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Abstract

The mixing of turbulent and laminar flow inside a rectangular channel T-junction is inves-

tigated using experimental and numerical methods. A non-intrusive, optical measurement

technique (Laser Doppler Velocimetry) is applied to gather point-wise velocity information

of the flow. This information is used to calculate the turbulent kinetic energy k, a measure

of velocity fluctuations. Computational Fluid Dynamics (CFD), allows the detailed investi-

gation of mixing flows based on finite volume method. However, because of the complexity

of turbulent flow, economical simulations are restricted to the use of turbulence models

to account for the velocity fluctuations. Comparison of measurements and simulation in-

dicates that while velocities are predicted correctly, the simulation severely underpredicts

the turbulent kinetic energy. Aim of this work is to use the obtained measurement data to

calibrate the turbulence model, reducing the error in the prediction of k, and therefore en-

able a better simulation of the mixing fluid flow. This is achieved by modifying the default

values of eight model constants present in the equations of the turbulence model. In order

to reduce the computational effort a statistical method, Design of Experiments (DoE), is

applied to identify the best possible value combinations. Using this method, a stationary

point is predicted, reducing the error between measured and simulated turbulent kinetic

energy in the turbulent flow from initially 90 % to 45 %.



Kurzfassung

Das Mischverhalten von turbulenten und laminaren Strmungen in einem rechteckigen

Kanal wird mittels experimenteller und numerischer Methoden untersucht. Eine kon-

taktlose, optische Messtechnik (Laser Doppler Velocimetry) wird angewandt um punk-

tweise Geschwindigkeitsinformation der Strmung zu erfassen. Diese Information wird

genutzt um die turbulente kinetische Energie k, ein Ma fr die Geschwindigkeitsschwankun-

gen, zu berechnen. Numerische Strmungssimulation (CFD) ermglicht eine genaue Unter-

suchung der Strmung, basierend auf dem Finite-Volumen-Verfahren. Aufgrund der Kom-

plexitt von turbulenten Strmungen sind diese Simulationen auf Modelle angewiesen, die

Geschwindigkeitsschwankungen erfassen. Der Vergleich von Messergebnissen und Simula-

tion zeigt, dass Geschwindigkeiten korrekt vorhergesagt werden, die turbulente kinetische

Energie allerdings stark unterschtzt wird. Ziel dieser Arbeit ist es, das Turbulenzmod-

ell mithilfe der Messdaten zu kalibrieren und so den Fehler in der Vorhersage von k zu

minimieren. Die Kalibration erfolgt durch Anpassung der Standardwerte der acht Mod-

ellkonstanten des Turbulenzmodells. Um den Rechenaufwand so gering wie mglich zu

halten, wird eine statistische Methode, Design of Experiments (DoE), angewandt. Die so

erhaltenen neuen Modellkonstanten reduzieren den Fehler zwischen experimenteller und

numerischer turbulenter kinetischer Energie von initial 90 % auf 45 %.



Acknowledgment

The computational results presented have been achieved in part using the Vienna Sci-

entific Cluster (VSC). Financial support was provided by the Austrian research funding

association (FFG) under the scope of the COMET program within the research project

Industrial Methods for Process Analytical Chemistry From Measurement Technologies to

Information Systems (imPACts, www.k-pac.at) (contract # 843546). Special thanks to

Bahram and Christian for supporting this thesis.

Affidavit

I confirm, that going to pres of this thesis needs the conformation of the examination

committee. I declare in lieu of oath, that I wrote this thesis and performed the associated

research myself, using only literature cited in this volume. If text passages from sources

are used literally, they are marked as such. I confirm that this work is original and has not

been submitted elsewhere for any examination, nor is it currently under consideration for

a thesis elsewhere.

Vienna, February 1, 2018



Contents

1 Introduction 14

1.1 Aim of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Applied Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Theoretical Background 18

2.1 Turbulent Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Direct Numerical Simulation (DNS) . . . . . . . . . . . . . . . . . . 20

2.3 Reynolds Averaged Navier Stokes Equations . . . . . . . . . . . . . . . . . 21

2.3.1 Closure Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Linear Eddy Viscosity Models . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Closure Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 The k − ω − SST Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Closure Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 The γ −Reθ Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Transition modeling concept . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 Transition Model Formulation . . . . . . . . . . . . . . . . . . . . . 28

2.5.3 Closure Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.4 Coupling with the k − ω − SST Model . . . . . . . . . . . . . . . . 31

2.6 Laser Doppler Velocimetry (LDV) . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.1 Measurement principle . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.2 Seeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.3 LDV Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.4 Evaluation of measurement data . . . . . . . . . . . . . . . . . . . . 34

2.7 Design of Experiments (DoE) . . . . . . . . . . . . . . . . . . . . . . . . . 35



2.7.1 Introduction to DoE . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7.2 Fractional Factorial Design . . . . . . . . . . . . . . . . . . . . . . . 38

2.7.3 Objectives of DoE . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.4 Evaluation of Raw Data . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7.5 Model Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Experimental Investigation 46

3.1 Investigated Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 LDV- Measurement Positions . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Estimation of Pump Error . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Selection of Seeding Particles . . . . . . . . . . . . . . . . . . . . . 51

3.4 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Numerical investigation 54

4.1 Mesh selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Base case - Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Solver settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Base Case - Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Screening Simulations 63

5.1 Simplified Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Design of Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Optimization Simulations 68

6.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



6.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.4 1st Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.5 2nd Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.5.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Optimization Results 77

7.1 Qualitative Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.2 Global Error Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2.1 Turbulent Kinetic Energy, all Profiles . . . . . . . . . . . . . . . . . 79

7.2.2 Turbulent Kinetic Energy, only turbulent sections . . . . . . . . . . 80

7.2.3 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3 Profile Error Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3.1 Turbulent kinetic energy . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3.2 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 Summary and Outlook 87

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Appendices 90

Appendix A Empirical Correlations 90

Appendix B Measurement Results - Cross section 91

Appendix C Measurement Results - Box plot 92

Appendix D OpenFOAM solver settings 93

D.1 turbulenceProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



D.2 fvSolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

D.3 fvSchemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Appendix E Profile 1 98

Appendix F Profile 2 99

Appendix G Profile 3 101

Appendix H Profile 4 102

Appendix I Profile 5 104

List of Figures

1 Laminar and turbulent flow in a pipe (Oertel 2012) . . . . . . . . . . . . . 18

2 Axial component of velocity on the centerline of a turbulent jet. (C. Tong

and Warhaft 1995) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Principle of the k − ω − SST model . . . . . . . . . . . . . . . . . . . . . . 23

4 Principle of the γ −Reθ model . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Measurement principle of LDV (Haddadi et al. 2018) . . . . . . . . . . . . 32

6 Components of the LDV system and experimental setup (Haddadi et al. 2018) 34

7 LDV velocity distribution. Result of one measurement point (Haddadi et al.

2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

8 Fitting a simple model to experimental data containing Factors xn, Re-

sponses ym, Coefficients βi and the model error em. . . . . . . . . . . . . . 36

9 Geometrical representation and design of a three factor full factorial design

(without center points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10 Graphical interpretation of a 23−1 (g = 3, b = 1) fractional factorial design. 38

11 Different fractional factorial designs and their resolution (roman numerals).

Leftmost column indicates the required number of runs. . . . . . . . . . . . 39



12 Outline of the DoE workflow applied in this work . . . . . . . . . . . . . . 40

13 Boxplot of normally distributed (A) and tailed data (B) . . . . . . . . . . . 41

14 Interpretation of the Half-normal plot . . . . . . . . . . . . . . . . . . . . . 45

15 Channel dimensions in mm . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

16 Position of the five measurement profiles . . . . . . . . . . . . . . . . . . . 47

17 Experimental Setup: 1 = Laser source and Bragg cell, 2 = LDV probe, 3 =

Traverse System, 4 = Flow channel, 5 = Pumps and water tank . . . . . . 49

18 Velocity profiles for the pump error estimation . . . . . . . . . . . . . . . . 50

19 Comparison of aluminium and hollow glass particles for seeding . . . . . . 52

20 FLTR: Case 0.0, Case 0.1, Case 0.2 (Intermittency: blue = 0, red = 1) . . 55

21 Inlet section and stratifiers of the mesh used for the simulation . . . . . . . 56

22 Convergence of the Base Case (Slice 1 = Laminar section, Slice 2 = Turbu-

lent section, Slice 3 = Mixing section) . . . . . . . . . . . . . . . . . . . . . 58

23 Simulation reults of the mixing section . . . . . . . . . . . . . . . . . . . . 59

24 Velocity measurement and base case simulation comparison (Profile 3) . . . 60

25 Velocity measurement and base case simulation comparison (Profile 2 and

Profile 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

26 Turbulent kinetic energy measurement and base case simulation comparison

(Profile 2 and Profile 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

27 Turbulent kinetic energy and velocity measurement. Base case simulation

comparison (Profile 4 at z/h = 0.6) . . . . . . . . . . . . . . . . . . . . . . 62

28 Segment of the simplified mesh for the Screening simulations . . . . . . . . 63

29 Boxplot of the transformed Response . . . . . . . . . . . . . . . . . . . . . 66

30 Screening results - Main effects plot . . . . . . . . . . . . . . . . . . . . . . 66

31 Screening results - Half normal plot . . . . . . . . . . . . . . . . . . . . . . 67

32 RSM Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

33 3D contour plot of the first optimization design, Error on the z-Axis denoted

as SSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

34 Movement of the center points . . . . . . . . . . . . . . . . . . . . . . . . . 73



35 Boxplot of the 2nd optimization response . . . . . . . . . . . . . . . . . . . 75

36 Residual plot of the 2nd quadratic model . . . . . . . . . . . . . . . . . . . 75

37 3D contour plot of the second optimization design . . . . . . . . . . . . . . 76

38 Qualitative comparison of the simulation with standard and adjusted coef-

ficients at the symmetry plane . . . . . . . . . . . . . . . . . . . . . . . . . 78

39 Intermittency values at z/h = 0.5 . . . . . . . . . . . . . . . . . . . . . . . 78

40 Error comparison of the turbulent kinetic energy error for all optimization

simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

41 Error composition of the turbulent kinetic energy error with the standard

(left) and adjusted (right) coefficients . . . . . . . . . . . . . . . . . . . . . 80

42 Error comparison of the turbulent kinetic energy error for all optimization

simulations, without the laminar profile . . . . . . . . . . . . . . . . . . . . 81

43 Error composition of the turbulent kinetic energy error with the standard

(left) and adjusted (right) coefficients, without the laminar profile . . . . . 81

44 Error comparison of the velocity error for all optimization simulations. . . 82

45 Error composition of the velocity error with the standard (left) and adjusted

(right) coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

46 Effect of the parameter change on the turbulent kinetic energy, profiles 1

and 5 at z/h = 0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

47 Simulation profile 5 with different scaling at z/h = 0.6 . . . . . . . . . . . 84

48 Effect of the parameter change on the turbulent kinetic energy, profile 2 at

z/h = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

49 Effect of the parameter change on the turbulent kinetic energy, profile 3 at

z/h = 0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

50 Effect of the parameter change on the velocity components, profiles 2 at z/h

= 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

51 Valid counts for all measurement points . . . . . . . . . . . . . . . . . . . . 91

52 Valid counts for all measurement points . . . . . . . . . . . . . . . . . . . . 92

53 Turbulent kinetic energy comparison (Profile 1) . . . . . . . . . . . . . . . 98



54 Standard coefficients velocity components comparison (Profile 1) . . . . . . 98

55 Adjusted coefficients velocity components comparison (Profile 1) . . . . . . 99

56 Turbulent kinetic energy comparison (Profile 2) . . . . . . . . . . . . . . . 99

57 Standard coefficients velocity components comparison (Profile 2) . . . . . . 100

58 Adjusted coefficients velocity components comparison (Profile 2) . . . . . . 100

59 Turbulent kinetic energy comparison (Profile 3) . . . . . . . . . . . . . . . 101

60 Standard coefficients velocity components comparison (Profile 3) . . . . . . 101

61 Adjusted coefficients velocity components comparison (Profile 3) . . . . . . 102

62 Turbulent kinetic energy comparison (Profile 4) . . . . . . . . . . . . . . . 102

63 Standard coefficients velocity components comparison (Profile 4) . . . . . . 103

64 Adjusted coefficients velocity components comparison (Profile 4) . . . . . . 103

65 Turbulent kinetic energy comparison (Profile 5) . . . . . . . . . . . . . . . 104

66 Standard coefficients velocity components comparison (Profile 5) . . . . . . 104

67 Adjusted coefficients velocity components comparison (Profile 5) . . . . . . 105

List of Tables

1 R Packages used in this work . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Stokes number based on particle size distribution for SPHERICEL R© 110P8 33

