
A Coordination-Based Framework
for Routing Algorithms in
Unstructured Peer-to-Peer

Networks

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Stefan Zischka
Matrikelnummer 0828584

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: A.o. Univ.Prof. Dr. Dipl.-Ing. eva Kühn
Co-Betreuung: Dr.techn.Mag. Dipl.Math Vesna Šešum-Čavić

Wien, 19. April 2017
Stefan Zischka eva Kühn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

A Coordination-Based Framework
for Routing Algorithms in
Unstructured Peer-to-Peer

Networks

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Stefan Zischka
Registration Number 0828584

to the Faculty of Informatics
at the Vienna University of Technology

Supervisor: A.o. Univ.Prof. Dr. Dipl.-Ing. eva Kühn
Co-Supervisor: Dr.techn.Mag. Dipl.Math Vesna Šešum-Čavić

Vienna, 19th April, 2017
Stefan Zischka eva Kühn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Stefan Zischka
Neustiftgasse 87/1/10 1070 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 19. April 2017
Stefan Zischka

v

Acknowledgements

First, I would like to thank my supervisors eva Kühn and Vesna Šešum-Čavić for their
support throughout the thesis. When writing the thesis, their feedback and guidance
was of great value.

Furthermore, I would like to thank Stefan Craß for his feedback in the early development
stages of the framework and Stephan Cejka for his support regarding the Peer Model
Java implementation.

Most importantly, I would like to show my deepest gratitude to my parents Waltraud
and Andreas for their never ending support and their believe in me achieving the goals I
have set for myself.

Last but not least, I would like thank all other people, not named explicitly here, who
helped me throughout the course of the thesis. I am deeply grateful for their support.

vii

Abstract

The problem of path selection when sending information from one node to another over
multiple hops, solved by routing algorithms, is a substantial one in computer networks.
Especially in unstructured Peer-to-Peer networks, the topic is of major importance, since
no global view on the network or global address mapping exists.

This thesis provides a much needed benchmarking framework that allows the fair and
systematic benchmarking and comparison of routing algorithms in unstructured Peer-to-
Peer networks. The resulting application, based on the Peer Model (a coordination based
programming model), supports easy exchangeability of routing algorithms and extensive
configurability.

Additional contributions are the adaption of existing swarm intelligent algorithms from a
different domain to the domain of routing. BeeNet is based on the foraging behavior of
honey bees, whereas SlimeMoldNet makes use of the Dictyostelium discoideum slime molds
life-cycle. Both algorithms are competitively benchmarked, evaluated and compared to
five well known routing algorithms: AntNet, BeeHive, Physarum polycephalum routing
algorithm, Gnutella Flooding and k-Random Walker. Overall, SlimeMoldNet outperforms
the other algorithms in regards to the average data packet delay. This especially holds for
bigger P2P network sizes and data packet traffic levels. BeeNet shows similar good results.
In terms of scalability, BeeNet outperforms all other algorithms, beside k-Random Walker
at some occasions, without having the same major drawbacks. SlimeMoldNets scalability
is above average and improves drastically proportional to the network size and data
packet traffic level.

ix

Kurzfassung

Die Problemstellung der Pfadselektion beim Senden von Daten über mehrere Netzwerk-
knoten wird durch Routing Algorithmen gelöst und ist von elementarer Relevanz für die
Kommunikation in Peer-to-Peer Computer Netzwerken. Für Peer-to-Peer Netzwerke ist
das Routing Problem von spezieller Wichtigkeit, da keine zentrale Sicht auf das Netzwerk
und keine globale Adresszuordnung existiert.

Die Diplomarbeit liefert ein dringend benötigtes Framework für faire und systematische
Benchmark-Tests von Routing Algorithmen in unstrukturierten Peer-to-Peer Netzwerken
und ermöglich deren Vergleich. Die resultierende Applikation basiert auf dem koordinati-
onsbasierten Programmiermodel Peer Model, erlaubt die leichte Austauschbarkeit von
Routing Algorithmen und bietet umfangreiche Konfigurierbarkeit.

Ein weiterer Beitrag ist die Adaptierung von zwei vorhandenen schwarm-intelligenten Al-
gorithmen zur Lösung des Routing Problems. BeeNet basiert auf dem Futtersuchverhalten
von Honigbienen. SlimeMoldNet hingegen basiert auf dem Lebenzyklus des Dictyostelium
discoideum Schleimpilzes. Beide Algorithmen werden kompetitiv gemessen, evaluiert und
mit fünf bekannten Routing Algorithmen verglichen: AntNet, BeeHive, Physarum polyce-
phalum Routing Algorithmus, Gnutella Flooding und k-Random Walker. SlimeMoldNet
performt ingesamt besser als die anderen Algorithmen bezüglich der durchschnittlichen
Datenpaketverzögerung. Dies gilt im Speziellen für größere Netzwerke und große Anzahl
von Datenpaketen. BeeNet zeigt ähnlich gute Resultate. Hinsichtlich der Skalierbarkeit
performt BeeNet besser als die anderen Algorithmen. Die Ausnahme bildet k-Random
Walker in einigen wenigen Fällen, der jedoch dafür in anderen Bereichen wesentliche
Mängel aufweist. Die Skalierbarkeit von SlimeMoldNet ist überdurchschnittlich gut und
verbessert sich drastisch und proportional zur Netzwerkgröße und Datenverkehr.

xi

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Aim of the Work . 2
1.3 Methodological Approach . 3
1.4 Structure of the Thesis . 3

2 Related Work &
Technical Background 5
2.1 Peer Model . 5
2.2 P2P Systems & Overlay Networks . 7
2.3 Routing in Unstructured P2P Networks 10
2.4 Related Work . 17
2.5 Summary . 20

3 Bio-inspired Algorithms for Routing in Unstructured P2P Networks 21
3.1 Routing in Unstructured P2P Network Definition 21
3.2 BeeNet . 23
3.3 SlimeMoldNet . 32
3.4 Summary . 48

4 Peer Model Framework Architecture 49
4.1 Peer Space Routing Pattern . 50
4.2 Pattern composition . 52
4.3 Framework Composition . 53
4.4 Core Framework Components . 55
4.5 Additional Framework Components . 78
4.6 Summary . 90

5 Implementation Details 93
5.1 Peer Model Implementation & Extensions 93
5.2 Services . 94
5.3 Tracing & Output . 112
5.4 Framework execution . 115

xiii

5.5 Framework Configuration . 116
5.6 Limitations . 120
5.7 Summary . 121

6 Evaluation 123
6.1 Benchmark Methodology . 123
6.2 Sensitivity Analysis . 124
6.3 Raw Result Data . 130
6.4 Competitive Analysis . 134
6.5 Statistical Analysis . 142
6.6 Scalability Analysis . 148
6.7 Summary . 151

7 Future Work & Conclusion 153
7.1 Future Work . 153
7.2 Conclusion . 155

A Appendix 157
A.1 Additional Benchmarks for the Scalability Analysis 157

Bibliography 159

Web-References 165

Acronyms 167

List of Figures

2.1 Peer Model graphical notation . 7
2.2 Abstract architecture for P2P overlay networks 9

3.1 Example instance of an unstructured P2P network 22
3.2 Communication of honey bees via dancing . 23
3.3 Path advertised by a waggle-dancing bee . 25
3.4 Class diagram of a BeeNet bee . 25
3.5 Trip memory of a BeeNet bee . 25
3.6 Life-cycle of the Dictyostelium discoideum slime mold 32
3.7 Element of a SMNet routing table . 34
3.8 Class diagram of a SMNet amoeba . 35
3.9 Class diagram of a SMNet amoeba family . 36
3.10 Class diagram of a SMNet pseudopod . 37
3.11 Class diagram of a SMNet mound . 41
3.12 Class diagram of a SMNet slug . 43
3.13 Class diagram of a SMNet spore . 46

4.1 Routing functionalities of a P2P network node 50
4.2 Architecture of the Frameworks Node Peer 51
4.3 Communication sequence of a Node Peers sub-components 52
4.4 Basic pattern composition . 52
4.5 Local pattern composition in the Framework 53
4.6 Distributed pattern composition in the Framework 54
4.7 Composition of the Frameworks main components 55
4.8 Sequence of a benchmark in the Routing Framework 56
4.9 Wirings of the Node Peer . 61
4.10 Wirings of the Forwarding Peer . 63
4.11 Wirings of the Routing Peer . 66
4.12 Wirings of the Routing Decision Peer . 68
4.13 Wirings of the Routing Information Peer (part 1) 71
4.14 Wirings of the Routing Information Peer (part 2) 72
4.15 Wirings of the I/O Peer (part 1) . 80
4.16 Wirings of the I/O Peer (part 2) . 81
4.17 Wirings of the Statistics Peer . 86

xv

4.18 Wirings of the Control Peer . 87

5.1 Class FrameworkSerializedEntry . 94
5.2 Class FrameworkPeerAddress . 94
5.3 Class Metrics . 108
5.4 Class StatisticsRecord . 109
5.5 Class AlgorithmParameter . 109
5.6 Class TopologyLink . 110
5.7 Example of a scale-free network instance . 111
5.8 Class TraceRecord . 112
5.9 Example of a full entry trace list . 112

6.1 Average data packet delay results for network sizes 50, 100 138
6.2 Average data packet delay results for network size 200 139
6.3 Average data packet hop count results for network size 50 139
6.4 Average data packet hop count results for network sizes 100, 200 140
6.5 Amount of routing overhead messages for network sizes 50, 100 141
6.6 Amount of routing overhead messages for network size 200 142

List of Tables

2.1 Evaluation of framework characteristics . 19

3.1 BeeNets lookup table for the probability to become a follower bee 26

5.1 Metrics outputted by the framework (part 1) 113
5.2 Metrics outputted by the framework (part 2) 114
5.3 peermodel-routing-framework-controlpeer.jar parameters 115
5.4 peermodel-routing-framework-nodepeer.jar parameters 115
5.5 Parameters for the configuration of the Control Peer Space 117
5.6 Parameters for the configuration of the Node Peer Space (part 1) 118
5.7 Parameters for the configuration of the Node Peer Space (part 2) 119
5.8 Parameters for the configuration of the Node Peer Space (part 3) 120

6.1 AntNet parameter values, used for all competitive benchmarks 125
6.2 BeeHives parameter values before the Sensitivity Analysis 125
6.3 BeeHive Sensitivity Analysis results . 126
6.4 Physarum polycephalum algorithms parameter values before the Sensitivity

Analysis . 126
6.5 Physarum polycephalum routing algorithm Sensitivity Analysis results 126
6.6 Gnutella Flooding parameter values before the Sensitivity Analysis 127
6.7 Gnutella Flooding Sensitivity Analysis results 127
6.8 k-Random Walker parameter values before the Sensitivity Analysis 127
6.9 k-Random Walker routing algorithm Sensitivity Analysis results 128
6.10 BeeNet parameter values before the Sensitivity Analysis 128
6.11 BeeNet Sensitivity Analysis results . 128
6.12 SMNet parameter values before the Sensitivity Analysis 129
6.13 SMNet Sensitivity Analysis results . 130
6.14 Metric abbreviation explanation for competitive benchmarks 130
6.15 AntNet raw result data . 131
6.16 BeeHive raw result data . 131
6.17 Physarum polycephalum raw result data . 132
6.18 Gnutella Flooding raw result data . 132
6.19 k-Random Walker raw result data . 133
6.20 BeeNet raw result data . 133

xvii

6.21 SlimeMoldNet raw result data . 134
6.22 SMNet ANOVA results. (part 1) . 144
6.23 SMNet ANOVA results. (part 2) . 145
6.24 BeeNet ANOVA results. (part 1) . 146
6.25 BeeNet ANOVA results. (part 2) . 147
6.26 Average routing overhead messages M per (node/data packet) level 149
6.27 Results of the Scalability Analysis with k=2 149
6.28 Results of the Scalability Analysis with k=4 150

A.1 Benchmark results for 50 nodes and 250 data packets 157
A.2 Parameter description of benchmarked algorithms 158

List of Algorithms

3.1 Bee Colony Optimization model for routing 24
3.2 BeeNet ObserveWaggleDance procedure . 27
3.3 BeeNet ConstructSolution procedure . 29
3.4 BeeNet PerformWaggleDance procedure . 30
3.5 BeeNets procedure for forwarding data packets 31
3.6 SlimeMoldNet, a Dd based routing algorithm 35
3.7 Initialization of SMNet amoebas . 37
3.8 SMNet: Spawning of pseudopods . 38
3.9 SMNet: Movement of a pseudopod . 39
3.10 SMNet: Vegetative Movement . 40
3.11 SMNet: Aggregating to a mound . 42
3.12 SMNet: Forming a slug from the mound 43
3.13 SMNet: Slug Movement . 45
3.14 SMNet: Build Fruiting Body . 46
3.15 SMNet: Dispersal procedure . 47
3.16 SMNets procedure for forwarding data packets 48

xix

Listings

5.1 Initialization of a data entry at its source 95
5.2 Manipulation of a data entry before dispatching 95
5.3 Manipulation of a routing communication entry before dispatching 95
5.4 Creation of a decision request entry . 96
5.5 Manipulation of a data entry before sending 97
5.6 Initialization of the routing information base 98
5.7 Initialization of the termination conditions 98
5.8 Triggering of initial communication with other Node Peers 98
5.9 Creation of initial entries to update the routing information base 98
5.10 Creation of an information request entry 99
5.11 Termination of a data entry . 100
5.12 Answering of a decision request . 100
5.13 Creation of an asynchronous update request in the MakeDecisionService . 100
5.14 Creating a lock token for an information request 101
5.15 Answering an information request . 101
5.16 Updating the routing information base in the AnswerRequestService . . . 102
5.17 Creation of entries of type “send” in the AnswerRequestService 102
5.18 Creation of entries of type “rtCom” . 103
5.19 Initiation of additional sending . 103
5.20 Termination of a received routing information entry 104
5.21 Creation of “send” entries in the ReceiveRoutingInformationService 104
5.22 Creation of an update request in the ReceiveRoutingInformationService . 104
5.23 Updating the routing information base in UpdateInformationBaseService 105
5.24 Creation of entries of type “send” in the UpdateInformationBaseService . 105
5.25 Deletion of lock entries . 105
5.26 Deletion of lock entries . 106
5.27 Output of calculated statistics . 107
5.28 Creation of the benchmarks topology . 110

xxi

CHAPTER 1
Introduction

In this chapter an introduction to the thesis is provided and the problem statement is
discussed. Furthermore, the aim of the master thesis and the methodological approach
to achieve these goals are defined. Lastly, the structure of the thesis is provided.

1.1 Problem Statement

The main task of routing algorithms is to solve the problem of path selection when
sending information from one node to another over multiple hops within a network (e.g.
when sending data packets to a destination node in a computer network) [45].

Thus, in order to send information in a network from a source to a destination, some
sort of routing algorithm is needed. It is important to notice that even very primitive
approaches, like forwarding a packet to a randomly chosen neighbor, are an instance of a
routing algorithm. This makes routing algorithms an essential part of computer networks
such as Peer-to-Peer overlay networks.

In fact, for unstructured P2P networks, the topic of routing is of major importance, since
no global view on the network exists and no address mapping is maintained. Thus, the
delivery of data packets is neither guaranteed nor bound to a specific upper limit of hops
[5].

Furthermore, as taxonomy [17] illustrates, routing algorithms exist in a wide range of
varieties and can be classified on different characteristics such as the ability to handle
changes of the network during run time or the amount of paths taken into consideration
when forwarding data packets. This diversity and the resulting substantial amount of
different options for their implementation make routing algorithms hard to compare
fairly.

1

Existing benchmarking frameworks focus on specific P2P application protocols like
information retrieval [52] or publishing of documents [1]. Therefore, routing is not
benchmarked in its abstracted form, but only indirectly, since it is used as a tool by the
protocols to fulfill their purpose.
Existing popular network simulators, even when focused on P2P networks (e.g. Peerfact-
Sim.KOM [64]), only offer a general environment to simulate distributed systems and do
not provide a generic abstracted pattern for benchmarking routing algorithms. Moreover,
they often have a steep learning curve and use domain specific programming languages
(e.g. NED in OMNet++ [63] or OTcl in NS2 [61]).

Therefore, a generic benchmarking framework for unstructured P2P networks, focused
on routing in its abstracted form, is needed. It should enable the systematic and fair
comparison of routing algorithms in P2P networks and should provide a meaningful
component-based abstraction, able to support any kind of routing algorithm in unstruc-
tured P2P networks.

Another class of algorithms in the domain of routing, which have become more and more
popular in recent years, are swarm intelligent routing algorithm such as AntNet [13] and
BeeHive [49]. In light of this, the possibilities, provided by the generic framework, should
be used to adapt two existing swarm-intelligent algorithms, Bee Algorithm [42], used for
distributed load balancing, and SMP2P [40], used for search in P2P networks, to the
domain of routing.

1.2 Aim of the Work
The aim of the work is to achieve two goals:

• Benchmarking Framework: The first major goal of the thesis is to create a
benchmarking framework for unstructured P2P networks, that enables the fair and
systematic benchmarking and comparison of routing algorithms by providing a
meaningful component-based abstraction in form of a pattern. More specifically, the
framework should benchmark routing algorithms in a generic manner, stripped from
specific areas of applications. Furthermore, the framework shall support the easy
exchangeability of routing algorithms and extensive configurability. Additionally,
the framework shall be implemented based on the Peer Model [26], a coordination
based programming model.

• BeeNet & SlimeMoldNet: The second aim of the thesis is to create two routing
algorithms by adapting two already existing swarm intelligent algorithms. The first
algorithm to adapt is Bee Algorithm [42], an algorithm for solving the distributed
load balancing problem, based on the foraging behavior of honey bees. The second
algorithm to adapt is SMP2P [40], an algorithm for distributed search in P2P
networks, based on the life-cycle of the slime mold Dictyostelium discoideum.
Furthermore, the framework shall be used to evaluate the created routing algorithm

2

explained in the following and to compare them to five well known intelligent and
non-intelligent routing algorithms.

1.3 Methodological Approach
The following systematic approach will be applied to achieve the defined goals of the
thesis:

1. Literature Review: This step includes the gathering of information regarding
state-of-the-art frameworks, related work and the technical background of the thesis.
Furthermore, types of routing algorithms and their diverse characteristics will be
analyzed in order to enable the creation of a generic and abstract pattern.

2. Pattern Modeling: Using the the gathered information, the modeling of a generic
and abstract pattern for routing algorithms in unstructured P2P patterns will be
carried out.

3. Framework Implementation: Based on the modeled pattern, the benchmarking
framework will be implemented using Java 8 [59]. The framework will be based on
the Java implementation of the Peer Model [8].

4. Routing Algorithm Adaption & Implementation: Next, the swarm intelli-
gent algorithms Bee Algorithm [42] and SMP2P [40] are adapted. The BeeNet and
SlimeMoldNet routing algorithms will be implemented in the created framework,
alongside AntNet [13], BeeHive [49], a Physarum polycephalum based routing
algorithm [19], Gnutella Flooding [28] and the k-Random Walker routing algorithm
[30].

5. Benchmarking & Evaluation: After determining the best algorithm specific
parameters for each of the seven implemented routing algorithms, they will be
competitively benchmarked using the created framework. The results will be used to
evaluate the performance of the algorithms. Additionally, statistical and scalability
analysis will be applied on the result data for further in-depth comparison of the
algorithms.

1.4 Structure of the Thesis
The master thesis is structured as follows:
Chapter 2 discusses the related work and states the technical background of the thesis.
Chapter 3 defines routing in its abstracted form and contains the descriptions of the
contributed routing algorithms BeeNet and SlimeMoldNet. Chapter 4 contains a detailed
description of the benchmarking frameworks architecture, its pattern composition and
its components. Chapter 5 describes the implementation specifics of the framework,
the frameworks configuration and its execution. Chapter 6 defines the benchmark

3

methodology, evaluates the benchmarks result data and shows the results of additional
analysis. Chapter 7 discusses possible future improvements to the proposed framework
and the adapted routing algorithms.

4

CHAPTER 2
Related Work &

Technical Background

This chapter describes the technical background of this thesis and its related work. It is
structured in four parts.
First, the Peer Model and its graphical notation in this thesis are described.
Then, general information about P2P networks is presented. Next, several aspects of
routing in general and in unstructured P2P networks are discussed and specific algorithms
are described. Lastly, related state-of-the-art frameworks are discussed and a comparison
of the proposed framework to popular network simulators is provided.

2.1 Peer Model

The Peer Model is a coordination based programming model presented by Kühn et al. in
[26], [9] and [25]. According to [26], its goal is to satisfy requirements of the design as
well as the implementation of (distributed) systems in specific domains.

The top-level component of the Peer Model are peers which exist in Peer Spaces. Peers
are designed once and instances of them may be used multiple times. Furthermore, peers
may contain nested peers, so called sub peers [26].

Each peer has two containers: a peer-input-container (PIC) in which incoming entries are
placed and a peer-output-container (POC) for outgoing entries. Entries are entities which
have a specific freely selectable type, may contain data and are used to trigger behavior
in the model. The contained data is either used for coordination purposes (co-data) or
while conducting behavior (app-data). Behavior is realized by the execution of services
[26].

5

Wirings are contained in peers and execute one or more services. However, the triggering
of service execution by wirings is conditional. Thus, only if all conditions are met, a
service is executed [26].

Guards represent these conditions in the Peer Model. Additionally, guards may pass
entries for processing to the wirings service(s). A guard is created specifically for a
specified amount of entries of a specific entry type and has a specific link operation.
Furthermore, a guard may makes use of link queries. A link query filters entries based
on the contents of their co-data [26].

The available link operations for guards are read, take, none, test and delete.
Both, the read and the take operation provide one or multiple entries of a specified
type to the wirings service(s). However, take consumes the entry from the peers PIC,
read does not. The delete operation simply removes an entry from the PIC without
providing it to the service. The none operation makes sure that no entry of a specific
type exists in the PIC. The test operation checks if an entry of a specific type is available
in the PIC but does not provide it to the service(s) executed by the wiring [26].

Wirings are also able to produce entries when executing services by using actions. When
entries are created, a time-to-start (TTS) might be set. The TTS refrains an entry
from being processed by a wiring until the TTS has passed [26]. Furthermore, a specific
destination peer for a entry can be set via an entries destination property. The entry is
then placed by the wiring in the PIC of the set destination peer [26].

In order to enable the modeling and implementation of a more complex control flow, the
unique flow identifier (flow-ID) is introduced. Entries may have a flow-ID set at their
time of creation. A Wiring may be flow-dependent. Thus, it only processes entries with
the same flow-ID, that belong together logically (e.g. for implementing request-response
patterns) [26].

It is important to stress, that only the concepts of the Peer Model that are relevant for
the thesis were explained in this section.
An example instance of a peer is shown in figure 2.1. The graphical notation used in
this thesis to describe the peers and wirings of the framework is based on [10].

A peer, its PIC and POC are represented by gray rectangles. Sub peers have the same
notation and are contained in peers. A pink shaded square visualizes a wiring. The
service called by the wiring is illustrated by a blue shaded square. The incoming arrows
to the left represent the guards of a wiring, the outgoing ones to the right represents
its actions. A boolean expression in square brackets represents a guard specific query.
Labels on outgoing arrows are TTS values. Bold arrows visualize flow-dependent guards
of a wiring.

6

Figure 2.1: Example for a peer, a wiring and a sub peer.

Circles are entries. In the upper half of the circle, the entry type is stated. In the case
of a guard, the lower half of the circle states the link count. In the case of an action, it
states the amount of entries of the respective type that are produced by the wiring. The
shading color of entries represent link operations: green is the take operation, white is
the read operation and red is the none operation.
A subpeers incoming arrows and the associated circles represent entries that are placed
in the PIC of the subpeer. The ones to the right of a subpeer represents its output
(produced by an action of one of the subpeers wirings).

2.2 P2P Systems & Overlay Networks

When approaching the topic of peer-to-peer networks, it is important to grasp the defining
properties which makes a distributed system a peer-to-peer one.
While pointing out that there have been a lot of different and debated approaches to the
definition of peer-to-peer systems, [2] provides an own definition as follows:

“Peer-to-peer systems are distributed systems consisting of interconnected nodes able
to self-organize into network topologies with the purpose of sharing resources such as
content, CPU cycles, storage and bandwidth, capable of adapting to failures and accom-
modating transient populations of nodes while maintaining acceptable connectivity and
performance, without requiring the intermediation or support of a global centralized server
or authority.” [2, p. 337]

This implies the sharing of resources, the avoidance of a centralized server for the
general mode of operation, the capability of self-organization and fault resistance the
defining characteristics of peer-to-peer systems according to that definition.
Furthermore, [5] states typical characteristics of peer-to-peer systems including the sym-
metry of roles (each node in the P2P network acts as client and server) and the lack

7

of global network administration (each node handles its own administration locally).
However, [5] also stresses that some of the stated characteristics are not extremely
strict i.e. P2P systems may deviate from them, e.g. some P2P systems use nodes with
non-symmetric roles.

Due to the easy way of participation, the flexible nature of peer-to-peer systems and the
importance of high quality distribution of entertainment media on network devices, peer-
to-peer systems have emerged to an important technology for the large scale collection,
sharing, publishing and distribution of data [5].

2.2.1 P2P Overlay Networks

P2P overlay networks can be defined as:

“An application layer virtual or logical network in which endpoints are addressable and
that provides connectivity, routing, and messaging between endpoints. Overlay networks
are frequently used as a substrate for deploying new network services, or for providing a
routing topology not available from the underlying physical network. Many peer-to-peer
systems are overlay networks that run on top of the Internet.” [4, p. 206]

[29] provides an abstract layered architecture of overlay networks that gives a good
overview about the components of peer-to-peer overlay networks, their relationship and
provided functionalities. As shown in figure 2.2, the architecture is structured in 5 layers.
Each of the higher layers is dependent on the ones lower than it in the model. The
lowermost layer is the Network Communications layer. It represents the physical network
on which the overlay network is built on. One layer above is the Overlay Nodes Man-
agement layer, which serves the purposes of routing, location lookup and the discovery
of resources in the overlay network. Since this is the layer where routing algorithms
operate, the Overlay Nodes Management layer is the most interesting one for this thesis.
The middle layer is the Features Management layer. It ensures the robustness of the
overlay network by dealing with security and resource management. This also means,
that the layer is responsible for the error detection and the mitigation of the impact on
the overlays operation. The Service-specific layer supports, as the name suggests, the
services of the overlay by managing them (e.g. scheduling of the services), handling the
messaging and providing meta-data of resources. The top layer of the abstract model is
the Application-level layer. This layer includes all applications, tools and services that
run in the P2P overlay network [29].

There are several approaches for the classification of P2P networks based on different
properties. In [2], a classification based on the overlay networks distribution of responsi-
bilities and functionalities is provided and describes as follows.
A fully centralized P2P network only consists of servlets i.e. all node have
equal responsibilities and carry out the same tasks. Thus, no central coordination or
data storage unit is used in the networks operation [2].

8

Figure 2.2: An abstract architecture for P2P overlay networks [29]
.

Partially centralized P2P networks, do not use a central coordination unit,
but assign the role of supernodes to some servlets based on varying criteria. These
supernodes then carry out additional functionality to support the coordination and
collaboration in the P2P network [2].
Hybrid centralized P2P networks use one or more central servers for coordina-
tion in the P2P network. Central servers may also store additional (meta)data [2].

Another interesting classification, stated and described by [5], is based on the structure
type of a P2P network.
Characteristic for structured P2P networks is the usage of routing tables which
provide some sort of mapping of resources or unique destination identifiers to specific
locations in the P2P network. Moreover, the mapping might be distributed systematically
over the P2P network (e.g. usage of distributed hash tables). When a node joins such
a P2P network, its routing specific structures are fully initialized and changes to the
mapping are propagated accordingly. This mapping allows deterministic routing but also
leads to organizational overhead in order to maintain the networks structure [5].
In unstructured P2P networks, there is no globally maintained mapping. Network
topologies formed by nodes of these P2P networks are often random or scale-free [35],
[41]. Therefore, routing is not deterministic but has to be done based on incomplete
information. Thus, the delivery of messages is neither guaranteed nor bound to a specific
upper limit of hops [5].

9

2.2.2 Churn

Churn is described in [43] as the dynamic joining and leaving of P2P overlay networks
by P2P network nodes and therefore pointed out as a highly significant element of P2P
networks dynamic nature. Interestingly, it was shown by analysis of several popular
deployed P2P network overlays, that group-level properties of churn (collective behavior
of peers) are very similar across different P2P networks, while peer-level properties of
churn (individual behavior of peers) differ to a bigger extend. In [38] an in-depth analysis
of popular churn models, used for the formal description of churn and to enable its
simulation, is provided. More specifically, it considers the models introduced by Yao et al.
[51], Leonard et al. [27], Duminuco et al. [15] and Wang et al. [47] as most significant.

2.3 Routing in Unstructured P2P Networks

The main task of routing algorithms is defined in [45] as solving the problem of path
selection when sending data over multiple hops from one node to another in a network
(e.g. when sending packets to a destination node in a computer network). In this
section, design goals and some general classifications of routing algorithms are discussed.
Furthermore, a variety of routing algorithms, suitable for routing in P2P networks (some
of them already prominently used in P2P protocols), are described.

2.3.1 Design goals

There are some well desired characteristics of routing algorithms, described in [44] as
follows. First and foremost, algorithms should work correctly and should be able to
handle failures and changes in and of the network. Furthermore they should get and stay
in a stable state as quickly as possible, should be as simple as possible and should operate
in a fair and efficient manner. Another important desired property of routing algorithms,
stated in the Cisco Internetworking Technology Handbook [55], is that routing algorithms
should strive to find the most optimal paths for traveling the network. This is done by
defining some kind of metric(s) (e.g. number of intermediate nodes visited from starting
point to destination) and assigning values of the respective metric to paths of the network.
If multiple metrics are used, a routing algorithm may weight them differently for its
computation of the most optimal path.

2.3.2 Classification of routing algorithms

Routing algorithms are really diverse i.e. they can differ by a multitude of aspects. This
diversity is clearly shown when one examines the taxonomy by Farooq [17], which uses
the information stated in the Cisco Internetworking Technology Handbook [55] as basis),
that classifies routing algorithms based on their applied policies and strategies such as
[17]:

10

• Non-adaptive vs. Adaptive: Distinguishes whether an algorithm is able to take
ongoing changes the network (e.g. outage of a node) into consideration for the
calculation of routes during run-time.

• Single-path vs. Multi-path: Single-path and multi-path routing algorithms
differ from each other regarding the number of routes they offer. While the former
one only considers one optimal route to a destination, the latter one is not restricted
to a single path. Keeping multiple paths for a destination enables load-balancing
of traffic over multiple paths.

• Flat vs. Hierarchical / Intra-Domain vs Inter-Domain: In Hierarchical
routing algorithms nodes are aggregated logically to multiple domains and traffic
is routed independently within (Intra-Domain) and between these domains (Inter-
Domain) whereas in flat routing algorithms there is only one domain which contains
all nodes of the network.

• Source Routing vs. Hop-by-Hop Routing: In opposition to source routing,
where the entire route from source to destination is already specified at the starting
node and the forwarding by intermediate nodes happens according to this specifi-
cation, routing decisions regarding the next node of the path are made locally on
each intermediate node in hop-by-hop routing algorithms.

• Global vs. Local: Distinguishes if a routing algorithm has a global view on
the network or only partial information on each node in order to make routing
decisions.

• Deterministic vs. Probabilistic: States whether a routing algorithm always
routes traffic to the same destination through the same successive node or if the
chosen next hop is based on a probability which is proportional to the goodness of
the paths.

Furthermore, routing algorithms can be classified as non-intelligent and intelligent
[41]. The difference is, that intelligent routing algorithms implement some form of
reinforced learning by using agents, which interact with the environment (e.g. the
network) and receive feedback based on these interactions, in order to make decisions
based on the knowledge base (built by the gained experience) [45].
There are several approaches to intelligence in routing algorithms, including algorithms
that mimic behavior already existing in the nature (swarm-based intelligence or based on
genetic evolution) or machine learning [17].

2.3.3 Routing in Unstructured P2P Networks

It is important to stress that routing algorithms are, unlike the protocols which make use
of them, not bound to a specific area of application. Thus, not only routing algorithms
prominently used by P2P protocols are relevant, but all routing algorithms that are
suitable to route data in unstructured P2P networks. In the following, several routing

11

algorithms used by protocols in unstructured P2P networks are discussed. Their selection
is based on [5]. Moreover, several innovative swarm-intelligent routing algorithms are
presented.

2.3.3.1 Gnutella Flooding

As described in [28], the famous Gnutella P2P overlay network makes use of a flooding
routing algorithm for forwarding queries. Queries are used to find resources, located at
participating nodes in the overlay network.
The decisions made by the algorithm are rather simple. Each data packet, distinguished
with an unique identifier, is forwarded to all of a nodes adjacent neighbors, except the one
from which the packet was received [28]. However, this strategy results in the problem,
that data packets are duplicated and passed through the network, creating huge amounts
of traffic. Therefore, Gnutellas flooding algorithm uses an additional measures to mitigate
this. It uses a maximum hop count limit for packets, called time-to-live (TTL), which
triggers their termination when reached [28].

2.3.3.2 k-Random Walker

The random walk routing algorithm [30] is rather primitive. At any point on their
path, data packets are simply forwarded to a random neighbor, until they reach their
destination. Thus, the probability for choosing a neighbor n ∈ Nc at node c as next hop
is defined as

P (n) = 1
|Nc|

, Nc = {neighbors(c)} (2.1)

Since random routing of single data entries is very inefficient, [30] discusses several
improvements to the random walker algorithm. Among them is the use of a maximum
hop count limit for walkers, called time-to-live (TTL), and the approach to send k
instances of a data packet simultaneously instead of a single one. Thus, the improved
random walker algorithm is named k-Random Walker [30].

2.3.3.3 AntNet

AntNet, proposed by Di Caro et. al [13], is a swarm intelligent routing algorithm which
is inspired by the behavior of ants. A more sophisticated and advanced version of the
algorithm is described in-depth in [12] as follows.

