersOfOperation(operationToCall, callOperationAction,
activity);

4 if operationToCall has a return type then
5 CreateReturnPin(operationToCall, callOperationAction, activity);
6 end
7 lastnode← callOperationAction;
Algorithm 4.3: Algorithm for mapping a C# invocation expression statement to fUML.

be created. First the Package, which is currently selected in the project browser, is accessed. In
the next step the Packages collection is accessed from the current package which contains all
sub packages. The AddNew method of this collection adds a new sub package to the current
package. The first parameter of the AddNew method is the name of the package which should be
created and the second parameter is the type of the element which should be created. After the
creation it is possible to set other properties of the newly created element. In this example some
further description of the element is set. As last step, we have to call the Update method on the
newly created element to make sure that the changes will be stored within the model.

Listing 4.3: Example of new Package element creation in Enterprise Architect.

EA . Package package = r e p o s i t o r y . G e t T r e e S e l e c t e d P a c k a g e () ;
v a r newPackage = (EA . Package) package . Packages . AddNew (

" ExamplePackage " , " Package ") ;
newPackage . Notes = " F u r t h e r D e s c r i p t i o n . " ;
newPackage . Update () ;

There are several different types of elements in Enterprise Architect. The EA.Package type
represents UML packages, the EA.Element type represents a broad range of UML elements like
Classes, Activities, Actions, Components, etc., and the EA.Connector type represents any type
of a connector between elements. Further description of the available types and features can be
found within the Enterprise Architect Object Model User Guide2.

Storing the fUML Model in Enterprise Architect

Storing the mapped fUML model in Enterprise Architect is straightforward. First the fUML
model is traversed and all structural parts, like packages, classes, interfaces, enumerations, at-
tributes, operations and its parameters are created. After the creation of the structural parts, the
activities created for the operations of classes are added to the model. First, each activity node

2Enterprise Architect Object Model User Guide - http://www.sparxsystems.com.au/resources/user-
guides/automation/enterprise-architect-object-model.pdf

71

of the activity is retrieved and the corresponding element is created in the Enterprise Architect
model and initialized in accordance with the properties of the activity node. Afterwards each
activity edge of the activity is retrieved and the corresponding connector is created in the Enter-
prise Architect model. This way, the resulting model in Enterprise Architect corresponds to the
reverse engineered fUML model.

72

CHAPTER 5
Evaluation

In Chapter 3 the conceptual mappings of C# code to fUML models were described. Based on
these mappings, a prototypical implementation was developed as described in Chapter 4. This
prototype was used to evaluate the appropriateness of the elaborated mappings. The conduced
evaluation is presented in this chapter. In particular, Section 5.1 describes the evaluation frame-
work which was developed to evaluate the mappings, and Section 5.2 describes the different case
studies which have been studied in. Finally, Section 5.3 discusses the results of the evaluation.

5.1 Evaluation Framework

An own evaluation framework was developed for the evaluation of the developed fUML reverse
engineering approach. It follows a test-driven approach which is based on unit tests. Unit tests
are executing the code which is reverse engineered as well as the fUML models corresponding
to that code, and compares the results of botch executions. If the results are equal, it can be con-
cluded that the reverse engineered fUML model is complete, standard conform, and behavioral
equivalent to the code for the given input. For the investigated case studies, it was ensured that
all possible paths through the reverse engineered C# code are tested.

Execution of an fUML Model Stored in Enterprise Architect

Brunflicker [8] elaborated in this master’s thesis a prototype, which is capable of executing
fUML compliant models using the execution engine specified in the fUML standard, within the
UML modeling environment Enterprise Architect. It uses the MOLIZ fUML Debug API [16]
for executing the models by converting the entire API into DLLs by utilizing the IKVM1 toolkit.
A so-called Bridge converts the Enterprise Architect models into fUML models and passes them
to the fUML execution engine. This prototype was extended corresponding to the needs of this
work to support a broader range of the fUML abstract syntax, which were needed to gain a higher

1IKVM - http://www.ikvm.net/

73

test coverage for the elaborated C#-to-fUML mapping. Table 5.1 depicts the enhancements
which have been made. Unfortunately the prototype is not capable of executing more complex
activities which are needed e.g., for the proposed mapping of loops, nested structured activities
with pins and decision nodes, etc. described in Section 3.3. Those tests of the case studies
have been evaluated manually, by examining the model and comparing it against the proposed
mapping.

Table 5.1: Changes on the prototype of Brunflicker [8].

fUML type Changes
add structural feature action Add support for insertAt Pin. Handle the isRe-

placeAll property as tagged value on the action be-
cause Enterprise Architect does not support this
property.

activity parameter node Add proper support for the direction of activity pa-
rameter nodes. Out parameters have to be returned
after the execution of an activity.

structured activity node Add support for structured activity nodes.
call operation action Add support for call operation actions.
decision node Add support for decision input flow.
value specification action Add support for the primitive type UnlimitedNatu-

ral.
test identity action Add support for test identity actions.
clear structural feature value ac-
tion

Add support for clear structural feature value ac-
tions.

start object behavior action Add support for start object behavior actions.
primitive types Add support for primitive type Integer. Set proper

default values for all primitive types.
primitive behaviors Add support for primitive behaviors, which are de-

fined in Section 3.3.

Unit Tests

Enterprise Architect identifies all model elements by using global unique identifiers (GUIDs).
Therefor, a unit test class stub was manually developed for each test class. It includes everything
needed for the tests, except the GUIDs for accessing the model elements. Placeholders are used
instead of the GUIDs in the stubs. After the reverse engineering of a C# project to an fUML
model is done with the developed Enterprise Architect Add-In, the placeholders are replaced
by the GUIDs of the model elements in a post-processing step. Afterwards, the unit tests can
be executed. This semi-automatic approach was used during the test-driven development of the
prototype.

Each unit test, tests one activity. For executing an activity, a context object is needed. There-
for a context object is created, which is an instance of the class that contains the activity. Input

74

parameters are provided by using a dictionary, which contains for each input parameter a value.
To execute the activity, the execution method of the Enterprise Architect fUML execution engine
is called with the GUID identifying the activity, and the reference to the context object. If there
is any output parameter, the dictionary for the input parameters contains a „return“ parameter
with the return value. Assertions are used to compare the output values of the activity with those
of the executed C# method.

Listing 5.1 depicts an example unit test. First, an object of the reverse engineered C# class
ActionsExample is created, and the return value of the method ValueSpecificationActionString
is remembered in the variable retVal. Afterwards, the context object actionsExampleContext is
created, which references the fUML class ActionsExample. Next, a dictionary is created and
the return parameter is added which is set by the execution engine after the activity has been
executed. The Execute method of the execution engine is called, and the GUID of the fUML
activity to be executed, as well as the context object and the dictionary is provided. Last but
not least, the return value of the C# method is asserted against the return value of the executed
fUML activity. If the return value of the executed C# method and the return value of the executed
activity are not equal, the failure message „Return value not equal.“ is shown when executing
the unit test.