3 Confounding of factors in a 24−1 fractional factorial design . . . . . . . . . 39

4 Example output of R for an interaction model . . . . . . . . . . . . . . . . 42

5 Example output of an interaction model fitted to a fractional factorial design 44

6 Calculated flowrates for the different channel sections . . . . . . . . . . . . 47

7 Water properties for 20 ◦C . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Measurement profiles and resolution . . . . . . . . . . . . . . . . . . . . . . 48

9 Summary of the pump error investigation . . . . . . . . . . . . . . . . . . . 51

10 Experimental conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

11 Properties of the meshes used in the mesh dependence study . . . . . . . . 55

12 Boundary conditions for the Base Case . . . . . . . . . . . . . . . . . . . . 57



13 CFD boundary conditions for Screening . . . . . . . . . . . . . . . . . . . . 64

14 Investigated values of the Screening exercise . . . . . . . . . . . . . . . . . 64

15 Fractional factorial screening design . . . . . . . . . . . . . . . . . . . . . 65

16 Confounding pattern of two factor interactions . . . . . . . . . . . . . . . . 67

17 Investigated values of the first Optimization Design . . . . . . . . . . . . . 70

18 First optimization design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

19 Investigated values of the first optimization design . . . . . . . . . . . . . . 73

20 2nd Optimization Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

21 Optimization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

11/109



Nomenclature

Greek letters

η Kolmogorov length scale

λ Laser wavelength

µ Dynamic viscosity

µt Eddy viscosity

ν Kinematic viscosity

Ω Vorticity magnitude

ω Specific turbulence dissipation rate

ρ Fluid density

ρp Seeding particle density

τη Kolmogorov time scale

θ Momentum thickness

ε Dissipation rate

β Regression coefficient

γ Intermittency

σ̂2 Residual variance

Latin letters

R̃eθt Local transition onset momentum thickness Reynolds number

Co Courant number

d Fringe distance

D/Dt Material derivative

dh Hydraulic diameter

e Regression model error

fd Doppler frequency

g Number of factors

12/109



k Turbulent kinetic energy

L Characteristic length scale

n Number of valid counts

p Pressure

R Seeding particle radius

R2 Coefficient of determination

Reθc Critical momentum thickness Reynolds number

Reθt Transition onset momentum thickness Reynolds number

Rev Vorticity Reynolds number

Sij Rate of strain

St Stokes number

T Temperature

Tu Turbulence intensity

U Freestream velocity

U(x, t) Velocity field

u(x, t) Fluctuating velocity component

U0 Local freestream velocity

uη Kolmogorov velocity scale

uτ Friction velocity

V Total volume

vi Volume of cell i

x Regression model factor

y Regression model response

y+ Dimensional wall distance

13/109



1. INTRODUCTION

1 Introduction

1.1 Aim of this work

Computational Fluid Dynamics (CFD) can provide a detailed investigation of industrial

size mixing processes, that are either economically or physically not accessible for ordinary

measurement devices. In principle, the governing fluid flow equations for mass, impulse

and energy can be solved numerically which is referred to as Direct Numerical Simulation

(DNS). However, due to the complexity of turbulence DNS requires high spatial and tempo-

ral resolution, resulting in unfeasible computational requirements for industrial size appli-

cations. In order to circumvent this challenge Osborne Reynolds proposed a simplification

by splitting the flow field in a mean and fluctuating component. The resulting Reynolds

Averaged Navier Stokes (RANS) Equations use turbulence models (e.g. k − ω − SST ) to

account for the turbulent kinetic energy k, a measure of velocity fluctuations.

A downside of RANS - based models is their inability to capture the effect of laminar-

turbulent transition. Empirical correlation models e.g. Abu-Ghannam and Shaw (1980)

successfully predict transition in special purpose cases, however due to their non-local for-

mulation are not applicable for unstructured, general purpose CFD codes. In 2006 the

γ − Reθ model, a correlation based transition model that adds two additional transport

equations and three empirical correlations to the k − ω − SST turbulence model, was

introduced (Robin Blair Langtry 2006). Part of this work is to confirm the correct imple-

mentation of the γ−Reθ model in OpenFOAM R© and verify its ability to represent laminar

and turbulent internal flows.

In order to prove the models validity, mixing experiments in a T-junction rectangular

glass channel are conducted. Velocities and turbulent kinetic energy predicted in the sim-

ulation are compared to experimental data. Laser Doppler Velocimetry (LDV) is used to

gather point-wise velocity information of the flow.

14/109



1. INTRODUCTION

The initial comparison of simulation and experiment reveals that while velocities are

predicted accurately, turbulent kinetic energy values are under-predicted in every point of

the flow field. This observation is consistent with Zöchbauer, Smith, and Lauer (2015) who

investigated LDV- measurements, LES and RANS simulations in an exhaust gas pipe. A

possible reason for this discrepancy are the models standard values for its Closure Coeffi-

cients.

Closure coefficients are constants present in the transport equations of the turbulence

model. The determination of these values is achieved by a combination of experimental

observations and experience (Wilcox 1988). It is known that small changes in these val-

ues can significantly improve or deteriorate the simulation results (Schaefer et al. 2017).

Since most turbulence models are primarily calibrated for external flow, it is conceivable

that changing the standard values of the closure coefficients can lead to a reduction of error.

The main ambition of this work is therefore to find a combination of closure coefficient

values that reduces the error in turbulent kinetic energy prediction to a minimum, while

maintaining the accurate prediction of velocity components. Since the selected turbulence

model contains 8 closure coefficients influencing the prediction of k, an organized approach

is preferable to reduce the necessary number of simulations for this task. Design of Ex-

periments (DoE) offers such an approach by fitting a regression model to the outcome of

a structured experimental plan.

1.2 Structure

The first part of this work is an introduction to Computational Fluid Dynamics (CFD),

especially turbulence modelling and why it is necessary, as well as the advantages and

disadvantages of RANS-based turbulence models. A summary of the γ − Reθ transition

model used in this work is given. Subsequently, the measurement principle of Laser Doppler
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Velocimetry (LDV) is described, including the selection of suitable seeding particles. An

overview of Design of Experiments (DoE) is presented, clarifying the aim, advantages and

execution of this method.

Section 3 introduces the investigated flow, measurement setup and experimental conditions.

The numerical investigation of this work is split in three parts. First, the Base Case

is established and initially compared with measurement results. Then, as part of the

DoE, the Screening simulations are presented and evaluated. Based on the Screening

results the final Optimization step leads to the desired minimum of error (= stationary

point). Concluding, the results of LDV-measurements and stationary point simulation are

compared and evaluated.

1.3 Applied Software

The results presented in this work are achieved using different free to use software:

The open source CFD-code OpenFOAM R©4.1 is employed to obtain the numerical so-

lution of the flow.

ParaView 5.0.1, a data analysis and visualization software, is used for the post-processing

of the simulation results.

Evaluation of simulation and measurement data, as well as conducting Design of Ex-

periments, is carried out with the statistical computing environment ”R” 3.3.2. A major

advantage of this software is its availability of user created content, so called ”Packages”.

The Packages utilized in this work are listed in Table 1.

The computational results presented in this work have been achieved in part using the

Vienna Scientific Cluster (VSC).
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Table 1: R Packages used in this work

Package Version Source Description

FrF2 1.7-2 Groemping 2014 Fractional Factorial Design
rsm 2.8 Lenth 2009 Response-surface Analysis

daewr 1.1-7 Lawson 2016 Design and Analysis of Experiments with R
ggplot2 2.2.1 Wickham 2009 Data visualization
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2 Theoretical Background

2.1 Turbulent Flow

The following description of turbulent flows and turbulence modeling is based on the work

of Pope (2000). A visual representation of the difference between laminar and turbulent

flow is depicted in Figure 1. Dye is inserted in a pipe, if laminar flow is present the

dye stream is undistorted by the flow and continues on a parallel path along the pipes

axis. However if the flow is turbulent the dye is jiggled by turbulent motion resulting

in a mixing of water and dye. This experiment was conducted by Reynolds in 1883 and

lays the groundwork for our understanding of turbulent flow. Reynolds later established a

dimensionless parameter, now known as the Reynolds number Re, to distinguish between

the two flow regimes. It consists of the the characteristic velocity U (m/s) and length

L (m) as well as the kinematic viscosity ν (m2/s).

Figure 1: Laminar and turbulent flow in a pipe (Oertel 2012)

Re =
UL

ν
(2.1)

The defining property of a turbulent flow is its significant, irregular variation of the velocity

field, denoted U(x, t), in both time and space as displayed in Figure 2. These velocity fluc-

tuations lead to a much better transport and mixing characteristic compared to laminar
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flows, as well as higher pressure drop, shear stress and heat transfer. In many engineering

applications turbulent flow is prevalent, a correct prediction of the turbulence magnitude

and the distinction between laminar and turbulent flow by numerical simulations is there-

fore highly desirable. However, as the following sections will discuss, the characteristic

velocity fluctuations of a turbulent flow pose a challenge for efficient numerical simulation.

Figure 2: Axial component of velocity on the centerline of a turbulent jet. (C. Tong and
Warhaft 1995)

2.2 Governing Equations

The basic equations governing the flow of an incompressible fluid are the continuity equa-

tion for conservation of mass (Equation 2.2), the Navier-Stokes equations (incompressible,

newtonian fluids) for conservation of momentum (Equation 2.3) and the energy equation

for conservation of energy (Equation 2.4). They make up a system of 5 equations and 5

unknowns: Three velocity components (u, v, w), pressure p and enthalpy h.

∂ρ

∂t
+∇(ρU) = 0 (2.2)

DU

Dt
= −1

ρ
∇p+ ν∇2U (2.3)
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ρ
D

Dt

[
h+

1

2
uiui

]
=
∂p

∂t
+

∂

∂xi
[uiSij]−

∂qi
∂xi

+ ρgiui (2.4)

2.2.1 Direct Numerical Simulation (DNS)

For a given flow this complete set of equations can be solved numerically, given appropriate

initial and boundary conditions, to obtain the fluid properties at every grid point. This is

referred to as Direct Numerical Simulation (DNS). In turbulent flows the grid size must

therefore be in magnitude of the smallest turbulent motions, the so called Kolmogorov

Scales.

Energy cascade & Kolmogorov Scales

”Big whorls have little whorls,

Which feed on their velocity

And little whorls have lesser whorls,

And so on to viscosity (in the molecular sense).”

In 1922 Richardson summarized the concept of the Energy Cascade with the above poem

(Pope 2000). The concept is based on the consideration that turbulence is composed of

eddies of different sizes. Eddies of size ` have a characteristic velocity u(`) and timescale

τ(`) ≡ `/u(`). Richardsons assumption is that large eddies are unstable and break up

into smaller eddies, transferring their energy. This process continues until the Reynolds

number Re(`) = u(`)`/µ is sufficiently small that the eddy motion is stable, and molecular

viscosity dissipates the kinetic energy. In 1941 Kolmogorov enhanced the concept of the

energy cascade by combining the rate of dissipation ε = u30/`0 and kinematic viscosity ν

to define the ”Kolmogorov Scales”. They represent characteristic length (Equation 2.5),

velocity (Equation 2.6) and time (Equation 2.7) scales of the smallest turbulent motion.

η ≡
(
ν3

ε

)1/4

(2.5)
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uη ≡ (εν)1/4 (2.6)

τη ≡
(ν
ε

)1/2
(2.7)

Based on the Kolmogorov Scales an estimation for the necessary number of grid nodes

N as a function of the Reynolds number, can be made.

N4 ∼ Re3 (2.8)

2.3 Reynolds Averaged Navier Stokes Equations

Because of the above requirement, DNS is not economically applicable for industrial size,

turbulent flows. Simplifications are therefore made in order to simulate high Reynolds

number flows. In 1894 Reynolds proposed a decomposition of the velocity U(x, t) in a

mean component 〈U(x, t)〉 and a fluctuating component u(x, t).