The algorithm is based on a phenomenon in nature, observed when ants collect and
transport food from a food source to their formicary. At first, ants take random paths
to a food source. They communicate indirectly by using a chemical substance, called
pheromone, that is left by ants on their path [12]. The shorter the path taken, the faster
ants travel back and forth to the food source. Thus, pheromone levels on short paths
are higher than those on longer paths. Ants are more likely to choose paths with higher
pheromone level, increasing the pheromone level on those paths even more. Therefore,

12

after some time, the path taken converges to the shortest one [12].

Ants are represented by 2 types of software agents: forward agents, responsible for
recording the delay when traveling from the source node to a destination node and
backwards agents, responsible for updating data structures of network nodes on their
way back. These software agents (in the following called ants) hold a data structure that
serves as a history of visited nodes and the time needed to reach them. Furthermore,
each network node holds 2 local data structures [12]. The first data structure is a routing
table that contains a probability value Pmn for each neighbor n of a node and each
destination node m in the network. The probability of such a pair (m,n) states how
good the decision is to choose n as next hop when m is the destination of the trip (the
higher the value, the better the choice). An important constraint is, that the sum of all
probability values for a destination m must always be 1 [12]. The trip list is the second
data structure contained in every node of the network. It contains the mean µm and
variance σ2

m of trip times which have been experienced by ants when traveling from this
node to the destination node m (independently of which neighbor node was chosen as
next hop). Moreover, the structure contains the best experienced trip time to destination
node m. Those statistical values are used by the backwards ants when updating a nodes
routing table [12].

Network nodes periodically choose a destination based on a roulette wheel selection and
send a forward ant. The more a destination is requested by received data packets at
a network node, the higher is the probability for this destination to be chosen for a
newly spawned ant [12]. As a forward ant travels the network independently, it stores
information about the experienced delay at each hop in its data structure and chooses
the next hop in a probabilistic manner, based on the local routing table and the size
of the current nodes output queue [12]. Furthermore, to avoid loops, neighbors which
have not been visited are preferably chosen. If a loop occurs nevertheless and thus a
forward ant visits a node twice, a cycle in the path of the ant from source to destination
is detected. The ant reacts to this by deleting every entry in its internal data structure
regarding the involved nodes of the cycle [12]. If a time limit, the time-to-live (TTL), is
reached an ant is killed immediately [12]. When a forward ant reaches its destination, its
data structure is extracted and passed to a newly spawned backward ant. The forward
ant is then killed [12].

The backward ant uses the entries of the forward ants data structure to follow the path
taken by the forward ant in reverse. On its way back to the initial source node, the ant
updates the trip list and the routing table of each node visited. First, at the current
node k, the mean µm and variance σ2

m for the destination m are updated using a learning
value η and the experienced trip time Tm [12]:

µm ← µm + η(Tm − µm) (2.2)

σ2
m ← σ2

m + η((Tm − µm)2 − σ2
m) (2.3)

13

Furthermore, if Tm is better than the best experienced trip time Wm in the observation
window w [12]:

Wm ← Tm (2.4)

The observation window size w is defined as [12]:

w = 5(c/η) (2.5)

where c ∈ [0, 1] is a constant.

Then the routing table for the destination m is updated. The probability of the neighbor
f , chosen by the forward ant as next hop on the path to destination m, is increased using
a reinforcement value r ∈ (0, 1] [12]:

Pfn ← Pfn + r(1− Pfn) (2.6)

The probabilities of all other neighbors are decreased such that the accumulated proba-
bilities for the destination m is still 1 [12]:

Phn ← Phn − rPhn, h ∈ Nk, Nk = {neighbors(k)}, h 6= f (2.7)

The reinforcement value r is calculated by [12]:

r = c1

(
Wm

Tm

)
+ c2

(
Isup −Wm

(Isup −Wm) + (Tm −Wm)

)
(2.8)

r is saturated at 0.9. c1 and c2 are constant values [12]:

Isup = µm + z

(
σm√
w

)
with z = 1/

√
(1− γ (2.9)

γ ∈ [0.6, 0.8] is a constant value. Additionally, before the reinforcement value is used, it
is squashed using the formula [12]:

r ← s(r)
s(1) (2.10)

s(x) =
(

1 + exp

(
a

x|Nk|

))
, x ∈ (0, 1] (2.11)

a is a constant value.
For forwarding, AntNet offers multiple routes. The route is chosen in a probabilistic
manner based on the probability values for a destination in a nodes routing table [12].

14

2.3.3.4 Physarum polycephalum Algorithm

Several routing algorithms [19], [21], [53] based on the Physarum polycephalum slime
mold have been proposed. The algorithm, proposed by Hickey et. al [19], is interesting for
routing in unstructured P2P networks, since it allows routing on incomplete information.

The Physarum polycephalum slime mold contains a venous structure that is used for
transporting nutrients from food found by the organism. If food is found by an area
of the slime mold, the flow in the veins that transport nutrients increases, resulting in
increased diameter of those veins. Meanwhile, the diameter of non-nutrient transporting
veins decreases. Initially, all diameters of the slime molds veins, and therefore all flows,
are considered to be equal [19].

Each network node k holds a routing table containing the flow Qij in the connecting
vein for each neighbor i ∈ Nk and destination j in the network. The flow represents the
probability to choose the vein to a neighbor when sending a data packet to a destination.
An important constraint is, that the sum of all flow (probability) values for a destination
m must always be 1 [19].

Nutrients are embodied by agents which are periodically spawned and sent to random
destinations in the network. Agents have a forward and a backward mode. In forward
mode, the agents try to reach their destination by choosing the next hop probabilistically,
based on the flow values in the routing table, at each intermediate node. When the
destination is reached, an agent goes into backward mode. In backward mode, the agents
follow the path, taken by the agent in forward mode, in reverse and update the routing
table of each intermediate node using the delta function [19]:

∆f
(
Qij

)
← ε

(
Qij

)
(2.12)

The algorithm ignores the delay experienced by forward agents and uses a constant
reinforcement value r for updating routing tables [19]:

r = ε, ε ∈ (0, 0.1] (2.13)

Forwarding of data packets is done probabilistically by a roulette wheel selection based
on the vein diameter ratio [19].

2.3.3.5 BeeHive

Another nature inspired routing algorithm which uses swarm intelligence, is BeeHive,
proposed by Wedde, Faroo and Zhang in [49]. It is exhaustively described in [18] as follows.
The algorithm is based on the communication techniques bees use when evaluating food
sources. A waggle dance is performed in the hive by forager bees in order to communicate
food sources of good quality. Hence, bees use this form of communication to maximize
their productivity when collecting food. In the BeeHive algorithm, routing tables, held

15

by each network node, are considered the dance floor in the hive [18].

There are 2 types of bee agents, short distance bees and long distance bees, which differ by
the amount of hops they are allowed to travel in the network before they are killed. The
algorithm goes through an initialization phase before entering normal mode of operation.
In this phase, the network is partitioned into foraging regions. Therefore, nodes send
short distance bees to their neighbors in order to elect a representative node. The size of
foraging regions is limited by the number of hops a short distance bee is able to travel.
Each network node has an unique identifier and the one with the smallest ID wins the
election. Representative nodes differ from other nodes by the type of bees they send.
They only send long distance bees, whereas all other nodes only send short distance bees.
At the end of the initialization phase, all nodes in the network inform each other to which
foraging region they belong using long distance bees [18].

Each node in the network contains 3 routing tables, where the mimicked waggle dance is
performed in order to exchange path information. The first one is a mapping structure,
called Foraging Region Membership routing table (FRM). It contains a mapping of every
known node to its foraging region. The Intra Foraging Zone routing table (IFZ) and
the Inter Foraging Region routing table (IFR) have the same structure, but are used
differently. They contain for each neighbor node and destination a pair (p, q), where p is
the propagation delay and q the queue delay. This pair describes the experienced delays
when choosing the neighbor as next hop for this particular destination. The IFZ is used
for routing data to destinations within the foraging zones, while the IFR holds the same
information for the networks representative nodes [18].

Each node periodically spawns a bee agent (long or short distance depending on the role
of the node), with an unique identifier, that is then flooded over the network. When a
bee reaches a node on its path, it is first checked if this exact copy of the bee has already
been received and if the maximum hop count of the bee has been reached [18]. If either
one is the case, the bee is killed. Otherwise, it updates either the IFZ or IFR routing
table, depending on its type, using the experienced queue delay qbee and propagation pbee
for destination r and the last hop neighbor s [18]:

qsr = qbee (2.14)

psr = pbee (2.15)
If a flooded duplicate of a bee has already been received, it is killed after the routing table
update. As bees travel the network, at the current node k, they store the accumulated
experienced queue delay qbee and propagation delay pbee, weighted by a goodness factor
g, for the current hop and all neighbors n ∈ Nk in their internal data structure [18]:

qbee =
∑
n∈Nk

qnrgnr (2.16)

pbee =
∑
n∈Nk

pnrgnr (2.17)

16

Furthermore, if no copy of this bee has been received by the node, it creates replicates of
it and sends them to all neighbors except the one from which the bee came from [18].

The goodness gjd of reaching a destination node d over the neighbor node j from the
current node is approximated by the formula [18]:

gjd =
1

pjd+qjd∑N
k=1(1

pkd+qkd
)

(2.18)

where pjd and qjd are the propagation delay and queue delay when d is the destination
and j is chosen as next hop node. N is the total number of neighbors. For the forwarding
of data packets at a node, BeeHive calculates the goodness function for every possible next
hop to the destination of the packet and forwards the received packet in a probabilistic
manner, proportional to the calculated goodness values. The delay values are taken
from the IFZ, if the destination is in the foraging region of the node. Otherwise, the
representative node of the destination is determined using the FRM. The delay values
are then read from the IFR [18].

2.4 Related Work

A benchmarking framework is a general abstraction of the target domain, provides generic
functionality and allows the testing and finetuning of algorithms in order to enable the
selection of the most optimal algorithm for specific scenarios [42].
The main requirements and desired characteristic for the framework are to enable the
fair and systematic benchmarking and comparison of routing algorithms by providing
a meaningful component-based abstraction in form of a pattern in a generic manner
(stripped from a specific area of application like information retrieval and able to support
any kind of routing algorithm). Furthermore, the framework should focus on unstructured
peer-to-peer networks and should support the easy exchangeability of routing algorithms.

In the following, relevant related state-of-the-art frameworks for routing in unstructured
P2P networks are discussed and evaluated with respect to the characteristics discussed
above.

Agosti et al. [1] propose a framework, built on top of a P2P network simulator, for
simplifying the development of routing protocols and the benchmarking of their per-
formance. It supports unstructured P2P networks. However, routing algorithms are
not benchmarked in an isolated and generic manner but in the specific application of
information retrieval. Therefore, the framework is not considered generic by the principles
stated at the beginning of this section. For the implementation of routing protocols, only
an interface with a method for the publishing and for the search of resource descriptors
is provided, which makes benchmarked protocols easily exchangeable. Moreover, the
framework provides building blocks (such as a topology constructor and a initializer of

17

nodes). However, no specific pattern for the implementation of routing algorithms is
provided and therefore the benchmarking is not considered fair in terms of the principles
stated above.

Zammali and Khedija [52] provide a framework for the benchmarking of routing algo-
rithms in combination with distribution and replication strategies in the specific context of
information retrieval/distribution of documents in (unstructured) peer-to-peer networks.
Although the framework is structured in a modular way (e.g. modules for replication
and distribution of documents), the routing algorithms are not structured in a generic
pattern. Therefore, the benchmarking is not considered fair based on the stated criteria.
It is assumed, that no easy exchangeability of routing algorithms is provided, since it
neither claimed, nor any details on the implementation of routing algorithms is given in
the paper.

Cuzzocrea [11] presents a standalone configurable query-strategy-based benchmarking
framework for information retrieval protocols. The focus is to benchmark the accuracy
and efficiency of queries. Again, routing algorithms are only benchmarked indirectly in
the context of queries for information retrieval in (unstructured) peer-to-peer networks.
The framework strives to be generic in respect of information retrieval techniques by
offering complete customizability and the possibility to implement any query algorithm.
However it is not generic regarding routing algorithms by the stated criteria, since routing
algorithms are not benchmarked in an isolated and abstract manner. Although an
interface for the implementation of protocols is provided to ease the exchange of protocols,
no specific pattern for the implementation if provided. Therefore, the framework is not
considered to offer a fair comparison.

Although, the framework provided by Saleem, Di Caro and Farooq in [37] is not focused
on benchmarking of routing algorithm in unstructured P2P networks and therefore only
partly relevant for this section, it is still worth mentioning, since it provides an important
desired characteristic for the desired framework, a meaningful abstraction of swarm
intelligent routing algorithms in form of a component-based break down.

In summary it can be said, that after extensive literature research, no frameworks for
the benchmarking of routing algorithms in unstructured peer-to-peer networks could
be found that satisfy all the defined main requirements of genericity, fairness and easy
exchangeability of routing algorithms.

18

Characteristics PeerSpace
Framework [1] [52] [11] [37]

Benchmarking
framework X X X X 7

Generic X 7 7 7 7

Pattern for routing
algorithms provided X 7 7 7 X

Peer-to-Peer X X X X 7

Fair comparison of
algorithms X 7 7 7 7

Easy exchangeability
of algorithms X X 7 X 7

Standalone X 7 7 X X

Table 2.1: Evaluation of framework characteristics. Each characteristic is marked with
X, if it is met by the framework. If that is not the case, it is marked with 7.

2.4.1 Network Simulators

[14] defines a simulator as a piece of software that mimics the real world through the
creation of models of the system of interest, which are then used to investigate the
behavior of the system such that conclusions can be drawn regarding the real world.
Network simulators narrow down their focus to the simulation of computer and commu-
nication networks by modeling their devices (such as routers and hubs), their behavior
and the interaction between them [32]. A popular scenario of application for network
simulators is the analysis and benchmarking of new algorithms and protocols as well as
their comparison to existing counterparts [39].
There are several kinds of network simulators, some of them with different architecture
and area of application.
The list of popular simulators contains software such as OMNet++ [63] and J-SIM [58],
which are general purpose simulators (not bound to simulation of telecommunication
networks), NS-2 [61] and NS-3 [62], which are network simulators (not bound to P2P
networks) and specialized P2P network simulators like PeerfactSim.KOM [64].

2.4.1.1 Network simulators vs. the Peer Space framework

There are some downsides of using network simulators when it comes to benchmarking
routing algorithms.

• Generally, network simulators offer an environment for the simulation of systems
which is not specifically focused on benchmarking routing algorithms and is not
restricted enough in terms of how routing algorithms have to be implemented

19

besides the basic underlying architecture and interfaces of the simulator. They offer
no concrete pattern like the proposed framework in this thesis does).

• A further major downside when using a network simulator is their steep learning
curve. Not only does one have to read an immense amount of documentation and
tutorial pages in order to use them correctly, when it comes to the implementation
of own simulation models (e.g. routing algorithms), even more learning time is
needed. Moreover, one might even has to learn a new programming language to
create simulations in a network simulator. (e.g. NED in OMNet++ [63] or OTcl in
NS2 [61]).

• Compared to the framework proposed in this thesis, network simulators often
benchmark the algorithms locally, whereas the Peer Space framework can also be
used as a real testbed due to the distributed nature of Peer Spaces.

• Another benefit of using the Peer Space framework over a network simulator is that
due to the provided pattern, one is able to exchange certain parts of the algorithm
easily, which not only gives better insight on how certain parts of the algorithm
influence the overall performance, it also serves as a tool for guidance when it comes
to the development of new or improved routing algorithms.

2.5 Summary
In this chapter, the technical background and the related work of this thesis is presented.
First, the Peer Model, a coordination-based programming model, which combines the
domains of design and implementation, is discussed. This fact and the models structured
nature makes it perfectly suitable for the implementation of a generic benchmarking
framework for routing algorithms.
The rest of the technical background focuses on P2P networks and on routing algorithms.
In addition, several specific routing algorithms, suitable for routing in unstructured P2P
networks are presented. The diversity of routing algorithms and the flexible nature of
unstructured P2P networks emphasizes the need for a abstracted generic benchmarking
framework provided in this thesis.

The related work is focused specifically on related state-of-the-art frameworks for routing
in unstructured P2P networks. It is shown, that none of the related framework fulfills the
desired characteristics of an abstracted generic benchmarking framework for routing in
unstructured P2P networks. Additionally, a short comparison of this thesis framework to
popular network simulators is provided. Several sophisticated arguments are presented for
using the Peer Model framework, provided in this thesis, instead of popular state-of-the-art
network simulators.

20

CHAPTER 3
Bio-inspired Algorithms for

Routing in Unstructured P2P
Networks

This chapter contains the general definition of how routing in unstructured P2P networks,
in its abstracted form, is interpreted in this thesis. Furthermore, adaptions of two
well known swarm intelligent optimization algorithms for the purpose of routing in
unstructured P2P networks, are presented. Those adaptions are contributions to this
master thesis.
The algorithms are both described in three parts. First, their source in nature is discussed.
Then, the process of creating their knowledge base (routing table) by applying swarm
optimization is described. Lastly, the forwarding of data packets is specified.

3.1 Routing in Unstructured P2P Network Definition

Since routing in unstructured P2P networks is often used in protocols for specific
applications, an abstracted model for routing in unstructured P2P networks has to be
defined. Generally, the goal is to deliver a data packet to its destination node, defined
by its source node. The process is considered successful, if the data entry reaches its
destination.

To enable a source node to address the destination of a data packet explicitly, an unique
identifier of each P2P node of the network has to be known. However, since P2P overlay
networks operate above the physical layer, this unique identifier must not be the network
nodes physical host address. Otherwise, the use of routing in the unstructured P2P
overlay would be absurd, since nodes would communicate directly.

21

Let an unstructured P2P network be represented by an undirected graph
GP2P = (VP2P , EP2P), where the vertices v ∈ VP2P of the graph represent the P2P
networks nodes and the edges e ∈ EP2P represent connections between these nodes.
Nodes w, k ∈ VP2P are considered neighbors if and only if ∃(w, k) ∈ EP2P .
Each node vi ∈ VP2P , i = [1, n], n = |VP2P | has a logical unique identifier xi and a physical
address yi. xi of node vi is known to all nodes v ∈ VP2P . However, only neighbors are
able to to map their logical identifier x to their physical host address y and therefore
exchange packets directly.
Thus, the address resolution function for a network node c and a unique identifier xe

m(c, xe) =
{
ye if e ∈ neighbors(c)
xe otherwise

(3.1)

evaluates if node c is able to determine the physical address of node e and therefore
if it is able to communicate directly with it. However, it is important to note, that if
intelligent agents are used by a routing algorithm, these agents may know the physical
address ys of their source node in addition to the logical identifier xs. Thus, they may
return directly to their source.

Example 3.1.1 Suppose an instance of an unstructured P2P network represented by the
undirected graph GexP2P = (VexP2P , EexP2P) with VexP2P = {v1, v2, v3, v4, v5, v6, v7} and
EexP2P = {(v1, v2), (v1, v3), (v1, v5), (v1, v6), (v1, v7), (v2, v3), (v2, v4), (v3, v4), (v3, v5),
(v3, v6), (v6, v7)}. It is shown in figure 3.1.
The logical unique identifiers known to node v7 are x1, x2, x3, x4, x5, x6, x7. The physical
addresses known to node v7 are y1, y6, y7. Thus, direct exchanging of data packets is only
possible with nodes v1 and v6. For all other nodes, packets have to be delivered by using
a routing algorithm.
However, if an intelligent agent, originated by another node than v1 and v6 reaches v7, it
may also return directly to its source.

Figure 3.1: Example instance of an unstructured P2P network, visualized as undirected
graph

22

3.2 BeeNet

Šešum-Cavic and Kühn [42] present Bee Algorithm, a swarm intelligent algorithm, created
for solving the problem of dynamic load balancing in distributed systems, based on the
biological behavior of bees in nature. Moreover, this load balancing algorithm, adopts
some elements of Bee Colony Optimization (BCO) described in [50]. It is used for solving
the Traveling Salesman Problem. Bee Algorithm, and therefore elements of BCO, are
adapted to the domain of routing in unstructured P2P networks. The resulting routing
algorithm is called BeeNet.

Figure 3.2: Communication of honey bees via dancing [46]
.

Honey bees have an interesting collaborative approach to feed the hive. The central
phenomenon of this collaboration is the communication of food source related information
via a dance-language known as waggle-dance [46].
Honey bees, that are responsible for searching and collecting food, can switch between 2
kinds of roles: forager and follower. Foragers scout the landscape surrounding the hive
and search for good quality sources of nectar and pollen [6].

After finding such a food source and returning to the hive, they unload the collected
food and start to waggle-dance. Thus, they communicate the quality level, the distance
and the direction of the food source to other bees. Bees observing the dance (foragers
and followers) decide which role they take next. They either become followers and follow
the dancing forager to the advertised food source or become foragers and scout for food
sources themselves [6].

3.2.1 BeeNet for Routing in Unstructured P2P networks

The unstructured P2P network represents the landscape in which many hives and flowers
exist. More specifically, each node in the P2P network represents exactly one hive
with its own bee population and exactly one flower that contains nectar. Each hive
periodically, in an configurable beeSpawnInterval, sends out a bee for the search of
food to a randomly but specifically chosen flower. It is important to note, that although

23

only a single bee is sent out by a hive at a point in time, bees explore the network
concurrently. Thus, the amount of exploring bees of a hive can be freely configured
by the beeSpawnInterval. The goal of a hives bee population is to maximizes its
productivity and therefore to find the most efficient paths from the hive to all flowers in
the landscape.
The quality of a specific path is defined by a fitness function

fpath =
(1
Hpath

)(1
Dpath

)
(3.2)

where Hpath is the amount of hops a bee took on the path from source to destination
and Dpath is the accumulated delay experienced on this path.

The behavior discussed above, can be described, like the bee based algorithms presented
in [42] and [50], as Bee Colony Optimization meta heuristic, shown in pseudocode 3.1. It
is described in detail in the following subsections.

Algorithm 3.1: Bee Colony Optimization model for routing
Input : hive s, flowers R
Output : optimal paths from s to all flowers r ∈ R

1 procedure BCO (s,R);

2 Initialization;
3 while not terminated do
4 if beeSpawnInterval has passed then
5 ObserveWaggleDance;
6 ConstructSolution;
7 PerformWaggleDance;
8 end
9 end

3.2.2 Initialization

Before a hive sends out bees to search for food, it is initialized. Routing decisions in a
hive are made based on two data structures. The routing table RT , held locally at a hive,
represents the dance floor on which bees advertise paths to specific flowers. Therefore,
it is a collection of paths, experienced by the hives bees, from the hive to destination
nodes in the network. The class diagram of an advertised path is shown in figure 3.3.
Furthermore, a hive holds a distance matrix M that contains the heuristics distances to
neighbor hives. The heuristics distance to a neighbor hive is the delay last experienced
by a bee.

A bee is represented by a software agent, shown in figure 3.4. It has exactly one source

24

Figure 3.3: Path advertised by a waggle-dancing bee

hive and one destination flower. Moreover, it is important to note that the source address
of a bee is the host address of its hive and not its unique identifier in the P2P network.
Thus, the bee is able to return to its hive directly. Furthermore, the bee holds a list of
trip records which represents the path taken by the bee. An element of this list, shown
in figure 3.5, contains an unique identifier of a visited node and the experienced delay.
Additionally, if the bee is a follower, it uses a preferred path, which is followed.

Figure 3.4: Class diagram of a BeeNet bee

Figure 3.5: Trip memory of a BeeNet bee

Furthermore, before sending out the first forager bees, a hive first sends test bees to its
neighbors. They immediately return after reaching the neighbor and set the heuristic
distance in the source hives heuristic distance matrix M .

3.2.3 Observe Waggle Dance

Before a bee leaves the hive, its destination flower and its role is determined. At the
beginning, no waggle-dances are performed on the dance floor (the routing table does not
contain any paths). Thus, all bees automatically take the role of a forager. The target
flower r is chosen randomly. However, if for the chosen destination, paths are advertised
by waggle-dancing, a bee goes through a specific decision process. First, the bee selects a

25

advertised path with probability [42]:

Psel(path) = fpath
fcolony(r)

(3.3)

fcolony(r) = 1
n

n∑
i=1

fr,i (3.4)

where fcolony(r) equals the average fitness function value of all currently advertised paths
for a specific destination flower r and n is the number of advertised paths to r [42].

After a path has been chosen, the bee evaluates it against fcolony(r). The probability to
become a follower bee and therefore follow the chosen preferred path is defined in table
3.1.

Evaluation Result Pfollow
fp < 0.5fcolony(r) 0.60

0.5fcolony(r) ≤ fp < 0.65fcolony(r) 0.20
0.65fcolony(r) ≤ fp < 0.85fcolony(r) 0.02

0.85fcolony(r) ≤ fp 0.00

Table 3.1: BeeNets lookup table for the probability to become a follower bee [34]
.

The procedure is described in pseudocode 3.2.
First, the source of the bee is set and destination is determined by using the method
selectRandomDestination. Furthermore, the lastHopTime of the bee is initial-
ized to the current time (method Time.now). If no path exists for the selected des-
tination in the routing table, a bee automatically becomes a forager. Otherwise, a
path is selected by the selectedPath method as defined in equation 3.3. After cal-
culating the colonyFitness by using the calculateColonyFitness method, the
evaluatePath method is called, to check if the bee will follow the selectedPath.
If that is the case, the bee becomes a follower and its preferredPath is set to the
selectedPath. Otherwise, the bees type is set to forager.

3.2.4 Construct Solution

A bee hops from node to node on its travel from the hive to the destination flower. At
each visited node, a bee stores the nodes unique identifier x and the experienced delay in
its memory. Thus, back at the bees hive, the path and experienced delays can be fully
reconstructed later on. If a bee experiences a loop, and therefore visits a node on the
path twice, it erases all information of the loop from its memory.

26

Algorithm 3.2: BeeNet ObserveWaggleDance procedure
Input : source hive h, possible destinationNodes
Output : initialized bee

1 procedure ObserveWaggleDance (h, destinationNodes);

2 bee.source← h;
3 randomDestination = selectRandomDestination(destinationNodes);
4 bee.destination← randomDestination;
5 bee.lastHopT ime← Time.now();
6 if no waggle-dance performed for bee.destination then
7 bee.type← forager;
8 else
9 selectedPath = selectPath(r);

10 colonyF itness = calculateColonyFitness(r);
11 becomeFollower = evaluatePath(selectedPath , colonyF itness);
12 if becomeFollower == true then
13 bee.type← follower;
14 bee.preferredPath← selectedPath;
15 else
16 bee.type← forager;
17 end
18 end

The transition rule Pij(t) is used to determine the next hop j of a bee at node i
and time t [42], [50]:

Pij(t) = [ρij]α[1/dij]β∑
j∈Ai(t) [ρij]α[1/dij]β

(3.5)

where dij is the heuristic distance between the current node i and node j, contained in
the heuristic distance matrix M , and ρij is the arc fitness of i and j. The constants α
and β weight these values in the transition rule. Ai(t) is the set of neighboring nodes
of the current node i without the last hop node of a bee. The last hop of a bee is only
considered as next hop if it is the only neighbor of i.

The arc fitness pij is calculated differently for forager and follower bees.
For forager bees the arc fitness function [42], [50]:

ρij = 1
k

k = |Ai(t)| (3.6)

is used.
However, for follower bees, a different arc fitness function 3.7 is applied [42], [50].
The probability to choose a neighbor node j at the current node i as next hop is λ, if j is
the next hop on the followers preferred path Fi(t). However, with probability (1− λ), a

27

follower can break out of following the preferred path and to choose one of the neighbors
j ∈ Ai(t) : j /∈ Fi. If the follower bee leaves the preferred path, the chance of selecting
one of the other neighbors is equally distributed. The follower bees then transitions with
arc fitness function 3.6, until it reaches its destination or until it crosses the preferred
path again [42], [50]:

ρij =

λ if j ∈ Fi(t)

1− λ |Ai(t) ∩ Fi(t)|
|Ai(t)| − |Ai(t) ∩ Fi(t)|

otherwise
∀j ∈ Ai(t), 0 6 λ 6 1 (3.7)

If a bee has reached its destination, it returns to its hive directly in a P2P way.

The pseudocode of the ConstructSolution procedure is described in 3.3.
When a bee reaches its destination, it returns to its source node by performing the
ReturnToSource method and executing the PerformWaggleDance procedure.
Otherwise, if the bee is of type forager or no neighbor of the current node is part of the
followed preferredPath, the bees nextHop is selected using the method
applyForagerTransitionRule. For all other follower bees, the nextHop is selected
by calling the applyFollowerTransitionRule method.
If the current node has already been visited, a loop is detected and deleted by the
deleteLoop method. When no loop is detected, the current node and the time passed
since the last hop of the bee is added to the bees memory experiencedPath. After
that, the bee transitions to the next hop node through calling the MoveToNode method
and the ConstructSolution procedure is executed again.

3.2.5 Perform Waggle Dance

When a bee returns to its hive, it evaluates the experienced path and sub-paths against
the table 3.1 using fitness function equations 3.2 and 3.4. If the evaluation of a path
succeeds, it is added to the nodes routing table.

The procedure is described in pseudocode 3.4.
First a reference to the nodes routing table is read by calling the getRT method. After the
nodes colonyFitness is calculated by the calculateColonyFitness method, the
experiencedPath to the destination and all contained sub-paths to the intermediate
nodes of this experiencedPath are evaluated, as described above, by calling the
evaluatePath method. The behavior is illustrated in example 3.2.1. If an evaluated
paths fitness value is good enough, according to table 3.1, it is added to the nodes routing
table RT. Otherwise, the path is discarded. If the same path is already contained in the
routing table, only the last experienced one is kept.

Example 3.2.1 Let pexp1 = [v1 → v2 → v3 → v5] be the experienced path of a bee.
When the bee returns to its hive v1, the following paths are evaluated for waggle-dance
advertising: p1 = [v1 → v2], p2 = [v1 → v2 → v3], p3 = [v1 → v2 → v3 → v5].

28

Algorithm 3.3: BeeNet ConstructSolution procedure
Input : bee, current node i
Output : bee, path experienced by bee

1 procedure ConstructSolution (bee, i);

2 if bee has not reached bee.destination then
3 if bee.type == follower then
4 if ∃neighbor(i) ∈bee.preferredPath then
5 bee.nextHop = applyFollowerTransitionRule();
6 else
7 bee.nextHop = applyForagerTransitionRule();
8 end
9 else

10 bee.nextHop = applyForagerTransitionRule();
11 end
12 if loop detected in bee.experiencedPath then
13 bee.experiencedPath.deleteLoop(i);
14 else
15 bee.experiencedPath.add(i, (Time.current()−bee.lastHopT ime));
16 end
17 bee.lastHop← i;
18 bee.lastHopT ime←Time.current();
19 MoveToNode(bee.nextHop);
20 ConstructSolution(bee, bee.nextHop);
21 else
22 ReturnToSource();
23 PerformWaggleDance(bee, bee.source);
24 end

3.2.6 Forwarding of data packets

When a data packet is sent from a source node s to a specified destination r, all paths to
r, known at s, are extracted from the routing table. The path on which the data packet
is sent is based on a roulette wheel selection [42]:

Pforward(path) = fpath
fcolony(r)

(3.8)

The reason for not only using the most optimal path with the highest fitness value for
forwarding is to establish a simple form of fitness proportional load balancing. If always
the same path is chosen for a destination, the path may becomes congested quickly and
gets worse drastically, especially when the data packet traffic to the destination increases.
However, since the probability of a path to be selected is based proportionally to its
fitness value, it is ensured that the best paths are chosen more frequently than worse

29

Algorithm 3.4: BeeNet PerformWaggleDance procedure
Input : bee, source node s
Output : updated routing table RT at s

1 procedure PerformWaggleDance (bee, s);

2 RT = s.getRT();
3 expPath = bee.experiencedPath;
4 forall (sub-)paths to
5 (expPath.destination and all intermediate nodes) ∈ expPath do
6 colonyF itness = calculateColonyFitness(path.destination);
7 advertisePath = evaluatePath(pathToEvaluate , colonyF itness);
8 if advertisePath == true then
9 RT .get(path.destination).add(path);

10 else
11 Discard(path);
12 end
13 end

paths. Furthermore, if the fitness value of known paths only varies very marginally, it is
avoided that only one of the practically equally good paths is used.

If no path is known for a data packets destination, it is forwarded to a random neighbor
until a node is found, on which a path to the data packets destination is known. However,
the last hop node of the data packet is ignored in that case, unless it is the only neighbor
of the current node. The forwarding procedure is described in pseudocode 3.5.

30

Algorithm 3.5: BeeNets procedure for forwarding data packets
Input : current node i, data packet
Output : forwarded data packet

1 procedure FowardDataPacket (i, packet);
2 if i == packet.destination then
3 return;
4 end
5 RT = i.getRT();
6 dest← packet.destination;
7 if i == packet.source or packet.path not set then
8 if RT.get(dest) is not empty then
9 colonyF itness = calculateColonyFitness(dest);

10 chosenPath = selectPath(RT .getPaths(dest), colonyF itness);
11 packet.path← chosenPath;
12 else
13 select randomNeighbor of i 6= packet.lastHop;
14 ForwardDataPacket(randomNeighbor, packet);
15 end
16 else
17 ForwardDataPacket(packet.path.getNextHop(), packet);
18 end

31

3.3 SlimeMoldNet
Šešum-Cavic et al. propose a swarm intelligent algorithm for P2P lookup in [40] that
mimics the behavior of the Dictyostelium discoideum slime mold in its life-cycle. It is
based on the Dictyostelium discoideum numerical optimization algorithm presented in
[33]. The adaption of the Dictyostelium discoideum optimization algorithm for routing
in unstructured P2P networks, called SlimeMoldNet (SMNet), presented in this section
is based on those two works.

Figure 3.6: Life-cycle of the Dictyostelium discoideum slime mold [20]
.

The slime mold Dictyostelium discoideum (Dd) is a social collective of self-organizing
amoebas that goes through a life-cycle visualized in figure 3.6. The goal of Dd amoebas
is their feeding and therefore a constant supply of food that consists of bacteria and
decaying material in the soil. The Dd life-cycle has several stages: vegetative movement,
mound aggregation, slug movement, fruiting body formation and spore dispersal [24].