Listing 5.1: Example of a unit test.

[T e s t]
p u b l i c vo id V a l u e S p e c i f i c a t i o n A c t i o n S t r i n g T e s t () {

Act ionsExample ae = new Act ionsExample () ;
s t r i n g r e t V a l = ae . V a l u e S p e c i f i c a t i o n A c t i o n S t r i n g () ;
A c t i o n sE x a m pl e C on t e x t a c t i o n s E x a m p l e C o n t e x t =

new A c t i o n sE x a m pl e C on t e x t (c l a s s _ A c t i o n s E x a m p l e) ;
D i c t i o n a r y < s t r i n g , objec t > d i c t i o n a r y =

new D i c t i o n a r y < s t r i n g , objec t > () ;
d i c t i o n a r y . Add (" r e t u r n " , " ") ;
Execu te (a c t i v i t y _ v a l u e S p e c i f i c a t i o n A c t i o n S t r i n g . Guid ,

a c t i o n s E x a m p l e C o n t e x t , d i c t i o n a r y) ;
A s s e r t . AreEqual (r e t V a l , d i c t i o n a r y [" r e t u r n "] ,

" R e t u r n v a l u e n o t e q u a l . ") ;
}

5.2 Case Studies

For evaluating the developed fUML reverse engineering approach, two case studies have been
conducted. First, a simple example has been setup, which covers the different C# concepts, each
in a separate method. It consists of 222 lines of code. Table 5.2 depicts an overview of the C#
concepts, and the corresponding fUML concepts considered in the first case study.

Nr. C# concept fUML concept Additional tests
1.1 literals value specification action Different primitive data types used.

75

1.2 this read self action Implicit usage of this as well as ex-
plicit access.

1.3 local variable dec-
laration

value specification action
if there is a default value,
fork node

Primitive types as well as complex
types used.

1.4 instance variable
access

read structural feature ac-
tion

Primitive types as well as complex
types and collections used.

1.5 (auto) properties add/read structural feature
action

Primitive types as well as complex
types used.

1.6 method call call operation action With and without parameters, dif-
ferent parameter directions, with
and without return parameters.

1.7 object creation create object action, start
object behavior, call oper-
ation action

Class with complex types and sim-
ple types as properties used, with
and without default values.

1.8 equality compari-
son

test identity action Primitive types as well as complex
types used, checking for null, in-
equality test.

1.9 operator expression call behavior on primitive
behaviors

Different operators used.

1.10 type checking read is classified object
action

1.11 if-else statement structured activity node
with decision and con-
trol nodes using sub struc-
tured activity nodes for if
and else block

With and without else clause, re-
turn within if/else, and nested if-
else considered.

1.12 do-while loop structured activity node
with looping control
structure using decision
and merge nodes

Break within loop and return within
loop considered.

1.13 while loop combination of if-else
statement concepts com-
bined with do-while loop
concepts

Break on decision inside loop and
return inside loop considered.

1.14 for loop treated like while loop (cf.
1.13)

Treated like while loop (cf. 1.13)

1.15 foreach loop expansion region Continue inside loop and return in-
side loop considered.

1.16 removing list items remove structural feature
value action

Remove by index considered.

76

1.17 clearing a list clear structural feature ac-
tion

1.18 adding list items add structural feature
value action

Primitive types as well as complex
types used.

1.19 set new value on
property

add structural feature
value action

1.20 set property to null clear structural feature
value action

1.21 switch-case state-
ment

treated like nested if-else
structure

Return inside case, default case, and
combined cases considered.

1.22 working with vari-
ables

forks Using different variables and calcu-
lations on them.

Table 5.2: C# concepts tested in first case study.

The second case study is based on the .NET PetShop MVC2 example. It consists of 306 lines
of code, and mainly consideres the data model of PetShop and the methods operating on this
model. The database related code was completely removed because this work does not consider
the usage of external libraries. This case study comprises 15 classes with 15 corresponding
interfaces and one enumeration. There is a total number of 21 methods, and 31 properties which
are not auto-properties. Table 5.3 depicts the methods considered in this case study where each
method corresponds to one test case and gives a short description of the methods’ behavior.

Nr. Method Description
2.1 Cart.SetQuantity(itemId,

qty)
Iterates over the cart items and updates the quantity for
the given itemId.

2.2 Cart.Add(itemId) Adds an item with the given id to the cart items. If the
cart already contains the item it increases the quantity,
otherwise a new cart item is added to the cart.

2.3 Cart.Add(item) Adds the given item to the cart. If the cart already con-
tains the item, the quantity is increased.

2.4 Cart.Remove(itemId) Removes the item with the given itemId from the cart.
2.5 Cart.Clear() Clears the cart items.
2.6 Category.GetCategories() Returns the categorieInfos list.
2.7 Category.GetCategory

(categoryId)
Returns the category with the given categoryId. If the
category is not contained in the categorieInfos list, null
is returned.

2.8 Category.Add
(categoryInfo)

Adds the given categoryInfo to the categorieInfos list.

2.9 Inventory.
CurrentQtyInStock(itemId)

Returns the total quantity of items with the given itemId
contained in the inventory.

2.NET Pet Shop MVC - https://petshopmvc.codeplex.com/

77

2.10 Inventory.
TakeStock(lineItems)

Reduces the quantity of each item in the inventory for
the given lineItems.

2.11 Inventory.AddStock
(itemId)

Increases the quantity of items in the inventory for the
given itemId.

2.12 Item.Add(itemInfo) Adds the itemInfo to the itemInfos list.
2.13 Item.GetItemsByProduct

(productId)
Returns all itemInfos which are matching the given pro-
ductId.

2.14 Item.GetItem(itemId) Returns the itemInfo for the given itemId. If the item is
not contained in the itemInfos list, null is returned.

2.15 Order.Insert(order) Calls the ProcessCreditCard method and adds the given
order to the orderInfos list.

2.16 Order.ProcessCreditCard
(order)

A dummy method which would be used to check the
given credit card information contained in the order.

2.17 Order.GetOrder(orderId) Returns the orderInfo for the given orderId if it is con-
tained in the orderInfos list, otherwise null is returned.

2.18 OrderInfo.GetOrderTotal() Sums up the totals of each line item, calculates a dis-
count depending on the credit card type and returns the
order total.

2.19 Product.Add(productInfo) Adds the productInfo to the productInfos list.
2.20 Product.

GetProductsByCategory
(category)

Returns all products from the productInfos list which
are matching the given category.

2.21 Product.
GetProduct(productId)

Returns the productInfo from the productInfos list for
the given productId. Null is returned if the product is
not contained in the list.

Table 5.3: PetShop methods considered in the second case study.

5.3 Results

This section presents the results of the evaluation of the above mentioned case studies and dis-
cusses identified issues. Possible solutions to overcome the identified issues are provided, and
changes which have been made manually to get more unit tests running are described.