U(x, t) = 〈U(x, t)〉+ u(x, t) (2.9)

also referred to as Reynolds decomposition. By applying the Reynolds decomposition on

the Navier- Stokes equation (Equation 2.3) the Reynolds Averaged Navier Stokes (RANS)

equation is obtained.
D〈Ūj〉
D̄t

= ν∇2〈Uj〉 −
∂〈uiuj〉
∂xi

− 1

ρ

∂〈p〉
∂xj

(2.10)

Comparing Equation 2.10 with Equation 2.3, an additional term 〈uiuj〉 is present in

the RANS equation, referred to as Reynolds stresses. Because of its symmetry (〈uiuj〉 =

〈ujui〉), it introduces six new variables to the system of equations. Based on the Reynolds

stress tensor an important variable, the ”turbulent kinetic energy”, can be defined as half

the trace of the tensor.

k =
1

2
〈uiui〉 (2.11)
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2.3.1 Closure Problem

For a three-dimensional flow, there are four independent equations governing the flow.

However, due to the Reynolds stresses, there are ten unknown variables (Three velocity

components, pressure and six Reynolds stresses), which is referred to as the closure problem.

Solving this problem, i.e. modeling the Reynolds stresses, ultimately leads to the variety of

different turbulence models available today. One approach is based on an analogy between

the Reynolds stresses and molecular viscosity, so called ”Linear Eddy Viscosity Models”.

2.3.2 Linear Eddy Viscosity Models

The idea of eddy viscosity, also known as turbulent viscosity was first introduced in 1877 by

J. V. Boussinesq. He proposed modeling the Reynolds stresses analogous to the Newtonian

friction law, replacing the molecular viscosity and non-linear terms with a single variable

called the eddy viscosity νt. The eddy viscosity is not a fluid property, but a property of

the flow turbulence and can be interpreted as the magnitude of mixing due to turbulence

and its effect on the mean flow.

〈uiuj〉 = 2νtSij −
2

3
kδij (2.12)

Popular turbulence models such as the ”k−ω” model are based on this concept. They

solve two additional transport equations for the turbulent kinetic energy (k) and specific

dissipation rate (ω), to calculate νt = f(k, ω).

2.3.3 Closure Coefficients

An example transport equation for k, originating from the k − ω model, is represented in

Equation 2.13 (Wilcox 1988).

∂

∂t
(ρk) +

∂

∂xj
(ρUjk) = P̃k − β∗ρωk +

∂

∂xj

[
(µ+ σ∗µt)

∂k

∂xj

]
(2.13)
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It contains the variables β∗ and σ∗, examples of so called ”closure coefficients”. Closure

coefficients are present in all turbulent eddy viscosity models due to dimensional reasons.

Their constant numerical value is determined by the models authors, based on a combi-

nation of dimensional analysis and experimental measurements (Schaefer et al. 2017). For

example, the value of β∗ was obtained by examination of the log layer region. Various

simplicfications lead to the relation
√
β∗ = τ/k. Based on experiments it was concluded

that τ/k = 0.3 in the log layer region which resulted in a standard value for β∗ = 0.09.

The value for σ∗ = 0.5 on the other hand is solely chosen because it yields the best fit for

a set of experimental results (Wilcox 1988). Because of this calibration to experimental

data, it is unlikely that a turbulence model with a given set of closure coefficients is equally

valid for any type of flow. Efforts are therefore made to calibrate (i.e. change the values

of the closure coefficients) turbulence models for specific flow problems. (Stephanopoulos

et al. 2016) performed an uncertainty quantification on a 2D flat-plate and backward-facing

step, using different turbulence models. They found that the k − ω − SST model is most

sensitive to the σω1 coefficient. A similar investigation was performed by Schaefer et al.

(2017) for transonic flows, who determined that β∗ is the most influential parameter in the

k − ω − SST model.

2.4 The k − ω − SST Model

Figure 3: Principle of the k − ω − SST model
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The k − ω − SST turbulence model is a RANS based, two-equation eddy viscosity model

(F. R. Menter 1994). By itself it is a combination of the k−ε (Launder and Sharma 1974),

and the k − ω turbulence model (Wilcox 1988). The motivation for this combination is

the superior behavior of the k − ε model in the free-stream, and k − ω model near wall

regions. Using a blending function, the k−ω−SST model switches between both in order

to yield the best possible solution (F. R. Menter 1994), (Pope 2000). OpenFOAM R© 4.0

implements the k-ω-SST model as specified in F. Menter and Esch (2001) with two notable

exceptions. The closure coefficient values are inherited from F. R. Menter, Kuntz, and

R. Langtry (2003), and an additional blending function F3 is used as described in Hellsten

(1998).

2.4.1 Model formulation

The core of the model are its two transport equations for the turbulent kinetic energy k

(Equation 2.14),

∂

∂t
(ρk) +

∂

∂xj
(ρUjk) = P̃k − β∗ρωk +

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
(2.14)

and the specific dissipation rate ω (Equation 2.15).

∂

∂t
(ρω) +

∂

∂xj
(ρUjω) =

γ

νt
Pk − βρω2 +

∂

∂xj

[(
µ+

µt
σω

)
∂ω

∂xj

]
+ (1− F1)2ρσω2

1

ω

∂k

∂xj

∂

∂xj
(2.15)

Where F1 is the blending function responsible for the switch between the k−ω (F1 = 1)

and k − ε (F1 = 0) formulation.

F1 = tanh(arg41); arg1 = min

(
max

( √
k

β∗ωy

)
;

4ρσω2k

CDkωy2

)
(2.16)

The production of turbulent kinetic energy (Equation 2.14) is described by

P̃k = min(Pk; 10 ∗ β∗ρkω) (2.17)
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Pk = τij
∂Ui
∂xj

(2.18)

The calculation of the turbulent eddy viscosity νt is defined as

νt =
a1k

max(a1ω;SF2)
(2.19)

with S representing the invariant measure of the strain rate, and F2 being an additional

blending function.

F2 = tanh(arg22); arg2 = max

(
2

√
k

β∗ωy
;
500ν

y2ω

)
(2.20)

2.4.2 Closure Coefficients

The coefficients ϕ of the SST model are computed as a blend of the corresponding k − ω

(ϕ1), and k − ε closure coefficients (ϕ2). A short description is given based on Wilcox

(1988) and Schaefer et al. (2017).

ϕ = ϕ1F1 + (1− F1)ϕ2 (2.21)

• σk1 = 0.85, σk2 = 1.0: Values chosen to match empirical decay rate of k and νt

(Equation 2.14).

• σω1 = 0.5, σω2 = 0.856: Values chosen to match empirical decay rate of k and νt

(Equation 2.15, Equation 2.16)

• β1 = 0.075, β2 = 0.0828: Approximates the time decay of homogeneous isotropic

turbulence experiments (Equation 2.15)

• β* = 0.09: Relates τ/k = 0.3 in the log layer; (Equation 2.14, Equation 2.16 and

Equation 2.20)

• γ1 = β1/β ∗ −σω1 ∗ κ2/
√
β∗ = 5/9 (Equation 2.15)
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• γ2 = β2/β ∗ −σω2 ∗ κ2/
√
β∗ = 0.44 (Equation 2.15)

• a1 = 0.31: Present in the turbulent eddy viscosity definition. According to Schaefer

et al. (2017) decreasing it would lead to non-physical results. (Equation 2.19)

2.5 The γ −Reθ Model

The turbulence model investigated in this work is the γ−Reθ Model which was published

in its entirety in 2009 (Robin B. Langtry and Florian R. Menter 2009). It extends the

k−ω−SST model (F. Menter and Esch 2001) by adding two additional transport equations

for the intermittency γ, and the local transition onset momentum thickness Reynolds

number R̃eθt, as well as three empirical correlations, in order to model laminar-turbulent

transition. The functional principle of the model is depicted in Figure 4, dividing the

equations necessary to describe the fluid flow in three categories.

Figure 4: Principle of the γ −Reθ model

First, the empirical correlations and transport equations of the transition model are

solved to determine the value of γ, a measure for transition onset. Second, the turbulence
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model transport equations calculate the eddy viscosity νt, which is subsequently used to

acquire the solution of the flow fields governing equations.

2.5.1 Transition modeling concept

In order to better understand the working of the γ − Reθ model, it is advantageous to

review former approaches of transition modeling.

Empirical correlation models e.g. Abu-Ghannam and Shaw (1980) connect the momen-

tum thickness Reynolds number Reθ

θ =

∫
u

U0

∗ (1− u

U0

) ∗ dy (2.22)

Reθ =
ρθU0

µ
(2.23)

with local free-stream conditions (e.g. Turbulent intensity, Pressure gradient). This is

achieved by calculating the laminar solution and integrating the boundary layer quantities

in order to calculate Reθ. If the calculated Reθ exceeds the one obtained from the empirical

calculation, transition onset is assumed. The main shortcoming of these models is their

non-local formulation, which makes them unfit for 3D, unstructured CFD codes (Robin

B. Langtry and Florian R. Menter 2009). Menter proposed a link between the vorticity

Reynolds number Rev (Blumer and VanDriest 1963)

Rev =
ρy2

µ
S (2.24)

and Reθ therefore eliminating the need for the integration of the boundary layer. This is

possible because Rev is a local quantity and can therefore be calculated at every grid point

of unstructured code (F.R. Menter, Esch, and Kubacki 2002). Based on this observation the

γ−Reθ model was introduced (Robin Blair Langtry 2006). It uses an empirical correlation

to capture non-local free stream conditions and calculate the transition onset momentum

thickness Reynolds number R̃eθt. By treating R̃eθt as a transported scalar quantity, it can
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be used in a transport equation. A second transport equation calculates the intermittency

γ to locally trigger transition (Robin Blair Langtry 2006).

2.5.2 Transition Model Formulation

A full description of the model is given in (Robin B. Langtry and Florian R. Menter 2009).

The Intermittency γ can be interpreted as the probability that a given point in the flow

field is turbulent. Its transport equation for the reads

∂(ργ)

∂t
+
∂(ρUjγ)

∂xj
= Pγ − Eγ +

∂

∂xj

[(
µ+

µt
σf

)
∂γ

∂xj

]
(2.25)

The source is defined as

Pγ = Flengthca1ρS[γFonset]
0.5(1− ce1γ) (2.26)

where Flength controls the length, and Fonset the location of the transition region. Both

Flength and Fonset are calculated using empirical correlations (see Appendix A), and take

the solution of the R̃eθt transport equations as input.

Flength = f(R̃eθt) (2.27)

Fonset = f(R̃eθc) (2.28)

Fonset activates the production of intermittency γ. It is designed to assume values between

0 in laminar regions, and 1 for each point of the flow field where the transition onset criteria

is met. The sink term is defined as

Eγ = ca2ρΩγFturb(ce2γ − 1) (2.29)

Fturb is used to disable the destruction source outside of a laminar boundary layer or in
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the viscous sublayer.

Fturb = e−(
RT
4

)4 (2.30)

RT is the viscosity ratio specified as

RT =
ρk

µω
(2.31)

In order to calculate γ, non-local free-stream conditions need to be captured. This is

achieved by solving the transport equation for the transition momentum-thickness Reynolds

number
∂(ρR̃eθt)

∂t
+
∂(ρUjR̃eθt)

∂xj
= Pθt +

∂

∂xj

[
σθt(µ+ µt)

∂(R̃eθt)

∂xj

]
(2.32)

Outside the boundary layer the source term is designed to force the transported scalar

R̃eθt to match the local value of Reθt, which is obtained from empirical correlations (see

Appendix A).

Pθt = cθt
ρ

t
(Reθt − R̃eθt)(1.0− Fθt) (2.33)

Reθt is calculated based on free stream information namely the turbulence intensity Tu

and the pressure gradient λθ.

Tu = 100

√
2k/3

U
(2.34)

λθ =
ρθ2

µ

dU

ds
(2.35)

where dU/ds is the stream-wise acceleration. Fθt is a blending function equal to zero in

the free stream and one in the boundary layer.

Fθt = min

(
max

(
Fwakee

−(y/δ)4 , 1.0−
(
γ − 1/ce2

1.0− 1/ce2

)2
)
, 1.0

)
(2.36)

The Fwake function ensures that the blending function is not active in the wake regions
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downstream of an airfoil or blade.

Fwake = e−( Reω
1E+5)

2

(2.37)

2.5.3 Closure Coefficients

In order to calibrate the transition model for internal pipe flow Abraham, Sparrow, and J.