In the first stage, vegetative movement, amoebas navigate through the soil on their
own, using tentacle-like pseudopods, and search for food. Furthermore, in this state of
adequate nourishment, amoebas may procreate by fission. An amoeba stays in this state
until the food supply shrinks. If not enough food supply is available, an amoeba begins
to starve [24].

At this point, the collaboration of amoebas begins and the aggregation stage of the life
cycle starts. Amoebas in this stage communicate indirectly by emitting a pheromone
called cyclic Adenosine Monophosphate, the so-called cAMP. More specifically, one of
the amoebas takes the role of the Pacemaker which releases cAMP and therefore causes
all others to be drawn to it until a mound is formed [24].

32

When aggregating to a mound, the amoebas emit a slimy substance. In the mound,
amoebas start to organizes themselves into two categories, prespore and prestalk, based on
their fitness level. The fitness level is determined on an amoebas level of nourishment and
therefore on how efficient it was when collecting food in the vegetative stage. Prespore
amoebas move to one end of the mound and form the head, while the prestalk form the
slime molds tail [24].

At the end of this aggregation process, the mound of amoebas have formed a slug and
starts moving to a source of light. Movement of this collective is directed by head amoebas
through emitting cAMP. The amoebas try to reach the surface of the soil until they die
[24].

If they succeed to reach the surface, amoebas start organizing themselves into a fruiting
body. The least fit amoebas, which formed the tail of the mound, sacrifice themselves and
die after forming the stalk of the fruiting body. After that, the head amoebas climb the
stalk and transform into spores. Spores are dispersed by environmental factors such as
animals or the wind. After the dispersal and the process of germination, spores become
active amoebas again and therefore the life-cycle begins again at the vegetative stage
[24].

3.3.1 SlimeMoldNet algorithm for Routing in Unstructured P2P
Networks

In the domain of routing in unstructured P2P networks, the network is considered as a
landscape of soil. The soil contains concentrated areas of food, the P2P network nodes, on
which Dd amoebas live. Each P2P node contains another kind of bacteria and therefore
a different specific type of food.

At a node, amoebas procreate after the configurable amoebaSpawnInterval has passed.
Therefore, after this interval has passed, always the same amountOfSpawnedAmoebas
is created at a P2P node. Amoebas try to gather food from a specific food source in the
soil and therefore try to reach a specified node in the P2P network.

Therefore, in SMNet, there exists an important restriction. A generation of amoebas,
spawned by procreation at a P2P node at a point in time, is only able to digest a single
type of food (bacteria). Only at a single node in the network, known at the node where
the amobeas are spawned, this type of food is available. Which type of food the newly
created amoebas are able to process, and therefore their target node, is chosen randomly.

As discussed, the survival or death of amoebas in the process of forming the fruiting
body depends on their fitness level. The fitness level relies on how much food amoebas
were able to find during the vegetative state [24].
Thus, the goal of an amoeba can be interpreted as to maximize their fitness and therefore

33

to optimize foraging. In the laid out scenario for P2P networks, this would mean to
optimize the path to the node, where the food is available.

The problem of path optimization can be interpreted as a single numerical optimization
problem. In [33], the goal of the single numerical optimization algorithm is specified as
to optimize a function f based on decision variables x1, x2, ..., xn that are limited to a
specific domain. The values of the function are defined as decision space [33].
For the domain of routing, an amoeba strives to maximize the fitness function of paths
to food sources:

fmax = f(x1
min, x2

min, ..., xn
min) such that

fmax > f(x1, x2, ..., xn), ∀{x1, x2, ..., xn}
(3.9)

More specifically, the fitness function of a path to a food source is calculated by the same
formula as presented for BeeNet in equation 3.2:

fpath =
(1
Hpath

)(1
Dpath

)
(3.10)

where Hpath is the amount of hops taken on the path from a source node to a destination
node and Dpath is the accumulated delay experienced on this path.

At each node of the P2P network, a routing table is held. For each known destination
node in the network, paths, their accumulated delay and their corresponding fitness value
are stored. The set of known destinations is a subset of all participating nodes in the
P2P network, is predetermined and may also change during run time. The exact method
of predetermination of known destinations depends on the P2P application (e.g. list of
user names in the contact list of a P2P messanger or a list of known unique P2P node
Ids). The class diagram of an routing table element is shown in figure 3.7.

Figure 3.7: Element of a SMNet routing table

The overall model of the algorithm, shown in pseudocode 3.6, is similar to those presented
in [33] and [23]. Each spawned amoeba goes through the stages vegetative movement,
aggregation, mound forming, slug movement and dispersal of the Dd life-cycle. The
procedures for each life-cycle stage are described in detail in the following subsections.

3.3.2 Initialization

After the amoebaSpawnInterval has passed, the creation of the configurable
amountOfSpawnedAmoebas and their initialization is carried out at their source node.

34

Algorithm 3.6: SlimeMoldNet, a Dd based routing algorithm
Input : source node s, food sources R
Output : optimal paths from s to all food sources r ∈ R

1 procedure Dd (s,R);

2 while not terminated do
3 if amoebaSpawnInterval has passed then
4 spawnedAmoebas = spawnAmoebas(amountOfSpawnedAmoebas);
5 Initialize(spawnedAmoebas);
6 forall amoebas ∈ spawnedAmoebas do
7 VegetativeMovement;
8 Aggregation;
9 Mound;

10 SlugMovement;
11 Disperse;
12 end
13 end
14 end

Amoebas are represented by intelligent software agents, shown in figure 3.8. In this routing

Figure 3.8: Class diagram of a SMNet amoeba

algorithm, amoebas spawned at the same node and at the same time are considered to be
from the same “amoeba family”, shown in figure 3.9. An additional constraint for SMNet
is, that a family of spawned amoebas always has the same source node and the same
destination node (specific food source). An amoeba searches not only for the specific
type of food it is able to digest and which is only available at a single known P2P node
in the network, it focuses on the search for the best path to this node. The best path
between two nodes is considered to be the fastest one timewise (experienced delay).
Furthermore, these amoebas can only transition together to the aggregation stage of
the Dd life-cycle. Thus, they have a shared mealCount and have, in addition to their
own unique identifier, an unique family identifier. The mealCount is a counter that is
increased every time the best known path to the destination is improved.

35

In SMNet, there exist three types of software agents. First, as mentioned, amoebas.
Furthermore, amoebas spawn a primitive second software agent type in the vegetative
stage: pseudopods. Moreover, amoebas are able to aggregate and therefore, technically, a
third type of software agent is built: a slug. It is important to note that amoebas know
the host address of their source. Therefore, spawned pseudopods and the built slug, can
return directly to the their source node in a P2P way.

Like in [23], an amoeba is exactly in one stage of the Dd life-cycle at all times:
“VEGETATIVE”, “AGGREGATION”, “MOUND”, “SLUG” or “DISPERSAL”. Amoebas
always start in the vegetative movement stage. During the life-cycle, an amoeba memorizes
all experienced paths to its destination.

The pseudocode of this procedure is shown in algorithm 3.7.
First, a new family of amoebas is created. Its unique id is generated using the
generateUniqueFamilyId method. Furthermore, the mealCount and the amount
of search steps searchTime is initialized to 0. Additionally, a random destination
for the whole amoeba family is selected by calling the selectRandomDestination
method.
After the amoeba family, all of its amoebas are initialized. For each amoeba a unique id
is generated by the generateUniqueAmoebaId method. After setting the amoebas
familyId, the amoebas source and the selected family destination, the state of the
amoeba is set to “VEGETATIVE”.

Figure 3.9: Class diagram of a SMNet amoeba family

3.3.3 Vegetative Movement

After initialization of an amoeba family, the P2P network is foraged using pseudopods
(pp), represented by software agents shown in figure 3.10. Pseudopods are spawned by
amoebas of a family iteratively and at the same time. After each vegetative step it is
checked, if the whole amoeba family transitions to the next stage of the Dd life-cycle.

The amount of spawned pseudopods is constrained by a configurable limit
maxPseudopodLimit. It is important to note, that the limit applies to the whole
family. Thus, an amoeba family must not spawn more than maxPseudopodLimit
pseudopods at a vegetative step. Pseudopods try to find paths to the amoebas destination.
However, they are only allowed to move in the P2P network for a maximum amount of

36

Algorithm 3.7: Initialization of SMNet amoebas
Input : source node s, possible destinationNodes, spawnedAmoebas
Output : initialized family of spawned amoebas

1 procedure Initialize (s, destinationNodes, spawnedAmoebas);

2 family = new AmoebaFamily();
3 familyId = generateUniqueFamilyId();
4 family.familyId← familyId;
5 family.spawnedAmoebas← spawnedAmoebas;
6 family.mealCount← 0;
7 family.searchT ime← 0;
8 familyDestination = selectRandomDestination(destinationNodes);
9 forall amoebas ∈ spawnedAmoebas do

10 amoebaId = generateUniqueAmoebaId();
11 amoeba.amoebaId← amoebaId;
12 amoeba.familyId← familyId;
13 amoeba.source← s;
14 amoeba.destination← familyDestination;
15 amoeba.state← VEGETATIVE;
16 end

Figure 3.10: Class diagram of a SMNet pseudopod

pseudopodMaxTTL hops before they are terminated [23]. The maxPseudopodLimit
and the pseudopodMaxTTL ensure that the P2P overlay network is not congested by
too much routing related traffic and improve the algorithms scalability. If a pseudopod
experiences a loop, and therefore visits a node on its path twice, it erases all information
of the loop from its memory.

As in [23], pseudopods travel the network by choosing the next hop randomly, like random
walkers [30]. However, in SMNet, there is the additional constraint, that the last hop
node of a pseudopod is only chosen as next hop if it is the only neighbor of the current
node. In that case, the probability for a pseudopod to choose a neighbor n as next hop

37

at the current node c is:
P (n)pp = 1

|Nc|
(3.11)

where Nc is the set of neighbors of the current node c excluding the pseudopods last hop
node. If a pseudopod reaches its destination, it returns directly to its source amoeba
(and therefore source node) in a P2P way.

The spawning of pseudopods at each vegetative step (iteration) is shown in pseudocode
3.8.
Until the maxPseudopodLimit is reached, pseudopods are spawned sequentially by all
amoebas of a family. In order to determine the index of the amoeba which spawns the
next pseudopod, a counter is incremented after each loop pass. Before a pseudopod
starts its movement procedure PseudopodMovement, all of its attributes are initialized.
A new unique id is generated using the generateUniquePseudopodId method, the
pseudopods source, destination and lastHop are set. Furthermore, the pseudopods
spawnTime and the lastHopTime are set to the current time, determined by method
Time.now. Lastly, the pseudopods TTL is set to 0 and the source node is added to the
experiencedPath.

Algorithm 3.8: SMNet: Spawning of pseudopods
Input : source node s, amoeba family amoebaList

1 procedure SpawnPseudopods (s, amoebaList);

2 counter = 0;
3 while counter < maxPseudopodLimit do
4 index = counter mod amountOfSpawnedAmoebas;
5 amoeba = amoebaList.get(index);
6 pod = new Pseudopod();
7 pod.pseudopodId = generateUniquePseudopodId();
8 pod.amoebaId← amoeba.amoebaId;
9 pod.source← s;

10 pod.destination← amoeba.destination;
11 pod.spawnTime←Time.now();
12 pod.lastHopT ime←Time.now();
13 pod.lastHop← s;
14 pod.pseudopodTTL← 0;
15 pod.experiencedPath(s, 0);
16 PseudopodMovement(s, pod);
17 counter++;
18 end

38

Algorithm 3.9: SMNet: Movement of a pseudopod
Input : current node c, pseudopod pod

1 procedure PseudopodMovement (c, pod);

2 if c == pod.destination then
3 pod.experiencedPath.add(c, (Time.current()−pod.lastHopT ime));
4 ReturnToAmoeba(pod.source);
5 else
6 if pod.pseudopodTTL== pseudopodMaxTTL then
7 kill(pod);
8 else
9 nextHop = selectRandomNeighbor(c, pod.lastHop);

10 if loop detected in pod.experiencedPath then
11 pod.experiencedPath.deleteLoop(c);
12 else
13 pod.experiencedPath.add(c, (Time.current()−pod.lastHopT ime));
14 end
15 pod.pseudopodTTL++;
16 pod.lastHop← c;
17 pod.lastHopT ime←Time.current();
18 MoveToNode(nextHop);
19 PseudopodMovement(nextHop, pod);
20 end
21 end

The pseudopod movement is described in detail in pseudocode 3.9 as follows.
If a pseudopod has reached its destination, it adds the destination node and the delay
experienced since the last hop node to its experiencedPath memory and returns to
its amoeba by calling the ReturnToAmoeba method.
Otherwise, if the pseudopodMaxTTL is reached, the pseudopod is terminated. If that
is not the case, the next hop node of the pseudopod is determined. It is chosen randomly
by using the selectRandomNeighbor method. The method returns the pseudopods
last hop, if it is the only neighbor of the current node. Otherwise, the last hop node is
ignored by the selectRandomNeighbor method.
Before incrementing the pseudopods TTL by 1, setting the lastHop as the current node
and storing the current time in the pseudopods lastHopTime, the current node in addi-
tion to the experienced delay since the last hop node are added to the experiencedPath.
Then the pseudopod is transfered to the next hop through execution of the MoveToNode
method and the PseudopodMovement procedure is executed again.

When all pseudopods have returned or a configurable pseudopodWaitTime has been
surpassed, the state of the amoebas of the family is determined. If the amoebas show no

39

Algorithm 3.10: SMNet: Vegetative Movement
Input : source node s, amoeba family amoebaFamily

1 procedure VegetativeMovement (s, amoebaFamily);

2 mealCountIncreased← false;
3 family.searchT ime++;
4 SpawnPseudopods(s, amoebaFamily.spawnedAmoebas);
5 WaitForPseudopods(amoebaFamily.spawnedAmoebas, pseudopodWaitT ime);
6 forall pod ∈ returnedPseudopods do
7 amoeba = family.getAmoeba(pod.amoebaId);
8 if calculateFitness(pod.experiencedPath) >
9 calculateFitness(amoebaFamily.getBestPath()) then

10 amoeba.bestExperiencedPath← pod.experiencedPath);
11 amoeba.experiencedPaths.add(pod.experiencedPath);
12 if mealCountIncreased == false then
13 family.mealCount++;
14 mealCountIncreased← true;
15 end
16 else
17 amoeba.experiencedPaths.add(pod.experiencedPath);
18 end
19 end
20 if amoebaFamily.isStarving() then
21 Aggregation(family.spawnedAmoebas);
22 else
23 VegetativeMovement(s, amoebaFamily);
24 end

improvement of found paths to the destination over multiple search steps and therefore
the mealCount stagnates, the amoebas are considered to starve. Starving causes the
amoebas to transition to the aggregative stage of the Dd life-cycle. More specifically, in
order for an amoeba family to be considered starving, two conditions have to be met.
First, the following probabilistic check is done [23], [33]:

p
(
x <

localSearchT ime−mealCount
localSearchT ime

)
(3.12)

where localSearchTime is the number of vegetative steps made by the family and
x ∈ (0, 1] is a random value. Thus, if the mealCount stagnates and the amoeba family
starves, the chance to transition increases. Furthermore, a second transition condition
has to be met [23], [33]:

localSearchT ime > minSearchT ime (3.13)

40

where minSearchTime is the minimum amount of vegetative steps that have to be
made before amoebas are allowed to transition.
If both transition conditions are fulfilled, all amoebas of the family transition to the next
stage of the Dd life-cycle. Otherwise, they enter a new vegetative step.

The procedure at each vegetative step is described detailly in pseudocode 3.10.
First, for a vegetative step, the indicator, if the mealCount has been increased in this
iteration (mealCountIncreased), is initialized to boolean false. Furthermore, at
the beginning of the vegetative step, the searchTime is increased by 1. Next, the
pseudopods are spawned as described in pseudocode 3.8.

Then, the procedure halts, by calling the WaitForPseudopod method, until the
pseudopodWaitTime has passed or all spawned pseudopods have returned. When the
procedure resumes, it is checked if the experiencedPath of the pseudopod improves
the amoebas personal best and the families personal best. The fitness values are calculated
by using the calculateFitness method. If the families personal best is improved and
the mealCount has not been increased at the current vegetative step, the mealCount
is increased by 1. Additionally, the indicator mealCountIncreased is set to boolean
true for this iteration.

Lastly, it is checked if the amoebas of the family are starving by calling the isStarving
method. This method checks if conditions 3.12 and 3.12 are met. If that is the case, the
Aggregation procedure is executed. Otherwise, the amoebas enter a new vegetative
step by executing the VegetativeMovement procedure again.

3.3.4 Aggregation

At this stage, one of the families amoebas becomes a pacemaker and starts releasing
cAMP. How Dd amoebas determine if the take the pacemaker role in nature, is not
known [24]. Moreover, since all amoebas stay at their source node in the vegetative state,
the determination of the pacemaker amoeba can be arbitrary. Therefore, in SMNet, the
pacemaker is chosen uniformly random.

Indirect communication through cAMP release causes the other amoebas of the family to
get drawn to the pacemaker. When reaching the pacemaker, they start forming a mound
[24]. The mounds structure is shown in figure 3.11.

Figure 3.11: Class diagram of a SMNet mound

Since, all amoebas of a family already are at the same node, the procedure shown in

41

pseudocode 3.11 is simple. After the creation of the mound structure, for all aggregating
amoebas, the state “AGGREGATION” is set. Moreover, each amoeba is added to the
mounds amoebaList.

Algorithm 3.11: SMNet: Aggregating to a mound
1 d Input : source node s, amoebaList
Output : slug

2 procedure Aggregation(s, amoebaList);

3 mound = new Mound();
4 forall amoebas ∈ amoebaList do
5 amoeba.state← AGGREGATION;
6 mound.amoebaList.add(amoeba);
7 end
8 FormSlug(s, mound);

3.3.5 Mound

After the mound is formed, the Mound stage of the algorithm is automatically entered.
In this phase, the amoebas contained in the mound, start organizing themselves [24].
The amoeba with the best experienced path, and therefore the highest fitness, becomes
the head of the mound. All other amoebas become its tail. For the evaluation the fitness
function 3.10 is used.

After this process, the amoebas have organized themselves to a slug structure. Logically,
the slug is an aggregation of software agents controlled by the head amoeba, while the
amoeba software agents forming the slugs tail are inactive. However, technically, the slug
is a separate software agent as described in 3.12.

This self-organization process is described in pseudocode 3.12.
The fitness value of the personal best of each amoeba contained in the mound structure
is calculated and compared to the fitness value of the current head amoeba using the
calculateFitness method.
If no head amoeba exists yet or the current amoeba has a better fitness value than the
current head amoeba, it is set as the new head amoeba. Otherwise, the current amoeba
becomes part of the slugs tail. Additionally, each amoebas state is updated to “SLUG”.
After the slugs source and destination is set using the head amoeba, it starts its movement
as described in pseudocode 3.13.

3.3.6 Slug Movement

After amoebas have organized themselves in the slug structure, the slug starts moving
in the direction of its destination. Therefore, the slug is indirectly steered by the head

42

Figure 3.12: Class diagram of a SMNet slug

Algorithm 3.12: SMNet: Forming a slug from the mound
Input : source node s, mound
Output :mound

1 procedure FormSlug(s, mound);

2 slug = new Slug();
3 forall amoebas ∈ mound do
4 amoeba.state← SLUG;
5 if slug.head is empty OR
6 calculateFitness(amoeba.bestExperiencedPath) >
7 calculateFitness(slug.head.bestExperiencedPath) then
8 slug.tail.add(slug.head);
9 slug.head←amoeba;

10 else
11 slug.tail.add(amoeba);
12 end
13 end
14 slug.source← slug.head.source;
15 slug.destination← slug.head.destination;
16 SlugMovement(s, slug);

amoebas released cAMP [24].

The slug of amoebas follows the best experienced path of the head amoeba to the
destination. On each intermediate node, the routing table is updated by the slug. More
specifically, all sub-paths from the current node to the slugs source and destination and
to all intermediate nodes are added to the routing table. If a path already exists in the
routing table, it is replaced.

Furthermore, the fitness function values of known paths to the slugs destination, held by
the current nodes routing table, are compared to the fitness function value of the slugs
remaining sub-path (path from the current node to the slugs destination). If a known
path to the destination at the current node is better than the remaining part of the head
amoebas personal best, the amoeba updates the personal best accordingly.

43

Example 3.3.1 Let pbest = [v1→ v2→ v3→ v4→ v5] be the best experienced path by
a slugs head amoeba. Assume the head amoebas best experienced path was not improved
at node v1 and v2. When reaching node v3, the following paths are added to its routing
table: p1 = [v3 → v2], p2 = [v3 → v2 → v1], p3 = [v3 → v4], p4 = [v3 → v4 → v5].
The best known path at v3 to node v5 is pnode = [v3 → v5]. Assume the fitness value of
pnode is higher than psubbest = [v3 → v4 → v5]. The head amoebas pbest is then updated to
p′best = [v1 → v2 → v3 → v5]. After the update of pbest, the next hop of the slug is v5.

The movement procedure is shown in pseudocode 3.13 as follows:
Starting at the slugs source node, the currently best experienced path of the slugs head
amoeba (slug.head.bestExperiencedPath) is followed. Therefore, the index of the
current node on this path is calculated by executing the indexOf method. The next
hop node on the path has index+1 on the currently followed path. If the slug has not
reached its destination, it moves to the next node on its path and the SlugMovement
procedure is executed again.

At each intermediate node on the followed path, the routing table is updated as showed
in example 3.3.1: All sub-paths from the current node to the slugs source, destination
and to all other intermediate nodes are determined from the head amoebas currently
best experienced path and added to the current nodes routing table. The routing table
of the current node is accessed using the getRT method.

Next, the slug tries to improve its own personal best. Therefore, the path with the
highest fitness value, at the current node to the slugs destination bestNodePath is
selected in the getBestPath method. Additionally, the sub-path from the current
node c to the slugs destination (slugSubPath) is extracted from the currently best
experienced path (which is currently followed). For both of these paths, the fitness
value is calculated using the calculateFitness method. If the fitness value of
the bestNodePath is higher than the slugSubPath, the current personal best and
therefore the path followed by the slug is updated. In the updatePath method, of the
current bestExperiencedPath, the fraction stated by the sub-path slugSubPath
is replaced with the bestNodePath. Furthermore, the improved best experienced path
is added to the list of the head amoebas experiencedPaths. After the update, the
slug now follows the new remaining bestNodePath.

When the slug reaches its destination, the SlugMovement procedure is aborted and
the fruiting body is formed. The BuildFruitingBody procedure is described in
pseudocode 3.14.

3.3.7 Fruiting Body And Dispersal

When the slug has reached its destination, a fruiting body is formed. Amoebas of the
tail form the stalk of the fruiting body and die. Only the head amoeba climbs the stalk
and transforms into a spore [24].

44

Algorithm 3.13: SMNet: Slug Movement
Input : current node c, slug

1 procedure SlugMovement(s, slug);

2 head = slug.head;
3 if c == slug.destination then
4 BuildFruitingBody(c, slug);
5 return;
6 end
7 if c 6= slug.source then
8 forall sub-paths to (slug.source, slug.destination
9 and to all intermediate nodes 6= c) ∈ head.bestExperiencedPath do

10 c.getRT().get(path.destination).add(path);
11 end
12 bestNodePath = getBestPath(c.getRT().get(slug.destination));
13 slugSubPath = head.bestExperiencedPath.subPath(c, slug.destination);
14 if calculateFitness(bestNodePath) >
15 calculateFitness(slugSubPath) then
16 updatePath(head.bestExperiencedPath, bestNodePath);
17 slug.head.experiencedPaths.add(slug.head.bestExperiencedPath);
18 end
19 end
20 index = head.bestExperiencedPaths.indexOf(c);
21 MoveToNode(head.bestExperiencedPaths.get(index + 1));
22 SlugMovement(head.bestExperiencedPaths.get(index + 1), slug);

The SMNet procedure for building the fruiting body, shown in pseudocode 3.14, is a bit
more sophisticated.
After the spore structure, shown in figure 3.13 is created, its source is set to the source
of the slug. The best bestExperiencedPath of the head amoeba is automatically
added to the spores experiencedPaths list.
For all other experienced paths of the head amoeba and for all experienced paths of tail
amoebas, the fitness value is compared to the fitness value of the head amoeba using the
calculateFitness method. Only if a paths fitness is at least 0,85 times the overall
best experienced paths fitness value, it is added to the spores experiencedPaths. Fur-
thermore, a path is only added if it is not already part of the spores experiencedPaths
list. The reasons for choosing the value 0,85 is, that all paths with significantly worse
fitness than the best experienced paths should be discarded. However, to enable load
balancing, discussed in subsection 3.3.8, it is advantageous to consider path slightly worse
than the best experienced path.
Thus, tail amoebas only chance to be part of the spore is to contain a path only slightly

45

worse than the best experienced path. All other tail amoebas die.

The dispersal procedure is shown in pseudocode 3.15.
If the spore has not reached the amoeba source, the ReturnToSource method is called
to do so. Then, the Disperse procedure is executed again. Otherwise, the routing table
of the source node is accessed using the getRT method. As shown in example 3.3.2, not
only the path to the destination of an experienced paths is added to the routing table,
but also the sub-paths to all intermediate nodes. If a path already exists in the routing
table, it is replaced.

Example 3.3.2 Let pexp1 = [v1 → v2 → v3 → v4 → v5] and pexp2 = [v1 → v2 →
v3 → v5] be the experienced paths of the spore. When the spore returns to v1, the
following paths are added to its routing table: p1 = [v1 → v2], p2 = [v1 → v2 → v3],
p3 = [v1 → v2 → v3 → v4], p4 = [v1 → v2 → v3 → v4 → v5], p5 = [v1 → v2 → v3 → v5].

Figure 3.13: Class diagram of a SMNet spore

Algorithm 3.14: SMNet: Build Fruiting Body
Input : current node c, slug

1 procedure BuildFruitingBody (c, slug);

2 spore = new Spore();
3 spore.source← slug.source;
4 bestPath = slug.head.bestExperiencedPath;
5 spore.experiencedPaths.add(bestPath);
6 forall amoebas ∈ slug.head and slug.tail do
7 forall paths ∈ amoeba.experiencedPaths do
8 if path /∈ spore.experiencedPaths &&
9 calculateFitness(path) > 0.85 calculateFitness(bestPath)

then
10 spore.experiencedPaths.addPath(path);
11 end
12 end
13 end
14 Disperse(c, spore);

46

Algorithm 3.15: SMNet: Dispersal procedure
Input : current node c, spore
Output : updated routing table RT

1 procedure Disperse (c, spore);

2 if c 6= spore.source then
3 ReturnToSource();
4 Disperse(spore.source, spore);
5 else
6 RT = c.getRT();
7 forall expPath ∈ spore.experiencedPaths do
8 forall paths to expPath.destination and all intermediate nodes do
9 RT .get(path.destination).add(path);

10 end
11 end
12 end

3.3.8 Forwarding of data packets

When a data packet is sent from a source node s to a specified destination r, all paths to
r, known at s, are extracted from the routing table. The path on which the data packet
is sent is based on a roulette wheel selection [42]:

Pforward(path) = fpath
fnode(r)

(3.14)

fcolony(r) = 1
n

n∑
i=1

fr,i (3.15)

where fnode(r) equals the average fitness function value of all paths currently held by
the routing table for a specific destination node r and n is the number of paths to r
contained in the routing table [42].

The reason for not only using the most optimal path with the highest fitness value for
forwarding is to establish a simple form of fitness proportional load balancing. If always
the same path is chosen for a destination, the path may becomes congested quickly and
gets worse drastically, especially when the data packet traffic to the destination increases.
However, since the probability of a path to be selected is based proportionally to its
fitness value, it is ensured that the best paths are chosen more frequently than worse
paths. Furthermore, if the fitness value of known paths only varies very marginally, it is
avoided that only one of the practically equally good paths is used.

If no path is known for a data packets destination, it is forwarded to a random neighbor
until a node is found, on which a path to the data packets destination is known. However,

47

the last hop node of the data packet is ignored in that case, unless it is the only neighbor
of the current node. The forwarding procedure is described in pseudocode 3.5.

Algorithm 3.16: SMNets procedure for forwarding data packets
Input : current node c, data packet
Output : forwarded data packet

1 procedure FowardDataPacket (c, packet);

2 if c == packet.destination then
3 return;
4 end
5 RT = c.getRT();
6 dest← packet.destination;
7 if c == packet.source or packet.path not set then
8 if RT.get(dest) is not empty then
9 nodeF itness = calculateNodeFitness(dest);

10 chosenPath = selectPath(RT .getPaths(dest), nodeF itness);
11 packet.path← chosenPath;
12 else
13 select randomNeighbor of c 6= packet.lastHop;
14 ForwardDataPacket(randomNeighbor, packet);
15 end
16 else
17 ForwardDataPacket(packet.path.getNextHop(), packet);
18 end

3.4 Summary
At the beginning of this chapter, a model of routing in unstructured P2P networks is
presented. It is how routing for this domain, in its abstracted form, is interpreted in this
master thesis. Then, adaptions of two swarm based algorithms are presented. Both of
them route data packets based on paths experienced by intelligent software agents. The
first one, BeeNet, an adaption of Bee Algorithm [42] and Bee Colony Optimization [50],
is based on the foraging behavior of bees. The second one, SlimeMoldNet, an adaption
of the Slime Mold algorithm [33] and based one of its adoptions for P2P lookup [23],
mimicks the life-cycle of the Dictyostelium discoideum slime mold. The algorithms are
evaluated and analyzed in chapter 6.

48

CHAPTER 4
Peer Model Framework

Architecture

In this chapter the architecture of the frameworks pattern, its components and their
composition is described. The general idea of the patterns structure is influenced by
the modular network layer for sensornets proposed in [16]. Wireless sensornets are
wireless networks in which sensors send monitored data to a data sink [36]. The sensornet
framework decomposes the routing layer in three major components: the Routing Engine
(calculates and maintains routes over the network based on the abstract topology provided
by the Routing Topology module), the Forwarding Engine (receives packets, queries the
Routing Engine and takes action based on the answer), Routing Topology (communicates
with Routing Topology modules of other network nodes in order to create and maintain
an abstract topology of the network). Analogously, the Peer Space framework uses three
components with similar functionality: the Routing Decision Peer, the Forwarding Peer
and the Routing Information Peer described in this chapter. However, while decomposing
the network layer (and therefore routing) in meaningful components, the framework is
created for another purpose than the fair benchmarking of routing algorithms, specifically
to make the implementation of new routing protocols easier and to reuse code of existing
ones.
The chapter is structured in the following way: After the description of the core pattern,
its composition is discussed. Next, the rest of the frameworks components are introduced
and the overall framework composition is defined. Then, the entry types used, the
frameworks peers and their wirings are specified. The description of the frameworks
services is not included in this chapter, but can be found in section 5.2. For a description
of the wiring figures notation see subsection 2.1.

49

4.1 Peer Space Routing Pattern

Figure 4.1 shows the abstracted routing functionality of a P2P network node. The
main routing task of network nodes is to forward data packets on routes from source to
destination. Therefore, the neighbor(s) to which data packets should be sent on their
route to the destination must be determined. Thus, routing decisions need to be made.
These routing decisions might be based on collected and stored information (e.g. a routing
table) or made ad-lib (e.g. forward data packets to randomly chosen neighbors). In order
to collect routing relevant information, nodes in the P2P network may collaborate by
exchanging routing relevant information via inter-node communication. The described

Figure 4.1: Routing functionalities of a P2P network node

routing functionality is mapped to the Peer Model domain as shown in figure 4.2. A
node in a P2P network is embodied by a Node Peer that contains two sub peers: the
Forwarding Peer (responsible for forwarding incoming data packets) and the Routing Peer
(queried by the Forwarding Peer for the destinations to which data should be forwarded
and responsible for storing routing relevant information). The main functionality of the
Routing Peer is divided into two further sub peers: the Routing Decision Peer and the
Routing Information Peer. Purple lines mark traffic regarding the forwarding of data,
the green lines correspond to traffic regarding routing. Bold lines indicate traffic to
other Node Peers. The pattern composition (how Node Peers communicate with each
other) can be found in section 4.2, whereas the framework composition (how all peer
types of the framework collaborate with each other) is defined in section 4.3. When
determining how to process incoming data packets (in the form of a data entries in the

50

Figure 4.2: The architecture of a Node Peer in the Peer Space Routing Framework.
Green arrows mark routing specific communication, violet arrows mark the forwarding of
payload specific communication (data sent over the network).

Peer Space framework), the sub-components of the Node Peer collaborate as shown in
figure 4.3. First, the Forwarding Peer sends a decision request to the Routing Decision
Peer requesting a decision how to process a specific data entry. Generally, there are
two possibilities: either the data entry should not be forwarded any further (when it
has already reached its final destination at the current Node Peer, or when it should be
dropped) or it is forwarded to at least one other Node Peer. The decision made by the
Routing Decision Peer is obviously dependent on the routing algorithm. However, the
Routing Decision Peer needs information held by the Routing Information Peer to be
able to make an adequate routing decision and answer the decision request sent by the
Forwarding Peer. Therefore, it sends an information request to the Routing Information
Peer. The Routing Information Peer assembles the response based on the knowledge base
held in its PIC (in the form of a routing information base entry). Note that, depending
on the routing algorithm, the Routing Information Peer may not be able to assemble the
request directly, but has to wait for an update of its knowledge base or has to request
the information explicitly from other Node Peers. If that is the case, it generally implies
some form of communication with Routing Information Peers of other Node Peers.

51

Figure 4.3: Simple sequence of the communication between sub-components of the Node
Peer in order to determine how to forward a data entry.

4.2 Pattern composition

The basic pattern composition is rather simple. As shown in figure 4.4, Node Peers
communicate with each other by simply putting entries in each other’s PICs. The
distribution to the respective sub peer, that handles the received entry, is then done
internally by the Node Peers wirings. This pattern composition allows the creation of
arbitrary network topologies.