Case Study 1

For the first case study, 62 unit tests have been developed. Of these unit tests, 29 succeeded with-
out the need for manual adaptions. Table 5.4 depicts the C# concepts considered in the first case
study and provides for each the C# concept, the number of tests, the number of tests that suc-
ceeded without problems, the number of tests that succeed after manually applying changes on
the retrieved fUML model, the number of tests that fail even after considering manual changes,

78

and categorizes the failing tests. Please note that some test cases are covering more than one C#
concept.

Nr. C# concepts UnitTests Succeeding
without
changes

Succeeding
with changes

Failing Category

1.1 literals 2 2 0 0
1.2 this 2 2 0 0
1.3 local variable

declaration
3 3 0 0

1.4 instance variable
access

3 2 0 1 A

1.5 (auto) properties 10 8 0 2 A
1.6 method call 3 3 0 0
1.7 object creation 2 1 1 0 B
1.8 equality compar-

ison
5 3 0 2 D, E

1.9 operator expres-
sion

4 4 0 0

1.10 type checking 1 1 0 0
1.11 if-else statement 5 0 1 4 C, G, E
1.12 do-while loop 3 0 1 2 C, G, F
1.13 while loop 3 0 1 2 C, G, F
1.14 for loop 3 0 0 3 E
1.15 foreach loop 3 0 0 3 A, E
1.16 removing list

items
2 0 0 2 A

1.17 clearing a list 1 0 0 1 A
1.18 adding list items 2 0 0 2 A
1.19 set new value on

property
6 3 0 3 A

1.20 set property to
null

2 1 0 1 A

1.21 switch-case
statement

3 0 0 3 E

1.22 working with
variables

2 2 0 0

Table 5.4: Result of the unit tests of the first case study.

After manual changes there were 35 unit tests succeeding out of 62. Possible solutions for
the remaining failing tests are discussed in the end of this section. Manual changes were either
correcting the object flow or the control flow. Whenever the target or source of a flow was wrong,

79

or missing, it has been corrected manually.

Case Study 2

The second case study comprises 46 unit tests. Of these 46 test cases, only nine succeeded
without problems and manual adaptions. Table 5.5 depicts the C# concepts considered in the
second case study and provides for each the C# concepts, the number of tests, the number of
tests that succeeded without problems, the number of tests that succeed after manually applying
changes on the retrieved fUML model, the number of tests that fail even after considering manual
changes, and categorizes the failing tests. Please note that some test cases are covering more than
one C# concept.

Nr. C# concepts UnitTests Succeeding
without
changes

Succeeding
with changes

Failing Category

2.1 foreach loop,
if-else statement,
equality compar-
ison, property
assignment

2 0 0 2 A

2.2 foreach loop,
if-else statement,
equality compar-
ison, property
assignment,
operator ex-
pression, object
creation, method
call, adding items
to list

2 0 0 2 A

2.3 local variable
declaration, fore-
ach loop, if-else
statement, equal-
ity comparison,
variable assign-
ment, operator
expression, if-
else statement,
adding items to a
list

3 0 0 3 A

80

2.4 local variable
declaration, fore-
ach loop, if-else
statement, equal-
ity comparison,
variable assign-
ment, removing
items from a list

2 0 0 2 A

2.5 clearing a list 1 0 0 1 A
2.6 property access,

return statement
2 2 0 0

2.7 foreach loop,
if-else statement,
equality com-
parison, return
statement

2 0 0 2 A

2.8 property access,
adding items to a
list

1 0 0 1 A

2.9 if-else statement,
equality com-
parison, local
variable decla-
ration, foreach
loop, variable
assignment,
operator expres-
sion, method
call, return
statement

3 1 0 2 A

2.10 foreach loop,
if-else statement,
equality com-
parison, method
call, property
access, operator
expression

3 0 0 3 A

81

2.11 foreach loop,
if-else statement,
equality com-
parison, method
call, operator
expression

2 0 0 2 A

2.12 adding items to a
list

1 0 0 1 A

2.13 local variable
declaration, if-
else statement,
equality com-
parison, foreach
loop, adding
items to a list,
return statement

3 1 0 2 A

2.14 if-else statement,
equality com-
parison, foreach
loop, property
access, return
statement

3 1 0 2 A

2.15 method call,
adding items to a
list

1 0 0 1 A

2.16 if-else statement,
equality compar-
ison, return state-
ment

2 2 0 0

2.17 if-else statement,
for loop, access-
ing items in a list,
equality compar-
ison, return state-
ment

4 1 0 3 E

82

2.18 local variable
declaration, vari-
able assignment,
foreach loop,
operator expres-
sion, switch-case
statement, return
statement

3 0 0 3 A, E

2.19 adding items to a
list

1 0 0 1 A

2.20 local variable
declaration, if-
else statement,
equality com-
parison, adding
items to a list,
return statement

3 1 0 2 A

2.21 foreach loop,
if-else statement,
equality com-
parison, return
statement

2 0 0 2 A

Table 5.5: Result of the unit tests of the second case study.

Most of the test cases which are failing are due to the lack of the propper support of C#
collection types. The identified issues are discussed in more detail in the following. Manual
changes have not been possible for the failing test cases.

Categorization of Identified Issues

The issues identified in the two conducted case study have been classified into five categories
A-E (cf. Table 5.4 and Table 5.5). In the following, these categories of issues are discussed.

• A
Category A contains test cases investigating C# methods that make use of collection types.
Due to the special conversion of collection types, described in Section 3.3, the prototypical
Enterprise Architect fUML execution engine developed by Brunflicker [8] is not capable
of handling the obtained fUML models correctly in the mapping from Enterprise Archi-
tect to fUML. fUML models containing operations on collections have been evaluated
manually, by examining the reverse engineered fUML model and comparing it against the
proposed mapping.

83

• B
Category B contains test cases, where the control flow of the obtained fUML model is not
completely correct. These issues have been resolved manually by adding missing control
flows and adjusting control flows with a wrong source or target activity node. All test
cases of this category succeeded after manual corrections.

• C
Category C contains test cases, where the object flow of the obtained fUML model is not
completely correct. These issues have been resolved manually by adding missing object
flows and adjusting object flows with a wrong source or target activity node. All test cases
of this category succeeded after manual corrections.

• D
Category D contains test cases, where the execution engine was not capable of handling
all used activity nodes. Therefore, the only possibility would have been to further enhance
the execution engine.

• E
Category E contains test cases, where C# concepts have been used which are not consid-
ered in this work (e.g., break statements, continue statements), or which are not imple-
mented by the prototype (e.g., switch-case statements, for loops).

• F
Category F contains test cases, where the execution engine was also not able to deal with
some special object flows. E.g., the execution engine does not allow a decision input
flow from a fork node (only decision input flows from output pins are allowed). Those
restriction e.g., has been resolved by changing the source of the object flow from the fork
node to the right output pin and removing the fork node from the model. All test cases of
this category succeeded after manual adaptions.