Tong (2008) proposed to adjust two closure coefficients. In doing so, the range of transition

for the friction factor was increased to Re ∼ 4000.

• ce1 = 1.0 (Equation 2.26) limits the value of γ to a maximum of 1. Since a value

below zero or above one is not physical this parameter should not be changed.

• ca1 = 2.0 (Equation 2.26)

• ce2 = 50 (Equation 2.29) controls the lower limit of the intermittency. The value of

50 results in a lower limit of 0.02. Abraham, Sparrow, and J. Tong (2008) changed

this value to 70. Increasing this value will likely result in an extended transition

region.

• ca2 = 0.06 (Equation 2.29) controls the strength of the destruction term and makes

sure that it is smaller then the production term.

• σf = 1.0 (Equation 2.25).

• cθt = 0.03 (Equation 2.33) controls the magnitude of the source term. Abraham,

Sparrow, and J. Tong (2008) changed the value to 0.015. Decreasing will likely

increase the transition region.

• σθt = 2.0 (Equation 2.32) Diffusion coefficient. Controls the lag between the local

value of Reθt in the boundary layer and that in the freestream. The larger the value

the less sensitive the transition model is to history effects.
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2.5.4 Coupling with the k − ω − SST Model

As illustrated in Figure 4, the information passed from the transition to the turbulence

model is the intermittency γ. In order for them to interact some modifications are necessary

to the formulation of the k−ω−SST model (Robin B. Langtry and Florian R. Menter 2009).

The most important is the adjustment of the production term in the turbulent kinetic

energy transport equation Equation 2.17, which is labeled Pk in the following equation.

P̃k = γ ∗ Pk (2.38)

Therefore, if a fully laminar flow is present (γ = 0) the production of turbulent kinetic

energy is disabled. On the other hand in a fully turbulent flow (γ = 1) the transition

model does not influence the underlying turbulence model.

2.6 Laser Doppler Velocimetry (LDV)

Laser Doppler Velocimetry (LDV) is an optical measurement technique used to determine

fluid flow velocity. It is based on the Doppler Effect, relating the change in wavelength

of a reflected signal to the targeted objects relative velocity (Yeh and Cummins 1964).

Key benefits of this measurement technique are the possibility to measure fluid flow non-

intrusive, calibration-free with a high sampling frequency (Beauvais 1994). Limitations

include the need for suitable seeding particles and expensive equipment, as well as optical

access to the fluid medium (Nabavi and Siddiqui 2010).

2.6.1 Measurement principle

In a dual beam system two coherent laser beams with wavelength λ form a measurement

volume at their focal point (Figure 5). The crossing of the beams creates a fringe pattern

with light and dark areas. The distance d between these areas can be calculated using

Equation 2.39 (Boutier and Most 2012)
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d =
λ

2 ∗ sin(φ/2)
(2.39)

Figure 5: Measurement principle of LDV (Haddadi et al. 2018)

If a seeding particle passes through the fringe pattern it will scatter a signal with

frequency fd. The velocity v of the particle is therefore calculated as (Boutier and Most

2012)

v =
fd ∗ λ

2 ∗ sin(φ/2)
(2.40)

Two particles with the same velocity but opposite direction will have the same frequency

value fd. In order to measure the direction of the flow, one of the laser beams is therefore

shifted by a frequency f0, creating a moving fringe pattern. A particle with zero velocity

will result in a detected frequency f0 while any movement of the particle will result in

a frequency larger or smaller than f0, depending on the direction relative to the fringe

movement (McKeon et al. 2007).

v =
(fd − f0) ∗ λ
2 ∗ sin(φ/2)

(2.41)

2.6.2 Seeding

Flow seeding is essential since LDV measures the velocity of particles passing through the

measurement volume. In order to claim that particle velocity relates to fluid velocity the
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particles have to follow the flow field. The Stokes number St (Equation 2.42) compares

the particle inertia to the viscous forces of the fluid (Gondret, Lance, and Petit 2002).

St =
2 ∗ ρp ∗ U ∗R

9 ∗ µ
(2.42)

If St < 0.1 the flow tracing accuracy error can be assumed below 1 % (McKeon et

al. 2007). Another desired property of seeding particles is the ability to scatter light.

The scattering ability of a particle increases with its size, which is contrary to the de-

mand of small particles for flow tracking (McKeon et al. 2007). Hollow glass particles

(SPHERICEL R© 110P8, Osthoff Omega Group) are selected for seeding due to their size,

density ρp = 1.1 kg/m3 and material. Assuming a water viscosity of µ = 0.0010022Pas

and velocity of U = 0.44m/s, which is the highest mean velocity calculated prior to ex-

periments, the Stokes number is calculated based on the particle size distribution supplied

by the manufacturer (Table 2).

Table 2: Stokes number based on particle size distribution for SPHERICEL R© 110P8

Cumulative Diameter St

% µm -

10 5 0.000271

50 10 0.000542

90 21 0.001138

97 25 0.001355

2.6.3 LDV Components

Components of the LDV system are depicted in Figure 6. A 300 mW, air cooled Argon Ion

Laser (CVI Melles-Griot) is split into a 488 nm blue and 514.8 nm green beam, followed

by a frequency shift of 35 MHz using a Bragg cell. The signal is transported via fiber

optic cables and focused at the point of interest. A TSI TR260 fiber-optic probe (350 mm
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focal length, 61 mm diameter) collects the scattered signal in backscatter mode (180◦).

Photo-multipliers (TSI PDM 1000 Photomultiplier System) detect the photons which are

analyzed at the signal processor (TSI FSA 4000 3-channel digital burst processor, 800 MHz

sampling frequency, 175 MHz max. Doppler frequency). Evaluation of the acquired data

was performed using TSI FlowSizer (version 3.0.0.0, 2011) software.

Figure 6: Components of the LDV system and experimental setup (Haddadi et al. 2018)

In the current setup the LDV probe is mounted on a traverse system (Figure 17) which

enables movement in X,Y and Z direction as well as pre-programming a set of desired

measurement points. The setup is accompanied by an optional simultaneous concentration

measurement using Raman spectroscopy (Haddadi et al. 2018).

2.6.4 Evaluation of measurement data

Each time a seeding particle passing through the fringe pattern creates a detectable signal

it is referred to as a ”valid count”, resulting in a velocity distribution for each measurement

point (Figure 7). Based on this distribution, the average velocity for each component i at

a measurement position is calculated as

Ūi =
1

n

n∑
j=1

(Ui,j) (2.43)
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with n being the number of valid counts.

Figure 7: LDV velocity distribution. Result of one measurement point (Haddadi et al.
2018)

The turbulent kinetic energy k is a measure of velocity fluctuations (Equation 2.11).

For two measured velocity components the calculation is performed as

k =
3

4

1

n

n∑
i=1

((U1,i − Ū1)
2 + (U2,i − Ū1)

2) (2.44)

assuming isotropic turbulence. The third velocity component (Z) is considered as a mean

value of the other two components. High number of valid counts are therefore desirable

for a trustworthy calculation of the pointwise velocity and turbulent kinetic energy.

2.7 Design of Experiments (DoE)

2.7.1 Introduction to DoE

Aim of this work is to identify the optimum value combination of the closure coefficients

present in the turbulence model. This task could be achieved by arbitrarily changing one

model constant at a time, trying to find the best possible combination. However, this

unorganized approach yields two major disadvantages. First, it would require enormous

amounts of time and resources. Second, if there are interactions between two of the con-
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stants, the optimum combination would likely be missed.

Design of Experiments on the other hand provides an organized plan for collecting data

in a way that it can be analyzed statistically, with a minimum of resources. This is achieved

by fitting a Regression model, containing the Factors of interest and their according Coef-

ficients, to an experimental Response using the least squares method (Figure 8).

Figure 8: Fitting a simple model to experimental data containing Factors xn, Responses
ym, Coefficients βi and the model error em.

When discussing DoE it is practical to define some frequently used terms (Eriksson

2008):

Factor Factors are input variables whose influence on the outcome is investigated. In the

present case the closure coefficients represent the factors. A classification can be made in

controllable (e.g. inlet velocity) and uncontrollable (e.g. ambient pressure in experiments),

as well as qualitative (e.g. ON or OFF) and quantitative (e.g. velocity, pressure) factors.

When using DoE in connection with CFD, all factors are controllable.

Level The number of investigated values for each factor is referred to as level. An

increasing number of levels increases accuracy at the cost of additional experiments. Most

common are 2-level designs where each factor is investigated at a high (+) and low (-)

value.
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Design The design is a set of experimental runs, determined prior to experiments, that

allows fitting of a model and estimation of effects. A design that includes all possible

combinations is referred to as ”Full factorial”-design. The common notation for these

designs is ”2g” where 2 refers to the number of levels and g to the number of factors.

One example of such design is given in Figure 9 where each blue point represents a factor

combination.

Figure 9: Geometrical representation and design of a three factor full factorial design
(without center points)

Response The response is the output variable or depended variable of the process.

Equally to factors, it can be classified as qualitative or quantitative. The present work

defines the response as a measure of turbulent kinetic energy.

Regression Model A regression model represents the mathematical link between pre-

defined factors and the computed responses. Generally, a simple model used on complex

data will miss important interactions and a complex model used on simple data will lead

to over-fitting. Since the model is selected beforehand it is therefore crucial to check the

model fit before using it for predictions (Lawson 2015).

Linear model

y = β0 + x1β1 + x2β2 + ...+ e (2.45)
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Interaction model

y = β0 + x1β1 + x2β2 + x1x2β12 + ...+ e (2.46)

Quadratic model

y = β0 + x1β1 + x2β2 + x21β11 + x22β22 + x1x2β12 + ...+ e (2.47)

2.7.2 Fractional Factorial Design

A disadvantage of full factorial designs is the exponentially increasing number of experi-

ments. A 28 design for example would require 256 runs to complete. A method to decrease

the number of experimental runs is the use of ”Fractional factorial”- Designs (2g−b) which

reduce the number of experiments at the expense of model accuracy (Eriksson 2008),

(Lawson 2015). A graphical interpretation of the concept is given in Figure 10. The full

2g design is split b times, reducing the number of experiments. This reduction however

comes at the cost of confounding, meaning that the main factor effects can no longer be

computed completely free from one another.

Figure 10: Graphical interpretation of a 23−1 (g = 3, b = 1) fractional factorial design.

The confounding pattern of a 24−1 design is shown in Table 3. All the main effects,

A, B, C, D, are confounded with three factor interaction terms A:B:C, A:C:D, A:B:D

and A:B:C respectively. However these three factor interaction terms are usually small

compared to the main effects and can therefore be assumed to be of negligible relevance

(Eriksson 2008). The two factor interactions are confounded with each other and therefore
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the situation is more complex.

Table 3: Confounding of factors in a 24−1 fractional factorial design

A = B:C:D

B = A:C:D

C = A:B:D

D = A:B:C

A:B = C:D

A:C = B:D

A:D = B:C

A degree of confounding is the resolution of a fractional factorial design. The resolution

of a design is the smallest order interaction that the main effect is confounded with, plus

one (e.g. resolution III signifies that all main effects are aliased with 2 factor interactions).

For Screening purposes, resolution III or IV designs are viable. Figure 11 summarizes the

benefits and shortcomings of choosing a fractional factorial design.

Figure 11: Different fractional factorial designs and their resolution (roman numerals).
Leftmost column indicates the required number of runs.
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2.7.3 Objectives of DoE

Combining the strengths of full and fractional factorial designs, a workflow can be deter-

mined that yields detailed results with a minimum amount of simulations (Lawson 2015).

This process is illustrated in Figure 12, including the main objectives of each step.

Figure 12: Outline of the DoE workflow applied in this work

Screening At the start of the investigation there is usually little information about the

influence of factor on a desired response. Therefore it is advisable to reduce the number

of factor in a first ”Screening” step. This reduction of factor is achieved by utilizing

fractional factorial designs, which allows for a broad investigation of factor with reasonable

experimental effort. This way the most important factors can be identified and passed on

to the second ”Optimization” step.

Optimization Optimization designs identify a detailed relation between the selected

factor and the response. They are also referred to as Response Surface Methodology

(RSM) designs. This work uses the Central Composite Circumscribed (CCC) design,

which is visualized in Figure 32 for three factor. The CCC design is based on a full

factorial (blue) design, but augments it by introducing axial points (red). Therefore every

factor is investigated at five levels (-1.68, -1, 0, +1, +1.68) (Lawson 2015). RSM designs

usually fit quadratic models.