Figure 4.4: Basic pattern composition

However, in the Peer Space framework, the composition is more sophisticated. Although
the concept of communication between Node Peers basically stays the same, the framework
uses I/O Peers for relaying entries in inter-node-peer communication. I/O Peers decouple
the communication specific concerns from the core pattern and enable additional features

52

like the simulation of transmission interference (e.g. transmission delay).
There exists exactly one I/O Peer per Node Peer Space, managing the communication
of all Node Peers on that Peer Space. When a benchmark is run locally (i.e. all of the
benchmarks Node Peers exist on the same Peer Space), their communication is managed
by the same I/O Peer. Thus, there exists only one I/O Peer for the whole benchmark.
When relaying entries for inter-node-peer communication locally on a Node Peer Space,
the I/O Peer directly sends the entry to the target Node Peer. This configuration is
shown in figure 4.5.

Figure 4.5: Local pattern composition in the Framework

If a distributed benchmark is run (i.e. there are multiple Node Peer Spaces containing
Node Peers), the number of I/O Peers equals the number of the involved Node Peer
Spaces. For the inter-node-peer communication between Node Peers on different Peer
Spaces, the managing I/O Peer of the source Node Peer sends the entry to the managing
I/O Peer of the target Node Peer. The target Node Peers I/O Peer then relays the
entry to the target Node Peer. Furthermore, for inter-node-peer-space communication,
entries are specifically marked such that the I/O Peer is able to differentiate between
those locally sent and those received from Node Peers on other Node Peer Spaces. In the
framework this is handled by using specific entry types for data entries (type “outD”) and
routing communication entries (type “outR”) for that case. The distributed configuration
is shown in figure 4.6.

4.3 Framework Composition
On the top-level of the framework, there are two types of Peer Spaces (the Control Peer
Space and the Node Peer Space) and four types of Peers (Control Peer, Statistics Peer,
Node Peer and I/O Peer). How the frameworks components collaborate is shown in
figure 4.7.

53

Figure 4.6: Distributed pattern composition in the Framework

There may exist multiple instances of the Node Peer Space in the routing framework
(each possibly runs on an own physical computer instance). An instance of the Node Peer
Space contains exactly one instance of the I/O Peer and at least one Node Peer instance.
Node Peers embody servlets of the benchmarks Peer-to-Peer network and exchange
information in the form of data entries (routed payload) and routing communication
entries (routing algorithm specific communication between Node Peers). I/O Peers
decouple the communication specific concerns from the core pattern by handling all
inter-node-peer communication of their Node Peer Spaces Node Peers.
The Control Peer Space exists exactly once in the framework. It contains one instance
of the Control Peer and the Statistics Peer. The Control Peer is the control center
of the routing framework. It creates the topology of the benchmarks P2P network,
initializes all other components accordingly, places data entries at random Node Peers,
starts the benchmark, stops the benchmark and initiates the output of the benchmarks
statistics. The Statistics Peer calculates the benchmarks statistics based on the data it
receives from the networks Node Peers. The statistic relevant data is extracted from the
coordination-data of entries used in inter-node-peer communication (in the form of time
traces) and is always relayed by the Node Peers managing I/O Peer.
Figure 4.8 shows the sequence of a benchmark in the Peer Space Routing Framework.
When a new Node Peer is spawned, it registers at the I/O Peer instance of its Node Peer
Space. I/O Peers register at the Control Peer by informing it about their address and
the addresses of all Node Peers managed by them. When the expected amount of Node
Peers (defined in the benchmarks configuration) have registered at the Control Peer, the
Control Peer builds the benchmarks network topology and initializes all other components
based on that. After that, the initialization phase starts. In this phase, depending on

54

Figure 4.7: Composition of the Frameworks main components. The collaboration is
shown in detail in figure 4.8.

the routing algorithm, Node Peers may build their knowledge base by communicate
with each other (e.g. build a routing table). After the configurable time-frame of the
initialization phase the Control Peer starts the benchmark. During the benchmark, data
entries are forwarded from their source to their destination. Node Peers may also continue
to exchange routing information to update their knowledge base. Furthermore, statistic
relevant data, extracted from data entries and routing communication entries, which have
reached their final destination or are dropped, are sent by I/O Peers to the Statistics Peer.
The benchmark runs for a configurable time-frame. After this time-frame has passed,
the Control Peer stops the benchmark and triggers the output of the calculated statistic.

4.4 Core Framework Components

In this section, the components of the framework are described in detail. The frameworks
implementation specifics, as well as the description of its services and interfaces, is
described in section 5.2.

4.4.1 Simplifications

For reasons of clarity and ease of understanding some simplifications are made.
It is important to note, that entries in the framework of types which are sent multiple
times in a benchmark (e.g. entries of type “data” or “rtCom”) are not handled and
sent separately by the framework, but handled in a container entry of the same type
when certain conditions are met. Thus, entries of the same type, the same source, the

55

Figure 4.8: Sequence of a benchmark in the Routing Framework

same destination and with the same transmission interference (e.g delay) that are sent
at the same time are merged into a single container entry which contains them in its
coordination data. This is done due to performance optimization. Only one entry has to
be handled by the Peer Model, while the affected services still consider the merged entries
as separated. Otherwise, it would be technically impossible for the framework to handle a
realistic amount of entries at the same time. This technique is also used internally in the
frameworks peers and their sub peers in order to optimize the performance of processing
entries. To ease the understanding of the internal processes of the framework, entries of
the same type are always described and showed in the figures as processed separately in
this section. However, in fact, instead of single entries, (multiple) container entries of the
same type which might contain multiple single entries (but at least one), are processed.

Example 4.4.1 Node Peer A sends 100 data entries to Node Peer B and 100 data
entries to Node Peer C. The two sets of 100 entries are not sent separately but merged in

56

a single container entry of type “data” each. This data entry contains the merged entries
in its coordination data. When a container entry is received at Node Peer B or Node
Peer C, the data entries are unpacked first and processed as single entries (in the same
form as before the merge).

Additionally, since the proposed framework offers the possibility for algorithms to define
a priority for the processing of data or routing related information, there are guards
which are optionally and dynamically added at the benchmarks creation time (depending
on the configured priority mode). This is applied everywhere in the framework where
data and routing information competes for process time or resources i.e. dispatching,
sending, relaying, or processing of entries. The dynamically added guards are of type
“NONE”. Thus, if the processing of data entries is prioritized, to all routing information
related wirings which compete for processing time or resource a NONE-guard for entries
of type “data” is added. Therefore, routing information related entries are only processed
if no entry of type “data” is contained in the PIC of the peer. If the processing of routing
information is prioritized, the same applies, but vice-versa. Due to reasons of simplicity,
these optionally added guards are ignored in this section.

Example 4.4.2 Assume the implemented routing algorithm prioritizes routing commu-
nication over the processing of data entries. In the Routing Information Peer, there is
a wiring for updating the knowledge base of the routing algorithm at a Node Peer and
one which is responsible for providing routing information to the Routing Decision Peer.
Both of the wirings compete for the entry which contains the knowledge base. By adding a
NONE-guard for entries of type “rtCom” to the latter wiring, the algorithm ensures that
the knowledge base is always updated before providing routing information for decision
making.

Example 4.4.3 Assume the implemented routing algorithm prioritizes the processing
of data entries over processing of routing communication related entries. At the I/O
Peer, entries are relayed from a sending Node Peer to a receiving Node Peer. By adding
a NONE-guard for entries of type “data” to the wiring responsible for relaying routing
communication entries at creation time, data entries are always relayed first.

4.4.2 Entries

The following types of Entries are used in the proposed framework. In the brackets, their
abbreviation in this chapters descriptions and figures are stated.

• data entry (data): Embodies the payload i.e. a data packet which should be
routed from a source to a destination within the P2P network. The performance of
data entries routing is benchmarked by the framework. In order to do that, a time
trace of the path from source to destination is saved in a data entries co-data.

• data wrapper entry (outD): Wraps a data entry for sending between Peer
Spaces.

57

• decision request entry (dReq): This type of entry is sent by the Forwarding
Peer to the Routing Peer in order to request a routing decision for a specific data
entry.

• decision answer entry (dAnsw): The corresponding answer to a routing decision
request from the Routing Peer to the Forwarding Peer. The routing decision
includes the address(es) of the next hop(s) of the respective data entry and possibly
additional information which is then piggybacked on the data entry.

• delete lock entry (delLo): Deletes a lock that is used to prevent an information
request from being processed.

• external destination entry (eDest) Contextual information regarding external
destinations held by Node Peers and not known until the time of a Node Peers
initialization. For example, entries of this type contain the address of the Node
Peers managing I/O Peer or the address of the benchmarks Statistics Peer.

• external mapping entry (eMap) Used by the I/O Peer to correctly relay entries
sent by their managed Node Peers. Additionally, the mapping contains transmission
interferences to apply (e.g. transmission delay) when sending entries over specific
network links.

• initialization entry (init): Initializes a Node Peer. This could mean to trigger
initial communication with other Node Peers in the network, building the initial
state of the routing information base or to trigger an initial update of the routing
information base (if that fits the routing algorithm). Furthermore, this type of
entry is used by the Control Peer to start the benchmarks initialization process.

• information entry (info): Used to inform the I/O Peer that it has to inform its
managed Node Peers that the benchmark has been stopped.

• information request entry (iReq): Is sent by the Routing Decision Peer to the
Routing Information Peer in order to request information, contained in the routing
information base and necessary to make a correct routing decision.

• information request answer entry (iAnsw): Is the corresponding answer to
a routing information request from the Routing Information Peer to the Routing
Decision Peer. The answer to the request includes all necessary information for the
Routing Decision Peer to make a correct routing decision.

• internal destination entry (iDest) Holds contextual internal information of a
Node Peer known at the time of the peers creation. For example, it enables sub
peers to send entries to other sub peers of a Node Peer by storing their addresses
i.e. it serves as internal address book for local addresses of a Node Peers sub peers.

• internal mapping entry (iMap) Maps addresses of Node Peers to the address
of their managing I/O Peer. The I/O Peer uses this type of entry to register

58

at the Control Peer and to relay received entries to the correct managed Node
Peer. Furthermore, it is used by the Control Peer to build, initialize and start the
benchmark.

• lock entry (lock): Locks are a tool for the framework to keep an information
request entry from being processed temporarily.

• registration entry (reg): Used for the registration of Node Peers and their
managing I/O Peers at the Control Peer.

• routing communication entry (rtCom): Is sent between Node Peers in order
to exchange routing information. In order to enable the framework to calculate the
routing overhead, a time trace of the path from source to destination is saved in a
rtCom entries co-data.

• routing information base entry (base): The routing information base is the
knowledge base of a Node Peer. It contains all information needed to make routing
decisions (e.g. a routing table or the list of neighbors of the Node Peer). It is
important to note, that there exists exactly one entry of this type in an instance of
a Node Peer.

• routing communication wrapper entry (outR): Wraps a routing communi-
cation entry for sending between Peer Spaces.

• send entry (send): Is used internally in the Routing Information Peer to initiate
the (periodical) sending of routing communication entries to other Node Peers.

• start entry (start): Starts the benchmark after the defined initialization time.

• started entry (started): Token which enables a Node Peer to process data
entries. It is generated in a Node Peer after a start entry is received.

• statistics entry (stats): Contains calculated statistics of the benchmark and
necessary information to calculate them. This entry exists exactly once for a
benchmark and is placed in the Statistics Peer at the time of its creation.

• statistics output entry (statOut): Triggers the output of the benchmarks
calculated statistics.

• statistics wrapper entry (outS): Wraps extracted time traces of data entries
and routing communication entries for transmission to the Statistics Peer.

• stop entry (stop): Used to stop the benchmark after its defined run and initial-
ization time.

• termination conditions entry (tCond): Holds information that enables a Node
Peer to terminate received routing information entries before they are processed.

59

• timer entry (timer): Entry that ensures that a wiring is only triggered after a
configurable time interval has passed.

• update entry (updt): Triggers an update of the routing information base.

4.4.3 Node Peer

The Node Peer embodies a servlet in a P2P network and encapsulates the routing
functionality of it. An instance of a Node Peer contains two sub peers: the Forwarding
Peer (forwards incoming data entries to neighbors according to the used routing algorithm)
and the Routing Peer (responsible to gather routing related data and to make routing
decisions). The Forwarding Peer and the Routing Peer handle the complex tasks whereas
the Node Peer itself is only responsible for rather simple ones. Tasks carried out directly
by the Node Peer are: to dispatch incoming entries (data entries, routing communication
entries or initialization entries) to the correct sub peer, to initialize data entries if a
Node Peer is the source, to manipulate entries when they are received (e.g. increase hop
count of a data entry) and to start and stop the processing of data entries (when the
benchmark is started / stopped). Furthermore, the Node Peer registers incoming data
entries by storing timestamps in their coordination data. This is used by the Statistics
Peer for the calculation of metrics at a later stage of the benchmark.
The Node Peer contains five wirings, shown in figure 4.9, which are described in detail in
the following.

4.4.3.1 W1: Data Dispatch Wiring

This wiring simply dispatches up to a configurable amount of x > 1 data entries to the
Node Peers Forwarding Peer after the benchmark has been started.

Guards:

1. started: Node Peers must not process data entries when the benchmark has not
been started. This is ensured by this guard.

2. iDest: Contains the address of the Node Peer instance. This is used to determine
if the Node Peer is the source of a data entry (to determine if the data entry might
be subject to initialization).

3. data (take): Data entries to be dispatched by the wiring.

Actions:

1. data: The data entries dispatched to the Node Peers Forwarding Peer.

60

Figure 4.9: Wirings of the Node Peer

4.4.3.2 W2: Routing Dispatch Wiring

This wiring simply dispatches up to a configurable amount of y > 1 routing communi-
cation entries to the Node Peers Routing Peer. Note that the wiring doesn’t dispatch
routing communication entries to the Routing Peer itself, but directly to one of the
Routing Peers sub peers, the Routing Information Peer.

Guards:

1. rtCom (take): Routing communication entry to be dispatch by the wiring.

61

Actions:

1. rtCom: Routing communication entries dispatched to the Node Peers Routing
Information Peer.

4.4.3.3 W3: Init Dispatch Wiring

This wiring simply dispatches an initialization entry to the Node Peers Routing Peer at
initialization time.

Guards:

1. init (take): The initialization entry to be dispatched by the wiring.

Actions:

1. init: The initialization entry dispatched to the Node Peers Routing Peer.

4.4.3.4 W4: Start Wiring

This wiring starts the benchmark by placing an entry of type "started" in the PIC of the
Node Peer. This enables the Node Peer to dispatch data entries.

Guards:

1. start (take): Starts the benchmark.

Actions:

1. started: Placed in the PIC of the Node Peer to enable the dispatching of data
entries.

4.4.3.5 W5: Stop Wiring

This wiring dispatches a stop entry to the Node Peers Forwarding Peer after the run
time of the benchmark has passed. The Forwarding Peer then stops requesting decisions
for held data entries and sends them to the Statistics Peer for the calculation of metrics.

Guards:

1. stop (take): The stop entry to be dispatched to the Node Peers Forwarding Peer.

Actions:

1. stop: The dispatched stop entry.

62

4.4.4 Forwarding Peer

The Forwarding Peer is responsible for handling incoming data entries. If a new data
entry is placed in its PIC, the Forwarding Peer creates an appropriate decision request
for the Routing Peer. The data entry is placed in the coordination data of the request
entry. Thus, the framework is able to map the request to the corresponding data entry.
Depending on the routing decision made by the Routing Peer, the Forwarding Peer either
forwards the data entry to (an)other Node Peer(s) or sends it to the Statistics Peer (if
the data entry has reached its final destination or the routing decision is to drop the
data entry). The Forwarding Peer is able to process multiple data entries at the same
time. The amount is configurable and equal for the wiring for requesting decisions and
forwarding data entries.
The Forwarding Peer contains three wirings, shown in figure 4.10, which are described in
detail in the following.

Figure 4.10: Wirings of the Forwarding Peer

63

4.4.4.1 W1: Request Decision Wiring

This is the wiring where the creation of routing decision requests is done. Therefore, it
takes up to a configurable amount of x > 1 data entries from the PIC. The requests might
be primitive with no additional contextual information or custom (additional information
added) depending on the used routing algorithm. Furthermore, when a decision request
for a data entry is created, the data entry is stored in the coordination data of the
decision request. This enables the framework to determine the corresponding data entry
for a decision request. The decision requests are directly placed in the PIC of the Node
Peers Routing Information Peer.

Guards:

1. iDest (read): This entry contains the address of the Node Peers Routing Peer.
This enables the Forwarding Peer to send the decision request to the Node Peers
Routing Peer.

2. data (take): Data entries for which decision requests are created.

3. stop (none): In order for decision requests to be created, the benchmark must
not be stopped yet.

Actions:

1. dReq: Created decision request entries which are sent to the Node Peers Routing
Peer. The decision request contains the corresponding data entry in its coordination
data.

4.4.4.2 W2: Forward Data Wiring

The Forward Data Wiring handles data entries according to the routing decisions received
from the Routing Peer. Up to a configurable amount of x > 1 data entries is processed
by the wiring at a time. The corresponding data entry of a routing decision entry can
be determined easily by the framework, since the data entry is contained in it. If the
decision is to forward the data entry to other Node Peers, the data entry is sent to the
recipients specified in the decision request. Otherwise, the data entry is sent to the
Statistics Peer. The latter case occurs when the data entry has either reached its final
destination with the current Node Peer or when the Routing Peer determines that the
data entry should be dropped. Furthermore, the wiring optionally attaches (depending
on the routing algorithm) contextual information to each data entry (e.g. the last hop
address of the data entry) before forwarding it.
It is important to note, that the Forwarding Peer technically does not send entries to
other Node Peers directly but via their corresponding I/O Peer.

64

Guards:

1. iDest (read): This entry contains the address of the Node Peer itself. This enables
to uses it as contextual information when optionally manipulating the data entry
before sending (e.g. set the last hop address of the data entry).

2. eDest (read): The entry contains the address of the Node Peers managing I/O
Peer. The I/O Peer is responsible for relaying forwarded data entries and apply
transmission interference.

3. dAnsw (take): Answers to decision requests. The answer contains the addresses
of the recipients to which the data entry should be sent. If the data entry has
reached its final destination or is dropped, the decision answer entry contains solely
the address of the Statistics Peer in the list of recipients. Furthermore, each answer
entry contains its corresponding data entry which is subject to forward.

Actions:

1. data: Forwarded data entries. The data entry may be forwarded to multiple
recipients (depending on the routing algorithm).

4.4.4.3 W3: Terminate Data Entries Wiring

When the defined run time of a benchmark has passed, the Node Peer must not process
any of the remaining data entries in the Forwarding Peers PIC. These data entries have
to be terminated. However, they are still highly relevant for the calculation of metrics.
Therefore, contextual information of the remaining data entries are sent to the Statistics
Peer by this wiring (via the I/O Peer).

Guards:

1. stop (read): Data entries are only terminated when the benchmark run time has
passed.

2. eDest (read): The entry contains the address of the Node Peers managing I/O
Peer. The I/O Peer is responsible for relaying forwarded data entries and apply
transmission interference.

3. iDest (read): This entry contains the address of the Node Peer itself. This
information is used to inform the managing I/O Peer from which Node Peer the
data entry was sent.

4. data (take): Data entries to be terminated.

Actions:

1. data: Terminated data entries sent to the I/O Peer where the contextual informa-
tion (traces) are extracted and sent to the Statistics Peer.

65

4.4.5 Routing Peer

The Routing Peer has the task to initialize itself and its sub peers. This could mean
to trigger initial routing related communication with other Node Peers in the network,
building the initial state of the routing information base or to trigger an initial update of
the routing information base (if that fits the routing algorithm). If a routing communica-
tion entry has reached its final destination at this Node Peer instance, it is sent to the
managing I/O Peer, where contextual information is extracted and sent to the Statistics
Peer for the calculation of metrics at a later stage of the benchmark, after processing.
Incoming routing decision requests and routing communication entries are not dispatched
by the Routing Peer, but directly placed in the target sub peer by the sender.
The Routing Peer only contains a single wiring, shown in figure 4.11, which is described
in detail in the following.

Figure 4.11: Wirings of the Routing Peer

4.4.5.1 W1: Initialization Wiring

The Routing Peer and its sub peers are initialized by this wiring. The main task of
the wiring is to build the routing information base that holds all important information
for the routing algorithm in order to make adequate routing decisions (e.g. list of the
Node Peers neighbors in the network), to initialize the routing information base and to
place it in the PIC of the Routing Information Peer. Moreover, it optionally provides
the possibility to trigger initial sending of routing communication entries to other Node
Peers and to immediately update the routing information base after it was dispatched to

66

the Routing Peers Routing Information Peer (if that fits the routing algorithm). Besides
that, it sends contextual information (e.g. the address of the Statistics Peer) which is not
known until the time of initialization to the Routing Decision Peer. This is not needed for
the Routing Information Peer since this information is already included in the initialized
routing information base.

Guards:

1. init (take): The initialization entry holds all the information needed for initializing
the Routing Peer and its sub peers.

2. iDest (read): Holds the address of the current Node Peer which is then stored in
the routing information base in the initialization process.

Actions:

1. base: The initialized routing information base. It serves as the knowledge base of
the Node Peer. The routing information base entry always contains at least the list
of neighbors of the Node Peer, the address of the Node Peer itself, the address of
the frameworks Statistics Peer and the address of the corresponding I/O peer in
the entries app-data.

2. tCond: An additional container for knowledge which is solely used to terminate
routing information entries before they are processed. This also ensures that the
routing information base is only taken (and therefore locked) when it is actually
updated.

3. send: Optional entries which trigger initial sending of routing communication
entries to other Node Peers after the benchmark has started.

4. updt: Optional entry to manipulate the routing information base right after it is
dispatched to the Routing Peers Routing Information Peer.

5. eDest: Contains contextual information known at initialization time. More specifi-
cally, it contains the address of the corresponding I/O Peer and the Statistics Peer.
This entry is sent to the Routing Decision Peer.

4.4.6 Routing Decision Peer

This Peer is the part of the pattern where the actual routing decisions are made. This
includes to decide if the data entry has reached its final destination, if a termination
condition is met (which would lead to the Node Peer dropping the data entry instead of
forwarding it further) and to determine the recipients to which the data entry should
be forwarded if that is the result of the decision process. When a routing decision for a
data entry is requested by the Forwarding Peer, the Routing Decision Peer request all
information needed for making the decision (e.g. the routing table or the list of the Node

67

Peers neighbors) by sending an information request to the Routing Information Peer.
Based on the information received, the routing decision is made. The Routing Decision
Peer then sends the answer, containing the result of that decision to the Forwarding Peer.
The framework is able to carry out the tasks described above for up to a configurable
amount of x > 1 decision requests / information answer entries at a single execution of
the corresponding service. This limit x is equal to the limit x for handling data entries
and decision answer entries in the Forwarding Peer.
The Routing Decision Peer contains two wirings, shown in figure 4.12, which are described
in detail in the following.

Figure 4.12: Wirings of the Routing Decision Peer

4.4.6.1 W1: Information Request Wiring

This is the wiring where the creation of information requests happens i.e. the Routing
Decision Peer requests the information needed from the Routing Information Peer in
order to make an adequate routing decision. This could be either primitive requests
with no contextual information for the Routing Information Peer or custom requests
based on the used routing algorithm and the context provided by the decision request
which triggered this wiring. The information request entry and the decision answer entry
contain the decision request in their coordination data, whereas the information answer
entry contains the information request entry in its coordination data. Note that the
decision request contains the data entry in its co-data. This nesting of entries enables
the framework to map the corresponding requests and answers.

68

Guards:

1. iDest (read): This entry contains the address of the Routing Peers Routing
Information Peer. This enables the Routing Decision Peer to send the information
request to the correct peer.

2. dReq (take): The decision request entries for which the information request is
created. Holds the corresponding data entry in its coordination data.

Actions:

1. iReq: Information request entries sent to the Routing Peers Routing Information
Peer. Each holds the corresponding decision request in its coordination data.

4.4.6.2 W2: Make Decision Wiring

This wiring can be considered the core part of the proposed frameworks pattern. Based
on the received information from the Routing Information Peer and the contextual
information provided in the decision request, routing decisions are made and sent to the
Forwarding Peer in the form of routing decision answer entries. The routing decision
might lead to the forwarding of a data entry, for which the decision request was created,
to other Node Peers or its termination. The latter is the case if the data entry has reached
its final destination or a termination condition (specified by the used routing algorithm)
is met (e.g. the data entry has reached a specified limit of maximum hops). When the
routing decision is to drop the data entry, the routing decision answer only contains the
frameworks Statistics Peer, where metrics are calculated at a later stage of the benchmark,
in the list of recipients. Furthermore, the routing decision could also influence the routing
information base held by the Routing Information Peer. Therefore, the wiring is able to
optionally create update entries and send it to the Routing Information Peer.

Guards:

1. iDest (read): This entry contains the address of the Node Peers Forwarding Peer.
This enables the Routing Decision Peer to send the answer to the decision request
to the correct Forwarding Peer.

2. eDest (read): This entry contains the address of the frameworks Statistics Peer.
When the decision is to drop a data entry, the only recipient for the next hop is
this address.

3. iAnsw (take): Answers to information requests. Hold the information needed to
make adequate routing decisions. An information answer entry always includes
the address of the Node Peer itself (of which the Routing Peer and therefore the
Routing Decision Peer is a sub peer) to enable this wiring to check if the data
entry (for which the decision request was created) has reached its final destination.
Furthermore, it holds the corresponding information request in its coordination
data.

69

Actions:

1. dAnsw: Routing decisions sent to the Forwarding Peer. Each answer entry contains
the corresponding decision request in its coordination data.

2. updt: Entries optionally created and sent to the Routing Information Peer for
an asynchronous update of the routing information base, triggered by the routing
decision.

4.4.7 Routing Information Peer

The knowledge base (routing information base) contains all routing relevant information
needed in order for the Routing Decision Peer to make adequate routing decisions (e.g.
routing table, list of the Node Peers neighbors). The Routing Information Peer is
responsible for managing it. Thus it updates it, if needed, and provides a copy of it
partially or fully (depending on the routing algorithm) on request to the Routing Decision
Peer. Updates to the routing information base could be based on information received
from other Node Peers, resulting from made routing decisions by the Routing Decision
Peer or internally triggered by the Routing Information Peer itself.
Furthermore, the Routing Information Peer might not only receives update relevant data
from other Node Peers in a passive manner, it is also able to actively request information
if needed. However, to enable blocking operations (i.e. an information request is not
processed until requested information is received) when information is requested actively,
a specific option has to be activated in the frameworks configuration. If the option is
activated, the Routing Information Peer partially uses different wirings. Thus, there are
two versions of the Routing Information Peer. The actual version is chosen at creation
time of a benchmark. More details regarding the frameworks configuration can be found
in section 5.5.
When it comes to intelligent routing algorithms, the Routing Information Peer is the
component which spawns, registers and interacts with intelligent agents that travel the
network.
The wirings of the Routing Information Peer are shown in two parts in figures 4.13 and
4.14 and described in detail in the following. Note that figure 4.13 shows two different
versions of the wiring to answer information requests. The wiring which is actually used
depends, if blocking operations are needed in the implemented routing algorithm or not.

70

Figure 4.13: Both version of the Routing Information Peers wiring to answer information
requests.

71

Figure 4.14: Wirings of the Routing Information Peer (part 2)

4.4.7.1 W1.1: Information Answer Wiring (version 1)

This is the standard wiring used by the Routing Information Peer for processing infor-
mation requests received from the Routing Decision Peer. Although it does not allow
blocking operations (blocking the processing of an information request until actively
requested information for updating the routing information base has been received), it

72

has the major advantage that multiple requests can be processed with one execution of
the wirings service. Thus, it prevents this wiring from being the performance bottleneck
for processing data entries at a Node Peer.
The routing information base as well as up to a configurable amount of x > 1 information
requests are taken from the PIC of the Routing Information Peer. Each information
request is answered according to the used routing algorithm. The answers are placed as
routing information answer entries into the PIC of the Routing Decision Peer.
Furthermore, the wiring is able to update the routing information base. This is needed
for algorithms which synchronously update the routing information base based on infor-
mation, provided by data entries context, contained in information requests. Additionally,
the wiring is able to optionally create entries of type “send” to initiate communication
with other Node Peers based on the received information request.

Example 4.4.4 Assume the implemented routing algorithm is a flooding algorithm where
each originated data entry has an unique ID and each of theses data entries is only allowed
to be forwarded once by a Node Peer. Therefore, a list of IDs of received data entries
has to be kept in the routing information base. In order to avoid forwarding a data entry
more than once, the list has to be updated synchronously after a information request has
been processed.

Guards:

1. iDest (read): This entry contains the address of the Routing Peers Routing
Decision Peer. This enables the Routing Information Peer to send the answer to
the information request to the correct Routing Decision Peer.

2. base (take): This entry contains the full knowledge base of the Node Peer. It is
used by the wiring to answer the received information request.

3. iReq (take): Information requests to be answered by this wiring.

Actions:

1. iAnsw: Answer to the information requests. Each answer entry always contains at
least the address of the Node Peer (of which the Routing Peer and therefore the
Routing Information Peer is a sub peer) to enable the Routing Decision Peer to
determine if the data entry, for which the request chain was initiated in the first
place, has reached its final destination at the current Node Peer.

2. send: Optionally, these entries are built to initiate communication with other Node
Peers (e.g. to request additional information from other network nodes).

3. base: The routing information base is placed back in the PIC after a possible
update.

73

4.4.7.2 W1.2: Information Answer Wiring (version 2)

If blocking operations are needed when it comes to answering routing information requests,
this version of the wiring is needed. Therefore, a specific option has to be activated in
the configuration of the framework. Although it provides more utility than the standard
alternative (wiring W1.1), its usage comes with a major drawback. Information request
entries can only be processed one by one. Due to that fact, the wiring becomes the
frameworks bottleneck performance-wise.
This version of the Information Answer Wiring reads the routing information base from
the PIC of the Routing Information Peer and checks if it is able to process the information
request. If that is the case, the requested information is sent in the form of a routing
information answer entry to the Routing Decision Peer.
Otherwise, the processing of the request is put to hold and a lock entry is created. The
lock prevents the information request from being processed until the lock is removed.
Example reasons for this case are when the information needed in order to answer the
information request has to be specifically requested from another Node Peer or if the
wiring should wait for a general update of the routing information base (without a specific
request).
The wiring is also able to update the routing information base. Furthermore, indepen-
dently of the wiring being able to process the request, the wiring is able to optionally
create entries of type “send” to initiate communication with other Node Peers (e.g. to
request the information missing in the routing information base for the wiring to be able
to answer the request satisfactorily). This can be useful in multiple scenarios (e.g. when
a lock should be created to wait for an update of the routing information base which is
not triggered by a specific request to other Node Peers). An information request is only
processed if there exists no corresponding lock entry (i.e. the information request has
not been processed yet or the processing is not put on hold) in the PIC of the Routing
Information Peer.
Routing information request entries and lock entries are matched via their flow-ID by
the framework. Thus the guards for these two entry types are flow-dependent.

Guards:

1. iDest (read): This entry contains the address of the Routing Peers Routing
Decision Peer. This enables the Routing Information Peer to send the answer to
the information request to the correct Routing Decision Peer.

2. base (take): This entry contains the full knowledge base of the Node Peer. It is
used partially or fully by the wiring to answer the received information request.
Furthermore, it might be updated.

3. iReq (take): The information request to be answered by this wiring.

4. lock (none): This entry ensures that if the processing of a information request
is put on hold, it is not processed again until the information base contains the
information needed to answer the request sufficiently.

74

Actions:

1. iAnsw: The answer entry which is created if the wiring is able to process the
information request. The entry always contains at least the address of the Node
Peer (of which the Routing Peer and therefore the Routing Information Peer is
a sub peer) to enable the Routing Decision Peer to determine if the data entry,
for which the request chain was initiated in the first place, has reached its final
destination at the current Node Peer.

2. iReq: The information request is put back in the PIC of the Routing Information
Peer if it currently can’t be processed.

3. lock: If the wiring is not able to process the information request currently, a lock
entry to temporarily block the processing of the request is created and placed in
the PIC of the Routing Information Peer.

4. send: Optionally, these entries are built to initiate communication with other Node
Peers (e.g. to request additional information). It is important to note that the
creation is independent of the wiring being able to answer the request or not.

5. base: The routing information base is placed back in the PIC after a possible
update.

4.4.7.3 W2: Send Routing Information Wiring

The wiring takes up to a configurable amount of w > 0 “send” entries and executes its
service. This might lead to the creation of routing communication entries which are sent
to other Node Peers for inter-node-peer communication purposes (e.g. to inform another
P2P nodes about an update of the information base or to send an update request).
Furthermore, the wiring optionally creates entries of type “send” to enable periodical
sending of routing information.

Example 4.4.5 Assume the implemented routing algorithm is an intelligent one that
uses agents which travel the network and gather routing relevant information. The Send
Information Wiring is used to forward an agent to its next hop. Furthermore, entries of
type “send” are placed in the PIC of the Routing Information Peer in order to trigger
periodical spawning of the intelligent agents.

Guards:

1. base (read): This entry contains the full knowledge base of the Node Peer. It
contains the list of neighbors of the Node Peer and is therefore needed by the wiring.
The wiring may also uses additional information of the routing information base.
Additionally, the entry holds the address of the corresponding I/O peer that relays
the sent entries to the correct target.

75

2. send (take): Triggers the sending of routing relevant information or agents to
other Node Peers.

Actions:

1. rtCom: Entries sent to other Node Peers (via the managing I/O Peer). The
information contained could trigger an update of the other Node Peers information
base or simply an answer to the request sent. Entries of this type can also be placed
in the PIC of the Routing Information Peer in order to update the own routing
information base via the Receive Routing Information Wiring.

2. send: These entries are built optionally to initiate communication and collaboration
with other Node Peers periodically. Therefore, they are placed in the PIC of the
Routing Information Peer (most likely with a TTS set).