• G
Category G contains test cases, where the execution engine was not capable of converting
the model from Enterprise Architect to fUML. This conversion is very error prone if the
activity to convert contains many nested activity nodes with pins. The actual order of the
conversion of the single activity nodes and edges is inefficient. It was tried to resolve some
issues of this category manually but without success.

In summary there are three main problems within the implemented prototype. First, there
are problems with the reverse engineering of the control flow (Category B). Second, there are
problems with the reverse engineering of the object flow (Category C). Third, there are prob-
lems with unsupported C# features (Category E). The other problems are related to unsupported
features of the execution engine (Category A, D, F, and G). The reverse engineered models for
the failing tests have been evaluated manually. The only alternative possibility would have been
to extend the prototype and the execution engine, which was however out of the scope of this
thesis.

84

Discussion of the Results

The biggest challenge in realizing the prototype was the resolving of the correct object flow (c.f.
failing test cases of Category C). Currently, whenever a variable is used within some block of
code, the implementation tries to get the latest activity node which represents this variable (e.g.,
pins, forks, etc.). This kind of back-tracking is not always working. A better approach would be
a forward-tracking algorithm, which explores all used variables within one block of code at the
beginning, and provides the corresponding model elements when a variable access is processed
in the reverse engineering. Then it would be easier to always identify the correct source or target
of an object flow.

Another major issue was the resolving of the correct control flow, especially when a lot of
nested activity nodes are used, or, whenever one statement in the code results in more than one
activity node. Therefor, most of the mappings omit control flows and rely only on the object
flow. However, this does not always lead to the correct execution order of reverse engineered
fUML activities as shown by the failing test cases of Category B.

In the current implementation of the prototype, fUML loop nodes are not supported. Instead
of using loop nodes, C# loops are reverse engineered into structured activity nodes with looping
control structure around it using decision and merge nodes. A loop node would decrease the
complexity when converting loops which would make it more robust. Another possible imple-
mentation could be to try to convert the different kinds of loops to one defined kind of loop
(e.g., while loop) when transforming the C# syntax into a C# model. This would also reduce the
complexity of the C#-to-fUML transformation.

Possible solutions to overcome the issues found within the evaluation are given in the fol-
lowing along the defined categories:

• A
The prototypical Enterprise Architect fUML execution engine developed by Burnflicker [8]
has to be extended with support for the generic List class, which is used for mapping C#
collection types.

• B
To overcome issues of this type, the prototype must be enhanced to correctly produce
control flows for all mappings.

• C
The handling of the object flows must be reworked completely within the proposed pro-
totype. Instead of searching for the correct source and target nodes of a object flow in a
back-tracking manner, a promising approach would be to first compute the pins and forks
representing variables and using them in the mapping of C# method bodies.

• D
The prototypical Enterprise Architect fUML execution engine has to be extended to sup-
port fUML completely.

85

• E
Support of the missing C# concepts like for-loops, switch-case statements, break state-
ments, and continue statements must be implemented in the prototype.

• F
The prototypical Enterprise Architect fUML execution engine has to be extended to sup-
port fUML completely.

• G
The prototypical Enterprise Architect fUML execution engine has to be extended to sup-
port fUML completely.

86

CHAPTER 6
Related Work

Although the fUML standard was released some years ago, there are no mature or established
tools that support the reverse engineering of object oriented programs to fUML models. The
work of Bergmayr et al. [2] described in Section 6.1 is the most related work regarding this mas-
ter thesis. This work is also concerned with reverse engineering an object oriented programming
language, namely Java, to fUML models.

Brunelière et al. [7] have elaborated a framework which supports the development of MDRE
tools, which could be extended to support the reverse engineering of object oriented program-
ming languages to fUML. The work is briefly described in Section 6.2.

Section 6.3 briefly discusses other related work regarding the reverse engineering of pro-
gramming languages. But no one of those are attempting to reverse engineer code written in C#
and targeting fUML as target language.

6.1 fREX

Bergmayr et al. [2] established an open framework called fREX for reverse engineering ex-
ecutable behaviors for dynamic software analysis. It aims to reverse engineer Java code to
fUML models by using a static approach. The model discovery phase uses MoDisco [7], which
generates a Java code model from Java source code. The obtained Java model conforms to a
metamodel of the Java programming language which precisely describes the terminology and
structure of Java. This Java model is transformed to fUML by using the ATL model-to-model
transformation language and tooling by using a defined Java-to-fUML mapping, which is, like in
this work, inspired from the initial mapping defined within the standard fUML specification [26].

fREX is capable of automatically generating and executing fUML models from existing Java
source code. It uses the fUML virtual machine, which has been extended to provide execution
traces [16]. fUML models are statically discovered from Java source code in the model discovery
phase. In the model understanding phase, these fUML models are executed by using the fUML
virtual machine which produce traces. This generated runtime model, together with the fUML

87

model can be used for model-based analysis techniques, like model refinement, slicing, etc.
Instead of using the whole range of the Java language, fREX is targeting MiniJava 1 as source
language, which is a very small subset of Java.

The validation of this approach is done by applying a test-driven approach. Like the vali-
dation of this work, fREX uses unit tests for asserting that the derived fUML models, and the
source Java code are behaving the same. This is also done by input-output comparison. For a
given input, the result of the executed model is compared with the result of the executed code
corresponding to the model.

The work of Bergmayr et al. pursues quite the same strategy for reverse engineering existing
code to fUML like described in this work. But they are targeting Java (or rather MiniJava)
instead of targeting C# as source language. The described work in this master’s thesis provides
also conversions for C# specific language features, as well as mechanisms to overcome some
of the limitations of the fUML standard. The target UML modeling environment Enterprise
Architect is also specific to the work presented in this thesis. Bergmayr et al. rely on the Eclipse
platform.

6.2 MoDisco

Brunelière et al. [7] describe in their work a generic, extensible, and customizable framework
which is called MoDisco (Model Discoverer) and supports the development of MDRE tools.
It supports use cases of software modernization which are based on MDRE approaches. They
define MDRE as Model Discovery plus Model Understanding. Model Discovery is the phase
of representing legacy systems by a set of models without the loss of any information. The
Model Understanding phase takes the models from the Model Discovery phase and generates
the desired output models based on model transformations. MoDisco is an open source project,
which is hosted under the Eclipse Foundation and it is also quoted by the OMG as provid-
ing the reference implementations and tooling of several industry standards promoted by the
Architecture-Driven Modernization (ADM2) task force industry standards. ADM is an initiative
of the OMG, which builds and promotes standards dealing with the modernization of legacy
systems. Brunelière et al. describe several concrete use cases for MDRE approaches using
MoDisco like refactoring of existing Java applications or code quality evaluations.