40/109



2. THEORETICAL BACKGROUND

2.7.4 Evaluation of Raw Data

Selecting the correct design is one part of DoE. The second part involves evaluation of the

obtained data.

In DoE, it is advantageous if the response data is normally distributed, as it enhances

model quality. A quick way to check this requirement is the use of Boxplots. Figure 13

exemplifies the difference in normally distributed data (A) and tailed data (B). The thick

black line represents the median value. If the raw data appears as shown in (B), it is

advisable to perform a logarithmic transformation. If a transformation does not yield the

desired result, the factor levels should be changed in order to obtain superior data.

Figure 13: Boxplot of normally distributed (A) and tailed data (B)

2.7.5 Model Quality

Once satisfied with the quality of response data, the model can be fitted. It is important

to keep in mind that a DoE constructed in R will always fit a model to the provided data.

An output however does not equal a valid model. The model quality needs to be examined

before predictions are made. An example output of an interaction model fitted to a 23 full

factorial design is given in Table 4.
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Table 4: Example output of R for an interaction model

Global Model Quality The global model quality is verified at the bottom section of

Table 4. Based on the residual standard error an F-test is performed. If the calculated

p value (in this case p = 0.0385) is smaller than a chosen α (e.g. α = 0.05), the zero-

hypothesis that all coefficients are equal to zero is rejected, meaning that at least one of

the factor has a significant influence on the response. The coefficient of determination R2

is an indicator providing information about the goodness of fit of a Model. If R2 = 1, the

regression line perfectly fits the data.

ȳ =
1

n

n∑
i=1

yi (2.48)

SumSquareError = SSE =
n∑
i=1

(yi − ŷi)2 (2.49)

SumSquareTotal = SST =
n∑
i=1

(yi − ȳ)2 (2.50)

R2 = 1− SSE

SST
(2.51) 0 ≤ R2 ≤ 1 (2.52)

yi...Response variable of experiment i

ŷi...Predicted value of response variable of experiment i
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ȳ... Mean value of response variable

t-Test Based on the residual variance σ̂2 with n observations and p parameters

σ̂2 =
SSE

n− p
(2.53)

and the variance of each coefficient, the standard error is computed. This standard error

then is used to test each coefficient for its significance using a t-statistic. The zero hypoth-

esis, that the tested coefficient is equal to zero is rejected if the Pr(> |t|)-value is smaller

than a chosen α-level. In this example the main effect A1 and the interaction term A1 : C1

are estimated with a certainty of 99% and 95% respectively.

Evaluation of fractional factorial designs The model output of a fractional factorial

design (Table 5) is different in comparison to the output of a full factorial design (Table 4).

In this example eight experiments (24−1) are carried out and an interaction model was

fitted. Thus eight experiments and eight coefficients are present, resulting in R2 = 1, a

perfect fit. Therefore no variance of the coefficient can be computed and no t-statistic can

be performed, as indicated by ”NA”.
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Table 5: Example output of an interaction model fitted to a fractional factorial design

A different approach to determine the significance of a coefficient is needed, for example

the Half-normal plot. The interpretation of the Half-normal plot is illustrated in Figure 14.

Assuming that all coefficients are caused by white noise in the response variable, (i.e. no

factor has an effect on the response), the resulting coefficients are normally distributed

around a mean value, and therefore close to the near-zero line in the half normal plot

(Figure 14b). All coefficients that are not only caused by white noise are typically displaced

well off the line (Figure 14c).
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(a) PDF of standard distribution (b) Half-normal plot of standard distribution

(c) Half-normal plot with outliers

Figure 14: Interpretation of the Half-normal plot
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3 Experimental Investigation

3.1 Investigated Flow

The mixing of turbulent and laminar flow in a T-junction, rectangular glass channel is

investigated. The dimensions of the channel are illustrated in Figure 15. The turbulent

flow enters the channel from inlet 1, the laminar flow from inlet 2. In order to remove flow

history effects, stratifiers are included in the setup for both inlets. Each stratifier consists of

30 pipes with a diameter of 1mm and a length of 50mm. Water is selected as experimental

fluid considering its availability, cost, non-toxicity and fluid properties. Using water for

both inlets also enables recirculation of the outlet flow. Therefore longer experiment times

and subsequently more measurements are possible, as opposed to multispecie experiments

which are limited by material consumption.

Figure 15: Channel dimensions in mm

The flowrates (Table 6) for the laminar and turbulent section of the channel are constant

throughout the experiment.

The Reynolds number (Equation 2.1) is based on the hydraulic diameter dh = 2ab/a+b,

where a and b are the width and height of the glass channel. Water properties (Table 7)

are assumed constant over the course of the experiment.
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Table 6: Calculated flowrates for the different channel sections

Flowrate [kg/s] Flowrate [l/min] Re [-]

Inlet 1 0.0998 6 4980

Inlet 2 0.0199 1.2 996

Outlet 0.1197 7.2 5976

Table 7: Water properties for 20 ◦C

Water Properties

Density 998.21 kg/m3

Kinematic viscosity 0.000001004 m2/s

Hydraulic diameter 0.015 m

3.2 LDV- Measurement Positions

A total of five 2D profiles at the inlets, outlet and mixing sections are investigated. Fig-

ure 16.

Figure 16: Position of the five measurement profiles
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Due to the more complex flow field, the profiles at the mixing section are expected to

require a higher resolution in order to capture all flow conditions accurately. Therefore

a resolution of 341 measurement points is applied for profile 2 and profile 3, equal to a

spacing of 1 mm, and a lower resolution of 96 measurement points for profiles 1, profile 4

and profile 5, equal to a spacing of 2 mm (Table 8).

Table 8: Measurement profiles and resolution

Position Points (X) Points (Y) Points (Z) Total

Profile 1 Outlet 1 11 6 96

Profile 2 Mixing Section 1 31 11 341

Profile 3 Mixing Section 1 31 11 341

Profile 4 Laminar Inlet 11 1 6 96

Profile 5 Turbulent Inlet 1 11 6 96

3.3 Experimental Setup

The complete setup is depicted in Figure 17. As described in Section 2.6, the LDV probe is

mounted on a traverse system, allowing for quick adjustment of the measurement position.

A file that includes all measurement points is created using a C++ code and forwarded to

the traverse control.
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Figure 17: Experimental Setup: 1 = Laser source and Bragg cell, 2 = LDV probe, 3 =
Traverse System, 4 = Flow channel, 5 = Pumps and water tank

3.3.1 Estimation of Pump Error

Succeeding the first LDV measurements, a mismatch of simulation results and experiments

regarding the velocities, especially in the laminar flow, was observed. Evaluation of the

measurement data revealed fluctuating velocity profiles (Figure 18a).

Test measurements were performed at high and low flowrates to estimate the mean

flowrate error of the system. An error of 20 % at laminar conditions was observed. In-

vestigation of the erroneous pump revealed broken bearings as the cause for the high

error. To ensure stable flow rates and therefore reliable measurements a new set of pumps

(RoverPompe R© BE-T 25) was installed in the experimental setup. Repeated measurements

revealed that the error was successfully reduced to 4.2 % (Table 9).
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(a) Previous system

(b) Current system

Figure 18: Velocity profiles for the pump error estimation
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Table 9: Summary of the pump error investigation

Previous system

Massflow [kg/s] Mean Error [%] Variation Coefficient [-]

Low FR 0.04 20 0.12

High FR 0.08 3.1 0.038

Current system

Low FR 0.02 4.2 0.05

High FR 0.1 1.6 0.02

The current pumping system consists of two pumps, each equipped with a variable

frequency drive to adjust the flow rate, and a water feed tank in which the seeding particles

are dispersed. The glass channel (Figure 15) is fixed on a table and supplied with water

by the pumping system. Pressures at the inlets and outlet, as well as water temperature

are recorded. Rotameters are installed at both inlets to monitor the flowrates during the

course of the experiment.

3.3.2 Selection of Seeding Particles

Initially Aluminum particles (ECKA R© DG 018, AN <0.045mm) are used for flow seeding.

During measurements with recirculating water flow it is observed that the number of valid

counts is decreasing over time. Figure 20a depicts the valid counts of each measurement

point at the mixing section using Aluminum particles. It is apparent that only the core

of the fluid flow is supplied with enough seeding particles during the measurement. An

inspection of the channel revealed that, after hours of measurement, the particles tend

to settle on the bottom wall, especially in low velocity regions. New seeding material

was selected based on the Stokes number (Section 2.6.2). The newly selected hollow glass

spheres exhibit satisfactory results Figure 20b.
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(a) Aluminium particles

(b) Glass particles

Figure 19: Comparison of aluminium and hollow glass particles for seeding

3.4 Measurement Results

Additional experimental conditions are listed in Table 10. During the LDV data collection

the flowrates as well as valid counts are monitored. After completion a C++ code is

used to extract the obtained data, perform the calculation of the turbulent kinetic energy
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(Section 2.6.4) and convert it to a ParaView compatible file format (.vtk). The conversion

eases the comparison of measurement with simulation data.

Table 10: Experimental conditions

Pressure drop 0.01 bar

Temperature 23◦C

Limit for LDV 3000 valid counts or 9 seconds

Seeding Particles 10 g in 24.8 kg Water

Investigating the valid counts of the recorded profiles (see Appendix B), it is apparent

that measurements near the channel walls are not as good as in the rest of the flow field.

The reason for the low or zero counts near the side walls is the glue layer that was used in

the building process of the channel (Figure 16, black glue layer is visible). The thickness of

this layer is about 1mm, and therefore it blocks the laser light from entering the channel

at this position.

Low or zero counts near the top and bottom walls are most likely due to the shape

of the LDV measurement volume (Figure 5). Its vertical length of 0.91mm (Haddadi et

al. 2018) exceeds its width, making it harder to position the LDV-probe correctly on the

vertical axis. Furthermore, the reflections of the glass impede the data acquisition near

the top and bottom walls.

An assumption could be made that the velocity at the first measurement points near the

channel walls is close to zero. Interpolation with the first valid measurement point could

approximate the missing values. However, including these points in the error estimation

would likely distort the outcome of the DoE. Therefore, a reduction of the measurement

profiles for the comparison with simulation results is applied. Measurements at height

z/h = 0.4, 0.5, 0.6 for Profiles 2 and 3, and z/h = 0.4, 0.6, 0.8 for Profiles 1,4 and 5 are

evaluated. Additionally, the zero valid count points near the side walls are discarded.

Measurement results for velocity components and turbulent kinetic energy are illus-

trated in Appendix E - I (black graphs). A detailed discussion is given in Section 4.3.
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4 Numerical investigation

A numerical investigation of the flow is performed using OpenFOAM R©, beginning with a

simulation using the standard closure coefficients (= Base Case). The following section will

introduce the Base Case setup, and compare its results to the measurements. OpenFOAM R©

determines all case settings in text files that are located in one of three directories:

0 Boundary conditions for each variable, as well as initial values are established in the 0

directory.

constant The constant directory is used to set material and mesh properties. It also

contains the turbulenceProperties file which establishes the values of the closure coefficients.

system The system directory contains information about the solver (fvSolution), dis-

cretization (fvSchemes) and data input/output control (controlDict) settings.

4.1 Mesh selection

The first step in obtaining the numerical solution is the discretization of the computational

domain, also referred to as meshing. An indicator if the discretization near the walls is fine

enough is the dimensionless wall-distance y+ which is calculated using the friction velocity

uτ (Pope 2000).

uτ =

√
τw
ρ

(4.1)

y+ =
uτ ∗ y
ν

(4.2)

For the use of the γ − Reθ model, a y+ value of approximately 1 is suggested in order

to correctly resolve the boundary layers (Robin B. Langtry and Florian R. Menter 2009).

A mesh dependence study using different wall-refinements and cell sizes (Table 11) is
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performed to investigate the influence on the solution.

Table 11: Properties of the meshes used in the mesh dependence study

Case 0.0 Case 0.1 Case 0.2

Wall refinement - yes yes no

Cells - 2021160 1758108 1064136

y+ (avg) - 0.6 1.7 10

k (avg) m2s−2 0.0023 0.0021 0.0457

Results of this study are displayed in Figure 20. Cases with wall-refinement are able

to resolve the laminar boundary layer (blue), whereas Case 0.2 predicts an intermittency

value of 1 for each cell in the flow field. The course discretization also influences the average

k-value extracted from the simulations (Table 11), where Case 0.2 predicts a much higher

value compared to the other cases.