4.4.7.4 W3: Receive Routing Information Wiring

This wiring represents the receiving end of communication between Node Peers and
therefore handles up to k > 0 incoming routing communication entries per execution.
Furthermore, it decouples the receiving of routing information from the process of
updating the information base. This is especially advantageous for the performance of
the framework, since not every received routing information entry leads to an update
of the information base, but each execution of the Update Information Base Wiring
locks the routing information base, which is needed for answering routing information
requests. To enable the wiring to filter routing information entries that do not lead to an
update of the routing information base, it possesses its own private knowledge base in
the form of a termination condition entry. Terminated routing information entries are
sent to the frameworks Statistics Peer (via the Node Peers managing I/O Peer), where
metrics are calculated at a later stage of the benchmark. If the routing information base
has to be updated based on the received information, an update request that includes
the update information is created and placed in the PIC of the Routing Information
Peer. Additionally, the wiring is able to initiate communication with other Node Peers
by creating entries of type “send”.

Example 4.4.6 Assume an intelligent routing algorithm that uses agents sent by nodes
to inform other nodes about the delay between them on possible paths (experienced by the
agents). Furthermore, assume that the algorithm only allows agents to travel a maximum
amount of p > 1 hops. If a registered agent has reached the defined limit, it is ensured
that it does not trigger an update of the routing information base, but gets terminated.

Example 4.4.7 Assume an intelligent routing algorithm that uses agents that experience
and report paths in the network to P2P nodes. In order to do that, an agent has the
possibility to manipulate the routing table contained in the routing information base of a
Node Peer. If the agent decides to manipulate the routing information base, it is placed in
the form of an update request (entry of type “updt”) in the PIC of the Routing Information

76

Peer. Otherwise, it might continues to travel the network by being placed as “send” entry
in the PIC.

Guards:

1. base (read): This entry contains the full knowledge base of the Node Peer.
However it is only read and can be used as additional information source to decide
what to do with a received routing information entry.

2. tCond (take): Additional knowledge base used by this wiring to store information
used to decide if a received routing information entry should be terminated.

3. rtCom (take): Received entries that contain routing relevant information. Might
lead to updates of the routing information base.

Actions:

1. update: Optionally created to update the routing information base held by the
Node Peers Routing Information Wiring.

2. send: These entries are built optionally to initiate communication with other Node
Peers.

3. tCond: The termination conditions are placed back in the PIC of the Routing
Information Peer after a possible update.

4.4.7.5 W4: Update Information Base Wiring

This wirings major task is to update the routing information base based on received
update requests. To do this, the wiring takes the routing information base from the PIC
of the Routing Information Peer and therefore locks it from all other access. Thus, no
routing information requests can be processed by the Routing Information Peer until the
update is done.
If the option for blocking routing information requests is enabled, the wiring is able to
remove locks after the routing information base has been updated.

Example 4.4.8 Assume an intelligent routing algorithm that uses agents sent by nodes
to inform other nodes about the delay between them on possible paths (experienced by
the agents). When an agent reaches a network node, it trigger updates of the routing
information base. Therefore, after being registered by the Receive Routing Information
Wiring, they are processed as entries of type “updt” by the Update Information Base
Wiring. After the update, the agents move on with their travel in the network by being
placed as entries of type “send” in the PIC of the Routing Information Peer (and then
forwarded by the Send Routing Information Wiring).

Guards:

1. base (take): The routing information before the applied updates.

77

2. updt (take): These entries trigger an update of the routing information base.

Actions:

1. base: The updated routing information base is returned to the PIC of the Routing
Information Peer.

2. send: Optionally, each update of the routing information base could lead to the
creation of entries of type “send” which initiate the sending of information to other
Node Peers.

3. delLo: To delete a lock in the PIC of the Routing Information Peer, an entry of
type “delLo” with the same flow-ID as the lock to remove is placed in the PIC of
the Routing Information Peer. One of these entries is created per lock to delete.

4.4.7.6 W5: Delete Lock Wiring

The wirings simply deletes a specific lock when triggered. The lock blocks a corresponding
information request from being processed by the Routing Information Peers Answer
Request Wiring. An entry which triggers the deletion and the corresponding lock entry
are mapped via their flow-ID by the framework. Therefore, both of the wirings guards
are flow-dependent.

Guards:

1. delLo (take): This entry triggers the deletion of a specific lock entry.

2. lock (take): Lock entry to be deleted.

Actions: None

4.5 Additional Framework Components
These Peers are not directly part of the core pattern. However, they are used in in the
framework as tools to create and initialize the benchmark, offer a realistic environment
(e.g. by simulating transmission interference), for decoupling communication concerns
from the core pattern and to provide flexibility to the framework.

4.5.1 I/O Peer

The I/O Peer decouples the inter-peer communication between Node Peers in the frame-
work from the core pattern. Each Node Peer has an associated I/O peer which is
responsible for relaying the sent and received data and routing communication entries.
There exists exactly one I/O Peer per Node Peer Space that manages all Node Peers

78

contained in it.
It therefore holds two mapping entries in its PIC: the internal mapping (contained in a
single entry of type “iMap”) and the external mapping (contained in a single entry of
type “eMap”). The internal mapping is used to distribute received entries correctly to
managed target Node Peers and to register the I/O Peer and its managed Node Peers at
the Control Peer. It maps the addresses of Node Peers to the address of the I/O Peer.
Thus, the internal mapping states which Node Peers communication is handled by the
I/O Peer.
In contrast, the external mapping is used for relaying data and routing communication
entries sent by the I/O Peers managed Node Peers. It holds all network links between the
managed Node Peers and their neighbors as well as the attributes of the links. Therefore,
for each Node Peer s managed by the I/O Peer, a source and destination pair (s, d),
where d are all neighbors of this Node Peer, is mapped to a target address. This target
address could either be the address of the target Node Peer (if source and destination
are both managed by the same I/O Peer) or the address of the I/O Peer which manages
the target Node Peer. Furthermore, the external mapping is able to hold additional
information for each link between two Node Peers. This can be used by the framework
to simulate transmission interference (e.g. transmission delay or drop rate of entries) and
therefore enables the framework to provide a more realistic environment for benchmarking.
Additionally, to all outgoing data and routing communication entries relayed by the I/O
Peer, a timestamp of the sending time is added to the trace in the coordination data for
the calculation of statistics at a later stage of the benchmark. The wiring also informs
its managed Node Peers when a benchmark is stopped.
The I/O Peer contains seven wirings, shown in figures 4.15 and 4.16, which are described
in detail in the following.

4.5.1.1 W1: Send Data Wiring

The wiring is responsible for relaying up to a configurable amount of i > 1 data entries,
which are sent by the I/O Peers managed Node Peers, to other Node Peers. In order to do
that, it determines the source and next hop destination of the communication and reads
from the external mapping (contained in an entry of type “eMap”) to which peer the data
entry should be sent. If source and target Node Peer are managed by the same I/O Peer,
this address is the one of the target Node Peer. The data entry is then directly sent to the
target Node Peer. However, if the target Node Peer is managed by another I/O Peer, this
address it the one of the managing I/O Peer. In this case, the I/O Peer wraps the contents
of the data entry in a entry of type “outD” and sends it to the I/O Peer that manages
the target Node Peer. The entry of type “outD” allows the I/O Peer on the receiving
end to distinguish between data entries which are sent or received. Furthermore, the I/O
Peer reads additional information to this link between source and destination from the
external mapping to be able to apply transmission interference (e.g. transmission delay).
Before relaying an entry, the wiring adds a timestamp to the trace in its coordination-data.

79

Figure 4.15: Wirings of the I/O Peer (part 1)

Guards:

1. iDest (read): This entry contains the address of the I/O Peer. The wiring uses
this information to determine if the target Node Peer exists in the same Node Peer
Space as the I/O Peer. If that is the case, it is implicit that the target Node Peer
is also managed by the same I/O Peer.

80

Figure 4.16: Wirings of the I/O Peer (part 2)

2. eMap (read): Contains the external mapping. It is used by the wiring to determine
to which peer the data entry should be sent and to check if and which transmission
interference should be applied.

3. stop (none): The wiring only sends data entries to other Node Peers if the
benchmark has not been stopped yet.

4. data (take): Data entries to be relayed by the I/O Peer.

Actions:

1. data: Entries sent to target Node Peers if they are managed by the this I/O Peer.

2. outD: Entries sent to the target Node Peers managing I/O Peer if they are managed
by another I/O Peer than the source Node Peer.

81

4.5.1.2 W2: Send Routing Communication Wiring

This wiring does exactly the same as the Send Data Wiring, except it is responsible for
relaying routing communication entries.

Guards:

1. iDest (read): This entry contains the address of the I/O Peer. The wiring uses
this information to determine if the target Node Peer exists in the same Node Peer
Space as the I/O Peer. If that is the case, it is implicit that the target Node Peer
is also managed by this I/O Peer.

2. eMap (read): Contains the external mapping. It is used by the wiring to determine
to which peer the routing communication entry should be sent and to check if and
which transmission interference should be applied.

3. stop (none): The wiring only sends routing communication entries to other Node
Peers if the benchmark has not been stopped yet.

4. rtCom (take): Routing communication entries to be relayed by the I/O Peer.

Actions:

1. rtCom: Entires sent to target Node Peers if they are managed by the this I/O
Peer.

2. outR: Entries sent to the target Node Peers managing I/O Peer if they are managed
by another I/O Peer than the source Node Peer.

4.5.1.3 W3: Receive Data Entries Wiring

When a Node Peer sends a data entry via its managing I/O Peer to a Node Peer managed
by another I/O Peer, the content of the data entry is placed in form of an entry of type
“outD” in the PIC of the receiving Node Peers managing I/O Peer. Due to the entries
placement in the I/O Peer PIC, the Receive Data Entries Wiring is triggered. The wiring
reads the internal mapping, contained in an entry of type “iMap” which is read from
the I/O Peers PIC, to check if recipient Node Peer is really managed by the I/O Peer.
If thats the case, it simply forwards the contents of the “outD” entry in the form of a
data entry to the recipient Node Peer. The amount of simultaneously processed entries
of type “outD” is configurable up to an amount of j > 1.

82

Guards:

1. iDest (read): This entry contains the address of the I/O Peer. It is used for an
additional check to ensure that the recipient Node Peer exists on the same Peer
Space as the I/O Peer. This implies that it is managed by the I/O Peer.

2. iMap (read): Mapping which contains the address of all Node Peers managed by
the I/O Peer.

3. stop (none): The wiring only relays data to the I/O Peers managed Node Peers
if the benchmark has not been stopped yet.

4. outD (take): Data entries to relay. The entry type is used to enable the I/O
Peer to distinguish data entries sent by Node Peers managed by it and those ones
received from Node Peers managed by other I/O Peers.

Actions:

1. data: Entries forwarded to the target Node Peer.

4.5.1.4 W4: Receive Routing Entries Wiring

This wiring does exactly the same as the Receive Data Entries Wiring, except it is
responsible to forward routing communication entries, which are received as entries of
type “outR” to the recipient Node Peer.

Guards:

1. iDest (read): This entry contains the address of the I/O Peer. It is used for an
additional check to ensure that the recipient Node Peer exists on the same Peer
Space as the I/O Peer. This implies that it is managed by the I/O Peer.

2. iMap (read): Mapping which contains the address of all Node Peers managed by
the I/O Peer.

3. stop (none): The wiring only relays routing communication to the I/O Peers
managed Node Peers if the benchmark has not been stopped yet.

4. outR (take): Routing communication entries to relay. The entry type is used to
enable the I/O Peer to distinguish routing communication entries sent by Node
Peers managed by it and those ones received from Node Peers managed by other
I/O Peers.

Actions:

1. rtCom: Entries forwarded to the target Node Peer.

83

4.5.1.5 W5: Register Wiring

This wiring sends the I/O Peers internal mapping and its address to the Control Peer.
Thus, it registers itself and the managed Node Peers at the Control Peer.

Guards:

1. iDest (read): This entry contains the address of the I/O Peer itself.

2. eDest (read): This entry contains the address of the Control Peer.

3. iMap (read): Mapping which contains the address of all Node Peers managed by
the I/O Peer.

4. reg (take): This entry triggers the registration process.

Actions:

1. reg: Registration entry sent to the frameworks Control Peer. It contains the
internal mapping as well as the address of the I/O Peer.

4.5.1.6 W6: Stop Node Peers Wiring

This wiring informs all of the I/O Peers managed Node Peers when a benchmark has
been stopped.

Guards:

1. stop (read): Stop entry received by the frameworks Control Peer. This entry
is kept in the I/O Peers PIC in order to force the peer to terminate all received
entries (and therefore sent their traces to the Statistics Peer).

2. iMap (read): Mapping which contains the address of all Node Peers managed by
the I/O Peer.

3. info (take): Info entry received by the frameworks Control Peer. Since this entry
is consumed by the wiring, it ensures that the wiring is only triggered once.

Actions:

1. stop: To each of the I/O Peers managed Node Peers a stop entry is sent.

4.5.1.7 W7: Cleanup Wiring

After a benchmark has been stopped, the wiring terminates all received data and routing
communication related entries and sends its contextual information to the Statistics Peer.
The wiring is triggered periodically after a time interval of 1 second has passed.

84

Guards:

1. iMap (read): Mapping which contains the address of all Node Peers managed by
the I/O Peer.

2. timer (take): Entry that ensures that the wiring is only triggered after a time
interval of 1 second has passed.

3. data, outD, rtCom, outR (take): entries from which benchmark relevant
contextual information is extracted before being terminated.

Actions:

1. outS: The gathered contextual information is wrapped in this entry and sent to
the Statistics Peer for metrics calculation.

4.5.2 Statistics Peer

The Statistics Peer is used by the framework to calculate the values of the benchmarks
metrics. Therefore, it uses relevant information, extracted from data entries and routing
communication entries and wrapped in entries of type “outS”. Furthermore, this peer also
includes a wiring for the output of the calculated statistics. The calculated statistics are
saved in an entry of type “stats” which is held in the PIC of the Statistics Peer. There
only exists one instance of the Statistics Peer for each benchmark and exactly one “stats”
entry in the PIC of this peer at all times.
The Statistics Peer contains two wirings, shown in figure 4.17, which are described in
detail in the following.

4.5.2.1 W1: Calculate Statistics Wiring

The wiring calculates the benchmarks statistics based on the received contextual informa-
tion. The calculation results are stored and outputted by another wiring of the Statistics
Peer after the benchmark has ended and all relevant information has been included in
the calculation.

Guards:

1. outS (take): Entries that hold the information relevant for the calculation.

2. stats (take): The overall statistics of the current benchmark before the current
“outS” entry is taken into account. Note that there exists exactly one entry of this
type at all times in the PIC of the Statistics Peer.

Actions:

1. stats: Overall statistics of the current benchmark after the calculation.

85

Figure 4.17: Wirings of the Statistics Peer

4.5.2.2 W2: Statistics Output Wiring

This wiring solely serves the purpose of outputting the collected statistics regarding the
benchmarks metrics. Statistics are read from an entry of type “stats”. In which format
the output actually happens is not fixed, but defined by the wirings service.

Guards:

1. stats (read): Calculated statistics of the current benchmark.

2. statsOut (take): This entry triggers the output of the benchmarks statistics.

Actions: None

4.5.3 Control Peer

The Control Peer is the control center of the routing framework. Therefore, the majority
of its features are configurable. It generates the topology of the network and the attributes
of the network links for a benchmark. Based on the generated network, the Control Peer
initializes the Node Peers, their managing I/O Peers and the Statistic Peer. Furthermore,
the data entries, which are sent from a source and destination during the benchmark, are
created and placed in the PIC of their determined source Node Peer. Additionally, the
Control Peer starts the benchmark after a configurable initialization time a and stops it
after the benchmarks run time b. 30 seconds after the benchmark has been stopped, the
output of the calculated statistics is triggered by the Control Peer. This ensures that the

86

framework has enough time to include entries, which have been terminated due to the
stopping of the benchmark, in the calculation of the statistics.
The Control Peer contains four wirings, shown in figure 4.18, which are described in
detail in the following.

Figure 4.18: Wirings of the Control Peer

87

4.5.3.1 W1: Register Node Peer Wiring

I/O Peers register Node Peers at the Control Peer by informing it about their own address
and those of all the Node Peers they manage. This happens by sending an I/O Peers
internal mapping contained in an entry of type “reg”. The wiring collects these mappings,
adds them to a list containing all internal mappings received and saves them as entry
of type “iMap” in the PIC of the Control Peer. Additionally, the number of registered
Node Peers is tracked in this entry.

Guards:

1. reg (take): Registration entry sent by an I/O Peer containing its own address
and those of the managed Node Peers.

2. iMap (take): Entry which contains all internal mappings received from I/O Peers
before the newly received internal mapping is added.

Actions:

1. iMap: Entry which contains all internal mappings received from I/O Peers after
the newly received internal mapping is added. Contains the number of overall
registered Node Peers in its coordination-data.

4.5.3.2 W2: Initialize Benchmark Wiring

The Initialize Benchmark Wiring builds the benchmarks Peer-to-Peer network topology
and initializes all involved framework components. The wiring is only triggered if at
least the amount of Node Peers defined in the configuration (the configured size c of the
benchmarks network) have registered at the Control Peer.
First, the network topology is generated. Not only the type of topology (e.g. ring, scale-
free) is configurable, but also the number of network nodes (Node Peers). The attributes
of each network link are calculated randomly in configurable interval boundaries.
Based on the created Peer-to-Peer network topology, the external mappings of all involved
I/O Peers are automatically generated and placed in their PICs.
Additionally, initialization entries for all Node Peers of the benchmarks network are
created and placed in their PIC. An initialization entry sent to a Node Peer includes a
list of its neighbor Node Peers, the address of its managing I/O Peer and the address of
the benchmarks Statistic Peer.
Furthermore, a configurable amount of data entries, which are sent from a random source
to a random destination, is created and placed in the PICs of the source Node Peers.
Then the wiring initializes the statistics entry in which the calculated statistics of the
benchmark are going to be stored, places it in the PIC of the Statistics Peer and creates
an entry of type “statOut” which triggers the output of the measured metrics after the
benchmark has ended.
Lastly, the wiring creates an entry of type “start” which serves as a trigger to start the
benchmark and an entry of type “stop” to stop it, both with a configurable TTS set.

88

The TTS a defines how long the Node Peers have time to initialize before the actual
benchmark starts (i.e. to communicate with each other to build their knowledge base),
while the TTS b defines the length of the benchmarks run time (i.e. to send data entries
from their source to their destination).

Guards:

1. init (take): Entry which triggers the creation and initialization of the benchmark.
It contains the values of the benchmarks configurable parameters and the address
of the Statistics Peer.

2. iMap (read): Contains all received internal mappings. The guard of this wiring
is only triggered if the amount of registered Node Peers (stored in a counter in the
coordination-data of this entry) equals or is greater than the amount c of expected
Node Peers for the benchmark (network size defined in the configuration).

Actions:

1. data: Configurable amount v > 1 of data entries, with a random destination,
placed in a random source Node Peer.

2. init: For each Node Peer involved in the benchmark, an initialization entry con-
taining a list of the Node Peers neighbors, the address of its managing I/O Peer
and the address of the Statistics Peer is placed in its PIC.

3. eMap: For each I/O Peer involved in the benchmark, the external mapping is
generated and placed in the I/O Peers PIC. The mapping is used by an I/O
Peer to determine to which peers (Node Peer or other I/O Peer) an data or
routing communication entry should be sent and to check if and which transmission
interference should be applied.

4. stats: Initialized entry in which the benchmarks statistics are going to be stored.

5. statOut: Triggers the output of the benchmarks statistics after a + b + 30000
milliseconds, where a is the benchmarks initialization time and b is the benchmarks
run time.

6. timer: Entry sent to each I/O Peer to ensures that their Cleanup Wiring is only
triggered once each second after the benchmark is stopped.

7. start: Triggers the start of the benchmark after a configurable time a > 0 ms has
passed.

8. stop: Stops the benchmark after the initialization time a and the run time b, both
configurable, have passed.

89

4.5.3.3 W3: Start Benchmark Wiring

After the benchmarks initialization time-frame a > 0 ms (when the TTS of the start
trigger has passed), the wiring sends an entry of type “start” to all involved Node Peers
to start the processing of data entries. Thus, it starts the benchmark.

Guards:

1. start (take): Entry triggering the start of the benchmark.

2. iMap (read): Entry which contains all internal mappings received from I/O Peers.
This is used to determine the addresses of the benchmarks Node Peers.

Actions:

1. start: Entry sent to all Node Peers in order to start the processing of data entries.
Therefore, these entries start the benchmark.

4.5.3.4 W4: Stop Benchmark Wiring

After the benchmarks initialization time-frame a and the time-frame for forwarding data
entries (the benchmarks run time) b, the wiring ends the benchmark.

Guards:

1. stop (take): Entry triggering the stopping of the benchmark.

2. iMap (read): Entry which contains all internal mappings received from I/O Peers.
This is used to determine their addresses.

Actions:

1. info: Informs all I/O Peers that all their managed Node Peers have to be directed
to stop the processing of data entries.

2. stop: Entry sent to all I/O Peers in order to stop the relaying of entries.

4.6 Summary
At the beginning of the chapter, the core functionalities of routing algorithms in unstruc-
tured P2P networks are identified. These functionalities are mapped to a generic abstract
pattern, described in the Peer Model language. The composition of the frameworks
top-level components not only supports arbitrary network topologies, it also provides a
sophisticated separation of concerns and enables the distributed use of the framework as
testbed.
Additionally, the very important performance aspect of a benchmarking framework is
taken into consideration. Therefore, the framework is specifically designed to boost the

90

performance of the Peer Model to its fullest. In the rest of the chapter, the Peer Model
language is used to specify the architecture and detailed concepts of the frameworks
sub-components.

91

CHAPTER 5
Implementation Details

In this chapter, the implementation specifics of the framework are described.
The chapter is structured as follows.
After a general introduction of the programming language used, the Peer Model imple-
mentation and implemented extensions, the services of the framework are described. After
that, the metrics, benchmarked by the framework, are introduced and the methodology
of tracing is presented. Fruthermore, the benchmarks execution and configuration is
described. Lastly, the frameworks limitations are discussed.

5.1 Peer Model Implementation & Extensions

The framework is implemented using the Peer Model, a coordination based programming
model, presented in section 2.1. The Java 8 [59] implementation of the Peer Model is
described in detail in [8]. On top of this Peer Model implementation, using the same
programming language, the routing framework was implemented.
However, in order to enable the framework to handle huge amounts of entries, some
extensions to the provided Peer Model implementation had to be made. When executing
benchmarks with huge amounts of data entries, a significant drop in performance was
experienced. To decrease the load of entries that have to be handled by the Peer Model
implementation, the concept of nested entries was developed. Nested entries equal
standard entries in the Peer Model implementation, except they allow to be stored in
standard entries and other nested entries co- or app-data. In order to enable the use of
nested entries in inter-peerspace-communication, contents of nested entries are stored in
objects of type FrameworkSerializedEntry (figure 5.1) for the transmission. This
is necessary, since the Peer Model implementation requires elements of an entries co- or
app-data to be fully serializable and standard entries in the Peer Model implementation
have attributes of type java.util.Optional, which are not serializable.
Entries of the same type, the same source, the same destination and with the same

93

transmission interference (e.g delay) that are sent at the same time are merged into a
single container entry, which contains them as list of type java.util.ArrayList in
its coordination data. Thus, instead of handling these entries separately, the Peer Model
only has to cope with the container entry. However, before being processed, all entries are
unpacked by a frameworks service and considered as separated. Without the usage of this
nesting technique, it would be impossible for the routing framework to handle a realistic
amount of data entries. Because only the contents of a nested entry are transmitted in
the case of inter-peerspace-communication, a new object of type Entry is created on the
receiving end. Thus, the internal Peer Model ID of the entry changes. However, this
does not matter, since each data and routing communication entry has an additional ID,
saved in the entries co-data, in the routing framework.

Figure 5.1: Class FrameworkSerializedEntry

Furthermore, in order to ease the dynamical sharing of peer address information during
run time, objects of type FrameworkPeerAddress (figure 5.2) are used in the routing
framework.

Figure 5.2: Class FrameworkPeerAddress

5.2 Services
While the wirings, their guards and actions, and the frameworks entry types are described
in detail in chapter 4 , the services, as well as the interfaces provided for the implementation
of routing algorithms, are presented in this section.

94

Since all services use a set of utility methods to extract entries from the collection passed
by the wiring and to get specific co-data and app-data elements of entries, a super class
FrameworkPeerBaseService exists. All services executed by the Node Peers (and
all of its sub peers) wirings inherit from this super class. The utility methods provided
by this super class are also very useful when implementing routing algorithms. Some of
the services have a fixed implementation which is not subject to change. However, most
of the services are abstract classes which provide several abstract methods. In order to
implement a routing algorithm, either a provided default implementation is chosen, or
a class which inherits from the respective abstract class has to be implemented. In the
following, all services of the framework, the provided abstract methods to implement and
the provided default implementations for each service are described.
It is important to note, that the class peermodel.EntryBuilder in the following
subsections represents an unbuilt entry i.e. an entry which’s contents can still be altered.
Furthermore, the numbering of the services directly corresponds to the numbering of the
wirings in chapter (e.g. service S1 of the Node Peer is the one executed by wiring W1 of
the same peer).

5.2.1 Node Peer

5.2.1.1 S1, S3: TrafficDispatchService

This service is executed by the Data Dispatch Wiring and the Routing Dispatch Wiring.
It provides the possibility to manipulate received entries before dispatching them. Fur-
thermore, the service registers entries by adding an element of type “IN”, the address of
the Node Peer and the current synchronized time to the entries trace. For the detailed
description of the tracing of data and routing communication entries, see subsection 5.3.1.
protected abstract void in i tDataEntry (EntryBui lder dataEntry) ;

Listing 5.1: Initialization of a data entry at its source

The initDataEntry method allows to add additional contextual information to a data
entry at its source after it is placed in the PIC of the Node Peer by the Control Peer.
Therefore, for each data entry, this method is executed exactly once at its source Node
Peer.
protected abstract void manipulateDataEntry (EntryBui lder dataEntry) ;

Listing 5.2: Manipulation of a data entry before dispatching

The manipulateDataEntry method provides the possibility to manipulate a data
entry when it is received and before it is dispatched for further processing by sub peers
of the Node Peer. The method is not called if the Node Peer is the source of the
data entry and the data entry has not been sent yet. Thus, either this method or the
initDataEntry method is called before dispatching a data entry, but never both.
protected abstract void manipulateRtComEntry (EntryBui lder rtComEntry) ;

Listing 5.3: Manipulation of a routing communication entry before dispatching

95

The manipulateRtComEntry method allows the manipulation of routing communica-
tion entries before they are dispatched.

Default Implementation:

1. NoInitAndManipulationTrafficDispatchService: The default implementa-
tion of the TrafficDispatchService does neither add contextual information
to data entries at the time of their initialization, nor manipulates entries before
dispatching them.

5.2.1.2 S2: InitDispatchService

The services simply dispatches received entries of type “init” without altering them.

5.2.1.3 S4: StartService

The service creates an entry of type “started” which is then placed in the PIC of the
Node Peer. Thus, after the execution of this service, the processing of data entries is
started.

5.2.1.4 S5: StopService

The services simply dispatches a received entry of type “stop” without altering it.

5.2.2 Forwarding Peer

5.2.2.1 S1: RequestDecisionService

This is the service where, for each received data entry, a decision request is created.
protected abstract EntryBui lder c rea teDec i s i onReques t (Entry dataEntry) ;

Listing 5.4: Creation of a decision request entry

The createDecisionRequest method is used to create the decision request entry.
Based on the data entry, for which the request is created, additional context might
be added to the request entries co- or app-data. However, the framework always adds
the source and destination address of the data entry, as well as its unique identifier, to
the requests app-data. Furthermore, to enable the mapping of decision request to data
entries, the service always adds the corresponding data entry to the co-data of a created
decision request.

96

Default Implementation:

1. CopyDataEntryContextDecisionRequestService: The default implementa-
tion of the RequestDecisionService extracts all contextual information con-
tained in a data entry and adds it to the created decision request.

5.2.2.2 S2: ForwardDataService

The service is used to forward data entries via the Node Peers managing I/O Peer, based on
made routing decisions. If a data entry has multiple next hops, the service clones the data
entry accordingly. However, cloning of routing algorithm specific contents of a data entries
co- or app-data has to be done manually in the manipulateEntryBeforeSending
method.
protected abstract void manipulateEntryBeforeSending (

FrameworkPeerAddress thisNodePeerAddress ,
Entry decis ionAnswerEntry ,
EntryBui lder dataEntry) ;

Listing 5.5: Manipulation of a data entry before sending

The manipulateEntryBeforeSending method allows to append additional contex-
tual information to the data entries context (e.g. set the current Node Peers address as
last hop of the data entry) and might be used for deep cloning of data entries.

Default Implementation:

1. NoManipulationForwardDataService: The default implementation of the
ForwardDataService does not alter any data entry before sending.

5.2.2.3 S3: TerminateDataEntriesService

This service is used to send all unprocessed data entries to the Node Peers managing
I/O Peer after the benchmarks run time has passed.

5.2.3 Routing Peer

5.2.3.1 S1: InitializationService

This service initializes all sub peers of a Routing Peer instance. The information needed
is provided by the Control Peer.
It is important to note, that all methods available in this service for the implementation of
routing algorithms have 2 address lists as parameters. The neighborList represents a
list of unique identifiers of direct neighbors which’s physical address is known. Therefore,
direct communication (i.e. sending of entries) is possible. The nodePeerAddresses
list contains a list of all unique identifiers of the other Node Peers. These identifiers can
not be mapped to physical addresses (except those contained in the list of neighbors).

97

While these unique identifiers are often used to initialize algorithm specific structures
such as routing tables, direct communication with non-neighbor nodes must not happen.

protected abstract EntryBui lder i n i t i a l i z e R o u t i n g I n f o r m a t i o n B a s e (
Entry in i tEntry ,
FrameworkPeerAddress thisNodePeerAddress ,
ArrayList<FrameworkPeerAddress> ne ighborL i s t ,
ArrayList<FrameworkPeerAddress> nodePeerAddresses) ;

Listing 5.6: Initialization of the routing information base

The initializeRoutingInformationBase method creates the entry that holds
the Node Peers knowledge base. All structures needed by an algorithm can be created
and initialized here. Note that the method must not return the value null.
Additionally, the framework always appends the address of the Node Peer, the neighbors
address list, the list of identifiers of all the networks P2P nodes, the address of the
benchmarks Statistics Peer and the address of the managing I/O Peer to the routing
information base entries app-data.

protected abstract EntryBui lder i n i t i a l i z e T e r m i n a t i o n C o n d i t i o n s (
Entry in i tEntry ,
FrameworkPeerAddress thisNodePeerAddress ,
ArrayList<FrameworkPeerAddress> ne ighborL i s t ,
ArrayList<FrameworkPeerAddress> nodePeerAddresses) ;

Listing 5.7: Initialization of the termination conditions

The initializeTerminationConditions method allows to establish an entry that
holds information, which allows the Routing Information Peer to terminate received
routing communication entries before processing them. If no entry for termination
conditions (type “tCond”) is created, the framework creates and dispatches an empty
one.

protected abstract ArrayList<EntryBuilder> c r e a t e I n i t i a l R o u t i n g S e n d E n t r i e s (
Entry in i tEntry ,
FrameworkPeerAddress thisNodePeerAddress ,
ArrayList<FrameworkPeerAddress> ne ighborL i s t ,
ArrayList<FrameworkPeerAddress> nodePeerAddresses) ;

Listing 5.8: Triggering of initial communication with other Node Peers

A set of entries of type “send” might be created to initiate communication with other
Node Peers using the createInitialRoutingSendEntries method.

protected abstract ArrayList<EntryBuilder> c r e a t e I n i t i a l U p d a t e E n t r i e s (
Entry in i tEntry ,
FrameworkPeerAddress thisNodePeerAddress ,
ArrayList<FrameworkPeerAddress> ne ighborL i s t ,
ArrayList<FrameworkPeerAddress> nodePeerAddresses) ;

Listing 5.9: Creation of initial entries to update the routing information base

98

If it fits the implemented routing algorithm, the createInitialUpdateEntry can
be used to trigger initial updates of the routing information base after it is dispatched to
the PIC of the Routing Information Peer.

Default Implementation:

1. CopyInitEntryContextInitializationService: The default implementation of
the InitializationService does not add additional information to the routing
information base.

5.2.4 Routing Decision Peer

5.2.4.1 S1: InformationRequestService

For each received decision request, a request for information is created in this service.

protected abstract EntryBui lder c reate In format ionReques t (
Entry dec i s i onReques t) ;

Listing 5.10: Creation of an information request entry

The createInformationRequest method is used to create a information request
based on a given decision request. This request is either a primitive one, without addi-
tional contextual information, or specifies in more detail which information is needed in
order to answer the given decision request sufficiently. The implementation of the method
must not return the null value. The framework always adds the source, the destination
and the entries unique ID to the information requests application data. Furthermore, the
information request always holds the corresponding decision request in its coordination
data. Since the decision request holds the corresponding data entry in its co-data, the
framework is always able to match corresponding requests to a data entry.

Default Implementation:

1. NoAdditionalContextInformationRequestService: The default implemen-
tation of the InformationRequestService does not append any additional
contextual information to the routing information requests app-data.

5.2.4.2 S2: MakeDecisionService

This service represents the heart of each routing algorithm. It is were routing decisions
are made. Before any method is called, the service extracts the corresponding decision
request from the information answer entries co-data. After the execution of the service,
the data entry is extracted from the decision request entries co-data and added to the
decision answer entries co-data.