Brunelière et al. identified four main challenges for an MDRE solution to overcome. First,
any loss of information of the heterogeneity of legacy systems must be avoided. As much in-
formation as possible must be retrieved. Second, comprehension of the legacy systems must be
improved to be able to derive higher abstract views with the most relevant information. Third,
the solution must be scalable. MDRE techniques must be able to load, query and transform very
large models which are usually involved when dealing with legacy systems. And fourth, MDRE
solutions must be generic for different needs. They should not be technology or scenario depen-
dent, or support only one legacy system or technology. A full MDRE approach must have the
characteristics of genericity, extensibility, full coverage, reusability, and automation, to adress
the mentioned challenges. Therefor it is necessary to switch as far as possible to the world of

1MiniJava - http://www.cambridge.org/us/features/052182060X/
2Architecture-Driven Modernization - http://adm.omg.org/

88

Figure 6.1: Overview of the Eclipse-MDT MoDisco project [7].

models to benefit of MDE and the available technologies and techniques around it. The proto-
type described within this master’s thesis has also been designed with these characteristics in
mind. Genericity, extensibility, and re-usability are fostered by the structure of the prototype.
Interfaces ensure that each part of the prototype can be exchange. E.g., the C# metamodel is not
specific for the reverse engineering of C# code to fUML models and could be used to generate
different views on different abstraction levels. Also the resulting fUML model could be used for
other purposes like dynamic or static analysis.

To structure the two phases Model Discovery and Model Understanding, they propose a
global architecture of a MDRE framework which consists of the layers Infrastructure, Technolo-
gies, and Use Cases. The infrastructure layer is independent of legacy systems and provides
generic metamodels and model transformations, e.g., via specific APIs. The Technologies layer
which is build on top of the Infrastructure layer covers some legacy technologies. This could be
technology specific metamodels and the corresponding model discoverers, and transformation
operations on these models. Examples are model discoverer for Java programs, C# programs,
etc., which are representing the legacy system without loosing any information on a very low
abstraction level and close to the source technology. This is often realized by an abstract syntax
tree. Last but not least, the Use Cases layer provides some simple demonstrations or integration
examples, e.g., perform some refactoring on Java code.

Figure 6.1 shows the overview of the Eclipse-MDT MoDisco project. It offers discoverers,
transformations, and generators, based on the Eclipse Modeling Framework (EMF)3. It supports
multiple legacy technologies as input (e.g., source code, databases, etc.), and targets different
views and artifacts from the legacy system as output, depending on the expected reverse engi-
neering tasks, by using the different transformations. Due to its extensibility it can be enriched
to support specific custom needs. To gain such an extensibility, the Infrastructure layer provides

3Eclipse Modeling Framework - https://eclipse.org/modeling/emf/

89

a set of generic components and supports three concrete OMG ADM standard metamodels,
namely Knowledge Discovery Meta-Model (KDM)4, Structured Metrics Meta-Model (SMM)5

and Generic Abstract Syntax Tree Meta-Model (GASTM)6. KDM deals with legacy systems
and their artifacts, and represents the system and its entities in a generic way on a higher level of
abstraction. With the use of SMM, it is possible to specify different metrics and measurements
on the source legacy systems. GASTM, a subdomain of the Abstract Syntax Tree Meta-Model
(ASTM)7, is a low level abstract syntax tree independent of the source language, which uses
UML classes for representing the models. MoDisco has a comprehensive support of KDM, e.g.,
predefined transformations for obtaining UML class diagrams, which can be used whenever a
model discoverer obtains a KDM model.

Although there have been made some experiments about the migration of C# programs
within the context of the ARTIST FP7-ICT European project [1], there is no solution for code
written in the programing language C# available yet in MoDisco.

6.3 Other Related Work

Bergmayr et al. [3] describe the project Advanced Software-based Service Provisioning and
Migration of Legacy Software (ARTIST), which is funded by the European Commission. The
goal of the project is a comprehensive software modernization approach based on MDE to mi-
grate legacy software to the cloud. This includes a reverse engineering step consisting of a
semi-automatic model discovery as well as a forward engineering step to generate source code
deployable in the cloud from the discovered models after having applied transformations to the
models incorporating cloud specific features. The fREX framework mentioned above originated
from the ARTIST project. Also the JUMP framework [4] has been developed within the ARTIST
project. JUMP is a model based reverse engineering approach which is capable of reverse engi-
neering Java annotations to UML profiles.

Martinez et al. [15] describe a framework for reverse engineering UML activities. Their
approach is based on static and dynamic analysis, metamodeling, and formal specification to
be able to recover activity diagrams from Java code. They are using compiler techniques for
parsing the source code and extracting an AST. This AST is transformed to a model conform-
ing to a metamodel defined with MOF which represents a simplified abstract Java model. This
model is transformed to the algebraic language NEREUS which has a formal semantics. From
this model, UML activities are generated using model transformations. The Eclipse Modeling
Framework (EMF) is used for the various transformations. They are recovering action states,
which are deduced from method calls, swimlanes, which are inferred from the classes containing
the called method, transitions, which represent the call flow, and objects, which are representing
local variables of parameters of an operation. While action states, swimlanes, and objects are
obtained by static analysis, transitions are determined by dynamic analysis of execution traces

4Knowledge Discovery Meta-Model - http://www.omg.org/spec/KDM/
5Structured Metrics Meta-Model - http://www.omg.org/spec/SMM/
6Generic Abstract Syntax Tree Meta-Model - http://www.omg.org/spec/ASTM/
7Abstract Syntax Tree Meta-Model - http://www.omg.org/spec/ASTM/

90

of defined test cases. This master’s thesis also focuses on UML activities but additionally relies
on fUML. Also, instead of Java, C# is considered. Martinez et al. [15] are reverse engineer-
ing Java code to UML activity diagram models on a high level of abstraction. Compared to the
work within this master thesis, detailed behavior is not represented in the target models. They do
not consider the UML action language, hence the behavior of the resulting models is incomplete.

A very similar approach is described in the work of Favre [11] with the focus on UML state
machine diagrams. In this work, formal metamodeling techniques are described for maintain-
ing consistency in the reverse engineering process mainly using the Object Constraint Language
(OCL). First, a parser generates an AST of the source code according to the grammar of the
source language. A data flow graph is built and tracer tools are used to capture system states
through dynamic analysis. The focus of the work of Favre [11] is the maintaining of consistency
in a reverse engineering process. This master’s thesis is using a similar approach as described
by Favre [11] but it focuses on UML activity diagrams instead of UML state machine diagrams.

Izquierdo et al. [14] describe a domain-specific language called Grammar To Model Trans-
formation Language (Gra2MoL), which is capable of extracting models from code written in a
general purpose language. It uses a program which conforms to a grammar, the grammar itself,
the metamodel of the desired reverse engineered output model, and mappings between gram-
mar elements and metamodel elements as input. In the first step they build a syntax tree (either
concrete or abstract) from the source code by using ANTLR8. The second step is about trans-
forming the syntax tree into the desired output model by using the Gra2MoL textual definition,
which defines the mapping between the grammar and the metamodel. The approach also pro-
vides a query language inspired by XPath for navigating the transformed model. An example is
also given for reverse engineering source code, which is written in the programming language
Delphi. Gra2MoL neither targets a specific source language, nor does it define a specific tar-
get model formalism. It could be used within an own reverse engineering approach. The work
described within this master’s thesis targets a specific source language and a specific target for-
malism, namely C# and fUML. However, Gra2Mol could be used as an alternative approach to
define the mapping between C# and fUML.