(a) Wall refinement

(b) Intermittency values

Figure 20: FLTR: Case 0.0, Case 0.1, Case 0.2 (Intermittency: blue = 0, red = 1)

Based on the dependence study, a mesh consisting of 5 296 730 cells with an aver-

age y+ of 1.5 is created using the OpenFOAM R© mesh generation utility snappyHexMesh
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(Figure 21).

Figure 21: Inlet section and stratifiers of the mesh used for the simulation

4.2 Base case - Setup

4.2.1 Boundary Conditions

Velocity, pressure and temperature boundary conditions are based on experimental data.

Inlet conditions for k and ω are estimated using the turbulence intensity Tu and length

scale L for fully developed pipe flow. At the wall, ω is set to a non-zero number (∼ 10−30)

therefore avoiding floating point exceptions.

k =
3

2
(U ∗ Tu)2 (4.3a)

Tu = 0.16 ∗Re−1/8
dh (4.3b)

ω =
√
k/L (4.4a)

L = 0.038 ∗ dh (4.4b)

Boundary conditions for γ and Reθ are suggested in Robin B. Langtry and Florian R.
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Menter (2009). An intermittency value of 1 for the turbulent inlet, and 0 for laminar inlet

is chosen. For the estimation of Reθ, Equation A.3 is solved assuming zero velocity gradient

and free stream turbulent velocity. To ensure numerical robustness a value of Reθ ≥ 20 is

suggested. A complete list of boundary conditions is given in Table 12

Table 12: Boundary conditions for the Base Case

Inlet 1 Inlet 2 Outlet Wall

Velocity m/s 1.273 0.255 zeroGradient 0

Pressure m2s−2 zeroGradient zeroGradient 1e5 zeroGradient

k m2s−2 0.005 0.000005 zeroGradient 0

ω s−1 200 50 zeroGradient 1e-30

γ - 1 0 zeroGradient zeroGradient

Reθ - 20 500 zeroGradient zeroGradient

T 293 K 293 zeroGradient zeroGradient

4.2.2 Solver settings

A PISO (= Pressure Implicit with Splitting of Operator) algorithm is applied to solve the

system of equations. The Courant number Co (Equation 4.5)

Co =
∆t ∗ u

∆x
(4.5)

is used as a limit for dynamic time stepping. For a given cell size ∆x and fluid velocity

u the time step ∆t is selected in a way that Co ≤ 1. Due to its size, the case is run in

parallel, splitting the computational domain in 48 segments. Computation was performed

on the Vienna Scientific Cluster (VSC3). For detailed solver settings see Appendix D.
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4.3 Base Case - Results

Results are evaluated after 3.9 seconds simulated time, which corresponds to ∼ 144 hours of

computational runtime. A possible reason for this lengthy runtime are high fluid velocities

in the stratifiers, which result in timesteps of ∼ 10−5 s due to the Co limit. In order to

check convergence, the k values are monitored at three different positions in the channel

(Figure 22). Since no notable trend is apparent at either position, the simulation results

are deemed stable.

Figure 22: Convergence of the Base Case (Slice 1 = Laminar section, Slice 2 = Turbulent
section, Slice 3 = Mixing section)

Qualitative simulation results of the turbulent kinetic energy and velocity field are

depicted in Figure 23 for the mixing section.
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(a) Turbulent kinetic energy

(b) Velocity magnitude

Figure 23: Simulation reults of the mixing section

According to the measurement positions (Section 3.2), velocity and turbulent kinetic

energy information is extracted and compared to the experimental data. Complete results

are presented in Appendix E - I. Black graphs represent measurement results, blue and

red graphs the simulation values.

Analyzing the velocities of profile 3, it is evident that LDV-data and simulation results

are in very good agreement. Magnitudes of both components, as well as the profile shapes

are correctly predicted (Figure 24).
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Figure 24: Velocity measurement and base case simulation comparison (Profile 3)

This trend extends to the other profiles as well, the exception being profile 2 (Figure 25a)

where the velocity of the main component is overpredicted by ∼ 30 %. Examining the

profiles of fully turbulent flow (Figure 25b) it is noticeable that measurements at height

z/h = 0.8 differ in their main velocity magnitude, compared to the other profiles where it

is equal along all heights.
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(a) Profile 2, z/h = 0.5 (b) Profile 5, z/h = 0.8

Figure 25: Velocity measurement and base case simulation comparison (Profile 2 and
Profile 5)

Turbulent kinetic energy values are underpredicted at all investigated measurement

points in the turbulent flow field. Interestingly, the predicted shape of the k-value graph

in profile 3 (Figure 26b) matches the experimental one with great accuracy, whereas the

second profile in the mixing section (Figure 26a) is not able to represent the measured

shape.

(a) Profile 2, z/h = 0.5 (b) Profile 3, z/h = 0.5

Figure 26: Turbulent kinetic energy measurement and base case simulation comparison
(Profile 2 and Profile 3)

A main point of interest is the ability of the γ − Reθ transition model to correctly

distinguish between turbulent and laminar flow. Results of the laminar section (Figure 27)
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clearly show the models ability to suppress the production of turbulent kinetic energy, since

the predicted k values are essentially zero at all parts of this flow. Experimental values

however exhibit non-zero k values, which originate from secondary velocity components.

This exemplifies the difficulty to produce a fully laminar flow in experimental conditions.

The velocity fluctuations present in this part of the channel are most likely due to imper-

fections in manufacturing process (i.e. thin glue layer in the channel corners, stratifiers),

or pump instability (Section 3.3.1). The primary velocity component again matches the

experimental value, indicating a correct measurement.

(a) Turbulent kinetic energy (b) Velocity components

Figure 27: Turbulent kinetic energy and velocity measurement. Base case simulation
comparison (Profile 4 at z/h = 0.6)

Based on these comparisons, it can be concluded that the turbulent kinetic energy is

severely underpredicted in the turbulent part of the flow. An effort is therefore made to

increase k by adjusting the standard values of the turbulence model closure coefficients.

As discussed in Section 2.5, there are two sets of closure coefficients in the γ −Reθ model.

The first are the coefficients associated with the transition part of the model, present in the

γ and Reθ transport equations, second the closure coefficients relevant for the calculation

of k and ω. Since the turbulent kinetic energy is a property of turbulent flow, and the

γ−Reθ model for γ = 1 is essentially the k−ω−SST turbulence model, it can be assumed

that the coefficients for the transition part of the model have no significant influence on

the calculation of k.
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5 Screening Simulations

As defined in Section 2.7.3, the first step of a DoE should be the reduction of factors

in order to reduce the effort in the following optimization step. In order to reduce the

computational effort, a simplified mesh is created for this task.

5.1 Simplified Mesh

The high Base Case simulation time of approximately 144 hours is mainly due to the

inclusion of the stratifiers. High velocities in the small pipes lead to small time steps as a

result of the Courant number limit (Equation 4.5). Since the aim of Screening is to identify

significant closure coefficients of the turbulence model, and not to match the experimental

results, it is acceptable to simplify the geometry. By omitting the stratifiers, and reducing

the number of cells to 2 021 160, a simulation time of ∼ 16.6 hours is achieved. The

simplified mesh (Figure 28) results in an average y+ value of 1.12 which is in agreement

with the mesh dependence study.

Figure 28: Segment of the simplified mesh for the Screening simulations

5.2 Boundary Conditions

In difference to the Base Case, a fully turbulent simulation is investigated for the Screening

exercise. The reason for this change is to eliminate a possible influence of the transition

prediction on the calculation of k. Inlet velocities are adjusted to the changed inlet geom-
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etry.

Table 13: CFD boundary conditions for Screening

Inlet 1 Inlet 2 Outlet Wall

Velocity m/s 0.33 0.33 zeroGradient 0

Pressure m2s−2 zeroGradient zeroGradient 1e5 zeroGradient

k m2s−2 0.0005 0.0005 zeroGradient 0

ω s−1 50 50 zeroGradient 1e-30

γ - 1 1 zeroGradient zeroGradient

Reθ - 20 20 zeroGradient zeroGradient

T K 293 293 zeroGradient zeroGradient

5.3 Design of Simulation Experiments

The investigated factors and levels are listed in Table 14. Levels are chosen according to

(Schaefer et al. 2017).

Table 14: Investigated values of the Screening exercise

Index Standard Value (0) Low Value (-1) High Value (+1)

σK1 A 0.85 0.7 1

σK2 B 1 0.8 1.2

σω1 C 0.5 0.3 0.7

σω2 D 0.856 0.7 1.0

β1 E 0.075 0.0598 0.0861

β2 F 0.0828 0.0541 0.0975

β∗ G 0.09 0.0784 0.1024

a1 H 0.31 0.31 0.4
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A 28−4, resolution IV, fractional factorial design is created for this task, resulting in 16

simulations. All factor combinations and corresponding response values (y) are displayed

in Table 15

Table 15: Fractional factorial screening design

A B C D E F G H y

1 -1 -1 -1 -1 -1 -1 -1 -1 -6.731628

2 1 -1 -1 -1 1 1 1 -1 -7.751418

3 -1 1 -1 -1 1 1 -1 1 -7.113599

4 1 1 -1 -1 -1 -1 1 1 -6.325925

5 -1 -1 1 -1 1 -1 1 1 -5.745733

6 1 -1 1 -1 -1 1 -1 1 -5.144416

7 -1 1 1 -1 -1 1 1 -1 -5.398487

8 1 1 1 -1 1 -1 -1 -1 -6.135501

9 -1 -1 -1 1 -1 1 1 1 -6.306334

10 1 -1 -1 1 1 -1 -1 1 -7.145642

11 -1 1 -1 1 1 -1 1 -1 -7.733954

12 1 1 -1 1 -1 1 -1 -1 -6.718458

13 -1 -1 1 1 1 1 -1 -1 -6.151910

14 1 -1 1 1 -1 -1 1 -1 -5.395276

15 -1 1 1 1 -1 -1 -1 1 -5.160671

16 1 1 1 1 1 1 1 1 -5.739720

5.3.1 Response

A volume averaged k value, extracted from the mixing section of the channel, is chosen as

the response (Equation 5.1).

y = kavg =
1

V

∑
ki ∗ vi (5.1)

In order to achieve a normal distributed set of data, a logarithmic transformation was

applied. The Boxplot of the transformed response is illustrated in Figure 29.
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Figure 29: Boxplot of the transformed Response

5.4 Evaluation

Inspecting Figure 30 and Figure 31, it appears that Factors C, E and H (which correspond

to σk1, β1 and a1) have an significant effect on the calculation of k. As the main effect

plot indicates, an increase in σk1 or a1 results in an increased production of k, whereas the

effect is reversed for β1.

Figure 30: Screening results - Main effects plot

The half normal plot indicates additional significant two factor interactions for A : D,

A : F and A : B. However, considering the confounding pattern of these interactions
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(Table 16), and the fact that they barely appear as outliers, it is concluded that they can

be omitted.

Figure 31: Screening results - Half normal plot

Table 16: Confounding pattern of two factor interactions

A:F = B:D = C:H = E:G

A:B = C:E = D:F = G:H

A:D = B:F = C:G = E:H
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6 Optimization Simulations

Concluding from the previous screening, an optimization design investigating three factors

(σω1, β1, a1) is constructed. Aim of this step is to predict an ideal parameter combination

that minimizes the simulation error compared to measurement data.

6.1 Boundary Conditions

In difference to screening, the optimization results would be unemployable if a simplified

geometry was used. Boundary conditions, material properties and mesh therefore corre-

spond to the base case (Section 4.2). All cases are again decomposed in 48 segments and

submitted to VSC3.

6.2 Design

A CCC (Central Composite Circumscribed) design is applied in order to fit a quadratic

model (Section 2.7.3). For three factors, this results in 17 runs, consisting of a full factorial

design, center points and axial points. Each factor is therefore investigated on 5 Levels. A

graphical representation of this design is illustrated in Figure 32.
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Figure 32: RSM Design

6.3 Response

For the comparison of measurements and simulation only the center points of the experi-

mental profiles are evaluated, as to not distort the DoE outcome with invalid measurement

points.

The variable in question for comparison is the measured (Section 2.6.4) and simulated

turbulent kinetic energy (kMEA and kSIM respectively). A total of 213 measurement points,

at five different profiles are evaluated. In order to define the response, a single value needs to

be specified that incorporates the deviation of simulation and experiment. The calculation

of this value is implemented as follows: The root mean square error (RMSEp) for each of

the five profiles p is calculated, where n is the number of measurement points.