99

protected abstract boolean terminateDataEntry (
S t r ing entryID ,
FrameworkPeerAddress thisNodePeerAddress ,
FrameworkPeerAddress dataEntrySource ,
FrameworkPeerAddress dataEntryDest inat ion ,
Entry dec is ionRequestEntry ,
Entry informationAnswerEntry) ;

Listing 5.11: Termination of a data entry

The terminateDataEntry method allows to specify termination conditions for data
entries (e.g. check if a maximum amount of hops is exceeded). Besides these routing
algorithm specific termination conditions, the framework always checks if a data entry
has reached its final destination. If that is the case, the data entry is terminated. If any
of the termination conditions are met, the data entry is not forwarded any further, but
sent to the Node Peers managing I/O Peer.

protected abstract void answerDecis ionRequest (
S t r ing entryID ,
FrameworkPeerAddress thisNodePeerAddress ,
FrameworkPeerAddress dataEntrySource ,
FrameworkPeerAddress dataEntryDest inat ion ,
Entry dec is ionRequestEntry ,
Entry informationAnswerEntry
EntryBui lder decis ionAnswerEntry
ArrayList<FrameworkPeerAddress> r e c i p i e n t s) ;

Listing 5.12: Answering of a decision request

The answerDecisionRequest method is only called when a data entry is neither
terminated nor has reached its destination. In this method, the decision process of a
routing algorithm is implemented. The determined recipient(s) of the decision process
are added to the parameter recipients. At least one recipient must be added to this
list. Otherwise, the data entry will be terminated. Furthermore, if additional contextual
information should be provided in the decision answer entry to the Forwarding Peer, it
can be added to the app-data of the parameter decisionAnswerEntry.

protected abstract EntryBui lder updateInformationBase (
S t r ing entryID ,
FrameworkPeerAddress thisNodePeerAddress ,
FrameworkPeerAddress dataEntrySource ,
FrameworkPeerAddress dataEntryDest inat ion ,
Entry dec is ionRequestEntry ,
Entry informationAnswerEntry) ;

Listing 5.13: Creation of an asynchronous update request in the MakeDecisionService

Independently of the made routing decision (termination or forwarding of a data entry),
the updateInformationBase method allows to create an update request entry to
update the routing information base asynchronously.

100

Default Implementation:

1. None: Since this service is so specific to the implemented routing algorithm, the
MakeDecisionService is the only service in the framework for which no default
implementation is provided.

5.2.5 Routing Information Peer

5.2.5.1 S1.1 & S1.2: AnswerRequestService

As described in subsection 4.4.7, there exist 2 different wirings for answering information
requests. However, the service executed by the wirings is always the same. The main
task of the service is to process decision requests received from the Routing Decision Peer.
After an information request has been processed, the services adds it to the information
answer entries co-data. Thus, the framework is able to match corresponding information
requests and answers.

protected abstract EntryBui lder createLockToken (
St r ing entryID ,
Entry rout ingInformat ionRequest ,
Entry rout ingInformat ionBase ,
FrameworkPeerAddress dataEntrySource ,
FrameworkPeerAddress dataEntryDest inat ion) ;

Listing 5.14: Creating a lock token for an information request

The createLockToken method is used to create a lock entry that blocks the informa-
tion request from further processing (until the lock entry is removed). Note that this
method must not be implemented (and therefore return the null value) if locks for the
Routing Information Peer are not enabled in the benchmarks configuration. For detailed
information regarding the benchmarks configuration, see section 5.5.

protected abstract EntryBui lder createInformationRequestAnswer (
S t r ing entryID ,
Entry rout ingInformat ionRequest ,
Entry rout ingInformat ionBase ,
FrameworkPeerAddress dataEntrySource ,
FrameworkPeerAddress dataEntryDest inat ion) ;

Listing 5.15: Answering an information request

The createInformationRequestAnswer method is used to create information an-
swer entries based on the received information request. The requested information is
extracted from the routing information base. This method must not return the null
value. The service always adds the address of the current Node Peer to the information
answer entries app-data. Otherwise, the Routing Decision Peer would not be able to
determine if a data entry has reached its destination. If wiring 1.2 is used (and therefore
temporary blocking of information requests from being processed is enabled), the method

101

is only called if no lock was created for the corresponding information request by the
createLockToken method.
protected abstract void updateRoutingInformationBase (

S t r ing entryID ,
Entry rout ingInformat ionRequest ,
EntryBui lder rout ingInformat ionBase ,
FrameworkPeerAddress dataEntrySource ,
FrameworkPeerAddress dataEntryDest inat ion) ;

Listing 5.16: Updating the routing information base in the AnswerRequestService

If the service was able to process the information request, it is able to update the rout-
ing information base synchronously using the updateRoutingInformationBase
method. This is done by manipulating the unbuilt entry provided by parameter
routingInformationBase. Note that the update always happens after the informa-
tion answer entry was created. Therefore, the update does not influence the answering of
the corresponding routing information request.
protected abstract ArrayList<EntryBuilder> createSendEntr i e s (

S t r ing entryID ,
Entry rout ingInformat ionRequest ,
EntryBui lder rout ingInformat ionBase ,
FrameworkPeerAddress dataEntrySource ,
FrameworkPeerAddress dataEntryDest inat ion) ;

Listing 5.17: Creation of entries of type “send” in the AnswerRequestService

Independently of the information request being processed or blocked temporarily, the
createSendEntries method allows to create multiple entries of type “send” to initiate
communication with other Node Peers (e.g. to request information needed in order to
be able to process a information request). If the method returns the null value, no
communication is initiated.

Default Implementation:

1. FullRoutingInformationBaseAnswerInformationRequestService: The de-
fault implementation of the AnswerRequestService always provides all infor-
mation contained in the routing information base to the Routing Decision Peer. It
does not update the routing information base, initiate communication with other
Node Peers or block information requests from being processed.

5.2.5.2 S2: SendRoutingInformationService

This service marks the place where the outgoing communication to other P2P nodes is
realized. Any action of this service is based on contained information in the entries of
type “send” (which trigger the execution of this service) and the state of the Node Peers
routing information base. Before calling any of its methods, the service first checks if
the currently processed “send” entry contains the value “true” in its co-data with key

102

“kill”. If that is the case, the entry is terminated and sent to the Node Peers managing
I/O Peer. This flag enables other wirings of the Routing Information Peer to correctly
terminate entries, used for communication with other Node Peers.

protected abstract ArrayList<EntryBuilder> sendRoutingInformation (
Entry routingSendEntry ,
Entry rout ingInformat ionBase ,
FrameworkPeerAddress thisNodePeerAddress ,
FrameworkPeerAddress ioPeerAddress ,
FrameworkPeerAddress s t a t i s t i c s P e e r A d d r e s s) ;

Listing 5.18: Creation of entries of type “rtCom”

Using the sendRoutingInformation method, entries can be sent to other Node Peers.
Each of the unbuilt entries, contained in the list returned by this method, must have its
recipient as instance of type FrameworkPeerAddress set in the entries co-data with
key “recipient”. Otherwise, the entry is dropped by the framework.
Furthermore, each of the returned entries must have its destination property set to the
address of the Node Peers managing I/O Peer, provided in the input parameters of the
method. If the destination property of a returned entry is not set, it is automatically
placed in the PIC of the Routing Information Peer by the wiring.

protected abstract ArrayList<EntryBuilder> i n i t i a t e A d d i t i o n a l S e n d i n g (
Entry routingSendEntry ,
Entry rout ingInformat ionBase ,
FrameworkPeerAddress thisNodePeerAddress) ;

Listing 5.19: Initiation of additional sending

All entries created by the initiateAdditionalSending method are set to type
“send” and placed in the PIC of the Routing Information Peer. This allows to implement
algorithm behavior like periodical sending of information or (periodical) spawning of
additional intelligent agents.

Default Implementation:

1. SendNoRoutingInfoService: The SendRoutingInformationService de-
fault implementation does not implement any communication with other Node
Peers.

5.2.5.3 S3: ReceiveRoutingInformationService

The service is used to process routing communication entries placed in the Routing
Information Peers PIC.

103

protected abstract boolean terminateRtComEntry (
Entry receivedRtComEntry ,
EntryBui lder terminat ionCondit ions ,
Entry rout ingInformat ionBase ,
FrameworkPeerAddress thisNodePeerAddress) ;

Listing 5.20: Termination of a received routing information entry

The terminateRtComEntry method determines if a received routing communication
entry should be terminated. Therefore, it might uses the provided termination conditions
and might also updates them in this method. If an entry is terminated, it is automatically
sent to the Node Peers managing I/O Peer.
protected abstract ArrayList<EntryBuilder> createSendEntr i e s (

Entry receivedRtComEntry ,
Entry rout ingInformat ionBase ,
FrameworkPeerAddress thisNodePeerAddress) ;

Listing 5.21: Creation of “send” entries in the ReceiveRoutingInformationService

The createSendEntries method is used to initiate communication with other Node
Peers by creating entries of type “send”. The method is not called if a received routing
communication entry is terminated by the terminateRtComEntry service.
protected abstract EntryBui lder createUpdateRequest (

Entry receivedRtComEntry ,
Entry oldTerminat ionCondit ions ,
EntryBui lder updatedTerminationCondit ions ,
Entry rout ingInformat ionBase ,
FrameworkPeerAddress thisNodePeerAddress) ;

Listing 5.22: Creation of an update request in the ReceiveRoutingInformationService

If a received routing information entry is not terminated, the createUpdateRequest
method allows to create a request to update the routing information base based on it.

Default Implementation:

1. NoTerminationReceiveRoutingInfoService: The default implementation of
the ReceiveRoutingInformationService does not process any received rout-
ing information entries. Thus, no entries are terminated and neither entries of type
“send” nor update request entries are created.

5.2.5.4 S4: UpdateInformationBaseService

The service processes update requests and therefore updates a Node Peers routing infor-
mation base.

104

protected abstract void updateRoutingInformationBase (
Entry updateRequest ,
EntryBui lder rout ingInformat ionBase ,
FrameworkPeerAddress thisNodePeerAddress) ;

Listing 5.23: Updating the routing information base in UpdateInformationBaseService

The updateRoutingInformationBase method allows to alter the routing informa-
tion base based on the received update request.
protected abstract ArrayList<EntryBuilder> createSendEntr i e s (

Entry updateRequest ,
Entry oldRoutingInformationBase ,
Entry updatedRoutingInformationBase ,
FrameworkPeerAddress thisNodePeerAddress) ;

Listing 5.24: Creation of entries of type “send” in the UpdateInformationBaseService

After the routing information base has been updated, the createSendEntries method
can be used to initiate communication with other Node Peers based on the update.
Therefore not only the update request is available, but also the routing information base
in its states before and after the update. If the update entry should be terminated and
therefore its contextual information sent to the Statistics Peer, it can be sent as entry of
type “send” with the Boolean value “true” in its co-data with key “kill”.
protected abstract ArrayList<EntryBuilder> crea t eDe l e t eLockEnt r i e s (

Entry updateRequest ,
Entry oldRoutingInformationBase ,
Entry updatedRoutingInformationBase ,
FrameworkPeerAddress thisNodePeerAddress) ;

Listing 5.25: Deletion of lock entries

The createDeleteLockEntries method is used to delete lock entries existing in the
PIC of the Routing Information Peer. A lock entry is removed by creating a corresponding
entry of type “delLo” with the same flow-ID. The method is only relevant when the
creation of lock entries (blocking of information requests from being processed) is enabled
in the benchmarks configuration. For detailed information regarding the benchmarks
configuration, see section 5.5.

Default Implementation:

1. NoUpdateInformationBaseService: The default implementation of the
UpdateInformationBaseService does not process any received routing up-
date requests.

5.2.5.5 S5: DeleteLockService

This service simply consumes a lock entry and the corresponding entry which triggers its
deletion.

105

5.2.6 I/O Peer

5.2.6.1 S1, S2 SendEntriesService

The wirings for relaying data entries and routing communication entries (W1 and W2)
both execute this service. Based on the entries source and destination, the network links
attributes are read from the I/O Peers external mapping. After optional transmission
interference is applied, entries are sent either directly to their destination or to their
destinations managing I/O Peer, depending on which Peer Space the destination is
located. Additionally, as the I/O Peer marks the outgoing port for a Node Peer, the
service adds an element of type “OUT”, the address of the sending Node Peer and the
current synchronized time to the entries traces. If the recipient of processed entries is the
Statistics Peer, the service extracts the time / location traces from them, merges them
in a list and sends them to the Statistics Peer. For a detailed description of the tracing
of data and routing communication entries, see subsection 5.3.1.

protected abstract void applyNetworkTransmiss ionPropert ies (
EntryBui lder entry ,
PeerLink targetPeerL ink) ;

Listing 5.26: Deletion of lock entries

The applyNetworkTransmissionProperties method allows to apply transmission
interference (e.g. delay, dropping of entries) before an entry is relayed. The parameter
targetPeerLink contains the network links attributes and is described in detail in
subsection 5.2.8.

Default Implementation:

1. DelaySendEntriesService: The SendEntriesService default implementa-
tion applies the delay, specified in the link between source and destination, via an
entries TTS before it is sent.

5.2.6.2 S3, S4: ReceiveEntriesService

The wiring W3, which handles received data entries (type “outD”), and W4, that handles
received routing communication entries (type “outR”), execute the same service. Thus,
the service does not distinguish between entries of these types. It simply looks up the
destination in the I/O Peers internal mapping and relays an entry accordingly.

5.2.6.3 S5: SendRegistrationService

The service simply builds an entry that includes the I/O Peers address and its internal
mapping (includes the addresses of all managed Node Peers). This entry is then sent to
the Control Peer for the purpose of registration.

106

5.2.6.4 S6: StopNodePeersService

The service simply clones the received entry of type “stop” to ensure that all of the I/O
Peers managed Node Peers get informed that the benchmark has ended.

5.2.6.5 S7: CleanupService

After its run time, the benchmark is stopped. After that, the CleanupService extracts
the time / location traces from all remaining data and routing communication related
entries (types “data”, “outD”, “rtCom” and “outR”), merges them to a single list and
sends them to the Statistics Peer. This ensures that all entries are included in the
calculation of statistics. However, if a routing communication entry (type “rtCom” or
“outR”) does not contain an element in its trace, the service implicitly detects that it was
not part of any communication between peers and therefore ignores it. For a detailed
description of the tracing of data and routing communication entries, see subsection 5.3.1.

5.2.7 Statistics Peer

In the Statistics Peer, relevant information is gathered, the statistics of the benchmark
are calculated and outputted after the benchmark has ended. The central entity, in which
calculated metrics (described in section 5.3) are stored, is the Metrics object shown in
figure 5.3.

5.2.7.1 S1: StatCalculationService

In this service, the benchmarks statistics are calculated. For each uniquely received
data entry (determined by an entries ID), its trace is stored as list of TraceRecord
objects. The class TraceRecord is described in detail in subsection 5.3.1. If copies of
an unique data entry are received, only the fastest one is added to the list of unique
data entries, the rest is stored as duplicates. For duplicates and dropped data entries
only three metrics are stored in objects of type StatisticsRecord: the hop count,
the time in milliseconds it took the entry from source to destination and an indicator
if the taken path contains a loop. The class StatisticsRecord is shown in figure
5.4. For routing communication entries, only the amount of received entries and their
accumulated hop count are tracked.

5.2.7.2 S2: StatisticsOutputService

This service is used to output the values of the calculated statistics. Therefore, the
method outputStatistics is used.

protected abstract void o u t p u t S t a t i s t i c s (Metr ics metr ics ,
S t r ing outputPath) ;

Listing 5.27: Output of calculated statistics

107

Figure 5.3: Class Metrics. For reasons of simplicity, setter methods are ignored in this
figure.

The parameter outputPath is set in the frameworks configuration. Note that it is
possible to set the implemented routing algorithms parameters as a list of objects of type
AlgorithmParameter (shown in figure 5.5) for a Metrics instance. However, this
is not done directly, but can be set via the static method setAlgorithmParameters
of class AlgorithmConfigProvider. This provides the opportunity to display the
algorithms parameters in the chosen output format.

108

Figure 5.4: Class StatisticsRecord

Figure 5.5: Class AlgorithmParameter

Default Implementations:

1. CommandLineStatisticsOutputService: Visualization through formatted out-
put of the benchmarks results on the standard output stream. Generally, this is
the command-line.

2. XLSStatisticsOutputService: The output of benchmarks is saved in a single
sheet of an Excel file (type XLS).

3. XLSSheetStatisticsOutputService: Provides additional features compared to
the XLSStatisticsOutputService. In addition to the listed results, the
average of each metric is calculated automatically. When the benchmarks description
changes, the results are stored in a new sheet. Furthermore, the created file
contains an overview sheet, which shows the average results for all benchmarked
configurations (assuming that different configurations have different benchmark
descriptions).

4. XLSSheetHistoryStatisticsOutputService: Generally, this default implemen-
tation operates like the XLSSheetStatisticsOutputService, but copies all
results and saves them into a new file when the benchmarks description changes.
This ensures that if the specified XLS file gets corrupted, not all results are lost.

All default implementations that output results in the XLS format are implemented using
the jExcel API [60]. It is important to note, that each Excel file should be used for a
single algorithm only.

109

5.2.8 Control Peer

5.2.8.1 S1 RegisterNodePeerService

This service registers Node Peers and their managing I/O Peer by adding their addresses
and relation to the collection of internal mappings held by the Control Peer.

5.2.8.2 S2 InitializeBenchmarkService

The service is responsible to build the benchmarks topology and initialize all of the
frameworks topology dependent structures. After the topology is created, the involved
I/O Peers internal and external mappings are generated. Then, the initialization entries
for all Node Peers are created. Furthermore, the configured amount of data entries, each
data entry with a random source and destination, is generated. Additionally, the entry
to start the benchmark, the entry to stop the benchmark, the timer entries and the entry
which triggers the output of the benchmark are created. Each with the configured TTS
set.
protected abstract ArrayList<TopologyLink> createTopology (

ArrayList<FrameworkPeerAddress> nodePeerAddresses ,
I n t e g e r minDelayInMs ,
I n t e g e r maxDelayInMs) ;

Listing 5.28: Creation of the benchmarks topology

The createTopology method is used to create the topology of the P2P network on
which the benchmark is executed. It takes the addresses of all involved Node Peers and the
configured interval boundaries for the transmission delay of the networks links as input.
The method generates a list of the P2P networks links, implemented as instances of class
TopologyLink (shown in figure 5.6). A link connects two Node Peers. Transmission of
data over a link is delayed by a defined amount.

Figure 5.6: Class TopologyLink

110

Default Implementations:

1. InitBenchmarkScaleFreeTopology: The network topology is generated using
the algorithm of the Barabási-Albert model [3].
A fundamental attribute of the algorithm is, that for large generated graphs,
their vertices degrees are power-law distributed. Thus, for large networks, the
probability P1 that a vertex in the generated graph has the degree k follows
P1(k) ∼ k−γ with γ = 2.9± 0.1 [3].
The Barabási-Albert model algorithm starts with an initial set of m0 connected
vertices. Then, one at a time, till the desired size of the network is reached, vertices
are added. Each newly added vertex is connected to m 6 m0 already existing
vertices in the network graph. However, the m connections are chosen based on a
roulette wheel selection with probability

P2 = ki∑
j kj

(5.1)

Thus, newly added vertices are more likely to be connected to existing vertices with a
high degree ki. Based on [23] and [7], m = m0 = 2 is chosen for this implementation
of the algorithm. An example instance of a topology created by the Barabási-Albert
model algorithm is Gex4 = (Vex4, Eex4) with Vex4 = {x1, x2, x3, x4, x5, x6, x7} and
Eex4 = {(x1, x2), (x1, x3), (x2, x3), (x2, x4), (x3, x4), (x1, x5), (x3, x5), (x1, x6),
(x3, x6), (x1, x7), (x6, x7)}. It is shown in figure 5.7.

Figure 5.7: Example of a scale-free network instance generated by the Barabási-Albert
model algorithm.

5.2.8.3 S3: StartBenchmarkService

Creates an entry of type “start” for each registered Node Peer.

5.2.8.4 S4: StopBenchmarkService

The service creates k > 1 entries of type “stop”. k is the number of registered I/O Peers,
to which the cloned entries are then sent.

111

5.3 Tracing & Output
The primary task of the framework is to benchmark routing algorithms. Thus, metrics
need to be defined that allow the evaluation of benchmarked algorithms. Furthermore,
the correct collection of relevant data has to be ensured. This section describes the
frameworks time synchronization and how entires are traced in the framework. Moreover,
the metrics contained in the frameworks provided output are discussed.

5.3.1 Entry Tracing

In order to enable the framework to calculate any metric values, information about
data and routing communication entries has to be collected. This is done using a time
/ location trace list for each entry. Each record of the trace list is represented by an
instance of class TraceRecord, shown in figure 5.8. A trace record contains the direction
(inbound or outbound), the time (in millisecond between the current time and January 1,
1970 00:00 UTC) and the location (address of the Node Peer). It is added to the trace list
when a Node Peer dispatches a received data or routing communication entry and when
an I/O Peer relays one of those entries. In figure 5.9, an example trace list is shown.

Figure 5.8: Class TraceRecord

Figure 5.9: Example of a full entry trace list. The entry, originated by nodePeer1, visited
exactly one intermediate node before reaching its destination.

5.3.2 Time Synchronization

As described above, trace records are added locally to an entries trace list at visited Node
Peers and their managing I/O Peers. However, if multiple Node Peer Spaces are involved
in the benchmark, their clocks are not necessarily synchronized. This is especially the

112

case, when Node Peer Spaces are run on different physical hosts. Thus, asynchronous
clocks on Node Peer Spaces might lead to falsified benchmark results.
If the framework is not operated in offline mode, it synchronizes the clock of each Node
Peer Space with a NTP-server using the Simple Network Time Protocol (SNTP) [31].
The address of the server is configurable.
At start time, at each Node Peer Space, the framework determines the offset in milliseconds
to the NTP-servers clock five times and uses the calculated average. The synchronized
clock is accessed via the method currentTimeMillis() of the frameworks class
SynchedFrameworkClock. It returns the sum of the difference between the current
local time at a Node Peer Space and January 1, 1970 00:00 UTC in milliseconds and
the calculated average offset. It is important to stress that this method should always
be used instead of the identically named method of class java.lang.System when
implementing routing algorithms. For the SNTP part of the implementation, the Apache
Commons Net library [54] was used.

5.3.3 Benchmark Output

The output, provided by the framework after a benchmark has ended, is shown in tables
5.1 and 5.2.

Metric Description
number of Node Peers Size of the benchmarks network instance.

unique data packets sent

Amount of unique data packets that were sent from a
random source to a random destination in the bench-
mark. Each of these data packets has an unique id
assigned.

overall delivered data
packets

Amount of data packets delivered. Includes uniquely
delivered data packets and duplicates.

unique delivered data
packets

Amount of unique data packets delivered. If duplicates
are delivered, the fastest is considered to be the unique
one, the rest is interpreted as duplicates.

unique delivered data
packet hops

Accumulated amount of hops delivered unique data
packets have made.

delivered data packet
duplicates Amount of data packet duplicates delivered.

delivered data packet
duplicate hops

Accumulated amount of hops delivered data packet
duplicates have made.

Table 5.1: Metrics outputted by the framework (part 1)

113

Metric Description

dropped data packets Amount of data packets dropped on their way from
their source to their destination.

dropped data packets hops Accumulated amount of hops dropped data packets
have made.

data packet delivery ratio

Shows the ratio of delivered data packets.

delivery ratio = unique data packets sent

unique delivered data packets
(5.2)

Based on [48].
average data packet

hop count
Average amount of hops delivered unique data packets
have made. Based on [45].

average data packet delay Average delay of delivered unique data packets from
source to destination. Based on [48].

data packet loop ratio

Shows the ratio of delivered unique data packet paths
containing loops. A data packets path contains a loop
if a network node has been visited more than once on
the path from source to destination.

loop ratio = unique data packets containing loops

unique delivered data packets
(5.3)

Based on [48].

routing overhead

Routing overhead of the benchmarked routing algo-
rithm.

routing overhead =
delivered data packet duplicate hops +
dropped data packet hops +
routing communication packet hops

(5.4)

Based on [48].

routing overhead messages

Amount of routing overhead packets sent.

routing overhead messages =
delivered data packet duplicates +
dropped data packets +
routing communication packets

(5.5)

Based on [48].

Table 5.2: Metrics outputted by the framework (part 2)

114

5.4 Framework execution
The framework is provided in two executable jar-files:

• peermodel-routing-framework-controlpeer.jar

• peermodel-routing-framework-nodepeer.jar

The former is used to create and run a new Control Peer Space instance, the latter a new
Node Peer Space instance. Table 5.3 describes the parameters which must be provided
for executing the peermodel-routing-framework-controlpeer.jar.
Table 5.4 those for the peermodel-routing-framework-nodepeer.jar executable.

Position Name Description

1 Control Peer Config File Path to the Control Peer Space configuration
properties file.

Table 5.3: peermodel-routing-framework-controlpeer.jar parameters

Position Name Description

1 Node Peer config file Path to the Node Peer Space configuration
properties file.

2 Control Peer config file

Path to the Control Peer Space configuration
properties file. Needed since it contains
the benchmarks initialization and run time
interval.

3 Node Peer count Amount of Node Peers to be spawned at this
Node Peer instance.

Table 5.4: peermodel-routing-framework-nodepeer.jar parameters

The peermodel-routing-framework-controlpeer.jar file must not be exe-
cuted more than once per benchmark. However, since multiple Node Peer Spaces
may be involved in a benchmark, the amount of executions of the
peermodel-routing-framework-nodepeer.jar file is not restricted.
Furthermore, the order of executing the jar-files is important. The Control Peer Space
must always be created before the Node Peer Spaces.

115

5.5 Framework Configuration
The framework is configured using two properties files:

• controlpeer_config.properties, which is used for the configuration of the
Control Peer Space. Its configurable parameters and, if available, their default
values, are shown in tables 5.5.

• nodepeer_config.properties, which is used for the configuration of the Node
Peer Space. Its configurable parameters and, if available, their default values, are
shown in tables 5.6, 5.7 and 5.8.

The goal is to provide extensive configurability while keeping it as simple as possible.
Therefore, a lot of parameters have default values, which fit most scenarios.

116

Parameter Description
controlPeerPeerSpace

InstanceAddress Defines the address of the Control Peer Space.

controlPeerAddress Defines the address of the Control Peer.

benchmarkStartTime Defines the length of the benchmarks initialization
interval in milliseconds.

benchmarkRunTime Defines the length of the benchmarks run interval in
milliseconds.

numberOfNodePeers Defines the network size of the benchmarks network
instance.

numberOfDataEntries Defines the amount of unique data entries to be sent
in the benchmark.

delayLowerBoundInMs Defines the lower limit for the randomly chosen delays
for transmission on a network link.

delayUpperBoundInMs Defines the upper limit for the randomly chosen delays
for transmission on a network link.

initBenchmarkService Chooses the used implementation of the Control Peers
InitializeBenchmarkService.

statOutputService

Chooses the used implementation of the Statistic Peers
StatOutputService.
Default:
CommandLineStatisticsOutputService

algorithmName
Name of the benchmarked algorithm.
Might be used by the Statistic Peers
StatOutputService implementation.

description
Description of the benchmark.
Might be used by the Statistic Peers
StatOutputService implementation.

outputPath
Output path to which the result file should be saved.
Might be used by the Statistic Peers
StatOutputService implementation.

Table 5.5: Parameters for the configuration of the Control Peer Space

117

Parameter Description
controlPeerPeerSpace

InstanceAddress The address of the Control Peer Space.

controlPeerAddress The address of the Control Peer where the Node Peers
register.

offlineMode Deactivates/Activates SNTP synchronization.
Default: false

ntpHost NTP server used for time synchronization. Must be set if
offline mode is not activated.

enableRouting
InformationPeerLocks

Enables temporary blocking of information requests by lock
entries.
Default: false

entryTypePriority

Specifies the priority of types of entries when processing
them in the framework. (Available modes are NONE (shared
queues), DATA or RTCOM).
Default: NONE

dataDispatchWiring
MaxEntries

Maximum amount of data entries dispatched by a Node
Peer with a single service execution.
Default: 999999

routingDispatchWiring
MaxEntries

Maximum amount of routing communication entries dis-
patched by a Node Peer with a single service execution.
Default: 999999

requestChain
MaxEntries

Maximum amount of entries handled with a single service
execution by all wirings involved in the request/answer
chain to determine the next hop(s) of a data entry.
Default: 999999

sendRouting
InformationMaxEntries

Maximum amount of received routing communication
entries handled by the Send Routing Information
Wiring with a single service execution.
Default: 999999

handleReceived
MaxRoutingEntries

Maximum amount of received routing communication en-
tries handled by the Receive Routing Information
Wiring with a single service execution.
Default: 999999

trafficDispatchService

The routing algorithms implementation of the
TrafficDispatchService.
Default:
NoInitAndManipulationTrafficDispatchService

forwardDataService

The routing algorithms implementation of the
ForwardDataService.
Default:
NoManipulationForwardDataService

Table 5.6: Parameters for the configuration of the Node Peer Space (part 1)
118

Parameter Description

decisionRequestService

The routing algorithms implementation of the
DecisionRequestService.
Default:
CopyDataEntryContextDecisionRequestService

initializationService

The routing algorithms implementation of the
InitializationService.
Default:
CopyInitEntryContextInitializationService

informationRequest
Service

The routing algorithms implementation of the
InformationRequestService.
Default:
NoAdditionalContext
InformationRequestService

makeDecisionService The routing algorithms implementation of the
MakeDecisionService.

answerRequestService

The routing algorithms implementation of the
AnswerRequestService.
Default:
FullRoutingInformationBaseAnswer
InformationRequestService

receiveRoutingInfo
Service

The routing algorithms implementation of the
ReceiveRoutingInformationService.
Default:
NoTerminationReceiveRoutingInfoService

sendRouting
InformationService

The routing algorithms implementation of the
SendRoutingInformationService.
Default:
SendNoRoutingInfoService

updateInformationBase
Service

The routing algorithms implementation of the
UpdateInformationBaseService.
Default:
NoUpdateInformationBaseService

Table 5.7: Parameters for the configuration of the Node Peer Space (part 2)

119

Parameter Description

sendWiringMaxEntries

Maximum amount of entries handled by the Send Data
Wiring and Send Routing Communication Wiring
with a single service execution. (I/O Peer)
Default: 999999

receiveWiring
MaxEntries

Maximum amount of entries handled by the Receive
Data Entries Wiring and Receive Routing
Entries Wiring with a single service execution. (I/O
Peer)
Default: 999999

sendEntriesService

The implementation of the I/O Peers
SendEntriesService.
Default:
DelaySendEntriesService

Table 5.8: Parameters for the configuration of the Node Peer Space (part 3)

5.6 Limitations

Since the proposed framework is built on top of the Peer Model Java implementation [8],
it is affected by its limitations.
The Peer Model implementation does not allow a service to determine the amount of
entries in its peers containers. Thus, currently, routing algorithms implemented in the
framework are not able to include queue sizes in their calculations.
Furthermore, entries are not consumed by wirings in a specified order, but randomly.
However, this limitation is not as critical for the framework, because services take multiple
entries at once for processing and the same service may also runs parallel multiple times
at the same time.
Additionally, the use of priority queues is limited in the framework. Only one of the
priority modes for entry processing (data entries or routing communication entries) can
be chosen in a benchmarks configuration. It is currently not possible to implement
dynamic priority modes (e.g. routing communication entries share priority queues with
data entries under certain circumstances but are otherwise prioritized). This results from
the fact that priority queues are built statically at the beginning of the benchmark by
adding guards to wirings. The wirings can’t be changed during run time.
Furthermore, when implementing routing algorithms in the framework, one has to take
in mind that the method copy of class peermodel.EntryBuilder of the Peer Model
implementation does not provide deep clones of an entry. Thus, routing algorithm specific
co- and app data content has to be cloned manually if needed. Otherwise, this behavior
could result in concurrency problems.

120

5.7 Summary
In this chapter, made extensions to the Peer Model Java implementation [8] are described.
They allow to meet the strict performance needs of a benchmarking framework and boost
the performance to its fullest.
Furthermore, the services and their interfaces, used for the implementation of routing
algorithms and the creation of benchmarks are discussed. While still being generic for the
implementation of diverse routing algorithms, they are simple and specific enough to be
easily picked up by new developers. Furthermore, the provided default implementations,
minimize the implementation effort.
The same concept applies to the execution and the configuration of the framework. While
enable the in-depth configurability of the framework for advanced users, default values,
suitable for most scenarios, are set to the majority of configuration parameters. Therefore,
new users can directly focus on the benchmarking of routing algorithms instead of fiddling
with the benchmarks configuration.
There are still some limiting factors to the framework that are described at the end of
the chapter. However, some of them will most likely fade when the development of the
Peer Model goes on.

121

CHAPTER 6
Evaluation

In this chapter, the BeeNet and SlimeMoldNet routing algorithm adaptions are analyzed
and compared to five prominent intelligent and non-intelligent routing algorithms.

6.1 Benchmark Methodology

For the comparison, the routing algorithms Gnutella Flooding, k-RandomWalker, AntNet,
BeeHive and Physarum polycephalum are benchmarked alongside the BeeNet and SMNet
routing algorithms. Each of this five routing algorithms is briefly described in subsection
2.3.3. The BeeNet and SMNet are presented in 3.2 and 3.3.

All benchmarks are carried out in the Google Compute Engine cloud infrastructure [56].
More specifically, a “n1-standard-16” instance is used, on which the Ubuntu 16.04 LTS
operating system is run. The instance includes 16 vCPUs and 60 GB RAM. According
to [57], a vCPU equals a hardware thread of a 2.6 GHz Intel Xeon E5, a 2.5 GHz Intel
Xeon E5 v2, a 2.3 GHz Intel Xeon E5 v3 or a 2.2 GHz Intel Xeon E5 v4 CPU.

The general benchmark parameters are:

• Topology: The topology of the unstructured P2P network is a scale-free network
generated using the algorithm of the Barabási-Albert model [3]. For this cause,
the default implementation InitBenchmarkScaleFreeTopology of the frame-
works abstract class InitializeBenchmarkService is used. Implementation
specifics and the Barabási-Albert model are described in 5.2.8.2.

• Data packets: Data packets are placed at a random source and have a random
destination. The amount of data packets is varied in three levels: low (Ld), medium
(Md) and high (Hd) where Ld = 100, Md = 500 and Hd = 1000 data entries.

123

• P2P network nodes: The amount of P2P network nodes is also varied in three
levels: low (Ln), medium (Mn), high (Hn) where Ln = 50, Mn = 100, Hn = 200.
Furthermore, it is important to note that there is no fluctuation of node participation.
Thus, no churn is simulated.