8ANother Tool for Language Recognition - http://www.antlr.org/

91

CHAPTER 7
Conclusion and Future Work

This chapter summarizes and concludes this work, and gives an outlook to future work.

7.1 Conclusion

Model Driven Engineering (MDE) techniques using models as a central part of the software de-
velopment process are commonly used today. But not all software systems have been developed
by using MDE techniques. Whenever there is the need for software modernization tasks like
refactoring, upgrading, reusing parts, etc., reverse engineering (RE) techniques can be used to
obtain model-based representations of existing software systems. Such RE techniques may also
be required whenever a higher-level representation of a software system is needed but missing.
Doing this reverse engineering tasks manually can become cumbersome and error prone. There-
for, model driven reverse engineering (MDRE) techniques have been introduced that automate
the reverse engineering process using MDE techniques. However, MDRE techniques for reverse
engineering the detailed behavior of software including its algorithmic details are currently still
missing.

In 2011, OMG published the specification Semantics of a Foundational Subset for Exe-
cutable UML Models or fUML in short, which selects a subset of the UML language. fUML
defines a precise and complete execution semantics for this subset and therefor serves as a suit-
able candidate to reverse engineer the complete behavior of an existing software system. When
using fUML as target formalism it is possible to model the whole behavior of a software system
in a MDRE scenario. However, currently there are no MDRE approaches available which aims
to reverse engineer the complete behavior of existing software systems to fUML.

The aim of this thesis was to develop an MDRE approach for reverse engineering software
written in C# to fUML. To achieve this, a basic mapping between C# programming concepts
and fUML modeling concepts was elaborated. This includes the mapping from C# classes to
fUML classes which is needed for reverse engineering the structure of a software system, as
well as the mapping from C# method bodies to fUML activities which is needed for reverse

93

engineering the behavior of a software system. The mapping of the behavior is based on the
proposed Java to fUML mapping described in the fUML standard. Some limitations of fUML
for completely representing the behavior of C# programs have been discovered, such as calls
to Clear (clear structural feature action), Add (add structural feature value action), and Remove
(remove structural feature action) methods to be used on structural features only, which prevents
the definition of lists within a method as well as the addition and removal of list items. Another
limitation of fUML is, that it does not allow class properties to have default values. Solutions
to overcome these limitations have been proposed in this thesis. A prototypical implementation
was elaborated to show the feasibility of the proposed C#-to-fUML mapping. The prototype is
able to reverse engineer basic concepts of C# programs to fUML conformant models, which are
persisted in the UML modeling environment Enterprise Architect. Furthermore, the architecture
of the prototype was designed to be extendable and reusable, to be able to target different source
languages or different target UML modeling environments with little effort.

The described approach shows that it is possible to define a basic mapping between C# and
fUML. Furthermore, it shows that an MDRE approach is feasible to reverse engineer existing
software systems which are written in the general purpose language C# to fUML compliant
models. It has also shown that fUML is a suitable candidate as target formalism due to its
precise and complete semantics.

7.2 Future Work

In order to provide comprehensive support for reverse engineering code written in the general
purpose language C# to fUML conformant models the prototypical implementation that was
built within the work of this thesis has to be extended. The following extensions may be the
most interesting ones:

• Support further C# concepts
Currently, the mapping is only defined for the main C# concepts. The mapping has to
be defined for further concepts like continue statements, break statements, and exception
handling.

• Support of the .NET framework
In order to be able to fully reverse engineer software systems written in C#, the prototype
must be extended to be able to make use of the most common concepts used within the
.NET framework. This regards various different data types defined in the .NET framework
like different collections and dictionaries, as well as built in methods which are commonly
used within C# programs, such as methods operating on primitive types which are not cov-
ered by the primitive behaviors defined in the fUML standard and preserve the behavior
of the reverse engineered C# program.

• Correct reverse engineering of object flow and control flow
Besides the lack of support for further C# concepts, the current implementation is not able
to set the correct object flows and control flows in every case. This has to be reworked, so
that the resulting models are conformant to the fUML standard.

94

• Support of external libraries
Currently no external libraries are supported by the elaborated prototype. In order to
generate complete fUML models it would be necessary to either reverse engineer all used
external libraries if the code is available, or to extend the foundational model library of
fUML with such libraries. The latter could be achieved by applying the approach proposed
by Neubauer et al. [19], who show how existing software libraries could be integrated
with fUML compliant UML models at design time, as well as at runtime during model
execution.

• Support of other source languages
Another interesting future work would be to support other programming languages like
Java as source language. Due to the structure of the prototype by using components with
dedicated interfaces it would be a feasible and interesting task.

95

APPENDIX A
Example Code

The listings in this section show the complete code of the running example introduced in Sec-
tion 3.1.

Listing A.1: Code of the Student class

p u b l i c c l a s s S t u d e n t
{

p u b l i c s t r i n g Fi r s tName { g e t ; s e t ; }
p u b l i c s t r i n g LastName { g e t ; s e t ; }
p u b l i c i n t MatNr { g e t ; s e t ; }
p u b l i c U n i v e r s i t y U n i v e r s i t y ;
p r i v a t e i n t age = 1 8 ;

p u b l i c i n t Age
{

g e t { re turn t h i s . age ; }
s e t { t h i s . age = v a l u e ; }

}

p u b l i c S t u d e n t ()
{
}

p u b l i c S t u d e n t (i n t matNr)
{

MatNr = matNr ;
}

p u b l i c S t u d e n t (s t r i n g f i r s t N a m e , s t r i n g las tName , i n t matNr)

97

{
Fi r s tName = f i r s t N a m e ;
LastName = las tName ;
MatNr = matNr ;

}
}

Listing A.2: Code of the University class

p u b l i c c l a s s U n i v e r s i t y
{

p u b l i c s t r i n g Name { g e t ; s e t ; }
p r i v a t e L i s t < S t u d e n t > s t u d e n t s = new L i s t < S t u d e n t > () ;

p u b l i c L i s t < S t u d e n t > S t u d e n t s
{

g e t { re turn s t u d e n t s ; }
s e t { s t u d e n t s = v a l u e ; }

}

p u b l i c U n i v e r s i t y ()
{
}

p u b l i c U n i v e r s i t y (s t r i n g name)
{

t h i s . Name = name ;
}

/ / Adds a new s t u d e n t
p u b l i c vo id AddStudent (S t u d e n t s t u d e n t)
{

S t u d e n t s . Add (s t u d e n t) ;
}

/ / I n s e r t s a new s t u d e n t on t h e g i v e n p o s i t i o n
p u b l i c vo id I n s e r t S t u d e n t A t (S t u d e n t s t u d e n t , i n t p o s i t i o n)
{