RMSEp =

√
1

n

∑
(kMEA − kSIM)2 (6.1)

Based on the measurements, a mean value for the turbulent kinetic energy of each profile
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is determined

MEAp =
1

n

∑
(kMEA) (6.2)

The relative error for each profile Errorp arises from

Errorp =
RMSE

MEAi
(6.3)

Finally the mean error, based on all five profiles can be established

Error =
1

5

∑
(Errorp) (6.4)

Extraction of the simulation values kSIM is done using a ParaView script. The error

calculation and evaluation of the DoE in R is scripted as well, enabling a flexible and fast

post processing.

6.4 1st Optimization

6.4.1 Setup

Proceeding from the standard values given in Section 2.4, the levels for each of the three

factors are determined (Table 17). All factor combinations of the 17 run design are listed

in Table 18. Note that the center point runs 9, 10 and 17 are identical in their factor

settings.

Table 17: Investigated values of the first Optimization Design

Standard Value (0) -1.68 -1 +1 +1.68

σω1 0.5 0.33 0.4 0.6 0.66

β1 0.075 0.05 0.06 0.09 0.1

a1 0.31 0.31 0.34 0.41 0.43
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Table 18: First optimization design

run.order std.order sigmaomega1 beta1 a1 y Block

1 1 1 -1.000000 -1.000000 -1.000000 NA 1

2 2 2 1.000000 -1.000000 -1.000000 NA 1

3 3 3 -1.000000 1.000000 -1.000000 NA 1

4 4 4 1.000000 1.000000 -1.000000 NA 1

5 5 5 -1.000000 -1.000000 1.000000 NA 1

6 6 6 1.000000 -1.000000 1.000000 NA 1

7 7 7 -1.000000 1.000000 1.000000 NA 1

8 8 8 1.000000 1.000000 1.000000 NA 1

9 9 9 0.000000 0.000000 0.000000 NA 1

10 10 10 0.000000 0.000000 0.000000 NA 1

11 1 1 -1.681793 0.000000 0.000000 NA 2

12 2 2 1.681793 0.000000 0.000000 NA 2

13 3 3 0.000000 -1.681793 0.000000 NA 2

14 4 4 0.000000 1.681793 0.000000 NA 2

15 5 5 0.000000 0.000000 -1.681793 NA 2

16 6 6 0.000000 0.000000 1.681793 NA 2

17 7 7 0.000000 0.000000 0.000000 NA 2

6.4.2 Evaluation

A graphical representation of the obtained quadratic model is the contour plot Figure 33.

Two observations can be made: First, in order to reduce the error σω1 and a1 need to be

increased, and β1 decreased. This observation is consistent with the results acquired in

the previous Screening step (Figure 30). Second, the contour plot reveals that the desired

stationary point (= Minimum of Error) is outside the examined region, as indicated by the

steep decent of the contour plot.
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(a) (b)

(c)

Figure 33: 3D contour plot of the first optimization design, Error on the z-Axis denoted
as SSE

Aim of this DoE is to find the best Factor combination possible. Therefore the decision

is made to repeat the optimization design with adjusted factor levels, as indicated in

Figure 34. Moving the center point to the factor combination that resulted in the least

amount of error is expected to yield one out of two possible outcomes: Ideally a minimum of

error is detected, satisfying the aim of this DoE. Alternatively, a stability limit is observed

i.e. the resulting factor combinations do not produce stable simulations.
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Figure 34: Movement of the center points

6.5 2nd Optimization

Case setup and boundary conditions are identical to the previous simulations. The moved

center point corresponds to the parameter combination that predicted the least amount

of error in the first Optimization. High and low levels for σω1 and β1 are determined by

applying the same overall range to the new center point, however range for a1 is reduced

compared to the previous DoE. The reason for this reduction are non stable simulations

that occurred at a1 values above 0.58.

Table 19: Investigated values of the first optimization design

Center Value (0) -1.68 -1 +1 +1.68

σω1 0.65 0.43 0.52 0.78 0.87

β1 0.05 0.033 0.04 0.06 0.67

a1 0.44 0.36 0.39 0.48 0.51

Investigated Factor combinations and corresponding Response values are listed in Ta-

ble 20.

73/109



6. OPTIMIZATION SIMULATIONS

Table 20: 2nd Optimization Design

run.order std.order sigmaomega1 beta1 a1 y Block

1 1 1 0.5200000 0.04000000 0.3960000 0.7328486 1

2 2 2 0.7800000 0.04000000 0.3960000 0.7001272 1

3 3 3 0.5200000 0.06000000 0.3960000 0.8350569 1

4 4 4 0.7800000 0.06000000 0.3960000 0.7759955 1

5 5 5 0.5200000 0.04000000 0.4840000 0.5487783 1

6 6 6 0.7800000 0.04000000 0.4840000 0.7381197 1

7 7 7 0.5200000 0.06000000 0.4840000 0.6428209 1

8 8 8 0.7800000 0.06000000 0.4840000 0.5713454 1

9 9 9 0.6500000 0.05000000 0.4400000 0.6088113 1

10 10 10 0.6500000 0.05000000 0.4400000 0.6088113 1

11 1 1 0.4313669 0.05000000 0.4400000 0.7643486 2

12 2 2 0.8686331 0.05000000 0.4400000 0.6089903 2

13 3 3 0.6500000 0.03318207 0.4400000 0.7305587 2

14 4 4 0.6500000 0.06681793 0.4400000 0.7758746 2

15 5 5 0.6500000 0.05000000 0.3660011 0.8031949 2

16 6 6 0.6500000 0.05000000 0.5139989 0.6752117 2

17 7 7 0.6500000 0.05000000 0.4400000 0.6088113 2

6.5.1 Evaluation

In contrast to the Screening exercise, no transformation of the Response data is necessary,

since the box plot Figure 35 reveals a satisfying distribution.
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Figure 35: Boxplot of the 2nd optimization response

A quadratic regression model is fit to the available data resulting in R2 = 0.82. Graph-

ical representation of the residuals ε = yi − ŷi yields important model fit information.

The residual plot Figure 36 illustrates no observable pattern which indicates that the pre-

dictions made by the model are in equal quality regardless of the experimental region.

This assumption is further backed by the observation that the five runs with the highest

residuals (3,4,5,11,16) appear to have no common denominator in terms of their factor

combination. Red lines indicate the residual standard error.

Figure 36: Residual plot of the 2nd quadratic model
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An inspection of the 3D contour plot (Figure 37) reveals that a minimum of error is

predicted by the model. The definitive value combination of this stationary point is listed

in Table 21.

(a) (b)

(c)

Figure 37: 3D contour plot of the second optimization design

Table 21: Optimization results

Standard Value New Value Change

σω1 0.5 0.66 +32%

β1 0.075 0.05 -33%

a1 0.31 0.47 +51%
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7 Optimization Results

Using the parameter combination found in the previous DoE, a ”Stationary Point” sim-

ulation is performed. Based on the model prediction a reduced error is expected in com-

parison to the ”Standard” base case simulation. Boundary conditions and case setup are

again analogous to Section 4.2. The following section provides a short qualitative, and

more extensive quantitative comparison of the two simulations and the measurements.

7.1 Qualitative Comparison

A visual representation of the computed flow field is given in Figure 38. Starting with the

velocity magnitude, the only noticeable difference is the decrease of the low velocity zone

in the mixing section. Comparing the plots of turbulent kinetic energy, a clear difference

is visible as the standard simulation predicts a high k-value zone which is not computed

at the stationary point solution. Interestingly, the change in closure coefficients leads to a

decreased k production in the mixing section. Whether this solution for k is physical or

not is further discussed in Section 7.3.
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(a) Standard, k (b) Stationary Point, k

(c) Standard, Velocity (d) Stationary Point, Velocity

Figure 38: Qualitative comparison of the simulation with standard and adjusted coefficients
at the symmetry plane

The solution for intermittency γ of the stationary point simulation is illustrated in

Figure 39. Flow in the stratifiers is correctly predicted as laminar due to their small

diameter. After the stratifiers the intermittency switches initially to a value of 1, and

subsequently decays to ∼ 0.5 in the core of the flow field.

Figure 39: Intermittency values at z/h = 0.5

The closure coefficients inherited from (Abraham, Sparrow, and J. Tong 2008) are
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adjusted to calibrate the transition model for internal flow. For the aim of this work the

prediction of γ is satisfactory, since the main focus lies on the turbulent part of the flow.

However if a precise prediction of transitional channel flow is desired, further optimization

is necessary. This could be realized by constructing a DoE based on the transition model

closure coefficients (Section 2.5.3), where γ values are selected as response.

7.2 Global Error Comparison

Based on the error calculation given in Section 6.3, the influence of closure coefficient

adjustment is evaluated.

7.2.1 Turbulent Kinetic Energy, all Profiles

As presented in Figure 40, the adjustment of closure coefficients leads to an error reduction

of ∼ 35% compared to the initial simulation. The graph also displays the calculated error

for each DoE simulation (grey).

Figure 40: Error comparison of the turbulent kinetic energy error for all optimization
simulations

In order to understand the composition of these errors, Figure 41 is inspected. The
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leftmost bar represents the mean error of the standard and stationary point simulation

respectively. It is apparent that the error for each profile is reduced, except for profile four.

This observation backs the assumption that the transitional turbulence model correctly

distinguishes between laminar and turbulent flow, since only closure coefficients of the

turbulence model part have been changed. As described in Section 4.3, the high error

in profile four is due to small velocity fluctuations in the experiment, which lead to non-

zero experimental k-values compared to the simulation. Therefore the laminar profile

contributes significantly to the resulting mean error.

Figure 41: Error composition of the turbulent kinetic energy error with the standard (left)
and adjusted (right) coefficients

7.2.2 Turbulent Kinetic Energy, only turbulent sections

Due to the laminar profile being unaffected by the parameter changes, the error compar-

ison is repeated while omitting the laminar profile. The error reduction considering only

turbulent parts of the flow is ∼ 45 %. Composition of the error (Figure 43) now exhibits a

reduction for all profiles, where the biggest improvement is noticeable in Profile 5.
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Figure 42: Error comparison of the turbulent kinetic energy error for all optimization
simulations, without the laminar profile

Figure 43: Error composition of the turbulent kinetic energy error with the standard (left)
and adjusted (right) coefficients, without the laminar profile

7.2.3 Velocity

While the initial comparison of experimental and numerical results presented a discrepancy

in turbulent kinetic energy values, a good agreement in velocity data was observed. Velocity
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prediction therefore should not be influenced by the DoE results. As Figure 44 indicates

the mean error, based on the average velocity magnitude, of the base case simulation is

14 %, with the stationary point simulation slightly below at 13 %.

Figure 44: Error comparison of the velocity error for all optimization simulations.

Composition of the velocity error is presented in Figure 45, again the laminar profile

exerts the largest amount of error.

Figure 45: Error composition of the velocity error with the standard (left) and adjusted
(right) coefficients
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7.3 Profile Error Comparison

7.3.1 Turbulent kinetic energy

As the composition graphs in the previous section showed, the closure coefficient adjust-

ment influenced the different profiles in various magnitudes. A complete comparison is

given in Appendix E - I. All Profiles show a distinct increase in k near the channel walls

for both simulations. The laminar section of the flow is unaffected by the parameter change,

therefore both numerical profiles are identical.

Starting with the fully developed turbulent profiles 1 & 5 (Figure 46), a significant dif-

ference in magnitude can be observed between the two numerical solutions. Also noticeable

is the slight convex curvature of the stationary point profile, which is not observed at the

measurements.

(a) Profile 1 (b) Profile 5

Figure 46: Effect of the parameter change on the turbulent kinetic energy, profiles 1 and 5
at z/h = 0.6

At this point it should be acknowledged that the linear nature of the blue, standard

simulation profile is misleading due to the scaling of the graph. Plotting the k values

of Profile 5 without measurement or stationary point data (Figure 47) reveals the non-

linearity.
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Figure 47: Simulation profile 5 with different scaling at z/h = 0.6

In the mixing section, the simulation underestimates the k values in magnitude. How-

ever, the descent of the measured profile is approximately captured, in contrast to the

simulation with standard coefficients where an increase is predicted (Corresponding to the

high turbulence section in Figure 38). Although k is still under predicted, the change in

closure coefficients yields an overall improved prediction at this part of the flow.