• Transmission delay: The transmission delay for exchanging packets between
neighbors is set to 100 ms for all links of the P2P network.

• Benchmark initialization time: The amount of time nodes have to initialize
their routing related structures before data packets are sent. The time interval
init_time is dependent on the level of the amount of participating P2P node peers.
More specifically, init_time(Ln) = 120000 ms, init_time(Mn) = 240000 ms,
init_time(Hn) = 480000 ms.

• Benchmark run time: The amount of time in which data entries have to be deliv-
ered. If this time interval has passed, not delivered data packets are terminated. Sim-
ilar to the benchmarks initialization time, this time interval run_time is also depen-
dent on the level of the amount of participating P2P node peers. run_time(Ln) =
30000 ms, run_time(Mn) = 60000 ms, run_time(Hn) = 120000 ms.

• Benchmark execution: For each configuration of an algorithm, 10 benchmarks
are executed. This is due to the non-deterministic nature of the benchmarked
routing algorithms. In the result data the average metric values are reported for
each configuration.

For the rest of the frameworks parameters, the suggested default values, described in 5.5,
are used.

The metrics used for evaluation and analysis are data packet delivery ratio, aver-
age data packet delay, average data packet hop count and routing overhead
messages. They are described in detail in 5.3.3.

6.2 Sensitivity Analysis

The goal of the Sensitivity Analysis is to find the optimal parameter values of all
benchmarked algorithms for each configuration. The analysis is performed on the value
range of parameters recommended by the algorithms authors or determined in preliminary
benchmarks. Thus, parameters are only subject of the Sensitivity Analysis, if no fixed
parameter value is recommended by an algorithms author or a recommended value
showed to be very suboptimal in the benchmark scenario. More specifically, for all of a
routing algorithms parameters, that are subject of the Sensitivity Analysis, the optimal
value for all combinations of the three network sizes (Ln, Mn, Hn) and the three data
packet amount levels (Ld, Md, Hd) is determined based on the metrics stated in 6.1. The
determined optimal parameter values are used in the competitive benchmarks.

124

All parameters of the AntNet algorithm, described in section 2.3.3.3, routing algorithm
are chosen based on the recommendations in [12]. They showed good results in the
preliminary benchmarks. Therefore, no Sensitivity Analysis is necessary. However, it
is important to note, that due to the frameworks current limitations regarding the
consideration of queue sizes, discussed in 5.6, the parameter for weighting the output
queue size when selecting the next hop α, has to be chosen α = 0. The parameter values
used for all competitive benchmarks are shown in table 6.1.

Parameter Value Source
antSpawnInterval 300 ms [12]

TTL 15000 ms
α 0 limitations 5.6
η 5

[12]

c 0.3
c1 0.7
c2 0.3
γ 0.7
a 4

Table 6.1: AntNet parameter values, used for all competitive benchmarks

For the BeeHive routing algorithm, described in section 2.3.3.5, the optimal
beeSpawnInterval showed in preliminary benchmarks to be highly dependent on
the network size. Therefore, this parameter was subject of the Sensitivity Analysis.
However, all other parameter values, used for competitive benchmarks, are based on the
recommendation in [18].
The parameter values before the Sensitivity Analysis are shown in table 6.2, while its
results are shown in table 6.3.
Interestingly, the beeSpawnInterval shows to be resistant to the chosen data packet
amount level but very sensitive to the network size. The bigger the size of the network,
the more the continuous flooding of bees congests the P2P networks traffic.

Parameter Value (Range) Source

beeSpawnInterval
3000 ms, 6000 ms,
9000 ms, 12000 ms,
15000 ms

preliminary benchmarks

initializationInterval 30000 ms
[18]shortDistanceLimit 7

longDistanceLimit 40

Table 6.2: BeeHives parameter values before the Sensitivity Analysis

125

nodes packets beeSpawnInterval
50 100

9000 ms

50 500
50 1000
100 100
100 500
100 1000
200 100

15000 ms200 500
200 1000

Table 6.3: BeeHive Sensitivity Analysis results

For the Physarum polycephalum routing algorithm, described in section 2.3.3.4, both
parameters, ε and the agentSpawnInterval are subject of the Sensitivity Analysis.
The parameter values before the analysis are shown in table 6.4, while the results
are shown in table 6.5. The analysis shows that the algorithm performs best with a
learning factor ε on the upper bound of the recommended value range and a rather small
agentSpawnInterval.

Parameter Value (Range) Source
agentSpawnInterval 300 ms, 1000 ms, 3000 ms preliminary benchmarks

ε 0.025, 0.05, 0.1 [19]

Table 6.4: Physarum polycephalum algorithms parameter values before the Sensitivity
Analysis

nodes packets agentSpawnInterval ε

50 100

300 ms 0.1

50 500
50 1000
100 100
100 500
100 1000
200 100
200 500
200 1000

Table 6.5: Physarum polycephalum routing algorithm Sensitivity Analysis results

126

The Sensitivity Analysis is performed on Gnutella Floodings only parameter, TTL.
The TTL value range is shown in 6.6, the results of the analysis in table 6.7. A TTL-value
of 7 shows to be sufficient for delivering data packets reliably. For the description of the
algorithm, see section 2.3.3.1.

Parameter Value (Range) Source
TTL 7, 8, 9 preliminary benchmarks

Table 6.6: Gnutella Flooding parameter values before the Sensitivity Analysis

nodes packets TTL
50 100

7

50 500
50 1000
100 100
100 500
100 1000
200 100
200 500
200 1000

Table 6.7: Gnutella Flooding Sensitivity Analysis results

The Sensitivity Analysis is performed on both of k-Random Walkers parameters.
The algorithm in described in 2.3.3.2. While the parameter value range for walkerAmount
is based on the recommendation in [30], the value range walkers TTL resulted from
preliminary benchmarks. The parameter values before the analysis are shown in 6.8, its
results in table 6.9. Due to the random nature of the algorithm, all values below the
upper bound of value ranges show insufficient efficiency regarding the delivery ratio.

Parameter Value (Range) Source
walkerAmount 16, 32, 64 [30]

TTL 7, 14, 20 preliminary benchmarks

Table 6.8: k-Random Walker parameter values before the Sensitivity Analysis

127

nodes packets walkerAmount TTL
50 100

64 20

50 500
50 1000
100 100
100 500
100 1000
200 100
200 500
200 1000

Table 6.9: k-Random Walker routing algorithm Sensitivity Analysis results

The majority of parameter value (ranges) of BeeNet, described in 3.2, are based on
the recommendations in [42] . Since the beeSpawnInterval is introduced in the
routing adaption, it is, in addition to the weight constants α and β, subject of the
Sensitivity Analysis. The values before the analysis are shown in 6.10, its results in
table 6.11. Interestingly, the optimal combination of α and β varies dependent on the
specific networks size, while the optimal beeSpawnInterval tends to grow based on
the amount of nodes participating in the network.

Parameter Value (Range) Source
λ 0.99 [42](α, β) (1,10), (1,1) (10,1)

beeSpawnInterval 1000 ms, 2000 ms, 3000 ms preliminary benchmarks

Table 6.10: BeeNet parameter values before the Sensitivity Analysis

nodes packets (α,β) beeSpawnInterval

50 100
(1,10)

1000 ms

50 500
50 1000
100 100

(1,1)100 500
100 1000
200 100

(10,1) 3000 ms200 500
200 1000

Table 6.11: BeeNet Sensitivity Analysis results

128

The parameter value (ranges) of SMNet, described in detail in 3.3, are partly based on
[23]. However, since some of the recommended values did not show satisfying results in
the preliminary benchmarks, the majority of parameters are subject of the Sensitivity
Analysis. Only for the pseudopodWaitTime and the maxPseudopodLimit parame-
ter the recommendation of [23] is followed for all configurations.
The parameter values before the Sensitivity Analysis are shown in table 6.12, while its
results are shown in table 6.13.

Compared to the recommended values in [23], the algorithm shows the best perfor-
mance for different minSearchSteps and maxPseudopodTTL values. The optimal
minSearchSteps is smaller (2 instead of 3) and the optimal maxPseudopodTTL is
not configuration dependent but constant. Similar to the BeeNet routing algorithm
adaption, the optimal amoebaSpawnInterval tends to grow proportionally to the
P2P networks size. Not surprisingly, due to the existence of the maxPseudopodLimit,
the algorithm shows to be very robust to changes of the amountOfSpawnedAmoebas.
Thus, the smallest value of the range is chosen for the competitive analysis.

The amoebaSpawnInterval and the amountOfSpawnedAmoebas are used in the
initialization stage of the algorithm, while the pseudopodWaitTime,
the maxPseudopodLimit, the minSearchSteps and the maxPseudopodTTL are
used in the vegetative stage of the Dd life-cycle.

Parameter Value (Range) Source
pseudopodWaitT ime 60000 ms [23]
maxPseudopodLimit 8
minSearchSteps 2, 3, 4 [23], preliminary benchmarks

amoebaSpawnInterval 3000 ms, 4000 ms, 5000 ms

preliminary benchmarksamountOf
SpawnedAmoebas

3, 4, 5

maxPseudopodTTL 7, 14, 20

Table 6.12: SMNet parameter values before the Sensitivity Analysis

129

nodes packets minSearch amoebaSpawn #spawned maxPp
Steps Interval Amoebas TTL

50 100

2

3000 ms

3 7

50 500
50 1000
100 100
100 500
100 1000
200 100

5000 ms200 500
200 1000

Table 6.13: SMNet Sensitivity Analysis results

An additional table that includes descriptions for the parameters of all benchmarked
algorithms can be found in the appendix. A.2

6.3 Raw Result Data

The raw result data of the competitive benchmarks are shown in the following tables:
AntNet in 6.15, BeeHive in 6.16, Physarum polycephalum in 6.17, Gnutella Flooding in
6.18, k-Random Walker in 6.19, BeeNet in 6.20 and SMNet in 6.21.
The tables contain the average result for each combination of network size levels and
data packet levels. In order to display the tables properly, the metrics, selected in 6.1,
are abbreviated. The corresponding explanation is provided in table 6.14.

Abbreviation Explanation

nodes Amount of P2P nodes participating in the overlay network.
packets Amount of data packets sent in the benchmark.

delivery ratio Data packet delivery ratio. Rounded to 2 decimals.

avg. delay Average data packet delay. Rounded to 2 decimals.

avg. hop count Average data packet hop count. Rounded to 2 decimals.

routing overhead msg. Amount of routing overhead messages. Rounded to integers.

Table 6.14: Metric abbreviation explanation for competitive benchmarks

130

nodes packets delivery avg. avg. hop routing
ratio delay count overhead msg.

50 100 1 503.57 ms 4.57 24867

50 500 1 584.42 ms 4.75 24869

50 1000 1 651.21 ms 4.70 24860

100 100 1 749.40 ms 5.95 99008

100 500 1 959.13 ms 6.10 99018

100 1000 1 1179.91 ms 6.00 98507

200 100 1 1382.63 ms 7.65 384921

200 500 1 1933.48 ms 7.55 382837

200 1000 1 2532.09 ms 7.59 376816

Table 6.15: AntNet raw result data

nodes packets delivery avg. avg. hop routing
ratio delay count overhead msg.

50 100 1 436.54 ms 4.12 81600

50 500 1 487.46 ms 4.23 81600

50 1000 1 535.80 ms 4.30 81600

100 100 1 524.87 ms 4.96 666400

100 500 1 610.34 ms 5.11 666400

100 1000 1 719.10 ms 4.95 666400

200 100 1 782.78 ms 5.70 3168000

200 500 1 1136.21 ms 5.54 3168000

200 1000 1 1854.37 ms 5.76 3168000

Table 6.16: BeeHive raw result data

131

nodes packets delivery avg. avg. hop routing
ratio delay count overhead msg.

50 100 1 1477.46 ms 12.73 24769

50 500 1 1680.49 ms 12.45 24762

50 1000 1 1967.64 ms 12.57 24741

100 100 1 2434.53 ms 16.54 97143

100 500 1 2923.13 ms 15.73 97143

100 1000 1 3782.02 ms 16.42 96979

200 100 1 4306.41 ms 18.92 368468

200 500 1 6124.41 ms 19.77 368447

200 1000 1 8339.07 ms 20.39 366753

Table 6.17: Physarum polycephalum raw result data

nodes packets delivery avg. avg. hop routing
ratio delay count overhead msg.

50 100 1 573.82 ms 2.64 9322

50 500 1 920.18 ms 2.65 46592

50 1000 1 1407.26 ms 2.61 93106

100 100 1 941.84 ms 3.01 19308

100 500 1 1603.11 ms 2.95 96618

100 1000 1 2976.61 ms 3.01 193028

200 100 1 1509.52 ms 3.38 39300

200 500 1 2699.98 ms 3.34 196517

200 1000 1 6141.85 ms 3.36 392984

Table 6.18: Gnutella Flooding raw result data

132

nodes packets delivery avg. avg. hop routing
ratio delay count overhead msg.

50 100 1.00 1256.17 ms 3.70 6300

50 500 1.00 2164.75 ms 3.68 31500

50 1000 1.00 3349.04 ms 3.71 63000

100 100 0.99 2069.93 ms 5.52 6301

100 500 0.99 3991.32 ms 5.30 31504

100 1000 0.99 5828.58 ms 5.50 63008

200 100 0.94 4423.35 ms 7.51 6306

200 500 0.93 7887.77 ms 7.47 31537

200 1000 0.93 10655.75 ms 7.54 63075

Table 6.19: k-Random Walker raw result data

nodes packets delivery avg. avg. hop routing
ratio delay count overhead msg.

50 100 1 391.87 ms 3.29 7694

50 500 1 437.62 ms 3.26 7694

50 1000 1 483.96 ms 3.22 7694

100 100 1 577.49 ms 3.84 30136

100 500 1 736.28 ms 3.89 30130

100 1000 1 935.53 ms 3.92 29803

200 100 1 1045.05 ms 5.48 40590

200 500 1 1498.29 ms 5.68 40593

200 1000 1 1805.65 ms 5.52 40582

Table 6.20: BeeNet raw result data

133

nodes packets delivery avg. avg. hop routing
ratio delay count overhead msg.

50 100 1 418.41 ms 3.89 32004

50 500 1 448.12 ms 3.76 32756

50 1000 1 485.90 ms 3.76 32375

100 100 1 428.65 ms 4.02 116060

100 500 1 500.23 ms 4.13 116943

100 1000 1 622.83 ms 4.07 115895

200 100 1 513.75 ms 4.91 234332

200 500 1 654.04 ms 4.93 233622

200 1000 1 936.32 ms 4.91 233871

Table 6.21: SlimeMoldNet raw result data

6.4 Competitive Analysis
In the following, the result data of the competitive benchmarks is evaluated.

There is only one benchmarked routing algorithm that falls out of line regarding the
data packet delivery ratio metric. Due to its fully random nature, the k-Random Walker
algorithm is not able to deliver all data packets in some instances. The metric shows to
get worse for the algorithm, the bigger the network becomes. All other algorithm show a
perfect delivery ratio in the benchmarks.

The results for the metric average data packet delay are visualized in figures 6.1 and
6.2. At the smallest network size of 50 node, only BeeHive is able to compete with the
low delays of the path-based algorithms SMNet and BeeNet. All other algorithms are
considerably outperformed by SMNet and BeeNet.

More specifically, for the average data packet delay at 50 nodes, SMNet is 6% (100 data
packets) and 2% (500 data packets) slower than BeeNet but equally fast at a traffic of
1000 data packets.
SMNet outperforms AntNet by 17% (100 data packets), 23% (500 data packets) and 25%
(1000 data packets), BeeHive by 4% (100 data packets), 8% (500 data packets) and 9%
(1000 data packets), Physarum polycephalum by 72% (100 data packets), 73% (500 data
packets) and 75% (1000 data packets), Gnutella Flooding by 27% (100 data packets),

134

51% (500 data packets) and 65% (1000 data packets), and k-Random Walker by 67%
(100 data packets), 79% (500 data packets) and 85% (1000 data packets).

For the average data packet delay at a network size of 50 nodes, BeeNet is 6% (100 data
packets) and 2% (500 data packets) faster than SMNet. At 1000 data packets there is
practically no difference between BeeNet and SMNet.
BeeNet outperforms AntNet by 22% (100 data packets), 25% (500 data packets) and
26% (1000 data packets), BeeHive by 10% (100 data packets) 10% (500 data packets)
and 10% (1000 data packets), Physarum polycephalum by 73% (100 data packets), 74%
(500 data packets) and 75% (1000 data packets), Gnutella Flooding by 32% (100 data
packets), 52% (500 data packets) and 66% (1000 data packets) and k-Random Walker by
69% (100 data packets), 80% (500 data packets) and 86% (1000 data packets).

At a network size of 100 nodes, SMNet outperforms BeeNet by 26% (100 data packets),
32% (500 data packets) and 33% (1000 data packets), AntNet by 43% (100 data packets),
48% (500 data packets) and 47% (1000 data packets), BeeHive by 18% (100 data packets),
18% (500 data packets) and 13% (1000 data packets), Physarum polycephalum by 82%
(100 data packets), 83% (500 data packets) and 84% (1000 data packets), Gnutella Flood-
ing by 54% (100 data packets), 69% (500 data packets) and 79% (1000 data packets), and
k-Random Walker by 79% (100 data packets), 87% (500 data packets) and 89% (1000
data packets).

Besides SMNet, as shown above, and BeeHive, BeeNet outperforms all other algorithms
regarding the average data packet delay at a network size of 100 nodes. BeeNet is 10%
(100 data packets), 21% (500 data packets) and 30% (1000 data packets) slower than
BeeHive. However, BeeNet outperforms AntNet by 23% (100 data packets), 23% (500
data packets) and 21% (1000 data packets), Physarum polycephalum by 76% (100 data
packets), 75% (500 data packets) and 75% (1000 data packets), Gnutella Flooding by 39%
(100 data packets), 54% (500 data packets) and 69% (1000 data packets), and k-Random
Walker by 72% (100 data packets), 82% (500 data packets) and 84% (1000 data packets).

Especially at the biggest network size of 200 P2P nodes, SMNet outperforms all other
algorithms, while BeeNets average data packet delay becomes occasionally slightly higher
than that of BeeHive. Both, BeeNet and BeeHive have a considerably higher delay than
SMNet, while outperforming the rest.
AntNets average data packet delay is worse than that of SMNet, BeeNet and BeeHive,
in all benchmarked configurations, but is still above average on all levels. SMNet, BeeNet,
BeeHive and AntNet show to be very resilient to the network traffic level. Therefore,
their average data packet delay remains nearly constant when the network traffic load
is increased.

More specifically, for the average data packet delay at 200 nodes, SMNet dominates
and outperforms BeeNet by 51% (100 data packets), 56% (500 data packets) and 48%

135

(1000 data packets), AntNet by 63% (100 data packets), 66% (500 data packets) and
63% (1000 data packets), BeeHive by 34% (100 data packets), 42% (500 data packets)
and 50% (1000 data packets), Physarum polycephalum by 88% (100 data packets), 89%
(500 data packets) and 89% (1000 data packets), Gnutella Flooding by 66% (100 data
packets), 76% (500 data packets) and 85% (1000 data packets), and k-Random Walker
by 88% (100 data packets), 92% (500 data packets) and 91% (1000 data packets).

As shown above, BeeNet is significantly outperformed by SMNet.
Furthermore, BeeNet is 34% (100 data packets) and 32% (500 data packets) slower than
BeeHive, but 3% faster at a traffic of 1000 data packets.
Moreover, BeeNet outperforms AntNet by 24% (100 data packets), 23% (500 data packets)
and 29% (1000 data packets), Physarum polycephalum by 76% (100 data packets), 76%
(500 data packets) and 78% (1000 data packets), Gnutella Flooding by 31% (100 data
packets), 45% (500 data packets) and 71% (1000 data packets), and k-Random Walker
by 76% (100 data packets), 81% (500 data packets) and 83% (1000 data packets).

Thus, the other 3 algorithms, Gnutella, Physarum polycephalum and k-Random Walker
are massively outperformed regarding the average data packet delay. Only at a low
network traffic load of 100 data packets, Gnutella shows acceptable results. How-
ever, the average delay gets worse proportionally to the amount of data packets sent.
Physarum polycephalum and the k-Random Walker routing algorithm have the highest
average data packet delay results. It is about 3 to 4 times higher than that of the other
algorithms at a low network traffic load and gets worse rapidly when the load is increased.

The results for the metric average data packet hop count are visualized in figures 6.3 and
6.4. Gnutella shows the best results regarding that metric at all network sizes and all traffic
levels. If there are multiple duplicates of a data entry, the average data packet hop count
metric only takes the fastest delivered packet into consideration. Thus, Gnutellas good
results are no surprise, since in this routing algorithm, duplicates are flooded to all
possible paths and therefore the fastest delivered duplicate of a data packet most likely
has taken the path with the least amount of hops.

With the exception of Physarum polycephalum, which is massively outperformed by the
other algorithms on all levels, the rest of the routing algorithms show good results. At a
network size of 50 nodes, BeeNet, SMNet, AntNet, BeeHive and k-Random Walker are
very close.

BeeNet has a slight performance edge, while AntNet is slightly behind of this group
performance-wise. As the network size grows to 100, SMNet and BeeNet start getting
ahead of AntNet, BeeHive and k-Random Walker. This trend continues at 200 nodes.
SMNet takes a clear second place behind Gnutella, closely chased by BeeNet and BeeHive.
Gnutella still dominates, AntNet and the k-Random Walker algorithm fall behind by a
considerable amount.

136

The results for the metric routing overhead messages are visualized in figures 6.5 and
6.6. While showing good results for the other metrics, BeeHives performance regarding
the routing overhead is abysmal on all levels. Especially when the network size grows,
the performance get exponentially worse. This is no surprise, since BeeHive implements
constantly periodically flooding of routing information of all network nodes.

On the other side of the spectrum is BeeNet, which overall shows the lowest amount of
routing overhead messages on all network sizes (50, 100, 200). Moreover, the algorithm
shows to be resilient to an increment of the data packet network traffic.
BeeNet is only outperformed in regard to the amount of routing overhead messages
at low levels of network traffic. This is where Gnutella Flooding performs very well.
However, as the network size and the data traffic grows, Gnutella gets outperformed
quickly.

The k-Random Walker routing algorithm produces a exceptionally low amount of routing
overhead messages. It only grows with the amount of data packets sent and is indepen-
dent of the network sizes. However, the major drawback of the algorithm is the bad
data packet delivery ratio described above. This relativizes the good performance of
k-Random Walker in this category considerably.

Due to a similar agent based approach and the same spawn interval of agents, AntNet and
Physarum polycephalum have practically the same amount of routing overhead messages
on all levels. The main reason these two algorithms have a bigger routing overhead than
BeeNet is their agent spawn interval. This is where the path-based approach of BeeNet
shines. It still performs very well with a rather low spawn interval of bee agents compared
to AntNet and Physarum polycephalum.

Due to the process of iterative spawning of pseudopods in the vegetative phase of
the algorithm and its multi-phase nature, the SMNet algorithm shows beyond aver-
age results at the smallest network size of 50 nodes. However, SMNets amount of
routing overhead messages gets more and more competitive as the network size and
the network traffic grows. Moreover, SMNet shows to be very resilient to an increment
of the network traffic load.
While still performing beyond average at the network size of 100 P2P nodes, at 200 P2P
nodes and a traffic amount of 500 data packets, SMNet starts outperforming AntNet,
Physarum polycephalum and Gnutella. Only BeeNet and the k-Random Walker algo-
rithm remain with better performance. However, again, it is important to note the bad
data packet delivery ratio of the k-Random Walker algorithm, especially at a network
size of 200 nodes. This puts the perceived good performance of the k-Random Walker
algorithm into perspective.

137

100 500 1,000

500

1,000

1,500

2,000

2,500

3,000

3,500

50
ne

tw
or
k
no

de
s

data packet count

av
g.

da
ta

pa
ck
et

de
la
y
[m

s]

AntNet

BeeHive

Physarum p.

Gnutella

k-Random Walker

BeeNet

SMNet

100 500 1,000

500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000
5,500
6,000

10
0
ne

tw
or
k
no

de
s

data packet count

av
g.

da
ta

pa
ck
et

de
la
y
[m

s]

AntNet

BeeHive

Physarum p.

Gnutella

k-Random Walker

BeeNet

SMNet

Figure 6.1: Average data packet delay results for network sizes 50, 100

138

100 500 1,000

1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000
11,000

20
0
ne

tw
or
k
no

de
s

data packet count

av
g.

da
ta

pa
ck
et

de
la
y
[m

s]
AntNet

BeeHive

Physarum p.

Gnutella

k-Random Walker

BeeNet

SMNet

Figure 6.2: Average data packet delay results for network size 200

100 500 1,000

5

10

15

20

25

50
ne

tw
or
k
no

de
s

data packet count

av
g.

da
ta

pa
ck
et

ho
ps

AntNet

BeeHive

Physarum p.

Gnutella

k-Random Walker

BeeNet

SMNet

Figure 6.3: Average data packet hop count results for network size 50

139

100 500 1,000

5

10

15

20

25

30

10
0
ne

tw
or
k
no

de
s

data packet count

av
g.

da
ta

pa
ck
et

ho
ps

AntNet

BeeHive

Physarum p.

Gnutella

k-Random Walker

BeeNet

SMNet

100 500 1,000

5

10

15

20

25

30

35

40

20
0
ne

tw
or
k
no

de
s

data packet count

av
g.

da
ta

pa
ck
et

ho
ps

AntNet

BeeHive

Physarum p.

Gnutella

k-Random Walker

BeeNet

SMNet

Figure 6.4: Average data packet hop count results for network sizes 100, 200

140

100 500 1,000
0

20,000

40,000

60,000

80,000

100,000

50
ne

tw
or
k
no

de
s

data packet count

ro
ut
in
g
ov
er
he

ad
m
es
sa
ge
s

AntNet

BeeHive

Physarum p.

Gnutella

k-Random W.

BeeNet

SMNet

100 500 1,000

0

200,000

400,000

600,000

10
0
ne

tw
or
k
no

de
s

data packet count

ro
ut
in
g
ov
er
he
ad

m
es
sa
ge
s

AntNet

BeeHive

Physarum p.

Gnutella

k-Random Walker

BeeNet

SMNet

Figure 6.5: Amount of routing overhead messages for network sizes 50, 100

141

100 500 1,000

0

1,000,000

2,000,000

3,000,000

20
0
ne

tw
or
k
no

de
s

data packet count

ro
ut
in
g
ov
er
he
ad

m
es
sa
ge
s

AntNet

BeeHive

Physarum p.

Gnutella

k-Random Walker

BeeNet

SMNet

Figure 6.6: Amount of routing overhead messages for network size 200

6.5 Statistical Analysis

For an in-depth evaluation and comparison of SMNet and BeeNet to the other bench-
marked routing algorithm, statistical analysis, described in [40], is done.

More specifically, one-way ANOVA tests are performed with the following setup [40]:
H0 is the null-hypothesis stating that there is no significant difference between the metric
value M of 2 algorithm A and B and H1 is the corresponding alternative-hypothesis.
Thus, if H0 is rejected, not enough data is available to determine if A or B is significantly
better regarding metric M . Moreover, if H0 is rejected, H1 is concluded [40].

The tests are carried out for SMNet and BeeNet in separate tests, for all combinations of
network sizes level (Ln, Mn, Hn) and data entry amount levels (Ld, Md, Hd) described
in section 6.1. As metric M , the average data packet delay is chosen, since it represents
the performance of an algorithm really well and is of great importance, especially in time
critical scenarios. The significance level for the ANOVA tests is chosen as α = 0, 05. [40]

First, SMNet takes the role of algorithm A in the test and all other benchmarked al-
gorithms (including BeeNet) take the role of algorithm B. The results of this tests are
shown in tables 6.22 and 6.23.
Then, BeeNet takes the role of algorithm A and all other benchmarked algorithms

142

(including SMNet) take the role of algorithm B. The results of this tests are shown in
tables 6.24 and 6.25.

For all result tables of the statistical tests, if H0 is concluded, the column h in the table
has the value 0. If H0 is rejected, and therefore there is a significant difference between
the tested algorithms, h has the value 1 if algorithm A performs better than algorithm
B and −1 otherwise.

Example 6.5.1 For a network size of 100 P2P network nodes and 500 data packets sent,
SMNets mean average data packet delay is 500,23 and the standard deviation is 15,93.
For the same configuration, AntNets mean average data packet delay is 959.14 and the
standard deviation is 41,10.
The result of the one-way ANOVA test is p = 7, 06931 10−10.
Since the significance level is chosen α = 0.05 and α > p, the null-hypothesis H0 is
rejected and the alternative-hypothesis H1 concluded.
The test proves the significant difference of the average data packet delay metric values.
Thus, it can be concluded that SMNet performs significantly better at this configuration
than AntNet. Therefore the h value is set to 1 in the result table.

As tables 6.22 and 6.23 show, SMNet performs significantly better than all other algorithms
at all the network size levels of 50, 100 and 200 nodes with very few exceptions.
Only at a network size of 50 and a network traffic load of 100, BeeNet performs better
and H0 can not be rejected when compared to BeeHive.
Furthermore, when comparing SMNet to BeeNet on the data packet traffic levels 500 and
1000 at the same network size of 50 nodes, there is not enough data to conclude which
routing algorithm performs better. Thus, H0 can not be rejected.

As shown in tables 6.24 and 6.25, BeeNet shows good performance in the statistical
analysis. At a network size of 50 nodes and a traffic level of 100 data packets, it performs
significantly better than all other benchmarked algorithms.
For a higher data packet count 500 and 1000 at the same network size of 50 nodes,
it also shows very competitive performance. Only when compared to SMNet in those
configurations, H0 can not be rejected. All other routing algorithms are outperformed at
these configurations.
For all other configurations at the network size of 100 and 200 nodes, BeeNet takes the
third place after SMNet and BeeHive. However, the results at the network size of 200 and
1000 data packets are slightly different. BeeNets performance level increases. While, H0
can not be rejected when compared to BeeHive, BeeNet is still outperformed significantly
by SMNet.