S t u d e n t s . I n s e r t (p o s i t i o n , s t u d e n t) ;
}

/ / Removes a s t u d e n t
p u b l i c vo id RemoveStudent (S t u d e n t s t u d e n t)
{

98

S t u d e n t s . Remove (s t u d e n t) ;
}

/ / Removes a s t u d e n t on t h e g i v e n p o s i t i o n
p u b l i c vo id RemoveStudentAt (i n t p o s i t i o n)
{

S t u d e n t s . RemoveAt (p o s i t i o n) ;
}

/ / C l e a r s a l l s t u d e n t s
p u b l i c vo id C l e a r A l l S t u d e n t s ()
{

S t u d e n t s . C l e a r () ;
}

}

Listing A.3: Code of the IAdministration interface

p u b l i c i n t e r f a c e I A d m i n i s t r a t i o n
{

U n i v e r s i t y C r e a t e U n i v e r s i t y (s t r i n g name) ;
}

Listing A.4: Code of the Administration class

p u b l i c c l a s s A d m i n i s t r a t i o n : I A d m i n i s t r a t i o n
{

p u b l i c L i s t < U n i v e r s i t y > u n i v e r s i t i e s = new L i s t < U n i v e r s i t y > () ;

/ / C r e a t e s a new U n i v e r s i t y o b j e c t
p u b l i c U n i v e r s i t y C r e a t e U n i v e r s i t y (s t r i n g name)
{

U n i v e r s i t y u n i = new U n i v e r s i t y () ;
u n i . Name = name ;
u n i v e r s i t i e s . Add (u n i) ;
re turn u n i ;

}

/ / C r e a t e s a new S t u d e n t o b j e c t
p u b l i c S t u d e n t C r e a t e S t u d e n t ()
{

re turn new S t u d e n t (1 2 3 4 5 6) ;
}

/ / C r e a t e s a new S t u d e n t o b j e c t f o r a u n i v e r s i t y

99

p u b l i c S t u d e n t C r e a t e S t u d e n t F o r U n i v e r s i t y (U n i v e r s i t y u n i)
{

S t u d e n t s t u d e n t = new S t u d e n t (1 2 3 4 5 6) ;
u n i . S t u d e n t s . Add (s t u d e n t) ;
re turn s t u d e n t ;

}

/ / Checks i f t h e parame te r i s a S t u d e n t
p u b l i c bool I s S t u d e n t (o b j e c t s t u d e n t)
{

re turn s t u d e n t i s S t u d e n t ;
}

/ / Checks i f two s t u d e n t s are e q u a l
p u b l i c bool A r e S t u d e n t s E q u a l (S t u d e n t s t u d e n t 1 , S t u d e n t s t u d e n t 2)
{

re turn s t u d e n t 1 == s t u d e n t 2 ;
}

/ / Checks i f t h e s t u d e n t i s n u l l
p u b l i c bool T e s t F o r N u l l (S t u d e n t s t u d e n t)
{

re turn s t u d e n t == n u l l ;
}

/ / Checks i f a s t u d e n t i s f u l l aged
p u b l i c bool I s S t u d e n t O f F u l l A g e (S t u d e n t s t u d e n t)
{

re turn I s S t u d e n t O l d e r T h a n (s t u d e n t , 1 7) ;
}

/ / Compares i f t h e s t u d e n t s age i s g r e a t e r than t h e
/ / g i v e n age
p r i v a t e bool I s S t u d e n t O l d e r T h a n (S t u d e n t s t u d e n t , i n t age)
{

re turn s t u d e n t . Age > age ;
}

/ / S e t s t h e u n i v e r s i t y on t h e s t u d e n t
p u b l i c vo id S e t U n i v e r s i t y O n S t u d e n t (S t u d e n t s t u d e n t , U n i v e r s i t y u n i)
{

s t u d e n t . U n i v e r s i t y = u n i ;
}

100

/ / Does some c a l c u l a t i o n t o show i f−e l s e s t a t e m e n t
/ / w h i l e loop and s w i t c h−case s t a t e m e n t
p u b l i c i n t C a l c u l a t e Y e a r (i n t nr)
{

i n t magicNumber = 2 3 ;
i f (n r > magicNumber)
{

magicNumber = magicNumber + 1 0 ;
}
e l s e
{

magicNumber = magicNumber + 2 0 ;
}
whi le (magicNumber > 0)
{

magicNumber = magicNumber − 1 ;
}
sw i t ch (n r)
{

case 1 :
magicNumber = 1 4 ;
break ;

case 1 0 :
magicNumber = 2 4 ;
break ;

d e f a u l t :
magicNumber = magicNumber + 1 ;
break ;

}
re turn magicNumber ;

}

/ / S e t s t h e MatNr t o z e r o on a l l s t u d e n t s on t h e
/ / g i v e n u n i v e r s i t y
p u b l i c vo id Rese tMa tNrOnAl lS tuden t s (U n i v e r s i t y u n i)
{

f o r (i n t i = 0 ; i < u n i . S t u d e n t s . Count ; i ++)
{

u n i . S t u d e n t s [i] . MatNr = 0 ;
}

}

101

/ / S e t s t h e MatNr t o z e r o on a l l s t u d e n t s on t h e
/ / g i v e n u n i v e r s i t y u s i n g f o r e a c h
p u b l i c vo id R e s e t M a t N r O n A l l S t u d e n t s I t e r a t i v e (U n i v e r s i t y u n i)
{

foreach (S t u d e n t s t u d e n t in u n i . S t u d e n t s)
{

s t u d e n t . MatNr = 0 ;
}

}
}

102

Bibliography

[1] ARTIST European Project. Online available at: http://www.artist-project.
eu/, Accessed: 2017-03-07.

[2] Alexander Bergmayr, Hugo Brunelière, Jordi Cabot, Jokin García, Tanja Mayerhofer, and
Manuel Wimmer. fREX: fUML-based reverse engineering of executable behavior for soft-
ware dynamic analysis. In 2016 IEEE/ACM 8th International Workshop on Modeling in
Software Engineering (MiSE’16), pages 20–26. IEEE, 2016.

[3] Alexander Bergmayr, Hugo Brunelière, JL Cánovas Izquierdo, Jesus Gorronogoitia,
George Kousiouris, Dimosthenis Kyriazis, Philip Langer, Andreas Menychtas, Leire Orue-
Echevarria, Clara Pezuela, and Manuel Wimmer. Migrating Legacy Software to the Cloud
with ARTIST. In Proceedings of the 17th European Conference on Software Maintenance
and Reengineering (CSMR’13), pages 465–468. IEEE, 2013.

[4] Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti Kappel. JUMP -
From Java Annotations to UML Profiles. In Proceedings of the 17th International Confer-
ence on Model-Driven Engineering Languages and Systems (MODELS’14), volume 8767
of Lecture Notes in Computer Science, pages 552–568. Springer, 2014.