Figure 48: Effect of the parameter change on the turbulent kinetic energy, profile 2 at z/h
= 0.5
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Profile 3 exhibits the least amount of change in comparison with the other turbulent

profiles. The characteristic increase in k near x = 0.025m is predicted in both simulations.

Figure 49: Effect of the parameter change on the turbulent kinetic energy, profile 3 at z/h
= 0.6

Based on the available measurement data it can be concluded that the low k zone

predicted in Figure 38 is not physical. LDV data displays no decrease in turbulent kinetic

energy in the mixing section, on the contrary k values at profile 2 exceed the values at

profile 1 & 5 significantly. This behavior is not represented by either simulation since the k

values in the standard simulation remain approximately the same throughout the turbulent

flow. It is also evident that the adjustment of closure coefficients influences fully developed

turbulent flows (Profile 1 & 5) significantly more than the mixing section (Profiles 2 & 3).

7.3.2 Velocity

In contrast to the turbulent kinetic energy profiles, the velocity components are predicted

broadly similar in both simulations. The most notable difference in the velocity profiles of

the base case and stationary point simulation is observed in profile 2 (Figure 50), where

the steep descent of the main velocity component near x = 0.02m is not predicted in
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the stationary point simulation. Comparison with LDV data suggests that the new pro-

file is closer to the experimental result in shape, though the velocity magnitude is still

underpredicted.

(a) Profile 2, z/h = 0.5, Standard (b) Profile 2, z/h = 0.8, Stationary

Figure 50: Effect of the parameter change on the velocity components, profiles 2 at z/h =
0.5
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8 Summary and Outlook

8.1 Summary

Primary motivation of this work was a discrepancy in experimental (LDV) and numeri-

cal (CFD) turbulent kinetic energy k values. Based on LDV measurements a statistical

approach was applied to calibrate the closure coefficients of the turbulence model.

Evaluation of the measurements revealed that data acquisition near the channel walls is

challenging. Near the side walls, the thin glue layer blocks the laser light from entering the

channel. Measurements near top and bottom wall are difficult due to reflections and the

shape of the measurement volume. Nonetheless, due to the high resolution of the profiles,

enough quality data points were acquired in the bulk of the flow field. If the flow structures

near the channel walls are of great interest, the experimental setup needs to be adapted.

In order to simulate laminar and turbulent flow in the same computational domain, a

RANS based transitional turbulence model was used. Part of this work was to investigate

the models ability to correctly predict laminar flow. A calibration for internal flow was

inherited from Abraham, Sparrow, and J. Tong (2008), the results of the intermittency

γ are adequate, therefore no further effort was made in the calibration of the transition

prediction. However, the numerical results reveal that there is room for optimization if the

exact transition onset is of interest.

The initial comparison of measurement and numerical data revealed a satisfying fit of

the velocity components. The main contributor to the mean error of 14 % is the laminar

profile 4 where a secondary velocity component is present in the experiments compared

to the simulation, therefore illustrating the difficulty of producing fully laminar channel

flow. In contrast to velocity, the turbulent kinetic energy is significantly underpredicted in

the numerical solution, where the mean error is ∼ 90 %. In order to reduce this error, the

turbulence model closure coefficients are adjusted using Design of Experiments.

In the first Screening step of the DoE, a fractional factorial design was applied on a sim-

plified mesh to reduce computational effort and eliminate unnecessary closure coefficients
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from future investigations. It was revealed that for the present geometry, three out of eight

coefficients significantly influence the prediction of k. In a first optimization step, the three

remaining closure coefficients were further investigated using a CCC design. Evaluation

revealed that the desired minimum of error point was clearly outside the experimental

region. A second optimization was performed with adjusted factor ranges that resulted

in the prediction of a stationary point at σω1 = 0.66, β1 = 0.05 and a1 = 0.47. For one

factor, a1, a stability limit was found at values a1 ≥ 0.58 where no stable solution could

be achieved. The obtained quadratic regression model displayed an adequate fit for the

present task. Model prediction could be enhanced e.g by performing a subsequent DoE

with smaller factor ranges in the vicinity of the stationary point. It is however questionable

if this improvement justifies the computational effort, since due to the shape of the contour

plot no significant value changes are expected.

Comparison of the numerical solution with adjusted closure coefficients, standard coef-

ficients and measurement data revealed an error reduction of ∼ 45 % in the prediction of k.

Evaluation revealed that the laminar flow was not affected by the parameter changes. In

the fully turbulent flow, a significant improvement in magnitude of k was achieved. It is ev-

ident that the mixing section profiles are influenced differently, as k is still underpredicted

in profiles 2 and 3.

8.2 Future Work

The main intention of this work was to reduce the underprediction of k in the simulation,

which was accomplished. However the present results indicate that there is still room for

further research, primarily the elimination of the remaining error. Evidently, this error does

not solely consist of the model error εmodel, but also the numerical error εnum, measurement

error εmea and boundary condition error εb.c. It is therefore not feasible that sole adjustment

of the closure coefficients will lead to a perfect match of simulation and experiments. Since

the mixing section profiles constitute the largest part of remaining error, they should be

the key point of investigation if further closure coefficient adjustments are desired.
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Results also indicated that the prediction of γ in the laminar part of the simulation could

be improved. This may be achievable by constructing another DoE based on the transition

model closure coefficients with the intermittency as response. Alternatively a new set of

empirical correlations, specifically designed for internal flow, could be implemented in the

framework of the γ −Reθ model.

A reasonable next step originating from this work is the validation of the obtained

closure coefficients with multiphase or multispecie experiments, to determine whether the

mixing prediction for internal laminar and turbulent flow is improved. If an enhancement

can be observed, the subsequent steps should include validation for different internal flows

and materials. Based on the outcome of validation experiments, a decision can be made

whether further efforts to reduce the remaining error are reasonable.
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Appendix A Empirical Correlations

Three sets of empirical correlations are part of the γ −Reθ model (Robin B. Langtry and

Florian R. Menter 2009):

Flength =



398.189 ∗ 10−1 + (−119.270 ∗ 10−4)R̃eθt + (−132.567 ∗ 10−6)R̃e
2
θt R̃eθt < 400

263.404 + (−123.939 ∗ 10−2)R̃eθt + (194.548 ∗ 10−5)R̃e
2
θt+

(−101.659 ∗ 10−8)R̃e
3
θt 400 ≤ R̃eθt ≤ 596

0.5− (R̃eθt − 596.0) ∗ 3.0 ∗ 10−4 596 ≤ R̃eθt ≤ 1200

0.3188 1200 ≤ R̃eθt

(A.1)

Reθc =


R̃eθt − (396.035 ∗ 10−2 + (−120.656 ∗ 10−4)R̃eθt + (868.230 ∗ 10−6)R̃e

2
θt+

(−696.506 ∗ 10−9)R̃e
3
θt + (174.105 ∗ 10−12)R̃e

4
θt R̃eθt ≤ 1870

R̃eθt − (593.11 + (R̃eθt − 1870.0) ∗ 0.482) R̃eθt 1870

(A.2)

Reθt =

[
1173.51− 589.428Tu+

0.2196

Tu2

]
F (λθ), Tu ≤ 1.3

Reθt = 331.50[Tu− 0.5658]−0.671F (λθ), Tu > 1.3

F (λθ) = 1− [−12.986λθ − 123.66λ2θ − 405.689λ3θ]e
−[Tu

1.5
]1.5 , λθ ≤ 0

F (λθ) = 1 + 0.275[1− e[−35.0λθ]]e[
−Tu
0.5

], λθ > 0

(A.3)
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B. MEASUREMENT RESULTS - CROSS SECTION

Appendix B Measurement Results - Cross section

(a) Profile 1 (b) Profile 2

(c) Profile 3 (d) Profile 4

(e) Profile 5

Figure 51: Valid counts for all measurement points
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Appendix C Measurement Results - Box plot

(a) Profile 1 (b) Profile 2

(c) Profile 3 (d) Profile 4

(e) Profile 5

Figure 52: Valid counts for all measurement points
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Appendix D OpenFOAM solver settings

D.1 turbulenceProperties

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 4.0 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object RASProperties;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

simulationType RAS;

RAS

{

RASModel kOmegaSSTTransition;

turbulence on;

printCoeffs on;

kOmegaSSTTransitionCoeffs

{

// -kOmegaSST

alphaK1 0.85;

alphaK2 1;

alphaOmega1 0.5;

alphaOmega2 0.856;

Prt 1;

gamma1 0.555556;

gamma2 0.44;
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beta1 0.075;

beta2 0.0828;

betaStar 0.09;

a1 0.31;

b1 1;

c1 10;

F3 false;

// -Transition

ca1 2;

ca2 0.06;

ce1 1;

ce2 70; //ABRAHAM2009

sigmaf 1;

cTheta 0.015; //ABRAHAM2009

sigmaTheta 2;

s1 2;

}

}

.

.

.

D.2 fvSolution

solvers

{

"rho.*"

{

solver diagonal;

}

p

{

solver GAMG;

tolerance 1e-7;

relTol 0.05;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

nFinestSweeps 2;

cacheAgglomeration on;
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nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;

mergeLevels 1;

}

pFinal

{

$p;

tolerance 1e-6;

relTol 0.0;

}

p_rgh

{

solver GAMG;

tolerance 1e-7;

relTol 0.05;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

nFinestSweeps 2;

cacheAgglomeration on;

nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;

mergeLevels 1;

}

p_rghFinal

{

$p_rgh;

tolerance 1e-6;

relTol 0.0;

}

"(U|h|k|omega|Ret|gamma)"

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-6;

relTol 0.1;

//nSweeps 1;

}

95/109



D. OPENFOAM SOLVER SETTINGS

"(U|h|k|omega|Ret|gamma)Final"

{

$U;

relTol 0.1;

}

Yi

{

$U;

relTol 0.1;

}

}

relaxationFactors

{

fields

{

h 0.9;

}

}

PIMPLE

{

momentumPredictor no;

nOuterCorrectors 1;

nCorrectors 1;

nNonOrthogonalCorrectors 0;

}

D.3 fvSchemes

ddtSchemes

{

default Euler;

}

gradSchemes

{

default Gauss linear;

}

divSchemes

{
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default none;

div(phi,U) Gauss limitedLinearV 1;

div(phi,Yi_h) Gauss limitedLinear 1;

div(phi,K) Gauss limitedLinear 1;

div(phi,k) Gauss limitedLinear 1;

div(phid,p) Gauss limitedLinear 1;

div(phi,epsilon) Gauss limitedLinear 1;

div(phi,omega) Gauss limitedLinear 1;

div(phi,Ret) Gauss limitedLinear 1;

div(phi,gamma) Gauss limitedLinear 1;

div((muEff*dev2(T(grad(U))))) Gauss linear;

div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear orthogonal;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default orthogonal;

}

fluxRequired

{

default no;

p_rgh;

}

wallDist

{

method meshWave;

}
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E. PROFILE 1

Appendix E Profile 1

Figure 53: Turbulent kinetic energy comparison (Profile 1)

Figure 54: Standard coefficients velocity components comparison (Profile 1)
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F. PROFILE 2

Figure 55: Adjusted coefficients velocity components comparison (Profile 1)

Appendix F Profile 2

Figure 56: Turbulent kinetic energy comparison (Profile 2)
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F. PROFILE 2

Figure 57: Standard coefficients velocity components comparison (Profile 2)

Figure 58: Adjusted coefficients velocity components comparison (Profile 2)
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G. PROFILE 3

Appendix G Profile 3

Figure 59: Turbulent kinetic energy comparison (Profile 3)

Figure 60: Standard coefficients velocity components comparison (Profile 3)
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H. PROFILE 4

Figure 61: Adjusted coefficients velocity components comparison (Profile 3)

Appendix H Profile 4

Figure 62: Turbulent kinetic energy comparison (Profile 4)
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H. PROFILE 4

Figure 63: Standard coefficients velocity components comparison (Profile 4)

Figure 64: Adjusted coefficients velocity components comparison (Profile 4)
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I. PROFILE 5

Appendix I Profile 5

Figure 65: Turbulent kinetic energy comparison (Profile 5)

Figure 66: Standard coefficients velocity components comparison (Profile 5)
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I. PROFILE 5

Figure 67: Adjusted coefficients velocity components comparison (Profile 5)
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