143

mean ± stdev p-value h
50 nodes 100 data packets

AntNet 503.57 ± 22.79 2.7329E-08 1
BeeHive 436.54 ± 37.19 0.18180051 0

Physarum p. 1477.46 ± 100.34 1.602E-17 1
Gnutella 573.82 ± 39.43 1.2336E-09 1

k-Random Walker 1256.17 ± 112.64 7.1709E-15 1
BeeNet 391.87 ± 25.97 0.01590813 -1
SMNet 418.41 ± 17.91 - -

50 nodes 500 data packets
AntNet 584.42 ± 18.37 5.3072E-12 1
BeeHive 487.46 ± 32.39 0.00433343 1

Physarum p. 1680.49 ± 75.27 9.0244E-21 1
Gnutella 920.18 ± 45.57 8.1788E-17 1

k-Random Walker 2164.75 ± 124.54 1.3237E-19 1
BeeNet 437.62 ± 14.64 0.19880675 0
SMNet 448.12 ± 20.13 - -

50 nodes 1000 data packets
AntNet 651.21 ± 37.04 7.0691E-10 1
BeeHive 535.8 ± 27.79 0.00048294 1

Physarum p. 1967.64 ± 160.23 1.5461E-16 1
Gnutella 1407.26 ± 66.51 3.0311E-19 1

k-Random Walker 3349.04 ± 156.51 8.3102E-22 1
BeeNet 483.96 ± 16.28 0.83802976 0
SMNet 485.90 ± 24.64 - -

100 nodes 100 data packets
AntNet 749.40 ± 46.27 9.7149E-14 1
BeeHive 524.87 ± 29.88 1.3151E-07 1

Physarum p. 2434.53 ± 194.32 1.9911E-17 1
Gnutella 941.84 ± 45.30 1.8915E-17 1

k-Random Walker 2069.93 ± 205.93 1.881E-15 1
BeeNet 577.49 ± 39.31 3.7162E-09 1
SMNet 428.65 ± 20.82 - -

100 nodes 500 data packets
AntNet 959.13 ± 41.10 1.5381E-17 1
BeeHive 610.34 ± 32.56 1.6491E-08 1

Physarum p. 2923.13 ± 178.95 1.5533E-19 1
Gnutella 1603.11 ± 114.70 7.4834E-17 1

k-Random Walker 3991.32 ± 217.07 7.0192E-21 1
BeeNet 736.28 ± 56.30 1.874E-10 1
SMNet 500.23 ± 15.93 - -

Table 6.22: SMNet ANOVA results. (part 1)144

mean ± stdev p-value h
100 nodes 1000 data packets

AntNet 1179.91 ± 44.92 2.9732E-18 1
BeeHive 719.10 ± 23.12 6.7697E-09 1

Physarum p. 3782.02 ± 276.97 3.1936E-18 1
Gnutella 2976.61 ± 151.90 1.4931E-20 1

k-Random Walker 5828.58 ± 138.53 1.925E-27 1
BeeNet 935.53 ± 56.02 2.0693E-12 1
SMNet 622.83 ± 18.96 - -

200 nodes 100 data packets
AntNet 1382.63 ± 39.49 1.0406E-20 1
BeeHive 782.78 ± 119.27 2.3613E-06 1

Physarum p. 4306.41 ± 417.27 1.8414E-16 1
Gnutella 1509.52 ± 242.30 1.7024E-10 1

k-Random Walker 4423.35 ± 613.17 8.6684E-14 1
BeeNet 1045.05 ± 53.16 1.3776E-15 1
SMNet 513.75 ± 38.82 - -

200 nodes 500 data packets
AntNet 1933.48 ± 61.24 2.2994E-22 1
BeeHive 1136.21 ± 117.96 2.1212E-10 1

Physarum p. 6124.41 ± 293.01 4.9293E-22 1
Gnutella 2699.98 ± 227.10 2.2067E-16 1

k-Random Walker 7887.77 ± 406.70 1.1403E-21 1
BeeNet 1498.29 ± 91.85 2.546E-16 1
SMNet 654.04 ± 24.33 - -

200 nodes 1000 data packets
AntNet 2532.09 ± 157.21 4.0924E-17 1
BeeHive 1854.37 ± 156.24 5.7019E-13 1

Physarum p. 8339.07 ± 402.21 6.5036E-22 1
Gnutella 6141.85 ± 464.06 4.3835E-18 1

k-Random Walker 10655.75 ± 640.00 1.9268E-20 1
BeeNet 1805.65 ± 163.03 2.8591E-12 1
SMNet 936.32 ± 38.80 - -

Table 6.23: SMNet ANOVA results. (part 2)

145

mean ± stdev p-value h
50 nodes 100 data packets

AntNet 503.57 ± 22.79 6.34115E-09 1
BeeHive 436.54 ± 37.19 0.00598568 1

Physarum p. 1477.46 ± 100.34 1.3898E-17 1
Gnutella 573.82 ± 39.43 3.9322E-10 1

k-Random Walker 1256.17 ± 112.64 5.2571E-15 1
BeeNet 391.87 ± 25.97 - -
SMNet 418.41 ± 17.91 0.01590813 1

50 nodes 500 data packets
AntNet 584.42 ± 18.37 1.1857E-13 1
BeeHive 487.46 ± 32.39 0.00032073 1

Physarum p. 1680.49 ± 75.27 5.827E-21 1
Gnutella 920.18 ± 45.57 2.7305E-17 1

k-Random Walker 2164.75 ± 124.54 1.0661E-19 1
BeeNet 437.62 ± 14.64 - -
SMNet 448.12 ± 20.13 0.19880675 0

50 nodes 1000 data packets
AntNet 651.21 ± 37.04 1.2586E-10 1
BeeHive 535.8 ± 27.79 7.65E-05 1

Physarum p. 1967.64 ± 160.23 1.346E-16 1
Gnutella 1407.26 ± 66.51 1.559E-19 1

k-Random Walker 3349.04 ± 156.51 7.2612E-22 1
BeeNet 483.96 ± 16.28 - -
SMNet 485.90 ± 24.64 0.83802976 0

100 nodes 100 data packets
AntNet 749.40 ± 46.27 4.7568E-08 1
BeeHive 524.87 ± 29.88 0.00340935 -1

Physarum p. 2434.53 ± 194.32 1.0034E-16 1
Gnutella 941.84 ± 45.30 1.9288E-13 1

k-Random Walker 2069.93 ± 205.93 1.2385E-14 1
BeeNet 577.49 ± 39.31 - -
SMNet 428.65 ± 20.82 3.7162E-09 -1

100 nodes 500 data packets
AntNet 959.13 ± 41.10 7.545E-09 1
BeeHive 610.34 ± 32.56 8.7655E-06 -1

Physarum p. 2923.13 ± 178.95 2.0811E-18 1
Gnutella 1603.11 ± 114.70 2.8599E-14 1

k-Random Walker 3991.32 ± 217.07 4.1817E-20 1
BeeNet 736.28 ± 56.30 - -
SMNet 500.23 ± 15.93 1.874E-10 -1

Table 6.24: BeeNet ANOVA results. (part 1)146

mean ± stdev p-value h
100 nodes 1000 data packets

AntNet 1179.91 ± 44.92 2.8509E-09 1
BeeHive 719.10 ± 23.12 1.3323E-09 -1

Physarum p. 3782.02 ± 276.97 2.7764E-17 1
Gnutella 2976.61 ± 151.90 5.1617E-19 1

k-Random Walker 5828.58 ± 138.53 1.9354E-26 1
BeeNet 935.53 ± 56.02 - -
SMNet 622.83 ± 18.96 2.0693E-12 -1

200 nodes 100 data packets
AntNet 1382.63 ± 39.49 3.8374E-12 1
BeeHive 782.78 ± 119.27 5.5302E-06 -1

Physarum p. 4306.41 ± 417.27 2.7884E-15 1
Gnutella 1509.52 ± 242.30 1.3256E-05 1

k-Random Walker 4423.35 ± 613.17 1.095E-12 1
BeeNet 1045.05 ± 53.16 - -
SMNet 513.75 ± 38.82 1.3776E-15 -1

200 nodes 500 data packets
AntNet 1933.48 ± 61.24 2.7263E-10 1
BeeHive 1136.21 ± 117.96 4.5306E-07 -1

Physarum p. 6124.41 ± 293.01 2.1509E-20 1
Gnutella 2699.98 ± 227.10 7.3384E-12 1

k-Random Walker 7887.77 ± 406.70 1.5864E-20 1
BeeNet 1498.29 ± 91.85 - -
SMNet 654.04 ± 24.33 2.546E-16 -1

200 nodes 1000 data packets
AntNet 2532.09 ± 157.21 7.1769E-09 1
BeeHive 1854.37 ± 156.24 0.50372669 0

Physarum p. 8339.07 ± 402.21 2.1806E-20 1
Gnutella 6141.85 ± 464.06 2.924E-16 1

k-Random Walker 10655.75 ± 640.00 1.7405E-19 1
BeeNet 1805.65 ± 163.03 - -
SMNet 936.32 ± 38.80 2.8591E-12 -1

Table 6.25: BeeNet ANOVA results. (part 2)

147

6.6 Scalability Analysis
It is from substantial importance for an algorithm, used in P2P network environments,
to be resistant to an increase of the traffic load and the network size, since it has to be
ensured that all nodes of a P2P networks are able to keep operating normally in that
scenario [23].
In order to evaluate how the benchmarks react to an increment of the network size and
the data packet traffic, a scalability analysis, based on [22], is carried out.

To enable the evaluation of systems regarding their scalability, a scalability metric is
proposed [22]:

ψ = F (λ2, QoS,C2)
F (λ1, QoS,C1) (6.1)

where F is a performance evaluating function that is dependent on λ, which evaluates
the rate of providing services to users, a set of quality of service parameters (QoS), and
a cost parameter C, that specifies the cost of providing the service to users [22].

For the scalability analysis, the same adaption of this metric, provided by [23], is used.
To evaluate an algorithms performance regarding its scalability, the following function P
is used [23]:

P (L,R) = 1
M
, M 6= 0 (6.2)

where M are the average messages per node, L is the load and R the resources. In the
scenario of routing, L is the amount of routing overhead messages and R the amount
of P2P nodes participating in the network. Therefore, M is calculated by:

M = L

R
= routing overhead messages

network size
(6.3)

Using the performance function P , the scalability metric for the specific scenario, called
load scalability, is defined [23]:

ψ(k) = P (kL, kR)
P (L,R) , k > 0 (6.4)

where the scale factor k is an integer. When ψ ≥ 1 the routing algorithm scales well.
Otherwise, the algorithm is considered not to scale. [23]

The scalability of AntNet, BeeHive, Physarum polycephalum, Gnutella Flooding,
k-Random Walker, BeeNet and SMNet is evaluated in the following. The scalability is
analyzed at the network size levels of 50, 100, 200 nodes for the scaling factor k = 2
and 50, 200 for k = 4. For k = 2, the initial load is chosen as 250 and 500 data packets,
where as for k = 4 it is chosen as 250 data packets.

Example 6.6.1 For a network size of 50 P2P network nodes and 250 data packets sent,
BeeNets amount of routing overhead messages is 7693 and therefore M50,250 = 153,88.

148

For a network size of 100 P2P network nodes and 500 data packets sent, BeeNets amount
of routing overhead messages is 30130 and therefore M100,500 = 301,3.
The load scalability is calculated by

ψ = 1/M100,500
1/M50,250

= 0.51 (6.5)

In order to enable the analysis, additional benchmarks for the network size of 50 nodes
and a traffic level of 250 data packets were executed. Parameters chosen for all the
algorithms are the same as for 50 nodes and 100 data packets described in the sensitivity
analysis 6.2. The additional benchmark results are shown in A.1.
For all described configurations, M is calculated. The values are stated in table 6.26.

The results of the scalability analysis for ψ(2) are shown in table 6.27 and for ψ(4) in
table 6.28.

(nodes / data packets)
Algorithms (50 / 250) (100 / 500) (200 / 1000)

AntNet 497.18 990.18 1884.08
BeeHive 1632 6664 15840

Physarum p. 495.36 971.43 1833.77
Gnutella 465.36 966.18 1964.92

k-Random Walker 315 315.04 315.38
BeeNet 153.88 301.3 202.91
SMNet 643.76 1169.43 1169.36

Table 6.26: Average routing overhead messages M per (node/data packet) level

Initial Load
Algorithms 50 100

AntNet 0.5 0.53
BeeHive 0.24 0.42

Physarum p. 0.51 0.53
Gnutella 0.48 0.49

k-Random Walker 1 1
BeeNet 0.51 1.48
SMNet 0.55 1

Table 6.27: Results of the Scalability Analysis with k=2

149

Initial Load
Algorithms 50

AntNet 0.26
BeeHive 0.1

Physarum p. 0.27
Gnutella 0.24

k-Random Walker 1
BeeNet 0.76
SMNet 0.55

Table 6.28: Results of the Scalability Analysis with k=4

Interestingly, for SMNet, the load scalability ψ improves significantly as the initial load is
increased. For k=2 and an initial load of 50, the scalability is average with ψ(2) = 0.55.
However, for an initial load of 100, the load scalability reaches a good load scalability
value of ψ(2) = 1.
For the same scale factor, BeeNet shows similar results for an initial load of 50, ψ(2) = 0.51,
and improves even more for an initial load of 100, ψ(2) = 1.48.
Thus, both of the routing algorithm proposed in this thesis show very good scalability as
the initial load grows.

The k-Random Walker routing algorithm shows a load scalability of ψ(2) = 1. Both,
SMNet (0.51) and BeeNet (0.55) show only about half the load scalability for k=2.
However, as the initial load grows, SMNet reaches the same load scalability of 1 as
k-Random Walker. BeeNet outperforms it considerably with a value of 1.48.

AntNet, with ψ(2) = 0.5, Physarum polycephalum, with ψ(2) = 0.51, and Gnutella
Flooding, with ψ(2) = 0.49, show similar results as BeeNet (0.51) and SMNet (0.55)
at a low initial load and k=2. However, at an initial load of 100, they all fall behind
significantly. BeeHive can’t compete regarding the scalability on any initial load level.

At a scale factor k = 4 and an initial load of 50, the k-Random Walker algorithm shows,
with a load scalability value of ψ(4) = 1, better results than all other routing algorithms.
This stems from the fact that the algorithm always sends the same amount of walkers
per data packet, independently of the network sizes. As discussed in the competitive
analysis 6.4, while this behavior results in good scalability, the downside is a decreasing
data packet delivery ratio as the network grows.

Besides the k-Random walker algorithm, BeeNet, with a load scalability of ψ(4) = 0.76
and SMNet, with a load scalability of ψ(4) = 0.55 outperform all other evaluated routing
algorithms. AntNet, with ψ(4) = 0.26, Physarum polycephalum, with ψ(4) = 0.27, and
Gnutella Flooding, with ψ(4) = 0.24 again show similar results.

150

BeeHive also shows the worst scalability of all benchmark routing algorithms on this
level with ψ(4) = 0.1.

While BeeNet and SMNet are outperformed by k-Random Walker algorithm at an initial
load of 50 and a scale factor of 2, they do not have the same major drawbacks as discussed
above.
Furthermore, for BeeNet and SMNet, a change of the bee or amoeba spawn interval
influences the scalability of the algorithms. Moreover, the amount of spawned pseudopods
by amoebas and the conditions for amoebas to transition to the aggregative state are
further considerable factors for SMNet that influence the routing algorithms scalability.

6.7 Summary
In this chapter, BeeNet and SMNet, the routing algorithms proposed in this thesis,
are evaluated and compared to AntNet, BeeHive, the Physarum polycephalum routing
algorithm, Gnutella Flooding and k-Random Walker.

The benchmark methodology is described at the beginning of the chapter. After an
extensive sensitivity analysis in which the optimal parameters for all benchmark configu-
rations are determined, the competitive benchmarks are carried out.

Especially for the average data packet delay and the average hop count metric, the re-
sults show only very few occasions where all other algorithm are not outperformed
by SMNet and BeeNet. Especially SMNet shows very good results regarding the
average data packet delay metric.
This is proven statistically for the average data packet delay by one-way ANOVA tests
in the statistical analysis.

Lastly, a scalability analysis is done for all seven routing algorithms. Besides the k-
Random Walker routing algorithm which has to deal with major drawbacks regarding the
delivery ratio of data packets for its good scalability, BeeNet and SMNet outperform all
other evaluated routing algorithms. Especially BeeNet shows very good scalability as the
amount of participating P2P network nodes and the data packet traffic level grows.

151

CHAPTER 7
Future Work & Conclusion

In this chapter possible future improvements to the framework and the adapted routing
algorithms BeeNet and SMNet are discussed. After that, a final conclusion to the master
thesis is drawn.

7.1 Future Work
After this master thesis, there still are some possible topics for future research work:

• Transmission interference: Although the framework provides an interface in the
I/O Peers Service sendEntriesService, which allows to implement additional
transmission interference such as applying a drop rate to traffic, there is still a lot
of room for improvement. The implementation of churn simulation would be the
next logical step, since it is characteristic for the dynamic nature of P2P overlay
networks. This should technically be no problem: Since the implementation of the
framework, the Peer Model Java implementation [8] progressed in its development
and now supports the dynamic joining and leaving of Peer Spaces by peers. With
the support of churn a very interesting research field becomes accessible. Not only
the behavior of routing algorithms when facing churn should be researched, but
also different churn models like [51], [15] and [47].

• Limitations: As described in section 5.6, some limitations exist in the proposed
framework. When the Peer Model Java implementation [8] progresses further in
development and provides features like the determination of entry amounts of
specific types in peer containers, the framework may be extended to support the
determination of queue sizes, which is an important decision factor for some routing
algorithms.

• Usability & Output Visualization: There is also room for advancement regard-
ing the frameworks usability. The biggest upgrade would be the development of a

153

graphical user interface which would improve the user experience when configurating
and executing benchmarks in the framework. Furthermore, more default output
options of benchmark results, like automatically created plots, would shorten the
amount of time needed to visualize the output of benchmarks. The application is
well prepared for diverse output formats by providing a generic interface in the
Statistic Peers StatisticsOutputService.

The adapted routing algorithms BeeNet and SMNet also offer an interesting field of future
work. First, possible algorithm specific improvements are listed. Then improvements and
research topics which are interesting for both, BeeNet and SMNet, are discussed.
An interesting aspect for which research could lead to an improvement of SMNet is:

• Vegetative Movement: In this phase amoebas experience new paths. Like in
the adapted algorithm [40], pseudopods choose their next hop randomly. It would
be very interesting to analyze SMNets behavior and performance when a more
sophisticated transition method for pseudopods is used.

BeeNet offers similar research possibilities:

• Bee Transition: Although the currently used transition functions show good
results, it would be interesting to develop different approaches for forager and
follower movement behavior to evaluate and compare them to the existing solution.
This might makes the routing algorithm even more efficient.

For both adapted algorithms, possible areas of improvements and research are:

• Transmission interference: Since both algorithms have only been benchmarked
in a static P2P network environment, it would be very interesting to analyze the
adaptiveness of SMNet and BeeNet to additional transmission inteference (e.g.
dropping of packets) and churn. There might be room for optimization for both
algorithms.

• Memory usage: Both algorithms use experienced paths to route data packets to
a destination. This might becomes inefficient as the network grows to very high
number of nodes, especially on low-memory embedded devices. An interesting field
of research is therefore the optimization of the algorithms memory usage. There
might be more efficient ways to store routing relevant information experienced by
the software agents.

• Large Scale Tests: The benchmark results show that BeeNet and SMNet perform
well when the amount of network nodes and the data packet traffic level increases.
It would be interesting to research, if this trend continues as the network sizes and
the amount of sent data packets is increased further. Therefore, benchmarks in
larger environments should be carried out.

154

7.2 Conclusion
There are two goals achieved by this master thesis.

The first goal of the thesis is to create a Peer Model based benchmarking framework,
that enables the fair and systematic benchmarking and comparison of routing algorithms
in unstructured P2P networks. The framework provides a specific pattern for the
implementation of routing algorithms and benchmarks them in their abstracted form,
independently of a specific P2P application protocol or use case.

The benchmarking framework shows to fulfill all defined requirements. It provides a
clear pattern for the structuring of routing algorithms that enables their fair comparison.
Based on this pattern, the frameworks component-based architecture is built. This clearly
structured architecture is enabled by the use of the Peer Model and allows new users to
get a grip of the basic concepts very quickly. Moreover, the framework offers extensive
configurability with provided default values that fit a lot of scenarios. Algorithms are
implemented using generic interfaces that serve as additional guideline for locating
specific algorithm functionality and which enable easy exchangeability of algorithms and
algorithm components.

The second goal is to use the created framework to adapt two existing swarm-intelligent
algorithms to the domain of routing from a different domain. The adapted algorithms are
Bee Algorithm [42], based on the foraging behavior of honey bees and used for distributed
load balancing, and SMP2P [40], which makes use of the Dictyostelium discoideum slime
molds life-cylcle to search for resources in P2P networks. Both algorithm make use path-
based information that is provided by intelligent software agents which experience these
paths when they travel the network. The resulting algorithms BeeNet and SMNet are
implemented, evaluated and compared to a diverse range of existing routing algorithms
using the benchmarking framework.

SMNet shows to outperform all other benchmarked routing algorithm regarding the
average delivery delay of data packets with growing amount of network nodes and data
packet traffic. BeeNet takes the overall second place right after SMNet. Regarding
algorithm scalability, SMNet and BeeNet show good results for a growing network size
and provide considerable resilience to high loads of traffic. They are only outperformed
by k-Random Walker in small networks and low traffic loads. However, BeeNet and
SMNet show, in contrast to k-Random Walker, a perfect delivery ratio in all benchmarks.

The thesis shows that it is possible to provide a framework, based on a generic pattern, for
routing in unstructured P2P networks which enables the fair and systematic evaluation
and comparison of routing algorithms in unstructured P2P networks. Additionally, two
new routing algorithms are provided that show to perform very well in high traffic
networks.

155

APPENDIX A
Appendix

A.1 Additional Benchmarks for the Scalability Analysis

algorithms delivery avg. avg. hop routing
ratio delay count overhead msg.

AntNet 1 541.61 ms 4.67 24859

BeeHive 1 493.59 ms 4.41 81600

Physarum p. 1 1522.42 ms 12.27 24768

Gnutella 1 739.23 ms 2.62 23269

k-Random Walker 1 1815.66 ms 3.60 15750

BeeNet 1 390.17 ms 3.23 7694

SlimeMoldNet 1 429.69 ms 3.76 32188

Table A.1: Benchmark results for 50 nodes and 250 data packets

157

Parameter Description
BeeNet

beeSpawnInterval After this time interval has passed, a new bee is spawned

(α, β) Weights arc fitness and heuristic distance in transition
rule

λ Probability of follower bee to follow the preferred path
SlimeMoldNet

amoebaSpawnInterval
After this time interval has passed, a new amoeba is
spawned

pseudopodWaitT ime
Maximum wait time for pseudopods to return in a vege-
tative step

amountOf
SpawnedAmoebas

Amount of amoebas spawned at a node after
amoebaSpawnInterval has passed

maxPseudopodLimit Amount of pseudopods spawned at a vegetative step
maxPseudopodTTL Max. amount of hops before pseudopod termination
minSearchSteps Min. amount of veg. steps before aggregation allowed

AntNet
antSpawnInterval After this time interval has passed, a new ant is spawned

TTL Maximum travel time of ant before termination
α Weights output queue size for ant next hop selection
η Weights newly calculated mean and variance
c Constant for observation window calculation
c1 Constant for calculation of reinforcement value
c2 Constant for calculation of reinforcement value
γ Confidence interval for calculation of reinforcement value
a Constant for squashing the reinforcement value

BeeHive
beeSpawnInterval After this time interval has passed, a new bee is spawned

initializationInterval Time interval in which foraging regions are built
shortDistanceLimit Hop limit of short distance bees
longDistanceLimit Hop limit of long distance bees

Physarum polycephalum
agentSpawnInterval After this time interval has passed, a new agent is spawned

ε Weights newly experienced path
Gnutella Flooding

TTL Hop limit for data packets
k-Random Walker

walkerAmount Amount of random walkers per sent data packet
TTL Maximum hop limit of walkers

Table A.2: Parameter description of benchmarked algorithms

158

Bibliography

[1] Matteo Agosti et al. “P2pam: a framework for peer-to-peer architectural modeling
based on peersim”. In: Proceedings of the 1st international conference on Simulation
tools and techniques for communications, networks and systems & workshops.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering). 2008, p. 22.

[2] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. “A survey of peer-to-
peer content distribution technologies”. In: ACM Computing Surveys (CSUR) 36.4
(2004), pp. 335–371.

[3] Albert-László Barabási and Réka Albert. “Emergence of scaling in random net-
works”. In: science 286.5439 (1999), pp. 509–512.

[4] John Buford, Heather Yu, and Eng Keong Lua. P2P networking and applications.
Morgan Kaufmann, 2009.

[5] John F Buford and Heather Yu. “Peer-to-peer networking and applications: Synopsis
and research directions”. In: Handbook of Peer-to-Peer Networking. Springer, 2010,
pp. 3–45.

[6] Scott Camazine and James Sneyd. “A model of collective nectar source selection
by honey bees: self-organization through simple rules”. In: Journal of theoretical
Biology 149.4 (1991), pp. 547–571.

[7] Matteo Casadei et al. “A self-organizing approach to tuple distribution in large-
scale tuple-space systems”. In: International Workshop on Self-Organizing Systems.
Springer. 2007, pp. 146–160.

[8] Stephan Cejka. “Enabling Scalable Collaboration by Introducing Platform-Independent
Communication for the Peer Model”. MA thesis. Vienna University of Technology,
unpublished.

[9] Stefan Craß, Gerson Joskowicz, Martin Novak, et al. “Flexible modeling of policy-
driven upstream notification strategies”. In: Proceedings of the 29th Annual ACM
Symposium on Applied Computing. ACM. 2014, pp. 1352–1354.

[10] Stefan Craß et al. “Modeling a Flexible Replication Framework for Space-Based
Computing”. In: International Conference on Software Technologies. Springer. 2013,
pp. 256–272.

159

[11] Alfredo Cuzzocrea. “A query-strategy-focused taxonomy and a customizable bench-
marking framework for peer-to-peer information retrieval techniques”. In:Knowledge-
Based Intelligent Information and Engineering Systems. Springer. 2007, pp. 729–
739.

[12] Gianni Di Caro. “Ant Colony Optimization and its application to adaptive routing
in telecommunication networks”. PhD thesis. Faculté des Sciences Appliquées,
Université Libre de Bruxelles Brussels Belgium, 2004.

[13] Gianni Di Caro and Marco Dorigo. AntNet: A mobile agents approach to adaptive
routing. Tech. rep. Université Libre de Bruxelles Belgium, 1997.

[14] Gianni A Di Caro. “Analysis of simulation environments for mobile ad hoc networks”.
In: Dalle Molle Institute for Artificial Intelligence, Tech. Rep (2003).

[15] Alessandro Duminuco, Ernst Biersack, and Taoufik En-Najjary. “Proactive repli-
cation in distributed storage systems using machine availability estimation”. In:
Proceedings of the 2007 ACM CoNEXT conference. ACM. 2007, p. 27.

[16] Cheng Tien Ee et al. “A modular network layer for sensorsets”. In: Proceedings
of the 7th symposium on Operating systems design and implementation. USENIX
Association. 2006, pp. 249–262.

[17] Muddassar Farooq. “A Comprehensive Survey of Nature-Inspired Routing Proto-
cols”. In: Bee-Inspired Protocol Engineering. Springer, 2009, pp. 19–52.

[18] Muddassar Farooq. “From The Wisdom of the Hive to Routing in Telecommuni-
cation Networks”. In: Bee-Inspired Protocol Engineering. Springer, 2009, pp. 53–
108.

[19] DS Hickey and LA Noriega. “Insights into information processing by the single
cell slime mold physarum polycephalum”. In: UKACC Control Conference. 2008,
pp. 2–4.

[20] Brian Hollis. “Rapid antagonistic coevolution between strains of the social amoeba
Dictyostelium discoideum”. In: Proceedings of the Royal Society of London B:
Biological Sciences 279.1742 (2012), pp. 3565–3571.

[21] Maarten Houbraken et al. “Fault tolerant network design inspired by Physarum
polycephalum”. In: Natural Computing 12.2 (2013), pp. 277–289.

[22] Prasad Jogalekar and Murray Woodside. “Evaluating the scalability of distributed
systems”. In: IEEE Transactions on parallel and distributed systems 11.6 (2000),
pp. 589–603.

[23] Daniel Kanev. “Decentralized Unstructured Flat P2P Network with Streaming
Content Delivery Method and User Collaboration”. MA thesis. Vienna University
of Technology, 2014.

[24] Richard H Kessin. Dictyostelium: evolution, cell biology, and the development of
multicellularity. Vol. 38. Cambridge University Press, 2001.

160

[25] Eva Kühn, Stefan Craß, and Thomas Hamböck. “Approaching coordination in
distributed embedded applications with the Peer Model DSL”. In: Software Engi-
neering and Advanced Applications (SEAA), 2014 40th EUROMICRO Conference
on. IEEE. 2014, pp. 64–68.

[26] Eva Kühn et al. “Peer-based programming model for coordination patterns”. In:
International Conference on Coordination Languages and Models. Springer. 2013,
pp. 121–135.

[27] Derek Leonard, Vivek Rai, and Dmitri Loguinov. “On lifetime-based node fail-
ure and stochastic resilience of decentralized peer-to-peer networks”. In: ACM
SIGMETRICS performance evaluation review 33.1 (2005), pp. 26–37.

[28] Bo Leuf. Peer to Peer: Collaboration and Sharing over the Internet. Addison-Wesley
Professional, 2002.

[29] Eng Keong Lua et al. “A survey and comparison of peer-to-peer overlay network
schemes”. In: Communications Surveys & Tutorials, IEEE 7.2 (2005), pp. 72–93.

[30] Qin Lv et al. “Search and replication in unstructured peer-to-peer networks”. In:
Proceedings of the 16th international conference on Supercomputing. ACM. 2002,
pp. 84–95.

[31] David Mills. Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and
OSI. RFC 4330. RFC Editor, 2006, pp. 1–27. url: https://tools.ietf.org/
html/rfc4330.

[32] Vinita Mishra and Smita Jangale. “Analysis and comparison of different network
simulators”. In: International Journal of Application or Innovation in Engineering
& Management (2014).

[33] David R Monismith Jr. “Uses of the Slime Mold Lifecycle as a Model for Numerical
Optimization”. PhD thesis. Oklahoma State University, 2010.

[34] Sunil Nakrani and Craig Tovey. “On honey bees and dynamic server allocation in
internet hosting centers”. In: Adaptive Behavior 12.3-4 (2004), pp. 223–240.

[35] Andy Oram. Peer-to-Peer: Harnessing the power of disruptive technologies. "
O’Reilly Media, Inc.", 2001.

[36] Vidyasagar Potdar, Atif Sharif, and Elizabeth Chang. “Wireless sensor networks: A
survey”. In: Advanced Information Networking and Applications Workshops, 2009.
WAINA’09. International Conference on. IEEE. 2009, pp. 636–641.

[37] Muhammad Saleem, Gianni A Di Caro, and Muddassar Farooq. “Swarm intelligence
based routing protocol for wireless sensor networks: Survey and future directions”.
In: Information Sciences 181.20 (2011), pp. 4597–4624.

[38] Marc Sànchez-Artigas and Enrique Férnandez-Casado. “Evaluation of p2p systems
under different churn models: Why we should bother”. In: European Conference on
Parallel Processing. Springer. 2011, pp. 541–553.

161

https://tools.ietf.org/html/rfc4330
https://tools.ietf.org/html/rfc4330

[39] Nurul I Sarkar and Syafnidar A Halim. “A review of simulation of telecommunication
networks: simulators, classification, comparison, methodologies, and recommenda-
tions”. In: Journal of Selected Areas in Telecommunications (JSAT), March Edition
(2011).

[40] Vesna Šešum-Čavić, Eva Kuehn, and Daniel Kanev. “Bio-inspired search algorithms
for unstructured P2P overlay networks”. In: Swarm and Evolutionary Computation
29 (2016), pp. 73–93.

[41] Vesna Sesum-Cavic and eva Kühn. “A Swarm Intelligence Appliance to the Con-
struction of an Intelligent Peer-to-Peer Overlay Network.” In: CISIS. 2010, pp. 1028–
1035.

[42] Vesna Šešum-Čavić and Eva Kühn. “Self-Organized Load Balancing through Swarm
Intelligence”. In: Next Generation Data Technologies for Collective Computational
Intelligence. Springer, 2011, pp. 195–224.

[43] Daniel Stutzbach and Reza Rejaie. “Understanding churn in peer-to-peer networks”.
In: Proceedings of the 6th ACM SIGCOMM conference on Internet measurement.
ACM. 2006, pp. 189–202.

[44] Andrew Tanenbaum and David Wetherall. Computer Networks Fifth Edition. Pear-
son, 2011, pp. 355–494.

[45] Firat Tekiner. “Distributed and intelligent routing algorithm”. PhD thesis. Northum-
bria University, Newcastle, 2005.

[46] Karl Von Frisch. “Decoding the language of the bee”. In: Science 185.4152 (1974),
pp. 663–668.

[47] Xiaoming Wang et al. “Robust lifetime measurement in large-scale p2p systems
with non-stationary arrivals”. In: Peer-to-Peer Computing, 2009. P2P’09. IEEE
Ninth International Conference on. IEEE. 2009, pp. 101–110.

[48] Horst F Wedde and Muddassar Farooq. “A performance evaluation framework for
nature inspired routing algorithms”. In: Workshops on Applications of Evolutionary
Computation. Springer. 2005, pp. 136–146.

[49] Horst F Wedde, Muddassar Farooq, and Yue Zhang. “BeeHive: An efficient fault-
tolerant routing algorithm inspired by honey bee behavior”. In: Ant colony opti-
mization and swarm intelligence. Springer, 2004, pp. 83–94.

[50] Li-Pei Wong, Malcolm Yoke Hean Low, and Chin Soon Chong. “A bee colony
optimization algorithm for traveling salesman problem”. In: Modeling & Simulation,
2008. AICMS 08. Second Asia International Conference on. IEEE. 2008, pp. 818–
823.

[51] Zhongmei Yao et al. “Modeling heterogeneous user churn and local resilience of
unstructured P2P networks”. In: Network Protocols, 2006. ICNP’06. Proceedings
of the 2006 14th IEEE International Conference on. IEEE. 2006, pp. 32–41.

162

[52] Saloua Zammali and Khedija Arour. “P2pirb: benchmarking framework for p2pir”.
In: Data Management in Grid and Peer-to-Peer Systems. Springer, 2010, pp. 100–
111.

[53] Xiaoge Zhang et al. “An improved physarum polycephalum algorithm for the
shortest path problem”. In: The Scientific World Journal 2014 (2014).

163

Web-References

[54] Apache Commons Net. http://commons.apache.org/proper/commons-
net/. Accessed: 2017-03-23.

[55] CISCO Internetworking Technology Handbook. http://docwiki.cisco.com/
wiki/Internetworking_Technology_Handbook. Accessed: 2017-03-23.

[56] Google Compute Engine. https://cloud.google.com/compute/. Accessed:
2017-03-23.

[57] Google Compute Engine Machine Types. https://cloud.google.com/
compute/docs/machine-types. Accessed: 2017-03-23.

[58] J-SIM Website. https://sites.google.com/site/jsimofficial/. Ac-
cessed: 2017-03-23.

[59] Java Standard Edition 8. http://docs.oracle.com/javase/8/. Accessed:
2017-03-23.

[60] jExcel API. http://jexcelapi.sourceforge.net/. Accessed: 2017-03-23.
[61] Network Simulator 2. http://www.isi.edu/nsnam/ns/. Accessed: 2017-03-

23.
[62] Network Simulator 3. https://www.nsnam.org/. Accessed: 2017-03-23.
[63] OMNet++ Discrete Event Simulator. https://omnetpp.org/. Accessed: 2017-

03-23.
[64] PeerfactSim.KOM. http://peerfact.com/. Accessed: 2017-03-23.

165

http://commons.apache.org/proper/commons-net/
http://commons.apache.org/proper/commons-net/
http://docwiki.cisco.com/wiki/Internetworking_Technology_Handbook
http://docwiki.cisco.com/wiki/Internetworking_Technology_Handbook
https://cloud.google.com/compute/
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types
https://sites.google.com/site/jsimofficial/
http://docs.oracle.com/javase/8/
http://jexcelapi.sourceforge.net/
http://www.isi.edu/nsnam/ns/
https://www.nsnam.org/
https://omnetpp.org/
http://peerfact.com/

Acronyms

API Application programming interface
app-data Application data of a Peer Model entry

BCO Bee Colony Optimization

cAMP cyclic Adenosine Monophosphate
co-data Coordination data of a Peer Model entry

Dd Dictyostelium discoideum

I/O Input / Output
ID Identifier

P2P Peer-to-Peer
PIC Peer Input Container
POC Peer Output Container
Pp Pseudopod

RT Routing table

SMNet SlimeMoldNet

TTL Time-to-live
TTS Time-to-start

XLS Excel Spreadsheet

167

	Introduction
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Thesis

	Related Work & Technical Background
	Peer Model
	P2P Systems & Overlay Networks
	Routing in Unstructured P2P Networks
	Related Work
	Summary

	Bio-inspired Algorithms for Routing in Unstructured P2P Networks
	Routing in Unstructured P2P Network Definition
	BeeNet
	SlimeMoldNet
	Summary

	Peer Model Framework Architecture
	Peer Space Routing Pattern
	Pattern composition
	Framework Composition
	Core Framework Components
	Additional Framework Components
	Summary

	Implementation Details
	Peer Model Implementation & Extensions
	Services
	Tracing & Output
	Framework execution
	Framework Configuration
	Limitations
	Summary

	Evaluation
	Benchmark Methodology
	Sensitivity Analysis
	Raw Result Data
	Competitive Analysis
	Statistical Analysis
	Scalability Analysis
	Summary

	Future Work & Conclusion
	Future Work
	Conclusion

	Appendix
	Additional Benchmarks for the Scalability Analysis

	Bibliography
	Web-References
	Acronyms