[5] Jean Bézivin. On the unification power of models. Software & Systems Modeling,
4(2):171–188, 2005.

[6] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engineering
in Practice. Synthesis Lectures on Software Engineering. Morgan & Claypool Publishers,
2012.

[7] Hugo Brunelière, Jordi Cabot, Grégoire Dupé, and Frédéric Madiot. MoDisco: a
Model Driven Reverse Engineering Framework. Information and Software Technology,
56(8):1012–1032, 2014.

[8] Uwe Brunflicker. Integrating fUML into Enterprise Architect. Master’s thesis, Vienna
University of Technology, 2015. Online available at: http://resolver.obvsg.
at/urn:nbn:at:at-ubtuw:1-80420.

[9] Gerardo Canfora and Massimiliano Di Penta. New Frontiers of Reverse Engineering. In
Proceedings of the 2007 Workshop on the Future of Software Engineering (FOSE’07),
FOSE ’07, pages 326–341. IEEE Computer Society, 2007.

103

http://www.artist-project.eu/
http://www.artist-project.eu/
http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-80420
http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-80420

[10] Gerardo Canfora, Massimiliano Di Penta, and Luigi Cerulo. Achievements and Challenges
in Software Reverse Engineering. Communications of the ACM, 54(4):142–151, 2011.

[11] Liliana Favre. Formalizing MDA-based reverse engineering processes. In Proceedings
of the 6th International Conference on Software Engineering Research, Management and
Applications (SERA’08), pages 153–160. IEEE, 2008.

[12] Martin Fleck, Luca Berardinelli, Philip Langer, Tanja Mayerhofer, and Vittorio Cortellessa.
Resource Contention Analysis of Service-Based Systems through fUML-Driven Model
Execution. Proceedings of the 5th International Workshop Non-functional Properties in
Modeling (NiM-ALP’13), page 6, 2013.

[13] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science in
information systems research. MIS Quaterly, 28(1):75–105, 2004.

[14] Javier Luis Cánovas Izquierdo and Jesús García Molina. Extracting Models from Source
Code in Software Modernization. Software & Systems Modeling, 13(2):713–734, 2012.

[15] Liliana Martinez, Claudia Pereira, and Liliana Favre. Reverse Engineering Activity Dia-
grams from Object Oriented Code: An MDA-Based Approach. Computer Technology &
Application, 2(11):969–978, 2011.

[16] Tanja Mayerhofer, Philip Langer, and Gerti Kappel. A runtime model for fUML. In
Proceedings of the 7th Workshop on Models@run.time, pages 53–58. ACM, 2012.

[17] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, Version 1.2, 2015-02-01. Online available at: http://www.omg.org/
spec/QVT/1.2/PDF/.

[18] Microsoft. .NET Compiler Platform (“Roslyn”). Online available at: https://
roslyn.codeplex.com/, Accessed: 2014-11-06.

[19] Patrick Neubauer, Tanja Mayerhofer, and Gerti Kappel. Towards Integrating Modeling
and Programming Languages: The Case of UML and Java. In Proceedings of the 2nd
International Workshop on The Globalization of Modeling Languages, pages 23–32, Vol-
1236, 2014. CEUR.

[20] Object Management Group. OMG Meta Object Facility (MOF) Core Specification, Ver-
sion 2.4.1, 2013-06-01. Online available at: http://www.omg.org/spec/MOF/2.
4.1/PDF/.

[21] Object Management Group. OMG Unified Modeling LanguageTM (OMG UML), Infras-
tructure, Version 2.4.1, 2011-08-05. Online available at: http://www.omg.org/
spec/UML/2.4.1/Infrastructure/PDF/.

[22] Object Management Group. OMG Unified Modeling LanguageTM (OMG UML), Super-
structure, Version 2.4.1, 2011-08-06. Online available at: http://www.omg.org/
spec/UML/2.4.1/Superstructure/PDF/.

104

http://www.omg.org/spec/QVT/1.2/PDF/
http://www.omg.org/spec/QVT/1.2/PDF/
https://roslyn.codeplex.com/
https://roslyn.codeplex.com/
http://www.omg.org/spec/MOF/2.4.1/PDF/
http://www.omg.org/spec/MOF/2.4.1/PDF/
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/

[23] Ken Peffers, Tuure Tuunanen, Marcus Rothenberger, and Samir Chatterjee. A design sci-
ence research methodology for information systems research. Journal of Management
Information Systems, 24(3):45–77, 2007.

[24] D.C. Schmidt. Guest editor’s introduction: Model-driven engineering. Computer,
39(2):25–31, 2006.

[25] Object Management Group. Semantics of a Foundational Subset for Executable UML
Models (fUML), Version 1.0, 2011-02-01. Online available at: http://www.omg.
org/spec/FUML/1.0/PDF/.

[26] Object Management Group. Semantics of a Foundational Subset for Executable UML
Models (fUML), Version 1.1, 2013-08-06. Online available at: http://www.omg.
org/spec/FUML/1.1/PDF/.

[27] Object Management Group. Semantics of a Foundational Subset for Executable UML
Models (fUML), Version 1.3 Beta, 2017-02-01. Online available at: http://www.omg.
org/spec/FUML/1.3/PDF/.

[28] Sparx Systems Pty Ltd. Enterprise Architect. Online available at: http://www.
sparxsystems.com.au/products/ea/index.html, Accessed: 2014-11-18.

[29] Tarja Systä. Static and Dynamic Reverse Engineering Techniques for Java Software Sys-
tems. PhD thesis, University of Tampere, 2000. Online available at: http://urn.fi/
urn:isbn:951-44-4811-1.

[30] Paolo Tonella and Alessandra Potrich. Reverse Engineering of Object Oriented Code.
Springer-Verlag New York, 1st edition, 2005.

105

http://www.omg.org/spec/FUML/1.0/PDF/
http://www.omg.org/spec/FUML/1.0/PDF/
http://www.omg.org/spec/FUML/1.1/PDF/
http://www.omg.org/spec/FUML/1.1/PDF/
http://www.omg.org/spec/FUML/1.3/PDF/
http://www.omg.org/spec/FUML/1.3/PDF/
http://www.sparxsystems.com.au/products/ea/index.html
http://www.sparxsystems.com.au/products/ea/index.html
http://urn.fi/urn:isbn:951-44-4811-1
http://urn.fi/urn:isbn:951-44-4811-1

	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work

	Background
	Reverse Engineering
	fUML
	Enterprise Architect

	C# to fUML Mapping
	Running Example
	Mapping of Structural Features
	Mapping of Behavioral Features

	Implementation of a C# to fUML Mapper
	Enterprise Architect Add-In
	Parsing C# Source Code
	Transforming C# Models into fUML Models
	Storing fUML Models in Enterprise Architect

	Evaluation
	Evaluation Framework
	Case Studies
	Results

	Related Work
	fREX
	MoDisco
	Other Related Work

	Conclusion and Future Work
	Conclusion
	Future Work

	Example Code
	Bibliography

